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Editorial on the Research Topic

Simulating Normal and Arrhythmic Dynamics: From Sub-Cellular to Tissue and Organ Level

How physiological organs function as aggregates of individual cells is in many ways a challenging
problem, involving several temporal and spatial scales that lead to complex emergent behavior. In
fact, organs and tissues, which are typically a few centimeters in size, consist of cells in the order
∼ 10 − 100µm. Cell functions are in turn regulated by proteins, with typical sizes of ∼ 10nm.
Temporally, the response of the cells to external signals range from a few milliseconds (influx of
Sodium ions through specialized ion channels) to a fractions of seconds (cell repolarization), or
even longer when cells remodel due to a change in the environment or disease. Decades of careful
exploration have shown the importance of specialized proteins (such as ion channels), as well as
many regulatory pathways which endow tissues and organs with their unique properties. In this
context, developing mathematical models that are realistic enough to study how organs function,
is a serious challenge. Further, we stress that mathematical models not only have to reproduce
the experimental data they are based on, but they should also lead to predictions. In the present
problem, the issue is to elucidate the complex, collective behavior of an assembly of cells, in order
to understand how organs function.

Thanks in part to the progress in mathematical modeling and simulations of molecular and
other sub-cellular processes, it is now possible to understand how cells, coupled together in a tissue,
collectively give rise to the behavior observed in a complex organ. Furthermore, the remarkable
development of medical imaging now makes it possible to obtain high quality data, which can be
used as an input to the models, and also as a point of comparison for predictions. As a result,
the simulation approach can be successful not only in understanding the normal functioning of
organs, but also during diseases. The heart is certainly the most-studied and the best example of
such an approach.

This research topic consists of 19 research articles with emphasis on the development of new
methods and models for the study and understanding of cardiac function and other similar
electrophysiological systems such as the gastrointestinal complex and urinary bladder. These
studies focus mostly on normal cardiac function and some of the pathological/disease states that
can lead to deadly arrhythmias such as tachycardia and fibrillation, which remain as one of the
leading causes of death in the industrialized world.
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1. IMAGING METHODS AND

IMPLICATIONS FOR SIMULATIONS

From a methodological point of view, imaging techniques have
remarkably improved in the past few years, providing us access
to many properties of the tissue. As reported by Christoph and
Luther, this allows us to track reliably the motion of the heart,
especially during contraction. Another use of imaging techniques
is proposed by Greiner et al.. Using confocal microscopy imaging,
they managed to extract important parameters, essential to
describe better the properties, not only of healthy heart, but
also of infarcted organs. These are essential properties that any
reliable model has to necessarily take into account. An interesting
interaction between imaging and modeling is provided by the
work of Biktasheva et al., wherein they determine the role of fiber
orientation and other geometric factors that affect the dynamics
and termination of re-entries in fetal hearts.

2. PHYSICS-BASED APPROACHES

While studying organs and tissues, it is highly desirable to
supplement the fantastic investigation techniques provided by
imaging methods with new theoretical tools. Physics-inspired
techniques certainly play an important role in this context.
They have also been employed, in particular in the context
of cardiac dynamics, to analyse both normal and arrhythmic
states. Schlemmer et al. have focused on the permutation entropy
measure to quantify simultaneously both spatial structures
and temporal complexity during cardiac arrhythmia in both
2D and 3D cases. Ashikaga et al., used information theory
metrics to determine the causal relationship between rotors and
spiral waves. Their results suggest that rotors may not be the
mechanism that supports spiral waves at all the spatiotemporal
scales in heart.

In the sinoatrial node (SA) the physical mechanisms
underlying the spatial and temporal synchronization of the
pacemaker cells have been investigated using models of coupled
oscillators. Gratz et al. use advanced simulation tools to explore
the role of coupling on spontaneous action potential dynamics
and the spatiotemporal synchronization of pacemaking cells.
The authors identify distinct cellular coupling regimes that
promote spiral waves and synchronous activation respectively.
They also characterize the synchronization of spatially proximal
cells via a synchrony factor that is observed to vary non-linearly
with coupling.

3. USING SIMULATIONS TO STUDY

CARDIAC ARRHYTHMIAS

In the heart, numerous causes have been identified, that may
lead to the initiation of cardiac pathologies. This is a subject
of primary concern in a number of biological and medical
investigations, which is also amply reflected in this research
topic. The efficient pumping function of the heart may be
affected due to the presence of electrophysiological anomalies
at different scales. A case in point is the recently discovered

mutation in the slow delayed rectified potassium channel. In
this spirit, the contribution of Heikhmakhtiar et al. presents a
comprehensive modeling study of the influence of this mutation
on the pumping capabilities of the heart. This is one of the first
major studies that combine electrophysiological dynamics of a
complex human ventricular model with that of a contraction
model via the Calcium dynamics in a 3D ventricular tissue. The
main results from the simulations, indicate that this mutation
not only decreases the action potential duration but during
arrhythmias it can lead to very high volume of the left ventricle
with corresponding very low pressure.

Several cardiac arrhythmias have been know for a very long
time to be related to the presence of fast waves of electrical
activity, organized as “rotors.” Modeling studies can lead to a
better understanding of the underlying conditions that result in
the generation of such “rotors.” For example, Gao et al. provide
a two-dimensional theoretical analysis of how the geometrical
features of localized heterogeneities (curvature, shape, and size)
can affect rotor initiation.

Similarly, variability in cell dynamics has also been linked to
the generation of arrhythmic waves when connected in tissue as
shown by Kim and Sato. They show that reactivation of the L-
type calcium channels can spontaneously release Ca2+ producing
Early After Depolarizations (EADs) which can trigger action
potentials in neighboring cells under certain conditions. Using
a rabbit ventricular cell model they show that EADs can lead to
new propagating waves only when there is an heterogeneity in
cell coupling with small regions of non-excitable cells. This study
thus connects the effect of ischemia and tissue decoupling with
the generation of EADs and arrhythmia initiation via reentrant
waves. Similarly Sachetto et al. show how reentrant waves can be
generated by ectopic beats, not generated by EADs but via pure
fibrosis effects. The effect of tissue damage by fibrosis and hypoxia
is studied using a human ventricular model. Their results show
that micro-reentries are formed inside sections of damaged tissue
and can act as focal regions of re-excitation.

The proarrhythmic effect of damaged tissue during infarct
is also investigated by Campos et al.. They describe the role
of macroscopic and microscopic anatomical properties of the
infarct tissue border zone in creating a calcium mediated
substrate for arrhythmia initiation by ectopy and conduction
block. In a similar vein, Costa et al. compare in silico experimental
data available in the literature, and identify ionic remodeling
as the most prominent property influencing the pro-arrhythmic
nature of the infarct tissue in the early stages and structural
remodeling during the chronic stages.

It is difficult to account using a single model, all the
electrophysiological variability that comes from the complex ion-
channel dynamics and the multi-scale nature of the heart tissue.
Therefore, studies such as the ones presented by Lawson et al.
are necessary to understand drug effects on electrophysiological
cell variability. In this study a novel emulation approach,
based on Gaussian process regression augmented with machine
learning, is used along with more than 5000 monodomain
simulations of long-lasting arrhythmic episodes along with
enriched emulations to 80 million different electrophysiological
scenarios. This multivariate analysis allows to explain the
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role and increased arrhythmic risk of incomplete activation
of slow inward currents in mediating tissue rate-dependence
and dispersion of repolarization, and the emergence of slow
recovery of excitability. Pathmanathan and Gray also address
the complexity and multi-scale nature of cardiac models and the
difficulties in evaluating them for validation and prediction. They
present methodologies that are currently being developed by the
medical device community, to further categorize credibility of
physiological models with respect to experiments.

4. INCLUDING SUBCELLULAR LEVEL IN

THE DESCRIPTION OF THE HEART

As already mentioned, the dynamics of organs is intrinsically
a multiscale problem. Since pathological cells in a tissue may
result in a disease, it is important to develop a description that
includes sub-cellular details. Thus, depending on the problem,
the tissue-scale approach has to be improved, to take into
account the properties of specific cells. In the case of cardiac
arrhythmias, the standard approach at the tissue level, the mono-
and bidomain formulations for the heart, may need to be
extended by representing processes at the cellular level. In this
issue, Tveito et al. propose a method tomodel many cells together
in the microdomain, which allows them to handle non-uniform
distribution of ion channels along the cell membrane. Marchena
and Echebarria present a homogenized model of the intracellular
Ca handling, taking into account the spatial organization of
RyR clusters.

5. OTHER ORGANS

In addition to the heart, other organs with similar
electrophysiology such as the urinary bladder and uterine
myometrium also exhibit regular rhythms during their
normal functioning and deviate from them under pathological
conditions. Spatial patterns of electrical activity including
spiral waves have been observed in the smooth muscles of the
gastrointestinal (GI) systems. These slow waves are generated
from a single pacemaker in the proximal end of the stomach
and serve to regulate cyclic muscular contractions that enable
breaking down and transit of ingested food along the GI tract.
Du et al. have reviewed recent advances in the mathematical
modeling of both normal and abnormal slow waves.

Appukuttan et al. combine computational models and
experimental data to propose a plausible mechanism to explain
the occurrence of a diversity of action potentials at the level of
a single cell in the urinary bladder wall (detrusor). The authors
study the role of passive signals such as spontaneous excitatory
junction potentials (sEJPs) on modulating the shape of the action
potentials. They map the action potential shape and the syncytial
properties of the tissue in order to characterize changes occurring
during pathological conditions such as overactive bladder.

Insulin regulation is another physiological process showing
rhythmic variations, with the blood glucose levels varying over
a duration of hours. These rhythms are different for healthy and
diabetic people respectively and can be tracked via Continuous
GlucoseMonitoring (CGM), providing insight into dietary habits
of individuals and suitable clinical interventions. In their study
Goel et al. have built a minimal model for tracking blood sugar
level during type 2 diabetes in the process providing a plausible
strategy toward personalized analysis of CGM.

6. FUTURE OF SIMULATION STUDIES OF

NORMAL AND ABNORMAL

PHYSIOLOGICAL DYNAMICS

The progress in developing quantitatively accurate multiscale
simulations of organs, as presented in this Research Topic, now
make it possible to develop methods that would be useful in
clinics. This is particularly important for the case of cardiac
arrhythmia, wherein advances in multiscale simulations are
aimed at helping clinicians improve personalized treatment for
patients. The papers presented in this research topic show how
imaging techniques complement simulations and are necessary,
to both develop better physics-based models across scales
(from sub-cellular to organ-level) and to investigate arrhythmia.
Moreover, many of these techniques are found to be applicable to
other biological and physiological fields.
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Death due to ventricular fibrillation (VF) can occur over a relatively short time period.

During the first stage, an irregular heartbeat or arrhythmia of the heart may occur.

Therefore, studying arrhythmia could reveal important insights relevant to the prevention

of VF. One of the factors known to cause arrhythmia is the generation of mutations

in the ion channels of myocytes. The current experimental methods to monitor and

observe subjects with arrhythmia are invasive, and could possibly harm the subject with

no guarantee of obtaining good results. These limitations could be overcome by using

an extensively validated computational simulation study. This study aims to enhance

our understanding of the effect of the V241F mutation on electromechanical behavior

in the heart. We simulated three conditions; wild-type (WT), heterozygous/intermediate

V241F, and pure V241F conditions in an electrophysiological single cell model and

three-dimensional electro-mechanics ventricular model. The electro-mechanics model

is a one-way coupling of the electrical compartment to the mechanical compartment

by Ca2+ transient concentration. Consistent with a previous study, the V241F mutation

significantly shortened the action potential duration at 90% repolarization (APD90) under

pure V241F mutation conditions, due to the gain of function of the slow delayed

rectifier potassium (IKs) channel. This APD90 shortening is associated with a short

electrical wavelength, which shortens the Ca2+ activation time as well. The hemodynamic

responses showed that the V241F mutation lowered ventricular contraction under

normal sinus rhythm conditions by decreasing the stroke volume, stroke work, and

ejection fraction. During reentry, the V241F mutation significantly reduced the ventricular

contractility comparedwith theWT condition. In conclusions, the effect of the two variants

of V241F (intermediate and pure) mutation not only disturbed the electrophysiological

events but also affected the mechanical behavior significantly. The result of this study

can be used as a reference for the cardiovascular expert to decide the appropriate

pharmacology of IKs conductance block for the patient.

Keywords: V241F KCNQ1mutation, electromechanical model, sinus rhythm, ventricular fibrillation, computational

model
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INTRODUCTION

Recent data from the American Heart Association showed that
cardiovascular diseases are the primary causes of death
worldwide [1]. Sudden cardiac death and ventricular fibrillation
(VF) are associated with a <11% chance of survival. VF
occurs when the heart quivers instead of performing a normal
contraction. This results in a reduction of blood distribution
within the circulatory system [2]. VF causes death within a short
period (<1 h) in the absence of any observable symptoms [3]. In
the last two decades, the number of deaths from VF worldwide
has reached 300,000 per year [3–5]. Since VF is initiated by
ventricular arrhythmia [5–7], the study of arrhythmia is of great
of importance. Over the last few decades, researchers have found
that disturbance in the electrical activity of the heart is due to ion
channel mutations, also known as ion channelopathies [8, 9].

Ion channels are protein complexes that act as gates in
the cardiomyocytes membrane and sarcolemma, regulating the
permeability of specific ions through the membrane [10]. The
ion channels in myocytes dynamically control the ionic currents
that orchestrate action potentials (APs). Changes in the electrical
properties of myocytes directly affect their mechanical activation
[11]. Hence, changes in the properties of ion channels due to
mutations will presumably change the AP shape, as well as
alter the myocytes. In addition, mechanical activation of the
myocytes will also affect the electrophysiological events related
to stretch-activated channels (mechano-electric feedback) [12].
Understanding the mechanism of electrical disturbance in the
early stages of VF could help clinicians make decisions regarding
the optimal therapies.

In 2014, a novel mutation in the slow delayed rectifier
potassium (K+) channel (IKs) was found. The mutation
p.Val241phe (V241F) occurs in the S4 transmembrane domain
of the KCNQ1 gene in Korean families with a history of
atrial fibrillation and bradycardia [13]. IKs are composed of
both KCNQ1 (KVLQT1) channel subunits and KCNE1 (minK)
subunits in myocytes and are involved in the repolarization of the
AP during the plateau phase and refractory period [14]. V241F is
a gain of functionmutation of KCNQ1 that abbreviates the action
potential duration at 90% repolarization (APD90). A short APD90

results in short QT syndrome and is one of the primary causes
of VF [15]. Our previous study enhanced understanding of the
electrophysiological activity of the V241F mutation by using an
image-based three-dimensional (3D) cardiac model [16]. In this
study, we observed the contribution of the V241F mutation to
ventricular pumping of the heart by using a 3D electro-mechanic
ventricular model.

The goal of this study was to computationally predict
the electrical activity and mechanical responses of human
ventricles with the V241F mutation under conditions of normal
sinus rhythm and VF. The experimental study of arrhythmia
has many limitations because it is difficult to measure the
electrical and mechanical activity of the heart non-invasively;
furthermore, only the surface can be observed. Hence, we used
an extensively validated computational model as an alternative
to uncover the effect of the V241F mutation on the electrical
and mechanical activity of the heart. To the best of our

knowledge, no study has observed the contribution of the
V241F mutation to the electrophysiological activity of the
heart and the mechanical responses of the ventricle. Here, we
simulated an electrophysiological single cell model, and a 3D
electromechanical model of a failing ventricle under wild-type
(WT), intermediate V241F, and pure V241Fmutation conditions.

MATERIALS AND METHODS

In this study, we used an electromechanical model of failing
ventricle based on magnetic resonance imaging with finite
element combined with the lumped-parameter model, similar to
our previous study [17]. The methods for the electromechanical
coupling we used in this study are based on those described
by Gurev et al. [18, 19]. The present electromechanical
model consists of electrical and mechanical properties that
were weakly coupled by intracellular calcium (Ca2+) transient.
Physiologically, the electrical propagation in the ventricular
tissue represents depolarization of each cell throughout the
ventricle. The depolarization in the myocytes activates the Ca2+

channel of the sarcoplasmic reticulum, releasing Ca2+ into the
cytosol. The Ca2+ then binds to troponin C, causingmyofilament
sliding to occur. This event also called cross-bridge contraction,
which generates active tension resulting in deformation of the
ventricles. The intracellular Ca2+ transient acts as the trigger to
convert the electrical activation into a mechanical phenomenon.
In our simulation, we obtained the Ca2+ information from the
electrophysiological model from each myocardial cell and input
it into the contractile myofilament dynamics model.

Electrical Model
The electrical mesh consists of 241,725 nodes with 1,298,751
elements forming in a tetrahedral shape. The mesh was
embedded with Purkinje networks model, based on the study
of Berenfeld and Jalife, on the endocardial boundary [20]. The
Purkinje fiber was constructed from 2D line mesh, which then
mapped onto the endocardial surface of the 3D ventricular
mesh. The attachment of the Purkinje network was used only
in the simulation under normal sinus rhythm condition. The
electrical simulation includes multi-level electrophysiological
activity: single cell activation and the propagation of the electrical
signal in the ventricle tissue. The electrical propagation is
expressed by solving a mono-domain partial differential equation
which presented the current flow in the ventricles composed of
myocytes connected by gap junctions. The single cell activation
is expressed by solving a set of the ordinary differential equation
which expressed the current flow through ion channels, pumps,
and exchanger in the membrane and the sarcoplasmic reticulum.
The electrophysiological cell model incorporated into our model
was based on the work of ten Tusscher et al. [21] which
includes epicardium,M-cell, and endocardium elements. The cell
membrane is represented as a capacitor, and the ion channels are
represented as the resistance. Ions traversing the cell membrane
are represented as an electrical current passing through the
capacitor and resistors. The electrophysiological behavior of this
model can be described using the following differential equation
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from Hodgkin and Huxley [22]:

Cm
dVm

dt
=−(Iion+Istim)

WhereV is voltage, t is time, Iion is the sum of all transmembrane
ionic currents, Istim is the external current stimulus, and Cm is
the cell capacitance per unit surface area. The total ionic current
Iionis represented by:

Iion = INa+IK1+Ito+IKr+IKs+ICa,L+INa,Ca+INa,K+Ip,Ca

+ Ip,K+Ib,Ca+Ib,Na

Where INa is the fast sodium current, IK1 is the inward rectifier
potassium current, Ito is the transient outward potassium current,
IKr and IKs are rapid delayed rectifier and slow delayed rectifier
potassium current, respectively, ICaL is the L-type inward calcium
current, INaCa is the sodium-calcium exchanger current, INaK
is the sodium-potassium pump current, IpCa is the plateau
calcium current, IpK is the plateau potassium current, IbCa is
the background calcium current, and IbNa is the background
sodium current. Based on the single cell model, the equation
was modified to model the electrophysiological phenomena in
3D space. The 3D electrical propagation phenomenon can be
described with the following partial differential equation:

dV

dt
=−

Iion+Istim

Cm
+

1

ρxSCm

∂2V

∂x2
+

1

ρySCm

∂2V

∂y2
+

1

ρzSCm

∂2V

∂z2

where ρ is the cellular resistivity with respect to the x, y, and z
directions, and S is surface to volume.

To implement the properties of the V241F mutation into the
signal cell and three-dimensional electrophysiological model, we
modified the IKs of the ten Tusscher cell model with the equation
of V241F mutation. We implemented the V241F mutation
equation by Ki et al. which has been validated with experimental
data [13].

Mechanical Model
The contraction and deformation of the ventricles were simulated
according to the mechanical properties. To initiate myocytes
contraction, Ca+2 arising from the electrical simulation under
the V241F mutation was used as the input. Contraction of
the ventricle was the result of active tension, as represented
by the myofilament dynamics model of Rice et al. [23].
Ventricular deformation is described by the stress equilibrium
equations of passive cardiac mechanics, with the myocardium
assumed to be an orthotropic, incompressible, and hyperelastic
material that has passive properties defined by an exponential
strain energy function [24]. The mechanical mesh consists
of 356 nodes with 172 Hermite (non-linear) elements. The
ventricular contraction was calculated by solving the active
myofilament model equations simultaneously with passive
cardiac mechanics equation on each node of the finite-
element mesh. The Rice et al. model is well-known to have

a very good understanding describing excitation-contraction
coupling phenomenon. The mechanical ventricular model was
integrated with the lumped parameter model. The lumped
model represented the systemic and pulmonic circulatory
system based on a study by Kerckhoffs et al. [25]. The ATP
consumption presented here is based on the rates of ATP
consumed for myofilament contraction. The ATP consumption
rate (E) is the outcome of cross-bridge detachment rate
(gxbT) and the single overlap fraction of thick filaments
(SOVFThick):

E=gxbT×SOVFThick

Simulation Protocol
For the single cell simulation model, we applied a stimulus to the
cell 30 times with a basic cycle length (BCL) of 1 s. The strength
of the stimulus was 52 pA/pF and it was applied for 0.2ms. After
the cell reached a steady-state condition, we obtain the APD90,
IKs current, and APD restitution curve toward BCL and diastolic
interval (DI) under WT, intermediate V241F, and pure V241F
mutation conditions. APD90 was defined as the interval between
the depolarization and repolarization at 90% of the AP upstroke,
measured from the top.

Using a 3D electromechanical model, we analyzed the
electrical propagation wave under two conditions: normal
sinus rhythm and reentry/arrhythmia. We decreased the CV
of the electrical propagation to 60 cm/s, and in the finite
element model, we multiplied the constant of passive scaling
level by 5 in the strain energy function to increase the
stiffness of the myocardium tissue. During normal sinus
pacing, the electrical stimulation was applied using a Purkinje
network model with BCL of 600ms for all three cases. The
electrical signal propagation comes from the Purkinje networks
is expressed by solving one-dimensional wave propagation
equation which triggered the ventricle tissue activation. The
simulation lasted for 42 s in order to reach a steady state was
reached.

To simulate the reentry condition in 3D ventricular model,
we used the standard S1-S2 protocol. S1 is an electrical stimulus
which applied three times at the apex with 600ms BCL. The S1
stimulus generated three planar wave-forms toward the base of
the ventricle. The S2 is the protocol which reset the membrane
potential in half of the ventricular medium to resting state. The
S2 was applied just before the head of the third planar wave reach
the base area. This protocol will allow the reentry to be generated
toward the resting potential state nodes. The simulation time for
the reentry conditionwas 10 s under theWT, intermediate V241F,
and pure V241F mutation conditions.

Next, we coupled the transient Ca2+ data from the electrical
simulation with those of the mechanical simulation. The
mechanical simulation results for the normal sinus rhythm
condition was taken from the last cycle of the simulation/steady-
state. For the reentry, we used all 10 s data to compare the
mechanical responses among the WT, intermediate V241F,
and pure V214F mutation conditions during reentry. See
the Supplementary Material regarding the electro-mechanical
coupling technics.
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FIGURE 1 | Cardiac single cell response of WT and variants of intermediate and pure V241F mutation condition in 3 type of cell: (A) Slow delayed rectifier K+ current

(IKs) in endocardial cell (B) Slow delayed rectifier K+ current (IKs) in mid-myocardial cell (C) Slow delayed rectifier K+ current (IKs) in epicardial cell (D) APD profile in

endocardial cell (E) APD profile in mid-myocardial cell (F) APD profile in epicardial cell (G) APD according to BCL in endocardial cell (H) APD according to BCL in

mid-myocardial cell (I) APD according to BCL in epicardial cell (J) APD according to DI in endocardial cell (K) APD according to DI in mid myocardial cell (L) APD

according to DI in epicardial cell.

Under the reentry condition, the spiral wave will be induced
to the ventricular tissue. The altered activation of the electrical
signal desynchronized the contractility of the ventricle. Hence
the chaotic condition was exhibited, and quivering of the heart
altered the LV pressure, aortic pressure, blood volume in the
ventricles, and ATP consumption rates.

RESULTS

Single Cell Responses
Figure 1 compares cellular responses among the WT, V241F
intermediate V241F, and pure V241F mutation conditions
including IKs (Figures 1A–C), AP shape (Figures 1D,E), APD
toward BCL (Figures 1D,E), and APD toward Di (Figures 1J–L).
Figures 1A–C shows that V241F pure mutation has the highest
IKs density compared to intermediate andWT conditions. Notice
that the IKs current was activated during the depolarization
for both intermediate and pure V241F conditions. This early
activation of the IKs is consistent with the findings of Ki et al. in

the atrium cell endowed with the V241Fmutation [13]. Normally
the IKs activated during repolarization. The pure V241F current
was deactivated earlier compared to that under the intermediate
and WT conditions. Figures 1D–F shows that the APD90 of
the pure mutation was 100 and 200ms under the intermediate
conditions in endo, M-cell, and epicedial cell, respectively. In
the ten Tusscher model, they differentiate the conductance of IKs
and Ito to generate the AP shape for endo, M, and epicardium
cell. Under the intermediate and pure V241F conditions, the
IKs was activated in the earlier phase of AP, leaving its role at
the repolarization time. As the result, the shape of AP for endo,
M, and epicardium under intermediate and pure V241F become
uniform. This means that the IKs has more significant impact
than the Ito to compose the endo, M, and epi AP shape. In the
comparison of APD toward the BCL, the alternant was observed
in theM-cell under intermediate and V241F pure mutation at the
150 and 175ms BCL, respectively.

Figure 2 shows the CV restitution curves under WT,
intermediate and pure V241F mutation conditions. At BCL 700,
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FIGURE 2 | Conduction velocity restitution curves obtained from a cable

shape mesh by pacing at the left side of the mesh for 100 time under WT,

intermediate (notified by Het.), and pure V241F mutation conditions.

600, and 500, the CV was all the same for the three conditions,
59 cm/s. The CV of the pure V241F mutation was decreased to
42 cm/s until BCL 150ms. The CV of the pure V241F mutation
was unstable at BCL 100ms. The CV of the intermediate was
remained to decrease until BCL 250ms. However, the CV of the
intermediate was increased at BCL 200. The CV of the WT was
decreased steadily until BCL 300ms. The CV was increased at
BCL 290ms. The increased BCL at the last point was due to
alternant during the stimulation. The cell failed to generate action
potential at the even stimuli. In results, the AP generation was
skipped one cycle and exhibiting double BCL from what it is
supposed to.

Three-Dimensional Ventricular Responses
During Normal Sinus Rhythm
Figure 3 represents the transmembrane potential propagation
in the 3D ventricular model during one cycle (600ms) of
sinus pacing. Even though all stimulations started at the same
time, the pure V241F mutation condition showed a faster
repolarization phase compared with the intermediate V241F and
WT conditions. After the Purkinje firing the electrical signal to
the ventricular tissue, under the V241F pure mutation condition,
the membrane potential already in the repolarization phase at
140ms indicated by the yellow color. Under the intermediate
condition, the wavelength completely gone at the 340ms. Under
the WT condition, the wavelength was sustained to more than
340ms.

Figure 4 shows the electrical activation time (EAT) that was
put into our electromechanical model of ventricular heart failure
(Figure 4A) and electrical deactivation time (EDT) (Figure 4B)
for WT, V241F intermediate and pure mutation during one cycle
of sinus rhythm. The EATwas the same under all three conditions
(see Figure 4A). However, the EDT under the WT condition
was longer compared with that of the intermediate V241F and

pure V241F mutation conditions (Figure 4B). The pure V241F
mutation condition had the lowest EDT which is associated with
the short wavelength. The EDT results indicated that the pure
V241F mutation had faster repolarization than the intermediate
V241F and WT conditions. The maximum and minimum EAT
and EDT values for all three conditions are given in Figure 4C.

Table 1 shows the ventricular mechanical responses during
normal sinus pacing (one cycle) under the WT, intermediate
V241F, and pure V241F mutation conditions. The stroke volume
(SV), stroke work (SW), and ejection fraction (EF) were
decreased under intermediate V241F mutation condition and
further decreased under the pure V241F mutation condition.
The SV reach 44mL under the WT condition, and 36 and
32mL under the intermediate V241F and the pure V241F
mutation conditions, respectively. SW indicates the performance
of ventricle during contraction. The SW of WT condition was
4,566 mmHg mL. In the case of pure V241F mutation, the
SW indicated the lowest performance, having a value of 3,315
mmHg mL. The contractile adenosine three phosphate (ATP)
consumption rates under the intermediate V241F mutation and
WT conditions were 92 and 166 s−1, respectively. Under the
pure mutation condition, the ATP consumption rate dropped to
84 s−1.

Three-Dimensional Ventricular Responses
During Reentry
Figure 5A shows the snapshot view of arrhythmia under theWT,
intermediate V241F, and pure V241F mutation conditions. In
our simulation, the reentry wave was sustained until the end of
simulation for all three condition. Nevertheless, the center of
rotation of the spiral wave appeared in a different place for each
conditions. However, from the snapshot, we can see that pure
V241F mutation condition had the shortest wavelength among
all three conditions. This accorded with the APD90 of the pure
V241F mutation also being the shortest APD90 (Figure 5B).

Figure 6 illustrates the mechanical responses, including the
LV pressures (Figure 6A), the LV volume (Figure 6B), LV
pressure-volume relation (Figure 6C), and contractile ATP
consumption rates (Figure 6D) during 10 s of reentry under the
WT, intermediate V241F, and pure V241F mutation conditions.
The figures on the right-hand side correspond to the last 1 s
of the mechanical responses, i.e., the steady state condition.
According to the LV pressure data, the peak ventricular pressure
was 30 mmHg for the pure V241F mutation, 35 mmHg for
the intermediate V241F condition, and 42 mmHg for the WT
condition. The short APD90 under the mutation conditions
resulted in reduced calcium activation in the myocytes; thus,
the mutation conditions showed poorer contractility. A short
wavelength under the mutation conditions caused faster reentry
and increased the electrical activation rate, thus producing a
more chaotic condition. We can see from the LV pressure
graph that the pure V241F mutation condition had the highest
ventricular beating frequency over 1 s (right side of Figure 6).
The ventricular beat rate was 420 bpm for the pure V241F
mutation, 300 bpm for the intermediate V241F mutation, and
240 bpm for the WT condition.
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FIGURE 3 | Snapshots of transmural distribution of membrane potential during one cycle of sinus pacing. (A) WT, (B) V241F Intermediate, (C) V241F Pure conditions

in the 3D ventricular tissue model.

FIGURE 4 | EAT during one cycle of sinus pacing for WT, V241F intermediate and Pure Condition. (A) EAT mapped on ventricle model, (B) EDT mapped on ventricle

model. (C) Comparison graph of minimum EAT, maximum EAT, and maximum EDT.

According to LV volume graph (Figure 6B), the pure V241F
mutation had the highest blood volume in the LV. The
pure V241F mutation had a blood volume of 55mL when it
reached the steady-state of reentry. However, the intermediate
V241F and WT conditions had similar steady state blood
volumes of 34 and 33mL, respectively. The larger volume in
the pure V241F mutation condition was related to the LV
pressure (Figure 6A); under this condition, the ventricle had
the lowest contractility, which was insufficient for ejecting the
blood.

Figure 6C shows the LV pressure-volume relation under
reentry condition for all three cases. As the figure shows, the
pure V241F mutation condition had the highest volume, while
its LV pressure was the lowest compared to the intermediate
V241F mutation and WT conditions, representing a very weak
contraction. Thus, under a steady state of reentry condition
(Figure 6C right side), it shows that the pure mutation has the
smallest amount of SV and SW. The LV pressure under the

intermediate V241F mutation condition ranged at 24–35 mmHg
with LV volume ranged at 32–34mL. Under the WT condition,
the LV pressure ranged at 21–42 mmHg with the LV volume
ranged at 31–33 mmHg.

Figure 6D shows the ATP consumption rate for all three cases
during reentry. The contractile ATP consumption rate for the
pure V241F mutation was the lowest, which accord with the
PV curves results (see Figure 6C) showing that, because of pure
mutation condition relatively little energy could be consumed,
the pressure of the ventricle was insufficient to pump the blood
efficiently.

During reentry or fibrillation, because of the chaotic electrical
events, the hemodynamics of the heart was seriously altered
under the WT, intermediate, and pure V241F mutation
conditions (Figure 6). All three conditions showed poor
pumping contraction capabilities with the pure V241F being the
worst condition. The frequency of the LV pressure was very high
with the blood remaining steady in the LV.
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DISCUSSION

Using a single cell and three-dimensional electromechanical
model of human ventricle, this study investigated the effect of
the V241F KCNQ1 mutation during normal sinus rhythm and
reentry using a computational method. Themethod to couple the
electrical and the mechanical compartment as well as the lumped
circulatory model is based on the study of Gurev et al. [18,
19]. This is the first study to implement a finite element-based
electromechanical model for the heart to investigate cardiac
electrophysiology and the mechanism underlying the V241F
KCNQ1 mutation. The major findings of our research are as
follows:

1. Similarly to the atrial cell by Ki et al. [13], in a single cell
simulation that was applied to three types of ventricle cellular
model (endo, M-cell, epi), V241F mutation activates the IKs
channel during depolarization phase (activated early) and it

TABLE 1 | Ventricular mechanical responses during sinus rhythm under WT,

V241F intermediate, and V241F pure mutation conditions.

Variant type WT V241F intermediate V241F pure

End diastolic volume (mL) 76 83 85

End systolic volume (mL) 32 47 53

Stroke volume (mL) 44 36 32

LV systolic pressure (mmHg) 125 127 127

Stroke work (mmHg mL) 4,566 3,693 3,315

ATP consumption rate (s−1) 163 92 84

Mean left atrial pressure (mmHg) 14 13 15

Mean aortic pressure (mmHg) 99 99 102

Ejection fraction (%) 58 43 38

increased the IKs density (Figures 1A–C). This is the caused
for the short APD90.

2. Under the 3D model of normal sinus rhythm condition,
repolarization showed faster acceleration during sinus pacing
under the V241F pure mutation condition compared with the
intermediate V241F mutation and WT conditions (Figure 3).
With the same CV, the EAT of the three cases were the
same except for the EDT (Figure 4). The SV, SW, and EF
under sinus rhythm were lowered under the intermediate
condition, even worst under that V241F pure mutation
condition (Table 1).

3. During the reentry phase, the pure V241F mutation
generated the shortest membrane potential propagation wave
(Figure 5A) among all three conditions.

4. The mechanical response of pure V241F mutation has the
lowest LV pressure, highest LV volume, and lowest ATP
consumption rates during reentry.

The single cell electrophysiological responses showed that the
KCNQ1mutation activates the IKs channel during depolarization
time with a high density of current. This early activation force the
vast amount of positive ions to leave early out of the myocytes
abbreviated the APD during repolarization time significantly
(Figure 1). These results are consistent with the study by Ki et al.
which of the mutation was occurred in the atrium cell [13]. The
APD90 shortening due to the V214F mutation makes the short
wavelength hence short QT wave. This increases the fatal effect
since the short QT syndrome is associated with VF which could
lead to sudden cardiac death [15]. The wavelength shortening
owing to the mutation was observed under normal sinus rhythm
and reentry conditions (Figures 3, 5).

The low performance of ventricular contractility under sinus
rhythm condition is described in Table 1. The pure V241F
mutation showed the lowest SV, SW, EF, and ATP consumption

FIGURE 5 | Reentrant dynamics wave in the 3D ventricular tissue model for WT and V241F mutation conditions. (A) Snapshot of trans mural distribution of wt

condition (top), Snapshot of trans mural distribution of V241F Intermediate (center), Snapshot of trans mural distribution of V241F Pure (bottom) of membrane

potential; and (B) time traces of action potentials (AP) in 1 s.
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FIGURE 6 | Ventricular mechanical responses of reentrant dynamics wave in the 3D ventricular tissue model for WT, V241F intermediate and pure condition. (A) LV

pressure waveforms, (B) LV volume waveforms, (C) LV pressure-volume curves and (D) ATP curves for WT, V241F Intermediate, and Pure mutation conditions.

rates compared to the intermediate V241F mutation and WT
conditions. The poor activation of the mechanical responses is
related to the APD abbreviation. Short APD means the time for
Ca+2 activation was also decreased. Since the Ca+2 is the trigger
for myofilament sliding or cross-bridge activation, short Ca+2

activation time would decrease the ventricular pumping efficacy.
During reentry, the V241F mutations (intermediate and pure)

shortened the electrical propagation wavelength (Figure 5A) and
increased the frequency of the electrical activation especially to
the nodes close to the center of the rotor (Figure 5B). Under the
WT condition, the wavelength was two times longer to that under

pure mutation condition. The AP shape and the frequency of the
activation at specific node were aligned in Figure 5.

To compare the hemodynamic responses under the WT,
intermediate, and pure V241F mutation during reentry, we
present the LV pressure waveform, LV volume waveform, LV
Pressure-Volume (PV) curve, and contractile ATP consumption
rate. Our results showed that the V241F mutation (intermediate
and pure) decreased the LV pressure (Figure 6A) and ATP
consumption rate (Figure 6D) during reentry. Because the
pressure of the LV was low, there was insufficient strength
to pump the blood out of the ventricles, resulting in the
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accumulation of blood inside the ventricles (Figure 6B). The
relationship between the pressure and volume waveforms of the
LV is described by the PV curve. The pure V241F mutation
condition showed the smallest loop during reentry (Figure 6C).
The pressure’s waveforms vary with the ATP consumption rate
among all three conditions (Figure 6D).

Our results show that the electrophysiological activation
is strongly related to the ventricular pumping under both
sinus rhythm contraction and reentry scenarios under WT,
intermediate, and V241F pure mutation conditions. The
alteration to the electrical activation would cause abnormality
of the hemodynamics of the heart. In this case, the shortening
of APD90 due to the V241F mutation lowered the pumping
performance of that under the intermediate condition and even
more with that under pure mutation condition.

This study demonstrated mechanistically the effect of the
V241F mutation on the electrical activation and also mechanical
pumping behavior under sinus rhythm and reentry condition.
The gain of function of the IKs channel lowers the pumping
efficacy by altering the APD90, thus shortened the electrical
activation wavelength. The clinical impact of this study is that
the ratio of the APD90 shortening in the myocytes by the V241F
mutation can be used as a reference for the cardiologist expert
to decide the appropriate pharmacology of IKs conductance
block for the patient. Previous studies indexed pharmacological
substances related to voltage-gated potassium channels [26, 27].
Although further investigation, such as in vivo or in vitro test
should be conducted.

LIMITATIONS

There were several limitations to this study that should be
addressed. We used isotropic conductivity for the electrical
propagation through tissue. The electromechanical model we
used is a one-directional coupling model. We coupled the
electrical activation to the mechanical contraction by giving the
mechanical model the information of the Ca2+ transient from the
electrical simulation. The mechano-electrical feedback was not
considered in this study. For example, stretch-activated channel
[28] was not implemented and the information of contractile
energy consumption was not fed back to the electrical model. The
energy consumption was calculated to quantify the mechanical
activity of the ventricle. The experimental study about the V241F

mutation on the ventricle, to our best knowledge, is not available
yet. Hence it becomes a constraint to explicitly validate this
computational prediction.

In conclusions, the effect of the two variants of V241F
(intermediate and pure) mutation not only disturbed the
electrophysiological events but also affected the mechanical
behavior significantly. Within a single cell, the pure V241F
mutation shortened the ventricular APD90 of M-cell by 73
and 45% under the pure and intermediate V241F mutations,
respectively. In the 3D electrical model of normal sinus rhythm
and reentry, the APD of the intermediate and pure V241F
mutation conditions was significantly shortened vs. the WT,
which prone to VF situation. As a result, the mechanical
responses associated with a normal sinus rhythm under the
V241F mutation conditions consumed less ATP, and showed
a decreased EF, SV, and SW. Hemodynamic function during
reentry was impaired by the V241F mutation, resulting in
very weak heart contractility and an accumulation of blood in
the LV.
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In cardiac cells, calcium is the mediator of excitation-contraction coupling. Dysfunctions

in calcium handling have been identified as the origin of some cardiac arrhythmias. In

the particular case of atrial myocytes, recent available experimental data has found links

between these dysfunctions and structural changes in the calcium handling machinery

(ryanodine cluster size and distribution, t-tubular network, etc). To address this issue,

we have developed a computational model of an atrial myocyte that takes into account

the detailed intracellular structure. The homogenized macroscopic behavior is described

with a two-concentration field model, using effective diffusion coefficients of calcium in

the sarcoplasmic reticulum (SR) and in the cytoplasm. The model reproduces the right

calcium transients and dependence with pacing frequency. Under basal conditions, the

calcium rise is mostly restricted to the periphery of the cell, with a large concentration

ratio between the periphery and the interior. We have then studied the dependence of

the speed of the calcium wave on cytosolic and SR diffusion coefficients, finding an

almost linear relation with the former, in agreement with a diffusive and fire mechanism of

propagation, and little dependence on the latter. Finally, we have studied the effect of a

change in RyR cluster microstructure. We find that, under resting conditions, the spark

frequency decreases slightly with RyR cluster spatial dispersion, but markedly increases

when the RyRs are distributed in clusters of larger size, stressing the importance of

RyR cluster organization to understand atrial arrhythmias, as recent experimental results

suggest (Macquaide et al., 2015).

Keywords: calcium modeling, atrial cells, local calcium signaling, calcium release unit, ryanodine receptor

1. INTRODUCTION

Calcium is one of the most important intracellular messengers, and thus the mechanisms that
control the intracellular free calcium concentration are of fundamental physiological importance
(Berridge, 1997). For instance, Ca2+ takes part in oocyte activation at fertilization (Poenie et al.,
1985), axonal growth (Bixby and Harris, 1991), cell migration (Huttenlocher et al., 1997), gene
expression (Bading et al., 1993), formation of nodules in plant root hairs (Ehrhardt et al., 1996),
development of muscle (Ford and Podolsky, 1972), release of cytokines from epithelial cells
(Kaufman and Roizman, 1989), cell death (Schanne et al., 1979; Farber, 1981), and excitation-
contraction coupling in muscle cells (Fabiato and Fabiato, 1979).
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In cardiac cells, calcium dysregulation has been related to the
appearance of arrhythmias and sudden cardiac death. A life-
threatening arrhythmia, fibrillation, results when an electrical
wavebreak induces reentry and triggers a cascade of new
wavebreaks. Ventricular fibrillation (VF) is the most common
cause of sudden death, whereas atrial fibrillation (AF), the most
prevalent clinical arrhythmia, accounts for nearly one third of
strokes in the elderly (Weiss et al., 2005). Clinically, AF duplicates
the mortality rate and increases the risk of ictus (in which poor
blood flow to the brain results in cell death) 5-fold. In spite of
this the treatment of AF remains deficient or inefficient, because
of the incomplete knowledge of the complex pathophysiology of
this disease. Often, AF has been linked to a dysregulation in the
dynamics of intracellular calcium, thus the importance of a good
knowledge of calcium handling dynamics in the cell. On the other
hand, in the last ten years, the refinement of the experimental
techniques, such as STED and dSTORM (Hell and Wichmann,
1994; Izu et al., 2006; Soeller and Baddeley, 2013) has provided,
for instance, a link between the calcium handling microstructure
and the occurrence of cardiac diseases, as AF (Macquaide et al.,
2015), prompting the quest for more detailed models of calcium
handling, able to mechanistically explain this relation.

Inside cardiac cells, most intracellular calcium is stored in
a complex structure called sarcoplasmic reticulum (SR), see
Figure 1. Ca2+ is released from this internal network via the
Ryanodine Receptors (RyR, Franzini-Armstrong and Protasi,
1997) when a threshold calcium concentration in the cytoplasm
is achieved. This happens due to a small influx of calcium
through the L-type calcium channels (LCC) during the cardiac
action potential. This current triggers calcium release from the
SR by activating the RyRs. RyRs open and close collectively
in clusters forming functional units known as Calcium Release
Units (CaRU), which are often confronted to a cluster of LCCs.
In each CaRU the number of RyR and LCC is small (of the
order of 10–100 of the former and 5–10 of the latter), thus

FIGURE 1 | Basic components of the CICR process. Calcium enters

through the LCCs, stimulating release from the RyRs, that then is reuptaken

into the SR by SERCA and taken out of the cell by the sodium-calcium

exchanger.

its dynamics is intrinsically stochastic. CaRUs are distributed
inside the cell, resulting in random and discrete Ca2+ release
events, known as Ca2+ sparks (Cheng et al., 1994). A Ca2+ spark
has been considered as the unitary dynamical element which
produces the cellular Ca2+ dynamics, such as Ca2+ waves and
oscillations (Falcke, 2003). The (seemingly deterministic) global
calcium signal appears from the coordination of several tens of
thousands of these CaRUs.

After the excitation process, Ca2+ removal allows relaxation
of the cardiac muscle. This requires Ca2+ transport out of the
cytoplasm by several pathways. The concentration in the SR is
recovered by the active pumping of calcium from the cytoplasm
to the SR carried out by the Sarcoplasmic Reticulum Ca2+-
ATPase (SERCA). Moreover, the Na-Ca exchanger pumps Ca2+

out of the cell. The whole process described is called calcium-
induced calcium release (CICR, Berridge, 1993; Clapham, 1995).
CaRUs not just couple SR and cytoplasm Ca2+ concentrations
via Ca2+ release but they are also correlated due to the Ca2+

diffusion in both domains. Therefore, the behavior of a single
CaRU depends on the behaviors of the neighboring CaRUs.

Even though the same mechanism (CICR) triggers the
transient elevation of Ca2+ in both ventricular and atrial
myocytes, there are substantial differences in the intracellular
structures. The absence of transversal tubules (t-tubules) in atrial
myocytes produces inhomogeneous spatio-temporal calcium
patterns when the CICR occurs. In particular, the excitation starts
at the cell membrane and then propagates inward, resulting in a
delay in activation time between the subsarcolemma and the cell
interior. This is a key difference between atrial and ventricular
cells. In the latter, the opening of LCC channels along the t-
tubules triggers the release of calcium from the SR, resulting in
a homogenized calcium pattern. In the former, this trigger is due
to the inward wave.

Detailedmodels of calcium handling have been first developed
for ventricular cells, including the stochastic modeling of
each individual CaRU, coupled then by diffusion. In this
framework, each CaRU is typically divided into different
subcompartments, in which the calcium concentration is
assumed to be homogeneous (Restrepo et al., 2008; Rovetti
et al., 2010), although some recent models consider also calcium
diffusion within the CaRU (Nivala M. et al., 2012). These
models have been very successful in reproducing several calcium
dysfunctions, such as calcium alternans (Restrepo et al., 2008;
Rovetti et al., 2010; Alvarez-Lacalle et al., 2015) or spontaneous
calcium release induced delayed afterdepolarizations (Song
et al., 2015). Current advances in microscopy have allowed the
development of very detailed models of calcium release at the
level of the CaRU, including realistic shape of the SR, the RyR
cluster, myofibrils and the mitochondria (Kekenes-Huskey et al.,
2012; Hatano et al., 2013; Hake et al., 2014; Rajagopal et al., 2015).

Modeling is less developed for the case of atrial cells
(Heijman et al., 2016). Common pool models, in which calcium
concentration is considered to be homogeneous in each of
several compartments (SR, cytosol, dyadic space, etc) have been
developed for rabbit (Lindblad et al., 1996), dog (Ramirez et al.,
2000), mouse (Davies et al., 2014), and human (Courtemanche
et al., 1998; Nygren et al., 1998; Grandi et al., 2011; Lugo
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et al., 2014). One of the first models that took into account
inward wave propagation was by Koivumäki et al. (2011), where
the bulk cytoplasm and SR spaces were divided into several
compartments, being thus a one-dimensional model, allowing
for centripetal but not lateral diffusion. A similar model was
also used by Li et al. (2012), showing the presence of alternans.
A model allowing for both centripetal and lateral diffusion, as
well as stochastic RyR gating was developed by Voigt et al.
(2013), in order to study the mechanisms of after-depolarizations
and triggered activity in paroxysmal atrial fibrillation. Calcium
wave initiation and propagation has been considered by Thul
et al. (2012) in a three-dimensional geometry, assuming a diffuse
and fire model for calcium release. Finally, Macquaide et al.
(2015) developed a detailed three-dimensional bidomain model
of calcium propagation to study intra-CaRU cluster interactions,
supporting the idea that cluster fragmentation and redistribution
sustains atrial fibrillation through the enhancement of calcium
release.

Still, there are several open questions regarding CICR in atrial
cells. To name some: (1) the role of buffers, RyR sensitivity and
the level of cytosolic calcium in calcium wave propagation; (2)
the effect of the RyR cluster spatial structure and size distribution;
(3) the role of t-tubules (if present). Most subcellular ventricular
and atrial models (Restrepo et al., 2008; Rovetti et al., 2010;
Voigt et al., 2013) consider the cell divided into several thousands
of functional units (CaRUs). Each CaRU is then divided into
different compartments, replicating at the subcellular scale the
structure of common pool models. Despite the success of such
models to replicate calcium transients and spark characteristics,
they are not well-suited to study the effects of changes in the
microstructure (position of the RyR clusters, inhomogeneities,
etc). Rather, to study the effect of RyR cluster distribution on
wave propagation, continuum models of calcium diffusion with
point release sites have been considered, although often with
simplified release dynamics (Izu et al., 2006; Thul et al., 2012,
2015; Øyehaug et al., 2013). On the other hand, very detailed
models at the level of the CaRU (Hake et al., 2014) are very
demanding computationally, and typically not well-suited to
study effects that require of long simulation times, as calcium
homeostasis or spark rates. With that in mind, we present a
subcellular calcium atrial model where the homogenized local
behavior is described with a two-concentration field model,
using effective diffusion coefficients of calcium in the SR and
in the cytoplasm, with stochastic gating of the RyRs and LCCs.
This model follows the spirit of earlier bidomain models (Jafri
and Keizer, 1995; Keener and Sneyd, 1998), defining at each
point in space cytosolic and SR calcium concentrations, with
given volume fractions (Keizer and De Young, 1992). The
model presents some important characteristics: (1) a very fine
discretization, making it possible to describe (even if coarsely)
the RyR cluster structure; (2) incorporation of the cell structure
with distinction between z-lines and normal cytosol in terms of
the volume ratio of SR and cytosolic volumes, diffusion constants
and presence of buffers; (3) freedom to set the center of the
RyR clusters arbitrarily, that do not need to be disposed in an
homogeneous regular grid. In this paper, we focus on the effect
of CaRU spatial structure and distribution, and find that a more

disordered distribution of the CaRUs presents a lower frequency
of sparks in resting conditions. On the contrary, when the spatial
distribution is maintained constant, but the RyRs are distributed
in a smaller number of larger CaRUs (so the total number of RyRs
remains constant), the spark frequency increases, in accordance
with experimental results in cells presenting AF (Macquaide et al.,
2015).

2. METHODS

Our computational model performs single cell simulations and
is based on homogenization (Goel et al., 2006). Although it
is well-known that the SR forms a branching network (largely
interconnected), with an interior that is distinct from the cell
cytoplasm, this fact has largely been ignored, with most models
making the a priori assumption that a Ca2+ concentration for
both the SR and the cytoplasm can be defined at each point in
space. So that, the cytoplasm and the SR are assumed to coexist at
every point in space. For this reason, a fraction of each volume is
occupied by the cytoplasm (vi) and the complementary fraction
by the SR (vsr), given that vi + vsr = 1.

We define ci, csr , and cbi as the concentration of calcium in
the cytoplasm, the SR, and the concentration of calcium bound
to buffers. This description assumes that there exist effective
diffusion coefficients Di = Di(vi) and Dsr = Dsr(vsr) that, in an
average sense, incorporate the effect of that complex geometry.
Although in principle these coefficients could be calculated
knowing the SR structure (Goel et al., 2006), we will take the
functional forms used in Goel et al. (2006). Since both fractions,
vi and vsr , vary in different parts of the cell, it implies that both
diffusion coefficients are functions of the position, Di = Di(r)
andDsr = Dsr(r). In our simulations we take the values Di ∼ 250
µm2/s and Dsr ∼ 90 µm2/s, that are within the upper range
considered in the literature (Louch et al., 2010; Bers and Shannon,
2013).

The cardiac cell is modeled as a two dimensional domain with
Lx = 100 µm and Ly = 15 µm. The spatial grid belongs to the
submicron scale and it is defined as dx = dy = 0.1µm. There are
points of the grid with and without RyRs. A typical RyR has a size
of 30 x 30 nm. The RyRs are transmembrane proteins located at
the surface of the SR, so they form a 2D grid. Thus in each of our
grid points we locate a maximum of 10 RyRs.

A collection of grid points presenting RyRs form a cluster, i.e.,
a CaRU. In atrial cells, CaRUs are arranged periodically in the
longitudinal and transversal directions, with some—seemingly
Gaussian—dispersion (Chen-Izu et al., 2006). In our model, we
place the centers of the clusters on the perimeter following an
exact periodic distribution with a period T̄x = T̄y = 0.5 µm
(see Figure 2). In front of all these exterior CaRUs there are LCC
groups. Inside the cell, CaRUs are placed following a Gaussian
distribution centered at the z-lines and with a fixed dispersion σ .
We take σ = 0.4 µm as standard value. The average distance
between CaRUs is Tx = 1.6 µm and Ty = 0.5 µm. Experimental
data shows that the SR domain coincides with these z-lines
(Soeller et al., 2007). In this sense, we identify the z-lines with
periodic narrow strips (0.3 µm width) with a predefined period
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(Tx). Let be �c the sarcomere domain, that is, the zone between
z-lines and let be �sr the zone contained in z-lines and all the
contour (∂�). Notice that�c∩�sr = ∅. Besides, we consider the
presence of Ca2+ buffers: troponin (TnC), Calmodulin (CaM),
and SR Ca-binding sites. The TnC buffer affects the cytoplasmic
concentration of calcium in the �c domain. The other buffers,
calmodulin and SR, affect also ci but in all the cell, �c ∪ �sr . We
assume that all the buffers are immobile.

Because of the homogenization coarse grain, we define ci(r, t)
(free calcium concentration), csr(r, t) (calcium concentration in
the SR), and cbi(r, t) (calcium attached to buffers: TnC, CaM, and
SR buffer) in all points. Therefore, we state the problem with the
following set of partial differential equations (PDEs).

∂ci(r, t)

∂t
= Ji(r, t)+∇ ·

[

Di(r)∇ci(r, t)
]

− Jbi(r, t) (1)

∂csr(r, t)

∂t
=

vi(r)

vsr(r)
Jsr(r, t)+∇ ·

[

Dsr(r)∇csr(r, t)
]

, (2)

∂cbi(r, t)

∂t
= Jbi(r, t), (3)

where Ji and Jsr are the fluxes into the cytosol and the SR
spaces, respectively, Jbi accounts for the binding of free calcium
to the different buffers. In order to relate the fluxes between the
cytoplasm and the SR we have multiplied by the volume fraction
vi/vsr , that depends on r, that is, on the domain �c and �sr .
In addition, each point could have different components (RyR
or not, LCC or not) and could belong to the membrane or not.
The fluxes that may contribute to the total flux into the cytosol
Ji are the SR release flux Jrel, the SERCA pump Jup, the L-type
calcium flux JCaL and the sodium-calcium exchanger flux JNaCa.
The release flux Jrel carries Ca

2+ ions from the SR to the cytoplasm
through the RyRs. Thus, it exists only on those points that have
a CaRU, indicated by a red dot in Figure 2. Jup pumps calcium
from the cytoplasm to the SR and it is present in all cell domain
(�c ∪ �sr). The sum of these two fluxes (when appropriate)
constitute the total flux from the SR. Then, JCaL, the inward L-
type calcium flux, depends on the LCC clusters, so that it will act
on those points that contain this channel, indicated by a cross
in Figure 2. Indeed, LCCs appear only in some points of the cell
membrane, ∂� (those that also have a CaRU). Finally, the NaCa
exchanger, JNaCa, acts along all the perimeter ∂�.

A detailed description of all the fluxes can be found in the
Supplementary Material. Below we present some details of the
release and L-type calcium fluxes.

2.1. Release Flux
As shown in Figure 2, we consider each CaRU formed by several
grid points containing RyRs. As standard for a CaRU, we consider
one containing 36 RyRs, divided equally among 4 grid points,
each one containing 9 RyRs. We will change this configuration in
section 3.4 to consider larger CaRUs, maintaining fixed the total
number of RyRs in the cell. This resembles the situation found in
cells presenting AF (Macquaide et al., 2015).

Following Stern et al. (1999) each RyR can be in one of four
different states: close C, open O, and two inactivated states I1,
I2 (Figure 3). Calcium release from the SR to the cytoplasm is

FIGURE 2 | Bottom left corner of the whole cell. Circles (red) represent points

with RyRs, black crosses are LCC groups, green stripes indicate the z-line

region (domain �sr ), and small dots the sarcomere (�c).

taken to be proportional to the concentration difference and the
number of RyR in the open state, ORyR,

Jrel = grelORyR(csr − ci). (4)

This flux is only present in those points that present RyRs
(highlighted in red in Figure 2).

2.2. L-Type Calcium Flux
The inward current of calcium from the extracellular medium
toward each CaRU is dependent on the number of LCC channels
in the open state OLCC, the voltage, and the local calcium
concentration in these points, which are close to the membrane,
according to

ICaL = gCaLOLCC4zm
e2zci − [Ca]0

e2z − 1
, (5)

where z = VF/(RT) and zm = 0.341zF. The current ICaL is
converted to the flux JCaL , with units of µ M/ms, through:

JCaL =
ICaL

2Fvmyo
, (6)

where vmyo is the volume of the cytosol.
We have used the LCC model described in Mahajan et al.

(2008) with some changes in the parameters as in Alvarez-Lacalle
et al. (2015). We consider the presence of 5 LCC channels in each
CaRU (located all in the same grid point) with five possible states
(Figure 3): two closed states (C1 and C2), two inactivated states
(I1 and I2) and one open state (O). The stochastic dynamics of
the transitions is implemented using a time-adaptive Gillespie’s
method (Nivala J. et al., 2012). The transition rates aij are
described in the Supplementary Material.

2.3. Other Fluxes
There are extra fluxes that appear on the model. The Na-Ca
exchanger and the SERCA pump are both explained in the
Supplementary Material.
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FIGURE 3 | Markov models of the RyR (Left) and LCC channels (Right).

FIGURE 4 | (Top) Temporal profiles of [Ca2+] for both domains, cytoplasm and SR. (Bottom left) Inward and outward cell currents of JNaCa (dashed line) and JCaL
(solid line). (Bottom right) SERCA pump flux (solid line) and release flux (dashed line) in the cytoplasm at a pacing period of 800 ms.

3. RESULTS

3.1. Calcium Handling Characteristics
The calcium trace results from the sum of calcium at different
sites. Since in our model the volume fraction changes from site to
site, we have to define the average calcium concentrations as:

〈ci〉 =

∑

r vi(r)ci(r, t)
∑

r vi(r)
, 〈csr〉 =

∑

r vsr(r)csr(r, t)
∑

r vsr(r)
(7)

Figure 4 shows typical traces during one beat of the average
calcium over all the cell in both domains: cytoplasm and SR. The
calcium peak, of ∼700–800 nM, agrees well with experimental
observations (Mackenzie et al., 2004). The calcium concentration
in the SR, though, is larger than observed in experiments due to
the lack of the SR buffer calsequestrin (CSQN) in our model. We
also show in Figure 4 the four cytoplasmic fluxes, corresponding
to the sodium-calcium exchanger (JNaCa), the L-type calcium
flux (JCaL), SR release (Jrel), and SERCA (Jup). Due to the small
number of LCC channels, the L-type calcium flux is particularly
stochastic.

Depending on the pacing period, the model shows different
behaviors. We have quantified this effect by calculating the
calcium peak and the calcium diastolic level in the cytoplasm
and in the SR domain (Figure 5). To assure that the system
is close to the steady state, we have paced the cell for 50 s at
each pacing period, and then taken the average over the next
20 stimulations. As the pacing period decreases, the cytosolic
calcium peak increases moderately, up to a pacing period period
of ∼200-300 ms, beyond which it decreases, due to the decrease
in SR calcium content and fractional release. This behavior agrees
qualitatively with the observed change in the contractile force as
a function of pacing period observed in atrial cells (Maier et al.,
2000; Schotten et al., 2002), that shows a peak at a period of∼500
ms, beyond which it decreases.

3.2. Inward Calcium Wave Propagation
In order to compare the spatial heterogeneities within the cell,
we have considered longitudinal sections at the central and
peripheral regions, averaged over a 1 µm width. The complete
CaRU distribution is shown in Figure 6, where the longitudinal
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FIGURE 5 | Ca2+ peak and Ca2+ basal level as function of the pacing period (Ts) in both domains: cytoplasm and SR. Each point has been averaged over 10 beats

in steady state.

FIGURE 6 | (Top) Spatial distribution of the CaRU. Black dots show the position of the CaRUs. The green and blue lines indicate longitudinal lines at the cell center

and periphery. (Down) Local Ca2+ measured in the subsarcolemmal space (blue dashed lines) and the center of the cell (solid lines) for both cytoplasm and SR

domains at a pacing period of 800 ms. All traces have been averaged over a longitudinal section of 1 µm width.

sections are plotted in green and blue. Simulations suggest strong
differences between calcium levels in the subsarcolemmal space
and the center of the cell (see Figure 6), as well as a delay between
release at the peripheral and central regions.

The spatio-temporal and local correlation between ci and csr
calcium is shown in the line scan profiles on Figure 7. The four
profiles correspond to the same beat. In the subsarcolemmal
region the presence of LCCs and CaRUs results in an important
release activity causing a relevant SR depletion. On the other
hand, in the central region, calcium does not penetrate, and the
local activity is scarce. Still, there is a depletion of the SR content
(visible also in Figure 6) due, not so much to release, almost
negligible at the central region, but to diffusion of SR calcium to
the periphery.

The spatio-temporal Ca2+ dynamics in the cytoplasm allows
us to clearly understand how the standard inward wave

propagation occurs. Figure 8 shows spatial profiles at different
times during a single beat. Under normal conditions, the calcium
wave starts on the cell membrane and propagates to the center but
this propagation does not reach the central region. This situation
is observed more clearly averaging the calcium concentration
over the longitudinal direction, so we can observe the average
inward propagation of the calcium wave (Figure 9) Typically,
the inward wave propagates 4 or 5 µm in the transversal
direction. From the figure, we can estimate an inward wave
velocity of roughly 150 µm/s, that agrees well with typical
observed calcium wave velocities of ∼100 µm/s (Izu et al.,
2013).

Intracellular waves are Ca2+ release events that propagate
across the cell at a constant velocity. To have a better control of
the calcium wave and be able to study its speed and dependence
on different parameters, we have created a new geometry with 10
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FIGURE 7 | Longitudinal line scan during a single beat on the subsarcolemmal and the central region at a pacing period of 800 ms for cytosolic (Top) and SR

(Bottom) calcium. The colorbar corresponds to calcium concentration in µM.

equidistant z-lines (see Figure S2, in Supplementary Material).
The distance between two z-lines is 1.5 µm. Initially, cytosolic
calcium at the first z-line is increased and then the system let
to evolve without being forced. The wave front is monitored
and the wave front velocity calculated. This way we determine
the wave velocity as a function of different parameters. The
typical wave velocity is of the order of 200 − 300 µm/s,
that agrees well with a diffusive process within z-lines, that
would give a speed of v ∼ 2D/d ∼ 2 · 200 µm2s−1/1.5
µm ∼ 260 µm/s. This velocity increases slightly with the
calcium SR load (Figure 10). The dependence on intracellular
calcium diffusion Di is roughly linear, as one would expect
in saltatory dynamics (Dawson et al., 1999). The dependence
on SR calcium diffusion Dsr , on the other hand, is not so
pronounced.

3.3. Effect of the Cell Structure
It is interesting to compare also the calcium dynamics at the
z-lines and in the space within z-lines, where no CaRUs are
present. To this end we have performed transversal section
measurements, as shown in Figure 11, in a situation when
the cell is at rest, without external stimulation. The sarcomere
measurement corresponds to the space between the z-lines. It is
important to notice that, because of the proximity between the
measurements, there exists a correlation between the resulting
profiles. For instance, at t = 0.6 s there is a spark that starts in
the first z-line, it propagates to the sarcomere region and, then,
to the second z-line. The second thing to notice is that, due to
the presence of random Ca2+ releases associated to the position
of the RyRs, at the z-lines the calcium trace is more stochastic
(Figure 11).
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FIGURE 8 | Inward wave propagation at a pacing period of 800 ms. The colorbar corresponds to calcium concentration in µM.

FIGURE 9 | Line scans averaged over the longitudinal direction at pacing periods of 500 and 800ms. The colorbar corresponds to calcium concentration in µM.

3.4. RyR Cluster Structure and Distribution
Calcium sparks are the basic calcium release events. A good
understanding of their characteristics (size, amplitude, and
frequency) is thus very important to properly characterize the

process of CICR. Due to the fine discretization of our model,
we can observe their detailed spatio-temporal profiles. Figure 12
shows, for instance, the standard time evolution of a spark. We
have also studied the effect of the microstructure in the frequency
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FIGURE 10 | Propagation velocity as function of the diffusion constants Di and Dsr for different values of the SR calcium load. As standard values we take Di = 0.25

µm2/ms and Dsr = 0.09 µm2/ms in the zone between z-lines.

FIGURE 11 | (Top) Spatial distribution of the CaRUs. Black dots show the position of the CaRUs. The blue and red lines indicate two transversal lines within

neighboring z-lines. The green line a transversal line within those two z-lines. (Down) Local Ca2+ measured in the three transversal lines in post-rest potential

conditions. All traces have been averaged over a transversal section of 0.3 µm width.

of sparks. We have modified the microstructure, changing the
size and distribution of the CaRUs. This is particularly important
since it has been observed that the RyR distribution changes
in a particular way under conditions of AF (Macquaide et al.,
2015). We have then calculated the spark frequency under resting
conditions for different configurations defined by the Gaussian

distribution of position sites and size of the CaRUs. For the
standard size of the CaRU (36 RyRs divided equally among 4 grid
points, each one containing 9 RyRs), we have considered three
values of the dispersion in the Gaussian distribution, the standard
value of σ = 0.4 µm, and two cases with larger dispersion of
σ = 2 and 3.6 µm, see Figure 13. Besides, we also consider the
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FIGURE 12 | Spatial profiles of a Ca2+ spark.

FIGURE 13 | Different RyR distributions considered in the text. The bottom left corner of the whole cell is displayed. The red dots represent grid points with RyRs.

First: control configuration, with standard dispersion in the position of the RyRs σ = 0.4 µm. Second: increased the dispersion of σ to 2 µm. Third: σ = 3.6 µm.

Fourth: New structure configuration, where each grid point contains 9 RyRs and a CaRU is formed by 6 grid points, so that, each CaRU represents 54 RyRs. The total

number of RyRs remains constant but now, in the new structure, they are more grouped, that is, the CaRUs are bigger. The dispersion is the same as in the standard

case: σ = 0.4 µm.

effect of a change in the CaRU size, considering CaRUs with 54
RyRs, divided equally among 6 grid points, each one containing
9 RyRs (Figure 13 down right), but maintaining fixed the total
number of RyRs in the cell. Since the total number of RyRs is the
same, this means that there are larger, but less CaRUs in the cell.

In Figure 14A the average mean CaRU size is shown. To
define the size of a CaRU, we follow the results by Macquaide

et al. (2015), that showed using a computational model that
clusters closer than 150 nm triggered together functionally
as a single cluster. We thus assume that a group of clusters
belong to the same CaRU if they are separated, at most, by
0.15 µm edge to edge from each other. By definition, there
is a random component in the structure, so that, there is a
non-zero dispersion on the distance with respect to the z-line
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FIGURE 14 | (A) Mean area occupied by a CaRU. (B) Nearest-neighbor distance among CaRUs, measured from the center of each CaRU. (C) Longitudinal

dispersion, measured as the mean distance between the RyRs and the center of the z-line. All calculations have been averaged over 35 configurations.

FIGURE 15 | Spark frequency for the four different configurations. The spark

frequency decreases with nearest-neighbor distance but increases with the

size of the CaRU.

(Figure 14C). Finally, the mean nearest neighbor distance is
shown in Figure 14B. In the new structure, since the RyRs are
more grouped, the total number of CaRUs is smaller, such that
the mean distance among them increases.

The spark frequency is one of the most important indicators
of the stochastic activity during a post-rest potential period.
The total number of spontaneous calcium sparks has been
recorded. In order to consider the sparks, we have counted all
the calcium release events greater than a certain spatial radial
threshold of 1.6 µm. As shown in Figure 15, we observe that
the frequency decreases with the longitudinal dispersionmeaning
that the cluster-cluster communication plays an important role in
stochastic activity. On the other hand, when the CaRUs are bigger
(structure configuration) this probability increases.

4. DISCUSSION AND CONCLUSIONS

In this work we present a novel model to fully simulate a
2D longitudinal plane of a cardiac atrial cell. By modeling
the intracellular calcium dynamics and solving the spatio-
temporal Ca2+ reaction-diffusion equations, both local and
global behavior have been recorded. Because of the high spatial
resolution, the model allows us to study in detail the dynamics
in the surroundings of the CaRUs, that is, the local calcium
concentrations and the spark activity. It is also well-suited
to study the effect of changes in the spatial distribution and
form of CaRUs. In this regard, important differences have been
noticed using different spatial configurations of RyRs, showing
that the resulting calcium dynamics is highly dependent on
the spatial distribution. We observe, for instance, a decrease
in spark frequency with CaRU spatial dispersion (Figure 15).
This is correlated with an increase in CaRU nearest-neighbor
distance, suggesting that cooperativity among local release events
at nearby CaRUs could play an important role in the generation
of sparks. In fact, sparks (or macrosparks) encompassing several
CaRUs have also been observed experimentally (Kockskämper
et al., 2001). When the same total number of RyRs of the
cell are distributed in larger CaRUs, we observe an increase in
spark frequency (Figure 15). These larger CaRUs are obtained
increasing their size, but maintaining the density of RyRs, similar
to what is observed in atrial cells presenting AF (Macquaide et al.,
2015). Due to the larger number of RyRs per CaRU, an increase
in the spark probability of each individual CaRU is expected, but,
since the number of CaRUs is decreased, the increase in spark
frequency per CaRUmust be non-linear with size. In this case, the
increase in nearest-neighbor distance (Figure 14) does not result
in a decrease in spark rate. However, it should be noted that we
have measured the nearest-neighbor distance from the centers of
the CaRUs, but since their size is larger, the distance between the
edges of the CaRUs could actually be similar, or smaller. A more
detailed study of the influence of the CaRU structure in spark
frequency, the appearance of macrosparks, and the transition to
waves is deferred to a future study.

In our simulations, the opening of the L-type calcium channels
induce a calcium increase in the periphery of the cell, that hardly
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reaches the interior (Figure 6). This result agrees with what is
observed in atrial cells without t-tubules where, under basal
conditions, calcium signals are restricted to subsarcolemmal
regions (Mackenzie et al., 2004). The observed values of the
calcium transients, slightly over 1 µM at the periphery and
0.2–0.3 µM at the center are similar to what we obtain in our
simulations (Figure 6). As observed in previous works (Dawson
et al., 1999), the speed of the wave varies roughly linearly
with the diffusion coefficient in the cytosol. Although we have
not changed the distance among z-planes in this work, the
fact that this linear relation continues at low values of the
diffusion constant, seems to indicate the lack of a threshold
for propagation in the model. This contrasts with results by
Izu et al. (2006) and Hoang-Trong et al. (2015) that found a
strong dependence on wave initiation with the distance among
CaRUs. However, one should notice that, for the calculation of
wave propagation (Figure 10), we have considered an increased
strength of the L-type calcium current, probably pushing the
threshold to smaller values of the diffusion constant than we
have considered. In our simulations, calcium waves are obtained
at transients larger than in experiments and with diffusion and
RyR cluster spacing in the upper and lower ranges, respectively,
allowing for diffuse and fire behavior. However, one should
mention the difficulty to reconciliate calcium wave propagation
at low calcium concentrations with a stochastic description of
the RyR cluster (Izu et al., 2013). Recent studies suggest also
an important role of SR calcium diffusion for the propagation
of the calcium wave, through junctional SR calcium depletion
and sensitization of the RyRs (Keller et al., 2007). We find that
the dependence with diffusion in the SR is not so pronounced
(Figure 10), seemingly ruling out an important role of SR Ca
diffusion in wave propagation. This effect, however, should be
studied in more detail, as well as the role of buffers, RyR
sensitivity and the level of cytosolic calcium in calcium wave
propagation.

The present study presents several limitations. To cite some,
that we consider a two-dimensional geometry, a voltage clamp
protocol, isotropic diffusion, or immobile buffers. The main
reason to use a two-dimensional geometry was computational
cost. A generalization to three-dimensions is straight-forward
and we are implementing it to study some of the questions posed
in this article in more detail. The dynamics of transmembrane
voltage can be also readily incorporated into the model, and
could be used to study the arrhythmogenic effect of spontaneous
calcium release events, for instance. The correct characterization
of calcium diffusion in the cell represents a harder challenge. We
have considered typical values of the diffusion coefficients in the
cytosol and SR and assumed that they depend linearly on the
cytosolic/SR volume fractions, as suggested by homogenization
(Goel et al., 2006). However, diffusion (particularly in the SR) is
most likely to be anisotropic, and this could importantly affect
wave characteristics. A better knowledge of the SRmicrostructure
could help to estimate these diffusion coefficients and give a

better representation of calciumwave propagation. An important
addition would be to incorporate a (partial) network of t-tubules.
The presence of t-tubules in atrial cells has been found to
depend on the species, and there is evidence of their presence
in large mammals’ atrial cells (Richards et al., 2011). Besides
transversal, axial tubules have also been found to contribute to
rapid activation of the atrial cell (Brandenburg et al., 2016).
In heart disease, including human heart failure (HF), there is
extensive remodeling, resulting in loss and disorganization of t-
tubules (Dibb et al., 2013). Besides, there are other important
factors that may affect calcium transients. For instance, the
presence of IP3R may affect the form of Ca2+ sparks, leading
to a difference between calcium handling at the peripheral
and central regions (Mackenzie et al., 2004; Kim et al., 2010).
Another important effect, not included in our model, is the
presence of mitochondria. In venticular myocytes, there is
evidence suggesting that the mitochondrial outer membrane is
linked to t-tubules (Hayashi et al., 2009). Models of excitation-
contraction coupling, including mitochondrial calcium handling
have been developed for ventricular myocytes (Cortassa et al.,
2003, 2006; Matsuoka et al., 2004; Maack and O’rourke, 2007;
Hatano et al., 2011) and used, to study, for instance, the
influence of the distance between mitochondria and Ca2+ release
sites (Hatano et al., 2013). In the atria, the mitochondria
has been suggested to act as a buffer that prevents inward
calcium propagation (Mackenzie et al., 2004). The effect of these
structural factors on wave propagation is an important matter for
future work.
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Optical mapping is a high-resolution fluorescence imaging technique, which provides

highly detailed visualizations of the electrophysiological wave phenomena, which trigger

the beating of the heart. Recent advancements in optical mapping have demonstrated

that the technique can now be performed with moving and contracting hearts and

that motion and motion artifacts, once a major limitation, can now be overcome

by numerically tracking and stabilizing the heart’s motion. As a result, the optical

measurement of electrical activity can be obtained from the moving heart surface in

a co-moving frame of reference and motion artifacts can be reduced substantially.

The aim of this study is to assess and validate the performance of a 2D marker-free

motion tracking algorithm, which tracks motion and non-rigid deformations in video

images. Because the tracking algorithm does not require markers to be attached to

the tissue, it is necessary to verify that it accurately tracks the displacements of the

cardiac tissue surface, which not only contracts and deforms, but also fluoresces

and exhibits spatio-temporal physiology-related intensity changes. We used computer

simulations to generate synthetic optical mapping videos, which show the contracting

and fluorescing ventricular heart surface. The synthetic data reproduces experimental

data as closely as possible and shows electrical waves propagating across the deforming

tissue surface, as seen during voltage-sensitive imaging. We then tested the motion

tracking and motion-stabilization algorithm on the synthetic as well as on experimental

data. The motion tracking and motion-stabilization algorithm decreases motion artifacts

approximately by 80% and achieves sub-pixel precision when tracking motion of 1–10

pixels (in a video image with 100 by 100 pixels), effectively inhibiting motion such that

little residual motion remains after tracking and motion-stabilization. To demonstrate the

performance of the algorithm, we present optical maps with a substantial reduction in

motion artifacts showing action potential waves propagating across the moving and

strongly deforming ventricular heart surface. The tracking algorithm reliably tracks motion

if the tissue surface is illuminated homogeneously and shows sufficient contrast or texture

which can be tracked or if the contrast is artificially or numerically enhanced. In this study,

we also show how a reduction
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in dissociation-related motion artifacts can be quantified and linked to tracking precision.

Our results can be used to advance optical mapping techniques, enabling them to image

contracting hearts, with the ultimate goal of studying the mutual coupling of electrical and

mechanical phenomena in healthy and diseased hearts.

Keywords: fluorescence imaging, optical mapping, motion tracking, computer vision, cardiac arrhythmias,

ventricular fibrillation, atrial fibrillation, heart rhythm disorders

1. INTRODUCTION

Optical mapping is a high-resolution fluorescence imaging
technique, which is widely used in basic cardiovascular science
(Herron et al., 2012). It employs optical probes or fluorophores,
excitation light, high-speed cameras and filtering equipment and
is typically used to image the electrophysiological activity that
triggers the beating of the heart. With voltage- and calcium-
sensitive dyes, for instance, it is possible to image action
potential and calcium waves propagating across the heart surface
in great detail and at very high speeds. To avoid undesired
motion artifacts during such highly sensitive measurements,
it has been necessary to suppress the beating of the heart
during optical mapping by using pharmacological excitation-
contraction uncoupling substances such as Blebbistatin (Fedorov
et al., 2007) or DAM. Recent developments, however, have
demonstrated that action potential and calcium waves can also
be imaged as they propagate across the strongly contracting and
deforming heart surface (Zhang et al., 2016; Christoph et al.,
2017, 2018). In combining optical mapping with computer vision
techniques and numerically tracking the heart’s motion, the
optical imaging of electrical activity during heart contraction is
possible. The tracking inherently also allows the measurement
of the cardiac deformation and thus the mechanical activity.
The simultaneous imaging of both the heart’s contractile motion
and the electrochemical processes that generate the heart’s
contractions is pivotal for a better understanding of the heart’s
electrophysiology and mechanics and their mutual coupling.

In this work, we validate and discuss the performance of a 2D
numerical motion tracking and motion compensation algorithm,
which reliably tracks both the heart’s rigid and non-rigid body
motion and planar movements within video images obtained
with a single camera during optical mapping. In previous studies,
we used the algorithm tomap action potential waves during sinus
rhythm on the contracting three-dimensional heart surface using
multiple cameras (Christoph et al., 2017) and to map arrhythmic
action potential and calcium vortex waves during ventricular
tachycardia and fibrillation on the surface of contracting rabbit
and pig hearts (Christoph et al., 2018). Processing various
optical mapping recordings obtained with different species and
sensitivities (Di-4-ANEPPS, Di-4-ANBDQPQ, Rhod-2AM), we
were able to retrieve motion-stabilized optical maps and co-
moving optical traces, in which the fluorescent signals could
be measured along a trajectory describing the movement of the
tissue through the video image. After motion-stabilization, we
were able to measure sequences of action potentials and calcium
transients and their spatio-temporal evolution across the moving
heart surface with a substantial reduction in dissociation-related

motion artifacts. Dissociation-related motion artifacts occur due
to a loss of the correspondence between a particular pixel of
the camera sensor and a particular piece of cardiac tissue that
is imaged with the pixel when the tissue moves. Furthermore,
using the tracking data, we were able to measure and analyze
the rapid mechanical deformations that the ventricular cardiac
muscle exhibits during fibrillation, and were able to relate elasto-
mechanical patterns arising in the heart wall to the turbulent
electrical activity that causes the heart’s fibrillatory contractions
(Christoph et al., 2018). While the aim of our previous multi-
camera study (Christoph et al., 2017) was to provide a proof-
of-concept that three-dimensional electromechanical optical
mapping is possible, our aim in the present study is to discuss
the performance of the 2D tracking itself. In this study, we
carefully assess and demonstrate the algorithm’s efficacy and
robustness in reliably detecting shifts of the tissue in the video
images using both experimental and synthetic optical mapping
data generated with computer simulations. In particular, the
synthetic optical mapping data allows the comparison of the
tracking outcomes to ground-truth data, as it becomes possible
to precisely measure mismatches between the simulated and
tracked tissue configurations. We reproduced experimental data
as closely as possible and used the electromechanical computer
simulations to mimic key video properties such as different
contraction strengths, image contrasts and fractional intensity
changes of the fluorescence. We then used the simulations
to systematically generate optical mapping videos containing
motion and motion artifacts and applied the tracking algorithm
to track and stabilize the motion and remove the motion artifacts
under various conditions.

2. MATERIALS AND METHODS

Experimental and synthetic optical mapping video data was
generated and analyzed, the video data showing the contracting
and fluorescing heart surface filmed through a monocular
imaging setup with one camera. In particular, video data with
varying amplitudes of motion and fluorescent signal strengths
was analyzed.

2.1. Experimental Setup and Imaging
Protocol
Contracting isolated Langendorff-perfused rabbit hearts (N = 2)
were filmed during regular rhythm and ventricular arrhythmias
using a single-camera optical mapping system, see Figure 1.
Pharmacological excitation-contraction uncoupling agents such
as Blebbistatin were intentionally not administered. Any other
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FIGURE 1 | Electromechanical optical mapping with beating, strongly deforming and fluorescing hearts. (A) Schematic drawing of experimental setup with single

high-speed camera filming ventricular surface of rabbit heart (side view). Tracking of motion is possible only within the image plane (2D). (B) Raw video image

(128× 128 pixels) showing heart surface during optical mapping with voltage-sensitive staining (front view). ROI see (E). (C) Tracked displacements and mechanical

configuration χt at time t (left: every 8th vector, right: every 2nd vector). Points (black) indicating displacements of single tissue segment with respect to reference

position (gray). See also Supplementary Video 1. (D) Trajectory of tracked tissue segment moving during ventricular fibrillation through pixel plane. Motion

amplitudes are in the order of a few pixels (maximal 3–4 pixels from initial position, 2 ms temporal resolution). (E) Tracking of tissue movements during pacing with

displacement amplitudes in the order of |Eu| ≈ 10.0 pixels. Points (black) indicating movements of single tissue segment (i, j) with respect to reference position (gray) in

reference video image Ir (shown is every 10th segment or vector for illustration purposes).

mechanical constraints were avoided to let the heart beat freely.
The optical mapping system consisted of a single EMCCD
camera (Evolve 128, Photometrics Inc., 128 × 128 pixels, 16 bit
dynamic range), using a high-aperture lens (objective Fujinon
1.4/9mm, approx. 2 × 2 cm field of view, Fujifilm Corp.) and
long-pass filtering (Edmund Optics, transmission > 610 nm) to
filter the fluorescent light emitted from the heart surface. Hearts
were stained with voltage-sensitive dye (Di-4-ANEPPS, 20ml of
1mMol/l concentrated dye-Tyrode solution, 605 nm emission
peak, bolus injection, recirculated). The dye was excited using
four light-emitting diodes operating at wavelengths of 532 nm,
powered by batteries (12V , 26Ah, rechargeable) to maintain
constant, low-noise illumination. The diodes were positioned
close to and around the camera lens and directed onto the
central part of the ventricular wall, to establish a homogeneous
illumination. For even distribution of the dye in the tissue,
filming was started not earlier than 5 min after the dye was
administered. Camera triggers were provided from an external
triggering source (wave form generator, 33220A, Agilent) and
recordings were obtained at a frame rate of fps = 500Hz.
Hearts were excised from anesthetizedNewZealandwhite rabbits
(N = 2, female, 6–12 months, 2.5 − 3.5kg) and inserted into
cardioplegic solution for temporary cessation of cardiac activity.
This study was carried out in accordance with German animal
welfare laws and the recommendations of the Lower Saxony
State Office for Customer Protection and Food Safety (LAVES)

and the Federation of European Laboratory Animal Science
Associations (FELASA). The protocol was approved by the Lower
Saxony State Office for Customer Protection and Food Safety
(LAVES). The hearts were positioned at the center of a 8-
sided, glass-walled bath filled with oxygenated 37◦ warm Tyrode
solution (95% O2, 5% CO2) and connected to a retrograde
Langendorff-perfusion system (Hugo-Sachs Apparatus, March-
Hugstetten, Germany). The flow rate of the perfusate was
30mlmin−1 at a perfusion pressure of 50mmHg ± 5mmHg. The
Tyrode solution was kept at a constant temperature of 37◦C ±

0.5◦C (custom-made temperature control, Max Planck Institute
for Dynamics and Self-Organization, Göttingen, Germany) and
was constantly reperfused. Hearts were attached at the aorta
to the retrograde perfusion outflow, hanging vertically from
the aortic block, the apex facing the bottom of the bath.
The camera was positioned at heart level and filmed the
epicardial ventricular surface through one of the glass walls
of the bath. Filming was performed at working distances of
approximately d = 30 cm. Hearts were filmed with their
ventricular surface facing the camera, see Figure 1A. Mechanical
pressure on the hearts was carefully avoided to prevent
compression of the coronary arteries. Electrocardiograms
were recorded using a data acquisition system (MP150,
Biopac Systems Inc., Goleta, USA), acquiring data at a
sampling rate of 2.0 kHz throughout the entire duration of the
experiment.
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2.2. Synthetic Optical Mapping Videos
Generated With Computer Simulations
To be able to assess the efficacy of motion tracking and motion
artifact compensation algorithms systematically, synthetic optical
mapping video data was generated using computer simulations.
A modified two-dimensional numerical reaction-diffusion
mechanics model (Weise et al., 2011; Christoph, 2015) was used
to create maps of electrical action potential wave patterns on a
correspondingly contracting and deforming two-dimensional
elastic surface, see section 2.2.1. The simulation data was used
to deform a video image showing the heart surface during an
optical mapping experiment with voltage-sensitive staining
(Di-4-ANEPPS), and to modulate its pixel intensities according
to the model’s transmembrane voltage or electrical wave pattern,
see section 2.2.2. Tracking and motion compensation was then
applied to the synthetically generated optical mapping video
data.

2.2.1. Numerical Model
A two-dimensional elastic excitable medium with tunable muscle
fiber anisotropy was used to produce nonlinear waves of
excitation propagating in a correspondingly deforming two-
dimensional elastic medium, see Figures 2A,B. The elastic
excitable medium consists of two numerical models, an electrical
and an elastic model, coupled using forward electromechanical
coupling. The electrical model allows the simulation of electrical
impulse propagation, such as planar or target wave patterns,
and also produces spiral wave patterns or chaotic wave activity
composed of multiple spiral waves, as similarly observed in
optical mapping experiments on the heart surface during
arrhythmias. Due to the forward electromechanical coupling
the electrical wave patterns cause local contractions and
deformations of the elastic medium.

The electrical part of the model was simulated using the
phenomenological, two-variable Aliev-Panfilov model (Aliev and
Panfilov, 1996) comprised of two coupled partial differential
equations with dynamic state variables u and v:

u̇ = ∇
2u− ku(u− a)(u− 1)− uv (1)

v̇ = ε(u)(ku− v) (2)

where u and v are dimensionless normalized representations of
the transmembrane potential and the conductance of a slow
repolarizing current, or excitatory and refractory dynamics,
respectively. Note that the range of u is within the interval [0,1].
The value of u is used to modulate the video images, see section
2.2.2. The diffusion term ∇

2u provides the diffusive coupling
between neighboring cells of the electrical lattice and leads to
spreading waves of electrical excitation through the excitable
medium. k, a, and ε(u) are model parameters. The generation of
active stress Ta due to excitation is modeled using a third partial
differential equation that depends on the excitatory variable u as
described previously (Nash and Panfilov, 2004):

Ṫa = ε(u)(kTu− v) (3)

The equation simulates immediate and homogeneous active
stress generation in response to electrical stimulation and

simulates excitation-contraction coupling (Bers, 2002). The
parameter kT determines themagnitude of the active stress build-
up in each cell of the model and defines the strength of the
contractions occurring in the medium, see Figure 2E.

The elasto-mechanical model consists of a mass-spring
damper system with controllable, tunable linearly transverse
muscle fiber anisotropy (Bourguignon and Cani, 2000;
Christoph, 2015). Figure 2B illustrates the lattice structure
of the mass-spring damper system. The system consists of a
regular lattice with cells defined by four vertices of the lattice
and the cells containing sets of perpendicular springs attached to
the barycenter and to the edges of the cells. The sets of springs
can be oriented arbitrarily in the two-dimensional plane and
introduce preferred orientations and anisotropy to the elastic
system. One of the springs is set to be the active spring along
which contractions occur upon electrical excitation, representing
the fiber orientation. The springs rest lengths are modulated
by the active stress variable Ta, which is in turn dependent
on the excitation u, the active stress inducing a shortening
of the active springs, which results in the contraction of the
cell. As a result, the tissue exhibits contractions and large
deformations with length changes in the order of up to 10%.
The cells at the boundaries of the elastic medium are connected
to additional springs, which are fixed with one of their ends in
space, mimicking an elastic interface with its surrounding.

Each cell of the elastic model corresponds to one cell of the
electrical model. The model was solved using finite differences
numerical integration schemes. The electrical model was solved
using forward Euler integration and the elastic model was solved
using Verlet integration. During integration, both models were
updated simultaneously.

Figure 2E shows how the contraction strength and
overall amount of deformation of the model can be
varied with the parameter kT from Equation (3). Typical
values for the parameter kT used in this study were
kT = [0.001, 0.005, 0.01, 0.1, 0.2, ..., 3.0]. The graph shows
that magnitudes of the displacements |Eu| exhibited by the nodes
of the simulation grow rapidly with increasing kT for very small
kT and less rapidly for larger kT . The graph shows the average
displacements < |Eu| >, which were computed from the maximal
separation of the positions |Exxy(t)− Exxy(t

′)| of one vertex (x, y) of
the simulation grid over the entire time course of the simulation
and averaging over all vertices.

2.2.2. Synthetic Video Generation
The electrical patterns and deformations exhibited by the
numerical model were used to create videos showing a deforming
grayscale texture image, being locally superimposed by intensity
modulations in locations where the tissue is electrically activated,
see Figure 2. The video image is a video frame from one of the
recordings obtained during the optical mapping experiments.
The size of the video image of 100 × 100 pixels (slightly
cropped) matches the grid size of the simulation. Therefore,
in terms of spatial units, one cellular unit of the simulation
domain corresponds to one pixel in the video data. Figure 2E
correspondingly shows by how many pixels (approximately) the
nodes of the mechanical grid move through the image plane
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FIGURE 2 | Generation of synthetic optical maps using computer simulations. (A) Original optical mapping image (100× 100 pixels) cropped from video still frame

showing heart surface of rabbit heart superimposed by simulated spiral wave pattern (exaggerated) generated using reaction-diffusion excitable dynamics model.

Simulated fluorescence intensity drop during depolarization of action potential (exaggerated). (B) Deformable elastic medium simulated with mass-spring damper

lattice model (here consisting of only 3 × 3 cells for illustration purposes, system used in study consists of 100 × 100 cells). Each pixel in (A) corresponds to one cell.

(C) Deformed video image Ĩχ (x, y) containing fluorescent signal (1F/F < 5%, not visible in a still frame), deformation caused by spiral dynamics. See also

Supplementary Video 3. (D) Deformed and resampled part of video image I(x, y). (E) Overall displacements of simulation in pixels depending on simulation

parameter kT to modulate contraction strength of springs.

(0.5 − 5.0 pixels). We found that for the chosen values for the
parameter kT we obtained similar magnitudes of motion as seen
during the experiments. The intensity values of the video image
were normalized I ∈ [0, 1] (dark cropped areas corresponding to
values < 0.1).

First, the simulation output of the electrical model was used
to create videos showing an optical mapping grayscale image of
the heart surface superimposed by a rotating spiral wave pattern,
the pixels’ intensities decreased by a fraction of the value of the
excitatory variable u, as shown in Figure 2A. Because each pixel
of the original undeformed video image corresponds to a discrete
cell of the simulation, there is a one-to-one correspondence
between the pixel’s original intensity value and the cell’s value
for u. More specifically, the time-varying two-dimensional maps
of the electrical variable u(x, y, t) were used to decrease the
otherwise static pixel intensity of the texture image Itexture(x, y).
The intensity value I in each pixel (x, y) was modulated linearly
as follows:

Ĩ(x, y, t) = Itexture(x, y)+ f · u(x, y, t)+ ξ (4)

where |f | ∈ [0, 1] is a scaling factor and represents the
maximal intensity change of the fluorescence-induced intensity
modulations or fractional change in fluorescence in normalized
units and ξ corresponds to noise. Typical values used in this
study for the parameters were f = [−0.01,−0.03,−0.06,−0.12]
and ξ = [0.005, 0.01, 0.03]. While in this study we only
simulated a decrease in the signal with f < 0, mimicking

the behavior of typical voltage-sensitive dyes, it would also
be possible to simulate an increase in fluorescence with f >

0 as seen during calcium-sensitive imaging. The normalized
fractional change in fluorescence f represents the fractional
change in fluorescence 1F/F exhibited by fluorescent dyes in
optical mapping experiments. The texture image Itexture(x, y) was
normalized with all its intensity values in the range I ∈ [0, 1].
The histogram of grayvalues ρ(I) of the texture image could be
scaled such that the image properties fulfilled specific criteria; for
instance, the video images contrast matching a predefined local
image contrast c with its corresponding contrast distribution, see
Figure 8C and section 3.2.

The image frames of the resulting video sequence Ĩ(x, y, t)
were then deformed within the two-dimensional image
plane according to the deformed geometry or time-varying
mechanical configuration χ(t) of the simulation grid, adding
the displacements Eu(x, y, t) to the vertices defining each pixel,
yielding a deformed, intensity modulated video Ĩχ (x, y, t),
see Figure 2C. The magnitudes of the deformations could
be tuned using the parameter kT from Equation (3). The
average displacement strengths given in pixels achieved for
various values for kT are shown in Figure 2E. To obtain
videos showing the moving, deformed texture Ĩ(x, y, t) in a
static laboratory camera view frame, the video data was then
resampled, redistributing the pixel intensity values of Ĩ(x, y, t)
into a regular undeformed pixel grid, yielding resampled
video sequences I(x, y, t), see Figure 2D. Resampling was
performed using polygon clipping algorithms. The simulations
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typically included Nt = 50, 000 time steps, from which every
10th time step was extracted, the resulting image sequences
then consisting of 5, 000 frames, showing about 10 spiral
rotations.

2.3. Motion Tracking
Motion tracking was performed with both the experimental and
the synthetic optical mapping videos to obtain two-dimensional
in-plane displacement vector fields Eu(x, y, t), the displacement
vectors indicating planar local shifts of tissue segments in the
video images. Motion tracking was performed using a Lucas-
Kanade optical flow estimation algorithm (Periaswamy et al.,
2000, see also Christoph et al., 2017, 2018). Generally, the motion
tracking algorithm is able to track rigid and non-rigid body
motion, affine deformations as well as translational and rotational
motion in images at a sub-pixel resolution. The motion tracking
algorithm does not require any visible characteristic features,
landmarks or markers attached to the heart surface to facilitate
or assist the motion tracking. Instead it estimates optical flow that
occurs in between two images. We found that simply the visible
anatomical texture of the heart surface is sufficient to associate
two local tissue segments in between two frames with each other.
Nevertheless, we enhanced the anatomic texture and the visible

features on the heart surface numerically to increase the accuracy
and robustness of the motion tracking algorithm, see Figure 4

and section 3.3.
When tracking experimental data, short video sequences with

durations of 1.0 − 10.0 s (500 − 5, 000 frames, 500Hz) of
the optical mapping recordings were extracted and stored as
normalized videos containing intensity values I ∈ [0, 1] with
floating point precision, the intensity values normalized by the
maximal and minimal values found in the entire video sequence
vs, see also Figure 1B:

I(x, y, t) = (vs(x, y, t)−min(vs))/(max(vs)−min(vs)) (5)

such that the experimental and the synthetic video data were
stored in the same format. Next, in both the experimental and the
synthetic data, the motion was tracked throughout the sequence
of video images, comparing each video frame to one predefined
reference frame Ir(x, y, t) out of the sequence (t ∈ [1, ...,N]
frames), registering the shifts of the tissue in between the two
frames in each pixel. For data showing periodic cardiac activity,
a reference frame showing the undeformed, non-contracted
heart shortly before (25ms ± 5ms) the electrical activation
(depolarization) of the tissue was selected. For data showing
arrhythmic cardiac activity, an arbitrary frame or a frame in the

FIGURE 3 | Synthetic optical mapping videos (pixel-wise normalized) with simulated spiral waves on a deforming heart surface. The spiral wave pattern is caused by

electrical activity and displayed as an intensity decrease which is typically seen during voltage-sensitive optical mapping. Clockwise rotating spiral wave with two

different signal strengths f : (A) weak signal (1F/F = 3%) and (B) strong signal (1F/F = 20%) on non-deforming (top sequence) and deforming (bottom sequence)

heart surface. The noise ξ is constant in all image sequences (ξ = 0.03) even though it appears to be stronger in (A) due to the pixel-wise normalization (pixel

intensities I ∈ [0, 1] dimensionless normalized units, n.u.). The amplitude of motion is the same in all image sequences (|Eu| ≈ 3− 5 pixels). On the deforming surface

the spiral wave pattern is superimposed by motion artifacts. (B) Due to the large signal strength f , the spiral wave is still visible on the deforming medium and motion

artifacts are comparatively low. The amount of motion artifacts depends on the signal-to-contrast ratio fc = |f |/c, the ratio of fluorescence signal strength f to the

strength of the local contrast c or short-scale intensity gradients in the image (c constant in all images).
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FIGURE 4 | Motion tracking using contrast-enhanced video images: (A) Top

left image: original, raw video image with pixel intensities normalized to minimal

and maximal values in entire video (I(x, y) ∈ [0, 1]). Top right image:

contrast-enhanced video image used for motion tracking (Ic(x, y) ∈ [0, 1]) with

pixel intensities normalized by minimal and maximal value in local

neighborhood (disk-shaped region Sxy ) around each pixel. Resulting

contrast-enhanced images show maximally intensified short-scale image

gradients and suppressed large-scale image gradients. (B) Schematic of

motion tracking procedure with tracking of contrast-enhanced images Ic. The

original video images I are deformed using the inverse tracking data −Eu to

obtain motion-stabilized or warped videos Iw (x, y, t), which are then further

post-processed, i.e., pixel-wise normalized (Inw ).

middle of the image sequence was selected as the reference frame.
The motion was tracked either in the original normalized videos
I(x, y, t), as derived in Equation (5), or in contrast-enhanced
videos Ic(x, y, t), see below, which show the maximally intensified
contrast of the tissue, see Figure 4. To obtain contrast-enhanced
videos, each pixel’s intensity value I(x, y, t) was renormalized by
the maximal and minimal intensity values found within a small
disk-shaped sub-region Sx,y around the pixel:

Ic(x, y, t) = (I(x, y, t)−min(S))/(max(S)−min(S)) (6)

the sub-region Sx,y typically retaining a diameter of 5–7 pixels
and renormalizing all pixels in each video frame individually. The
conversion produced video sequences, in which the local tissue
contrast is maximally intensified and the tissues’ features and its
unique local texture become very pronounced, see Figure 4A.
The conversion also caused larger-scale intensity gradients across

the images to vanish. Motion was then tracked in either the
resulting contrast-enhanced videos Ic(x, y, t) or the original
simply normalized videos I(x, y, t) to compare the different
outputs. The typical frequency of the detectable features in the
video images is a few pixels (5–10), see section 3.2, and given by
the granular, tile-shaped texture of the tissue. Two-dimensional
in-plane displacements Eu(x, y, t) ∈ R

2 were determined for
each pixel (x, y) in every frame I(x, y, t) or Ic(x, y, t) throughout
the normal or contrast-enhanced video image sequences. The
displacement fields Eu(x, y, t) were stored for further analysis.
Video data in which the heart deformed excessively or rotated,
such that parts of the heart turned away from the camera or
moved out of its field of view was discarded. Motion tracking
(Matlab), warping and resampling (custom C++ code) and other
processing requires approximately 1–3 min of computation time
per video image (in the order 100× 100 pixels) on a single CPU.

2.4. Motion Stabilization and Motion
Artifact Removal
Using the displacement data obtained during the motion
tracking procedure, we processed the original videos and
produced warped or motion-stabilized videos in which motion
appears to be absent or significantly reduced, see also
Supplementary Video 3. The tracked displacements were used
to deform each video image to match the image in the reference
frame. More precisely, motion-stabilized or warped video images
Iw(x, y) were obtained by deforming the original video images
I(x, y) using the inverse tracked displacements −Eu(x, y) to shift
and deform each pixel accordingly, see Figure 4B. The deformed
video image was then resampled in the image plane using
the regular cartesian pixel grid yielding a deformed, resampled
and motion-stabilized video image Iw(x, y), see Figures 2D,
4B. The resulting frames showed a similarly deformed tissue
configuration χr as shown in the reference frame Ir throughout
the sequence of video images. For synthetic video data containing
motion, the successfully tracked and warped video images
Iw(x, y, t) were very similar to the original undeformed video
images Ĩ(x, y, t) containing only fluorescent activity.

2.5. Post-processing
Post-processing for the visualization of electrical waves was
performed equally for both experimental and synthetic optical
mapping data. Experimental video data was stored as unsigned
(16 bit) integer valued-data and converted into floating-point
valued data after normalizing each pixel by the minimal and
maximal pixel value in the entire video, yielding normalized
dimensionless pixel intensity values I(x, y, t) ∈ [0, 1] as described
by Equation (5). The simulation data was stored as normalized
data with all pixel values normalized I(x, y, t) ∈ [0, 1]. To
visualize wave activity the video data was normalized pixel-
wise, meaning that each time-series Ixy(t) in each pixel was
normalized individually by its minimal Imin = min(Ixy(t)) and
maximal Imax = max(Ixy(t)) intensity value respectively, see
also (Laughner et al., 2012):

In(x, y, t) = (I(x, y, t)− Imin)/(Imax − Imin) (7)
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Alternatively, the video data was normalized pixel-wise using
a sliding-window normalization, meaning that each time-series
Ixy(t) in each pixel was normalized individually by the minimal
Imin = min(Ixy(t)) and maximal Imax = max(Ixy(t)) intensity
value found within a temporal window of size t±w, respectively,
the window size being at least one cycle length of the wave
activity (e.g., approx. 100ms during ventricular fibrillation). Both
normalizations equally amplify temporal intensity fluctuations
in each pixel (cf. Figure 7) and they are typically used to
visualize action potentials or calcium cycling. However, both
normalizations can also amplify intensity fluctuations that are not
produced by electrical activity but instead by optical flow or in
other words motion artifacts.

In the synthetic data, motion artifact strengths m̃(x, y, t)
were computed by calculating the absolute difference between
the motion-stabilized video, which was obtained in an exact
co-moving frame, and the video obtained in a static camera
view or lab frame before or after tracking. The exact co-
moving video corresponds to an idealizedmeasurement, in which
the amplified, normalized fluorescent signal can be measured
precisely in each tissue coordinate. This video is not available in
experiments because motion tracking algorithms are imperfect
and the tracked tissue configuration is only an approximation
of the real tissue configuration. In simulations, however, the real
tissue configuration is available. Motion artifact strengths m̃were
computed using the pixel-wise normalized videos:

m̃ =

∑

x,y,t

(|Ĩn(x, y, t)| − |In(x, y, t)|) (8)

summing the absolute differences of the two videos’ pixel
intensities over all pixels and video frames. The video Ĩn(x, y, t)

that was obtained in the exact co-moving frame was first pixel-
wise normalized, then deformed and finally resampled. The video
In(x, y, t) that was obtained in a static camera view frame with
pixel-based video-processing was first deformed, then resampled
and finally pixel-wise normalized. The first video will never
contain motion artifacts and the latter video may contain motion
artifacts.

3. RESULTS

3.1. Efficacy of Motion Artifact Removal in
Experimental Data
Figure 5 shows a quasi-planar action potential wave propagating
across the contracting ventricular surface of a rabbit heart, see
also Supplementary Video 2. The wave was elicited after the
application of a pacing stimulus on the endocardial wall close
to the apex of the heart using a MAP-catheter electrode. As a
result, the wave propagated upwards from the apex toward the
base of the heart. Due to the voltage-sensitive staining and long-
pass emission filtering, the fluorescent intensity decreases on
the detector during the depolarization of the action potential.
Correspondingly, activated or depolarized tissue corresponds
to dark regions, whereas undepolarized tissue during the
diastolic interval corresponds to bright regions in the image.
The video data was normalized using a pixel-wise sliding-
window normalization, see section 2.5. Other post-processing
such as smoothing was not performed. The upper image series
shows the action potential wave visualized after tracking and
motion stabilization in the co-moving frame, in which motion
artifacts appear to be absent or at least substantially reduced.
The action potential propagates across the ventricular surface

FIGURE 5 | Efficacy of motion tracking and motion artifact compensation during electromechanical optical mapping: planar action potential wave propagating

upwards across ventricular surface of a rabbit heart as the heart contracts (dark areas correspond to depolarized tissue and bright areas correspond to undepolarized

tissue, staining Di-4-ANEPPS, pixel-wise sliding-window normalization [n.u.]). See also Supplementary Video 2. (A) Motion-stabilized image sequence with

substantial reduction in dissociation-related motion artifacts after motion tracking and numerical motion-stabilization. (B) The same image sequence without motion

tracking and stabilization. Motion artifacts appear as a high-frequency, network-like spatial pattern with black-and-white deflections superimposing and distorting the

action potential wave pattern. Both image series were processed in the same way before and after motion tracking.
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as the heart contracts. Depolarized and undepolarized tissue
areas correspond to two clearly distinguishable, homogeneous
areas with low and high light intensities due to the pixel-wise
normalization of the data, see Equation (5). For comparison,
the lower image series shows the same image sequence without
motion tracking and motion stabilization. Due to the shifts of
the tissue and a deallocation or dissociation of tissue regions
and their corresponding pixel on the camera sensor measuring
the tissue region during this pixel-based measurement, the video
contains dissociation-related motion artifacts. Such dissociation
motion artifacts appear as a network-like, tile-shaped spatial
pattern with black-and-white deflections superimposing and
distorting the action potential wave pattern, which can be seen

in the upper image sequence. Note that both image series
were processed in the same way, normalizing the optical traces
obtained in each pixel using a sliding-window normalization,
see Equation (5). However, the motion that is still present in
the lower image series causes the undesired high-frequency
spatial motion artifact patterns. In contrast, because the motion
was tracked and stabilized in the upper image sequence before
the post-processing, the high-frequency spatial motion artifact
pattern vanished.

