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Neural basis for behavioral 
plasticity during the parental 
life-stage transition in mice
Kazunari Miyamichi *

RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan

Parental care plays a crucial role in the physical and mental well-being of 
mammalian offspring. Although sexually naïve male mice, as well as certain 
strains of female mice, display aggression toward pups, they exhibit heightened 
parental caregiving behaviors as they approach the time of anticipating their 
offspring. In this Mini Review, I  provide a concise overview of the current 
understanding of distinct limbic neural types and their circuits governing both 
aggressive and caregiving behaviors toward infant mice. Subsequently, I delve 
into recent advancements in the understanding of the molecular, cellular, 
and neural circuit mechanisms that regulate behavioral plasticity during the 
transition to parenthood, with a specific focus on the sex steroid hormone 
estrogen and neural hormone oxytocin. Additionally, I  explore potential sex-
related differences and highlight some critical unanswered questions that 
warrant further investigation.

KEYWORDS

hypothalamus, preoptic area, oxytocin, paternal behaviors, estrogen

Introduction

The adult brain possesses neuroplasticity, enabling it to adapt behaviors in response to 
specific life-stage demands. For instance, male laboratory mice, and certain strains of female 
mice, may exhibit aggressive behaviors leading to the killing of pups. Infanticide is thought to 
confer an evolutionary advantage by reducing potential competition for limited resources and 
thereby enhancing the survival prospects of the offender’s offspring (Lukas and Huchard, 
2019). Infanticide can also expedite the mating of males with the mothers of the victim (Lukas 
and Huchard, 2014), as the reproductive cycle is typically suppressed during lactation. 
However, as the time approaches when animals anticipate their offspring, infanticide is 
suppressed and caregiving behaviors toward infants are greatly facilitated (Elwood, 1994; 
Dulac et al., 2014). In rodents, caregiving behaviors include nest building, retrieving scattered 
pups to a nest for protection from environmental hazards, and crouching over them for 
thermoregulation. Among these behaviors, pup retrieval has been widely used as a quantitative 
hallmark of parental behaviors (Yoshihara et al., 2018). Decades of research in rodents have 
indicated that aggressive and caregiving behaviors toward pups are regulated by distinct limbic 
neural types and circuits.
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Limbic neurons responsible for either 
parental or infanticidal behavior

The pioneering work of Numan (1974) established the critical role 
of the medial preoptic area (MPOA) in maternal behaviors in rats. 
Subsequent research has underscored the importance of the MPOA, 
particularly its central subdivision, in driving both maternal and 
paternal caregiving behaviors in mice (Tsuneoka et al., 2013). Wu et al. 
(2014) conducted a detailed examination of the MPOA at the level of 
molecularly defined cell types. This work led to the identification of 
galanin-expressing neurons (MPOAGal neurons), which showed 
frequent c-Fos expression, a proxy for neural activation, following 
maternal behaviors. Ablation of MPOAGal neurons resulted in the 
severe impairment of parental behaviors in both sexes. Conversely, 
optogenetic stimulation of these neurons in sexually naïve males 
effectively suppressed infanticidal behavior. Subsequent research by 
Kohl et  al. (2018) employed rabies-virus-mediated transsynaptic 
tracing (Miyamichi et al., 2013) and its derivative method known as 
cTRIO (Schwarz et al., 2015) to dissect the input and output neural 
circuits associated with MPOAGal neurons. The findings revealed 
extensive reciprocal connectivity between MPOAGal neurons and 
various limbic structures, including those involved in transmitting 
pheromone signals originating from the vomeronasal organ, secreting 
neural hormones such as oxytocin and vasopressin, and mediating 
monoaminergic signals such as dopamine. Moreover, it was found that 
MPOAGal neurons consist of several distinct projection types that 
target different brain regions, such as the ventral tegmental area 
(VTA) and the medial amygdala (MeA). These MPOAGal neuron 
subtypes receive quantitatively varying inputs and may play a specific 
role in different aspects of parental behaviors, including pup-directed 
motor actions, the motivation for parental behaviors, and the 
inhibition of social intersections with adult conspecifics. Therefore, 
MPOAGal neurons act as a hub of parental behavioral regulation in 
both male and female mice (Figure 1).

Earlier research suggested the maternal behavior-facilitating 
effects of an estrogen surge during pregnancy on the function of the 
MPOA in female rats (Siegel and Rosenblatt, 1975). Inspired by this 
line of work, two independent studies demonstrated the pivotal role 
of MPOA neurons expressing estrogen receptor type 1 (MPOAEsr1 
neurons) in the initiation and maintenance of maternal caregiving 
behaviors in mice (Fang et al., 2018; Wei et al., 2018). Specifically, 
MPOAEsr1 neurons were primarily GABAergic, exhibited heightened 
activity during the approach to pups and the initiation of pup 
retrieval, and induced pup retrieval when activated optogenetically 
(Fang et al., 2018). MPOAEsr1 neurons predominantly projected to 
non-dopaminergic (likely GABAergic) neurons within the VTA and 
enhanced maternal behaviors, presumably through the disinhibition 
of dopaminergic VTA neurons (VATDA neurons; Fang et al., 2018). 
Consistent with this perspective, VTADA neurons have been shown to 
display transient activity during pup retrieval and to be capable of 
encoding signals related to social rewards, thereby facilitating the 
efficient learning of pup retrieval behaviors in female mice (Xie et al., 
2023). The acute silencing of VTADA neurons during pup retrieval 
results in a significant delay in the execution of these behaviors, 
reflecting the cumulative history of VTADA neuron activity. These 
lines of evidence lend support to the role of the MPOAEsr1 → VTADA 
circuity in maternal caregiving behaviors in mice (Figure 1); however, 
the function of this pathway in male mice remains elusive.

The MPOA plays a critical role in both parenting and sexual 
behaviors, as well as in the regulation of essential physiological 
functions such as body temperature control, thirst, and sleep 
(Zimmerman et  al., 2017; Tan and Knight, 2018; Tsuneoka and 
Funato, 2021). The neural circuits governing these functions are likely 
to be composed of neurons with distinct genetic identities. Moffitt 
et  al. (2018) utilized single-cell RNA sequencing and multiplexed 
error-robust fluorescence in situ hybridization to reveal that MPOAGal 
and MPOAEsr1 neurons overlapped and that each heterogeneous 
population encompassed a dozen transcriptome types. By combining 
cell-type classification and the detection of the c-Fos transcript, they 
suggested that a calcitonin receptor (Calcr) expressing MPOA neurons 
(MPOACalcr neurons) were predominantly active during parental 
behaviors in both males and females. Approximately 70% of MPOACalcr 
neurons overlap with MPOAEsr1 neurons, and the silencing of 
MPOACalcr neurons impairs maternal caregiving behaviors, whereas 
the chemogenetic activation of these neurons can suppress infanticide 
in sexually naïve male mice (Yoshihara et al., 2021). Additionally, 
when the Calcr gene was selectively suppressed in the MPOA, it 
resulted in partial impairment of maternal behaviors in risky 
environments. Collectively, MPOACalcr neurons represent the most 
clearly defined population for parental behaviors to date (Figure 1). It 
is worth noting that the potential relationship between the projection-
based classification of MPOAGal neurons (Kohl et al., 2018) and their 
transcriptome types (Moffitt et al., 2018) remains uncertain and thus 
a subject for future investigation.

Olfactory signals play a critical role in pup-directed behaviors in 
rodents. The surgical or genetic elimination of the function of the 
vomeronasal organ, which is responsible for the detection of 
pheromonal signals in mice, has been shown to reduce infanticide in 
sexually naïve males, suggesting that the vomeronasal signals facilitate 
infanticide (Tachikawa et al., 2013; Isogai et al., 2018). Among the 
brain regions transmitting pheromonal signals, Tsuneoka et al. (2015) 
ascertained that c-Fos expression in the rhomboid nucleus of the bed 

FIGURE 1

Limbic neurons responsible for infanticide and parental behaviors in 
mice. The distinct neural subtypes accountable for infanticide are 
depicted in magenta, whereas those fostering parental behaviors are 
illustrated in blue. Refer to the text for abbreviations and detailed 
information on connectivity.
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nuclei of the stria terminalis (BSTrh) precisely reflected infanticidal 
motivation. Lesions in the BSTrh have been reported to inhibit 
infanticide in sexually naïve male mice. Subsequently, Chen et al. 
(2019) documented that vGAT-expressing GABAergic neurons in the 
medial amygdala posteroventral subdivision (MeApdvGAT neurons) 
could elicit infanticidal behaviors in male mice, but not in females. 
Autry et  al. (2021) reported that urocortin-3 (Ucn3)-expressing 
neurons in the hypothalamic perifornical area (PeFAUcn3 neurons) 
became active during attacks on infants in both males and females. 
These neurons received input from brain regions associated with 
pheromonal signals and stress. Functional manipulations of PeFAUcn3 
neurons have established their role in facilitating infanticide in both 
sexes, with notably vigorous attacks occurring when axonal 
projections of PeFAUcn3 neurons to the amygdalohippocampal area 
(AHi) are optogenetically stimulated. Indeed, AHi contains excitatory 
projection neurons to the MPOA (AHi→MPOA neurons) that exhibit 
activity in male mice during social interactions with pups and promote 
infanticide when chemogenetically activated (Sato et  al., 2020). 
Furthermore, utilizing an outbred strain known as Rockland-Swiss 
mice, whose virgin females manifest a heightened propensity for 
infanticide, Mei et  al. (2023) specifically examined the neural 
underpinnings of female infanticide. Their study disclosed that Esr1-
expressing neurons in the principal nucleus of the BST (BSTprEsr1 
neurons) were imperative for the manifestation of, and could induce, 
infanticide in female mice. Taken together, these lines of evidence 
indicate the existence of a unique set of limbic neuron types that 
specifically regulate infanticidal behaviors in mice (Figure 1; Inada 
and Miyamichi, 2023).

Hormonal regulations of parental 
behaviors in mice

How are infanticidal and parental behaviors appropriately 
regulated during the parental life-stage transition? Sex hormones 
exert a profound influence on reproductive and parental behaviors. 
Specifically, estrogen, a sex hormone responsible for the 
development and regulation of various reproductive functions, 
interacts with estrogen receptors, thereby modulating the expression 
of numerous genes (Knoedler et  al., 2022). Maternal caregiving 
behaviors can be triggered by a substantial increase in estrogen and 
progesterone levels during pregnancy. As mentioned above, 
MPOAEsr1 neurons [which also express progesterone receptor (Pgr)] 
facilitate maternal behaviors. Do the steroid hormone receptors 
indeed function in these neurons? This question was addressed by 
Ammari et al. (2023) through their investigation of MPOA-specific 
conditional knockout (cKO) of Esr1 or Pgr. Their study established 
essential roles of Esr1 and Pgr in the pregnancy-induced 
enhancement of pup retrieval in expectant mother mice. Notably, 
substantial overlap was observed between MPOAGal and MPOAEsr1 
neurons (Moffitt et al., 2018), and selective cKO of either Esr1 or Pgr 
within the MPOAGal neurons reproduced the effects observed in 
pan-MPOA cKO mice. Thus, the proper expression of maternal 
behaviors in female mice requires the signaling of both estrogen and 
progesterone receptors within the MPOAEsr1∧Gal neurons. Pregnancy 
induces substantial changes in the electrophysiological properties in 
an Esr1- and Pgr-dependent manner. During the late pregnancy 
period, MPOAGal neurons exhibit a long-lasting reduction in 
baseline activity and an increased level of excitability. At the 

individual cellular level, the representation of pup retrieval within 
MPOAGal neurons becomes sparser and more distinguishable from 
other non-pup-related signals, although whether this effect is 
mediated by Esr1 or Pgr remains elusive. Taken together, these 
findings by Ammari et  al. (2023) illustrated that sex steroid 
hormones reorganize the parental behavioral center, specifically the 
MPOAEsr1∧Gal neurons, to enhance the efficient execution of parental 
behaviors during the maternal life-stage transition. Whether a 
similar mechanism plays a role during the paternal transition in 
male mice remains an open question.

As previously mentioned, an additional population expressing 
Esr1, namely the BSTprEsr1 neurons, exert opposing control to trigger 
infanticide in female mice, which should be suppressed during the 
maternal transition. Notably, MPOAEsr1 and BSTprEsr1 neurons 
communicate with each other via mutually inhibitory monosynaptic 
connections (Mei et  al., 2023), as demonstrated through 
channelrhodopsin 2-assisted circuit mapping (CRACM; Petreanu 
et  al., 2007). Terminal activation of BSTprEsr1 neurons induces 
inhibitory postsynaptic currents in the majority of MPOAEsr1 neurons, 
and vice versa. These antagonistic connections hold functional 
significance, as optogenetic suppression of MPOAEsr1 → BSTprEsr1 
neuron connections leads to infanticide, whereas optogenetic 
activation of the same pathway inhibits infanticide. Similarly, virgin 
female mice display inhibited or activated infanticidal behaviors when 
BSTprEsr1 → MPOAEsr1 neuron connections are optogenetically 
suppressed or activated, respectively. At the population level, BSTprEsr1 
neurons become active during hostile investigation and infanticidal 
episodes, whereas MPOAEsr1 neurons become active during pup 
retrieval. Upon the maternal life-stage transition, the excitabilities of 
MPOAEsr1 and BSTprEsr1 neurons undergo substantial changes. In 
mothers, MPOAEsr1 neurons become more excitable, whereas BSTprEsr1 
neurons become significantly less excitable. The report by Mei et al. 
(2023) collectively illustrated the life-stage-associated alteration of 
excitability in antagonistic circuits that mediate infanticide and 
maternal care in female mice. The exact function of estrogen receptors 
in BSTprEsr1 neurons remains uncertain and is thus a subject for 
future study.

In addition to steroid hormones, peptidergic hormones may 
contribute to the parental behavioral transition. Particularly, oxytocin 
(OT), a nonapeptide hormone produced by OT neurons in the 
paraventricular (PVHOT neurons) and supraoptic (SO) hypothalamic 
nuclei, plays a pivotal role in regulating sexual, maternal, and social 
behaviors, in addition to its classical functions in uterine contractions 
during parturition and milk ejection during lactation (Nishimori 
et al., 1996; Macbeth et al., 2010; Froemke and Young, 2021; Yukinaga 
et  al., 2022). Intracerebroventricular (Pedersen et  al., 1982) and 
intraperitoneal (Marlin et al., 2015) administrations of OT have been 
shown to trigger caregiving behaviors in virgin rodent females, in 
addition to the optogenetic activation of PVHOT neurons (Marlin 
et al., 2015; Scott et al., 2015). By contrast, loss-of-function of OT or 
its receptor, OTR, shows relatively minor phenotypes in maternal 
caregiving behaviors (Nishimori et  al., 1996; Young et  al., 1996; 
Macbeth et al., 2010), except in situations of food scarcity and high 
stress (Ragnauth et al., 2005). Brain region-specific cKO of the OT 
gene within the PVH and SO further corroborates its dispensability 
in maternal caregiving behaviors (Hagihara et al., 2023). Collectively, 
these studies suggest that OT signaling can facilitate the onset, but to 
a lesser extent, the maintenance of maternal care (Yoshihara 
et al., 2018).
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The modulation of the sensory system stands out as a critical 
mechanism through which OT exerts its influence on maternal 
behaviors. For instance, the auditory system plays an important role in 
mediating the distinct vocalizations emitted by offspring to facilitate 
maternal behaviors. Cohen et  al. (2011) reported the experience-
dependent and pup-odor-induced alterations of neural responses within 
the mother’s primary auditory cortex, resulting in an elevated sensitivity 
to the pup’s ultrasonic vocalizations. The pairing of pup vocalization 
with OT administration produces enduring changes in neural responses, 
augmenting excitatory responses by adjusting the local excitatory/
inhibitory (E/I) balance (Marlin et al., 2015; Schiavo et al., 2020). Virgin 
females can employ their visual system to acquire pup retrieval behaviors 
from experienced mother mice, during which time, the activation of 
PVHOT neurons and concurrent modulation of auditory sensitivity 
occurs (Carcea et al., 2021). Furthermore, pup vocalization can elicit an 
enduring activation of PVHOT neurons through a specific thalamic 
neural circuit (Valtcheva et al., 2023). These studies have collectively 
established connections between cellular and synaptic properties, the 
physiological impacts of OT, and the onset of pup retrieval. In addition, 
while the precise implications for maternal behaviors remain unclear, it 
is well established that OT can modulate various other sensory systems, 
including the olfactory cortex (Oettl et al., 2016).

In contrast to the relatively moderate modulatory roles of OT in 
female mice, Inada et al. (2022a) demonstrated that OT released from 
PVHOT neurons is indispensable for paternal caregiving behaviors in 
male mice. They examined the PVH-specific cKO of the OT gene or 
the genetic removal of PVHOT neurons, which resulted in a significant 
decrease in the number of pups retrieved and the duration of paternal 
care exhibited by male mice. The chemogenetic activation of PVHOT 
neurons effectively suppresses infanticidal behaviors and, in turn, 
triggers caregiving behaviors in sexually naïve male mice, and this 
effect is dependent on OT. This activation of PVHOT neurons heightens 
the activity of MPOACalcr neurons, which promote caregiving 
(Figure  1) while concurrently suppressing the activity of PeFAUcn3 
neurons, which promote infanticide. Another potential downstream 
target of PVHOT neurons is the infanticide-promoting AHi→MPOA 
neurons, as OT can suppress these neurons by facilitating local 
inhibitory neurons expressing OTRs (Sato et al., 2020). Therefore, 
PVHOT neurons play a pivotal role in coordinating various limbic 
neural populations to favor the execution of parental behaviors in 
male mice. Notably, although the activity dynamics of PVHOT neurons 
during paternal behaviors remain largely unknown in mice, biparental 
male mandarin voles display time-locked activities of PVHOT neurons 
to each episode of paternal caregiving behaviors, such as pup retrieval 
and sniffing of pups (He et al., 2021).

As a potential mechanism underlying the activation of PVHOT 
neurons in father mice, Inada et  al. (2022a) demonstrated that 
individual PVHOT neurons in father mice receive a quantitatively 
greater amount of excitatory synaptic input from specific hypothalamic 
nuclei, including the lateral hypothalamus (LHAvGluT2 neurons). This 
insight was gained utilizing rabies virus-based transsynaptic tracing 
(Miyamichi et al., 2013) and CRACM (Petreanu et al., 2007). The 
heightened LHAvGluT2 → PVHOT neuron connectivity appears to have 
functional significance, as chemogenetic activation of LHAvGluT2 
neurons suppresses infanticide in a downstream PVHOT neuron-
dependent manner. Taken together, these findings suggest that the 
promotion of paternal caregiving behaviors hinges on structural 
plasticity within the hypothalamus of fathers, resulting in the 
increased excitability of PVHOT neurons (Figure 2).

Perspective

As outlined above, recent research in mice employing a viral-
genetic approach has elucidated that estrogen and OT exert their 
effects on specific limbic neural types, thereby modulating circuit 
functions to suppress infanticide and promote parental behaviors. 
Notably, the extent to which females and males depend on 
estrogen and OT to trigger parental behaviors appears to differ. 
In female mice, both estrogen and OT can facilitate maternal 
behaviors, with estrogen playing a more pivotal role. This can 
account for the relatively modest reliance of female mice on OT 
for maternal caregiving behaviors per se, despite the critical role 
of OT for milk ejection (Hagihara et al., 2023). Conversely, the 
involvement of estrogen-dependent mechanisms in male mice 
remains uncertain, though it is unlikely to be  indispensable 
(Wynne-Edwards and Timonin, 2007). Instead, they rely more 
significantly on OT to express paternal caregiving behaviors 
(Inada et al., 2022a).

While prior research has proposed that paternal caregiving 
behaviors may be  facilitated by mating, cohabitation with a 
female, and/or repeated exposure to pups (vom Saal, 1985; 
Elwood, 1994; Cai et  al., 2021), the specific triggers for the 
sufficient activation of OT neurons and their input structural 
plasticity remain open questions. Moreover, although OT-induced 
paternal behaviors are associated with the activation of MPOACalcr 
neurons, the mechanisms through which OT exerts its facilitatory 
effects on paternal behaviors, including brain regions and 
receptor mechanisms, require more elucidation (Figure  2). 
Related to this issue, it is worth noting that the OTR-based 
modulation of inhibitory neurons has been reported in both the 
primary auditory cortex (Marlin et al., 2015) and AHi (Sato et al., 
2020). Furthermore, Esr1 appears to augment inhibitory tones 
within the MPOA, thereby differentiating the representation of 
pups in late pregnant females (Ammari et al., 2023). Modulation 
of the excitatory/inhibitory balance to enhance the saliency of 
pup-related signals may represent a common mechanism for 
facilitating parental behaviors by OT and Esr1.

More broadly, intricate patterns in the levels of hormone and 
receptor expression have been observed in classical studies involving 
biparental model rodents. However, the behavioral implications of 

FIGURE 2

A circuit mechanism to facilitate paternal behaviors by PVHOT 
neurons. Illustration depicting alterations in neural circuitry within 
the brains of paternal mice and the oxytocin-mediated facilitation of 
caregiving behavior (Inada et al., 2022a). The downstream neural 
processes associated with OT in promoting paternal behaviors 
remain unidentified, as denoted by the red question mark.
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these dynamic endocrinological changes remain largely uncertain 
(Wynne-Edwards and Timonin, 2007). To address this limitation, two 
research avenues should be pursued: (i) examining the functions of 
hormones and receptors in a stage- and cell-type-specific manner, as 
illustrated by recent cKO models targeting Esr1, Prolactin receptor, OT, 
and OTR (Stagkourakis et al., 2020; Inada et al., 2022a,b; Ammari 
et al., 2023); and (ii) employing fluorescent biosensors to characterize 
the high spatiotemporal hormonal dynamics during specific 
behavioral episodes, as exemplified by the heightened OT secretion 
from PVHOT neurons during mating in male mice (Qian et al., 2023). 
Future studies that broaden the application of these techniques hold 
promise for unraveling the functions of each hormone at every stage 
of the parental life-stage transition.

Lastly, it is important to mention that the execution of 
parental behaviors is not solely the province of limbic neurons; it 
requires the coordinated function of multiple brain regions to 
process infant cues, make decisions, and formulate and execute 
motor plans. These processes likely demand higher cognitive 
functions, and researchers have only recently begun to explore 
these avenues (Corona et  al., 2023). Given the substantial 
evolutionary expansion of the human frontal cortex, 
understanding the higher-order functions associated with 
parental behaviors and the potential interactions between the 
frontal cortex and limbic circuits during such behaviors are 
expected to offer valuable insights into human parental behaviors.
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In the mouse olfactory system, odor information is converted to a topographic 
map of activated glomeruli in the olfactory bulb (OB). Although the arrangement 
of glomeruli is genetically determined, the glomerular structure is plastic 
and can be  modified by environmental stimuli. If the pups are exposed to a 
particular odorant, responding glomeruli become larger recruiting the dendrites 
of connecting projection neurons and interneurons. This imprinting not only 
increases the sensitivity to the exposed odor, but also imposes the positive 
quality on imprinted memory. External odor information represented as an odor 
map in the OB is transmitted to the olfactory cortex (OC) and amygdala for 
decision making to elicit emotional and behavioral outputs using two distinct 
neural pathways, innate and learned. Innate olfactory circuits start to work 
right after birth, whereas learned circuits become functional later on. In this 
paper, the recent progress will be summarized in the study of olfactory circuit 
formation and odor perception in mice. We will also propose new hypotheses 
on the timing and gating of olfactory circuit activity in relation to the respiration 
cycle.

KEYWORDS

olfactory perception, neural-circuit formation, olfactory glomeruli, critical period, 
respiratory cycle, orthonasal / retronasal odors

Introduction

Sensory systems are generated by a combination of activity-dependent and -independent 
processes. The basic architecture of neural circuits is built before birth based on a genetic 
program without involving neuronal activity. However, spontaneous firing plays an important 
role in making the system functional (Yu et al., 2004; Lorenzon et al., 2015). In the muse olfactory 
system, intrinsic neuronal activity (Reisert, 2010) is needed to segregate glomerular structures 
for sensory map formation in the OB (Nakashima et al., 2019). After birth, odor-evoked activity 
further modifies the glomerular map to adapt to the environmental situation (Inoue et al., 2021). 
In the visual system, activity waves in the retina are required for the system to work (Espinosa 
and Stryker, 2012; Kirkby et al., 2013). Blocking of stimulation in a subset of neurons during the 
critical period results in permanent changes in the representation of the neurons (Hensch, 2005).

In the mouse olfactory system, there are two separate neural pathways, innate and learned, 
that transmit odor signals from the OB to the OC for odor perception and decision making 
(Kobayakawa et al., 2007). For instinctive decisions, olfactory information is directly conveyed 
by mitral cells (MCs) to distinct valence regions in the amygdala (Miyamichi et al., 2011; Root 
et al., 2014; Inokuchi et al., 2017). It has been hypothesized that for learned decisions, odor-map 
information is transmitted to the anterior olfactory nucleus (AON) by tufted cells (TCs) and then 
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to the piriform cortex for odor perception, as well as for recollection of 
associated memory (Wilson and Sullivan, 2011; Russo et al., 2020; Mori 
and Sakano, 2021; Chen et al., 2022; Poo et al., 2022). It is assumed that 
recalled scene-memory further activates specific valence regions in the 
amygdala, which were connected to the memory engram (Josselyn and 
Tonegawa, 2020) in the previous experience (Motanis et al., 2014; Janak 
and Tye, 2015; Jin et al., 2015; East et al., 2021).

During development, innate circuits start to work around birth 
before the learned circuits become functional (Hall and Swithers-
Mulvey, 1992). Although instinctive decisions are stereotyped, they 
can be modified or even changed by odor experience (Sullivan et al., 
2000; Logan et al., 2012). During the critical period in neonates, the 
sensitivity to the imprinted odor is increased and positive quality is 
imposed on its memory (Inoue et al., 2021). Environmental odor 
inputs promote the recruitment of projection-neuron dendrites and 
synapse formation within the glomeruli (Liu, A. et al., 2016; Inoue 
et  al., 2018). The primary projection of pioneer-OSNs establishes 
olfactory-map topography, relative glomerular locations, and 
glomerular sizes (Zou et al., 2009). However, OSNs are constantly 
replaced with newly-generated follower OSNs (Ma et  al., 2014). 
Interneurons are also regenerated and synapse with the existing 
glomeruli (Bovetti et  al., 2009). Thus, the olfactory perception is 
influenced by environmental odors even after the neonatal period 
(Geramita and Urban, 2016; Liu and Urban, 2017). 

It is notable that olfactory perception and decision making appear 
to be  related with respiratory phases (Mori and Sakano, 2021). In 
response to the environmental odors, external TCs (eTCs) are activated 
earlier in the inhalation phase, whereas MCs are activated later in the 
exhalation phase (Igarashi et al., 2012; Manabe and Mori, 2013; Ackels 
et  al., 2020). Therefore, it is possible that learned decisions and 
instinctive decisions may be made independent of one another during 
the respiratory cycle. The olfactory system also appears to process the 
orthonasal and retronasal odors at different phases of respiration 
(Shepherd, 2012; Mori and Sakano, 2022a,b). Thus, the sampling of 
exteroceptive and interoceptive olfactory information may be discrete 
and not continuous. In mammals, there are two OB structures, right 
and left, each containing a pair of mirror-symmetric olfactory maps, 
lateral and medial. We  previously proposed that each lateral and 
medial map may process orthonasal and retronasal odor information, 
respectively, and transmit odor signals to separate areas in the brain 
possibly using distinct neural pathways (Mori and Sakano, 2022a,b).

In this mini-review, we will discuss the recent progress in the 
study of olfactory circuit formation and odor perception, and propose 
new hypotheses for the timing and gating of sensory circuit activity.

Olfactory map formation and odor 
recognition

One of the long-standing questions of olfaction was how the large 
diversity of odor information can be recognized with a limited number 
of OR genes (Mori and Sakano, 2011). There are ~100,000 volatile 
odorants and ~ 1,000 different odorant receptor (OR) species in mice 
(Buck and Axel, 1991). As each odor is composed of multiple odorants 
with different combinations and ratios, the number of odors is countless. 
Then, how is the vast diversity recognized in the mammalian olfactory 
system with a limited number of OR genes? The answer to this 
question is that odor signals are converted to a combinatorial pattern 
of activated glomeruli in the OB (Mori et al., 2006).

The glomerular map is generated as a result of axonal projection 
of OSNs to the OB. For this primary projection, there are two basic 
principles, “one neuron – one receptor rule” and “one glomerulus –  
one receptor rule” (Sakano, 2010). Each individual OSN expresses 
only one functional OR-gene allele by negative feedback regulation 
(Chess et  al., 1994; Serizawa et  al., 2000, 2003), and OSN axons 
expressing the same OR species converge to a particular glomerular 
structure (Mombaerts et al., 1996). As each glomerulus corresponds 
to a specific OR species, there are ~1,000 glomerular species in each 
of four olfactory maps in mice. Unlike antigen recognition in the 
immune system, ligand – receptor interactions are not strict: each 
receptor can recognize multiple odorant species, or vice versa. 
Moreover, as odor information is usually composed of multiple 
odorants with different ratios, odor signals detected in the olfactory 
epithelium (OE) are converted to a combinatorial pattern of firing 
glomeruli in the OB (Malnic et al., 1999). This odor-map pattern 
appears to allow the piriform cortex to identify and recognize the vast 
diversity of odor information (Wilson and Sullivan, 2011).

OSN projection is regulated by two major schemes: one is along 
the dorsal/ventral (D/V) axis, and the other is along the anterior/
posterior (A/P) axis using separate sets of axon guidance molecules, 
e.g., Semaphorins (Sema), Plexins (Plxn), and Neuropilins (Nrp) 
(Sakano, 2020). D/V projection is mainly regulated by positional 
information of OSN cell-bodies in the OE (Astic et al., 1987; Cloutier 
et al., 2002; Takeuchi et al., 2010), whereas A/P projection is instructed 
by expressed OR species using cAMP as a second messenger (Imai 
et al., 2006). Non-neuronal intrinsic activity of ORs, whose levels are 
uniquely determined by OR species, is converted to cAMP and 
regulates the transcription levels of axon guidance molecules 
(Nakashima et al., 2013). The olfactory map is initially continuous and 
needs to be converted to a discrete map of glomeruli (Sengoku et al., 
2001; Luo and Flanagan, 2007). Glomerular segregation takes place 
using two sets of axon-sorting molecules, adhesive (e. g., Kirrel2, 
Kirrel3, and BIG-2) and repulsive (e. g., Eph A and ephrin A), whose 
expression levels are determined by the OR specificity of OSNs 
(Serizawa et al., 2006; Kaneko-Gotoh et al., 2008). Although both A/P 
projection and glomerular segregation are instructed by the same OR 
specificity using cAMP as a second messenger, they are differentially 
regulated at separate stages of OSN development, immature and 
mature, using different types of G proteins, Gs and Golf, respectively 
(Nakashima et al., 2013).

Synapse formation within the glomeruli

As mentioned in the previous section, topography of an olfactory 
map is established as a result of primary projection of OSNs. This 
process does not require the neuronal activity of OSNs. However, the 
map needs to become a discrete map segregating glomerular 
structures (Luo and Flanagan, 2007). Within each glomerulus, the 
basic synaptic structure is formed between the OSN axons and 
projection-neuron dendrites using intrinsic neuronal activity (Yu 
et al., 2004; Lorenzon et al., 2015; Nakashima et al., 2019). Thus, the 
basic structure of a naïve glomerular map is stereotyped, although 
there are some differences among individuals due to the genetic 
polymorphism in the OR-multigene family (Keller et al., 2007).