Further analysis of the motion-stabilized video data shows
that it is possible to improve the robustness and accuracy
of measurements, such as activation time or action potential
duration measurements. Figure 6A shows activation maps
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FIGURE 6 | Comparison of activation time and action potential duration measurements in optical maps with and without motion artifacts. (A) Activation maps

showing quasi-planar action potential wave propagation on left ventricular surface of contracting rabbit heart before tracking and without motion-stabilization (left) and

after tracking and with motion-stabilization and motion artifact compensation (right). (B) Upstroke detection (at 0.5) for computation of activation maps in (A).

(C,D) Action potential duration measurements of < APD50 >= 151ms± 6ms for motion-stabilized video data. Variance in action potential duration due to motion

decreases with motion compensation. (E) Comparison of uncertainty in action potential duration measurements in original artifact-free data (APD50 = 110± 3a.u.)

and tracked, motion-stabilized synthetic video data (APD50 = 114± 5 a.u.). Uncertainties without motion or motion compensation are both σAPD < 5% and are much

larger with motion.
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computed for the quasi-planar action potential wave shown in
Figure 5. The activation map on the left was computed from
the raw, non-tracked video data including motion artifacts. The
activation map on the right was computed from the tracked,
motion-stabilized video data. Both maps exhibit a global gradient
from short (blue: ta < 10ms) to long activation times (red: ta >

40ms), beginning with short activation times close to the apex
and large activation times further up on the ventricular surface.
The gradients in each of the activation maps reflect the situation
in Figure 5, in which a wave travels across the ventricular wall
starting from the apex toward the base of the heart. However, one
can observe strong artifacts in the raw activation map containing
motion. In about 15% of the pixels the activation times deviate
strongly (> 10%) from the activation times in the tracked map.
It seems that the motion artifacts seen in the normalized video
sequence (lower sequence) in Figure 5 similarly manifest in the
activation maps. Otherwise, the high similarity of both activation
maps suggests that activation times and activation maps can, at
least to a certain extent, be computed from unprocessed video
data. The maximal activation time, that is the time which was
required for the wave to traverse the entire field of view, is equal in
both untracked and tracked maps with tamax = 52ms± 2ms. We
frequently found that in the uncompensated, raw video data with
large fluorescent signals (here 1F/F ≈ 6 − 8%) and moderate
motion, simply the upstroke of the action potential can be
sufficient for the computation of activation times, provided it can
be detected appropriately. However, note that without motion
tracking, the measurement of activation times is nevertheless
inaccurate because in a non-co-moving frame of reference the
spatial correspondence is lost. Figure 6B shows exemplary traces
of the action potential upstrokes obtained from both the raw
and the motion-compensated videos for comparison. In the
uncompensated optical maps, the action potential upstrokes are
in some cases not as steep or pronounced as in the motion-
stabilized optical maps. This is the probable cause of the artifact
patterns seen in the raw activation map (left) in Figure 6A.

Figures 6C,D shows action potential duration measurements
obtained from the same data set shown in Figure 5. The action
potential duration (APD) of the 2 subsequent action potentials
shown in Figure 6B was measured in approximately 500 traces
obtained from the tracked, motion-stabilized video data by
computing the delay between the upstroke and repolarization
times at 50% of the height of the action potentials (APD50),
or at a value of 0.5 in the normalized videos. Figure 6C shows
histograms with the distributions of action potential durations
for the raw, untracked video data including motion artifacts and
the tracked, motion-stabilized video data. In case of the raw
data without motion-stabilization, the histogram exhibits a broad
distribution of APDs, which prohibits the unique identification of
a dominant action potential duration. With motion-stabilization,
the histogram exhibits a narrow distribution from which it
is possible to determine a mean action potential duration
of APD50 = 151 ± 6ms. A similar drastic decrease in
APD measurement uncertainty after tracking is also found by
Khwaounjoo et al. (2015).

Figure 6E shows the variability and uncertainty in the action
potential duration measurement in synthetic video data with

motion. Three exemplary plots obtained from three adjacent sites
show the original artifact-free course of the simulated action
potential (gray) together with the tracked, motion-stablized
curves (black) and the curves including motion-artifacts (red) for
average maximal displacements of < |Eumax| >= 3.2 pixels. The
original and the motion-stabilized curves (gray and black) can
barely be distinguished from each other given the pronounced
amount of noise, while the curves includingmotion artifacts (red)
deviate strongly from both the original and motion-stabilized
curves. The right panel in Figure 6E shows the histogram with
the three respective distributions of action potential durations
(computed with the video data smoothed with kernel sizes kx =

ky = 3 pixels and kt = 11 time steps; the smoothing provides
more robust upstroke and repolarization time detections). As
for the experimental data, the distribution of measured action
potential durations with motion artifacts is very broad with a
high variability in action potential durations. The histogram’s
maximum indicates an APD50 ≈ 120a.u., which deviates by
about 17% from the actual value. The average (APD50 = 108 ±
32a.u.) only deviates by about 2% from the true value, but the
distribution is very broad and has a large uncertainty of 30%.
Both the original and the motion-stabilized distributions are
narrow and very distinctly exhibit a peak, which we used to
compute the average action potential durations of APD50 =

110± 3a.u. and APD50 = 114± 5a.u., respectively. The tracked,
motion-stabilized data deviates by 3.6% from the original data
and exhibits a slightly higher uncertainty of σAPD = 4.5% (about
1.7 times as large as the uncertainty for the original data with
σAPD = 2.7%).

The efficacy of the tracking algorithm in inhibiting motion
artifacts during arrhythmias is demonstrated in Figure 7. The
image sequences in Figure 7A show chaotic action potential
vortex wave activity mapped on the contracting rabbit heart
surface during ventricular fibrillation. Just as in Figure 5, motion
artifact patterns have decreased drastically due to the motion
tracking. Instead of heavymotion artifacts (B,D) one immediately
observes action potential wave patterns (A,C). Again, due to
the voltage-sensitive imaging, depolarized tissue corresponds
to dark and repolarized or inactivated tissue to white areas.
For comparison, we show the same data for two different
normalizations [A,B: pixel-wise as in Equation (5); C,D: pixel-
wise within sliding-window with τ = 140 − 160ms]. The two
different normalizations show that the motion artifact pattern
and the reduction in motion artifacts is independent from
other processing steps and the particular visualization of the
wave pattern. In both uncompensated optical maps that are
obscured with motion artifacts one can observe the typical
high-frequency spatial motion artifact patterns, as observed
in Figure 5.

In summary, Figures 5–7 demonstrate that it is possible
to perform optical mapping experiments with beating isolated
hearts and to reliably retrieve optical maps with substantially
reduced motion artifacts from the moving, contracting heart
surface during regular and irregular cardiac rhythms. The
differences between the raw and motion-stabilized video data
are substantial and can immediately be identified in the optical
maps. Motion artifacts correspond to high-frequency, short-scale
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FIGURE 7 | Action potential vortex waves mapped on contracting left ventricular surface of rabbit heart during ventricular fibrillation. Electromechanical optical

mapping was performed with voltage-sensitive staining (Di-4-ANEPPS, 128 × 128 pixels, 500 fps, approx. 1× 1 cm field of view). (A,C) Maps with substantially

inhibited motion artifacts after tracking and motion-stabilization showing action potential waves. (B,D) Action potential wave maps without tracking and motion

stabilization. Maps exhibit strong motion artifacts. In (A,B) and (C,D) the same activity is shown with two different normalizations, see main text. (E) Exemplary

time-series obtained from optical maps with motion before (gray) and after tracking and numerical motion-stabilization (black).

spatial patterns, which are absent in the registered, co-moving
maps.

3.2. Characterization and Quantification of
Motion Artifacts
Here, we introduce a framework for characterizing and
quantifying motion artifacts, analyzing their spatial
characteristics and appearance in optical maps. As can be seen
in Figures 3, 5B, 7B,D, motion produces a very characteristic
network-like, tile-shaped dark-bright spatial pattern of pixel
intensities in normalized optical maps. We reproduced this
characteristic motion artifact pattern in synthetic optical
maps and systematically varied important video properties,
such as displacement or contraction strength and fluorescent
signal strength (1F or f ), to determine their contribution to the
emergence of this spatial motion artifact pattern. Next, we related
the data to motion artifact patterns found in experiments, see
Figures 8–10. Figure 8A shows how motion artifacts m̃ increase
with increasing amplitudes of motion (here for given values of
signal strength f and image contrast c, see below) in the synthetic
data. The overall amplitude of motion is given as the average of
maximal displacements < |Eumax| >, computed by averaging the
magnitudes of the maximal shifts |Eumax(x, y)| = max |Exi − Exj|
that each vertex (x, y) underwent throughout the simulation.
The maximal shifts are the maximal distances measured in

pixels between a vertex at time ti and the same vertex at time tj.
Motion artifacts occur even with slight tissue movement (finite
and quickly increasing m̃ for < 1 pixel), which underscores the
sensitivity of optical mapping to motion. The graph also shows
that the strength of motion artifacts m̃ increases less quickly
for shifts larger than ∼ 3 − 5 pixels, indicating an involvement
of other mechanisms in the emergence and development of
motion artifacts, see Figure 8A. Next, Figures 8B,C show that
the strength of motion artifacts does not only depend on the
strength of the contraction and amplitude of the motion, but also
depends on the signal strength f , as well as on the local image
contrast c and their relative magnitudes with respect to each
other. The signal strength f is the strength or amplitude of the
fluorescent signal in the raw, normalized synthetic video data. In
the experiments it would correspond to the fractional change in
fluorescence 1F/F. The local image contrast c is a measure for
the maximal intensity differences that can be found in a small
sub-region Sxy around each pixel, see Equation (10). The image
contrast c expresses the likeliness of such intensity differences
to cause dissociation-related motion artifacts. Dissociation-
related motion artifacts occur due to a loss of the sensor-tissue
correspondence and are consequently produced by optical
flow on the camera sensor caused by the tissue’s movements
through the video image. Considering these key determinants
of motion artifacts, we created synthetic optical mapping videos

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 148342

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Christoph and Luther Marker-Free Tracking for Optical Mapping

for various values of the fluorescent signal strength f , the local
image contrast c and varying amplitudes of motion < |Eumax| >.
In the following, the fluorescent signal strength f and image
contrast c are given as normalized units, where f ∈ [0, 1]
represents a normalized unit of maximal fractional change in
fluorescence intensity and c ∈ [0, 1] represents a normalized unit
of image contrast. Figure 8B shows how motion artifacts remain
small for large simulated fluorescent signals f , i.e., they are less
noticeable, and increase with decreasing signal strength and
saturate at a stationary value (∼ 0.15) with vanishing signal f .
More importantly, the graph demonstrates that increasing local
image contrast c promotes the emergence of motion artifacts.
With fixed fluorescent signal strength f and increasing image
contrast c, i.e., the intensity of structures and features visible
in the image, motion artifacts become larger. Motion artifacts
are thus a relative measure. With little or no fluorescent signal
(f = 0) or very large image contrast compared to the signal
strength (f /c << 1) one obtains in large parts only motion
artifacts during an optical mapping measurement.

Accordingly, Figure 3 illustrates how motion artifacts emerge
under various conditions in synthetically generated optical maps.
In particular, it highlights how motion artifact strength m̃ varies
greatly with differing signal strengths f . The image series show
a clockwise rotating action potential spiral wave, which induces
a dark spiral wave pattern on an otherwise brighter background
in the synthetic video data. In real optical mapping experiments,
such data would be obtained with voltage-sensitive staining (for
instance using Di-4-ANEPPS). The strength of the motion is the
same in all images. The video data was normalized pixel-wise, as
described by Equation (5) and equally as shown in Figure 5A,
to facilitate viewing of the intensity fluctuations caused by the
electrical wave activity. The image series in Figure 3A show a
spiral with low signal strength (f = −0.02) on a non-deforming
vs. a deforming heart surface, respectively. The image series in
Figure 3B show a spiral with larger signal strength (f = −0.12)
on a non-deforming vs. a deforming heart surface, respectively.
Due to the absence of motion in the upper image series in each
of the two panels, the spiral wave patterns are not obscured by
motion artifacts, they are artifact-free. In contrast, the same spiral
wave patterns shown in the lower image series in each panel are
obscured bymotion artifacts. It is important to note that the noise
level (ξ = 0.03) and the local image contrast (c = 0.055), as well
as the amplitude of the contraction and motion (< |Eumax| >≈

3 − 5 pixel), are the same in all four image sequences. Due
to the pixel-wise normalization, which normalizes all activity
including noise and eliminates differences in absolute signal
strength (baseline), all relative signal intensity changes become
amplified to the same level. Therefore, the spiral wave in the
upper image sequence in Figure 3A is superimposed by stronger
noise and is perceived weaker in comparison to the upper image
sequence in Figure 3B, which contains a stronger signal in
comparison to the noise level (ξ1 = ξ2 = 0.03). Comparing the
two image series withmotion shown in Figures 3A,B, one notices
that the deformed image sequence with low signal strength f
is heavily distorted and obscured by motion artifact patterns,
while the deformed image sequence with high signal strength
f is less affected by motion artifacts. The spiral wave pattern is

nevertheless visible. Were the image contrast in the upper image
sequence larger (c1 > c2) and the two signal strengths of both
spirals the same (f1 = f2), one would obtain a very similar
outcome. The figure illustrates that with increasing fluorescent
signal strength f or decreasing image contrast c motion artifacts
become less severe. Therefore, we suggest defining the signal-to-
contrast ratio:

fc =
f

c
(9)

which indicates the relative signal strength f in comparison
to the local image contrast c and gives an estimate for the
likeliness of motion artifacts to be visible in optical mapping
data. Both values f and c can be determined in experimental
data, see Figures 9D,E and below. The situation in the image
sequence shown in Figure 3A (fc = |f |/c = 0.02/0.055 =

0.36) would be observed during voltage-sensitive imaging with
Di-4-ANEPPS with fractional changes in fluorescence intensity
typically ranging in the order of 1F/F ≈ −3% to −8%. Strong
signal strengths f as shown in the image sequence in Figure 3B

(fc = |f |/c = 0.12/0.055 = 2.2) are typically encountered, for
instance, during calcium-sensitive imaging with Rhod2-AMwith
fractional changes in fluorescence intensity typically ranging in
the order of 1F/F ≈ 10 − 30%. Note that the synthetic videos
in Figure 3 were generated by deforming a video image that was
obtained in an optical mapping experiment with voltage-sensitive
staining (Di-4-ANEPPS). The image shows the typical granular
texture of the ventricular surface of a rabbit heart, which one
similarly encounters with other fluorescent dyes (Rhod-2 AM,
Di-4-ANBDQPQ) and other species.

The image contrast c in both the synthetic and experimental
video images was determined to be the peak of distribution of
local image contrasts, which were computed for every pixel (x, y)
showing the heart surface in the raw, normalized video image,
see Figure 9E. The histogram in Figure 9E shows the distribution
of image contrasts computed for the original raw video image
I(x, y) shown in the upper left subpanel of Figure 9B. This is the
same image used to create the synthetic optical maps shown in
Figure 3. The image in the lower left subpanel is the resulting
contrast image Ic(x, y). The image contrast c in each pixel (x, y)
of that contrast image was computed within a small disk-shaped
sub-region Sxy around the pixel:

Ic(x, y) = max(Sd(x, y))−min(Sd(x, y)) (10)

The diameter d of the sub-region Sxy was typically chosen to
range in the order of d = 5 − 7 pixels. Note that while
the raw video image I(x, y) contains values between I ∈

[0, 1], the contrast image Ic(x, y) only contains values between
approximately Ic ∈ [0, 0.2]. These are the magnitudes of image
intensity differences that can typically be found within short
length scales of a few pixels in the normalized and otherwise
unprocessed video data. This length scale is significant because
the amplitudes of the motion may occur on a similar length
scale. In this case the intensity differences would create optical
flow that may ultimately lead to motion artifacts, see below.
How such local intensity gradients in the video images can
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FIGURE 8 | Motion artifact strength m̃ generated systematically in synthetic optical mapping videos, see also Figure 3. (A) Increase in motion artifact strength m̃ with

increasing amplitudes of motion |Eu|. (B) Decrease in motion artifact strength m̃ with increasing fluorescent signal strength f or decreasing local tissue contrast c. The

strength of motion artifacts depends on the relative signal-to-contrast ratio f/c. (C) Distribution of image contrast in optical mapping video frame used to generate

synthetic optical mapping video. Top image: original texture, normalized to [0, 1]. Bottom image: contrast image. Image contrast c is the maximal absolute intensity

difference that is found around a pixel (x, y) within a disk-shaped region Sxy with diameter d (here typically 5− 7 pixels).
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FIGURE 9 | Characterization of dissociation-related motion artifacts in optical mapping videos showing the contracting, fluorescing heart surface. Measurements of

important quantifiers: fluorescent signal strength f , image contrast c, amplitude of motion |Eu| and characteristic length scales λ of short-scale image gradients.

(A) Action potentials measured during ventricular fibrillation in two close by pixels (see B) on the surface of a mildly contracting rabbit heart [graph reproduced from

Christoph et al. (2017)]. Difference in baseline reflects different pixel intensities. (B) Raw optical mapping video image (top left), contrast image (bottom left), contrast

image normalized to local minima and maxima (top right) and motion artifacts (bottom right). All images have the same characteristic texture with the same

characteristic length scale or dominant spatial frequency (λ ≈ 9 pixels). (C) Radial profiles (fat lines: average) within 2D power spectra of spatial patterns (contrast

image and motion artifacts) indicate dominant frequency of λ ≈ 9 pixels (see two overlapping peaks). (D) Fluorescent signal strength or fractional change in

fluorescence 1F (given as intensity counts I) measured from sequences of action potentials, see (A), with the peak of the distribution at 1F = 854 intensity counts in

16-bit video image. (E) Image contrast (given as intensity counts I) with peak at C = 1400 in 16-bit video image. (F) Amplitudes of motion during ventricular fibrillation

(2− 4 pixels, 128× 128 pixel sensor size).
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easily obscure action potential signals is illustrated in Figure 9A,
which shows two time-series of a sequence of action potentials
measured on the ventricular surface of a moderately contracting
rabbit heart during ventricular fibrillation (graph reproduced
from Christoph et al., 2017). The two time-series were extracted
from two nearby sites (pixel 1 and pixel 2) only a few pixels
apart in the pixel plane and only a few hundred micrometers
apart on the surface of the heart, see Figure 9B. Both time-series
in Figure 9A possess different baselines, about 2, 000 intensity
counts apart from each other, and exhibit slight motion artifacts,
which become apparent as modulations of the traces around
the baseline. The magnitude of the downstrokes (upstrokes of
each action potential) are in the order of 1, 000 counts (1F),
see Figure 9D, and are smaller than the difference in baseline.
Hence, if both sites were to move toward each other or to
switch their positions, the potential difference in baseline, i.e.,
the difference in local intensity or image contrast, could easily
override the fluorescent signal 1F, which is much smaller. The
signal-to-contrast ratio in this recording is fc < 1.

Next to the fluorescent signal and image contrast strengths,

it is also important to consider the spatial length scales of image
gradients and the magnitude of the displacements or motion seen

in the video images. Figure 10B displays the original video image
(top left) used in the simulations, its contrast image (bottom left)

computed using the formula given in Equation (10), a contrast-
enhanced locally normalized version of the original image (top

right) computed using the formula given in Equation (8), and
resulting motion artifacts appearing in this region without or
with very little fluorescent signal fc << 1 (bottom right). One
can see that all four images retain similar spatial frequency
components. In particular, the image showing the local image
contrast (lower left) and the image showing the motion artifacts
(lower right) exhibit analogous spatial patterns with similar
frequency components. The comparison illustrates how the
loss of correspondence and dissociation in an optical mapping
experiment leads to dissociation-related motion artifacts and
links the phenomenon to the image contrast. Figure 10C shows
that the dominant spatial frequency components measured from
the two-dimensional Fourier-transforms of both the contrast-
enhanced, locally normalized image (upper right) and themotion
artifact patterns (lower right) in Figure 10B are equal at λ =

9± 1 pixels (peaks in red and black curves). This means that the
distances between local maxima and minima in the video images
are on average λ/2 ≈ 4.5 pixels and that these length scales match
with the length scales appearing in the motion artifact patterns.

The graph highlights that motion artifacts can quickly emerge

even with slight movement over only a few pixels, c.f. Figure 9A.
It also highlights the necessity to be able to track movements with
sub-pixel precision. Furthermore, the graph highlights that it is

important to take spatial length scales into consideration when
studying the emergence ofmotion artifacts. Therefore, we suggest
defining a factor, which expresses the strength of the motion
in optical mapping videos in comparison to the frequency of
contrast or features in the image:

uλ =
< |Eu| >

λc
(11)

Here the frequency of visible features is given as the inverse
characteristic length scale λc, as computed via the two-
dimensional spectral analysis shown in Figure 10C. If uλ ≈ 1,
then the motion is so large that it will create strong dissociation-
related motion artifacts, given that the image contrast c is
sufficiently high.

Lastly, the quantities f and c can be extracted from
experimental data and used to estimate how likely it is that
the video data contains weak or strong motion artifacts.
Figures 9D–F show the distributions of the fluorescent signal
strengths ρ(1F), the local contrast ρ(C) and the motion strength
ρ(|Eumax|) in the experimental data set shown in Figure 9A. The
peaks of the distributions (1Fmean = 854 counts, Cmean = 1, 400
counts, < |Eumax| >= 3.5 pixels) were used to determine the
signal-to-contrast ratio fc and the relative motion factor uλ for
the data set. The likeliness for motion artifacts to occur in this
data set is large as fc < 1 or 1F < C and uλ ≈ 1 or <

|Eumax| >≈ λ/2. Note, that the overall motion in the original
recording is moderate (< |Eumax| >≈ 5 pixels) as it shows the
rapidly contracting heart surface during fibrillation. The short
distances in the network-like spatial patterns on the surface of the
heart can easily generate motion artifacts even when the motion
is moderate and in the order of a few pixels (the diameter of the
heart being in the order of 100 pixels in our data).

3.2.1. Measuring Motion Artifact Strength Based on

Frequency Components in Optical Mapping Video

Images
As the absolute strength of motion artifacts can not be
extracted from experimental data per se, we compared motion
artifacts appearing in experimental data to synthetic data, which
resembled the experimental data as closely as possible, and for
which we could compute the absolute values |Eu|, f , c and λ as
described above. Figure 10A shows four normalized synthetic
video images depicting a spiral wave pattern (c.f. Figure 3), where
the first three images show the electrical pattern being obscured
by motion artifacts for different and increasing amplitudes of
motion (< |Eu| >= 0.4, 0.8, 4.8 pixels) and the last image
shows the corresponding tracked and motion-stabilized image
with a substantial reduction in motion artifacts (3rd image: <

|Eu| >= 4.8 pixels). The synthetic data reproduced the specific
signal-to-contrast ratio fc, amplitude of motion |Eu| or relativ
motion uλ, and texture of the respective experimental data set,
see Figure 10C. The lower image sequence shows the spatial
frequency contents in the corresponding two-dimensional power
spectra. These spectra were computed as averages from all images
in each video sequence. The spectra show that with increasing
motion and accordingly with increasing motion artifacts, as
seen in the upper sequence, the spectral power increases in
magnitude for higher frequency components. Comparing both
the upper right and lower right images in Figure 10A one finds
that the tracking and motion compensation equally reduced
motion artifacts and the high-frequency components in the
power spectrum. Figure 10B shows the frequency components
sampled and averaged along the radial direction within the two-
dimensional power spectra (red lines forming a star in sub-
image). The graph shows themean radial profiles P∗(λ) (averaged
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from N = 8 lines) for different amplitudes of motion (<
|Eumax| >= 0.1 − 4.8 pixels). One can see that the height of the
profiles continuously increases with increasing motion strength
(light gray: little motion, dark gray or black: up to 5 pixels
motion), indicating that higher frequency content becomes larger
with increasing motion artifact strengths. For motion above 0.5
pixels each profile exhibits a peak at the characteristic length
scale λ, see also Figure 9C. Computing the integral values r =
∫

P∗(λ)dλ for each profile and plotting the values of r over
the amplitude of motion < |Eumax| > yields the upper curve
in Figure 10D. The curve shows a continuous, monotonous
increase in r that retains a similar shape as the curve in Figure 8B,
which indicates that motion artifact strength m̃ depends similarly
on the amplitude of motion |Eu|. The graph shown in Figure 10E

further emphasizes this dependency, illustrating that the strength
of motion artifacts m̃ increases linearly with r, suggesting that

r is a valid measure for the estimation of the magnitude of
motion artifacts. This means, that the strength of motion artifacts
occurring in experimental data can be estimated by comparing
the magnitudes of the frequency content of the spatial motion
artifact patterns of synthetic and experimental data with each
other. Figure 10D includes two data points (gray dots) computed
for the experimental data sets shown in Figure 10C matching
the synthetic values (black dots) computed for the same image
texture, amount of motion, fc and uλ. Comparing the amount of
distortion and motion artifacts in the upper left image (motion<

|Eu| >= 0.4 pixels) and the upper right image (after tracking and
stabilization, initial motion < |Eu| >= 4.8 pixels) in Figure 9A,
one can conclude that the tracking and motion-stabilization
yields optical maps, which still include residual motion artifacts
comparable in strength to optical maps containing slight motion
(< |Eu| >= 0.4 pixels). The spectral profiles in Figure 10B

→

→

→

→ →

→

P

Sim.

r

ru

E
x
p
e
ri

m
e
n
t

S
im

u
la

ti
o
n

m
m

r

r

u

max

/

u

u

r

r r

r r r

u u

A

C D E

B

FIGURE 10 | Evaluating tracking performance and residual motion artifacts by comparing synthetic to experimental data. (A) Synthetic optical maps before (panels

1–3) and after (panel 4) tracking. Increasing amplitudes of motion (panels 1–3: 0.4, 0.8, and 4.6 pixel) cause an increase in motion artifacts. Tracking and motion

stabilization (panel 4) inhibits (residual) motion artifacts to levels found at 0.4–0.8 pixels of motion before tracking. Spectral maps obtained from the optical maps

(bottom) show an increase in high-frequency spectral components with increasing motion. Tracking and motion compensation decreases the high-frequency spectral

components to a level comparable to the left image (r = 0.45) with low amounts of motion (0.4 pixels). (B) Radial profiles of normalized spectral maps indicating an

increase in width of the profiles (color-coded from gray to black, r = 0.4 to 1.6) with increasing motion and decrease in width after tracking (green curve).

(C) Comparison with experimental data. Tracking and motion-stabilization reduces motion artifacts and radial profile width r (pre-tracking r = 1.49, post-tracking

r = 0.51). (D) Profile width r over magnitude of motion < |Eu| > for raw and tracked (circles) simulated (black dots) and experimental data (gray dots). (E) Linear

increase of motion artifact strength m̃ with spectral profile width r. Motion artifact reduction 1m̃ calculated for experimental data via the linear relationship between

motion artifact strength (obtained in simulations mimicking experimental data) and spatial high-frequency components in optical maps (quantifiable by r with both

experimental and simulation data).
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confirm this conclusion. The profile obtained for the tracked and
motion-stabilized data (green, r = 0.4) closely aligns with the
profile obtained for very slight motion (light gray, < |Eu| >= 0.2
pixels). Also, in Figure 10D all values of r for the tracked and
motion-stabilized data points (circles) are below r < 0.5. This
value for r is also obtained for data sets with motion smaller
than 0.5 pixels (c.f. Figure 10A), lower left image, r = 0.45). The
data demonstrates that analyzing the spatial frequency content
of motion artifact patterns in optical maps, can provide both
an estimate for the amount of residual motion artifacts m̃∗ that
are left in motion-stabilized videos after motion tracking, and
an evaluation of the accuracy of the tracking, see following
section 3.3.

3.3. Evaluating Motion Tracking and Motion
Compensation Performance
To evaluate the performance of the motion tracking and
motion compensation algorithm, we assessed how well the
algorithm tracks simulated movements of cardiac tissue in
the synthetic optical maps, see Figure 11. The efficacy of the
motion tracking and motion-stabilization is also demonstrated
in Supplementary Video 3. As discussed earlier in this paper,
and in the discussion, it is crucial to take into consideration
the fluorescent signal when tracking motion in optical mapping
videos, as the motion tracking algorithm may confuse the signal
with motion-related optical flow and may accidentally track
electrical activity instead of motion and deformation. Here we
show that with strong fluorescent signal strengths f larger than
the local image contrast c (or large signal-to-contrast ratios fc >

1), the tracking algorithm may accidentally track the electrical
wave phenomena propagating across the heart surface instead of
the motion itself. To inhibit such phenomena, we introduced a
pre-processing step in our motion tracking scheme, see Figure 4.
Using Equation (8), we created locally normalized, contrast-
enhanced videos Ic(x, y, t), in which each pixel is normalized to
the maximal and minimal intensity values found within a small
disk-shaped sub-region Sx,y around the pixel (x, y). As a result,
the tissue texture or image contrast was maximally intensified,
see Figure 4A, and intensity fluctuations caused by the electrical
activity were suppressed (see also Figure 4 in Christoph et al.,
2017). We tracked both the original video data I(x, y, t), as well
as the contrast-enhanced video data, Ic(x, y, t) and compared
and evaluated the outcome of the tracking in terms of accuracy
and robustness. Figure 11 shows how tracking the contrast-
enhanced videos outperforms tracking the raw videos and yields
good tracking performance for both small and large fluorescent
signals. Figure 11A shows the untracked video including heavy
motion artifacts (for a signal-to-contrast ratio of fc = 0.6).
In contrast, Figure 11B shows tracked and motion-stabilized
optical maps of the same video as shown in Figure 11A, the
tracking performed on the raw video I(x, y, t) without contrast-
enhancement. Because of the tracking and motion-stabilization,
motion artifacts are substantially reduced and do no longer
obscure the electrical wave pattern as seen Figure 11A. Instead,
the electrical wave pattern is visible. However, while in the first
image sequence with low signal strength (fc = 0.6) the tracking

is accurate, the red arrows indicate the mismatches between
the simulated and the tracked tissue configuration, in the two
lower image sequences the tracking becomes inaccurate because
they contain larger fluorescent signal strengths (2nd: fc = 2.8,
3rd: fc = 3.8). In the bottom most (3rd) image sequence the
mismatches (red arrows) are not shown. Instead the warped,
motion-stabilized images are shown to highlight the distortions
that are introduced when warping the original video images using
the inaccurate tracking results, see also Supplementary Video 4.
In the first image sequence, the tracking was still able to reliably
associate tissue regions with each other throughout the image
sequence, because the fluorescent signal strength was smaller
than the local tissue contrast (f < c). Mismatches occur only
close to the boundaries of the image (cf. Figure 12A). Only mild
motion artifacts are recognizable (cf. Figure 8). In the central
image sequence (2nd) the mismatches (red vectors) between the
simulated and tracked tissue configuration are significantly larger
than in the first image sequence and occur particularly close to the
action potential, suggesting that the algorithm accidentally tracks
the electrical wave pattern. The fluorescent signal is significantly
larger than the local tissue contrast (fc = 2.8) and the algorithm
is no longer able to associate a tissue region with its own
systolic/diastolic or darker/brighter rendition altered through the
fluorescence. Even though motion artifacts do not appear to
be stronger than in the first image sequence due to the larger
relative signal strength, the tracked tissue configuration does not
correspond to the real tissue configuration, which consequently
makes a mechanical measurement inaccurate. Furthermore, the
inaccurate tracking results cause distortions in warped image
sequences, as comparably shown in the lower image sequence
(fc = 3.8), when aiming at stabilizing the motion numerically.
However, accidental tracking of the electrical wave pattern can
be overcome when the tracking is not performed with the
original videos I(x, y, t), but instead with contrast-enhanced
videos Ic(x, y, t), see Figure 11C. For the same video data and
signal-to-contrast ratio (fc = 2.8), as shown in the central
image sequence in Figure 11B, the accuracy and robustness of
the tracking becomes significantly improved. The mismatches
or tracking errors close to the action potential vanish and the
mismatches overall are comparably small, just as with small
signal-to-contrast ratios, (fc = 0.6 cf. Figure 11A). All videos
in Figure 11 contained the same motion before tracking (initial
motion < |Eu| >= 4.7 pixels).

Contrast-enhanced tracking (LKc) is accurate and robust and
yields small tracking errors for any given signal-to-contrast
ratio, see Figure 12B. While without contrast-enhancement (LK)
the tracking error η grows exponentially with increasing signal
strength or signal-to-contrast ratio, it stays small (η = 0.1 −

0.4 pixels) with contrast enhancement for all signal strengths
or signal-to-contrast ratios. Without contrast-enhancement, the
tracking does not achieve sub-pixel accuracy (η > 1 pixel) when
the fluorescent signal f becomes twice as large as the image
contrast c. The tracking error corresponds to the mismatches
between the simulated and the tracked configuration (red vectors,
see Figure 11 averaged over all images in the video. Shifts or
motion can be tracked with a precision of 0.1 − 0.4 pixels,
while the amplitudes of motion were about 10 − 50 times
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FIGURE 11 | Efficacy of motion compensation and tracking error determined with synthetic optical maps showing contracting, fluorescing cardiac tissue. See also

Supplementary Videos 3 and 4. (A) Deformed, non-tracked optical maps obscured by motion artifacts for weak to moderate signal strength (fc = 0.6). (B)

Motion-stabilized optical maps with substantial artifact reduction for various signal-to-contrast ratios fc = 0.6, fc = 2.8, fc = 3.8 (increasing signal strength) after

tracking and warping. Red vectors (row 1 & 2) indicate tracking errors, calculated as mismatches between the tracked and actual simulated tissue configuration. While

tracking is sufficiently accurate for small fluorescent signal strengths (f < c, here fc < 0.6), the tracking error increases with increasing signal strengths, with

mismatches emerging particularly close to the wave front. For very strong signals (f > c, here fc = 3.8) the warped, motion-stabilized images become visibly distorted

as a result of the erroneous tracking. (C) Substantial reduction of tracking errors by introducing contrast-enhancement, amplifying local image gradients to minimize

accidental tracking of the electrical wave and the related intensity modulations it causes in the video images. Contrast-enhancement improves the accuracy of the

tracking and maintains robust and sufficiently accurate tracking with larger signal strengths (fc > 2.8), see also Figure 12. All optical maps are pixel-wise normalized

over time.

larger in the order of about 5 pixels. We typically observed
such amplitudes of motion during arrhythmias and pacing in
the experimental data sets (with a sensor size of 128 pixels and
the diameter of the ventricle in the order of 100 pixels). As
shown in Figure 12A, the tracking error remains small (η <

0.5 pixels) within the entire video image and becomes only
larger (η > 2 pixels) close to the boundaries (within ∼ 5
pixels) of the video image. Just as in Figure 11 all tracked and
analyzed videos in Figure 12B contained the same motion before
tracking (initial motion < |Eu| >= 4.7 pixels). Nevertheless,
the accuracy of the tracking algorithm does not diminish with
increasing and stronger motion. Figure 12C shows that the
strength of residual motion artifacts m̃∗ after tracking and
motion-stabilization remains constantly small for displacements
ranging from 0−5 pixels, and the algorithm has demonstrated to
reliably detect shifts with larger magnitudes (∼ 10 pixels in video

image of size 128 × 128 pixels), see experimental data set shown
in Figures 1C,E.

Finally, comparing the experimental and synthetic video
data to each other, as shown in Figures 10C–E, it is possible
to estimate the accuracy of the tracking in the experiments.
Figure 10C shows a substantial reduction in motion artifacts
comparing the simulated pre- and post-tracking data. After
tracking, the spatial high-frequency content in the optical maps
decreased substantially and it is possible to relate this reduction to
a reduction in dissociation-related motion artifacts, as shown in
Figure 10C, and to consider it as a measure for the precision of
the tracking, see also section 3.2.1. In the synthetic data, which
matches the experimental data in terms of fluorescent signal
and contraction strengths and image contrast, both the amount
of motion artifacts m̃ that results with small sub-pixel shifts of
the tissue (|Eu| = 0.4 pixel) and the amount of residual motion
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artifacts m̃∗ that is seen after tracking corresponds to the amount
of residual motion artifacts m̃∗ found in the experimental data
after tracking. From Figure 10E it is consequently possible to
conclude that for the particular data set shown in Figure 10C

motion artifacts were reduced by about 75 − 80% (1m̃ ≈ 1 −

0.04/0.2 = 0.8). Furthermore, it can be concluded that the
motion tracking algorithm is able to detect shifts with sub-pixel
accuracy (< |Eu| >= 0.4 pixel) in the experimental data set
shown in Figure 10C. Figure 12C shows that residual motion
artifacts m̃∗ remain small for both small and large amplitudes
of motion, suggesting that similar results could be obtained with
other experimental data sets. Figure 12D demonstrates that with
varying signal-to-contrast ratios there is an optimum around
fc = 1 for which residual motion artifacts m̃∗ become minimized
after tracking. The graph suggests that for small signal strengths
f residual motion artifacts become larger simply because with
vanishing signal (fc << 1) and imperfect tracking it becomes
more likely to measure optical flow instead of signal. Likewise,
with large signals slight mismatches or tracking errors may lead
to an overly strong contribution of the signal to motion artifacts.
The regime in which we found the minimum in residual motion
artifacts m̃∗ for signal-to-contrast ratios of fc = 0.2 − 2.0 is
often faced in experimental data sets, for example Di-4-ANEPPS
(fc ≈ 0.5 − 1.0, see for instance Rohde et al., 2005 with fc ≈ 0.5)
or Rhod-2 AM (fc ≈ 1.0− 2.0), cf. Figures 9D–F.

4. DISCUSSION

In this study, we validated the robustness and accuracy of a 2D
marker-free motion tracking and motion stabilization algorithm
for performing electromechanical optical mapping studies with
beating, fluorescing hearts. Using experimental and synthetically
generated optical mapping videos, we compared the tracked data
to simulated ground-truth data and found that the algorithm
reduces motion artifacts substantially by about 75 − 80% and
achieves sub-pixel accuracy (< 0.5 pixels, ∼ 0.2 − 0.4 pixels,
see lower curve in Figure 12B) when tracking motion with
amplitudes in the range of 1 − 10 pixels (in video images that
are in the order of 100 × 100 pixels in size, the heart filling the
entire field of view). We further found that the motion tracking
algorithm is robust against fluorescence intensity fluctuations
which are caused by electrical activity. One of the most important
issues in tracking motion in optical mapping videos is the careful
disentanglement of motion from fluorescent activity, particularly
when using marker-free tracking approaches as in this study.
Unlike other tracking algorithms (Seo et al., 2010; Bourgeois
et al., 2011; Zhang et al., 2016), the motion tracking algorithm
discussed in this paper does not require markers attached to the
tissue surface to facilitate the tracking. It instead analyzes and
compares anatomical features or landmarks that are visible on
the heart surface. With such a marker-free tracking approach, it
is important to identify and eliminate factors that could possibly
mislead or irritate the tracking and lead to falsely detected shifts
or displacements. Such an assessment is particularly important
because optical mapping videos, which show fluorescing and
contracting cardiac tissue, do not only contain intensity changes

FIGURE 12 | Tracking error η and residual motion artifacts m̃∗ in synthetic,

tracked and motion-stabilized optical maps with various amplitudes of motion

and relative signal strengths. (A) Tracking error η within video image averaged

over all video frames with contrast-enhancement (LKc). Within the video image

errors are acceptable (< 0.5 pixel), toward the boundaries errors can become

large (η > 2 pixel). Video image is 100× 100 pixel in size. See also

Supplementary Video 4. (B) Tracking error η with (LKc) and without (LK)

contrast-enhancement. Tracking error grows exponentially with increasing

signal-to-contrast ratio fc without image contrast-enhancement (LK) and

remains small with image contrast-enhancement (LKc) for all signal-to-contrast

ratios fc. (C) Residual motion artifacts m̃∗ are equally small (cf. Figure 10E) for

small and large amplitudes of motion in the original videos. (D) Residual

motion artifacts m̃∗ are minimal for relative signal strengths in the range of

fc = 0.5− 2.0 or when f ≈ c.

that can be attributed to motion (optical flow) alone, but also
contain fluorescence intensity fluctuations that are caused by
electrical activity, i.e., intensity drops during action potential
depolarization or intensity increases during calcium cycling. The
motion and fluorescence appear as two superimposed spatio-
temporal dark-bright patterns, both of which can be detected
by the tracking and therefore need to be disentangled from
each other. In the worst case, if the fluorescent signal is large
enough, the tracking algorithm may be unable to associate two
corresponding image regions between two frames, for example
when one video frame shows the tissue during diastole and the
other during systole. Even with weak fluorescent signals, such
superposition phenomena can lead to tracking errors, which may
not be visually evident, see Figures 11, 12. To reconcile this
problem, we introduced and applied a contrast-enhancement
pre-processing procedure, which intensifies short-scale gradients
in video images and suppresses intensity fluctuations caused
by electrical activity (Christoph et al., 2017). In this study, we
validated that this contrast-enhancement, see Figure 4, creates a
unique and robust spatial pattern or texture that can be reliably
identified and tracked through video images in the presence of
fluorescent signals, just like artificial markers attached to the
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heart surface. In Figure 11 it is shown that strong fluorescent
signals (f > c) can lead to tracking artifacts, if the tracking is
performed without contrast-enhancement. The tracking artifacts
may arise when the original, unprocessed video image is tracked
and the algorithm uses the local grayscale pattern to uniquely
identify a particular tissue segment and follow its motion
through the image plane. However, this original spatial intensity
pattern is superimposed or modulated by fluorescence intensity
changes that typically occur when the tissue is loaded and
imaged, for instance, with voltage- or calcium-sensitive dyes.
In Figures 11, 12B, we show that if these modulations become
large, they can alter the image in a way that the algorithm
— without further precautions—is unable to match the local
spatial intensity pattern associated with one tissue region with
its corresponding deformed spatial pattern in a different video
frame. As a result, the algorithm produces tracking errors with
increasing fluorescent signal strengths (1F/F). In the worst case,
with very strong fluorescent signals, the tracking algorithm could
accidentally track the movements of action potential or calcium
waves across the surface instead of motion, as demonstrated
in Figure 11B. Using synthetic data, we verified that with
contrast-enhancement the tracking achieves sub-pixel precision
for arbitrary fluorescent signal strengths f , see Figure 12A and
lower curve in Figure 12B. Tracking the contrast-enhanced
videos, we were able to image strongly beating and contracting
hearts stained with voltage-sensitive dye (Di-4-ANEPPS) and
obtain co-moving optical maps showing action potential waves
propagating across the heart surface with substantially inhibited
motion artifacts. At the same time, we were able to ensure that
we performed an accurate measurement of the time-varying
mechanical configuration χ(t) of the tissue surface visible within
the video images as we verified that tracking errors remain low,
see Figure 12B.

The main advantage of our method is that we can image the
beating heart without having to attach markers to its surface.
At the same time, the algorithm is fully automatic and does
not require any manual supervision, i.e., manual selection of
markers or image features to initiate or enable the tracking is not
necessary. Motion tracking (Matlab), warping and resampling
and other processing (custom C++ code) requires approximately
1 min of computation time per video image on a single CPU. We
do, however, anticipate that the tracking andmotion-stabilization
could also be performed much faster (in the order of seconds or
even milliseconds per video frame) using parallel computing and
streamlining the procedures. In this study, we analyzed relatively
small video images with sizes of 100 × 100 or 128 × 128 pixels.
Videos with such sizes are produced by state-of-the-art cameras
(MiCAM ULTIMA camera, SciMedia, Japan: 100 × 100 pixels;
Evolve 128 camera, Photometrics Inc., USA: 128 × 128 pixels).
The tracking can also be performed with video data recorded
with cameras with much larger sensors, given that the video
properties (noise level, image gradients, density or length scales
of image features) are comparable and do simply scale with the
size of the video image. Note thus that the different amplitudes
of motion, which we observed during fibrillation (approximately
1 − 5 pixels ), tachycardia or pacing (approximately 5 − 15
pixels), and sinus rhythm (approximately 10 − 30 pixels) would

scale with the image sensor size if the heart filled the field
of view and could be stated in calibrated units (mm). The
tracking is also generally applicable to other data obtained with
different setups, species (we successfully applied the algorithm
to data obtained with rabbit, pig, mouse and alligator hearts)
or dyes (we used Di-4-ANEPPS, Di-4-ANBDQPQ, Rhod2-AM,
Fluo-3). Due to the single-camera imaging setup, we were
only able to image planar movements within the video images,
see Figures 1A,B. However, using the same tracking algorithm
and a multi-camera setup, we previously demonstrated that
the three-dimensional motion and deformation of the heart
surface can also be captured and that action potential waves
can be mapped on large (180◦) and strongly curved parts of
the deforming ventricular walls (Christoph et al., 2017). As
in the present study, the 2D motion tracking algorithm was
used to detect two-dimensional displacements in the video
images, and afterwards the 2D data was used to compute three-
dimensional displacements combining the data from multiple
cameras. While the aim in the multi-camera study was to provide
a proof-of-concept that three-dimensional electromechanical
optical mapping is possible, our aim in the present study is
to discuss the performance of the two-dimensional tracking
itself. We verified, with the aid of synthetic video data, that
the tracking of the tissue’s mechanical configuration is accurate
and robust. The robustness is demonstrated in the tracking’s
ability to produce displacement vector fields, which describes
a smooth and continuous movement of the tissue through
space, even though each video frame was registered individually
and independently. This has implications for both 2D and 3D
imaging alike, as the 2D tracking data is the basis for the 3D
reconstruction discussed in Christoph et al. (2017).

Motion artifacts can be reduced substantially using numerical
motion tracking and motion compensation techniques, as shown
in this and in previous studies (Christoph, 2015; Zhang et al.,
2016; Christoph et al., 2017, 2018). However, judging from the
outcome of themotion tracking andmotion compensation alone,
it is not immediately apparent how accurate the motion was
tracked. Furthermore, it is difficult to quantify the amount of
residual motion that may still be present in motion-stabilized
videos or to determine to what extent motion artifacts were
reduced. Motion artifacts are well known to manifest as
distortions or deflections in optical traces (Rohde et al., 2005;
Christoph, 2015; Christoph et al., 2017) and become immediately
apparent particularly during sinus rhythm, as during sinus
rhythm motion alters the very characteristic shape of the action
potential. A quantitative assessment of motion artifacts and
potential deviations of the optical traces from the true action
potential remains difficult, as ground-truth data is unknown.
In particular during arrhythmias, the identification of motion
artifacts is not trivial because action potentials can take on
various and less specific shapes than during sinus rhythm. To
better understand the origins of motion artifacts, we generated
synthetic motion artifact patterns and studied their properties
and dependence on motion and other features of the video
data. We found that a spectral analysis of motion artifact
patterns in optical maps can be used to estimate the residual
error of the tracking and the amount of residual motion and

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 148350

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Christoph and Luther Marker-Free Tracking for Optical Mapping

motion artifacts. We also found that the strength of dissociation-
related motion artifacts are mainly determined by the ratio of
the fluorescent signal strength f in comparison to the local
image contrast c and the ratio of the amplitude of motion
|Eu| in comparison to the length scales λ of image features. In
determining these video properties alongside a spectral analysis
of motion artifacts, one can evaluate the efficacy of motion-
stabilization and motion artifact compensation algorithms. In
the synthetic data, the amount of residual motion artifacts is a
direct measure for the accuracy of the tracking, see Figure 10E.
Using a simplistic computer model, we were able to create
optical maps, which reproduced the most essential aspects of an
optical mapping video. In future work, it may be necessary to
simulate the full three-dimensional heart together with a three-
dimensional imaging scene and the positioning of different light
sources within that scene. Taking into account a more realistic
imaging situation is necessary in order to simulate the generation
of illumination-related motion artifacts caused by movements
of the heart inside an inhomogeneously illuminated scene.
Inhomogeneous illumination or, more precisely, relative motion
between the heart and light sources can cause illumination-
related motion artifacts, which add to dissociation-related
motion artifacts. Illumination-related motion artifacts can not be
overcome by tracking, but can be compensated by ratiometric
imaging (Brandes et al., 1992; Knisley et al., 2000; Hooks et al.,
2001; Tai et al., 2004; Bachtel et al., 2011; Bourgeois et al.,
2011; Zhang et al., 2016) or numerical light-field correction
techniques (introduced in Christoph et al., 2017). Here, we
neglected illumination-related motion artifacts, because in the
experiments we typically illuminated the hearts “flat”, meaning
that we avoided larger intensity gradients across the images and
tried to illuminate the heart surface as evenly as possible with
multiple LEDs from all sides. We experienced that with flat
illumination and small amplitudes of motion (1 − 10 pixels)
illumination changes do not pose greater issues. Nevertheless, in
future work, illumination-related motion artifacts will have to be
considered more carefully.

Performing optical mapping experiments with beating hearts
requires careful handling of the tissue preparations. For instance,
it is very important, and much more so than during conventional
optical mapping without motion, to avoid dust or Tyrode stains
on the glass walls through which the imaging is performed.
The avoidance of particles or bubbles flowing inside the bath
is also necessary. Both dust or stains on the glass walls and
particles and bubbles moving through the field of view may
accidentally be tracked or may compromise tracking. Imaging
the heart from the top through the surface of the Tyrode
solution may be prohibited by ripples that form on the water
surface when the heart contracts. The tracking may also pick
up the flickering of instable light sources. Strongly contracting
tissue preparations may require mechanical fixation to inhibit
excessive motion. Especially during sinus rhythm, the heart
may rotate or move out of the field of view such that its
motion can not be captured with a single camera. At the same
time, one needs to be very careful when trying to fix it in
one location. Subjecting the heart wall to mechanical pressure
or bringing it in mechanical contact with instrumentation

could lead to blockage of its vascular system and improper
perfusion and ischemia. We experimented with molds and
flexible holders to mechanically restrict the hearts, but, due to
repeated complications with proper perfusion, have resorted to
freely moving hearts, which are simply attached to the perfusion
outflow.

5. CONCLUSIONS

We demonstrated that optical mapping can be performed
with strongly contracting isolated hearts using computer vision
techniques. Without using artificial markers attached to the
heart surface, we tracked and numerically stabilized the motion
of the beating heart to measure electrophysiological wave
phenomena propagating across the contracting heart surface in
a co-moving frame of reference. We validated the robustness
and accuracy of the marker-free motion tracking and motion
compensation algorithm using synthetically generated optical
mapping videos and found that the algorithm achieves sub-
pixel accuracy, reduces motion artifacts substantially and is
unaffected by intensity modulations in the video images caused
by electrical activity. As a result, it becomes possible to perform
electromechanical optical mapping with beating hearts without
having to attachmarkers to the heart. Furthermore, we found that
(residual) motion artifacts can be used as a direct measure for the
accuracy of the tracking.
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Supplementary Video 1 | Tracking of contracting and deforming left ventricular

heart surface of a rabbit heart during pacing and the onset of ventricular fibrillation.

Points (black) indicating in-plane displacements of single tissue segment with

respect to reference position (gray).

Supplementary Video 2 | Action potential wave propagating across contracting

and deforming left ventricular surface of a rabbit heart.

Supplementary Video 3 | Synthetic optical maps showing action potential spiral

wave (1F/F > 10%, exaggerated) on contracting tissue before and after tracking

and motion-stabilization.

Supplementary Video 4 | Tracking errors in synthetic optical maps without and

with contrast-enhancement for a signal-to-contrast ratio of fc = 2.8, c.f.

Figure 11. Without contrast-enhancement the tracking and motion-stabilized

videos contain errors and heavy distortions respectively. Contrast-enhancement

reduces mismatches between real simulated and tracked tissue configurations

(red vectors) significantly.
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Early afterdepolarizations (EADs) are abnormal oscillations during the plateau phase of the

cardiac action potential and have been linked to cardiac arrhythmias. At the cellular level,

EADs can be caused by reactivation of the L-type calcium (Ca2+) channels, spontaneous

Ca2+ releases from the sarcoplasmic reticulum, or both. In tissue, these EADs can trigger

action potentials in neighboring cells, which may propagate as a nonlinear wave. In this

scenario, EADs are attributed to cellular/subcellular/channel properties. In this study,

we show a novel mechanism of EADs due to heterogeneous distribution of excitable

and non-excitable cells in tissue, using a physiologically detailed computational model

and mathematical analysis. In tissue, excitability of cells depends on the cell type and

physiological and pathological conditions. Non-excitable cells create a non-excitable gap

in tissue, which has been thought to be a cause of slow waves and reflected waves.

Here, we show that the non-excitable gap also can be responsible for EAD generation.

However, EADs occur only when the non-excitable gap size is optimal. If the gap size

is too small, no EADs occur. If the gap size is too large, the action potential wave

cannot propagate through the gap region. We also demonstrate that EADs caused by

the non-excitable gap can initiate reentry in tissue, which has been linked to ventricular

tachycardia and fibrillation. Thus, the non-excitable gap can lead to both focal and

reentrant arrhythmias. EADs shown in this study are spatial phenomena and require

tissue heterogeneity. Our study sheds light on the role of tissue heterogeneity on focal

and reentrant arrhythmias.

Keywords: early afterdepolarizations, heterogeneity, reflection, excitable media, reentry, arrhythmias, non-

excitable gap, cardiac tissue

INTRODUCTION

Sudden cardiac death is one of the major causes of death in the world [1]. Sudden cardiac death
is most often caused by arrhythmias. Under normal conditions, action potential waves propagate
smoothly in the heart. During arrhythmias, in contrast, action potential waves are less organized
and often show spatiotemporally chaotic behaviors. However, it is not clear how regular sinus
rhythm becomes irregular arrhythmias.
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Cardiac myocytes are excitable cells. These cells are coupled
by gap junctions in tissue. The membrane excitability and gap
junction coupling are highly heterogeneous in the heart [2, 3].
These heterogeneities are especially amplified under pathological
conditions such as heart failure and myocardial infarction [4–9].

Early afterdepolarizations (EADs) are abnormal oscillations
of the membrane potential during the plateau phase of the
action potential. EADs can be caused by reactivation of the
Ca2+ and/or Na+ channels or spontaneous Ca2+ releases from
the sarcoplasmic reticulum, or both [10–15]. These abnormal
oscillations can re-excite surrounding tissue and cause triggered
activities if they overcome the source-sink mismatch [16–20].

Cardiac myocytes are electrotonically coupled via gap
junctions in tissue.When some cells are excited in tissue, currents
flow from excited cells to neighboring cells via gap junctions
and excite the neighboring cells. The propagation excitation
forms the action potential wave. Under pathological conditions
such as ischemia and myocardial infarction, cells can be less
excitable or non-excitable [21, 22]. If one cell is non-excitable,
the membrane potential of the cell is passively changed by the
membrane potential of surrounding cells. Generally, one or few
non-excitable cells do not cause a problem since the action
potential wave can pass through these cells. However, as the
number of non-excitable cells increases, the action potential wave
slows down in this region, and eventually fails to propagate when
the number of non-excitable cells exceeds a certain threshold.
In addition to propagation failure, non-excitable cells in tissue
also can cause retrograde waves, which may lead to focal
arrhythmias. This phenomenon is known as “reflection” and
shown in experiments using the ventricular tissue, atrial tissue,
and Purkinje fiber [23–29]. These reflected waves have been
also shown in computer simulations [30–35]. The simplified
mathematical model of cardiac tissue showed the mechanisms of
reflected waves and the role of the non-excitable region [31]. The
detailed analysis using 1- and 2-variable models has shown that
the number of reflected waves is highly sensitive to the size of the
non-excitable region [33, 35].

In this study, we show how non-excitable cells in excitable
tissue affect EAD formation due to reactivation of the Ca2+

channels using computational models andmathematical analysis.
The key finding in this study is that a small region (1∼2mm) of
non-excitable tissue can lead to EADs and promote arrhythmias.
Thus, tissue properties are critical for EAD formation as well
as cellular properties. Such heterogeneous distribution of non-
excitable and excitable cells in tissue, as in pathological conditions
such as ischemia, can lead to the onset of ventricular tachycardia
and fibrillation.

MATERIALS AND METHODS

Physiological Model
We used a physiologically detailedmodel of the rabbit ventricular
action potential model used in our previous studies [19, 36–38].
The membrane potential is governed by

∂V(x, t)

∂t
= −s (x) ·

Iion (x, t)

Cm
+∇ · D∇V(x, t),

where V is the membrane potential, Iion is the total
transmembrane current, Cm is the cell membrane capacitance, D
is the effective diffusion constant of the voltage due to currents
from neighboring cells through gap junctions, x represents
position in space and t is time. In this study, we introduced
the variable s(x) to control excitability in tissue as follows
(Figure 1A).

{

s(x) = 0 for non− excitable cells
s(x) = 1 for excitable cells

Since the original parameters of this model were built based on
the healthy rabbit cell data [37], EADs do not occur even at slow
heart rates. In order to promote EAD formation at the cellular
level, we modified parameters to reduce repolarization reserve
by increasing inward current (ICaL) and reducing K currents.
We note that even with these modifications, EADs do not occur
without the non-excitable gap. EADs occur only when the non-
excitable gap is inserted in tissue and/or repolarization reserve
is further reduced by increasing ICaL (or decreasing K current).
Parameters and equations used in this study are shown in the
Supplementary Material.

Computer Simulation
A one-dimensional cable (9 cm) was paced at one end. To
ensure propagation, the leftmost five cells were paced in a
one-dimensional cable. Non-excitable cells were inserted in the
middle of the cable as shown in Figure 1A. The two-dimensional

A

B

FIGURE 1 | Schematic illustration. One dimensional tissue was paced with

stimuli applied uniformly at the left edge of the tissue. The cable length is 9 cm.

(A) In the cable, s(x), function of excitability with respect to position in tissue, is

1 for excitable cells and 0 for non-excitable cells. (B) In two-dimensional

tissue, the non-excitable gap was inserted in the middle of the tissue.
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A B

C D

E F

FIGURE 2 | Non-excitable gap causes EADs. (A) Without non-excitable gap, the action potential wave propagates without causing EADs in 1D tissue. Space-time

plot. (B) When non-excitable gap is inserted, EADs occurred around the non-excitable gap region. The maximum APD is 781ms. The gap size is 1.5mm. (C) If the

gap size is too small (0.6mm), no EADs occurred. (D) If the gap size is too large (1.8mm), propagation failed at the gap region. (E) APD vs. the gap size. (F) The travel

time of action potential wave vs. gap size.

tissue (9 × 9 cm) was paced from the top and non-excitable cells
were inserted as shown in Figure 1B. We solve this equation
using the operator splitting method [39]. We use the Euler
method with the variable time step of 0.01∼0.1ms to compute
the single cell action potential. The space step (1x) is 150µm,
which is similar to the length of the cardiac myocyte. For the
numerical accuracy, we used double precision in our simulations
and checked the results using smaller time steps. All codes are
written in C/C++. We used the 25-node high-performance
computing cluster.

Simplified Model
In order to understand the dynamical mechanisms of EADs
due to non-excitable gap, we also constructed the reduced

mathematical model of EADs. The basic structure of the model
is the same as our previous studies [40]. This model has three
variables: membrane voltage (v), and gating variables (f and x).
These variables are governed by

Cm
dv

dt
= −(iCa + iK)+ ggap(v2 − v),

df

dt
=

f∞ − f

τf
,

dx

dt
=

x∞ − x

τx
,

where iCa is the simplified L-type Ca2+ current and iK is the
generic K current, ggap is the effective conductance between
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A

B

C

FIGURE 3 | Repetitive pacing When 1D cable was paced repetitively, various patterns appeared. Top: Space-time plot. The AP traces (bottom) were taken at the

middle of the cable (indicated by dashed lines). The gap size is 1.5mm. The tissue was paced 200 times. Last 30 beats are shown here. (A) Periodic (period-1)

pattern. No EADs at the gap region. (B) Period-2. EADs occur every other beat. (C) Complex pattern. Spatiotemporal chaos.

proximal and distal regions. v2 is the membrane potential in the
distal region. Due to the large delay at the gap region, the action
potential in the distal region remains the plateau phase when the
membrane potential in the proximal region is repolarizing. Thus,
the membrane potential in the distal region was assumed to be
constant. f and x are gating variables of the Ca2+ current and the
generic K current, respectively. f∞ and x∞ are steady state values
of f and x gates, respectively. τf and τx are time constants of f and

x gates, respectively. The simplified L-type Ca2+ current and the
generic K current are

iCa = gCad∞f (v− eCa) ,

iK = gk · x · (v− ek) ,

where gCa is the maximum conductance of iCa, gk is the
maximum conductance of ik, d∞ is the instantaneous activation
gate of the Ca2+ channel, eCa is the reversal potential of iCa, ek is

the reversal potential of ik. Steady state values, d∞, f∞ and x∞ are
voltage dependent and governed by

d∞ =
1

1+ exp
(

−
v+ 32
6.24

) ,

f∞ =
1

1+ exp
(

v+ 21
8.6

) ,

x∞ =
1

1+ exp
(

−
v+ 35

5

) .

We use the Euler method with the variable time step of 0.1ms to
solve the simplified model.

RESULTS

One-dimensional cable was paced at one end. In this study, the
cable length is 9 cm, which is longer than the typical human
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A B

C D

FIGURE 4 | Gap junction conductance affects EAD formation. The diffusive current between cells also affects EAD formation. In this figure, the gap size was fixed at

1.5mm. (A) normal D. D = 0.0005 cm2/s. (B) large D. D = 0.002 cm2/s. (C) small D. D = 0.00001 cm2/s. (D) APD vs. D.

heart size, to avoid unnecessary boundary effects. When cells are
well connected via gap junctions without a non-excitable gap,
the action potential wave propagates smoothly without EADs
in the cable (Figure 2A). Hereafter, we refer to this case as the
“control” case. The maximum action potential duration (APD)
in the cable was 538ms in the control case. The travel time of the
action potential wave from one end to the other end totaling 9 cm
was 591ms. When a non-excitable gap of 1.5mm (= 10 cells) is
inserted in the middle of the cable (Figures 1, 2B green line), the
propagation speed of the action potential slows down at the gap
region. In this case, the travel time of the action potential wave
propagated from one end to the other end was 797ms. Therefore,
the delay of the propagation at the gap region is 259ms. In
addition, EADs occur near the gap region (Figure 2B). In this
case, the maximum APD in the cable was 781ms. The gap size
is critical for the formation of EADs. If the gap size is too small,
EADs do not occur (Figure 2C). EADs occurred only when the
gap size reaches 1.5mm. On the other hand, if the gap size is
too large (gap size greater than or equal to 1.8mm), the action
potential wave cannot propagate due to non-excitability in the
gap (Figure 2D). Figure 2E shows a graph of APD vs. gap size,
and the number of EADs with different gap sizes. Additionally,
the travel time of action potential wave is depicted against the gap
size (Figure 2F). Note that the action potential fails to propagate
if the gap size is larger than 1.8mm.

In our previous studies, we have shown that EADs can be
periodic and chaotic due to nonlinearity of EAD dynamics [15,
19, 40–42]. When the 1D cable was paced repetitively, various
patterns appeared such as periodic (period-1), period-2 and
even spatiotemporally chaotic patterns (Figures 3A–C). These
patterns appear only when non-excitable cells exist in tissue.

When the non-excitable gap exists, changing the gap junction
conductance also has the similar effects to the gap size since
the effective gap size is proportional to 1/

√
D. In other words,

the diffusion coefficient D rescales the length of the gap. Thus,
although changing the size and changing the gap junction
conductance are physiologically different, mathematically, we
expect similar results. We used a fixed gap size = 1.5mm for all
simulations in Figure 4. When D is normal value (D = 0.0005
cm2/s), 1 EADwas observed near the gap region (Figure 4A). IfD
becomes larger (D= 0.002 cm2/s), the effective gap size becomes
smaller and no EADs occurred (Figure 4B). If D is too small (D
= 0.00001 cm2/s), the action potential wave could not cross the
gap region due to the large effective gap (Figure 4C). Figure 4D
shows how diffusive coupling impacts EAD formation. There is
an optimal window for EAD formation.

Reducing repolarization reserve by increasing inward currents
such as ICaL and/or reducing outward currents such as IKr
and IKs, promotes EAD generation. When ICaL is increased
(Figure 5A), APD was prolonged (APD = 1816ms) and the
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A B

C D

FIGURE 5 | Effects of the inward current. When inward current (ICaL ) is increased, EADs occur without the non-excitable gap region. In addition, non-excitable gap

promotes EADs further (A). gCa = 273 µA/µF. Without the non-excitable gap region, 3 EADs were observed. Near the gap region, 4 EADs were observed. The

maximum APD is 1816ms. (B) gCa = 182 µA/µF. Control. The maximum APD is 781ms. (C) gCa = 145.6 µA/µF. The maximum APD is 341ms. (D) a graph of APD

vs. gCa.

action potential wave has EADs without the non-excitable gap.
When the non-excitable gap is inserted, it promoted EADs
further if the gap size optimal (the gap size is 1.5mm in Figure 5).
Near the gap region, four EADs occurred whereas only three
EADs occurred in the other regions. Figure 5B is the control
model for comparison. If the inward current is too small, the
action potential is too short to provide enough source current
to initiate new action potential in the distal region even if the
gap size is optimal for the control model (Figure 5C). Figure 5D
is a graph of APD vs. conductance of the inward current (gCa),
summarizing our observation that EADs occur when the inward
current increases.

Reducing outward current also has the same effects
(Figures 6A–D). When the outward current became smaller (in
this case, we reduced INaK), more EADs occurred (Figure 6A).
Figure 6B is the control model for comparison. Then, when the
outward current became too large, the action potential wave
failed to propagate (Figure 6C). To summarize these results,
we plotted a graph of APD against conductance of the outward
current (gNaK; Figure 6D).

To understand the dynamical mechanisms of EADs due to the
non-excitable gap, we analyzed using a simplified mathematical
model of EADs (see Material and Methods). In this model, v is

the membrane potential of the cell in the proximal region near
the gap.We assessed how current from the distal region promotes
EAD generation. We assume the membrane potential of the cell
in the distal region (v2) remains in the plateau phase due to the
large delay (>200ms) of the propagation at the gap region. Since
x is the slowest variable in this system, we take it as a parameter.
Then, the 2-variable system can be written as

dv

dt
= F(v, f ) = −(gCad∞f (v− eCa) + gk · x · (v− ek))

+ ggap(v2 − v),

df

dt
= G(v, f ) =

f∞ − f

τf
,

where

d∞ =
1

1+ exp
(

−
v+ 32
6.24

) ,

f∞ =
1

1+ exp
(

v+ 21
8.6

) .
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A B

C D

FIGURE 6 | Effects of the outward current. Reducing outward current (INaK ) also has similar effects of increasing inward current. (A) When the outward current was

reduced (gNaK = 0.3 µA/µF), EADs occured without the non-excitable gap region. Near the gap region, more EADs were observed (2 EADs). (B) gNaK = 0.45 µA/µF.

Control. (C) gNaK = 0.6 µA/µF. Large outward current reduces APD. Since APD is shorter, the action potential in the proximal region cannot provide enough source

current to excite cells in the distal region. (D) APD vs. gNaK.

Thus, the matrix to compute the stability of the system is

M =

(

Fv Ff
Gv Gf

)

=

(

−gCad
′

∞
fv− gCad∞f − gkx+ ggap −gCad∞v

f
′

∞
/τf −1/τf

)

Figures 7A–C show the effects of the current from the distal
region. As the gap junction conductance is increased (from
ggap=0 to ggap=0.009 µA/µF), the attractor region (blue part in
Figure 7A) was extended and repeller (green part in Figure 7A)
became attractor (unstable focus → stable focus). We varied
the distal membrane potential from +30mV to −30mV
(Figures 7B,C). In all cases, the current from the distal region
promoted oscillatory attractors. We note that if the distal
membrane potential becomes lower than ∼−30mV, the current
from the distal region suppresses EADs. We also computed
basins of attraction (Figures 7D–F). In all cases, the basin of
attraction was increased as the gap junction conductance was
increased. However, as the distal membrane potential becomes
lower, larger conductance was required to extend the basin of
attraction (Figure 7E vs. Figure 7F). On the other hand, the

current from the distal region has little effect on fix points
(red dots in Figure 7) and EAD oscillations always occur near
−20mV.

When non-excitable cells are inserted in 2-dimensional tissue,

EADs caused by the non-excitable gap region can initiate
reentry, which has been associated with ventricular tachycardia.

Without non-excitable gap, the action potential wave propagates

smoothly. When non-excitable gap is inserted (Figure 1C),
EADs occur near this region. EADs prolong APD. Thus, if

cells in this region cannot recover by the time the next wave

arrives, the wave cannot propagate in this region. This large
dispersion of refractoriness and regional block of the wave

can cause reentry (Figure 8A, Supplemental Movie 1). If the

gap size is too small to cause EADs, although there is a
small delay of the propagation at the gap region, dispersion

of refractoriness is much smaller and rarely causes reentry

(Figure 8B, Supplemental Movie 2). If the gap size is too

large, any waves cannot propagate in this region and waves
go around this region (Figure 8C , Supplemental Movie 3).

These results demonstrate that non-excitability in tissue can
lead to large dispersion of refractoriness and may cause
arrhythmias.
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FIGURE 7 | EAD mechanisms. (A) The stability of the fats subsystem (v,f ). x is the parameter. Blue: stable focus. Green: unstable focus. Black: saddle. Red: stable

node. ggap values are 0, 0.0045, and 0.009 µA/µF. v2 is 0mV. (B) The same as (A), but v2 is +30mV. ggap values are 0, 0.003, and 0.006 µA/µF. (C) The same as

(A), but v2 is−30mV. ggap values are 0, 0.015, and 0.03 µA/µF. (D) Basin of attraction. ggap value was varied from 0 to 0.009 µA/µF. v2 is 0mV. Red dots indicate

fixed points. Blue and green lines are nuclines. (E) The same as (D), but v2 is +30mV. ggap value was varied from 0 to 0.009 µA/µF. (F) The same as (D), but v2 is

−30mV. ggap value was varied from 0 to 0.03 µA/µF.

DISCUSSION

Tissue heterogeneity has been thought to be one of the
contributing factors of arrhythmias [43–47]. In this study, we

investigated how non-excitable cells in excitable tissue promote
EADs and thus arrhythmias.

EADs can be caused by reactivation of the Ca2+ channels,
spontaneous Ca2+ releases from the SR, or both [10–15]. In

addition, recent studies have shown that reactivation of the
Na+ channels can also lead to EADs [15, 48]. In this study,

we showed the mechanism of Ca2+ channel-mediated EADs
due to heterogeneously distributed excitable and non-excitable
cells, and demonstrated reentrant arrhythmias in 2D tissue using
physiologically detailed computational models. It has been well-
studied how non-excitable cells in excitable tissue can lead to

reflected waves [23–29]. In these studies, the key to the reflected
waves was reactivation of the Na+ channels. In this study,
we showed the reflection occurs at the plateau voltage due to
reactivation of the Ca2+ channels. In our simulations, EADs did
not cause a retrograde wave since the amplitude of EADs was too
small but prolonged APDs.

The number of EADs is sensitive to the gap size (Figure 2).
The detailed analysis using a two-variable model has shown
that there are infinite patterns of reflected waves (1 reflected
wave, 2 reflected waves, 3 reflected waves . . . infinite reflected
waves) between normal propagation (no reflected waves) and
propagation failure when the gap size is varied [33]. In our study,
we did not observe these patterns even when the gap size is finely
tuned. This is probably because the memory effect in the model
interfered the patterns.
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FIGURE 8 | EADs due to the non-excitable gap region cause reentry. (A) The

optimal non-excitable gap region (1.2mm) cause EADs. These EADs block the

next action potential wave and cause reentry. The tissue size is 9 × 9 cm.

(Supplemental Movie 1; B) If the gap size is too small, EADs will not occur

although there is a delay at the gap region. (Supplemental Movie 2; C) If the

gap size is too large, the action potential wave cannot propagate and the wave

avoids this region (Supplemental Movie 3).

In tissue, large dispersion of refractoriness can initiate
reentry [49]. When non-excitable cells are inserted in 2D
tissue, dispersion of refractoriness can be observed without
EADs (Figure 8B, Supplemental Movie 2). However, the
dispersion is small in this case. When EADs occur, the
dispersion becomes large enough to initiate reentry (Figure 8A,
Supplemental Movie 1). The non-excitable gap also becomes
an anchor of the spiral waves (Supplemental Movie 1). But
no EADs were observed since the cycle of the rotation of
the spiral wave was too fast for EADs. If the gap size is too
large, the gap region blocks action potential waves (Figure 8C,
Supplemental Movie 3). It is known that obstacles in tissue
can lead to reentry [50, 51]. Thus, the large gap region can also
initiate reentry by different mechanisms.

It is known that tissue geometry is also an important
factor for reflected waves [32]. When an action potential wave
propagates from a narrow path to a wide path, the propagation
speed slows down due to the source-sink mismatch. This
delay can re-excite the cells in the narrow path and cause a
retrograde wave. Thus, propagation delay due to tissue geometry
may be able to initiate EADs. This possibility needs to be
investigated.

Reflected waves have been observed and investigated in
various systems such as cardiac tissue and neurons. The
cardiac subcellular Ca2+ system is also an excitable system.
Under normal conditions, Ca2+ release from the sarcoplasmic
reticulum (SR) forms a spark. However, when Ca2+ sparks
recruit new Ca2+ sparks in neighboring Ca2+ release units,
Ca2+ sparks propagate as a wave [52, 53]. Each Ca2+ release
unit contains a few to several hundred ryanodine receptors
[54–58] and the number of ryanodine receptors affects the
positive feedback process known as Ca2+-induced Ca2+ release
[58, 59]. In addition, the subcellular structure is very complex.
These subcellular heterogeneities may lead to reflection and form
complex patterns in Ca2+ waves.

In this paper, we showed only mathematical and
computational results. These results should be verified in
experiments. Reflected waves have been observed in many wet
experiments. We expect that we can use the same experimental
setup for EADs due to non-excitable cells. However, to observe
EADs, repolarization reserve needs to be reduced.

CONCLUSIONS

Cellular mechanisms of EADs have been widely studied. In
this study, we showed that tissue properties are also critical for
initiation and promotion of EADs. Non-excitable gap in tissue
can promote EADs and prolonged action potentials due to EADs
can cause conduction block and reentry of the action potential
wave.

The limitation of this study is that we considered only Ca2+

channel reactivation. Retrograde waves propagate when the Na+

channels are reactivated. If both cases are considered, focal and
reentrant arrhythmias can coexist and the dynamics will become
much more complex.

Ablation creates non-excitable tissue. The border
zone of myocardial infarction is also mixture of
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excitable and non-excitable cells. Our study implies that
EADs can be promoted in these regions due to tissue
heterogeneity. This study sheds light on the role of tissue
heterogeneity on EAD generation and initiation of reentrant
arrhythmias.
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Unlike most excitable cells, certain syncytial smooth muscle cells are known to exhibit

spontaneous action potentials of varying shapes and sizes. These differences in shape

are observed even in electrophysiological recordings obtained from a single cell. The

origin and physiological relevance of this phenomenon are currently unclear. The study

presented here aims to test the hypothesis that the syncytial nature of the detrusor

smooth muscle tissue contributes to the variations in the action potential profile by

influencing the superposition of the passive and active signals. Data extracted from

experimental recordings have been compared with those obtained through simulations.

The feature correlation studies on action potentials obtained from the experimental

recordings suggest the underlying presence of passive signals, called spontaneous

excitatory junction potentials (sEJPs). Through simulations, we are able to demonstrate

that the syncytial organization of the cells, and the variable superposition of the sEJPs

with the “native action potential”, contribute to the diversity in the action potential profiles

exhibited. It could also be inferred that the fraction of the propagated action potentials

is very low in the detrusor. It is proposed that objective measurements of spontaneous

action potential profiles can lead to a better understanding of bladder physiology and

pathology.

Keywords: urinary bladder, smooth muscle, detrusor, syncytium, action potential shape, feature correlation,

neuron model

1. INTRODUCTION

Excitable cells exhibit a variety of action potential (AP) shapes but, generally, individual cells
from the same tissue, or region of tissue, tend to display a common AP shape, characteristic
of that cell type. The smooth muscle layer of the urinary bladder wall (detrusor) contrasts in
this regard; it is found to exhibit APs of widely varying temporal profiles (Meng et al., 2008).
Remarkably, these variations in AP shapes are observed even in electrophysiological recordings
obtained from a single cell. The physiological basis for this diversity is currently not understood,
and calls for a deeper analysis, as it could pave the way toward a better understanding of bladder
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electrophysiology and its contribution to downstream events,
e.g., Ca2+ dynamics and contraction. Intuitively, there could
be only two possibilities for obtaining APs of different profiles:
(i) multiple AP generation mechanisms, i.e., differences in ion
channel compositions between cells, or (ii) a single AP generation
mechanism with variable modulation due to factors linked to
syncytial function, including innervation. A preliminary study
demonstrated the origin of different AP shapes from a single basic
underlying mechanism (Appukuttan et al., 2015a).

Generally, the focus of investigation when analyzing APs
principally lies in the frequency of spiking, and the characteristics
of the individual APs are often overlooked. Both are emergent
properties of the tissue depending upon a wide range of
parameters and mechanisms, and in the case of detrusor smooth
muscle (DSM), also involving the complex cellular environment.
Changes in the underlying factors could potentially result in
pathology such as the overactive bladder (Fry et al., 2002).
Though analysis of AP frequency could assist in identifying
abnormalities arising in pathology, we believe that the individual
AP features potentially offer greater insight into changes in any
of the underlying factors, such as ionic mechanisms and syncytial
interactions.

Prior studies have shown that the DSM cells are electrically
coupled to one another via low-resistance electrical pathways
formed by gap junctions, thereby resulting in a three-dimensional
electrical syncytium (Fry et al., 2004). This implies that the
electrical activity recorded from a particular cell in the syncytium
need not necessarily have been initiated in that cell, but may
have originated at any other cell within its electrical “reach”.
This also entails that the response of the cell is determined
not just by the biophysical properties of that particular cell,
but also by the properties and location of other cells in the
syncytium. Past studies have demonstrated that the excitability
of individually identical cells differ based on the size of the
syncytium, their location within it, and the extent of gap
junctional coupling between neighboring cells (Appukuttan et al.,
2017a). Further, the electrical syncytium itself can be partitioned
into sub-syncytia, representing smaller muscle bundles that are
internally well-coupled, whereas coupling between bundles is
comparatively poor, as reported for the detrusor (Bramich and
Brading, 1996) and colonic smooth muscle (Spencer et al.,
2002). The pattern of innervation further complicates the
biophysical setting. In the case of the detrusor, a single nerve
terminal could innervate multiple DSM cells and each DSM cell
could potentially receive inputs from multiple nerve terminals,
resulting in a complex many-to-many mapping between muscle
and nerve. These considerations make the interpretation of DSM
electrophysiological signals problematic.

In view of the above, a computational approach might
assist in unraveling how DSM action potential profiles are
determined.We employed a previously established passive model
of the detrusor, developed using the compartmental modeling
technique (Appukuttan et al., 2015b), and incorporated an
identical action potential generation mechanism in each DSM
cell in order to study the initiation, propagation, and modulation
of AP shapes in the detrusor. The detrusor has not been found to
follow any single AP template, and the DSM cells are known to

possess an array of nine or more active channels contributing to
their generation (Brading, 2006; Steers and Tuttle, 2009; Brading
and Brain, 2011; Petkov, 2011). Models for the detrusor specific
AP that satisfactorily emulate this ensemble of ion channels are
yet to be developed. The purpose of the present study has been to
obtain a better understanding of their syncytial nature and gather
insights into their role toward the diversity in AP shapes. It was
deemed appropriate to employ a “standard” AP shape for such an
investigation so as to delineate the contributions arising from the
syncytial organization of the cells. The classical Hodgkin-Huxley
(HH) model, being a well–understood AP model, was therefore
employed to explore this computationally.

The urinary bladder regulates both the storage and voiding
of urine. Localized contractions help the bladder maintain tone
during the storage phase as the bladder increases in volume with
the accumulation of urine (Drake et al., 2003; Andersson, 2010,
2011). Whereas, coordinated contractions along the bladder
wall, along with relaxation of the urethra, result in emptying
the bladder during the voiding phase. Experimental studies
in the past have suggested that spontaneous spiking of the
cells causes the localized contractions, while the coordinated
contractions are the concerted outcome of nerve-evoked APs
(Andersson, 2011). Overactive bladder is an example of bladder
pathology, more prevalent amongst the elderly population, which
severely debilitates the affected. It is characterized by a frequent
urge to urinate, with often an inability to control the urge,
thereby hampering lifestyle (Milsom et al., 2001; Chapple et al.,
2005). The etiology is often associated with detrusor overactivity
wherein the detrusor undergoes unsolicited contractions arising
from aberrant spiking. We believe that the undesirable spread
of originally localized contractions, via the propagation of
spontaneous APs owing to changes in the underlying syncytial
features, could play an important role under such pathlogical
conditions.

The detrusor is known to exhibit spontaneously occurring
action potentials (Meng et al., 2008). The spontaneity of the
action potentials is believed to have both a myogenic and
neurogenic origin. While non-smooth muscle pace-making cells,
such as Interstitial Cells (ICs), present in the urinary bladder
wall are reported to be responsible for myogenic APs (McCloskey
and Gurney, 2002; Hashitani et al., 2004; Kubota et al., 2006;
Shen et al., 2008), the spontaneous asynchronous release of
neurotransmitter packets from the nerve terminals causes the
neurogenic APs (Young et al., 2008). These monoquantal events
are termed as spontaneous excitatory junction potentials (sEJPs)
as they are not elicited by an AP on the presynaptic nerve
terminal. This is evidenced by the inability to abolish them
using TTX, a blocker of Na+ channels (Young et al., 2008).
This is in contrast to excitatory junction potentials (EJPs) which
involve the synchronous release of neurotransmitter packets
from the nerve terminals following presynaptic activation, and
are thereby affected by TTX. These underlying differences
translate to differences in the evoked postsynaptic potentials,
with the sEJPs reflecting very rapid spatial and temporal decays
in comparison to EJPs (Tomita, 1967; Appukuttan et al., 2015b).
It is pertinent to highlight that the above does not hold true for
sEJPs in the intestinal smooth muscle, which differ from other
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autonomic neuromuscular junctions via their sensitivity to TTX,
wider spatial spread and being produced from the synchronous
activation of a population of enteric motor neurons (Spencer
et al., 2001).

We have in the past proposed that the diversity in AP profiles
arises predominantly from varying levels of superposition of
a more or less stereotypical “native” AP with a second more
variable component. The latter being contributed by junction
potentials with a broad range of amplitudes and dynamics
(Padmakumar et al., 2012), as illustrated in Figure 1. A similar
observation was made earlier in skeletal muscles by Fatt and Katz
(1951). They have shown that the shape of an AP changes when
it propagates away from the site of initiation (see section 4),
with the foot of the action potential notably changing from
convex-upwards to concave-upwards. As smooth muscle cells
form electrical syncytia, it is probable that an AP generated at one
cell could assume different shapes as it propagates to other cells.
In the present work, we test this hypothesis by comparing results
obtained from experiments and simulations. Accordingly, the
focus of this study has been restricted to the subset of APs with a
neurogenic basis. It is pertinent to emphasize that the aim of the
work presented here is to demonstrate that syncytial interactions
can be an important factor for AP diversity, and that some
potential insights could be availed by analyzing the individual AP
profiles. We do not seek to dismiss other possible factors leading
to AP diversity, such as variations in ionic channel compositions
and/or other mechanisms. This study is particularly important
in view of the diversity in AP profiles observed even from
a single cell during a continuous recording, without external
interventions.

2. METHODS

2.1. Electrophysiological Recordings
Mice of the C57BL/6 strain, of either gender, weighing
18–30 g, were sacrificed by head concussion followed by cervical

dislocation. Efforts were undertaken to minimize the number
of animals used and their suffering. After removing the urinary
bladder, the connective tissue surrounding the bladder was
withdrawn, while the urothelium was left intact. The ventral
wall of the bladder was opened longitudinally from the neck
(posterior) to the top of the dome (anterior). Tissue strips,
containing a few bundles of smooth muscle, 3–4 mm long and 1–
2 mm wide, were cut. Strips were pinned out on a Sylgard-lined
plate at the bottom of a shallow chamber (volume, approximately
1 ml), which was mounted on the stage of an upright microscope.
Preparations were superfused with warmed (35◦C) physiological
saline solution (PSS) (composition, mM: NaCl, 120; KCl, 5.9;
MgCl2, 1.2; CaCl2 2.5; NaHCO3, 15.5; NaH2PO4, 1.2 and glucose,
11.5; gassed with 95% O2 and 5% CO2) at a constant flow rate
(100 ml/h), maintaining a pH of 7.2–7.3 (Hashitani and Brading,
2003)

Preparations, once pinned, were allowed to equilibrate for
a minimum of 30 min before initiating electrophysiological
recordings. Individual DSM cells inmuscle bundles were impaled
with glass capillary microelectrodes, filled with 0.5 M KCl (tip
resistance, 100–300 M�). Changes in membrane potential were
recorded using a high input impedance amplifier (Axoclamp-2B,
Axon Instruments, Inc., Sunnyvale, CA, USA), digitized using
PowerLab/4SP (ADInstruments, Chalgrove, UK) at either 1 or 4
kHz, and stored on computer for later analysis.

2.2. Model Development
A previously established three-dimensional passive model of
smooth muscle syncytium (Appukuttan et al., 2015b) was
adopted and extended for this study. Modeling was undertaken
employing the compartmental modeling technique on the
NEURON simulation environment (Carnevale and Hines,
2006). Development of the syncytial model primarily involved
the following steps: (i) development of a template model
for individual DSM cells, (ii) designing a gap junctional
coupling mechanism to electrically connect two cells, and

FIGURE 1 | An illustration of our hypothesis for the generation of APs. It is hypothesized that the convex-upward foot and the after-depolarization (ADP) are caused

by the presence of an underlying spontaneous excitatory junction potential (sEJP, green curve) which initiates the AP (black curve). The dashed line represents the

shape of the AP that would have been generated solely by the ion channel mechanisms if the underlying sEJP was absent. It can be observed that a larger underlying

sEJP (A) would result in lowered foot convexity with a larger ADP and reduced AHP, compared to that of the APs with smaller underlying sEJP (B). The passive and

active regions of the AP are indicated in (A).
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(iii) building the syncytial topology by creating multiple cells
using the template, positioning these in three-dimensional
space, and coupling adjacent cells by means of the gap
junction mechanism. Table S1 summarizes the important model
parameters. Individual detrusor smoothmuscle cells are fusiform
in shape, but were approximated to be cylindrical with a
long and narrow profile: 200 µm in length and 6 µm
in diameter (Fry et al., 1999; Appukuttan et al., 2015b).
The number of compartments (segments) per cell was kept
high (nseg = 51) to benefit from high spatial resolution
within each cell, leading to each segment being <4 µm.
Such a resolution permitted localized stimulation of individual
cells.

The original syncytial model was purely passive, with the
cells possessing no active ion channel mechanisms, and was
used to investigate passive electrical properties of the DSM
syncytium (Appukuttan et al., 2015b). As the present study
aims to explore the diversity in AP profiles in syncytium, we
augmented the syncytial model by endowing every DSM cell with
the HH set of channels so as to enable the generation of action
potentials. Adjacent cells were coupled by means of resistive
pathways representing gap junctions which allowed bidirectional
flow of current between the coupled cells. The magnitude and
direction of gap junctional current was determined by the
potential gradient between the coupled cells, and the extent of
coupling. This is illustrated in Figure S1A. The gap junctional
resistance, in the standard model, was kept as 30.6 M� (32.68
nS); but this has been varied in certain simulation settings
and described accordingly. The cells were connected to form
a cubic lattice arrangement of cells, thereby forming a three-
dimensional syncytium (see Figure S1B). Under such a topology,
each cell in the interior of the syncytium (i.e., non-peripheral)
is electrically coupled to six other adjacent cells, two along each
axis. Experimental findings have revealed functional syncytia to
contain up to 100 cells (Neuhaus et al., 2002). To approximate
this, the size of the syncytial model was set as 5-cube across
all simulation scenarios, unless otherwise specified. Cells were
stimulated by means of synaptic inputs, with the location of the
stimulus being varied across the simulations. Synaptic activity
was simulated by means of an AlphaSynapse in NEURON,
which produces a localized conductance change in themembrane
using an alpha function (Carnevale and Hines, 2006; Appukuttan
et al., 2015b). The reversal potential of the synapse was kept at
the default value of 0 mV. This injects inward current to the
stimulated cell, except when the membrane potential overshoots
0 mV during an AP. The time constant of synaptic input was
set to 10 ms, which is within the experimentally reported range
of 5–89 ms (Young et al., 2008). We chose a value closer
to the lower bounds in accordance with the shorter width
of HH APs, thereby ensuring that an sEJP would not overly
dominate the AP profile. Peak synaptic conductance, in the
standard model, was adjusted to the minimal supra-threshold
stimulus corresponding to the centroidal cell in the syncytium;
the centroidal cell being the least excitable owing to its location.
In certain simulation settings, the synaptic peak conductance
was varied, and these changes have been highlighted wherever
applicable.

2.3. Measurement of Correlation
Pearson’s correlation coefficient (r) was evaluated to test the
correlation between any two parameters of interest. In case of
experimental recordings, the r-value was calculated for individual
cells, and the confidence of the correlation trends are measured
using Student’s one sample t-test.

2.4. AP Features and Their Measurements
APs of a wide variety of shapes and sizes are discussed in
the present study. It is imperative to quantifiably describe
these AP profiles in order to distinguish and differentiate
between them. To accomplish this, we follow the methodology
adopted previously (Appukuttan et al., 2015a) of evaluating
the following five features for each AP shape, as illustrated in
Figure 2:

(i) Height: Maximum membrane depolarization (in mV)
measured from the resting membrane potential (RMP) to the
peak of the AP

(ii) Width (Full Width at Half Maximum): Time (in ms) measured
between the crossing of half the AP height across the rising
and falling phases of the AP

(iii) Convexity: Provides a quantitative measure of the AP foot
convexity; the foot of the AP being defined as the phase from
the initiation ofmembrane depolarization to the AP threshold.
The foot contributes in moving Vm from its resting level
toward the threshold

(iv) After-Hyperpolarization (AHP): Difference (in mV) measured
between the RMP and the first local minimum following the
AP peak

(v) After-Depolarization (ADP): Difference (in mV) measured
between the first local maximum following the AHP and the
RMP

In a previous study, we have demonstrated that an appropriate
technique to measure the AP foot convexity involves evaluation
of the area enclosed between a pre-defined line and the AP
foot (Appukuttan et al., 2017b). This technique is illustrated
in Figure 3. The measure thus obtained is denoted as CX,Y

indicating the measure of AP foot Convexity evaluated for
a depolarization of Y mV over a time frame of X ms,
where X and Y define the line. The values of X and Y for
this study were selected in accordance with the requirements
of this method (Appukuttan et al., 2017b). This approach
has been shown to be more applicable over other methods
such as evaluation of the radius of curvature along the AP
curve.

3. RESULTS

Electrophysiological recordings from DSM cells demonstrated
that important differences can be observed in the temporal
profile of the individual APs. As illustrated in Figure 4, these
variations include differences in their height, width, the shape
of the AP foot and extent of hyperpolarization, and after-
depolarization. The most common active signals observed in
the DSM can very broadly be classified into two categories,
as reported earlier (Meng et al., 2008; Hayase et al., 2009).
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The first type has a fast rising phase (“spike-type”) whereas
the second type has a much slower ramp-like depolarization
phase (“pacemaker-type”). For our study here, the action
potentials of the pace-maker type were ignored as these are
believed to originate from non-smooth muscle pace-making
cells, perhaps the Interstitial Cells (ICs) (McCloskey and
Gurney, 2002; Hashitani et al., 2004; Kubota et al., 2006;
Shen et al., 2008). Our focus here lies in spontaneous action
potentials of the spike-type—which is of neurogenic origin.
Padmakumar et al. (2018) identified neurogenic and myogenic
sAPs based on features evaluated from sAP profiles. For
pooled data, they estimated that around 83% of the sAPs
were of neurogenic origin. But the relative contributions from
neurogenic and myogenic origins could vary significantly for
individual cells.

FIGURE 2 | A schematic figure showing the key features of the action potential

profile which were used in the study. Adapted from Appukuttan et al. (2015a).

3.1. Analysis of Electrophysiological

Recordings
After having removed APs of the pacemaker type from the
analysis, recordings containing a minimum of 30 APs were
shortlisted. APs contaminated by the interference of other
independent APs or sEJPs were also removed from the study. This
resulted in a collection of 11 cells from 6 animals with a total of
712 APs recorded in them. The overlapped plots of the APs in two
of the cells are shown in Figure 5. Note the striking correlation of
the foot and tail features of the two highlighted APs. The AP with
a wider, more convex foot has a larger AHP and smaller ADP, and
vice versa.

According to our hypothesis for diversity in AP shapes, every
AP with a convex foot will have an underlying sEJP that elicited
it (Figure 1). This underlying sEJP, via superposition, accounts
for the observed profiles of the passive and active regions of the
corresponding AP. As seen in Figure 1, the effect of sEJP would
be present in the foot as well as in the tail. This implies that there
should be a correlation between the features of the foot and tail
of the AP.

The features, previously described in section 2.4, were
determined for each of the APs. Once the features were obtained,
the Pearson correlation coefficients between the features were
calculated. Correlations were deemed statistically significant if
the 99% confidence interval excluded zero. Strong correlations
were found to exist between: (i) Height andWidth (−0.63±0.29;
P < 0.01), (ii) Convexity and AHP (0.74 ± 0.08; P < 0.01), (iii)
Convexity and ADP (−0.63± 0.16; P < 0.01), and (iv) AHP and
ADP (−0.77 ± 0.14; P < 0.01). These correlations for all the 11
cells are shown in Table 1.

The Inter-Event Interval (IEI) histogram was computed
for the collection of APs from each of the cells. One such
example is shown in Figure 6. For all 11 cells tested, the
trend was not significantly different from a single exponential
function (Kolmogorov–Smirnov test with P > 0.05 for each

FIGURE 3 | Method adopted to quantify convexity of AP foot. The shaded area indicates the area between the AP curve and the straight line joining the two

pre-defined points. Area below the straight line is considered as negative area and that above, if present, as positive (absent in above cases). Here, the signal in

(A) has a greater value of convexity than that in (B).
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FIGURE 4 | Diversity in action potential shapes observed in detrusor smooth muscle. (A–G) action potentials recorded from a single detrusor smooth muscle cell. All

of these have convex-upward feet, indicating that they are of neurogenic origin. (H) An example of “pace-maker” type action potential, given for comparison. Note the

ramp-type foot and the lack of after-depolarization. These types of APs are believed to have a myogenic origin.

FIGURE 5 | Collection of all APs observed in two of the cells superimposed over one another. Examples of strongly contrasting shapes have been highlighted in each

case.

cell), signifying that the APs are independent, stochastic events.
The occurrence of any AP does not influence the occurrence or
non-occurrence of others APs.

3.2. Analysis of AP Diversity in Simulation

Studies
To analyze action potential shapes computationally using our
model, we (i) stimulated the centroid cell in our syncytium
and recorded the APs generated at each cell in the syncytium
for different sizes of syncytium, and (ii) stimulated each cell in
a 5-cube syncytium, one after another, and recorded the APs
recorded at specific locations within the syncytium. This was an
extension of the simulations undertaken previously (Appukuttan
et al., 2015a), with a requirement for more detailed analysis. It
was observed that APs of a variety of shapes and sizes were

produced in the model, with an evident gradation from one type
to another. Figure 7 illustrates a few of these AP profiles recorded
at different locations in the syncytium. The AP profiles were
analyzed by quantifying the five features discussed in section 2.4.
All five features were found to exhibit a notable spread across the
ensemble of AP profiles. The AP height varied by over 35 mV
(range: 68.2 to 105.4 mV) with APs recorded at the vertex cells
being the largest, and reduction in the height whenmoving closer
to the interior of the syncytium. The stimulated cells produced
the APs with smallest heights, but with largest widths, as seen
for cell A in Figure 7 (pink trace). Also, only these cells, and
to an extent their immediately neighboring cells, produced APs
with convex AP feet. The majority of the cells in the syncytium
exhibited a more “concave-upwards” rise to the AP peak, as
has been reported previously (Appukuttan et al., 2017b). This
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TABLE 1 | Correlations observed between the features measured from

experimentally recorded data for 11 cells.

Cell No. Height vs. Width C25,30 vs. AHP C25,30 vs. ADP AHP vs. ADP

1 −0.54 0.81 −0.88 −0.95

2 −0.04 0.74 −0.75 −0.91

3 −0.62 0.70 −0.76 −0.89

4 −0.90 0.78 −0.64 −0.64

5 −0.78 0.83 −0.69 −0.75

6 −0.79 0.74 −0.46 −0.73

7 −0.86 0.86 −0.59 −0.62

8 −0.72 0.66 −0.75 −0.82

9 −0.80 0.63 −0.39 −0.51

10 −0.73 0.81 −0.57 −0.80

11 −0.13 0.63 −0.44 −0.83

Mean −0.63 0.74 −0.63 −0.77

SD 0.29 0.08 0.16 0.14

The mean and standard deviation of the correlations are also shown.

FIGURE 6 | Inter-Event interval histogram for APs recorded from a single cell.

Red line shows the exponential fit to data (R2 = 0.99).

is seen for cell C in Figure 7 (green trace). The extent of after-
hyperpolarization (AHP) and after-depolarization (ADP) also
varied across the syncytium, depending on the syncytial location
of the cell in which the AP was recorded. The stimulated cells,
and its neighbors, produced APs with a lower level of AHP and
a higher ADP, while the trend was opposite for the more distant
cells.

From the above observations, it is discernible that the five
AP features evaluated here share strong correlations. Tables 2, 3
summarize the correlation coefficients between the AP features
under different settings. As expected from above, the AP height
shares a strong negative correlation (−0.83 to −0.94) with the
AP width. Similarly, a strong negative correlation (−0.95 to
−1.00) exists between the extent of AHP and ADP. However, AP

FIGURE 7 | Examples of variety in AP shapes observed in a 5-cube syncytium

when stimulated at the centroid cell. The cube illustrates the location from

where each recording is obtained. The APs have been aligned at the instant of

AP initiation.

TABLE 2 | Correlation between AP features from simulations for syncytia of

varying sizes, when stimulus is applied at the centroid cell and APs are recorded

at every cell.

Correlation Stimulated at centroid, Syncytium size:

3-Cube 5-Cube 7-Cube 15-Cube

Height vs. Width −0.94 −0.92 −0.93 −0.93

C25,10 vs. AHP −0.93 −0.88 −0.89 −0.76

C25,10 vs. ADP 0.96 0.91 0.90 0.85

AHP vs. ADP −0.99 −1.00 −1.00 −0.95

TABLE 3 | Correlation between AP features from simulations for a syncytium of

size 5-cube, when stimulus is applied successively at each cell and APs are

recorded at specific locations.

Correlation Stimulated at all cells, Recorded at:

Centroid Surface Edge Vertex

Height vs. Width −0.88 −0.94 −0.86 −0.83

C25,10 vs. AHP −0.88 −0.74 −0.69 −0.66

C25,10 vs. ADP 0.92 0.79 0.74 0.7

AHP vs. ADP −1.00 −1.00 −1.00 −1.00

convexity shares a strong negative correlation (−0.66 to −0.93)
with the extent of AHP, and a strong positive correlation (0.70 to
0.96) with the level of ADP.

It can be observed that the correlations obtained for Convexity
vs. AHP and Convexity vs. ADP, are contrary to those evaluated
from the experimental studies. Such a contradiction could stem
from the lack of propagated APs in the bundled detrusor and
the abundance of the same in the simulated undifferentiated
syncytium. This was tested using another simulation setting, in
which all the cells in the syncytium were stimulated successively
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TABLE 4 | Correlation between AP features from simulations for syncytia of

varying sizes, when stimulus is applied successively at each cell and APs are

recorded only from the stimulated cells.

Correlation Stimulated at all cells, Syncytium Size:

3-Cube 5-Cube 7-Cube 15-Cube

Height vs. Width −1.00 −0.98 −0.99 −0.99

C25,10 vs. AHP 0.81 0.73 0.67 0.65

C25,10 vs. ADP −0.95 −0.93 −0.94 −0.97

AHP vs. ADP −0.90 −0.83 −0.75 −0.71

and only the APs elicited at the stimulated cells were recorded.
This ensured that the propagated APs were eliminated from the
analysis. The correlation values obtained from these simulations
are tabulated in Table 4. It can be noted that the contradicting
feature correlations, i.e., Convexity vs. AHP and Convexity vs.
ADP, are now flipped, and match the correlation trends obtained
from the experimental APs.

The above simulations indicated that when an underlying sEJP
was present, the correlation of convexity and ADP was negative,
while that of convexity and AHP was positive. These trends were
flipped around in the case of propagated APs, which had no
underlying sEJPs. The variation in the three features—convexity,
AHP, and ADP—for different amplitudes of underlying sEJP are
shown in Figure 8. The red traces show data for APs elicited
at the centroid cell by a range of synaptic conductances. The
green traces show data for APs elicited at a vertex cell, and
subsequently propagated to the centroid cell in the presence of
an underlying sEJP of varying synaptic conductance levels. As the
correlation trends are opposite in these two cases, these can serve
as indicators for determining the nature of the APs origin.

The observation of the discrepancies between the features
of experimentally obtained and simulated APs indicate that
the model does not accurately reflect the true biophysical
environment. One aspect where the real detrusor syncytium
and the computational model employed here could differ is
the intensity of the gap junctional coupling between the cells.
In order to investigate the effect of variations in gap-junction
coupling on the correlation values between the AP features,
another set of simulations were conducted.

In one such study, the strength of gap junctional conductance,
Ggap, was varied in the range of 5–250 nS while maintaining
the homogeneity of the syncytium. This range is a subset of
the experimentally reported range of Ggap values. For each
conductance level, all the cells in the syncytium were sequentially
stimulated via synaptic input of sufficiently large intensity so as
to elicit an AP at every cell in the syncytium, for all values of
Ggap in the range. Thus, the stimulus intensity was maintained
constant throughout this set of simulations. For each value of
Ggap, the features of the APs observed at specific locations of the
syncytium were evaluated and their correlation coefficients were
determined. The plots of the correlation coefficients obtained for
each of the Ggap values are given in Figure 9. It can be observed
from the figure that the panels AHP vs. ADP and Height vs.
Width shows strong correlations throughout the range of Ggap

values whereas the panels involving convexity (CX,Y vs. AHP;
CX,Y vs. ADP) show significant variations in correlation values,
even displaying a reversal of the sign of correlation coefficient for
very low values of Ggap.

Another study involving a heterogeneous variation in the
gap junction coupling is described in the section S2 of
the supplementary document. A summary of all simulation
experiments conducted in this work is tabulated in Table 5.

4. DISCUSSION

In the current study we have restricted our focus to spontaneous
action potentials. The origin of these signals is still open to debate.
Previous studies have indicated that most of the APs observed
under resting conditions are driven by sEJPs (Young et al.,
2008). However, there are other studies which suggest amyogenic
origin for these signals (Hashitani and Brading, 2003). Our
understanding is that regular/periodic action potential firing is
likely to be myogenic in origin, perhaps generated by pacemaking
cells electrically coupled to the smooth muscle cells, whereas
asynchronous/stochastic action potential firing may be driven by
spatio-temporally random ATP release from autonomic nerve
terminals. Studies excluding the possibility of a neural basis for
these signals tested the effects of drugs such as tetrodotoxin and
atropine, and found that the signals were not inhibited (Hashitani
et al., 2001). Tetrodotoxin inhibits nerve AP-based, but not
spontaneous, neurotransmitter release and atropine blocks the
ACh receptors on the post-synaptic side. As the varicosities in
the detrusor co-transmit both ATP and ACh, it is possible that
the spontaneous release of neurotransmitters, evidenced by the
presence of sEJPs, is responsible for eliciting the spontaneous
action potentials.

Action potentials are commonly referred to as all-or-none
signals as they are found to propagate without any change in
amplitude or shape, setting them apart from graded potentials
such as junction potentials and electrotonic potentials. But this
does not always hold true, and fails under certain conditions.
It is reported that in long continuous axons or muscle fibers,
differences are observed in the AP profiles when recorded at
varying distances from the site of initiation (Fatt and Katz,
1951). They also demonstrated that with increase in the distance
from the site of stimulus (i.e., the end-plate), the height of the
AP increased and the AP foot progressively transformed from
being convex-upwards to concave-upwards. Also, at recordings
taken closer to the end-plate, a “hump” is seen following the
peak indicating the underlying end plate potential (EPP; skeletal
muscle equivalent of sEJP) due to the continued action of the
neurotransmitter.

The AP, though considered an active signal generated by the
membrane, has passive components as well. The part of the
AP starting from the instant at which the membrane voltage
reaches threshold, to the end of the repolarization phase is mostly
governed by the properties of the active ion channels present
in the cell membrane. However, the rest of the AP, namely
the foot and the end of the tail—shown by the shaded regions
in Figure 1A—are predominantly influenced by the passive
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FIGURE 8 | Variations in (A) convexity, (B) AHP, and (C) ADP with change in underlying sEJP. Red traces show data for APs elicited at the centroid cell by a range of

synaptic conductances. Green traces show data for APs propagated to the centroid cell in the presence of an underlying sEJP of varying synaptic conductances. The

maximum and minimum value of synaptic conductance for the green and red traces, respectively, corresponds to the minimum conductance required for eliciting an

AP at the centroid cell.

FIGURE 9 | The change in correlation coefficient between various parameters with respect to the gap junction coupling between the smooth muscle cells in the

syncytium. The intensity of suprathreshold stimulus was maintained constant across all simulations.

properties of the cell membrane. Our hypothesis predicts strong
correlations between the Convexity, AHP, and ADP of the APs.
From Figure 1, it can be observed that the taller the underlying
sEJP, the smaller the convexity. A tall sEJP would result in a
more depolarized AP tail as it has a more lasting influence. This
results in a positive correlation between convexity and AHP. The
ADP, according to the hypothesis, is created by the underlying
sEJP and would not be seen in the propagated APs. The ADP
is measured in the direction opposite to AHP. Hence when the
AP tail rises, the ADP increases and vice versa. So a negative
correlation is expected between the convexity and the ADP
and also between the AHP and ADP. The strong correlations
obtained between convexity, AHP, and ADP from experimental

recordings are in accordance with expectations. This strongly
supports the hypothesis that there is an sEJP underlying these
APs.

But in simulations using our computational model of the
smooth muscle syncytium, a strong negative correlation was
found between the convexity and AHP, and a strong positive
correlation between convexity and ADP. This is caused by the
fact that in the simulations, all the APs measured, except for
the one at the site of stimulus, were propagated APs. As these
have no underlying sEJP, the convexity would be low, with a
concave upwards AP foot, while the AHP would be maximum—
resulting in a negative correlation. In addition, these propagated
signals would not exhibit an ADP. Such propagated APs were
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not frequently observed in our experimental recordings. As
explained below and backed by experimental findings, this could
be attributed to the pattern of innervation and the size of
the syncytium containing the recorded cell. Thus, the nature
of correlations between the convexity and ADP/AHP is able
to provide an indication of the nature of the APs—whether
propagated, or originated at the recorded cell (or in close
proximity to it).

Our interpretation is that all the APs observed in the
experimental recordings are either locally generated within the
cell, by neurotransmitter release from a nearby varicosity, or
propagated to it from such a cell in very close vicinity. This release
of neurotransmitter would not be nerve-evoked, but arise from
the asynchronous release of neurotransmitter packets from the
nerve terminals. This random nature of occurrence of APs is
confirmed by the exponential trend of the Inter-Event Interval
(IEI) histogram. If such is the case, then to explain the wide
variety of shapes observed from the intracellular recordings, and
their high frequency of occurrence, it is expected that the cells
are densely innervated. Studies have shown that the detrusor
tissue is densely innervated (Gabella, 1995; Drake et al., 2000,
2003), with around 3 to 4 varicosities per cell (Daniel et al., 1983),
consistent with this idea. To verify the experimental correlation
trends computationally, we modified the simulation analysis to
only include APs recorded at the site of stimulus. Every cell in
the syncytium was successively stimulated and the APs elicited
at these cells were recorded. It was found that the correlation
trends for convexity with AHP and ADP now flipped to match
those observed experimentally, with the other correlation trends
remaining similar. For example, in a syncytium of size 5-cube,
convexity and AHP had a positive correlation of 0.73, while
convexity and ADP had a negative correlation of−0.93 (Table 4).

Also, passive signals decay quickly with distance, and thus they
cannot be recorded in distant cells. The sEJPs can be detected
only at cells in the immediate vicinity, as reported in our earlier
work (Appukuttan et al., 2015b). Therefore, in smaller sized
syncytia it is likely that the AP recorded at each cell would be
influenced by the passively propagated sEJP to varying extents,
whereas in larger syncytia the majority of the cells would be
unaffected by the sEJP and exhibit a purely propagated AP. This
is exemplified in Table 2 where we can see that the correlation of
convexity with AHP and ADP deteriorate with increasing size of
the simulated syncytium. In the case of the detrusor, experimental
studies suggest that the bundles are quite small in size (Hashitani
et al., 2001; Neuhaus et al., 2002). Hence it is expected that there
is a lack of propagated APs, characterized by their low convexity
and high AHP, in the experimental recordings. Correspondingly,
in pathology characterized by stronger coupling (Mills et al.,
2000) and thus greater electrical reach, there is a likelihood to
observe a greater proportion of APs with concave-upwards foot,
analogous to propagated APs.

A strong negative correlation exists between the AP height
and width. This is also observed in the simulation studies, with
the APs having smaller height recorded closer to the site of
stimulation. Several factors may contribute to this trend. The
site of initiation has to depolarize a larger volume, as every
other cell connected to it is at rest, and hence undergoes rapid

TABLE 5 | Summary of the various simulation scenarios employed.

Table 2 Varied parameter: Size of the syncytium

Stimulated at: Centroidal cell

Recorded from: All cells

Data analysis: Collated by syncytial size

Number of sims: 4; one per syncytial size

Table 3 Varied parameter: Recording site

Stimulated at: Each cell; one at a time

Recorded from: Specific locations

Data analysis: Collated by location

Number of sims: 125; one per stimulated cell

Table 4 Varied parameter: Recording site, Size of the syncytium

Stimulated at: Each cell; one at a time

Recorded from: Stimulated cell

Data analysis: Collated by syncytial size

Number of sims: 3870; one per stimulated cell per

syncytial size

Figure 9 Varied parameter: Strength of gap junctional coupling

Stimulated at: Each cell; one at a time

Recorded from: Specific locations

Data analysis: Collated by location per coupling

strength

Number of sims: 30750: one per stimulated cell per

coupling strength

Table S1 Varied parameter: Number of coupled cells

Stimulated at: Each cell; one at a time

Recorded from: Stimulated cell

Data analysis: Collated by configuration of coupled

cells

Number of sims: 750; one per simulated cell per

coupling configuration

charge dissipation, resulting in a slower rate of depolarization
and a much reduced AP height. This may be further accentuated
by the fact that an increased latency in attaining its threshold
will result in the inactivation and activation of a higher fraction
of Na+/Ca2+ and K+ channels, respectively. In addition, the
synaptic conductance at the stimulated cell acts as a shunting
pathway, resulting in a lowered input resistance and thereby
reduced membrane potential (Fatt and Katz, 1951).

With the help of above inferences, it is now potentially
feasible to characterize the cell environment by evaluating the
sAP profile. For example, large amplitudes suggest that the cell
is located near the periphery of the DSM bundle, whereas smaller
amplitudes are indicators of being located near the center and
being well connected with the neighboring cells. Presence of
ADP along with foot convexity would indicate that the cell
receives neurotransmitter input from a nearby varicosity. On
the contrary, if the sAP does not exhibit foot convexity and
ADP, it implies that the cell exhibits a propagating sAP, which
in turn reveals that the cell is part of a larger bundle and
being well-coupled to the neighboring cells. From the width of
the stimulus evoked sAP, the gap junction connectivity can be
estimated. Cells well-coupled to neighboring cells would exhibit
sAPs having a larger width, and vice versa. The above are
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preliminary interpretations, and would need to be further refined
following enhancements to the model as proposed ahead.

The simulation studies involving modification of gap
junctional conductance of the computational model helped
reinforce our reasoning for the observed discrepancy between
the correlation trends observed in the experimental and
simulation studies. This is elaborated further in section S3 of the
supplementary document. One of the objectives of exploring a
wide range of values is to explore the effect of variations in such
parameters over a wide range of biologically plausible settings
in order to study the effects on bladder functioning both in
physiology and disease. The range of gap junctional coupling
values explored here cover a broad range of experimentally
reported values. Christ et al. (2003) have reported a range
between 5 and 20 nS for the rat bladder. Other studies have
reported intercellular coupling strengths in biological tissues to
be as high as 250 ns (Maurer and Weingart, 1987; Lin and
Veenstra, 2004), and even higher (Kameyama, 1983). It may be
inferred from the simulations that the non-monotonic variation
of the convexity parameter with respect to the amplitude of
the underlying sEJP causes a reversal of correlation values. This
indicates that the “convexity” parameter, on its own, may not be
an accurate indicator for the underlying sEJP amplitude.

4.1. Limitations of the Study
While the results presented here reinforce our hypothesis for the
AP generation mechanism, and is capable of explaining several of
the observedAP shapes (Figure 4), however, we believe that other
factors and mechanisms could also be involved in influencing
AP shapes, such as the pacemaker type AP (Figure 4H) and APs
with a prolonged after-hyperpolarization phase (Figure 4E). It
is therefore relevant to reiterate here that we do not seek to
dismiss other possible factors as contributing to AP diversity,
such as variations in ionic channel compositions and/or other
mechanisms.

As stated earlier, we have opted for a simpler and well-
understood AP model in the current study. The HH model
employed here basically considers two ionic species (Na+ and
K+) and defines a voltage-gated channel mechanism for each. It
should be borne in mind that the detrusor smooth muscle system
involves several ionic species with a wide ensemble of ionic
channels. These include both voltage-gated (e.g., L-type Ca2+, T-
type Ca2+) as well as ligand-gated (e.g., Ca2+ activated BK, IK,
SK) channels. Moreover, the intracellular Ca2+ dynamics holds
potential to exert a consequential influence over the functioning
of these channels. Thus, there potentially exists an even larger
scope for diversity in the AP profiles observed in the detrusor.

4.2. Extensions to the Model
With our current level of understanding, we believe it is
inconceivable to predict the relative contributions of the various
factors toward the observed AP profile. We believe it is necessary
to reduce these down into simpler intelligible units and identify
their individual contributions, before attempting to explore the
interplay between the various mechanisms. The present study
sheds light on one such mechanism, namely the syncytial nature
of the detrusor smooth muscle.

The ensemble of ion channels and associated calcium
dynamics appropriate to reproduce the detrusor AP is another
such mechanism. Such a model has not yet been satisfactorily
developed. In the past, a model for uterine smoothmuscle AP has
been reported (Tong et al., 2011) by demonstrating its electrical
response in a single cell environment. Some of us are currently
involved in developing a similar detrusor specific AP model,
which when embedded in the current syncytial model would
render it biologically more accurate.

The current model could be further elaborated by endowing
it with spatial heterogeneity. Such heterogeneity is known
to exist physiologically, as evidenced by the presence of
smooth muscle bundles (Brading, 1997), and varying degrees
of electrical connectivity between cells (Bramich and Brading,
1996). Certain outcomes of heterogeneous coupling within
the syncytium have been presented in the supplementary
document (section S2). The existence of cell bundles that
differ in size constitutes another source of heterogeneity.
Variations of such nature can be relatively easily accommodated
in the syncytial model employed here, with the capacity
to closely evaluate the outcomes, but this requires awaiting
the availability of relevant experimental data indicating such
heterogeneity.

4.3. Conclusion
Our study has demonstrated that a homogeneous syncytium
consisting of smooth muscle cells with identical membrane
properties can produce APs of varying shapes. The variations
in AP features obtained through simulations were similar in
nature to those observed in the experimental APs. Closer
examination of the differences between the experimental
and simulated AP features and their correlations provided
insight into the biophysical environment of the detrusor
syncytium, such as the size of the bundles, the density
of innervation, and the strength of gap junction coupling
between cells. It could also be inferred that the fraction
of the propagated action potentials is very low in the
detrusor.

The work presented here provides a different approach to
exploring the properties of a smooth muscle syncytium. In view
of the diversity in AP profiles observed even from a single cell, the
findings reported here hold much significance. Since it has now
been demonstrated that the variations in AP shapes observed in
the syncytium are influenced by syncytial properties, one can
analyze the intracellular recordings from individual cells and
potentially infer the syncytial environment in which that cell is
located. By classifying the cells based on the variations displayed
in their electrical activities, an understanding of different aspects
of the syncytium could be obtained. Further, this mapping
between the AP shape and the syncytial properties could also
be used to delineate the syncytial changes during disease and
provide a better understanding of pathological conditions.
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Purpose: Rotor stability and meandering are key mechanisms determining and

sustaining cardiac fibrillation, with important implications for anti-arrhythmic drug

development. However, little is yet known on how rotor dynamics are modulated by

variability in cellular electrophysiology, particularly on kinetic properties of ion channel

recovery.

Methods: We propose a novel emulation approach, based on Gaussian process

regression augmented with machine learning, for data enrichment, automatic detection,

classification, and analysis of re-entrant biomarkers in cardiac tissue. More than 5,000

monodomain simulations of long-lasting arrhythmic episodes with Fenton-Karma ionic

dynamics, further enriched by emulation to 80 million electrophysiological scenarios,

were conducted to investigate the role of variability in ion channel densities and kinetics

in modulating rotor-driven arrhythmic behavior.

Results: Our methods predicted the class of excitation behavior with classification

accuracy up to 96%, and emulation effectively predicted frequency, stability, and

spatial biomarkers of functional re-entry. We demonstrate that the excitation wavelength

interpretation of re-entrant behavior hides critical information about rotor persistence

and devolution into fibrillation. In particular, whereas action potential duration directly

modulates rotor frequency and meandering, critical windows of excitability are identified

as the main determinants of breakup. Further novel electrophysiological insights of

particular relevance for ventricular arrhythmias arise from our multivariate analysis,

including the role of incomplete activation of slow inward currents in mediating tissue

rate-dependence and dispersion of repolarization, and the emergence of slow recovery

of excitability as a significant promoter of this mechanism of dispersion and increased

arrhythmic risk.

Conclusions: Our results mechanistically explain pro-arrhythmic effects of class Ic

anti-arrhythmics in the ventricles despite their established role in the pharmacological

management of atrial fibrillation. This is mediated by their slow recovery of excitability

mode of action, promoting incomplete activation of slow inward currents and therefore

77

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01114
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01114&domain=pdf&date_stamp=2018-08-28
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:b.lawson@qut.edu.au
https://doi.org/10.3389/fphys.2018.01114
https://www.frontiersin.org/articles/10.3389/fphys.2018.01114/full
http://loop.frontiersin.org/people/515341/overview
http://loop.frontiersin.org/people/596214/overview
http://loop.frontiersin.org/people/596220/overview
http://loop.frontiersin.org/people/596163/overview
http://loop.frontiersin.org/people/348888/overview


Lawson et al. Emulation of Functional Re-entry Dynamics

increased dispersion of repolarization, given the larger influence of these currents in

modulating the action potential in the ventricles compared to the atria. These results

exemplify the potential of emulation techniques in elucidating novel mechanisms of

arrhythmia and further application to cardiac electrophysiology.

Keywords: rotors, arrhythmias (cardiac), fibrillation, excitability, refractoriness, emulation, machine learning,

Gaussian process regression

1. INTRODUCTION

Self-sustaining patterns of aberrant excitation in the heart, re-

entries, are the cause of dangerously accelerated heartrates

(tachycardia) and complete losses of synchronized action
(fibrillation) (Wit and Cranefield, 1978). Re-entrant circuits

often form around unexcitable anatomical features such as
veins, with the properties of these obstacles then primarily
defining the resulting excitation behavior (Gough et al., 1985;
Cherry et al., 2007). However, so-called “functional” re-entries
can also develop and sustain themselves in unimpeded tissue
(Moe and Abildskov, 1959; Allessie et al., 1977), manifesting
as spiral waves that are clinically known as rotors (Pandit
and Jalife, 2013). The behavior of functional re-entries depends
on the electrophysiological properties of the cells composing
cardiac tissue, which vary considerably among population
members (Sims et al., 2008) and in different regions of the
heart (Feng et al., 1998). Understanding the impact of this
variability on the generation and persistence of arrhythmic
events, and the corresponding implications for success or failure
of anti-arrhythmic treatments, is a critical challenge in cardiac
electrophysiology (Sobie, 2009; Sarkar et al., 2012; Muszkiewicz
et al., 2016; Passini et al., 2017).

Arrhythmic risk is commonly analyzed in terms of “excitation
wavelength” (Smeets et al., 1986; Rensma et al., 1988; Tse and
Yan, 2017), the product of conduction velocity (CV) and the
effective refractory period (ERP) or action potential duration
(APD). This determines the minimum length for which re-
entrant circuits will sustain electrical activity, and thus increasing
wavelength discourages re-entry formation and maintenance
(Wiener and Rosenblueth, 1946), and explains the mechanism
of action for many anti-arrhythmic drug therapies (Wang et al.,
1992). However, anti-arrhythmic drugs that increase wavelength
by prolonging APD/ERPmay also be pro-arrhythmic (Wolbrette,
2003; Elming et al., 2004), and class I anti-arrhythmic agents
that decrease CV (and hence wavelength) are successfully used
for rhythm control of atrial fibrillation (Nattel et al., 2003;
Kneller et al., 2005). This points to a subtle and still poorly
understood interplay between refractoriness and excitability in
modulating re-entry. Of particular interest is post-repolarization
refractoriness, given confounding evidence that suggests it as
both an anti-arrhythmic and pro-arrhythmic mechanism (Kanki
et al., 1998; Kirchhof et al., 1998; Muñoz et al., 2007; Coronel
et al., 2012; Franz et al., 2014; Cabo, 2015).

Given the expense of experimentation in the heart, and
the lack of direct and independent control over properties
of interest (such as cell-level electrophysiological properties),

in silico modeling serves as a critical tool for the understanding
of arrhythmia (Zhou et al., 2018). Parameters encoding
experimentally elusive properties can be systematically varied
by the modeler, and large-scale interrogation of cardiac model
output for different values of their parameters has enabled studies
of variability (Sobie, 2009; Sarkar et al., 2012; Pathmanathan et al.,
2015), parameter inference (Wallman et al., 2014; Johnstone
et al., 2016), and the construction of in silico populations (Britton
et al., 2013; Muszkiewicz et al., 2016; Passini et al., 2017;
Lawson et al., 2018). With regard to the complex spatiotemporal
dynamics of cardiac rotors, however, previous research has
mostly focused on the variation of only one or two parameters
at once (Efimov et al., 1995; Fenton and Karma, 1998; Qu et al.,
2000; Pandit et al., 2005; Bartocci et al., 2011; Sánchez et al., 2012).
Only a small number of studies have considered simultaneous
variation in larger numbers of model parameters (Lee et al.,
2016; Liberos et al., 2016), but mainly vary ionic current densities
and not the kinetic properties of channel recovery. Quantitative
understanding of how cell-level electrophysiological properties
modulate the complex interactions between refractoriness and
excitability when mediated by tissue coupling therefore remains
severely lacking.

Emulation is a powerful technique for greatly reducing the
computational cost associated with exploration of parameter
variability in complex models that are time-intensive to simulate,
with a history in climate modeling (Holden and Edwards,
2010) and engineering design (Simpson et al., 2001). In cardiac
electrophysiology, while emulators have proved successful in
the prediction of electrophysiological properties for single cells
(Chang et al., 2015; Johnstone et al., 2016), and for the forward
ECG problem (Geneser et al., 2008; Swenson et al., 2011;
Johnston et al., 2017), their capabilities remain largely unexplored
for the spatiotemporal dynamics of excitation. Only an initial
study by the authors did emulate excitation waves in tissue, but
in the context of predicting the shapes of steady state wavefronts
(Lawson et al., 2017), with no consideration of the far more
complex excitation patterns that define arrhythmia.

Here we present an emulation technique, specifically designed
for models of cardiac electrophysiology, that significantly
reduces the computational cost of exploring variability across
many parameters and streamlines the analysis process. We
demonstrate and validate our technique by emulating a suite
of spatial biomarkers directly related to arrhythmic risk,
and apply it to investigate the generation and persistence of
rotor-derived tachycardic and fibrillatory excitation behaviors
when all important factors modulating tissue excitability
and refractoriness are allowed to simultaneously vary. New
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electrophysiological insights associated with the cardiac
excitation wavelength and of particular relevance for ventricular
arrhythmias emerge, including the identification of increased
risk of wave breakup in response to slower recovery of fast
inward channels, and differential effects of decreasing slow
inward current or increasing slow outward current despite
both changes increasing ERP. Our method extends naturally to
biophysically detailed models and realistic heart anatomies.

2. METHODS

2.1. Simulated Arrhythmias
Our study focuses on the impacts of variability in cell-level
properties on the induction and persistence of re-entry in cardiac
tissue. To avoid the impacts of other conflating factors we work
in one of the simplest settings for simulating tachycardia and
fibrillation. This is a two-dimensional layer of isotropic tissue,
allowing for use of the monodomain formulation (Sundnes et al.,
2006),

∂u

∂t
= D∇2u+ Iion + Istim. (1)

Here the membrane potential (expressed in terms of
dimensionless variable u) spreads by tissue coupling with
associated constant D, kinetics of cellular excitation and
repolarization are encoded in the Iion term, and the external
supply of stimulus is represented by Istim. For the description of
excitation and repolarization kinetics we selected the reduced
Fenton–Karma model (Fenton and Karma, 1998) (hereafter FK
model), given its relative speed of simulation and the rich set
of re-entrant behaviors that it is capable of replicating (Fenton
and Karma, 1998; Fenton et al., 2002). Importantly, the model
has been shown to capture the essential tissue-scale properties
governing re-entry, being capable of reproducing the re-entrant
patterns of more physiologically detailed models for human

cardiocytes in the atria (Lombardo et al., 2016), and with slight
modifications to also fit action potential (AP) morphology, in
the ventricles (Bueno-Orovio et al., 2008). As a reference, we
select the parameters for the FK model (Table 1) that correspond
to modified Beeler–Reuter dynamics (Beeler and Reuter, 1977;
Courtemanche and Winfree, 1991), given the body of work
examining the dynamics of waves of excitation in this model
(Efimov et al., 1995; Courtemanche, 1996). Full model equations
are provided in the Supplementary Material.

Simulation software was written in MATLAB, using a high-
order numerical stencil as described in Bueno-Orovio et al.
(2006). Briefly, a second-order Strang splitting (Strang, 1968)
is used in time to separate the reaction and diffusion terms
of the monodomain equation. The diffusive component is then
integrated exactly in Fourier space using a cosine expansion to
impose the required non-flux boundary conditions, whereas the
reaction term is solved by the modified Euler method (with
gating variables integrated by the Rush–Larsen scheme Rush
and Larsen, 1978), therefore preserving global second-order time
accuracy. All simulations were conducted on two-dimensional
tissue layers of 15× 15 cm in size to allow sufficient space for
rotor accommodation, with a diffusion coefficient ofD = 1 cm2/s,
constant time step of 0.1 ms, and a space discretization of 512
points in each space direction (∼0.03 cm), allowed by the high-
order convergence of Fourier spectral methods. The accuracy of
the numerical simulations was verified in one-dimensional cables
by halving the time and space integration steps. This resulted in
<1% change in conduction velocity, even in the low excitability
limit.

Re-entries are generated in our simulations via an S1–S2
stimulation protocol, with the S2 stimulus timed to produce
directional block that quickly develops into a phase singularity
(rotor tip). The first stimulus acts at one edge of the domain,
generating a planar wave. Then, when the waveback of this wave
has reached the middle of the domain (as judged by crossing u =

TABLE 1 | The variable parameters, which control the important properties of cell depolarization and repolarization in response to electrical stimulus.

Parameter Base value Variability Description

gfi 3 mS/cm2
±30% Maximum conductance of fast inward (activation) current

gso 0.02 mS/cm2
±20% Maximum conductance of slow outward (repolarization) current for activated cell

gso(rest) 0.12 mS/cm2
±30% Maximum conductance of slow outward (repolarization) current for inactivated cell

gsi 0.0223 mS/cm2
±20% Maximum conductance of slow inward (plateau) current

τ
+
v 3.33 ms ±50% Time constant for inactivation of fast inward current

τ
−

v1 1,000 ms ±50% Initial time constant for reactivation of fast inward current (cell below activation threshold)

τ
−

v2 19.6 ms ±50% Secondary time constant for reactivation of fast inward current (cell below activation threshold)

τ
+
w 667 ms ±50% Time constant for inactivation of slow inward current

τ
−
w 11 ms ±50% Time constant for reactivation of slow inward current

uc 0.13 – Membrane potential (dimensionless) above which the cell is considered activated

usi 0.85 – Membrane potential (dimensionless) at which the slow inward current activates

uv 0.055 – Membrane potential (dimensionless) at which the rate of fast inward channel recovery switches

k 10 – Steepness of the smoothed step function used in the expression for the slow inward current

Base values for all parameters are those specified by Fenton and Karma for recreating modified Beeler-Reuter dynamics with their model (Fenton and Karma, 1998), except gfi = 3

mS/cm2, chosen in order to better explore the variety of rotor trajectories. Grayed out parameters were not varied in the final exploration of the full model, with variation in τ
−

w removed

after preliminary analysis suggested it was of low importance.
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ucrit at this location), a second stimulus is provided to one whole
quadrant on the wave’s back side. With appropriate selection of
ucrit (here ucrit = 0.05), excitation can propagate in one cardinal
direction and not the other, resulting in the generation of a rotor
tip in the center of the domain, at the corner of the second
stimulated region (Figure 1A). We use the algorithm described
by Fenton and Karma (1998) to track the position of rotor tips.
Each simulation was run for 8,000 ms after the initial induction
of a rotor, but terminated prematurely if all rotor activity died
out.

2.2. Data Generation and Biomarker Choice
Training and test data used to construct and validate emulators
were generated by running the model for different combinations
of parameter values across the space of interest, with the design

of these computational experiments selected via Latin hypercube
sampling (Mckay et al., 1979) by MATLAB’s lhsdesign function.
This provides data that is better distributed across the parameter
space, improving classifier and emulator performance.

We created two sets of in silico data in order to explore
the impacts of variability in electrophysiological parameters.
Firstly, we introduced variability into two model parameters, gfi
and gso, which are the two current conductances most directly
controlling CV and APD, respectively. Such data allowed us to
explicitly visualize and thus better demonstrate the effectiveness
of our classification and emulation techniques. The second
set of in silico data allows eight model parameters to vary,
including the main current conductances and time constants
regulating excitability and repolarization in the model (see
Table 1). The reduced dataset was composed of 2,000 simulated

FIGURE 1 | Behavior of rotor-driven re-entries varies significantly in response to electrophysiological variability. (A) Induction of a rotor via cross field S1–S2 stimulus,

as demonstrated by the membrane potential field 5 and 125 ms after the S2 stimulus. The S1 stimulus creates a planar wave traveling to the right, and the square

region stimulated by the S2 stimulus overlaps with the waveback of the initial wave, creating directional block. While excitation propagates upwards, tissue to the right

eventually recovers and allows for excitation to curl into this region, forming the beginning of a rotor-driven re-entry. (B) Example rotor trajectories and the

corresponding excitation field for different choices of some model parameters. All snapshots are taken at 3,000 ms (except for the helix, which terminates early). The

last 1,200 ms of rotor tip movement in each case is visualized in red. Values for the spatial biomarkers maximum distance (MD), dominant frequency (DF), and

organization indices (OI) are also presented.
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electrophysiological scenarios, and the full dataset involved
3,500 due to the higher-dimensional parameter space requiring
additional data to be resolved to sufficient accuracy. Variability
was accounted as uniform distributions on model parameters
(Britton et al., 2013), with ranges of variability as detailed in
Table 1. These are consistent with the larger ranges of variability
considered in previous studies (Britton et al., 2013; Liberos et al.,
2016; Muszkiewicz et al., 2016; Zhou et al., 2016), given the
normalized magnitude of the transmembrane potential in the FK
model.

Depending on the specific choice of values for these
electrophysiological properties, simulations exhibited a range of
behaviors. When tissue excitability is too weak, excitation does
not propagate and no rotor can form. A rotor also fails to
form if cell refractoriness is too long, as the tissue stimulated
by the S2 stimulus remains unexcitable and blocks the rotation
of the rotor tip, forcing it to collide with the domain boundary
and be eliminated. Rotors that are successfully induced can
either persist, wander the domain until they are eliminated by
a boundary, or devolve into wave breakup corresponding to
fibrillation. Figure 1B shows the main rotor behaviors that could
be observed. We represented the output of each simulation as
a classification of the overall behavior observed, and a set of
“spatial biomarkers” that serve as quantitative measures of rotor
dynamics and the associated arrhythmic risk. As detailed by
Table 2, model output was classified into the four categories
suggested above, namely a lack of rotor formation, formation
of a stable rotor, formation of a transient rotor, or fibrillatory
dynamics. This classification becomes important for constructing
predictive emulators, as we explain below.

For biomarkers, we measured steady-state CV and APD prior
to the establishment of re-entry, given that they are key properties
in determining the cardiac wavelength. These were measured
using the S1 stimulus, and so refer to the CV and APD of planar
waves in the tissue. We term these the “tissue-level” biomarkers,
given that they can be experimentally measured at this scale.
For stable rotors, we recorded the greatest distance between any
two points on the rotor’s trajectory (after it had been given a
chance to stabilize), and the organization index derived from the
main peak in power spectrum (OI1), as measures of the critical
size of tissue substrate required to support such a rotor, and the
complexity of its trajectory, respectively. Additionally, we created
several virtual probes throughout the domain at regular intervals,
that measured the time course of the membrane potential at
their location. The power spectrum of each of these signals was
averaged, and then used to calculate the standard organization
index using the main four peaks in power spectrum (OI4), as well
as the dominant frequency (DF). These provide a measure of the
level of chaos present in the rotor dynamics, and the effective rate
of induced tachycardia, respectively. Each of these biomarkers,
along with more detail regarding their calculation, is provided
in Table 3. The values of these biomarkers for different types of
rotor behavior are also included in Figure 1B.

2.3. Gaussian Process Emulation
For emulation, we make use of Gaussian process (GP) regression,
as introduced for the emulation of computer models by Sacks

et al. (1989). GP regression creates an approximation to the
model’s response surface for each of the spatial biomarkers, by
making use of the generated training data. A good reference for
this approach is Rasmussen and Williams (2006). Separate GPs
are used for each of the biomarkers, with these GPs characterized
by a function µ(θ) that defines the mean of the process (in the
absence of data) at any point in the parameter space, θ , and a
covariance function, k(θ , θ ′) that defines the covariance between
any two points in the parameter space, θ and θ

′. For the basic
forms of these functions, we select for the mean function a linear
trend, and for the covariance function theMatern-5/2 covariance,

k(θ , θ ′) = σ 2

(

1+
√

5r +
5r2

3

)

exp
(

−

√

5r
)

+ σ 2
n δθ ,θ ′ ,

r =

√

√

√

√

D
∑

i=1

(θi − θ ′i )
2

l2i
. (2)

This function simply dictates that GP predictions at two sets
of parameter values θ and θ

′ become more correlated as the
two points in parameter space become closer, but with this
measure of “closeness” defined such that each dimension in
the parameter space can contribute differently (encoded by the
choice of li’s). The values of these li’s are determined during the
training process, and thus the method automatically determines
the relative importance of each variable in θ toward the output
being emulated (known as automatic relevance determination).
Here σ controls the overall amount of variance (and covariance)
of the process, and σn the noise in the data (with the Kronecker
delta used to ensure it contributes to variance at any point, but
not covariance). In the case of emulation, the data is output from
a deterministic computer simulation and so technically σn = 0,
but its inclusion can regularize the process and we here do not
assume σn = 0.

Given a set of values for the hyperparameters l = (l1, l2, ..., lD),
σ and σn, the likelihood of generating the training data
with the corresponding GP may be analytically calculated
(Rasmussen and Williams, 2006). Thus, we may choose these
hyperparameters, along with those specifying the mean function,
by maximizing this likelihood using MATLAB’s built-in function
fitrgp. Importantly, maximization of this likelihood naturally
corresponds to optimizing a balance between data fit and model
complexity, discouraging over-fitting (Rasmussen and Williams,
2006).

Once the GP’s hyperparameters have been determined,
predictions can then be made using simple matrix-matrix
and matrix-vector products, if the inverse of the covariance
matrix (covariances between all training points) is stored during
the training process. Emulator predictions are thus extremely
rapid, and the optimization problem involved with training the
emulator can be greatly accelerated by the use of derivative
information, which can be calculated at very little additional
computational cost (Rasmussen and Williams, 2006). The
primary cost remains running the simulator in order to generate
the initial training data, but this is easily performed in parallel.
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TABLE 2 | The four classifications used to separate different model behaviors, and the conditions used to automatically classify simulation output into each.

Name Classification conditions Interpretation

No rotor No rotor forms, or fails to complete at least one rotation, as judged

by detecting APs at probes close to each corner of the domain

Tissue excitability is too weak to propagate signals, or APD is too

long for a rotor to rotate after S2 stimulus

Stable rotor Rotor activity persists for full simulation time and conditions for

Fibrillation are not met

Persistent rotor-driven tachycardia

Transient rotor Rotor activity ceases before simulation end, and conditions for

Fibrillation are not met

Transient rotor-driven tachycardia that self-terminates

Fibrillation At least five individual rotor tips (phase singularities) that each exist

for at least 50 ms form during simulation

Wave breakup that produces a transient or persistent episode of

fibrillation

Five phase singularities are required to confidently identify wave breakup, as interactions with the initial condition can occasionally produce multiple rotors even when electrophysiological

dynamics do not support wave breakup. The last two classifications are combined in much of the work into a single classification, labeled “Chaotic.”

TABLE 3 | The biomarkers used to characterize simulation behavior, and their interpretations with regard to arrhythmias.

Biomarker name Measurement Interpretation

Conduction velocity Time taken for S1 pulse to cross two markers Affects inherent rotation rate, wavelength

Action potential duration Time taken for tissue stimulated by the S1 pulse to return to ucrit after

depolarisation

Affects availability of excitable tissue, wavelength

Maximum distance Maximum distance between any two points on the rotor tip’s trajectory Critical size required for rotor persistence

Dominant frequency Location of largest peak in the power spectrum of the signal recorded by

virtual probes

Severity of resultant tachycardia

Organization index 1 Proportional contribution of the largest peak in the power spectrum of a

single rotor’s trajectory to the total power contained in that spectrum

Complexity of a stable rotor’s trajectory

Organization index 4 Proportional contribution of the four largest peaks in the power spectrum

recorded by virtual probes, to the total power contained in that spectrum

Regularity of rotor circulation

2.4. Emulator Partitioning
GP regression assumes a smooth response of each output to
changes in the parameters. Predictions thus suffer when there are
critical values of the parameters that cause a sudden change in
any of the outputs. Our simulations of rotor dynamics certainly
exhibit this property, due to sharp transitions, for example,
from simulations that generate a single rotor to simulations
that fail to propagate, and from single persistent rotors to wave
breakup. It thus becomes necessary to divide the parameter
space into separate regions that can then each be emulated by
their own Gaussian process. Some previous approaches to this
problem in the literature have allowed the boundaries between
regions to also be determined during the training process, by
defining their locations either using regression trees (Gramacy
and Lee, 2008) or Voronoi tesselations (Kim et al., 2005) and
then exploring this augmented space via Bayesian sampling
techniques. The power of these approaches in detecting where
boundaries should be located, without any specification from
the user about model behavior (unsupervised learning), comes
at the cost of a much longer training process and the risk of
determining incorrect boundary locations. In our case, we classify
model outputs according to a compact number of general rotor
behaviors (Table 2), and hence can take a supervised learning
approach. Supervised learning has been used previously in the
context of spiral waves in cardiac tissue, but for the separate
problem of detecting rotors from image data (Grosu et al., 2009).

With the training data classified into the different behaviors
in Table 2, multi-class classification techniques can then be

used to predict which category of behavior any given set
of parameter values is expected to produce. As long as the
regions that correspond to the different behaviors can be
well-separated, this leads to distinct regions that can each
be assigned their own GP emulator. For a classification
model, we use a set of support vector machines (SVM)
(Cortes and Vapnik, 1995) that each individually make binary
classification predictions, but together form an ensemble that
performs multi-class classification. Gaussian kernels (radial basis
functions) are used, with hyperparameters selected to optimize
performance under five-fold cross validation by MATLAB’s
fitcecoc. The “coding design” used to perform multi-class
classification is also selected as part of this optimization
process, between either one-against-one or one-against-all (see
Hsu and Lin, 2002 for a comparison of these and other
designs).

2.5. Calculation of Mean Effects
In using our emulator to explore the dynamics of the full model,
we calculate the mean effect of each of its parameters upon our
spatial biomarkers, a type of global sensitivity analysis (Oakley
and O’Hagan, 2004; Chang et al., 2015). These are calculated by
averaging over the effects of variability in all other parameters,
providing a sense of how a single given parameter affects the
output in question among a variable population. Denoting our
partitioned emulator Y and using Monte Carlo integration to
perform this averaging, the mean effect of a variable θi on a given
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model output y is given by

y(θi) ≈
1

N

N
∑

j=1

Y(λj, θi). (3)

Here each λj is a random realization of all other parameters in θ ,
selected according to their distributions. For the model outputs
that can take on null values, we choose to calculate the average
over only those sampled points where the emulator predicts
non-null values.

We again use LHS to improve the overall coverage over the
parameter space in calculating these expectations, and choose
a large N = 100, 000 to ensure good accuracy in integrating
over the effects of variability in the other parameters. With eight
variables and 100 points used to represent the functions defined
in Equation (3), in total we perform 80 million emulated runs
of the two-dimensional FK model. The necessity of emulation in
performing such analyses for cardiac electrophysiological models
is clear.

3. RESULTS

3.1. Important Features of Rotor-Driven
Re-entry Are Not Explained by CV and APD
Our generated in silico data allows us to rigorously explore
how well the effects of electrophysiological variability on rotor
inducibility and maintenance are captured by the tissue-level
biomarkers that can be more readily measured, the steady-
state values of CV and APD. The large extent of variability
in model parameters resulted in a corresponding amount of

variation in CV and APD, with a good spread across the space of
these biomarkers, as illustrated in Figure 2. Points in this figure
are color-coded according to the type of re-entrant behavior
observed in each simulation, revealing a few distinct regions of
the biomarker space where behavior is consistent.

Especially predictable are the cases where no re-entry could
be induced, suggesting that APD and CV are generally sufficient
in themselves for describing the inducibility of re-entry. This
includes both the case where CV is very low and excitation fails
to properly propagate, and the case where APD is too high and
thus the critical length is too long for the spiral wave’s tip to
successfully rotate before colliding with the simulation boundary.
A faster CV decreases the critical APD value beyond which rotors
fail to form, because the wavetip travels further while waiting
for tissue to recover its excitability. This agrees well with the
known importance of wavelength in defining the critical length of
re-entrant paths (Wiener and Rosenblueth, 1946; Rensma et al.,
1988).

On the other hand, there are large regions of the biomarker
space where similar values for the biomarkers result in wholly
different re-entrant behaviors, highlighting the importance of
finer-scale ionic effects in governing which rotors are likely to
persist, annihilate themselves, or exhibit breakup into fibrillation.
Transient rotors arise most frequently when conduction and
repolarization are both fast, and when APD values are moderate,
slow conduction promotes fibrillation while fast conduction
promotes stable rotors.

On the whole, these tissue-level biomarkers inform well the
critical length required for re-entry establishment, but only
poorly the type of re-entrant behavior will result in the case of
a spiral wave. Variability in the cell properties themselves, ion

FIGURE 2 | The tissue-level biomarkers CV and APD fail to predict rotor-driven re-entry behavior. The classes of model behavior observed for different values of the

tissue-level biomarkers, CV, and APD, with variability in all major model parameters. Classes are assigned according to Table 2, but with the “No Rotor” classification

further separated into failure to propagate excitation and early termination (almost always due to APD being too long to successfully induce a rotor with the S1–S2

stimulus) in order to make the visualization more informative. There are regions of the biomarker space where behavior is largely predictable, but on the whole, the

class of behavior cannot be predicted from these biomarkers alone and clearly depends on further electrophysiological factors. This is best demonstrated by regions

like the one shown in the inset.
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channel conductances and time constants, must be considered
directly in order to properly understand how this variability
manifests in different re-entrant behaviors and the severity of
the arrhythmias that result. Furthermore, these findings highlight
the importance of looking beyond excitation wavelength when
evaluating the anti- or pro-arrhythmic properties of drug
treatments.

3.2. Partitioned Emulation of Spatial
Biomarkers Captures the Complex
Dependence of Re-entrant Behavior on
Ionic Properties
3.2.1. Classifier and Emulator Predictions
In the case where only two parameters are varied, forward
simulation provides enough information about the effects of

variability to validate our classification and emulation techniques.
This additionally allows for emulator predictions to be visualized,
and thus to confirm that our selected spatial biomarkers
appropriately capture the important features of rotor-driven re-
entry.

Figure 3A shows how the automatically-detected class of rotor
behavior changes in response to differences in the excitability
of tissue (via gfi), and the rate of repolarization (via gso). Well-
defined regions of the parameter space that correspond to the
different behaviors can be clearly observed, but no boundaries
can be drawn to separate the different classes in the top
right of the parameter space. This issue is largely addressed
by combining the “fibrillatory” and “transient rotor” classes
together into a single “chaotic” rotor class, after which SVM
classification successfully identifies the different regions and
attains an accuracy of 96% on the data not used for training. The

FIGURE 3 | The class of re-entrant behavior exhibits complex dependence on ionic properties, but is well predicted by SVM classification. (A) Training and test data

after classification using the rules in Table 2. Distinct parameter regimes that correspond to the different behaviors can be observed, but with small numbers of data

points, predominantly in the fibrillatory region, that disrupt clean separations of the parameter space. (B) Combination of rotors that annihilate themselves with those

that exhibit wave breakup into a single “chaotic” classification allows high-accuracy prediction of rotor behavior by an SVM classifier model. Also displayed are

schematic diagrams indicating the different types of rotor path that can be generated in various regions throughout the parameter space.
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classifier model is thus appropriate for use in defining boundaries
for partitioned emulation.

Despite very complex dependencies of the spatial biomarkers
upon the values of these two channel densities, our partitioned
emulation approach is able to very successfully capture the
response surfaces implied by the data (Figure 4), allowing
prediction of these important re-entrant properties at any point
in the parameter space. The accuracy of these predictions is
confirmed by comparing the data points not used in training
against the emulated surface at those points, with the greatest
majority of points falling very close to the line of equality
(Figure S1). Importantly, the use of our partitioned emulation
technique proves to significantly improve accuracy as compared
to a traditional GP emulation approach using only a single
emulator.

Training of the set of partitioned emulators required
less than seven minutes, but the cost of generating the
2,000 simulations for use as training and test data required
more than 2,000 h of computational time (albeit spread
across multiple cores on our high performance computing
platform). The time required for the emulator to generate
predicted biomarker values at a set of 2,000 additional points
randomly sampled across the parameter space was 0.23 s,
indicating a speedup of eight orders of magnitude when
considering serial implementation. Even making good use of
supercomputer architecture, the speedup was about six orders
of magnitude, indicating the power of emulation for studies of
variability in cardiac electrophysiology models. These immense
savings offered by the emulator allow further simulations
to be generated almost immediately, enabling analyses such
as the one that follows for a larger number of variable
parameters.

Given the cost of generating the initial data used to construct
our partitioned emulators, a natural question is how classifier
and emulator performance depend upon the amount of training
data used. In terms of accurately predicting the classes of
the data reserved for testing, the strong performance of the
SVM classifier remained even when using much less data for
training (Figure S2). However the more data that is used,
the better the precise locations of the boundaries between
classes can be determined. Emulator performance depended
strongly on the performance of the classifier, and 600 pieces
of training data produced emulators almost as accurate as
those trained with 1,800 pieces of data. It should be noted,
however, that when a larger number of parameters is varied,
a greater amount of training data will likely be required
to successfully resolve classification boundaries and response
surfaces.

3.2.2. Capture of Electrophysiological Dynamics
The emulated surfaces for the biomarkers defining excitation
wavelength, CV, and APD, demonstrate intuitive responses,
to an extent, to variability in the two considered current
densities (Figure 4). CV depends especially on the velocity
of the AP upstroke, and so is especially sensitive to the
conductance of the fast inward current (gfi) and only very
slightly impacted by the conductance of the slow outward

current (gso). APD depends strongly on the strength of
the slow outward current, but importantly only above some
critical level of fast inward current density. This effect arises
because only sufficiently strong excitations are able to drive the
AP upstroke beyond the activation threshold of the model’s
equivalent of the Ca2+ current. “Incomplete” excitations that
fail to significantly activate this current result in very short
APs, the duration of which are not strongly affected by
either gfi or gso.

As the conductance of the fast inward current is increased,
a shift of rotor trajectories from circular to epicycloidal, then
hypocycloidal paths is well established (Efimov et al., 1995;
Fenton and Karma, 1998). We observe this same behavior (see
example trajectories in Figures 1B, 3B), with such information
encoded in the maximum distance and OI1 biomarkers.
Specifically, the tightening of circular trajectories results in a
decrease in core size until trajectories become epicycloidal,
at which point sizes start increasing again, peaking for the
case of traveling helices that collide with the boundary before
paths become hypocycloidal. OI1 has a maximal value for the
circular paths, decreased for epicycloidal and hypocycloidal
trajectories, with severely reduced values for traveling helices
and the high-excitability cases where trajectories meander much
more.

The frequency of re-entry, controlled by the angular velocity
of a spiral wave’s core, depends on both the availability of
excitable tissue and the speed at which re-entry can propagate
into this tissue. Thus tachycardic severity increases in response
to an increase in either of gfi and gso. However, the nature
of this increase depends on the type of rotor-driven re-entry,
with circular rotor cores very sensitive to tissue excitability
while rotors with hypocycloidal or meandering trajectories are
barely affected. The final biomarker, OI4, successfully identifies
what we term rotor “stability,” consistently taking on higher
values when a rotor remains fixed in a single general location,
as opposed to meandering or devolving into fibrillation. This
biomarker thus serves as an indicator for the risk of wave
breakup.

Several interesting observations can be made from the initial
data presented up to this point. Figure 3 shows that rotor
annihilation by antagonizing the outward current invariably
involves first crossing through the chaotic regime. This suggests
that if such treatments fail to sufficiently increase the critical
length, and hence destroy a re-entry completely, they may
instead trigger fibrillation, an effect we explore further in the
analyses that follow. The sharp increase in maximum distance
and decrease in OI1 at the boundary between the stable and
chaotic regions also suggests that rotor meander in general is
an indicator for increased susceptibility to wave breakup. Lastly,
we observe that for all biomarkers (less marked perhaps for
CV) the dependence on either of the two parameters depends
strongly upon the value chosen for the other. Thus we must
consider variability in all properties of interest at once, in order
to ensure that the conclusions drawn are not significantly biased
by the specific set of base parameter values chosen. This is
one of the advantages we achieve in the following section via
emulation.
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FIGURE 4 | Partitioned emulation successfully captures the complex dependencies of important descriptors of re-entry on the electrophysiological substrate. The

response surfaces predicted by the partitioned emulator for each biomarker are shown, along with the training data (red) used in their construction. Null values for

biomarkers are denoted by a value of −1. Performance can be judged by considering the unseen test data (white), which demonstrate great agreement with the

surfaces that indicate the emulator’s predictions. This is achieved despite the complex and non-monotonic nature of the dependence of these biomarkers on the two

varied parameters.
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3.3. Classification and Emulation Identify
Key Ionic Effects Underlying Functional
Re-entry
3.3.1. Partitioned Emulation Is an Important Tool for

Understanding Variability in Cardiac

Electrophysiology Models
The previous section demonstrated the importance of allowing
different electrophysiological properties to vary simultaneously,
in order to properly understand how the effects of variation
in these different properties (including the effects of drug
treatments) together determine re-entrant behavior. However,
when our full set of electrophysiological properties are all allowed
to vary, we lose the ability to use forward simulation to properly
explore the parameter space due to its high dimensionality.
Here the SVM classifier model and associated emulators become
invaluable tools, to enrich the data and to make the calculation
of the main effects of each parameter possible, thus allowing
us to quantify how each individual ionic property contributes
to the type of arrhythmia that develops, as well as its relative
severity. We select the majority of the in silico data (3,200 out
of 3,500 points) to be used for training the classifier model and
emulator, in order to attain the best performance possible when
the emulator is then used outside of the dataset to calculate the
main effects of the parameters.

Although the predictions of the emulators and classifier model
they depend upon cannot be simply visualized when these many
parameters are varied, the test data not involved in the training
process can be used to evaluate their performance. The increased
dimensionality makes both the classification and emulation
problems significantly more difficult, but the SVM classifier still
achieves an accuracy of 81%. Emulation performance is also
diminished as compared to the lower-dimensional problem, but
remains good enough that the emulator is suitable for the efficient
and automatic extraction of hidden data trends (Figure S3). Use
of our partitioning technique resulted in more than a fivefold
decrease in rootmean square error, as compared to traditional GP
emulation. Importantly, the differences incurred by emulation
are not strongly biased, with no consistent under-estimation
or over-estimation. The strong performance of the classifier
and emulator on the two-parameter problem suggests that the
reduction in performance for the eight parameter problem is
simply due to the increased amount of training data required to
fully resolve such complex dynamics across a high-dimensional
space, and thus may be improved simply by further additional
runs of the simulator.

3.3.2. Slower Recovery of Fast Inward Channels Can

Increase Arrhythmic Risk
Using our emulators to rapidly evaluate Equation (3), we quantify
using mean effects how the different parameters controlling
excitability and its recovery impact upon the important features
of our simulated re-entries. We re-iterate that these insights
are not the same as would be obtained by simply varying each
individual parameter in turn, but instead represent the overall
effects of the parameters upon variability in the others. This
improves the generalizability of the conclusions we draw in the

face of both physiological variability and uncertainty in the most
appropriate base values of the parameters in a model.

Figure 5 shows how the spatial biomarkers we use to quantify
re-entry properties depend on the parameters controlling tissue
excitability. Targeting the current density of the fast inward
channels (gfi) largely impacts CV bymodulating upstroke velocity
and AP amplitude, as well as regulating APD owing to the effect
discussed previously where only sufficiently strong excitations
are able to fully activate the slow inward current (Fenton
and Karma, 1998). An increased fast inward channel density
therefore increases the excitation wavelength by simultaneously
augmenting APD and CV. However, the dependence of the
maximum distance traveled by a rotor on this property is quite
complex, where the multiple peaks in this biomarker correspond
to shifts through different types of rotor trajectories (circles into
epicycloids into helices into hypocycloids, as also observed in the
two-parameter case), here further complicated by the variability
in other cell properties. Increased channel density also tends
to increase the complexity of the rotor trajectory (lower OI1),
as the faster propagation causes the rotor to attempt to rotate
more quickly (increased DF), promoting tip-wake interactions.
The risk of breakup (lower OI4) is however reduced, as in these
situations the rotor tip makes longer linear runs along lines of
conduction block. Note, however, that both the complexity of re-
entry and the risk of breakup are reduced (higher OI1 and OI4,
respectively) for decreasing values of gfi, in spite of this implying
a reduction of the excitation wavelength. This corresponds newly
to situations of weak excitability, where the slow inward current
can never activate and the APD rate-dependence is significantly
lost, preventing repolarization heterogeneities that can lead to
wave breakup.

The discussion above additionally applies to fast inward
current inactivation (τ+v ), given its concomitant role in
modulating upstroke velocity and AP amplitude. However, a
slower inactivation of the fast inward current (larger τ+v ) results
in a more marked decrease of the maximum distance traveled by
a rotor, in spite of yielding an equivalent increase of the excitation
wavelength and DF. This increases the chances of wavefront-
waveback interactions, further increasing the complexity of the
rotor trajectories (lower OI1), and risk of breakup (lower OI4).

Increasing the ERP by slowing the recovery of the fast inward
channels (larger τ

−

v2) makes it harder for rotors to rotate, with re-
entrant paths occupying more space and triggering the tissue at
a slower rate in this case. This is captured by the mean effects
of τ

−

v2 for maximum distance and dominant frequency, and is
achieved in the absence of any changes on either steady-state CV
or APD. However, the organization indices show less expected
responses to variability in this parameter. The complexity of rotor
trajectories (OI1) show no significant dependence on recovery of
excitability. More remarkably, the risk of breakup (lower OI4)
actually increases in this case, as the slower recovery of excitability
lengthens the timing window in which the fast inward channels
are only partially recovered andweak excitations can be triggered.
These weak excitations fail to completely activate the slow inward
current, creating large APD discrepancies across the tissue
and thus an increased repolarization heterogeneity and hence
fibrillation. Importantly, this result challenges the hypothesis that
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FIGURE 5 | Sustained re-entries respond more consistently to the recovery of tissue excitability than to fast inward current amplitude, but slowed recovery incurs an

increased risk of wave breakup. Main effects of the parameters controlling tissue excitability and its recovery. Excitability strongly controls the shape of wavetip

trajectories (OI1) and rotor stability (OI4), but has less consistent effect on the critical amount of tissue for sustained re-entry (maximum distance) and re-entrant

frequency. On the other hand, by modulating ERP, recovery of fast inward channels does predictably control core size and frequency in sustained re-entries, but

notably, slower recovery (increased ERP) is linked to an increased risk of wave breakup.

increased ERP may be protective in all cases against fibrillation
by increasing the excitation wavelength (Smeets et al., 1986; Lee
et al., 2013).

3.3.3. APD Modulation of Cardiac Wavelength

Directly Controls Key Re-entry Properties, but Not

Risk of Breakup
Just as in the previous section, we use the mean effects to
quantitatively explore the impacts of variability in the parameters
controlling repolarization on our set of spatial biomarkers, with
the results visualized in Figure 6. Variability in any of the cell
properties governing repolarization has essentially no effect on
CV, whilst APD is strongly affected by the conductances of the
two primary currents active during repolarization (gso and gsi).
Notably, the inactivation of the slow inward current (τ+w ) has
a not insignificant effect on APD (slower inactivation of the
slow inward current prolongs the AP), but this parameter proves
less important in controlling any of the considered re-entry
biomarkers.

Variability in the primary repolarization current modulates
APD and by extension ERP, determining the availability
of excitable tissue for a spiral wave’s tip as it rotates. A
weaker repolarization (smaller gso) increases APD, resulting in
longer critical lengths and slower re-entrant DF. Variability in
repolarization exerts stronger control and with more monotonic
trends over these biomarkers as compared with excitability.
ERP then modulates the overall size and angular velocity of
these trajectories, which for reduced repolarization (smaller gso)
translates into a smaller complexity of rotor trajectories

(increased OI1) and reduced risk of fibrillatory and other
chaotic behaviors (increased OI4), nicely fulfilling the excitation
wavelength hypothesis.

The effects described above are largely mirrored by the
slow inward current, corresponding to its role in opposing
repolarization. An increased current density (larger gsi) prolongs
the AP plateau and therefore APD/ERP, increasing the critical
size and decreasing the DF of re-entry and exerting a more
dominant effect on the shape of rotor trajectories (increased
OI1) compared to the repolarization currents. However, when
the conductance of the slow outward current is increased, a
sharp decrease in rotor stability is observed (reduced OI4),
followed by an approximately level trend, which contradicts the
excitation wavelength hypothesis given the increased ERP. The
de-stabilizing effect of increased conductance of the slow inward
current can be explained by the increased rate-dependence of
the tissue, exacerbating spatial dispersion of repolarization that
may arise and thus promoting wave breakup. In the context of
rotor stability, this control over rate dependence is seen here to be
more important than the current’s control over APD, explaining
some of the failure in using APD and CV to predict the class of
re-entrant behavior that has been previously discussed.

3.3.4. Critical Windows of Excitability Determine Risk

of Breakup
Our main effect analysis implicates the AP upstroke and the
strength of the slow inward current as key factors controlling the
likelihood that a rotor-driven re-entry devolves into fibrillation,
along with an increased risk associated with slow recovery
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FIGURE 6 | Slow inward current exhibits important effects on re-entrant behavior beyond its control of APD. Main effects of the parameters controlling tissue

repolarization. The conductances of the two currents that control APD are seen to strongly affect the critical size and frequency of rotor-driven re-entry, according to

their modulation of ERP. However, the strengths of both of these currents exhibit a similar effect on rotor stability despite their opposing influences on APD/ERP,

highlighting the importance of subtler restitution effects controlling the risk of breakup. The slow inward current also emerges as an important controller of the

complexity of wavetip trajectory in the case of stable spiral waves.

of excitability. Using the classifier model, we now explore
precisely how these cell properties together determine when
such chaotic dynamics arise. Visualizations are presented in the
form of two-dimensional maps (non-specified parameters held
to base values), although our classifier automatically takes the
simultaneous variability in all parameters into account.

Figure 7 shows how changes in excitability, as modulated by
the conductance of the fast inward current, affects the balance of
slow inward and outward currents in determining rotor stability.
As implied by our former analysis of the main effects of gfi,
when excitation is too weak, all formed rotors remain stable as
the slow inward current is not fully activated, diminishing the
rate-dependence of the tissue. As the density of the fast inward
current increases, the region of chaotic re-entrant behaviors
determined by the balance between the slow inward and outward
currents (which together primarily determine APD except when
excitability is too weak) shifts significantly. This confirms that
APD/ERP does not serve as a suitable predictor for the risk of
fibrillation, and given the complex dependency on excitability
we see here and in the main effects (Figure 5), neither does the
cardiac wavelength as the product of CV and ERP. On the other
hand, regardless of the strength of fast inward current, increased
slow inward current is seen here to always carry a greater risk of
wave breakup (provided APD is not so long that a rotor fails to
be induced). This points to the importance of Ca2+ antagonism
as a potential anti-arrhythmic mechanism (Merillat et al., 1990).

We next further explore our observation that slower recovery
of excitability corresponds to decreased re-entrant stability,
despite increasing ERP. Figure 8 visualizes the effects of different
time constants of fast inward channel recovery (τ−v2) on how

the stability of re-entry is modulated by the two factors
previously identified as critical determinants of fibrillatory
behavior (conductances of the fast inward and slow inward
currents). These parameter maps further support the results
of the previous section, namely that increased slow inward
current increases risk of fibrillation and that there exists a critical
window of fast inward current density for initiation of wave
breakup. The effect of delaying the recovery of excitability is
clearly seen in shifting the high end of this critical window to
higher values of gfi. The stable re-entries that are affected by
this are rotors with cores making long runs followed by rapid
rotations (Figure 3), characteristic of human ventricular rotor
dynamics (Bueno-Orovio et al., 2008). Finally, we note that when
fast inward current inactivation (τ+v ) is varied instead of gfi
(as the additional main determinant of tissue excitability), the
resulting classification maps display all of the same key behaviors
(Figure S4). This strongly suggests that the existence of critical
windows of excitability is not only limited to the density of the
fast inward current (as corroborated by the mean effect analysis
of CV and OI4 presented in Figure 5), with delayed fast inward
inactivation as an additional pro-arrhythmic mechanism of risk
of wave breakup.

4. DISCUSSION

In this work, we provide new mechanistic insights on
the important interplay between cardiac refractoriness and
arrhythmic risk, by identifying that both a slower recovery of
fast inward channels or an increase of slow outward currents
can promote chaotic rotor dynamics and wave breakup. This
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FIGURE 7 | Variability in excitability critically determines the balance of slow current conductances that produces chaotic re-entrant behaviors. Parameter maps as

predicted by the classifier model. As tissue excitability (as controlled by the conductance of the fast inward current) increases, the balance of inward and outward

currents that triggers chaotic re-entry behaviors shifts, highlighting its importance in interpreting APD in terms of fibrillation risk. Increased slow inward current is here

consistently associated with an increased risk of wave breakup.

is in spite of increased ERP in each case, with arrhythmic risk
mediated by an enlarged dispersion of repolarization associated
with rate dependence. Our insights were only made possible by
the development of a novel approach to constructing partitioned
emulators synergistically coupled to cardiac electrophysiological
simulations. This allowed not only data enrichment, but the
automatic detection, classification, and analysis of different
re-entrant behaviors, and quantitative determination of how
the different electrophysiological properties modulating tissue
excitability and refractoriness control the behavior of rotor-
driven arrhythmias.

Steady-state properties of the tissue, APD, and CV, emerged
as good predictors only for the critical amount of tissue required
to sustain a rotor upon induction, but unable to identify chaotic
regimes or susceptibility to wave breakup. The slope of the APD
restitution curve, which quantifies the adaptation of APD to
the pacing rate, has been well studied as a potential means of
predicting rotor break-up (Nolasco and Dahlen, 1968; Karma,
1994; Qu et al., 2000; Nash et al., 2006), appealing because it can
also be readily measured experimentally. However, flattening of
this slope has been proposed as both an anti-arrhythmic target

(Qu et al., 1999; Garfinkel et al., 2000) and a potentially pro-
arrhythmic property (Franz, 2003), and a steep slope provides
no guarantee of fibrillatory activity (Cherry and Fenton, 2004).
Furthermore, recent studies have also demonstrated that APD
restitution slope is primarily determined by steady-state APD
(Bányász et al., 2009; Bárándi et al., 2010), and that normalizing
the restitution curve as percentual changes of steady-state APD
abolishes the differences in restitution slope in a variety of
interventions (Shattock et al., 2017). This reinforces the role
of steady state APD (and therefore excitation wavelength) for
mechanistic investigation of re-entry, but also highlights the
importance of considering the impacts of variation in cell-level
properties directly as we do here, instead of just in terms of their
modulation of tissue-level properties.

Variability in fast inward channel conductance and
inactivation had an inconsistent effect on the critical size of
rotors and for the most part little effect on the dominant
frequency, despite directly controlling CV. These properties
proved the primary determinant of wavetip trajectory for stable
rotors, and their inconsistent effect on core size is thus explained
by the shifting through the several different types of trajectory.
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FIGURE 8 | Slower recovery of excitability widens the critical window of fast inward current density that can trigger breakup, and shifts this window to higher amounts

of current density. Parameter maps as predicted by the classifier model. For the lower values of τ−
v2 plotted, the existence of a critical window of fast inward current

strength associated with highest risk of wave breakup is clearly seen. As slow inward current increases in strength, this window widens and shifts to lower gfi values.

Slower recovery of fast inward channel availability (larger τ
−

v2) corresponds on the whole to destabilization of functional re-entry, but the specific effect depends also on

the conductance of this current.

Only in the specific case of re-entries driven by circular rotor
cores could rate control be achieved by slowed conduction. On
the other hand, core size and frequency of re-entry depended
much more consistently on the availability of excitable tissue
(ERP), a function of both the recovery of excitability and the rate
of repolarization. These results agree with the relative success
of anti-arrhythmics that prolong ERP in treating ventricular
tachycardias (Haverkamp et al., 1997; deSouza et al., 2015),
the sustainability and severity of which depend critically on
these two biomarkers. However, this effect must be considered
in tandem with the potential pro-arrhythmic effects of such
treatments that we discuss subsequently.

Depending on the electrophysiological properties of the
simulated tissue, we observed wave breakup into fibrillation
(potentially transitory or sustained for the full duration of
simulation). Increased slow inward current was consistently
associated with wave breakup, but increased slow outward
current failed to show the opposite effect. This strongly suggests
that it is not physiological variability in APD/ERP that controls
breakup, and instead implicates the importance of slow inward
currents in defining the extent of rate-dependence in the tissue

and hence promoting dispersion of repolarization. In fact, we do
note that some treatments that decrease ERP by antagonizing
slow inward currents can trigger a reversion from ventricular
fibrillation by reducing spatial dispersion of repolarization
(Kimura et al., 2005; Bossu et al., 2018), consistent with these
conclusions. Additionally, we observed a critical window of tissue
excitability as a function of fast inward channel density that
presents the highest risk of wave breakup. When excitability is
too low, complete activation of the slow inward current does
not occur regardless of activation timing, preventing spatial
dispersion of recovery and hence breakup. When excitability is
too high, the rotor tip exhibits longer linear runs between its
rotations, and thus has reduced opportunity to interact with its
own wake, as well as a much-increased probability of colliding
with tissue boundaries and hence annihilating itself before an
episode of fibrillation can occur.

Reduced sodium channel availability by slow recovery of the
fast inward channels emerged as a significant promoter of chaotic
behavior like wave breakup, by increasing the aforementioned
dispersion of repolarization associated to differential activation
of slow inward currents. Such a mechanism is indeed expected to
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be of greater importance in the ventricles, where Ca2+ currents
play a greater role in modulating rate dependence as compared
to the more triangular APs in the atria (Sánchez et al., 2012).
These results thus mechanistically explain the good performance
of class Ic anti-arrhythmics in terminating atrial fibrillation, but
at the cost of increased susceptibility to ventricular arrhythmias.
This is for example the case of pilsicainide, a class Ic agent with
slow recovery kinetics, successful in the clinical management
of atrial fibrillation (Kanki et al., 1998; Fukuda et al., 2011) in
spite of reports of its involvement in precipitating ventricular
Torsade de Pointes (TdP) arrhythmias and sudden cardiac death
(Nakatani et al., 2014), as further corroborated by its “possible
risk” TdP category in the CredibleMeds database (Woosley and
Romer, 1999). These results also hold for the controversial
role of flecainide, another class Ic agent especially successful
in the treatment of atrial fibrillation (Wang et al., 1992; Aliot
et al., 2011), but with “known risk” TdP category (Woosley and
Romer, 1999; Nasser et al., 2015), although its potent inhibition
of potassium repolarizing currents can also mediate its pro-
arrhythmic profile (Paul et al., 2002; Melgari et al., 2015; Passini
et al., 2017).

Our findings with regard to the stability of functional re-
entries were further supported and refined by the predictions of
our SVM classifier model. After identifying the important ionic
properties underlying risk of wave breakup, visualization of the
classifier’s predictions confirmed the importance of slow inward
current density, the existence of critical windows of excitability,
and the inability to rely upon APD or excitation wavelength
as biomarkers for the risk of wave breakup. Furthermore, the
pro-arrhythmic potential of slowed recovery of excitability was
suggested to be of stronger importance for rotor cores that move
via a pattern of a long run followed by a tight rotation, potentially
differentiating the cases discussed above where class Ic anti-
arrhythmics may or may not induce fibrillation in the ventricles.

Importantly, each of these observations on properties of
re-entry and susceptibility to breakup have been obtained
while considering variability across a large number of
electrophysiological properties. The emergence of these
behaviors across significant variation in the parameters suggests
that they are in fact core electrophysiological behaviors, and
not simply limited to the regime implied by the base parameter
values considered in the FK model. Promisingly, a recent study
using a biophysically-detailed model to explore variability in
ionic current conductances with regard to the meander of
rotor-driven re-entries in the atria also identified the Ca2+ and
Na+ current densities as the most important parameters (Liberos
et al., 2016), agreeing with their observed importance here, and
reinforcing the potential of reduced ionic models to capture
tissue-level dynamics of cardiac electrophysiology.

Methodologically, our work is probably the most
comprehensive computational investigation to date of
the complex interplay between cardiac excitability and
refractoriness in modulating rotor-driven arrhythmic behavior
and susceptibility to breakup, comprising more than 5,000
forward simulations of long-lasting arrhythmic episodes,
further enriched to 80 million electrophysiological scenarios by
the innovative application of emulation to this field. Despite

the existence of clear bifurcations and chaotic regimes, our
classification and emulation approaches proved capable of
predicting with good accuracy the nature of rotor behavior and
important spatial biomarkers characterizing rotor-driven re-
entry, even with a relatively large number of electrophysiological
properties allowed to vary. The highly complex and non-
monotonic response surfaces for spatial biomarkers of re-entry
presented in this study further illustrate that the dynamics of
arrhythmia and fibrillation in cardiac tissue cannot be predicted
by simple fits to the data such as linear regression. On the other
hand, these are accurately and automatically captured by the use
of emulation, also serving to eliminate representation bias in data
analysis and interpretation. Altogether, our work exemplifies a
synergistic combination of supercomputing, machine learning,
and advanced statistical methods, pushing the frontiers of big
data applications for investigations on cardiac electrophysiology.

Due to our specific focus on rotor dynamics, we have
used here the reduced FK model (Fenton and Karma, 1998),
which accurately captures the restitution properties of cardiac
tissue but does not contain biophysical representations of each
of the many currents that govern the APs of cardiac cells.
Now that our approach to emulating cardiac electrophysiology
models has been validated, further exploration of the impacts
of variability in tissue excitability and refractoriness could
be obtained by applying these techniques to biophysically
detailed models with full characterization of ion channel
kinetics, which may offer additional insights into how different
anti-arrhythmic agents could be expected to perform in a
variable population. However, and in spite of its reduced
complexity, it is important to note that predictions on
mechanisms of wave instability using the FK model have
been confirmed with more sophisticated models (Rappel, 2001;
ten Tusscher and Panfilov, 2006). Another natural extension
is the emulation of spatial biomarkers for simulations on
anatomically accurate geometries, thus incorporating structural
effects and making the cases where a rotor fails to develop
due to collision with the domain boundaries much more
physiologically relevant. Such extensions to the cardiac model
would not require any adjustment to our method for emulation,
beyond perhaps the creation of additional classifications to
categorize any new patterns of model behavior that might
arise.

In conclusion, we have demonstrated how emulation can
be adapted to models that govern the complex spatiotemporal
dynamics of re-entry in cardiac electrophysiology. We have used
the great reduction in computational cost offered by emulation
in order to further explore how variability in tissue excitability,
repolarization, and post-repolarization refractoriness all affect
whether rotor-driven re-entries are electrophysiologically
supported, the likelihood that they exhibit wave breakup and
the severity of the arrhythmias that they induce. This variability
analysis did not require the fixing of key model parameters to
specific values, making the results much more generalizable.
This type of approach is of especial relevance in cardiac
electrophysiology, where parameter variability is known to be
important, and has a significant effect on the interpretation of
both experimental and modeling studies.

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 111492

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lawson et al. Emulation of Functional Re-entry Dynamics

AUTHOR CONTRIBUTIONS

All authors contributed to the development of the presented
methodology. BL, CD, and AB-O implemented the methodology
and performed simulations. BL, KB, PB, and AB-O performed
analysis of the results. All authors contributed to the drafting and
refinement of the manuscript.

FUNDING

BL, PB, and KB are supported by the Australian Research Council
under grant number CE140100049. CD is supported by the
Australian Research Council’s Discovery Early Career Researcher
Award scheme under grant number DE160100741. AB-O is
supported by a British Heart Foundation (BHF) Intermediate
Basic Science Research Fellowship (FS/17/22/32644), an Impact
for Infrastructure Award of the National Centre for the
Replacement, Refinement & Reduction of Animals in Research

(NC/P001076/1), and the Oxford BHF Centre of Research
Excellence (RE/13/1/30181).

ACKNOWLEDGMENTS

Computational resources and services used in this work were
provided by the HPC and Research Support Group, Queensland
University of Technology, Brisbane, Australia. BL would like to
thank themembers of the Computational Cardiovascular Science
group in the Department of Computer Science at the University
of Oxford for hosting his visit and discussions regarding this
work in September and October 2017.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.01114/full#supplementary-material

REFERENCES

Aliot, E., Alessandro, C., Crijns, H. J., Goette, A., and Tamargo, J. (2011). Twenty-

five years in the making: flecainide is safe and effective for the management of

atrial fibrillation. Europace 13, 161–173. doi: 10.1093/europace/euq382

Allessie, M. A., Bonke, F. I. M., and Schopman, F. J. G. (1977). Circus

movement in rabbit atrial muscle as a mechanism of tachycardia III. The

"leading circle" concept: a new model of circus movement in cardiac tissue

without the involvement of an anatomical obstacle. Circ. Res. 41, 9–18.

doi: 10.1161/01.RES.41.1.9

Bányász, T., Horváth, B., Virág, L., Bárándi, L., Szentandrássy, N., Harmati, G.,

et al. (2009). Reverse rate dependency is an intrinsic property of canine cardiac

preparations. Cardiovasc. Res. 84, 237–244. doi: 10.1093/cvr/cvp213

Bárándi, L., Virág, L., Jost, N., Horváth, Z., Koncz, I., Papp, R., et al. (2010). Reverse

rate-dependent changes are determined by baseline action potential duration

in mammalian and human ventricular preparations. Basic Res. Cardiol. 105,

315–323. doi: 10.1007/s00395-009-0082-7

Bartocci, E., Singh, R., von Stein, F. B., Amedome, A., Caceres, A. J. J.,

Castillo, J., et al. (2011). Teaching cardiac electrophysiology modeling to

undergraduate students: laboratory exercises and GPU programming for the

study of arrhythmias and spiral wave dynamics. Adv. Physiol. Educ. 35, 427–

437. doi: 10.1152/advan.00034.2011

Beeler, G. W., and Reuter, H. (1977). Reconstruction of the action

potential of ventricular myocardial fibres. J. Physiol. 268, 177–210.

doi: 10.1113/jphysiol.1977.sp011853

Bossu, A., Joutman, M. J. C., Meijborg, V. M. F., Varkevisser, R., Beekman,

Henriette, D. M., et al. (2018). Selective late sodium current inhibitor GS-

458967. Br. J. Pharmacol. 175, 2470–2482. doi: 10.1111/bph.14217

Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher,

D. J., et al. (2013). Experimentally calibrated population of models predicts and

explains intersubject variability in cardiac cellular electrophysiology. Proc. Natl.

Acad. Sci. U.S.A. 110, E2098–E2105. doi: 10.1073/pnas.1304382110

Bueno-Orovio, A., Cherry, E. M., and Fenton, F. H. (2008). Minimal model for

human ventricular action potentials in tissue. J. Theor. Biol. 253, 544–560.

doi: 10.1016/j.jtbi.2008.03.029

Bueno-Orovio, A., Pérez-García, V.M., and Fenton, F. H. (2006). Spectral methods

for partial differential equations in irregular domains: the spectral smoothed

boundary method. SIAM J. Sci. Comput. 28, 886–900. doi: 10.1137/0406

07575

Cabo, C. (2015). Post-repolarization refractoriness increases vulnerability to block

and initiation of reentrant impulses in heterogeneous infarcted myocardium.

Comput. Biol. Med. 65, 209–219. doi: 10.1016/j.compbiomed.2015.

04.037

Chang, E. T. Y., Strong, M., and Clayton, R. H. (2015). Bayesian sensitivity

analysis of a cardiac cell model using a Gaussian process emulator. PLoS ONE

10:e0130252. doi: 10.1371/journal.pone.0130252

Cherry, E. M., Ehrlich, J. R., Nattel, S., and Fenton, F. H. (2007). Pulmonary vein

reentry - properties and size matter: insights from a computational analysis.

Heart Rhythm 4, 1553–1562. doi: 10.1016/j.hrthm.2007.08.017

Cherry, E. M., and Fenton, F. H. (2004). Suppression of alternans and conduction

blocks despite steep APD restitution: electrotonic, memory, and conduction

velocity restitution effects. Am. J. Physiol. Heart Circ. Physiol. 286, H2332–

H2341. doi: 10.1152/ajpheart.00747.2003

Coronel, R., Janse, M. J., Opthof, T., Wilde, A. A., and Taggart, P. (2012).

Postrepolarization refractoriness in acute ischemia and after antiarrhythmic

drug administration: action potential duration is not always an index of the

refractory period. Heart Rhythm 9, 977-982. doi: 10.1016/j.hrthm.2012.01.021

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,

273–297.

Courtemanche, M. (1996). Complex spiral wave dynamics in a spatially distributed

ionic model of cardiac electrical activity. Chaos 6, 579–600.

Courtemanche, M., and Winfree, A. T. (1991). Re-entrant rotating waves in a

Beeler-Reuter based model of two-dimensional cardiac electrical activity. Int.

J. Bifurcation Chaos 1, 431–444.

deSouza, I. S., Martindale, J. L., and Sinert, R. (2015). Antidysrhythmic

drug therapy for the termination of stable, monomorphic ventricular

tachycardia: a systematic review. Emerg. Med. J. 32, 161–167.

doi: 10.1136/emermed-2013-202973

Efimov, I. R., Krinsky, V. I., and Jalife, J. (1995). Dynamics of rotating vortices in

the beeler-reuter model of cardiac tissue. Chaos Solitons Fractals 5, 513–526.

doi: 10.1016/0960-0779(95)95761-F

Elming, H., Brendorp, B., Pehrson, S., Pedersen, O. D., Køber, L., and Torp-

Petersen, C. (2004). A benefit-risk assessment of class III antiarrhythmic agents.

Expert. Opin. Drug Saf. 3, 559–577. doi: 10.1517/14740338.3.6.559

Feng, J., Yue, L., Wang, Z., and Nattel, S. (1998). Ionic mechanisms of regional

action potential heterogeneity in the canine right atrium. Circ. Res. 7, 541–551.

doi: 10.1161/01.RES.83.5.541

Fenton, F. H., Cherry, E. M., Hastings, H. M., and Evans, S. J. (2002). Multiple

mechanisms of spiral wave breakup in a model of cardiac electrical activity.

Chaos 12, 852–892. doi: 10.1063/1.1504242

Fenton, F. H., and Karma, A. (1998). Vortex dynamics in three-dimensional

continuous myocardium with fiber rotation: filament instability and

fibrillation. Chaos 8, 20–47. doi: 10.1063/1.166311

Franz, M. R. (2003). The electrical restitution curve revisited: steep or

flat slope—which is better? J. Cardiovasc. Electrophysiol. 14, S140–S147.

doi: 10.1046/j.1540.8167.90303.x

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 111493

https://www.frontiersin.org/articles/10.3389/fphys.2018.01114/full#supplementary-material
https://doi.org/10.1093/europace/euq382
https://doi.org/10.1161/01.RES.41.1.9
https://doi.org/10.1093/cvr/cvp213
https://doi.org/10.1007/s00395-009-0082-7
https://doi.org/10.1152/advan.00034.2011
https://doi.org/10.1113/jphysiol.1977.sp011853
https://doi.org/10.1111/bph.14217
https://doi.org/10.1073/pnas.1304382110
https://doi.org/10.1016/j.jtbi.2008.03.029
https://doi.org/10.1137/040607575
https://doi.org/10.1016/j.compbiomed.2015.04.037
https://doi.org/10.1371/journal.pone.0130252
https://doi.org/10.1016/j.hrthm.2007.08.017
https://doi.org/10.1152/ajpheart.00747.2003
https://doi.org/10.1016/j.hrthm.2012.01.021
https://doi.org/10.1136/emermed-2013-202973
https://doi.org/10.1016/0960-0779(95)95761-F
https://doi.org/10.1517/14740338.3.6.559
https://doi.org/10.1161/01.RES.83.5.541
https://doi.org/10.1063/1.1504242
https://doi.org/10.1063/1.166311
https://doi.org/10.1046/j.1540.8167.90303.x
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lawson et al. Emulation of Functional Re-entry Dynamics

Franz, M. R., Gray, R. A., Karasik, P., Moore, H. J., and Singh, S. N. (2014).

Drug-induced post-repolarization refractoriness as an antiarrhythmic

principle and its underlying mechanism. Europace 16, iv39–iv45.

doi: 10.1093/europace/euu274

Fukuda, K., Watanabe, J., Yagi, T., Wakayama, Y., Nakano, M., Kondo,

M., et al. (2011). A sodium channel blocker, pilsicainide, produces atrial

post-repolarization refractoriness through the reduction of sodium channel

availability. Tohoku J. Exp. Med. 225, 35–42. doi: 10.1620/tjem.225.35

Garfinkel, A., Kim, Y. H., Voroshilovsky, O., Qu, Z., Kil, J. R., Lee, M. H., et al.

(2000). Preventing ventricular fibrillation by flattening cardiac restitution. Proc.

Natl. Acad. Sci. U.S.A. 97, 6061–6066. doi: 10.1073/pnas.090492697

Geneser, S. E., Kirby, R. M., and MacLeod, R. S. (2008). Application of

stochastic finite element methods to study the sensitivityof ECG forward

modeling to organ conductivity. IEEE Trans. Biomed. Eng. 55, 31–40.

doi: 10.1109/TBME.2007.900563

Gough, W. B., Mehra, R., Restivo, M., Zeiler, R. H., and El-Sherif, N. (1985).

Reentrant ventricular arrhythmias in the late myocardial infarction period

in the dog: 13. correlation of activation and refractory maps. Circ. Res. 57,

432–442. doi: 10.1161/01.RES.57.3.432

Gramacy, R. B., and Lee, Herbert, K. H. (2008). Bayesian treed Gaussian process

models with an application to computer modeling. J. Am. Stat. Assoc. 103,

1119–1130. doi: 10.1198/016214508000000689

Grosu, R., Smolka, S. A., Corradini, F., Wasilewska, A., Entcheva, E., and Bartocci,

E. (2009). Learning and detecting emergent behaviour in networks of cardiac

myocytes. Commun. ACM 52, 97–105. doi: 10.1145/1467247.1467271

Haverkamp, W., Martinez-Rubio, A., Hief, C., Lammers, A., M uhlenkamp, S.,

Wichter, T., et al. (1997). Efficacy and safety of d, l-sotalol in patients with

ventricular tachycardia and in survivors of cardiac arrest. J. Am. Coll. Cardiol.

30, 487–495. doi: 10.1016/S0735-1097(97)00190-3

Holden, P. B., and Edwards, N. R. (2010). Dimensionally reduced emulation of

an AOGCM for application to integrated assessment modelling. Geophys. Res.

Lett. 37:L21707. doi: 10.1029/2010GL045137

Hsu, C.-W., and Lin, C.-J. (2002). A comparison of methods for multiclass

support vector machines. IEEE Trans. Neural Netw. 13, 415–425.

doi: 10.1109/72.991427

Johnston, B. M., Coveney, S., Chang, E. T. Y., Johnston, P. R., and Clayton, R. H.

(2017). Quantifying the effect of uncertainty in input parameters in a simplified

bidomain model of partial thickness ischaemia. Med. Biol. Eng. Comput. 56,

761–780. doi: 10.1007/s11517-017-1714-y

Johnstone, R. H., Chang, E. T. Y., Bardenet, R., de Boer, T. P., Gavaghan, D. J.,

Pathmanathan, P., et al. (2016). Uncertainty and variability in models of the

cardiac action potential: can we build trustworthy models? J. Mol. Cell. Cardiol.

96, 49–62. doi: 10.1016/j.yjmcc.2015.11.018

Kanki, H., Mitamura, H., Takatsuki, S., Sueyoshi, K., Shinagawa, K., Sato, T., et al.

(1998). Postrepolarization refractoriness as a potential anti-atrial fibrillation

mechanism of pilsicainide, a pure sodium channel blocker with slow recovery

kinetics. Cardiovasc. Drugs Ther. 12, 475–482. doi: 10.1023/A:1007758217189

Karma, A. (1994). Electrical alternans and spiral wave breakup in cardiac tissue. J.

Appl. Physiol. 4, 461–472. doi: 10.1063/1.166024

Kim, H.-M., Mallick, B. K., and Holmes, C. C. (2005). Analyzing nonstationary

spatial data using piecewise Gaussian processes. J. Am. Stat. Assoc. 100, 653–

668. doi: 10.1198/016214504000002014

Kimura, H., Kawahara, K., Yamauchi, Y., and Miyaki, J. (2005). On the

mechanisms for the conversion of ventricular fibrillation to tachycardia

by perfusion with ruthenium red. J. Electrocardiol. 38, 364–370.

doi: 10.1016/j.jelectrocard.2005.05.007

Kirchhof, P. F., Fabritz, C. L., and Franz, M. R. (1998). Postrepolarization

refractoriness versus conduction slowing caused by class I antiarrhythmic

drugs: antiarrhythmic and proarrhythmic effects. Circulation 97, 2567–2574.

doi: 10.1161/01.CIR.97.25.2567

Kneller, J., Kalifa, J., Zou, R., Zaitsev, A. V., Warren, M., Berenfeld, O., et al.

(2005). Mechanisms of atrial fibrillation termination by pure sodium channel

blockade in an ionically-realistic mathematical model. Circ. Res. 96, e35–e47.

doi: 10.1161/01.RES.0000160709.49633.2b

Lawson, B. A. J., Drovandi, C. C., Burrage, P., Rodriguez, B., and Burrage, K.

(2017). “Dimension reduction for the emulation of cardiac electrophysiology

models for single cells and tissue,” in Computing in Cardiology (Conference

Proceedings) (Long Beach, CA).

Lawson, B. A. J., Drovandi, C. C., Cusimano, N., Burrage, P., Rodriguez, B.,

and Burrage, K. (2018). Unlocking data sets by calibrating populations of

models to data density: a study in atrial electrophysiology. Sci. Adv. 4:e1701676.

doi: 10.1126/sciadv.1701676

Lee, A. M., Aziz, A., Didesch, J., Clark, K. L., Schuessler, R. B., and Damiano, R. J.

(2013). Importance of atrial surface area and refractory period in sustaining

atrial fibrillation: testing the critical mass hypothesis. J. Thorac. Cardiovasc.

Surg. 146, 593–598. doi: 10.1016/j.jtcvs.2012.04.021

Lee, Y.-S., Hwang, M., Song, J.-S., Li, C., Joung, B., Sobie, E. A., et al. (2016). The

contribution of ionic currents to rate-dependent action potential duration and

pattern of reentry in a mathematical model of human atrial fibrillation. PLoS

ONE 11:0150779. doi: 10.1371/journal.pone.0150779

Liberos, A., Bueno-Orovio, A., Rodrigo, M., Ravens, U., Hernandez-Romero,

I., Fernandez-Aviles, F., et al. (2016). Balance between sodium and

calcium currents underlying chronic atrial fibrillation termination: an

in silico intersubject variability study. Heart Rhythm 13, 2358–2365.

doi: 10.1016/j.hrthm.2016.08.028

Lombardo, D. M., Fenton, F. H., Narayan, S. M., and Rappel, W.-J. (2016).

Comparison of detailed and simplified models of human atrial myocytes

to recapitulate patient specific properties. PLoS Comp. Biol. 12:e1005060.

doi: 10.1371/journal.pcbi.1005060

Mckay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three

methods for selecting values of input variables in the analysis of output from a

computer code. Technometrics 21, 239–245.

Melgari, D., Zhang, Y., El Harchi, A., Dempsey, C. E., and Hancox,

J. C. (2015). Molecular basis of hERG potassium channel blockade by

the class Ic antiarrhythmic flecainide. J. Mol. Cell. Cardiol. 86, 42–53.

doi: 10.1016/j.yjmcc.2015.06.021

Merillat, J. C., Lakatta, E. G., Hano, O., and Guarnieri, T. (1990). Role of calcium

and the calcium channel in the initiation and maintenance of ventricular

fibrillation. Circ. Res. 67, 1115–1123.

Moe, G. K., and Abildskov, J. A. (1959). Atrial fibrillation as a self-sustaining

arrhythmia independent of focal discharge. Am. Heart J. 58, 59–70.

Muñoz, V., Grzeda, K. R., Desplantez, T., Pandit, S. V., Mironov, S., Taffet,

S. M., et al. (2007). Adenoviral expression of IKs contributes to wavebreak and

fibrillatory conduction in neonatal rat ventricular cardiomyocyte monolayers.

Circ. Res. 101, 475–483. doi: 10.1161/CIRCRESAHA.107.149617

Muszkiewicz, A., Britton, O. J., Gemmell, P., Passini, E., Sanchez, C., Zhou, X.,

et al. (2016). Variability in cardiac electrophysiology: using experimentally-

calibrated populations of models to move beyond the single virtual

physiological human paradigm. Prog. Biophys. Mol. Biol. 120, 115–127.

doi: 10.1016/j.pbiomolbio.2015.12.002

Nakatani, S., Taniike, M., Makino, N., Egami, Y., Shutta, R., Tanouchi, J., et al.

(2014). A case of sudden cardiac death due to pilsicainide-induced Torsades

de Pointes. Korean Circ. J. 44, 122–124. doi: 10.4070/kcj.2014.44.2.122

Nash, M. P., Bradley, C. P., Sutton, P. M., Clayton, R. H., Kallis, P., Hayward,

M. P., et al. (2006). Whole heart action potential duration restitution properties

in cardiac patients: a combined clinical and modelling study. Exp. Physiol. 91,

339–354. doi: 10.1113/expphysiol.2005.031070

Nasser, M., Idris, S., Marinelli, K., and Machado, C. (2015). Flecainide-induced

Torsades de pointes: case report and review of literature. Rev. Cardiovasc. Med.

16, 214–220. doi: 10.3909/ricm0761

Nattel, S., Kneller, J., Zou, R., and Leon, L. J. (2003). Mechanisms of termination

of atrial fibrillation by Class I antiarrhythmic drugs: evidence from clinical,

experimental, andmathematical modeling studies. J. Cardiovasc. Electrophysiol.

14, S133–S139. doi: 10.1046/j.1540.8167.90302.x

Nolasco, J. B., and Dahlen, R. W. (1968). A graphic method for the study of

alternation in cardiac action potentials. J. Appl. Physiol. 25, 191–196.

Oakley, J. E., and O’Hagan, A. (2004). Probabilistic sensitivity analysis of

complex models: a Bayesian approach. J. R. Statist. Soc. B 66, 751–769.

doi: 10.1111/j.1467-9868.2004.05304.x

Pandit, S. V., Berenfeld, O., Anumonwo, J. M. B., Zaritski, R. M., Kneller, J., Nattel,

S., et al. (2005). Ionic determinants of functional reentry in a 2-D model of

human atrial cells during simulated chronic atrial fibrillation. Biophys. J. 88,

3806–3821. doi: 10.1529/biophysj.105.060459

Pandit, S. V., and Jalife, J. (2013). Rotors and the dynamics of cardiac

fibrillation. Circ. Res. 112, 849–862. doi: 10.1161/CIRCRESAHA.111.3

00158

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 111494

https://doi.org/10.1093/europace/euu274
https://doi.org/10.1620/tjem.225.35
https://doi.org/10.1073/pnas.090492697
https://doi.org/10.1109/TBME.2007.900563
https://doi.org/10.1161/01.RES.57.3.432
https://doi.org/10.1198/016214508000000689
https://doi.org/10.1145/1467247.1467271
https://doi.org/10.1016/S0735-1097(97)00190-3
https://doi.org/10.1029/2010GL045137
https://doi.org/10.1109/72.991427
https://doi.org/10.1007/s11517-017-1714-y
https://doi.org/10.1016/j.yjmcc.2015.11.018
https://doi.org/10.1023/A:1007758217189
https://doi.org/10.1063/1.166024
https://doi.org/10.1198/016214504000002014
https://doi.org/10.1016/j.jelectrocard.2005.05.007
https://doi.org/10.1161/01.CIR.97.25.2567
https://doi.org/10.1161/01.RES.0000160709.49633.2b
https://doi.org/10.1126/sciadv.1701676
https://doi.org/10.1016/j.jtcvs.2012.04.021
https://doi.org/10.1371/journal.pone.0150779
https://doi.org/10.1016/j.hrthm.2016.08.028
https://doi.org/10.1371/journal.pcbi.1005060
https://doi.org/10.1016/j.yjmcc.2015.06.021
https://doi.org/10.1161/CIRCRESAHA.107.149617
https://doi.org/10.1016/j.pbiomolbio.2015.12.002
https://doi.org/10.4070/kcj.2014.44.2.122
https://doi.org/10.1113/expphysiol.2005.031070
https://doi.org/10.3909/ricm0761
https://doi.org/10.1046/j.1540.8167.90302.x
https://doi.org/10.1111/j.1467-9868.2004.05304.x
https://doi.org/10.1529/biophysj.105.060459
https://doi.org/10.1161/CIRCRESAHA.111.300158
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lawson et al. Emulation of Functional Re-entry Dynamics

Passini, E., Britton, O. J., Lu, H. R., Rohrbacher, J., Hermans, A. N., Gallacher,

D. J., et al. (2017). Human in silico drug trials demonstrate higher accuracy

than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front.

Physiol. 8:668. doi: 10.3389/fphys.2017.00668

Pathmanathan, P., Shotwell, M. S., Gavaghan, D. J., Cordeiro, J. M., and Gray,

R. A. (2015). Uncertainty quantification of fast sodium current steady-state

inactivation for multi-scale models of cardiac electrophysiology. Prog. Biophys.

Mol. Biol. 117, 4–18. doi: 10.1016/j.pbiomolbio.2015.01.008

Paul, A., Witchel, H., and Hancox, J. C. (2002). Inhibition of the current

of heterologously expressed HERG potassium channels by flecainide and

comparison with quinidine, propafenone and lignocaine. Br. J. Pharmacol. 136,

717–729. doi: 10.1038/sj.bjp.0704784

Qu, Z., Kil, J., Fagen, X., Garfinkel, A., and Weiss, J. N. (2000). Scroll

wave dynamics in a three-dimensional cardiac tissue model: roles of

restitution, thickness and fiber rotation. Biophys. J. 78, 2761–2775.

doi: 10.1016/S0006-3495(00)76821-4

Qu, Z., Weiss, J. N., and Garfinkel, A. (1999). Cardiac electrical restitution

properties and stability of reentrant spiral waves: a simulation study. Am. J.

Physiol. Heart Circ. Physiol. 276, H269–H283.

Rappel, W. J. (2001). Filament instability and rotational tissue anisotropy:

a numerical study using detailed cardiac models. Chaos 11, 71–80.

doi: 10.1063/1.1338128

Rasmussen, C. E., and Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning. Bognor Regis: MIT Press.

Rensma, P. L., Allessie,M. A., Lammers,W. J., Bonke, F. I., and Schalij, M. J. (1988).

Length of excitation wave and susceptibility to reentrant atrial arrhythmias in

normal conscious dogs. Circ. Res. 62, 395–410.

Rush, S., and Larsen, H. (1978). A practical algorithm for solving dynamic

membrane equations. IEEE Trans. Biomed. Eng. 25, 389–392.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis

of computer experiments. Stat. Sci. 4, 409–423.

Sánchez, C., Corrias, A., Bueno-Orovio, A., Davies, M., Swinton, J., Jacobson, I.,

et al. (2012). The Na+/K+ pump is an important modulator of refractoriness

and rotor dynamics in human atrial tissue. Am. J. Physiol. Heart Circ. Physiol.

302, H1146–H1159. doi: 10.1152/ajpheart.00668.2011

Sarkar, A. X., Christini, D. J., and Sobie, E. A. (2012). Exploiting mathematical

models to illuminate electrophysiological variability between individuals. J.

Physiol. 590, 2555–2567. doi: 10.1113/jphysiol.2011.223313

Shattock, M. J., Park, K. C., Yang, H. Y., Lee, A. W. C., Niederer, S., MacLeod,

K. T., et al. (2017). Restitution slope is principally determined by steady-state

action potential duration. Cardiovasc. Res. 113, 817–828. doi: 10.1093/cvr/

cvx063

Simpson, T. W., Peplinski, J. D., Koch, P. N., and Allen, J. K. (2001). Metamodels

for computer-based engineering design: survey and recommendations. Eng.

Comput. 17, 129–150. doi: 10.1007/PL00007198

Sims, C., Reisenweber, S., Viswanathan, P. C., Choi, B.-R., Walker,

W. H., and Salama, G. (2008). Sex, age, and regional differences in

L-type calcium current are important determinants of arrhythmia

phenotype in rabbit hearts with drug-induced long QT type

2. Circ. Res. 102, e86–e100. doi: 10.1161/CIRCRESAHA.108.1

73740

Smeets, J. L. R. M., Allessie, M. A., Lammers, W. J. E. P., Bonke, Felix, I. M.,

and Hollen, J. (1986). The wavelength of the cardiac impulse and reentrant

arrhythmias in isolated rabbit atrium: the role of heart rate, autonomic

transmitters, temperature and potassium. Circ. Res. 58, 96–108.

Sobie, E. A. (2009). Parameter sensitivity analysis in electrophysiological

models using multivariable regression. Biophys. J. 96, 1264–1274.

doi: 10.1016/j.bpj.2008.10.056

Strang, G. (1968). On the construction and comparison of difference schemes.

SIAM J. Numer. Anal. 5, 506–517.

Sundnes, J., Lines, G. T., Cai, X., Nielsen, B. F., Mardal, K., and Tveito, A.

(2006). Computing the Electrical Activity in the Heart. Berlin; Heidelberg:

Springer-Verlag.

Swenson, D. J., Geneser, S. E., Stinstra, J. G., Kirby, R. M., and MacLeod, R. S.

(2011). Cardiac position sensitivity study in the electrocardiographic forward

problem using stochastic collocation and boundary element methods. Ann.

Biomed. Eng. 39, 2900–2910. doi: 10.1007/s10439-011-0391-5

ten Tusscher, K. H. W. J., and Panfilov, A. V. (2006). Alternans and spiral breakup

in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291,

H1088–H1100. doi: 10.1152/ajpheart.00109.2006

Tse, G., and Yan, B. P. (2017). Traditional and novel electrocardiographic

conduction and repolarization markers of sudden cardiac death. Europace 19,

712–721. doi: 10.1093/europace/euw280

Wallman, M., Smith, N. P., and Rodriguez, B. (2014). Computational

methods to reduce uncertainty in the estimation of cardiac conduction

properties from electroanatomical recordings. Med. Image Anal. 18, 228–240.

doi: 10.1016/j.media.2013.10.006

Wang, Z., Pagé, P., and Nattel, S. (1992). Mechanism of flecainide’s antiarrhythmic

action in experimental atrial fibrillation. Circ. Res. 71, 271–287.

Wiener, N., and Rosenblueth, A. (1946). The mathematical formulation of the

problem of conduction of impulses in a network of connected excitable

elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205–265.

Wit, A. L., and Cranefield, P. F. (1978). Reentrant excitation as a cause of cardiac

arrhythmias. Am. J. Physiol. 235, H1–H7.

Wolbrette, D. L. (2003). Risk of proarrhythmia with class III antiarrhythmic

agents: sex-based differences and other issues. Am. J. Cardiol. 91, 39D–44D.

doi: 10.1016/S0002-9149(02)03378-7

Woosley, R., and Romer, K. (1999). QTdrugs List. AZCERT, Inc. Available online

at: www.crediblemeds.org. [Online] (Accessed April 1, 2018).

Zhou, X., Bueno-Orovio, A., Orini, M., Hanson, B., Hayward, M., Taggart, P.,

et al. (2016). In vivo and in silico investigation into mechanisms of frequency

dependence of repolarization alternans in human ventricular cardiomyocytes.

Circ. Res. 118, 266–278. doi: 10.1161/CIRCRESAHA.115.307836

Zhou, X., Bueno-Orovio, A., and Rodriguez, B. (2018). In silico evaluation of

arrhythmia. Curr. Opin. Physiol. 1, 95–103. doi: 10.1016/j.cophys.2017.11.003

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer RC and handling editor declared their shared affiliation at the

time of the review.

Copyright © 2018 Lawson, Burrage, Burrage, Drovandi and Bueno-Orovio. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 111495

https://doi.org/10.3389/fphys.2017.00668
https://doi.org/10.1016/j.pbiomolbio.2015.01.008
https://doi.org/10.1038/sj.bjp.0704784
https://doi.org/10.1016/S0006-3495(00)76821-4
https://doi.org/10.1063/1.1338128
https://doi.org/10.1152/ajpheart.00668.2011
https://doi.org/10.1113/jphysiol.2011.223313
https://doi.org/10.1093/cvr/cvx063
https://doi.org/10.1007/PL00007198
https://doi.org/10.1161/CIRCRESAHA.108.173740
https://doi.org/10.1016/j.bpj.2008.10.056
https://doi.org/10.1007/s10439-011-0391-5
https://doi.org/10.1152/ajpheart.00109.2006
https://doi.org/10.1093/europace/euw280
https://doi.org/10.1016/j.media.2013.10.006
https://doi.org/10.1016/S0002-9149(02)03378-7
www.crediblemeds.org
https://doi.org/10.1161/CIRCRESAHA.115.307836
https://doi.org/10.1016/j.cophys.2017.11.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


ORIGINAL RESEARCH
published: 22 June 2018

doi: 10.3389/fphys.2018.00764

Frontiers in Physiology | www.frontiersin.org June 2018 | Volume 9 | Article 764

Edited by:

Flavio H. Fenton,

Cornell University, United States

Reviewed by:

Olivier Bernus,

Université de Bordeaux, France

Richard H. Clayton,

University of Sheffield,

United Kingdom

*Correspondence:

Rodrigo Weber dos Santos

rodrigo.weber@ufjf.edu.br

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 15 January 2018

Accepted: 31 May 2018

Published: 22 June 2018

Citation:

Sachetto R, Alonso S and dos

Santos RW (2018) Killing Many Birds

With Two Stones: Hypoxia and

Fibrosis Can Generate Ectopic Beats

in a Human Ventricular Model.

Front. Physiol. 9:764.

doi: 10.3389/fphys.2018.00764

Killing Many Birds With Two Stones:
Hypoxia and Fibrosis Can Generate
Ectopic Beats in a Human Ventricular
Model
Rafael Sachetto 1,2, Sergio Alonso 2,3 and Rodrigo Weber dos Santos 2*

1Department of Computer Science, Universidade Federal de São João del-Rei, São João del-Rei, Brazil, 2Graduate Program

in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil, 3Department of Physics, Universitat

Politècnica de Catalunya, Barcelona, Spain

During cardiac diseases many types of anatomical and functional remodeling of cardiac

tissue can occur. In this work, we focus on two conditions: hypoxia and fibrosis, which

are part of complex pathological modifications that take place in many cardiac diseases

(hypertrophic cardiomyopathy, hypertensive heart disease, and recurrent myocardial

infarction) and respiratory diseases (obstructive pulmonary disease, obstructive sleep

apnea, and cystic fibrosis). Using computational models of cardiac electrophysiology,

we evaluate if the interplay between hypoxia and fibrosis is sufficient to trigger cardiac

arrhythmia. We study the mechanisms behind the generation of ectopic beats, an

arrhythmic trigger also known as premature ventricular contractions (PVCs), in regions

with high hypoxia and fibrosis. First, wemodify an electrophysiological model of myocytes

of the human left ventricle to include the effects of hypoxia. Second, diffuse fibrosis is

modeled by randomly replacing cardiac myocytes by non-excitable and non-conducting

cells. The Monte Carlo method is used to evaluate the probability of a region to generate

ectopic beats with respect to different levels of hypoxia and fibrosis. In addition, we

evaluate the minimum size of three-dimensional slabs needed to sustain reentries for

different stimulation protocols. The observed mechanism behind the initiation of ectopic

beats is unidirectional block, giving rise to sustained micro-reentries inside the region with

diffuse fibrosis and hypoxia. In summary, our results suggest that hypoxia and fibrosis are

sufficient for the creation of a focal region in the heart that generates PVCs.

Keywords: ectopic beats, fibrosis, hypoxia, cardiac electrophysiology, heart simulations, percolation threshold,

micro-reentries

1. INTRODUCTION

Cardiovascular diseases frequently promote life-threatening arrhythmias. For some diseases,
studies suggest the existence of anatomical triggers for dangerous arrhythmias (de Bakker et al.,
1988; Haïssaguerre et al., 1998; Ng, 2006; Jalife, 2011). These pathological regions would repeatedly
re-excite the neighboring cardiac tissue, acting as sources, drivers, or foci of ectopic beats. Any area
of the heart other than the sinoatrial node, which originates a heart beat is an ectopic pacemaker.
In particular, when the region is in the left ventricle, it is the source of premature ventricular
contractions (PVCs) (Boineau and Cox, 1973; Ruberman et al., 1977).
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In this work, we use a computational model of the human
left ventricle to investigate the generation of ectopic beats in a
heterogeneous cardiac region under hypoxia and with diffuse
fibrosis. Hypoxia accounts for the lack of blood supply for
the cardiac tissue, whereas fibrosis is related to the increase
of collagen and fibroblast as a reparative or reactive process.
Hypoxia can significantly change cardiac electrophysiology and
fibrotic regions are non-conducting and non-exciting areas that
increase the conduction heterogeneity of cardiac tissue.

The number, diversity and types of processes in cardiac
diseases that result on functional or anatomical modifications can
be overwhelming, as well as the complexity of their multifaceted
interactions. Nevertheless, these two processes, hypoxia and
fibrosis, are common in many different cardiac diseases and
have been suggested to be related to cardiac arrhythmia. For
instance, there is a variety of diseases that can compromise
the micro-structure of cardiac tissue in the ventricles via
the process of fibrosis. This is the case in hypertrophic
cardiomyopathy (HCM) (Maron, 2002), hypertensive heart
disease (HHD) (Diamond and Phillips, 2005), and myocardial
infarction (MI) (Schmidt et al., 2007). In turn, these diseases, all
with the substrate of fibrosis, can also, due to different reasons,
induce hypoxia or acute ischemia, and trigger fatal arrhythmias.

Hypertrophic cardiomyopathy is the most common cause
of sudden death in young athletes. It is characterized by
cardiac andmyocyte hypertrophy, myocyte disarray, and fibrosis.
Sudden cardiac death may be the first manifestation of the
disease. Approximately 70% of all patients with HCM die
suddenly (Maron et al., 1995; Ho et al., 2010; Namboodiri
and Francis, 2010; Alkon et al., 2012). The high arrhythmic
propensity in HCM is due to the combination of the abnormal
substrate, like fibrosis, and ischemia or hypoxia (Alkon et al.,
2012), in general associated with intense physical exercise.
Extreme physical exercise may induce, in HCM patients,
diastolic pressure and volume overload of the ventricles, and
hypoxemia, i.e., low oxygen saturation in the blood. These can
result in a transitory ischemia, usually near the endocardial
region. Ventricular arrhythmias related with exercise are strongly
correlated to cardiac fibrosis in patients with hypertrophic
cardiomyopathy (van Rijsingen et al., 2011). The arrhythmias
originate from areas with a high extent of fibrosis or from regions
directly adjacent to these areas.

Hypertensive heart disease comprises of structural, functional,
and endothelial processes that alter coronary hemodynamics
and ventricular function. As in HCM, ventricular enlargement
or hypertrophy is also combined with fibrosis. In addition,
changes in coronary arterial flow involve ventricular wall
compression, luminal obstruction, the increased wall thickening
of the hypertensive arteriole and reduced ventricular wall
vascularity (Frohlich, 2001). These pathophysiological changes
are frequently associated with ischemic heart disease and the
combination with the fibrotic substrate increases the risk of
sudden cardiac death (Frohlich, 2000).