In neonates, the olfactory map is further modified by odor-evoked 
OSN activity during the critical period. This plastic change of 
glomeruli known as olfactory imprinting is triggered by a signaling 
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molecule, Sema7A, expressed in OSN axons (Inoue et al., 2018, 2021). 
Interactions of Sema7A with its receptor PlxnC1 localized to the 
projection-neuron dendrites initiate a series of postsynaptic events 
that promote dendrite selection and maturation (Inoue et al., 2018) 
(Figure  1A). Odor-evoked enhancement of synapse formation 
enlarges the glomerular sizes, increasing the number of recruited 
dendrites of projection neurons and periglomerular cells (PGCs) (Liu 
et al., 2016; Inoue et al., 2018) (Figures 1B–D). It is notable that the 
number of projecting OSN axons does not change by imprinting.

Sema7A expression in OSNs is activity-dependent and totally 
abolished in the knock-out (KO) of cyclic-nucleotide-gated (CNG) 
channels (Inoue et  al., 2018). Thus, the activity-dependency of 
olfactory imprinting is supported by Sema7A. In contrast, PlxnC1 
expression does not require the neuronal activity, but dendrite 
localization of PlxnC1 is restricted to the first week after birth. 
Therefore, PlxnC1 determines the time frame of the olfactory critical 
period. Olfactory imprinting not only increases the sensitivity to the 
imprinted odor, but also imposes the positive quality on imprinted 
memory. In the KO studies and rescue experiments, oxytocin was 
found to be responsible for this quality change of olfactory memory 
(Inoue et al., 2021). In the oxytocin KO, the sensitivity to the imprinted 
odor is increased but the attractive quality is not imposed, showing 

the defects in the social memory test as adults. When oxytocin is 
administrated by intraperitoneal injection, this impairment is rescued 
if the mice are treated with oxytocin in neonates (Inoue et al., 2021). 
It has been reported that olfactory perception can be changed by 
environmental odors even after the neonatal critical period affecting 
social responses as adults (Gur et al., 2014; Muscatelli et al., 2018). 
However, it is yet to be  studied, what kind of signaling system is 
involved in this postnatal adaptation.

Projection neurons and decision making

The olfactory map is not merely a projection screen to display a 
pattern of activated glomeruli, but is also composed of distinct 
functional domains for innate odor qualities (Kobayakawa et al., 2007; 
Liberles, 2015). A pattern of an odor map appears to be recognized as 
a whole to identify the input odor and to recollect the odor memory 
of associated scenes (Mori and Sakano, 2021). It has been reported that 
odor information is transmitted from the OB to the AON by eTCs, 
preserving the odor-map topography (Schoenfeld and Macrides, 1984; 
Yan et al., 2008; Grobman et al., 2018; Hirata et al., 2019), and then to 
the piriform cortex for olfactory perception (Russo et al., 2020).

FIGURE 1

Experience-dependent development of glomerular circuitry in neonates. (A) Sema7A-PlxnC1 interaction essential to the induction of activity-
dependent formation of glomerular circuitry during the critical period. ACIII, class III adenylyl cyclase; AP, action potential; cAMP, cyclic adenosine 
monophosphate; CNG, cyclic-nucleotide-gated channel; Golf, olfactory G protein; NMDAR, N-methyl-D-aspartate receptor; OR, odorant receptor; 
OSN, olfactory sensory neuron; PlxnC1, Plexin C1; SAP90, synapse-associated protein 90; Sema7A, Semaphorin 7A. (B,C) Schematic diagrams of an 
undeveloped glomerular structure (B) and a fully developed glomerulus (C). Note that the fully developed glomerulus recruits apical dendrites of 
numerous projection neurons and inhibitory interneurons. (D) Synaptic organization within the fully developed glomerulus. In (B–D), five types of 
projection neurons are illustrated; external tufted cells without lateral dendrites (eTC°, peach), external tufted cells with lateral dendrites (eTC*, brown), 
middle tufted cells (mTC, light blue), internal tufted cells (iTC, gray blue), and mitral cells (MC, dark blue). These cells receive direct inputs from OSN 
axons (orange arrows) and indirect input via eTCs (red arrows) in the glomerulus (Glom). Curved red arrows show self-excitation of eTCs via dendro-
dendritic excitatory synapses. Periglomerular cells (PGCs) are classified into Type 1 and Type 2. OSN axons form direct excitatory synapses on Type 1 
PGCs but do not form synapses on Type 2 PGCs. GABAergic cells of the basal forebrain form inhibitory synapses on Type 2 PGCs but do not form 
synapses on Type 1 PGCs. Cholinergic cells in the basal forebrain project to all types of projection neurons and to Type 2.3 PGCs (a subset of Type 2 
PGCs).
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We hypothesized that using an odor map as a two-dimensional 
QR code, the associated memory engram may be searched for, and 
then the odor scene may reactivate the valence circuit that was 
connected to the memory engram in the previous odor experience 
(Mori and Sakano, 2021).

In contrast to the neural pathway for learned decisions, the innate 
pathway is simpler in the mouse olfactory system: Odor information 
is directly transmitted from a particular functional domain in the OB 
to the valence region in the amygdala using another type of projection 
neuron, MCs (Miyamichi et al., 2011; Root et al., 2014; Inokuchi et al., 
2017). It has been shown that innate behavioral responses can 
be induced even by a single glomerular species. For example, if the 
Olfr1019 glomerulus for the fox odor TMT (trimethyl thiazoline) is 
photo-activated, an immobility response (freezing) is elicited, 
although stress-induced aversive responses (Kondoh et al., 2016) are 
not induced and plasma concentrations of the stress hormone ACTH 
does not increase (Saito et al., 2017).

Olfactory quality is roughly sorted into two separate types, 
aversive and attractive during the process of OSN projection (Horio 
et  al., 2019). Aversive odor information collected in the dorsal 
subdomain DI (Kobayakawa et al., 2007) is further transmitted to the 
postero-medial (pm) cortical amygdala (CoA) (Miyamichi et al., 2011; 
Root et al., 2014). In contrast, attractive social information in the 
ventral OB (Lin et  al., 2005) is delivered to the anterior medial-
amygdala (aMeA) (Inokuchi et  al., 2017). However, the spatial 
segregation for encoding the innate odor valence is still controversial, 
because the CoA is reported to carry both appetitive and aversive 
valence for odors (Root et al., 2014; Lurille and Datta, 2017). The 
dorsal subdomain DIII for TAAR (trace amine-associated receptor) 
contains mostly aversive glomeruli. However, it also contains some 
appetitive ones (Liberles, 2015). Activation of dorsal glomeruli may 
not necessarily trigger aversive responses and activation of ventral 
glomeruli may not always trigger attractive responses (Qiu et al., 2021).

There are two distinct MC pathways, aversive and attractive, that 
are segregated by the Nrp2/Sema3F guidance system. MCs, both 
Nrp2+ and Nrp2−, originate in the ventricular zone in the embryonic 
OB and migrate radially to the MC layer (Imamura et  al., 2011; 
Inokuchi et al., 2017). The Nrp2+ MCs further migrate tangentially to 
the ventral region as the OB structure expands. The repulsive ligand 
Sema3F secreted by the early-arriving Nrp2− OSN axons in the dorsal 
OB pushes down the Nrp2+ MCs to the ventral region in the MC layer 
of the OB. This Sema3F also guides the late-arriving Nrp2+ OSN axons 
to the ventral glomerular layer in the OB.

For synapse formation, primary dendrites of projection neurons are 
connected to the nearest neighboring glomeruli regardless of their OR 
specificity (Nishizumi et al., 2019). Therefore, it is important for OSNs 
to project their axons to a correct site in the glomerular layer in the OB, 
and for projection neurons to migrate to an appropriate position in the 
MC layer. Common usage of the same signaling system of Nrp2/Sema3F 
in both OSN projection and MC migration appears to be important for 
proper matching of OSN axons and MC dendrites for synapse formation. 
Axon guidance of Nrp2+ MCs to the aMeA is also mediated by Sema3F, 
but by separate Sema3F expressed in the OC (Inokuchi et al., 2017).

In the Nrp2 KO for MCs, social responses, e.g., male–female 
attraction and pup suckling, are perturbed (Inokuchi et al., 2017). 
Rescue experiments indicate that a single signaling system, Nrp2/
Sema3F, is sufficient for the segregation of the attractive and aversive 
olfactory circuits (Inokuchi et al., 2017). In utero electroporation of 

the human Nrp2 (hNrp2) into the embryonic OB demonstrates that 
ectopic expression of the hNrp2 gene alone can change the fate of 
Nrp2− MCs: OCAM-positive dorsal-MCs that are supposed to project 
to the pmCoA are brought to the ventral OB and further guided to the 
aMeA by hNrp2.

Direct and indirect pathways within the 
glomerulus

Glomeruli are the site of odor information transmission from 
OSNs to several types of projection neurons in the OB (Figure 1). The 
projection neurons are functionally and morphologically classified 
into external tufted cells (eTCs), middle tufted cells (mTCs), internal 
tufted cells (iTCs), and mitral cells (MCs) (Shepherd et al., 2004; 
Nagayama et  al., 2014; Mori and Sakano, 2022a). Each type of 
projection neuron has a distinct pattern of lateral dendrite projection 
in the external plexiform layer (EPL) and axonal projection to the OC 
(Igarashi et al., 2012). External tufted cells are further classified into 
two subpopulations; one subpopulation (eTC°) lacks lateral dendrites 
and the other subpopulation (eTC*) has lateral dendrites in the most 
superficial part of the EPL (Hayer et al., 2004; Antal et al., 2006).

In the glomeruli of adult rodents, the external odor information 
carried by OSNs is transferred to mTCs and MCs via two types of 
pathways: direct mono-synaptic pathway from OSN axons, and 
indirect multi-synaptic pathway first from OSN axons to eTCs and 
then from eTCs to mTCs and MCs (Figure 1) (Najac et al., 2011; Gire 
et al., 2012). In the first step of the indirect pathway, the synaptic input 
from OSNs induces synchronized burst firings of several eTCs 
belonging to the same glomerulus during the inhalation phase. The 
synchronized burst discharges of these eTCs then activate mTCs and 
MCs of the same glomerulus via dendrodendritic excitatory synapses 
within the glomerulus.

One important question of glomerular circuit development is 
whether early-life olfactory experiences play a role in the formation of 
the direct and indirect pathways. Early olfactory experiences enlarge 
the sizes of activated glomeruli, although the number of projecting 
OSNs stays the same (Inoue et al., 2018, 2021). Because the adult OB 
contains glomeruli with a variety of sizes (Mori, 2014), we propose a 
hypothesis that the size of a glomerulus expands in proportion to the 
amount of early-life olfactory inputs to the glomerulus during the 
neonatal critical period, i.e., the first week after birth. Enlarged 
glomeruli may have experienced more early-life olfactory inputs and 
recruited numerous apical dendritic branches of eTCs, mTCs, and MCs.

We hypothesize that these large glomeruli recruit many eTCs and 
thus form the robust indirect OSNs→eTCs→mTCs/MCs pathway in 
addition to the direct pathway (Figures 1C,D). It should be noted that 
pairing an odor with aversive stimulus can also lead to enlargement of 
glomeruli in adults (Jones et al., 2008) and that olfactory extinction 
training reverses the increase in glomerular size (Morrison 
et al., 2015).

We also speculate that micro- or small-glomeruli (Lipscomb et al., 
2002) are ones that experienced no or little early-life olfactory inputs 
and failed to recruit an adequate number of eTC, mTC, and MC 
dendritic branches, resulting in the lack of the functional indirect 
pathway (Figure 1B). These undeveloped glomeruli may contain only 
the direct pathway so that strong OSN inputs are required for inducing 
burst-firings of mTCs and MCs. The direct excitatory synapses from 
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OSNs to these projection neurons can emerge before birth prior to the 
postnatal olfactory experiences.

OB slice experiments show that in the enlarged glomeruli, eTCs 
act as essential drivers of glomerular output, mediating feedforward 
transmission of the OSN input to mTCs and MCs (De Saint Jan et al., 
2009, 2022). It has been hypothesized that MCs are not typically 
activated by the direct OSN input and instead require the multi-
synaptic indirect pathway via eTCs (Gire et al., 2012). The eTCs have 
the lowest odor concentration threshold for inducing firing response 
(Igarashi et  al., 2012), generate self-regenerative long-lasting 
depolarization that function as a bimodal on/off switch (Gire and 
Schoppa, 2009), and interact with each other through their 
dendrodendritic excitatory synapses. Therefore, once some eTCs are 
activated by the OSN input, many eTCs of a same glomerulus may 
be  entrained to generate synchronized burst firings for a fixed 
duration, suggesting that the indirect pathways act as a low threshold 
booster of the OSN signal.

Respiration phase-coherent activity of OB 
neurons

Recordings of local field potentials and spike activities of OB 
neurons in awake rats and mice indicate that, in response to odor 
inhalation, projection neurons in the lateral map show burst firings 
during specific time windows in the respiration cycle and transmit 
external odor information sequentially to the OC (Briffaud et al., 
2012; Igarashi et al., 2012; Manabe and Mori, 2013; Mori et al., 2013; 
Nagayama et al., 2014; Short et al., 2016; Díaz-Quesada et al., 2018; 
Ackels et al., 2020; Eiting and Wachowiak, 2020; Mori and Sakano, 
2021). What is the neural circuit mechanism that allows different 
types of projection neurons to respond during different time windows 
of the respiration cycle?

How does the indirect pathway via eTCs contribute to the 
generation of sequential activation?

As illustrated in Figure 2B, during the awake resting state, eTCs of 
activated glomeruli show synchronized burst firings during the period 
from the onset of odor inhalation to the initial part of exhalation 
(eTC°: peach bar, and eTC*: brown bar), transmitting odor 
information to the pars externa of the anterior olfactory nucleus 
(AONe) and the most anterolateral isolation of the CAP compartments 
(aiCAP) of the olfactory tubercle (Hirata et al., 2019). eTC circuits 
generate earliest-onset highest-frequency burst firings during the odor 
inhalation phase. mTCs of the activated glomeruli show synchronized 
high-frequency burst firings during the period from the middle of 
inhalation to the early 1/3 of exhalation (light blue bar), transmitting 
the odor information to olfactory peduncle areas. Because eTCs and 
mTCs of the lateral map send axons to specific areas of the AON, they 
appear to be the origin of the multi-synaptic learned decision pathway, 
transmitting external odor information to higher cognitive centers via 
AON and APC, mainly during the inhalation phase (Mori and Sakano, 
2021). iTCs of activated glomeruli generate synchronized burst firings 
during the period from the end of inhalation to the early 2/3 of 
exhalation (gray blue bar), transmitting odor information to wide 
areas of the OC. MCs show synchronized burst firings during the 
period from the start of exhalation to the early 2/3 of exhalation (dark 
blue bar), transmitting odor information to widespread areas of the 
OC. A subset of these MCs continues burst firings up to the onset of 

the next inhalation (dashed dark blue bar). Thus, iTC and MC circuits 
show later-onset low-frequency burst firings that last into the early 2/3 
of the exhalation phase. A subset of MCs forms a direct mono- 
synaptic pathway, sending innate behavioral decision signals to the 
cortical and medial amygdaloid nuclei (Mori and Sakano, 2021).

Thus, we propose a hypothetical model that in response to odor 
inhalation, eTCs, mTCs, iTCs and MCs respond sequentially with 
synchronized burst firings, each transmitting distinct information at a 
specific time window within the respiratory cycle. Each type of 
projection neuron sends lateral dendrites to a specific sublayer of the 
EPL and form dendrodendritic excitatory synapses on granule cells 
(inhibitory interneurons) (Figure 2A, yellow arrows). eTC*s and mTCs 
project their lateral dendrites to the superficial sublayer of the EPL and 
form dendrodendritic excitatory synapses on a subset of granule cells 
[GC(s)] that send apical dendrites to the superficial sublayer.

MCs project lateral dendrites to the deep sublayer of the EPL and 
form dendrodendritic excitatory synapses on a different subset of 
granule cells [GC(d)] that project apical dendrites to the deep sublayer 
(Mori, 1987). These connectivity patterns suggest that each subset of 
granule cells receive dendrodendritic synaptic inputs from selective 
types of projection neurons at a specific time window in the 
respiratory cycle.

In addition to the respiration phase-coherent burst firings of 
projection neurons, top-down inputs from the OC to granule cells 
appear to occur at a specific time window in the respiration cycle 
(Figures 2A,B). Analysis of local field potentials in the OB of awake 
rats indicates that top-down information flow from the OC to the 
granule cells occurs predominantly during the time window from 
the early 1/3 to the end of the exhalation phase. Thus, respiration-
phases coordinate the timing of odor information processing by 
different local circuits in the OB, the timing of odor signal 
transmission to the OC by different types of projection neurons, 
and the timing of top-down signal transmission from the OC 
to the OB.

Modulation of glomerular activity by 
periglomerular cells and basal forebrain

Sensory experience-dependent formation of neural circuits 
requires balanced excitation-inhibition (Yazaki-Sugiyama et al., 2009). 
PGCs are local inhibitory interneurons that project dendritic branches 
to the glomerulus and interact with the excitatory projection neurons 
within the glomerulus. Early olfactory experiences also recruit PGC 
dendrites to activated glomeruli (Inoue et  al., 2021). PGCs are 
classified into two subtypes (Kosaka and Kosaka, 2005). Type 1 PGCs 
receive direct excitatory synaptic inputs from OSNs but not from 
GABAergic inhibitory cells of the basal forebrain (BF, magnocellular 
preoptic area), whereas Type 2 PGCs do not make OSN synapses but 
receive axonal input from the BF GABAergic cells (Figure 1D) (Sanz 
Diez et al., 2019; De Saint Jan, 2022).

In addition to the BF GABAergic cells, cholinergic cells in the 
horizontal limb of the diagonal band of the BF densely innervate the 
glomerular circuits (Zaborszky et al., 1986; Bendahmane et al., 2016). 
While the BF GABAergic inhibitory axons target only Type 2 PGCs, 
the BF cholinergic axons target apical dendrites of all types of 
projection neurons including eTCs and Type 2.3 PGCs (a subset of 
Type 2 PGCs) (Spindle et al., 2018; De Saint Jan, 2022) (Figure 1D). 
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BF cholinergic cells are tonically active during wakefulness but silent 
during slow-wave sleep (Xu et al., 2015). We assume that, during 
wakefulness, arousal signals of BF cholinergic cells may induce tonic 
depolarization in the dendritic tufts of projection neurons especially 
those of eTCs (D’Souza et al., 2013), facilitating the transmission of 
OSN inputs via the indirect pathway to mTCs and MCs. In contrast, 
during slow-wave sleep the lack of cholinergic input to eTCs may 
hyperpolarize eTCs and thus prevent OSN inputs to be transmitted 
via the indirect pathway to the projection neurons. In agreement with 
this idea, in freely behaving rats, local field potentials that reflect burst 
firings of projection neurons occur consistently in response to each 
inhalation of room air during wakefulness, whereas these local field 
potentials diminish or disappear during slow-wave sleep (Manabe and 
Mori, 2013).

During wakefulness, BF cholinergic input activates Type 2.3 PGCs 
via muscarinic acetylcholine receptors, such that Type 2.3 PGCs fire 
tonically (De Saint Jan, 2022). The tonic firing of Type 2.3 PGCs causes 
tonic inhibition of eTCs in the indirect pathway. Because GABAergic 
cells in the medial septum and vertical limb of the diagonal band in the 
BF show burst firings that are coherent to specific time frames of the 
respiration cycle, thus sending respiration phase-specific attention 
signals to the hippocampal circuits during exploratory behavior (Tsanov 
et al., 2014), we propose a hypothesis that individual GABAergic cells 
in the BF generate burst firings and send inhibitory output to Type 2.3 
PGCs during a cell-specific time frame in the respiration cycle.

We hypothesize that BF GABAergic cells that project to the lateral 
map glomeruli generate burst discharges selectively during intended 
inhalation phase, and thus inhibit Type 2.3 PGCs and disinhibit eTCs. 

FIGURE 2

Respiration-phase-coherent neural activity in the olfactory bulb (A) Schematic of basic synaptic organization within the glomerulus (Glom), external 
plexiform layer (EPL), internal plexiform layer (IPL), and granule cell layer (GRL) of the OB. For simplicity, only four types of projection neurons (eTC°, 
eTC*, mTC, and MC) and two types of inhibitory interneurons, PGCs and granule cells (GCs), are shown. eTC*s and mTCs project lateral dendrites to 
the superficial part of the external plexiform layer (sEPL) and form dendro-dendritic excitatory synapses (yellow arrows in sEPL) on spines of GC(s) that 
project dendrites to the sEPL. MCs project lateral dendrites to the deep part the external plexiform layer (dEPL) and form dendro-dendritic excitatory 
synapses (yellow arrows in dEPL) on spines of GC(d) that send dendrites to the deep part. (B) Respiration-phase coherent neural activity during quiet 
wakefulness in the rat OB. Upper most trace shows the respiration monitored by a thermistor placed in the nasal cavity. Upward swing indicates 
inhalation (magenta line and orange shaded) and downward swing exhalation (blue line and blue shaded). Magenta triangles indicate the onset of 
inhalation, and blue triangles show the onset of exhalation. In response to the inhalation of room air, projection neurons respond sequentially with 
burst firings in the respiration cycle. Magenta double-arrow line indicates the time window of OSN input. Peach bar shows the time window of burst 
firings of eTC°s. Brown bar indicates the time window of burst firing of eTC*s that project lateral dendrites to the most superficial part of the external 
plexiform layer (EPL). Light blue bar shows the time window of firings of mTCs that send lateral dendrites to the superficial sublayer of the EPL (sEPL). 
Gray blue bar indicates the time window of firing of iTCs that send lateral dendrites to the middle part of the EPL. Dark blue bar shows the time window 
of firings of MCs that send lateral dendrites to the deep sublayer of the EPL (dEPL). Purple double-arrow dashed lines indicate the time window of top-
down input from the olfactory cortex (OC) to the granule cell layer (GRL) of the OB. Green-shaded area indicates the time window of possible 
depolarization of primary dendrites of projection neurons in the glomerular layer (GL).
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By the respiration phase-specific gating of the indirect pathway, the 
lateral map glomeruli are ready to boost orthonasal/exteroceptive 
odor inputs during the inhalation phase, whereas they shut out the 
OSN input during the exhalation phase. We also hypothesize that BF 
GABAergic cells that project to the medial map glomeruli generate 
burst discharges selectively during intended exhalation phase, 
inhibiting Type 2.3 PGCs and disinhibiting eTCs. By the gating of the 
indirect pathway, the medial map glomeruli are ready to enhance 
retronasal/interoceptive odor inputs during the exhalation phase, 
whereas they shut out the OSN input during the inhalation phase.

Discussion

During development, an olfactory map in the OB is formed based 
on a genetic program without involving neuronal activity. Agonist-
independent receptor activity of GPCRs is involved in OR-instructed 
OSN projection using cAMP as a second messenger (Imai et al., 2006; 
Nakashima et al., 2013). An olfactory map is initially continuous, but 
becomes discrete, segregating glomerular structures in an activity- 
dependent manner (Serizawa et al., 2006; Luo and Flanagan, 2007). 
Intrinsic neuronal activity of OSNs appears to be responsible for this 
OR-specific glomerular segregation (Serizawa et al., 2006; Nakashima 
et al., 2019). The naïve glomerular map is further modified by odor-
evoked OSN activity during the neonatal critical period. When the 
pups are exposed to a particular odorant, responding glomeruli 
increase their sizes by recruiting dendrites of projection neurons, as 
well as of interneuron PGCs. Sema7A/ PlxnC1 signaling is responsible 
for this promotion of post-synaptic events within the glomeruli (Inoue 
et al., 2018). Glomerular enlargement increases the sensitivity to the 
imprinted odor and this imprinting imposes the attractive quality on 
odor memory, even when the odor quality is innately aversive (Inoue 
et al., 2021). Environmental odors continue to affect odor perception 
even after the neonatal critical period (Sullivan et al., 2000; Liu and 
Urban, 2017). However, signaling systems responsible for this postnatal 
odor-adaptation need to be clarified by future experiments.

We assume that the OB of an individual adult-mouse has a unique 
combination of enlarged glomeruli, which reflects the early-life 
olfactory experience. Each enlarged glomerulus may form the 
imprinted memory-circuit of odor-evoked OSN signals. It is known 
that there are two symmetrical olfactory maps, lateral and medial, in 
each right and left OBs. We speculate that the enlarged glomeruli in 
the lateral map may represent neonatal experiences of orthonasal/
exteroceptive odors, while those glomeruli in the medial map may 
exemplify early-life retronasal/interoceptive inputs.

Odor information is processed by two distinct olfactory circuits, 
innate and learned (Kobayakawa et al., 2007). For learned decisions, 
we assume that combinatorial signals of activated glomeruli formed in 
the OB are transmitted to the piriform cortex via the AON and utilized 
for identification of odor information and recollection of an associated 
memory-scene (Russo et al., 2020; Mori and Sakano, 2021; Poo et al., 
2022). For innate decisions, stimulated MC signals from a particular 
functional domain in the olfactory map are directly transmitted to 
specific valence regions in the amygdala (Miyamichi et al., 2011; Root 
et al., 2014; Inokuchi et al., 2017). As TCs are activated earlier in the 
inhalation phase and MCs are activated later in the exhalation phase, 
we speculate that learned and innate decisions may separately be made 
during the respiratory cycle (Mori and Sakano, 2022a).

We previously proposed another hypothesis that each lateral and 
medial map in the OB may separately process orthonasal/exteroceptive 
and retronasal/interoceptive odor information, respectively (Mori and 
Sakano, 2022b). Here we further propose that the BF GABAergic input 
to the glomerular circuit is respiration-phase coherent and gates the 
orthonasal and retronasal odor inputs. The BF GABAergic input to the 
lateral-map glomeruli appears to occur during the intended inhalation 
phase, resulting in the inhalation-phase specific boosting of the 
orthonasal inputs. The BF GABAergic input to the medial map 
glomeruli may occur during the intended exhalation phase, resulting 
in the exhalation phase-specific amplification of the retronasal input. 
The BF GABAergic cells that target GCs (Villar et al., 2021) may also 
fire in a respiration-phase coherent manner.

Respiration-phase coherent neural-circuit activity occurs 
throughout the brain including the neocortex, hippocampus, olfactory 
cortex, thalamus, and cerebellum (Ito et al., 2014; Moberly et al., 2018; 
Tort et al., 2018; Bagur et al., 2021; Girin et al., 2021; Karalis and 
Sirota, 2022; Folschweiller and Sauer, 2023), as well as the respiratory 
central-pattern generator areas of the brainstem (Krohn et al., 2023). 
In the exploratory behavior of rodents, nose motion, head bobbing, 
and whisking are synchronized with respiration phases such that the 
inhalation phase corresponds to the time window of multisensory 
sampling of environmental information (Kurnikova et al., 2017). The 
subsequent exhalation phase may provide the time window for the 
brain to evaluate the sampled sensory information and express the 
behavioral and emotional outputs.

It has been suggested that the respiration phase coordinates 
with the timing of information transfer across wide-spread 
regions in the brain for multisensory cognition (Folschweiller 
and Sauer, 2023). The experience-dependent development of the 
glomerular circuitry and the behavioral state- and respiration 
phase-dependent modulation of circuit function in the OB will 
provide us with an excellent model system for understanding the 
mechanism of dynamic orchestration of neural circuits in the 
brain. We hope that our hypotheses proposed in this mini-review 
will be  of help in clarifying the multisensory cognition and 
decision making in mammals.
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Glossary

aiCAP The most anterolateral isolation of the CAP compartments of the olfactory tubercle

aMeA Anterior medial-amygdala

AON Anterior olfactory nucleus

A/P Anterior/Posterior

BF Basal forebrain

D/V Dorsal/Ventral

EPL External plexiform layer

eTC External tufted cell

GC Granule cell

iTC Internal tufted cell

MC Mitral cell

mTC Middle tufted cell

Nrp Neuropilin

OB Olfactory bulb

OC Olfactory cortex

OE Olfactory epithelium

OR Odorant receptor

OSN Olfactory sensory neuron

PGC Periglomerular cell

Plxn Plexin

pmCoA Postero-medial cortical amygdala

Sema Semaphorin

TC Tufted cell

TMT Trimethyl thiazoline
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Olfactory information processing 
viewed through mitral and tufted 
cell-specific channels
Tatsumi Hirata *

Brain Function Laboratory, National Institute of Genetics, SOKENDAI, Mishima, Japan

Parallel processing is a fundamental strategy of sensory coding. Through 
this processing, unique and distinct features of sensations are computed and 
projected to the central targets. This review proposes that mitral and tufted cells, 
which are the second-order projection neurons in the olfactory bulb, contribute 
to parallel processing within the olfactory system. Based on anatomical and 
functional evidence, I discuss potential features that could be conveyed through 
the unique channel formed by these neurons.

KEYWORDS

olfactory system, tufted cell, mitral cell, mouse, neurogenic tagging, parallel 
processing

Introduction

From a neurodevelopmental perspective, the timing of neuronal birth determines their 
permanent phenotypes (Hirata and Iwai, 2019), including morphology, physiology and 
connection patterns (Leone et al., 2008; Fame et al., 2011; Suzuki and Hirata, 2013). Thus, this 
neurodevelopmental principle should form the functional basis of the brain. We hypothesized 
that if projection neurons of the olfactory bulb are classified neurodevelopmentally, we might 
be able to find a wiring logic of olfactory circuits. Chronologically ordered arrangement of 
olfactory bulb axons in the lateral olfactory tract (Inaki et al., 2004; Yamatani et al., 2004) 
further encouraged us to take this approach, even though the link between the chronotopic 
arrangement of axon shafts and the final destinations of their collateral branches remained 
unclear. These provided the springboard for our dissection of olfactory circuits using 
neurogenic tagging. Based on our and others’ findings, I will discuss the potential logic of 
olfactory information processing.

Logic of olfactory information processing

The anatomical principle of the peripheral olfactory system is feature detection of odorant 
molecules; olfactory sensory neurons that express the same odorant receptor converge their 
axons onto a few fixed glomeruli of the olfactory bulb, thereby constructing the stereotypical 
odor map (Mori et al., 2006; Mori and Sakano, 2011). This odor map is then transferred to the 
next targets by two major projection neurons, mitral cell (MC) and tufted cell (TC) in the main 
olfactory bulb (Mori and Sakano, 2021). Their projections are often described as diffuse and 
widespread (Ghosh et al., 2011; Miyamichi et al., 2011; Sosulski et al., 2011). While specific 
odorant information sometimes appears over-represented in a few target areas (Miyamichi 
et al., 2011; Inokuchi et al., 2017), the spatial odor map across the olfactory bulb is basically 
lost in most of the olfactory target areas due to non-topographic projections.

OPEN ACCESS

EDITED BY

Kensaku Mori,  
RIKEN, Japan

REVIEWED BY

Masahiro Yamaguchi,  
Kōchi University, Japan
Thomas Heinbockel,  
Howard University, United States

*CORRESPONDENCE

Tatsumi Hirata  
 tathirat@nig.ac.jp

RECEIVED 06 February 2024
ACCEPTED 29 February 2024
PUBLISHED 08 March 2024

CITATION

Hirata T (2024) Olfactory information 
processing viewed through mitral and tufted 
cell-specific channels.
Front. Neural Circuits 18:1382626.
doi: 10.3389/fncir.2024.1382626

COPYRIGHT

© 2024 Hirata. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Mini Review
PUBLISHED 08 March 2024
DOI 10.3389/fncir.2024.1382626

22

https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2024.1382626&domain=pdf&date_stamp=2024-03-08
https://www.frontiersin.org/articles/10.3389/fncir.2024.1382626/full
https://www.frontiersin.org/articles/10.3389/fncir.2024.1382626/full
https://www.frontiersin.org/articles/10.3389/fncir.2024.1382626/full
mailto:tathirat@nig.ac.jp
https://doi.org/10.3389/fncir.2024.1382626
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/neural-circuits#editorial-board
https://www.frontiersin.org/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2024.1382626


Hirata 10.3389/fncir.2024.1382626

Frontiers in Neural Circuits 02 frontiersin.org

FIGURE 1

Neurogenic tagging of MCs and TCs. (A) A diagram illustrating neurogenic tagging. In the driver mice, tamoxifen (TM)-inducible CreER is transiently 
expressed during a short time window soon after neuronal birth. A single injection of TM during the neurodevelopmental stage induces loxP 
recombination only in the cells expressing CreER. Modified from Hirata et al. (2021). (B) MCs labeled with green fluorescent protein (green, left) and 
TCs labeled with tdTomato (magenta, right) in the mouse olfactory bulb at postnatal day 21. TM was injected at embryonic day 12.5 (TM12.5) and 15.5 
(TM15.5). The complete genotypes of the mice are Neurog2CreER(G2A); Cdhr1tTA; ROSA26-TREmGFP for TM12.5 and Neurog2CreER(G2A); Cdhr1tTA; 
TREtdTomato-sypGFP for TM15.5 [see Hirata et al., 2019 for details]. Bar  =  100  μm. GLL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; 
GRL, granule cell layer.