Most of myocardial infarction (MI) involves the occlusion
of a coronary artery of the ventricle or other types of coronary
artery diseases. In the acute phase, ischemia and necrosis (Chiong
et al., 2011) appear. Early revascularization and the use of new

medicaments greatly contribute to improve survival to acute MI.
During the healing phase of MI, fibrosis substitutes necrotic
cells (Shi et al., 2017). However, post-MI patients remain at
substantial risk for ventricular arrhythmias (Pouleur et al., 2010).
In fact, most of the deaths in post-MI patients are due to
arrhythmia and recurrentMI, i.e., a second episode of acuteMI at
the same region of the first one (Ørn et al., 2005). Therefore, once
again, we recognize the existence of a heterogeneous substrate
that involves fibrosis from the first MI episode, hypoxia and
ischemia during the recurrent MI, and the relation to fatal
arrhythmias.

The aforementioned cardiac diseases suggest a sequence of
events: structural changes that involve fibrosis are followed
by hypoxia or ischemia, that in turn results in cardiac
arrhythmia. However, the relation between fibrosis and hypoxia
is not trivial. For instance, some respiratory diseases that
involve chronic, transitory, or intermittent hypoxia induce
the process of fibrosis in cardiac tissue, and increase the
occurrence of cardiac arrhythmias. Studies in patients with
chronic obstructive pulmonary disease (COPD), obstructive
sleep apnea (OSA), and with cystic fibrosis (CF) have shown
that low oxygen saturation during exercise may predispose them
to cardiac ventricular arrhythmias (Cheong et al., 1990; Ruf
and Hebestreit, 2009; Cintra et al., 2010). Cardiac arrhythmia
has been also reported in patients with sleep apnea syndrome
(SAS) (Guilleminault et al., 1983). In turn, chronic hypoxia
induces cardiomyocyte hypertrophy and interstitial fibrosis in
the LV myocardium (Miwa and Sasaguri, 2007; Yamashita
et al., 2007). In fact, cardiac fibrosis can develop from different
stimuli, including ischemia, inflammation, pressure overload
and volume overload. A common feature of all these stimuli
is tissue hypoxia, either directly or indirectly, due to increase
of oxygen consumption by infiltrating inflammatory cells and
activated resident cells (Gao et al., 2014). This process is referred
as hypoxia-induced fibrosis and has been a recent important
topic of research (Darby and Hewitson, 2016). During chronic
hypoxia and pathological repair, the hypoxia pathway might be
responsible for driving the process of fibrosis (Watson et al., 2013;
Shi et al., 2017).

In summary, hypoxia and fibrosis in the heart appear in
many cardiovascular diseases, HCM, HHD, Recurrent MI, and
respiratory diseases, COPD, OSA, CF, SAS. In addition, all these
diseases are related to cardiac arrhythmias. In this paper, we use
a computational model to investigate if the combination of these
two pathological processes, hypoxia and fibrosis, is sufficient for
the genesis of ectopic beats, a known trigger for life-threatening
arrhythmias.

We modified an electrophysiological model of myocytes of
the left ventricle (Ten Tusscher and Panfilov, 2006) to include
the effects of hypoxia as previously presented in Shaw and
Rudy (1997). Diffuse fibrosis is modeled by randomly replacing
cardiac myocytes by non-excitable and non-conducting cells.
This approach has been employed in a large number of scientific
studies to model fibrosis in ventricular (Ten Tusscher and
Panfilov, 2007; McDowell et al., 2011; Kazbanov et al., 2016) and
atrial (Cherry et al., 2007; McDowell et al., 2015; Alonso et al.,
2016) tissues. This approach is justified due to: the lack of a
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non-invasive technique that can capture the 3D micro-structure
of a region with fibrosis; and the complex, distinct and almost
unpredictable patterns of fibrosis as identified by histological
images (Boineau and Cox, 1973; Campos et al., 2012). As we
include this random feature in our simulations, the Monte Carlo
method is used to calculate the probability of an injured region
to behave as an ectopic pacemaker, assuming that two values
characterize the injured tissue: the percentage of fibrosis and the
degree of hypoxia.

The results of our simulations suggest that injured regions
with both hypoxia and fibrosis generate ectopic beats.
Simulations considering only one of these two processes,
i.e., only hypoxia or only fibrosis, do not show ectopic beats.
The mechanism behind the generation of ectopic beats is
unidirectional block, which triggers sustained micro-reentries
inside the region with diffuse fibrosis and hypoxia. The analysis
of the probability distributions reveals that the simulations that
generate ectopic beats have a percentage of fibrosis between
37 and 65%. In addition, the highest probability of ectopic
beat formation is obtained for percentages of fibrosis near
the percolation threshold, a pure topological metric. This is
in agreement with previous results (Alonso and Bär, 2013;
Gouvêa de Barros et al., 2015; Alonso et al., 2016). We also
observe that the probability increases with the level of hypoxia,
i.e., the scenario with most severe hypoxia is the one with highest
probability of generation of ectopic beats. Finally, we study
how reentries and ectopic beats depend on: (1) the shape of the
simulated tissue, cubic vs. rectangular; (2) the total size of the
tissue; and (3) the protocol to introduce the action potential wave
into the injured tissue.

2. MATERIALS AND METHODS

2.1. Modeling Normal and Cardiac
Myocytes During Hypoxia
In order to model the cellular dynamics in our computational
experiments, we consider the ten Tusscher model (TT3) of
human ventricle myocyte electrophysiology (Ten Tusscher and
Panfilov, 2006). For the dynamics of the cellular transmembrane
potential (V) the following ion currents are considered:

Cm
∂V

∂t
= Iion = INa + IK1 + Ito + IKr + IKs + ICaL+ (1)

INaCa + INaK + IpCa + IpK + IbCa + IbNa + IKATP;

where Cm is the membrane capacitance. Note that Iion includes
currents from ion channels, exchangers and pumps. Almost all
currents depend on the transmembrane potential and on gating
variables, η, of the Hodgkin-Huxley type.

We modified the ten Tusscher et al. model (Ten Tusscher
and Panfilov, 2006) to simulate hypoxia by introducing a K+

current activated by Adenosine triphosphate (ATP) called IK(ATP)
and modifying the PCa(L) conductivity to be also dependent on
ATP. This formulation for modeling hypoxia was introduced
before in Shaw and Rudy (1997), although similar alternative
formulations are also possible (Kazbanov et al., 2014).

Different degrees of Hypoxia can be simulated by changing
the values of [ATPi] from normal (6 mM) to acute (2 mM).
According to Shaw and Rudy (1997), this ranges are likely to
occur also during acute ischemia. Table 1 shows the impact of
the reduction of [ATPi], due to hypoxia on the properties of
Action Potential Duration (APD), velocity of action potential
propagation, and wave length. Whereas APD depends on the
level of hypoxia, velocity is basically constant, as can be seen in
Table 1.

2.2. Action Potential Propagation on
Cardiac Tissue
The coupling of cells in three-dimensional tissues is modeled
with themonodomain formulation, which is given in terms of the
transmembrane potential V and the vector of state variables, η:

βCm
∂V

∂t
+ βIion(V , η) = ∇ · (σ∇V)+ Istim, (2)

∂η

∂t
= f (V , η), (3)

where β is the surface-volume ratio, Cm is the membrane
capacitance, Iion the total ion current, Istim is the current due to an
external stimulus, and σ is the monodomain conductivity tensor.
Themodel is further equipped with appropriate initial conditions
and no–flux boundary conditions (n · σ∇V = 0), i.e., the
boundary of the tissue is considered to be isolated.

In order to solve the monodomain equations and simulate the
action potential propagation in the heterogeneous tissue we used
an efficient parallel cardiac solver described in Sachetto Oliveira
et al. (2017). This solver uses the Rush-Larsen method to
solve the ODEs associated with the TT3 model and the finite
volumes method do solve the partial differential equation (PDE)
(Equation 2), and can be configured to disconnect a random
percentage φ of (100µm)3 volumes, allowing us to model diffuse
fibrosis, as described next. The time step (1t) was set to 0.02 ms
for the numerical solution of both ODEs and PDE.

2.3. Model of Fibrosis
Different types of fibrosis can be observed depending on its
spatial distribution (Nguyen et al., 2014): compact, interstitial,
patchy, and diffuse. In this work, we consider diffuse fibrosis,
which corresponds to the distribution of fibrotic tissue among
myocytes in such a way fibrotic and normal tissues are
interleaved, forming a complex maze.

TABLE 1 | Impact of the reduction of [ATPi ], due to hypoxia, on the properties of

APD, velocity of AP propagation, and wave length.

ATPi (mM) APD (ms) Velocity (cm s−1) Wave length (cm)

2 21 31.4 0.66

3 48 33.3 1.6

4 140 34.0 4.7

5 260 34.2 8.9

6 330 34.2 11.3
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We model diffuse fibrosis by randomly removing active
tissue volumes of the size of (100µm)3 creating completely
disconnected inert regions. The (100µm)3 is roughly the length
of individual cells in the longitudinal direction of the tissue. Such
approach has been extensively employed before (Ten Tusscher
and Panfilov, 2007; Alonso and Bär, 2013; Kazbanov et al., 2016;
Vigmond et al., 2016) to study the formations of ectopic beats and
reentries in the tissue. The maze of conducting tissue mixed with
fibrosis produces fractionated AP propagation.

Fibrosis is modeled via the parameter σ in Equation (2). If the
fraction of fibrosis in a particular region is φ, we assign σ = 0 to a
given cell with a probability of φ. A cell with σ = 0 is considered
inactive and disconnected from the surrounding cells.

When the fraction φ of fibrosis is high, action potential does
not propagate through the tissue. On the other hand, action
potential wave propagates when the fraction is small. There are
intermediate values of φ where these two regimes clash and
waves are able to propagate in a certain direction but not in
the opposite direction due to source-sink mismatches, giving
rise to unidirectional blocks responsible for the breakup of the
propagating waves. Such effect depends also on the level of ionic
remodeling due to hypoxia in the tissue. As explained before, in
order to model the degree of hypoxia we change the value of
[ATPi].

2.4. Calculation of Percolation Threshold
Waves break in a window of values of the fibrosis fraction in
the tissue (φ). The window of values is close to the percolation
threshold of the grid. Such value corresponds to the maximum
fraction of fibrosis at which there is still a path composed of
healthy cells connecting one side to the other of the system.
Typical theoretical calculations of percolation threshold are done
for large systems involving a huge number of cells and therefore,
finite sizes effects are discarded. However, a fibrotic region has
a finite size and its format or geometry may influence the results.
For this reason, we statistically calculate the percolation threshold
for the next two types of geometries:

• A rectangular slab of tissue of horizontal lengths 4 × 4 cm2

and different thickness: from a single layer (formally a two
dimensional grid of cells) to around 25 layers of cells, see
Figure 1A.

• A cubic domain formed by aN3 cells, where we vary the length
N from 2 cells to around 30, see Figure 1B.

For each pair (N,φ) we randomly generate 100 different
heterogeneous grids and evaluate numerically if the generated
models permit the wave propagation from one side to the other.
With the results, percolation threshold, φth, is calculated via
linear interpolation. The resulting dependence of φth on N is
presented in Figure 1. As previously noted, for a single layer we
approach the two-dimensional limit, see Figure 1A. For slabs
with thickness higher than 20 layers the resulting value of φth

is already close to the theoretical three-dimensional limit value,
see Figure 1A. For cubic domains the three-dimensional limit
is the same that in the previous case for large systems, see
Figure 1B. However, for small system the behavior differs from
the two-dimensional limit, see Figure 1B.

FIGURE 1 | Percolation threshold of a rectangular slab of tissue composed by

regular cubic grid of cells for different thickness N in a system 400× 400× N

(A) and cubic system for different lengths of the cube N× N× N (B). For

comparison the analytic limits corresponding to infinite two and three

dimensional systems are shown (red lines). Numerical fit (solid blue line) has

been calculate to guide the eye and permit to extrapolate to possible higher

values of N. For comparison, (B) also presents the results of (A) in gray.

3. RESULTS

3.1. Rectangular Slab With a Central
Injured Region
First we consider a rectangular slab of healthy tissue with a
circular injured region with fibrosis and hypoxia, as shown
in Figures 2A–H. If this injured region is small enough, the
action potential wave rapidly propagates around, enters from
the whole border and excites the whole injured region almost
simultaneously. However, if the injured region is large, the wave
enters first from the left (from the stimulus side). Since the rest of
the border is excited later, propagation in this case is mainly from
left to right. If the fraction φ of fibrosis is close to the percolation
limit of the grid (Alonso and Bär, 2013; Alonso et al., 2016) the
waves propagate slower inside the injured region in comparison
with the speed on the healthy tissue, see Figures 2C,D. This
propagation inside the injured region is highly irregular and
continuous break-ups and fusions of waves can occur, see
Figures 2C–E. For a certain random combination of cells, the
tissue forms source-sink mismatches and unidirectional blocks,
i.e., the wave can not propagate from left to right, but can
propagate later in the opposite direction (right to left), see
Figures 2F,G. The resulting wave in the injured region arrives to
the left border and can re-excite the healthy tissue giving rise to
an ectopic beat, see Figure 2H. If the leaving wave interacts with
a previous wave it can break and generate a rotor. A video of this
simulation can be found in the Supplementary Material.

The generation of reentries depends on different factors, such
as the degree of fibrosis and hypoxia. In simulations considering
only one of these two processes, i.e., only hypoxia or only fibrosis,
ectopic beats are not observed. The fraction of fibrosis of the
tissue has to be close to the percolation value of the discrete grid
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FIGURE 2 | Reentry due to a circular region with fibrosis and hypoxia in the middle of a rectangular slab of cardiac tissue. Different panels show the evolution of the

action potential.

of cells, see Figure 1. Figure 3 shows the probability distribution
of reentries as function of the fraction φ for different thickness of
the slab.

We have analyzed three degrees of hypoxia for different
thickness of the slab, see Figure 3. With low degree of hypoxia
([ATPi] = 4mM) reentries are very unlikely to occur and
appear for values of φ close to the percolation threshold. For
severe hypoxia ([ATPi] = 2mM) there is a higher probability of
reentries which occur in a wider window of values of the fraction
of fibrosis.

3.2. Rectangular Slab With Fibrosis and
Hypoxia
The size of the injured region is relevant in the formation
of sustained reentries. We perform several simulations using
different tissue sizes to demonstrate this relation. First we
increase the injured region to cover the whole tissue and a wave
is induced at the border of the system for different degrees of
fibrosis and hypoxia. The results are shown in Figure 4 and are
comparable with the results obtained with a restricted circular
injured region shown in Figure 3.

Although the probability of reentries are systematically higher
when the whole slab is injured, the range of fibrosis with reentries
is basically the same. The probability of reentries increases with
the thickness of the slab and, for 10 layers of cells, the probability
of reentry for high degree of hypoxia arrives at 100% for several
values of φ, as we can see in Figure 4C.

3.3. Minimum Size of a 2D Injured
Rectangular Slab That Sustains Reentries
The difference between the probabilities of reentry obtained
in Figure 3, 4 is due to the difference of size of the injured
region. Whereas, for example, in Figure 3A the total injured

area is 6.16 cm2, in Figure 3A the injured area is the whole slab,
corresponding to 16 cm2.

Next we study theminimum area needed to generate reentries.
We use a single layer rectangular slab (2D) and reduce its
size systematically. We evaluate the probability of reentries for
different values of φ keeping [ATPi] = 2mM. The same approach
is used in the next sections.

We obtain one reentry over one hundred tries for φ = 0.38
and φ = 0.40 in a system formed by 7 × 7mm2 square (see
Figure 5A). However, we did not find any reentry in smaller
systems. Note that as our tissue mesh is formed by finite volumes
of (100µm)3 , the total number of volumes in such minimum
system is 4900.

A comparison between a reentry in the smallest tissue and a
typical reentry in a much bigger system is shown in Figure 5.
Whereas, for the first case, the excitation can propagate inside the
injured region without a clear structure, i.e., in a very fractionated
fashion, the reentry shown in the big injured region appears with
a well defined shape.

3.4. Minimum Size of a 3D Injured
Rectangular Slab That Sustains Reentries
One could consider that the total number of finite volumes (FVs)
is the most relevant feature that defines the minimum size of the
injured region, i.e., a tissue with a high number of injured FVs
would have a high probability to generate reentries. To check
this hypothesis we perform numerical simulations in a three-
dimensional rectangular slab of tissue keeping the thickness
constant, 10 layers of cells, and we evaluate the minimum volume
under these conditions.

We obtain a single reentry over 25 tries for φ = 0.62 in a
system formed by a slab with a volume of 7 × 7 × 1mm3. The
two-dimensional version of this slab is actually the same case
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FIGURE 3 | Histograms with the percentage of reentries in a rectangular slab of tissue with an injured circular region with different levels of hypoxia (ATPi ) and fibrosis

(φ). For a two dimensional system corresponding to a tissue with a single layer of cells reentries occurs at low fraction of fibrosis (A), while for 5 layers (B) and 10

layers (C) the probabilities of reentries increase and reentries occur at higher fractions of fibrosis. The probability to find a reentry decreases for higher values of ATPi .

The size of the slab is 4 × 4 cm; The injured region occupies a circular region with radius equal to 1.4 cm.

discussed in the previous section. The total number of FVs in
such minimum 3D system is 49000, which is 10 times bigger
than the number of FVs in 2D. Therefore, these results indicate
that the total number of FVs (or myocytes) inside the injured
region is not the only relevant parameter for the generation of
reentries.

3.5. Minimum Size of a 3D Injured Cubic
Slab That Sustains Reentries
Next we change the geometry of the domain. We define a cubic
injured tissue formed by L × L × L cm3, where L is the length of
the cube. We vary the volume by modifying L.

Following the same type of initial condition employed along
the previous studies, we systematically reduce the size of the
cube to estimate the minimum size which sustains reentries.
We find reentries in a cube with L = 0.4 cm. In this case
the total number of FVs in such minimum system is 64000,
which is actually larger than the number of FVs in the previous
rectangular three-dimensional slabs (which was 49000).

3.6. Dependence on the Initial Perturbation
The minimum size of a cube to obtain reentries also depends
on the initial perturbation. The simulations done previously

in the whole tissue slabs are initiated with a perturbation in
one of the faces of the volume. However, in the case of the
circular injured region in the middle of the slab, see Figure 2 the
perturbation from the exterior of the slab continuously trigger
the entrance of the wave from different positions. Therefore,
the propagation of the waves toward the injured region is
different than the oversimplified version shown for example in
Figure 5. In order to study how reentries depend on the way
AP propagates toward the injured region we implemented and
analyzed different initial perturbations, or stimulations, in a cubic
domain with fibrosis and hypoxia. See three examples of reentries
in Figure 6 with different initial protocols (videos are available in
the Supplementary Material).

We apply several protocols to evaluate the effect of the initial
perturbation. We initially perturb a different number of faces of
the cubic domain. The most effective way to initiate a reentry
inside the cubic domain is the introduction of a perturbation
in one face of the cube. Such case is discussed in the previous
section, and a particular realization with theminimum size where
reentries are observed is shown in Figure 6A. The increase of the
size of the injured cube increases the number of reentries (with
the same number of statistically independent realizations), as
shown in Figure 7. Similar minimum size was obtained when two
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FIGURE 4 | Histograms with the percentage of reentries in a rectangular slab with different levels of hypoxia (ATPi ) and fibrosis (φ). For a two dimensional system

corresponding to a tissue with a single layer of cells reentries occurs at low fraction of fibrosis (A), while for 5 layers (B) and 10 layers (C) the percentages of reentries

are higher and occur at higher fractions of fibrosis. The probability to find a reentry decreases for higher values of ATPi . The size of the slab is 4 × 4 × N cm.

FIGURE 5 | Reentries in different sizes of 2D rectangular slabs of cardiac tissue at different time steps. Reentry obtained in a small system with size 7 × 7 × 0.1 mm

(A) and reentry obtained in a two-dimensional system with size 40 × 40 × 0.1 mm (B).

adjacent faces of the injured cube were perturbed simultaneously.
However, the probability to induce a reentry is systematically
smaller than the previous case, see Figure 7.

The application of the initial perturbation in four of the faces
of the cube synchronizes the excitation inside the injured cube

and increases drastically the minimum size needed to obtain
reentries. With this stimulus protocol, the minimum size that
present reentries increases to L = 6 mm, corresponding to a total
of 216000 finite volumes. See an example of a reentry in such case
in Figure 6B.
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FIGURE 6 | Reentries obtained in cubic grids for different initial protocols and time steps. Activation of a single face of a cubic domain of 0.4 × 0.4 × 0.4 cm (A).

Activation of four faces of a cubic domain of 0.6 × 0.6 × 0.6 cm (B). Simultaneous activation of the six faces of a cubic domain of 0.8 × 0.8 × 0.8 cm (C).

FIGURE 7 | Number of reentries obtained for different sizes of two-dimensional squares (A) and three-dimensional cubes (B) under different initial perturbation

protocols. A total of 600 (A) and 300 (B) simulations per bar were performed with six different values of the fraction of fibrosis φ = 0.35, 0.36. 0.37, 0.38, 0.39, and

0.40 (A) and three different values of the fraction of fibrosis φ = 0.62, 0.63, 0.64 (B), both with [ATPi ] at 2 mM. Error bars are calculated assuming a binomial

distribution for the generation of reentries.

Finally, we consider the effect of the simultaneous excitation of
all the six faces of the cube and reentries are only obtained with
a cube of size L = 8 mm, corresponding to a total number of
512000 FVs. See an example of reentry induced by the complete
excitation of the six faces of a cube with L = 8 mm in Figure 6C.

For the sake of completeness, we have evaluated the
changes on the number of reentries for different sizes in
two dimensional tissues, see Figure 7A. In two dimensions
we observe a similar behavior and for highly synchronized
perturbations (four faces) the minimum size is much
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larger than for less synchronized stimulations (one or two
faces).

4. DISCUSSION

The computer simulations presented in this work suggest that
the combination of fibrosis and hypoxia in a localized region
of the myocardium can provide a sufficient condition for the
genesis of ectopic beats. The mechanism behind the generation
of ectopic beats is unidirectional block inside a region with
diffuse fibrosis and hypoxia, where micro-reentries are formed.
We note that, although specific regions have been correlated
with the generation of ectopic beats, such as the pulmonary
veins (Haïssaguerre et al., 1998) during atrial fibrillation or
border zone of infarct regions after coronary occlusion (Boineau
and Cox, 1973), the mechanism behind this remains unclear.
Along decades experiments and numerical simulations have
suggested several candidates: abnormal automaticity, triggered
activity, such as early or delayed after depolarization, micro-
reentries, or even the combination of some of these three
(Jalife, 2011). Multiple data available in the literature supports
all these mechanisms. Probably, each one might be more
specific to a particular disease. However, the results in this
work may somehow defy this common sense. Micro-reentries
could arise from the combination of hypoxia and fibrosis,
two cardiac conditions that appear together in many heart
diseases, as hypertrophic cardiomyopathy, hypertensive heart
disease, recurrent myocardial infarction, and even in respiratory
diseases, such as obstructive pulmonary disease, obstructive
sleep apnea and cystic fibrosis. Therefore, our results suggests
that a single mechanism could be behind many different
pathologies.

It is interesting to note also that among these three
mechanism, only micro-reentry, as first proposed to explain
PVCs in Boineau and Cox (1973), already suggested that both the
electrophysiology as well as the micro-structure of cardiac tissue
should be taken into account. Both abnormal automaticity and
triggered activity mechanisms focus only on electrophysiology
aspects of single myocytes. Nevertheless, recent studies have
shown that the presence of fibrosis or other non-conductive or
non-excitable cells is of extreme importance in the generation
of ectopic beats, even when the altered electrophysiology of
myocytes reflects abnormal automaticity or triggered activities
(Pumir et al., 2005; Zimik et al., 2015). Therefore, it seems that
recent studies are converging toward mechanisms that combine
both electrophysiological and micro-structural changes in order
to explain the genesis of dangerous ectopic beats.

In this work, we used simple computational models to
reproduce hypoxia and diffuse fibrosis. Nevertheless, the result
of this combination is far from trivial. First, in the simulations
that considered only one of these two processes, i.e., only hypoxia
or only fibrosis, ectopic beats were not created. However, even
when both conditions were considered, ectopic beats were not
always present. This combination does not result in an all-or-
none mechanism. The generation of ectopic beats depended on
many aspects that were evaluated in this work: percentage of

fibrosis, fibrosis pattern, level of hypoxia, size of the injured
tissue, its shape, and how AP waves enter the injured region.
The way fibrosis is distributed within cardiac tissue was modeled
stochastically. Therefore, we used the Monte Carlo method to
calculate the probability of an injured tissue to generate ectopic
beats.

By varying the percentage of fibrosis and level of hypoxia we
observed that the probability of micro-reentries increases with
the level of hypoxia, i.e., the scenario with most severe hypoxia
was the one with the highest number of reentries. In addition,
the simulations that generated ectopic beats had percentages of
fibrosis between 37 and 65%, and the highest number of reentries
was obtained using percentages of fibrosis near the percolation
threshold, a pure topological metric. This is in agreement with
our previous results (Alonso and Bär, 2013; Gouvêa de Barros
et al., 2015; Alonso et al., 2016).

In these previous studies, we have considered simple
and phenomenological models of cardiac myocytes to study
the effects of atrial fibrillation (Alonso et al., 2016) or
we have considered realistic models of mouse ventricular
tissue (Gouvêa de Barros et al., 2015). Here, we consider a human
ventricular model (Ten Tusscher and Panfilov, 2006) where
hypoxia could be studied at different degrees. The common
features of all these studies are the basis of the investigated
mechanism of micro-reentry: (1) Diffuse fibrosis generates
complex and long reentrant paths within the damaged region;
(2) Both action potential and wavelength are short for the cases
of mouse AP, remodeled AP due to atrial fibrillation, or, in
this paper, remodeled AP due to hypoxia in myocytes of the
human ventricle. The combination of long pathways and short
wavelengths allows micro-reentry circuits to be formed.

The probability of a compromised region to become an
ectopic pacemaker is higher for large damaged regions. We have
confirmed this hypothesis with our simulations using both two
and three-dimensional systems, see Figure 7. These simulations
also show the minimum sizes of the domains where reentries
were obtained. The dependence on the size supports the idea that
if the system is large, source-sink mismatches are more likely to
appear together with long reentrant pathways. Nevertheless, our
results suggest that the relation between size and probability of
reentry is not trivial and the shape of the injured region and the
way AP waves enter it play important roles.

For instance, in Table 2 we summarize our results in terms of
minimum required sizes to generate reentries for different tissue
geometries and different stimulation protocols. By comparing the
simulations that used the same stimulation protocol (stimulus
from a single face) we observe that the minimum volume in
cm3 may vary substantially: 70 × 70 × 1 (0.005 cm3), 70 ×

70 × 10 (0.05 cm3), and 40 × 40 × 40 (0.064 cm3). In fact,
our results suggest that it is easier to generate an ectopic beat
on flat geometries or on thin slabs than on cubics geometries.
Coincidentally, the most common infarct is known to be the sub-
endocardial one, with a geometry of the damage tissue that can
be described as a thin slab near the endocardial surface of the
heart. Nevertheless, if we keep the geometry fixed Figure 7 clearly
shows that by increasing the volume or size of the injured region
sustained reentries are more likely to occur.
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TABLE 2 | Minimum sizes needed to support reentries using different geometries

and different stimulation protocols. FV, Finite Volume.

Grid Perturbation Geometry (FVs) # FVs Total volume (cm3)

L× L× 1 1 Face 70× 70× 1 4900 0.005

L× L× 1 2 Faces 80× 80× 1 6400 0.006

L× L× 1 4 Faces 100× 100× 1 10000 0.01

L× L× 10 1 Face 70× 70× 10 49000 0.05

L× L× L 1 Face 40× 40× 40 64000 0.064

L× L× L 4 Faces 60× 60× 60 216000 0.216

L× L× L 6 Faces 80× 80× 80 512000 0.512

Table 2 also shows how micro-reentries depend on the
different possible entrances of the wave into the injured region.
We have found that when the borders are well synchronized the
minimum injured volume that is needed to generate reentries is
much bigger than when the borders are loosely synchronized.
For instance, the last three lines of Table 2 show the minimum
volumes for different initial conditions when the geometry of the
injured region is a cube, see also Figures 6 , 7.

Our results on the minimum size of fibrotic regions can be
compared with measurements taken from human ventricles with
late-enhancement magnetic resonance imaging (LE-MRI). The
studies reported in Wu et al. (1998); Ørn et al. (2007), and
de Haan et al. (2011) reported scars of a minimum size around
0.1 cm3 for patients with a history of ventricular tachycardia. In
our simulations we have found that it is possible to generate an
ectopic pacemaker on injured regions with much smaller sizes
(one order of magnitude smaller). This discrepancy could be
related to the lack of spatial resolution of nowadays LE-MRI
exams. Nevertheless, the presented minimum size regions have
very low probability to behave as an ectopic pacemaker, see
Figures 6 , 7. Therefore, although the occurrence of reentries in
such small regions is theoretically possible, it is very unlike to
occur.

There are many limitations in this study. First, we have
used simple models for both fibrosis and hypoxia. For instance,
different types of fibrosis can be observed (Nguyen et al., 2014):
compact, interstitial, patchy and diffuse. In this work we have
only used a simple model for diffuse fibrosis. In addition,
the results and conclusions presented in this work should be
taken cautiously. As we have previously mentioned, although
hypoxia and fibrosis are found together in many heart and
respiratory diseases, they are usually accompanied by many other
pathological conditions. Although the complex interactions of
pathological conditions other than hypoxia and fibrosis are out of
the scope of this work, we list here a few interactions that deserve
further investigations in future works. In respiratory diseases
hypoxia has been co-observed with oxidative stress (Yin et al.,
2012; Ramond et al., 2013; Debevec et al., 2017). It has been
shown that the combination of hypoxia and oxidative stress can
be quite complex, involve multiple scales of cellular metabolism
and lead to further reduction of APD (Zhou et al., 2009). In the
case of acute ischemia, whereas hypoxia is present and has been
shown to be the condition that most affects AP waveform (Shaw
and Rudy, 1997), hyperkalemia and acidosis are also important

conditions that can considerably reduce AP wave velocity
and, as consequence, further reduce wavelength. Whether the
aforementioned conditions could, in theory, corroborate with the
describedmicro-reentrymechanism, and increase the probability
of the genesis of ectopic beats, other conditions could counteract
it. For instance, during fibrosis a possible connection between
myocytes and fibroblasts could increase the APDs of myocytes
(Kohl and Gourdie, 2014). However, it is still an open question
if fibroblasts are electrically coupled to the myocytes (Kohl
and Gourdie, 2014). Therefore, we employ here a simple
approach assuming that fibroblasts do not interact electrically
with myocytes and they basically act as barriers to the action
potential propagation. This approach has been employed in a
large number of scientific studies on the modeling of fibrosis in
ventricular (Ten Tusscher and Panfilov, 2007; McDowell et al.,
2011; Kazbanov et al., 2016) and atrial (Cherry et al., 2007; Alonso
et al., 2016; McDowell et al., 2015) tissues. Such approach has
been also employed in highly detailed microscopic models of
cardiac tissues where cells are disconnected by barriers or by dead
cells (Jacquemet and Henriquez, 2009; Hubbard and Henriquez,
2014; Gouvêa de Barros et al., 2015). Other studies consider
different approaches to model the electrical interaction between
fibroblasts and the myocytes (Xie et al., 2009; Nayak et al., 2017).
Finally, we highlight that this is a pure theoretical study, and
therefore, further experimental validations are pending.

In summary, the combination of fibrosis with hypoxia in a
localized region of the myocardium can provide the sufficient
condition for the genesis of ectopic beats and reentries in a
human ventricular model. The size, shape and geometry of the
injured region, as well as the electrophysiology remodeling due
to hypoxia are important features that determine the probability
of an affected region to behave as an ectopic pacemaker, a trigger
for life-threatening arrhythmias.
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Computational studies using mathematical models of the sinoatrial node (SAN) cardiac

action potential (AP) have provided important insight into the fundamental nature of cell

excitability, cardiac arrhythmias, and potential therapies. While the impact of ion channel

dynamics on SAN pacemaking has been studied, the governing dynamics responsible

for regulating spatial and temporal control of SAN synchrony remain elusive. Here, we

attempt to develop methods to explore cohesion in a network of coupled spontaneously

active SAN cells. We present the updated version of a previously published graphical

user interface LongQt: a cross-platform, threaded application for advanced cardiac

electrophysiology studies that does not require advanced programming skills. We

incorporated additional features to the existing LongQt platform that allows users to

(1) specify heterogeneous gap junction conductivity across a multicellular grid, and (2)

set heterogeneous ion channel conductance across a multicellular grid. We developed

two methods of characterizing the synchrony of SAN tissue based on alignment

of activation in time and similarity of voltage peaks among clusters of functionally

related cells. In pairs and two-dimensional grids of coupled cells, we observed a

range of conductivities (0.00014–0.00033 1/�-cm) in which the tissue was more

susceptible to developing asynchronous spontaneous pro-arrhythmic behavior (e.g.,

spiral wave formation). We performed parameter sensitivity analysis to determine the

relative impact of ion channel conductances on cycle length (CL), diastolic and peak

voltage, and synchrony measurements in isolated and coupled cell pairs. We also defined

measurements of evaluating synchrony based on peak AP voltage and the rate of wave

propagation. Cell-to-cell coupling had a non-linear effect on the relationship between ion

channel conductances, AP properties, and synchrony measurements. Our simulations

demonstrate that conductivity plays an important role in regulating synchronous firing of

heterogeneous SAN tissue, and demonstrate how to evaluate the role of coupling and

ion channel conductance in pairs and grids of SAN cells. We anticipate that the approach

outlined here will facilitate identification of key cell- and tissue-level factors responsible

for cardiac disease.
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INTRODUCTION

The sinoatrial node (SAN) generates the electrical impulse
that coordinates mechanical contraction of the heart [1, 2].
Proper SAN function is an essential component for normal
pacemaking at baseline and heart rate variation in response
to external regulators such as exercise or stress [3, 4]. SAN
dysfunction is common in a wide variety of cardiac diseases,
and is characterized by sinus bradycardia, sinus pause, and/or
inappropriate heart rate responses to exercise and stress [5].
Regulation of SAN activity has great therapeutic potential for
a rapidly aging population where SAN disease affects 1 in 600
heart patients over the age of 65 [6]. The only effective treatment
for patients with chronic symptomatic sinus node dysfunction is
pacemaker implantation [7].

SAN cells demonstrate spontaneous action potential (AP)
activity and exhibit a wide variety of dynamic phenomena similar
to other coupled oscillators, including collective synchronization
[8]. One challenge for studying synchronization of cardiac
pacemaking activity is the multiscalar and heterogeneous nature
of the sinus node. Pacemaking is governed by a delicate source-
sink relationship between the SAN and surrounding atria defined
by the need for a relatively small structure (SAN) to excite a
much larger tissue mass (surrounding atria) [9, 10]. This source-
sink relationship is altered in disease due to increased fibrosis
and/or cell loss leading to a shift of the primary pacemaker site,
emergent behavior of ectopic foci, or otherwise reduced capacity
for SAN pacemaking [11–13]. There is a critical need to expand
knowledge regarding regulation of membrane ion channels in the
SAN, as well as to further develop quantitative tools to assess the
sensitivity of the SAN to changes in coupling and ion channel
regulation [14].

Mathematical modeling has been used to investigate and
advance our understanding of cardiac electrophysiology,
arrhythmia mechanisms, and potential therapies [15]. Models
have been particularly helpful in elucidating the ionic basis of
SAN activity and cardiac pacemaking [16, 17]. For example, SAN
cell models have furthered our understanding of the relative
importance of coupling between Ca2+ cycling and membrane
ion channels in automaticity [18] and the genetic basis of
human SAN disease [19]. At the same time, multicellular models
of coupled SAN cells have demonstrated dynamic changes
in the location of the primary pacemaker site in response to
β-adrenergic stimulation [20]. Other studies have coupled
heterogeneous cell types in multicellular preparations to examine
the influence of inexcitable cells (e.g., fibroblasts) on pacemaking
[21, 22].

Although mathematical modeling has undoubtedly advanced
our understanding of SAN function, there remain significant
barriers to more widespread use of mathematical modeling and
simulation in the field. To reduce these barriers a cross-platform
user interface called LongQt has been developed for advanced
cardiac electrophysiology and arrhythmia simulations [23]. Here,
we present an extended user interface for LongQt, which adds
support for performing advancedmulticellular simulations.With
this added utility, the influence of perturbations in SAN cell
electrophysiology (ion channel conductance and gap junction
conductivity) on synchronization of coupled heterogeneous

SAN cells was investigated. Two complimentary measures were
defined to quantify the level of synchronization between coupled
cells: synchrony factor and peak transmembrane potential
(Vm,peak) similarity. Parameter sensitivity analysis was performed
in single cells and in coupled cell pairs to determine the impact
of ion channel and gap junction properties on cycle length (CL),
peak and diastolic Vm, and measures of synchrony. Finally,
we performed two-dimensional simulations in a network of 7
× 7 heterogeneous SAN cells to examine the influence of cell
properties and gap junction conductivity on pacemaking. These
studies generate a number of interesting findings, including: (1)
conductivity caused small but potentially important differences
in the relative impact of ion channel conductances on AP
properties in coupled cells; (2) a specific coupling range
promoted emergent asynchronous behavior; and (3) quantitative
measurements were defined to evaluate synchrony based on
peak AP voltage and the rate of propagation within a group of
coupled firing cells. While our findings highlight the difficulty of
relating events at the single cell level to an emergent behavior
like pacemaking, they also point to more robust methods for
understanding the ionic basis of cardiac pacemaking.

MATERIALS AND METHODS

Ion channel kinetics were simulated using an existing well-
validated model of the rabbit SAN cell implemented in LongQt
simulation software [23, 24] (Figure 1A). Briefly, the LongQt
simulation software has three main user interfaces: the grid
editor, the main user interface, and the grapher. The simulations
performed for this study were set up using the grid editor,
which allows the user to select tissue geometry and gap junction
conductivity for a set of simulations. The files generated by the
grid editor can be selected to run in the main user interface,
which also allows the user to select the cell model and measure
properties of the simulation. Simulation results generated at
the end of the simulation can be visualized by the grapher
interface.

Multicellular Simulations
Multicellular simulations were performed in either a cell pair or
7× 7 grid. The two-dimensional cable equation was solved using
the Peaceman-Rachford alternating direction implicit method.
The level of conductivity between cells was perturbed about a
default value of 0.33 1/�-cm. A heterogeneous population of
SANAPs were created by varying eight ion channel conductances
(ICa,L, ICatt, Ih, IKr, IKs, INCX, INaK, Ito) lognormally, with a
mean of 1 and a standard deviation of 0.2. Spontaneous APs
were simulated for 50–100 s until steady state was reached. AP
properties such as CL, Vm,peak, and maximum diastolic potential
(MDP) were measured using LongQt. All other analysis was
performed with scripts written in Python version 3, which are
available on Github.

Synchrony Measurements
In order to develop measurements of synchrony in multicellular
simulations, we organized APs from individual cells in the grid
into “activation clusters,” which represent a group of neighboring
cells whose activation could be considered related both in time
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FIGURE 1 | (A) LongQT simulation software uses an object-oriented design where a “Cell” class describes the workings of an individual cell, i.e., Rabbit SAN cell vs.

Human Ventricular cell. Cell classes then are used by “Protocol” classes to define what type of simulation is being run on the cell. This could be a simulation with

constant stimulus or periodic stimulus. Simulations of fiber and grid tissue require additional objects that go between Protocols and Cells to define properties of the

tissue like its geometry and conductivity. Finally there is a ”Measure” class which tracks values such as Peak Voltage or Ca2+ minimum. (B) Schematic diagram of the

rabbit SAN cell model, which includes mathematical representations of ion currents important for generating the sinoatrial node cell action potential: L-type and T-type

Ca2+ currents (ICaL and ICaT ), Rapid and slow components of the delayed rectifier K+ currents (IKr and IKs), 4AP-sensitive transient outward and sustained K+

currents (Ito and ISus), acetylcholine-sensitive K+ current (IKach), Hyperpolarization-activated funny current (Ih), Na
+/Ca2+ exchanger (INCX ), Na

+/K+ pump (INaK ),

and Ca2+ signaling uptake (jup) into the network sarcoplasmic reticulum (NSR), transfer (jtr) into the junctional SR (JSR), and release (jrel) into the subspace.

and space. To organize cells into clusters, we ordered them
sequentially according to their respective activation times. The
sequence was then processed in order and a cell was added
to a cluster if its position was within three cells of any cell
already in the cluster. For higher gap junction conductivities,
we increased the spatial window to five cells to account for
increased communication between cells. If an activated cell was
not spatially close enough to any existing group of firing cells,
then it was marked as the focus of a separate and distinct cluster.
Any cluster would be considered complete when one of its
constituent cells fired again. This allowed for characterization of
multiple clusters simultaneously within the same grid (common
in lower conductivity grids).

For example, given an ordered sequence of cell activation
times (Cell1,1,Cell1,2,Cell5,5,Cell1,1,Cell1,3), where Celli,j is

located in the ith row and jth column of a two-dimensional grid,
the clustering algorithm would select Cell1,1 as the beginning
of a new cluster, C1, as there are no other existing clusters. The
second cell in the sequence, Cell1,2, would then be added to C1

as it is within three cells of Cell1,1. Cell5,5, however, is too far
away from C1 and so would be marked as the beginning of a new
cluster, C2. Since Cell1,1 is already assigned to C1, its appearance
a second time in the sequence causes the algorithm to initialize a
new cluster C3. Finally, the last element in the sequence, Cell1,3,
would be added to C3.

Vm,peak similarity is calculated as the inverse of the standard
deviation of Vm,peak in each cluster. The synchrony factor is
calculated as the inverse of the slowest propagation time between
the closest cells in a cluster. These two measurements are then

weighted by the size of the cluster in order to account for the
number of oscillators in the network.

Software and Hardware
LongQt simulation software utilizes the Qt application
framework (version 5.6 or later found at https://www.qt.io) and
may be compiled to run on Mac (OS X 10.10 or later), Windows
(version 7 or later) or Linux systems. Python bindings for LongQt
are available for more extensive simulation use. Compiled
versions of LongQt are available as downloadable executable files
under the “Research” section of the Hund lab website1, and are
accessible through Github2. LongQt incorporates C++ code for
the Kurata SAN cell model (Figure 1B). Differential equations
for the simulated model are solved in LongQt using the forward
Euler approach, with a maximum timestep of 0.05ms and a
minimum timestep of 0.005ms. A subset of simulations were
run using Ohio Supercomputer Center resources [25]. Data
supporting conclusions of this manuscript are available upon
request to the corresponding author.

RESULTS

Effect of Coupling on Parameter Sensitivity
in Coupled Pairs of Sinoatrial Node Cells
Parameter sensitivity analysis has been performed mostly on
models of the single cell to elucidate mechanisms underlying

1https://hundlab.engineering.osu.edu
2https://github.com/hundlab
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cardiac AP generation [26–30]. Using the extended LongQt
platform, we sought to address the extent to which coupling
influences the dynamics of synchronous firing in a network of
SAN oscillators with heterogeneous ion channel activity. We first
coupled a simulated wild-type (WT) to a variant SAN cell (scaling
factors defined as follows: ICa,L = 3.19472, ICatt = 2.59237, Ih =
2.64054, IKr = 2.3018, IKs = 2.93799, INCX = 2.79239, INKA =

2.45686, Ito = 2.06311) and observed spontaneous AP properties
for coupled and uncoupled pairs (Figures 2, 3). As expected,
despite very different AP properties of the individual cells, a
normal degree of coupling eliminated differences between the
two cells. Interestingly, the steady-state CL, DDR, and MDP
values of the coupled cells were closer to that of the single cell with
the shortest CL (in this case, the variant cell). This phenomenon
is consistent with observations of shifts of the SAN pacemaker
site in cardiac disease from the original area of excitation to areas
with the earliest depolarization [31].

To provide insight into the influence of coupling on
spontaneous AP dynamics, we performed parameter sensitivity
analysis on the single cell by generating 616 AP variants and
performing linear regression on the dataset. We compared these
results to a separate regression analysis on a dataset where the
variant was coupled to a WT cell (Figure 4). For the most part,
regression coefficients relating ion channel conductances to AP
properties were similar for single and coupled cells. For example,
perturbations in maximal conductances of the L-type Ca2+

current (ICa,L) and the transport rate of the Na+/K+ ATPase
(INaK) have a large positive influence on Vm,peak in both single
and coupled simulations, while perturbations in conductances of
the T-type Ca2+ current (ICatt), rapid delayed rectifier K

+ current
(IKr), and transient outward K+ current (Ito) are inversely
related, i.e., an increase in ICatt, IKr, or Ito decrease peak Vm.
Despite the overall agreement, there are small but interesting
differences between sensitivity of the single vs. coupled cell. First,
while ICa,L has a positive effect on CL and Vm,peak in both single
and coupled cells, its influence is diminished in the coupled cell.
Likewise, coupling reduces the influence of ICa,L on DDR and
MDP. In contrast, our simulations predict that coupling increases
the effect of IKr, at least with respect to DDR and CL.

To provide additional insight into the influence of coupling
strength on sensitivity analysis, we performed 6160 simulations
(10 conductivities, 616 simulations of a WT cell coupled to
a variant cell) over a range of conductivities (Figure 5). In
many instances, the regression coefficients mapping ion channel
conductances to AP properties were found to be independent
of coupling strength, especially for Vm,peak and MDP. However,
interesting exceptions to this behavior were observed for CL and
DDR, where regression coefficients for specific ion channels were
highly dependent on coupling strength (e.g., ICa,L, ICa,tt, Ih for
CL and Ih and IKr for DDR) This series of simulations suggests
that the relative importance of specific ion channels for cardiac
pacemaking changes in subtle but important ways across a range
of coupling values.

We sought to explore coupling effects over a range of 25
different coupling strengths with a WT cell coupled to 20
different variants (totaling 500 different simulations of two
coupled cells). We plotted the average steady-state values of the
MDP, Vm,peak, and CL for both the coupled WT and variant cells

FIGURE 2 | Simulated spontaneous SAN action potentials in one WT cell and

one cell with lognormally perturbed ion channel factors. Simulations were run

to steady state (50 s). (A) At a conductivity of 0.33 (1/�-cm), which is the

normal conductivity between two WT cells, the cells synchronize both the

voltages and the times at which they fire. (B) At a conductivity of 0 (1/�-cm)

the cells are uncoupled and act the same as if they were run independently.

at each coupling value. As expected, values for MDP, Vm,peak,
and CL converge in the WT and variant cell as gap junction
conductivity increases (Figure 6). Interestingly, CL appears to
synchronize at lower conductivity values compared to other AP
properties. Furthermore, a small window of interesting dynamics
characterized by increased standard deviation values for AP
properties was observed around 10−3.8 1/�-cm.

Effect of Coupling in Two-Dimensional
Simulations of Heterogeneous SAN Cells
We hypothesized that the range of conductivities identified
in Figure 6 with large standard deviations would promote
asynchronous activity in two-dimensional simulations of
heterogeneous SAN cells. We simulated 7 × 7 grids of
variant SAN cells with homogeneous cell-to-cell coupling,
for 25 different conductivities. At low coupling values most
SAN cells oscillate without interacting with each other
(Supplementary Videos 1, 2). The range of values indicated
by arrows in Figure 6 was also the range in which spiral wave
activity was sustained in the two-dimensional grid simulation
(Supplementary Videos 3, 4). For higher degrees of cell-to-
cell coupling, cells across the grid were fully synchronized
(Supplementary Videos 5, 6). This set of simulations suggests
that coupling can promote an arrhythmogenic substrate, even in
a small group of pacemaker cells.

Quantifying Synchrony in Two-Dimensional
Simulations of Heterogeneous SAN Cells
We sought to quantify the level of synchrony in a two-
dimensional grid in order to quantitatively distinguish between
spiral wave formation (Supplementary Videos 3, 4), completely
asynchronous activity (Supplementary Videos 1, 2) and
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FIGURE 3 | Measured steady state values from the last action potential in the simulation. The differences between the two cells are resolved at full conductivity to a

value somewhere between the two cells. (A) Cycle length, (B) diastolic depolarization rate, (C) max diastolic potential, (D) max voltage.

synchronous firing (Supplementary Videos 5, 6). Plotting beat-
to-beat CL for all 49 cells in a 7 × 7 grid for three different gap
junction conductivities demonstrates a wide range of steady-state
CLs when the propagating wave is random (Figure 7A), large
deviations when spiral waves are formed (Figure 7B, <20 s),
and a uniform CL across the grid when the tissue is oscillating
synchronously (Figure 7B, >20 s and Figure 7C). Plotting
beat-to-beat CL at normal conductivities shows uniform CL
across all cells in the simulation (Figure 7C).

The synchrony factor, which represents the inverse of the
longest conduction time between two cells in the same cluster,
approaches zero and demonstrates noise (0.5 amplitude trace)
for chaotic asynchronous simulations where the cells are not
interacting with each other (Figure 7D). When coupling is in
a range that sustains spiral wave activation, the spiral waves
can be visualized in the peaks and valleys of synchrony factor
over time (Figure 7E, <20 s). As coupling increases to normal
consistent propagation across the entire grid, the synchrony
factor increases and maintains a steady value (Figure 7E, >20 s
and Figure 7F). Synchrony factor values above 1 consistently
represented fully synchronized grids, and below 0.5 consistently
represented asynchronous random poorly coupled oscillations.

Vm,peak similarity, which represents the inverse of the
standard deviation of peak voltages in one beat, approaches
zero with high-amplitude fluctuations for chaotic asynchronous
simulations (Figure 7G). As a simulation transitions from
asynchronous (Figure 7H, <5 s) to an organized, complex
activation (spiral wave, Figure 7H, >5 and <20 s) Vm,peak

similarity rapidly reaches a single steady-state value after a brief

period of low amplitude fluctuation. Synchronized activation
produces a large steady-state value for Vm,peak similarity with a
brief latency (Figure 7I). These results demonstrate the utility of
quantifying synchrony measures to distinguish between random,
spiral, and synchronous propagating waves sustained by coupling
differences in heterogeneous SAN tissue. Vm,peak similarity
values above 15 consistently represented fully synchronized grids,
and below 10 consistently represented asynchronous random
poorly coupled oscillations.

We performed parameter sensitivity analysis on coupled
cells to determine the relative ion channel contributions to
the synchrony factor and peak voltage similarity measurement
(same 616 simulations as Figures 4A–D). At normal gap junction
conductivity, synchrony factor is not dominated by any single
ion channel conductance (relatively small regression coefficients
for all conductances) with surprisingly little contribution from Ih
(Figure 8A). However, ICa,L and INaK both had a large negative
contribution and Ito a large positive contribution to Vm,peak

similarity (Figure 8B). The relationships observed in Figure 8B

also seemed to be an inverse of the contributions to peak voltage
in previous simulations (Figure 4A). When we performed
parameter sensitivity analysis over a range of conductivities,
we observed that the relationship between each individual ion
channel’s contribution and synchrony factor was non-linear with
respect to conductivity (Figure 4C). Interestingly, any shifts from
a positive to negative contribution occurred in the range of 10−4

1/�-cmwhich is the same range that we observed sustained spiral
wave activity (Supplementary Videos 3, 4) and large standard
deviations in CL (Figure 6C).
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FIGURE 4 | Partial least-squares regression analysis of ionic gating variables in the rabbit sinus node model. Regression coefficients showing how changes in model

parameters affect membrane dynamics in two coupled simulated SAN cells. 616 simulations were performed at a normal coupling strength (0.33) between one WT

and one variant cell with random ion channel factors (L-type Ca2+ current ICa,L, T-Type Ca2+ current ICa,T, hyperpolarization-activated current IH, rapidly activating

delayed rectifying K+ current IKr, slowly activating delayed rectifying K+ current IKs, Na
+/Ca2+ exchanger INCX, Na

+/K+ ATP-ase INaK, transient outward K+ current

Ito) perturbed over a lognormal distribution, with a mean of 1.0 and a standard deviation of 0.2. Parameter sensitivities of ion channel conductance parameters affect

(A–B) peak membrane voltage, (C–D) cycle length, (E–F) max diastolic potential (MDP), and (G–H) diastolic depolarization rate (DDR). The impact of ICa,L, ICatt, Ito,

IKr, and INaK contributed highly to membrane voltage dynamics including peak (ICa,L, INaK, Ito), cycle length (ICatt), diastolic membrane voltage (IKr, INaK ), and

diastolic depolarization rate (INaK ).

DISCUSSION

In this study, we use mathematical modeling to explore the role

of coupling on spontaneous AP dynamics and synchronization

of pacemaking. Our simulations led to a number of important
findings, including: (1) While parameter sensitivity analysis

reveals a similar relationship between ion channel conductances
and AP properties in single and coupled cells, our simulations

predict small but potentially important differences, including
complicated effects of coupling on the influence of ICa,L and
IKr; (2) a specific coupling range in simulations promoted
complex emergent behavior (including spiral wave activation)
and at values higher than this coupling range cells fired
together synchronously; (3) We define an approach for first
defining groups of related cells (activation clusters) and
then characterizing their synchrony (synchrony factor and
peak voltage similarity), which facilitates quantification and
visualization of synchronous behavior in a two-dimensional
heterogeneous grid of SAN cells. Our studies are distinct from

previous studies investigating coupling between spontaneously
activating oscillators in that we employ an AP model that
describes detailed ion channel kinetics. Another novel aspect
of this set of studies is the introduction of updated LongQt
simulation software to explore the impact of heterogeneous
ion channel expression and gap junction conductivity in
multicellular simulations. LongQt is cross-platform and available
for download at hundlab.org, and may be useful in future
exploration of conductivity in two-dimensional simulated tissue.

Previous studies have explored coupling inhomogeneity
between simulated SAN cells and observed trends of synchronous
firing and heterogeneous tissue becoming homogeneous through
a democratic entrainment process at sufficient coupling values
[20, 32, 33]. Our studies also support the theory of a democratic
entrainment process both at the level of two coupled cells
(Figure 6) where both cells adjusted their transmembrane
dynamics to adjust to a new value that was distinct from firing
alone. All grid simulations with uniform wave propagation began
activation from a cluster of cells firing together rather than a
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FIGURE 5 | Partial least-squares regression analysis of ionic gating variables vs. cell conductivity. Two cells were paired where one was lognormally perturbed with a

mean of 1 and a standard deviation of 0.2, while the other cell was WT. 616 simulations were run at each conductivity for the least-squares regression at each of 10

different conductivities. Regression coefficients are shown over a range of gap junction conductivities for: (A) Max voltage, (B) cycle length, (C) max diastolic potential,

(D) diastolic depolarization rate.

FIGURE 6 | Conductivity vs. cell properties for two coupled SAN cells where one cell was perturbed lognormally, while the other cell is a WT. Data points are the

average of 20 simulations with the error bars corresponding to one standard deviation. (A) Max diastolic potential vs. Conductivity. Max diastolic potential

synchronizes at higher conductivities and the means become equal around 10−1.6 1/�-cm. Larger standard deviations are observed around 10−4 1/�-cm. (B) Peak

voltage vs. conductivity. Peak voltage equalizes at higher conductivities and the means become equal around 10−1 1/�-cm. Larger standard deviations are observed

in the 10−4 and 10−3 1/�-cm range. (C) Cycle Length vs. Conductivity. Cycle length synchronization happens at much lower conductivities than the others, with the

means equalizing between 10−4 and 10−3 1/�-cm. It is in this range that the cells are highly interactive but not fully able to synchronize, which is indicated by large

standard deviations.
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FIGURE 7 | Simulations were run on a 7 × 7 grid for 50 s. Each cell was randomly perturbed using a lognormal distribution with a mean of 1 and a standard deviation

of 0.2. (A–C) Cycle length for 49 cells is shown over time. At low conductivities (A) cells do not synchronize, and as conductivity increases the cells begin to interact

and find a common cycle length (B) and eventually fire at a common cycle length immediately (C). (D–F) Synchrony factor vs. Time. The synchrony factor

measurement is the longest amount of time it takes the peak of the action potential to propagate from any cell to its neighbor. Low values indicate random and low

synchrony factor waves (D). The larger peaks and valleys that appear in higher conductivities (E) correlate with spiral wave formation and multiple wave fronts in the

grid. When cells interact and fire in cohesive synchronization (F), synchrony factor becomes higher and stabilizes. (G–I) Peak voltage similarity vs. Time. The peak

voltage similarity measurement is the inverse of the standard deviation of the voltage values across the grid. Low conductivities indicate random noisy peak voltage

similarity waves (G). As conductivity increases, peak voltage similarity increases and stabilizes initial noisy values (H). At higher conductivities, peak voltage similarity

display no errant behavior (I).

single cellular driver (Supplementary Videos 1–6). This cluster
size was different for different coupling values, indicating that
the multicellular simulations demonstrated mutual entrainment
of SAN cells.

The SAN is a small structure that is insulated from the
rest of the right atrium, and employs a limited number of
conduction pathways in order to activate the surrounding tissue
[34, 35]. In the SAN, cells form groups with high degrees of
coupling between cells in a group and much lower amounts of
coupling at the border of groups [36, 37]. Conduction barriers
due to fibrosis or structural remodeling may inhibit healthy
SAN activation, and initiate SAN microreentrant waves [38].
Previous simulation studies have observed that microreentrant
conduction was not sustained by AP changes, and required

a large center of fibrotic tissue to produce microreentry [22].
We identified a specific range of low coupling that sustained
emergent spiral wave behavior in a heterogeneous grid of SAN
APs, indicating that increased coupling is a crucial component to
synchronization of pacemaker cells and sufficient coupling may
override differences in cell-to-cell transmembrane dynamics.
Notably, our simulations did not require implementing a “track”
of fibrotic tissue around which the AP wave could propagate,
but still resulted in emergent behavior. The synchrony factor
measurement, which best represents how closely together cells
are firing within a beat, demonstrated a non-linear relationship
with respect to coupling (Figure 8A). This further supports the
idea that coupling non-linearly alters the ability of SAN cells to
fire synchronously.
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FIGURE 8 | Partial least-squares regression analysis of synchrony factor and

peak voltage similarity metrics. 616 simulations were run with two paired cells

where one was lognormally perturbed with a mean of 1 and a standard

deviation of 0.2, while the other cell was a WT. Ion channel coefficients did not

have a significant impact on (A) synchrony factor. In contrast, parameter

sensitivity analysis indicates that the impact of ICa,L, INaK, and Ito greatly

(Continued)

FIGURE 8 | impact the (B) peak voltage similarity metric. (C,D) Partial

least-squares regression analysis of ionic gating variables vs. cell conductivity.

At each conductivity simulations were run as in (A) and (B) and a total of 10

different conductivities were examined. (C) Synchrony factor is very non-linear

with a range between 10−4 and 10−3 1/�-cm in which all the ion channel

coefficients are very close to 0. (D) Peak voltage similarity is mostly linear with

an exception between 10−4 and 10−3 1/�-cm where most of the ion channel

coefficients pinch toward 0.

In previous work, Michaels et al. examined the effects of cell-
to-cell coupling strength on entrainment [20, 33]. They tested
both paired cells as well as small grids. In paired cells they
observed that the cells tended to synchronize to a CL closer
to the faster cell. In a grid they found that the apparent wave
front slowed as coupling strength decreased, however they did
not see spiral waves or other conduction issues. They also tested
a grid with a partial wall of inexcitable tissue and found that
the cells on the other side were still trained, although slightly
delayed.

Shifts in the location and size of the SAN pacemaker may
occur as a compensatory mechanism in response to sinus node
dysfunction, vagal nerve stimulation, or pharmacological block
of the Na+ current or L-type Ca2+ current [31]. Our simulations
show that a heterogeneous SAN with low coupling will sustain
pro-arrhythmic behavior, but increasing coupling may help
synchronize the entire grid. A shift in size and location of the
pacemaker may be beneficial due to coupling changes; this shift
transforms the pacemaker into a larger group of highly coupled
cells, which our simulations show can synchronize through
a democratic entrainment process regardless of ion channel
heterogeneity. These studies also suggest that altering gap
junction coupling in the SAN may promote healthy pacemaking
activity.

The studies presented here perform a variety of parameter
sensitivity analyses in order to deconstruct the relationship
between ion channel conductance, conductivity, SAN
transmembrane properties (DDR, MDP, peak voltage, and CL),
and the proposed measurements of synchrony (synchrony factor
and peak voltage similarity). Both ICa,L and IKr demonstrated
a high contribution to transmembrane dynamics and non-
linear behavior with respect to transmembrane properties and
synchrony metrics. This is further supported by experimental
evidence of sinus node impairment or dysfunction related to
modulation of L-type Ca2+ current [39, 40] or hERG channel
function [41, 42]. The parameter sensitivity analysis also
demonstrates that the relationship between specific ion channel
conductances may vary depending on cell-to-cell coupling values
(Figures 5, 8). This suggests that it is not necessarily sufficient
to extrapolate effects of single cell perturbation to emergent
behavior at the tissue level.

The emergent behavior of coupled oscillators has been
widely explored in both computational and experimental
studies of multiple areas of biology such as mitochondrial,
circadian rhythms, synaptic firing, and broader ecological
studies. Synchronization and its quantification has been widely
discussed in networks of coupled oscillators [43–46]. Our hope
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is that these set of studies contributes to an already diverse
set of work and adds to understanding of the impact of ion
channel behaviors as well as coupling in the SAN pacemaker.
We also believe that the synchrony metrics presented here
would be useful for quantifying dynamics in larger tissue
experiments such as optical mapping experiments. Future studies
quantifying synchronization of coupled SAN oscillators in tissue
or determining the impact of ion channel changes on generation
of microreentrant arrhythmias may help support the findings in
the simulations shown here.

LIMITATIONS

While these mathematical modeling studies are based on

a well-validated single cell model of the rabbit SAN AP,
the two-dimensional simulations have important limitations

based on experimental data. For the sake of simplicity,
SAN cells were coupled in a uniform rectangular grid with

homogeneous coupling strengths, but this does not match the
detailed physiology of the three-dimensional atrium. Similarly,

heterogeneity of the SAN is modeled as either a gradient with AP

differences between the central and periphery of the node, or a
mosaic with a variable mix of SAN and atrial cells from periphery

to the center. The gradient model is supported by a wide range

of experimental data and simulations showing a change in the
transmembrane properties of the SAN between the periphery and

the center, a change in the density of ion channels responsible

for INa and If, and a lack of atrial cells in the center of the

SAN [47, 48]. The studies presented here more closely represent
the mosaic model, but are distinct in that only SAN cells are

implemented (no randomly placed atrial cells are simulated in the
grid simulations). It is also important to note that the grid used in
our studies contains a relatively small number of cells compared
to the actual SAN. However, based on previous work [36, 37],
it is possible to consider each cell in the grid as representative
of a group of cells so that the behavior observed in our grid
should scale to larger dimensions. Finally, these simulations did
not implement parasympathetic stimulation of tissue, or patch of
atrial tissue surrounding the SAN to further explore activation of
atrial tissue by the SAN complex. This is especially important to

note in two-dimensional simulations using a rabbit SAN model,

since the architecture of the rabbit sinus node and its subsequent
conduction pathways is distinct from human [31]. Conductivities
between cells in these simulations were fixed, so the tubular
shape of cells was ignored. In addition, we observed emergent
behavior at the edges of large grid simulations, which may be an
artifact of the simulation setup. While outside the scope of the
current study, going forward it would be interesting to design
experiments to test model predictions in in ex vivo preparations.
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Supplementary Videos 1–6 | Movies of cell voltages in 7 × 7 grids depicting

asynchronous activity (Video 1), spiral waves (Video 3), and synchronous activity

(Video 5) from Figure 7. As propagation across the grid happens very quickly, the

movies are slowed by a factor of 2X. The end of the spiral wave from Figure 7B

thus happens at t = 40 s in the video as opposed to t = 20 s in the simulation.

Additional movies depicting clusters in the same 7 × 7 grids from Figure 7 are

labeled Videos 2, 4, 6 for asynchronous, spiral waves, and synchronous activity,

respectively. These movies show clusters of cell action potentials forming and then

being removed. Colors for the clusters repeat regularly and are not for any

purpose besides distinguishing the clusters. As the time for a cluster to propagate

is very fast, these movies are slowed by a factor of 4X. All movies were created at

a constant 40 fps using python plotting library (matplotlib).
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Ventricular tachycardia (VT) secondary to myocardial infarction (MI) remain a major cause

of sudden death in adults. Premature ventricular complexes (PVCs), the first initiating

beats of a portion of these arrhythmias, arise from triggered activity in the infarct border

zone (BZ). At the cellular scale, spontaneous calcium release (SCR) events are a known

cause of triggered activity and have been reported in cells that survive MI. At the tissue

scale, fibrosis has been shown to play an important role in creating the substrate for VT.

However, the interplay between SCR-mediated triggered activity and fibrosis upon VT

formation in infarcted hearts has not been fully investigated. Here, we conduct in-silico

experiments to assess how macroscopic and microscopic anatomical properties of the

BZ can create a substrate for SCR-mediated VT formation. To study this question,

we employ a stochastic subcellular-scale model of SCR events and action potential to

simulate different cardiac preparations. Within 2D sheet models with idealized infarct

scars and BZ we show that the probability of PVCs is higher, 55%, in preparations with

thin conducting isthmuses (0.2mm) transcending the scar. In an anatomically-detailed

model of the rabbit ventricles with a realistic representation of intramural scars, we

show that the heart’s protective source-sink mismatch prevents ectopy. Furthermore,

we demonstrate that fibrosis disrupts this antiarrhythmic mechanism making PVCs more

likely. PVC probability is highest (≥25%) when fibrosis accounts for 60 and 90% of the

BZ in the 2D sheet and the 3D anatomical model, respectively. Above these thresholds,

PVC occurrence decreases because of: (1) the reduced number of myocytes in the

BZ; (2) conduction block. Block is caused either by disconnection of BZ cells from the

myocardium or due to source-sink mismatches at regions of rapid tissue expansion.

Moreover, while outward propagation to healthy tissue may fail, PVCs traveling inward

through the scar might encounter more favorable loading conditions. These PVCs may

exit to the myocardium and reenter back at the region of block. Overall, our findings

indicate that thin isthmuses and strands of myocytes interspersed with fibrosis can be

arrhythmogenic. Ablation of these microscopic structures may prevent VT formation.

Keywords: myocardial infarction, isthmus, fibrosis, arrhythmia, triggered activity, calcium, computer simulation
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1. INTRODUCTION

Cardiovascular diseases, such as myocardial infarction (MI),
continue to be the leading cause of morbidity and sudden
death globally. MI is a common consequence of coronary
artery disease, in which a narrowing or occlusion of an artery
prevents the supply of oxygen-rich blood to the heart. A series
of changes in the infarct region results in deterioration of
electrical activity that has been shown to set the stage for
ventricular tachycardias (VTs) [1, 2], the major cause of sudden
cardiac arrest after MI [3]. Experimental evidence suggests that
a variety of these arrhythmias are attributed to focal excitations
in the infarct border zone (BZ) [4]. Electrophysiological and
structural remodeling following MI render the region of injury
more prone to reentry and triggered activity due to delayed
afterdepolarizations (DADs) [1, 2].

At the cellular scale, DAD-triggered activity has been
associated with “spontaneous” calcium (Ca2+) release (SCR)
events from the sarcoplasmic reticulum [5, 6]. Such abnormal
Ca2+ releases have been reported in Ca2+ overloaded myocytes
[7], inherited heart rhythm disturbances [8], heart failure [9] as
well as in cells that survive in the infarcted heart [10, 11]. DADs
can be divided into subthreshold or suprathreshold depending
on whether their amplitude is below or above the threshold for
action potential (AP) initiation, respectively. At the tissue level,
a triggered propagating AP would only be possible if the net
ionic current generated by cells undergoing DADs within a given
volume of myocardial tissue is sufficient to excite downstream
coupled myocytes [12, 13]. This transition from single-cell to
tissue/organ events depends on the electrotonic load posed by
the surrounding myocardium that acts as sink for the source of
depolarizing current produced by the triggered AP [13]. In MI,
this protective source-sink mechanism is altered by reduced cell-
to-cell coupling caused either by remodeling of gap junctions [14]
or deposition of fibrous tissue as a result of wound healing [15].
While the infarct scar is important to maintain the structure of
the heart wall, fibrotic inlays in the BZ have the undesired effect
of disrupting the intracellular matrix. Consequently, the number
of downstream cells that are coupled to each myocyte is reduced.

The notion that DADs are more likely to summate to trigger
organ-scale premature ventricular complexes (PVCs) in regions
experiencing lower electrotonic load has been supported by
recent findings from our group [16, 17] as well as others
[13]. Using in-silico experiments we have demonstrated that
electrotonic loading conditions in the structurally healthy heart
favor the origin of SCR-mediated PVCs in the 1D His-Purkinje
system (HPS) instead of the 3D ventricles [16]. Similar to the
HPS, where cells are electrically isolated from themyocardium by
collagen sheaths [18], interstitial and patchy fibrosis in the infarct
BZ [19, 20] can separate myocyte bundles reducing source-sink
mismatches that prevent PVC formation in well coupled tissue.

While the link between subcellular SCR events and PVC
formation in the structurally healthy ventricles has been a
topic of intense research [8, 16, 21], the mechanism by which
stochastic SCR events in cells that survive in the infarcted heart
can summate to trigger PVCs remains to be elucidated. The
goal of this study is to investigate the conditions under which

SCR-mediated triggered activity in the infarct BZ can initiate
arrhythmogenic PVCs (see schematic diagram in Figure 1). Our
hypotheses are that (1) triggered activity in thin conducting
isthmus within the scar or in myocytes from the BZ interspersed
with fibrosis can summate to form ectopic focal sources due
to the reduced electrotonic load on these cells; (2) source-sink
mismatches at regions of abrupt tissue expansion such as the
mouth of an isthmus or at the border between fibrotic and healthy
tissue can lead to unidirectional block of PVCs setting the stage
for VTs. These hypotheses are tested with the aid of state-of-the-
art computer simulations within idealized as well as anatomically
realistic cardiac infarct models prone to PVC formation induced
by stochastic SCR events.

2. METHODS

2.1. Model of SCR and Ventricular AP
A stochastic phenomenological mathematical model of SCR
events [22] was coupled to the Mahajan-Shiferaw (MSH) model
[23] and used to simulate cellular dynamics in themyocardium as
well as in the BZ. In this phenomenological model, a SCR event is
represented as a Ca2+ wave that is nucleated in the cell and then
propagating in a fire-diffuse-fire way [22]. The phenomenological
model accounts for experimentally observed features of SCR
events and has a dependence on SR Ca2+ load ensuring that SCR
events are more likely to occur as the SR becomes overloaded

FIGURE 1 | Conceptual diagram of the roles of functional and structural

remodeling involved in a portion of ventricular tachycardias (VTs) following

myocardial infarction (MI). SCR = spontaneous Ca2+ release.
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[7]. Following our previous computational studies [16, 17], key
parameters of the MSH model were modified to increase its
propensity for Ca2+-mediated DADs. Specifically, Ca2+ overload
was induced by increasing extracellular Ca2+ concentration
from 1.8 to 4mmol/L, the strength of the electrogenic sodium-
calcium exchange current (INCX) was doubled and the maximum
conductance of the inward rectifier potassium current (IK1) was
decreased to 30% of its control value. If not stated otherwise,
these values were used throughout the study.

2.2. Geometrical Models
Different geometrical finite element (FE) models were used
throughout to simulate electrical activity in cardiac tissue: 2D
sheets with idealized representations of infarct scars and BZ
and an anatomically-detailed rabbit biventricular (BiV) model
with a realistic representation of an intramural scar. The major
components of the FE models are outlined below.

2.2.1. 2D Sheets With Idealized Scar
2D sheet models consisting of a square 4× 4 cm with nodal
spacing of 200µm (40,000 quadrilateral FEs) were constructed
to investigate the role of conducting isthmuses transcending the
scar on the probability, timing and location of SCR-mediated
triggered activity. Each model included an idealized infarct
region representing a scar with an isthmus with different widths
[24]. A transition region consisting of BZ myocytes surrounding
the isthmus and scar region was also included in the models.
A schematic of the 2D computational models is shown in
Figure 2A. The radii of the scar and BZ were set to 15 and
17mm, respectively, giving an isthmus length of 30mm and
a transition distance of 2mm between the scar and healthy
myocardium. The width of the isthmus wisth was varied between
0.2 and 8mm to approximately represent microscopic tracts of
surviving myocardium interspersed with fibrosis [19] as well as
macroscopic channels within the scar [25, 26]. In addition, a 2D
sheet with wisth progressively widening from 0.2 to 4mm was
built to study the effects of geometrical asymmetries on formation
and conduction of PVCs. The scar tissue was represented as
being necrotic, i.e., by imposing no-flux boundary condition at
its interface [27]. Isotropic tissue conductivity was assigned to the
tissue with a value of 0.14 S/m [28] to dissect out the role of the
isthmus’ width on PVC formation.

2.2.2. Biventricular Scar Anatomy Model
The rabbit BiV model in this study is a tetrahedral FE model
including realistic fiber architecture [29]. The model contains
547,680 myocardial nodes defining 3,073,529 tetrahedral
elements with a mean discretization of 279µm. Within this
BiV model, an anatomically-detailed region of infarct scar and
corresponding BZ was assigned according to a previous study
from our group [30]. The scar anatomy in this study was defined
representing approximate infarct regions created following
occlusion of the left anterior descending (LAD) coronary
artery (see Figure 3). The intracellular domain, comprising
of both myocardium and BZ, was modeled with anisotropic
conductivities values of 0.14 and 0.019 S/m along and transverse
to the fiber direction, respectively [28]. This modeling choice

allowed us to rule out any effects due to fiber disarray as well as
to scrutinize the role of structural heterogeneities in the infarct
BZ.

2.3. Modeling Fibrosis in the BZ
Fibrosis in all geometrical models was modeled by including
synthetic patterns of non-conducting tissue in the BZ [31–33]
(see Figure 2B). Fibrosis patterns were generated by randomly
transforming some of the BZ myocytes in fibrosis, i.e., non-
conducting material. The amount of fibrosis in relation to
myocardium in the BZ (FIBBZ) was varied from 0% (no fibrosis)
to 100% in steps of 10%. Five fibrotic patterns were constructed
for each FIBBZ . Fibrosis is modeled here in the same way as
the scar, i.e., by imposing no-flux boundary conditions along the
interface.

2.4. Governing Equations
Electrical activity within the geometrical models was simulated
using the monodomain equations expressed as:

∇ · (σm∇Vm) = βIm, (1)

Cm
∂Vm

∂t
+ Iion(Vm, η)− Istim = Im, (2)

∂η

∂t
= f (Vm, η) (3)

where σm = diag(σml, σmt , σmt) is the harmonic mean
conductivity tensor or the effective bulk conductivity [34]; Vm

is the transmembrane voltage; β is the surface to volume ratio;
Im is the transmembrane current density; Cm is the membrane
capacitance per unit area; Iion is the density of the total ionic
current flowing through the membrane channels, pumps and
exchangers; and Istim is the stimulus current density. Iion depends
on Vm as well as on a set of state variables η which describes
channel gating and ionic concentrations according to the vector-
valued function f (Vm, η). Ionic dynamics Iion, η and f (Vm, η)
were represented by the MSH rabbit ventricular cell model [23].

Solutions to the monodomain Equations (1–3) within the
cardiac models were performed using the Cardiac Arrhythmia
Research Package (CARP) [35].

2.5. Computational Protocols
2.5.1. Single-Cell Simulations
Similar to experimental protocols [7], extracellular Ca2+ in
the DAD-prone MSH myocyte model was increased from
1.8mmol/L to 4mmol/L. The model was then paced at 2.0Hz
for 100 cycles to stabilize. At the end of the pacing protocol,
the diastolic Ca2+ load in the SR increased from 1,200µmol/L
(control value) to 1,600µmol/L (Ca2+ overload). Single-cell
model states at the end of the pacing protocol were stored and
used as initial conditions for the tissue models.

2.5.2. Tissue Simulations
Tissue models in this study were initialized with stabilized single-
cell model states to avoid the computational burden associated
with pacing tissue preparations. In the 2D sheet models, a
stimulus current was applied in the lowermost portion of the
tissue (Figure 2) while the BiV model was paced at the apex
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FIGURE 2 | Schematic of the 2D sheet computational model. (A) The idealized infarct consisting of a circular region representing the BZ (gray), which contains two

circular segments representing the scar (white), is surrounded by healthy myocardium (red). The BZ region contains an isthmus of width wisth separating the scars.

(B) 2D sheet computational model with different degree of fibrosis in the BZ (FIBBZ ).

FIGURE 3 | Anatomically-based representation of infarct scar and BZ within the BiV model based on infarct formation following occlusion of the LAD. (A) Healthy

ventricular tissue is shown in red with necrotic scar in white and BZ tissue in gray. (B) Short-axis clipping plane view highlighting intramural scar anatomy.

(see Figure 3). In both cases, the stimulus was followed by a
1,500-ms pause in order to see whether PVCs would emerge.
Controlled stimuli followed by a halt in pacing is a widely used
protocol as it allows for the correct characterization of triggered
activity [7, 22]. SCR events were inhibited in the myocardium to
investigate abnormal triggered activity only in cells in the infarct
BZ. Moreover, due to the stochastic nature of the SCR events,

N = 100 simulations for each set of experiments were performed.
Further details on the in-silico simulation protocols used in this
study have been provided in a recent publication [16].

2.6. Data Analysis
The number of simulations in which a PVC was observed, n,
was recorded to compute the probability pPVC = n/N during
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the pacing pause. PVCs that did not activate more than 50% of
the ventricles were not computed in pPVC. Furthermore, location
as well as the waiting time until the onset of a PVC, tPVC, was
determined as the time instant of a triggered AP crossing -10mV.

3. RESULTS

In accordance with the protocol described previously, 100
simulations were conducted for each experiment in order to
compute statistics on probability, location and timing of SCR-
mediated PVCs.

3.1. Ectopy in 2D Sheets With Idealized
Scars
Figure 4 shows snapshots of the wave propagation pattern of a
paced beat followed by a PVC in a 2D sheet with a 4-mm isthmus.
The excitation wavefront resulting from the paced beat (t= 5ms)
can be seen to propagate quickly through both myocardium and
isthmus (t = 75ms). SCR events in myocytes from the BZ led to
DADs that summated to trigger a PVC at time t = 850ms within
the isthmus. The PVC successfully propagated to both proximal
and distal mouths (relative to the stimulus site) of the isthmus
(870ms ≤ t ≤ 880ms) entering the myocardium where both
wavefronts collide at about t = 920ms.

3.1.1. 2D Sheets With Different Isthmus Widths
Probability, timing and location of PVCs within the 2D models
as a function of isthmus’ width are shown in Figures 5, 6. pPVC

decreases as the width of the isthmus increases dropping from
55% in the 2D sheet with a microscopic isthmus (wisth = 0.2mm)
to 0% in the sheet with a 8-mmmacroscopic channel. In addition,
PVCs arose earlier on average within cardiac tissues with thinner
isthmuses. tPVC was 805 ± 30ms in the sheet with 0.2mm
isthmus compared to 843 ± 33ms in the 2D sheet with an
isthmus 10x larger (wisth = 2mm). Figure 6 shows the location
of ectopic focal sources in the sheets with wisth = 0.2, 2, and
4mm. Although all myocytes were undergoing SCR events in the
BZ, PVCs only originated in the isthmus. Furthermore, foci were
found throughout the isthmus and away from both mouths. The
minimum focus-to-mouth distance was 2.61 and 14.14mm for
wisth = 0.2mm and wisth = 4mm, respectively. Only one PVC
was detected in N = 100 experiments with the cardiac sheet with
a 4-mm isthmus (focus as well as propagation pattern are shown
in Figure 4).

3.1.2. Effect of Fibrosis in the BZ
To assess the effect of fibrosis density on PVC formation,
synthetic fibrosis patterns were added to the BZ of the 2D cardiac
sheet with a 4-mm isthmus (see Figure 2B). Figure 7 shows
the spatial distribution of Vm at different times in a 2D sheet
with fibrotic density FIBBZ = 50%. Unlike in the control case,
Figure 4, where the paced beat traveled with the same velocity
throughout the myocardium and the isthmus, conduction was
slower within the fibrotic model due to the more complex
pathway the wavefront had to travel. The PVC in the fibrotic BZ
model originated earlier, t = 772ms, than in the control case
(t = 850ms), but took longer to exit at the proximal mouth of

FIGURE 4 | PVC formation in a 2D sheet with the isthmus width of 4mm. Vm maps at different times showing a paced beat (t = 5ms) followed by a PVC (t = 850ms)

in the isthmus.
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FIGURE 5 | Statistics of SCR-mediated PVCs in 2D sheets with different isthmus widths (wisth). (A) Probability pPVC of SCR-mediated PVCs. (B) Average waiting

time tPVC.

FIGURE 6 | Location and incidence of PVCs in 2D sheets with isthmus widths of 0.2, 2, and 4mm.

the isthmus (43ms compared to 25ms with no fibrosis). It can
be seen at time t = 850ms that clusters of cells in isthmus as
well as in the BZ (areas enclosed by circles) are not activated
by the wavefronts since they are separated from the rest of the
conducting tissue by fibrosis.

Statistics and location of PVCs in the 2D sheet with different
fibrotic patterns inserted in the BZ are presented in Figures 8, 9.
For each FIBBZ , five fibrotic patterns were constructed and added
to the BZ of the 2D sheet model resulting in a total ofN = 5× 100
simulations per FIBBZ . Note that, in Figure 8A, PVCs become
more likely as the amount of fibrosis in the BZ increases with
maximum pPVC = 25% for FIBBZ = 60%. Above this threshold,

pPVC decreased and dropped to zero in 2D sheets with densely
fibrotic BZs (FIBBZ ≥ 80%) due to the reduced number of
cells available to trigger a PVC. pPVC also varied for the same
FIBBZ because of differences in the randomness of the pattern
(topology) of the fibrotic region. In the case of FIBBZ = 60%, for
instance, pPVC was 9% (N = 100) and pPVC = 39% (N = 100) for
the least and most arrhythmogenic fibrotic patterns, respectively.

Figure 8B shows that reduced cell coupling caused by fibrosis
facilitated triggered activity at the cellular level to form PVCs
earlier than in the control 2D sheet: tPVC = 792ms ± 34ms for
FIBBZ = 60% compared to tPVC = 850ms for FIBBZ = 0%. As can
be seen in Figure 9, most PVCs originated within the isthmus,
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FIGURE 7 | PVC formation in a 2D sheet with wisth = 4mm and FIBBZ = 50%. Vm maps at different times showing a paced beat (t = 5ms) followed by a PVC

(t = 772ms) in the isthmus.

but foci were also found in cells interspersed with fibrosis in the
BZ (FIBBZ = 70%). Although triggered activity was observed in
clusters of cells in 2D sheets with highly fibrotic BZs (FIBBZ ≥

70%), they did not propagate to the myocardium as they were
located in isolated regions confined by patches of fibrosis.

3.1.3. Unidirectional Conduction Block and Reentry
Unidirectional block was only observed in experiments with a
particular topology of the 2D sheet with FIBBZ = 60% exhibiting
regions of abrupt tissue expansion. However, no reentries were
detected in any of the simulations performed above. In order
to investigate whether reentry can occur resulting from the
combination of unidirectional block of SCR-mediated PVCs
and slow conduction, the experiment with the 2D sheet with
FIBBZ = 60% was repeated but with tissue conductivity reduced
by 50%. In addition, a 2D sheet with a thin isthmus that
progressively widens from 0.2mm (proximal mouth) to 4mm
(distal) was employed to further study effects of thin-to-thick
tissue expansion on block and reentry of PVCs. Reentries induced
by PVCs were observed in 41 and 71% of all simulations
(N = 100) on the 2D sheet with a widening of wisth and the 2D
sheet with FIBBZ = 60%, respectively. Figure 10 illustrates how
heterogeneities in both wisth and FIBBZ can lead to unidirectional
conduction block due to source-sink mismatch. In both cases,
a PVC is initiated by suprathreshold DADs near the proximal
mouth of the isthmus (indicated by a star). Both PVCs failed to
propagate from the proximal exit site to the myocardium due
to unfavorable loading conditions. The PVCs propagated along
the isthmus toward the distal mouth, where they entered the
myocardium. The PVCs then proceeded to propagate around the

scar arriving at the proximal mouth and entered the isthmus
at the proximal mouth, setting up a reentrant circuit (see also
Supplemental Movies 1, 2).

3.2. PVC Formation in the Biventricular
Scar Anatomy Model
The BiVmodel was employed to investigate PVC formation in an
anatomically-accurate infarct model of the rabbit ventricles (see
Figure 3). Similar to the 2D sheet models, N = 100 simulations
were performed to account for the stochastic properties of the
phenomenological model of SCRs. SCR events were not capable
of overcoming the ventricles source-sink mismatch to trigger
a PVC in any of the simulations. In order to study whether
fibrosis can disrupt this protective mechanism and promote
PVCs, random synthetic fibrosis patterns were also added to
the BZ of the BiV model. The activation sequence of a PVC
computed in the BiV model with FIBBZ = 90% is illustrated in
Figure 11. The PVC originated at t= 910ms in surviving strands
of myocardium within the macroscopic isthmus between two
scars in the intraventricular septum (star), entered the healthy
myocardium at about t = 945ms and propagated throughout the
ventricles.

Probability and timing of SCR-mediated PVCs are shown in
Figure 12. Results refer to N = 5 (topologies) × 100 simulations
for each FIBBZ . pPVC increased from 1 to 52% while tPVC
shortened from 856 ± 35ms to 827 ± 43ms in simulations with
FIBBZ = 70 and 90%, respectively. Similar to the experiments
with the idealized 2D infarct model, PVCs were most likely near
a FIBBZ threshold which was shifted from FIBBZ = 60% in the
2D sheet to FIBBZ = 90% in the 3D BiV model. Differences
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FIGURE 8 | Statistics of PVCs in 2D sheets with different FIBBZ . (A) Probability pPVC of SCR-mediated PVCs. (B) Average waiting time tPVC.

FIGURE 9 | Location and incidence of PVCs in 2D sheets with wisth = 4mm and FIBBZ = 10, 50, and 70%.

in the synthetic patterns of fibrosis added to the BZ were
also translated into increased or decreased propensity to PVC
formation. In the BiV model with FIBBZ = 90%, 34 PVCs
(N = 100 simulations) were observed in the least arrhythmogenic
of the fibrotic topologies compared to pPVC = 70% in the
most arrhythmogenic one. However, no reentrant episodes were
observed in any of the experiments performed with the BiV
model.

4. DISCUSSION

In this study we made use of computer simulations to investigate
the interplay between SCR-mediated triggered activity and

structural remodeling in the infarct BZ upon arrhythmogenic
PVC formation. An experimentally based model of SCR events
at the subcellular scale was coupled to a model for the rabbit
ventricular AP to simulate Ca2+-mediated triggered activity
within cells in idealized 2D infarct tissue as well as in a BiV
scar anatomy model. Simulation results showed that different
anatomical properties of the BZ altered loading conditions which
(1) increased the probability of SCR-mediated PVCs; and (2)
facilitated unidirectional conduction block of PVCs. Regions
of lower electrotonic load such as narrow isthmuses within
the necrotic scar favored PVC formation. In addition, at the
microscopic scale, the presence of fibrosis in the infarct BZ
decoupled cells reducing the number of downstream coupled
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FIGURE 10 | Arrhythmia induced by a SCR-mediated PVC. Reentry induced by a PVC in a (A) 2D sheet with wisth progressively widening from 0.2mm (proximal to

the stimulus) to 4mm (distal mouth); and (B) 2D sheet with wisth = 4mm and FIBBZ = 60%. Vm maps at different times showing PVCs triggered near the proximal

mouth. Bold arrows depict successful propagation as well as unidirectional conduction block.

FIGURE 11 | PVC formation in the rabbit BiV model with FIBBZ = 90%. Activation sequence on the endocardial and epicardial surfaces of a PVC originating between

two scars in the intraventricular septum (star).
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FIGURE 12 | Statistics of PVCs in the BiV model with different degree of fibrosis in the BZ (FIBBZ ). (A) Probability pPVC of SCR-mediated PVCs. (B) Average waiting

time tPVC.

myocytes increasing pPVC. Finally, fibrosis also gave rise to
regions of rapid tissue expansion from the BZ to the myocardium
that enhanced source-sink mismatch facilitating unidirectional
conduction block.

4.1. The Role of Electrotonic Load
Electrotonic modulation is a crucial factor preventing DADs
from triggering propagating PVCs in tissue. Ectopy is only
possible if errant cells undergoing DADs are capable of generate
sufficient source current to bring the surrounding quiescent
tissue, that acts as sink, to the activation threshold [12, 13]. Using
computer simulations, [13] demonstrated that the source-sink
mismatch was most severe in higher-dimensional cardiac tissue
than in a 1D cable of coupled myocytes. However, PVCs in their
models were evoked by synchronized DADs in a fixed number
of cells rather than by stochastic SCRs and Ca2+ waves. In the
present study, we made use of a stochastic phenomenological
model [22] accounting for experimentally observed features
of SCR events to investigate the electrotonic modulation of
triggered activity in postinfarct tissue. Our findings (see Figure 5)
suggest that PVCs are most likely to arise in thin conducting
channels resembling 1D strands of cells. Simulations within
2D models with idealized infarct geometries demonstrated that
pPVC was highest (55%) in the sheet model with the thinnest
conducting isthmus (wisth = 0.2mm) and gradually decreased
as the size of the isthmus increased. This is because myocytes
within the isthmus, which is enclosed on either side by scar,
experience a lower electrotonic loading than the rest of the
tissue. Such electrotonic effect can be seen in Figure 6. PVCs
originated everywhere throughout the isthmus, but were found
to lie away from both proximal and distal mouths (minimum
focus-to-mouth distance was 2.61mm for wisth = 0.2mm) due
to unfavored loading conditions in regions of abrupt tissue

expansion [36, 37]. As the size of the isthmus increases, the
electrotonic load on cells comes closer to that of a well-coupled
2D cardiac tissue. As a consequence, the number of cells that have
to undergo sufficiently well synchronized DADs increases [13]
making pPVC less likely as well as delaying tPVC [16].

In-silico experiments with the BiV scar anatomy model
showed that the protective source-sink mismatch in the 3D
ventricles prevented SCR-mediated DADs from triggering PVCs
in the infarct BZ. This is in line with our previous findings in
structurally normal ventricles, where we have shown that PVCs
originate earlier and with overwhelming likelihood in the 1D
HPS than in the 3D myocardium [16, 17]. Absence of PVCs
in the BiV model is likely due to the geometry of the BZ used
here. The 3D infarct morphology reflects tissue damage resulting
from coronary artery occlusion, which can vary size and structure
depending on individual variability in coronary anatomy and the
extent of collaterals [38]. Different scar anatomy models with
thinner isthmuses (<1mm) could potentially result in PVCs.

Although triggered activity is more likely to form PVCs within
thin isthmuses, successful propagation of these PVCs to the
myocardium depends on local electrotonic conditions at the
mouth of the isthmus. The cardiac safety factor for propagation
has been shown to be minimum near regions of thin-to-thick
tissue expansion [36], such as the mouth of the isthmus, where
source current generated by the excited cells is insufficient to
activate the downstream tissue [37]. Sink effects at the mouth
of the isthmus can also be altered by elevations in Vm resulting
from subthreshold DADs [17]. On one hand, depolarization
of resting potential bring the cells closer to the threshold of
the fast sodium current facilitating propagation [39]. On the
other hand, long lasting DADs ultimately lead to inactivation of
sodium channels promoting conduction block [17, 40]. Indeed,
simulation results (see Supplementary Results, Figure S1 in
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supplementary materials) demonstrate that propagation of an
AP initiated within the thinnest isthmus, wisth = 0.2mm, to
the myocardium depended on the amplitude of DADs at the
exit site. Subthreshold DADs with lower amplitudes led to
conduction block at isthmus’ mouth, whereas DADs close to the
activation threshold favored conduction of triggered APs to the
myocardium. This finding is corroborated by our previous study
[16], where SCR events happening in the whole ventricles, as a
result of heart failure, gave rise to a global depolarization that
gradually drove the tissue to the firing threshold.

4.2. Fibrosis and PVC Formation
Fibrosis plays an important role in the formation and persistence
of a variety of cardiac arrhythmias [41]. As illustrated in
Figure 7, fibrosis disrupts the intracellular matrix creating
complex microscopic pathways through which the wavefront
has to travel following zig-zag courses [42]. Such structural
alterations lead to: (1) conduction slowing, a factor known to
promote arrhythmias by shortening the wavelength [43]; and (2)
electrogram fractionation [44] typically used in clinical practice
to identify ablation targets [45]. Fibrosis has also been suggested
to promote triggered activity by reducing the protective source-
sink mismatch of tightly coupled tissue [15]. Xie et al. [13]
have shown that the required number of contiguous myocytes
exhibiting synchronized DADs decreases when tissue coupling
is reduced by the presence of fibrosis. In their in-silico models,
fibrosis was represented by fibroblasts randomly interposed
either at the ends or sides of myocytes. The authors concluded
that fibroblasts placed exclusively between the sides of myocytes
had a major effect on PVC formation since they separate cells,
turning a 2D tissue into a stack of longitudinal 1D fibers [13].
Fibrosis in all models employed in our study was modelled
by randomly removing myocytes from the BZ [32]. Increased
levels of fibrosis in the infarct BZ FIBBZ gave rise to complex
arrangements between cells resembling 1D strands or 2D clusters.
Consequently, PVC formation is favored (Figures 8–12) as
the downstream loading on errant myocytes interspersed with
fibrosis is lower due to the reduced number of cells coupled to
each other.

A critical FIBBZ value above which pPVC decreases and
becomes zero was observed in both geometrical models
used in this work. Moreover, this threshold increased from
FIBBZ = 60% in 2D sheet to FIBBZ = 90% in the 3D BiV model.
Interestingly, recent studies have suggested a strong correlation
between arrhythmogenesis and the percolation threshold [31–
33]. This topological metric is a mathematical concept related
to percolation theory, which describes the process of a moving
substance passing through a medium with random structure.
Although, quantitatively the critical FIBBZ values in this work
differ from the percolation threshold [32], qualitatively our
results showing that the FIBBZ threshold increases with tissue
dimensionality are in line with the findings of Alonso et al.
[32]. However, wavefronts in their work were initiated by pacing
the tissue rather than by stochastic firing of errant cells. Here
we demonstrated SCR-mediated PVCs are most likely in infarct
models with FIBBZ close to a critical value. The decrease in pPVC
in Figure 8A and Figure 12A above this FIBBZ threshold results

from the combination of two factors. First, the replacement of
myocytes by fibrosis reduced the amount of current sources
contributing to the formation of an ectopic focus. Second,
even though DADs could summate across cells to trigger an
AP, propagation to the myocardium was not possible due to
conduction block. Blocked PVCs in fibrotic BZs were either
because the focal sources were disconnected from the rest of the
tissue (see Figure 7) or due to unfavorable source-sink mismatch
caused by thin-to-thick expansions from the BZ to the healthy
myocardium (Figure 10).

Furthermore, not only the amount of fibrosis but also
its texture may be a key arrhythmogenic factor [41]. Unlike
in previous studies [13, 33], where percolation was used
with different rules for myocyte removal to produce diffuse
or interstitial fibrosis, the effects of different textures were
investigated here simply by creating different random fibrotic
BZs for a given FIBBZ . Propensity for PVC formation varied
substantially from one topology (randomness of the pattern) to
another in both geometrical models. In the 2D cardiac sheet with
FIBBZ = 60%, pPVC varied between 9% and 39% whereas in the
3D BiVmodel (FIBBZ = 60%) pPVC was within the 34%≤ pPVC ≤

70% range.

4.3. Mechanism for SCR-Mediated
Arrhythmogenesis
4.3.1. Unidirectional Conduction Block
Recently, Connolly et al. [24] have demonstrated that a
premature stimulus capturing inside the isthmus may be blocked
from propagating to the myocardium as the effective refractory
period (ERP) was shown to be higher at the isthmus’ proximal
mouth. However, the induced PVC could still propagate further
toward the distal end, where the tissue had recovered excitability,
and reenter back around the scar [24]. In this work we have
shown that conduction block can occur as a result of source-
sink mismatch rather than heterogeneities in AP duration or
in the ERP. This mechanism is illustrated in Figure 10 as well
as in Supplemental Movies 1, 2, where SCR-mediated DADs
achieved sufficient synchrony to trigger a PVC in the thinner
end of the isthmus (Figure 10A) or in myocytes interspersed
with fibrosis (Figure 10B). On one hand, myocytes located
on these regions experienced a lower electrotonic load which
favored PVC formation. On the other hand, unfavorable source-
sink conditions at the proximal mouth caused by rapid tissue
expansion led to unidirectional conduction block. This novel
mechanism demonstrated here was theorized by Nguyen et al.
[15]. The authors proposed that a PVC triggered in 1D-like tracts
of myocytes separated by fibrosis in the infarct BZmay propagate
both ways. They suggested that, outward propagation to the well-
coupled healthy tissue may fail since the current source from
the triggered AP in these strands of myocardium is suddenly
diluted into a greater number of neighboring quiescent cells.
However, inward propagation through the scar might encounter
more favorable loading conditions caused by a progressive
widening of the surviving myocardial bundles until the interface
with normal myocardium [15]. The findings from our study
show systematically how fibrosis in the infarct heart can alter
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local source-sink mismatch and directly facilitate unidirectional
conduction block of PVCs induced by stochastic SCR events.

4.3.2. Wavelength and Reentrant Circuits
While a PVC can exit at the distal mouth and travel around
the scar, it can only reenter back at the proximal site if
the cells have regained excitability. Thus, electrophysiological
changes promoting slow conduction or shortening of the ERP
are key factors in the success of a reentrant circuit [43]. No
reentrant episodes were observed in any of the experiments using
tissue conductivities obtained from experiments with the healthy
mammalian heart [28]. Additional simulations with geometrical
models prone to unidirectional block were performed with tissue
conductivities reduced by 50%, mimicking altered cell-to-cell
known to happen in pathological settings such as heart failure
[2], to investigate whether PVCs can form a reentrant wave.
Examples of reentries induced by SCR-mediated PVCs on two
different 2D infarct models are shown in Figure 10. The reduced
tissue conductivity shortened the wavelength allowing the PVC
to reenter at the proximal site as the tissue in that region had
regained excitability. See Supplemental Movies 1, 2 for further
details.

No reentries were detected in any of the experiments with
the BiV model. As discussed previously, this is probably because
of the geometry of the BZ. Other scar anatomies with different
fibrotic patterns could give rise to arrhythmogenic 3D source-
sink asymmetries at the boundaries with the healthymyocardium
increasing the likelihood of unidirectional conduction block and
reentry.

4.4. Clinical Implications
Reentrant VTs in the postinfarction heart have been associated
with the presence of a critical conducting isthmus within
the scar [25, 26]. The identification of such conducting
channels is of great clinical significance as they provide an
important target for catheter ablation therapy [26, 30]. Here
we demonstrated that isthmuses also provide a substrate for
PVC formation, the first initiating beats of a variety of VTs.
Our results suggest that ablation of isthmuses therefore may
not only interrupt a reentrant pathway, but also prevent the
formation of ectopic focal sources. Moreover, advances have
been made toward regeneration of cardiac tissue following MI
[46], but knowledge of possible beneficial as well as adverse
(proarrhythmic) outcomes is still limited. While the ultimate
goal of regenerative therapy is to replace scar tissue by new
contracting myocytes, an overactive tissue healing repair can
lead to collagen accumulation in the BZ [46]. Our biophysically
detailed simulations showed that increased levels of fibrosis in the
BZ reduce local source-sink mismatch favoring PVC formation.
Finally, reduced excitability due to blocking of sodium channels
by antiarrhythmic drugs or sodium channelopathies associated
with long Q-T and Brugada syndromes [47] have been shown
to create a potent substrate for arrhythmia induction by PVCs
[17, 40, 48]. In the infarcted heart, sodium current reduction can
further enhance source-sink mismatches causing unidirectional
block of PVCs at regions of abrupt tissue expansion.

4.5. Study Limitations
The SCR-mediated PVCs in this study were induced by
increasing extracellular Ca2+ concentration. However, SCR
events in cells that survive in the infarct BZ may occur as a
result of sympathetic nerve remodeling [49] as well as increased
levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII)
autophosphorylation [50]. Nevertheless, abnormal SCRs and
Ca2+ wave activity has been shown to be the underlying cause
of DADs in cells that survive in the BZ [10, 11] and are accounted
for in our phenomenological model. Furthermore, while other
remodeling processes are known to take place in ischemia and
infarction [1, 39, 51], only modifications that increase propensity
of the MSH model to DAD-triggered activity were implemented
here [16, 17]. This modeling choice allowed us to precisely assess
how stochastic triggered activity in cells that survive MI can
form organ-scale PVCs. Collagen deposition is also one of the
hallmarks of structural remodeling in the BZ [19]. Fibrosis is
included in our models by randomly removing myocytes from
the BZ. Although fibrosis distribution can be obtained from
imaging data [33], the simplistic synthetic patterns of fibrosis
used in this work allowed us to investigate how degree as well
as texture of fibrosis influence PVC formation. Finally, fibrosis
was modeled by removing FEs representing myocardium from
the geometrical models. While more sophisticated techniques
exist [27], overall behavior would be qualitatively similar
since wave propagation would still have to travel tortuous
pathways.

5. CONCLUSIONS

In this work, state-of-the-art computational models were
employed to investigate whether Ca2+-mediated ectopy is
facilitated by macroscopic as well as microscopic anatomical
properties of the BZ of infarcted hearts. Our in-silico experiments
have demonstrated that thin isthmuses transcending the non-
conducting scar as well as strands of surviving myocytes
interspersed with fibrosis are sources of PVCs initiated by
abnormal SCR events. Triggered activity within thin strands
of myocytes is more likely to summate and form PVCs due
to the lesser electrotonic load on these cells. While the heart’s
antiarrhythmic source-sink mismatch prevented PVC formation
in macroscopic isthmuses, fibrosis was shown to disrupt this
protective mechanism favoring arrhythmogenic focal sources.
Moreover, fibrosis contributed to unidirectional block of PVCs
and when combined with slow conduction made the tissue
vulnerable to reentry. Our simulation results suggest that catheter
ablation of isthmuses as well as fibrotic BZ tissue can be highly
effective against ectopy in postinfarct ventricles.
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Continuous glucose monitoring (CGM), a technique that records blood glucose at a

regular intervals. While CGM is more commonly used in type 1 diabetes, it is increasingly

becoming attractive for treating type 2 diabetic patients. The time series obtained from

a CGM provides a rich picture of the glycemic state of the subjects and may help have

tighter control on blood sugar by revealing patterns in their physiological responses to

food. However, despite its importance, the biophysical understanding of CGM is far from

complete. CGM data series is complex not only because it depends on the composition

of the food but also varies with individual physiology. All of these make a full modeling

of CGM data a difficult task. Here we propose a simple model to explain CGM data in

type 2 diabetes. The model combines a relatively simple glucose-insulin dynamics with a

two-compartment food model. Using CGM data of a healthy and a diabetic individual we

show that this model can capture liquid meals well. The model also allows us to estimate

the parameters in a relatively straightforward manner. This opens up the possibility of

personalizing the CGM data. The model also predicts insulin time series from the model,

and the rate of appearance of glucose due to food. Our methodology thus paves the

way for novel analyses of CGM which have not been possible before.

Keywords: continuous glucose monitoring, minimal model, type 2 diabetes, insulin estimation, glucose rate of

appearance

1. INTRODUCTION

Diabetes is a disease in which glucose is the central measure not only of pathogenesis and diagnosis
but also its treatment. Clinically, blood glucose is typically measured as fasting and postprandial
plasma glucose, or as glycated hemoglobin. There has been considerable interest in technologies
that ease glucose monitoring and improve the resolution of data collection. Continuous glucose
monitoring (CGM) uses a sensor, typically fixed on the arm, reports blood glucose every 15 min
for a 2 week period. This is a high quality, high time resolution methodology that is becoming
increasingly available. The U.S. Food and Drug Administration, for example, has recently approved
use of the FreeStyle Libre Flash CGM (FDA News Release – 2017, 2017) sensor. CGM has the
potential to help millions of people the world over who struggle chronically with obesity and
diabetes (Bode, 2000; Klonoff, 2005; Deiss et al., 2006; Murphy et al., 2008; Juvenile Diabetes
Research Foundation Continuous Glucose Monitoring Study Group et al., 2009): It holds the
promise of utilizing information contained in the time series to not only gain insight into food
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habits, and discover (un)healthy dietary patterns but also to
determine effective interventions. However, interpreting CGM
traces is complex and often subjective, and there are no consensus
algorithms to aid the design of appropriate interventions.
Techniques aimed at improving the analyses of blood glucose
monitoring are an active field of research (McDonnell et al., 2005;
Clarke and Kovatchev, 2009; Signal et al., 2013; Kirchsteiger et al.,
2016). This paper is a first attempt at describing models that
can potentially help us understand CGM time series in type 2
diabetes.

At a more fundamental level, CGM reveals differences in
the blood glucose rhythms of diabetic patients compared to
healthy persons, which is considerably more information than
just comparisons of the average glucose. Generally speaking,
the glucose rhythm in the diabetic can be expected to be more
irregular than of a healthy person. Figure 1 shows the CGMs
of a healthy subject and a diabetic patient. It is immediately
apparent that the mean glucose is considerably higher in the
diabetic case. A spectral analysis confirms that there is a sharp
peak in the frequency distribution corresponding to a 24-h period
(largely due to a periodicity of food intake). While these are
straightforward metrics in the time and frequency domains there
is considerable additional nuance in these traces, which will be
the focus of our attention here. We shall attempt to model the
details of the glucose pulsatility; this invariably means having to
explain the glucose transients that follow meals, breakfast, lunch,
dinner, and others. Naively, glucose pulses are driven by food
intake, and the restoration of glucose to basal levels (homeostasis)
involves the hormone insulin. However, this simplistic fiction
hides enormous complexity, and it is fair to say that this process
is not yet fully understood. In other words, our model will also
encounter this difficulty in one form or another.

In a minimal view of the process, glucose increase is driven
by hepatic release of blood glucose following food intake, and
its disposal is driven by (i) insulin-dependent clearance into
the peripheral tissue, and (ii) other insulin-independent tissues.
The rate of appearance of glucose in the blood following a
meal is complicated not only by food composition but also
the individual’s physiological response to different foods. While
glycemic response to a food is correlated to its glycemic index
(GI), a quantity that expresses how readily it is assimilated and
glucose appears in the blood, GI is known to be centered on
the ingested food, and ignores any person specific physiology. It
has been shown that the glycemic response to (the same) food
varies considerably between people; interestingly, it appears to
depend, in particular, on gut microbiome composition amongst
other factors (Zeevi et al., 2015; Korem et al., 2017). A complete,
dynamic description of a CGM trace from first principles—that
is, starting from a knowledge of foods eaten—appears to be
challenging at this time.

On the other hand, there is a considerable body of work
centered on modeling glucose and insulin dynamics in type 2
diabetes; for a recent review see (Goel, 2017). One strategy that
is often used is to follow the response to a controlled bolus of
food. A typical setting is an oral glucose tolerance test (OGTT),
in which a very sweet drink (the dose is often 75 grams of
glucose) is taken rapidly, and glucose samples are drawn from the

blood every 30 min up to 2 h afterwards. Mathematical models
involving coupled glucose and insulin dynamics have been used
to describe this data in great detail. A significant review of the
state-of-the art in this field, in particular of the work of Cobelli
and coworkers spanning several decades, appears in Cobelli et al.
(2009).We note that while modeling OGTT, and to a lesser extent
“mixed-meal” data, are quitemature, to the best of our knowledge
a model suitable for CGM has not yet been described. There
are several considerations that seem to argue against simply
extending one of the earlier models to CGM. The current models
involve a number of compartments, not only for glucose and
insulin but also liver, muscle and adipose, the gastro-intestinal
tract, and so on. As such, it is difficult to envisage the numerous
model parameters can all be identified from CGM data alone.
In the models described in Cobelli et al. (2009), for example,
parameters were discovered using glucose tolerance tests together
with various other techniques, such as radio-labeled tracers. Not
only are these difficult and expensive experiments in themselves
but reproducing these outside the scope of specialized studies is
impractical.

Our interest in this paper is to describe a minimal
mathematical model useful for exploring CGM data. We restrict
ourselves largely to CGM data collection; however, we note that
it is plausible to add a few other commonplace measurements
including (i) the use of fingerstick glucose measurement, and
(ii) a professional (laboratory-based) fasting and postprandial
glucose, glycated hemoglobin and insulin measurements carried
out a few times while the CGM sensor is implanted. This
additional data can help in determining the model, as we describe
below. While it is difficult to expect to be able to describe
the glucose transient following each meal, we show that liquid
meals are relatively easy to describe; this insight will be used
to fit model parameters. In other words, we propose a novel
strategy for the model personalization of individual CGM data.
Our methodology also helps us recover the insulin time series
corresponding to the CGM, using the fitted model. Further, it
is also possible to estimate the time series corresponding to the
appearance of glucose due to food. Finally, we estimate clinically
important parameters corresponding to the insulin secretion
capacity of the pancreas and insulin resistance, and compare
them between the normal and diabetic cases. Our methodology
appears to be suitable for CGM users widely, with few additional
measurements required.

2. MODELS AND METHODS

2.1. Data Collection
The digital CGM records of two individuals, a diabetic patient
undergoing treatment and a healthy subject, were analyzed
retrospectively. Note that the patient is not in a controlled
environment, they carry out their daily activities independently
with the sensor attached to them. The CGM sensor is about the
size of a coin, and is typically affixed to the arm. The patient is
fully ambulatory and only minimally aware of the sensor, that
is, it does not interfere with most routine activities. The sensor
collects data continuously for about 2 weeks.
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FIGURE 1 | The CGM time series recorded for a healthy, non-diabetic subject (Left column) and a diabetic patient (Right column). Notice the average glucose is

substantially lower in the non-diabetic (about 100 mg/dl) than in the diabetic (about 200 mg/dl). The glucose pulses are of large amplitude in the diabetic, and appear

to be wider as well. Power spectral density (PSD; second row) shows a prominent peak at a period of about 24 h in either case (red stems), although the frequency

profiles are not similar.

All subjects gave written informed consent for use of
their data. A separate approval from the Institutional Ethics
Committee of Global Hospitals was not requested since data
from only two individuals was analyzed here, and this does not
represent a full scale human clinical study. In particular, diabetes
treatment and CGMmonitoring is at the discretion of the doctor
and patient, and data was only analyzed after data collection.

2.2. A Minimal Model of Glucose and

Insulin Dynamics
We adapt a glucose–insulin model due to (Topp et al., 2000), and
add food dynamics to it as follows.

2.2.1. Food Dynamics
The digestion of food is modeled using two-compartment
dynamics. Food enters the first compartment, the stomach,
qsto, and is passed along to a second compartment, collectively
called the “gut", qgut , from which glucose is assimilated into the
bloodstream. Thus,

dqsto

dt
= −ksto qsto, (1)

dqgut

dt
= ksto qsto − kgut qgut , (2)

where qsto ← qsto + foodi is the food intake at times ti.
We demonstrate below that this is a good model that captures
the glucose response to liquid foods. Modeling mixed-meals is
considerably more complex and is not carried out here, however,
we show that an average description can sometimes be achieved
bymodeling suchmeals with the two-compartment model above,
except with a different value of kgut . That is, for liquid meals we
take kgut ≡ kgut,l while for a mixed-meal we set kgut ≡ kgut,mm.

2.2.2. The Topp Model of Glucose–Insulin Dynamics
The G− I model for the dynamics of glucose and insulin is:

dG

dt
= R0 − (EG0 + SII)G+ kgutqgut , (3)

dI

dt
= Imax

G2

α + G2
− kII, (4)

where glucose absorption occurs from qgut . R0 stands for a basal
production of glucose and EG0 is insulin-independent glucose
utilization, SI is insulin sensitivity and determines the insulin-
dependent glucose clearance from the blood. Imax is the maximal
rate of insulin secretion from the pancreas and kI the rate at
which insulin is cleared (largely by the liver). G is measured in
mg/dl, and I in µU/ml.

2.3. Model Fitting
Wefit parameters of themodel following a standard optimization
approach. The cost function we optimize typically involves the
CGM time series around the pulse that we wish to focus on fitting.

The simulation of the model ODEs is carried out as follows. At
time t = t0, there is no food in the system and we allow the model
to evolve; for each food that enters the system, qsto is adjusted to
a value qsto + foodi where foodi is the spike in the value of qsto
at time ti. The foodi are a part of the optimization problem. The
optimization algorithm then identifies the model parameters and
food sizes; the cost function minimized is a squared difference
between experimental values of CGM and simulation.

Numerical experiments indicate that the parameters EG0 and
α are not identifiable; these values are kept fixed (see Table 1 for
the values) close to the nominal values used in Topp et al. (2000).
The steady state of insulin can be obtained from Equation (4)

as
ImaxG

2
ss

α+G2
ss

/kI ; since we assume we know the fasting insulin from

a laboratory measurement in our method, we allow kI to be
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TABLE 1 | Parameters corresponding to the non-diabetic and diabetic CGM time

series.

Parameter Non-diabetic Diabetic Units

R0 2.1 2.5 mgdl−1min−1

EG0 1×10−3 2.5×10−3 min−1

SI 3.06×10−3 1.14×10−3 ml µU−1min−1

α 1×104 1 ×104 mg2dl−2

Imax 0.28 0.93 µU ml−1min−1

kI 0.01 0.06 min−1

ksto 0.036 0.026 min−1

kgut,l 0.098 0.026 min−1

kgut,mm 0.011 – min−1

determined by the above, namely, kI ≡
ImaxG

2
ss

α+G2
ss

/Iss. For the non-

diabetic case we use Gss = 90 and Iss = 12.4, and for the diabetic
case Gss = 195 and Iss = 12.5.

The model simulations and optimization are carried out in
MATLAB. ode45 is used for ODE integration, while fitting
uses a combination of patternsearch and fmincon with
suitable constraints. Optimzation iterations were terminated
when the relative changes in all elements of the parameter vector
were lower than a nominal tolerance of 10−6.

3. RESULTS

3.1. CGM of a Non-diabetic Subject
We found that a few “landmark” pulses are sufficient to estimate
the G − I model. In Figure 2 we fit three peaks that had
a significant liquid component to it. The resulting model
parameters are shown in Table 1.

The following quick checks indicate this is a reasonable
fit: The relative sizes of food estimates, the three qsto pulses,
are commensurate with the corresponding glucose peaks, and
with the diet diary. The insulin response is peaked similarly,
as expected. In particular, the physiological range of insulin is
typically between 2 and 25µU/ml, consistent with the result here.
Insulin peaks occur slightly later than the glucose peaks. Finally,
note that the response to liquid meal at 450 min is fit well (this
is by design: That pulse is weighted relatively heavily in the cost
function) while the other two responses to mixed meals are more
complex (especially the postprandial clearance), and these are fit
in an “average” sense, in line with expectation.

Note the resting glucose and insulin obtained through the
fitting process. The resting insulin is approximately 9 µU/ml,
slightly lower than the laboratory fasting insulin measurement,
12.5. This appears to be consistent with the observation that
resting glucose over this epoch is close to 70 mg/dl.

These fits suggest a straightforward procedure for obtaining a
personalized model of CGM, that is, for fitting model parameters
to describe a particular time series. An “isolated” liquid meal –
that is, taken with a sufficient gap before and after it – is described
well by the present model, and one readily recovers all parameters
through optimization.

3.2. CGM of a Diabetic Patient
We optimize over a suitable peak in the CGMof a diabetic patient
in a manner similar to that of the non-diabetic case. Most meals
for this individual were of mixed-meal type, however, we noted a
few that were liquid meals. One such peak we believe was due to a
liquids taken around 1,200 min, see Figure 3. Once again, fitting
this peak allows us to recover suitable model parameters; these
are listed in Table 1. One feature to note is that the EG0 appears
to be larger for this individual (this can be estimated by fitting a
later night portion of the CGM, when insulin is not likely to be
dominant, with an exponential).

3.3. Insight Into Diabetogenesis
A comparison of the parameters between the non-diabetic and
diabetic cases is instructive. We note, first, that our procedure
seems to be robust in determining parameters. In particular, we
obtain the clinically important parameters, SI and Imax among
other things. We generally expect that insulin sensitivity ought
to be lowered in diabetes. Maximal secretion typically first rises
as diabetes develops (to account for the increasing demand that
hyperglycemia places on it), and as exhaustion sets in, secretion
deteriorates. From Table 1 it is seen that the estimated Imax is
larger for the diabetic patient; this can either be because insulin is
in the compensatory phase of diabetogenesis, or as is more likely,
the result of secretagogue drugs prescribed to them. SI , on the
other hand, is lower for the diabetic person as expected.

3.4. Estimation of Insulin
An immediate application of personalizing the model fits is to
estimate insulin. Insulin is not easy to measure clinically as
it is expensive and requires drawing blood. Furthermore, no
technology exists currently for continuous insulin monitoring.
Using the model fit it is possible to estimate insulin with the same
time resolution as CGM. We show this next.

We design an observer (Moreno, 2000; Robenack and Goel,

2007), Î, to estimate the insulin dynamics, dI
dt
= I∞(G) − kII,

Equation 4. We note that the equation

dÎ

dt
= I∞(Gdata)− kI Î, (5)

driven by Gdata, the CGM time series, converges exponentially to
the true dynamics of the system, that is, Î → I, since the error,
e ≡ I − Î satisfies ė = −kIe. In other words, apart from an initial
transient that corresponds to the time constant with which the
error dissipates, 1/kI , Î reports the times series I.

Figure 4 shows the insulin estimated for the non-diabetic
case. Insulin is obtained continuously in time, and since it
requires only the glucose data it can be computed even without
a detailed knowledge of the food intake. Notice that the insulin
in Figure 2 is computed for the glucose corresponding to the
three food peaks, whereas the insulin in Figure 4 is computed
using the observer above from the CGM data, and is a faithful
representation of its co-variation with glucose; in particular, Î can
be seen to be considerably more nuanced.

Apart from being a very useful facility in general, this
technique can be particularly valuable in a setting where one
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FIGURE 2 | The CGM of around 24 h of a non-diabetic subject, starting at midnight. The glucose data (red) is overlaid with the model simulation (black). Three foods

were selected, and the times they were taken (450, 1,051, and 1,260 respectively) were recalled from the food diary; these are marked with asterisks. The first is a

liquid meal at breakfast while the other two are mixed meals (the last one being dinner). These food pulses were fit; the fitted qsto amplitudes are 50, 177, and 316

respectively.

wishes to know the insulin response to a certain food. There
are theories of obesity [the “carbohydrate–insulin model”; (see,
for example, Ludwig and Friedman, 2014; Goel, 2017)] as
well as diabetes (Corkey, 2012; Goel, 2015) that rest on the
insulin response to food. It would be interesting to evaluate the
techniques here in the context of such studies.

3.5. Estimation of the Rate of Appearance

of Glucose
It is interesting to know what is the rate of appearance of glucose,

Ra, due to food. That is, in Equation 3, dG
dt
= g(G, I)+ Ra, where

g(G, I) = R0 − (EG0 + SII)G and Ra is modeled as kgutqgut .
However, we would like to solve an inverse problem to directly
determine what the Ra is more generally. In other words, given
that we have estimated the model parameters, we would like
to design an input observer for Ra. An estimate of Ra can be
computed as

Ra =
dGdata

dt
− R0 + (EG0 + SI Î)Gdata, (6)

where dGdata
dt

is computed directly from differentiating the CGM

time series, and insulin is estimated via Î, Equation 5. The
observed Ra is shown in Figure 4, lower. A spline fit was used to
determine the required derivative in order to reduce numerical
inaccuracy. For comparison, we have overlaid the solution from

Figure 2, that is, Ra computed from the input observer is
compared to the case with three food pulses, modeled as Ra ≡
kgutqgut . The correspondence between the two is excellent for the
fully liquid meal, and reasonable for the other two as well.

The input observer for Ra thus gives us an excellent facility not
only to discover the effect of different foods on the appearance of
glucose in the blood but also for carrying out modeling studies to
try and explain mixed meals. This will be investigated in greater
detail in future work.

4. DISCUSSION

In our view CGM is a very powerful data collection tool in
diabetes. Despite its importance, models do not yet exist for
describing it. Here we show that parts, if not all, of the data
can be explained rather simply, and more importantly, one can
recover all of the model parameters required to fit CGM time
series individually. Our key observation is that liquids seem
to pass through the gut in a fairly stereotyped manner, and
we are able to model this successfully. We demonstrate that
the glycemic response to a liquid meal, especially one that is
well separated from other food intakes, can be used to fit a
minimal mathematical model, and identify all the parameters
needed to describe glucose and insulin dynamics well. Thus, our
prescription for fitting a personalized model to a CGM time
series is simply ask the patient to take a liquid meal by itself.
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FIGURE 3 | The CGM of about 24 h of a diabetic subject, starting at around 0400 h. The glucose data (red) is overlaid with the model simulation (black). An isolated

(liquid) food pulse at 1,200 min in this trace has been fit. EG0 was set to 2.5×10−3, the other parameters were estimated as in the non-diabetic case; see text for

details. The fitted qsto amplitude is 230.

FIGURE 4 | (Upper) The insulin time series corresponding to the non-diabetic glucose from Figure 2, estimated from the fitted model. Notice that, apart from an

initial transient, the insulin is estimated throughout, and this does not require any knowledge of the food input. (Lower) The estimate of the rate of appearance of

glucose due to food, Ra (black). The simulation of kgutqgut from Figure 2 is overlaid (red) for comparison.

In some respects this is similar to an OGTT test, however, there
are differences: For one, our method does not require the meal
to be in glucose or sucrose form, and it is not necessary to
know the quantity a priori; the algorithm determines it anyway.
This makes our method flexible, and practical. Finally, we
recover the clinically important indices of insulin resistance and
secretory capacity that have been traditionally used to describe
the progression, and state of the disease. We are also able to use

the model to estimate a corresponding insulin time series, as well
as the rate of appearance of glucose due to food.

Our model can be refined further if additional measurements
can be taken. In particular, more insulin measurements taken
during the CGM period can substantially improve the fits,
especially of insulin.

It is straightforward to record food timings in a diary, and
this very useful to the model fitting. We note that the time
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at which the food intake is started was more important than
when it was completed. Complex food models can presumably
use more information. More generally, it is of great interest to
explain the glycemic response to different foods, and while the
observer we have constructed for Ra greatly helps facilitate this,
we have not offered any particular direction in that regard in
this paper. Our preliminary attempts at using Type I mixed-
meal models (see Li et al., 2016 for details), to explain that data
in Figure 2 for example, indicate these models do not appear
to be satisfactory. We hope to examine this further in future
work.

One weakness of our study is that hypoglycemic events,
in general, are not captured well by this model. This is
because the model focuses on glucose and insulin dynamics,
that is, on postprandial events when glucose is elevated. That
our simple model is unable to capture hypoglycemia is not
too surprising, considering the complexity associated with
understanding this phenomena in general (American Diabetes
Association Workgroup on Hypoglycemia, 2005; Unger, 2012;
Elliott et al., 2016). A substantial body of literature exists
trying to explain it in different contexts such as in juvenile
diabetes (Juvenile Diabetes Research Foundation Continuous
Glucose Monitoring Study Group et al., 2011), or for type I
diabetes patients (Kim et al., 2011), and in assessing its impact
on productivity (Brod et al., 2011). Notably, Sampath et al.
(2016) have recently proposed a machine learning algorithm
that combines different glycemic indices to successfully predict
occurrences of nocturnal hypoglycemic incidents. In order to
model hypoglycemic events more carefully the model should
probably be extended to include glucagon dynamics as well; these
questions will be explored further in future work.

There have been concerns raised previously that because
CGM sensors measure interstitial glucose, that is, in a remote
compartment just below the skin, this may be different from
blood glucose that is measured in a fingerstick or laboratory
testing. A number of studies have been carried out to model
a relationship between the two (see for example Cobelli et al.,
2009). In addition, there appears to be a small time lag (about

5min) between the CGM and blood glucose. On the other hand,
it is now widely accepted that CGM readings do not require
confirmation (calibration) against a laboratory (or fingerstick)
sampling (FDA News Release – 2017, 2017). For instance, the
mean absolute relative difference (MARD) between the Freestyle
Libre sensor reading and capillary blood glucose (BG) has
previously been reported to be about 11.4% overall (Bailey et al.,
2015). Our own tests comparing random samples (RBS) of
blood glucose (laboratory testing) to the sensor indicate a strong
correlation, GCGM = 0.96 RGB − 14 (n = 35, R = 0.97;
data not shown). In this study we have ignored any calibration
considerations between blood glucose and sensor readings, and
any time lag; we have tacitly assumed laboratory and sensor
readings and are directly compatible. It will be of interest to
establish more carefully how to adapt the model to explain such
differences, if any. More generally, uncertainty quantification for
our model will be carried out elsewhere.

Despite the numerous limitations of understanding CGMdata
in all its complexity, we have shown that a minimal model is
readily identifiable from the time series. We have thus provided
a proof of concept that our methodology appears to be viable
strategy toward a personalized analysis of CGM. This holds
tremendous potential for various kinds of investigations, not only
to recommend diet and lifestyle interventions but also test the
exact effect of drugs. While such details are beyond the scope of
the present paper, we hope the results presented here pave the
way for further research in this direction.
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Permutation entropy (PE) is a robust quantity for measuring the complexity of time series.

In the cardiac community it is predominantly used in the context of electrocardiogram

(ECG) signal analysis for diagnoses and predictions with a major application found in

heart rate variability parameters. In this article we are combining spatial and temporal

PE to form a spatiotemporal PE that captures both, complexity of spatial structures

and temporal complexity at the same time. We demonstrate that the spatiotemporal PE

(STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and

compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate

ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using

the Fenton-Karma model. We show that SPE and STPE are robust against noise and

demonstrate its usefulness for extracting complexity features at different spatial scales.

Keywords: permutation entropy, cardiac arrhythmia, Fenton-Karma simulation, complexity, excitable media,

phase singularities

1. INTRODUCTION

A healthy heart is driven by periodic plane waves propagating over the cardiac tissue. These
waves can turn into potentially life-threatening self-sustained arrhythmias which are governed by
reentrant spiral-wave activity of different levels of complexity [1, 2].

A detailed understanding of the complexity of cardiac arrhythmias and the organization of
spiral-wave activity is crucial for the development of improvedmethods for the treatment of cardiac
arrhythmias [3–5].

In the healthy sinus rhythm a lot of information about the state of the heart is already contained
in the frequency and timings of individual heartbeats. Furthermore, the ECG is one of the
most important clinical tools for the identification of deviations from the normal rhythm and is
prevalently used formedical diagnoses. In case of cardiac arrhythmias with a spatiotemporallymore
unordered state, measures that allow for a quantification of the spatiotemporal complexity of the
system provide valuable information that can be used for investigating the mechanisms behind the
onset of arrhythmia and their possible termination.

In the picture of an arrhythmia being composed of many interacting spiral waves or three-
dimensional rotors, often the concept of phase singularities is used to assess the degree of
organization. A high number of phase singularities (NPS) corresponds to a state with more rotors
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and therefore indicates a situation with higher complexity.
However, in experimental situations where usually surface
electric activity of the heart is measured by optical mapping using
fluorescent dyes, several practical problems arise:

• As only two-dimensional information of a three-dimensional
medium is recorded, phenomena on the surface can not always
be suitably approximated by the concept of phase singularities.
For example, focal activity on the surface, which can be
produced by spirals located far away from the surface, would
not be covered by NPS.

• Noise can significantly impair the detection of phase
singularities, so usually the application of spatial kernel-
smoothing and temporal bandapass filters is required.

• Usually high-level algorithms for a reliable computation of
NPS involve sophisticated tracking algorithms for phase
singularities over time. These methods can be computationally
intensive and prevent real-time applications.

To tackle these problems other suitable methods for
characterizing and quantifying spatiotemporal complexity
are desired. In this article we show how a spatial and a
spatiotemporal version of PE can be used to accomplish this task.

Permutation entropy (PE, [6]) is a measure which is widely
used to analyse the complexity of time series signals. In the
cardiac community it is so far mainly used for analysis of ECG
signals, especially for the analysis of heart rate variability [7]. The
concept has already been extended to two-dimensional patterns
[8] and applied to optical imaging of cardiac cell culture [9].

Furthermore, its robustness against noise and the possibility
to study complexity on different scales will be subject to
this study. As our main motivation for the investigation of
these methods is their potential application in experiments,
we frame this numeric comparison to a realistic experimental
setting: As will be explained in section 2.6 a dataset from a
three-dimensional Fenton-Karma simulation is used to generate
“artificial camera data”. This means that we use four two-
dimensional projections of the three-dimensional simulations to
approximate an experimental camera setup. Additionally, we use
an algorithm for computing NPS which can also be employed for
experimental data. This algorithm is presented in section 2.5 and
makes use of some improved strategies to reliably detect and track
spiral waves on experimental cardiac tissue.

2. METHODS

This section will explain the concept of spatial and
spatiotemporal PE. It also intruduces a specialized algorithm for
tracking phase singularities which is used for comparison with
the permutation entropy based complexity measures. Section 2.6
describes the simulations that were used to create the two
numerical datasets which are subject of this investigation.

2.1. Permutation Entropy (PE)
PE [6, 7, 10] is a method for quantifying the complexity of a time
series using the distribution of order patterns. Order patterns are
small segments of time series of length D which are characterized
solely by the relative order of their constituents. The segments,

also called words w̃i = wi,1, . . . ,wi,D of length D, are extracted
from the original time series x1, x2, . . . , xN by taking successive
elements xi which can be separated by a time delay or lag Lt :
w̃i = xi, xi + Lt , xi + 2Lt , . . . , xi + (D−1)Lt . Using these words the
original time series can be transformed into a symbolic time
series {si} by computing the permutation index that quantifies the
relative order of the wi,j:

si =

D−1
∑

j =1

(D− j)!λi,j (1)

λi,j =

D
∑

k = j+1

{

1 if wi,j < wi,k

0 else
(2)

This procedure is illustrated in Figure 1A for D = 3 and
Lt = 1. PE is then defined as the Shannon entropy of the relative
frequencies pj, j ∈ {1, . . . ,D!} of the symbols si within the time
series:

H = −

D!
∑

j =1

pj log2 pj (3)

2.2. Spatial Permutation Entropy (SPE)
The two-dimensional extension of PEwhich we call SPE is similar
to Ribeiro et al. [8] and has been previously applied to optical
mapping data of cardiac cell culture in Schlemmer et al. [9].
For SPE symbols are extracted from two-dimensional images as
depicted in Figure 1B by sampling words w̃i1 ,i2 of length D × D
from the two dimensional dataM ∈ R

n1×n2

w̃i1 ,i2 = mi1 ,i2 ,mi1+Lx ,i2 ,mi1+2Lx ,i2 , . . . mi1+(D−1)Lx ,i2 ,

mi1 ,i2+Lx , . . . ,mi1+(D−1)Lx ,i2+(D−1)Lx (4)

with a spatial separation Lx which replaces the one dimensional
lag. So each word contains data from a grid ofD×D points which
are separated in both directions by the spatial separation Lx. The
number of possible symbols is (D · D)! which grows very rapidly
withD. Therefore, we chooseD = 2 which leads to the simplified
form:

w̃i1 ,i2 = mi1 ,i2 ,mi1+Lx ,i2 ,mi1 ,i2+Lx ,mi1+Lx ,i2+Lx (5)

which is also shown in Figure 1B.
The grid is moved over all possible positions within the image

leading to a distribution pj of symbols si1 ,i2 which are computed
using (Equation 2). SPE is defined as the Shannon entropy
(Equation 3) of this symbol distribution.

2.3. Spatiotemporal Permutation Entropy

(STPE)
A natural extension of this approach to three-dimensional data
can be constructed by sampling the words from volumes instead
of images. This enables us to take into account spatial and
temporal dimensions at the same time. It is obvious that a lot of
different possibilities exist to actually sample three dimensional
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FIGURE 1 | Construction of temporal (A), spatial (B) and spatiotemporal (C)

PE. (D) Shows the tripod used for STPE. See text in sections 2.1, 2.2, 2.3 for

details. (A) Shows the extraction of one-dimensional order patterns from a

time series xi and the assignment to symbols si . (B) Illustrates how

two-dimensional order patterns are sampled from an individual image. The

2× 2 sampling-grid is moved over all possible positions of the image. (C)

Sketches how three-dimensional order patterns are extracted from

subsequent images which form the video under investigation.

data points. Since the number of possible symbols grows very
rapidly with the number of sampling points we restrict this
approach to a “sampling tripod” which is shown in Figure 1D.
The words are defined as:

w̃i1 ,i2 ,i3 = vi1 ,i2 ,i3 , vi1+Lx ,i2 ,i3 , vi1 ,i2+Lx ,i3 , vi1 ,i2 ,i3+Lt (6)

where V ∈ R
n1 ,n2 ,nt denotes a spatiotemporal volume with the

third axis being the temporal axis. n1 and n2 correspond to the
image size and nt is the total number of timesteps in the video.
There also exists a high flexibility in the choice of sampling
parameters for the different types of separation. We chose a
distinct spatial separation Lx and a different temporal separation
Lt . Analogous to SPE we can again assign order patterns si1 ,i2 ,i3 to
the words using (Equation 2).

The procedure for extracting three-dimensional order
patterns is sketched in Figure 1C. For computing the value of
STPE at one timestep t all symbols si1 ,i2 ,i3 from a subvolume
Vs,t ∈ R

n1 ,n2 ,ns ⊂ V of the original video are taken into account
to generate the distribution pj of symbols s for this timestep and
t ≤ i3 < t + ns. ns can be called the window size, because it
denotes the temporal size of the subvolume of the video from
which the symbol distribution is taken.

In summary the STPE method in the version described here
comprises three parameters:

• Lx: The spatial separation which selects the spatial scale for
highlighting complexity.

• Lt : The temporal lag which specifies the temporal scale taken
into account for each word.

• ns: The window size which indicates the length of the interval
analyzed by the method at a single point in time.

Scanning of all parameters has revealed that wide ranges for
Lx and Lt are possible to visualize changes in complexity for
all datasets analyzed here. The spatial separation Lx has been
found to display some fine-grained information which will be
discussed in sections 3.1, 3.4. Lt = 9 which is on the order of
a short action potential has been used in all analyses here. The
window size has an effect that is similar to a smoothing window
size: Small ns will take into account only very few timesteps and
therefore create results similar to SPE. This usually produces
strong fluctuations as the exact distribution of spatial patterns
is influenced by periodic fluctuations due to finite size effects.
Therefore it is usually desirable to tune ns to a typical periodicity
within the video, like a small multiple of the period of spiral
rotation. If ns is chosen too high, changes in complexity are
smoothed out. We use ns = 250 throughout this study.

It is interesting to notice, that the order in which the points
are sampled from the images or volumes does not change SPE
and STPE. It solely influences the assignment of the patterns to
symbols, but the distribution of symbols remains the same apart
from this change in labels. We used the forward construction for
sampling STPE which means that one sampling point is placed at
t + Lt .

2.4. Normalized Quantities
For comparing SPE and STPE obtained for different parameters,
especially different Lx, it is useful to use temporally normalized
versions of the quantities. The reason for this is that for larger
spatial separations the spatial and spatiotemporal permutation
entropies usually increase. These quantities are normalized here
by subtracting the temporal mean (MEAN) and afterwards
dividing by the temporal standard deviation (STD). For
comparison, the normalized NPS is defined analogously. So
for time series STPE, SPE and NPS we obtain the three
corresponding normalized quantities as:

nSTPE =
STPE−MEAN(STPE)

STD(STPE)
(7)

nSPE =
SPE−MEAN(SPE)

STD(SPE)
(8)
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nNPS =
NPS−MEAN(NPS)

STD(NPS)
(9)

2.5. Phase Singularity Tracking
Phase singularities (PS) are a widespread measure for the
description of complexity of excitable media. They are found at
the centers of rotation of spiral waves. In cardiac dynamics spirals
and their breakup are directly related to the onset and sustaining
of arrhythmias allowing for a straight-forward interpretation of
PS statistics in this field of research. In this formalism every
cell is assumed to undergo a phase oscillation between zero and
2π with neighboring cells typically having only a slight shift in
their respective phases. In such systems points or defects where
the phase is non-continuous are important features that follow
certain topological laws [11].

In practice, especially with a noisy signal, PS tracking is non-
trivial. Without enough smoothing an abundance of short lived
PS can skew the result. Also in practice very short lived PS are
often not of general interest, such as for example at the front
of colliding waves, while the definition of the phase itself is not
always unambiguous for high dimensional oscillators such as
cardiac cells.

Unless, or even if, strong spatiotemporal smoothing is used,
it is thus necessary to remove or ignore short lived PS as well as
to be able to track the path of PS which can, in principle, move
arbitrarily fast. Only by employing tracking reliable life times can
be defined.

2.5.1. Definition of Phase
Within cardiac dynamics two main approaches for PS detection
exist. One based on the definition of phases obtained from delay
reconstruction [2, 12] or Hilbert transform of the signal and the
other on finding of pivoting points or wave breaks based on
threshold crossings [13–15]. Further improvements have been
suggested for example by Rogers using wavefront tracking to
improve the identification of PS [16].

The difference in these approaches lies in a slightly different
phase definition. They use either a phase defined by delay
embedding or the Hilbert transform, or apply threshold crossings
which implicitly define a specific phase at the waves up- and
downstroke. In the context of a phase defined using embedding
PS are usually detected by a line integral around the current
position. When using thresholds PS are naturally found at
the end of lines of same phase given by the points where
up- and downstroke meet. Both concepts are equivalent when
interpreting the wavefront and -back each as a phase step of π .

The methodology used here is an improved detection
procedure based on the aforementioned concepts. Our method
is based on the idea that the upstroke is the single well and
clearly defined phase, though the exact classification as such will
in practice always depend on choosing some threshold. Further,
we will later assume that after each upstroke the cardiac cell has a
refractory period, removing the necessity of also reliably finding
the APD.

After possibly preprocessing with a spatial smoothing (not
done in this simulation study, see section 3.3), instead of using
thresholds to identify the upstroke we use the local maximum of

a correlation with a smooth upstroke-like wavelet (Figure 2B).
Additionally for each pixel a threshold is set, below which
a maximum is ignored, since small local maxima may arise
due to noise. During this step local maxima which are very
close are discarded picking the most prominent upstrokes first.
An example of this procedure is shown in Figure 2. After
identification the times when each upstroke occurred are stored.
This is used as input for the PS identification and tracking since
the time of the upstrokes defines a zero phase at the wavefront.

2.5.2. Tracking of PS
To track PS including their exact trajectories we now make
two additional assumptions. First, we assume that there exists a
period of time τ during which a wavefront will have traveled at
least one pixel, so a slowest reasonable conduction velocity.

For our data here, this threshold for the period of time is set to
8 frames. Second, we assume that no further upstroke will occur
within a time of 2τ , so 16 frames, so that the wavefront may be
uniquely identified as those edges where on one side activation
had occurred within the last 8 frames and on the other side
activation will occur no more than 8 frames later.

This behaves much like defining a specific zero phase at the
upstroke time and increases this phase to π within the time τ

FIGURE 2 | Sketch of the method used for defining the upstrokes. (A) The

original and noisy time trace. The dots show the final times of the upstroke

based on the noisy time trace. (B) The kernel which is correlated with the noisy

signal in (A) to find the upstroke position. (C) Result of the correlation of the

noisy signal in (A) and the kernel in (B). Local maxima identify the upstroke

position (as indicated in A). A threshold is used to ignore unclear events.
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FIGURE 3 | Sketch of the PS tracking. The plot shows a clockwise rotating spiral with the green line identifying the wave front. The spiral movement is indicated by

the arrow in the first panel. Red colors indicate those pixels that will be activated within the next five frames with the darkest red indicating activation within the next

timestep. Blue colors show those areas that were recently activated with lighter colors indicating a longer time since the last activation. PS are identified by black or

white dots. The wavefront connects a PS pair, while their possible future track is identified by a red line. In this plot τ = 5. t = 2 and 5 show the behavior at an inactive

(gray) area, t = 8 and 10 at an prematurely activated area and t = 12 at the turning point.

and to −π for times activated within τ before the upstroke. All
other times would be assumed to have phase π .

Figure 3 sketches this procedure and shows that tracking
becomes unambiguous, no matter how fast a PS moves. A
linear reentry is shown with an inactive region and an area
for which activation is delayed. Since it is known which area
will be activated within the next τ time units (red area),
the red lines surrounding the area identify the possible path
for the PS, including possible annihilation. At t = 2 the
inactive region leads to the creation of a new pair, which then
annihilates at t = 6. At t = 8 we see that a short delay in
activation times will not affect the PS positions. The PS that
could be considered existing in this area are filtered due to their
comparatively short lifespan. The activity may also be viewed
as focal or just noise. At t = 10 and 12 the black PS is
considered stationary, since slow conduction can be assumed
to be happening in vertical direction as well (activation occurs
within τ ).

Technically, this is implemented by looking τ time units into
the future and then finding the edges between the area activated
within τ using the marching squares algorithm [17]. These edges
can then be defined as either wavefront or possible future path.
In rare cases of a checkerboard like pattern, two PS within a PS
pair may lie above each other at this time and the pair is removed
immediately.

Using this method, we find all PS including their tracks
between frames and which pairs are created/annihilated. Short
lived PS (≤ τ ) are then removed in a greedy fashion starting with
the one having the shortest lifetime. Note that removing one PS
pair can increase the lifespan of another since its path may have
been broken by a short lived pair. In a last processing step PS at
an outside edge or only shortly disconnected due to noise are not
considered valid PS. For example, this step would hide the white
outer PS in Figure 3.

To summarize our method:

• After a possible spatial smoothing the upstroke time is defined
as the local maximum of its correlation with an upstroke-
like wavelet. While the action potential shape, especially close
to the PS, is typically not clear in experimental data during
ventricular fibrillation, the wavefront is still characterized by

an increase in membrane potential which is quantified by this
correlation.

• The phase is then effectively defined by the upstroke time and
assumed to advance by π each before and after the upstroke
within a constant time τ .

• τ defines a limit on the slowest wave propagation that is not
considered a new wave initiation while 2τ is the assumed
(minimal) refractory period, so that no second upstroke can
occur within this period of time. These assumptions implicitly
filter some PS with lifespan shorter then τ .

• The exact track for each PS can be defined by following the
area of next activation.

• Tracking allows for short living PS pairs to be removed starting
with the PS with shortest lifespan.

The constant τ and thus reliance on an assumed refractory period
is a certain limitation. However, we believe that all approaches
implicitly have similar limitations due to the methods of filtering
or phase definition used. Different methods of PS tracking will
behave differently especially in rare events or when it comes to
the exact position of a non-stationary PS.

In general, however, we believe that the approach described
here is comparably robust and allows for a straight forward
tracking of PS movement over time with clear assumptions about
how the phase behaves after an upstroke.

2.6. Numerical Simulations
Episodes of ventricular fibrillation have been simulated on
a realistic rabbit heart geometry obtained from a previously
recorded computer tomography scan (CT scan). A system of
coupled reaction-diffusion equations was used to describe the
evolution of the membrane potential Vm which determines the
electrical excitation patterns in the heart, where the Fenton-
Karma model [18] was used to model the local cell dynamics:

∂Vm

∂t
= D1Vm − Iion(Vm, h)/Cm, (10)

∂v

∂t
= 2(Vc − Vm)(1− v)

(

2(Vm − Vv)

τ
−

v1

+
2(Vv − Vm)

τ
−

v2

)

− 2(Vm − Vc)
v

τ
+
v

, (11)
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∂w

∂t
= 2(Vc − Vm)

1− w

τ
−
w

− 2(Vm − Vc)
w

τ
+
w

. (12)

with the diffusion constant D = 3.8 × 10−2cm2/s and the
electrical capacitance of the membrane per surface area of the cell
membrane Cm = 1µF/cm2. The ionic currents in Equation (10)
are given by

Iion(Vm, v,w) = −Jfi(Vm, v)− Jso(Vm)− Jsi(Vm,w), (13)

with

Jfi(Vm, v) = −
v

τd
2(Vm − Vc)(1− Vm)(Vm − Vc), (14)

Jso(Vm) =
Vm

τ0
2(Vc − Vm)+

1

τr
2(Vm − Vc), (15)

Jsi(Vm,w) = −
w

2τsi

(

1+ tanh
[

k(Vm − Vsi
c )
])

. (16)

The parameter set shown in Table 1 (taken from [19]) depicts the
chosen parameters, which promote spiral wave break-up. During
the simulations, snapshots of the membrane potential Vm were
taken each 10 time units (=̂ 1 frame).

2.6.1. 3D Simulation Dataset
For the first dataset which we will refer to as the 3D simulation,
Equations (10)–(12) were solved on a regular grid with a grid size
of (Nx, Ny, Nz) = (151, 165, 130) (with a grid spacing of h =

0.013cm) using an explicit Euler scheme. A time constant of dt =
0.1 was used, where one time unit may be interpreted as 1 ms
for this model and parameter set. The diffusion and grid spacing
were chosen to allow a realistic number of filaments to develop.
No-flux boundary conditions at the irregular boundary of the
realistic heart geometry have been implemented using the phase
field method [20, 21]. During the simulations, the sinus rhythm
was modeled by local stimuli at the apex of the heart. Episodes of
spatio-temporal chaos were then initiated by the application of a
far field shock. With the proper timing of this shock, the induced

TABLE 1 | Parameters used for numerical simulations of the Fenton-Karma

model.

Parameter Value

τ
+
v 3.33

τ
−

v1 15.6

τ
−

v2 5

τ0 9

τr 34

τsi 26.5

τ
+
w 350

τ
−
w 80

τd 0.407

Vsic 0.45

Vc 0.15

Vv 0.04

This is parameter set five taken from Fenton et al. [19] and promotes spiral wave break-up.

excitation wave creates spiral waves by the interaction with the
refractive back of the plane wave which originated from the
sinus rhythm. The surface activity was determined by detecting
the outer layer of the simulation geometry, and then extracting
the excitation patterns from four directions. By this procedure,
the surface activity of two opposing directions complement each

FIGURE 4 | Sketch showing the four different camera perspectives in relation

to the heart. LV indicates the position of the left ventricle and RV the position of

the right ventricle.

FIGURE 5 | Snapshots of the 3D simulation. (A) Camera 1 at frame 560

showing complex wave activity. (B) Camera 1 at frame 3000 showing plane

waves. (C,D) Same as A,B, but with noise added at noise level two. (E,F)

Frames 560 and 3000 seen by camera 2. Camera 2 is facing a spiral wave at

frame 3000 which causes plane wave activity seen in B.
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FIGURE 6 | (A) nSTPE displayed for different values of the spatial separation in a spectrogram-like view. (B–E) Show the time series for STPE at different values of the

spatial separation together with NPS (gray). The values of Lx are given in the subfigure legends respectively. NPS has been smoothed using a moving average filter

with a width of 155 frames.

other to the full surface activity. Thus, neighboring directions
cover partially the same excitation activity. In analogy to the
experimental setup the different directions are referred to as
camera 1–4. A sketch of the setup is shown in Figure 4.

2.6.2. 2D Simulation Dataset
For the second dataset which we will refer to as the 2D
simulation, parameters identical to the 3D version were

used. The simulation grid was (Nx, Ny) = (400, 400) with
the same time step and grid spacing as before. Boundaries
were implemented as no-flux boundary conditions and a
circular inhomogeneity of radius 60 placed into the center
and implemented using the phase field method [20, 21].
A single spiral wave was initiated and simulated for a
transient of 5,000 time units before the actual simulation
started.
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2.6.3. Noise
For the investigation of the effect of noise on the quantities
in section 3.3 uniformly distributed random numbers r ∈

[−0.5, 0.5) have been added to Vm as:

Vm,a = Vm + r · a (17)

We will refer to the two noise amplitudes a = 1 and a = 2
as noise level one and two, respectively. Note that Vm is scaled
between zero and one in the model.

The motivation for using this implementation of noise is that
we want to investigate the effect of measurement noise which
typically arise from optical instruments and camera chips. We
explicitly do not want to investigate dynamical noise whichwould
influence the evolution of the model differential equations, as
this would lead to different and possibly more complex types of
arrhythmia. Furthermore, we do not expect dynamical noise to
have a strong influence on the comparison of the methods for
quantifying complexity.

3. RESULTS

3.1. Parameter Scan of the Spatial

Separation
In this section the effect of varying the spatial separation
is investigated using the 3D simulation dataset which was
introduced in section 2.6.1. Figure 5 shows snapshots of the 3D
simulation.

Figure 6 shows the result of STPE applied to the simulated VF
using camera one. In order to show the effect of different values
for the spatial separation Lx a spectrogram-like display has been
created where the spatial separation is aligned on the y-axis and
each row is one time series of nSTPE calculated using this value
of Lx. Figures 6B–E show the time series for (non-normalized)
STPE for different values of the spatial separation Lx.

For comparing the complexity as measured by STPE to a
standard measure, NPS has been plotted in gray in Figures 6B–E.
NPS can fluctuate heavily, therefore it has been smoothed here
using a moving average filter with a width of 155 frames. It can
be seen that starting from a spatial separation of Lx = 2 a drop
in complexity around frame 2,700 is detected which corresponds
to a drop in NPS to zero around the same time. A second very
dominant drop in STPE is found around frame 1,000 which is
in accordance with NPS which also drops to zero around the
same time. In general the match between STPE and NPS seems
to be quite good, although some differences are visible especially
during the initial period of the simulation and at the end of the
video.

The differences for different levels of Lx are not very
pronounced for this dataset. However, the possibility to detect
complexity at different scales can be a valuable feature of
this method. Another example of a STPE spectrogram where
differences between the different scales are visible is presented in
section 3.4.

3.2. Comparison to SPE and NPS
To compare STPE, SPE, and NPS, the time series of these
quantities have been plotted for each camera of the 3D

FIGURE 7 | NPS, SPE, and STPE for the four different cameras of the 3D

simulation. The spatial separation was fixed to Lx = 14. (A) NPS, smoothed

with a running average filter with a width of 155 frames. (B) The raw SPE time

series are displayed transparently in (B) in the background. Smoothed time

series of SPE are plotted in the foreground. A running average filter with a

width of 155 frames has been used. (C) shows the STPE time series.

simulation individually in Figure 7. NPS is smoothed with
a running average filter with a width of 155 frames. NPS
shows that the simulation contains varying complexity in all
four camera videos. One special feature is the relatively long
period of low complexity starting from approximately frame
2,700. It is visible that camera one (blue) and four (red)
record an NPS of zero during this period. The value of
NPS as seen from camera three (green) is between zero and
one and the value of NPS for camera two (orange) remains
approximately one at the same period indicating that one spiral
is seen on camera two and partly on camera three while
the other cameras register plane waves emerging from that
spiral.

SPE shows a strongly fluctuating signal which is the reason
why for easier interpretation the raw signal has been plotted
transparent in the background with a smoothed version of SPE
as a thick solid line. The smoothing has been applied using an
running mean filter with window length of 155 frames. SPE also
registers that during the long low complexity period camera four
and partly also camera three and one reveal a low complexity
period. At the same time SPE assigns a high complexity for
camera two.

STPE shows a very pronounced drop in complexity for camera
four and camera three at the long low complexity period, a much
less pronounced drop in complexity for camera one and a high
complexity in camera two. Similar to SPE also STPE assigns a
higher value of complexity to camera one than to camera three
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FIGURE 8 | Comparison of NPS, SPE, and STPE under the influence of noise for the case of the 3D simulation dataset. The left column shows the plain quantities

without normalization. The right column shows the quantities again with normalization applied. (A,B) The sum of the NPS over all cameras. (C,D) Mean of SPE and

nSPE over all cameras. (E,F) Mean of STPE and nSTPE over all cameras. STPE and SPE were computed with Lx = 14 for this comparison.

which is different to the information extracted from NPS during
this period of time. This is a hint that in fact different information
than mere information about spiral waves is extracted by the
spatial- and spatiotemporal PE.

3.3. Robustness Against Noise
For testing the robustness against noise for SPE and STPE
noisy versions of the 3D simulation datasets have been
generated as described in section 2.6.3. Figure 8 shows the
result of applying NPS, SPE and STPE to the dataset with
noise. As a simplification the results are not shown for each
camera separately, but the sum of NPS over all cameras
and the mean of the permutation entropy quantities are
shown. In this case both are displayed, the plain quantities

and the normalized quantities which had been introduced in
section 2.4.

Our implementation of the NPS detection struggles to find
PS in the presence of stronger noise (see also the comments
in section 3.5.). While for noise level one (see section 2.6.3 for
definitions) it is still possible to identify a period of time around
frame 3,000 with less PS, this feature is completely gone for noise
level two. As visible in Figure 8A the total number of PS increases
strongly. In real applications this problemmay bemitigated using
smoothing.

SPE and STPE which are displayed in Figures 8C,E generally
increase in absolute values. This can be explained by the fact that
higher noise leads to a higher variety of order patterns resulting
in a flatter distribution for pj in Equation (3). However, it is still
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possible to identify all features from the video without noise from
the noisy data using the normalized versions of SPE and STPE.
Especially in case of nSTPE in Figure 8F all three curves seem to
overlap almost perfectly.

3.4. STPE Spectrogram for the 2D

Simulation
In order to demonstrate that STPE can be tuned to detect
complexities at different scales a parameter scan similar to the
one in section 3.1 has been used to generate a STPE spectrogram.
This time the method has been applied to the 2D simulation
dataset described in section 2.6.2. To illustrate the activity visible
in the simulation dataset snapshots are presented in Figure 9.
This dataset features many interactions between spiral waves
and different levels of complexity. Starting from approximately
frame 3,740 only one spiral wave, which is pinned to the circular
heterogeneity in the center, remains.

The STPE spectrogram is visible in Figure 10. This time in
addition to the overview of different nSTPE at specific values
of Lx in A, and four different excerpts of STPE at some scales,
the four snapshots of the simulation which are displayed in
Figures 9A–D are marked in Figure 10A as blue vertical lines
with the corresponding letter.

It can be seen that the main transition in complexity, the
takeover of one pinned spiral at the end of the simulation close
to frame 3,700, is clearly visible on all scales. Furthermore it can
be seen that the different scales are similar in many features. For
example the two periods of high complexity around frames 600
and 2,200 are present in all scales analyzed here. Out of the four
excerpts, the one for Lx = 29 seems to match the NPS time series
best, but the complexity measured by NPS has a lot of similarity
with all excerpts of STPE here.

Two very important differences among the different scales
seen here are the drop in complexity at small scales approximately
at frame 1,221 marked with the blue B and the big kink for STPE
for Lx > 80 around frame 1,764 marked with the blue C. The
former feature is not visible in STPE at larger scales while the
latter low complexity phase is only reflected in larger scales.

3.5. Speed of Computations
For practical applications speed of computations of the specific
methods are highly relevant. The algorithms involved in this
article are written in Python using NumPy [22] and SciPy [23].
The implementations of SPE and STPE are written in Cython
[24] which generates C code that is afterwards compiled to binary
code. The algorithm requires only a single pass over the data
and only few basic operations making the compiled code very
efficient. The application of the PS analysis involves tracking of
PS (see section 2.5.2) which becomes inefficient in the case of
a large number of PS. Therefore, this method suffers a lot from
noisy data which may in practice be smoothed, but kept here for
demonstrational purposes. For comparison, our implementation
needs approximately 6 min to identify and track the singularities
for the 2D simulation dataset (without noise).

In contrast the speed of computation of SPE and STPE is
independent of noise. For the 2D simulation dataset computation
of SPE takes approximately 4.3 s and STPE needs less than

FIGURE 9 | Snapshots showing different regimes of complexity in the 2D

simulation dataset. The white circle in the center is a non-conductive

heterogeneity. (A) Frame 510 showing lots of interacting spiral waves.

(B) Frame 1221 is taken from a regime with two spirals pinned to the

heterogeneity and some remaining complex activity in the top right quadrant.

(C) In frame 1764 several spiral waves contained mostly in the lower left

triangle of the domain generate synchronized plane wave activity that travels to

the upper right corner. (D) A single pinned spiral wave remains until the end of

the video. This snapshot shows frame 4500.

5 s. These values have been obtained using an Intel R© CoreTM

i7-7500U processor at 2.7 GHz (Turbo Boost until 3.5GHz).

4. DISCUSSION

In this article we have presented a detailed analysis of simulated
excitable media using SPE and STPE as complexity measures.
Because phase singularities can be thought of as the structuring
elements of spiral-wave activity on the heart [1] we use it as the
baseline for our comparisons.

We find that SPE and STPE can extract complexity
information from simulated excitable media which partly
corresponds to information extracted by PS analysis.

While the overlap between NPS and the spatial- and
spatiotemporal PE is very high in many cases, some differences
can be seen which stem from the fact that the PE quantifies the
distribution of patterns on the medium and does not favor a
specific type of phenomenon such as spiral waves.

We furthermore demonstrated that both, SPE and STPE
are very robust under the influence of noise without any
computational performance penalty. NPS, in contrast, breaks
down for high levels of noise while becoming computationally
even more demanding.

It was shown that STPE reveals different levels of complexity
at different scales highlighting the possibility to tune it to specific
patterns of interest.
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FIGURE 10 | STPE spectrogram and excerpts for the 2D simulation. (A) nSTPE displayed for different values of the spatial separation in a spectrogram-like view. The

blue lines annotated with blue letters mark the frames which are shown in Figures 9A–D. (B–E) Show the time series for STPE at different values of the spatial

separation together with NPS (gray). NPS has been smoothed using a moving average filter with a width of 155 frames.

In-depth interpretations of the exact levels of complexity at
specific scales will require further analysis not covered by this
article. However, we conclude that especially STPE provides

a very good, fast, and robust alternative for distinguishing
high complexity and low complexity periods. The larger
speed may especially be relevant in an experiment where
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time consuming PS analysis is not feasible. Even in a
computational context permutation entropy provides a different
approach for complexity estimation and comparison with other
methods such as Lyapunov dimensions may be interesting,
although they are not reliably available for experimental
data.

Especially the low susceptibility to noise of SPE and STPE
make them suitable for the analysis of massive data from ex-
vivo experiments. We plan to apply these methods to recordings
of ex-vivo hearts obtained in optical mapping experiments. For
these data SPE and STPE can provide a complexity marker
additional to phase singularity analysis which will be used
for investigating the onset of arrhythmia, the mechanisms of
termination and the analysis of complexity variations [25]. We
plan to also adapt these methods to other types of signals
from cardiac research. In particular the application to ECG
signals involving multiple channels, where the low spatial
resolution renders phase singularity analysis impossible, might
be promising. In addition to the application to multichannel
ECG, also investigations of the atrium with basket catheters may
allow the transfer of SPE and STPE analysis to clinically relevant
settings.
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Rotors of spiral waves are thought to be one of the potential mechanisms that maintain

atrial fibrillation (AF). However, disappointing clinical outcomes of rotor mapping and

ablation to eliminate AF raise a serious doubt on rotors as a macro-scale mechanism

that causes the micro-scale behavior of individual cardiomyocytes to maintain spiral

waves. In this study, we aimed to elucidate the causal relationship between rotors

and spiral waves in a numerical model of cardiac excitation. To accomplish the

aim, we described the system in a series of spatiotemporal scales by generating a

renormalization group, and evaluated the causal architecture of the system by quantifying

causal emergence. Causal emergence is an information-theoretic metric that quantifies

emergence or reduction between micro- and macro-scale behaviors of a system by

evaluating effective information at each scale. We found that the cardiac system with

rotors has a spatiotemporal scale at which effective information peaks. A positive

correlation between the number of rotors and causal emergence was observed only up

to the scale of peak causation. We conclude that rotors are not the universal mechanism

to maintain spiral waves at all spatiotemporal scales. This finding may account for the

conflicting benefit of rotor ablation in clinical studies.

Keywords: complex systems, information theory, cardiac dynamics, rotors, atrial fibrillation

1. INTRODUCTION

The heart is a complex system consisting of five billion autonomous cardiomyocytes that interact
with each other. This interaction leads to system behaviors at multiple scales. The dynamics of
the rotating center (“rotor”) of spiral waves [1, 2] is a macro-scale, emergent behavior of the
cardiac system that is reducible to but cannot easily be explained by the dynamics of the individual
cardiomyocytes at the microscopic scale [3–6]. For example, the determinants of rotor dynamics
include ionic currents [7], action potential duration (APD) restitution properties, conduction
velocity (CV) restitution properties [8], wavefront curvature of spiral waves [9], heterogeneity and
anisotropy of the media, and coexisting rotors [10, 11].

Currently, rotors are thought to be one of the potential mechanisms that maintains atrial
fibrillation (AF) in human [12], and early clinical attempts to target rotors with interventional
catheter ablation therapy to eliminate AF showed promising results [13–15]. However, recent
clinical trials have been disappointing [16–20]. Apart from the technical limitations associated with
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rotor identification using clinically available systems [21], those
negative findings raise a serious doubt on rotors as a macro-scale
mechanism that causes the micro-scale behavior of individual
cardiomyocytes to maintain spiral waves.

The micro- and macro-scale behaviors of a multi-scale system
can be mathematically quantified by the information content
of behaviors at each scale. For example, information-theoretic
metrics such as the complexity profile [22] and the marginal
utility of information [23] can quantitatively characterize the
amount of information that is present in the system behavior at
different scales. The downward causation [24–28] from macro-
to micro-scale behaviors of the system is quantifiable as inter-
scale downward information flow. We recently showed that
the relationship between the number of rotors and downward
information flow is nonlinear in a cardiac system [29]. At
microscopic scales, higher numbers of rotors are associated with
higher downward information flow. As the system description
becomes more macroscopic, higher numbers of rotors are
associated with lower downward information flow. This subtle
but important finding suggests that rotors may not be a universal
mechanism to maintain spiral waves at all scales. As the system
is coarse-grained, rotors may lose their causal power to maintain
spiral waves.

The aim of the study was to elucidate the causal relationship
between rotors and spiral waves, and to identify the causal scale
of rotors as a mechanism tomaintain spiral waves. To accomplish
the aim, we described rotors in a numerical model of cardiac
excitation in a series of spatiotemporal scales by generating a
renormalization group, and evaluate the causal architecture of
the system by quantifying causal emergence. Causal emergence
is an information-theoretic metric that quantifies emergence or
reduction between micro- and macro-scale behaviors of a system
by evaluating effective information at each spatiotemporal scale
[30]. Effective information is a quantity that captures causal
interactions of a system between its unconstrained repertoire of
possible cause and a specific state of possible effect [31]. We
hypothesized that a positive correlation between the number of
rotors and causal emergence is not universally found in all the
spatiotemporal scales of the cardiac system.

2. MATERIALS AND METHODS

We perform the simulation and the data analysis using Matlab
R2016b (Mathworks, Inc.).

2.1. Model of Spiral Waves
We used a modified Fitzhugh–Nagumo model to represent
cardiac action potential [32, 33]. This model accurately
reproduces important properties of cardiac systems, including
slowed conduction velocity, unidirectional block due to
wavefront curvature, and spiral waves [34].

∂v

∂t
= 0.26v (v− 0.13)(1− v)− 0.1vr + Iex +∇ · (D∇v) (1)

∂r

∂t
= 0.013 (v− r) (2)

where v is the transmembrane potential, r is the recovery variable,
and Iex is the external current [35]. D is the diffusion tensor,
which is a diagonal matrix whose diagonal and off-diagonal
elements are 1 and 0 mm2/ms, respectively, to represent a 2-
D isotropic system [34]. We used an isotropic, homogeneous
model to avoid confounding the causal archtecture by tissue
anisotropy and inhomogeneity. We solved the model equations
using a finite difference method for spatial derivatives and
explicit Euler integration for time derivatives assumingNeumann
boundary conditions. We generated 1,000 sets of a 2-D 120×120
isotropic lattice of components (= 11.9 × 11.9 cm) by inducing
spiral waves with 40 random sequential point stimulations in
40 random components of the lattice (Supplementary Movie 1,
section 3.2) [36]. In each component, we computed the time
series for 10 s excluding the stimulation period with a time step
of 0.063 ms, which was subsequently downsampled at a sampling
frequency of 400 Hz.

We then defined the instantaneous phase φ(t) and the
instantaneous amplitude A(t) of v(t) in each component via
construction of the analytic signal ξ (t), which is a complex
function of time [37].

ξ (t) = v(t)+ ivH(t) = A(t)eiφ(t) (3)

Here, vH(t) is the Hilbert transform of v(t)

vH(t) =
1

π
p.v.

∫

∞

−∞

v(τ )

t − τ
dτ (4)

where p.v. indicates that the integral is taken in the sense of the
Cauchy principal value. We defined the rotor of the spiral wave
as a phase singularity [38], where the phase is undefined because
all phase values converge. The phase singularity can be localized
through calculation of the topological charge nt [39, 40].

nt =
1

2π

∮

c
∇φ · dEl (5)

where φ(Er) is the local phase, and the line integral is taken over

the pathEl on a closed curve c surrounding the singularity [41].

nt =











+1 counterclockwise rotor

−1 clockwise rotor

0 elsewhere

(6)

In this study, |nt| was used to quantify the average number of
rotors over the entire time series [42].

2.2. Renormalization Group
We generated a renormalization group of the system by a series
of spatial and temporal transformation including coarse-graining
and rescaling of the original microscopic description of the
system. For each component, the time series of cardiac excitation
was descretized to 1 when excited (during the APD at 90%
repolarization, or APD90) or 0 when resting (Figure 1A) [43].
Then we coarse-grained the system spatially and temporally
with decimation by a factor of 2 (Figure 1B). Spatial decimation
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FIGURE 1 | Renormalization of a cardiac system with spiral waves. (A) Original description of the system. For each component, the time series of cardiac excitation is

descretized to 1 (black) when excited (during the APD at 90% repolarization, or APD90) or 0 (white) when resting. (B) Spatial and temporal decimation. Spatial

decimation takes the value of cardiac excitation (0 or 1) at each time point in the component at the top left corner of a block of 2 × 2 immediately adjacent

components of the system, and assigns the value to the corresponding site in the system at the next scale. Temporal decimation downsamples the time series of

cardiac excitation by a factor of 2. (C) Spatial scales. Spatial scales include scale 1 (30 × 30 lattice), scale 2 (15 × 15 lattice), scale 3 (8 × 8 lattice), scale 4 (4 × 4

lattice), scale 5 (2 × 2 lattice), and scale 6 (1 × 1 lattice). (D) Temporal scales. Each circle represents a data sampling point. Temporal scales include scale 1 (400 Hz),

scale 2 (200 Hz), scale 3 (100 Hz), scale 4 (50 Hz), scale 5 (25 Hz), and scale 6 (12 Hz).

transforms a n×n lattice into a n
2 ×

n
2 lattice by extracting the top

left component of each 2 × 2 block (Supplementary Movie 2).
Temporal decimation downsampled the binary time series of
each component by a factor of 2. Using a combination of
iterative coarse-graining in spatial and temporal axes we created
a renormalization group of a total of 36 spatiotemporal scales of
the system. The renormalization group included spatial scales 1
(30 × 30 lattice), 2 (15 × 15 lattice), 3 (8 × 8 lattice), 4 (4 × 4
lattice), 5 (2 × 2 lattice), and 6 (1 × 1 lattice) (Figure 1C), and
temporal scales 1 (400 Hz), 2 (200 Hz), 3 (100 Hz), 4 (50 Hz), 5
(25 Hz), and 6 (12 Hz) (Figure 1D).

2.3. Effective Information
We treated each component on the lattice as a time-series process
X. Entropy H of each time-series process X is

H(X) = −

∑

x

p(x) log2 p(x) (7)

where p(x) denotes the probability density function of the
time series generated by X. Effective information quantifies the
information generated when the system enters a specific state of

possible effect Y out of its unconstrained probability distribution
of possible cause X [31].

EI(X → Y) = I(X;Y) (8)

= H(X)+H(Y)−H(X,Y) (9)

=

∑

x,y

p(x, y) log2
p(x, y)

p(x)p(y)
(10)

where X has a uniform probability distribution so that it
provides the maximum entropy H(X)max [44]. I(X;Y) is
mutual information, p(x, y) and H(X,Y) denote the joint
probability density function and the joint entropy of X and
Y , respectively. Mutual information is originally a measure of
statistical dependence to quantify how much information is
shared between a source and a destination [45]. In this context,
however, mutual information is applied between two time series
of a system that is first perturbed into all possible states with
equal probability and then observed as a sepcific state. Because
of the system perturbations, mutual information here is a causal
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measure, and thus effective information of the system is a state-
independent information-theoretic measure of a system’s causal
architecture [30].

One can describe a n × n lattice at time t as a binary string
of length n × n. Therefore, the unconstrained repertoire of all

possible causes X at time t0 consists of 2n
2
possible states with

equal probability 1/2n
2
at each time point. We defined the bin

number b (b < 2n
2
) to calculate the probability distribution

of X and Y , and we used b = 210 = 1, 024 in this study.
Analytically, because X has a uniform probability distribution,
the probability that X falls in one of the b bins at each time point
is 1/b. Therefore, entropy of X is equal to the maximum entropy
(Figure 2A).

H(X) = −

∑

x

p(x) log2 p(x) (11)

= b× (−
1

b
log2

1

b
) (12)

= log2 b (13)

Numerically, X can be defined as a vector of uniformly

distributed random numbers between 1 and 2n
2
−1 for a time

series of finite duration. Due to the discretization effect, the
probability is non-uniform. Entropy is close to but not identical
to the maximum entropy (Figure 2A). We generated 1,000 sets
of X at each scale to vaidate the robustness of our effective
information measure in the cardiac system with rotors (section
3.1). Similarly, Y can be defined as a vector of decimal numbers

between 1 and 2n
2
−1, each of which represents a specific state

of the system with rotors (Figure 2B). Causal emergence is a
difference in effective information between scales.

CE = EI(Xm → Ym)− EI(Xn → Yn) (14)

wherem and n are different scales of the system description from
the renormalization group. When scale m is more macroscopic
than scale n(m > n), a positive CE indicates that the macroscopic
behavior is emergence (downward causation), whereas a negative
CE indicates that the macroscopic behavior is reduction (upward
causation) [30]. In this study we quantified causal emergence
with respect to the most microscopic system description with
spatial scale= temporal scale= 1.

3. RESULTS

3.1. Evaluation of Variance of Effective
Information to Quantify Rotor Dynamics
First, we evaluated the variance of effective information to
describe rotor dynamics at each spatiotemporal scale. This
allowed us to vaidate the robustness of our effective information
measure in the cardiac system with rotors. We repeated 1,000
numerical computations of X and Y in a representative spiral
wave data set to calculate entropy H(X), H(Y), H(X,Y), then
calculated EI(X → Y). Numerically, H(X) is not uniquely
determined due to the discretization effect, but the variance was
small (Figure 3). Spatial coarse-graining had minimal impact on

FIGURE 2 | Probability distribution of cause X and effect Y . We define the bin number b = 210 in this study. (A) Unconstrained probability distribution of possible

cause X. Analytically, the probability of all bins is uniformly 1/b (shown in blue), and thus entropy is equal to the maximum entropy at log2 b=10 bits. In contrast,

numerically, the probability is non-uniform due to the discretization effect (shown in red). Entropy is 9.829 bits, which close to but not identical to the maximum

entropy. (B) Probability distribution of a specific state of possible effect Y . The probability is non-uniform. Entropy is 2.289 bits in this case. (C) Bivariate probability

distribution of cause X and effect Y . Joint entropy is 10.220 bits in this case. Effective information from case X to effect Y is equal to mutual information between X

and Y , thus is calculated as 1.898 bits.
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FIGURE 3 | Entropy of unconstrained probability distribution of possible cause X in a representative spiral wave data set. H(X ) is not uniquely determined due to the

discretization effect, but the variance is small. Each subplot represents he probability distribution of H(X ). The columns represent the spatial scales (1 through 6) and

the rows represent the temporal scales (1 through 6).

the probability ditribution of H(X) from scales 1 through 4,
but H(X) steeply fell in scales 5 and 6. In contrast, temporal
coarse-graining gradually shifted the distribution of H(X) to
the left. H(Y) was uniquely determined because it represents
a specific state of the system regardless of the spatiotemporal
scale (Figure 4). In this case, spatial coarse-graining clearly
increased the distribution of H(Y) to the right, which peaked
at scale 4 and decreased at scales 5 and 6. Similarly, temporal

coarse-graining increased the distribution of H(Y) to the right,
which peaked at scale 4 and decreased at scales 5 and 6. The
relationship between the spatiotemporal coarse-graining and the
probability distribution of joint entropy H(X,Y) was similar
to that of H(X) (Figure 5), and the variance remained small.
Effective infromation EI(X → Y) peaked at spatial scale of 4 and
temporal scale 5, and the variance of EI(X → Y) remained small
(Figure 6). This findings indicates that, despite the discretization
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FIGURE 4 | Entropy of specific state of possible effect Y in a representative spiral wave data set. H(Y ) is uniquely determined because it represents a specific state of

the system regardless of the spatiotemporal scale. Each subplot represents the probability distribution of H(Y ). The columns represent the spatial scales (1 through 6)

and the rows represent the temporal scales (1 through 6).

effect, numerical computation of EI(X → Y) is robust with high
reproducibility, and thus EI(X → Y) can be used to quantify the
information of rotor dynamics at each spatiotemporal scale.

3.2. Evaluation of Effective Information in
Aggregate Data Sets
Next, we quantified effective information to describe rotor
dynamics at each spatiotemporal scale in 1,000 different sets
of spiral waves with random initial conditions (Figure 7). This

allowed us to analyze the causal architecture of the cardiac
system with rotors in aggregate data sets, rather than focusing
on one data set with a specific manifestation of rotor dynamics.
Overall, effective information increased as the scale increased
from microscopic to macroscopic descriptions of the system.
However, effective information reached the global maximum
at spatial scale = temporal scale = 4, beyond which effective
information decreased (Figure 7). This finding indicates that the
cardiac system with rotors has the most causal power at at spatial
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FIGURE 5 | Joint entropy of cause X and effect Y in a representative spiral wave data set. H(X,Y ) is not uniquely determined due to the discretization effect, but the

variance is small. Each subplot represents the probability distribution of H(X,Y ). The columns represent the spatial scales (1 through 6) and the rows represent the

temporal scales (1 through 6).

scale = temporal scale = 4. The behavior at this scale causes
the behavior at more microscopic (downward causation) and
macroscopic scales (upward causation). It is important to note
that the scale of peak causation is not the most macroscopic scale
(i.e., spatial scale = temporal scale = 6). We also found that
the difference in effective information between scales was larger
in spatial coarse-graining (Figure 7B) than that of temporal
coarse-graining (Figure 7C), indicating that the impact of spatial

coarse-graining on effective information was higher than that of
temporal coarse-graining.

3.3. Relationship Between the Number of
Rotors and Causal Emergence
Lastly, we evaluated the relationship between the number of
rotors and causal emergence in the same 1,000 data sets used
in section 3.1. This allowed us to relate the causal architecture
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FIGURE 6 | Effective information from cause X to effect Y in a representative spiral wave data set. EI(X → Y )[= I(X;Y ) = H(X )+ H(Y )− H(X,Y )] is not uniquely

determined due to the discretization effect, but the variance is small. Each subplot represents the probability distribution of EI(X → Y ). The columns represent the

spatial scales (1 through 6) and the rows represent the temporal scales (1 through 6).

of the cardiac system to rotor dynamics. The number of rotors
ranged from 0 to 7, with a median of 3 (Figure 8). For system
descriptions at spatial scale ≤ 4 and temporal scale ≤ 4, causal
emergence was positive for all the data sets except a few where a
rotor prematurely disappeared on its own (number of rotors≤ 1,
red dots in Figure 9). There was a significant positive correlation
between the number of rotors and causal emergence. This finding
indicates that rotor dynamics at those scales is an emergent

behavior that causes the micro-scale behavior of the system.
For system descriptions at spatial scale ≥ 5, causal emergence
was negative for all the data sets, and there was a significant
negative correlation between the number of rotors and causal
emergence. This findings indicates that rotor dynamics at those
scales is reducible to the micro-scale behavior of the system. For
system descriptions at spatial scale = 1 and temporal scale ≥ 5,
causal emergence scatters in positive and negative values. This
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FIGURE 7 | Effective information of the system in aggregate data sets. (A)

Overview. Each point indicates the mean effective information EI(X → Y ) of

1,000 data sets at each spatiotemporal scale. EI(X → Y ) reaches the global

maximum at spatial scale = temporal scale = 4. (B) Effective information vs.

spatial scale. (C) Effective information vs. temporal. Each point indicates the

mean of EI of 1,000 data sets at each spatiotemporal scale.

finding indicates that the causal relationship at those scales is
inconsistent. There was a significant negative correlation between
the number of rotors and causal emergence at those scales, but
the correlation coefficients were small (r = −0.089). For system
descriptions at spatial scale = 2, 3, and 4 and temporal scale ≥
5, causal emergence was almost always positive and there was a
significant positive correlation between the number of rotors and
causal emergence. This finding indicates that temporal coarse-
graining has a smaller impact than spatial coarse-graining on the
relationship between the number of rotors and causal emergence.
This result is consistent with that of section 3.2.

4. DISCUSSION

4.1. Main Findings
First, the numerical computation of effective information in the
cardiac system with rotors is robust with high reproducibility
(Figure 6), despite the discretization effect associated with

FIGURE 8 | Probability distribution of the number of rotors. The number of

rotors ranges from 0 to 7 in 1,000 data sets.

random generation of the unconstrained probability distribution
of possible cause X. Therefore, our effective information measure
is a reasonable information-theoretic metric to quantify the
information generated for specific dynamics in the cardiac system
with rotors at each spatiotemporal scale.

Next, there is a spatiotemporal scale at which effective
information peaks in the cardiac system with rotors (Figure 7).
This finding indicates that the most causal power of the
system does not lie in the most microscopic (i.e., spatial
scale = temporal scale = 1) nor the most macroscopic scale
(i.e., spatial scale = temporal scale = 6). In other words, both
downward and upward causation coexist in the cardiac system
with rotors.

Lastly, a positive correlation between the number of rotors
and causal emergence is not universally found in all the
spatiotemporal scales of the cardiac system (Figure 9). For
example, the number of rotors and causal emergence were
positively correlated only up to the scale of peak causation,
beyond which the correlation is not universally positive.
This finding indicates that rotors are not the universal
causal mechanism to maintain spiral wave dynamics at all
spatiotemporal scales.

4.2. Quantifying Causal Architecture of
Cardiac Systems
Our study highlights several innovative aspects. First, we utilized
a multi-scale approach by generating a renormalization group
where we applied iterated coarse-graining and rescaling [46] to
the microscopic description of the cardiac system to construct
a series of robust and minimal macroscopic descriptions
(Figure 1). In our previous work, we have successfully applied the
renormalization group to a cardiac system to quantify inter-scale
information flow [29]. In this study, we coarse-grained the system
descriptions in both spatial and temporal scales to quantify
macro-scale behaviors while reducing the number of degrees of
freedom. This approach is different from a conventional and
common belief that a detailed, high-resolution modeling with
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FIGURE 9 | Number of rotors and causal emergence. We quantify causal emergence (CE) with respect to the most microscopic system description at spatial

scale = temporal scale = 1. Each subplot represents an association between the number of rotors and CE at each spatiotemporal scale. Black dots indicate CE >0

(emergence), whereas red dots indicate CE <0 (reduction). Blue lines indicate linear fit for the number of rotors ≥1. The columns represent the spatial scales (1

through 6) and the rows represent the temporal scales (1 through 6).

near-complete description of microscopic behaviors with infinite
degrees of freedom is required to understand the macroscopic
behavior of the cardiac system. Our results suggest that our
approach is valid for achieving our aim to understand the macro-
micro causal relationship between rotors and spiral waves in the
cardiac system.

Second, we validated the robustness of effective information
in a cardiac system (Figure 6). Effective information is equal

to mutual information I(X;Y) between the source X and the
destination Y [30]. Mutual information is a measure of statistical
dependence between X and Y [45], and is not a causal measure.
However, by choosing X as a uniform probability distribution
such that it provides the maximum entropy H(X)max [44], and Y
as a specific state of dynamics, I(X;Y) becomes a causal measure
to quantify the information generated from X to Y (Figure 2)
[47]. Our results suggest that our effective information measure
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is robust with high reproducibility. Our results demonstrate that,
because effective information sensitively captures the dynamics
of the system, it is applicable to any multi-scale systems to
quantify the causal architecture.

Lastly, we quantified causal emergence to evaluate the causal
relationship between rotors and spiral waves to address whether
rotors are the causal mechanism to maintain spiral waves,
which is clinically important. Our result was unexpected; yes,
rotors are the mechanism to maintain spiral waves, but not
at all spatiotemporal scales. This result is consistent with our
previous work evaluating inter-scale information flow [29]. Our
result makes us reconsider a binary definition of a causal
mechanism, where A either is or is not a cause of B. The binary
definition of the causal mechanism may be both insensitive
and simplistic, failing to capture important features of causal
architecture. The finding that rotors are not the universal
mechanism to maintain spiral waves at all scales may account
for the conflicting benefit of rotor ablation in clinical studies,
because the concept of scales has never been introduced as
an independent variable in interventional catheter ablation
therapy.

4.3. Clinical Implications
Successful treatment of arrhythmia requires targeted elimination
of the mechanism that maintains arrhythmia, not the mechanism
that triggers it. For example, in Wolff-Parkinson-White (WPW)
syndrome, the ablation target is not the premature atrial
complexes (PAC) that trigger atrioventricular reciprocating
tachycardia (AVRT), one of the simplest forms of anatomical
reentry. Instead, successful treatment of AVRT requires
elimination of an accessory pathway (AP) connecting the
atrium and the ventricle that maintains AVRT [48]. Because the
mechanism that maintains AF remains unclear [12], catheter
ablation of AF targets focal triggers mainly originating from the
pulmonary veins (pulmonary vein isolation, PVI) [49, 50]. This
approach remains far from curative, with recurrence rates up to
40% [51].

Our results suggest that the causal architecture analysis
may guide the additional strategies of therapeutic intervention
of AF, including the posterior wall isolation [52, 53], the
stepwise approach [54–56], and the extensive ablation [57].
Those strategies, which are performed in addition to PVI, focus
on segmenting the atria by linear lesions to reduce the mass of
contiguous atrial tissue below an effective size needed to sustain
fibrillation [58]. Up to now, those additional strategies have not
produced significantly superior outcomes compared with the
standard approach [51]. Because atrial segmentation disrupts the
electrical conduction and changes the communication network
topology within the atria [59], it is expected to alter the

causal architecture of the system as well. Quantitative analysis
of the causal architecture of the system using multi-electrode
catheters may provide patient-specific diagnostic parameters
that could potentially serve as a valid endpoint for therapeutic
interventions. Further studies are required to link the causal
architecture and clinical outcomes.

4.4. Limitations
We used a modified Fitzhugh-Nagumo model, which is a
relatively simple model of excitable media. Because our aim
was to study the causal relationship between rotors and spiral
waves, we used an isotropic, homogeneous model to avoid
confounding the causal architecture by tissue anisotropy and
inhomogeneity. Further studies are required to assess the
impact of tissue anisotropy and inhomogeneity on the causal
relationship between rotors and spiral waves in a more realistic
geometry of the heart.

4.5. Conclusions
Rotors are not the universal mechanism to maintain spiral waves
at all scales in a cardiac system. This finding may account for the
conflicting benefit of rotor ablation in clinical studies.
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Supplementary Movie 1 | Random sequential point stimulations. We induce

spiral waves by introducing 40 random sequential point stimulations in 40 random

components of the lattice. In this example, random sequential point stimulations

induce five spiral waves.

Supplementary Movie 2 | Renormalzation group. The movie shows a

renormalization group of the cardiac system with two spiral waves by a series of

transformation including coarse-graining and length rescaling (scale 1 through 6).

For each component, the time series of cardiac excitation is descretized to 1

(black) when excited (during the APD at 90% repolarization, or APD90) or 0 (white)

when resting.
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Ventricular arrhythmias (VA) in patients with myocardial infarction (MI) are thought to

be associated with structural and electrophysiological remodeling within the infarct

border zone (BZ). Personalized computational models have been used to investigate

the potential role of the infarct BZ in arrhythmogenesis, which still remains incompletely

understood. Most recent models have relied on experimental data to assign BZ

properties. However, experimental measurements vary significantly resulting in different

computational representations of this region. Here, we review experimental data

available in the literature to determine the most prominent properties of the infarct BZ.

Computational models are then used to investigate the effect of different representations

of the BZ on activation and repolarization properties, which may be associated with

VA. Experimental data obtained from several animal species and patients with infarct

show that BZ properties vary significantly depending on disease’s stage, with the early

disease stage dominated by ionic remodeling and the chronic stage by structural

remodeling. In addition, our simulations show that ionic remodeling in the BZ leads to

large repolarization gradients in the vicinity of the scar, which may have a significant

impact on arrhythmia simulations, while structural remodeling plays a secondary role. We

conclude that it is imperative to faithfully represent the properties of regions of infarction

within computational models specific to the disease stage under investigation in order to

conduct in silico mechanistic investigations.

Keywords: cardiac electrophysiology, myocardial infarct, infarct border zone, gray zone, computational modeling

1. INTRODUCTION

Cardiovascular disease represents 31% of all worldwide mortality with Coronary Heart Disease
(CHD) responsible for an estimated 41% of these deaths (WHO, 2015). CHD results from the
obstruction of a coronary artery causing ischemia, i.e., the interruption of blood supply to the
myocardium, which can cause severe ventricular arrhythmias (VA) and sudden cardiac death
(SCD) (Janse andWit, 1989; Rodríguez et al., 2006; Ferrero et al., 2014) as well as irreversible tissue
damage, known as myocardial infarction (MI).

Arrhythmias associated with CHD are generally thought to be due to re-entry, however, the
cause and specific type of re-entry varies over time after ischemia onset. Specifically, CHD can
be divided into three phases according to the type of VA most commonly observed, namely,
the acute, sub-acute and healing/healed phases. The acute phase comprises the first hour after
ischemia onset. VA in this phase is due to functional re-entry (Liang et al., 2013) or spontaneous
activity (Pollard et al., 2002). The sub-acute phase comprises the next 72 h after ischemia onset and
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VA in this phase is thought to be due to abnormal automaticity
of Purkinje cells that survive in the subendocardium (Fenoglio
et al., 1976; Liang et al., 2013). In patients who survive acute
and sub-acute ischemia, the myocardium begins to heal. During
the healing phase, dead cardiomyocytes are slowly replaced
by collagen leading to the formation of a scar with a dense
collagenous core surrounded by a thin layer of surviving
myocardium, known as the infarct border zone (BZ). Several
studies have reported altered electro-anatomical properties at
the BZ of healing and healed (chronic) infarcts (Gardner et al.,
1985; Ursell et al., 1985), which may be associated with the
development of re-entry (Kléber and Rudy, 2004). However, the
underlying mechanisms are not fully understood and may differ
depending on the specific electro-anatomical changes that occur
within the BZ.

The risk of VA is high among patients with chronic infarct
and about 12.5% suffer from SCD 2 years post-MI (Raviele
et al., 1998). Thus, risk stratification is crucial to identify patients
at high risk of developing VA to plan appropriate therapy.
Currently, identification of high risk patients largely relies on
global measures of left ventricular (LV) function, which poorly
reflect electro-anatomical changes underlying the formation of
arrhythmias in MI patients. Scar tissue heterogeneity, measured
from late gadolinium enhancement (LGE) magnetic resonance
imaging (MRI) as the volume of BZ relative to LV volume,
has recently been shown to predict VA risk in patients with
chronic MI (Schmidt et al., 2007; Kwon et al., 2015) and may
improve risk stratification. More recently, computer models built
upon patient specific anatomy have been used to predict VA
risk in patients with chronic MI with very promising results.
Specifically, the Virtual-heart Arrhythmia Risk Predictor (VARP)
was shown to be a better predictor of VA than scar heterogeneity
and other conventional indices in a cohort of 41 patients Arevalo
et al. (2016). Similar approaches have also been employed
by other groups to study the effect of scar morphology on
VA inducibility (Ringenberg et al., 2012) and to predict VA
inducibility and circuit morphology (Chen et al., 2015).

Computer models are a promising strategy to study
arrhythmia mechanisms as well as predict arrhythmia risk, as
described above. However, building personalized ventricular
computer models of patients with MI remains a challenging task.
It requires identifying (segmenting) the anatomy of the heart, the
infarct scar and the BZ from imaging data and combining it with
a mathematical description of the patient’s EP based ideally on
non-invasive, clinical data, such as the electrocardiogram (ECG).
However, the ECG does not allow identifying specific regional
differences in EP properties, such as action potential duration
(APD) and conduction velocity (CV). Particularly, in the case of
computer models of MI, identifying the specific EP properties
of the BZ from the ECG is virtually impossible, as the BZ can
be as thin as a few hundred micrometers Bakker et al. (1988).
Consequently, most computer models rely on experimental
data to assign BZ properties. However, experimental results are
afflicted with significant uncertainty and may vary depending
on the animal species and experimental conditions. As a result,
recent image-based computer models ofMI have chosen different
computational representations of the EP properties of the

BZ (McDowell et al., 2011; Ringenberg et al., 2012; Sermesant
et al., 2012; Arevalo et al., 2013). These may largely affect
generation and sustenance of VA (Cabo and Boyden, 2003;
Decker and Rudy, 2010), thus, having important consequences
in the interpretation of VA simulations.

The aim of this article is two-fold. First, we review
experimental data available in the literature to identify which EP
properties of the BZ are most consistently reported and, thus,
would be most appropriate to include in computer models of MI.
Finally, we use idealized 2D models of scar and BZ to quantify
the consequences of different computational representations of
the BZ in repolarization characteristics, which may play a role in
VA simulations.

2. REVIEW OF EXPERIMENTAL DATA OF
THE ELECTROPHYSIOLOGICAL
REMODELING WITHIN THE INFARCT
BORDER ZONE

In this section, we investigate the EP properties of the infarct
BZ based on experimental data on action potentials and ionic
currents characteristics as well as morphological properties
available in the literature. We focus on data obtained during and
after scar formation, which occurs over the first few days or the
first weeks after infarction depending on the species (Richardson
et al., 2015). Reviews on simulation and experimental studies
during acute ischemia can be found elsewhere (Rodríguez et al.,
2006; Ferrero et al., 2014).

A schematic representation of the distinct types of BZ are
shown in Figure 1, where myocardium is represented in pink, the
scar core in black and the BZ in gray. The epicardial BZ refers
to the layer of myocardium that survives below the epicardial
surface, the endocardial BZ refers to the layer that survives
below the endocardial surface, and the intramural BZ refers
to the BZ in the mid-myocardium surrounding the scar core.
As shown in Figure 1, the endocardial BZ is divided into the
endocardial-central BZ and the endocardial-lateral BZ. Although
the epicardial BZ may also contain a lateral BZ, this region was
not identified in our literature review. However, we illustrate an
epicardial-lateral BZ here for the sake of completeness. Similarly,
an intramural BZ is also illustrated in Figure 1, although no
measurements in this region were found in the literature. When
the BZ region was not specified in a study, we use the broad term
BZ. While some of the studies included in our review may have
confounded BZ with scar isthmus measurements, this was not
clear from their methods and so measurements were assumed
to be representative of a homogeneous BZ region. As such, we
illustrate the scar and BZ as homogeneous structures, without any
islands of surviving tissue or isthmuses.

Qualitative findings from the experimental studies found in
the literature are summarized in Table 1. The species, the BZ
region from where samples were obtained, the time period when
recordings were made, the EP properties, and the structural
properties found in each study are shown. Results range from
data obtained in vivo and ex vivo from canine, feline, swine,
murine, and rabbit models of infarct, as well as ex vivo data
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FIGURE 1 | Schematic representation of the distinct types of BZ. Healthy myocardium is represented in pink, scar core in black and BZ in gray.

from patients with prior MI. In the animal models, infarct was
induced either via permanent ligation or temporary occlusion
of one or more coronary arteries. EP recordings were obtained
via several methods, such as micro electrodes, balloon electrodes,
suction pipettes, and optical mapping. Morphology of the scars
was analyzed via histological slices or confocal microscopy.

In the next two sections we analyse the experimental data
presented inTable 1. We divided our findings into infarct healing
(less than 5 weeks after MI) and healed infarct (at least 5 weeks
after MI), based on histological evidence from patients post-
MI (Fishbein et al., 1978).

2.1. The Infarct Border Zone During Infarct
Healing
2.1.1. Electrophysiological Remodeling
The fast sodium current (INa) is the main inward current
during membrane depolarization and the main determinant
of maximum upstroke velocity (MUV) and action potential
amplitude (APA) in a single cell. Thus, a reduction in INa (Pu
and Boyden, 1997; Baba et al., 2005) during infarct healing is
directly associated with a slower MUV (Spear et al., 1983; Ursell
et al., 1985) and reduced APA (Spear et al., 1983; Gardner et al.,
1985; Lue and Boyden, 1992) at this stage of MI. A reduction
in this current has also been associated with post-repolarization
refractoriness (Lue and Boyden, 1992; Pu and Boyden, 1997; Baba
et al., 2005).

Following the AP upstroke, INa starts to deactivate. In most
mammals, with exception of the guinea pig (Varro et al., 1993),
INa deactivation is accompanied by activation of the transient
outward potassium current (Ito). The latter is a repolarizing
current and is responsible for the early repolarization phase
(notch), which follows depolarization. Accordingly, a reduction
in Ito (Lue and Boyden, 1992; Dun et al., 2004) is thought to be
responsible for the absence of a notch in the AP of cells from the
canine epicardial BZ (Lue and Boyden, 1992).

Depolarizing calcium currents are activated following early
repolarization. These currents, particularly the L-type calcium
current (ICaL), oppose repolarization and it is the balance
between these and the repolarizing (potassium) currents that

keeps the AP at a plateau in most species, except rat and
mice (Varro et al., 1993). Thus, reduced density of the ICaL
will generally accelerate repolarization, shortening the APD.
Accordingly, reduced density of ICaL was observed in canine
BZ (Dun et al., 2004; Baba et al., 2005) and was associated
with APD shortening in this species (Baba et al., 2005). This
current also plays a major role in calcium dynamics and its
impairment is associated with dysfunctional myocyte contraction
in rabbits (Litwin and Bridge, 1971).

When ICaL deactivates, membrane repolarization begins. The
rapid (IKr) and slow (IKs) components of delayed rectifier
currents are the main repolarization currents, thus, reduced
density of these currents (Jiang et al., 2000) slows repolarization
causing APD prolongation. However, APD prolongation was
reported only by one study during the healing phase (Lue and
Boyden, 1992), while most studies report APD shortening (Spear
et al., 1983; Gardner et al., 1985; Ursell et al., 1985; Baba
et al., 2005; Chou et al., 2007; Pop et al., 2012) or even normal
APD (Mills et al., 2005).

In general, changes in individual ionic currents should
be analyzed with caution when studying changes in AP
characteristics, such as APA, MUV, and APD, since it is the
interaction between several currents which will determine AP
characteristics. It is also important to realize that the data
listed in Table 1 was obtained from a variety of species in
which ionic currents are expressed to different extents leading
to variations in overall AP characteristics (Varro et al., 1993).
Thus, changes in a particular ionic current may have different
relative effects between cells from different species. Nonetheless,
the experimental data in Table 1 suggests that APD is generally
shorter in the BZ during infarct healing despite individual
changes in ionic currents and species differences.

2.1.2. Structural Remodeling
CV is influenced by several factors, such as INa density,
GJ conductance and extracellular conductivity. Reduced INa
density (Pu and Boyden, 1997; Baba et al., 2005) and decreased
transverse GJ conductance (Yao et al., 2003) are associated with
reduced CV in tissue when considered individually (Rohr et al.,
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TABLE 1 | Experimental data on EP and structural properties of the BZ.

Study Species Stage Region EP prop. Structural prop.

Lue and Boyden, 1992 Dog 5 d Epi BZ ↓Ito ↑APD100 –

↓APA

Pu and Boyden, 1997 Dog 5 d Epi BZ ↓INa –

Jiang et al., 2000 Dog 5 d Epi BZ ↓IKr ↓IKs –

Dun et al., 2004 Dog 5–14 d Epi BZ ↓Ito ↓ICaL –

8 w ↓ICaL

Baba et al., 2005 Dog 5 d Epi BZ ↓ICaL ↓INa –

↓APD90

Cabo et al., 2006 Dog 4–5 d Epi BZ – ↓GTrans

GJ lat ↓CV

Ursell et al., 1985 Dog 5 d Epi BZ ↓MUV ↓APD90 nCV

↓ APA nEG

2 w ↓APD90 Fibrosis

8 w nAPD nMUV ↓CV iso

nAPA Disarray

Fibrosis

Gardner et al., 1985 Dog 5 d Epi BZ ↓MUV ↓APD90 nCV

↓APA nEG

2 w ↓APD90 fEG Fibrosis

8 w nAPD nMUV ↓CV iso

nAPA fEG Disarray

Fibrosis

Spear et al., 1983 Dog 3–5 d Epi BZ ↓MUV ↓APD30 –

↓APA nAPD100

8–15 d ↓APD30 nAPD100

Luke and Saffitz, 1991 Dog 3–10 w Epi BZ – ↓GJ density

Fibrosis

Peters et al., 1997 Dog 4 d Epi BZ – GJ lat

Yao et al., 2003 Dog 5 d Epi BZ – ↓GTrans

Pinto et al., 1997 Cat 2–4 m EndoL BZ ↓ICaL –

Kimura et al., 1986 Cat 2–6 m EndoL BZ ↓APD90 ↓APA –

EndoC BZ ↑APD90 –

Wong et al., 1982 Cat 2–7 m EndoL BZ ↓APD90 –

EndoC BZ ↑APD90 –

Myerburg et al., 1982 Cat 2–4 m EndoC BZ ↑APD90 Fibrosis

Kimura et al., 1988 Cat 2–4 m EndoC BZ nAPD50 nAPD90 –

Pop et al., 2012 Pig 4 w Epi BZ ↓APD ↓MUV ↓CV Disarray

↓APA

Denisko et al., 2017 Pig 5 w BZ nAPD –

Mills et al., 2005 Mouse 7 d Epi BZ nAPD90 ↓CVTrans

Fibrosis

Rutherford, 2013 Mouse 14 d BZ – ↓CVTrans

Fibrosis

Disarray

Weigand et al., 2016 Mouse 6 w Epi BZ nAPD90 –

Chou et al., 2007 Rabbit 7 d BZ ↓APD80 –

Lee et al., 2013 Rabbit 5 w BZ ↑IKAS ↓APD80 –

Litwin and Bridge, 1971 Rabbit 8 w BZ ↓ICaL ↑APD90 –

Walker et al., 2007 Rabbit 8 w BZ Abnormal AP ↓CV

Spear et al., 1979 Human 1 m+ EndoC BZ ↑APD90 Fibrosis

(Continued)
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TABLE 1 | Continued

Study Species Stage Region EP prop. Structural prop.

Dangman et al., 1982 Human 12 m+ EndoL BZ nAPD90 –

EndoC BZ ↑APD90 –

Smith et al., 1991 Human – EndoC BZ – GJ lat Fibrosis

Disarray

Kostin et al., 2003 Human – BZ – GJ lat Fibrosis

Disarray

Bakker et al., 1988 Human 16 d+ EndoC BZ fEG ↓CVTrans

Disarray

Fibrosis

Pogwizd et al., 1992 Human 4 m+ BZ fEG ↓CVTrans

Disarray

Fibrosis

Disease stage is presented in days (d), weeks (w), or months (m). In most studies, a distinction between epicardium (Epi) BZ, endocardial-central (EndoC) BZ, and endocardial-lateral

(EndoL) BZ was made. EP properties (prop.) include action potential duration (APD), maximum upstroke velocity (MUV), action potential amplitude (APA), fast sodium current (INa),

L-type calcium current (ICaL), rapid and slow rectifying potassium currents (IKr and IKs, respectively), the transient potassium current (Ito), the Apamin-sensitive potassium current (IKAS)

and electrograms (EG), normal (nEG) or fractionated (fEG). Structural properties include, gap junction (GJ) transverse conductance (Gtrans ) and lateralization (lat), conduction velocity

(CV), and the presence of fibrosis or (fiber) disarray. Arrows indicate increased (↑) or decreased (↓) quantities relative to normal myocardium, whereas “n” indicates normal or unchanged

characteristics.

1998; Dhillon et al., 2013). Conduction slowing and decreased
GJ conductance were observed in canine epicardial BZ tissue 4–
5 days after MI (Cabo et al., 2006). However, the relationship
between the two was not clear, as GJ remodeling varied between
different BZ regions and confounding factors such as ion channel
remodeling may have affected measurements of CV. Conversely,
no conduction slowing was observed in two other studies on
canine epicardial BZ 5 days after MI (Gardner et al., 1985;
Ursell et al., 1985). This may be explained by the fact that cells
at the canine epicardial BZ were often separated by interstitial
edema (Ursell et al., 1985), which will potentially increase
extracellular conductivity and compensate for the conduction
slowing caused by reduced INa density andGJ conductance (Cabo
and Boyden, 2009). On the other hand, conduction slowing in the
direction transverse to fibers was observed in murine at 7 (Mills
et al., 2005) and 14 (Rutherford, 2013) days after MI, respectively.
However, conduction slowing in these cases was associated with
the presence of interstitial fibrosis, which interrupts propagation
transverse to fibers causing local propagation delays. Interstitial
fibrosis appears after 2 weeks in canine (Gardner et al., 1985;
Ursell et al., 1985) and it was occasionally associated with
electrogram fractionation, but no apparent conduction slowing
at this stage (Gardner et al., 1985).

Spatial distribution of GJ also plays a role in CV. In
normal tissue, GJ are mainly located at the ends of cells,
called intercalated disks. This characteristic distribution is largely
responsible for CV anisotropy, which is slower transverse to
fibers and normal to the sheet orientation. Thus, it is intuitive
that an increased concentration of GJ at the lateral boundaries
of cells, known as GJ lateralization, would lead to decreased
anisotropy of CV. GJ lateralization has been observed at the
canine epicardial BZ 4 and 5 days after MI (Peters et al., 1997;
Cabo et al., 2006) and was associated with improved conduction
transverse to fibers (Cabo et al., 2006). However, it is also possible
that some of the GJ located at the lateral of remodeled cells are not

functional (Matsushita et al., 1999). Thus, fully understanding the
role that GJ lateralization at the BZ may play on CV requires
further studies.

2.2. The Infarct Border Zone in Healed
Infarcts
2.2.1. Electrophysiological Remodeling

2.2.1.1. Epicardial and endocardial-lateral border zones
Calcium sensitive potassium currents are activated by calcium
overload and blocked by Apamin (Adelman et al., 2012).
Although these currents are not typically present in normal
ventricles, the Apamin-sensitive potassium current (IKAS) has
recently been found to be upregulated at the BZ of rabbits with
healed infarcts (Lee et al., 2013). In addition, reduced ICaL density
has been reported in canine (Dun et al., 2004), feline (Pinto et al.,
1997), and rabbits (Litwin and Bridge, 1971) with healed infarcts.
Both upregulation of IKAS and downregulation of ICaL accelerate
repolarization causing APD shortening. In fact, APD shortening
was reported both in feline (Pinto et al., 1997) and rabbit (Lee
et al., 2013) in association with these currents. APD shortening
was also found in feline (Wong et al., 1982; Kimura et al.,
1986), although measurements of neither ICaL nor IKAS were
reported in those studies. On the other hand, the canine (Gardner
et al., 1985; Ursell et al., 1985), porcine (Denisko et al.,
2017), murine (Weigand et al., 2016), and human (Dangman
et al., 1982) BZ of healed infarcts exhibit normal APD, while
APD prolongation has also been found in rabbits with healed
infarcts (Litwin and Bridge, 1971).

While altered IKAS and ICaL were associated with APD
shortening in feline (Pinto et al., 1997) and rabbit (Lee et al.,
2013), changes in individual currents only tell part of the story, as
experimental conditions and the stage of MI may also influence
APD. The latter is well exemplified in two studies (Gardner et al.,
1985; Ursell et al., 1985), where canine epicardial BZ tissue was
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studied from 1 day to 8 weeks after MI. These studies report
shorter APD at 1 day, 5 days and 2 weeks after MI, where APD
is progressively shortened after MI and is shortest at 2 weeks.
However, after 2 weeks, the APD begins to increase and returns
to normal values after 8 weeks. Similarly, normal APD values
were also found in murine epicardial BZ tissue 6 weeks after
MI (Weigand et al., 2016), suggesting that the healing process is
complete earlier in this species.

Rabbits are a particular case among the studies shown in
Table 1, as they exhibit a shorter APD80 5 weeks after MI (Lee
et al., 2013), but a longer APD90 by 8 weeks (Litwin and
Bridge, 1971). This discrepancy in APD values reported may
be explained by differences in pacing protocols and restitution
characteristics. Although both studies observed APD shortening
when increasing pacing frequency (Litwin and Bridge, 1971;
Lee et al., 2013), the pacing frequency for baseline APD
measurements was higher in Lee et al. (2013) (3 Hz) than in
Litwin and Bridge (1971) (0.5 Hz). This might explain the shorter
baseline APD reported by the former compared to the latter.
Walker et al. (2007) also applied higher pacing rates (3–6 Hz)
than Litwin and Bridge (1971). However, although abnormal APs
were reported in the BZ, the specific characteristics of these APs
were not described.

The fact that APD shortening was found in feline 2 months
after MI, but not in canine murine, and humans might be
explained by differences in the specific coronary occlusion
techniques implemented. For instance, the ligation technique
employed in the feline experiments (Myerburg et al., 1982;
Wong et al., 1982; Kimura et al., 1986, 1988; Pinto et al.,
1997) was specifically developed to induce long term EP
changes after MI (Myerburg et al., 1977), whereas the ligation
technique employed in themurine experiments (Mills et al., 2005;
Rutherford, 2013; Weigand et al., 2016) was designed to reduce
infarct size and mortality rate after acute ischemia (Maclean
et al., 1978), thus, likely attenuating EP remodeling in healed
infarcts. Moreover, coronary occlusion followed by reperfusion
was performed in canine (Spear et al., 1983) and the total
repolarization time (APD100) was normal 5 and 14 days after
MI, suggesting that this technique might also attenuate EP
remodeling in healed infarcts. Is it worth noting that, reperfusion
following coronary occlusion is typical in patients which are
treated in hospital for MI. Although this technique may cause
what is known as reperfusion injury, the canine results with
reperfusion (Spear et al., 1983) point to a faster healing process
resulting in less or even no EP remodeling in the clinical
setting. This hypotheses is supported by the APD measured at
the endocardial-lateral BZ in one patient with healed infarct,
which was not significantly different than the APD of remote
tissue (Dangman et al., 1982) and by themean activation recovery
interval values, as an APD surrogate, measured at the BZ of swine
5 weeks after MI, which show that values are not significantly
different than in normal tissue, neither in the epicardium, nor
in the endocardium (Denisko et al., 2017).

2.2.1.2. Endocardial-central border zone
A thin rim (less than 800 µm Bakker et al., 1988) of myocardium
is known to survive just below the endocardial surface overlying

the core of the infarct scar in humans (Spear et al., 1979;
Dangman et al., 1982; Bolick et al., 1986; Bakker et al., 1988;
Smith et al., 1991), feline (Myerburg et al., 1982; Wong et al.,
1982; Kimura et al., 1986, 1988) and rabbit (Walker et al., 2007),
which we refer to as the endocardial-central BZ. Most APD
measurements in this region show a longer APD compared with
remote (normal) tissue (Spear et al., 1979; Dangman et al., 1982;
Myerburg et al., 1982; Wong et al., 1982; Kimura et al., 1986).
However, a later study by Kimura et al. (1988) show that APDs in
the endocardial-central BZ are not significantly longer than the
APD in remote tissue. The authors argue that this discrepancy is
likely due to differences in experimental conditions. Specifically,
their LV preparation was perfused through the coronary
arteries (Kimura et al., 1988), whereas the preparations in the
earlier studies were superfused (Myerburg et al., 1982; Wong
et al., 1982; Kimura et al., 1986). When LV preparations are
superfused, the cells in the mid-myocardium may be hypoxic,
resulting in APD shortening. This effect was demonstrated in
a recent study using computational models (Campos et al.,
2012). Since the endocardial-central BZ is isolated from the mid-
myocardium, as it overlies the core of dense fibrosis, this region
is less affected by a hypoxic mid-myocardium. Consequently,
the APD in the remote tissue is likely to be shorter than in the
endocardial-central BZ, as reported in feline (Myerburg et al.,
1982; Wong et al., 1982; Kimura et al., 1986) and human (Spear
et al., 1979; Dangman et al., 1982) superfused preparations. Thus,
considering the likelihood of such a significant experimental
artifact highlighted by Kimura et al. (1988) and the fact that
no ionic remodeling was found in the feline endocardial-central
BZ (Kimura et al., 1986), we conclude that the APD in the
endocardial-central BZ of healed infarcts is likely not significantly
different from the normal myocardium.

Such experimental artifacts may also have affected the
APD measurements reported in the feline endocardial-lateral
BZ, which was shorter than both remote and endocardial-
central BZ tissue (Myerburg et al., 1982; Wong et al.,
1982; Kimura et al., 1986). However, APD values of the
endocardial-lateral BZ were not reported in the coronary
perfused feline preparations (Kimura et al., 1988). On the
other hand, APD values in this region were normal in human
superfused preparations (Dangman et al., 1982). Therefore,
further experimental studies would be required to determine the
effect of superfusion on the APD of the endocardial-lateral BZ.

2.2.2. Structural Remodeling
The presence of fibrosis is frequently reported in the BZ of
healed infarcts (Myerburg et al., 1977; Spear et al., 1979; Gardner
et al., 1985; Ursell et al., 1985; Bakker et al., 1988; Luke and
Saffitz, 1991; Smith et al., 1991; Pogwizd et al., 1992; Kostin
et al., 2003). While interstitial fibrosis would impair conduction
transverse to fibers (Bakker et al., 1988; Pogwizd et al., 1992),
thus, increasing anisotropy, the presence of patchy fibrosis
locally blocks propagation both longitudinally and transverse
to fibers, leading to non-uniform anisotropy throughout the
tissue. Both types of fibrosis are associated with fractionated
electrograms (Gardner et al., 1985; Ursell et al., 1985; Bakker
et al., 1988; Pogwizd et al., 1992). In addition, fibers in the BZ of
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healed infarcts are often reported to be in disarray (Gardner et al.,
1985; Ursell et al., 1985; Pogwizd et al., 1992; McGuire et al., 1996;
Kostin et al., 2003; Pop et al., 2012). When increased and/or non-
uniform anisotropy are combined with fiber disarray, conduction
may appear isotropic and slow at the macroscopic scale, whereas
local conduction slowing in the transverse direction may occur at
the microscopic scale. In fact, slow and isotropic propagation was
observed at the BZ of healed canine infarcts (Gardner et al., 1985;
Ursell et al., 1985). On the other hand, although GJ lateralization
was observed in patients with healed infarcts (Smith et al., 1991;
Kostin et al., 2003), its role in propagation at the BZ remains to
be fully determined, as previously discussed.