This strategy seems somewhat exceptional as a sensory system. 
Although external information is typically represented as a spatial 
map in many sensory systems, the maps are usually transferred 
sequentially to higher centers by the labeled-line principle (Kaas, 
1997; Cang and Feldheim, 2013). By contrast, the odor map degrades 
rapidly. This has led to the assumption that olfactory information 
processing relies on indiscriminate integration of odorant information 
by mixing projections from the peripheral odor map (Davison and 
Ehlers, 2011).

This review argues that MCs and TCs offer an alternative 
perspective: parallel processing in the olfactory system. The parallel 
processing is another common strategy of the sensory system 
(Young, 1998). As exemplified by the visual system, different features 
of information are extracted from the original map and sent to 
separate target areas in parallel (Nassi and Callaway, 2009), thereby 
sharpening and enhancing specific features for increased biological 
significance. While olfactory information features remain elusive, 
I propose to discuss potential features that MC and TC channels can 
convey in the olfactory system based on previous observations (Mori 
and Sakano, 2021).

MCs and TCs in the olfactory system

Around 20 MCs and 50 TCs relay information received by each 
glomerulus to higher brain centers (Nagayama et al., 2014). These two 
projection neuron types occupy distinct layers of the main olfactory 
bulb and exhibit morphological differences (Mori et al., 1983; Orona 
et  al., 1984). Furthermore, they fire action potentials at different 
phases of the respiratory cycle (Fukunaga et al., 2012; Igarashi et al., 
2012). Electrophysiological analyses suggested that MCs are highly 
tuned for detection of specific odorants, whereas TCs respond more 
broadly to a wider range of stimuli (Schneider and Scott, 1983; Ezeh 
et al., 1993; Nagayama et al., 2004; Griff et al., 2008). Thus, MCs and 

TCs seem well-poised to convey different kinds of information 
extracted from the same glomeruli.

Although MCs and TCs exhibit molecular differences (Tepe et al., 
2018; Zeppilli et  al., 2021), clear discrimination based on gene 
expression has proven elusive. Previous studies indicated that MCs are 
born earlier than TCs (Hinds, 1968; Bayer, 1983; Grafe, 1983). 
I conceived that the birthdate difference can be used to effectively 
separate these populations. While a study demonstrated differential 
labeling of olfactory bulb neurons based on birth timing by in utero 
electroporation, this technique only revealed heterogeneous MC 
populations (Imamura et al., 2011; Imamura and Greer, 2015; Chon 
et  al., 2020). Therefore, we  opted for a different genetic method, 
neurogenic tagging, which allows for separate visualization and 
manipulation of MCs and TCs based on their distinct birthdates 
(Hirata et al., 2019).

Neurogenic tagging of olfactory 
projection neurons

The neurogenic tagging method uses a driver mouse line in 
which tamoxifen (TM)-inducible Cre recombinase, CreER is 
expressed only transiently for a short time window immediately 
after neuronal fates are committed (Figure 1). For this purpose, 
CreER is driven under the enhancer/ promoter of neural 
differentiation genes such as neurogenins and neuroDs using the 
bacterial artificial chromosome transgenic approach (Hirata et al., 
2021). A single TM dose at a specific developmental stage induces 
loxP recombination only in the cells soon after neuronal 
commitment. These “tagged” neurons are then susceptible to 
various experimental manipulations using recombination-
dependent reporters or effectors. Several driver lines are available 
for neurogenic tagging (Hirata et al., 2021). Representative images 
of tagged neurons across the brain by all the drivers are open in 
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public in the NeuroGT database,1 visualized using a global neuron-
specific reporters (TaumGFP-nLacZ, Hippenmeyer et  al., 2005, 
Jax#021162).

Among the driver lines, the Neurog2creER (G2A) driver is ideal for 
studying olfactory projection neurons (Hirata et al., 2019). While this 
method labels a mixture of multiple projection neuron types, MCs and 
TCs are the major populations when tamoxifen is injected at E12.5 
and E15.5, respectively (Figure  2). TCs are typically categorized 
further as internal, middle, and external subtypes based on their 
location within the olfactory bulb layer (Mori et al., 1983; Orona et al., 
1984). However, in the analysis using neurogenic tagging mice, 
external TCs far outnumber the other TC subtypes (Hirata et  al., 
2019). Therefore, this review will primarily focus on external TCs as 
representative of TCs.

Target projections of MCs and TCs

To visualize axon trajectories of MCs and TCs clearly, reporter 
proteins are expressed specifically only by olfactory bulb neurons that 
are neurogenic tagged, by combining neurogenic tagging and 
tetracycline-controlled transcription activation under the olfactory 
bulbs-specific promoter (Hirata et al., 2019; also see genotypes in the 
Figure 2 caption). Previously, TC axons were suggested to target only 
anterior region of the olfactory target areas (Haberly and Price, 1977; 
Scott, 1981; Igarashi et al., 2012). Our analysis revealed a surprising 
degree of convergence of TC axons; the axons only targeted to two 
small domains within the olfactory areas (Figure  2). One of the 
targets is the pars externa of the anterior olfactory nucleus, which 
uniquely receives topographic projections from the main olfactory 
bulb (Schoenfeld and Macrides, 1984). Its exclusive projections to the 
contralateral side suggest that the pars externa functions in bilateral 
integration of olfactory information (Haberly and Price, 1978b; 
Kikuta et al., 2010). The other TC target is the most anterolateral 
isolation of the CAP compartments (aiCAP) within the olfactory 
tubercle. Across the tubercle, dozens of CAP compartments are 
distributed in a patchy fashion, and their spatial locations vary 
between individual mice (Fallon et al., 1978; Meyer and Wahle, 1986). 
Among them, the aiCAP in the most anterolateral part of the tubercle 
consistently stands out as the largest and strongly expresses dopamine 
receptor 1. Notably, this small target receives TC projections from all 
glomeruli of the main olfactory bulb (Hirata et al., 2019).

MC axons exhibit a much more widespread distribution, 
projecting to all of the olfactory target areas (Figure 2). However, 
interestingly, the axons are specifically excluded from the aiCAP, 
making it a unique target exclusively innervated by TCs (Hirata et al., 
2019). The pars externa appears to receive convergent inputs from 
both MCs and TCs, but the anatomical complexity of this subnucleus 
makes definitive conclusions challenging.

This observation provides compelling anatomical evidence for a 
dedicated TC-specific channel within the olfactory system. Although 
TC and MC projections were hypothesized to converge onto the same 
secondary target areas, the existence of the exclusive TC target offers 

1 https://ssbd.riken.jp/neurogt/

exciting possibilities for TC-specific information processing within 
the olfactory system.

Potential features represented by the 
TC Channel

What kind of features can be represented in the TC channel? As 
described already, TCs respond to a broad range of odorants at a low 
threshold (Schneider and Scott, 1983; Ezeh et al., 1993; Fukunaga 
et al., 2012; Igarashi et al., 2012). Combined with the fact that the 
aiCAP receives converging TC projections from all the olfactory bulb, 
this compact target could rapidly detect more-or-less indiscriminate 
odor stimuli. Because the aiCAP belongs to the dopamine reward 
system (Fallon et al., 1978; Haberly and Price, 1978a; Wesson and 
Wilson, 2011; Murata et al., 2015), the odor detection at aiCAP may 
directly influence value-based behavior in mice through this 
reward system.

FIGURE 2

Projections of MCs and TCs revealed by neurogenic tagging. Pie 
charts on the top show the proportion of neuron types neurogenic-
tagged. MCs and TCs are preferentially labeled when TM was 
injected at embryonic day 12.5 (TM12.5. left) and 15.5 (TM15.5, right), 
respectively. The diameter of the charts reflects the number of 
neurons. The brain diagrams on the bottom summarize axon 
projections of TM2.5 and TM15.5-tagged neurons. The asterisk 
indicates aiCAP within the olfactory tubercle. imTC, internal and 
middle TC; eTC, external TC; MOB, main olfactory bulb; AON, 
anterior olfactory nucleus; pE, pars externa; LOT, lateral olfactory 
tract; TT, tenia tecta; OT, olfactory tubercle; CoA, cortical amygdala; 
PLCo, posterolateral cortical amygdala; PC, piriform cortex; EC, 
entorhinal cortex. Modified from Hirata et al. (2021).
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The pars externa, another TC target, likely operates in partnership 
with MCs. Its unique topographic connections linking ipsilateral and 
contralateral olfactory bulbs suggest a potential role of this subnucleus 
in spatial function, such as the localization of odor sources (Kikuta 
et al., 2010).

Future perspectives

The power of neurogenic tagging lies in its ability to manipulate 
the tagged neurons (Hirata et al., 2021). Thus, we are now in the stage 
to explore the actual meaning of olfactory parallel circuits. We have 
begun testing the olfactory behaviors of mice when MC or TC circuits 
are specifically activated or suppressed using chemogenetics. This 
method also paves the way for monitoring neuronal activities in 
various areas when neuronal activities of each olfactory channel is 
selectively modulated. Such approaches hold immense promise for 
unveiling the specific functions of MC and TC circuits within the 
olfactory system, ultimately leading to a deeper understanding of the 
logic behind olfactory information processing.
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Circadian rhythm mechanism in 
the suprachiasmatic nucleus and 
its relation to the olfactory system
Yusuke Tsuno * and Michihiro Mieda 

Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa 
University, Kanazawa, Japan

Animals need sleep, and the suprachiasmatic nucleus, the center of the 
circadian rhythm, plays an important role in determining the timing of sleep. 
The main input to the suprachiasmatic nucleus is the retinohypothalamic 
tract, with additional inputs from the intergeniculate leaflet pathway, the 
serotonergic afferent from the raphe, and other hypothalamic regions. Within 
the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal 
polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive 
neurons. VIP neurons are important for light entrainment and synchronization 
of suprachiasmatic nucleus neurons, whereas AVP neurons are important 
for circadian period determination. Output targets of the suprachiasmatic 
nucleus include the hypothalamus (subparaventricular zone, paraventricular 
hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus 
(paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic 
nucleus also sends information through several brain regions to the pineal 
gland. The olfactory bulb is thought to be able to generate a circadian rhythm 
without the suprachiasmatic nucleus. Some reports indicate that circadian 
rhythms of the olfactory bulb and olfactory cortex exist in the absence of 
the suprachiasmatic nucleus, but another report claims the influence of the 
suprachiasmatic nucleus. The regulation of circadian rhythms by sensory 
inputs other than light stimuli, including olfaction, has not been well studied 
and further progress is expected.

KEYWORDS

circadian rhythm, suprachiasmatic nucleus, in vivo, olfaction, arginine vasopressin 
(AVP)

Introduction

Sleep is essential for survival, and animals maintain their physical and mental health by 
maintaining a certain rhythm of waking and sleeping at the right time and in the right state. 
In humans, waking and sleeping roughly correspond to the day and night in the outside world. 
Diurnal organisms, such as humans, are active during the day, while nocturnal animals, such 
as mice, are more active at night and sleep more at the opposite time. The suprachiasmatic 
nucleus (SCN) is the center that controls all circadian rhythms, including wake–sleep, appetite, 
autonomic system, and neuroendocrine rhythms (Hastings et  al., 2018). This control of 
circadian rhythms allows animals to maintain a roughly 24-h cycle, even in the absence of light 
from the outside world. The circadian rhythm period of the body clock is approximately 24 h, 
not exactly 24 h, so each morning’s exposure to light resets the body clock and aligns it with 
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the external day-night cycle. In this review, we will discuss the inputs 
to the SCN, the networks within the SCN, the outputs from the SCN, 
and the effects of stimuli other than light on circadian rhythms, 
particularly the olfactory system.

Inputs to the SCN

There are three major inputs to the SCN (Abrahamson and 
Moore, 2001; Reghunandanan and Reghunandanan, 2006; Morin, 
2013) (Figure 1). The most important input is from the retina through 
the retinohypothalamic tract (RHT) to the ventral core region of the 
SCN which is thought to provide input primarily to vasoactive 
intestinal polypeptide (VIP)-positive and gastrin-releasing peptide 
(GRP)-positive neurons (Lokshin et al., 2015). Loss of melanopsin-
containing intrinsically photosensitive retinal ganglion cells (ipRGCs, 
Opn4+) that form the RHT, abolishes circadian photoentrainment 
(Güler et  al., 2008), suggesting that ipRGCs are essential for 
photoentrainment. The major neurotransmitters are thought to 
be  glutamate and PACAP (Hannibal, 2002, 2021), and the 
glutamatergic input is mediated by AMPA and NMDA receptors (Kim 
and Dudek, 1991).

The second is the geniculohypothalamic input via the thalamic 
intergeniculate leaflet, which also originates from the retina. The 
third is serotonergic input from the raphe nuclei, which enters the 
ventral region of the SCN (Abrahamson and Moore, 2001). 
Serotonin receptors (5-HT1A, 2A, 2B, 2C, 5A, 7) are expressed in the SCN 
(Moyer and Kennaway, 1999; Takeuchi et al., 2014). Other inputs 
come from other hypothalamic areas that can modulate the activity 
of the SCN. The circadian rhythm of the SCN is thought to be altered 
by sleep, wakefulness, animal state, and external conditions but 
either the pathway and mechanism are unknown (Deboer et al., 
2003, 2007).

Inside the SCN

The two of the major neuronal subtypes in the SCN are 
VIP-positive neurons in the ventrolateral region, also known as the 
core region, and AVP-positive neurons in the dorsomedial, or shell, 
region (Abrahamson and Moore, 2001). VIP-positive neurons receive 
direct projection from the retina (Todd et al., 2020) and are thought 
to shift the phases of the circadian rhythm. Spontaneous Ca2+ activity 
of VIP neurons is higher during daytime and subjective daytime 
(Jones et al., 2018). VIP neuron intracellular Ca2+ is increased by light 
stimulation of the retina (Jones et  al., 2018; Todd et  al., 2020). 
Suppression of VIP neurons abolished the phase shift induced by light 
pulses (Jones et al., 2018). Diphtheria toxin ablation of VIP neurons 
disrupted the light-entrained rhythm of locomotor activity (Todd 
et al., 2020). All of these results suggest that SCN VIP neurons play an 
important role in light entrainment. In addition, because VIP or VIP 
receptor, VPAC2, knock-out mice show either arrhythmicity, multiple 
circadian periods, or a shorter single period in locomotor activity 
(home-cage activity) or wheel-running activity (Harmar et al., 2002; 
Colwell et al., 2003; Hughes et al., 2004; Aton et al., 2005; Peng et al., 
2022), the VIP peptide itself is important for synchronizing circadian 
rhythmicity within the SCN and animal behavior.

AVP-positive neurons are important in determining the period of 
the circadian rhythm. Knockout of the clock gene Bmal1 specifically 
in AVP neurons impaired the behavioral circadian rhythm (Mieda 
et al., 2015). The clock proteins CLOCK (circadian locomotor output 
cycles kaput) and BMAL1 (basic helix–loop–helix ARNT-like protein 
1 or ARNTL, aryl hydrocarbon receptor nuclear translocator-like 
protein 1) are key transcription factors that form a heteromer and 
bind regulatory elements E-boxes to express the clock proteins PER1, 
PER2, CRY1, CRY2, which in turn inhibit CLOCK-BMAL1, 
generating the approximately 24-h rhythm (Takahashi, 2017). This 
machinery is called the transcriptional translational feedback loop 
(TTFL), which is the core machinery of the molecular clock. 
Therefore, knocking out Bmal1 in AVP neurons disrupts the cellular 
clock of AVP neurons.

Casein kinase 1 delta (CK1δ) regulates the nuclear translocation 
and degradation of the clock proteins PER and CRY. Therefore, the 
loss of CK1δ elongates the cellular circadian period (Etchegaray et al., 
2009, 2010). AVP neuron-specific knockout of CK1δ prolonged the 
period of the behavioral circadian rhythm (Mieda et al., 2016). In 
addition, knockout of CK1δ specifically in AVP neurons prolonged 
the period of the Ca2+ activity circadian rhythm in both AVP neurons 
and VIP neurons (Tsuno et al., 2023). This suggests that AVP neurons 
regulate the period of the circadian rhythm of the entire 
SCN. However, since the period of the circadian rhythm was not 
altered by loss of GABA release (Maejima et al., 2021) or AVP release 
(Tsuno et  al., 2023) specifically in AVP neurons, it is likely that 
neurotransmitters other than GABA and AVP are responsible for the 
period regulation of the SCN ensemble circadian rhythm and 
locomotion by AVP neurons, and further studies are needed to 
identify the mechanism.

In addition to AVP neurons and VIP neurons, the SCN contains 
neurons that express a variety of neuropeptides. For example, 
CCK-positive neurons in mice have a peak in Ca2+ activity 5 h before 
the onset of locomotor activity under different light/dark conditions, 
suggesting that they may determine the onset of locomotion (Xie 
et al., 2023). Prok2-positive neurons have a peak in Ca2+ activity in the 

FIGURE 1

Inputs and outputs of the suprachiasmatic nucleus (SCN). The major 
inputs to the SCN are (1) the retinohypothalamic tract from 
melanopsin-containing photosensitive ganglion cells in the retina, (2) 
the geniculohypothalamic tract via the intergeniculate leaflet (IGL), 
and (3) the median raphe nuclei containing serotonergic neurons. 
Other hypothalamic areas (arcuate nucleus, medial preoptic area) 
and thalamic areas (paraventricular thalamic nuclei) also project to 
the SCN. Humoral factors such as hormones also modulate the SCN. 
The major outputs of the SCN are (1) subparaventricular zone (SPVZ), 
(2) paraventricular hypothalamic nucleus (PVH), (3) preoptic area 
(POA), (4) ventromedial hypothalamic nucleus (VMH), (5) 
dorsomedial hypothalamic nucleus (DMH), (6) paraventricular 
thalamic nuclei (PVT), and (7) lateral septum (LS). Other outputs 
include humoral factor and pineal gland polysynaptically 
(Abrahamson and Moore, 2001; Saper et al., 2005; Starnes and 
Jones, 2023).
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middle of the day (Onodera et al., 2023), which may inhibit locomotor 
output (Cheng et al., 2002). Abrahamson and Moore showed that 
ventral core neurons contain GABA, VIP, gastrin-releasing peptide 
(GRP), neurotensin (NT), calretinin (CALR), and calbindin (CALB), 
whereas the dorsal shell neurons contain GABA, AVP, met-enkephalin 
(mENK), angiotensin II (AII), and CALB (Abrahamson and Moore, 
2001). Recent single-cell transcriptomic analyses have shown that the 
SCN neurons can be classified into 5 (Park et al., 2016; Wen et al., 
2020), 11 (Morris et al., 2021) or 12 subtypes (Xu et al., 2021). Park 
et al. (2016) classified 5 groups of neurons, VIP+, AVP+/VIPR2+, 
PACAP+/Prok2+, PACAPR+, and others. Wen et al. (2020) classified 
5 groups, Vip+/Nms+, Avp+/Nms+, Cck+/C1ql3+, Cck+/Bdnf+, and 
Grp+/Vip+. Morris et al. (2021) classified 11 neuronal subpopulations, 
8 groups in day and 8 groups in night including 5 overlapping groups. 
Xu et al. (2021) classified 12 groups, 4 AVP+, 3 VIP+, 2 CCK+, and 3 
unknown groups. One of 4 AVP+ groups by Xu et  al. strongly 
correlated with the Cck+/C1ql3+ group by Wen et al., while another 
3 of 4 AVP+ groups significantly correlated with the Avp+/
Nms + group. In addition, 1 of 3 VIP+ groups by Xu et al. correlated 
with the Vip+/Nms + group by Wen et al., while another 1 VIP+ group 
correlated with the Grp+/Vip + group. Finally, 1 of 2 CCK+ groups 
correlated with the Cck+/Bdnf+ group (Wen et al., 2020; Xu et al., 
2021). Further studies are needed to elucidate the function of each cell 
type and the interactions between them.

Output from the SCN

Output from the SCN is primarily to other hypothalamic nuclei 
and the thalamus (Abrahamson and Moore, 2001; Saper et al., 2005; 
Reghunandanan and Reghunandanan, 2006; Morin, 2013; Starnes and 
Jones, 2023). Many projections from the SCN terminate in the 
subparaventricular zone (SPVZ, projecting DMH), adjacent to the 
dorsal SCN. Other major projections include the paraventricular 
hypothalamic nucleus (PVH, including the pituitary–adrenal axis), 
the preoptic area [POA, a critical area of thermoregulation (Nakamura 
et  al., 2022) and one of non-REM sleep centers (Scammell et  al., 
2017)], and other hypothalamic nuclei that control instinctive 
behavior and homeostasis such as feeding, energy metabolism, sleep/
wakefulness, and motivated behavior, including the ventromedial 
hypothalamic nucleus (VMH, projecting SPVZ), dorsomedial 
hypothalamic nucleus (DMH), paraventricular thalamic nuclei (PVT), 
and lateral septum (LS). The SCN inhibits the pineal gland, which 
produces melatonin with sleep-inducing properties, via the PVH, the 
intermediolateral nucleus of the medulla (IML), and the cervical 
sympathetic ganglion (Tonon et al., 2021).

Olfaction and circadian rhythms

There are reports suggesting a relationship between the olfactory 
system and circadian rhythms. Almost every cell in the body can 
generate circadian rhythms, with the SCN acting as a master 
pacemaker to synchronize and entrain the peripheral clock (Reppert 
and Weaver, 2002; Takahashi, 2017). The olfactory bulb (OB), the first 
center of olfactory information processing, is thought to be capable of 
generating circadian rhythms. In slices, the OB maintains a circadian 
rhythm of Per1 expression, recorded by the Per1-Luc reporter, and 

neuronal firing activity in rats (Granados-Fuentes et al., 2004) or Per2 
expression by the Per2::Luc reporter in mice (Ono et  al., 2015), 
suggesting that the OB can generate its own circadian rhythm. 
However, the phase of the rhythm is easily altered by external 
perturbations, as the peak of Per2::Luc varies with the cutting time 
(Ono et al., 2015). Furthermore, the SCN lesions alter (Abraham et al., 
2005) or eliminate (Ono et al., 2015) the peak phase of clock gene 
expression in the OB. These results suggest that the OB expresses clock 
genes and can generate circadian rhythms. However, without the SCN, 
the peaks become desynchronized with the whole body, indicating a 
hierarchical structure with the SCN as the central clock.

Some reports suggest that the daily rhythm of the olfactory 
function is influenced by both the SCN and the OB. Granados-Fuentes 
et al. reported in 2006 that the cedar oil-induced daily rhythm of c-Fos 
expression remained in the OB and piriform cortex after SCN 
removal, whereas it disappeared in the piriform cortex after OB 
ablation, suggesting that the OB generates the rhythm. Granados-
Fuentes et al. (2011) reported that the SCN lesion altered the peak 
phases of the daily rhythm of olfactory discrimination performance 
(Granados-Fuentes et al., 2011). In addition, Takeuchi et al. reported 
in 2023 that knockout of Bmal1 in Vgat-positive neurons, including 
SCN neurons, altered the peak phase of the circadian rhythm of odor-
induced c-fos positive cell number in the piriform cortex (Takeuchi 
et al., 2023). These results indicate that the SCN alters the peak phase 
of olfactory function, suggesting that it contributes to the 
synchronization of the circadian rhythms of olfactory function and 
the central clock.

Clock gene expression itself is important for odor detection. 
Granados-Fuentes et al. (2011) reported that there is a daily rhythm 
in the performance and sensitivity of the odor detection task that 
disappears when the clock genes Bmal1 or both Per1 and Per2 genes 
are knocked out (Granados-Fuentes et al., 2011). Takeuchi et al. report 
that Bmal1 knockout in the piriform cortex abolishes the circadian 
rhythm of the odor-evoked activity (Takeuchi et  al., 2023). Using 
quantitative PCR, they report that the circadian rhythm of gene 
expression observed in the piriform cortex is dependent on Bmal1 
expression in Emx-positive cells, including pyramidal cells in the 
piriform cortex (Takeuchi et al., 2023). These results suggest that the 
circadian rhythm of odor detection and odor-evoked neural activity 
requires clock genes.

The mechanism by which the SCN modulates the circadian 
rhythm of the OB is not yet clear. It is known that the SCN projects to 
various hypothalamic regions and releases neurotransmitters, 
including neuropeptides, and hormones, while the OB receives 
centrifugal inputs from the olfactory cortex and neuromodulatory 
centers and is also influenced by neuropeptides and hormones 
(Brunert and Rothermel, 2021). Therefore, it is possible that the SCN 
can alter the circadian rhythm of the OB through centrifugal inputs 
from the olfactory cortex or neuromodulatory centers via the 
hypothalamus, neuromodulatory inputs, and neuropeptides, or 
hormones in the bloodstream.

Conversely, there is some evidence that the olfactory system can 
modify the activity of the SCN via the OB. Amir et al. (1999) reported 
that light-induced c-Fos expression in the SCN is enhanced by 
olfactory stimuli. Removal of the OB also altered the time of 
re-entrainment and altered the phase of the odor-evoked c-Fos 
expression rhythm in the SCN (Granados-Fuentes et  al., 2006). 
Because odor stimulation increased c-Fos expression in the 
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paraventricular thalamic nucleus (PVT) (Amir et al., 1999), a review 
has argued that the PVT may be related to the pathway from the OB 
to the SCN (Jeffs et al., 2023).

Discussion

Although the basic mechanisms of circadian rhythm control are 
becoming clearer, much remains unknown about how the individual 
subpopulations within the SCN interact to generate a synchronized 
circadian rhythm as an ensemble. Furthermore, although circadian 
rhythms are closely linked to the sleep–wake cycle (Franken and Dijk, 
2024), the interaction between the SCN and the sleep–wake center 
remains elusive. Although the modulation of circadian rhythms by 
light stimulation has been well studied, the modulation of circadian 
rhythms by environmental changes other than light has not been fully 
investigated, and further research is needed.

The SCN, the center of the circadian rhythm, modulates the 
rhythm in response to external conditions. In addition to light, 
possible conditions include food availability, the presence of predators, 
and environmental temperature, which in turn affect the wake–sleep 
states and the brain’s information processing mode (Pickel and Sung, 
2020; Franken and Dijk, 2024). From this perspective, the olfactory 
system, which is important for feeding, finding mates, and escaping 
predators, is thought to be closely related to circadian rhythms and 
wake–sleep states (Mori and Sakano, 2022). Because the OB has the 
unique property of generating a circadian rhythm without the SCN, 
investigating the relationship between diurnal variation in olfactory 
information processing and circadian rhythms of the SCN is an 
interesting target for future research. In addition, a reduced sense of 
smell and instability of the wake–sleep rhythm are two prominent 
features of Alzheimer’s disease (AD), so both may be easily impaired 
and may be an indicator of preclinical AD (Jeffs et al., 2023).
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Neural basis for pheromone 
signal transduction in mice
Ken Murata 1, Takumi Itakura 1,2 and Kazushige Touhara 1*
1 Laboratory of Biological Chemistry, Graduate School of Agricultural and Life Sciences, Department 
of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan, 2 Division of Biology and 
Biological Engineering, TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of 
Technology, Pasadena, CA, United States

Pheromones are specialized chemical messengers used for inter-individual 
communication within the same species, playing crucial roles in modulating 
behaviors and physiological states. The detection mechanisms of these signals 
at the peripheral organ and their transduction to the brain have been unclear. 
However, recent identification of pheromone molecules, their corresponding 
receptors, and advancements in neuroscientific technology have started to 
elucidate these processes. In mammals, the detection and interpretation of 
pheromone signals are primarily attributed to the vomeronasal system, which 
is a specialized olfactory apparatus predominantly dedicated to decoding 
socio-chemical cues. In this mini-review, we aim to delineate the vomeronasal 
signal transduction pathway initiated by specific vomeronasal receptor-ligand 
interactions in mice. First, we catalog the previously identified pheromone ligands 
and their corresponding receptor pairs, providing a foundational understanding 
of the specificity inherent in pheromonal communication. Subsequently, 
we examine the neural circuits involved in processing each pheromone signal. 
We focus on the anatomical pathways, the sexually dimorphic and physiological 
state-dependent aspects of signal transduction, and the neural coding strategies 
underlying behavioral responses to pheromonal cues. These insights provide 
further critical questions regarding the development of innate circuit formation 
and plasticity within these circuits.

KEYWORDS

pheromone, vomeronasal system, hypothalamus, innate behavior, neural circuit

Introduction

Animals utilize chemosensory signals, which are crucial for mediating a range of 
behaviors involved in survival and reproduction (Wyatt, 2014). These signals are 
encapsulated in biochemical compounds known as pheromones, which facilitate 
intraspecific communication (Karlson and Lüscher, 1959). Pheromones are principally 
detected by two sensory systems: the main olfactory system and the vomeronasal system 
(Baum and Cherry, 2015; Tirindelli, 2021). The main olfactory system is responsible for 
detecting volatile pheromones, while the vomeronasal system is particularly attuned to 
decoding social cues embedded within these signals (Holy, 2018). Such cues encompass a 
range of biological information, including species, sex, developmental stage, health status, 
and reproductive condition of conspecifics. A variety of vomeronasal ligands carrying this 
intricate information have been identified, indicating a complex and diverse chemosensory 
communication network among animals (Murata and Touhara, 2021). Vomeronasal 
receptors (VRs), which are a subset of the G protein-coupled receptor (GPCR) superfamily, 
are specialized for the detection of these chemosensory signals (Silva and Antunes, 2017). 
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These receptors translate the chemical information from ligands into 
a biological response through dedicated signal transduction 
pathways, ultimately leading to behavioral or physiological responses.

Vomeronasal ligands, receptors, and 
functions

VRs are expressed in vomeronasal sensory neurons (VSNs) of 
the vomeronasal organ (VNO): a tubular organ located in the base 
of the nasal septum (Døving and Trotier, 1998). These receptors are 
categorized into two principal classes: V1Rs and V2Rs (Figure 1). 
Mice have approximately 240 V1R genes and 120 V2R genes (Young 
and Trask, 2007; Miller et al., 2020). Each of these receptor types has 
a distinct structure and function. V1Rs are members of the 
rhodopsin-type GPCR family and are typically coupled with the G 
protein Gαi2 (Trouillet et al., 2019). They are generally involved in 
detecting small molecule ligands, such as volatile compounds and 
steroid derivatives (Lee et al., 2019; Wong et al., 2020). In mice, V1Rs 
are expressed in the apical layer of the VNO and are responsible for 
recognizing a variety of urinary molecules that convey information 
about sex and physiological states (Doyle and Meeks, 2018). V2Rs 
belong to the class C GPCR family and are associated with the G 
protein Gαo (Chamero et al., 2011). V2Rs have a large extracellular 
domain that is thought to be involved in ligand recognition. They are 
primarily expressed in the basal layer of the VNO and are tuned to 
detect larger molecules such as peptides and proteins (Pérez-Gómez 
et al., 2014).

Each VSN expresses only one or a restricted few VRs, which 
allows for a highly specific response to particular chemosensory cues 
(Nikaido, 2019). When a VR binds to its ligand, it initiates a cascade 
of intracellular events that lead to the opening of ion channels, and 
ultimately results in the generation of action potentials (Yu, 2015). 
These electrical signals are then transmitted to the brain, where they 
are processed into behavioral responses.

The transient receptor potential channel 2 (Trpc2) is specifically 
expressed in the VNO and plays a critical role in signal transduction 
(Figure  1). The disruption of Trpc2 significantly diminishes the 
responsiveness of VSNs, leading to marked alterations in a spectrum 
of social behaviors, such as inter-male and maternal aggression, 
basically because of impairment of sex recognition (Leypold et al., 
2002; Stowers et al., 2002; Kimchi et al., 2007). The role of Trpc2 in 
parental behavior is somewhat controversial. In one report, Trpc2-KO 
virgin male mice show marked reduction in pup-directed aggression, 
and even exhibit parental care (Wu et al., 2014). Conversely, other 
research underscores the relevance of Trpc2 in maternal behaviors 
(Fraser and Shah, 2014). Moreover, it is currently unclear whether the 
phenotypic manifestations observed in Trpc2-KO models are solely 
attributable to compromised vomeronasal signaling or whether they 
may also be a consequence of perturbations in the developmental 
processes. Indeed, some studies have implied the significance of the 
vomeronasal input during the development in terms of gene 
expression, anatomy, and behaviors (Cross et  al., 2021; Pfau 
et al., 2023).

The ligands for vomeronasal receptors are diverse and are often 
species-specific molecules involved in social communication. A 

FIGURE 1

Pheromone molecules are received by vomeronasal receptors expressed in vomeronasal organ (VNO). Vomeronasal receptors are mainly categorized 
into V1R and V2R, which are coupled with Gi2 and Go, respectively. Activation of receptors results in opening of transient receptor potential channel 2 
(Trpc2), generating action potentials. The signals are transmitted to the accessory olfactory bulb, and then to the medial amygdala (MeA) and bed 
nucleus of the stria terminalis (BNST). From there, pheromone signals are transmitted to the hypothalamus, such as medial preoptic area (MPOA), 
ventromedial hypothalamus (VMH) and ventral premammillary nucleus (PMv). From the hypothalamus, processed information is conveyed to 
downstream motor effector areas through the mesencephalic periaqueductal gray (PAG).
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prominent class of these ligands is the exocrine gland-secreting 
peptide (ESP) family (Kimoto et  al., 2005). This group comprises 
species-specific peptide ligands that have undergone evolutionary 
divergence from the α-globin gene in rodent species (Niimura et al., 
2020). ESPs are synthesized and secreted by various exocrine glands 
and are subsequently detected by a subset of the V2R receptor class 
(Kimoto et al., 2007). The differential secretion patterns of ESPs by sex 
and genetic strain enable the transmission of critical information 
regarding an individual’s sex and unique identity. One notable peptide, 
ESP1, secreted by the extraorbital lacrimal gland of male mice, is 
received by Vmn2r116 and enhances female sexual receptivity and 
inter-male aggression (Haga et  al., 2010; Hattori et  al., 2016). 
Conversely, ESP22, found in the tear fluid of juvenile mice, acts 
through Vmn2r115—a receptor closely homologous to Vmn2r116— 
and suppresses sexual behavior in both adult male and female mice 
(Ferrero et al., 2013; Osakada et al., 2018).

Another significant class of vomeronasal ligands is Major Urinary 
Proteins (MUPs), primarily found in the urine of rodents (Hurst and 
Beynon, 2004). MUPs bind to and gradually release volatile molecules 
that are detected by the V1Rs (Leinders-Zufall et  al., 2000). 
Concurrently, MUPs themselves act as agonists for V2Rs (Chamero 
et  al., 2007). Since each mouse strain secretes specific patterns of 
MUPs and males release more MUPs than females, MUPs are 
implicated in behaviors associated with territorial demarcation and 
individual recognition (Roberts et  al., 2012). Notably, MUP3 and 
MUP20 have been identified as having an aggression-promoting effect 
in mice (Kaur et al., 2014). Although the V2Rs for MUPs have yet to 
be  identified, electrophysiological recordings from putative 
V2R-expressing VSNs have suggested that a diverse array of V2R 
subtypes interact with MUPs in a complex manner: some 
demonstrating specificity to individual MUPs, while others respond 
to multiple MUP isoforms. The mechanism by which this 
combinatorial receptor coding is interpreted by the downstream 
neural circuits is not understood.

Urine is a major source of vomeronasal ligands. The urine of 
female mice is rich in sulfated steroids, which are hormonal derivatives 
that act as ligands for V1Rs (Nodari et al., 2008; Isogai et al., 2011). 
Some VRs have been identified to bind sulfated steroids in a 
combinatorial manner. The presence of these V1R ligands in female 
urine may convey information regarding the female’s reproductive 
status, such as estrous cycle phase, thereby enhancing sexual behavior 
in the male mouse (Haga-Yamanaka et al., 2014). On the other hand, 
the identification of VRs responsive to male urine has not been as 
fruitful. Neurons expressing Vmn2r53 in the VNO are activated by 
urine from males across different mouse strains (Itakura et al., 2022). 
Activation of Vmn2r53 has been associated with the promotion of 
inter-male aggressive behavior. The consistent activation of Vmn2r53 
by urine from various strains of male mice suggests that its ligand is a 
robust marker of ‘maleness’ within the species.

Ligands for the vomeronasal system are not limited to species-
specific molecules. For instance, hemoglobin from diverse species acts 
as a ligand for Vmn2r88 and has been shown to elevate digging and 
rearing behaviors in lactating female mice, although the ethological 
significance of these behaviors remains undetermined (Osakada 
et al., 2022).

The submandibular gland protein C (Smgc) from pups and female 
mice has been identified as a ligand for Vmn2r65 (Isogai et al., 2018). 
In virgin male mice, Vmn2r65, alongside Vmn2r88, appears to 

be partially required for the exhibition of infanticidal behavior. It is 
postulated that activation of certain vomeronasal receptor pairs is 
essential for the induction of infanticidal behavior, yet the precise 
receptor combinations that are sufficient for eliciting such behavior 
have not been fully elucidated.

The neural encoding of signals from VSNs expressing narrowly-
tuned VRs is hypothesized to be interpreted by downstream neural 
circuits in a manner akin to a labeled-line model (Tye, 2018). The 
elucidation of this mechanism is anticipated to significantly enhance 
our understanding of the neural bases of innate behaviors. Further 
analysis of these neural circuits may also yield valuable insights into 
the general principles governing sensory information processing and 
the resultant behavioral manifestations.

Neural basis for vomeronasal signal 
transduction

The vomeronasal system is characterized by its distinct neural 
pathway through which sensory information from the VNO is 
transmitted to the hypothalamus (Figure 1) (Halpern, and Martı́nez-
Marcos, 2003; Ishii and Touhara, 2019). The initial synaptic relay 
occurs at the accessory olfactory bulb (AOB), where the axons of 
VSNs responding to pheromonal stimuli converge upon multiple 
glomeruli (Mombaerts, 2004; Dulac and Wagner, 2006). Here, they 
establish synaptic connections with second-order neurons: mitral and 
tufted cells. These AOB neurons integrate VR signals to encode sexual 
and species-specific information (Hammen et al., 2014). Subsequently, 
this integrated signal is propagated to higher brain areas such as the 
medial amygdala (MeA) and the bed nucleus of the stria terminalis 
(BNST), which are pivotal in modulating socio-sexual behaviors 
through the processing of species- and sex-specific cues (Li et al., 
2017; Yang et al., 2022).

The information is further transmitted from the MeA and BNST 
to the interconnected hypothalamic nuclei implicated in reproductive 
and aggressive behaviors: the ventromedial hypothalamus (VMH), 
medial preoptic area (MPOA), and ventral premammillary nucleus 
(PMv) (Choi et  al., 2005). These hypothalamic neurons are 
characterized by distinctive patterns of gene expression and neural 
circuitry, which confer selective responsiveness to various stimuli. The 
functional specialization of these neuronal populations has been 
elucidated through various experimental methodologies, such as in 
vivo neural activity recording and the application of optogenetic or 
chemogenetic techniques, which have substantiated the unique role of 
these neurons in behavioral modulation. Notably, by leveraging Ca2+ 
imaging, neurons responsive to male and female signals are shown to 
be largely segregated from the VNO to the VMH (He et al., 2008; 
Hammen et al., 2014; Li et al., 2017; Remedios et al., 2017; Karigo 
et al., 2021; Yang et al., 2022).

The activity of the hypothalamic nuclei extends to the midbrain 
periaqueductal gray (PAG), a key structure in orchestrating various 
survival behaviors. The PAG integrates these signals and extends 
projections to additional brain regions responsible for the execution 
of motor functions (Falkner et al., 2020; Chen et al., 2021). This forms 
a comprehensive neural circuit that translates the detection of 
pheromonal signals into appropriate behavioral responses.

Recent studies have provided significant insights into the 
neurobiological underpinnings of intermale aggression. Specifically, a 
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cluster of neurons located within the ventrolateral part of the VMH 
(VMHvl), which express estrogen receptor type 1 (Esr1) and are 
henceforth referred to as VMHvlEsr1 neurons, have been identified as 
critical mediators of intermale aggressive behavior (Lin et al., 2011; 
Lee et al., 2014). The activity and sensitivity of VMHvlEsr1 neurons are 
dynamically modulated by sexual experience, which in turn affects the 
neural coding of sexual cues and can lead to the onset of aggressive 
responses (Remedios et al., 2017).

In female sexual behavior, a complex interaction between 
hormonal fluctuations and pheromonal cues is important. A subset of 
VMHvlEsr1 neurons, which express Cckar but not NPY2r, are both 
necessary for the initiation of and sufficient to induce sexual 
receptivity in females (Knoedler et al., 2022; Liu et al., 2022; Yin et al., 
2022). This subset of neurons exists only in females and exhibits an 
increase in axonal projections to the anteroventral periventricular 
nucleus and changes neurophysiological properties during the estrous 
cycle (Inoue et  al., 2019; Knoedler et  al., 2022). These findings 
highlight the essential role of hormone-sensitive neurons within the 
VMHvl in regulating female sexual behaviors.

ESP1 has been shown to enhance female sexual receptivity, with 
its neural circuitry being extensively characterized (Figure 2) (Ishii 

et al., 2017). ESP1 is detected by Vmn2r116-positive VSNs, leading to 
the activation of the caudal part of the AOB. This triggers a cascade of 
neural activity that results in the activation of glutamatergic neurons 
within the MeA. Notably, the propagation of this neural signal does 
not proceed to the VMHvl as might be expected, but rather to the 
VMH dorsomedial part (VMHdm)—a region typically implicated in 
fear response modulation. Within the VMHdm, a subpopulation of 
neurons expressing the nuclear receptor steroidogenic factor 1 
(VMHdmSF1) is preferentially responsive to ESP1. These neurons 
exhibit a response profile that is distinct from that of neurons 
responding to predator odors within the same neural cluster. 
Experimental optogenetic reactivation of the ESP1-responsive 
VMHdmSF1 neurons can induce an increase in sexual receptivity akin 
to that observed naturally in response to ESP1. Conversely, the genetic 
disruption of VMHdmSF1 neurons leads to a diminution of the ESP1-
induced enhancement in sexual receptivity, although basal levels of 
receptivity are unaffected. In stark contrast, the ablation of VMHvlEsr1 
results in the complete abolition of sexual receptivity.

Conversely, ESP22 suppresses female sexual behaviors. This 
suppressive influence of ESP22 is mediated through GABAergic 
projections from the BNST to the VMHvl (Osakada et al., 2018).

FIGURE 2

Schematic summary of the proposed neural circuits responsible for pheromone-mediated behaviors in mice.
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The signaling mechanisms of ESP1 and ESP22 exemplify a 
labeled-line neural circuit model; however, pheromonal neural 
circuitry does not universally adhere to such a linear pathway (Li et al., 
2017; Li and Dulac, 2018).

Neural mechanisms of pheromone-mediated intermale aggression 
have also been characterized by focusing on specific pheromones and 
receptors. Exposure to a pheromonal component that activates 
Vmn2r53 invariably results in the activation of progesterone receptor 
(PR)-expressing neurons in the PMv (PMvPR) in male mice (Itakura 
et  al., 2022). This response occurs regardless of previous social 
interactions. It is noteworthy that although male urine is composed of 
a multitude of pheromonal substances in addition to Vmn2r53 
ligands, the bulk calcium responses—serving as proxies for neural 
activity—elicited by this individual pheromonal component are 
quantitatively analogous to those triggered by the complete male 
urine. Contrastingly, after experiencing aggression, this pheromone 
fraction activates PR-expressing neurons in the VMHvl (VMHvlPR), 
which substantially overlap with the VMHvlEsr1 neurons. In addition, 
the magnitude of this response is much smaller compared to the 
response elicited by exposure to complete male urine. Chemogenetic 
suppression of PMvPR function abolishes VMHvlPR responses to this 
specific pheromonal fraction and attenuates responses to male urine. 
This finding implicates PMvPR neurons as a pivotal upstream mediator 
to the VMHvlPR in the neural processing of male pheromone signals. 
Remarkably, Vmn2r53 knockout significantly diminishes PMvPR 
responses to male urine, suggesting an overrepresentation of 
Vmn2r53-mediated signaling within the PMvPR. In contrast, strain-
specific male pheromones such as ESP1 and MUP3, which are also 
implicated in the induction of aggressive behavior, do not appear to 
activate PMvPR or VMHvlPR neurons. In males, ESP1 stimulates 
excitatory neurons in the MeA and downstream neurons in the BNST 
and MPOA (Ishii et al., 2017). However, the direct causal link between 
the activation of these neural pathways and the potentiation of 
aggressive behavior remains to be conclusively determined. These 
studies imply the existence of redundant or parallel pathways for 
pheromone-mediated aggression.

State-dependent signal transduction of hemoglobin is observed. 
Hemoglobin activates Vmn2r88, mediated by its interaction site, 
Gly17, on the hemoglobin (Osakada et al., 2022). The hemoglobin 
signal reaches the MeA in mice, regardless of sex. However, VMHdm 
is selectively activated in lactating females. As a result, in lactating 
mothers, hemoglobin enhances digging and rearing behaviors. 
Manipulation of VMHdmSF1 neurons is sufficient to induce the 
hemoglobin-mediated behaviors.

Collectively, the identification of specific pheromone molecules 
and corresponding receptors responsible for behavioral regulations 
has contributed to delineating neural circuits from sensory input to 
behavioral output since this approach simplifies input–output 
relations (Figure 2).

Perspective

Research on pheromones and their behavioral impacts provides a 
rich field, particularly with regard to the formation and function of 
neural circuits inducing innate behaviors, known as ‘labeled line’ 
circuits. A viable starting point for dissecting these pathways is the 
study of VRs with identified pheromone ligands. For example, the 

closely related receptors Vmn2r115 and Vmn2r116 bind to ESP22 and 
ESP1, respectively, yet exert opposite effects on female sexual behavior 
(Haga et al., 2010; Osakada et al., 2018). What variations exist in the 
spatial distribution of axonal terminals within the AOB’s glomerular 
array among VSNs expressing different VRs? Do VRs dictate 
projection patterns to the AOB in a manner similar to olfactory 
receptors? How do VSNs expressing individual VRs form synapses 
with mitral/tufted cells? This includes identifying whether there are 
distinct subtypes within the mitral/tufted cell populations based on 
their connectivity and gene expression. Furthermore, do mitral/tufted 
cells form specific synaptic connections with neurons in the MeA that 
correspond to discrete valences? If so, how is this multisynaptic 
‘labeled line’ wired? Elucidating these mechanisms is crucial for a 
comprehensive understanding of the development of innate 
neural circuits.

The investigation into the mechanisms of sexually dimorphic 
circuit formation is a significant area of research within neurobiology 
(Yang and Shah, 2014). One promising avenue is the study of 
pheromone signal transduction pathways. Notably, sexually dimorphic 
processing of information is observed in response to ESP1, which 
elicits sexually divergent activations in the MeA. A critical question 
arises: at what developmental stages and by what processes does this 
sexual dimorphism manifest? Current evidence suggests that the 
sexually dimorphic responses observed in the MeA are heavily 
influenced by sex hormone signaling. This is supported by findings 
that male mice deficient in the enzyme aromatase, which is crucial for 
estrogen synthesis, exhibit disrupted sexually dimorphic responses 
(Bergan et al., 2014). It is hypothesized that the pathway from the MeA 
to the MPA or VMHdm in response to ESP1 may operate through a 
regulatory mechanism similar to that governed by sex hormone 
signaling. This pathway represents an excellent model for elucidating 
the precise mechanisms underlying sexually dimorphic neural circuit 
formation and pheromonal information processing.

How the pheromone molecule, its receptor, and subsequent 
signaling pathways co-evolved is an interesting question. The ESP and 
MUP gene families are pivotal examples, having undergone 
diversification predominantly via gene duplication—a well-
documented mechanism in evolutionary biology (Sheehan et al., 2019; 
Niimura et  al., 2020). Similarly, vomeronasal receptors have also 
evolved through this mechanism. Despite similarities within the ESP 
and MUP families and their receptors, there are significant functional 
divergences among their members, making them excellent models for 
studying pheromone evolution. In both insect pheromone systems 
and mammalian taste systems, which are well-known examples of 
labeled line signal transduction, the type of cell expressing the receptor 
determines the perceived value of the ligand (Mueller et al., 2005; 
Zhao and McBride, 2020). However, it remains uncertain whether a 
similar paradigm applies to the mammalian vomeronasal system, or 
whether ligand valuation is an intrinsic property of the receptor. 
Indeed, in the mammalian olfactory system, swapping one receptor 
gene for another affects the projection pattern of the given sensory 
neurons, which would affect the perception of the odorant, suggesting 
that the receptor gene itself has a deterministic factor of the value of 
the corresponding ligand (Mombaerts et al., 1996). This query could 
be empirically addressed for the vomeronasal system through targeted 
genetic experiments involving the Vmn2r115 and Vmn2r116 
receptors. For instance, an experimental strategy might include the 
disruption of the Vmn2r116 gene and the substitution of its sequence 
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at the Vmn2r115 locus to assess the functional outcomes on ESP1-
mediated behaviors—specifically, whether it continues to facilitate 
sexual behavior or shifts to inhibiting such behavior, akin to the effect 
observed with ESP22. Should the former occur, it would suggest a 
decisive role of receptor functionality; conversely, the latter outcome 
would indicate a locational influence on gene function. The 
identification and comprehensive characterization of receptors for 
ESPs and MUPs remain incomplete. Further elucidation of the 
evolutionary trajectories of these ligands and their corresponding 
receptors could significantly enhance our understanding of molecular 
evolution of pheromone-mediated communication. Additionally, 
investigating the mechanisms through which signals from these 
receptors interact and integrate with those from other sensory 
modalities to elicit specific behavioral responses presents an intriguing 
area of research.

The signal transduction pathways mediated by ESP1 and ESP22 
appear to support a labeled line coding system; however, tracking the 
neural response toward conspecific sex across different social 
experiences revealed that pheromone signal processing involves 
complex mechanisms beyond this simple paradigm. Recent studies 
have indicated that sexual experiences can alter the neural coding of 
conspecific sex cues within the MeA and VMHvlEsr1. The use of various 
VR and ligand pairs may be instrumental in elucidating the precise 
mechanisms involved, given that the inputs derived from these 
receptor-ligand interactions are typically simple and stable. For 
instance, the signal transduction pathway involving Vmn2r53, which 
is influenced by aggressive behavioral experiences, might serve as an 
excellent model for studying synaptic plasticity between the VMHvl 
and the PMv.

A variety of aggression-inducing pheromones have been 
identified; however, the underlying mechanisms through which these 
pheromones collectively influence aggressive behaviors are not yet 
fully understood. Notably, the MUPs such as MUP3 and MUP20, as 
well as ESP1, exhibit secretion patterns that are distinct among mouse 
strains. In contrast, Vmn2r53 is responsive to a male-specific 
pheromone present in the urine across various male mouse strains, 
indicating that Vmn2r53 may detect a ubiquitous male signal within 
the species. These findings could be pivotal for the discussion on how 
differentially processed pheromone signals can orchestrate uniform 
behavioral responses. Moreover, the interaction complexity of 
pheromone signals is further exemplified by certain behaviors, such 
as infanticide, which are elicited only in the presence of multiple 
pheromonal signals. Identifying the precise pheromonal blend 
required to initiate such complex behaviors remains an outstanding 
challenge in the field. Furthermore, elucidating the specific sites and 
mechanisms through which the vomeronasal system processes and 
integrates these pheromone signals is an essential area of research that 
warrants further investigation.

The perception of pheromones alone typically does not elicit 
specific behavioral responses. The presence of conspecifics and the 
assimilation of diverse sensory inputs, including auditory, visual, 
and tactile information, is requisite. Elucidating how pheromone 
signaling is integrated with other sensory modalities is essential for 
a thorough understanding of behavioral expression. This intersection 
of sensory integration and behavior is a pivotal area for 
future investigation.

The framework of sensory input to aggressive and sexual 
behavioral output is emerging owing to the characterization of 

pheromone molecules and corresponding receptors along with the 
detailed functional analysis within the central nervous systems. In 
contrast, we scarcely know how pheromones trigger physiological 
responses even though these phenomena are classically reported 
in rodents. Since the 1950s, several pheromone-mediated 
phenomena that modulate reproductive function in mice have 
been reported. Estrus cycle is suppressed in group housed females 
(van der Lee and Boot, 1955), and male urine induces estrus in 
those females (Whitten, 1956). Male urine also accelerates puberty 
in female mice (Vandenbergh, 1967). Exposure to a novel male 
induces pregnancy failure in female mice (Bruce, 1959). The 
advent of modern neuroscientific methodologies, including cell-
type-specific imaging and sensors for neuromodulators, offers 
promising avenues for deciphering the central mechanisms 
governing these phenomena. In summary, ongoing research into 
pheromonal communication is poised to yield profound insights 
into the neural circuitry that orchestrates behavioral and 
physiological adaptations.
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Hormonal and circuit 
mechanisms controlling female 
sexual behavior
Sayaka Inoue *

Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, 
United States

Sexual behavior is crucial for reproduction in many animals. In many vertebrates, 
females exhibit sexual behavior only during a brief period surrounding 
ovulation. Over the decades, studies have identified the roles of ovarian sex 
hormones, which peak in levels around the time of ovulation, and the critical 
brain regions involved in the regulation of female sexual behavior. Modern 
technical innovations have enabled a deeper understanding of the neural circuit 
mechanisms controlling this behavior. In this review, I summarize our current 
knowledge and discuss the neural circuit mechanisms by which female sexual 
behavior occurs in association with the ovulatory phase of their cycle.
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Introduction

Sexual behavior is essential to reproduction in many animals and is instinctual that the 
behavior can be  displayed without any prior experience. This instinct suggests that the 
behavior is genetically hard-wired, with the corresponding neural circuits being generated and 
established during the developmental phase. In many vertebrates, female sexual behavior is 
synchronized with the estrous cycle. Females are sexually receptive toward male mounting 
only during a short period surrounding ovulation (estrus phase) and are not receptive during 
the other stages of the estrous cycle. For example, female mice are sexually receptive once in 
every four to five days while female giant pandas are receptive only a few days in a year (Allen, 
1922; Lindburg et al., 2001). Despite the variability in the duration of female estrous cycles 
across species, the concurrence of ovulation and female sexual receptivity is a common trait 
among many mammals. This synchronization is crucial for efficient reproduction, minimizing 
the risk of predation and waste of energy. Female sex hormones 17β-estradiol (referred to as 
estrogen here) and progesterone are released from the ovary and their levels peak at the timing 
surrounding ovulation. Over the decades, studies revealed that estrogen and progesterone, and 
their receptors, are essential to female sexual behavior (Ring and Providence, 1944; Powers, 
1970; Beach, 1976; Lydon et al., 1995; Rissman et al., 1997; Arnold, 2009). Recent studies 
employing novel genetic, imaging, and behavioral approaches further characterized how these 
sex hormones contribute to the behavior by modulating neural circuits in the female brain. In 
this review, I illustrate the overview of how this alliance between ovulation and female sexual 
behavior is controlled by neural circuitry in the brain.
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Female sexual behavior depends on 
female steroid hormones

The sex steroid hormones estrogen and progesterone, produced 
and released by the ovary, are essential for inducing female sexual 
behavior. These sex hormone levels are closely related to the estrous 
cycle: they peak around the estrus, the stage that female is sexually 
receptive and ovulating, while it goes down to undetectable levels at 
the other stages of the estrous cycle (Deleon et al., 1990; Nelson et al., 
1992). Removal of ovaries eliminates these changes in sex hormone 
levels, and consequently, female sexual receptivity. Subsequent 
supplementation of estrogen and progesterone rescues the behavior in 
the ovariectomized (OVX) female, demonstrating that female sexual 
behavior can be induced by increased levels of sex hormones without 
actual ovulation. This OVX and hormonal priming regimen is widely 
used to induce female sexual behavior in experimental animals 
(Whalen, 1974; Nelson et al., 1992; Lydon et al., 1995; Rissman et al., 
1997; Ogawa et al., 1998; Bakker et al., 2002; Kudway and Rissman, 
2003; Wu et al., 2009; Xu et al., 2012; Yang et al., 2013).

Estrogen and progesterone bind to their cognate receptors such as 
estrogen receptor a (ERa or Esr1) and progesterone receptor (PR). 
These receptors are known as transcription factors that they alter gene 
expression and protein synthesis. Studies utilizing knockout mice of 
the receptors revealed that signaling of these sex hormones in the 
brain is essential for female sexual behavior (Lubahn et  al., 1993; 
Lydon et al., 1995; Rissman et al., 1997). Inhibition of protein synthesis 
in the brain also suppresses the behavior even when OVX females are 
supplemented with sex hormones (Rainbow et al., 1980, 1982; Meisel 
and Pfaff, 1985). Together, these findings suggest that a sequence of 
steroid hormone signaling, followed by gene expression and protein 
synthesis in the brain, is essential for inducing female sexual behavior.

A more recent study employing microarray, bulk, and single-
nucleus RNA sequencing compared gene expression profiles in four 
different hypothalamic and limbic regions between OVX and 
hormonally primed OVX females (Xu et al., 2012; Knoedler et al., 
2022). Notably, Knoedler et al. (2022) identified 1,415 genes whose 
expression changes in four limbic and hypothalamic regions 
depending on sex hormones. This is the first report to highlight such 
extensive changes in gene expression profiles due to different 
hormonal states in females. Which genes are critical for controlling 
female sexual behavior? Gene ontogeny analysis identified that they 
include genes in synaptic transmission, steroid hormone-related 
processes, behavior, peripheral reproductive organ processes, and 
regulation of gene expression. The expression levels of these hormone-
sensitive genes vary across different brain regions. Therefore, to 
elucidate roles of these identified hormone-sensitive genes, it is critical 
not only to analyze brain-wide gene knockout animals but also to 
employ region-specific viral delivery of CRISPR-Cas9 for gene 
knockout and RNAi for gene knockdown (Musatov et al., 2006).

Key neural circuits controlling female 
sexual behavior

Many hypothalamic and limbic regions in the brain are found to 
be involved in female sexual behavior. As key regions, the ventromedial 
hypothalamus (VMH), medial preoptic area (mPOA), and 
periaqueductal gray (PAG) were identified decades ago as they are 

critical to the behavior (Figure 1). The induction of the immediate 
early gene Fos in these regions during female sexual behavior suggests 
their activation (Pfaus et al., 1993; Blaustein et al., 1994; Flanagan-
Cato and Mcewen, 1995; Yamada and Kawata, 2014). Importantly, 
histological studies indicate that these regions are rich in expression 
of sex hormonal receptors such as Esr1 or PR (Wu et al., 2009; Cheong 
et al., 2015; Kim et al., 2019). Local infusion of sex hormones into 
these areas modulates female sexual behavior, underscoring their 
control in association with the estrous cycle (Robert, 1962; Barfield 
and Chen, 1977; Floody et al., 1986; Rajendren et al., 1991). Early 
work by Sakuma and Pfaff in the 1970s highlighted the importance of 
these brain regions in modulating female sexual behavior. This review 
will summarize the roles of each circuit in detail.

The VMH, especially the ventrolateral part of the VMH 
(VMHvl), is well characterized its role in female sexual behavior. 
Single-unit recordings of neuronal firing in awake mice and primates 
reveal increased firing frequency in VMHvl neurons during 
conspecific male investigation or upon receiving male mounting and 
intromission (Aou et al., 1988; Nomoto and Lima, 2015). Electrical 
stimulation of the VMHvl enhances, while lesions suppress, female 
sexual receptivity, indicating this region’s necessity and sufficiency 
(Pfaff and Sakuma, 1979a,b). Moreover, sex hormones play crucial 
roles in this modulation. Local hormone infusion in the VMHvl 
elevates female sexual behavior (Barfield and Chen, 1977; Rajendren 
et al., 1991). Histological studies demonstrate that expressions of sex 
hormonal receptors, such as Esr1 or PR, are dense in the VMHvl (Xu 
et al., 2012; Yang et al., 2013). Approximately 50% of VMHvl neurons 
are Esr1+, with these neurons becoming active during male–female 
interactions (Hashikawa et al., 2017). Knockdown of Esr1 gene in the 
VMHvl via RNAi decreases female sexual receptivity (Musatov et al., 
2006), suggesting that Esr1 signaling in the VMHvl is necessary to 
the behavior. Recent studies have further delineated the neuronal 
populations in control. Almost all PR+ VMHvl neurons co-express 
Esr1, with about 60% of Esr1+ VMHvl neurons being PR+ (Yang et al., 
2013). These PR+ VMHvl neurons, when active during male 
mounting and lordosis behavior, are crucial for driving female sexual 
behavior, as shown by fiber photometry imaging (Inoue et al., 2019). 
Genetically targeted ablation or acute chemogenetic inhibition of 
these PR+ VMHvl neurons reduces female sexual receptivity, even in 
hormonally primed OVX females (Yang et al., 2013; Inoue et al., 
2019). These findings indicate that PR+ VMHvl neurons are essential 
to drive female sexual behavior. Single-nucleus RNA sequencing 
from Esr1+ VMHvl neurons identified a subset expressing the 
cholecystokinin-a receptor (Cckar) within total 27 of clusters 
(Figure 2), significant only in hormonally primed OVX females and 
not in males or OVX females, aligning with earlier microarray and 
in situ hybridization studies (Xu et al., 2012; Knoedler et al., 2022). 
This suggests the critical role of Cckar+ VMHvl neurons in female 
sexual behavior. Fiber photometry imaging revealed that Cckar+ 
neurons are active during mating, like PR+ VMHvl neurons (Yin 
et  al., 2022). Further, behavioral studies with acute inhibition of 
Cckar+ VMHvl neurons, conducted by two different groups, found 
that these neurons are crucial to female sexual receptivity (Knoedler 
et al., 2022; Yin et al., 2022). Thus, Cckar+ VMHvl neurons are the 
subset of Esr1+ PR+ VMHvl neurons that control female sexual 
behavior. Gene knockout of Cckar abolishes female sexual receptivity 
(Xu et al., 2012), however, whether Cckar gene expression within 
these neurons is necessary remains to be elucidated. Considering the 
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increased Cckar expression in OVX primed females, it is possible 
that both firing activity and gene expression in Cckar+ VMHvl 
neurons control the behavior in a coordinated manner. These Cckar+ 
VMHvl neurons exist mostly in the center to posterior VMHvl. More 
recent study indicates that anterior PR+ VMHvl neurons can drive 
rejection towards male mounts (Gutierrez-Castellanos et al., 2023). 
The detailed molecular identity of these anterior PR+ VMHvl neurons 
and connection between Cckar+ VMHvl neurons to regulate sexual 

receptivity and rejection are interesting topics to be  revealed in 
future studies.