2.2.3. Summary
The experimental findings listed in Table 1 clearly demonstrate
that (1) the EP and structural properties of the BZ vary
significantly from 3 days to 12 months after infarct, allowing a
clear separation between the healing (3 days to 5 weeks) and
healed phases (more than 5 weeks), (2) APD at the BZ is shorter
than normal or remote tissue during the healing phase, (3)
APD at the BZ in healed infarcts is not significantly different
than normal or remote tissue (4) conduction slowing is mostly
associated with the presence of fibrosis, which starts to appear at
the BZ 7 days after infarct, (5) the BZ of healed infarcts is mostly
marked by the presence of fibrosis and fiber disarray leading to
slow conduction and loss of anisotropy, respectively.

3. COMPUTATIONAL REPRESENTATIONS
OF THE INFARCT BORDER ZONE

Increased dispersion of repolarization has been associated
with life-threatening arrhythmias (Kléber and Rudy, 2004;
Clayton and Holden, 2005; Coronel et al., 2009). Repolarization
dispersion is mainly determined by the spatial distribution
of repolarization times in cardiac tissue, which are in turn
determined by local APD and CV. Thus, changes in the spatial
distribution of APD and CV may introduce repolarization
heterogeneity, increasing dispersion of repolarization, in turn
affecting predicted arrhythmia vulnerability. Experimental data
presented in Table 1 shows that APD may be shorter or longer
at the BZ depending on the stage of infarct healing, species
and the specific BZ region, while slow conduction and fiber
disarray were a common find at the BZ of healed infarcts.
However, the consequences of changes in APD, CV and fiber
orientation at the BZ on the spatial distribution and resulting
dispersion of repolarization in the vicinity of the scar are unclear.
Thus, we created idealized 2D computational models of scar
and BZ, where APD, tissue conductivities and fiber orientation
are modified at the BZ. We simulated steady-state activation
and repolarization sequences and computed local activation and
repolarization times and gradients of repolarization times. The
cellular action potential and 2D tissue models are described in
the next section followed by simulation results.

3.1. Idealized Computational Models
We created modified AP models based on the Ten Tusscher
model of human ventricular cells (ten Tusscher et al., 2006),

where one model has a longer APD and the other has a shorter
APD. A longer APD was obtained by decreasing the conductance
of the IKs current, gKs, to 50% of the control value, whereas
a shorter APD was obtained by increasing gKs to 200% of the
control value. We chose gKs, as it yields the most significant effect
on the APD of the Ten Tusscher model (Mirams et al., 2014). The
APD of the shorter and longer APD models were approximately
40 ms shorter and longer than the control value, respectively,
based on APD values found in the literature (Litwin and Bridge,
1971; Ursell et al., 1985). The APs generated by the two modified
models as well as the control model with unmodified parameters
are shown in Figure 2A.

A rectangular tissue setup with a circular scar was created to
investigate changes in the spatial distribution of repolarization
gradients for different computational representations of the
BZ. Specifically, a 30 × 30 mm2 finite element (FE) grid of
triangular elements with mean edge length of 50 µm was
created. A schematic representation of our tissue setup is shown
in Figure 2B. The scar core was modeled as an insulator by
removing the elements defined as scar core from the FE grid.
This simple representation was chosen over a more realistic
anatomical representation of the myocardium and scar to avoid
confounding factors, such as ventricular wall and scar shape, scar
location and transmurality, as well as apico-basal and transmural
fiber rotation.

The cardiac monodomain model was used to simulate
electrical propagation in the tissue. Normal anisotropic bulk
conductivities were set to 0.1890 and 0.0690 S/m in the
longitudinal and transverse directions, respectively. Using an
automatic parameterization approach (Costa et al., 2013), these
conductivities yield velocities of 0.6 and 0.4 m/s, consistent with
velocities in normal ventricular myocardium (Caldwell et al.,
2009). The computational representations of the EP properties of
the BZwere based on the findings listed inTable 1. These include:
shorter, normal, or longer APD, normal conductivities, decreased
transverse conductivity representing slow transverse propagation
due to the presence of interstitial fibrosis, or decreased isotropic
conductivities representing slow isotropic propagation, and
horizontally or randomly oriented fibers representing normal
fiber alignment and fiber disarray, respectively. The decreased
transverse conductivity value was set to 10% of the normal
value, as done in recent simulations studies (Arevalo et al., 2013,
2016), yielding a velocity of 0.12m/s. The isotropic conductivities
were computed based on the CV measured at the BZ with
decreased transverse conductivities and randomly aligned fibers
(0.4 m/s) using an automatic approach (Costa et al., 2013). The
conductivity values used are shown in Table 2. A cell capacitance
of 1µF/cm2 and a surface-to-volume ratio of 0.14 µm−1 were
used in all simulations.

The monodomain equation coupled with the Ten Tusscher
ionic model was solved using the Cardiac Arrhythmia Research
Package (CARP) (Vigmond et al., 2003, 2008). The cell model
was stimulated 100 times prior to tissue simulations to achieve
steady-state. The final state of gating variables was saved and
given as input to the tissue simulations. The tissue was then
stimulated 5 times at a constant cycle length of 500 ms to achieve
steady-state. Activation time was computed as the time tissue
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FIGURE 2 | (A) Action potentials of the control and two modified models. The blue line represents the model with shorter action potential duration (APD) obtained by

increasing the conductance of the slow rectifying potassium current, gKs, to 200% of the control value, whereas the red line represents the model with longer APD

obtained by decreasing gKs to 50% of the control value and the black line represented the control model with unchanged parameters. (B) Rectangular tissue model

with a circumferential scar. The whole tissue measures 30 mm × 30 mm, where the scar core measures 10 mm in diameter and is surrounded by a 2 mm thick BZ.

Healthy myocardium is represented in pink, scar core in dark blue and BZ in light blue. Fibers in healthy myocardium are always aligned with the x axis, whereas at the

BZ, fibers are either aligned with the x axis or randomly oriented. Stimuli are delivered at the center of the bottom tissue edge.

TABLE 2 | Conductivity types and values used in the 2D simulations.

Type Longitudinal (S/m) Transverse (S/m)

Normal anisotropic 0.1890 0.0690

Decreased transverse 0.1890 0.0069

Decreased isotropic 0.0689 0.0689

reached a threshold of –20 mV and repolarization time was
computed as the time tissue reached a threshold of –70 mV after
depolarization. The repolarization gradient was computed as the
magnitude of the spatial gradient of the repolarization time at
each grid point.

3.2. Activation Times
The activation times for four computational representations of
the BZ with normal APD, the conductivities shown in Table 2,
and horizontal and random fibers are shown in Figure 3. The
activation sequences for the BZ with normal conductivities,
with decreased transverse conductivities and random fibers, and
with reduced isotropic conductivities are very similar to each
other. Particularly, the activation sequences of the latter two
are nearly identical. On the other hand, an abrupt transition
from normal to very slow conduction (30% slower) when the
BZ is represented with decreased transverse conductivities and
horizontal fibers causes a significant activation delay. This effect
is seen as crowding of isolines at the bottom of the BZ on the
second left panel of Figure 3.

3.3. Repolarization Times and Gradients
Repolarization times and gradients computed for each model
are shown in Figure 4. The repolarization time maps shown in
the left column describe the repolarization sequence for each
AP model. Note that the presence of a longer or shorter APD
at the BZ distorts the isolines, which accumulate at the bottom

and top edges of the BZ for the longer and shorter APD models,
respectively. Where the isolines accumulate, large repolarization
gradients are seen in the second to fifth columns, left to right.
Particularly, gradients above 5 ms/mm extend up to 50 mm
around the BZ when APD is shortened at the BZ and up to 30
mm when APD is prolonged for all conductivities. Similar to
the activation times, the different conductivities also have a less
prominent effect on the spatial distribution of repolarization
gradients. However, when the transverse conductivity is severely
reduced thus reducing electrotonic load in the transverse
direction, gradients become sharper and the spatial pattern
is distorted. Particularly, decreased transverse conductivity
introduces large sharp gradients at the top and bottom edges
of the BZ when combined with horizontally aligned fibers,
whereas, small patches of large gradients appear when decreased
transverse conductivity is combined with randomly oriented
fibers. Macroscopically, the spatial distribution of gradients of
the model with decreased transverse conductivity and randomly
oriented fibers is similar to the models with normal conductivity
and decreased isotropic conductivities and horizontally aligned
fibers. It is worth mentioning that the scale of gradients (0–5
ms/mm) was chosen for visualization purposes only. The
minimum repolarization gradient required for unidirectional
block was determined experimentally as 3.2 ms/mm (Laurita
and Rosenbaum, 2000). The repolarization gradients in our
simulations were often much larger than 3.2 ms/mm, being as
large as 25 ms/mm at the edge of the BZ in the models with
altered APD, decreased transverse conductivity and horizontal
fibers.

4. DISCUSSION

In this study, we presented a literature review on experimental
data of the EP and structural properties of the infarct BZ.
Experimental data show that BZ properties change over time
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FIGURE 3 | Activation times for four computational representations of the BZ with normal APD. The Scar core is shown as a white filled circle, whereas the interface

of BZ with normal tissue is marked as a dashed white circle. The stimulus site is represented by the yellow square at the bottom left panel. The stimulus site was the

same for all simulations. Activation times ranging from 0 ms (blue) to 70 ms (red) are shown for the four models. The columns show, from left to right, the models with

normal conductivity, decreased transverse conductivity with horizontal fibers, decreased transverse conductivity with random fibers, and decreased isotropic

conductivities in the BZ.

FIGURE 4 | Repolarization times and gradients computed for the 12 computational representations of the BZ. The Scar core is shown as a white filled circle, whereas

the interface of BZ with normal tissue is marked as a dashed white circle. The stimulus site is represented by the yellow square at the bottom left panel. The stimulus

site was the same for all simulations. The left column shows the repolarization time maps. Repolarization times ranging from 280 ms (blue) to 360 ms (red) are shown

for the models with normal conductivities and horizontal fibers. The second to fifth columns from left to right show the repolarization gradients. Gradients range from 0

ms/mm (dark blue) to 5 ms/mm (dark red). The upper, central, and bottom rows show the models where the APD was set to normal, longer, or shorter than normal

tissue, respectively. The second to fifth columns show, from left to right, the models with normal conductivity, decreased transverse conductivity with horizontal fibers,

decreased transverse conductivity with random fibers, and decreased isotropic conductivities in the BZ.

after coronary occlusion. During infarct healing (<5 weeks), the
majority of studies find that the BZ exhibits a shorter APD,
slower MUV and decreased APA than normal and or remote
tissue. Two weeks following occlusion fibrosis starts to appear
and this coincides with conduction slowing. As the infarct heals
(>5 weeks), APD, MUV and APA return to normal values
in the majority of studies independent of species. We used

idealized computational models to study the impact of these
different electrophysiological and structural changes reported
to occur within the BZ on repolarization gradients within the
vicinity of regions of infarct scar. Our simulation results show
that repolarization gradients, as a proxy for arrhythmogenic
risk, are highly dependent on the specific conductivity and
APD values as well as fiber orientation used to represent the
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BZ. Unsurprisingly, those models with specific APD alterations
assigned to BZ showed the largest repolarization gradients.
These findings thus highlight the need to accurately model
the BZ in computer models that are based on experimental
data.

4.1. Impact of Different Computational
Representations of the Infarct Border Zone
on Activation and Repolarization
The experimental findings listed in Table 1 demonstrate that
APD is shorter than normal during infarct healing, whereas
APD in healed infarcts is likely normal. When implementing
local differences in APD in our computer models, repolarization
gradients as large as 25 ms/mm appear in and around the BZ.
In general, the intrinsic APD of a cell, i.e., the APD defined by
ionic properties, is smoothed out when cells are coupled due
to electrotonic interaction between neighboring cells. This so-
called electrotonic effect is modulated by tissue conductivity,
with larger conductivities leading to more smoothing. In fact,
despite the large difference in APD between cells of healthy and
BZ tissue (∼40 ms), repolarization gradients due to longer or
shorter APD are smoothed out between the two regions for all
BZ conductivites, but to different degrees (Figure 4). Particularly,
reduced transverse conductivity leads to decreased electrotonic
load in the transverse direction, introducing sharp gradients
at the BZ and increasing spatial heterogeneity. This effect is
observed both with horizontally and randomly aligned fibers,
however, large gradients are restricted to small localized regions
within the BZ when fibers are randomly aligned. On the other
hand, APD differences are smoothed out to a larger extent with
normal and reduced isotropic conductivities.

It is worth mentioning that, the sharp gradients observed
in the case of decreased transverse conductivity are a result of
an extreme reduction in conductivity. To investigate whether a
gradual transition between healthy and BZ tissue would affect
results, we performed one additional simulation, where we
implement a smooth transition between healthy and BZ tissue
for the case of decreased transverse conductivity (see Figure S1
in Supplementary Material). This approach resulted in a slightly
smoother repolarization gradient, but did not qualitatively alter
our results and conclusions. Moreover, since the exact nature of
such a gradual reduction in conductivity is not currently known,
employing such approach would require a detailed modeling
investigation which is out of the scope of this study.

Several experimental studies listed in Table 1 report decreased
CV at the BZ ranging from 50% (Mills et al., 2005) to 10%
(Gardner et al., 1985; Ursell et al., 1985) slower. However,
decreased conductivities yielding slower conduction in the
BZ only significantly affected activation times (Figure 3) and
repolarization gradients (Figure 4) in our simulations when the
transverse velocity was reduced to 30% of the normal value
(0.12 m/s instead of 0.4 m/s).

In general, slow conduction in the BZ is associated with
the presence of interstitial and patchy fibrosis as well as fiber
disarray during late infarct healing and in healed infarcts.
Our simulations show that the combination of interstitial

fibrosis (represented by decreased transverse conductivity) and
fiber disarray (represented by randomly aligned fibers) lead
to spatial distributions of repolarization gradients that are
macroscopically very similar to those obtained with decreased
isotropic conductivities. These findings thus indicate that
conduction in the BZ of infarcts older than 2 weeks is likely slow
and isotropic, as reported in the canine epicardial BZ of healed
infarcts (Ursell et al., 1985).

Based on experimental findings and our simulation results,
we conclude that the macroscopic EP properties of BZ are
best represented by (1) reduced MUV, APA and APD without
conductivity changes during early (<7 days) infarct healing, (2)
shorter APD and decreased isotropic conductivities during late
infarct healing (7 days to 5 weeks), and (3) normal APD and
decreased isotropic conductivities in healed (more than 5 weeks)
infarcts, regardless of the specific sub-region (endo-central, endo-
lateral, epi).

4.2. The Role of Myofibroblasts
Myofibroblasts are largely responsible for tissue repair following
cardiac injury, particularly infarction (Baum et al., 2011).
Recently, myofibroblasts have been found to form hetero-cellular
connections at the BZ of healed cryoinjury scars (Quinn et al.,
2016), however, their contribution to the electrical properties of
the infarct BZ remains unclear. Due to their more positive resting
potential relative to cardiomyocytes, myofibroblasts coupled to
cardiomyocytes may act as an electrical sink affecting excitability,
CV and APD (Rohr, 2012). These changes might be associated
with increased likelihood of arrhythmia (Rohr, 2012) depending
on myofibroblast density (McDowell et al., 2011).

Although the data presented in Table 1 did not explicitly
include myofibroblasts, any effect they might have had in the
electrical properties of the BZ would be implicitly accounted for
in measurements of AP characteristics and CV. Thus, we do
not expect the presence of myofibroblasts to significantly alter
our conclusions based on the experimental data and simulation
results presented in this study.

4.3. Comparison With Recent Simulation
Studies
Recent simulation studies using image-based models of infarct
have relied on experimental data to model the EP properties of
the BZ. Specifically, the BZ was modeled with reduced MUV and
APA (Arevalo et al., 2013, 2008, 2016; McDowell et al., 2011;
Rantner et al., 2012; Ringenberg et al., 2012; Ashikaga et al., 2013;
Deng et al., 2015, 2016) and longer APD (Arevalo et al., 2013,
2008, 2016; McDowell et al., 2011; Ng et al., 2012; Rantner et al.,
2012; Ringenberg et al., 2012; Ashikaga et al., 2013; Deng et al.,
2015, 2016). Altered AP characteristics in the BZ were obtained
bymodifying individual ionic currents (Arevalo et al., 2013, 2008,
2016; McDowell et al., 2011; Rantner et al., 2012; Ringenberg
et al., 2012; Ashikaga et al., 2013; Deng et al., 2015, 2016) based
on experimental measurements of canine 5 days after MI (Pu and
Boyden, 1997; Jiang et al., 2000; Yao et al., 2003; Dun et al., 2004),
which lead to a longer APD (Decker and Rudy, 2010), or based
on data obtained from feline 2 months after MI (Myerburg et al.,
1982). However, while decreased MUV and APA are reported
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in canine (Spear et al., 1979; Ursell et al., 1985) during infarct
healing, most experimental data listed in Table 1 show a shorter
APD in the same phase, particularly 5 days after infarct (Spear
et al., 1983; Gardner et al., 1985; Ursell et al., 1985; Baba et al.,
2005).

The transverse conductivity was reduced to 10% of the normal
value (Arevalo et al., 2008, 2013, 2016; McDowell et al., 2011;
Rantner et al., 2012; Ashikaga et al., 2013; Deng et al., 2015, 2016)
to represent decreased gap junctional conductance in the canine
epicardial BZ 5 days after infarct (Yao et al., 2003). Although
the relationship between conduction slowing transverse to fibers
and GJ remodeling is not entirely clear (Cabo et al., 2006),
slow transverse conduction was reported in murine 7 days after
MI (Mills et al., 2005), where the authors report the presence
of fibrosis, but do not report fiber disarray. This suggests that
representing the BZ with reduced transverse conductivity may
be appropriate in the presence of fibrosis without fiber disarray.
The BZ was also represented with conductivity 3 times slower
than healthy myocardium (Ng et al., 2012), consistent with the
values estimated in porcine ventricles (Pop et al., 2012). However,
the authors used an isotropic setup, where changes in fiber
orientation cannot be represented.

4.4. Consequences for Arrhythmia
Simulations
Re-entrant arrhythmias in patients with MI typically originate
at the scar, particularly at the BZ (Bakker et al., 1988; Pogwizd
et al., 1992). The core of the scar alone creates an area of
anatomical, or fixed, conduction block, providing a substrate
for anatomical re-entry. In the case of anatomical re-entry, the
minimal length of the re-entrant pathway has to exceed the
wavelength of excitation (Rohr et al., 1998), which can be defined
as the product of CV and effective refractory period, which is
largely determined by APD. The experimental data presented
in this study shows that the BZ is characterized by short APD
during infarct healing and slow conduction both during healing
and in healed infarcts. Thus, the specific EP properties of the
BZ may shorten the wavelength and increase the likelihood of
arrhythmia.

While slow conduction is in general associated with increased
arrhythmogenesis (Rohr et al., 1998; Kléber and Rudy, 2004),
reduction of the transverse conductivity leading to slow
conduction in the direction transverse to fibers, will shorten
the wavelength in one direction increasing the chance of
unidirectional block and re-entry (Saffitz and Kléber, 2012).
This scenario may cause a type of re-entry know as anisotropic
re-entry, which is characterized by conduction block in the
transverse direction, owing to reduced transverse conductivity,
but successful conduction in the longitudinal direction (Spach
and Josephson, 1994). Decreased transverse conductivities also
lead to large repolarization gradients in the BZ, which may also
be associated with functional re-entry (Kléber and Rudy, 2004),
although to a lesser extent. On the other hand, altered APD at
the BZ leads to much larger repolarization gradients. Particularly,
a shorter APD will also shorten the wavelength, making the
formation of a sustained re-entrant circuit more likely. On the

other hand, a longer APD at the BZ may be arrhythmogenic
in the presence of an isthmus (Connolly and Bishop, 2016),
where propagation is initially blocked, due to increased
refractoriness, but might enter the isthmus creating a re-entrant
circuit.

Increased refractoriness may also be caused by reduced INa.
Specifically, reduced INa in canine 5 days after MI (Lue and
Boyden, 1992; Pu and Boyden, 1997; Baba et al., 2005) decreases
excitability leading to post-repolarization refractoriness and thus
an elongated effective refractory period (ERP) (Pu and Boyden,
1997). Thus, while the APD of a BZ cell may be shorter
at this stage of MI the ERP may be longer (Gough et al.,
1985; Pu and Boyden, 1997) potentially affecting arrhythmia
mechanisms. While we have not included changes in INa
in our computational models, the role of post-repolarization
refractoriness in propagation block has been investigated in
recent simulation studies (Cabo and Boyden, 2003; Decker and
Rudy, 2010). In fact, post-repolarization refractoriness due to
reduced INa was shown to be a major determinant of the
vulnerable window for conduction block under fast pacing
rates (Decker and Rudy, 2010).

In the case of chronic infarcts, our simulations show that the
presence of interstitial fibrosis and fiber disarray may lead to
large but localized repolarization gradients, as these gradients
are mostly smoothed out by electrotonic interaction with the
healthy tissue. In certain scenarios, these localized gradients
may be sufficient to cause uni-directional conduction block of
a nearby ectopic focus, which are known to be more likely to
occur in the BZ tissue (Bakker et al., 1988; Pogwizd et al., 1992).
Alternatively, they may cause heterogeneous conduction slowing
of a preceding wavefront or potentially initiate wavebreak.
Overall slow conduction in the BZ leading to wavelength
shortening may contribute to anatomical re-entry, as an ectopic
focus originating near the scar (Bakker et al., 1988; Pogwizd et al.,
1992) may encounter a pathway larger than the wavelength and,
thus, generate a re-entrant circuit. Thus, in this scenario, the
anatomical properties of the scar and its BZ may play a more
prominent role in re-entry than AP characteristics.

In summary, the remodeled infarct BZ may be associated
with increased risk of re-entrant arrhythmias and the specific
mechanism of re-entry will depend on the EP and structural
properties of the BZ. These, in turn, depend on the specific stage
of infarct healing. Thus, accurately modeling the EP properties
of the BZ according to the stage of MI being modeled is
crucial for arrhythmia simulations which aim at understanding
arrhythmia mechanism and, particularly, predicting arrhythmia
risk in patients with infarct.
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Computational modeling is an important tool to advance our knowledge on cardiac

diseases and their underlying mechanisms. Computational models of conduction in

cardiac tissues require identification of parameters. Our knowledge on these parameters

is limited, especially for diseased tissues. Here, we assessed and quantified parameters

for computational modeling of conduction in cardiac tissues. We used a rabbit model

of myocardial infarction (MI) and an imaging-based approach to derive the parameters.

Left ventricular tissue samples were obtained from fixed control hearts (animals: 5)

and infarcted hearts (animals: 6) within 200 µm (region 1), 250–750 µm (region 2)

and 1,000–1,250 µm (region 3) of the MI border. We assessed extracellular space,

fibroblasts, smooth muscle cells, nuclei and gap junctions by a multi-label staining

protocol. With confocal microscopy we acquired three-dimensional (3D) image stacks

with a voxel size of 200× 200× 200 nm. Image segmentation yielded 3D reconstructions

of tissue microstructure, which were used to numerically derive extracellular conductivity

tensors. Volume fractions of myocyte, extracellular, interlaminar cleft, vessel and fibroblast

domains in control were (in%) 65.03± 3.60, 24.68± 3.05, 3.95± 4.84, 7.71± 2.15, and

2.48± 1.11, respectively. Volume fractions in regions 1 and 2 were different for myocyte,

myofibroblast, vessel, and extracellular domains. Fibrosis, defined as increase in fibrotic

tissue constituents, was (in %) 21.21± 1.73, 16.90± 9.86, and 3.58± 8.64 in MI regions

1, 2, and 3, respectively. For control tissues, image-based computation of longitudinal,

transverse and normal extracellular conductivity yielded (in S/m) 0.36 ± 0.11, 0.17 ±

0.07, and 0.1 ± 0.06, respectively. Conductivities were markedly increased in regions 1

(+75, +171, and +100%), 2 (+53, +165, and +80%), and 3 (+42, +141, and +60%).

Volume fractions of the extracellular space including interlaminar clefts strongly correlated

with conductivities in control and MI hearts. Our study provides novel quantitative data

for computational modeling of conduction in normal and MI hearts. Notably, our study
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introduces comprehensive statistical information on tissue composition and extracellular

conductivities on a microscopic scale in the MI border zone. We suggest that the

presented data fill a significant gap in modeling parameters and extend our foundation

for computational modeling of cardiac conduction.

Keywords: cardiac modeling, cardiac tissue, myocardial infarction, tissue conductivity, electrical conduction

INTRODUCTION

Cardiac diseases, such as myocardial infarction (MI), are
often associated with an increased risk of arrhythmia, which
results from remodeling of cellular electrophysiology and tissue
electrical properties. Computational modeling is amajor research
approach to study underlying mechanisms and effects of cardiac
diseases, as well as cardiac physiology (Sachse, 2004; Moreno and
Clancy, 2009; Clayton et al., 2011).

Established models of cardiac electrical conduction include
the monodomain and bidomain models. More recently,
multidomain models of cardiac conduction were introduced
(Sachse et al., 2009). Computational simulations with these
models commonly require discretization of spatial domains
with finite element or finite difference methods. Models of
cellular electrophysiology are assigned to elements or nodes of
the computational mesh of conduction models. These models
of cellular electrophysiology describe voltages across the cell
membrane Vm and associated membrane currents. Commonly,
only models of myocyte electrophysiology are considered,
because myocytes occupy most of the volume in cardiac tissues
and with some exceptions, the contribution of other cells to
conduction is thought to be marginal throughout the normal
heart. Models of myocyte electrophysiology have been developed
for various species and anatomical regions (Lloyd et al., 2008;
Fink et al., 2011). However, various experimental findings suggest
that non-myocytes, in particular, fibroblasts, myofibroblasts and
macrophages, contribute to cardiac conduction and arrhythmia
(Gaudesius et al., 2003;Miragoli et al., 2006; Zlochiver et al., 2008;
Quinn et al., 2016; Hulsmans et al., 2017). Electrophysiological
models of these cells have been developed and their effects on
conduction can be simulated using multi-domain models.

Beyond cell models, intracellular electrical conductivities σi

and, for the bidomain and multidomain models, extracellular

electrical conductivities σe are assigned to elements or nodes in

a mesh for modeling of cardiac conduction. These conductivities
describe electrical properties resulting from tissuemicrostructure
including the distribution and shape of cells, their intercellular
coupling and the distribution of extracellular space. Commonly
the conductivities are described by tensors of 2nd order to
account for anisotropy, i.e., a strong directional dependence of
conductivity characteristic for cardiac tissues. Interestingly, only
a small number of studies have reported on anisotropic intra-
and extracellular conductivities of cardiac tissues. Noteworthy
are in particular studies analyzing electrical measurements
on right ventricular (RV) trabecular bundles of calf (Clerc,
1976) and left ventricular (LV) subepicardial myocardium of
canine (Roberts et al., 1979; Roberts and Scher, 1982). These
studies yielded bidomain conductivities distinguishing between

longitudinal and transverse conductivities of the extracellular
and intracellular space, which relate to longitudinal and
transverse orientation of the local myocytes. Recent work aims at
establishing bidomain conductivities accounting for longitudinal
and transverse orientation of myocytes as well as the orientation
of myocyte sheets (Legrice et al., 1995; Hooks et al., 2002, 2007;
Johnston, 2016). These sheets have been identified using optical
and electron microscopy in LV and RV tissues of canine. The
myocyte sheets are separated by interlaminar clefts. Our recent
study revealed the presence of sheets in LVmyocardium of rabbit
and in a rabbit model of myocardial infarction (MI) (Seidel et al.,
2016).

Difficulties in implementing simulations with computational
models are related to identifying conductivities and other crucial
parameter values for a specific tissue type and species. Selection of
conductivities and many other modeling parameters for diseased
cardiac tissues is even more difficult, because we do not have a
similar solid foundation of measurement studies as for control
tissues. Bidomain conductivities for modeling of conduction
in MI have not been measured, but are estimated based on
simple assumptions or indirect measurements. Currently, we
have only a vague understanding of how disease-associated
remodeling of tissue microstructure influences conductivities.
However, new research tools, in particular, advanced microscopy
methods, allow us now to comprehensively quantify remodeling
in diseased cardiac tissues. In case of MI, tissue remodeling
goes beyond the actual infarct scar and affects microstructure
of the adjacent myocardium. Major microstructural remodeling
of the infarct border zone is related to fibrosis, i.e., the increase
of extracellular matrix proteins as well as volume fractions of
extracellular space, fibroblasts, and myofibroblasts (Krenning
et al., 2010). Fibrosis in the border zone is accompanied by
reduction of volume fraction of myocytes, their coupling by gap
junctions, and myocyte hypertrophy (Luke and Saffitz, 1991; Yao
et al., 2003).

Here, we investigated how tissue microstructure and its
variability in the normal andMI heart are reflected in parameters
for conduction models. We applied an animal model of MI
and a microscopic imaging-based approach to derive modeling
parameters. A particular focus was on computational estimation
and statistical prediction of electrical conductivities of the
extracellular domain. We assessed the effect of extracellular space
and interlaminar clefts on electrical conductivities.

METHODS

Animal Models
All animal experiments were approved by the Institutional
Animal Care and Use Committee (IACUC) of the University of
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Utah. Studies were performed on New Zealand White rabbits
with a weight of 2.5–3 kg. Five animals served as control. We
induced LV MI in six animals by ligation of a coronary artery as
previously described (Hu et al., 2010). Hearts were harvested after
3 weeks. We visually confirmed success of the MI model. Infarct
scars were present in the apical region of the free left-ventricular
wall in all MI animals.

Preparation and Labeling of Samples for
Imaging
Hearts were rapidly excised and retrogradely perfused with 2.5%
paraformaldehyde solution for 10min. Transmural biopsies of
5mm diameter oriented normal to the epicardial surface were
obtained from the lateral LV free wall of control hearts. Similar
biopsies from MI hearts were taken by placing the center of
the biopsy punch on the epicardial or endocardial MI border
zone. Biopsies were incubated in 30% sucrose solution for 2–
3 h, frozen in optimal cutting temperature compound (Sakura
Finetek Europe B.V., Alphen aan den Rijn, Netherlands) and
then cryosectioned into slices with a thickness of 100µm.
Subepicardial and midwall slices were washed three times in
phosphate-buffered saline (PBS). Primary antibodies ab11369
(Abcam, Cambridge, UK), A5228 and V6630 (Sigma-Aldrich,
St. Louis, MO, USA) were applied at a concentration of 1:200
in blocking solution to bind to the proteins connexin 43
(Cx43), alpha smooth muscle actin (α-SMA) and vimentin,
respectively. Slices were incubated for at least 8 h on a rocker
at room temperature. After washing with PBS, corresponding
goat anti-mouse secondary antibodies A21044 (conjugated to
AF 594, Thermo Fisher Scientific, Waltham, MA, USA), A21137
(conjugated to AF 555, Thermo Fisher Scientific), and A21240
(conjugated to AF 647, Thermo Fisher Scientific) were applied at
1:200 in blocking solution together with DAPI (D3571, Thermo
Fisher Scientific) at 3µg/ml to label the nuclei. After incubation
of the slices for at least 6 h on rocker at room temperature, they
were washed with PBS and incubated with wheat germ agglutinin
(WGA) conjugated to CF488A (Biotium Inc., Fremont, CA,
USA) at a concentration of 40µg/mL in PBS for at least 4 h
to label the glycocalyx and extracellular matrix proteins. Slices
were then washed in PBS. All used antibodies and fluorescent
markers are listed in Table S1. We used a compression-free
mounting method (Seidel et al., 2016). In short, slices were
mounted on a coverslip using Fluoromount-G (#17984-25,
Electron Microscopy Science, Hatfield, PA, USA) and stored in
a humidity-controlled box. After drying for 24 h, samples were
protected from desiccation by coating with varnish.

Imaging Using Scanning Confocal
Microscopy
Prepared coverslips were imaged using a laser scanning confocal
microscope Leica TCS SP8 with a 40x oil immersion objective at
a resolution of 1,024 × 1,024 pixels and an image size of 204 ×

204µm.
In tissue samples from MI hearts, the infarct scar was

identified as fibrotic tissue without any myocytes. We took
images within 200µm (region 1), within 250–750µm (region

2) and within 1,000–1,250µm (region 3) of the scar border.
Only image stacks without labeling or imaging artifacts as well
as without presence of larger vessels were selected for further
processing. A rotation of the field of view was applied before
acquisition to yield a uniform myocyte orientation parallel to
y axis. Three-dimensional image stacks were acquired in 3
sequences comprising 2, 2, and 1 channel(s) each, to collect
signals from DAPI, Cx43, WGA, α-SMA, and vimentin, which
were excited by lasers of wavelengths 405, 594, 488, 561, and
633 nm, respectively. Image stacks of 200–300 images covered
the depth of each sample with a spacing of 200 nm between the
images. Beyond individual image stacks, we also acquired 3D tile
scan images covering larger regions of interest.

To compensate for decreasing signal intensity at increased
depths within the tissue, excitation compensation was applied by
linearly increasing the laser power with depth. Imaging software
used was LAS X (version 1.1.0 and higher, Leica).

Image Preprocessing and Segmentation
We described our methods and software tools for preprocessing
and segmentation of three-dimensional images of cardiac tissues
previously (Seidel et al., 2016). In short, Gaussian and mean
filters were used to reduce noise in the acquired image stacks.
We performed an attenuation correction to account for depth-
dependent signal attenuation and the linear increase of laser
power in our imaging protocol. A deconvolution method based
on the Richardson-Lucy algorithm with previously measured
point spread function was used to reduce blurring.

We produced signal intensity profiles of the five channels of
a representative 3D tile scan spanning from the infarct scar to
region 3. Signal intensity was averaged along the depth and width
of the image stack. Normalized values of mean intensities over
every 100 µm was plotted against the distance from the scar
border.

For 3D reconstruction, a semi-automatic segmentation
approach based on multiple watersheds was used to segment
myocyte, interlaminar cleft, and vessel domains (Seidel et al.,
2013). Occasionally, when the WGA signal was insufficient
for accurate watershed segmentation, manual separation of
segments was performed using the volume segmentation and
processing tool Seg3D (SCI, 2015). After segmentation of
myocytes, capillaries were identified and dilated to include
vessel walls, containing endothelial, smooth muscle cells, and
pericytes. Assuming that beyond myocytes and vessel-associated
cells, only fibroblasts and myofibroblasts exhibit a significant cell
population in the studied samples, we segmented the fibroblast
and myofibroblast domain using histogram-based thresholding
on DAPI, vimentin and α-SMA images as previously described
(Seidel et al., 2016). Briefly, nuclei not associated with myocytes
or proximal to vessels were attributed to the fibroblast or
myofibroblast domain, dependent on proximity to vimentin and
α-SMA-positive regions, respectively. Fibroblasts were defined
as exclusively vimentin-positive cells not proximal to vessels.
Myofibroblasts were defined as vimentin- and α-SMA-positive
cells not proximal to vessels.

Extracellular space was defined by the residual space after
the exclusion of segmented myocytes, vessels, fibroblasts,
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and myofibroblasts. We also measured the volume ratio of
interlaminar clefts Vcleft , which are a component of the
extracellular domain (Legrice et al., 1995). Interlaminar clefts
were identified as continuous regions in the extracellular
space with low WGA signal due to reduced collagen density.
Segmented image stacks were sequentially combined to generate
comprehensive 3D reconstructions of tissue microstructure.

We calculated volume fractions of the myocyte Vmyo,
fibroblast Vfibro, myofibroblast Vmyofibro, extracellular Ve

(including Vcleft), and vessel domain Vvessel for control tissue and
for regions 1–3 from the 3D reconstructions.

We defined fibrosis as the excess of fibroblasts and
myofibroblasts as well as extracellular space excluding
interlaminar clefts vs. control tissue. Accordingly, we calculated
the degree of fibrosis in region x, where x is 1–3, from volume
fractions of relevant tissue constituents as:

Fibrosisregion x =
(

Vregion x,e − Vregion x,cleft + Vregion x,fibro

+Vregion x,myofibro

)

−
(

Vcontrol,e − Vcontrol,cleft

+Vcontrol,fibro + Vcontrol,myofibro

)

(1)

Image-Based Computation of Extracellular
Conductivities
Similar as in our prior work (Schwab et al., 2013), the 3D
reconstructions of tissue microstructure were used to construct
conductivity models, assuming that only the extracellular space
contributes to extracellular current flow. The segmented
extracellular space was further refined by the addition
of a thresholded WGA image (mode + 1SD) inside the
myocyte domain to conservatively preserve the interface of the
extracellular space to the myocytes. We checked for alignment
of tissue microstructure with the coordinate system of the
conductivity model using principal component analysis of the
10 largest myocytes and the largest cleft of each stack. Stacks
with fiber orientation or cleft orientation deviating from this
definition were appropriately rotated. After rotation, the stacks
were cropped to avoid undefined regions.

In order to derive the homogenized conductivities, an
electrical field was applied to the extracellular conductivity
model. The electrical field was incorporated in the model with
Dirichlet boundary conditions. The field was applied in three axes
of the coordinate system: longitudinal, i.e., along the myocyte
fiber orientation, transverse, i.e., normal to the fiber orientation
and in cleft plane, and normal, i.e., normal to both the fiber
orientation and cleft plane. We denoted these directions with the
subscripts l, t, and n respectively. We assumed a conductivity
value of 2 S/m for the extracellular space (Foster and Schwan,
1989). The extracellular potential distribution φe was obtained by
solving the resulting homogenous Laplace equation for a given
extracellular conductivity distribution σe:

∇ · (σe∇φe) = 0

Surfaces of the extracellular conductivity model were assigned
no-flux Neumann boundary conditions. From the potential
distribution of the extracellular domain, the mean directional

current densities Je,l, Je,t , and Je,n were calculated. The current
densities were used to derive the homogenized extracellular
conductivities in the defined directions:

σe,x =
Je,x

Ee,x

A central finite difference scheme was used to numerically
discretize the simulation domain. The resulting linear systems
of equations were solved using the scientific computing library
PETSc (Balay et al., 1997). The external library, Hypre, provided
the parallel algebraic multigrid preconditioner BoomerAMG
(Falgout and Yang, 2002), which was used in combination
with PETSc’s implementation of the iterative flexible generalized
minimal residual (FGMRES) method. Algorithm configuration
for the algebraic multigrid was optimized using the software
package SMAC (Hutter et al., 2011) on a small test case. This
yielded a V-cycle multigrid with a threshold for strong coupling
of 0.12, HMIS-coarsening with one level of aggressive coarsening,
extended+i interpolation, Schwartz-type smoothers and a CF-
relaxation scheme. The iterative solver was stopped when the
residual norm of the original linear system was<10−10. For post-
processing and visualization, we used MATLAB (version 2016b
and higher, MathWorks, Inc., Natick, MA, USA) and Paraview
(version 5.4 and higher, Kitware, Clifton Park, New York, USA)
respectively.

Numerical Verification
To verify our numerical method of estimating a homogenized
conductivity, we performed a series of tests. We chose non-
intersecting rectangular blocks as the testing geometry, as the
derivation of the analytical solution is straightforward. The
blocks were assigned to the extracellular conductivity model,
whereas the remainder of the simulation domain was set non-
conductive. For these geometries, a conductivity estimation was
performed in each direction as described in section Image-
Based Computation of Extracellular Conductivities. For varying
geometries and simulation domains in the order of 40 × 40 ×

40µm and a spatial discretization of 200 nm, the error of the
estimated conductivity was of the order 10−8.

Statistical Analyses
Statistical data are presented as mean ± standard deviation
(SD). For each parameter tested, regions 1–3 and control were
compared using the Holm-Bonferroni method for correction of
multiple comparison. P-values were calculated using unpaired,
two-tailed t-tests. A significance level (alpha) of 0.05 was
used. Statistical relationships between tissue constituents and
conductivities were analyzed using simple and multiple linear
regression. The goodness of fit was measured by the coefficient
of determination (R2). All statistical analyses were performed in
MATLAB.

RESULTS

Remodeling of Myocardium in MI Animals
We studied tissue remodeling in the MI heart using the methods
for fluorescent labeling and 3D tile scanning confocal microscopy
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as described above. Overview images with a field of view of
1495.8 × 204.8 × 60.6µm and zooms into specific regions
are shown in Figure 1. Furthermore, we calculated profiles of
fluorescence intensities to describe the spatial relationship of
tissue constituents vs. infarct distance in Figure 2.

The tile scanning covered part of the infarct scar and adjacent
ventricular myocardium exhibiting different types and degrees
of remodeling. Imaging of WGA-labeled tissue provided insights
into the remodeling of extracellularmatrix, which was extensively
increased in the infarct scar and border zone (Figure 2). In
comparison, myocardium at more distant sites exhibited reduced
WGA signal, indicating normal amounts of extracellular space.
Myocytes in close proximity to the MI (Figure 1B) were
hypertrophic and, as a result of interstitial fibrosis, less densely
packed vs. more distant myocytes (Figures 1C,D).

Images of DAPI yielded information on the distribution of
cell nuclei (Figures 1E–H). A high nucleus density was revealed
within the infarct scar (Figure 2), reflecting increased amounts of
small cells, e.g. fibroblasts, myofibroblasts and macrophages. The
intensity of Cx43 increased with infarct distance (Figures 1J–L).
Accordingly, minima and maxima of Cx43 intensity were visible
for scar and distant myocardium, respectively (Figure 2).

The distribution of α-SMA was heterogeneous with a
significant increase near the infarct border zone (Figures 1M–P).
Also, small regions of increased α-SMA intensity were found
throughout myocardium distant from the scar. While α-SMA
is a marker not only of myofibroblasts, but also of smooth
muscle cells, for instance in the wall of blood vessels, the
spatial distribution of α-SMA signal in the infarct border zone
(Figure 1M) suggests abundance of myofibroblasts.

The spatial distribution of vimentin signal was qualitatively
similar to the distribution of DAPI and α-SMA signal
(Figures 1Q–T). However, the maximum of vimentin signal was
found slightly more distant from the infarct border (250µm)
than the maximum of α-SMA signal (150µm). In cardiac tissues,
vimentin is a marker of fibroblasts, myofibroblasts, smooth
muscle and endothelial cells.

For the subsequently described 3D reconstructions of tissue
microstructure, we applied segmentations of capillaries to avoid
that vessel associated vimentin-positive cells are misclassified as
fibroblasts. We identified fibroblasts as non-vessel associated,
vimentin-positive and α-SMA-negative. Based on these criteria,
sparse vimentin signal in Figure 1T and Figure S1 points at the
presence of fibroblasts.

Three-Dimensional Reconstruction and
Analyses of Myocardium in Control and MI
Animals
We acquired 3D image stacks from myocardium of the LV
free wall in the normal heart (animals: 5, images: 8) and of
region 1 (proximal, animals 4, images: 5), region 2 (adjacent,
animals 6, images: 6), and region 3 (distal, animals: 4, images:
5) of the MI hearts. Raw sections from example image stacks
are presented in the Figures S1–S4, respectively. Corresponding
preprocessed images are shown in Figures S5–S8. An exemplary
reconstruction from a control heart is shown in Figure 3. As in
our prior work (Schwab et al., 2013; Seidel et al., 2013, 2016),

the reconstruction recapitulates major features of ventricular
myocardium, in particular, the dense arrangement and high
volume fraction of myocytes (70.30%). While size and shape
of myocytes was diverse, their long axes were approximately
parallel. Myocytes were in close proximity to small blood
vessels with a diameter and wall composition characteristic for
capillaries. Capillaries were in general aligned with myocyte
long axes. The reconstruction describes also the distribution
of vimentin-positive cells, supposedly fibroblasts, which exhibit
only a small volume fraction (1.03%). The tissue presented only
marginal regions with α-SMA signal (0.02%), suggesting absence
of myofibroblasts.

An exemplary reconstruction from the MI border zone
(region 1) is shown in Figure 4. The reconstruction highlights
various types of MI-associated tissue remodeling including
reduced density and hypertrophy of myocytes, decreased
capillary density, increased volume fractions of extracellular
space and fibroblasts as well as the abundance of myofibroblasts.

We also present a reconstruction of distal tissue (region 3,
∼1mm infarct distance) in the MI heart (Figure 5). In many
aspects, the tissue microstructure appeared similar as for control
tissue. Vmyo and Ve were only marginally different. In contrast
to control tissue, the region exhibited α-SMA positive cells,
suggesting the presence of myofibroblasts.

The 3D reconstructions allowed us to calculate Vmyo,
Vfibro, Vmyofibro, Vvessel, and Ve. From 3D reconstructions of
interlaminar clefts (see examples in Figure S9), we estimated
Vcleft . The volume fractions are summarized in Figure 6 and
Table 1. The analyses revealed an increase of Ve, accompanied
by decreased Vmyo in regions 1 and 2 vs. control tissue. We also
noted an increase of Vmyofibro in regions 1–3 vs. control. Vvessel in
regions 1 and 2 was decreased vs. control. In our experimental
groups, Vfibro exhibited a high standard deviation vs. mean.

We calculated the volume fractions of fibrotic tissue for
control and MI regions 1–3 (Figure 7A). Regions 1 and 2 of
MI hearts exhibited increased fraction of fibrotic tissue when
compared with control. Additionally, the fibrotic tissue in region
3 was significantly lower than that in Region 1. The regional
degree of fibrosis calculated from Equation 1 is presented in
Figure 7B. The degree of fibrosis was significantly higher in
region 1 and 2, but not in region 3, with respect to control.
The degree ranged from 21.21 ± 1.73% in region 1 to 3.58
± 8.64% in region 3. While fibrotic tissue was abundant close
to the infarct, we observed high variabilities in more distant
regions 2 and 3, as seen from high SD in those regions
(Figure 7B).

Image-Based Calculation of Extracellular
Conductivity of Control and MI
Myocardium
We applied 3D reconstructions of tissue microstructure for
computational measurements of extracellular conductivities.
In these reconstructions, the orientation of myocytes was
approximately parallel to the y-axis.

Exemplary conductivity models of control tissue with
assigned electrodes for creating potential gradients in x-, y-,
and z-direction are shown in Figures 8A–C, respectively. The
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FIGURE 1 | Distribution of (A) WGA, (E) DAPI, (I) Cx43, (M) α-SMA, and (Q) vimentin in a single slice of an image stack from MI heart. Scar to region farthest from

scar is shown from left to right. Zoom-in of regions identified in panel (A) are shown for each channel. Scale bar in (A) 50µm. Applies to (E,I,M,Q). Scale bar in (B) 20

µm. Applies to (C,D, F–H, J–L, N–P, R–T).
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FIGURE 2 | Intensity profiles of DAPI, Cx43, WGA, α-SMA, and vimentin through MI to MI border zone to distal tissue. The profiles were generated from the image

stacks represented in Figure 1.

FIGURE 3 | 3D reconstruction of control myocardium with (A) cardiomyocytes, (B) complementary tissue constituents, (C) extracellular space, (D) fibroblasts, and (E)

vessels. Volume fractions of tissue constituents are shown in (F). The reconstruction has a size of 204.8 × 204.8 × 41.2µm.

FIGURE 4 | 3D reconstruction of tissue in region 1 with (A) cardiomyocytes, (B) complementary tissue constituents, (C) extracellular space, (D) fibroblasts, (E)

myofibroblasts, and (F) vessels. Volume fractions of tissue constituents are shown in (G). The reconstruction has a size of 204.8 × 204.8 × 41.2µm.
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FIGURE 5 | 3D reconstruction of tissue in region 3 with (A) cardiomyocytes, (B) complementary tissue constituents, (C) extracellular space, (D) fibroblasts, (E)

myofibroblasts, and (F) vessels. Volume fractions of tissue constituents are shown in (G). The reconstruction has a size of 204.8 × 204.8 × 41.2µm.

FIGURE 6 | Pie charts of volume fractions in (A) control, (B) region 1, (C) region 2, and (D) region 3. For statistical information and significance of differences see

Table 1.

electrodes were applied to assign Dirichlet boundary conditions.
Figures 8D–F present the calculated electrical potential
distributions resulting from setting the Dirichlet boundary
conditions to ±1V. The calculation of the electrical field is
limited to the extracellular space. Figures 8G–I depict current
densities calculated from the electrical potential distributions
for the exemplary control. Calculated conductivities were σe,l

= 0.34 S/m, σe,t = 0.10 S/m, and σe,n = 0.10 S/m for this tissue
reconstruction.

We present similar illustrations for tissue reconstructions
from region 1 and 3 in Figures 9, and 10, respectively. Calculated
conductivities for the tissue reconstruction for region 1 (σe,l =
0.69 S/m, σe,t = 0.51 S/m, and σe,n = 0.20 S/m) were larger than
for control. Similarly, conductivities for the tissue reconstruction
for region 3 were larger (σe,l = 0.53 S/m, σe,t = 0.41 S/m, and
σe,n = 0.15 S/m) vs. control. The tissue reconstructions include
pronounced interlaminar clefts associated with high current
densities for application of voltage gradients in z-direction
(Figures 9I and 10I).

Statistical analysis of the computational measurements
revealed an approximately linear relationship between Ve and
the extracellular conductivities (Figure 11). The goodness of
the fit to a linear model (assessed by R2) as well as slopes of
the regression line of Ve–σe,l and Ve–σe,t were higher than for
Ve–σe,n. Regression analysis of Vcleft as well as Ve–Vcleft and

extracellular conductivities revealed a weak fit (R2 < 0.5) to a

linear model. Slopes of the regression line of Vcleft–σe,l and Vcleft–
σe,t were higher than for Ve–σe,l and Ve–σe,t . However, the slope
for Ve–σe,n was similar as for Vcleft–σe,n.

The goodness of fit for linear regression between Vcleft and
Ve–Vcleft was only 0.018. Multiple linear regression analysis with
the two predicting variablesVe–Vcleft andVcleft resulted in almost

identical R2 (Table S2) as presented in Figures 11A–C.
We present statistical data on measured extracellular

conductivities for control and MI tissues in Table 2.
Conductivities in fiber, transverse and sheet direction in region
1 were larger than corresponding conductivities in the control
heart. Noteworthy is the pronounced increase of σe,t in all MI
regions vs. control (∼2.4- to 2.7-fold). Conductivity in transverse
direction of all the three MI regions and in fiber direction
of region 1 were significantly increased vs. corresponding
conductivities in control. The changes of conductivities were
reflected in the decreased ratios σe,l/σe,t and increased ratios
σe,t/σe,n in MI vs. control tissue.

DISCUSSION

Parameters of mathematical models crucially determine
outcomes of computational simulations. It is thus surprising
that for simulations of cardiac conduction our knowledge on
modeling parameters and their variability is very limited, in
particular for diseased tissues. Here, we addressed this problem
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TABLE 1 | Calculated volume fractions of tissue constituents of control and MI hearts.

Vmyo

[%]

Ve

[%]

Vcleft
[%]

Vvessels
[%]

Vfibro
[%]

Vmyofibro

[%]

Control (n = 8) 65.03 ± 3.6 24.68 ± 3.05 3.95 ± 4.84 7.71 ± 2.15 2.48 ± 1.11 0.09 ± 0.08

Region 1 (n = 5) 46.80 ± 4.49* 40.53 ± 6.33* 5.14 ± 3.78 3.64 ± 1.95* 5.00 ± 3.25 4.03 ± 3.46*

Region 2 (n = 6) 50.68 ± 10.87* 39.06 ± 10.44* 5.56 ± 5.40 3.65 ± 1.39* 4.12 ± 3.75 2.48 ± 1.95*

Region 3 (n = 5) 54.51 ± 10.95 35.12 ± 10.16 12.84 ± 8.29 5.87 ± 1.34 2.69 ± 2.36 1.81 ± 0.67*

Values are presented as mean ± SD. Number of image stacks: n. Statistical significance vs. control are marked with *.

FIGURE 7 | Evaluation of fibrosis. (A) Sum of fractional volumes of domains contributing to fibrosis. (B) Degree of fibrosis in proximal, adjacent and distal regions to

the MI calculated based on Equation (1). Brackets mark significant differences between groups.

FIGURE 8 | Image-based computation of extracellular conductivity tensor for control tissue. 3D-reconstructions of the extracellular space with modeled electrodes for

applying voltages in (A) x, (B) y, and (C) z-direction. Only half of the image stacks is shown. (D–F) Calculated potential distribution corresponding to (A–C). (G–I)

Calculated current density corresponding to (D–F).
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FIGURE 9 | Image-based computation of extracellular conductivity tensor for tissue in region 1. 3D-reconstructions of the extracellular space with modeled electrodes

for applying voltages in (A) x, (B) y, and (C) z-direction. Only half of the image stacks is shown. (D–F) Calculated potential distribution corresponding to (A–C). (G–I)

Calculated current density corresponding to (D–F).

FIGURE 10 | Image-based computation of extracellular conductivity tensor for tissue in region 3. 3D-reconstructions of the extracellular space with modeled

electrodes for applying voltages in (A) x, (B) y, and (C) z-direction. Only half of the image stacks is shown. (D–F) Calculated potential distribution corresponding to

(A–C). (G–I) Calculated current density corresponding to (D–F).
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FIGURE 11 | Statistical analyses of the relationship between volume fractions of tissue constituents and calculated conductivities. Each symbol represents an

image-based computation of conductivity. Linear regression modeled the relationship between Ve and (A) σe,l , (B) σe,t and (C) σe,n, Ve–Vcleft and (D) σe,l , (E) σe,t and

(F) σe,n as well as between Vcleft and (G) σe,l , (H) σe,t, and (I) σe,n.

TABLE 2 | Calculated extracellular conductivities and their ratios for control and MI tissues.

σe,l [S/m] σe,t [S/m] σe,n [S/m] σe,l/σe,t σe,t/σe,n

Control (n = 8) 0.36 ± 0.11 0.17 ± 0.07 0.10 ± 0.06 2.07 1.68

Region 1 (n = 5) 0.63 ± 0.17* 0.46 ± 0.23* 0.20 ± 0.07 1.38 2.35

Region 2 (n = 6) 0.55 ± 0.19 0.45 ± 0.22* 0.18 ± 0.08 1.23 2.45

Region 3 (n = 5) 0.51 ± 0.11 0.41 ± 0.17* 0.16 ± 0.06 1.25 2.48

Conductivities are presented as mean value ± SD. Number of 3D reconstructions: n. Statistical significance vs. control are marked with *.

and presented steps toward imaging-based measurement of
parameters for models of electrical conduction in the normal
and diseased heart.

Large overview images covering the scar and regions of
interest illustrated pronounced changes in the distribution
and volume fractions of different tissue constituents in the
MI heart. We focused on quantifying volume fractions of
tissue constituents and calculating extracellular conductivities.
Fluorescent labeling and confocal microscopy allowed us to

generate 3D reconstructions of tissue microstructure in control
and diseased hearts. We analyzed these reconstructions to
provide quantitative information on remodeling of volume
fractions of tissue constituents in MI. Our approach quantified
decreased Vmyo accompanied by increased Ve proximal and
adjacent to the scar (regions 1 and 2) vs. control tissue.
We propose that the measured volume fractions provide a
solid foundation for parameterization of models of cardiac
conduction. For instance, themeasurements can be used to adjust

Frontiers in Physiology | www.frontiersin.org April 2018 | Volume 9 | Article 239191

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Greiner et al. Parameter Estimation for Conduction Modeling

volume fractions of the intracellular and extracellular domains
in multidomain modeling (Sachse et al., 2009). Similarly, the
provided information on Vfibro and Vmyofibro in control and
MI tissue can be used to inform the design of computational
studies of cardiac conduction. For example, the study design can
reflect the presence of myofibroblasts found inMI regions, which
may alter myocyte electrophysiology and impulse propagation
as a result of myocyte-myofibroblast interactions. Moreover,
this information can help to constrain the ranges of parameter
sensitivity studies on effects of fibroblasts and myofibroblasts.

We applied the tissue reconstructions to calculate extracellular
conductivity tensors in control and MI myocardium at the
submillimeter scale (Table 2). Measurements of cardiac tissue
conductivities using conventional electrode-based systems have
not been performed at this scale. While single-cell membrane
electrophysiology is accessible by patch clamp experiments,
and has therefore been studied extensively, it remains difficult
to measure conductivity parameters of myocardial tissue,
especially on a small scale. Thus, mathematical models have
been used to estimate these parameters. A comparison of our
computational results with published measurements and model-
based estimations of extracellular conductivities is presented in
Table 3. Noteworthy, most prior measurements were obtained
from normal tissues. Only a small number of studies presented
all three components of the extracellular conductivity tensor.
The spread of published values is large, which arguably reflects
differences in experimental approach, species and tissue regions.
Our result of σe,l = 0.36± 0.11 S/m in LV tissue of control rabbit
is close to a prior measurement of 0.40 S/m from RV papillary
muscle in the same species (Kleber and Riegger, 1987).

An interesting finding was that the spread of calculated
conductivities (see SD values in Table 2) is large, suggesting
pronounced spatial heterogeneity of conductivity at the
submillimeter scale for all our experimental groups. In general,
computational models of cardiac conduction do not account
for these spatial heterogeneities and apply homogeneous
conductivity values. The new data presented in Table 2 establish
a basis for computational studies accounting for heterogeneous
distribution of conductivities.

The contribution of heterogeneities in extracellular
conductivities and tissue composition in various cardiac
diseases may be assessed computationally using the approach
described in this study. While our study focused on applications
related to simulations of cardiac conduction, further potential
applications include parameter estimation for simulations
of cardiac biomechanics. It is well established that tissue
remodeling such as fibrosis affects active and passive mechanical
tissue properties. We suggest that the 3D reconstructions
provide a basis for simulation of cardiac biomechanics at the
submillimeter scale.

An important finding of our study is that Ve showed high
variability at submillimeter scale. This variability in part results
from the distribution of interlaminar clefts: They appear between
lamina consisting of 3–5 myocyte layers. Assuming a myocyte
height of 14µm (Lasher et al., 2009) and an interstitial thickness
of 3µm, one would expect one cleft every 48–82µm. Stack width
in our images was ∼200µm. Thus, depending on the imaged

TABLE 3 | Extracellular conductivities for control and MI tissue.

References Tissue

type/location

Origin σe,l

[S/m]

σe,t

[S/m]

σe,n

[S/m]

This study Rabbit LV Imaging 0.36 0.17 0.10

Clerc, 1976 Calf RV

trabecula

Measurement 0.63 0.24

Hand et al., 2009 Model 0.30 0.16

Hooks et al., 2002 Rat LV Model 0.26 0.11 0.11

Kleber and Riegger,

1987

Rabbit RV

papillary

Measurement 0.40

Roberts et al., 1979 Canine LV Measurement 0.22 0.13

Roberts and Scher,

1982

Canine LV Measurement 0.12 0.08

Schwab et al., 2013+ Rabbit LV Imaging 0.26 0.22 0.13

Stinstra et al., 2005 Model 0.21 0.06

MI

Rabbit LV

This Study 0–0.2mm

0.25–0.75mm

1–1.25mm

Imaging 0.63

0.55

0.51

0.46

0.45

0.41

0.20

0.18

0.16

Rabbit LV

Schwab et al., 2013+ 0.5–5.5mm

7.5–12.5mm

12.5–17.5mm

17.5–22.5mm

Imaging 0.26

0.40

0.28

0.28

0.20

0.29

0.27

0.19

0.17

0.31

0.17

0.17

+Myocyte sheets and interlaminar clefts were not identified. Thus, conductivities are

ordered by magnitude.

region and lamina width, two to four clefts were present in one
stack, increasing variability in cleft volume fraction.

Differences of volume fractions found between region 3
and control were not significant except for myofibroblasts,
suggesting that at distances larger than 1mm from the
infarct, tissue composition tends to be largely unaffected by
the infarct. Previous studies using rabbit MI models, but
different methods of analysis (Driesen et al., 2007; Seidel
et al., 2017), have shown a similar intactness of tissue distal
from the scar. Interestingly, at 2 weeks after MI in rat,
the transition from the infarcted to normal tissue occurred
within only 200–300 µm (Rutherford et al., 2012), whereas
at 2, 5, and 8 weeks of MI in sheep, fibrotic alterations
were found also in myocardium remote from the infarct
(Jackson et al., 2002). Thus, the width of the peri-infarct
zone and remodeling seems species-dependent. We suggest that
our methodology will be useful to characterize species-specific
remodeling.

We note that many approaches have been developed to
quantify fibrosis in histological sections. A common measure is
quantification of collagen after Masson’s trichrome staining in
thin tissue sections. Also, WGA, which stains the extracellular
matrix and the pericellular matrix, i.e., the glycocalyx, has
been proposed for identification of collagen (Soderstrom,
1987; Emde et al., 2014). However, fibrosis is defined as
the formation of excess connective tissue, which includes not
only collagen and other proteins of the extracellular matrix,
but also cells of fibrous connective tissue, such as fibroblasts
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and myofibroblasts. To account for this definition and to
quantify fibrosis more comprehensively, the presented study
introduces a quantitative measure of cardiac fibrosis (Equation
1). We calculated the degree of fibrosis as the increased
volume fraction of fibrotic tissue constituents in a region
of interest vs. control. This included the increase of volume
fractions of extracellular space without clefts, fibroblasts and
myofibroblasts. As an alternative for comparing the degree
of fibrosis between different tissue types, Equation (1) can
be normalized by the volume fraction of non-fibrotic tissue
constituents in control. The major contributor to fibrosis was
increased Ve. In our calculation, we excluded volumes of
interlaminar clefts, because those exhibited low WGA values
indicating only marginal presence of collagen. We did not find
increases of WGA intensity in clefts in MI. Our measure suggests
that fibrosis is a decreasing function of distance from the infarct
scar.

The presented conductivity analyses are based on approaches
that we introduced earlier (Schwab et al., 2013). We note
several important differences: The investigated tissue samples
were more proximal to the MI than in our previous study
(Table 3), which allowed us to describe more pronounced
remodeling. Compared to the previously used threshold-based
approach to segment image stacks into 4 domains (Table 3),
we created more refined and accurate reconstructions of the
tissue composition. This allowed us to augment our conductivity
model with information about six domains. In particular the
information on interlaminar clefts allowed us novel analyses.
These clefts were not visible in many previous studies, because
conventional mounting methods cause compression of tissue
preparations. In the presented computational simulations, we
increased the spatial resolution from 800 nm to 200 nm.
Furthermore, an increased number of studied animals allowed
us to perform statistical tests, which was not possible in previous
work.

Several assumptions underlie the presented conductivity
measurements. The exclusion of fibroblast and myofibroblast
domains is motivated by the cell membrane of those cells,
which poses a barrier for currents in the extracellular space.
We excluded the vessel domain from the conductivity model
with the reasoning that endothelial cells in the capillary wall
represent a high resistivity for extracellular currents (Olesen and
Crone, 1983; Stinstra et al., 2005). The myocyte segmentation
was masked with a thresholded WGA image to conservatively
reproduce the surface region between the extracellular space
and myocytes. This step also added the transverse tubular
system of the myocytes to the conductivity model. However,
due to the simple structure of the transverse tubular system
in rabbit (Savio-Galimberti et al., 2008), it is reasonable to
assume that they do not contribute to extracellular conductivity
in tissue.

Significant differences for several components of conductivity
tensors were found in the border zone regions vs. control
tissue. Longitudinal (σe,l) and transverse (σe,t) conductivities
increased, whereas normal conductivities (σe,n) did not
change significantly. Because the increase in transverse
conductivity was more pronounced, anisotropy (σe,l/σe,t)

was reduced by nearly 50% in the border zone vs. control.
These findings are important for simulations of MI-
associated arrhythmia. It has been shown in several studies
that reduced anisotropy can lead to conduction block and
trigger arrhythmia, especially at the transition from high to
low intracellular conductivity (Rohr et al., 1997; Seidel et al.,
2010). We suggest that reduced extracellular anisotropy in the
border zone contributes to these effects. Our study provides
parameter ranges to test this hypothesis in computational
models.

A major finding of this study was the approximately linear
relationship between all components of the conductivity tensor
and Ve, which comprises Vcleft . Indeed, linear regression
analysis showed that Ve is an excellent predictor of the
measured conductivities (Figure 11). In comparison, Vcleft

alone and Ve without Vcleft were weak predictors. We
explain these findings by an additive effect of Vcleft to the
prediction of extracellular conductivity using Ve without
Vcleft only. We also found that Vcleft and Ve–Vcleft do not
depend on each other. Excluding Vcleft from the predicting
variable (Figures 11G–I) therefore leads to poor prediction
of extracellular conductivity, despite the small volume
contribution of the interlaminar clefts (Figure S9). These
findings underpin the importance of structure-preserving
mounting methods for image-based estimation of modeling
parameters. We note that in addition to Ve knowledge on
the orientation of myocyte fibers and lamina is necessary
for predicting extracellular conductivities. Nevertheless, we
suggest that the presented approach will enable efficient and
accurate estimation of extracellular conductivity tensors from
microscopic images.

LIMITATIONS

We acknowledge limitations regarding tissue processing and
imaging. Most of these limitations were discussed in our prior
work (Lackey et al., 2011; Schwab et al., 2013; Seidel et al., 2013,
2016, 2017). Tissue remodeling after MI is a dynamic process,
which is not completed after 3 weeks as well as species and size
dependent (Pfeffer and Braunwald, 1990). Thus, volume fractions
presented for regions 1 to 3 will differ at later or earlier stages
of the remodeling and for other species. We note that vimentin
and α-SMA are not specific for fibroblasts and myofibroblasts.
Hence, the fibroblast and myofibroblast domains presented here
include other non-myocytes. Fixation and processing of tissue
biopsies may cause artifacts, for example tissue shrinking or
tearing. It is unclear if these changes affect all tissue components
to the same degree. Since tissue stability is especially low in
interlaminar clefts, due to reduced collagen content, clefts may
be deformed. However, in our earlier work we showed that in
intact, living tissue, clefts appear very similar to those observed
in fixed, WGA-labeled tissue slices and that compression-free
mounting preserves tissue structure vs. conventional methods
(Seidel et al., 2016). Similarly, the volume fraction of blood
vessels may depend on perfusion pressure during fixation. This
would constitute a systematic error because all hearts were
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perfused with the same system and pressure. The point spread
function of a confocal microscope is anisotropic, thus blurring
of, for example, the extracellular signal is more pronounced
in laser light direction than transverse directions. With our
imaging protocol, this might lead to higher conductivities in
longitudinal and transverse vs. normal direction. Also, Ve

might be overestimated near very thin intercellular spaces
below the resolution limit. We reduced these issues by image
deconvolution.
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The effect of human fetal heart geometry and anisotropy on anatomy induced drift

and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D

whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of

gestational age human fetal heart obtained from 100 µm voxel diffusion tensor MRI

data sets were used in the computer simulations. The fiber orientation angles of the

heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a

spatially homogeneous electrophysiological monodomain model with the DT-MRI based

heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice,

and in the 3D whole heart anatomy models. Excitation was described by simplified

FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as

fast along the fibers than across the fibers, DT-MRI based fiber anisotropy changes the

re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models,

the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to

the re-entry self-termination. The self-termination time depends on the re-entry’s initial

position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy

of the myocardial tissue shortens the time to re-entry self-termination several folds. The

numerical simulations depend on the validity of the DT-MRI data set used. The ventricular

wall showed the characteristic transmural rotation of the helix angle of the developed

mammalian heart, while the fiber orientation in the atria was irregular.

Keywords: cardiac arrhythmias, anatomically realistic modeling, anisotropy, anatomy induced drift,

FitzHugh-Nagumo model

1. INTRODUCTION

Since the over a century ago hypothesis that cardiac re-entry underlies cardiac arrhythmias [1, 2],
and the much later confirmation of the hypothesis in cardiac tissue experiment [3, 4], the re-
entry (aka spiral wave in 2D, cardiac excitation vortex in 3D), its origin and its role in sustained
arrhythmias and fibrillation, as well as a possibility of its effective control and defibrillation,
have been an object of extensive theoretical study and modeling [5–20]. From experiment, it
is an established point of view that cardiac arrhythmias are due to a complex combination of
electrophysiological [21–23], structural [24–27], and anatomical [28, 29] factors which sustain
cardiac re-entry [30–33].
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The specific effect of the heart anisotropy and anatomy
on cardiac re-entry dynamics is well appreciated [34–37], and
has been studied in simplified mathematical and computer
models [14–16, 38, 39]. The anisotropic discontinuities in
the heart muscle have been commonly seen as a substrate
for rise of cardiac re-entry due to the abrupt change in
conduction velocity and wavefront curvature [14, 40, 41]. On the
other hand, extensive mapping of cardiac myocyte orientation
in mammalian hearts has shown that the transmural fiber
arrangement, including the range of transmural change in fiber
angle in ventricular wall, was consistent within a species, and
varied between species [42, p. 173]. So that the anisotropic
discontinuities observed in healthy hearts, and shown to be
consistent within a species, might have been suspected to
facilitate initiation of arrhythmias.

With the recent advance in DT-MRI technology and
in High Performance Computing (HPC), the DT-MRI data
sets, including anatomy and myofiber structure, can now
be directly incorporated into anatomically realistic computer
simulations [34, 43, 44], so that the anisotropy of the tissue in
the in silicomodel can be switched on and off for the comparison
between the isotropic and anisotropic conduction, in order to see
the specific anatomy effects, as well as the interplay between the
anatomy and anisotropy of an individual heart.

In this paper, we present DT-MRI based anatomically and
myofiber structure realistic computer simulation study of cardiac
re-entry dynamics in the in silicomodel of human fetal heart. The
raw DT-MRI data [45] was segmented into the tissue/non-tissue
pixels based on the MRI luminosity threshold, followed by the
calculation of the fiber angles at each voxel from the diffusion-
weighted DT-MRI images. The DT-MRI yields 3 eigenvalues,
the primary (largest) eigenvalue was used to define local fiber
orientations in the simulation study.

The main objectives are to clarify: (i) whether the anatomical
settings of the fetal heart might support a positive filament
tension re-entry, and (ii) what would it be the role of the heart
anisotropy in that case. Here we demonstrate that anisotropy
of the fetal heart rather facilitates self-termination of cardiac
re-entry. In a 2D slice of the heart, the fiber anisotropy might
change dynamics of the re-entry from pinned to anatomical re-
entry. In the full 3D DT-MRI based model, depending on the
location of re-entry initiation, the isotropic geometry of the heart
might sustain perpetual re-entry even with a positive filament
tension kinetics. While the same positive filament tension re-
entry initiated at the same location of the fetal heart with the
fiber anisotropy self-terminates within a fraction of the rotation
period. Time of re-entry self-termination depends on the re-entry
initial position. Anisotropy of the real heart speeds up re-entry
self-termination. The geometry and anisotropy of the heart
together ensure the fastest self-termination of cardiac re-entry.

The novel significance of our findings is that we demonstrate
that the heart anisotropy might have rather anti-arrhythmic
function as it facilitates fast self-termination of cardiac re-entry.
A general role of fiber anisotropy in the genesis and sustenance
of arrhythmias could be addressed by numerics even on idealized
and simplified geometries with different spatial distributions of
anisotropy. The biomedical question addressed in themanuscript

is whether self-terminating ventricular arrhythmias can occur
in a developing fetal heart, as has inferred from fECG data in
Benson et al. [46].

2. MATERIALS AND METHODS

2.1. DT-MRI Data Sets
Tissue acquisition followed medical termination of pregnancy
with written and informed consent, and Ethical approval from
Lothian Research Ethics Committee (reference 08/S1101/1).
Temporary storage of the tissue for imaging was in premises
licensed under the UK 2004 Human Tissues Act.

The DT-MRI data set used in this study was of a 143
days gestational age (DGA) human fetal heart described in
Pervolaraki et al. [45]. It was selected as by 143 days the smooth,
transmural 120◦ transmural rotation in helix fiber angle is well
established [45, 47, 48]. The heart was immersed in formalin
shortly after dissection, and imaged in fomblin after two weeks
in formalin.

MRI acquisition was performed in a Bruker Biospin
(Ettlingen, Germany) 9.4 Tesla vertical NMR/S System with a
22 mm imaging coil for Hydrogen (1 H). A three-dimensional
diffusion weighted spin echo sequence was carried out at 20◦C
with 0.1 mm2 resolution, echo time = 15 ms, repetition time =
500 ms, with 6 averages and a b-value of 1, 000 s/mm2. In each
scan, diffusion weighted images were obtained in 12 directions.
The average scan time was 24 h.

2.2. DT-MRI Based Anatomy Model
Figure 1 shows a cross section of the 143 days of gestational
age (DGA) fetal heart, with the already formed intramural
myolaminar structure, and yet a bit irregular surface epicardial,
endocardial, and septal fibers, see also Figure 4 in Pervolaraki
et al. [45, p. 5] for the color-encoded fractional anisotropy (FA)
and all the three components of the fiber angles in the human
fetal heart. While in an adult heart, pinning of cardiac re-entry to
endocardium structures such as pectinate muscles junction with
crystae terminalis had been previously reported [31, 33, 49]. The
DT-MRI based fetal heart model offered a unique opportunity
to see whether the 20 weeks of gestation age intramural heart
structure was capable to support cardiac re-entry, because at
that fetal development stage it would not be possible yet for
the re-entry to pin to the endocardium fine features, for these
anatomical structures were yet to be developed later.

The DT-MRI data sets of the 128 × 128 × 128 voxels size,
with voxel resolution of ∼100 µm, of 143 days of gestational
age (DGA) human fetal heart [45], were converted into the
BeatBox [44] regular Cartesian mesh .bbg geometry format,
containing the DT-MRI Cartesian coordinates of the heart tissue
points together with the corresponding components of the
diffusion tensor primary eigenvectors [44]. The .bbg file is an
ASCII text file, each line in which describes a point in a regular
mesh in the following format:

x,y,z,status,fiber_x,fiber_y,fiber_z

Here x, y, z are integer Cartesian coordinates of a DT-
MRI voxel, status is a flag with a nonzero-value for a tissue
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FIGURE 1 | The 143 DGA human fetal heart [45]. BeatBox [44] geometry

.bbg format visualization with projections of the unit vectors of the local fiber

orientation onto the cross-section plane: a smooth intramural fiber distribution

has developed, with some surface irregular fibers from earlier developmental

stages, as seen in Figure 4 [45, p. 5].

point, and fiber_x, fiber_y, fiber_z are x-, y- and
z-components of the fiber orientation vector at that point. To
reduce the size of the .bbg files, only the tissue points, that is
points with non-zero status need to be specified, because the
BeatBox solver will ignore the void points with zero status in
any case. Although the original DT-MRI images data sets had
128 × 128 × 128 voxels size, the actual dimensions of the fetal
heart minimum bounding box were 67× 91 × 128, with 181070
tissue points.

The raw DT-MRI anatomy data [45] were segmented into
the “tissue”/“not tissue” pixels discretion based on the MRI
luminosity threshold, with the Cartesian fiber angles at each voxel
obtained from the diffusion-weighted DT-MRI images. Only this
basic segmentaion of the raw DT-MRI anatomy data [45] was
taken into account in the computer simulation of cardiac re-
entry dynamics, so we shall refer to it as the raw DT-MRI based
anatomy model.

Any raw MRI and micro-CT image data show tiny bits of the
preparation tissue, which usually get into the image together with
the heart at the preparation stage. In the case of the raw DT-MRI
image of the fetal heart [45], there happened to be a tiny bit of
tissue at the bottom of the MRI image, adjacent to the apex of the
fetal heart, see Figure 1, and the original Figure 2(a), last panel,
in Pervolaraki et al. [45, p. 3]. In order to see whether this tiny
“leftover” piece of the heart tissue is capable to affect the outcome
of a re-entry simulation, we edited the MRI images in order to
remove the “leftover” piece, and then considered a comparison
of the re-entry simulation in the two 3D DT-MRI based heart
models: (i) raw DT-MRI based anatomy model, and (ii) “edited”

DT-MRI based anatomy model without the tiny “leftover” piece
of the heart tissue.

In case of the 2D model of a slice of the heart, in order
to construct the 2D diffusivity tensor, the fibers vectors were
projected into the plane of the slice of the heart.

2.3. Cardiac Tissue Model
To investigate the effects of anatomy on cardiac re-entry
dynamics we used monodomain tissue model with non-flux
boundary conditions

∂u

∂t
= f(u)+∇ · D̂∇u, (1)

En · D̂∇u

∣

∣

∣

∣

G

= 0,

where u(Er, t) = (u, υ)T , Er is the position vector, f(Er, t) = (f , g)T is
the FitzHugh-Nagumo [50] kinetics column-vector

f (u, υ) = α−1(u− u3/3− υ),

g(u, υ) = α (u+ β − γ υ), (2)

with the parameter values α = 0.3, β = 0.71, γ = 0.5, which
in an infinite excitable medium support a rigidly rotating vortex
with positive filament tension [51]. The simplified FHN model
was intentionally chosen for this study in order to fully eliminate
the possible effects of a realistic cell excitation kinetics, such as
e.g., meander [50], alternans [52], negative filament tension [51],
etc., and in order to enhance and highlight the pure effects of the
heart anatomy and anisotropy on the cardiac re-entry outcome.

D̂ = QP̂, where Q = diag(1, 0) =

[

1 0
0 0

]

is the matrix of

the relative diffusion coefficients for u and υ components, and
P̂ = [Pjk] ∈ R

3×3 is the u component diffusion tensor, which
has only two different eigenvalues: the bigger, simple eigenvalue
P‖ corresponding to the direction along the tissue fibers, and the
smaller, double eigenvalue P⊥, corresponding to the directions
across the fibers, so that

Pjk = P⊥δjk +
(

P‖ − P⊥
)

fjfk, (3)

where Ef =
(

fk
)

is the unit vector of the fiber direction;
En is the vector normal to the tissue boundary G. In the
isotropic simulation, P‖ and P⊥ values were fixed at P‖ =

P⊥ = 1 [corresponding 1D conduction velocity 1.89, in the
dimensionless units of Equations (1, 2)]. In the anisotropic
simulations, P‖ and P⊥ values were fixed at P‖ = 2, P⊥ = 0.5
(corresponding conduction velocities 2.68 and 1.34 respectively).
All the conduction velocities have been computed for the period
waves with the frequency of the free spiral wave in the model,
i.e., 11.36. With the isotropic diffusivity (P‖ = P⊥ = 1)
equal to the geometric mean between the faster and the slower
anisotropic diffusivities (P‖ = 2, P⊥ = 1/2), the isotropic
conduction velocity 1.89 was almost exactly the same as the
geometric mean ≈1.895 of the faster and slower (2.68 and 1.34
respectively) anisotropic conduction velocities, chosen in order
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tominimize themaximal relative difference between the isotropic
and anisotropic propagation speeds.

All the computer simulations presented here were done using
the BeatBox [44] software package with the explicit time-step
Euler scheme, on the Cartesian regular grid with space step
discretization 1x = 0.1, time step discretization 1t = 0.001;
5-point stencil for isotropic, and 9-point stencil for anisotropic
Laplacian approximation in 2D simulations; 7-point stencil
for isotropic, and 27-point stencil for anisotropic Laplacian
approximation in 3D simulations. The re-entry was initiated by
the phase distribution method [53]: in the 2D simulations, at a
prescribed location of the cross section of the DT-MRI based
anatomical model shown in Figure 1; in the 3D simulations,
at a prescribed location of the full DT-MRI based whole heart
anatomical model.

The FHN model Equations (1, 2) is not biophysically detailed
and is formulated in dimensionless units. So, for illustrative
purposes only, if we took the FHN time unit to be 1 t.u. =

40ms this would give the APD90 of 125.6ms which is within
the range reported e.g., by Zhu et al. [54]. The spiral wave
period is then 454ms: at our chosen kinetics parameters, the
spirals in FHN model have a big core. With the space step
discretization 1x = 0.1 in FHN simulations, whereas the real
grid resolution is 100 µm = 0.1mm, hence we would have
the FHN space unit 1 s.u. = 1mm. The (geometric mean)
diffusivity of 1 s.u.2/t.u. therefore works out as 0.025mm2/ms,
and the corresponding conduction velocity of 1.89 s.u./t.u. is
0.04725mm/ms. That gives a spiral wavelength of ≈21.45 mm.
The conduction velocity thus obtained is within the range
reported in Pervolaraki et al. [45], whereas the diffusivity is about
four times smaller than the one used in Pervolaraki et al. [55]. We
must stress here that, since the FHN kinetics is not biophysically
detailed, one should not expect anything more than an order-of-
magnitude correspondence with reality.

3. RESULTS

3.1. 2D MRI-Based “Slice” Simulations
In the 2D simulations, Figure 2, a counter-clockwise re-entry was
initiated by the phase distribution method [53], with the initial
center of rotation placed at the prescribed location x0 = 40, y0 =
60 in the 2D cross section of the DT-MRI based anatomical model
shown in Figure 1.

In the Figures 2A,B, it can be seen that in both isotropic and
anisotropic 2D simulations, at t = 0, there was identical location
of the initial re-entry rotation center: roughly in the middle of the
slice, in the vicinity of the septum cuneiform opening.

Figure 2A shows isotropic dynamics of the re-entry, that is
with the fiber orientation data “turned OFF,” so that only the
geometry of the isotropic homogeneous slice affects the re-entry.
While in an infinite medium the chosen FHN parameter values
α = 0.3, β = 0.71, γ = 0.5 produce rigidly rotating spiral [50],
the boundaries of the fetal heart slice model cause the drift of
the re-entry. The re-entry does not terminate because of the
reflection from the inexcitable boundaries [12], but after the
transient first rotation around the septum cuneiform opening,

the tip of the re-entry firmly pins (at t = 35) to the sharp lower
end of the cuneiform opening, see Figure 2A.

Figure 2B shows anisotropic dynamics of the re-entry, that
is with the fiber orientation data “turned ON,” so that both the
geometry and the anisotropy of the otherwise homogeneous slice
of the heart affect the dynamics of the re-entry, causing its drift.
In the anisotropic slice, the re-entry also does not terminate at
the inexcitable boundaries, but after a faster than in the previous
isotropic case transient, compare the time units labels in the
Figures 2A,B, the anisotropy of the medium turns the initial
spiral wave into the fast anatomical re-entry around the septum
cuneiform opening, see Figure 2B.

3.2. 3D Whole Heart MRI-Based

Simulations
3.2.1. Raw DT-MRI Anatomy Model
In the 3D whole heart raw DT-MRI based simulations shown
in the Figures 3, 4, a counter-clockwise excitation vortex was
initiated by the phase distribution method [53], with the initial
position of the transmural vortex filament (yellow line) at the
prescribed location along the x axis at y0 = 40, z0 = 60. It
can be seen in Figure 3 isotropic, and Figure 4 anisotropic 3D
simulations that, at t = 0, there was identical initial location of
the filament of the excitation vortex: that is transmurally, roughly
in the middle through the ventricles of the heart.

Figure 3 shows the isotropic dynamics of the excitation vortex,
that is with the fiber orientation data “turned OFF,” so that
only the geometry of the otherwise isotropic homogeneous fetal
heart affects dynamics of the vortex. At the chosen parameter
values α = 0.3, β = 0.71, γ = 0.5, the FHN vortex has
positive filament tension [51], and, depending on topology of an
isotropic homogeneous medium, either collapses or straightens
up between parallel boundaries. In the isotropic simulations
of the fetal heart, boundaries of the heart cause the vortex to
drift and collapse. However, there exist initial locations of the
excitation vortex, which although result in the drift of the vortex,
still do not lead to the expected collapse of the vortex with
positive filament tension. One of such outcomes is shown in
the Figure 3. Here, following the geometry of the heart, after
a very short transient, the initial vortex filament breaks into
the two major pieces, each of which finds its own synchronous
pathway in the “isotropic” fetal heart, resulting in the seemingly
perpetual cardiac re-entry, which failed to self-terminate within
the extended simulation time t = 30. Figure 11 gives the
summary of the simulation detail, where the maximum instant
number of the filaments in the simulation was 9 at t = 1.0,
the maximum instant total length of the filaments was 127.1 at
t = 1.6; while the time average number of the filaments in
the simulation was 3.4, and the time average total length of the
filaments was 29.3. The time course of the instant number of
filaments (blue dashed line) is shown in Figure 12A, and the time
course of the instant total length of the filaments (blue dashed
line) is shown in Figure 12B. It can be seen that, after a very
fast transient increase in both the number of filaments and the
total length of the filaments, these fail to disappear, and keep
oscillating around above zero constants.
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FIGURE 2 | Anisotropy effect in the 2D slice simulations, time shown under each panel in time units of Equations (1, 2). (A) Isotropic conduction: after the transient

first rotation around the septum cuneiform opening, the slow excitation re-entry pins to the sharp low end of the opening in the fetal heart (See

Supplementary Video 1). (B) Anisotropic conduction: after the fast transient first rotation around the septum cuneiform opening, the anisotropy of the fetal heart

turns the initial spiral wave into the fast anatomical re-entry around the septum cuneiform opening (See Supplementary Video 2).
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FIGURE 3 | Isotropic whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in this figure), the yellow lines

are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). After a short transient the organizing

filament of the initial vortex breaks into the two short pieces each of which finds its own synchronous perpetual pathway, resulting in the perpetual cardiac re-entry in

the fetal heart (See Supplementary Video 3).

Figure 4 shows anisotropic dynamics of the excitation vortex,
that is with the fiber orientation data “turned ON,” so that both
the geometry and the anisotropy of the otherwise homogeneous

model of the fetal heart affect dynamics of the vortex. Here,
the anisotropy of the heart causes fast transient distortion of
the filament, and drift toward the inexcitable boundary of the
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FIGURE 4 | Anisotropic whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the yellow

lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). The anisotropy of the heart causes

the fast transient distortion of the organizing filament of the initial excitation vortex and drift toward the inexcitable boundary of the heart, ultimately resulting in the very

fast self termination of the excitation vortex (See Supplementary Video 4).

heart, followed by the very fast self-termination of the vortex by
t = 5.3. The time course of the instant number of filaments (pink
dotted line) is shown in Figure 12A, and the time course of the
instant total length of the filaments (pink dotted line) is shown in
Figure 12B. It can be seen that, after a very fast transient increase
in both the number of the filaments and the total length of
the filaments, all the filaments rapidly disappear. The maximum
instant number of the filaments was 13 at t = 0.8, that is
higher and achieved faster than in the isotropic conduction. The
maximum instant total length of the filaments was 179.7 at t =

1.8, againmuch higher than in the isotropic conduction. The time
average number of the filaments in the simulation was 6.5, twice
higher than in the isotropic conduction, and the time average
total length of the filaments was 91.2, three times higher than
in the isotropic conduction, see the summary of the simulation
detail in Figure 11.

In the 3D whole heart raw DT-MRI based simulations shown
in the Figures 3, 4 a counter-clockwise excitation vortex was
initiated by the phase distribution method [53], with the initial
position of the transmural vortex filament (yellow line) at the
prescribed location along the y axis at x0 = 40, z0 = 60, that
is perpendicular to the initial orientation of the vortex filament
shown in Figures 3, 4. It can be seen in Figure 5 isotropic, and
in Figure 6 anisotropic 3D simulations, that at t = 0, there was
identical initial location of the filament of the excitation vortex:
that is transmurally, roughly in the middle through the ventricles

of the fetal heart, and perpendicular to the initial orientation of
the vortex filament shown in Figures 3, 4.

Figure 5 shows the isotropic dynamics of the excitation vortex,
that is with the fiber orientation data “turned OFF,” so that only
the geometry of the otherwise isotropic homogeneous fetal heart
affects dynamics of the vortex. Here, contrary to the expectation
for the positive filament tension vortex to always contract, the
organizing filament first transiently extends intramurally along
the tissue walls, before the final break up into the two ring-
like pieces, each of which then quickly contracts and terminates
at the opposite base and apex regions of the heart by t =

4. The time course of the instant number of filaments (blue
dashed line) is shown in Figure 12C, and the time course of
the instant total length of the filaments (blue dashed line) is
shown in Figure 12D. It can be seen that, after a very fast
transient increase in both the number of the filaments and the
total length of the filaments, all the filaments rapidly disappear.
The maximum instant number of the filaments was 12 at t =

1.4, with the maximum instant total length of the filaments
188.0 achieved at t = 1.5. The time average number of
the filaments in the simulation was 4.7, and the time average
total length of the filaments was 80.5, see the summary of the
simulation detail in Figure 11. It can be seen that in this isotropic
conduction simulation, with just a different location/orientation
of the initial vortex filament, the time average total length of the
vortex filaments was two and a half times higher than in the
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FIGURE 5 | Isotropic whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the yellow lines

are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). After a short transient the organizing

filament of the initial vortex breaks into the two pieces each of which fast terminates: one at the base and another at the apex of the heart (See

Supplementary Video 5).

FIGURE 6 | Anisotropic whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the yellow

lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). The anisotropy of the heart causes

the fast transient distortion of the organizing filament of the initial excitation vortex, followed by the fast drift and self-termination at the apex of the heart (See

Supplementary Video 6).

failed to self-terminate isotropic conduction simulation shown in
Figure 3.

Figure 6 shows anisotropic dynamics of the excitation vortex,
that is with the fiber orientation data “turned ON,” so that both
the geometry and the anisotropy of the otherwise homogeneous

model of the heart affect dynamics of the vortex leading to
its really fast termination at the apex of the heart by t =

2.6. The time course of the instant number of filaments (pink
dotted line) is shown in Figure 12C, and the time course of the
instant total length of the filaments (pink dotted line) is shown
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in Figure 12D. It can be seen that, after a very fast transient
increase in both the number of the filaments and the total
length of the filaments, all the filaments rapidly disappear. The
maximum instant number of the filaments was 17 at t = 0.5,
that is higher and achieved faster than in the corresponding
isotropic conduction shown in Figure 5. The maximum instant
total length of the filaments was 278.6 at t = 0.9, again much
higher than in the corresponding isotropic conduction. The time
average number of the filaments in the simulation was 9.5, twice
higher than in the isotropic conduction, and the time average
total length of the filaments was 152.6, also twice higher than
in the isotropic conduction, see the summary of the simulation
detail in Figure 11.

It can be seen in the rawDT-MRI model simulations shown in
Figures 3–6, that although the organizing filament of the vortex
could not get through into the accidental “leftover” piece of tissue
adjacent to the apical region, the piece still got activated, and
could have served as an artificial “capacitor” affecting dynamics
of the re-entry. In order to check whether this might be the
case, we edited the original raw DT-MRI model by removing
in the MRI the foreign “leftover” piece, and repeated the whole
heart isotropic and anisotropic simulations from the same two
orthogonal initial locations of the re-entry, similar to the shown
in Figures 3–6.

3.2.2. “Edited” DT-MRI Anatomy Model
In the 3D whole heart “edited” MRI model simulations shown
in the Figures 7, 8, a counter-clockwise excitation vortex was
initiated by the phase distribution method [53], with the initial
position of the transmural vortex filament (yellow line) at the
prescribed location along the x axis at y0 = 40, z0 = 60. It
can be seen in Figure 7 isotropic, and in Figure 8 anisotropic 3D
simulations, that, at t = 0, there was identical initial location of
the filament of the excitation vortex: that is transmurally, roughly
in the middle through the ventricles of the fetal heart, similar
to the initial location of the vortex filament in the raw DT-MRI
simulations shown in Figures 3, 4.

Figure 7 shows isotropic dynamics of the vortex, that is
with the fiber orientation data “turned OFF,” so that only the
geometry of the otherwise isotropic homogeneous fetal heart
affects dynamics of the vortex. Here, following the geometry of
the heart, the initial filament also breaks into the two major
pieces, each of which also finds its own synchronous pathway
similar to the beginning of the raw DT-MRI simulation shown
in Figure 3. However, this time, after just a few rotations, the two
re-entries find their end in their almost synchronous termination
in the base region of the heart by t = 16.9. The time course
of the instant number of filaments (green dashed line) is shown
in Figure 12A, and the time course of the instant total length
of the filaments (green dashed line) is shown in Figure 12B. It
can be seen that, after a very fast transient increase in both the
number of the filaments and the total length of the filaments, all
the filaments rapidly disappear. The maximum instant number
of the filaments was 9 at t = 0.2. The maximum instant total
length of the filaments was 122.3 at t = 0.7. The time average
number of the filaments in the simulation was 3.2, and the time
average total length of the filaments was 28.7, see the summary

of the simulation detail in Figure 11. It can be seen that, in the
“edited” MRI isotropic simulation in Figure 7, the maximum
instant and the time average number of the filaments, as well
as the maximum instant and the time average total length of
the filaments, were practically the same as in the corresponding
raw MRI isotropic simulation with the failed to self-terminate
re-entry shown in Figure 3. The only quantitative difference
between the two isotropic simulations, i.e., the perpetual re-entry
in Figure 3 vs. the self-termination in Figure 7, was that, in the
“edited” MRI isotropic simulation, without the “leftover” piece
of tissue adjacent to the apex of the heart, the maximum instant
number of the filaments, and themaximum instant total length of
the filaments were achieved much faster: by t = 0.2 and t = 0.7
correspondingly.

Figure 8 shows anisotropic dynamics of the vortex, that is
with the fiber orientation data “turned ON,” so that both the
geometry and the anisotropy of the otherwise homogeneous
model of the heart affect dynamics of the vortex. Here,
the anisotropy of the heart also causes significant transient
distortion of the initial filament, followed by the fast drift
toward the apex, with the ultimate termination at the AV border
before a completion of a single rotation, very similar to the
corresponding raw DT-MRI anisotropic simulation shown in
Figure 4. However, in the “edited” MRI model without the
“leftover” piece adjacent to the apex, repolarization of the
heart is faster than it was in the presence of the “incidental
capacitor” effect in the corresponding raw DT-MRI simulation
shown in Figure 4. The time course of the instant number
of filaments (red solid line) is shown in Figure 12A, and
the time course of the instant total length of the filaments
(red solid line) is shown in Figure 12B. It can be seen that,
after a very fast transient increase in both the number of the
filaments and the total length of the filaments, all the filaments
rapidly disappear by t = 4.8. The maximum instant number
of the filaments was 17 at t = 0.4, that is higher than
in the corresponding raw anisotropic conduction shown in
Figure 4, and twice higher than in the corresponding “edited”
isotropic conduction shown in Figure 7. The maximum instant
total length of the filaments was 180.3 at t = 0.7, similar
to the corresponding raw anisotropic conduction shown in
Figure 4, and much higher than in the corresponding “edited”
isotropic conduction shown in Figure 7. The time average
number of the filaments in the simulation was 6.3, similar to the
corresponding raw anisotropic conduction shown in Figure 4,
and twice higher than in the corresponding “edited” isotropic
conduction shown in Figure 7. The time average total length
of the filaments was 95.4, similar to the corresponding raw
anisotropic conduction shown in Figure 4, and three times
higher than in the corresponding raw isotropic conduction
shown in Figure 4. Time to the maximum number of the
filaments (t = 0.4), and time to the maximum total length
of the filaments (t = 0.7), were similar to the corresponding
“edited” isotropic conduction shown in Figure 7, and twice faster
than in the corresponding raw anisotropic conduction shown in
Figure 4, see the summary of the simulation detail in Figure 11.
So, that the anisotropy of the heart increased the number and
the total length of the filaments, and shortened the time to
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FIGURE 7 | Isotropic “edited” whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the

yellow lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). After a short transient the

organizing filament of the initial vortex breaks into the two short pieces each of which finds its own synchronous pathway, resulting after a few rotations in the

synchronous termination of the filaments in the base of the fetal heart (See Supplementary Video 7).

self-termination by folds, while the “incidental capacitor” effect
of the “leftover” piece adjacent to the apex slowed down the
process.

In the 3D whole heart “edited” MRI simulations shown in
Figures 9, 10, a counter-clockwise excitation vortex was initiated
by the phase distribution method [53], with the initial position
of the transmural filament (yellow line) at the prescribed location
along the y axis at x0 = 40, z0 = 60. It can be seen in Figure 9

isotropic, and in Figure 10 anisotropic 3D simulations, that at
t = 0, there was the identical initial location of the filament:
that is transmurally, roughly in the middle through the ventricles
of the heart, perpendicular to the filament initial location in the
“edited” MRI simulations shown in Figures 7, 8, and similar to
the initial location of the filament in the rawDT-MRI simulations
shown in Figures 5, 6 .

Figure 9 shows “edited” MRI isotropic dynamics of the vortex,
that is with the fiber orientation data “turned OFF,” so that only
the geometry of the otherwise isotropic homogeneous fetal heart

affects the vortex. Here, again contrary to the expectation for a
positive filament tension vortex to always contract, the organizing
filament first transiently extends intramurally before breaking up
into the two ring-like pieces, each of which quickly contracts and
terminates at the opposite base and apex regions of the heart,
identical to what was seen in the raw DT-MRI simulation shown
in Figure 5. The time course of the instant number of filaments
(green dashed line) is shown in Figure 12C, and the time course
of the instant total length of the filaments (green dashed line)
is shown in Figure 12D. It can be seen that, after a very fast
transient increase both in the number of the filaments and in the
total length of the filaments, all the filaments rapidly disappear
by t = 4.0. The maximum instant number of the filaments was
12 at t = 0.5. The maximum instant total length of the filaments
was 190.7 at t = 1.5. The time average number of the filaments
in the simulation was 4.7, and the time average total length of the
filaments was 82.9, see the summary of the simulation detail in
Figure 11. So, from the comparison with the corresponding raw
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FIGURE 8 | Anisotropic “edited” whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the

yellow lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). The anisotropy of the heart

causes the significant transient distortion of the organizing filament of the initial vortex, followed by its fast drift toward the apex and the ultimate termination before

completing a single rotation (See Supplementary Video 8).

FIGURE 9 | Isotropic “edited” whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the

yellow lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). After a short transient the

organizing filament of the initial vortex breaks into the two pieces each of which fast terminates: one at the base and another at the apex of the heart (See

Supplementary Video 9).

MRI isotropic simulation shown in Figure 5, it seems that, for
that particular initial location of the filament, the “leftover” tissue
did not play any role in the re-entry self-termination time.

Figure 10 shows anisotropic dynamics of the vortex, that is
with the fiber orientation data “turned ON,” so that both the

geometry and the anisotropy of the otherwise homogeneous
model of the heart affect the vortex, which, in the absence of
the “incidental capacitor” effect of the “leftover” piece, results in
the fastest possible termination of the re-entry at the apex of the
heart by t = 2.3, before the vortex first rotation ever started. The
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FIGURE 10 | Anisotropic “edited” whole heart simulation. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in Figure 3), the

yellow lines are the instant organizing filaments of the excitation vortices; time shown under each panel in time units of Equations (1, 2). The anisotropy of the heart

causes the fast significant transient distortion of the organizing filament of the initial excitation vortex, followed by the fast drift toward the apex and ultimate

termination before the first rotation has ever started (See Supplementary Video 10).

re-entry termination time here is more than twice shorter than
in both the raw MRI isotropic simulation shown in Figure 5,
and in the “edited” isotropic simulations shown in Figure 9;
shorter than in the corresponding simulation with the “incidental
capacitor” effect shown in the Figure 6, and times shorter than
in any of the simulations of the re-entry with the perpendicular
initial location of the filament shown in the Figures 3, 4, 7, 8.
So, that the main reasons for the re-entry fastest self-termination
seem to be the initial location of the filament and the anisotropy
of the heart.

In Figure 11, we have summarized the results of the raw
MRI simulations shown in Figures 3–6, and the “edited” MRI
simulations shown in Figures 7–10. The re-entry termination
time, in the time units of Equations (1, 2), is shown under
each respected whole heart model initiation cite panel. It can
be seen that the anisotropy of the heart causes at least twice
faster termination of re-entry. It also can be seen that indeed the
“leftover” piece of tissue connected to the apical region of the
heart in the raw DT-MRI model served as an artificial “capacitor”
affecting the re-entry dynamics, and significantly prolongated the
life time of re-entry initiated at the particular location/orientation
respective to the “capacitor”.

Finally, the 3D anatomically realistic simulations of the
fetal heart show that the anisotropy of the heart causes
the fast transient increase in the number and the total
length of the filaments, see Figure 12, with the typical fast
drift toward the apex area of the heart, and re-entry self-
termination, see also the movies in the Supplementary Material
section.

4. DISCUSSION

Although the role of heart anatomy and anisotropy in the origin
and sustainability of cardiac arrhythmias has been appreciated for

a long time, there is limited experimental evidence to clarify detail
of the heart anatomy effect on persistent cardiac arrhythmias and
fibrillation. In particular, the theoretically plausible hypothesis
that the anisotropic discontinuities in the heart might be a
source of rise for cardiac re-entry due to the abrupt change
in conduction velocity and wavefront curvature [14, 40, 41]
was in controversy with the observation that the transmural
fiber arrangement, including the range of transmural change
in fiber angle in ventricular wall, although varied between
species [42, p. 173], was consistent within a species. So that
the question was that, if the pro-arrhythmic mechanism of
cardiac re-entry initiation by the anisotropic discontinuities in
a heart [14, 40, 41] was correct, what would then have been a
reason for the consistent structure [42, p. 173] of the anisotropic
discontinuities in healthy mammalian hearts. The combination
of the High Performance Computing with the high-resolution
DT-MRI based anatomy models of the heart allows anatomically
realistic in silico testing of the effects of individual heart anatomy
and anisotropy on the cardiac re-entry dynamics [34, 43, 44, 49,
56]. In this paper, for the first time, we present the anatomy
andmyofiber structure realistic computer simulation study of the
cardiac re-entry dynamics in the DT-MRI based model of the
human fetal heart [45].

The human fetal heart single anisotropic geometry dataset
used in these simulations needs to be a typical and accurate
representation of the cardiac structure and tissue architecture,
with a spatial resolution suitable for numerical solution of
the excitation equations. For a smoothly changing anisotropic
geometry the imaged dataset may be interpolated to provide
sufficient spatial resolution. DT-MRI has provided 17–200 cubic
voxel datasets of human fetal heart [45, 48, 57, 58]. Finite
difference numerical solutions of propagation in biophysically
detailedmodels of adult cardiac tissue need∼ 100µmspace steps
in a Cartesian coordinate system. During fetal development the
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FIGURE 11 | Whole heart simulation: re-entry termination times. The translucent fetal heart is shown in blue, excitation front shown in red (see the color box in

Figure 3), the yellow lines are the instant organizing filaments of the excitation vortices. Re-entry self-termination time in time units of Equations (1, 2) is shown under

each simulation Figures 3–10 initiation panel. Comparison of the respective isotropic (top row) vs. anisotropic (bottom row) simulations shows that, regardless of with

or without the “leftover” piece, anisotropy results in faster termination of re-entry, and at least twice shorter recovery time. Respective comparison of the original MRI

with the corresponding “edited out leftover” simulations shows that the leftover “incidental capacitor” effect, depending of the re-entry location/orientation with respect

to the “incidental capacitor” own location/orientation, might significantly prolongate cardiac re-entry life time. The bigger number and the total length of the filaments

tend to correlate with the faster termination of re-entry, though these fail to identify persistent re-entry in Figure 3 simulation.

structure of the heart changes, the ventricular wall is compactified
and trabeculated, and the size of the heart increases. Any
atlas of the developing human fetal heart would need to come
from longitudinal studies (which are impractical and potentially
unethical), or from a large number of hearts obtained and
imaged at different gestational ages. Here, all simulations are
done on a single cardiac geometry that was selected as the
transmural changes in fiber helix angle had developed. The
results illustrated are specific for this particular anisotropic
cardiac geometry, which is critically determined by how it was
imaged and reconstructed. The fiber orientation angles of
the heart were obtained from the orientation of the DT-MRI
primary eigenvectors. Propagation velocity was twice as fast
along the fibers than across the fibers. In all the simulations
on this DT-MRI based cardiac geometry, the anisotropy of
the myocardial tissue shortens the duration of re-entry by
several fold. The numerical simulations depend on the validity
of the DT-MRI dataset used. The ventricular wall showed the
characteristic transmural rotation of the helix angle of the

developed mammalian heart, while the fiber orientation in the
atria was irregular. We expect the results be subsequently verified
on other anatomy data, including different technique data e.g.,
MRI vs. DT-MRI vs. micro-CT vs. serial section histology,
etc.

The comparative isotropic vs. anisotropic simulation of the
otherwise homogeneous model of the fetal heart shows that,
in the 2D slice of the heart, the fiber anisotropy might change
the re-entry dynamics from the re-entry pinned at the sharp
end of the septum cuneiform opening, Figure 2A, into the fast
anatomical re-entry around the opening, Figure 2B. Note that,
despite of the only basic segmentation of the MRI model into
the tissue/not tissue points, and the ventricles not being isolated
from the atria, because of the 2D re-entry pinning to either the
sharp end of the septum opening, as in the isotropic simulation
shown in Figure 2A, or to the whole septum opening, as in the
case of anatomical re-entry in the anisotropic simulation shown
in Figure 2B, the tip of the re-entry never penetrated from the
ventricles into the atria.
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FIGURE 12 | Whole heart simulation: time course of the number of filaments #, and of the total length of the filaments, time and the total length of the filaments shown

in the time and space units of Equations (1, 2). Initial position of the vortex filament along the x axis, Figures 3, 4, 7, 8 simulations: (A) time course of the number of

filaments # ; (B) time course of the total length of the filaments. Initial position of the vortex filament along the y axis, Figures 5, 6, 9, 10 simulations: (C) time course of

the number of filaments # ; (D) time course of the total length of the filaments. Anisotropy increases the transient number and the transient total length of the filaments.

The bigger transient number and the total length of the filaments tend to correlate with the faster termination of re-entry. The biggest transient total lengths of the

filaments was in case of the re-entry initiated along the y axis, (D), which ensured its fastest termination. It can be seen from Figures 5, 6, 9, 10, that the initial position

of the filament along the y axis allowed it to grow intramurally, thus maximally increasing the transient total length of the filaments, and speeding up their termination.