The PAG is one of the major downstream circuits receiving inputs 
from VMHvl. The PAG has been shown to increase lordosis upon 
electrical stimulation and decrease behavior upon lesioning, 
highlighting its role in modulating female sexual responsiveness 
(Sakuma and Pfaff, 1979a,b). Electrophysiological recordings from the 
PAG of anesthetized rats found that PAG neurons response to VMH 
and mPOA stimulation, suggesting that it works as the downstream 
of these neural circuits (Sakuma and Pfaff, 1980). The complexity and 
size of the PAG make it challenging to focus on specific subregions, 
which may explain the scarcity of in vivo electrophysiological 
recordings or calcium imaging studies specifically addressing female 
sexual behavior. Recent advances in spatial transcriptomics have 
identified distinct neural populations within the lateral PAG that are 
activated in response to female sexual behavior, as indicated by the 
co-expression of immediate early genes (Vaughn et al., 2022). This 
finding aligns with previous research demonstrating Fos expression in 
the lateral PAG following female sexual behavior (Yamada and 
Kawata, 2014). Dissecting the roles of these molecularly defined 
subpopulations within the PAG could provide deeper insights into 
their specific contributions to female sexual behavior. Given its 
position in the midbrain and proximity to motor output circuits, the 
PAG is considered a pivotal output center for the modulation of 
female sexual behavior. Further elucidation of the projections from 
PAG subpopulations to the downstream brainstem is crucial for a 
comprehensive understanding of the neural circuits that govern 
female sexual behavior.

The role of the medial preoptic area (mPOA) in female sexual 
behavior is complex and subject to ongoing debate. Electrical 

FIGURE 1

Key brain regions and their roles in female sexual behavior. These hypothalamic and midbrain circuits have been studied and demonstrated their 
contribution to female sexual behavior. Arrows indicate connections between these regions. It is important to note that reciprocal connections 
between the PAG and either the AVPV or mPOA have not yet been reported; however, it is possible that such connections exist. Major findings related 
to female sexual behavior are described at bottom boxes. AVPV, anteroventral periventricular nucleus; mPOA, medial preoptic area; VMH, ventromedial 
hypothalamus; PAG, periaqueductal gray.

FIGURE 2

A small subset of VMHvl neurons can drive female sexual behavior. 
About 60% of the VMHvl neurons expressing Esr1 are also PR+. 
Further, Cckar+ population is one of 27 clusters identified in Esr1+ 
VMHvl neurons. Such a small subset of neurons is critical to drive 
female sexual behavior. Cckar+ VMHvl neurons, as well as PR+ VMHvl 
neurons, project to the AVPV and this connectivity change 
depending on ovarian hormone levels.
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stimulation or lesion of the mPOA change the behavior facilitatory 
and inhibitory directions, indicating its nuanced role in modulating 
the behavior (Moss et al., 1974; Bast et al., 1987; Takeo et al., 1993). 
Studies utilizing single-unit recording and fiber photometry imaging 
techniques have observed that neurons within the mPOA are 
particularly active during instances when a female receives male 
mounting, with their activity diminishing as the male dismounts (Aou 
et al., 1988; Sakuma, 1994; Kato and Sakuma, 2000; Wei et al., 2018). 
Consistent with these findings, recent fiber photometry imaging of the 
activity of hormone-sensitive Esr1+ mPOA neurons revealed that they 
are similarly active when a female receives male mounting (Wei et al., 
2018). A two-photon calcium imaging study demonstrates the role of 
Neurotensin+ mPOA neurons (84% of them are Esr1+) in the initial 
stages of sexual behavior. These neurons activate when a female 
encounters male pheromones, and optogenetic suppression of their 
activity results in a decreased attraction towards males, indicating a 
role in the pre-copulatory phase of sexual behavior (McHenry et al., 
2017). These findings suggest the critical roles that genetically 
identified neuronal populations in the mPOA play in orchestrating 
female sexual behavior. However, causal relationships of these 
populations in copulation remained elusive. Recently, Ishii et  al. 
(2023) discovered that a subset of GABAergic neurons in the mPOA 
reacts to the completion of mating, specifically when a female receives 
male ejaculation. These neurons were identified and labeled separately 
from those activated by pre-mating attractive behavior, allowing for 
targeted investigation into their respective roles in modulating female 
sexual behavior. Chemogenetic activation of the mating completion-
activated neurons, but not those activated by attractive behavior, led 
to a reduction in female sexual receptivity. This finding suggests the 
presence of an mPOA neuronal subpopulation capable of suppressing 
sexual behavior, highlighting a complex regulatory mechanism within 
the mPOA. Further complexity will be revealed in the nature of Esr1+ 
mPOA neurons, the majority of which are GABAergic, suggesting an 
interplay between estrogen signaling and inhibitory neurotransmission 
within this brain region (Wei et al., 2018; Knoedler et al., 2022). RNA 
sequencing studies have identified diverse clusters of neurons within 
the mPOA, pointing to a rich mosaic of functional and phenotypic 
heterogeneity (Moffitt et  al., 2018; Knoedler et  al., 2022). Future 
studies into these subpopulations will unravel the detailed mechanisms 
by which the mPOA influences both the attraction phase and the 
copulatory process in female sexual behavior, offering deeper insights 
into the neural underpinnings of these complex behaviors.

Another hypothalamic region which is important for female 
sexual behavior is the anteroventral periventricular nucleus (AVPV). 
This region is also rich in expression of estrogen and progesterone 
receptors (Xu et  al., 2012; Yang et  al., 2013). Recent research has 
shown that ablation of a subset of AVPV neurons, kisspeptin+ AVPV 
neurons, leads to a reduction in female sexual receptivity, whereas 
optogenetic activation of these neurons enhances the behavior (Hellier 
et  al., 2018). PR+ VMHvl neurons exhibit structural plasticity 
depending on sex hormones (Inoue et al., 2019). Labeling projections 
of PR+ VMHvl neurons with virally-encoded mCherry fused to the 
synaptic vesicle synaptophysin (Syp:mCherry) revealed that there is a 
dramatic, 3-fold increase of presynaptic termini in the AVPV in OVX 
primed and natural estrus females. Most of PR+ VMHvl neurons are 
glutamatergic. The amplitude of optogenetically evoked EPSCs in 
AVPV neurons, following ChR2-assisted stimulation of PR+ VMHvl 
neuronal axon termini, is larger in OVX primed females compared to 

OVX females. Subsequent experiments utilizing an optogenetic 
approach have emphasized the pivotal role of this PR+ VMHvl to 
AVPV circuit in controlling female sexual receptivity. These findings 
suggest that sex hormones enhance excitatory synaptic transmission 
through an increase in glutamatergic projections within PR+ VMHvl 
to AVPV circuit. Ovarian hormones induce plastic changes in many 
brain regions (Inoue, 2022). This study represents the first to link 
hormone-induced plasticity with behavioral alterations throughout 
the estrous cycle, offering insights into the neural mechanisms 
underpinning female sexual behavior. As described above, Cckar+ 
VMHvl neurons are a subset of PR+ VMHvl neurons critical to 
regulate female sexual behavior. Because almost all of PR+ VMHvl 
neurons are glutamatergic, Cckar+ VMHvl neurons are also 
glutamatergic. These Cckar+ VMHvl neurons also project to the 
AVPV, mPOA, and PAG. Retrograde labeling of AVPV-projecting 
neurons combined with cell body labeling of Cckar+ VMHvl neurons 
revealed that over 70% of AVPV-projecting VMHvl neurons are 
Cckar+. In addition, the same as PR+ VMHvl neurons, Cckar+ VMHvl 
neurons also increase their presynaptic termini, labeled with 
Syp:mCherry, in OVX primed females, while Cckar-VMHvl neurons 
do not (Knoedler et al., 2022). Thus, Cckar+ VMHvl neurons exhibit 
preferential projection to the AVPV and structural plasticity, 
suggesting that the Cckar+ projection within PR+ VMHvl to AVPV 
circuit plays a crucial role in controlling female sexual behavior.

As the VMH, mPOA, AVPV, and PAG are interconnected to each 
other, how information processing is achieved in these neural circuits 
is an important future question to understand the whole picture of the 
neural circuit mechanisms controlling female sexual behavior.

Discussion

Classic studies have identified the pivotal roles of sex hormones 
and specific brain regions in regulating female sexual behavior. Recent 
advancements, including transcriptomic analyses and the viral 
delivery of transgenes to molecularly identified neuronal populations, 
have enhanced our understanding of how these populations govern 
behavior. Future research should aim to further elucidate the 
mechanisms through which sex hormone-mediated regulation of 
neural circuit functions and behaviors occurs. A critical avenue of 
investigation involves deciphering the molecular underpinnings of 
hormone-dependent neural plasticity. Estrogen signaling is important 
for the structural plasticity in many brain regions including PR+ 
VMHvl neurons. Utilizing data from recent transcriptomic analyses 
will be essential in identifying the genes responsible for such structural 
plasticity. Intriguingly, male PR+ VMHvl neurons do not exhibit the 
same increase in presynaptic termini as their female counterparts, 
while the most of PR+ VMHvl neurons express Esr1 in both sexes 
(Inoue et al., 2019). It is likely that the ability of PR+ VMHvl neurons 
to rewire the circuit in adults is developmentally hard-wired into the 
female brain. Such sexually dimorphic structural plasticity could be a 
result of difference in gene expression downstream of Esr1. Examining 
differences in Esr1-mediated gene expression between sexes could 
shed light on the mechanisms behind this sexually dimorphic 
structural plasticity. Further studies demonstrated that VMHvl 
neurons change their firing activity across the estrous cycle, and this 
may also result in cyclic change in female sexual behavior across the 
estrous cycle (Yin et al., 2022). Identifying the genes whose expression 
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changes in response to hormonal fluctuations within these populations 
could provide insights into the nature of these plastic changes.

Characterizing the entire neural circuits controlling female sexual 
behavior in the estrous cycle-dependent manner is another important 
direction. The major outputs of VMH neurons are to the AVPV, 
mPOA, and PAG. The VMH to PAG circuit has been considered 
essential for initiating female sexual behavior, largely because both 
regions contribute to the behavior and the PAG is more directly linked 
to motor control functions. However, a recent study has highlighted 
the significance of the PR+ VMHvl to AVPV circuit in female sexual 
behavior (Inoue et al., 2019). The AVPV is traditionally recognized for 
its role in fertility and the regulation of the estrous cycle itself. The 
involvement of AVPV neurons in modulating female sexual behavior 
has only recently been uncovered, indicating that previous studies 
may have overlooked the importance of the VMH to AVPV circuit 
(Hellier et al., 2018). The interconnected nature of the VMH, mPOA, 
and AVPV, along with the PAG’s receipt of outputs from these 
hypothalamic regions, underscores the complexity of the neural 
networks involved. A comprehensive examination of how information 
is processed within these interconnected circuits to facilitate female 
sexual behavior is necessary for a full understanding of the neural 
mechanisms at play. While not the focus of this review, it is important 
to note that olfactory cues play a crucial role in driving female sexual 
behavior (Fraser and Shah, 2014). VMH receives inputs from circuits 
engaged in pheromonal information processing such as the medial 
amygdala (MeA) and bed nucleus stria terminalis (BNST) (Lo et al., 
2019). Research has shown that the MeA, but not the BNST, is 
involved in pheromone-induced female sexual behavior (Ishii et al., 
2017). The application of recent technical advancements, like multi-
fiber photometry, allows for the simultaneous recording of activity 
across various brain regions (Kim et al., 2016; Guo et al., 2023). This, 
combined with epistasis behavioral experiments that can either 
suppress or activate specific nodes within the circuits, offers to dissect 
the full scope of neural circuits and their relationships in controlling 
female sexual behavior.

Lastly, exploring beyond the neural circuits that control female 
sexual behavior to include those governing rejection and mating 
completion behaviors is essential for a comprehensive understanding 
of reproductive strategy. Rejection behavior serves to avoid 
non-productive mating, optimizing energy efficiency and minimizing 
predation risk. During diestrus, when circulating ovarian hormone 
levels are low, females actively reject male mounts. This raises the 
question: Is rejection behavior merely a suppressed form of sexual 
behavior, or does it involve distinct neural circuits specifically for 
rejection? As described in the previous section, a recent study of 
anterior VMHvl controlling rejection suggests the latter possibility 
(Gutierrez-Castellanos et al., 2023). Another finding from different 
group also indicates that BNST is important for pheromone-induced 
rejection behavior (Osakada et al., 2018). One possibility is that the 
neural circuitry for female sexual behavior and rejection operates in a 
reciprocal inhibitory manner, modulated by ovarian hormone levels, 
to produce varied behaviors throughout the estrous cycle. 
Understanding the intricate connections between these neural circuits 
is crucial for elucidating how these diverse behaviors are orchestrated 
across the estrous cycle. Mating completion, characterized by a female 
receiving male ejaculation, triggers a state of satiation that diminishes 
sexual behavior (Zhou et  al., 2023). Similar to rejection, mating 
completion leads to behaviors that avoid further male interaction, 

such as decreased attraction and reduced likelihood of copulation. 
However, mating completion should be  seen as a state leading to 
gestation rather than an isolated behavior, suggesting that the neural 
circuits involved in mating completion may differ from or be upstream 
of those controlling rejection. Investigating the activity dynamics of 
neural populations responsible for rejection during mating 
completion, and vice versa, could offer valuable insights into the 
similarities and differences between these behaviors and states. As 
described, a subpopulation of mPOA neurons has been identified to 
encode mating completion (Ishii et al., 2023). Interestingly, another 
subpopulation of mPOA neurons, Galanin+ mPOA neurons, undergo 
significant plastic changes during pregnancy, contributing to parenting 
behavior post-delivery (Ammari et al., 2023). Analyzing the overlap 
or interconnectivity between neurons involved in mating completion 
and Galanin+ mPOA neurons could provide deeper understanding 
into the post-mating completion processes essential for successful 
reproduction. This comprehensive approach to studying the neural 
underpinnings of female sexual behavior, along with rejection and 
mating completion, is pivotal in unraveling the complex interplay of 
behaviors associated with reproduction.

Females, including women, exhibit various behavioral changes 
throughout their cycle. The dramatic fluctuations in rodent female 
sexual behavior across the estrous cycle, influenced by ovarian 
hormone levels, serve as an excellent model for exploring how ovarian 
hormones modulate neural circuits and, consequently, behaviors. 
Insights gained from such research can significantly contribute to our 
understanding of the etiology of women’s psychiatric disorders, 
including premenstrual dysphoric disorder, postpartum depression, 
and symptoms associated with menopausal syndrome. By studying 
these hormonal modulations and their effects on behavior, we can 
deepen our understanding of these complex conditions and advance 
towards more effective treatments.
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Effects of prenatal alcohol 
exposure on the olfactory system 
development
Fumiaki Imamura *

Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States

Fetal Alcohol Spectrum Disorders (FASD), resulting from maternal alcohol 
consumption during pregnancy, are a prominent non-genetic cause of physical 
disabilities and brain damage in children. Alongside common symptoms like 
distinct facial features and neurocognitive deficits, sensory anomalies, including 
olfactory dysfunction, are frequently noted in FASD-afflicted children. However, 
the precise mechanisms underpinning the olfactory abnormalities induced by 
prenatal alcohol exposure (PAE) remain elusive. Utilizing rodents as a model 
organism with varying timing, duration, dosage, and administration routes of 
alcohol exposure, prior studies have documented impairments in olfactory 
system development caused by PAE. Many reported a reduction in the olfactory 
bulb (OB) volume accompanied by reduced OB neuron counts, suggesting 
the OB is a brain region vulnerable to PAE. In contrast, no significant olfactory 
system defects were observed in some studies, though subtle alterations might 
exist. These findings suggest that the timing, duration, and extent of fetal 
alcohol exposure can yield diverse effects on olfactory system development. 
To enhance comprehension of PAE-induced olfactory dysfunctions, this review 
summarizes key findings from previous research on the olfactory systems of 
offspring prenatally exposed to alcohol.

KEYWORDS

Fetal Alcohol Spectrum Disorders, prenatal alcohol exposure, olfactory system, 
olfactory bulb, development

Introduction

Maternal alcohol consumption during pregnancy is the most commonly identifiable 
non-genetic cause of physical disabilities and damage to the brain in the child. These disabilities 
or damages are collectively known as Fetal Alcohol Spectrum Disorders (FASD) (Popova et al., 
2023). Estimates of the prevalence of FASD in the US and Western Europe range from 0.6 to 
5.0% among school-aged children (May et al., 2009, 2014, 2018). There is no known safe 
amount and timing of alcohol to drink during pregnancy. Some may drink throughout 
pregnancy, and some may binge drink, consuming a large amount of alcohol in a short period. 
Human pregnancy is roughly divided into 3 stages known as trimesters of about 3 months 
each: first trimester – conception to 12 weeks; second trimester – 13 to 27 weeks; third 
trimester – 28 to 40 weeks. The prevalence of drinking during pregnancy varies by trimester 
and is higher in the first trimester than in the second and third trimesters (Ethen et al., 2009). 
According to a 2013 report, approximately 18% of US women consumed alcohol during early 
pregnancy, and 6.6% binge drank (The NSDUH Report, Substance Abuse and Mental Health 
Services Administration, 2014). While both binge drinking and chronic low-level drinking 
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during pregnancy are harmful, it is important to note that binge 
drinking poses a significant risk for serious brain damage (Maier and 
West, 2001).

There are some common features such as physical features 
including lower birth weight, shorter stature, smaller head 
circumference, facial dysmorphism, and neurocognitive deficits 
including intellectual disability, speech and language delays, poor 
social skills, and increased risk of anxiety, depression, and ADHD 
(Riley et  al., 2011; Temple et  al., 2019). In addition, sensory 
abnormalities are often observed in children with FASD. They may 
show signs of being hypersensitive or hyposensitive to the senses of 
touch, taste, smell, sight, and sound. Particularly, changes in smell/
taste sensitivity affect children’s eating behaviors (Carr et al., 2010; 
Hannigan et al., 2015; Jirikowic et al., 2020). Furthermore, children 
with a history of heavy alcohol exposure before birth exhibited 
impaired odor identification (Bower et  al., 2013) as well as 
arhinencephaly (Peiffer et  al., 1979). Therefore, it is important to 
understand how maternal drinking during pregnancy affects the 
child’s olfactory system. This review summarizes the previous animal 
studies focusing on the impacts of prenatal alcohol exposure (PAE) on 
the olfactory system. The author apologizes to those whose work was 
not included here due to space limitations.

Studies of prenatal alcohol exposure 
focusing on the olfactory system

The characteristics of FASD vary in severity and depend on the 
timing, amount, and pattern of alcohol consumption during 
pregnancy. Several animal models have been used to simulate 
maternal drinking episodes. Among them, animal models widely used 
to see how PAE affects brain development are rodents such as mice 
and rats (Patten et al., 2014; Almeida et al., 2020). Generally, mice or 
rats were trained to consume ethanol from their drinking water or diet 
to simulate chronic drinking during pregnancy. In addition, 
intraperitoneal injection, subcutaneous injection, and intragastric 
gavage have been used to simulate binge drinking episodes. As a rough 
approximation, gestation day (GD) 1–10 of mice and rats corresponds 
to the first trimester of human pregnancy, GD10-20 (just before 
delivery) to the second trimester, and postnatal day (P) 1–10 to the 
third trimester (Almeida et  al., 2020). In this review, I  adopted a 
definition of GD0 as the date when the copulation plug was confirmed. 
When different dates were used in a study, I adjusted the day for a 
consistent interpretation.

Development of rodents’ olfactory system

Odors are initially detected by odorant receptors expressed in 
olfactory sensory neurons (OSNs) within the olfactory epithelium 
(OE). These OSNs extend their axons to the glomeruli of the olfactory 
bulb (OB) to form synapses with mitral and tufted cells, which serve 
as OB projection neurons transmitting olfactory information to the 
olfactory cortex. In the OB, the activity of mitral/tufted cells is 
modulated by OB interneurons such as periglomerular cells and 
granule cells, which synapse with dendrites of mitral/tufted cells 
within the glomerular layer (GL) and external plexiform layer (EPL), 
respectively.

The development of the rodents’ olfactory system has been studied 
and summarized in detail in other studies (Treloar et al., 2010; Kim 
et al., 2023). Briefly, the OE is generated from the olfactory placodes, 
a thickened ectoderm in the head region. In mice, the olfactory pits 
begin invaginate from the olfactory placode around GD10. The 
nostrils are narrowed to small slits and the olfactory pit has further 
invaginated into a more complex nasal cavity by GD11.5 (Miller et al., 
2010b). The invaginated olfactory pits differentiate into OE where 
OSNs are generated. Generation of OSNs in the OE begins around 
GD11 and turns over throughout life (Eerdunfu et al., 2017; Nguyen 
and Imamura, 2019). On the other hand, the OB is located at the most 
anterior region of the brain in rodents. In mice, the formation of the 
OB begins with the evagination of the anterior end of the telencephalic 
vesicle around GD11 (Miller et  al., 2010b; Imamura et  al., 2011). 
Mitral/tufted cells are generated from radial glial cells in this 
developing OB between GD9 and GD17; while mitral cells are mostly 
generated between embryonic day GD9 and GD13, peaking at GD11, 
tufted cells are born later, between GD12 and GD17 (Hinds, 1972; 
Blanchart et al., 2006; Imamura et al., 2011; Hirata et al., 2019). OB 
interneurons are mostly generated during late gestation and early 
postnatal stages and are continuously newly born throughout life 
(Hinds, 1968; Imayoshi et al., 2008).

OSN axons first reach the developing OB at GD11 and penetrate 
the basement membrane to form an olfactory nerve layer by GD12 
(Miller et al., 2010a). The immature mitral/tufted cells have multiple 
broadly spread apical dendrites, and they begin to form protoglomeruli 
with OSN axons around GD15 (Treloar et al., 1999; Blanchart et al., 
2006). Synapse formation in the OB also starts at this stage in the GL, 
followed by the EPL and granule cell layer (GCL) (Hinds and Hinds, 
1976). Dendritic refinements of mitral/tufted cells, such as 
discrimination of primary and secondary dendrites and retraction of 
supernumerary primary dendrites, occur during early postnatal days 
(Lin et al., 2000; Aihara et al., 2021). Axonogenesis of mitral/atrial 
cells begins around GD11.5 immediately after final differentiation, 
and they extend between GD12 and GD14 to form the lateral olfactory 
tract (Lopez-Mascaraque et al., 1996; Walz et al., 2006). Axons of 
mitral/tufted cells target the piriform cortex, anterior olfactory 
nucleus, olfactory tubercle, amygdaloid cortex, and entorhinal cortex, 
consisting of the olfactory cortex. Many neurons in the olfactory 
cortex are born during similar stages with the mitral/tufted cells, 
GD11 – GD18 (Martin-Lopez et  al., 2017, 2019; Aerts and 
Seuntjens, 2021).

Effects of PAE on the rodent olfactory 
system

Different timing in ethanol exposure may cause different effects 
on the olfactory system development. Many rodent studies simulated 
exposure to alcohol during pregnancy and the findings are 
summarized in Table 1. A study fed pregnant mice with 10% EtOH in 
drinking water throughout pregnancy (Akers et al., 2011). In this case, 
P60 offspring exhibited the greatest volume reduction in the OB 
among 62 brain regions examined with MRI and showed impaired 
discrimination between similar odors (80% R-carvone/20% S-carvone 
vs. 20% R-carvone/80% S-carvone) but left odor memory intact 
(Akers et al., 2011). Similarly, when pregnant female rats were fed with 
a 35% ethanol-derived calorie (EDC) liquid diet from GD6 to GD20 
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of pregnancy, offspring showed a volume decrease in the OB at P3 
(Barron and Riley, 1992). Interestingly, the P3 rats born from females 
fed with 35% EDC did not show a preference for the odor paired with 
milk infusion, and the P10 rats did not avoid the odor associated with 
lithium chloride injection, which induced a mild toxicosis (Barron 
et al., 1988). However, the P100 adult rats born from females fed with 
35% EDC showed the same level of odor aversion learning as the 
control group (Barron et al., 1988). Another study fed pregnant mice 
and pups with a 20% EDC liquid diet from GD13 to P21, equivalent 
to humans’ second and third trimesters and early postnatal weeks 

(Nyouist-Battie and Gochee, 1985). This study showed an 
approximately 25% volume reduction in the OB of ethanol-fed mice 
at P21 compared to a normal diet-fed group, with reductions in the 
volume of the GL, EPL, and GCL, while the laminar organization and 
cellular cytoarchitecture were not substantially altered by ethanol.

In another study, alcohol was administered by intragastric gavage 
(6.0 g/kg/day) to pregnant rats from GD0 to GD19, which corresponds 
to the first two trimesters of human pregnancy (Maier et al., 1999). 
Compared to the control group that received an isocaloric maltose-
dextrin solution, the offspring of ethanol-fed females had smaller OBs 

TABLE 1 Effects of prenatal alcohol exposure on the rodent olfactory system.

Species  
Timing / Duration

Route (dose) Age examined Effects on the 
olfactory system

References

Mice

GD0 – GD19
Drinking water (10%) P60

Decrease in OB volume

Failed to discriminate 

relatively similar odors

Akers et al. (2011)

Rats

GD0 – GD19

Intragastric gavage (6.0 g/kg 

daily; 22.5% solution)
GD20 & P10

Decrease in OB volume

Reduction in the granule cell 

numbers

Maier et al. (1999)

Rats

GD6 – GD20
EDC liquid diet (35%)

P3

Decrease in OB volume; no 

odor preference paired with 

milk

Barron et al. (1988) and Barron 

and Riley (1992)
P10

no odor aversion associated 

with mild toxicosis

P100

the same level of odor aversion 

associated with mild toxicosis 

as the control group

Mice

GD7 or GD8

Intraperitoneal injection (2.9 g/

kg- 25% solution or 2.8 g/kg- 

23.7% solution; twice at four-

hour intervals)

GD17

Decrease in OB volume
Parnell et al. (2009), Godin et al. 

(2010), and Lipinski et al. (2012)
GD8.5 Increase in OB volume

Mice

GD7 – GD11
Liquid diet containing ethanol 

(4.8%)
GD17

Decrease in the length of the 

right OB Parnell et al. (2014)

GD12 – GD16 No significant defects

Rats

GD11 – GD20
EDC liquid diet (35%) P40 - P48

Gene expression changes in 

OB

* Enhanced ethanol intake at 

P15

Youngentob et al. (2007a), 

Youngentob et al. (2007b), 

Middleton et al. (2009), 

Youngentob and Glendinning 

(2009), and Gano et al. (2020)

Mice

GD13 – P21
EDC liquid diet (20%) P21 Decrease in OB volume Nyouist-Battie and Gochee (1985)

Rats

P4 – P9

Intragastric gavage (4.5 g/kg 

daily; 5.1% or 10.2% solution)

P10 & adult (> P90)

Decrease in OB volume

Reduction in the granule and 

mitral cell numbers Bonthius and West (1991) and 

Bonthius et al. (1992)
Intragastric gavage (6.6 g/kg 

daily; 2.5% solution)

No significant reduction in the 

granule and mitral cell 

numbers

Mice

P4 – P9

Intraperitoneal injection (4.4 g/

kg daily; 20% solution)
Adult (P110 – P122)

Decrease in OB volume

Reduction in the granule cell 

numbers

Todd et al. (2018)

Mice

P7

Subcutaneous injection (2.5 g/

kg- 20%; twice at two-hour 

intervals)

3-month-old

Enhanced odor-evoked local 

field potential in the OB and 

anterior piriform cortex

Wilson et al. (2011)
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with a reduced number of granule cells at GD20 and P10. Exposure to 
alcohol during the third trimester also affected OB formation. Rat 
pups were reared artificially and were administered alcohol with 
intragastric gavage (4.5 g/kg daily; administered either as a 5.1% or 
10.2% solution) over P4 through P9. This alcohol exposure paradigm 
also reduced the OB volume and caused the reduction of the number 
of granule cells as well as mitral cells in P10 and adult (> P90) OBs 
(Bonthius and West, 1991; Bonthius et  al., 1992). Interestingly, a 
higher daily dose (6.6 g/kg) but administered continuously with a 
lower (2.5%) ethanol concentration did not affect the number of either 
granule or mitral cells (Bonthius and West, 1991). Decreases in OB 
volume and number of granule cells were also observed in adult mice 
that received intraperitoneal injections of ethanol (4.4 g/kg) daily over 
P4 to P9, but not at lower doses (2.2 g/kg) (Todd et  al., 2018). 
Therefore, chronic PAE impairs the OB formation and affects the 
generation and survival of OB neurons. Although the underlying 
mechanisms of OB damages are not known, gene expression profiling 
revealed a PAE, feeding with 35% EDC from GD11 to GD20, affected 
the expression of genes involved in neuronal development, synaptic 
transmission, and plasticity as well as inflammatory-related genes 
during adolescence (P40–P48) (Middleton et al., 2009; Gano et al., 
2020). Moreover, the rats exposed to gestational ethanol showed 
enhanced ethanol intake as well as different sniffing responses to 
ethanol odor at P15, but the ethanol preference was absent at P90 
(Youngentob et al., 2007a,b; Youngentob and Glendinning, 2009).

In addition to chronic PAE, acute PAE caused by binge drinking 
also affects the development of the olfactory system. To cause an acute 
PAE, several studies used the intraperitoneal ethanol injection 
method. When ethanol (2.9 g/kg) was administered intraperitoneally 
to pregnant female mice twice (four-hour intervals) at GD7, MRI 
measurement at GD17 found a reduction in overall brain size with 
marked volume reduction in the OB (Godin et al., 2010; Lipinski et al., 
2012). Reduction of OB volume at GD17 was also observed with the 
intraperitoneal ethanol exposure at GD8 (2.8 g/kg; twice at four-hour 
intervals) (Parnell et  al., 2009), while the same ethanol exposing 
paradigm performed at GD8.5 caused approximately 10% increase of 
the OB volume (Lipinski et al., 2012). Since some of the mice that 
showed a reduction of OB volume also had abnormal nasal cavity, 
defects in the development of olfactory sensory neurons might affect 
the OB formation in these mice (Parnell et al., 2009; Godin et al., 
2010). On the other hand, the same group fed the pregnant mice with 
the 4.8% (v/v) ethanol-containing liquid diet for five days, from GD7 
to 11 and from GD12 to 16 (Parnell et al., 2014). In this case, GD 7–11 
and GD 12–16 ethanol-exposed groups showed a significant decrease 
in the volumes of the cerebellum and hippocampus at GD17, 
respectively, but no significant change in OB size was observed except 
for a shortening of the right OB of mice exposed to ethanol from GD7 
to GD11.

Another study simulated binge drinking in the third trimester by 
causing acute PAE with subcutaneous injection of ethanol (2.5 g/kg; 
twice at two-hour intervals) into P7 mouse pups (Wilson et al., 2011). 
This treatment caused widespread cell death within 1 day of exposure, 
with the highest levels in the neocortex, intermediate levels in the 
dorsal hippocampus, and relatively low levels in the primary olfactory 
system including OB and piriform cortex. The acute PAE did not 
change the odor investigation or odor habituation in 3-month-old 
mice compared to saline-administered controls, whereas the 
hippocampal-dependent object place memory was significantly 

impaired. Interestingly, odor-evoked local field potential activity was 
enhanced in the OB, anterior piriform cortex, and hippocampus. 
These data suggest that the activity of neural circuits involved in odor 
information processing can be  modified by acute PAE at a later 
gestational stage, which may contribute to specific behavioral 
abnormalities seen in children with FASD.

These results from rodent studies indicate that timing, quantity, 
and style of drinking are important to understanding the impact of 
PAE on olfactory system development. A previous study showed that 
acute PAE induced by intraperitoneal ethanol injection (2.9 g/kg) at 
GD11, but not at GD6, caused apparent deficits in the social behavior 
of male rat offspring; reduction of social investigation, contact 
behavior, and play fighting (Mooney and Varlinskaya, 2011). 
Considering the pivotal role of the olfactory system in rodent social 
behavior (Bakker et al., 2022), it is plausible that PAE-induced defects 
in olfactory information processing resulted in impaired 
social behavior.