Although, from the cardiac physiology point of view, the
only basic segmentation of the raw DT-MRI data [45] into the
tissue/non-tissue pixels might be seen as a major limitation of
the study, from the non-linear science point of view, the use of
the raw MRI data, as an example of a nature provided medium
to study a re-entry dynamics, gives an important insight into
the pure anatomy induced drift in an otherwise homogeneous
2D medium, and into the possibility of pinning of the re-
entry not to a major blood vessel but to a sharp end of an
anatomical opening [20]; and into that a real fiber anisotropy
is capable to turn the pinned re-entry into an anatomical
one. Importantly though, the 2D simulations in Figure 2 are
an important step to highlight the role and the necessity of
the whole heart structure in the re-entry dynamics and self-
termination.

In the 3D DT-MRI based isotropic model of the fetal heart,
depending on the initial location/orientation of the re-entry
organizing filament, the geometry of the fetal heart might sustain
perpetual cardiac re-entry even with a positive filament tension,
see Figures 3, 12A,B. However, if the same positive filament
tension vortex is initiated at the exactly same location/orientation
in the anisotropicDT-MRI based model, the fiber structure of the
fetal heart facilitates fast self-termination of cardiac re-entry, see
Figures 4, 12A,B.

From the respective comparison of the “isotropic vs.
anisotropic” simulations in Figure 3 vs. Figure 4, and Figure 7

vs. Figure 8, it can be seen that, whereas the re-entry organizing
filaments were capable to penetrate from the ventricles to atria
in the isotropic simulations shown in Figures 3, 7, the abrupt
change in the fiber angles between the atria and the ventricles,
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which one can see in Figure 1, did not allow the organizing
filaments to penetrate from ventricles into atria in the anisotropic
simulations shown in Figures 4, 8, so that the anisotropy of
ventricles could complete the speedy elimination of the re-entry
within a single rotation.

The comparison of re-entry termination times in the whole
heart raw DT-MRI simulations shown in Figures 3–6, with the
corresponding “edited” MRI simulations shown in Figures 7–
10 showed that, although the filament of cardiac re-entry never
got through into the tiny piece of the “leftover” tissue adjacent
to the apex of the heart in the raw DT-MRI , the “not heart”
excitable tissue served as an accidental “capacitor,” significantly
prolongating the life time of cardiac re-entry initiated at a
particular location/orientation respective to the “leftover” piece
location/orientation. The comparison of the re-entry termination
times in Figures 11, 12 shows that the higher maximum number
of the filaments and the bigger total length of the filaments tend
to correlate with the faster termination of re-entry. However,
the usual transient increase in both the number of the filaments
and in the total length of the filaments, still failed to identify
and terminate the persistent re-entry shown in Figures 3,
12A,B.

The “isotropic vs. anisotropic” comparison of self-termination
time, both in the raw and in the “edited” MRI whole heart
simulations, confirmed that, regardless of with or without
the “leftover” piece adjacent to the apex, anisotropy of the
heart shortens re-entry self-termination time several folds, see
Figures 11, 12. Figure 12 shows that anisotropy increases the
maximum number and the maximum total length of the
filaments. The bigger maximum number and the maximum
total length of the filaments tend to correlate with the faster
termination of re-entry. The biggest transient total lengths of the
filaments was in the anisotropic case of re-entry initiated along
the y axis, see the corresponding dotted pink and solid red lines
in Figure 12D, which ensured the re-entry fastest termination.
It can be seen from Figures 5, 6, 9, 10, that the initial position
of the filament along the y axis allowed the filament to grow
intramurally, thus maximally increasing the transient total length
of the filaments, and shortening their termination time.

The comparison of the “edited” MRI simulations of thus
completely isolated heart shown in Figures 7–10, with the
raw DT-MRI simulations shown in Figures 3–6, provide an
important new insight into cardiac re-entry dynamics. Namely,
that an excitable tissue accidentally adjacent to the heart might
serve a capacitor capable to extend re-entry self-termination
time, see for the respective comparison Figure 3 vs. Figure 7,
Figure 4 vs. Figure 8, Figure 5 vs. Figure 9, and Figure 6 vs.
Figure 10, summarized in Figures 11, 12. The latter suggests
a possible new mechanism for a persistent cardiac re-entry.
That is if, apart from the major blood vessels normally adjacent
to the heart in vivo, and affecting cardiac re-entry dynamics,
there were also an accidental “touching” of the heart by an
adjacent excitable tissue, for example, due to a change of posture
in the night [59], the “incidental capacitor” effect could have
extended re-entry self-termination time, up to the failure to self-
terminate. The “incidental capacitor” hypothesis could be an
additional explanation to the circadian rhythm [60], for the

elusive and difficult to reproduce longer arrhythmia episodes
reported in the night ECGs as opposed to the on average shorter
arrhythmias in the day time ECGs. Although the raw DT-MRI
simulations with the “leftover” piece of tissue might have been
seen a limitation of the study, the real heart in vivo does not
exist in complete isolation from the main blood vessels and other
neighboring tissues. So, we believe that our “incidental” leftover
tissue results only once more confirm the importance and the
necessity of taking into account of the real anatomical settings
and surrounding of the heart for the full appreciation of cardiac
re-entry dynamics.

The BeatBox DT-MRI based in silico comparative study
confirms the heart anatomy and anisotropy functional effect on
cardiac re-entry self-termination as opposed to its sustainability,
pinning to anatomical features, transformation from pinned to
anatomical re-entry, while the anisotropy of the tissue facilitates
re-entry self-termination.

One of the limitations of the present study is the use of
the simplified FitzHugh-Nagumo [50] excitation model, chosen
for this study in order to eliminate the effects of realistic cell
excitation kinetics, such as e.g., meander [50], alternans [52],
negative filament tension [51], etc., and enhance and highlight
the pure effects of the heart anatomy and anisotropy on the re-
entry. The realistic cell excitation models should be used in the
future studies, in order to clarify specific interplay of the cell
kinetics with the heart anatomy and anisotropy.

As it can be seen from Figure 1[for the color-encoded
fractional anisotropy (FA) and for the color-encoded all the three
components of the fiber angles see also Figure 4 in Pervolaraki
et al. [45, p. 5]], formation of the fetal heart fiber structure at the
epicardium and endocardium is not completed yet, so that only
the already formed intramural laminar myofibers affect dynamics
of the re-entry. Although the use of the not fully formed fetal
heart can be seen as a limitation of the study, on the other hand,
the irregular epicardium and endocardium fibers seem to prevent
a re-entry from pinning to the fine endocardium features, which
were yet to be developed [45] later on. We appreciate that the
anatomy and fiber structure differences in the fetal and in a fully
formed adult heart might alter the re-entry dynamics, such as
in e.g., the reported case of re-entry pinning to the junction
of pectinate muscles with crystae terminalis in adult human
atrium [31, 33, 49]. That is, although it is possible to initiate a
cardiac re-entry in the tiny 1.4g (at 143 DGA) fetal heart [45],
the already formed intramural laminar anisotropy of the fetal
heart facilitates the re-entry self-termination, Figure 11. With the
hindsight of the present study, in an adult heart, because of the
pinning opportunities provided by the endocardium anatomical
features [31, 33, 49], there must exist additional mechanisms to
facilitate cardiac re-entry self-termination [61].

The most serious limitation of the study is that only the basic
segmentation of the raw DT-MRI data [45] into the tissue/non-
tissue pixels based on the MRI luminosity threshold, and only
the primary eigenvalues of fibers orientation, were taken into
account in the BeatBox [44] computer simulations of cardiac re-
entry dynamics. Further levels of DT-MRI segmentation, in order
to take into account e.g., the heart collagen skeleton, isolation of
ventricles from atria, etc., will inevitably change the outcome of
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the re-entry, by adding the electrically impermeable barriers to
cardiac re-entry. Currently, this further segmentation is added
into DT-MRI based models via complex rule based image post-
processing [62, 63], which brings in artificial assumptions, as
well as limits the number of available segmented data sets. From
the non-linear science point of view we pursued in this initial
study, the rationale was to use the raw DT-MRI as an example
of a nature provided medium to study a re-entry dynamics. In
the future, the multichannel computer tomography might offer
automatic tissue segmentation, so that multi-level segmented
DT-MRI based models become more available, and be used
in the BeatBox [44] anatomically and biophysically realistic
simulations.

Finally, we believe that a simple “mechanistic” explanation,
although often craved for, might be rather inadequate/premature
here, and will require better theoretical understanding of
the demonstrated potential effect of the heart anatomy and
anisotropy on cardiac re-entry dynamics, for it is not a particular
feature, or a sequence of features, but rather the whole complex
of the shape, anisotropy, and position of the heart within
the body, which affects the re-entry dynamics in a particular
way, and which seems to have evolved in order to ensure the
fastest self-termination of cardiac re-entry. If our hypothesis is
correct, it might explain the difficulties with reproducibility of
the arrhythmia in vivo and in an isolated heart. A general role
of fiber anisotropy in the genesis and sustenance of arrhythmias
could be and has been addressed by numerics on idealized
and simplified geometries with different spatial distributions
of anisotropy [14]. The biomedical question addressed in the
manuscript is whether self-terminating ventricular arrhythmias
can occur in a developing fetal heart, as has inferred from fECG
data in Benson et al. [46]. The most important novel finding
of the paper is that, contrary to what currently seems to be a
commonly accepted view of the pro-arrhythmic nature of cardiac
anisotropy, the point of view based on the mainly theoretical and
simplified anatomy models studies, for the first time ever, and
for the first time in a real whole heart DT-MRI based model, we
have demonstrated that anisotropy of the heart might have rather
anti-arrhythmic effect, as it facilitates the fastest self-termination
of cardiac re-entry.
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Supplementary Video 1 | 2D slice simulation, Isotropic Conduction: slow

excitation re-entry pins to the sharp end of the septum cuneiform opening in the

fetal heart.

Supplementary Video 2 | 2D slice simulation, Anisotropic Conduction:

anisotropy of the fetal heart turns initial spiral wave into fast anatomical re-entry

around the septum cuneiform opening.

Supplementary Video 3 | Isotropic whole heart simulation. After a short transient

of the vortex initiated along the x-axis, the organizing filament breaks into the two

short pieces each of which finds its own synchronous perpetual pathway, resulting

in the perpetual cardiac re-entry in the fetal heart.

Supplementary Video 4 | Anisotropic whole heart simulation. The anisotropy of

the heart causes the fast transient distortion of the organizing filament of the

vortex initiated along the x-axis, and drift toward the inexcitable boundary of the

heart, resulting in the very fast self-termination of the excitation vortex.

Supplementary Video 5 | Isotropic whole heart simulation. After a short transient

of the vortex initiated along the y-axis, the organizing filament breaks into two

pieces each of which fast terminates: one at the base and another at the apex of

the heart.

Supplementary Video 6 | Anisotropic whole heart simulation. The anisotropy of

the heart causes the fast transient distortion of the organizing filament of the

vortex initiated along the y-axis, followed by the fast drift and self-termination at

the apex of the heart.

Supplementary Video 7 | Isotropic “edited” whole heart simulation. After a short

transient of the vortex initiated along the x-axis, the organizing filament breaks into

two short pieces, each of which finds its own synchronous pathway, resulting after

a few rotations in the synchronous termination of the filaments in the base of the

fetal heart.

Supplementary Video 8 | Anisotropic “edited” whole heart simulation. The

anisotropy of the heart causes the significant transient distortion of the organizing

filament of the vortex initiated along the x-axis, followed by its fast drift toward the

apex, and the ultimate termination before completing a single rotation.

Supplementary Video 9 | Isotropic “edited” whole heart simulation. After a short

transient of the vortex initiated along the y-axis, the organizing filament breaks into

two pieces, each of which fast terminates: one at the base and another at the

apex of the heart.

Supplementary Video 10 | Anisotropic “edited” whole heart simulation. The

anisotropy of the heart causes the fast significant transient distortion of the

organizing filament of the vortex initiated along the y-axis, followed by the fast drift

toward the apex and termination before the first rotation has ever started.
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Computational models of cardiac electrophysiology have a long history in basic science

applications and device design and evaluation, but have significant potential for clinical

applications in all areas of cardiovascular medicine, including functional imaging and

mapping, drug safety evaluation, disease diagnosis, patient selection, and therapy

optimisation or personalisation. For all stakeholders to be confident in model-based

clinical decisions, cardiac electrophysiological (CEP) models must be demonstrated to

be trustworthy and reliable. Credibility, that is, the belief in the predictive capability, of a

computational model is primarily established by performing validation, in which model

predictions are compared to experimental or clinical data. However, there are numerous

challenges to performing validation for highly complex multi-scale physiological models

such as CEP models. As a result, credibility of CEP model predictions is usually

founded upon a wide range of distinct factors, including various types of validation

results, underlying theory, evidence supportingmodel assumptions, evidence frommodel

calibration, all at a variety of scales from ion channel to cell to organ. Consequently,

it is often unclear, or a matter for debate, the extent to which a CEP model can be

trusted for a given application. The aim of this article is to clarify potential rationale

for the trustworthiness of CEP models by reviewing evidence that has been (or could

be) presented to support their credibility. We specifically address the complexity and

multi-scale nature of CEP models which makes traditional model evaluation difficult. In

addition, we make explicit some of the credibility justification that we believe is implicitly

embedded in the CEP modeling literature. Overall, we provide a fresh perspective to

CEP model credibility, and build a depiction and categorisation of the wide-ranging body

of credibility evidence for CEP models. This paper also represents a step toward the

extension of model evaluation methodologies that are currently being developed by the

medical device community, to physiological models.

Keywords: credibility, calibration, validation, computational modeling, cardiac models

INTRODUCTION

One of the most remarkable properties of the natural world is that is it can be understood
using mathematical equations—a property described by Eugene Wigner as “the unreasonable
effectiveness of mathematics in the natural sciences.” Once the appropriate mathematical
groundwork had been developed, it became possible to describe intricate andmulti-faceted physical
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phenomena using relatively simple mathematical equations,
e.g., fluid flow, deformation of solid bodies, electromagnetic
wave propagation, and phenomena at widely different scales
from atoms to galaxies. Computational models, which are
mathematical models solved bymeans of a computer, can be used
to solve governing equations underlying complex systems and
simulate their behavior. The remarkable predictive capability of
computational models based on the fundamental laws of physics
has enabled such models to be routinely used in a multitude of
engineering applications.

Biology, in contrast to physics, is less easily characterized by
simple or small numbers of mathematical equations. Primarily,
this is due to the complexity and variability in biological processes
which makes them inherently non-linear, multi-disciplinary and
multi-scale.While computational models of human physiological
processes have been developed and refined for decades, they
are not as predictive as computational models in engineering,
and likely never will be. Nevertheless, biomedical computational
models have without doubt the potential for revolutionizing
medicine just as physics-based models have forever changed
research, design, and evaluation in engineering.

One field which holds considerable promise for clinical
applications is cardiac modeling, owing to the maturity of the
field (Trayanova, 2011) (Winslow et al., 2012) and the fact
that heart disease is the leading cause of the death in the
industrialized world. Computational cardiacmodels can simulate
the electrophysiology and/or mechanical deformation of cardiac
myocytes, tissue, or the whole heart. This paper is focused on
cardiac electrophysiological (CEP) models. Figure 1 illustrates
the typical components to a CEP model, which are usually
multi-scale, containing as a fundamental unit a cellular model
of myocyte EP activity. Such “cell models,” of which over a 100
have been published of varying complexity and for a range of
mammalian species, are typically sets of ordinary differential
equations (ODEs), and predict the action potential (AP) and
many other cellular and sub-cellular quantities. Notable recent
human cell models include (Iyer et al., 2004; ten Tusscher et al.,
2004; ten Tusscher and Panfilov, 2006; Grandi et al., 2010) and
(O’Hara et al., 2011). For reviews of single cell models, see (Fink
et al., 2011; Noble, 2011; Noble et al., 2012). Cell models are often
composed of multiple sub-models, for different ion channels,
pumps and exchangers or representing subcellular processes such
as calcium handling. These sub-models are usually also systems
of ODEs. To simulate electrical wave propagation, including
arrhythmic activity, in tissue or the whole heart, cell models are
coupled to partial differential equations (PDEs) known as the
“bidomain” or “monodomain” equations (Clayton et al., 2011;
Franzone et al., 2014; Lopez-Perez et al., 2015); see Figure 1.
A further extension is to model the heart embedded in the
torso, which allows for simulation of the electrocardiogram
(ECG) (Richards et al., 2013; Zemzemi et al., 2013). In recent
years various imaging, modeling and computational advances
have enabled patient-specific heart models to be generated using
clinical data (see e.g., Smith et al., 2011; Chabiniok et al., 2016 for
discussions). Anatomical personalisation using clinical imaging
data is most common (e.g., Arevalo et al., 2016), although
personalisation of functional (Chen et al., 2016) or material

(Aguado-Sierra et al., 2011) parameters using clinical data has
also been performed. Patient-specificmodels can be used tomake
patient-specific clinical predictions and represent an important
step forward toward precision medicine.

All types of CEP model—ion channel or subcellular models,
cell models, tissue, and organ-level models—have proved
to be powerful tools complementing experiment in basic
cardiac electrophysiological research (Plank et al., 2009), for
understanding mechanisms behind both normal rhythm and
cardiac arrhythmias. However, CEP models also have potential
applications in all aspects of cardiovascular medicine, including
device design and evaluation, functional imaging and mapping,
drug safety evaluation, disease diagnosis, patient selection, and
therapy optimisation or personalisation. There are numerous
reviews covering the current and potential applications of CEP
models; (see e.g., Trayanova and Boyle, 2014; Davies et al., 2016;
Niederer and Smith, 2016). However, one aspect of the modeling
which has been inadequately covered in the current cardiac
modeling literature is rationale for when and why cardiac models
can be trusted.

The credibility of a computational model has been defined
as the belief in the predictive capability of the model for a given
intended use (ASME, 2017) or the willingness of people to trust
a model’s predictions (Patterson and Whelan, 2017). Typically,
credibility of a computational model is founded upon validation

results. Validation is the process of testing a model by comparing
model predictions to experimental or clinical data. (A more
precise definition is provided below). However, other types of
evidence (non-validation evidence) can also be used to argue
that a model is sufficiently credible for its intended use. As we
explain below, the credibility of CEP models is typically founded
upon a wide range of factors, and consequently it can be very
unclear, or a matter for debate, the extent to which a cardiac
model can be trusted for a given application. In fact, many papers
in the literature leave implicit why, and to what extent, the model
predictions can be considered credible.

The aim of this article is to clarify and discuss reasons
that could support the trustworthiness of CEP models. We
will do so by reviewing different types of evidence that have
been presented to support CEP model credibility, or are
otherwise relevant to the assessment of credibility, hereafter
referred to as CEP model credibility evidence. The review
will include: (i) discussion of common practice regarding CEP
model validation; (ii) examples of strategies taken for performing
CEP model validation; and (iii) discussion of other credibility
evidence for CEPmodels, including historical evidence that often
implicitly supports simulation studies. The review will not aim
to evaluate specific cardiac models or in any way judge the
quality of any validation results or other evidence. Such decisions
require difficult judgements based on careful consideration of
all available evidence, in the context of the precise application
that model is to be used for (including assessment of the risks
associated with inaccurate predictions NASA, 2009) and are
therefore beyond the scope of this review. In other words, we
are not claiming or implying that any CEP model “is” or “is not
trustworthy”; nor do we argue that any modeling approach or
process is or is not trustworthy. Instead, our focus will be on types
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FIGURE 1 | Components of a multiscale cardiac electrophysiology (CEP) model. (Left): equations and sample output for a Hodgkin-Huxley formulation of the rapid

sodium current. Multiple such sub-cellular models can be used to define a cell model. (Center): schematic of sub-cellular processes included in a hypothetical cell

model, together with the differential equation governing the transmembrane voltage, and sample output. Cell models differ in their formulation of the ionic current Iion
and can be made up of dozens of ordinary differential equations. (Right): Cell models can be incorporated into the bidomain equations and solved on a computational

mesh of the heart [top right: high-resolution rabbit biventricular mesh of Bishop et al. (2010)], to simulate normal or arrhythmic cardiac activity (bottom right).

of evidence that could, in principle, support the trustworthiness
of a model for a given intended use.

In previous work we advocated that engineering model
assessment approaches known as verification, validation, and
uncertainty quantification (VVUQ) could be important in the
advancement of cardiac CEP modeling (Pathmanathan and
Gray, 2013) and explored verification (Pathmanathan and Gray,
2014) and uncertainty quantification (UQ) for CEP models
(Pathmanathan et al., 2015). This paper continues this line of
work by focusing on validation-related activities. Only activities
related to comparison of the model to the real world are
within the scope of this review. Therefore, activities such
as code verification, calculation verification, and sensitivity
analysis, while important for overall assessment of credibility and
receiving increasing interest in the field (Sobie, 2009; Niederer
et al., 2011; Chang et al., 2015) are outside the scope of this
paper. Additionally, while uncertainty quantification is related
to validation as will be described in section Why Trust a
Computational Model?, research on the process of performing
uncertainty quantification with CEP models is also outside the
scope of the review, though this is also receiving increasing recent
interest in CEP; (see e.g., Konukoglu et al., 2011; Johnstone et al.,
2016; Chang et al., 2017).

In fact, there is enormous current interest across
computational science in methods and best practices for
demonstrating or evaluating the reliability of computational
models (National Research Council, 2012). The medical device
community is collaborating on a Standard for assessing
credibility of computational models for medical device
applications (ASME, 2017). However, this Standard and related

medical device Guidances (Food and Drug Administration,
2016) are motivated by traditional “physics-based” engineering
models in biomedical applications [e.g., models based on
solid mechanics (Pelton et al., 2008), fluid dynamics (Stewart
et al., 2012), or electromagnetism (Angelone et al., 2010)].
The relevance of such approaches to the evaluation of complex
physiological models such as CEPmodels is limited. In particular,
while both (Food and Drug Administration, 2016) and (ASME,
2017) address validation, they do not account for the possibility
of multiple sources of different types of validation evidence, or
other evidence which could support credibility. In this paper, we
demonstrate how a large body of evidence will generally support
a CEP model. By exposing and discussing this wide range of
potential credibility evidence for CEP models, this paper is a
necessary first step toward the extension of the above approaches
to cardiac and other physiological models.

The paper is organized as follows. In section Why Trust a
Computational Model? we categorize and discuss different types
of credibility evidence, and discuss validation in detail. Section
Credibility of CEPModels at Different Spatial Scales then reviews
credibility evidence for CEP models organized by spatial scale.
Section Discussion summarizes and discusses our conclusions.

WHY TRUST A COMPUTATIONAL MODEL?

Figure 2 provides an overview of the concepts discussed
throughout this section. Various types of rationale could be
used to argue for the credibility of a computational model. The
following are three distinct categories of evidence that could
support some level of confidence in a model:
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FIGURE 2 | Illustration of how a multiscale CEP model may be supported by multiple sources of credibility evidence (that is, evidence relevant when assessing the

credibility of the model), taken from model evaluation at multiple scales. The overall model (i.e., organ-level model), the underlying cell models (here it is assumed that

the organ-level model incorporates two different cell models, one for epicardial tissue, one for endocardial), and all underlying sub-cellular models may all be

supported by the different types of evidence presented in the right of the figure. See section Why Trust a Computational Model? for full discussion.

Category 1: Evidence related to the validity of assumptions

underlying the model governing equations, together with
evidence related to the accuracy/fidelity of model parameter

values and other inputs. These are grouped together because
if the equations are considered appropriate, but there is
no confidence that the parameters are accurate, then there
will be little confidence in model predictions, and vice
versa.

Category 2: Calibration evidence. Calibration is the process
of tuning, fitting or optimizing parameters in a model so that the
model results match experimental or clinical data. Calibration
is primarily performed to determine model parameter values
that cannot be directly measured. However, if the results from
calibration demonstrate a good match between model and the
experimental/clinical data, the results could potentially also be
used as evidence for credibility of the model.

Category 3: Evidence generated from testing the predictive
capability of the completed model. This includes validation

evidence, that is, comparison of model predictions to
independent real-world data not used in the construction
of the model (Roache, 2009). Validation is discussed in detail
later in this section.

These are distinct types of evidence and may provide very
different levels of confidence in a model. The first category is
based on model equations, assumptions and parameter values,
but not on actual model outputs or results, with no actual
testing of the model. This category includes historical evidence
supporting the governing equations that were used in the model.

It also includes evidence regarding the quality of data used to
determine model parameters. The second category is based on
comparing model outputs with experimental/clinical data, but
allows for model parameters to be altered for the model to
match the data. Calibration results are regularly used, either
implicitly and explicitly, as evidence for credibility of biological
computational models. If a model’s parameters can be chosen so
that the model reproduces certain experimental data, this ability
to fit the data or to reproduce phenomena could be used in
support of the model—especially when a complex phenomenon
is reproduced using a model with only a few parameters. The
last category—validation and related evidence—is obviously the
strongest test of the model: it assumes the model has been
completely defined and then its ability to reproduce the real world
is tested.

For many applications—in particular the basic science
applications of hypothesis generation and mechanistic insight—
use of a model that has no supporting validation evidence may
be perfectly appropriate. Mathematical models in biology can be
thought of a means in which existing knowledge or hypotheses
are integrated (Brodland, 2015), in which case running a
simulation is simply an efficient means of determining the
logical consequences of those knowledge/hypotheses, impossible
through mental deduction alone for complex systems. This is
one of the reasons why mathematical modeling has proven
a successful complement to experiments in understanding
biological processes (Noble, 2011). However, when a model
is to be used in decision-making, and in particular for
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high-risk applications such as safety-critical clinical applications,
validation becomes very important. (Carusi et al., 2012) provide
a discussion on the meaning of CEP models as representations.
Patterson and Whelan (2017) provide an excellent general
discussion on models as representations vs. as predictive tools,
and propose a high-level framework for deciding how to evaluate
models along this spectrum.

Validation
Validation has been described as “the assessment of the accuracy
of a computational simulation by comparison with experimental
data” (Oberkampf et al., 2004). One definition initially proposed
by the Department of Defense (DoD) and commonly used by
the engineering community and elsewhere (Oberkampf et al.,
2004; Roache, 2009; National Research Council, 2012), including
increasingly within the medical devices community (Food and
Drug Administration, 2016), (ASME, 2017), is: “the process
of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended
uses of the model.” This definition emphasizes that the validation
process is dependent on the specific “intended use” of the model,
also referred to as the “model application” or the “context of
use” (COU). (Roache, 2009) provide a good discussion of the
DoD definition of validation, and explains how many different
interpretations of it are made even within the engineering
community. Moreover, there is no inter-disciplinary consensus
on a precise definition of validation, and different communities
may have very different understandings of what constitutes
model validation. (Bellocchi et al., 2010) list 20 definitions of
model validation proposed between 1960 and 2010. (Eddy et al.,
2012) describe a categorisation of validation used in the health
economics and outcomes community. (Patterson and Whelan,
2017) describe a broad concept of validation of biological models,
which includes but is more expansive than the engineering/DoD
understanding of validation. (Viceconti, 2011) refer to model
“falsification,” rather than validation, based on the contention
that models can only be invalidated (falsified). One common
feature ofmost of the different interpretations of validation is that
validation must involve new data not used in the construction of
the model, i.e., “calibration is not validation” (Roache, 2009).

The DoD definition arguably presents a contradiction
regarding validation of CEP models—especially cellular
models—because they are typically developed as general-

purpose models, i.e., without a specific COU in mind. When
novel cell models are published, predictions of model outputs
and derived quantities—for example, action potential shape,
action potential duration (APD) restitution, ionic concentration
transients and others—are usually compared to experimental
data. This arguably does not constitute validation according
to the DoD definition since no COU (intended use) has been
prescribed. Incidentally, this could be considered a limitation
of the DoD definition; see (Roache, 2009) for a discussion.
Note though that regardless of the definition of validation, it
is vital to recognize the importance of the COU in evaluation
of a computational model. In particular, the COU must be
specified for the “final” evaluation of a model, and any claim
that a general-purpose model is a “validated model” cannot

be justified, since it is the COU that determines what level
of agreement between model and experiment can be deemed
acceptable (Roache, 2009; National Research Council, 2012).

To distinguish between different types of evidence, we
introduce the terminology general validation evidence to
describe scientific evidence obtained by comparing model
predictions with real world data when no particular COU
has been specified. This could also have been called “baseline
validation.” Examples of general validation for CEP models
include initial validation of a novel general-purpose cell model
(discussed in detail in section Cell Models), general testing vs.
experimental/clinical data of previously published cell models
(regularly carried out in the cardiac modeling community), and
the comparison against data of activation patterns predicted
by general-purpose ventricular, atrial or whole-heart models
(discussed in section Organ-Level Models). There is almost
unlimited scope for such evaluation, since modern CEP cell
models are very complex, and therefore there is an ever-growing
volume of literature incorporating general validation of CEP
models.

We define COU-driven validation evidence using the DoD
definition, as scientific evidence obtained by comparing model
predictions with real world data for the purposes of evaluating
the predictive capability of the model for a specific, prescribed,
application (COU) of the model. A simple example of this would
be comparing APDs of a model to experimental values, when
the COU is prediction of drug effects on APD. Another example
is comparison of whole-heart model predictions of number
of phase singularities during ventricular fibrillation, against
clinical data, when the COU is to use the model to understand
mechanisms behind ventricular fibrillation (see section Organ-
Level Models). We include in this category validation of model-
derived quantities, including: drug pro-arrhythmic risk indices
(see sections Cell Models and Organ-Level Models); sudden
cardiac death (SCD) risk indices (see section Organ-Level
Models); and ablation targets (see section Organ-Level Models).

Note that a terminology complication can arise when
considering validation of patient-specific models, which are
often generated using a workflow that may be mostly or fully
automated. One could distinguish between validation of the
simulation software only, and validation of model predictions
using the full workflow; there is therefore a potential for different
interpretations of what constitutes “model validation” in this
context. In this paper, we will include validation of the full
workflow (for example, evaluation of the predictive ability of a
workflow that takes in patient imaging data and outputs a clinical
prediction) within our broad interpretation of model validation.

Comparator, Quantities of Interest, and
Method of Comparison
Validation involves comparison of model predictions with real
world data of some form. (Note that comparison against
results of a different computational model is generally not
considered validation, but see Roache, 2009 for a discussion).
The comparator is defined as the source of the real world data.
For CEP models this is usually experimental or clinical data.
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Important aspects of experimental comparators in CEP model
validation include species, experimental conditions including
temperature, and whether the data is historical (taken from
the literature) or obtained from new experiments performed
for the purpose of model validation. Important aspects of
clinical comparators include patient demographics, patient
cardiac myopathies, and co-morbidities. For patient specific
CEP models that make patient specific clinical predictions, the
validation comparator has to be clinical data taken from the
same patient (distinct to the data used for personalisation of the
model). Regardless of whether the comparator is experimental or
clinical data, there are often significant challenges to obtaining
high quality data, especially in vivo data under physiological
conditions, which can impose severe constraints on the ability
to perform high quality validation. These experimental/clinical
challenges are covered elsewhere in the CEP literature, and
therefore will not be a main focus of the present review.

Another important aspect of validation is which outputs
of the model, or derived quantities—here referred to as
quantities of interest (QOIs)—are compared to the real-
world data. Commonly validated QOIs for cell models include
transmembrane voltage and the APD restitution curve. For
whole-heart models, validation QOIs can be global (e.g., the
ECG) or local (e.g., activation patterns). Validation using global
QOIs only provides indirect evidence on the credibility of local
QOIs.

There are various possibilities for the method of comparison

between the model and comparator. (Oberkampf et al., 2004)
provide a good introduction to this topic; here we only provide a
very brief overview. The comparison can be qualitative (often the
case in physiological modeling) or quantitative. If quantitative,
the comparison could take into account experimental error,
model uncertainty, both, or neither. Model uncertainty is
accounted for by performing uncertainty quantification (UQ),
where uncertainty in model parameters (due to, for example,
measurement uncertainty or inherent physiological variability) is
quantified using probability distributions, and then the resultant
uncertainty in the QOI(s) are computed (Smith, 2013; Mirams
et al., 2016). Various validation metrics for quantifying the
difference between experimental data and model predictions
taking into account error estimates and simulation uncertainty
have been proposed in the engineering literature; (see e.g.,
Oberkampf and Barone, 2006). For some CEP model-derived
outputs such as risk indices or model-based biomarkers, other
analytic or statistical comparison methods (different to those
used in traditional model validation) may be appropriate, such
as measures of specificity and specificity, receiver operating
characteristic (ROC) curves, biomarker validation methods, etc.

Sometimes a CEP model is stated as matching known
physiological phenomena, for example in statements such as “the
AP shows the characteristic spike notch dome architecture found
for epicardial cells” (ten Tusscher et al., 2004) or discussion of
re-entrant waves breaking up into sustained fibrillation under
pro-arrhythmic conditions (Krishnamoorthi et al., 2014). This is
perhaps not validation per se, as there is no explicit comparator—
or more precisely, arguably not validation according to the
engineering/DoD understanding of validation; it is arguably

“epistemic validation” using the broader definition of Patterson
and Whelan (2017). Nevertheless, it is important and relevant
evidence for assessing the model’s predictive ability for a COU.
This type of evidence, which we will refer to as reproduced

phenomena, may be especially important in evaluation of
biological models since biological systems exhibit emergent
phenomena, and therefore a powerful test of a model is whether
such it predicts such phenomena.

Validation of Multiscale Models
For multiscale models we can distinguish between evidence at
different spatial scales, and in particular at which scales validation
was performed (see Figure 2). For a multiscale model of the
whole-heart, there may be validation evidence available for
model sub-components (i.e., all sub-cellular models and the cell
model), and/or for the system-as-a-whole (whole-heart model).
If validation is only performed for sub-models but not the
overall system, credibility of system-level predictions is founded
(perhaps implicitly) on the sub-model validation results and
belief in the theory underlying how sub-models interact. For
example, most cardiac cell models assume that ionic currents are
independent and can therefore simply be added together. System-
level validation may be especially important with physiological
models, since physiological systems exhibit emergent behavior
that cannot be predicted from understanding all sub-system
behavior. “Hierarchical validation,” in which validation is
performed for all model sub-components, sub-systems and the
entire system, is recommended in the engineering validation
literature so that the model provides the “right answer for the
right reasons” (Hills et al., 2008).

Often, validation is performed at one scale to provide
confidence that the model is sufficiently credible for it to be
used as a sub-model in a larger scale (e.g., develop a cell model,
perform validation of cell model, and then proceed to tissue
model if validation results are favorable). Even if this is the case,
the sub-model validation results may be relevant in evaluation of
the final model for a COU.

It should now be clear how a CEP model may be supported
by multiple sources of credibility evidence, taken from model

evaluation at multiple scales (see Figure 2). Table 1 lists
different sources of evidence and provides examples for ion
channel, cell and organ-level models. We reiterate that we are
not making any assertions regarding what evidence is necessary
when assessing cardiac models for a COU. Our motivation is
simply to describe how multiple sources of evidence may exist
and be relevant when assessing the credibility of a CEP model for
a specific COU. Confidence in a model tends to increase with the
body of evidence available to support it (Patterson and Whelan,
2017). Therefore, when a complex model is evaluated, ideally the
model should be treated as a “glass box” (the opposite of a “black
box”), so that the most informed decision is made. Any or all
of the types of evidence in Table 1 may be relevant in glass box
cardiacmodel evaluation. Themost important source of evidence
for a whole-heart model will likely be organ-level COU-driven
validation evidence, if available. Strong validation results of the
full model, if highly “applicable” (Pathmanathan et al., 2017) to
the COU, reduce the relative importance of the other factors
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TABLE 1 | Different types of evidence relevant to the credibility of a cardiac EP model, with ion channel, cell, and organ-level examples.

Category Type of credibility

evidence

Examples

Ion channel Cell model Organ-level model

Category 1 Evidence regarding validity

of model assumptions or

supporting the model

formulation

Successes of Hodgkin-Huxley

formulation for modeling ion

channels—see section Ion channel

models

Evidence supporting the formulation

of cell membrane as a parallel

resistor-capacitor electric circuit

The successes of the bidomain

equations, in particular predictions

made that were later experimentally

observed—see section Organ-level

models

Evidence regarding

accuracy/fidelity of model

parameters/inputs

Evidence supporting accuracy of

steady-state inactivation

parameters—see section Ion Channel

Models

Rationale behind standard choice of

membrane capacitance equal to 1

uF/cm2.

Evidence on fidelity of geometry used

and on fidelity of fiber/sheet

specification—discussed in section

Organ-Level Models.

Category 2 Calibration results Results showing agreement between

ion channel model and experimentally

recorded current-voltage relationship

when ion channel parameters are

calibrated using this data

Results showing agreement between

the model action potential and

experimental recordings when

maximal conductances are tuned to

achieve the match

Results showing activation patterns

match experiment if fast sodium

current maximal conductance (which

controls conduction velocity) chosen

to maximize agreement

Category 3 Reproduced (emergent)

phenomena

Simulation results demonstrating that

a rapid sodium current model can

exhibit damped oscillations

Simulation results demonstrating that

a cell model reproduces action

potential spike and dome morphology

Simulation results demonstrating that

ECG predicted by a heart and torso

model exhibits realistic-looking QRS

complex and T wave

General validation results Comparison of a general-purpose ion

channel model predictions to new

voltage-clamp data not used in the

construction of the model.

Comparisons of model results with

experimental data for a novel

general-purpose cell model, e.g., all

such results in O’Hara et al. (2011).

Discussed in detail in section Cell

Models

Excitation patterns of general purpose

bi-ventricular model compared to

experimental/clinical data.

ECG of general-purpose heart and

torso model compared to

experimental/clinical data.

COU-driven validation

results

Evaluation of a hERG model to predict

pharmaceutical pro-arrhythmic risk

Evaluation of a cell model-based

biomarker to predict pharmaceutical

pro-arrhythmic risk (e.g., CiPA,

discussed in section Cell Models)

Number of phase singularities during

ventricular fibrillation (VF) compared

to clinical data, when the model will

be used to understand mechanisms

behind VF—see section Organ-Level

Models.

Clinical evaluation of a whole-heart

model which uses patient-specific

information to predict optimal ablation

targets to terminate arrhythmias—see

section Organ-Level Models

(including reducing the need for evidence supporting model
assumptions (Patterson and Whelan, 2017).

CREDIBILITY OF CEP MODELS AT
DIFFERENT SPATIAL SCALES

We now discuss credibility evidence of CEP models at each of
the spatial scales. The scope of the following review is limited
to the most common types of CEP model: zero-dimensional
models (i.e., systems of ODEs) of ionic channels and of the
cell, and tissue/organ models that utilize the monodomain
or bidomain formulation. Therefore, models that explicitly
represent the spatial structure of ion channels or cardiac
myocytes are out of scope of the review, including molecular
dynamics models. Due to space limitations, we will only
discuss ion channel models; other types of sub-cellular model
such as calcium handling models are not included. We only

consider models which are at least partially motivated by bio-
physical understanding, excluding phenomenological models,
or statistical models such as those developed using neural
networks or machine learning techniques. We re-iterate that this
paper is focused on electrophysiology only; models of cardiac
mechanics or hemodynamics are out of scope, although similar
principles are expected to apply. Note that the scope of the
following review is still quite broad and it is therefore not
possible to describe or cite all publications that have performed
validation of CEP models. The papers cited below were chosen
to provide selected examples of approaches to CEP model
validation.

Ion Channel Models
There is a long history of modeling the dynamics of
transmembrane ion channels using the Hodgkin-Huxley
(HH) formulation (Hodgkin and Huxley, 1952). In the HH
formulation, transmembrane current is taken to be the product of
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a maximum conductance, dynamic gating variables representing
probabilities of channels gates being in an open state, and a
driving force. Gating variable dynamics are modeled using
ODEs, with dynamics determined by the voltage-dependent
steady-state activation/inactivation and voltage-dependent “time
constant” relationships for each gating variable (see Figure 1,
which includes the equations for a HH formulation of the
rapid sodium current with three gating variables m, h, and j).
The HH formulation has in fact become so integral to cardiac
electrophysiology that experimentalists regularly present data
by publishing HH-based model parameters. Markov models of
ionic currents are a more general formulation. For more details
(see e.g., Fink et al., 2011).

Generally speaking, validation of novel ion channel models is
not common practice (Fink et al., 2011). Here, we are referring
to validation of the novel channel in isolation, not as part of a
larger cell model. While voltage clamp data is used to develop
and calibrate themodels, those calibratedmodels are typically not
then tested to new data. In fact, generally simulations are not even
performed to show that the models predict the voltage-clamp
results that they were based on, and surprisingly, simulations
of voltage clamp protocols from which parameters are derived
do not necessarily match the original data (Carro et al., 2017).
(This can happen for a variety of reasons, such as the assumption
of inactivation being much faster than activation not holding).
Such observations demonstrate the value of ion channel model
evaluation including validation. It can be difficult to determine
in publications if results presented correspond to validation,
because calibration and validation are often not clearly separated
in presentation of results. An example of genuine validation
is (Yang et al., 2015), in which validation of a new model of
the late sodium current INaL is performed by comparing model
predictions of the INaL current-voltage relationship under a
slow depolarising voltage ramp, against experimental recordings
under the same protocol. Another is the L-type calcium current
model in O’Hara et al. (2011). As shown in Figure 3, validation
of the calibrated ICaL model was performed by comparing model
with experimental data using an action potential clamp protocol.
(Beattie et al., 2017) proposes a novel approach to developing cell-
specific models of the rapid delayed rectifier potassium current
IKr . Eight seconds of data using a novel sinusoidal voltage clamp
protocol was used to calibrate the cell-specific IKr models, which
were then validated against 5min of data taken from the same
cell, covering a range of voltage clamp protocols.

When no validation evidence is presented, the credibility
of novel ion channel models is essentially founded—often
implicitly—on a range of other factors, including the maturity of
the HH formulation and related historical evidence, calibration
evidence, and evidence regarding the accuracy of identified
parameters. We discuss these in the remainder of this
section.

The model of squid giant axon excitability proposed by
Hodgkin and Huxley (Hodgkin and Huxley, 1952) is considered
one of the greatest successes in twentieth century biophysics
(Häusser, 2000; Schwiening, 2012). This is due to the ability
of the relatively simple set of equations to reproduce a variety
of phenomena (Häusser, 2000) and the fact that the HH

modeling approach was then successfully applied to a wide range
of excitable cells, including cardiac cells (Noble, 1962). The
ideas and equations behind the HH model are now standard
building blocks in electrophysiology (Schwiening, 2012). HH-
based cardiac models have contributed greatly to understanding
of cardiac electrophysiology, with various predictions made
using cardiac models that were later experimentally verified.
Examples include the existence of non-sodium inward currents
and stoichiometry of the Na+/Ca2+ exchanger; see (Noble, 2011)
for a detailed review. However, despite these successes, there
are several caveats that should be stated regarding use of a
general HH formulation for a given ion channel. First, for some
ion channels and some applications, such as the rapid delayed
rectifier potassium current IKr and drug-binding applications,
a Markov model based approach may be more appropriate
(Clancy and Rudy, 1999). Additionally, there is still a lack of
consensus and ongoing research into a variety of details of
specific formulations. For example, for the fast sodium current
INa, while the originally-proposed (Hodgkin and Huxley, 1952)
and commonly-used m3 formulation of activation can be argued
to have a justification at the molecular level (Armstrong, 2006),
it is unclear how to simultaneously represent the various modes
of INa inactivation (fast, slow, and persistent; Nesterenko et al.,
2011). Similarly, for the L-type calcium channel ICaL., there is not
a unique approach to simultaneously quantifying both voltage-
and calcium-dependent inactivation (Grandi et al., 2010).

Once a HH-based model formulation is proposed and
justified, model parameters need to be estimated. This includes
parameters representing the voltage-dependent steady-state
activation/inactivation and time-constant functions for each gate,
which are estimated using voltage clamp data. Evidence on the
accuracy of these parameters is important in evaluating model
credibility, especially if no validation is performed. However,
before asking about the accuracy of parameter values, one can
ask if ion channel model parameters are uniquely identifiable
from experimental data in the first place. A parameter cannot
be claimed to be accurate if it is provably unidentifiable
given the data. Although the methodology for nonlinear model
identifiability has been extensively studied (Rothenberg, 1971;
Jacquez and Greif, 1985; Walter and Pronzato, 1996), their
utilization in the field of CEP modeling has been limited. The
conditions under which model parameters can be identified
has been studied in the context of single current sub-models
(Beaumont et al., 1993; Wang and Beaumont, 2004; Lee et al.,
2006; Csercsik et al., 2012; Raba et al., 2013) and more recently
incorporated into a multi-scale framework using a simplified
action potential model (Shotwell and Gray, 2016).

Returning to parameter estimation, voltage-dependant
steady-state (in)activation relationships for many currents are
typically well-approximated using sigmoidal functions using
standard voltage clamp protocols, however obtaining data for
accurate characterisation of voltage-dependent time constants
is considerably more difficult. Assumptions underlying voltage
clamp protocols should be well understood by model developers
and may be questionable for protocols used to identify certain
parameters (e.g., the assumption that inactivation is much faster
than activation for protocols used to identify INa steady state
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FIGURE 3 | Calibration and validation of the L-type Ca2+ current of O’Hara et al. (2011). Left figures show calibration results (circles/squares/diamonds—experiment;

solid lines—simulation), including fitting of steady-state activation and inactivation (top row) and time constants (second row). Right figures are qualitative validation of

the formulated ICaL model by comparison of simulation and experiment under an identical action potential clamp. Quantitative validation of peak current is also

provided in original paper. (Adapted from Figure 1 of O’Hara et al. (2011) with permission under Creative Commons license).

gating activation parameters Csercsik et al., 2012). Manual
recording from single cells using well-established voltage clamp
protocols remains the gold standard for obtaining high-quality
current-voltage relationships (Elkins et al., 2013). Nevertheless,
there are numerous (often “hidden”) details regarding the specific
procedures and protocols in the laboratory to isolate individual
currents and to minimize recording artifacts (e.g., accounting
for liquid junction potentials and capacitive compensation).
Technical advances has improved the ability to measure rapid
transients, however, it is still not possible to characterize
activation for the fast sodium current steady-state activation
from adult myocytes under physiological conditions (Berecki
et al., 2010). Experimental reproducibility and variability
between cells also present challenges (Pathmanathan et al., 2015).
Regarding the voltage dependence of time constants, there is
not even consensus on the appropriate functional forms, unlike
steady state parameters. In general, fits to time constant data are
much poorer than to steady-state (in)activation data [compare
steady state and time constant fits in (e.g., ten Tusscher et al.,
2004) or (O’Hara et al., 2011); also see Figure 3]. The quality of
such fits is rarely quantified.

Overall, if a novel ion channel model is developed but no
validation is performed, given the numerous issues described

above there may be significant uncertainty regarding the true
predictive capability of the ion channel model. This is especially
true for simulations using conditions that are quite different
to the conditions used for model calibration. Often, however,
novel ion channel models are developed as one component of a
cell model, and validation is instead performed at that level, as
described in the next section.

Cell Models
Regarding validation of cardiac cell models, we first make two
remarks. First, it should be noted that the majority of cell models
are developed as general-purpose tools, as opposed to for a
specific COU. Any initial testing against experimental data of
a general purpose cell model therefore falls under the category
of “general validation.” Second, it can be especially difficult to
determine in publications whether results presented are obtained
by calibration or are genuinely validation evidence. For example,
simulated and experimental action potentials may be presented
in papers to demonstrate a close match between simulation and
experiment, but it can be unclear if any parameters (e.g., ion
channel maximal conductances) were tuned to obtain the match.

There is an enormous range in the extent of general
validation performed when novel cell models are published.
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They can vary in terms of which model outputs are compared
to experiment, which pacing protocols are applied, the source
of the experimental/clinical data, and the type of comparison
between model and experiment (e.g., qualitative vs. quantitative).
As an example, for validation of their human cell model,
(ten Tusscher et al., 2004) first present action potential and
calcium transient time courses under 1Hz pacing, stating
how the AP reproduces the characteristic spike notch dome
of epicardial cells and the calcium transient reproduces
the experimentally observed rounded-off triangular shape
(“reproduced phenomena” evidence as discussed in section Why
Trust a Computational Model?). They then semi-quantitatively
compare several AP properties and diastolic/systolic calcium
concentration with experiment, qualitatively compare APD
restitution and conduction velocity restitution results with
experiment, as well as present several other validation-related
results, including at the tissue level (after coupling the cell
model with the monodomain equations). This is arguably more
extensive validation than presented for most other cell models.
The most comprehensive set of validation tests for a new cell
model is, as far as we aware, that presented in the original O’Hara-
Rudy-dynamic (ORd) model paper O’Hara et al. (2011), in which
validation was performed for all of the following QOIs: AP shape
under multiple pacing rates, resting voltage, maximum voltage,
maximum upstroke velocity, APD restitution properties (steady
state; dynamic; with and without channel-specific blockers; single
cell and in tissue), APD alternans and accommodation, AP shape
with induced early after-depolarisation (EAD), peak intracellular
sodium and calcium ion concentrations at multiple rates,
calcium transient at multiple rates, and various current voltage
relationships under various voltage/potassium/sodium/calcium
clamps. This extensive validation, together with the use of human
data for model development, are reasons why the ORd model is
one of the most highly regarded of modern cell models, although
we emphasize that even this model should not be considered
a “validated cell model,” both because of the issues with such
terminology (see section Validation and Roache, 2009), and also
because of certain ways it does not match clinical observations
(Mann et al., 2016; Dutta et al., 2017).

In general it is important to note that modern cell models
may simulate dozens of quantities (i.e., have dozens of state
variables), of which usually only a handful have been directly
compared to experimental data; this is certainly true even of the
ORd model. Credibility in QOIs not compared to experiment
is therefore based on “indirect” validation. It should also be
appreciated that most cell models are typically not validated
using data directly related to the initiation and maintenance of
arrhythmias, although there are notable exceptions such as the
validation involving EADs in O’Hara et al. (2011) or Nordin and
Ming (1995) and involving reentrant waves in ten Tusscher et al.
(2004).

The above are all examples of general validation; next we
consider validation of cell models for a prescribed COU, i.e.,
COU-driven validation. For single cell cardiac models, the
application (i.e., COU) with the greatest current research interest
is prediction of proarrhythmic risk of novel pharmaceutical
compounds (Davies et al., 2016). (Davies et al., 2012) develop

an ensemble of 19 cell models calibrated to data from 19
dogs for this COU. For validation, they first compare model
predictions of drug effect on action potential shape against
experimental data (using various compounds). They then test
the ability of the model ensemble to predict—blinded—whether
a drug will cause AP shortening, prolongation, or have no
effect, on a test set of 53 compounds and using measures of
sensitivity, specificity and predictivity. Other CEP model-based
biomarkers have also been recently proposed (Mirams et al.,
2011; Passini et al., 2017), and have been evaluated against
risk classifications scores using test sets of compounds. This
application area has matured rapidly, and recently regulators,
academia and the pharmaceutical industry have come together
in the Cardiac in vitro Proarrhythmia Assay (CiPA) program
(Cavero and Holzgrefe, 2014; Colatsky et al., 2016). The aim of
the CiPA program is to develop a novel framework for assessing
proarrhythmic risk. The proposed framework involves a series
of predominantly nonclinical assays, one of which utilizes a
cardiac cell model to integrate drug ion channel effects to the
action potential level. The ORd model is being modified for this
purpose, and the ultimate aim is to develop a model-based metric
that converts drug ion channel effects into a predictive risk index
(Dutta et al., 2017). Twelve drugs with well-characterized risk
are being used for model and metric development, and the final
metric will be validated (in a blinded fashion) using 16 different
drugs with well-characterized proarrhythmic risk.

When no validation evidence is available for a cell model,
which may be the case for a novel—or considerably modified—
cell model, credibility of model predictions is essentially founded,
perhaps implicitly, upon multiple factors. This includes the
consensus view that the cell membrane can be modeled as a
parallel resistor-capacitor electric circuit (Cole and Moore, 1960;
Mauro et al., 1970), together with any evidence supporting
credibility of each of the sub-cellular models incorporated (i.e.,
as discussed in section Ion Channel Models), and any calibration
evidence (e.g., ability to reproduce AP shape or characteristics
when model parameters are selected accordingly). In this case a
lot of subject matter expertise may be required to interpret and to
judge reliability of predictions.

Organ-Level Models
Tissue- and organ-level simulations have been used for many
years and with great success in basic science applications
(Trayanova et al., 2006; Bishop et al., 2009). These models involve
the solution of the bidomain or monodomain equations (Tung,
1978; Henriquez, 1993; Neu and Krassowska, 1993; Bourgault
et al., 2009), incorporating one or more specific cell models,
on a computational mesh that approximates the geometry of
interest (which can be a 2Dmonolayer (ten Tusscher et al., 2004),
3D slab of tissue, the atria (Seemann et al., 2006; Zhao et al.,
2013), the ventricles (Plank et al., 2009) or the whole heart (Deng
et al., 2012; Baillargeon et al., 2014). It is also possible to model
the heart in a conductive medium, such as saline bath or the
torso, which allows the electrocardiogram and defibrillation to
be simulated (Aguel et al., 1999; Richards et al., 2013; Zemzemi
et al., 2013; Okada et al., 2015). Tissue-level parameters that need
to be prescribed include intra- and extra-cellular conductivities
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(dependent on the local fiber and sheet directions Legrice et al.,
1995). For more details (see, e.g., Lopez-Perez et al., 2015),
which reviews 60 3D cardiac models developed over the past fifty
years.

In fact, themethodology for tissue- and organ-level simulation
studies is so well-established that simulation studies are routinely
published in which a model is used for EP research but
no validation results are presented, and no other rationale
for credibility is explicitly presented. For such studies, the
credibility of the model predictions is essentially based—
implicitly—on the following: (i) confidence in the model
governing equations (including historical evidence supporting
the bidomain formulation); (ii) confidence in the cell model
used; and (iii) the accuracy/fidelity of model parameters and
geometrical inputs. We discuss each of these below.

First, we note that bidomain equations have a strong
biophysical basis, being mathematically derived through a formal
homogenisation of an underlying set of governing equations
derived from Maxwell’s equations (Neu and Krassowska, 1993).
The underlying anatomical and physiological assumptions are
mostly considered reasonable, although there remains ongoing
research into alternative formulations that may better represent
electrical propagation through myocardium, for example the
fractional diffusion model of Bueno-Orovio et al. (2014), the
alternative homogenisation derived by Richardson and Chapman
(2011), or the hyperbolic bidomain model of Rossi and Griffith
(2017). The bidomain equations reduce to the monodomain
equations under the assumption that the intracellular and
extracellular conductivity tensors are aligned. While this is
known to not be the case in cardiac tissue, in the absence
of extracellular stimuli (such as defibrillatory shocks) solutions
of the monodomain equations can be very similar to those
of the bidomain (Potse et al., 2006; Clayton et al., 2011).
Perhaps the strongest evidence supporting the use of the
bidomain equations are the numerous historical examples of
quantitative predictions from bidomain simulations that have
been reproduced experimentally, including complex phenomena
that were predicted by simulation studies and only later observed
experimentally. The most famous example regards specific
virtual electrode patterns: simulations preceded experiment
in predicting that unipolar excitation can result in a “dog-
bone” shaped virtual cathode with regions of hyperpolarisation
(virtual anode) in the vicinity of the virtual cathode (Sepulveda
et al., 1989; Wikswo et al., 1991, 1995). This unexpected
phenomenon is the result of the unequal anisotropy ratios
of the intracellular and extracellular conductivity tensors.
(Wikswo and Roth, 2009) provide a detailed review and
numerous other examples of bidomain simulations matching
experiment.

Credibility of tissue-level predictions is also dependent on
the specific cell model used in the simulations. Credibility of
cell models was discussed in section Cell Models. However,
note that validation at the cell level does not necessarily imply
that simulations will reproduce tissue-level phenomena. For
example, (Gray et al., 2013) measured the action potential
upstroke shape during propagation and found that it differed
from that predicted in tissue simulations using a variety of

cell models. (Uzelac et al., 2017) show that current cell models
when incorporated into tissue level models do not reproduce the
voltage and calcium dynamics of alternans. In addition, it is fairly
common to adjust cell model parameters in tissue simulations
(e.g., to shorten APD when simulating fibrillation Bishop and
Plank, 2012), without any “re-validation” of the modified cell
model; for such cases, it is unclear how much the previous cell
model validation results can be relied upon. It is also increasingly
common to re-calibrate cell model parameters in an organ-level
model using data taken from intact tissue, including clinical data
(e.g., Keldermann et al., 2008); again, it is unclear the extent that
the body of previous validation results holds. We will return to
this subject in the discussion.

The third factor especially relevant to model credibility when
no validation results are available is the accuracy/fidelity of
model parameters and other inputs. In regards to parameters we
refer to Clayton et al. (2011), which provides a review of the
challenges of estimating parameters in the bidomain equations.
Note though that when estimating personalized parameters
from clinical data for patient specific models, questions can be
raised on the identifiability and accuracy those parameters; see
(Chabiniok et al., 2016) for a general discussion. Here we focus
on geometrical inputs. In organ-level simulations, an important
factor that may require consideration when evaluating credibility
is the anatomical fidelity of the computational mesh. There are
a range of possibilities, from use of simple truncated ellipsoids
(Vetter and McCulloch, 1998) to image-based meshes. Meshes
vary in terms of the anatomical detail included. For example, they
may include ventricular endocardial structures such as papillary
muscles and trabeculae (Bishop et al., 2010); atrial endocardial
structures such as fossa ovalis (Seemann et al., 2006); myocardial
blood vessels (Bishop et al., 2010); and/or the Purkinje system
(Romero et al., 2010; Bordas et al., 2011). The appropriate level
of detail for specific applications is not yet clear; in particular
there is ongoing research into the role of microstructure on the
initiation, maintenance and termination of fibrillation (Bishop
and Plank, 2012; Connolly et al., 2017). As well as geometry,
there is a question on the fidelity of the prescribed fiber and
sheet orientations. This can be estimated using DT-MRI imaging
data (Mekkaoui et al., 2012); however DT-MRI data can be
noisy due to partial volume effects and sensitive to motion
artifacts (Bishop et al., 2009; Dierckx et al., 2009). An alternative
approach is to use a “rule-based” method (see Figure 5, later,
for an example), in which a mathematical algorithm is used
to generate fiber and sheet architectures [see e.g., (Potse et al.,
2006; Bishop et al., 2010; Bayer et al., 2012) for ventricles or
(Krueger et al., 2011; McDowell et al., 2012) for atria], and has
been shown to provide results that are very similar to those based
on DT-MRI (Bishop et al., 2009; Bayer et al., 2012), but may
not correctly capture fine-scale details such as fiber direction
near the apex, around vessels or near infarcts. Therefore, either
way, there may be considerable uncertainty about the true
fidelity of the prescribed fiber/sheet directions, whichmay impact
credibility of predictions of quantities expected to be sensitive to
anisotropy.

Next, we move on to validation of organ-level models.
The ability to perform validation of such models is of
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course heavily constrained by difficulties in obtaining the
necessary experimental or clinical data for model validation,
and therefore the vast majority of validation of organ-level
models has been limited to heart surface potentials. Heart surface
potential data can be obtained from a variety of measurement
modalities, including transmembrane voltage recorded from
glass microelectrodes or using fluorescent dyes (e.g., optical
mapping), or extracellular electrograms using electrode plaques,
socks, baskets, or other mapping systems (contact and non-
contact). These measurements vary in their spatial resolution
from a single site to hundreds or thousands of sites. Each
modality has its advantages and disadvantages; for example
optical mapping provides very high spatial resolution but low
voltage fidelity, and is always ex vivo for human tissue and
only in vivo with great difficulty for animal experiments (Dillon
et al., 1998). In contrast, extracellular electrograms can be used
to obtain in vivo data but at lower spatial resolution. With the
exception of the transmembrane microelectrodes, all modalities
do not directly measure transmembrane voltage, which can lead
to difficulties in achieving a like-for-like comparison between
simulation and experiment. This can be remedied in the
computational model. For example, fluorescent signals from
optical mapping are different than transmembrane signals in that
they have a longer upstroke (Gray, 1999), which was determined
to be a result of photon scattering (Hyatt et al., 2003), which led to
the development of CEP models that also simulated fluorescence
with scattering to enable like-for-like comparisons (Bishop et al.,
2007; Roth and Pertsov, 2009).

Many groups have performed validation of organ-level CEP
models using data obtained from these modalities. Here we
will provide a few representative examples, to give a flavor of
the possibilities for validation of surface potentials or derived
quantities. (Relan et al., 2011) describe a framework for the
functional personalisation of a porcine biventricular model using
ex vivo porcine optical mapping data. As shown in Figure 4A,
following calibration using optical recordings under one pacing
protocol, they quantitatively validated predictions of epicardial
APD and activation time, using optical recordings from the
same heart under various different pacing scenarios. (Rodriguez
et al., 2005) investigated the role of structural differences
between right and left ventricles in vulnerability to electric
shocks in the rabbit heart. The study used a combination
of biventicular bidomain simulations and optical recordings
from an experimental Langendorff-perfused rabbit heart. The
setup enabled various QOIs to be qualitatively compared
between simulation and experiment (to support the credibility
of simulation-based results of the study), including post-
shock transmembrane potential distributions on the epicardial
surface, and the probability of tachyarrhythmia induction as
a function of shock strength and coupling interval. (Muzikant
and Henriquez, 1998) and (Muzikant et al., 2002) compare
bidomain predictions with experimental results from the paced
in vivo canine heart measured using a 528 channel electrode
plaque. This study is notable because of the quantitative
approach to the validation of spatial patterns, analyzing the
root mean squared (RMS) error and Pearson’s correlation

FIGURE 4 | Examples of quantitative validation of organ-level models. (A) Error maps (i.e., difference between model and experiment; here optical mapping-derived

experimental data) for depolarisation time (DT) and APD (top row—pacing on left ventricle epicardium; bottom row—pacing on right ventricular endocardium)

(Reproduced with permission from Relan et al., 2011). (B) Experimentally measured extracellular potential in mV using electrode plaque (top) compared to predictions

of extracellular potential from bidomain simulations (bottom), with difference quantified using Pearson’s correlation coefficient (r) and root mean squared (RMS) error.

(Reproduced with permission from Muzikant et al., 2002).
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coefficient between simulation and experiment, for extracellular
potential and conduction velocity; see Figure 4B. (Niederer
et al., 2010) use patient-specific biventricular electromechanical
models to investigate the relationship between the Frank-
Starling mechanism and cardiac resynchronisation therapy
(CRT) efficacy. To calibrate and validate the electrophysiological
part of the electromechanical model, they use patient-specific
clinical endocardial data obtaining using the EnSiteTM cardiac
mapping system. Clinical activation maps during sinus rhythm
were used for model calibration, and activation maps under
left ventricular pacing were used for validation of the calibrated
model. (ten Tusscher et al., 2009) is a combined modeling and
clinical study on the organization of ventricular fibrillation (VF)
in the human heart. To support the credibility of the model used,
epicardial excitation patterns are compared between model and
clinical recordings obtained using a sock electrode, as is the time
series of electrical activity at a fixed location. Dominant frequency
of the time series is used for quantitative comparison between
model and experiment. In addition, numbers of wavefronts and
number of phase singularities over time are also compared.
These quantities are convenient for condensing the complex
spatio-temporal behavior of VF into simple time-series, useful for
potential quantitative validation of very complex behavior.

Finally, we consider validation of organ-level CEP models
with a specific clinical application; in particular, where a model is
proposed to be used in clinical decision-making. One proposed
application of CEP models is to use patient-specific simulations
for risk stratification of patients with myocardial infarction, to
determine which patients are at risk of SCD and therefore should
receive prophylactic implantable cardioverter defibrillator (ICD)
implant, as described in Arevalo et al. (2016). As illustrated
in Figure 5, the software developed for this application uses
patient-specific MR data to generate a biventricular mesh which
includes regions of scar tissue and border zone. Electrical activity
is simulated using the monodomain equations with the cell
model of ten Tusscher et al. (2004). Various pacing protocols are
virtually applied to determine if ventricular tachycardia (VT) is
inducible, and if so the patient is classified as being at risk of
SCD. We highlight two sets of validation results relevant to this
model. The first, presented in Deng et al. (2015), is validation
of epicardial excitation maps, for a swine version of the model,
against swine data obtained using sock electrodes. The second,
presented in Arevalo et al. (2016), describes a retrospective
clinical study performed to test the risk index. In this study, the
workflow described above was applied on a number of patients
who had had ICD implant, and the risk classification as predicted
by the model was compared to the clinical endpoint of ICD
appropriately firing (or cardiac death). This is another form of
(COU-driven) model validation, and of course it is a very strong
form of validation because the QOI that is evaluated is the final
QOI to be used in decision-making (i.e., risk index). Since it
involves a clinical study, for this type of validation the appropriate
quantitative analysis method is statistical; see (Arevalo et al.,
2016) for details.

Other studies have proposed that related model-based tools
could be used for prediction of ablation targets for patients
affected by atrial fibrillation (AF) (McDowell et al., 2015), left

atrial flutter (LAFL) (Zahid et al., 2016), or VT (Ashikaga et al.,
2013). The proposed process for predicting ablation targets for
all three arrhythmias is very similar to the process described
above: an anatomically patient-specific model of the atria or
ventricles is generated using MR data, and virtually interrogated
to determine if AF/LAFL/VT is inducible. If so, ablation sites can
be predicted that render AF/LAFL/VT non-inducible (a method
for doing so is described in Zahid et al., 2016). (Zahid et al.,
2016) presents a retrospective clinical study in which predicted
LAFL ablation sites using the patient-specific atrial models are
compared to the clinically ablated sites. (Chen et al., 2016)
present a related workflow for developing patient-specific cardiac
models, with personalisation of some functional parameters as
well as anatomical personalisation. They perform validation by
comparing model predictions of VT inducibility and re-entrant
circuits to results from clinical VT stimulation studies.

Finally, similarly to cell models as discussed in section Cell
Models, whole heart models have also been proposed to be used
to predict drug-induced arrhythmogenic risk. (Okada et al., 2015)
proposed that a heart and torso model which simulates the ECG
can be used to integrate in vitro ion channel assays. The drug
concentration at which Torsades de Pointes is induced in the
simulated ECG is the proposed biomarker, and the predictive
ability of this biomarker is tested using data for 12 drugs with
well-characterized risk.

DISCUSSION

In this paper, we have categorized and discussed different types of
evidence that could be used as a basis for the credibility of a CEP
model. Our aim was to provide clarity on the body of evidence
that typically is relevant (and often implied) in the evaluation
of CEP models. As we transition into the era of Digital Health,
there is a need for a systematic, rigorous and well-established
methodology for justifying and assessing the credibility of
computational models with biomedical applications. Current
efforts toward these goals (ASME, 2017) are focused on
“physics-based” models that have so far had most impact in
medical devices applications (Pelton et al., 2008; Angelone
et al., 2010; Stewart et al., 2012). However, these modeling
fields are very different to physiological modeling in terms of
model complexity, multi-scale nature, feasible validation, and
inherent variability. In a previous publication we advocated
that engineeringmodel assessmentmethodologies of verification,
validation and uncertainty quantification (VVUQ) could be
used to improve credibility of models (Pathmanathan and Gray,
2013). However, while verification and uncertainty quantification
methods are certainly relevant to CEP model assessment, best
practices and quantitative methods in the engineering literature
regarding validation appear less relevant to CEP models and
other physiological models, due in part to the unique challenges
in obtaining data for validation of physiological models. In
general, the types of evidence supporting the credibility of
physiological models will likely be very different to that for
engineering models. Therefore, this paper is motivated by the
need for a clear understanding of potential credibility evidence
for CEPmodels, which can guide future efforts toward systematic
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FIGURE 5 | Overview of process used to predict sudden cardiac death risk in Arevalo et al. (2016). A flowchart of the pipeline is shown in sub-figure (A). MR images

are segmented [sub-figure (B)] to develop a patient-specific computational model which includes regions of scar tissue and border zone (“gray zone”) [sub-figure (C)].

A rule-based approach is used to specify fiber directions. The model is paced from 19 sites [sub-figure (D)] and with various pacing protocols and assessed for

whether ventricular tachycardia is inducible. (Reproduced from Arevalo et al., 2016 with permission under Creative Commons license).

approaches for credibility assessment/justification which are
relevant to physiological models.

We specifically highlighted validation of general-purpose CEP
models not performed for any prescribed COU, and defined this
as “general validation” evidence. As discussed in section Why
Trust a Computational Model? the ever-increasing complexity
of CEP cell models means that there are almost unlimited
possibilities for such evaluation, and there is a large and ever-
growing body of general validation results in the CEP modeling
literature—in particular regarding cell models. Note that in this

reviewwe described several examples of general validation but we
did not discuss the “quality” of any general validation results. For
example, we avoided subjective statements such as “validation
results showed good agreement between model and experiment.”
This is because the level of agreement needed between model
and experiment is determined by the COU, and when no COU
is specified, a statement that a model shows “good agreement”
without any context could potentially lead to inappropriate use
of a model. In general, while general validation can provide
important preliminary information about a computational
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model, it may not be advisable to convert general validation
results into binary “good”/“bad” or “acceptable”/“unacceptable”
statements. However, when a COU of a model is chosen,
previous general validation results can certainly be (re-)evaluated
to determine how supportive they are of the model in the
COU. This will likely require assessment of both the level of
agreement between model and simulation, and also the relevance
or “applicability” of the validation conditions to the COU;
discussed in detail in Pathmanathan et al. (2017).

Currently, general validation results for cell models that are
published in the literature are not collected, curated, or made
available in one place. One resource that could potentially
be useful for the cardiac modeling community is a resource
on credibility evidence for cell models. The CEP modeling
community already leads the way in model sharing and
reproduction through the CellML repository and related software
(Lloyd et al., 2008). The CellML language is a XML-based
language for defining CEP cell (and other) models, allowing
models to be defined unambiguously and easily shared, and the
CellML repository serves as the starting point when using a
cell model published in the literature. However, the repository
does not include information regarding model validation results
or other credibility evidence, and there is no way to easily
look up such information. A sister repository containing model
credibility evidence could therefore be useful to CEP model
developers/users when deciding on which cell model to use
for a particular COU. Examples of information that could be
stored in such as repository include which emergent phenomena
the model reproduces (and does not reproduce), and general
validation results under a wide range of precisely prescribed
protocols. One resource that provides a path toward such a
repository is the Cardiac Electrophysiology Web Lab (Cooper
et al., 2016). This is an online tool for easy comparison of
multiple CellML-defined cell models under a wide range of
protocols (which required the development of an XML-based
language for specifying protocols Cooper et al., 2011). Being able
to easily compare models is important because even models of
the same species and heart region can behave quite differently;
(see e.g., Cherry and Fenton, 2007). While the Web Lab does
not currently provide explicit comparison to experimental data,
it already serves as a potential tool for identifying which
phenomena models can reproduce, and one can imagine an
extension in which experimental data (from a wide range
of sources and with full details on experimental conditions
and protocols) are also included and comparison to model
predictions are provided, both visually for qualitative comparison
and perhaps quantitatively with appropriate validation metrics.
In fact, inclusion of experimental data is one of the future
plans of the Web Lab developers (personal communications). As
stated above, we believe such results should not be converted
into binary good/bad or acceptable/unacceptable judgements, or
used to rank models. Instead, such a repository would serve as
a rich resource by providing information needed for selecting
between competing models for a particular COU, as well as
providing validation results that could serve as a starting point for
justification of model credibility for the COU. Moreover, if users
were able to upload models and automatically run all protocols

(already possible in Web Lab) and then compare against the
experimental data, this would be a powerful tool for validation of
modified cell models (examples of which were provided in section
Organ-Level Models), i.e., for comprehensive “re-validation.”
Note that we are not stating that an altered model should only
be used if it “passes all validation tests.” Indeed, for many COUs,
a model not reproducing given phenomena could be argued to
be acceptable given the COU. The point is that trust in cardiac
models can be improved by collection of evidence, glass box
evaluation, and explicit justification that the model is sufficiently
credible for the COU despite its limitations.

It can be difficult to determine whether results presented
in publications are calibration or validation results, as we
mentioned in section Credibility of CEP Models at Different
Spatial Scales. Specifically, while figures may be provided in
which simulation and experimental results can be visually (and
qualitatively) compared, it is often unclear whether any model
parameters were tuned, optimized or tweaked to obtain the
agreement with the experimental data. When that is the case,
the results are calibration results, which is fundamentally weaker
credibility evidence than validation of the completed model.
Therefore, ideally calibration and validation results should be
presented separately. While we believe that the examples of
validation discussed in this paper are genuine validation results,
it is certainly possible that some are actually calibration results.
We alsomentioned how simulation studies using CEPmodels are
often performed in which no validation results or discussion of
model credibility is presented. Such studies essentially implicitly
rely—not unreasonably—on the maturity of the field and the
various sources of historical evidence that we discussed in
sections Ion Channel Models, Cell Models, and Organ-Level
Models. The problem with this approach is it can contribute
to a lack of clarity in the literature about the trustworthiness
of CEP models, which can potentially lead to overconfidence
in CEP models by non-experts who are unfamiliar with model
subtleties (see initial discussion in Gong et al., 2017) as well
as under-confidence in simulation-based conclusions by those
who are skeptical of computational models in medicine. Such
skepticism may be one of the biggest hurdles that needs to be
overcome for computational models to achieve their potential
in medical applications. These issues could be addressed by a
clear and explicit presentation of the rationales for credibility
of models used in simulation studies, referring as appropriate
to the different sources of credibility evidence that support the
use of the model for the COU as shown in Table 1 (and/or
appealing to the idea of models as representations, as discussed in
section Why Trust a Computational Model?, when appropriate).
As stated above, one aim is to argue that the model is sufficiently
credible for the COU, despite model limitations.While there is no
standardizedmethod for determining what constitutes “sufficient
credibility,” the risk-informed strategy of (NASA, 2009; ASME,
2017) provides one method. The basic idea is that the credibility
that needs to be demonstrated for a model should be related
to the risk associated with incorrect predictions. Two factors
are used to determine model risk. The first is model influence,
which is the extent to which the model predictions will influence
the decision to be made or conclusions of the study, compared
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to other sources of information. The second is the consequence
of incorrect decisions. For example, if a model is proposed to
be used as the sole source of information in a safety-critical
clinical decision, both influence and consequence are high, and
the overall risk will be considered to be very high. Therefore, high
credibility will be required of the model. In simulation studies,
influence will often be high but consequence may be judged to be
low, and overall risk may also be judged to be low, which means
the credibility requirements are lower. Ultimately, we believe that
routine and explicit justification of credibility will enable CEP
models to have even greater impact in cardiac EP research, and
facilitate their passage into clinical applications.
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We study the effect of geometry of a fast propagation region (FPR) in an excitable medium

on the rotor initiation using a generic two-dimensional reaction-diffusion model. We find

that, while the flat boundary of a rectangularly shaped FPR may block the propagation of

the excitation wave, a large local curvature at the rounded corners of the FPR would

prevent the blockage and thus initiate a rotor. Our simulations demonstrate that the

prerequisites for the rotor initiation are the degree of the heterogeneity, its shape and

size. These results may explain the incidence of arrhythmias by local heterogeneities

induced, for example, by a cardiac tissue remodeling.

Keywords: excitable media, rotor initiation, arrhythmia, source-sink mismatch, fast propagation region

1. INTRODUCTION

Rotors, also known as spiral waves, are observed in many systems, including the Belousov-
Zhabotinsky chemical reactions [1–4], autocatalytic reactions of carbon monoxide on a platinum
surface [5], aggregations of Dictyostelium discoideum amoebae [6], Xenopus oocytes [7],
disinhibited mammalian neocortex [8], chicken retina [9], and especially cardiac tissue [10, 11].
Rotors, resulting in reentries in heart tissue, are known to cause cardiac arrhythmias and even
sudden death [12–14]. To understand the mechanism of the rotor initiation and to eliminate
the consequential malignant arrhythmias, the effects of the electrophysiological heterogeneity are
thought to be one of the major causes and have attracted much attention [15–20].

Destabilization of wave fronts and the subsequent initiation of reentrant excitation can result
from both intrinsic and dynamical heterogeneity. For example, a possible result of a multiple
pacing of cardiac tissue is a dynamically induced heterogeneities of repolarization leading to
a destabilization of a propagating wave and initiation of a self-sustained activity [21–25]. The
heterogeneities of the electrical coupling and automaticity also might lead to the appearance of
fragmented ectopic waves [26]. Furthermore, the boundary layer between the well-coupled and
uncoupled cardiac tissues would create a rich set of phenomena associated with self-organized
spiral waves and ectopic waves [27]. Transient rotors could be also initiated in complicated and rare
situations [28, 29]. An abrupt transition of the coupling gradient would block the wave propagation,
but nearby parts with a smooth transition would not and therefore cause a reentry. The wave
blockage was also found in a model of human ventricular tissue due to an abrupt transition of
the anisotropic coupling [30].

As exemplary mentioned above, there are many situations, which can lead to the initiation of
a self-sustained excitation wave. One novel scenario, which was found recently in a generic model
for the excitable system, is that a region with the fast propagation of an excitation wave might cause
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a unidirectional block of the wave propagation [31]. This
unidirectional block is realized based on a phenomenon termed
source-sink mismatch in the cardiology literature [32]. The
further study demonstrated that rotors could be nucleated in
the presence of a localized fast propagation region (FPR) after
application of one stimulus only [33]. It was shown also that
various geometrical factors play an important role in rotor
initiation [34].

Here we show that in the two-dimensional medium the
flat boundary of a rectangularly shaped FPR may block the
propagation of the outside excitation wave. However, a large
local curvature at the rounded corner of the FPR would prevent
the blockage and thus let the outside excitation penetrate
into the FPR causing a rotor initiation. We demonstrate
that the rotor initiation critically depends on the size of
the FPR and the degree of the heterogeneity. If the FPR
size is below a certain threshold, the initiated rotor would
vanish eventually when it approaches the medium’s boundary.
The critical size of the FPR depends on the degree of the
heterogeneity.

2. MODEL AND METHOD

Although some aspects of the complex electrical activity in the
cardiac tissue need to be studied using the reaction-diffusion
equations with the detailed ionic channel model, many general
spatiotemporal features of cardiac dynamics can be reproduced
by a relatively simple but universal two-component system as
follows

∂u

∂t
= ∇ · (D∇u)− AF(u, v), (1)

∂v

∂t
= ǫG(u, v), (2)

where u and v are the activator and inhibitor, respectively.
The local kinetics of u and v are specified by the nonlinear
functions F(u, v) and G(u, v). Let us consider a widely-used
computationally-efficientmodel proposed by Barkley [35]. In this
generic model, the two nonlinear functions read as

F(u, v) = u(u− 1)

(

u−
v+ b

a

)

, (3)

G(u, v) =

{

(u− v) u ≥ v,

kǫ(u− v) u < v.
(4)

To simulate a relatively quick recovery of the excitability after a
pulse generation, the original Barkley model is slightly modified
by introducing an additional parameter kǫ > 1.

The propagation wave velocity in the Barkley model is
proportional to

√
DA. Spatial heterogeneity of the parameters D

andA can result in creation of FPR capable to initiate spiral waves
[33, 34].

Below a FPR is considered to be a rounded rectangular region
of the length L with two rounded corners of the radius R, as
illustrated in Figure 1A. Inside this region, the values ofD and/or
A are larger than outside. It is inserted into a square shaped

medium of size 450×450 in space unit, and the no-flux boundary
conditions at the boundaries are implied. The parameters a = 1,
b = 0.44, ǫ = 0.00011 and kǫ = 10 are fixed in our simulations.
We use the explicit finite difference method in the Cartesian
coordinates. The staircase approximation is used at the rounded
corner. The spatial step dx = 0.3, and the time step dt = 0.01,
when R ≥ 15. The finer spatial and time steps are used for
smaller R. For instance, dx = 0.2 and dt = 4.44 × 10−3,
when R = 10, and dx = 0.1 and dt = 1.11 × 10−3, when
R = 5.

The variables u and v in Equations (1)-(4) are vary within the
range 0 < u < 1 and 0 < v < a − 2b. The spatiotemporal
dynamics of u and v is represented in Figures 1–4, 6, 7

by color-coded distribution of the excitation phase φ, where
−π < φ < π . The phase is defined as φ = α + 3π/4,
in which an angle α is determined by the direction of the
vector with components (u − 1/2) and (v − a/2 + b)/(a −

2b) on the (u, v) phase plane. According to this definition,
φ = 0 corresponds to the resting state of the medium (green
areas in Figures 1–4, 6, 7), narrow yellow (dark blue) regions
represent the wave front (wave back), and red areas correspond
to a wave plateau, whereas blue ones represent the refractory
regions.

3. RESULTS

3.1. Rotor Initiated from a Rectangularly

Shaped FPR
To illustrate the phenomenon of the rotor initiation from a
rounded rectangular heterogeneous region, we set L = 300,
R = 15, as shown in Figure 1. Inside this region D = 1
and A = 2, while outside D = 1 and A = 1. Due
to an increased value of A, this rounded rectangular region
could be considered as a FPR since the propagation velocity
inside it is larger than outside. For such parameter choice,
the flat boundary of the FPR would unidirectionally block
a plane wave propagating through the medium outside FPR.
However, the local curvature at the rounded corner of the FPR
1/R ≈ 0.067 is large enough to prevent the blockage and let
the excitation penetrate into the FPR. Then, a phase change
point (PCP) emerges, and a self-sustained rotor is initiated.
The process is similar to the scenario described in Zykov et al.
[33, 34].

However, if the local curvature at the rounded corner of
the FPR is below some critical value, as illustrated in Figure 2,
there would be no penetration into the FPR at the corner. Thus,
the FPR would act for propagating waves as an obstacle. The
transient rotor starts to circulate around the FPR and vanishes
eventually when it approaches themedium boundary. The critical
value of the corner curvature depends on D and A within
the FPR.

Another scenario appears when the values of D and/or A
within the FPR are below some critical values. As illustrated
in Figure 3, in this case, the flat boundary of the FPR would
not block the propagating wave. The plane wave would become
curved, propagates through the FPR, and vanishes eventually
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FIGURE 1 | Rotor initiated due to a rectangularly shaped fast propagation

region (FPR). (A) The FPR marked by a black dashed line has length L = 300

and two rounded corners with the radius of R = 15. Within the FPR D = 1,

A = 2 and outside the FPR D = 1 and A = 1. A plane wave propagates from

the left toward the FPR. (B) The wave is blocked at the flat boundary of the

FPR but penetrates into it at the rounded corner. (C–E) A rotor is initiated and

stably rotates. The white dot and line are the rotors phase change point (PCP)

and its trajectory, respectively.

when it reaches the medium’s boundary. No self-sustained rotors
are initiated.

3.2. Critical Length of a Rectangularly

Shaped FPR
For a given D and A within the FPR, its length L is also a critical
parameter to initiate a self-sustained rotor. If L is shorter than a
certain critical length, as illustrated in Figure 4, the PCP would

FIGURE 2 | No wave penetration occurs at the rounded corner of a FPR if R is

above some critical value. (A) No penetration is observed at the corner of

radius R = 30, as an example. (B–D) The PCP (white dot) would travel along

the FPR boundary and vanishes eventually, as shown by its trajectory (white

line). Other parameters are the same as in Figure 1.

FIGURE 3 | No blockage occurs at the flat boundary of a FPR if D and/or A

inside it are below some critical values. (A) No PCP would emerge for D = 0.9

and A = 1.8, as an example. (B) A slightly deformed plane wave propagates

through the FPR and disappears at the right boundary of the medium. Other

parameters are the same as in Figure 1.

approach the medium boundary and vanishes eventually. After
the PCP has disappeared, a curved wave propagates through
the medium and vanishes at its boundary. Thus, no rotors are
initiated.

We investigate in detail the critical length of the FPR needed
to initiate a self-sustained rotor and determine the boundaries of
the non-penetration and non-blockage regions for various A and
D, as shown in Figure 5. Here the radius of the rounded corner
is fixed as R = 15. As shown in Figure 5A, the non-penetration
occurs when D and/or A are above some critical values, and the
non-blockage occurs when D and/or A are below other critical
values. Between these two boundaries, the initiation of a self-
sustained rotor is possible with the color-coded critical length Lc
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FIGURE 4 | No stably rotating rotor appears if L is shorter than a critical

length. (A) Although a PCP would be initiated like in the case shown in

Figures 1A–C, the PCP (white dot) would be too close to the medium

boundary and vanishes eventually, as shown by its trajectory (white line). (B)

After the PCP vanishing the curved wave would propagate to the right

boundary of the medium, and no stably rotating rotor would exist. The FPR

length L = 200 and other parameters are the same as in Figure 1.

of the rounded rectangular FPR. The larger D and/or A are, the
shorter Lc would be.

This dependence of Lc on D and A is further confirmed in
Figures 5B,C, where we show how Lc shrinks as D or A increases
for different corner radius R. Figures 5B,C also demonstrate how
Lc changes as R increases.

We also investigate the impact of the width of the rectangular
FPR. The simulation results show that the FPR width has no
significant effect on the rotor initiation if it is larger than 2R.

4. ANALYSIS

To analyze the conditions for the rotor initiation by a rounded
rectangular FPR, we simplify the two-component reaction-
diffusion equations by taking ǫ = 0 and setting v = 0. In this
limiting case, the initial Equations (1)–(4) can be reduced to

∂u

∂t
= ∇ · (D∇u)− Au(u− 1)

(

u−
b

a

)

. (5)

This equation describes a bistable extended system, where the
resting state u = 0, the excited state u = 1, and the unstable
steady state u = b/a exist. The value β = b/a is the excitation
threshold. The bistable equation has been widely used to analyze
the propagation of the wave front when ǫ ≪ 1 [36]. It is also
useful to establish fundamental mechanism behind the blockage
and penetration at the FPR boundary.

4.1. Analysis of the Non-blockage and

Non-penetration Boundary
To analyze the conditions for the blockage of the initial plane
wave at the flat boundary of the FPR, we could further simplify
Equation (5) to consider a stationary wave profile for a one-
dimensional bistable system as follows

d

dx

(

D(x)
du

dx

)

− A(x)u(u− 1)(u− β) = 0, (6)

FIGURE 5 | (A) The phase diagram shows the regions of non-penetration,

non-blockage, and rotor initiation due to the FPR with critical length Lc for

different values of D and A but fixed R = 15. (B) The detailed dependence of

Lc on A for fixed D = 1 and different R. (C) The detailed dependence of Lc on

D for fixed A = 2 and different R.

where A(x) = 1, D(x) = 1 for x ≤ 0 and A(x) = A, D(x) = D for
x > 0. The boundary conditions and the continuity conditions at
x = 0 read as

u|x=−∞ = 1, u|x=∞ = 0,

du

dx

∣

∣

∣

∣

x=−∞

=
du

dx

∣

∣

∣

∣

x=∞

= 0, (7)

du

dx

∣

∣

∣

∣

x=−0

= D
du

dx

∣

∣

∣

∣

x=+0

. (8)

Multiplying Equation (6) by du/dx, integrating over x from −∞

to 0 and from 0 to∞, using Equations (7) and (8), we obtain the
following equation

∫ u(0)

1
u(u− 1)(u− β)du = DA

∫ u(0)

0
u(u− 1)(u− β)du, (9)

which determines the value of u(0) at the point of the parameter
jump as a function of the product DA. Note that the front could
be stopped only if u(0) < β . Thus, the Equation (9) for u(0) =
β gives the critical value of the product DA, above which the
propagation blockage could be observed. Therefore, the non-
blockage boundary in the phase diagram has an analytical form
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FIGURE 6 | Analogy between the non-penetration at the corner of a

rectangularly shaped FPR and the non-penetration of a circular wave into a

circular shaped FPR. (A) The non-penetration at the rounded corner of the

FPR (zoomed from Figure 2A). (B) A circular wave blocked by the circular

shaped FPR of the radius r = 60. (C) The non-penetration boundaries for the

rectangularly shaped FPR for R = 15 (black dots) and for the circular wave and

the circular shaped FPR with the radii rmin = 27.6 (red line) and rmax = 29.7

(blue line). (D) The dependence of 1/r = 1/(2R) is proofed to be valid for a

large range of R.

as follows

DA <
(1− β2)(1− β)2

β3(2− β)
. (10)

This expression represents a modification of another one
mentioned already in Zykov et al. [33, 34]. It looks more simple
because of the normalized values of the parameters A = 1
and D = 1 in the part of the medium outside an FPR. This
normalization performed by rescaling of time and space variables
in Equation (5) is made without loss of generality. It is worth to
note also that this expression generalizes a similar analysis for the
case of a steep rise of the parameter D under constant value of A
performed earlier in Pauwelussen [37] and Mornev [38].

It is important to stress that the obtained analytical expression
(10) gives a very precise estimate of the non-blockage boundary
obtained by numerical computations illustrated by Figure 5A.
The deviations do not exceed one percent.

To analyze the conditions to prevent wave penetration at the
rounded corner of the FPR, we look in detail into the process
of the (non-)penetration, as illustrated in Figure 6A. The initial
plane wave would become curved at the rounded corner of the
FPR. It is analogous to a circular wave penetrating into a circular
FPR with a radius r, as shown in Figure 6B.

To verify the analogy, we compare the non-penetration
boundaries for the rounded rectangular FPR with the circular

FIGURE 7 | The composition of the critical length Lc of a rectangularly shaped

FPR to initiate a rotor. The white dot and line are the initial location and the

following trajectory of the PCP, respectively. Three components of Lc are: Lmin
which describes the minimum distance of a persistent PCP from the top

medium boundary, Lr which describes the vertical range of the PCP trajectory

in the medium outside the FPR, and Lexc which describes the propagation of

the penetrated excitation within the FPR. The FPR length L = Lc = 229 and

other parameters are the same as in Figure 1.

FPR in a A − D diagram. As shown in Figure 6C, the non-
penetration boundary for the rectangularly shaped FPR with the
corner radius of R is located between two curves corresponding
to non-penetration boundaries for the circular FPR with the
radius rmin and rmax, as shown in Figure 6C. Note, that in a
vicinity of the rounded corner the boundary curvature jumps
from zero to 1/R. Hence, it is natural to assume that the non-
penetration boundaries for the circular FPR with the curvature
about an averaged curvature of the rounded corner, 1/r ≈

1/(2R), will approximate the non-penetration boundary for the
rounded rectangular FPR. This approximation is working well for
10≤R≤50, as demonstrated in Figure 6D.

Therefore, we can use the results of the simulations for the
circular FPR and the radius relation r ≈ 2R to approximate
the non-penetration boundary for the rounded rectangular FPR.
Since the circular FPR in the polar coordinates (ρ, θ) has
a rotational symmetry, this allows us to transform the two-
dimensional Equations (1) and (2) to the one-dimensional ones
as follows

∂u

∂t
=

1

ρ

∂

∂ρ

(

D(ρ)ρ
∂u

∂ρ

)

− A(ρ)F(u, v), (11)

∂v

∂t
= ǫG(u, v). (12)
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This one-dimensional equations considerably simplifies the
analysis. The corresponding computations have been performed
by use of the explicit finite difference method with the spatial step
dρ = 0.3 and the time step dt = 0.005. In order to simulate a
circular wave approaching a circular shaped FPR, a part of the
medium with ρ > ρext is assumed to be in the excited state at
t = 0, as illustrated in Figure 6B.

4.2. Analysis of the Critical Length Lc of a

Rounded Rectangular FPR
To understand the mechanism behind the dependence of Lc on
the characteristics of the FPR, i.e.,D, A and R, we separate Lc into
three parts, as shown in Figure 7. The first part is the distance
from the rounded corner of the FPR, where the penetration of
the excitation starts, to the position where the PCP emerges for
the first time. This part, named Lexc, should be determined by
the characteristics of the FPR since it describes the propagation
of the excitation inside the FPR. The second part is the distance
from the initial position of the PCP to the highest position in
its trajectory. This part, named Lr , describes the range of the
PCP trajectory along the FPR but located outside the FPR. This
trajectory part should be practically independent of the FPR
characteristics. The third part is the distance from the highest
PCP position in its trajectory to the top medium boundary. This
part, named Lmin, should be above some minimum distance
toward the top medium’s boundary. Otherwise, the PCP would
be too close to the boundary and vanishes eventually. The value
of Lmin should only depend on the given characteristics of the
medium outside the FPR, and thus is fixed in our simulations.
Therefore, the value of Lc is the sum of Lmin and Lr , which are
fixed, and Lexc, which is determined by D and A inside the FPR,
and R at the FPR corner.

Hence, Lexc is the only part which is varied and depends on D,
A, and R. Its value may read as

Lexc =

∫ tr

tp

cvdt, (13)

where tp is the time when the penetration of the excitation at
the rounded corner of the FPR starts, tr is the time when the
PCP initially emerges, and cv is the propagation velocity of the
excitation along the flat border of the FPR. As shown in Figure 8,
tr remains constant for different sets of D, A, and R, while tp
varies. The velocity cv changes with time and also depends on D,
A, and R.

Based on these results, three conclusions can be made. First,
larger D, A, or R would delay tp. Second, tr is nearly the same
in all cases since it is determined by the time when the wave
back of the plane wave reaches the left flat boundary of the
FPR. Therefore, it is determined by the fixed characteristics
of the medium outside the FPR. Third, for the most part of
the trajectory, cv is larger than the plane wave velocity cp in a
homogeneous medium where the parameters D and A are the
same as inside the FPR, as shown in the subfigure of Figure 8.
Obviously, cv is accelerated since the value of the activator
u > 0 in the vicinity of the left flat boundary of the FPR
due to a diffusive influence of the blocked plane wave. Such

FIGURE 8 | The propagation speed cv of the penetrated excitation along the

vertical flat boundary of a FPR over time. tp is the time when the penetration at

the FPR corner starts. tr is the time when the PCP initially emerges. Larger D,

A, or R lead to a delayed tp, but nearly the same tr . The subfigure shows the

change of the ratio between cv and cp over time, where cp is the plane wave

velocity for the medium’s parameters established inside the FPR.

increase of the propagation velocity is a general effect in bistable
models of one-dimensional excitable media if ahead of the wave
front the activator value exceeds the resting state [39]. In the
context of a flame propagation, which also can be described by
Equation (6), this phenomenon is named as preheating effect
[40].

4.2.1. Mechanism of Delay of tp
The delay of tp occurs at the rounded corner of a FPR. As
shown above, the penetration of the plane wave into the rounded
corner with the radius of R is analogous to the penetration of a
circular wave into a circular FPR with the radius r ≈ 2R. Thus,
considering the analogy and just focusing on the propagation of
the excitation wave front, we could use the bistable version of
Equations (11) and (12) to investigate the variation of u at the
rounded FPR corner with time. The bistable equation for the
circular FPR expressed in the polar coordinates (ρ, θ) reads as

∂u

∂t
=

1

ρ

∂

∂ρ

(

D(ρ)ρ
∂u

∂ρ

)

− A(ρ)u(u− 1)(u− β). (14)

Using the finite difference method with space step 1ρ, at the
circular FPR boundary r = 2R, Equation (14) could be expanded
as

∂u|r
∂t

=
1

r1ρ2

[

D|r+1ρ/2 (r + 1ρ/2)
(

u|r+1ρ − u|r
)

− D|r−1ρ/2 (r − 1ρ/2)
(

u|r − u|r−1ρ

)]

− A|r u|r (u|r − 1) (u|r − β) , (15)
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where

D|r+1ρ/2 =
1

2

(

D|r+1ρ + D|r
)

=
1

2
(1+ D),

D|r−1ρ/2 =
1

2

(

D|r + D|r−1ρ

)

=
1

2
(D+ D) = D,

A|r = A.

When the circular wave reaches the circular FPR boundary at r,
we have u|r−1ρ < u|r < u|r+1ρ , and u|r is still smaller than
the excitation threshold β . Thus, u|r (u|r − 1)(u|r − β) > 0.
Then we can divide the right hand side of Equation (15) into two
terms. The term which would cause an increase of u|r with time
is named as the source term. It reads as

1

1ρ2

1+ D

2

(

1+
1ρ

2r

)

(

u|r+1ρ − u|r
)

. (16)

The other term which would cause a decrease of u|r with time is
named the sink term. It reads as

−
1

1ρ2
D

(

1−
1ρ

2r

)

(

u|r − u|r−1ρ

)

− A u|r (u|r − 1) (u|r − β) . (17)

From the above expressions of two terms, we find that larger D
would enhance the source term (Equation 16) but enhances the
sink term (Equation 17) even more. Larger A would not affect
the source term but enhance the sink term. Larger r, i.e., 2R in
the analogy, would reduce the source term, but enhance the sink
term.

Therefore, the conclusion is that the larger D, A and R
are, the stronger the sink term would be, and the later u|r
reaches the excitation threshold. This is the cause of the delay
of the start time of the excitation penetration near the corner
of the rounded rectangular FPR, i.e., tp in Equation (13).

As shown in Figure 9, the numerical simulation results prove
our explanation of the delay effect by plotting the value
of u at the corner of the rounded rectangular FPR with
time.

4.2.2. Influence of “Preheating” on cv
Inside the rounded rectangular FPR, the accelerating effect
on the propagation velocity cv occurs near its vertical flat
boundary. When the initial plane wave is blocked at the
flat boundary, although it does not penetrate inside the
FPR, it yet increases the value of u in a vicinity of the
FPR boundary. This is quite similar to a preheating effect
in the flame propagation when the fuel temperature ahead
of the flame front is increased [39, 40]. This “preheated”
medium would accelerate the propagation velocity cv of the
excitation wave front along the vertical flat boundary of the
FPR.

FIGURE 9 | Temporal dynamics of the value of u at the junction point between

the flat boundary and the corner of a rectangularly shaped FPR. An increase of

D, A, or R inside the FPR delays the time tp when the excitation threshold is

reached.

The mechanism of the accelerated wave front could be
analytically understood from Equation (5) for the bistable
distributed system. If a preheated part of the FPR near its flat
boundary is assumed as a nearly one-dimensional medium, we
can establish a comoving frame as z = x + ct, where c is the
propagation velocity of the wave front. Thus, Equation (5) would
be simplified as

Duzz − cuz − Au(u− 1)(u− β) = 0. (18)

The preheating effect increases the value of u to some preheated
state up, andmakes the excitation start from up > 0 instead of the
resting state u = 0. Based on the theory described in Keener and
Sneyd [36], the propagation velocity of the excitation wave front
could be expressed as

c(up) =

∫ 1
up
Au(1− u)(u− β)du

∫

∞

−∞
u2zdz

=

∫ β

up
Au(1− u)(u− β)du+

∫ 1
β
Au(1− u)(u− β)du

∫

∞

−∞
u2zdz

. (19)

The analytical expressions of Equation (19) would be obtained for
two limiting cases. The first one is the unpreheated case at which
up is equal to the resting state. That gives

c(0) =
√

DA/2(1− 2β). (20)

The second is the fully preheated case at which up is equal to the
excitation threshold β . This gives

c(β) =
√

DA/2(1+ β). (21)

The above two analytical expressions apparently demonstrate
that c(β) > c(0), since β > 0.

We also investigate the preheated propagation velocity in
the numerical simulations of Equation (5). As shown in
Figure 10, the numerical results elucidate the acceleration of the
propagation velocity c(up) as a function of the preheated state
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FIGURE 10 | The propagation speed cp corresponding to the preheated state

u = up. The values of D = 1 and A = 2 are taken as an example. The solid line

represents the numerical simulation results in a one-dimensional medium

described by Equation (5). The value of u ahead of the wave front is set to be

up. The open circle and square are the analytic results from Equations (20) and

(21) at the limiting cases of up = 0 and up = β, i.e., the resting state and the

excitation threshold, respectively.

up. The analytical results from Equations (20) and (21) perfectly
describe both limiting cases following from these numerical data.

5. CONCLUSIONS AND APPLICATIONS

Our results demonstrate that a self-sustained rotor could be
initiated from the spatial heterogeneity, i.e., a rectangularly
shaped FPR. We use a generic model to parameterize the
heterogeneity with three parameters D, A, and R. In the
D − A diagram at a given R, the region of the rotor
initiation is located between the non-blockage and non-
penetration regions. The two boundaries of the rotor initiation
region could be estimated by the analytical equation for the
bistable distributed system and the simulations in a one-
dimensional medium for a circular FPR, respectively. We also
show that to initiate the self-sustained rotor the length of the
rounded rectangular FPR should be larger than the critical
Lc. The critical value Lc depends on the parameters D and
A, within the FPR, as well as on the radius R of a rounded
corner.

Our findings in the generic model might be applicable to
describe the electrophysiological dynamics of cardiac tissue.
Indeed, the distribution of transmembrane potential V in a two-
dimensional tissue could be described by the reaction-diffusion
equation as follows [41]

∂V

∂t
=

1

χCm
∇ (σ · ∇V) −

Iion(V , Eh)

Cm
, (22)

∂Eh

∂t
= g(V , Eh), (23)

where χ is the surface-to-volume ratio of the cardiac cells,
Cm is the membrane capacitance, σ is the tensor of electric
conductivity, and Iion is the sum of ion channel currents. Intensity
of each separate current is determined by corresponding

component of the vector Eh. Equations (22) and (23) can be
generalized into a two-component reaction-diffusion system as
follows

∂V

∂t
= ∇ (D · ∇V) −

Iion(V , h)

Cm
, (24)

∂h

∂t
= g(V , h), (25)

where the effective diffusion coefficient tensor D = σ/χCm

and the description of the ion currents is reduced to a scalar
value h. In an isotropic tissue, we can simplify the tensors σ and
thus D to be scalars. Thus, the reduced system which describes
electrophysiological properties of the cardiac tissue looks similar
to the reaction-diffusion model we use.

Nowadays many detailed models of human atria incorporate
both structural and electrophysiological heterogeneities leading
to differences in conduction velocity between the neighboring
regions [42–44]. It is also well known that atrial fibrosis in
the aging heart can result in spatial variations in the electrical
conductivity of a part of the cardiac muscle [45]. If some
regions within this part remain unchanged, they can resemble
fast propagation regions introduced in our model. Note, that
a similar nonhomogeneity in the electrical conductivity can
appear, for instance, when fresh stem cells aggregates implanted
in strongly remodeled cardiac tissue form gap junctions with
adult cardiac myocytes [46]. Moreover, some cardiac diseases
cause ion channel remodeling [47]. This remodeling can be
represented as a variation of the term Iion in Equation (22). This
is to some extent equivalent to a variation of the parameter A in
our model. If this remodeling occurs non-uniformly in space, one
can expect the creation of some spots with a negligible variation
of this parameter in comparison to its strong decrease in the
surrounding regions. Thus, nonhomogeneous remodeling can
results in a creation of fast propagation regions considered in this
study.

Of course, the model used above is aimed to reproduce
only most generic features of electrical activity in myocardial
tissue. Investigation of specific dynamical features can be done
by application of more detailed models widely used in the
literature [48–50]. It is important to note that our recent
results based on the Fenton-Karma model [48] indicate that all
scenarios of rotor initiation obtained with the Barkley model are
perfectly reproducible [33]. An obvious reason for this is that the
restitution of action potential duration in detail reproduced in the
Fenton-Karma model plays only a restricted role in the described
scenarios, where spiral waves are generated after application of a
single excitation stimulus. Of course, the following dynamics of
the initiated rotors is strongly influenced by many other factors
and specific features of cardiac tissue, which are not reproduced
in the framework of the generic model used in the study.

Therefore, computer simulations of a real tissue in the
framework of much more detailed models and most importantly
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experimental investigations definitely can help to verify the role
of the observed scenario for generation of cardiac arrhythmias.
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Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow

waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate

by a process of “entrainment,” which occurs over a decreasing gradient of intrinsic

frequencies in the antegrade direction across much of the GI tract. Abnormal initiation

and conduction of slow waves have been demonstrated in, and linked to, a number of

GI motility disorders. A range of mathematical models have been developed to study

abnormal slow waves and applied to propose novel methods for non-invasive detection

and therapy. This review provides a general outline of GI slow wave abnormalities

and their recent classification using multi-electrode (high-resolution) mapping methods,

with a particular emphasis on the spatial patterns of these abnormal activities. The

recently-developed mathematical models are introduced in order of their biophysical

scale from cellular to whole-organ levels. The modeling techniques, main findings from

the simulations, and potential future directions arising from notable studies are discussed.

Keywords: slow wave, GI, multi-scale modeling, arrhythmias, Electrophysiology

GASTROINTESTINAL ELECTROPHYSIOLOGICAL DEFINITIONS
AND DISORDERS

Cyclical contractions of the gastrointestinal (GI) tract are initiated and coordinated by rhythmic,
propagating bioelectrical events, termed slow waves (Szurszewski, 1998). Abnormal slow wave
activity has long been observed to occur in the gut, and their putative causation of gastrointestinal
symptoms and disorders remains an area of significant interest (Lammers, 2013; O’Grady et al.,
2014). In the healthy stomach, slowwaves normally originate from a single pacemaker located in the
proximal stomach along the greater-curvature, rapidly establishing ring wavefronts that propagate
antegrade toward the distal stomach, terminating at the pylorus (O’Grady et al., 2010a). A number
of mathematical models have been developed to study both normal slow wave activity, and a wide
range of slow wave abnormalities observed in functional disorders and animal models (Lammers
et al., 2012, 2015; O’Grady et al., 2012a; Angeli et al., 2015). This review presents the current state
of mathematical modeling of these slow wave abnormalities, and also discusses the methods for
validating these models.

Terminology
Several terminologies have been applied to describe abnormal GI slow wave activities. While
some of these terms have been adopted from cardiac electrophysiology, where they have been
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well-defined, it is worthwhile to also review these terms in
the context of their usage in the GI field. Earlier cardiac
electrophysiologists pointed out the granular difference between
arrhythmias, i.e., absence of rhythm, and dysrhythmias, i.e.,
abnormalities of rhythm (Trommer, 1982), but usages in practice
over the years have converged the two terms to become
synonyms (Marriott, 1984). Conventionally in the GI field,
dysrhythmias, and arrhythmias have also been used inter-
changeably to represent any abnormal slow waves (Lammers,
2013; O’Grady et al., 2014). Nelsen et al., used both arrhythmias
and dysrhythmias to describe abnormal slow waves as early as
1968 (Nelsen and Kohatsu, 1968), while other investigators have
maintained both usages to describe abnormal slow wave events
(Code and Marlett, 1974).

Dysrhythmias can either be defined in terms of frequency,
or in terms of spatial pattern. In the stomach, frequency
abnormalities have typically been defined as either quiescence,
bradygastria, or tachygastria (Code and Marlett, 1974; Stern
et al., 1987); while spatial abnormalities have been subjected to
a growing list of classifications by various researchers and in
various animal models (Table 1). Furthermore, following cardiac
conventions, spatial dysrhythmias could also be defined as
either abnormal initiation, e.g., ectopic pacemaker, or abnormal
conduction, e.g., retrograde propagation. It is worth noting
that each of these terms typically describes a single aspect of
a dysrhythmia, but in practice dysrhythmic episodes may not
occur in isolation. For example, an ectopic initiation event
could occur simultaneously with conduction block and collision
(Figure 1C), and a conduction block could lead to an aberrant
focus of initiation, or a re-entrant conduction abnormality could
give rise to secondary conduction abnormalities (O’Grady et al.,
2014).

Dysrhythmias and GI Functional Disorders
Several GI functional disorders have been associated with slow
wave dysrhythmias (O’Grady et al., 2014), as detailed in Table 2,
with examples of the types of dysrhythmias that have been
reported with each disorder. The majority of previous studies
of slow wave activity have utilized low-resolution recording
methods, where a sparse number of electrodes were placed
on the body-surface (electrogastrography/EGG) or directly on
the serosal or mucosal surfaces of the GI organs (Familoni
et al., 1987; Lin et al., 1998; Lin and Chen, 2001; Coleski and
Hasler, 2009). These studies established foundational discoveries
of normal and dysrhythmic slowwave activation, but analysis was
largely restricted to the frequency domain, although propagation
analysis was also attempted (Simonian et al., 2004; Coleski and
Hasler, 2009). The results of these EGG and low-resolution
electrode studies thereby focused primarily on ectopic activation
as a mechanism of slow wave dysrhythmias (Lin et al., 1998; Lin
and Chen, 2001; Simonian et al., 2004).

More recently, high-resolution GI mapping has emerged as
a key methodological advance, where spatially-dense arrays of
hundreds of electrodes are placed directly on the GI organ,
enabling analysis of slow wave propagation in spatiotemporal
detail (Lammers et al., 2008a; Du et al., 2009a). Recent
high-resolution mapping studies in patients with diabetic

and idiopathic gastroparesis, and chronic unexplained nausea
and vomiting, have now demonstrated that spatially-complex
dysrhythmias are prevalent in these functional GI disorders
(O’Grady et al., 2012a; Angeli et al., 2015). Importantly, many
of these spatial dysrhythmias (Table 1) are now known to occur
within the normal slow wave frequency range, such that they may
likely have gone undiagnosed with previous frequency-reliant
methods. Furthermore, it has also been reported that the slow
wave dysrhythmias were correlated with loss of the interstitials
cells of Cajal (ICC) (O’Grady et al., 2012a; Angeli et al., 2015),
which could result in ICC network remodeling (Ordog et al.,
2000).

CURRENT STATE OF GI
ELECTROPHYSIOLOGICAL MODELING

Mathematical modeling uses equations to formulate relationships
between parameters of a biophysical process. Additional analyses
can then be performed on the equations to infer the causal
relationship between the parameters over a large parameter
space in silico, complementary to experimental data, which are
needed to validate the model in some capacity. It is worth noting
that although a goal is to develop models capable of predictive
simulations of physiological functions, no model in its current
state can realistically accomplish this ambitious aim in a way
that mimics real biological events. Instead, mathematical models
are developed to represent electrophysiological mechanisms at
discrete biophysical scales as simply and accurately as possible,
with input from experimental data at each scale, and attempts
are then made to link mechanisms together across these
scales.

One particularly significant approach of mathematical
modeling is thus to develop a system of equations by
following the hierarchy of biological systems across multiple
spatiotemporal scales. Such an approach is also called multi-scale
modeling, which has been increasingly applied with great effect
to study normal and dysrhythmic GI slow waves and dysmotility
(Cheng et al., 2013; Du et al., 2013, 2016b). Generally, in a
multi-scale model of dysrhythmias the lowest scale relates to
the kinetics of the ion channels, which are usually collected
into individual ion conductances, with Hill-type activation
and inactivation parameters fitted to experimental data (Lees-
Green et al., 2011). The dependence of an ion conductance on
membrane potential can be modeled using a Hodgkin & Huxley
approach, and applied over multiple types of conductance to
model the change in slow waves. It is worth noting that the
conductance modeled presents an averaged activity of all the
same type of conductance in the cell, rather than individual
ion channels. As our knowledge of the subcellular processes
becomes increasingly clear, more sophisticated techniques such
as stochastic modeling and subcellular domain diffusion have
also been incorporated to cell models (Lees-Green et al., 2011).

Tissue models require connecting multiple cell models
together in a continuum, i.e., spatially averaged, sense has
typically been achieved using a reaction-diffusion technique,
either in the form of monodomain, bidomain, or tridomain
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TABLE 1 | Definitions of gastric dysrhythmias. Spatial information was obtained from HR mapping taken directly from the gastric serosal surface.

Terms Definitions

Arrhythmias/Dysrhythmias

(temporal or spatio-temporal)

Abnormal slow wave frequency and/or propagation. Normal human gastric frequency range is typically defined as

2–4 cycle per minute (cpm) (Figure 1) (Owyang and Hasler, 2002).

Quiescent

(temporal)

No slow waves (Angeli et al., 2015).

Bradygastria

(temporal)

<2 cpm (Parkman et al., 2003; Lim et al., 2012).

Tachygastria

(temporal)

> 4 cpm (Parkman et al., 2003; Lim et al., 2012).

Uncoupling

(spatio-temporal)

Loss of entrainment leading to two distinct slow wave frequencies in adjacent tissues (Somarajan et al., 2015; Wei

et al., 2017).

Anatomical re-entry

(spatial)

Self-perpetuating propagation around the circumference of the gut lumen (Angeli et al., 2013b; Du et al., 2017).

Functional re-entry/rotor

(spatial)

A rotating wavefront propagating in a single-direction around in a circuit around a central “core” region that acts as

a functional conduction block (Lammers et al., 2008b; Angeli et al., 2013b, 2015).

Figure-of-eight/double rotor

(spatial)

A single common wavefront that breaks into two rotors propagating in opposite directions (clockwise and

anticlockwise) around a core, forming a repeated “figure-of-eight” continuous pattern of activations (Angeli et al.,

2013b; Du et al., 2016a).

Conduction block

(spatial)

Either a partial or complete block to propagation of normal slow waves (Lammers et al., 2012; O’Grady et al.,

2012a; Angeli et al., 2013b).

Retrograde propagation

(spatial)

A slow wave event propagating abnormally in the orad direction (O’Grady et al., 2012a; Angeli et al., 2015).

Ectopic activation

(spatial)

An ectopic activation was defined as an aberrant initiation of slow waves from a location other than the natural

pacemaker (proximal greater curvature) (Lammers et al., 2008b; O’Grady et al., 2012a).

Wave Collision

(spatial)

Meeting and termination of two independent wavefronts propagating in opposite directions, e.g., retrograde and

antegrade or circumferentially (Lammers et al., 2012, 2015; O’Grady et al., 2012a; Angeli et al., 2015).

Merging wavefronts

(spatial)

Joining of two independent wavefronts propagating in the same direction (Angeli et al., 2013b).

Temporal information was obtained from HR mapping, low resolution serosal recording, and non-invasive recording techniques such EGG and MGG.

(extended bidomain) equations (Equations 1–6) (Buist and
Poh, 2010; Corrias et al., 2012; Du et al., 2013, 2016b; Sathar
et al., 2015). The number of domains typically represents the
predominant avenues through which the cells are coupled to
each other. In the monodomain representation, ICC are assumed
to be predominantly coupled via the intracellular domain,
whereas in the bidomain representation, the current flow through
the extracellular space is also modeled. In contrast to cardiac
applications of the tridomain model, which is used to model an
additional phase due to non-excitable elements such as fibroblasts
(Sachse et al., 2009), themore recently proposed tridomainmodel
represents the coupling between the intracellular spaces of ICC
and smooth muscle cells (SMC) and a shared extracellular space
(Corrias et al., 2012; Sathar et al., 2015). In each of these cases,
under certain assumptions, the higher-order domain models
could be reduced to the monodomain model, and extracellular
potentials could then be estimated based on the membrane
potentials.
Monodomain:

∇ · (σ∇Vm) = Am

(

Cm
∂Vm

∂t
+ Iion

)

(1)

Bidomain:

∇ · ((σi + σe )∇φe ) = −∇ · (σi∇Vm) (2)

∇ · (σi∇Vm) +∇ · (σi∇φe) = Am

(

Cm
∂Vm

∂t
+ Iion

)

(3)

Tridomain:

∇ ·

(

σ
(1)
i ∇V(1)

m + φe

)

= A1

(

C1
m

(

∂φ
(1)
i

∂t
+

∂φc

∂t

)

+ I
(1)
ion

)

+ AgapIgap (4)

∇ ·

(

σ
(2)
i ∇V(2)

m + φe

)

= A2

(

C2
m

(

∂φ
(2)
i

∂t
+

∂φc

∂t

)

+ I
(2)
ion

)

− AgapIgap (5)

∇ ·

(

σe + σ
(1)
i + σ

(2)
i

)

∇φe = −∇ ·

(

σ
(1)
i ∇V(1)

m

)

− ∇ ·

(

σ
(2)
i ∇V(2)

m

)

(6)

where σ represents the tissue conductivity, which could be
further characterized as intracellular conductivity (σi; [S m−1])
or extracellular conductivity (σe; [S m−1]). Membrane potential
(Vm; [V]) can also be expressed as the difference between
intracellular potential and extracellular potential, i.e., φi − φe.
The total current is denoted by Iion [A]. Am [m−1] denotes
the surface-to-volume ratio and Cm [F m−2] denotes the
membrane capacitance. In the case of the tridomain equations,
conductivities, surface-to-volume ratio, membrane capacitance
and intracellular potentials are further distinguished between two
cell types, with an added coupling current (Icouple) between the
two cell types. One of the intracellular domains (Equation 4)
represents the cytoplasm of ICC, while the other intracellular

Frontiers in Physiology | www.frontiersin.org January 2018 | Volume 8 | Article 1136245

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Du et al. Models of Gastrointestinal Dysrhythmias

FIGURE 1 | Examples of high-resolution mapping of in-vivo gastric slow waves. (i) An array of 16 × 16 electrodes (brown patch) were placed on the serosal surface of

the stomach. (ii) Activation times of slow waves were identified and reconstructed into activation maps with red representing early activation and blue presenting late

activation. (iii) Example slow wave recordings from six electrodes are shown in each case. (A) Normal antegrade propagation pattern of gastric slow wave activation

(Angeli et al., 2015). (B) An ectopic activation (star) in the proximal stomach. (C) Simultaneous ectopic activation, conduction block and collision of slow waves in the

gastric corpus. Adapted from (Angeli et al., 2015).

domain (Equation 5) represents the cytoplasm of SMC. The
two intracellular domains share a common extracellular domain
(Equation 6).

The choice of the governing equations in the continuum
model typically depends on the specific applications. For
example, in the absence of detailedmeasurements of conductivity
parameters, applications involving entrainment modeling would
typically only require the monodomain model (Du et al., 2015b,
2017), whereas simulations involving an extracellular stimulus

would typically require a bidomain/tridomain approach (Sathar
et al., 2015). On the other hand, the higher-domain approach
would require more computational power due to the increased
complexity of formulation. Though direct comparisons between
computational times of GI models are difficult to ascertain
with varying parameters and numerical solvers involved in the
process, on average the computational time of cardiac bidomain
models can be an order of magnitude longer than monodmain
models (Plank et al., 2009).
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TABLE 2 | Examples of GI functional disorders associated with slow wave dysrhythmias.

Disorders Recording method(s) Slow wave dysrhythmias reported

Chronic unexplained nausea and vomiting (Angeli et al., 2015) HR mapping Spatiotemporal dysrhythmias occurring across all frequency bands.

Surgical manipulations (Kelly and Code, 1971; Schaap et al.,

1990; Du et al., 2015a; Berry et al., 2017)

Low resolution

recording, HR mapping

Uncoupling of slow waves across surgical GI bisections; Excisions/incisions

led to emergence of rapid circumferential propagation; Frequency

abnormalities after gastric resections and anastomoses.

Diabetic dysfunction (intestine) (Lammers et al., 2012, 2015) HR mapping Re-entry, ectopic activation with collisions (rodent data).

Mesenteric ischemia (Lammers et al., 1997; Somarajan et al.,

2015)

HR mapping, MGG Uncoupling, with significant decrease in postprandial intestinal slow wave

frequency.

Gastroparesis (Lin et al., 1998; O’Grady et al., 2012a) HR mapping, EGG Spatiotemporal dysrhythmias occurring across all frequency bands.

Gastroesophageal reflux disease (Leahy et al., 2001; Chen

et al., 2004)

EGG Unstable slow waves, with increased tachygastria in patients with

regurgitation.

Systemic sclerosis (McNearney et al., 2009) EGG Bradygastria correlated with nausea.

Hyperglycaemia (Hasler et al., 1995; Gonlachanvit et al.,

2003; Lien et al., 2003)

EGG Tachygastria following dextrose infusion.

Chronic intestinal pseudo-obstruction (Debinski et al., 1996) EGG Tachygastria, irregular activities, mixture of bradygastria and tachygastria.

Motion sickness (Kim et al., 1997) EGG Increase in tachygastria due to vection.

Hyperemesis gravidarum (Koch et al., 1990) EGG Mainly tachygastria, with some bradygastria and flat-line activities.

Functional dyspepsia (Pfaffenbach et al., 1997; Leahy et al.,

1999; Lin and Chen, 2001; Simonian et al., 2004)

EGG Increased episodes of tachygastria compared to patients with normal

gastric emptying.

Relating the slow wave activity at the whole-organ level to
specific individual cells is a challenging, if not impossible, aspect
to resolve. Conceptually, the multi-scale models represent slow
waves in a spatially-averaged sense, meaning the “continuum”
represents an averaged activity of a group of the same cell
types within the immediate vicinity in the underlying tissue
(Angeli et al., 2013a). A similar loss of spatial information
occurs when whole-organ activity is inferred electromagnetically
from the body-surface (Kim et al., 2013; Bradshaw et al.,
2016b). In this case, the electrophysiological activation of the
organ is approximated using dipole(s), which represent the net
activation state of the organ at an instance in time. Despite the
loss of specificity in the electrical information when upscaling,
the higher-level spatial scales also remain a particularly useful
approximation of slow waves in the in vivo state. The appropriate
scale of models should be considered according to the level of
mechanisms and specific research questions of interest.

Cell Models
The two main types of biophysically-based cell models being
developed over recent years are SMC and ICC, which have been
covered extensively in previous reviews (Lees-Green et al., 2011).
In general, ICC models incorporate self-excitatory intracellular
calcium-based mechanisms to generate slow waves at a specific
intrinsic frequency, whereas SMC models require an input
stimulus to drive the membrane potentials. Key conductance
and/or intracellular calcium dynamics in these cell models
are generally fitted to experimental data and validated by
reproducing membrane potentials and response to perturbations
such as electrical stimuli and drugs. The number of SMC models
is limited, including a gastric SMC model derived from animal
experimental data (Corrias and Buist, 2007), and uterine SMC
derived from uterine human smooth muscle cells (Atia et al.,

TABLE 3 | A list of biophysically-based smooth muscle cell models.

Smooth Muscle Models Number of ion

conductances

Human colonic smooth muscle cells (Yeoh et al., 2017) 8

Gastric smooth muscle cells (Corrias and Buist, 2007) 8

Human uterine smooth muscle cells (Atia et al., 2016) 27

2016). A list of biophysically-based SMC models is presented in
Table 3.

A recent example of ICC model development is the
finite-state machine based biophysical model by Sathar et al.
(2014). In this model, the cellular activity of the model was
represented by an active state and passive state, whereby the
active state corresponded to the ionic dynamics of the ICC
model developed by Corrias and Buist (2008). The transition
between the states was modeled using a finite-state machine
approach that was dependent on membrane potential, calcium
dynamics, and the refractory/non-refractory period parameters
defining the intrinsic frequency of the slow wave pacemaker
activity (Figure 2A; Sathar et al., 2014). The finite-state machine
approach enabled modeling the effects of external current on the
cellular activity and has successfully reproduced experimentally
observations of gastric pacing. The finite-state machine model
is governed by two important rules: (i) if the cellular activity is
“active,” it remains active until the calcium dynamics returns to a
quiescent state—after which, it changes to a “passive” state; (ii)
on the other hand, if the current cellular activity is “passive,”
it remains “passive” until the membrane potential exceeds an
excitation potential or until the cellular activity has passed the
non-refractory period (Figure 2B).

In addition to ICC and SMC, other types of cells have
also been proposed to play a role in the electrophysiology
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FIGURE 2 | A finite state machine cell model of gastric interstitial cells of Cajal.

(A) The model consists of an active state and a passive state. ST indicates if

time has passed the startTime, which is set as a parameter and which

determines initial excitation when there is no threshold voltage. AT indicates if

the non-refractory period has been passed and signals transition from passive

state to active state. DC identifies if the change in concentration of intracellular

Ca2+ has returned to quiescent state. VP variable is set to true if there is a

voltage which is greater than the threshold of the cell. (B) Simulated gastric

slow waves and the associated intracellular calcium. Adapted from (Sathar

et al., 2014).

and neurotransmission of the GI tract. One such cell is the
fibroblast-like cell (FLC), which form discrete networks in
the myenteric plexus and are widely distributed within the
muscular layer of the colon (Kurahashi et al., 2012). One
specific FLC positive for platelet-derived growth factor receptor
(PDGFRα

+) is of particular interest because they are involved
in purinergic inhibitory neurotransmissions (Yeoh et al., 2016).
Purines released by enteric motor neurons bind to the G-protein
coupled receptors in the membrane of the PDGFRα

+ cells.
The binding initiates a series of intracellular processes resulting
in the release of Ca2+ due to inositol 1,4,5-triphosphate (IP3)
entering the cytoplasm. The elevation of intracellular Ca2+ in
turns activates small Ca2+-activated K+ (SK3) conductance,
leading to hyperpolarization of the membrane potential, and
potentially also neighboring SMC. Yeoh et al. developed a
PDGFRα

+ cell model by modifying a spatially-independent
version of the model proposed by Bennett et al. (2005) and

Yeoh et al. (2016), and with their specific description of the
SK3 conductance. The authors were able to demonstrate ATP-
induced hyperpolarisation and inhibitory effects of MRS2500
and apamin (SK3 channel blocker) (Bennett et al., 2005). The
potential applications of this model may be significant in future,
as it may be coupled with existing ICC and SMC models to
simulate the effects of neural innervation and feedback on slow
wave generations and smooth muscle membrane potentials.

Biophysically-based mathematical models of GI cells have
been developed at a steady pace, mainly governed by the
availability of experimental data and convergence of evidence
regarding key electrophysiological mechanisms. However, nearly
all GI cell models have been developed as an “after thought”
based on published data that were not originally designed
with the potential for modeling in mind. The models were
generally only able to reproduce the cellular responses over a
set of specific interventions that had already been demonstrated
experimentally, although some interesting and clinically-relevant
applications have already been demonstrated through the
predictive modeling of GI channelopathies (Poh et al., 2012).
While this is not a unique problem to the GI field, the true
predictive power of cell models could be better realized if
investigators would consider modeling when developing their
experimental design, as has been done in the cardiac field
(Maltsev et al., 2017).

Tissue Models
Propagation of slow waves has typically been modeled as a
series of coupled phenomenologically-based oscillators, or by
employing biophysically-based ICC models. While there are
many ways to formulate the specific coupling between ICC
models, the ability of an ICC with a higher intrinsic frequency
to “entrain” another coupled ICC with lower intrinsic frequency
is fundamental (van Helden et al., 2010). The process of
entrainment is a key point of distinction between GI and
cardiac electrophysiological models. Whereas the cardiac models
represent myocytes as single-event active potentials in response
to a pacemaker (often modeled as a stimulus), GI models require
an interconnected network of pacemakers, where every point
in the network is potentially capable of intrinsically generating
slow wave activation (Cheng et al., 2013; Du et al., 2013, 2016b).
Previous reviews have covered models that have successfully
simulated propagation of gastric and intestinal slow waves at the
tissue levels (Du et al., 2013, 2016b). This review covers recent
work on the simulation of GI slow wave dysrhythmias.

Most recent tissue-level investigations have focused
predominantly on the effects of perturbations on the organization
of slow waves. Weakly-coupled oscillators have been used to
model both intestinal and colonic slow waves (Linkens, 1978;
Linkens and Mhone, 1979). This concept was explored further
in a recent study to explore the effects of spatial noise in the
intrinsic frequency gradient on intestinal slow wave propagation
(Parsons and Huizinga, 2016). The study demonstrated that as
the coupling (modeled as a gap junction) between the oscillators
decreased over a segment of intestine, more slow wave frequency
plateaus appeared (Parsons and Huizinga, 2016). One of the
conclusions of this study points to the role of a spatial noise on
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FIGURE 3 | Mathematical models of intestinal slow wave propagation. (A)

Entrained slow waves over an intrinsic frequency gradient of 17–14.6 cpm

(entrained to 17 cpm) were simulated over a 2D model. (B) A functional rotor

was invoked in the middle of the 2D model using a 30 s long prolonged

temporary conduction block. The rotor could be sustained with entrained

waves propagating in both antegrade and retrograde directions, with an

elevated frequency of 21 cpm. Adapted from (Du et al., 2017).

the organization of slow wave propagation and motor patterns
in the intestine. As a limitation of the model, the authors pointed
out that the intestinal “waxing and waning” phenomenon was
not reproduced by the model, but could be explained by a
phase-amplitude modulation mechanism (Huizinga et al., 2014).
The dynamic interactions between intestinal slow waves in
response to a field-stimulus were later quantified using a phase
response curve (Parsons and Huizinga, 2017). The weakly-
coupled oscillator was extended to a 2D model to reproduce
intestinal slow waves in a number of species, as well as the effects
of circumferential ICC loss on partitioning of slow waves (Wei
et al., 2017).

Recent high-resolution mapping studies have reported re-
entry activities in the stomach and intestine (Table 1). Two
specific re-entry activities were discovered: functional re-entry
(Du et al., 2015b), where slow waves propagate in a sustained
manner around a core either as in a rotor (Figure 3), or figure-
of-eight pattern; and anatomical re-entry, where slow wave
propagation occurs in continuity around the lumen of the
intestine (Angeli et al., 2013b). These re-entry activities were
recently modeled in two-dimensional models using a simplified
ICC model and the monodomain equation, using a stimulus-
driven protocol to invoke the re-entry (Du et al., 2015b, 2017). In
order to invoke a rotor in a short segment intestinal tissue, single-
pulse stimulus (100 µA mm−2; 100ms) was used to initiate
the re-entry next to a temporary conduction block prescribed
by the refractory period in the middle of the model (Plank
et al., 2009). In particular, it was demonstrated that there was a
relatively narrow parameter space in terms of the timing relative
to the refractory tail of the previous wavefronts, during which

a sustained functional re-entry could be invoked; otherwise,
the prescribed intrinsic frequency gradient in the models was
essentially able to correct the wavefront over time (Du et al.,
2015b, 2017). Anatomical re-entry around the circumference of
a 3D lumen was also demonstrated to occur under a similar
set of constraints to the functional re-entry, with the added
consideration of the geometry of the lumen (Du et al., 2017). One
of the features of a sustained re-entry is the elevated frequency
associated with the entrainment of slow waves in the core,
as demonstrated experimentally (Lammers et al., 2008b). This
elevated frequency serves to sustain the re-entry and can lead
to entrainment of a substantial section of adjacent intestine. A
secondary observation was a frequency-conduction restitution
type of relationship where the elevated frequency induces a
local reduction in conduction velocity of slow waves (Du et al.,
2015b, 2017). Other investigators have modeled the effects of
temperature on intestinal slow waves and the formation of re-
entry activities (Gizzi et al., 2010).

A bi-directionally coupled model of ICC networks, achieved
through coupling of myenteric and intramuscular ICC
populations, has been proposed as a homeostatic mechanism in
the gut (O’Grady et al., 2012b). Gastric slow waves demonstrate
a high degree of anisotropy, whereby slow waves propagate 2.5
times faster in the circumferential axis than the longitudinal axis
(O’Grady et al., 2012b; Du et al., 2016a). Similar anisotropy also
exists in the small intestine of some species, albeit to a much
lesser extent (Angeli et al., 2013b). During normal gastric slow
wave propagation, this anisotropy is only observed in the region
of the normal pacemaker; thereafter, ring wavefronts are rapidly
formed that propagate solely in the longitudinal axis without the
need for circumferential spread (O’Grady et al., 2010a). However,
during dysrhythmias, the rapid circumferential propagation is
routinely observed to emerge in regions adjacent to dysrhythmic
sources, due to either aberrant foci of initiation or conduction
abnormalities interrupting the normal longitudinal pattern
(O’Grady et al., 2012b; Cheng et al., 2013).

The impact of conduction anisotropy was further explored
in a simulation where a small full-thickness segment of gastric
tissue was excised as part of a biopsy (Du et al., 2015a). Gastric
slow wave propagation around this type of excisional biopsy was
also mapped experimentally from human subjects. The results
demonstrated that area of rapid circumferential conduction was
dependent on the orientation of the excision. At all orientations,
the slow waves began to normalize in the longitudinal direction
at a distance distal to the stapled wound within the field of
mapping (60 × 60 mm2). It is notable that there is no standard
guideline on the dimensions and orientations of gastric excisional
procedures in practice (Du et al., 2015a), and these findings could
theoretically provide novel insights to minimize post-operative
motility changes associated with gastric incisions in future.

In contrast to cell modeling work, recent GI tissue
models were generally designed with specific experimental
protocols to explore key physiological questions, and/or to
provide predictions of potential protocols to invoke sustained
dysrhythmia behaviors. Particular efforts have been invested
by multiple groups to investigate the organization of intestinal
slow waves over extended tissue scales and the formation of
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re-entry in the stomach and intestine (Gizzi et al., 2010; Du
et al., 2015b, 2017; Parsons and Huizinga, 2016). Experimentally,
one of the next steps is to attempt to invoke sustained periods
of re-entry to thoroughly explore the conditions under which
these dysrhythmias occur and possible ways to eliminate them.
The proposed relationship between the timing of stimulus
and the refractory tail of the preceding wave in invoking re-
entry already suggests the potential requirement for monitoring
slow wave propagation in real-time experimentally (Bull et al.,
2011). Another important avenue of tissue modeling studies
has been to explore the structure-function relationship between
the ICC network, slow wave propagation and other GI cells,
such as the FLC. One potential approach is to reconstruct the
structural distributions of these cells from immunofluorescence
images and develop a continuum framework in which the
interactions between multiple cell types could be taken into
account. The structural networks and cellular functions could
then be perturbed to explore the effects of ion chancel inhibition
and/or cell loss on GI slow waves. Effects of non-electrically
active tissues could be modeled by detailed description of the
extracellular tissue conductivities in the higher domain models.

Organ Models
The techniques of simulating slow waves over the whole-organ
are similar to the tissue models, with a few added considerations
(Du et al., 2013, 2016b). First, gastric slow wave propagation has
been shown to exhibit significant inter-regional variations within
the stomach (Kelly and Code, 1971; Lammers and Stephen, 2008;
Egbuji et al., 2010; O’Grady et al., 2010a). In vivo high-resolution
mapping data have demonstrated that the fundus is generally
quiescent in large monogastric species, and a pacemaker region
exists in the proximal corpus along the greater curvature, from
which gastric slow waves rapidly form ring wavefronts that
propagate distally toward the antrum (Lammers and Stephen,
2008; Egbuji et al., 2010; O’Grady et al., 2010a). In humans,
a marked acceleration of slow wave activation is then seen in
the region of the terminal antrum, just proximal to the pylorus,
which constitutes the basis of the terminal antral contraction
(Berry et al., 2016). Second, a resting membrane potential
gradient due to the action of ICC-derived carbon monoxide
as a hyperpolarizing agent exists from the proximal to the
distal stomach, as well as across the gastric and small intestinal
wall (Farrugia et al., 2003). In the colon, the direction of the
resting membrane potential gradient across the colonic wall is
reversed compared to the stomach and intestine (Szurszewski
and Farrugia, 2004). Finally, gastric slow waves entrain to a
singular frequency in the healthy stomach, whereas in the
intestine slow waves occur at multiple frequencies organized into
plateaus along the length of the organ, each governed by an
independent pacemaker, effectively forming a step-wise gradient
of decreasing frequency along the intestine (Diamant and Bortoff,
1969; Lammers and Stephen, 2008; Angeli et al., 2013c). Previous
reviews have covered studies that have attempted to unify all
three aspects in a single model by prescribing parameters in
the cell model to reproduce the intrinsic frequency, resting
membrane potential gradients, and the conduction velocities in
each region of the stomach (Du et al., 2010a, 2013). Recent

FIGURE 4 | Simulation of whole-organ gastric slow waves. (A) Gastric slow

waves originate from a pacemaker region along the greater curvature in the

proximal stomach. Simultaneous and multiple wavefronts occur in the

stomach, with each propagating wavefront taking up to 60 s to reach to the

terminal antrum. (B) The existence of resting membrane potential gradient in

the stomach plays a key role to the recovery component in the extracellular

signals, when calculated as a difference between membrane potential (Vm) and

a spatially invariant term (Vr). Adapted from (Paskaranandavadivel et al., 2017).

modeling studies have now expanded on the whole-organ model
to investigate the mechanisms of slow wave recovery and gastric
dysrhythmias (Calder et al., 2016; Paskaranandavadivel et al.,
2017).

In a notable recent study, the basis of the slow wave
refractory/recovery was explored by sampling simulated slow
waves from 96 solution points sampled over a whole-organ
model (Paskaranandavadivel et al., 2017). The unipolar potential
recorded in standard extracellular mapping techniques was
simulated as a combination of a local component, i.e., membrane
potential, and a spatially-independent component based on a
scaled average of the residuals between the local component
and the extracellular potentials from the whole-organ (Figure 4;
Paskaranandavadivel et al., 2017). The simulations demonstrated
that the resting membrane potential gradient may be a significant
contributor to the recovery phase of the gastric slow wave
extracellular potential. Specifically focusing on the spatially-
independent component (Figure 4B), the gradient of resting
membrane potentials had the effect of “averaging out” the
defined profile of the spatially-independent component, as also
seen in the cardiac simulations (Potse et al., 2009). The result
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was a pronounced recovery phase in the extracellular potential
(Figure 4B).

Whole-organ gastric dysrhythmias were simulated by adding
a stimulus driven protocol and/or conduction block based on
the tissue models (Calder et al., 2016). Three dysrhythmias have
been reproduced to date: re-entry, conduction block and ectopic
pacemaker (Figure 5; see Table 1 for definitions). Gastric re-
entry was successfully invoked in the corpus where the distance
between the refractory-depolarization of two subsequent waves
is the longest, allowing more time for re-entry to develop. Both
conduction blocks and ectopic pacemakers (of equal frequency to
the entrainment frequency) were prescribed to the antrum, where
the two dysrhythmias have been most commonly identified. The
potential applications of these whole-organ gastric dysrhythmia
models include investigations of forward and inverse modeling
techniques, relating the effects of dysrhythmias with motility
through computational fluid dynamic studies, and in identifying
enhanced methods of gastric pacing (Berry et al., 2016).

Whole-organ modeling studies of slow waves have mainly
focused on the stomach, where both in vivo and in vitro data
are most abundant. With the development of a foundational
gastric model, recent investigations have utilized this model to
investigate detailed mechanisms for physiological recordings, as
well as simulations of dynamic dysrhythmias over the entire
organ. Similar intestinal models will likely be developed in
idealized geometry segments, as the overall intestinal length
of multiple meters poses a significant computational challenge
to the current models that rely on a high spatial resolution
of solution points (<0.3mm). Furthermore, there is also
uncertainty in whether some of the “abnormal” intestinal slow
waves are truly dysrhythmic, or rather occur as stochastic
behaviors as part of the natural pacemaking and/or dynamic
interactions between intestinal slow wave plateaus (Parsons and
Huizinga, 2016, 2017).

Non-Invasive Recordings
One of the ultimate aims of GI slow wave recordings is the ability
to more reliably interpret slow wave activities non-invasively
from the body surface. For gastric slow waves, the interpretation
has principally been done through cutaneous recordings known
as electrogastrography (EGG) (Bortolotti, 1998). It is also possible
to detect the magnetic fields associated with the generation of
slow waves with a superconducting quantum interference device
(SQUID) using a technique called magnetogastrography (MGG)
(Somarajan et al., 2015; Bradshaw et al., 2016b). Modeling
investigations on both techniques have been ongoing as our
understanding of the detailed activation sequence of gastric slow
waves has improved. In particular, investigators are increasingly
focusing on multi-channel/high-resolution EGG for detecting
the underlying gastric slow wave propagation (Gharibans et al.,
2016).

Given the relatively low signal-to-noise ratio of EGG,
and the complexity of the underlying sources, investigators
have long struggled with reliably separating the EGG signal
component from other sources, e.g., respiration interference and
cardiac electrical activity, though signal processing techniques
have recently been developed to minimize these contaminants
(Komorowski and Tkacz, 2015; Komorowski and Pietraszek,

FIGURE 5 | Whole-organ gastric slow wave dysrhythmias and

electrogastrography (EGG) simulations (Calder et al., 2016). (A) Four instance

of gastric slow wave activation (normal, re-entry, conduction block in the

antrum and ectopic pacemaker in the proximal stomach). (B) Corresponding

EGG simulations are calculated using a forward approach over an anatomically

realistic torso, with the EGG potentials normalized (U).

2016). As a result, the sensitivity and specificity of the EGG
has remained suboptimal, limiting clinical uptake. Mathematical
modeling offers an attractive platform to assist in further
development, because it can provide a “noise free” environment
in which simulated EGG can be directly matched with gastric
slow waves, provided that the correct slow wave behaviors
are reproduced. A recent modeling investigation studied the
EGG associated with normal and dysrhythmias gastric slow
waves as demonstrated by high-resolution mapping (Calder
et al., 2016). The whole-organ simulations were conducted
as outlined in the whole-organ section of this review above
(Figure 5A). The network activation of the whole-organ slow
waves was represented using a dipole, which was placed inside
an anatomically-realistic model of the adult torso with 192
cutaneous EGG electrodes (Figure 5B; Calder et al., 2016). EGG
was modeled using the boundary-element method with the
assumption of homogeneity inside the torso. The main finding
was that, in addition to detecting the frequency of slow waves,
it is also theoretically possible to detect and reliably distinguish
spatial dysrhythmias (re-entry, conduction block, and ectopic
pacemaker) using multi-channel (HR) EGG. Alternatively, slow
wave activation has also been modeled as a 1D propagation
source, and EGG calculated as a weighted summation of slow
waves at every instance in time (Gharibans et al., 2016). Crucially,
this study also used surface Laplacian and wave estimation
techniques to determine the direction and propagation of slow
waves fromEGG recorded from eight human subjects (Gharibans
et al., 2016). The clinical significance of these interesting recent
developments will be more clear once the ability to interpret
clinical EGG recordings improves.

The relationship between slow wave dysrhythmias and
MGG has been validated experimentally with gastric disease
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models and intestinal ischemia (Bradshaw et al., 2007, 2016a;
Somarajan et al., 2015). Investigators have resolved the theoretical
relationship of MGG to normal gastric slow wave activation. One
recent study compared the surface current density method and a
second-order blind source separation method to the theoretical
prediction of the source location based on a dipole, and found
close agreement with the measurements and the predicted data
(Bradshaw et al., 2016b). This study also raised the question of
whether gastric slow waves can be well captured using a single
dipole, or better represented by multiple dipoles to track the
simultaneous propagating wavefronts.

The current progress in non-invasive recording techniques
is mirrored with the improved understanding of the underlying
gastric slow wave activation. The technical capabilities of
inferring data from multiple channels are allowing more
quantifiable techniques to be applied to EGG and MGG.
Most simulation studies in this field have updated their
source to represent a more realistic activation pattern based
on experimental data. However, questions will always remain
regarding the sensitivity of the EGG andMGGuntil experimental
studies can definitively prove that the EGG and MGG can be
related to specific spatial activation states of gastric slow
waves, beyond just a frequency correlation, which will require
simultaneous HR recordings from the stomach and body-
surface. In addition, reliable protocols for invoking specific
types of dysrhythmias in a consistent manner are also still
needed to determine the relationship between EGG/MGG
and dysrhythmias. One potential such method, for example, is
through high-energy gastric pacing to create a stable ectopic
activation (Du et al., 2009b; O’Grady et al., 2010b; Sathar et al.,
2015).

SIMULATION ENVIRONMENTS AND
STANDARDS

As models increase in scale there is an associated increase
in the computational cost in order to solve these models.
This is especially important in GI modeling because the time-
scale is typically orders of magnitudes higher than neural and
cardiac simulations (milliseconds to minutes vs. milliseconds).
Furthermore, as models gain sophistication it is ever more
important to develop a standard by which these models can be
encoded and reproduced in a consistent manner, as well as for
encapsulation of meta-data. To this end, a number of standards
and simulation tools have been developed (Table 4). The list
of tools in Table 4 is by no means exhaustive, but is listed to
highlight some examples of the available modeling standards and
tools. One important reason for adopting similar standards is
to allow rapid exchange of information and reproducibility of
simulation results.

FINAL REMARKS AND FUTURE
DIRECTION

Mathematical modeling of GI electrophysiology has seen
remarkable progress in recent years. While still lacking the depth

TABLE 4 | Examples of markup standards for encoding models and simulation

environments.

Name Programming

language

Purpose

CellML (Lloyd et al., 2004)

www.cellml.org

XML Encoding subcellular and

cellular processes

SBML (Chaouiya et al., 2013)

http://sbml.org

XML Systems Biology Markup

Language for encoding

subcellular and cellular

processes

FieldML (Christie et al., 2009)

www.fieldml.org

XML Modeling and interchanging

spatially-varying field

parameters.

CMISS

www.cmiss.org

Fortran A multi-scale simulation tool.

OpenCMISS (Bradley et al.,

2011)

http://opencmiss.org/

Fortran A distributed parallel

mathematical modeling

environment for multi-scale

simulations.

Chaste (Pitt-Francis et al., 2008)

http://www.cs.ox.ac.uk/chaste/

C/C++ A distributed parallel

mathematical modeling

environment for multi-scale

simulations.

Continuity

http://www.continuity.ucsd.edu

Python Multi-scale modeling and

data analysis

of detailed understanding in physiological and pathological
mechanisms that exists in the cardiac and neural fields, the
recent advance in cellular slowwavemechanisms and the detailed
spatiotemporal descriptions of gastric spatial dysrhythmias have
enabled a new focus and level of impact for many GI modeling
studies. As new knowledge of cellular ion channelopathies
and tissue degradation in diseases becomes available (Beyder
and Farrugia, 2016), existing models can be updated with
improved specificity to understand a particular pathology,
infer its influence on the organ through multi-scale modeling,
and determine detectability through non-invasive recording
methodologies.

As biological modeling is often informed by experimental
data, the focus on technical setup in experiments is becoming
increasingly important. For example, EGG and MGG at the
body surface have different signal characteristics compared to
the signals recorded by direct contact on the serosal surface.
Therefore, more consideration needs to be given to the choice
of amplifiers and signal processing techniques. Inappropriate
applications of recording and/or processing techniques could
lead to incorrect interpretation of signals (Paskaranandavadivel
et al., 2013). Furthermore, there is a danger of relying on
recordings at one scale to interpret recordings obtained at a
different scale. For example, some investigators have incorrectly
discussed how the slow wave signals recorded using extracellular
mapping do not appear to have the same rate of change
as the intracellular recordings obtained from individual cells
(Sanders et al., 2016). This interpretation relies on the false
presumption that the extracellular serosal recordings directly
accord with the activation of an individual cell, which is not
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the case in practice (Angeli et al., 2013a; O’Grady et al.,
2017).

The role of the structure-function relationship of ICC and
smooth muscles in GI dysrhythmias is a critical current question
in clinical GI motility. Structural imaging and calcium functional
recordings have both pointed to a strong relationship between
the spatial distribution of ICC/cellular manipulations and loss
of synchronicity of calcium activities and motility (Singh et al.,
2014; Malysz et al., 2017), which are associated with slow wave
dysrhythmias. At present, imaging and functional recording
techniques are applied in isolation. It would be of great
value to develop a foundational modeling framework that can
integrate the experimental data from different modalities using
biophysically-based models. Previous modeling investigations
have attempted simulating slow wave propagation over a small-
scale ICC network, either obtained from imaging data or using
network generation algorithms (Du et al., 2010b; Gao et al.,
2015). Validation for these studies was difficult because functional
recording of the tissue-specific networks was not available at
the time. With the advent of ratiometric Ca2+ imaging in live
GI tissues (Singh et al., 2014; Malysz et al., 2017), it is now
possible to compare the simulated intracellular Ca2+ activities
that accompany slowwave generation to experimental data under
varied physiological conditions.

The capability of recording Ca2+ transients at the tissue level
could also lead to the development of new electromechanical
models (Du et al., 2011; Singh et al., 2014; Malysz et al., 2017).
This is critical because motility is a functional consequence
of slow wave activation, and ICC have been shown to exhibit
significant mechano-sensitivity (Beyder et al., 2010), which has
been studied using a mathematical cell model (Poh et al., 2012).
Both a passive constitutive model and an active tension model
should be developed in order to translate the electromechanical
coupling to the tissue level. Experiments based on biaxial stretch
of the GI tissues are needed to quantify the parameters for the
constitutive models, while a steady-state tension–length–calcium
relationship could be adapted to define the active tension model.
Perturbations to ion channel and tissue conductances could

then be prescribed to the electrometrical models to simulate
dysmotility. When translated to the whole-organ level, the
simulated deformation of the GI wall could be used as a boundary
condition input to computational fluid dynamic simulations of
the mixing and breakdown of luminal contents due to different
motility patterns (Fullard et al., 2014).

In summary, recent GI mathematical models have increased
in sophistication and their ability to simulate key physiological
mechanisms. These models have been applied in a predictive
manner, across multiple biophysical scales, to begin to address
some of the long-standing questions in the GI field, including
the mechanisms, significance, and non-invasive diagnostics of
gastric dysrhythmias. The progress of models relating to slow
wave dysrhythmias is encouraging to date. However, as both
experimental and technical capabilities within the field continue
to improve, models will be better informed and validated by
additional types of data. In turn, mathematical models of GI
slow wave activity will continue to provide an ever-expanding

platform for an integrative understanding of experimental data
across multiple modalities.
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In this paper, we study a mathematical model of cardiac tissue based on explicit

representation of individual cells. In this EMI model, the extracellular (E) space,

the cell membrane (M), and the intracellular (I) space are represented as separate

geometrical domains. This representation introduces modeling flexibility needed for

detailed representation of the properties of cardiac cells including their membrane. In

particular, we will show that the model allows ion channels to be non-uniformly distributed

along the membrane of the cell. Such features are difficult to include in classical

homogenized models like the monodomain and bidomain models frequently used in

computational analyses of cardiac electrophysiology. The EMI model is solved using

a finite difference method (FDM) and two variants of the finite element method (FEM).

We compare the three schemes numerically, reporting on CPU-efforts and convergence

rates. Finally, we illustrate the distinctive capabilities of the EMI model compared

to classical models by simulating monolayers of cardiac cells with heterogeneous

distributions of ionic channels along the cell membrane. Because of the detailed

representation of every cell, the computational problems that result from using the

EMI model are much larger than for the classical homogenized models, and thus

represent a computational challenge. However, our numerical simulations indicate

that the FDM scheme is optimal in the sense that the computational complexity

increases proportionally to the number of cardiac cells in the model. Moreover, we

present simulations, based on systems of equations involving ∼117 million unknowns,

representing up to ∼16,000 cells. We conclude that collections of cardiac cells can be

simulated using the EMI model, and that the EMI model enable greater modeling flexibility

than the classical monodomain and bidomain models.

Keywords: transmembrane potential, finite difference method, finite element method, cell modeling, conduction

velocity

1. INTRODUCTION

The pumping function of the heart is governed by an electrochemical wave traversing the entire
cardiac muscle resulting in the muscle’s synchronized contraction. This electrochemical wave has
been subject to intense study over many decades and mathematical models have played an essential
role in understanding its properties. However, these models are based on homogenization of the
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cardiac tissue, which imposes limitations on the level of detail
that can be studied by the models. For instance, the details of
the dynamics surrounding a single cell are difficult to study using
classical homogenizedmodels simply because the single cell is not
present in such models.

In this paper, we consider an emerging mathematical
modeling framework for representing and simulating excitable
cells in general and cardiac cells in particular. In this framework,
the extracellular space, the cell membranes, and the intracellular
spaces are explicitly represented as separate physical and
geometrical objects. The state variables are the extracellular,
membrane, and intracellular potentials defined over the
corresponding domains. We refer to this framework as the EMI
(Extracellular-Membrane-Intracellular) model. This approach
has been applied in several earlier papers (e.g., [1–7]), which
used the EMI framework (or related approaches) for detailed
simulations of a single cell or a small number of cells. Indeed,
the presentation here is very much motivated by the formulation
presented by Stinstra et al. [5] and by Agudelo-Toro and Neef
[4]. Furthermore, the EMI approach was used to study the effect
of the ephaptic coupling of neurons in Tveito et al. [8].

The EMI framework represents an alternative to the classical
and more common bidomain or monodomain models. These
latter models are based on homogenization of the cardiac tissue
and the extracellular space, the intracellular space, and the cell
membrane are all assumed to exist everywhere (e.g., [9–13]).
In the following, when we refer to homogenized models, we
will refer to models of the monodomain or bidomain type. In
contrast, the EMI approach avoids this full homogenization at
the tissue level. Note however, that homogenization is also used
in the EMI approach to formulate equations for the intracellular
domain and the extracellular domain.

The classical models (monodomain, bidomain) have been
successfully used to study the propagation of the electrochemical
wave in cardiac tissue (e.g., [14–16]), the initiation of excitation
waves (e.g., [17–21]), the development of cardiac arrhythmias
(e.g., [14, 17, 18]), the effect of defibrillation (e.g., [22–28]), and
the effect of various drugs (e.g., [29–32]).

Despite the many successful applications of the monodomain
and bidomain models, there are a number of motivating factors
for introducing a more explicit, more accurate, andmore detailed
framework for modeling cardiac tissue.We address some of these
factors in the following paragraphs.

1.1. Homogenized Models May Be
Insufficient to Represent Details of the
Remodeling of the Heart
Although, classical models represent the big picture of the
electrochemical wave traversing cardiac tissue well, they may
fail to reveal the finer details of cardiac conduction. For
example, it is well-established that local perturbations to the
conduction velocity may be arrhythmogenic; in particular,
slowed conduction will increase the risk of arrhythmias [33]. It is
therefore essential to understand how various remodelings of the
heart affect the conduction velocity. Individual perturbations of
the size and shape of the cardiac cells clearly affect the conduction

velocity (e.g., [34]), but such changes are very hard to represent
in a classical homogenized model, since a detailed representation
of the individual cells in the tissue is needed. Furthermore, local
density distributions of ion channels on the cell membrane will
affect local conduction properties and such effects are also very
hard, if even possible, to represent in the classical models.

1.2. Homogenized Models Are Unsuitable
for Addressing the Ephaptic Coupling of
Cardiac Cells
The electrical conduction of the heart is believed to depend
on direct cell-to-cell contact realized in terms of gap junctions
(e.g., [35–37]). These connections are reduced under heart
failure, resulting in impaired conduction velocity thatmay in turn
increase the probability of arrhythmias (e.g., [37, 38]). However,
even when conduction through gap junctions is significantly
reduced, electrical signals are still conducted (e.g., [39]). This
conduction is believed to rely on ephaptic coupling between
neighboring cells via the extracellular space. The effect depends
on the shape and size of the extracellular space and is thus not
directly amenable to analysis via the homogenized bidomain or
monodomain models.

1.3. Simulating Cell Monolayers is of
Increasing Significance
The number of cardiomyocytes in the human ventricles can be
estimated to be around 8 billion (e.g., [40]), and the number is
close to 4 million for the mouse heart (e.g., [41]). In both cases, a
homogenized model may be justified by the large number of cells
involved. However, for experimental setups with monolayers of
cardiac cells, the number of cells is much lower (hundreds or a
few thousands) and the validity of the homogenized continuum
approach becomes questionable. The EMI model, on the other
hand, is very well suited, since it represents every individual
cell. The ability to faithfully simulate monolayers of cardiac
cells has become very important since it has become possible
to simultaneously measure the transmembrane potential and
the intracellular calcium concentration (e.g., [42]). Therefore, at
least in principle, the inversion of spatial models of monolayers
may be applied to characterize properties of single cells using
monolayer experiments. This is particularly important because
of the development of human induced pluripotent stem cells
(hi-PSC). Based on skin samples, such cells can be used to
derive cardiac cells with certain properties identical to a patient’s
cardiac cells. Therefore, this technology is believed to have great
potential in the development of personalized drugs for rare
diseases (e.g., [43–45]).

1.4. Available Computational Power Allows
for Cell Size Resolution
Twenty-five years ago, the best mathematical model of cardiac
tissue was solved using 257 computational nodes [12, 46]. At that
time, an accurate representation of cardiac tissue in terms of the
representation of individual cells was inconceivable for reasons of
both storage and computing time. This has changed dramatically;
in recent computational studies, 29 million computational nodes
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were used to represent cardiac tissue [27, 47]. The computational
mesh size in these simulations was about 59 µm, which should
be compared with 100 µm, the typical length of a cardiac cell.
This means that current simulators of the electrophysiology of
the heart are, at least in principle, able to resolve features at the
individual cell level.

The main purpose of the present paper is to assess the
computational challenges of the EMI modeling framework.
We will show how the model’s complexity increases as the
number of cardiac cells in the simulations increases and how
the complexity of the membrane model affects the overall
CPU demands.Furthermore, we will demonstrate that the EMI
framework opens the possibility of simulating local properties of
the cell that are hard to represent in homogenized models.

We introduce an operator splitting scheme for the EMI
model and propose and compare three numerical schemes
for the discretization of the resulting partial differential
equations (PDEs): one finite difference-based (FDM) and two
finite element-based (FEM) schemes of various degrees of
complexity, computational cost, and accuracy. We compare
the three schemes numerically in terms of convergence
rates and computational cost. Moreover, to illustrate the
distinctive capabilities of the EMI model, we present new
results for simulating monolayers of cardiac cells with spatially
heterogeneous distributions of ionic channels across the cell
membrane.

Our results demonstrate that the EMI approach is
computationally feasible: We can solve systems relevant for
simulating monolayers of cardiac cells with sufficient resolution.
Moreover, we show, using numerical computations based on
the FDM code, that the computational effort per cell is bounded
independently of the number of cardiac cells, and thus that the
effort increases at most linearly with the number of cells.

1.5. Outline
In the next section, we will present the EMI model and three
numerical methods used to solve the model. Next, we will discuss
the numerical accuracy of the solutions, show convergence under
mesh refinements, and assess the methods’ CPU demands. To
illustrate the ability to model local properties of individual cells,
we present an example showing the difference in the conduction
velocity of cells with uniform and non-uniform distributions
of sodium channels. In the final sections, the results will be
summarized and discussed.

2. MODELS AND METHODS

In this section, we present the EMI model and numerical
methods for solving the corresponding set of equations.

2.1. The EMI Model
Wewill use the EMImodel to simulate collections of cardiac cells.
However, to present the model, it is sufficient to consider the case
of two coupled cells.

We assume that the complete computational domain consists
of intracellular spaces �k

i , with k = 1, 2 in the case of two
cells, that are connected by gap junctions Ŵ1,2 and surrounded

by a connected extracellular space �e. The membrane is defined
to be the intersection between each intracellular domain �k

i
and the extracellular domain and is denoted by Ŵk, while the
remaining boundary of the extracellular domain is denoted by
∂�e. Figure 1 illustrates a two-dimensional (2D) version of this
setup, showing two connected cells surrounded by extracellular
space. In our computations (except in the first simple test case
with an analytical solution) all cells are 3D and the cells can
be connected in one-, two-, or three-dimensional collections. In
one-dimensional strands of cells, the cell coupling is as illustrated
in Figure 1; for two and three-dimensional collections of cells,
the coupling in the y- and z-directions are similar to the x-
coupling illustrated in the figure.

For the case illustrated in Figure 1, the EMI model can be
formulated as follows: Find the extracellular potential ue defined
over �e, the intracellular potentials u

k
i defined over �k

i , and the

transmembrane potentials vk defined over Ŵk for k = 1, 2 and w
defined over Ŵ1,2 satisfying

∇ · σe∇ue = 0 in�e, (1)

∇ · σi∇uki = 0 in�k
i , (2)

ue = 0 at ∂�e, (3)

ne · σe∇ue = −nki · σi∇uki ≡ Ikm atŴk, (4)

uki − ue = vk atŴk, (5)

vkt =
1

Cm
(Ikm − Ikion) atŴk, (6)

n2i · σi∇u2i = −n1i · σi∇u1i ≡ I1,2 atŴ1,2, (7)

u1i − u2i = w atŴ1,2, (8)

wt =
1

C1,2
(I1,2 − Igap) atŴ1,2, (9)

for k = 1, 2. Here, ne is the normal pointing out from�e and n
k
i is

the (outward) normal pointing out from�k
i for k = 1, 2; σi and σe

are the intracellular and extracellular conductivities, respectively;
Ikion represents the ionic current density, which typically depends
on additional state variables such as ionic concentrations; and
Igap represents the gap junction current density. In terms of

units, the potentials ue, u
k
i , v

k, and w are given in mV; the

current densities Ikm, I
k
ion, I1,2, and Igap are given in µA/cm2; the

conductivities σi and σe are given in mS/cm; the capacitances Cm

and C1,2 are given in µF/cm2; length is given in cm; and time is
given in ms. In the following, we will refer to (1–9) as the EMI
model. For brevity, we will write ui in place of uki , v in place of vk,

Iion in place of Ikion and Ŵ in place of Ŵk for k = 1, 2 when context
allows.

2.2. Membrane Model
In our computations, we will consider both a passive and an
active model for the dynamics on the cell membrane between the
intracellular and extracellular spaces. In the passive model, Iion is
given by the linear model

Iion(v) =
1

Rm
(v− vrest), (10)
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FIGURE 1 | Illustration of an idealized computational domain: two idealized

cells �1
i
and �2

i
connected by a gap junction Ŵ1,2 and the surrounding

extracellular domain �e.

where Rm represents the resistance of the passive membrane (in
k�cm2) and vrest denotes the resting potential of the membrane.
In the active model, we let Iion be represented by the action
potential (AP) model of Grandi et al. [48]. In this case, Equation
(6) is replaced by a system of the form

vt =
1

Cm
(Im − Iion(v, s)), (11)

st = F(v, s), (12)

where v represents the membrane potential and s represents
a collection of additional state variables introduced in the
AP model. Furthermore, Iion represents the sum of the ionic
current densities across the membrane through a number of
different types of ion channels, pumps, and exchangers and F(v, s)
represents the ordinary differential equations (ODEs) describing
the dynamics of the additional state variables. The Grandi model
is implemented by defining a membrane potential v and a set
of state variables s for each of the membrane nodes of the
mesh. We let all state variables of the Grandi model, including
the intracellular ionic concentrations, be defined only on the
mesh nodes located on the cell membrane, and we allow the
value of these variables to vary for different membrane nodes
located on the same cell. The values of the state variables are
updated in each time step using an operator splitting scheme
described below. Intracellular and extracellular gradients of the
ionic concentrations are ignored (see comment in section 4).

Finally, we represent the gap junction between neighboring
cells by a passive membrane:

Igap(w) =
1

Rgap
w, (13)

where Rgap represents the resistance of the passive membrane (in
k�cm2). A discussion of the modeling of the gap-junctions is
given in Hogues et al. [1] where a boundary element method is
used to solve a model similar to the system (1–9).

2.3. Operator Splitting Scheme
The ionic current density Iion entering the EMI model through
(6) typically introduce a significant number of additional states

[e.g., as in (11)]. For this reason, we consider an operator splitting
approach to solve the EMI model defined by (1–9).

The system (1–9) is solved by first applying given initial
conditions for v and w. Then, for each time step n, we assume
that the solutions vn−1 and wn−1 are known for t = tn−1 on Ŵ
and Ŵ1,2 respectively. We then find the solutions at t = tn using a
two-step (first-order) operator splitting procedure, but note that
a three-step (second-order) operator splitting could equally well
be used (e.g., [11]).

In the first step, we update the solutions for the membrane
potential by solving a system of ODEs of the form (11) and (12)
over Ŵ with Im set equal to zero. In the following numerical
experiments, the ODE system (11) and (12) is solved by taking
m forward Euler steps of size 1t∗ = 1t/m for each global time
step, though any other suitable ODE scheme could be used.

In the second (PDE) step of the operator splitting procedure,
we solve the linear system arising from an implicit discretization
in time and space of (1–9) with I1ion and I2ion set to zero. For
the discretization in time of (6) and (9), we use an implicit
Euler scheme using the solution from the first (ODE) step of the
operator splitting scheme as the previous state.

When a linear model for Iion is considered, the first (ODE)
step of the splitting scheme is redundant and thus omitted, and
Ikion for k = 1, 2 is kept in the PDE step, altering the linear system
to be solved.

We propose and compare three different approaches for the
spatial discretization of the PDE step in this study, each presented
in the following sections. For the numerical experiments, the
finite difference method (FDM) was implemented directly in
MATLAB, while the finite element methods (FEMs) were
implemented using the FEniCS finite element library [49, 50].
All computations were run on a Dell PowerEdge R430 with
dual Intel Xeon processors (E5-2623 v4 2.60 GHz) and 12 x 32
GB RDIMM; each processor runs four kernels with two threads
each.

2.3.1. Finite Difference Method for Solving the EMI

PDEs
We first consider a finite difference scheme for solving the
PDE step of the EMI model as defined above. To simplify the
notation, we describe here the 2D case only; the extension to three
dimensions is immediate. The spatial discretization employed
here is taken from Tveito et al. [8].

Figure 2 shows the four different types of nodes used in the
computations. Nodes marked by × represent the extracellular
domain. In these nodes, we define a single unknown, ue.
Similarly, nodes marked by ◦ represent the intracellular domain
(either �1

i or �2
i ) and we define a single unknown ui for these

nodes. Nodes marked by⊗ represent the membrane between the
intracellular and the extracellular space (Ŵ = Ŵ1 ∪ Ŵ2). For these
nodes, we define three unknowns: ue, ui, and v, with v = ui − ue.
Similarly, nodes marked by • represent the membrane between
two cells and, for these nodes, we define the three unknowns u1i ,
u2i , and w, with w = u1i − u2i .

We use the notation u
n,j,k
e for the numerical solution of the

extracellular potential, ue, at the point (xj, yk) = (j1x, k1y) at
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FIGURE 2 | Sketch of the computational mesh used for the FDM. Nodes in �e are marked by ×, nodes in �i = �1
i
∪�2

i
are marked by ◦, nodes on the membrane

between the intracellular and the extracellular space (Ŵ = Ŵ1 ∪ Ŵ2) are marked by ⊗, and nodes on the membrane between two cells (Ŵ1,2) are marked by •.

time tn = n1t and use an analogous notation for the numerical
solution of the remaining variables.

We discretize (1) using the finite difference scheme

σ
j+1/2,k
e (u

n,j+1,k
e − u

n,j,k
e )− σ

j−1/2,k
e (u

n,j,k
e − u

n,j−1,k
e )

1x2

+
σ
j,k+1/2
e (u

n,j,k+1
e − u

n,j,k
e )− σ

j,k−1/2
e (u

n,j,k
e − u

n,j,k−1
e )

1y2
= 0,

(14)

where σ
j+1/2,k
e = σe((j + 1/2)1x, k1y). Equation (2) is

discretized similarly, with σe replaced by σi and ue replaced by ui.
On the membrane between the intracellular and extracellular

domains, there are three unknowns and three equations. The first
equation is given directly by (5) and the second equation is given
by a first-order finite difference discretization of (4). Finally, the
third equation is given by an implicit discretization of (6) of the
form

vn,j,k − vn−1/2,j,k

1t
=

1

Cm
I
n,j,k
m , (15)

where I
n,j,k
m is a discrete version of the term ne · σe∇ue from (4)

and vn−1/2,j,k is the solution of the membrane potential from the
first step of the operator splitting procedure.

Similarly, for the nodes on the membrane between the cells,
there are three unknowns and three equations. The first equation
is given directly by (8), the second is a first-order finite difference
discretization of (7), and the third is an implicit discretization of
(9) of the form

wn,j,k
− wn−1,j,k

1t
=

1

C1,2

(

I
n,j,k
1,2 − Igap(w

n,j,k)
)

, (16)

where I
n,j,k
1,2 is a discrete version of the term n2i ·σi∇u2i from (7) and

Igap(w
n,j,k) is a linear function of wn,j,k given by (13). It is worth

mentioning here that if the gap junction dynamics is modeled
using a non-linear model, operator splitting can be applied as was
done for the membrane model.

Two special types of nodes require some special treatment.
The first type is the nodes on the corners of the membrane. For

these nodes, we define two flux terms I
n,j,k
m = ne · σe∇ue, one for

the normal derivative in the x direction and one for the normal
derivative in the y direction, and we use the mean of these two
terms in the equation of the form (15). Furthermore, in the flux
equality Equation (4), we also define two intracellular flux terms,
one for each direction, and let the sum of the two intracellular
flux terms equal the sum of the two extracellular flux terms.

The second special node type is the extracellular nodes located
next to a node on the membrane between two cells. In Figure 2,
these are the two extracellular nodes just above or below Ŵ1,2.
For these nodes, we define a no-flux boundary condition between
the extracellular node and the adjacent node on Ŵ1,2. This is
implemented by defining an extracellular potential for the node
on the end of Ŵ1,2 with a value equal to the extracellular potential
in the node just outside Ŵ1,2.

When considering a linear model for Iion, we skip the first step
of the operator splitting procedure and replace the equation of
the form (15) in the finite difference scheme by

vn,j,k − vn−1,j,k

1t
=

1

Cm

(

I
n,j,k
m − Iion(v

n,j,k)
)

. (17)

A major drawback of the finite difference discretization is
the fact that actual cell geometries are quite complex and
virtually impossible to handle with this method. However,
complex geometries can be resolved by the finite element
method. In the following, we shall propose two different FEM
formulations of the EMI Equations (1–9): the mortar finite
element formulation, where the primary unknowns are the
intra/extracellular potentials, and the H(div)-based finite element
formulation, where the currents are the primary unknowns in the
cells/tissue.

2.3.2. Mortar Finite Element Method for Solving the

EMI PDEs
Mortar finite element methods ([51]; see also [4] for the
application of the method in simulations of cell membranes)
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allow for the coupling of different types of variational problems
posed over non-overlapping domains by weakly (in an integral
sense) enforcing interface conditions on common boundaries.
For the EMI system, the Poisson problems (1) and (2) are coupled
by the conditions (4) and (5) and the conditions (7) and (8).

Let Ve and Vk
i be spaces of functions over �e and �k

i for
k = 1, 2, and let Q be a function space defined over Ŵ =

Ŵ1 ∪ Ŵ2 ∪ Ŵ1,2, to be precisely defined below. For any ψ ∈ Q,
we denote by ψ1, ψ2 and ψ1,2 the restriction of ψ to Ŵ1, Ŵ2, and
Ŵ1,2, respectively. With this notation, given (vk)n and wn at time
level n, at each time level n+ 1 of the temporal discretization, we
aim to find the membrane current density J ∈ Q, defined such
that Jk = Ikm and J1,2 = I1,2 and the extracellular and intracellular

potentials ue ∈ Ve and uii ∈ Vk
i such that:

∫

�1
i

σi∇u1i · ∇φ
1
i dx+

∫

Ŵ1

J1φ1i ds+

∫

Ŵ1,2

J1,2φ1i ds = 0 ∀φ1i ∈ V1
i ,

∫

�2
i

σi∇u2i · ∇φ
2
i dx+

∫

Ŵ2

J2φ2i ds−

∫

Ŵ1,2

J1,2φ2i ds = 0 ∀φ2i ∈ V2
i ,

∫

�e

σe∇ue · ∇φe dx−

∫

Ŵ1

J1φe ds−

∫

Ŵ2

J2φe ds = 0 ∀φe ∈ Ve,

∫

Ŵ1

(u1i − ue)ψ
1 ds−

1t

Cm

∫

Ŵ1

J1ψ1 ds =

∫

Ŵ1

(v1)nψ1 ds ∀ψ ∈ Q,

∫

Ŵ2

(u2i − ue)ψ
2 ds−

1t

Cm

∫

Ŵ2

J2ψ2 ds =

∫

Ŵ1

(v2)nψ2 ds ∀ψ ∈ Q,

∫

Ŵ1,2

(u1i − u2i )ψ
1,2 ds−

1t

C1,2

∫

Ŵ1,2

J1,2ψ1,2 ds =

∫

Ŵ1,2

wnψ1,2 ds ∀ψ ∈ Q.

(18)

Here, the first three equations of the variational problem are
obtained by multiplying (1) and (2) by test functions φe and
φki and integrating over the associated domains while using
conditions (4) and (7) in the integration by parts. The final three
equations are then weakly enforcing the constraints

uki−ue−
1t

Cm
Ikm = (vk)n on Ŵk

i , u1i−u2i−
1t

C1,2
I1,2 = wn on Ŵ1,2

(19)
which are obtained by a backward Euler discretization of (6) and
(9) (cf. Equations 15 and 16) while expanding the transmembrane
potentials of Ŵk

i and Ŵ1,2 at the (n + 1)th temporal level using
definitions (5) and (8), respectively. We note that the definitions
of the transmembrane potentials enter the variational problem
only via (19). Moreover, the membrane current density J can
be interpreted as the multiplier of the augmented Lagrangian
associated with these constraints.

System (18) is the linear part of the operator splitting
procedure described above. The well-posedness of the system
(18) was established in Belgacem [52] or Lamichhane [53] for
the stationary case, where it was shown that a unique solution
exists in the Sobolev spaces Ve = H1

0,∂�e
(�e), V

k
i = H1(�k

i ) and

Q = H−1/2(Ŵ).
To discuss the finite element discretization of the well-posed

problem (18), we denote by Te,h and T
k
i,h

simplicial meshes of the

domains �e and �k
i , respectively. Generally, the mortar finite

element approach allows the tessellations to be independent of
one another and the elements of Ŵh, the triangulation of Ŵ, are
defined in terms of facets of one of the sharing tessellations. For
simplicity, we opt here formeshes such that they share facets onŴ
(see Figure 3). In particular, the neighboring tessellations define
identical meshes Ŵh.

In the following, the discrete finite element subspaces of Ve,
Vk
i , and Q will be constructed from continuous piecewise linear

Lagrange elements. More precisely, we let

Ve,h =
{

v ∈ C(Te,h); v|K = P1(K)∀K ∈ Te,h

}

,

Vk
i,h =

{

v ∈ C(T k
i,h); v|K = P1(K)∀K ∈ T

k
i,h

}

,

Qh =
{

v ∈ C(Ŵh); v|K = P1(K)∀K ∈ Ŵh
}

and thus the space Qh is the trace space of the functions
in Ve,h and Vk

i,h
. We refer to Wohlmuth [54] and references

therein for proof of the numerical stability of this choice of
discretization. We also note that the choice of element for
the space Qh simplifies the implementation, however, dual
Lagrange multipliers (see [53, 54]), though more involved,
are more suitable if static condensation is employed to
solve the linear system arising from (18). Finally, in the
numerical experiments, the scheme was implemented using the
FEniCSii extension [55] of the FEniCS finite element library
[49, 50].

2.3.3. H(div)-Based Finite Element Method for Solving

the EMI PDEs
The mortar finite element formulation defined above
introduces separate function spaces for each of the intracellular
domains �k

i , which adds implementational complexity. As
an alternative approach, we also consider an H(div)-based
finite element method (e.g., [56]) for solving the PDE step
of the operator splitting scheme. This scheme relaxes the
continuity constraint for the potentials throughout the
domain � and introduces potential gradients as additional
variables with the appropriate normal continuity regularity
for the associated currents. Therefore, the interface
continuity conditions for the currents can be handled
seamlessly.
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FIGURE 3 | Schematic representation of finite element meshes considered with the mortar element method: (upper left) the tesselation Te,h of the extracellular

domain, (upper right and bottom left) the tessellations T
1
i,h and T

2
i,h of the intracellular domains, and (bottom right) the membrane discretization Ŵh. In our

implementation, Te,h and T
k
i,h have identical facets on Ŵ and the facets define the finite element cells of Ŵh, see the location of the vertices of the 1D mesh depicted

by black circles.

To this end, we use the intracellular current density vector Ĵi
and the extracellular current density vector Ĵe as additional vector
fields defined over�i and�e, respectively:

Ĵi = −σi∇ui, Ĵe = −σe∇ue. (20)

We let Ĵ denote the extension of Ĵi and Ĵe to�, and assume that Ĵ is
in the space H(div,�), that is, Ĵ is a square-integrable vector field
with square-integrable divergence. Furthermore, denote by u the
extension of ui and ue to �, and analogously for σ . In addition,
we define v̂ as the extension of the transmembrane potential v and
the transcellular potential w and we let Î denote the extension of
Iion and Igap. Thus the variable u is defined over � while v̂ and Î

are defined over the whole interior membrane Ŵ̂ = Ŵ1∪Ŵ2∪Ŵ1,2.
Let ni denote the outward normal, from the intracellular

domains to the extracellular domain, on Ŵk for k = 1, 2 and from
�1

i to �2
i on Ŵ1,2 and, analogously, let ne denote the outward

normal from the extracellular to the intracellular domains. By the
flux continuity conditions (4) and (7), we require that Ĵi · ni =
−Ĵe · ne on Ŵk (k = 1, 2) and analogously on Ŵ1,2. Let v̂

n,∗

denote the membrane potential solution from the ODE step in
the nonlinear case or the membrane solution v̂n,∗ = v̂n−1

h
at the

previous time in the linear (no ODE) case.
With this notation and after an implicit Euler discretization in

time, our H(div)-based finite element scheme at each time step n
reads as follows: For given vn,∗, f n, and gn, find un

h
∈ Uh, Ĵ

n
h
∈ Sh

and v̂n
h
∈ Vh such that

−

∫

�

∇· Ĵnh φ dx =

∫

�

f nφ dx ∀φ ∈ Uh, (21)

∫

�

(

σ−1 Ĵnh · τ −∇· τ unh

)

dx+

∫

Ŵ̂

τ · ni v̂
n
h ds

=

∫

�

gn · τ dx ∀ τ ∈ Sh, (22)

∫

Ŵ̂

(

Cmv̂
n
h +1t(−Ĵnh · ni + αÎ(v̂

n
h))

)

β ds

=

∫

Ŵ̂

Cmv̂
n,∗β ds ∀β ∈ Vh. (23)

In the case of a nonlinear Iion, we set α = 0 and treat the
non-linear term by operator splitting as outlined above.

In the numerical experiments, as for the mortar finite element
method described in section 2.3.2, we let Th denote a simplicial
mesh of � conforming to �k

i (k = 1, 2) and �e such that

Ŵ̂h, the restriction of Th to Ŵ̂, defines a conforming mesh
of Ŵ̂ (of one topological dimension lower). Relative to these
meshes, we define the spaces Sh as the lowest-order Raviart–
Thomas elements defined over Th and Uh as the space of
(discontinuous) piecewise constants defined over Th, and Vh as
the space of (discontinuous) piecewise constants defined over Ŵ̂h.
The Raviart–Thomas elements are, by definition, such that the
normal components of the vector fields are continuous across
cell facets (edges in 2D, faces in 3D) and thus the flux continuity
conditions (4) and (7) hold by construction [56].
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This mixed finite element combination is conforming and our
numerical experiments indicate that the element pairing is stable
and convergent. The scheme can also be compared to the schemes
discussed by Sacco [57]. Based on the interpolation properties
of the lowest-order finite element spaces as described above, we
expect to observe first-order convergence for u, Ĵ, and v̂ in the
respective L2 norms, and first-order convergence for Ĵ in the
H(div) norm. Higher-order convergence in the L2 norm of Ĵ can
be recovered by using the Brezzi–Douglas–Marini [58] H(div)
elements instead of the Raviart–Thomas family.

In the numerical experiments, this scheme was implemented
using the FEniCS finite element library [49, 50].

2.4. Optimal Solvers
A common problem in scientific computing is to solve a linear
PDE defined on a certain geometry. After applying some sort
of discretization characterized by a mesh parameter h, the
remaining problem is to solve a linear system of algebraic
equations. The linear solution process is usually said to be order
optimal provided that the number of floating point operations
(FLOPs) required to solve the problem grows linearly in the
number of unknowns as h decreases. For self-adjoint, linear
PDEs, optimal solvers are well understood (e.g., see the review
papers [59, 60] for the theory of saddle point problems). In
simulating cardiac tissue, optimal solvers exist for both the
monodomain model and the bidomain model (e.g., [11, 61, 62]).

Feynman [63] suggested an alternative, but related, definition
of order optimality: Suppose a numerical method is used to
simulate a small space–time volume of a physical process and the
mesh is refined to convergence. Then computational complexity
should only grow linearly as the space–time volume is increased.
For our application, this definition is very well suited; we consider
a single cell surrounded by an extracellular space, and we carry
out numerical simulations to find the mesh resolution in time
and space necessary to obtain convergence. Then we define a
numerical solution as being order optimal provided that the CPU
efforts only increase linearly in the number of biological cells in
the computation.

3. RESULTS

In this section, we present applications of the methods
introduced above. We start by assessing the accuracy of the
numerical methods for a very simple unitless test problem where
an analytical solution can be enforced using the method of
manufactured solutions. For non-linear membrane dynamics, we
explore convergence under mesh refinements. Next, we consider
the CPU efforts needed to solve the numerical problems arising
from the EMI model and we are particularly interested in the
CPU effort per physical cell to understand the scalability of the
EMI approach. For the FEM, we also show results for cylindrical
geometries. Finally, we investigate the effect of non-uniform
distributions of sodium channels along the cell membrane.

3.1. Model Parameters
In the first unitless test problem we consider a 2D domain
consisting of an extracellular domain and a single cell. In the

remaining simulations, we consider 3D domains consisting of
a number of connected cells and the surrounding extracellular
space. The coupled cells are organized as a single layer where
the cells are connected to each other in a grid in the x and y
directions by gap junctions. The shape and size of the cells and the
extracellular domain will be specified for each simulation below.
We primarily consider cells of the shape illustrated in Figure 4,
where each part of the intracellular domain,�O,�W,�E,�S, and
�N, is shaped as a rectangular cuboid.

The parameter values used in the simulations are given in
Table 1 unless otherwise specified. Moreover, we use the initial
condition w = 0 in all the simulations of connected cells.
When the Grandi model is used to model Iion, we mainly use
the default initial conditions of the Grandi model for v and the
remaining state variables. When a passive model is used for Iion,
we primarily use the initial condition v = vrest.

3.2. Numerical Verification and Accuracy
3.2.1. Linear Ionic Current: Method of Manufactured

Solutions
To evaluate the accuracy of the numerical methods, we construct
an analytical solution for a 2D single-cell version of the EMI

FIGURE 4 | Sketch of the 2D version of a domain in the case of a single cell.

Here, �i = �O ∪�W ∪�E ∪�S ∪�N.

TABLE 1 | Default parameter values used in the simulations.

Parameter Value References

Cm 1 µF/cm2 [64]

C1,2 1 µF/cm2

σi 5 mS/cm [65]

σe 20 mS/cm [7]

vrest −85 mV [66]

Rm 10 k�cm2 [64]

Rg 0.0015 k�cm2 [7]

1x, 1y, 1z 2 µm

1t (PDE part) 0.1 ms

1t∗ (ODE part) 0.001 ms

For the parameters used in the Grandi model, we refer to Grandi et al. [48].
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model with the passive model Iion = v. The analytical solution
of this simple example is constructed using the method of
manufactured solutions (e.g., [67]). We consider a single cell
surrounded by extracellular space:

∇ · σi∇ui = f , in�i, (24)

∇ · σe∇ue = g, in�e, (25)

ue = 0, at ∂�e, (26)

ne · σe∇ue = −ni · σi∇ui, atŴ, (27)

ui − ue = v, atŴ, (28)

Im = −ni · σi∇ui, atŴ, (29)

vt =
1

Cm
(Im − Iion), atŴ. (30)

For this case, we assume that the model is unitless with
parameters σi = σe = Cm = 1, and we define the domain � =

�i ∪�e = [0, 1]× [0, 1], where�i = [0.25, 0.75]× [0.25, 0.75].
We let

f = f (x, y, t) = −8π2 sin(2πx) sin(2πy)(1+ e−t), (31)

g = g(x, y, t) = −8π2 sin(2πx) sin(2πy) (32)

and the analytical solution of (24–30) is then given by

ui(x, y, t) = (1+ e−t) sin(2πx) sin(2πy), (33)

ue(x, y, t) = sin(2πx) sin(2πy), (34)

v(x, y, t) = e−t sin(2πx) sin(2πy). (35)

In the numerical experiments of this test case, we use
1t = 0.01/n, where for the FDM, n equals the number of
intervals in each direction of the spatial discretization of the
domain. In the FEM case, 2n2 is the number of triangles that
constitute the uniformly discretized mesh. We note that the
chosen time step criterion is not necessary for numerical stability
of any of the methods. Rather, it was selected to yield more stable
convergence rates. For this test case, the linear systems arising in
the experiments are solved by direct solvers (LU factorization),
and the errors are computed at time t = 0.1.

Table 2 shows the maximum error of the finite difference
method as the discretization parameters are refined. We observe
that the convergence rates of the intracellular and extracellular
potentials uh and the membrane potential vh are both close to
one, indicating that themaximum (L∞) error of the FDM isO(h).

In Table 3, we report the results obtained with the mortar
FEM. The error of the potentials uh is reported in the broken
H1 norm ‖u − uh‖1, which is natural for the problem [53], the
L2 norm ‖u − uh‖0 to enable comparison with the H(div) FEM,
and the supremum norm ‖u − uh‖∞ to allow for comparison
across different numerical methods. The error in the current
density Jh is measured in the L2 norm rather than the natural
but more involved H−1/2 norm. Finally, we report convergence
of the membrane potential difference ‖v − vh‖∞, where vh is
obtained from the definition ui,h − ue,h = vh using the computed
potentials. We note that the integral norms are evaluated by first
interpolating the error in the space of discontinuous fourth-order

TABLE 2 | Convergence of the finite difference method for the manufactured test

problem with convergence rates in parentheses.

n ‖u− uh‖∞
‖v − vh‖∞

16 3.24E−01 (--) 1.21E−01 (--)

32 1.73E−01 (0.91) 7.24E−02 (0.75)

64 9.32E−02 (0.89) 3.98E−02 (0.86)

128 4.80E−02 (0.96) 2.09E−02 (0.93)

256 2.43E−02 (0.98) 1.07E−02 (0.96)

512 1.22E−02 (0.99) 5.44E−03 (0.98)

The convergence rates in row i are computed by r =
log(Ei/Ei−1)
log(hi/hi−1)

, where Ei is themaximum

error of u or v in row i and hi is the value of h = 1x = 1y = 1001t used in the simulation

in row i.

polynomials. The supremum norms are then computed using
linear polynomials.

Using piecewise linear elements, the observed convergence
rates in the integral norms (see the first three columns ofTable 3),
are 1.0 (optimal) and 1.73 (slightly suboptimal) for the broken
H1 norm and the L2 norm of potentials, respectively, while order
2 can be seen in the L2 norm of the current density. We note
that the suboptimal rate of convergence is due to the error being
dominated by the temporal discretization and decreasing the
time step restores the optimal quadratic convergence. Let us also
note that the quadratic convergence of the current density is
likely related to the fact that Im = 0 in the test case. The observed
order of convergence in the supremum norms is 1.59 and 1.56 for
uh and vh, respectively. However, the error here seems again to be
dominated by temporal discretization, since using 1t = 10−3/n
improves the rates toward 2.0.

Table 4 reports the errors and convergence rates for the
H(div)-based FEM. The error in the computed intracellular
and extracellular potentials uh and the error in the membrane
potential vh are reported in the L2 norm and in the supremum
norm. Furthermore, the error in the computed potential gradient
Ĵh is reported in the L2 and H(div) norms. We observe that
the convergence rate is one both for the error in the L2 norm
for uh and vh and for the H(div) and L2 norms for Ĵh. These
rates are in complete agreement with the theoretical expectations.
In addition, we observe that the convergence of the supremum
norm of uh and vh, computed after a projection onto continuous
piecewise linears, appears to be close to quadratic.

3.2.2. Nonlinear Ionic Current: Mesh Refinement
To investigate the accuracy of the numerical methods using the
Grandi AP model, we compare the solutions obtained from the
numerical methods using different spatial resolutions.

Figure 5 shows the solution of the membrane potential in a
single point on the membrane for the FDM and the H(div)-based
FEM for a number of resolutions. We consider the solution for
two connected cells; and the sizes of the cells and the domain used
in the simulations are given in Table 5.

In the upper panel of Figure 5, the solutions for different
resolutions are almost indistinguishable, but in the lower panel
we focus on a small part of the solution and a difference is
visible for the different resolutions of the FDM. The H(div) FEM
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TABLE 3 | Convergence of the mortar finite element method for the manufactured test problem, with convergence rates in parentheses.

n ‖u− uh‖1 ‖u− uh‖0 ‖J − Jh‖0 ‖u− uh‖
∞

‖v − vh‖
∞

16 1.11E+00 (--) 2.85E−02 (--) 1.45E−01 (--) 6.36E−02 (--) 5.03E−02 (--)

32 5.59E−01 (0.98) 7.37E−03 (1.95) 4.01E−02 (1.86) 2.09E−02 (1.60) 1.82E−02 (1.47)

64 2.80E−01 (1.00) 1.90E−03 (1.96) 1.05E−02 (1.94) 6.73E−03 (1.64) 6.22E−03 (1.54)

128 1.40E−01 (1.00) 4.99E−04 (1.93) 2.65E−03 (1.98) 2.15E−03 (1.65) 2.08E−03 (1.58)

256 7.02E−02 (1.00) 1.38E−04 (1.86) 6.66E−04 (1.99) 6.93E−04 (1.63) 6.90E−04 (1.59)

512 3.51E−02 (1.00) 4.16E−05 (1.73) 1.66E−04 (2.00) 2.31E−04 (1.59) 2.34E−04 (1.56)

TABLE 4 | Convergence of the H(div) finite element method for the manufactured test problem, with convergence rates in parentheses.

n ‖u− uh‖0 ‖
ˆJ −

ˆJh‖0 ‖
ˆJ −

ˆJh‖div ‖v − vh‖0 ‖u− uh‖
∞

‖v − vh‖
∞

16 8.41E−02 (--) 6.49E−01 (--) 6.62E+00 (--) 1.02E−01 (--) 2.73E−02 (--) 2.53E−03 (--)

32 4.21E−02 (1.00) 3.24E−01 (1.00) 3.32E+00 (0.99) 5.13E−02 (1.00) 6.87E−03 (1.99) 6.36E−04 (1.99)

64 2.11E−02 (1.00) 1.62E−01 (1.00) 1.66E+00 (1.00) 2.56E−02 (1.00) 1.72E−03 (2.00) 1.57E−04 (2.02)

128 1.05E−02 (1.00) 8.10E−02 (1.00) 8.31E−01 (1.00) 1.28E−02 (1.00) 4.30E−04 (2.00) 3.76E−05 (2.06)

256 5.27E−03 (1.00) 4.05E−02 (1.00) 4.16E−01 (1.00) 6.41E−03 (1.00) 1.08E−04 (2.00) 8.63E−06 (2.12)

512 2.63E−03 (1.00) 2.03E−02 (1.00) 2.08E−01 (1.00) 3.21E−03 (1.00) 2.69E−05 (2.00) 1.77E−06 (2.29)

solutions are very similar for different resolutions, indicating that
the method is more accurate than the FDM in this case as well.

3.3. CPU Requirements
As mentioned in the section 1, simulation of the
electrophysiology of cardiac tissue is usually based on
homogenized models such as the monodomain model or
the bidomain model. The motivation for this is certainly that
it requires considerably less computing power than the EMI
approach considered here. Therefore, it is very important to
understand the computational complexity of the EMI model to
appreciate the applications in which this approach can be used.

3.3.1. Finite Difference Method
Tables 7, 8 report the CPU times, number of iterations, and
system size for the FDM as the number of cells included in the
simulation is increased. In Table 7, we use the passive model (10)
for Iion, and in Table 8, we use the Grandi AP model. The linear
systems are solved using the BiCGStab method (see [68, 69])
with an incomplete LU preconditioner (e.g., [68]) and relative
tolerance of 10−5 for the true/unpreconditioned (l2) norm of the
residuum. The computations are performed usingMATLAB. The
last column of the tables reports the simulation time per cell
for a single time step and we observe that the simulation time
per physical cell appears to be bounded as the number of cells is
increased.

3.3.2. Finite Element Method
Because of the complexity of the mortar FEM, which introduces a
separate function space for the potential of each cell1 �k

i , we shall
focus on the H(div) FEM in the following.

1The space for intracellular potentials for the case considered with FDM in the

section 3.3.1 would be V1
i × V2

i × · · · × Vn
i where n = 16, 384.

Table 9 shows the CPU time, the number of iterations,
and the dimensions of the finite element spaces for a number
of simulations using the H(div) FEM described in section
2.3.3 with an increasing number of cells and a passive
membrane model. The linear systems are again solved using the
biconjugate gradient stabilized method with an incomplete LU
preconditioner and a convergence criterion as in the FDM case.
The linear solver and the preconditioner were provided by the
PETSc library [70], while the systemwas assembled using FEniCS
[49, 50].

Since the definition of the H(div)-based variational problem
(21) in FEniCS is not immediately obvious, we briefly comment
on some implementational aspects. Recall that the solution is
sought in the space Uh × Sh × Vh, where the functions in Vh

are defined over Ŵ̂h, the discretization of the cell mebranes Ŵ.
However, FEniCS (version 2017.1) does not currently support
mixed spaces with components defined over different meshes,
such as over Th and Ŵ̂h. To bypass this restriction, we
construct the space Vh over all the facets of Th and the excess
degrees of freedom are set to zero in the assembled linear
system. As illustrated above the construction yields the correct
numerical solution. However, the additional degrees of freedom
naturally affect the performance of the linear solvers, since they
increase the computational cost of the matrix–vector product
significantly. FEniCS support for mixed finite element spaces
with components defined over different meshes is currently
under development and we thus expect this issue to be resolved
in future FEniCS releases.

Comparing the results of Table 9 with those of the FDM
(see Table 7), we observe that the CPU times for the FEM
are considerably larger (by a factor of ∼70). While the longer
solution times for the FEM are expected due to the larger linear
systems stemming from themethod (with factors of∼23 and∼14
for the system with or without the additional degrees of freedom
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FIGURE 5 | Membrane potential at the point (112, 24, 16 µm) for the finite difference and the finite element methods for two connected cells for some different values

of 1x = 1y = 1z. The upper panel shows the solution from t = 0 ms to t = 10 ms. In the lower panel, we zoom in on the peak to observe a difference between the

solutions. Note that the scaling of the y axis is different for the two plots in the lower panel and that the FEM solutions for 1x = 4 µm and 1x = 2 µm are almost

indistinguishable in the lower right plot. The parameter values used in the simulations are given in Tables 1, 5, and we apply a 1-ms-long stimulus current of 120

µA/µF for the first 24 µm of the first cell.

TABLE 5 | The cell and domain sizes used in the simulations reported in Figure 5.

Domain Size

�O 36 × 16 × 16 µm

�W,�E 8 × 8 × 8 µm

�S,�N 20 × 8 × 8 µm

�i ∪�e 120 × 48 × 32 µm

The intracellular domain consists of two connected cells, where each cell is a composition

of the domains �O,�W,�E,�S, and �N (see Figure 4). Note that the geometry used

in the remaining 3D simulations is specified in Tables 6, 10.

TABLE 6 | Cell sizes used in the simulations reported in Figures 7–9 and

Tables 7–9.

Domain Size

�O 100 × 12 × 12 µm

�W,�E 4 × 8 × 8 µm

�S,�N 60 × 4 × 8 µm

The intracellular domain consists of a number of connected cells where each cell is

a composition of the domains �O,�W,�E,�S, and �N (see Figure 4). The size of

� = �i ∪ �e is Lx × Ly × Lz , where Lz = 20 µm and Lx and Ly depend on the number

of cells in the simulation. The minimal distance between the intracellular domain and the

boundary of the extracellular domain is 8 µm in both the x and y directions.

introduced in Vh, respectively), the results also point out that the
iterative solver does not perform as well as in the FDM case. More
efficient solution strategies for the system are currently being
investigated.

3.4. Cylindrical Geometry
The somewhat clunky geometry of the cells used above does
not reflect reality very well. Indeed, cardiac cells have cylindrical

TABLE 7 | CPU times for the finite difference method for a passive membrane

model.

Cells Grid points System size nit T (s) T/cell (s)

1 13,167 14,609 44 0.5 0.5

4 37,323 42,563 122 3.9 1.0

16 121,275 141,179 146 7.2 0.5

64 431,739 509,243 198 24.3 0.4

256 1,622,907 1,928,699 256 86.4 0.3

1,024 6,286,203 7,500,923 258 328.7 0.3

4,096 24,736,635 29,578,619 250 1,195.9 0.3

16,384 98,132,859 117,467,003 209 3,696.8 0.2

Here, nit is the number of iterations in the fourth time step of size 1t = 0.1 ms and T is

the solution time for the fourth time step. The parameters used in the computations are

given in Table 1 and the domain sizes are specified in Table 6. For the 25% of the cells

at the center of the domain, we use the initial condition v = 10 mV and, for the remaining

cells, we use the initial condition v = vrest.

shapes, but such shapes are inconvenient to address using
FDMs, and we therefore apply the FEM. Figure 6 shows the
membrane potential and surrounding extracellular potential for
a simulation of two connected cylinders using the parameters
given in Tables 1, 10. We note that the FEM is well suited for
handling cylindrical geometry, and we expect that the method
can also be used to handle the even more complex geometries
that will arise when the T-tubules of ventricular cells (e.g., [71])
are incorporated in the model.

3.5. Ion Channel Density Distribution
Affects Conduction Velocity
As mentioned in the section 1, it is difficult to represent
a non-uniform distribution of ion channels along the cell
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TABLE 8 | CPU times for the finite difference method using the Grandi membrane model for Iion.

Cells Grid points System size nit TODE (s) TPDE (s) T (s) T/cell (s)

1 13,167 14,609 64 2.9 0.7 3.6 3.6

4 37,23 42,563 150 7.6 4.5 12.1 3.0

16 121,275 141,179 210 23.9 12.7 36.5 2.3

64 431,739 509,243 260 85.1 41.5 126.6 2.0

256 1,622,907 1,928,699 318 351.9 109.8 461.7 1.8

1,024 6,286,203 7,500,923 338 1,256.0 442.6 1698.6 1.7

4,096 24,736,635 29,578,619 322 4,512.8 1,515.8 6028.6 1.5

16,384 98,132,859 117,467,003 360 1,7594.6 6,171.9 23,766.5 1.5

Here, T = TODE + TPDE is the solution time for the fourth time step of size 1t = 0.1 ms, where TODE is the solution time for the first (ODE) part of the operator splitting procedure

and TPDE is the solution time for the second (PDE) part of the procedure. Furthermore, nit is the number of iterations needed to achieve convergence of the BiCGStab method used in

the PDE part of the procedure. The parameters used in the computations are given in Tables 1, 6. For the 25% of the cells at the center of the domain, we replace the default initial

conditions of the Grandi model with the values of the state variables obtained when the membrane potential first reached v = −10 mV during the upstroke of the AP in a single-cell

simulation of the model. For the remaining cells, we use the default initial conditions of the Grandi model.

TABLE 9 | CPU times for the H(div) finite element method for a passive membrane model.

Cells dim(Sh ) dim(Uh) dim(Vh|Ŵh ) dim(Mh ) nit T (s) T/cell (s)

1 137,752 66,960 3,216 342,464 74 6.1 6.1

4 399,136 194,880 12,320 993,152 220 49.8 12.5

16 1,317,184 645,120 48,192 3,279,488 458 337.6 21.1

64 4,734,400 2,323,200 190,592 11,792,000 637 1,684.8 26.3

Here, nit is the number of iterations in the fourth time step of size 1t = 0.1 ms and T is the solution time for the fourth time step. Furthermore, T/cell is the solution time per cell for

the fourth time step. The second to fifth columns give the dimensions of the various finite element spaces (see section 2.3.3). Note that Vh|Ŵh refers to the space Vh restricted to the

membrane Ŵh but that Vh is defined in the entire domain in the computations reported in the table. Note also that dim(Mh ) refers to the dimension of the total mixed space Uh×Sh×Vh.

The parameters used in the computations are given in Tables 1, 6. For the 25% of the cells at the center of the domain, we use the initial condition v = 10 mV and, for the remaining

cells, we use the initial condition v = vrest.

FIGURE 6 | Membrane potential and the surrounding extracellular potential of two connected cylinders at time t = 1 ms computed by the H(div) FEM. The parameters

used in the simulations are given in Tables 1, 10 and we apply a stimulus current of 120 µA/µF for the first half of the first cell in the x direction.

membrane using classical homogenized models. This is an
important shortcoming of the classical methods, because a non-
uniform distribution of sodium channels is believed to affect
the conduction velocity. In the EMI modeling framework, the
representation of non-uniform distributions of ion channels is
straightforward.

Figure 7 shows the solutions of two simulations of a collection
of 30 × 5 cells with different distributions of the sodium
channel conductance, gNa. In the left panel the value of gNa
is constant on the entire membrane, while, in the right panel,
gNa is zero over a large part of the membrane and only non-
zero on �W and �E, that is, near the ends of the cell in the x
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direction. The mean value of gNa over the cells is the same in
the two simulations. We observe that the conduction velocity
is increased for the case with a varying value of gNa compared
to the case with a constant value. The conduction velocities
reported in the figure are computed from the 10th and 20th
cells in the third row in the y direction, and are defined as the
distance between the cell centers divided by the time between
each of the two cell centers reaches a membrane potential of
v = 0 mV.

TABLE 10 | Cell and domain sizes used in the simulations of the two connected

cylinders in Figure 6.

Length of �O 100 µm

Radius of �O 10 µm

Length of �W and �E 4 µm

Radius of �W and �E 8 µm

Domain (�i ∪�e) 228 × 40 × 40 µm

The intracellular domain consists of two cells, where each cell is a composition of three

cylinders �W, �O, and �E.

Figure 8 shows a more detailed view of the two cells at the
center of the domain. Here, we observe that the conduction
velocity across the first part of the cell appears to be higher for
the case with a constant value of gNa than for the varying case,
but that the traveling wave moves faster across the gap junction
for the case with a varying gNa than for the constant case, leading
to an overall increased conduction velocity for the varying
case.

This effect is studied more closely in Figure 9, which shows
the activation times and conduction velocities along the length
of two cells in a similar pair of simulations. The gap junction
between the two cells is located at x = 548 µm, and
we observe that there is a delay of about 0.1 ms between
when the membrane on each side of the gap junction is
activated. The delay appears to be slightly longer for the
case with a constant gNa compared to the varying case. We
also observe that, overall, the wave uses less time to activate
the two cells for the case with a varying gNa than for the
constant case, consistent with the results of Figures 7, 8. In
addition, we observe that the shape of the activation curve
is different in the two cases. In the case with a constant gNa

FIGURE 7 | Intracellular potential at four points in time for a collection of cells with two different distributions of the sodium channel conductance. In the case of a

constant gNa, the value is gNa = 23 mS/µF on the entire membrane, and in the case of a varying gNa, the value is gNa = 783 mS/µF on �W and �E and zero

elsewhere. The solutions are obtained using the FDM and the parameters used in the simulations are given in Tables 1, 6, except that we use 1t = 0.01 ms. We

apply a 1-ms-long stimulus current of 120 µA/µF for the 2 × 2 cells in the lower left corner of the domain.
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FIGURE 8 | Intracellular potentials at four points in time for the two cells at the center of the domain from the simulation in Figure 7. The plots in the upper panel

show the solutions at the last point in time before the intracellular potential at the start of the first cell is first positive. Because the conduction velocity is different in the

two cases, this occurs at two different points in time, tc and tv, for the cases with a constant gNa and a varying gNa, respectively. The next plots show the solutions at

times 0.02, 0.06, and 0.2 ms after tc and tv.

FIGURE 9 | Activation times and conduction velocities along the length of two cells in a simulation of 10 × 1 cells with different distributions of gNa, similar to the

simulations shown in Figure 7. The blue line shows the points in time when the membrane nodes corresponding to each x-value along cells number five and six first

reach a membrane potential of 0 mV. The orange line shows the corresponding conduction velocity along the two cells, computed from a piecewise second order

polynomial approximation of the activation curves. The parameters used in the simulations are given in Tables 1, 6, except that we use 1t = 0.0005 ms. Note that the

values of the left y-axis (representing activation time) is different in the two plots, but that the scaling of the axis is the same in both plots.

distribution, the activation curve becomes steeper toward the
end of the cells, corresponding to a decreasing conduction
velocity along the cell lengths. For the varying case, however,

the activation curve flattens out toward the end of the cells,
corresponding to an increased conduction velocity toward the
cell ends.
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4. DISCUSSION

As described above, the classical models of cardiac tissue are
founded on homogenization of the tissue and the resulting
models therefore assume that the extracellular space, the cell
membrane, and the intracellular space exist everywhere. This
leads to tractable computing problems that have provided
insights into important applications such as the propagation
of an electrochemical wave, cardiac arrhythmias, the effect of
defibrillation, the onset of cardiac waves, and the effect of diverse
drugs. However, in some cases, it is of interest to see the dynamics
surrounding individual cells as part of the tissue, which is hard to
do using homogenized models. It is also of interest to be able to
change local properties of the tissue that are difficult to represent
in homogenized models.

In the present report, we focused on the computational
challenges of a different approach in which separate geometrical
domains for the extracellular space, the cell membrane, and the
intracellular domain represent the tissue; we refer to this as the
EMI model. Clearly, the computational problems arising from
the EMI model are much more challenging than for traditional
models, but we have shown that, for some applications, the more
detailed model is feasible. In particular, we have shown that
the EMI model is suitable for monolayers of cells. Furthermore,
we have demonstrated that the EMI framework allows the
representation of local properties of cells that are hard to
represent in classical homogenized models of cardiac tissue.

4.1. Membrane Dynamics
The dynamics of the cell membrane are absolutely critical for the
functioning of the cell and have been subject to intense studies
for centuries. A wide variety of models are available through the
open CellML library [72]. In our computations, we have used
the ventricular cell model by Grandi et al. [48]. That model
consists of a system of 39 ODEs defined on every computational
node of the cell membrane and is believed to provide an
accurate representation of the cell’s action potential. From a
computational point of view, we could have used numerous
other models (e.g., [73–80]) with comparable complexity of the
membrane computations. Common to all these models is that the
ion currents are represented using models where the ion channel
density must be specified. When the models are used as part of
a monodomain or bidomain model, the channel density is most
conveniently treated as a constant for each cell, but in the EMI
model, the ion channel density associated with any of the currents
can be specified as a function of space on the cell membrane.
We noted in Figure 7 that a non-uniform distribution of sodium
channels significantly affects the tissue’s conduction velocity.

4.2. Numerical Accuracy
The numerical accuracy of the discretizations considered
was assessed using a single-cell problem (24–30) and the
method of manufactured solutions. As seen in Tables 2–4,
all the discretizations provide converging numerical solutions.
However, taking the L∞ norms of the computed potentials
for comparison, there are considerable differences in the
convergence properties of the methods.

The convergence of the FDM discretization is linear and this
method is the least accurate. The first order convergence of the
FDM is to be expected, since all internal boundary conditions
are approximated using first-order finite differences. Compared
to the FDM, the mortar FEM yields solutions with considerably
smaller error and the observed rates are about 1.5. It should
be noted that, on a given grid, the methods lead to identical
numbers of unknowns. The H(div) FEM is the most accurate
among the methods considered with errors much smaller than
those of themortar FEM. As noted in section 3.3, the H(div) FEM
leads to larger linear systems than the other two methods do (see
Tables 7, 9). Finally, let us note that the manufactured solution
employed was particularly simple and thus the numerical results
obtained may not be universally valid.

4.3. CPU Requirements
The CPU efforts needed to solve the system (1–9) using the
FDM or the FEM are given in Table 7 (FDM, passive membrane
dynamics), Table 8 (FDM, membrane dynamics given by the
Grandi model), and Table 9 (H(div) FEM, passive membrane
dynamics). We observe that, for the FDM, the CPU efforts per
cell seem to be bounded independently of the number of cardiac
cells. This result implies that the solver is optimal in the sense
defined above.When the Grandi model is used for the membrane
dynamics, the CPU efforts per time step per cell are around 1.5 s.
This enables us to simulate 16,384 cells, which defines a linear
system with over 117 million unknowns. Since the CPU efforts
per cell seem to be bounded independent of the number of cells,
the CPU efforts will not explode as more cells are added to the
computations. With proper parallelization strategies, it should be
possible to simulate huge numbers of cells. In fact, the mouse
heart, with around 4 million cells, may be within reach; with a
computer that is 1,000 times faster (for large problems) than the
one we used, it would require about one week to perform 100
time steps for 4 million cardiac cells.

We observe from Tables 8, 9 that the FDM method in the
current implementation is significantly faster than the FEM code
even though the FDM code is implemented in Matlab. It has
proven to be difficult to derive optimal preconditioners to be used
for the FEM, but we hope to be able to improve this part of the
code in the future.

4.4. Cell Geometry
In the present report, we have used very simple geometries to
represent the cells. We have assumed that the geometries are
simple rectangular cuboids or have cylindrical shapes. However,
real cardiac cells have muchmore complex geometries and future
work will investigate the effect of the geometry on the solutions.
Of particular importance is the effect of T-tubules in ventricular
cells and how they change during illness (e.g., [71, 81]). The
diameter of the T-tubules ranges from 20 to 450 nm (see [82])
and therefore a very fine computational mesh would be needed
to represent these invaginations. Presently, we have run the FDM
code with spatial resolution of 5 nm (in the case of only three
coupled cells), so including T-tubules is within reach for the FDM
code but not for the FEM code.
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4.5. Intracellular Calcium Dynamics
The focus of the present report has been to show that it
is possible to simulate the electrical potential of cardiac cells
based on explicit representation of the cells. We have focused
on models that represent the membrane dynamics in terms
of interchange over the cell membrane and we have ignored
the spatial gradients of the ionic concentrations away from
the cell membrane. Certainly, this is a major simplification;
the intracellular concentration of calcium is essential and can
be modeled using partial differential equations defined in the
intracellular domain, see e.g. [83–86]. In Nivala et al. [83], a
model based on Calcium released units (CRUs) is presented and
the number of CRUs for a single cell used in the computations
is typically ∼20,000. In our model, a cardiac cell with a volume
of 30 pL and a typical mesh length of 1 µm would consist
of 30,000 computational blocks within each cell. A reasonable
representation of the CRUs in the EMI model is therefore within
reach.

4.6. Conduction Velocity
As mentioned above, the conduction velocity is essential for the
stability of the electrochemical wave underpinning the rhythmic
contraction of the cardiac muscle. In numerical computations,
the distribution of ion channels is usually assumed to be constant,
but experimental evidence suggests that the ion channel density is
non-uniform along the cell membrane. For instance, the density
of sodium channels is believed to be much higher closer to the
intercalated discs separating individual cells (e.g., [87]). The
difference between uniform and non-uniform distributions of
sodium channels was addressed in Figures 7–9. We observed
that the conduction velocity was significantly lower in the case
of a constant distribution of the sodium channels compared to
the case of a non-uniform distribution. Interestingly, we also
observed (Figure 9) that for the uniform case, the conduction
velocity decreased along the cell, whereas it increased in the case
of non-uniform distribution. Again, such effects are difficult to

observe in the classical models (monodomain, bidomain). This
effect deserves closer scrutiny and the EMI model provides a
suitable framework for such studies.

5. CONCLUSION

Local properties of cells and cell membranes are difficult to
represent in standard (bidomain, monodomain) models of
excitable tissue. In this paper, we have demonstrated that a more
accurate model and method can be used. In our approach, every
cell is represented in terms of its surrounding extracellular space,
the cell membrane, and the intracellular space. The extracellular
and intracellular spaces are represented using a mesh of length
of 2 µm and the membrane is represented as the intersection
of the extracellular and intracellular meshes. We have seen that,
with a finite difference method using a very simple geometry, the
computations are quite efficient and the computational demands
increase linearly in the number of physical cells. We have
solved for up to 16,384 cells using this method. More complex
geometries must be represented using a method allowing flexible
grids and, in the present paper, we have shown the results

for two variants of the finite element method. Although, the
solution process of the finite element equations is much more
time-consuming, the results indicate that more complex cell
geometries can, in fact, be handled.
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