Other animal models of PAE

Several other studies used non-rodent animals to examine the 
effects of PAE on the development of OB. For example, pregnant sheep 
were administered with alcohol. A moderate dose of alcohol was 
infused intravenously (1.75 g/kg) on 3 consecutive days followed by 
4 days without alcohol beginning on GD 4 and continuing until GD 
132, which corresponds with the end of the third trimester of human 
pregnancy (Washburn et al., 2015). In contrast to the findings from 
rat studies (Bonthius and West, 1991; Bonthius et al., 1992), there was 
no change in the number, density, or volume of mitral cells in the fetal 
(GD133) sheep OB, although it does not exclude the presence of 
functional abnormalities or the reduction in number of granule cells. 
In another study, fewer actively proliferating cells were found in the 
OBs of newborn monkeys born from females who voluntarily 
consumed alcohol (a maximum of 3.5 g alcohol/kg body weight on 
4 days of the week) starting in the mid-gestation stage (Burke 
et al., 2016).

Discussion

As summarized in this review, it’s evident that the olfactory system 
is vulnerable both to chronic and acute PAE. In particular, the 
reduction in OB volume was prominent and was often associated with 
a decrease in the number of granule cells and mitral cells, suggesting 
that PAE affects the neurogenesis of OB neurons. This view is also 
supported by studies in animal models and human patients showing 
that PAE reduced the proliferation of neural stem cells in the 
subventricular zone (SVZ) (Roitbak et al., 2011; Dong et al., 2014; 
Marguet et al., 2020). Moreover, defects in adult neurogenesis may 
also contribute to PAE-induced reduction of OB volume and olfactory 
function in adult rodents, as new OB interneurons are continuously 
produced in the SVZ of the adult rodent brain (Whitman and 
Greer, 2009).

The impairment in the olfactory system development likely leads 
to abnormal olfactory information processing. This, in turn, may 
contribute to abnormal smell sensitivity and impaired odor 
identification seen in children with FASD. However, studies to date 

50

https://doi.org/10.3389/fncir.2024.1408187
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org


Imamura 10.3389/fncir.2024.1408187

Frontiers in Neural Circuits 05 frontiersin.org

have varied in terms of timing, duration, dosage, and route of ethanol 
administration as well as the age of offspring investigated, making it 
still challenging to formulate a cohesive understanding of how PAE 
precisely influences the child’s olfactory system. Systematic 
identification of differences in the effects of PAE at different stages of 
olfactory system development may provide valuable insights into 
important windows of vulnerability. In addition, it is necessary to 
study in more detail the effects of PAE on the structure and function 
of regions involved in olfactory processing other than the OB, such as 
olfactory epithelium and olfactory cortex.

Furthermore, while diverse in vivo and in vitro studies have 
elucidated various signaling pathways affected by PAE during brain 
development (Hashimoto-Torii et al., 2011; Mohammad et al., 2020; 
Fischer et al., 2021; Salem et al., 2021; Sambo et al., 2022), this type of 
research has so far been insufficient for the olfactory system. 
Understanding the molecules and pathways affected by PAE in the 
developing olfactory system could shed light on potential mechanisms 
underlying the etiology of abnormal sense of smell. Integrating 
findings from diverse experimental models and methodologies could 
facilitate the construction of comprehensive models that capture the 
multifaceted nature of PAE-induced alterations in olfactory system 
development and could inform targeted intervention strategies aimed 
at mitigating the detrimental effects of PAE on olfactory function. 
Therefore, collaborative efforts across disciplines, including 
neuroscience, developmental biology, and clinical research, are 
essential to surmount the complexities associated with understanding 
and addressing the consequences of PAE on olfactory function 
and beyond.
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Activity-dependent dendrite 
patterning in the postnatal barrel 
cortex
Naoki Nakagawa 1,2* and Takuji Iwasato 1,2*
1 Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan, 2 Graduate 
Institute for Advanced Studies, SOKENDAI, Mishima, Japan

For neural circuit construction in the brain, coarse neuronal connections are 
assembled prenatally following genetic programs, being reorganized postnatally 
by activity-dependent mechanisms to implement area-specific computational 
functions. Activity-dependent dendrite patterning is a critical component 
of neural circuit reorganization, whereby individual neurons rearrange and 
optimize their presynaptic partners. In the rodent primary somatosensory 
cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory 
neurons extensively remodel their basal dendrites at neonatal stages to ensure 
specific responses of barrels to the corresponding individual whiskers. This 
feature of barrel cortex L4 neurons makes them an excellent model, significantly 
contributing to unveiling the activity-dependent nature of dendrite patterning 
and circuit reorganization. In this review, we  summarize recent advances in 
our understanding of the activity-dependent mechanisms underlying dendrite 
patterning. Our focus lays on the mechanisms revealed by in vivo time-lapse 
imaging, and the role of activity-dependent Golgi apparatus polarity regulation 
in dendrite patterning. We also discuss the type of neuronal activity that could 
contribute to dendrite patterning and hence connectivity.

KEYWORDS

activity-dependent circuit formation, postnatal brain development, dendrite 
refinement, barrel cortex, Golgi apparatus, in vivo imaging, spontaneous activity

Introduction

The sophisticated neural circuits underlying proper brain function in animals are first 
formed as coarse neuronal connections during embryonic development. Later, such immature 
connections are reorganized during postnatal stages, establishing a precise connectivity 
tailored to each brain area. Morphological and functional neuron remodeling, depending on 
neuronal activity evoked either spontaneously or by extrinsic stimuli, causes this postnatal 
circuit reorganization (Goodman and Shatz, 1993; Katz and Shatz, 1996; Wong and Ghosh, 
2002). Particularly, activity-dependent remodeling of the dendritic pattern is key for circuit 
reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. 
Dendrite refinement has been observed in various neuronal types in diverse brain regions and 
species, and is therefore considered a general mechanism for building functional neural 
circuits (Cline, 2001; Wong and Ghosh, 2002; Emoto, 2011).

The activity-dependent mechanisms underlying dendrite patterning have been studied in 
a wide range of models, including tectal neurons in Xenopus tadpole, retinal ganglion cells in 
chick and cat, olfactory bulb mitral cells in mouse, and cortical neurons in mouse, cat, and 
ferret (Harris and Woolsey, 1981; Katz and Constantine-Paton, 1988; Bodnarenko and 
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Chalupa, 1993; Kossel et al., 1995; Wong et al., 2000; Matsui et al., 
2013; Fujimoto et al., 2023). Among them, spiny stellate neurons, the 
major type of layer 4 (L4) excitatory neurons, in the primary 
somatosensory cortex (barrel cortex) of mice and rats have attracted 
attention as a model of activity-dependent dendrite patterning 
(Woolsey and Van der Loos, 1970; Erzurumlu and Gaspar, 2012; 
Iwasato and Erzurumlu, 2018).

In rodents, facial whiskers are an important sensory organ 
whereby animals perceive their environment. Tactile stimuli to 
whiskers reach the barrel cortex L4 via the dorsal principal trigeminal 
(dPrV) nucleus in the brainstem and the ventral posterior medial 
(VPM) nucleus in the thalamus (Figure 1A) (Fox, 2008; Iwasato and 
Erzurumlu, 2018). In barrel cortex L4, the information from each 
whisker is processed by an array of neurons called “barrel,” whose 
arrangement represents the spatial pattern of whiskers in the face. 
Termini of thalamocortical axons (TCAs) that transmit inputs from a 
whisker are distributed only within the corresponding barrel. L4 spiny 
stellate neurons are preferentially located at the edge of each barrel and 
expand their basal dendrites asymmetrically toward the barrel center 
(Figure 1B) (Harris and Woolsey, 1981; Simons and Woolsey, 1984). 

This asymmetric dendritic projection pattern, formed in an activity-
dependent manner essentially during the first postnatal week, 
underlies precise tactile information processing in rodents (Nakazawa 
et al., 2018; Iwasato, 2020; Nakagawa and Iwasato, 2023); therefore, 
understanding how this unique dendritic asymmetry is established 
during postnatal development is of importance.

In this review, we  summarize recent advances in our 
understanding of the activity-dependent mechanisms underlying 
dendrite patterning and postnatal circuit reorganization based on 
studies using whisker-barrel circuits.

Dendritic patterning of L4 spiny stellate 
neurons in the neonatal barrel cortex

The activity transmitted through TCAs is critical for dendritic 
patterning of barrel cortex L4 spiny stellate neurons. Removing 
glutamatergic synaptic transmission from TCA termini by knocking 
out both VgluT1 and VgluT2, two major vesicular glutamate 
transporters in the brain, in the sensory thalamus impairs formation 

FIGURE 1

Whisker-barrel circuit and dendrite refinement of barrel cortex layer 4 spiny stellate neurons. (A) A schematic diagram of the mouse whisker-barrel 
system. The tactile information received by the whiskers is topographically conveyed to the contralateral barrel cortex layer 4 (L4) through the 
brainstem and the thalamus. dPrV: dorsal principal trigeminal nucleus, VPM: ventral posterior medial nucleus. (B) Barrel cytoarchitecture. In each barrel, 
the termini of thalamocortical axons (TCAs) that transmit sensory inputs from the corresponding single whiskers form distinct clusters in barrel cortex 
L4. Spiny stellate neurons, the major excitatory neurons in barrel cortex L4, are located primarily at the edge of TCA clusters, thereby showing the 
“barrel” shape. Spiny stellate neurons expand their basal dendrites selectively toward a corresponding single barrel to establish synapses with the 
corresponding TCA termini. Dendrites drawn only in some neurons for simplicity. (C) Dynamics of formation of asymmetric dendrite patterns in L4 
spiny stellate neurons. At P3, a spiny stellate neuron has more dendritic trees in the inner domain (green) than in the outer domain, but inner and outer 
dendritic trees are equally primitive in morphology. Between P3 and P6, many short dendritic trees emerge and disappear both inside and outside the 
barrel (“challenger” dendritic trees, indicated by yellow arrowheads). During this extensive turnover, only a few trees (indicated by magenta arrowheads) 
are stabilized and elaborated to be “winners.” Importantly, winners are selected only from the challengers that emerge in the barrel-side (green). Note 
that late-born dendritic trees can become winners.
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of cortical layers, barrel maps, and L4 neuron dendrite morphology 
(Li et al., 2013). Similarly, when thalamocortical synaptic transmission 
is reduced by a thalamus-specific double knockout of RIM1 and 
RIM2, which regulate synaptic vesicle fusion, barrel formation and L4 
neuron dendritic asymmetry become impaired (Narboux-Neme et al., 
2012). These results suggest a critical role of TCA-derived activity for 
barrel circuit formation, including dendritic patterning of L4 neurons.

Gene knockouts also indicated that the dendrite refinement of L4 
spiny stellate neurons relies on the postsynaptic N-methyl-D-
aspartate-type glutamate receptor (NMDAR) activity induced by 
presynaptic thalamocortical inputs. Knockout of either NR1 or NR2B 
subunits of NMDAR causes impaired asymmetry of dendritic 
projections (Iwasato et al., 2000; Datwani et al., 2002; Espinosa et al., 
2009; Mizuno et al., 2014). NMDAR is a tetrameric complex composed 
of two NR1 subunits and two NR2 subunits; NR1 is the essential 
subunit and NR2B the modulatory subunit, dominant in the neonatal 
brain (Nakanishi, 1992; Mori and Mishina, 1995). Genetic approaches 
in mice identified dozens of molecules related to synaptic transmission 
and its downstream signaling cascade implicated in barrel formation 
and dendrite refinement of L4 spiny stellate neurons. Such genes 
include metabotropic glutamate receptor 5, protein kinase A (PKA), 
PKA-anchoring protein 5, adenylyl cyclase 1, phospholipase C-β1, Ras 
GTPase-activating proteins, Fibroblast growth factor receptors, 
Tropomyosin receptor kinase A, BTB/POZ domain-containing 3, LIM 
domain-only 4, neurogenic differentiation 2, retinoic acid-related 
orphan receptor alpha (RORα) and RORβ (Abdel-Majid et al., 1998; 
Hannan et al., 2001; Barnett et al., 2006; Inan et al., 2006; Ince-Dunn 
et al., 2006; Kashani et al., 2006; Watson et al., 2006; Iwasato et al., 
2008; Lush et al., 2008; She et al., 2009; Jabaudon et al., 2012; Matsui 
et al., 2013; Ballester-Rosado et al., 2016; Huang et al., 2017; Huang 
and Lu, 2018; Vitalis et al., 2018; Zhang et al., 2019; Clark et al., 2020; 
Rao et al., 2022). Using mitral cells in the mouse olfactory bulb, Imai 
and colleagues recently reported that strong NMDAR activation in 
prospective winner dendrites locally suppresses RhoA activity, 
protecting the dendrite from depolarization-induced, neuron-wide 
RhoA activation, which acts as a dendrite retraction signal (Fujimoto 
et  al., 2023). This system also works in barrel cortex L4 neurons 
(Fujimoto et al., 2023).

Mechanisms of dendritic patterning 
revealed by in vivo time-lapse imaging

It is generally assumed that spiny stellate neurons in barrel cortex 
L4 exhibit symmetrical dendritic patterns during early neonatal stages 
but subsequently acquire asymmetrical dendritic patterns by simply 
eliminating outer dendrites and adding new inner dendrites and/or 
elaborating existing inner dendrites (Greenough and Chang, 1988; 
Espinosa et  al., 2009; Emoto, 2011; Iwasato, 2020). This view was 
challenged by in vivo imaging approaches in the neonatal mouse 
cortex (Mizuno et al., 2014; Nakazawa et al., 2018; Iwasato, 2020; 
Wang et al., 2023). In these studies, L4 neurons were sparsely labeled 
and each was imaged repeatedly in the neonatal barrel cortex using 
two-photon microscopy.

In the mature barrel cortex, L4 excitatory neurons are classified by 
the absence and presence of apical dendrites into spiny stellate and star 
pyramid neurons, respectively (Simons and Woolsey, 1984; Lübke 
et al., 2000; Staiger et al., 2004). Importantly, spiny stellate neurons, 

the major L4 neurons, show asymmetric dendritic patterns but star 
pyramid neurons have symmetric dendrites. However, at early 
postnatal stages such as postnatal day 3 (P3), prospective spiny stellate 
neurons also have an apical dendrite, which hampers distinguishing 
spiny stellate neurons from star pyramid neurons by conventional 
histological analyses in brain slices. On the other hand, longitudinal 
in vivo imaging of the same neurons in the brain allows retrospective 
identification of prospective spiny stellate neurons in early postnatal 
development by their morphological features at later developmental 
stages such as P6; thus allowing to analyze the dendritic morphology 
of spiny stellate neurons in early postnatal stages (Nakazawa et al., 
2018; Iwasato, 2020).

Longitudinal in vivo imaging of L4 neurons in the mouse barrel 
cortex revealed that at P3, a spiny stellate neuron has a larger number 
of inner dendritic trees, which originate from the barrel-side half of 
the soma, than outer dendritic trees (Nakazawa et al., 2018). However, 
at this age both inner and outer dendritic trees are equally primitive 
in morphology (Figure 1C). Between P3 and P6, the ratio of inner to 
outer dendritic trees does not change. However, during this period, 
dendritic trees show extensive turnover both inside and outside the 
barrel. Many newly emerged dendritic trees (i.e., “challenger” 
dendritic trees) quickly disappear. Among them, only a few are 
stabilized and elaborated and become winners. Importantly, these 
winners are primarily selected from challengers emerging inside the 
barrel. L4 spiny stellate neurons have multiple winner dendritic trees, 
and even late-born dendritic trees can become winners (Nakazawa 
et  al., 2018). Thus, L4 spiny stellate neurons establish highly 
asymmetric dendritic patterns not by eliminating outer dendritic trees 
and adding new inner trees and/or elaborating existing inner trees 
during neonatal stages. In contrast, L4 spiny stellate neurons produce 
many challenger dendritic trees in various directions, and only a few 
winners are selected from the challengers that emerge in the 
appropriate direction. These winners are then stabilized and elaborated 
(Figure 1C).

Most L4 spiny stellate neurons, which are located at the barrel 
edge, can receive appropriate TCA inputs only from a specific 
direction toward the barrel center. On the other hand, L4 spiny stellate 
neurons located in the barrel center can receive appropriate TCA 
inputs from any direction. Such barrel-center spiny stellate neurons 
show much lower dendritic tree turnover than barrel-edge spiny 
stellate neurons (Nakazawa et al., 2018). In barrel-center spiny stellate 
neurons, most dendrites are stable and mildly grow, establishing 
dendritic projections without orientation bias. Thus, spatially biased 
presynaptic TCA inputs may play a key role regulating dendritic 
dynamics and dendritic orientation. When appropriate presynaptic 
partners are available only in a specific direction, neurons produce 
many dendritic trees in all directions, and select a few winners among 
dendritic trees that emerge in the right direction.

A more recent in vivo imaging study, using 1-h interval for 
imaging of barrel cortex L4 neuron dendrites in the neonatal mouse 
(Wang et  al., 2023), further supports this view. This high time-
resolution imaging allows to accurately identify the same dendritic 
branches across imaging sessions, which is often difficult with the 
imaging intervals (8 h) used in previous experiments (Mizuno et al., 
2014; Nakazawa et  al., 2018). This new study found that many 
dendritic branches (and trees) emerge and are eliminated even within 
a few hours. Both inner and outer dendritic branches (and trees) 
emerge and are eliminated with no clear difference in frequency. These 
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results suggest that despite dendritic trees and branches being highly 
dynamic during neonatal stages, most of these rapid changes in 
dendritic morphology do not directly contribute to the formation of 
asymmetric dendritic patterns in spiny stellate neurons. Thus, L4 spiny 
stellate neurons establish highly asymmetric dendritic patterns 
through extensive trial-and-error emergence/elongation and 
elimination/retraction of dendritic trees and branches rather than 
simple emergence/elongation of inner dendritic trees/branches and 
elimination/retraction of outer dendritic trees/branches (Figure 1C).

Golgi polarity in thalamocortical 
activity-dependent dendritic patterning

As described above, during dendrite refinement of barrel cortex 
L4 spiny stellate neurons, only a fraction of dendritic trees that emerge 
inside the barrel is selected as winners from a large number of 
transient dendritic trees (challenger dendritic trees) generated during 
continuous turnover both inside and outside the barrel (Figure 1C). 
Why do inner dendritic trees, but not outer dendritic trees, 
become winners?

Recent evidence indicated a significant contribution of cell 
polarity in inner dendritic tree-specific winner emergence (Nakagawa 
and Iwasato, 2023). In fact, the Golgi apparatus distribution changes 
in L4 spiny stellate neurons during the neonatal stage. The Golgi 
apparatus in L4 spiny stellate neurons is positioned in the apical 
domain in early neonatal stages such as P3, but it is subsequently 
translocated and polarized to the lateral domain and oriented toward 
a single barrel by P5 (Figure  2A). This “lateral Golgi polarity” 
temporally matches with the progression of dendrite refinement: 
lateral polarity peaks on the active refinement stage (P5–P7) and 
disappears upon refinement completion (~P15). In contrast to spiny 
stellate neurons, star pyramid neurons do not show lateral Golgi 
polarity. The lateral Golgi polarity in L4 spiny stellate neurons relies 
on NMDAR activation, serving as an intracellular machinery that 
connects thalamocortical activity to dendrite patterning. Perturbing 
Golgi polarity results in less asymmetric dendrite patterning and 
lower response specificity to principal whisker stimulation.

How can a biased Golgi distribution in a neuron explain the fate 
of individual dendritic trees? The Golgi apparatus is a hub for 
intracellular vesicle transport and contributes to dendrite extension 
and elaboration (Horton et al., 2005; Ye et al., 2007). Indeed, during 
dendrite refinement in L4 spiny stellate neurons, the dendritic trees 
that harbor the Golgi at their base or inside are more elaborated than 
those without Golgi allocation (Nakagawa and Iwasato, 2023). 
Therefore, the laterally polarized Golgi distribution in neurons, biased 
toward the single barrel, may provide the chance of Golgi allocation 
only to inner dendritic trees and make them winners (Figure 2). It is 
likely that due to the physical capacity of the Golgi apparatus, when a 
few dendritic trees become winners, other dendritic trees can hardly 
be supported by the Golgi, making these trees short and/or transient, 
even in case of inner trees. As presynaptic TCAs are clustered in the 
barrel center, L4 neurons should make synapses predominantly on 
inner dendrites (Figure 2B), creating NMDAR signaling gradients and 
generating Golgi lateral polarity. On the other hand, losing NMDAR 
activity from a cell impairs lateral polarity of the Golgi apparatus 
(Nakagawa and Iwasato, 2023). In this situation, no dendrites become 
winners and most, both inside and outside the barrel, mildly grow, 

impairing the one-to-one functional relationship between a whisker 
and a barrel (Figure 2B).

Thalamocortical activity in the neonatal 
barrel cortex

Dendritic refinement of L4 spiny stellate neurons largely relies on 
thalamocortical inputs (Narboux-Neme et al., 2012; Li et al., 2013). 
Although, in neonatal stages such as P6, barrel cortex L4 is innervated 
not only by TCAs but also by subplate neuron neurites, these subplate 
neurons also receive excitatory thalamocortical inputs (Higashi et al., 
2002; Piñon et al., 2009; Kanold, 2019). In other words, during early 
postnatal period, L4 neurons are activated by thalamic inputs directly 
or indirectly. Therefore, it is important to know the type of activity that 
TCAs transmit to barrel cortex during neonatal stages and where in 
the trigeminal pathway this activity arises from.

Spontaneous correlated activity plays critical roles in the 
refinement of neuronal circuits in the sensory systems of developing 
mammals (Katz and Shatz, 1996; Kirkby et al., 2013; Martini et al., 
2021; Nakazawa and Iwasato, 2021). In barrel cortex L4 of the neonatal 
mouse, there is spontaneous activity with a unique spatiotemporal 
pattern (Mizuno et al., 2018). L4 neurons that belong to the same 
barrel fire together, while those in different barrels fire in a different 
timing, providing the barrel-corresponding “patchwork” pattern to 
spontaneous activity. This patchwork-type spatiotemporal pattern of 
spontaneous activity is observed in the barrel cortex L4 during early 
postnatal stages such as P0 and P5 but not later (Mizuno et al., 2018; 
Nakazawa et  al., 2020). L4 neurons around P9 show broadly 
synchronized activity across barrel borders, and by P11, cortical 
spontaneous activity is desynchronized (Nakazawa et  al., 2020; 
Nakazawa and Iwasato, 2021).

Patchwork-type spontaneous activity is also observed in TCA 
termini during the first postnatal week (Mizuno et al., 2018); in fact, 
chemogenic silencing of the thalamus hampers detection of 
spontaneous activity in the cortex (Nakazawa et  al., 2020). These 
findings suggest that patchwork activity is transmitted to cortical L4 
neurons via TCAs. Cortical patchwork activity is also blocked by local 
anesthesia in the whisker pads but not by severing the infraorbital 
nerves (IONs) (Mizuno et al., 2018; Nakazawa et al., 2020). IONs are 
peripherally projecting processes of trigeminal ganglion (TG) 
neurons, which innervate the whisker follicles. These results suggest 
that the cortical spontaneous activity is generated in the periphery but 
downstream of IONs. Thus, it is highly likely that the spontaneous 
activity originates in the TG.

A recent study has established a calcium imaging system of the TG 
ex vivo and found that neurons in the whisker-innervated region of 
the TG fire spontaneously during neonatal stages (Banerjee et al., 
2022). This activity is blocked when chelating extracellular calcium. 
Most firing neurons have medium-to-large diameter, and likely are 
mechanosensory neurons. Although TG neurons fire sparsely and 
have no clear spatiotemporal pattern, some neuron pairs with highly 
correlated firing tend to be  located closely (Banerjee et al., 2022). 
Neurons that innervate the same whiskers are not clustered in the TG 
but close to each other (Erzurumlu and Jhaveri, 1992; da Silva et al., 
2011; Banerjee et al., 2022). Therefore, it is possible that TG neurons 
that innervate the same whisker pad together tend to fire together. If 
so, this may generate the patchwork pattern corresponding to the 
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barrel map in the barrel cortex. This hypothesis needs to be explored 
in future research.

Patchwork-type cortical activity is also generated by sensory 
feedback from self-generated whisker movements. Whisker and paw 
twitching are frequently observed in neonatal rodents during rapid 
eye movement (REM) sleep (Khazipov et al., 2004; Tiriac et al., 2012, 
2014; Dooley et al., 2020). The sensory feedback from the twitching of 
the whiskers and paws appears to be  a source of firing in the 
downstream trigeminal pathway. There is some degree of coupling 
between the twitching and the firing in the thalamus and cortex 
(Khazipov et al., 2004; Tiriac et al., 2012, 2014; Mizuno et al., 2018; 
Dooley et al., 2020). By using unit recording of the rat barrel cortex at 
P5, Blumberg and colleagues reported that about 12 and 23% of 
spontaneous whisker movements are accompanied with spindle bursts 

of barrels, during wake and REM sleep, respectively. They also 
reported that more than half of barrel activity is preceded by whisker 
twitches (Dooley et al., 2020). In this study, time-resolution was quite 
high and wake and sleep were precisely distinguished. By calcium 
imaging focusing on L4 neurons of the P5 mouse barrel cortex, 
Mizuno et al., demonstrated that about 11% of spontaneous whisker 
movements were associated with firing of L4 neurons within the 
corresponding barrel, and about 11% of L4 neuron firing episodes 
accompany spontaneous movements of the corresponding whisker 
(Mizuno et  al., 2018). In this study, L4 neurons were identified 
accurately by using in utero electroporation-based cell labeling and 
TCA-red fluorescent protein (RFP) transgenic (Tg)-mediated L4 
labeling. In addition, each barrel was precisely identified in a cellular 
level by TCA-RFP Tg-mediated barrel map labeling.

FIGURE 2

Polarity shift of the Golgi apparatus instructs dendrite refinement. (A) In barrel cortex L4, spiny stellate neurons initially have apical Golgi polarity. 
During postnatal development (the first postnatal week), spiny stellate neurons de-construct the initial polarity and shift it to the lateral direction 
oriented toward a single barrel. Finally, after completing of circuit reorganization, spiny stellate neurons decrease the lateral Golgi polarity (adult). 
(B) During dendrite refinement in a spiny stellate neuron, NMDA receptors (NMDARs) are activated by thalamocortical inputs from a single barrel. The 
Golgi apparatus translocates toward the subcellular domain where NMDARs are activated [see also (A)]. Then, a few inner dendritic trees harbor the 
Golgi (at their base or inside) to be winners. In this way, the spiny stellate neuron establishes the asymmetric dendritic patterns, underlying the specific 
response to a single principal whisker (right, normal development). On the other hand, if the lateral Golgi polarization is impaired, the neuron has lower 
dendrite asymmetry, so that it responds to both principal and adjacent whiskers, compromising the whisker-dependent tactile discrimination in mice.
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Sensory input also generates cortical activity. Rodents do not see 
or hear during neonatal stages because the retina and cochlea are not 
functional yet. On the other hand, in rodents, tactile sensation is 
already present, albeit partially, at birth. Although rodents do not 
show exploratory and whisking behaviors until around P12–P14 (for 
the mouse) (Arakawa and Erzurumlu, 2015; van der Bourg et al., 
2017), even at birth, rodents already exhibit passive sensation from 
tactile organs, including the whiskers. Sensory inputs induced by 
whisker deflection are transmitted to the cortex via the brainstem and 
thalamus (Khazipov et  al., 2004; Akhmetshina et  al., 2016). The 
specific role of these three types of activity in neonatal animals in the 
refinement of barrel cortex circuits needs to be clarified in the future.

Discussion

Recent studies using the mouse barrel cortex L4, have increased 
our understanding of the activity-dependent mechanisms of dendrite 
refinement and circuit reorganization. Mouse genetics studies have 
discovered dozens of molecules involved in the dendrite refinement 
of the barrel cortex L4 spiny stellate neurons. However, our knowledge 
on how these molecules are spatiotemporally coordinated within a 
neuron to determine the fate of individual dendritic trees is still 
lacking. This could be overcome by labeling endogenous molecules 
and their activities with subcellular resolution in situ and analyzing 
their spatiotemporal changes and correlation with the behavior of 
individual dendrites during refinement.

Apart from the function of individual molecules, an important 
viewpoint has been introduced, which is the dynamics of subcellular 
structures such as the Golgi apparatus (Nakagawa and Iwasato, 2023). 
Triggered by thalamocortical input, molecular activities should 
be  converted to structural and functional changes of intracellular 
machinery, which drive morphological changes in neurons. Next, it 
will be  necessary to elucidate the activity-dependent mechanisms 
underlying Golgi recruitment to specific dendrite(s) in L4 spiny 
stellate neurons, and to understand how the polarized Golgi enables 
asymmetric dendrite growth.

Continuous improvement of in vivo imaging approaches is 
important as well. Unlike conventional “snapshot” analysis by 
histology, in vivo imaging in living neonates allows us to directly 
understand the ongoing process of dendrite refinement. Moreover, 

dissecting the rules underlying the behavior of individual dendrites 
during refinement help clarify how the molecules and organelles work 
within a neuron.

Combining these multidisciplinary approaches is required for 
understanding the whole picture of the activity-dependent 
mechanisms underlying dendrite patterning, a critical step in 
postnatal neural circuit reorganization.

Author contributions

NN: Writing – original draft, Writing – review & editing. TI: 
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by JSPS KAKENHI JP19K16281, JP21K15199, JP21H05702, 
JP22H05518, JP23H04242, JP24H01256, and JP24K02127, the Uehara 
Memorial Foundation, and the Takeda Science Foundation to NN, 
JSPS KAKENHI JP16H06459, JP20H03346, JP21K18245, 
JP24H00586, and JP24H02310, and the Collaborative Research 
Project (#23017) of BRI, Niigata University to TI.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Abdel-Majid, R. M., Leong, W. L., Schalkwyk, L. C., Smallman, D. S., Wong, S. T., 

Storm, D. R., et al. (1998). Loss of adenylyl cyclase I activity disrupts patterning of mouse 
somatosensory cortex. Nat. Genet. 19, 289–291. doi: 10.1038/980

Akhmetshina, D., Nasretdinov, A., Zakharov, A., Valeeva, G., and Khazipov, R. (2016). 
The nature of the sensory input to the neonatal rat barrel cortex. J. Neurosci. 36, 
9922–9932. doi: 10.1523/JNEUROSCI.1781-16.2016

Arakawa, H., and Erzurumlu, R. S. (2015). Role of whiskers in sensorimotor 
development of C57BL/6 mice. Behav. Brain Res. 287, 146–155. doi: 10.1016/j.
bbr.2015.03.040

Ballester-Rosado, C. J., Sun, H., Huang, J.-Y., and Lu, H.-C. (2016). Functional and 
anatomical development of layer IV cortical neurons in the mouse primary 
somatosensory cortex. J. Neurosci. 36, 8802–8814. doi: 10.1523/
JNEUROSCI.1224-16.2016

Banerjee, P., Kubo, F., Nakaoka, H., Ajima, R., Sato, T., Hirata, T., et al. (2022). 
Spontaneous activity in whisker-innervating region of neonatal mouse trigeminal 
ganglion. Sci. Rep. 12:16311. doi: 10.1038/s41598-022-20068-z

Barnett, M. W., Watson, R. F., Vitalis, T., Porter, K., Komiyama, N. H., Stoney, P. N., 
et al. (2006). Synaptic Ras GTPase activating protein regulates pattern formation in the 

trigeminal system of mice. J. Neurosci. 26, 1355–1365. doi: 10.1523/
JNEUROSCI.3164-05.2006

Bodnarenko, S. R., and Chalupa, L. M. (1993). Stratification of ON and OFF ganglion 
cell dendrites depends on glutamate-mediated afferent activity in the developing retina. 
Nature 364, 144–146. doi: 10.1038/364144a0

Clark, E. A., Rutlin, M., Capano, L. S., Aviles, S., Saadon, J. R., and Taneja, P. (2020). 
Cortical RORβ is required for layer 4 transcriptional identity and barrel integrity. eLife 
9:e52370. doi: 10.7554/eLife.52370

Cline, H. T. (2001). Dendritic arbor development and synaptogenesis. Curr. Opin. 
Neurobiol. 11, 118–126. doi: 10.1016/s0959-4388(00)00182-3

da Silva, S., Hasegawa, H., Scott, A., Zhou, X., Wagner, A. K., Han, B. X., et al. (2011). 
Proper formation of whisker barrelettes requires periphery-derived Smad4-dependent 
TGF-beta signaling. Proc. Natl. Acad. Sci. USA 108, 3395–3400. doi: 10.1073/
pnas.1014411108

Datwani, A., Iwasato, T., Itohara, S., and Erzurumlu, R. S. (2002). NMDA receptor-
dependent pattern transfer from afferents to postsynaptic cells and dendritic 
differentiation in the barrel cortex. Mol. Cell. Neurosci. 21, 477–492. doi: 10.1006/
mcne.2002.1195

58

https://doi.org/10.3389/fncir.2024.1409993
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org
https://doi.org/10.1038/980
https://doi.org/10.1523/JNEUROSCI.1781-16.2016
https://doi.org/10.1016/j.bbr.2015.03.040
https://doi.org/10.1016/j.bbr.2015.03.040
https://doi.org/10.1523/JNEUROSCI.1224-16.2016
https://doi.org/10.1523/JNEUROSCI.1224-16.2016
https://doi.org/10.1038/s41598-022-20068-z
https://doi.org/10.1523/JNEUROSCI.3164-05.2006
https://doi.org/10.1523/JNEUROSCI.3164-05.2006
https://doi.org/10.1038/364144a0
https://doi.org/10.7554/eLife.52370
https://doi.org/10.1016/s0959-4388(00)00182-3
https://doi.org/10.1073/pnas.1014411108
https://doi.org/10.1073/pnas.1014411108
https://doi.org/10.1006/mcne.2002.1195
https://doi.org/10.1006/mcne.2002.1195


Nakagawa and Iwasato 10.3389/fncir.2024.1409993

Frontiers in Neural Circuits 07 frontiersin.org

Dooley, J. C., Glanz, R. M., Sokoloff, G., and Blumberg, M. S. (2020). Self-generated 
whisker movements drive state-dependent sensory input to developing barrel cortex. 
Curr. Biol. 30, 2404–2410.e4. doi: 10.1016/j.cub.2020.04.045

Emoto, K. (2011). Dendrite remodeling in development and disease. Develop. Growth 
Differ. 53, 277–286. doi: 10.1111/j.1440-169X.2010.01242.x

Erzurumlu, R. S., and Gaspar, P. (2012). Development and critical period plasticity 
of the barrel cortex. Eur. J. Neurosci. 35, 1540–1553. doi: 
10.1111/j.1460-9568.2012.08075.x

Erzurumlu, R. S., and Jhaveri, S. (1992). Trigeminal ganglion cell processes are 
spatially ordered prior to the differentiation of the vibrissa pad. J. Neurosci. 12, 
3946–3955. doi: 10.1523/JNEUROSCI.12-10-03946.1992

Espinosa, J. S., Wheeler, D. G., Tsien, R. W., and Luo, L. (2009). Uncoupling dendrite 
growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62, 
205–217. doi: 10.1016/j.neuron.2009.03.006

Fox, K. (2008). Barrel Cortex. Cambridge: Cambridge University Press.

Fujimoto, F., Leiwe, M. N., Aihara, S., Sakaguchi, R., Muroyama, Y., Kobayakawa, R., 
et al. (2023). Activity-dependent local protection and lateral inhibition control synaptic 
competition in developing mitral cells in mice. Dev. Cell 58, 1221–1236.e7. doi: 
10.1016/j.devcel.2023.05.004

Goodman, C. S., and Shatz, C. J. (1993). Developmental mechanisms that generate 
precise patterns of neuronal connectivity. Cell 72, 77–98. doi: 10.1016/
s0092-8674(05)80030-3

Greenough, W. T., and Chang, F. L. (1988). Dendritic pattern formation involves both 
oriented regression and oriented growth in the barrels of mouse somatosensory cortex. 
Brain Res. 43, 148–152. doi: 10.1016/0165-3806(88)90160-5

Hannan, A. J., Blakemore, C., Katsnelson, A., Vitalis, T., Huber, K. M., Bear, M., et al. 
(2001). PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation 
in cerebral cortex. Nat. Neurosci. 4, 282–288. doi: 10.1038/85132

Harris, R. M., and Woolsey, T. A. (1981). Dendritic plasticity in mouse barrel cortex 
following postnatal vibrissa follicle damage. J. Comp. Neurol. 196, 357–376. doi: 10.1002/
cne.901960302

Higashi, S., Molnár, Z., Kurotani, T., and Toyama, K. (2002). Prenatal development of 
neural excitation in rat thalamocortical projections studied by optical recording. 
Neuroscience 115, 1231–1246. doi: 10.1016/s0306-4522(02)00418-9

Horton, A. C., Racz, B., Monson, E. E., Lin, A. L., Weinberg, R. J., and Ehlers, M. D. 
(2005). Polarized secretory trafficking directs cargo for asymmetric dendrite growth and 
morphogenesis. Neuron 48, 757–771. doi: 10.1016/j.neuron.2005.11.005

Huang, J.-Y., and Lu, H.-C. (2018). mGluR5 tunes NGF/TrkA signaling to orient spiny 
stellate neuron dendrites toward thalamocortical axons during whisker-barrel map 
formation. Cereb. Cortex 28, 1991–2006. doi: 10.1093/cercor/bhx105

Huang, J.-Y., Miskus, M. L., and Lu, H.-C. (2017). FGF-FGFR mediates the activity-
dependent dendritogenesis of layer IV neurons during barrel formation. J. Neurosci. 37, 
12094–12105. doi: 10.1523/JNEUROSCI.1174-17.2017

Inan, M., Lu, H. C., Albright, M. J., She, W. C., and Crair, M. C. (2006). Barrel map 
development relies on protein kinase a regulatory subunit II beta-mediated cAMP 
signaling. J. Neurosci. 26, 4338–4349. doi: 10.1523/JNEUROSCI.3745-05.2006

Ince-Dunn, G., Hall, B. J., Hu, S. C., Ripley, B., Huganir, R. L., Olson, J. M., et al. 
(2006). Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. 
Neuron 49, 683–695. doi: 10.1016/j.neuron.2006.01.031

Iwasato, T. (2020). In vivo imaging of neural circuit formation in the neonatal mouse 
barrel cortex. Develop. Growth Differ. 62, 476–486. doi: 10.1111/dgd.12693

Iwasato, T., Datwani, A., Wolf, A. M., Nishiyama, H., Taguchi, Y., Tonegawa, S., et al. 
(2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the 
barrel cortex. Nature 406, 726–731. doi: 10.1038/35021059

Iwasato, T., and Erzurumlu, R. S. (2018). Development of tactile sensory circuits in 
the CNS. Curr. Opin. Neurobiol. 53, 66–75. doi: 10.1016/j.conb.2018.06.001

Iwasato, T., Inan, M., Kanki, H., Erzurumlu, R. S., Itohara, S., and Crair, M. C. (2008). 
Cortical adenylyl cyclase 1 is required for thalamocortical synapse maturation and 
aspects of layer IV barrel development. J. Neurosci. 28, 5931–5943. doi: 10.1523/
JNEUROSCI.0815-08.2008

Jabaudon, D., Shnider, S. J., Tischfield, D. J., Galazo, M. J., and Macklis, J. D. (2012). 
RORbeta induces barrel-like neuronal clusters in the developing neocortex. Cereb. 
Cortex 22, 996–1006. doi: 10.1093/cercor/bhr182

Kanold, P. O. (2019). The first cortical circuits: subplate neurons lead the way and 
shape cortical organization. e-Neuroforum 25, 15–23. doi: 10.1515/nf-2018-0010

Kashani, A. H., Qiu, Z., Jurata, L., Lee, S. K., Pfaff, S., Goebbels, S., et al. (2006). 
Calcium activation of the LMO4 transcription complex and its role in the patterning of 
thalamocortical connections. J. Neurosci. 26, 8398–8408. doi: 10.1523/
JNEUROSCI.0618-06.2006

Katz, L. C., and Constantine-Paton, M. (1988). Relationships between segregated 
afferents and postsynaptic neurones in the optic tectum of three-eyed frogs. J. Neurosci. 
8, 3160–3180. doi: 10.1523/JNEUROSCI.08-09-03160.1988

Katz, L. C., and Shatz, C. J. (1996). Synaptic activity and the construction of cortical 
circuits. Science 274, 1133–1138. doi: 10.1126/science.274.5290.1133

Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G. L., Ben-Ari, Y., and Buzsaki, G. 
(2004). Early motor activity drives spindle bursts in the developing somatosensory 
cortex. Nature 432, 758–761. doi: 10.1038/nature03132

Kirkby, L. A., Sack, G. S., Firl, A., and Feller, M. B. (2013). A role for correlated 
spontaneous activity in the assembly of neural circuits. Neuron 80, 1129–1144. doi: 
10.1016/j.neuron.2013.10.030

Kossel, A., Löwel, S., and Bolz, J. (1995). Relationships between dendritic fields and 
functional architecture in striate cortex of normal and visually deprived cats. J. Neurosci. 
15, 3913–3926. doi: 10.1523/JNEUROSCI.15-05-03913.1995

Li, H., Fertuzinhos, S., Mohns, E., Hnasko, T. S., Verhage, M., Edwards, R., et al. 
(2013). Laminar and columnar development of barrel cortex relies on thalamocortical 
neurotransmission. Neuron 79, 970–986. doi: 10.1016/j.neuron.2013.06.043

Lübke, J., Egger, V., Sakmann, B., and Feldmeyer, D. (2000). Columnar organization 
of dendrites and axons of single and synaptically coupled excitatory spiny neurons in 
layer 4 of the rat barrel cortex. J. Neurosci. 20, 5300–5311. doi: 10.1523/
JNEUROSCI.20-14-05300.2000

Lush, M. E., Li, Y., Kwon, C. H., Chen, J., and Parada, L. F. (2008). Neurofibromin is 
required forbarrel formation in the mouse somatosensory cortex. J. Neurosci. 28, 
1580–1587. doi: 10.1523/JNEUROSCI.5236-07.2008

Martini, F. J., Guillamón-Vivancos, T., Moreno-Juan, V., Valdeolmillos, M., and 
López-Bendito, G. (2021). Spontaneous activity in developing thalamic and cortical 
sensory networks. Neuron 109, 2519–2534. doi: 10.1016/j.neuron.2021.06.026

Matsui, A., Tran, M., Yoshida, A. C., Kikuchi, S. S., Ogawa, M., and Shimogori, T. 
(2013). BTBD3 controls dendrite orientation toward active axons in mammalian 
neocortex. Science 342, 1114–1118. doi: 10.1126/science.1244505

Mizuno, H., Ikezoe, K., Nakazawa, S., Sato, T., Kitamura, K., and Iwasato, T. (2018). 
Patchwork-type spontaneous activity in neonatal barrel cortex layer 4 transmitted via 
thalamocortical projections. Cell Rep. 22, 123–135. doi: 10.1016/j.celrep.2017.12.012

Mizuno, H., Luo, W., Tarusawa, E., Saito, Y. M., Sato, T., Yoshimura, Y., et al. (2014). 
NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical 
reorganization in neonates. Neuron 82, 365–379. doi: 10.1016/j.neuron.2014.02.026

Mori, H., and Mishina, M. (1995). Structure and function of the NMDA receptor 
channel. Neuropharmacology 34, 1219–1237. doi: 10.1016/0028-3908(95)00109-J

Nakagawa, N., and Iwasato, T. (2023). Golgi polarity shift instructs dendritic 
refinement in the neonatal cortex by mediating NMDA receptor signaling. Cell Rep. 
42:112843. doi: 10.1016/j.celrep.2023.112843

Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for 
brain function. Science 258, 597–603. doi: 10.1126/science.1329206

Nakazawa, S., and Iwasato, T. (2021). Spatial organization and transitions of 
spontaneous neuronal activities in the developing sensory cortex. Develop. Growth 
Differ. 63, 323–339. doi: 10.1111/dgd.12739

Nakazawa, S., Mizuno, H., and Iwasato, T. (2018). Differential dynamics of cortical 
neuron dendritic trees revealed by long-term in vivo imaging in neonates. Nat. Commun. 
9:3106. doi: 10.1038/s41467-018-05563-0

Nakazawa, S., Yoshimura, Y., Takagi, M., Mizuno, H., and Iwasato, T. (2020). 
Developmental phase transitions in spatial organization of spontaneous activity in 
postnatal barrel cortex layer 4. J. Neurosci. 40, 7637–7650. doi: 10.1523/
JNEUROSCI.1116-20.2020

Narboux-Neme, N., Evrard, A., Ferezou, I., Erzurumlu, R. S., Kaeser, P. S., Laine, J., 
et al. (2012). Neurotransmitter release at the thalamocortical synapse instructs barrel 
formation but not axon patterning in the somatosensory cortex. J. Neurosci. 32, 
6183–6196. doi: 10.1523/JNEUROSCI.0343-12.2012

Piñon, M. C., Jethwa, A., Jacobs, E., Campagnoni, A., and Molnár, Z. (2009). Dynamic 
integration of subplate neurons into the cortical barrel field circuitry during postnatal 
development in the Golli-tau-eGFP (GTE) mouse. J. Physiol. 587, 1903–1915. doi: 
10.1113/jphysiol.2008.167767

Rao, M. S., Mizuno, H., Iwasato, T., and Mizuno, H. (2022). Ras GTPase-activating 
proteins control neuronal circuit development in barrel cortex layer 4. Front. Neurosci. 
16:901774. doi: 10.3389/fnins.2022.901774

She, W. C., Quairiaux, C., Albright, M. J., Wang, Y. C., Sanchez, D. E., Chang, P. S., 
et al. (2009). Roles of mGluR5  in synaptic function and plasticity of themouse 
thalamocortical pathway. Eur. J. Neurosci. 29, 1379–1396. doi: 
10.1111/j.1460-9568.2009.06696.x

Simons, D. J., and Woolsey, T. A. (1984). Morphology of Golgi-cox-impregnated barrel 
neurons in rat SmI cortex. J. Comp. Neurol. 230, 119–132. doi: 10.1002/cne.902300111

Staiger, J. F., Flagmeyer, I., Schubert, D., Zilles, K., Kotter, R., and Luhmann, H. J. 
(2004). Functional diversity of layer IV spiny neurons in rat somatosensory cortex: 
quantitative morphology of electrophysiologically characterized and biocytin labeled 
cells. Cereb. Cortex 14, 690–701. doi: 10.1093/cercor/bhh029

Tiriac, A., Del Rio-Bermudez, C., and Blumberg, M. S. (2014). Self-generated 
movements with "unexpected" sensory consequences. Curr. Biol. 24, 2136–2141. doi: 
10.1016/j.cub.2014.07.053

Tiriac, A., Uitermarkt, B. D., Fanning, A. S., Sokoloff, G., and Blumberg, M. S. (2012). 
Rapid whisker movements in sleeping newborn rats. Curr. Biol. 22, 2075–2080. doi: 
10.1016/j.cub.2012.09.009

59

https://doi.org/10.3389/fncir.2024.1409993
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org
https://doi.org/10.1016/j.cub.2020.04.045
https://doi.org/10.1111/j.1440-169X.2010.01242.x
https://doi.org/10.1111/j.1460-9568.2012.08075.x
https://doi.org/10.1523/JNEUROSCI.12-10-03946.1992
https://doi.org/10.1016/j.neuron.2009.03.006
https://doi.org/10.1016/j.devcel.2023.05.004
https://doi.org/10.1016/s0092-8674(05)80030-3
https://doi.org/10.1016/s0092-8674(05)80030-3
https://doi.org/10.1016/0165-3806(88)90160-5
https://doi.org/10.1038/85132
https://doi.org/10.1002/cne.901960302
https://doi.org/10.1002/cne.901960302
https://doi.org/10.1016/s0306-4522(02)00418-9
https://doi.org/10.1016/j.neuron.2005.11.005
https://doi.org/10.1093/cercor/bhx105
https://doi.org/10.1523/JNEUROSCI.1174-17.2017
https://doi.org/10.1523/JNEUROSCI.3745-05.2006
https://doi.org/10.1016/j.neuron.2006.01.031
https://doi.org/10.1111/dgd.12693
https://doi.org/10.1038/35021059
https://doi.org/10.1016/j.conb.2018.06.001
https://doi.org/10.1523/JNEUROSCI.0815-08.2008
https://doi.org/10.1523/JNEUROSCI.0815-08.2008
https://doi.org/10.1093/cercor/bhr182
https://doi.org/10.1515/nf-2018-0010
https://doi.org/10.1523/JNEUROSCI.0618-06.2006
https://doi.org/10.1523/JNEUROSCI.0618-06.2006
https://doi.org/10.1523/JNEUROSCI.08-09-03160.1988
https://doi.org/10.1126/science.274.5290.1133
https://doi.org/10.1038/nature03132
https://doi.org/10.1016/j.neuron.2013.10.030
https://doi.org/10.1523/JNEUROSCI.15-05-03913.1995
https://doi.org/10.1016/j.neuron.2013.06.043
https://doi.org/10.1523/JNEUROSCI.20-14-05300.2000
https://doi.org/10.1523/JNEUROSCI.20-14-05300.2000
https://doi.org/10.1523/JNEUROSCI.5236-07.2008
https://doi.org/10.1016/j.neuron.2021.06.026
https://doi.org/10.1126/science.1244505
https://doi.org/10.1016/j.celrep.2017.12.012
https://doi.org/10.1016/j.neuron.2014.02.026
https://doi.org/10.1016/0028-3908(95)00109-J
https://doi.org/10.1016/j.celrep.2023.112843
https://doi.org/10.1126/science.1329206
https://doi.org/10.1111/dgd.12739
https://doi.org/10.1038/s41467-018-05563-0
https://doi.org/10.1523/JNEUROSCI.1116-20.2020
https://doi.org/10.1523/JNEUROSCI.1116-20.2020
https://doi.org/10.1523/JNEUROSCI.0343-12.2012
https://doi.org/10.1113/jphysiol.2008.167767
https://doi.org/10.3389/fnins.2022.901774
https://doi.org/10.1111/j.1460-9568.2009.06696.x
https://doi.org/10.1002/cne.902300111
https://doi.org/10.1093/cercor/bhh029
https://doi.org/10.1016/j.cub.2014.07.053
https://doi.org/10.1016/j.cub.2012.09.009


Nakagawa and Iwasato 10.3389/fncir.2024.1409993

Frontiers in Neural Circuits 08 frontiersin.org

van der Bourg, A., Yang, J. W., Reyes-Puerta, V., Laurenczy, B., Wieckhorst, M., 
Stüttgen, M. C., et al. (2017). Layer-specific refinement of sensory coding in developing 
mouse barrel cortex. Cereb. Cortex 27, 4835–4850. doi: 10.1093/cercor/bhw280

Vitalis, T., Dauphinot, L., Gressens, P., Potier, M. C., Mariani, J., and Gaspar, P. (2018). 
RORα coordinates thalamic and cortical maturation to instruct barrel cortex 
development. Cereb. Cortex 28, 3994–4007. doi: 10.1093/cercor/bhx262

Wang, L., Nakazawa, S., Luo, W., Sato, T., Mizuno, H., and Iwasato, T. (2023). Short-
term dendritic dynamics of neonatal cortical neurons revealed by in vivo imaging with 
improved spatiotemporal resolution. eNeuro 10:ENEURO. 0142-23.2023. doi: 10.1523/
ENEURO.0142-23.2023

Watson, R. F., Abdel-Majid, R. M., Barnett, M. W., Willis, B. S., Katsnelson, A., 
Gillingwater, T. H., et al. (2006). Involvement of protein kinase a in patterning of the mouse 
somatosensory cortex. J. Neurosci. 26, 5393–5401. doi: 10.1523/JNEUROSCI.0750-06.2006

Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R., and Wong, R. O. (2000). Rapid 
dendritic remodeling in the developing retina: dependence on neurotransmission and 

reciprocal regulation by Rac and rho. J. Neurosci. 20, 5024–5036. doi: 10.1523/
JNEUROSCI.20-13-05024.2000

Wong, R. O., and Ghosh, A. (2002). Activity-dependent regulation of dendritic growth 
and patterning. Nat. Rev. Neurosci. 3, 803–812. doi: 10.1038/nrn941

Woolsey, T. A., and Van der Loos, H. (1970). The structural organization of layer IV 
in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical 
field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242. doi: 
10.1016/0006-8993(70)90079-x

Ye, B., Zhang, Y., Song, W., Younger, S. H., Jan, L. Y., and Jan, Y. N. (2007). Growing 
dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717–729. 
doi: 10.1016/j.cell.2007.06.032

Zhang, M., Lu, M., Huang, H., Liu, X., Su, H., and Li, H. (2019). Maturation of 
thalamocortical synapses in the somatosensory cortex depends on neocortical AKAP5 
expression. Neurosci. Lett. 709:134374. doi: 10.1016/j.neulet.2019.134374

60

https://doi.org/10.3389/fncir.2024.1409993
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org
https://doi.org/10.1093/cercor/bhw280
https://doi.org/10.1093/cercor/bhx262
https://doi.org/10.1523/ENEURO.0142-23.2023
https://doi.org/10.1523/ENEURO.0142-23.2023
https://doi.org/10.1523/JNEUROSCI.0750-06.2006
https://doi.org/10.1523/JNEUROSCI.20-13-05024.2000
https://doi.org/10.1523/JNEUROSCI.20-13-05024.2000
https://doi.org/10.1038/nrn941
https://doi.org/10.1016/0006-8993(70)90079-x
https://doi.org/10.1016/j.cell.2007.06.032
https://doi.org/10.1016/j.neulet.2019.134374


fncir-18-1423505 May 17, 2024 Time: 17:22 # 1

TYPE Mini Review
PUBLISHED 22 May 2024
DOI 10.3389/fncir.2024.1423505

OPEN ACCESS

EDITED BY

Kensaku Mori,
RIKEN, Japan

REVIEWED BY

Kazunari Miyamichi,
RIKEN Center for Biosystems Dynamics
Research (BDR), Japan

*CORRESPONDENCE

Masahiro Yamaguchi
yamaguchi@kochi-u.ac.jp

RECEIVED 26 April 2024
ACCEPTED 07 May 2024
PUBLISHED 22 May 2024

CITATION

Yamaguchi M (2024) Connectivity of the
olfactory tubercle: inputs, outputs, and their
plasticity.
Front. Neural Circuits 18:1423505.
doi: 10.3389/fncir.2024.1423505

COPYRIGHT

© 2024 Yamaguchi. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Connectivity of the olfactory
tubercle: inputs, outputs, and
their plasticity
Masahiro Yamaguchi*

Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan

The olfactory tubercle (OT) is a unique part of the olfactory cortex of the

mammal brain in that it is also a component of the ventral striatum. It is crucially

involved in motivational behaviors, particularly in adaptive olfactory learning.

This review introduces the basic properties of the OT, its synaptic connectivity

with other brain areas, and the plasticity of the connectivity associated with

learning behavior. The adaptive properties of olfactory behavior are discussed

further based on the characteristics of OT neuronal circuits.
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Introduction

The olfactory cortex (OC) can be subdivided into areas with distinct structural
and functional properties (Neville and Haberly, 2004). The olfactory tubercle (OT) is a
component of both the OC and the ventral striatum with medium spiny neurons as its
principal neurons; it receives massive dopamine signals from the midbrain (Millhouse and
Heimer, 1984; Ikemoto, 2007; Wesson and Wilson, 2011; Mori, 2014). Accordingly, it is
involved in odor-guided motivated behaviors, particularly in adaptive learning (Ikemoto,
2007; Wesson and Wilson, 2011; Wesson, 2020). Its input and output connectivity suggests
that it lies downstream of the olfactory input–behavioral output pathway, integrates
information from various brain regions, and sends outputs to areas related to motivated
behaviors (Haberly and Price, 1978). Previously, we showed that the OT has distinct
functional domains that represent learned odor-induced attractive and aversive motivated
behaviors (Murata et al., 2015). We here introduce our recent study that synaptic inputs
to the OT exhibit domain-specific structural plasticity induced by olfactory learning (Sha
et al., 2023). Along with this, several characteristics of the neural circuits of the OT and
their plasticity are discussed to increase our understanding of the neural mechanisms of
olfactory learning.

The olfactory tubercle as a regulator of motivated
olfactory behaviors

The OC receives direct synaptic inputs from neurons projecting from the olfactory bulb
(OB) (Neville and Haberly, 2004) and consists of several distinct areas. In the ventral view
of the rodent brain, the OT is readily identified as a round bulge posterior to the olfactory
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FIGURE 1

Inputs and outputs of the olfactory tubercle (OT). (A) Ventral view of
the brain of a mouse. The OT locates posterior to the anterior
olfactory nucleus (AON) and medial to the piriform cortex (PC).
(B) Inputs and outputs of the OT. The OT receives synaptic inputs
from various brain areas, and sends outputs reciprocally to those
brain areas and massively to the ventral pallidum (VP). OB, olfactory
bulb; OC, olfactory cortex; EC, entorhinal cortex; CoA, cortical
amygdala; Amy, amygdala; PFC, prefrontal cortex; LH, lateral
hypothalamus; MDT, mediodorsal thalamus; PVT, paraventricular
thalamus; VTA, ventral tegmental area.

peduncle and medial to the piriform cortex (PC) (Figure 1). As
a component of the OC, the OT has a three-layered structure
in which axons of OB neurons project to the most superficial
layer (layer I). It has properties that are distinct from those
of other areas of the OC. While most principal neurons in
the OC are glutamatergic pyramidal cells, those of the OT are
GABAergic medium spiny neurons (Millhouse and Heimer, 1984).
The OT receives massive dopaminergic inputs from the ventral
tegmental area (VTA) in the midbrain (de Olmos and Heimer,
1999; Ikemoto, 2007). These properties indicate that the OT is also
a component of the striatum, constituting ventral striatum with the
nucleus accumbens (NAc). OT neurons express large amounts of
acetylcholine esterase (AchE), a characteristic shared with striatal
neurons of the NAc and dorsal striatum (Butcher et al., 1975). In
the rodent brain, the OT strongly stains with AchE and has a clear
boundary separating it from the PC laterally and the diagonal band
medially (Paxinos and Franklin, 2019).

As a component of the ventral striatum, it is crucially involved
in motivated behaviors (Millhouse and Heimer, 1984; Ikemoto,
2007; Wesson and Wilson, 2011; Mori, 2014). Electrical self-
stimulation of the OT is rewarding in rats (Prado-Alcalá and
Wise, 1984; Fitzgerald et al., 2014). The OT is a hotspot for
cocaine self-administration (Ikemoto, 2003). In addition, as a
component of both the OC and ventral striatum, it is involved
in odor-motivated behaviors. Innate odor preference is altered by
electrical stimulation of the OT (Fitzgerald et al., 2014). In one
study, preference for opposite-sex urinary odors was disrupted by
suppression of OT activity (DiBenedictis et al., 2015). Activation of
the dopaminergic pathway from the VTA to the medial part of the
OT reinforces odor preference (Zhang et al., 2017a).

Further, many studies have revealed adaptive properties of the
OT. For example, odor-reward association learning potentiates the
firing of OT neurons in response to a rewarded odor (Gadziola
et al., 2015, 2020; Millman and Murthy, 2020). In one study,
following odor-reward or odor-punishment training, neuronal
activity in the OT was enhanced in a learning-dependent manner
in response to the learned odor (Murata et al., 2015). These
observations are consistent with the general notion that the
ventral striatum plays crucial roles in the learning, reinforcement,

and adaptive modulation of motivated behaviors (Robbins and
Everitt, 1996; Averbeck and Costa, 2017). Note that OT-mediated
motivated behaviors are not solely odor-guided ones. Therefore,
it has been proposed that the OT be called the “tubular
striatum” based on its tubular morphology and striatal properties
(Wesson, 2020).

Synaptic connectivity of the OT

The OT belongs to the OC because it receives direct synaptic
inputs from OB projection neurons (White, 1965; Scott et al., 1980).
However, the overall connectivity of the OT seems different from
that of other areas of the OC. While cortical areas have reciprocal
connections with other brain areas, the basis of the input to and
output from the OT seems that it receives synaptic inputs from
various brain areas and sends synaptic outputs to areas linked to
motivated behavioral output.

In addition to inputs from the OB, the OT receives intracortical
associational inputs from many brain areas (Figure 1B). The PC
is the broadest area of the OC and is the source of massive
synaptic inputs to the OT (Haberly and Price, 1978; White et al.,
2019). Other OC regions project to the OT, including the anterior
olfactory nucleus and entorhinal cortex (Haberly and Price, 1978).
The prefrontal cortex sends projections to the OT (Berendse and
Groenewegen, 1990; Cansler et al., 2023). The amygdala is a
complex structure that represent the core of emotions and both
cortical and deep amygdaloid nuclei project to the OT (Novejarque
et al., 2011). The lateral hypothalamus, which contains various
neuropeptide-producing cells, and the paraventricular thalamus
(PVT), which mediates motivated behaviors, project to the OT
(Groenewegen and Berendse, 1990; Moga et al., 1995). The VTA
sends dopaminergic projections to the OT (Ikemoto, 2007).

Contrasting the OT inputs from multiple brain regions, the
major output from the OT is considered to the ventral pallidum
(VP) (Heimer, 1978) (Figure 1B), a subregion of the ventral
basal forebrain complex that regulates emotions, motivation, and
motivated behaviors (Soares-Cunha and Heinsbroek, 2023). The
VP connects to the reticular formation and extrapyramidal motor
systems, and is thought to be a key regulator of motivational
behavioral output (Mogenson and Yang, 1991). It is also thought
to regulate motivated behaviors via its projections to the lateral
hypothalamus and mediodorsal thalamic nuclei (Leung and
Balleine, 2015; Faget et al., 2018). Therefore, the OT–VP pathway
is considered the central route through which the OT contributes
to motivated behaviors.

Many recent studies, including those employing transsynaptic
tracing, have revealed various projection targets of the OT,
including the PC and anterior olfactory nucleus in the OC (Zhang
et al., 2017b), mediodorsal thalamus (Siegel et al., 1977; Price and
Slotnick, 1983), posterolateral part of the hypothalamus (Scott
and Chafin, 1975), and VTA (Zhang et al., 2017b). Thus, rich
reciprocal connections between the OT and other brain areas
actually exist. Nonetheless, the prominent property of the OT
appears to be its massive output to the VP. This fits with the
notion that the OT plays crucial roles in motivational behavior and
lies downstream of the sensory input–behavioral output pathway,
thereby gathering information from various brain regions and
sending output to the VP.

Frontiers in Neural Circuits 02 frontiersin.org62

https://doi.org/10.3389/fncir.2024.1423505
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1423505 May 17, 2024 Time: 17:22 # 3

Yamaguchi 10.3389/fncir.2024.1423505

Plasticity of the synaptic
connections of the OT underlying
learning-dependent activation of
specific OT domains

Previously, we showed that the OT has functional domains that
are activated following odor-guided learning. In principle, neutral
odors that do not elicit motivated behaviors do not significantly
activate the OT. When mice are trained to associate a neutral
odor with a food reward and thus become attracted to that odor,
the odor stimulus activates the anteromedial domain of the OT
(amOT). By contrast, when trained to associate the same odor with
electrical shocks to the foot, they become averse to the odor, which
activates the lateral domain of the OT (lOT) (Murata et al., 2015). In
agreement with this pattern, involvement of the medial part of the
OT in odor-attractive behaviors has been reported (DiBenedictis
et al., 2015; Zhang et al., 2017a).

The learning-dependent activation of specific OT domains
raises questions regarding the underlying plastic mechanisms.
Because activation of a brain area depends on synaptic inputs from
other brain areas, synaptic inputs to a given OT domain may be
potentiated during olfactory-motivated behavior learning, and this
may induce domain-specific activation. As a first step to address
this possibility, we used optogenetics to activate specific inputs to
the OT and examined their plasticity (Sha et al., 2023).

Of various synaptic inputs to the OT, inputs from the OB
were chosen as being representative of peripheral sensory inputs
while inputs from the PC were chosen as being representative
of intracortical association inputs. These neurons were modified
to express channelrhodopsin-2 fused with fluorescent mCherry
protein to enable their photoactivation and morphological analysis
(Figure 2). We analyzed the size of the axonal boutons in the
photoactivated neurons that terminated in the OT domains, as their
size generally correlates with synaptic strength (Murthy et al., 2001;
Sammons et al., 2018).

Photoactivation of pyramidal cells in the PC alone did not
induce specific behavior in mice. In this case, there were no
differences in the sizes of axonal boutons terminating in the amOT
and lOT. When photoactivation was associated with a food reward,
however, the mice showed food-searching behavior in response
to photoactivation. In these mice, the boutons that terminated in
the amOT, but not in the lOT, increased in size (Figure 2). By
contrast, when the photoactivation was associated with electrical
shock, the mice adopted shock-avoiding behavior in response to
photoactivation. In these mice, the boutons that terminated in
the lOT, but not in the amOT, increased in size. Similar OT
domain-specific size development of axonal boutons was observed
in OB projection neurons. These observations indicate that both
intracortical inputs from the PC and sensory inputs from the
OB have plastic potential to induce structural changes in an OT
domain-specific manner.

The structural plasticity of the intracortical synapses in the
PC is consistent with their role in learning-dependent control
of OT activity (White et al., 2019) and with the general notion
that plasticity in cortical networks underlies information storage,
learning, and adaptive behavior (Feldman, 2009). The structural
plasticity of sensory synapses from the OB to the OT domains

FIGURE 2

OT domain-specific plasticity of axonal boutons induced by
olfactory learning. (A) When photoactivation of PC pyramidal
neurons and OB projection neurons was associated with a food
reward, the axonal boutons terminating in the anteromedial (am)
OT domain increased in size. (B) When photoactivation of PC
pyramidal neurons and OB projection neurons was associated with
electrical shock, the axonal boutons terminating in the lateral (l) OT
domain increased in size.

is intriguing, because several studies have shown that sensory
synapses in the OC appear to be hardwired, particularly in the
PC, compared to intracortical association synapses (Kanter and
Haberly, 1990; Poo and Isaacson, 2007; Johenning et al., 2009;
Bekkers and Suzuki, 2013). Odor information from the external
environment can reach the OT via as little as two synaptic steps,
from olfactory sensory neurons to OB projection neurons and
then to OT neurons. Learning-dependent plasticity of the sensory
connections from the OB to the OT domains may represent
strong adaptive linkage of odor information to behavioral outputs
(Doty, 1986).

Because we used artificial optogenetic stimulation, it
remains unclear whether similar plastic changes occur during
physiological odor stimulation and learning. Nonetheless, the
results demonstrate the highly plastic potential of synaptic inputs
to the OT domains, which likely underlie the OT domain-specific
activation and the expression of appropriate motivated behaviors
in a learning-dependent manner. Note that Figure 2 is just a
schematic diagram and it is not yet evident whether individual
PC and OB neurons send bifurcated axonal projections to both
amOT and lOT, or distinct presynaptic populations innervate these
functionally distinct OT domains. It remains to be determined
whether the plastic change is regulated in individual axonal
boutons or in individual neurons. This knowledge may help
understand how odor valence is encoded and plastically modulated
in the olfactory neuronal circuitry.

Perspectives on the plasticity of
synaptic connections in the OT

Regarding the functional plasticity of the OT synapses, odor-
evoked firing activity of OT neurons in awake mice is modulated
by the activation of PC to OT inputs (White et al., 2019).
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In addition to the glutamatergic synaptic inputs, neuromodulators
play crucial roles in synaptic plasticity. Dopamine is central
to OT-mediated odor learning (Zhang et al., 2017a). Excitatory
postsynaptic potentials induced by the lateral olfactory tract
stimulation are potentiated by the simultaneous dopamine release
(Wieland et al., 2015), and phasic dopamine increases the intensity
of excitatory stimulus responses of OT neurons (Oettl et al.,
2020). Because dopaminergic input to the medial and lateral OT
appears to have a distinct role in neuronal activity (Bhimani et al.,
2022), OT domain-specific dopaminergic input may be involved
in OT domain-specific plasticity. The OT receives a variety of
neuromodulatory signals other than dopamine (Cansler et al.,
2020), and biased neuromodulatory signals among OT domains are
suggested (Nogi et al., 2020). Given that neuromodulators convey
information on various states of the brain and body, the neural
mechanisms governing the reception of such information and its
integration with synaptic plasticity in the OT during olfactory
behavior learning are key to understanding the highly adaptive
properties of the OT.

The OT contains D1- and D2-type dopamine receptor-
expressing neurons, which have distinct functions in the processing
of odor information. Odor-attractive behavior is accompanied by
the activation of D1 cells in the amOT, while odor-aversive behavior
is accompanied by the activation of D1 cells in the lOT (Murata
et al., 2015). Conversely, the activation of D2 cells in the amOT
induces aversive behavior (Murata et al., 2019). The differential
synaptic plasticity of D1 and D2 cells during olfactory learning has
been revealed (White et al., 2019; Gadziola et al., 2020; Martiros
et al., 2022). Understanding the structural and functional plasticity
of synaptic inputs to D1 and D2 cells during olfactory learning
would reveal the differential and combinatory roles of D1/D2
cell-mediated neural pathways in the OT.

Compared to synaptic inputs, there is limited knowledge of
synaptic outputs from the OT and their plasticity. Regarding
output from the NAc to the VP, cocaine-induced synaptic
potentiation/depression has been reported (Baimel et al., 2019).
Examining the domain specificity, cell type specificity, and
plastic properties of the output from the OT to the VP would
provide further insight into the plastic control of olfactory-
motivated behaviors. Understanding the function of the OT in
the neural network involving cortical and subcortical brain areas
and neuromodulatory signaling systems would reveal the neural
mechanisms of the adaptive control of odor-guided behaviors.

Lastly, contribution of the OT to innate olfactory behaviors
would be worth pursuing. Influence of the OT activity on the
preference for conspecific urinary odors (DiBenedictis et al., 2015)
suggests OT’s involvement in innate behaviors. In the central
amygdala, the same neuronal population controls innate and
learned odor-fear behaviors in opposing directions (Isosaka et al.,
2015). Comparing the regulatory mechanisms of innate and learned
olfactory behaviors in the OT would facilitate the understanding of
how these two types of behaviors are related and differentiated in
the mammalian brain.
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Shaping the olfactory map: cell 
type-specific activity patterns 
guide circuit formation
Ai Nakashima 1*† and Haruki Takeuchi 2*†

1 Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University 
of Tokyo, Tokyo, Japan, 2 Department of Biophysics and Biochemistry, Graduate School of Science, 
The University of Tokyo, Tokyo, Japan

The brain constructs spatially organized sensory maps to represent sensory 
information. The formation of sensory maps has traditionally been thought 
to depend on synchronous neuronal activity. However, recent evidence from 
the olfactory system suggests that cell type-specific temporal patterns of 
spontaneous activity play an instructive role in shaping the olfactory glomerular 
map. These findings challenge traditional views and highlight the importance of 
investigating the spatiotemporal dynamics of neural activity to understand the 
development of complex neural circuits. This review discusses the implications 
of new findings in the olfactory system and outlines future research directions.

KEYWORDS

olfactory map, neural activity, gene expression, odorant receptor, neural development

1 Introduction

Sensory information is represented in the brain as spatially organized activity patterns, 
commonly referred to as sensory or topographic maps (Luo and Flanagan, 2007; Petersen, 
2007; Mori and Sakano, 2011; Pumo et al., 2022). The formation of precise sensory maps 
depends on the ordered projection of neurons, a process that is initially dictated by genetic 
programming and later fine-tuned through neural activity-dependent mechanisms. In the field 
of developmental neuroscience, numerous studies have suggested that correlated neural 
activity drives sensory map refinement (Katz and Shatz, 1996; Kirkby et al., 2013; Ackman and 
Crair, 2014; Pan and Monje, 2020; Martini et al., 2021). For example, in the developing visual 
system, spatially correlated spontaneous activity propagates in a wave-like manner across the 
retina (Galli and Maffei, 1988; Meister et al., 1991; Wong et al., 1993). In the somatosensory 
system, patchwork-like synchronized firing patterns corresponding to barrel maps are 
observed in the somatosensory cortex (Mizuno et al., 2018; Martini et al., 2021). In contrast, 
spontaneous activity in the primary olfactory system has been reported to lack spatiotemporal 
correlation, which contradicts the predictions of Hebb’s theory. A recent study suggests that 
cell type-specific temporal activity patterns may play an instructive role in the development 
of the olfactory map (Nakashima et al., 2019, 2021). This review summarizes the current 
understanding of the emerging evidence for olfactory circuit formation that appears to 
be guided independently of Hebbian plasticity rules.
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2 Development of the olfactory 
glomerular map

Olfaction plays a crucial role in animal survival and reproduction 
in their natural environments, including food foraging, avoidance 
from predators, and social interactions. Odorants in the environment 
are detected by odorant receptors (ORs) that are expressed on 
olfactory sensory neurons (OSNs) within the olfactory epithelium 
(OE) of the nasal cavity (Buck and Axel, 1991). The binding of an 
odorant to ORs on cilia surfaces activates the G protein-adenylyl 
cyclase type III (ACIII) pathway, elevating cAMP levels, which 
subsequently opens cyclic nucleotide-gated (CNG) channels, resulting 
in the depolarization of OSNs (Breer et al., 1990; Bradley et al., 2005). 
In mice, ORs comprise the largest family of G protein-coupled 
receptors with >1,000 genes (Zhang and Firestein, 2002). Each OSN 
expresses only one functional OR gene, and axons from OSNs 
expressing a given OR converge onto a specific pair of glomeruli at 
stereotyped locations in the olfactory bulb (OB) (Mombaerts et al., 
1996) (Figure  1A). Individual ORs can be  activated by multiple 
odorants with differential sensitivities and vice versa, odorants 
activating multiple OR species (Malnic et al., 1999). Consequently, 
odor information is topographically represented as a pattern of 
activated glomeruli, generating the olfactory glomerular map 
in the OB.

During embryonic stages, an initial glomerular map is formed by 
a combination of axon guidance molecules whose expressions are 
defined by spatial cues and ligand-independent OR-derived basal 
activity (Sakano, 2010; Takeuchi and Sakano, 2014; Francia and 
Lodovichi, 2021; Dorrego-Rivas and Grubb, 2022). After OSN axons 
reach their approximate targets in the OB, further refinement of the 
glomerular map occurs, involving the fasciculation of similar OSN 
axons and the segregation of dissimilar ones. Like other sensory 
systems, neural activity is important for the refinement of the 
glomerular maps. Axonal convergence of OSNs is profoundly affected 
by genetic silencing of neural activity. In OSN-specific Kir2.1 
overexpression mice where neural activity is blocked by a 
hyperpolarization of the membrane potential, OSN axons successfully 
project to the appropriate topographic location (Figure 1B) (Yu et al., 
2004). However, they do not coalesce into specific glomeruli, which 
results in abnormally diffused glomeruli. Moreover, a mosaic 
knockout of the CNG channel, a critical element for generating odor-
evoked neural activity, OSN axons expressing the same type of OR are 
segregated into distinct glomeruli that are innervated by either 
CNG-positive or CNG-negative axons (Figure 1B) (Serizawa et al., 
2006). It has also been reported that hyperpolarization-activated cyclic 
nucleotide-gated (HCN) channels in olfactory sensory neurons 
regulate axon extension and glomerular formation (Mobley et al., 
2010). In addition to neural activity, OR proteins have been shown to 

FIGURE 1

(A) In mice, each olfactory sensory neuron (OSN) in the olfactory epithelium (OE) exclusively expresses one type of odorant receptor (OR) gene. Axons 
from OSNs with the same OR converge at specific sites within the olfactory bulb (OB), forming glomerular structures. (B) Schematic diagrams 
illustrating the axonal projection of OSNs in wild-type mice, Kir2.1 overexpressing mice, and CNG channel mosaic KO mice. OSN axons expressing the 
same OR fasciculate into the same glomerulus by adhesive/repulsive interactions. Arrows in different colors indicate the adhesive or repulsive force of 
axon-sorting molecules (e.g., Kirrel2/3 and Eph/ephrinA-s) for convergence of like OSN axons.
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regulate the process of glomerular segregation with remarkable 
precision; just a single amino acid substitution of an OR sequence can 
generate distinct glomeruli in close proximity (Ishii et  al., 2001; 
Feinstein and Mombaerts, 2004).

3 OR and neural activity-dependent 
glomerular formation

3.1 Molecular mechanisms of 
OR-dependent glomerular map refinement

Genetic experiments have demonstrated the roles of OR and 
neural activity in glomerular formation. The question arises as to 
whether these two processes independently regulate glomerular 
segregation or converge on a shared signaling pathway. To decipher 
the mechanisms underlying glomerular segregation, we  began by 
dissecting the OR-dependent process at the molecular level. Contrary 
to the hypothesis that OR molecules serve merely as adhesive 
molecules due to their localization at the termini of OSN axons 
(Barnea et al., 2004; Strotmann et al., 2004), we explored the variations 
in gene expression profiles among OSNs expressing different ORs. In 
transgenic mice engineered to predominantly express a specific OR, 
we identified genes coding for homophilic adhesion molecules, such 
as Kirrel2 and Kirrel3 (Serizawa et al., 2006). These molecules are 
located at OSN axon termini and exhibited glomerular-specific and 
position-independent expression patterns at the OB. The expression 
levels of these molecules uniquely correlate with expressed OR types 
at the single-cell level. The mosaic gain or loss of function of these 
genes resulted in duplicated glomeruli even though the expressed ORs 
were the same, indicating that Kirrel2 and Kirrel3 are involved in the 
fasciculation process of like OSN axons. Notably, upregulated 
Kirrel2/3 levels in OSNs that naturally express these genes also led to 
duplicated glomeruli, highlighting that OSN axons discern not only 
the type but also the expression levels of axon sorting molecules 
(Serizawa et al., 2006). This quantitative difference in the expression 
level of these genes contributes to increasing variations in glomerular 
segregation. Additionally, repulsive molecules like ephrinAs and 
EphAs are expressed in an OR-specific and complementary manner 
across different OSN subsets (Serizawa et al., 2006). The interactions 
between subsets—one high in ephrinA and low in EphA, and vice 
versa—may be  instrumental in segregating non-like OSN axons. 
Although the expression level of these molecules is correlated with OR 
types, their expression patterns are not identical (Ihara et al., 2016). 
Their unique expression profiles lead to the idea that a combinatorial 
code of adhesive and repulsive molecules imparts OR identity to OSN 
axons during glomerular formation. Notably, the expression of these 
molecules is affected by neural activity. For instance, a decrease in 
neural activity, such as the overexpression of Kir2.1 or CNG-KO, leads 
to opposite changes in their expressions: Kirrel2 and EphA5 
expressions are downregulated by reduced neural activity, whereas 
Kirrel3 and ephrinA5 expressions are upregulated by reduced neural 
activity (Serizawa et al., 2006). These regulatory mechanisms of their 
expressions are consistent with the fact that glomerular segregation is 
OR-dependent and neural activity-dependent. OR-dependent and 
neural activity-dependent pathways in glomerular segregation 
converge in the expression pattern of axon sorting molecule. To date, 
several studies identified multiple activity-dependent axon-sorting 

molecules that are expressed in OSNs (St John et al., 2002; Cutforth 
et al., 2003; Kaneko-Goto et al., 2008; Williams et al., 2011; Ihara et al., 
2016; Mountoufaris et al., 2017; Vaddadi et al., 2019; Wang et al., 2021; 
Martinez et al., 2023). The exact number of molecules implicated in 
this process is still unclear, but a handful of transmembrane proteins 
are thought to be involved. It is still not clear how much variation is 
produced by the combinatorial code model, and whether it produces 
differences comparable to the number of ORs. Future experiments will 
be needed to demonstrate how much difference in expression levels of 
a single axon sorting molecule can cause axonal segregation and 
whether these axon sorting molecules coordinately function in 
segregating axons as a combinatorial code.

3.2 Patterns of spontaneous activity link 
OR types and the molecular codes

As mentioned above, OR molecules control the expression of 
various axon-sorting molecules, which serve to regulate glomerular 
formation through their adhesive or repulsive interactions (Sakano, 
2010; Takeuchi and Sakano, 2014; Francia and Lodovichi, 2021; 
Dorrego-Rivas and Grubb, 2022). The expression of these molecules 
is activity-dependent, consistent with the observation that glomerular 
formation is likewise activity-dependent. Since the Kir2.1 
overexpressing mice exhibited a more severe phenotype compared to 
the CNG-KO, where mice are anosmia, spontaneous neural activity 
rather than odor-induced activity is more important for glomerular 
formation. It is anticipated that spontaneous neural activity serves as 
a bridge between OR types and the expression of axon-sorting 
molecules. Given the various expression patterns of axon sorting 
molecules and the numerous kinds of ORs, it is intriguing how neural 
activity links OR types to gene expression patterns of axon 
sorting molecules.

Through calcium imaging of OSNs, we have discerned that OSNs 
expressing different ORs elicit distinct temporal patterns of 
spontaneous neural activity (Nakashima et  al., 2019). OR swap 
experiments revealed that the temporal patterns of spontaneous 
neural activity are regulated by the expressed ORs. Furthermore, 
optogenetically differentiated activity patterns induced specific 
expressions of corresponding axon-sorting molecules; for instance, 
short, high-frequency burst patterns particularly induced the 
expression of the axon-sorting molecule Kirrel2, whereas longer, 
lower-frequency bursts promoted the expression of other molecules 
like protocadherin10, also a participant in glomerular formation 
(Nakashima et al., 2019). Moreover, optogenetic stimulation resulted 
in the segregation of ChR2-positive glomeruli from those that were 
ChR2-negative, despite expressing the same OR. This phenomenon 
was accompanied by an upregulation of Kirrel2 proteins, indicating 
that artificially induced activity can overwrite the intrinsic OR 
identity. A significant breakthrough is the discovery that the unique 
temporal characteristics of spike patterns, rather than mere neural 
activity, provide the instructive signals for generating OR-specific 
expression profiles of axon-sorting molecules. This discovery proposes 
a novel activity-dependent mechanism, which is different from the 
prevailing Hebbian model of plasticity that requires correlated activity. 
In summary, this research unveils an activity-dependent mechanism 
where spontaneous spiking patterns instructively regulate the 
expression of axon guidance molecules, thus conferring OR identity 
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to OSN axons for glomerular convergence (Figure 2A). However, it 
remains to be done how many variations there are in neural activity 
patterns of OSNs and how OSNs translate different temporal patterns 
of calcium dynamics into different gene expression patterns. To 
understand the intracellular mechanisms that translate neural activity 
patterns into gene expression patterns in OSNs, further analyses 
examining the expression and activity of neural activity-dependent 
transcriptional regulators in cells expressing different ORs are needed.

4 Discussion

It is widely accepted that neural activity is involved in mammalian 
neural circuit formation (Katz and Shatz, 1996; Spitzer, 2006; Luo and 
Flanagan, 2007; Sakano, 2010; Ackman and Crair, 2014; Pumo et al., 
2022). The importance of neural activity in the formation of sensory 
maps has been demonstrated through pharmacological interventions 
or mutant mice that suppress neural activity (Kirkby et  al., 2013; 
Antón-Bolaños et al., 2019; Martini et al., 2021). Recent advances in 
optogenetics have made it possible to control neural activity with 
higher temporal resolution and to elucidate the detailed role of neural 
activity in circuit formation (Adamantidis et al., 2015; Emiliani et al., 
2022). For instance, in the visual system, asynchronous optogenetic 
activation of the left and right retinal ganglion cells resulted in normal 
eye-specific segregation in the superior colliculus and dorsal lateral 
geniculate nucleus, whereas synchronous activation disrupted 
eye-specific segregation (Zhang et  al., 2011). Such optogenetic 
manipulations have significantly substantiated the significance of the 
Hebbian-based plasticity in sensory map formation (Figure 2B).

However, an activity-dependent process of the olfactory 
glomerular map seems not to follow the Hebbian rule (Figure 2B). 
Our findings demonstrated that there is no wave-like activity in the 
OE, which is observed in the developing retina. OSNs expressing the 
same OR do not fire simultaneously, but exhibit similar temporal 
patterns. Optogenetic stimulation with artificial activity patterns 
affected segregation of OSN axons, indicating the instructive role of 
temporal activity patterns in the olfactory circuit formation 
(Nakashima et al., 2019). Moreover, OSN axons fasciculate and form 
glomerulus-like structures even in mutant mice lacking synaptic 
partners (Bulfone et al., 1998; St John et al., 2003). Therefore, Hebbian 
theory, which postulates the simultaneous activation between pre- and 
post-synaptic neurons, is not suited for explaining the formation of 
the olfactory glomerular map. Thus, current studies support a model 
where spontaneous neural activity in OSNs plays a role in intracellular 
gene expression programs rather than interactions with other cells.

Since the discovery of the retinal wave (Galli and Maffei, 1988; 
Maffei and Galli-Resta, 1990; Meister et al., 1991), most models for 
activity-dependent neural map formation have been based on the 
assumption of synchronous activity (Figure  2B). Numerous 
experimental studies have provided evidence supporting the 
importance of synchronous activity in circuit development beyond 
sensory systems, such as the hippocampus and the neocortex (Ben-
Ari et al., 1989; Garaschuk et al., 1998; Blankenship and Feller, 2010; 
Pan and Monje, 2020; Martini et al., 2021). While synchronous activity 
has been a dominant focus in studies of neural circuit formation, the 
findings obtained by olfactory circuit formation studies over the past 
few decades provide important insights that are not specific to the 
olfactory system but can be extended to other brain regions. Notably, 

FIGURE 2

(A) OR-specific molecular codes, generated by differential expression of activity-dependent axon-sorting molecules at axon termini, regulate the 
glomerular segregation. These unique molecular codes arise from cell type-specific spontaneous activity patterns of OSNs, which are defined by the 
differences in expressed ORs. The conversion of OR-specific activity patterns into distinct combinations of axon-sorting molecules is crucial for the 
proper formation of the glomerular map. (B) Left: A model of activity-dependent refinement of the olfactory glomerular map. Temporal activity 
patterns reflect the identity of OSNs rather than the anatomical location; each color represents OSNs expressing the same OR, which converge into a 
common glomerulus. Right: A model of activity-dependent refinement of the retinotopic map in the visual system. Nearby retinal ganglion cells (RGCs) 
in the retina exhibit synchronized activity, and this correlated activity is crucial for establishing the spatially-organized topographic map in the superior 
colliculus (SC).
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analysis of cell type-specific spontaneous activity has revealed that 
precise temporal patterns, rather than synchrony per se, better reflect 
neuronal identity. Recent studies using single-cell RNA sequencing 
have uncovered distinct cell types at an unprecedented resolution 
(Saunders et al., 2018; Zeisel et al., 2018; Piwecka et al., 2023; Xing 
et al., 2023; Zhang et al., 2023). A key challenge moving forward will 
be to investigate whether cell type-specific temporal activity patterns 
are also present in other brain regions. Neural activity influences a 
multitude of developmental and plasticity processes, such as cell type 
specification, dendritic branching, synaptic maturation, and the 
underpinnings of learning and memory, through a complex program 
of gene regulation (Spitzer, 2006; Greer and Greenberg, 2008; West 
and Greenberg, 2011; Lee and Fields, 2021). However, their regulatory 
mechanisms are not fully understood. The breakthrough discovery in 
the olfactory system implicates the need to dissect the intricate 
spatiotemporal dynamics of neural activity to understand brain 
complexity at the molecular level.
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Brain research has progressed with anesthetized animal experiments for a long 
time. Recent progress in research techniques allows us to measure neuronal 
activity in awake animals combined with behavioral tasks. The trends became 
more prominent in the last decade. This new research style triggers the paradigm 
shift in the research of brain science, and new insights into brain function have 
been revealed. It is reasonable to consider that awake animal experiments are 
more ideal for understanding naturalistic brain function than anesthetized ones. 
However, the anesthetized animal experiment still has advantages in some 
experiments. To take advantage of the anesthetized animal experiments, it is 
important to understand the mechanism of anesthesia and carefully handle 
the obtained data. In this minireview, we will shortly summarize the molecular 
mechanism of anesthesia in animal experiments, a recent understanding of the 
neuronal activities in a sensory system in the anesthetized animal brain, and 
consider the advantages and disadvantages of the anesthetized and awake 
animal experiments. This discussion will help us to use both research conditions 
in the proper manner.

KEYWORDS

anesthesia, brain, experimental animal, anesthetic-activated cells, sensory 
representation

Introduction

Anesthesia could be reversibly induced by the anesthetic agents and makes the brain and 
body condition into the following specific behavioral and physiological traits (Brown et al., 
2010). 1. Analgesia: Animals do not perceive pain. 2. Unconsciousness: Animals are not aware 
of what’s happening. 3. Amnesia: Animals do not form memories. 4. Akinesia: Animals cannot 
move. Anesthesia decreases the painful stress and is helpful for the operation of the surgery 
on humans and animals. In addition, anesthesia helps monitor body and brain activity to 
understand the function at molecular, cellular, and circuit/tissue levels in vivo.

Brain science took advantage of anesthesia and revealed brain functions in the past 
centuries. In the recent decade, multiple experimental tools for monitoring the body and brain 
conditions have succeeded in becoming more compact and attachable to the body, directly 
allowing us to decrease animal stress and monitor the brain or body activity while behaving 
animals in awake conditions. In addition, the experimental procedures also improved to 
decrease the animal stress. Then, it decreased the hurdles to understanding the animal in 
awake conditions. The current trend is to study brain function in awake animal conditions. 
However, anesthesia is an important step for animal surgery, which is also necessary for many 
awake animal experiments, and it still has advantages in conducting experiments to understand 
brain function. In this review, we will shortly summarize the molecular mechanisms of popular 
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anesthesia and clarify the difference between awake and anesthetized 
animal experiments to have the appropriate experimental conditions 
for the anesthetized and awake animal experiments.

How do anesthetic agents work?

Anesthetic agents affect the animal brains and modify regular 
neuronal activity (Franks and Lieb, 1994). Although we frequently use 
anesthesia for animal experiments, we still do not understand the 
molecular, cellular, and circuitry mechanisms of how anesthetic agents 
induce Analgesic, Unconsciousness, Amnesic, and Akinetic 
conditions (Århem et  al., 2003). Here, we  quickly summarize the 
current knowledge of the molecular mechanism of the following 
major anesthesia (Pentobarbital, Ketamine, Urethane, and Isoflurane), 
in addition to the major sedatives (Xylazine, Chlorprothixene, and 
Dexmedetomidine) (Table 1).

Pentobarbital: Pentobarbital have been one of the major anesthetic 
agents. It binds to the gamma-aminobutyric acid (GABA) type A 
(GABAA) receptors (Franks, 2008; Johnson and Sadiq, 2022). It 
induces chloride channels to open longer, potentiate GABA effects, 
and induce longer hyperpolarization. The advantage of Pentobarbital 
anesthesia would be its reliability to induce rapid unconsciousness. It 
impacts the sensory systems and the medullary and depresses 
cardiovascular and respiratory activities (Field et al., 1993; Dutton 
et al., 2019). It also has the function of sedation.

Ketamine: Ketamine targets N-methyl-d-aspartate (NMDA) 
receptors to reduce the excitatory action of glutamate (Stoicea et al., 
2016). Its prominent features as anesthesia are increased heart rate, 
blood pressure, and cardiac output, mediated principally through the 
sympathetic nervous system (Kurdi et al., 2014). It has small effects on 
the central respiratory drive. It increases salivation and muscle tone. 
Ketamine also has the function of an antidepressant.

Urethane: Urethane is one of the most popular anesthetics used 
for animal experiments for a long time. Although it is a carcinogen 
and is not proper for survival surgery, it is still well used because of its 
minimal effects on cardiovascular and respiratory systems, and it 
could maintain spinal reflexes and spontaneous brain state alterations 
similar to natural sleep (Maggi et al., 1986; Pagliardini et al., 2013). In 
addition, it can produce a long-lasting steady level of anesthesia 
during surgery and experiments. It is assumed that animals 
anesthetized with urethane represent similar physiologic and 
pharmacologic behaviors to those observed in unanesthetized 
animals. However, little is known about its mechanism. Recent 
research revealed the urethane effect of multiple ion channels (Hara 
and Harris, 2002). Urethane potentiates the functions of nicotinic 
acetylcholine, GABA, and glycine receptors, and it inhibits NMDA 
and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
(AMPA) receptors in a concentration-dependent manner. Because 
urethane had modest effects on all channels tested in the experiment, 
urethane would not have a single predominant target molecule 
for anesthesia.

Isoflurane: Isoflurane is volatile anesthesia. Therefore, one of 
the prominent features of isoflurane anesthesia is the easier control 
and faster anesthesia induction and recovery. The molecular 
mechanism of isoflurane anesthesia has not been well known (Jones 
et al., 1992; Jenkins et al., 1999; Krasowski and Harrison, 2000). 
Isoflurane acts as an allosteric modulator of the GABAA receptor, 
enhances the activity of glycine receptors, and decreases motor 

function (Grasshoff and Antkowiak, 2006). Isoflurane inhibits the 
activity of NMDA receptors at the same site as glycine (Dickinson 
et al., 2007). Isoflurane inhibits the conduction of the potassium 
channel (Buljubasic et al., 1992). In addition, Isoflurane also works 
as a burst suppression anesthesia, and increases the extracellular 
potassium concentration and decreases extracellular sodium 
concentration by the Na+/K+-ATPase impairment (Reiffurth 
et al., 2023).

These anesthetic agents are often used with Sedatives. The 
following three sedatives are popular in animal experiments.

Xylazine: Xylazine is often used together with Ketamine as a 
sedative, and the mixture of them is referred to as Ketamine/Xylazine 
(K/X). Xylazine also has effects on anesthesia, muscle relaxation, and 
analgesia. Xylazine is known as an α2-adrenergic receptor agonist 
(Ruiz-Colón et al., 2014). It also has side effects of hypotension and 
respiratory depression.

Chlorprothixene: Chlorprothixene is often used together with 
Urethane or Ketamine/Xylazine. It is an antipsychotic drug (Højlund 
et  al., 2022). Chlorprothixene has strong impacts by blocking the 
Serotonin (5-HT2), Dopamine receptors (D1, D2, D3), Histamine (H1), 
Muscarinic, and α1-adrenergic receptors.

Dexmedetomidine: Dexmedetomidine induces sedation by 
agonistically binding to α2-adrenergic receptors and inhibits the 
norepinephrine release from locus coeruleus in the brain stem 
(Gertler et al., 2001; Franks, 2008). Unlike opioids and other sedatives 
such as propofol, dexmedetomidine can achieve its effects without 
causing respiratory depression.

This summary shows us that different anesthetic agents and 
sedatives target different ion channels or transmitter receptors. 
However, they induce a similar trait of anesthesia.

Neuronal mechanism of sleep and 
anesthesia

General anesthesia and natural sleep induce similar behaviors. 
Therefore, their similarities have been discussed for a long time 
(Shafer, 1995; Date et al., 2020). The two conditions have both similar 
and different functional features. Recent research revealed that sleep 
is a more active process than previously considered. Many of the 
reports especially focus on the hypothalamus area (Szymusiak et al., 
2007; Sternson, 2013; Wu et al., 2014; Scott et al., 2015; Tan et al., 2016; 
Allen et al., 2017). It is reported that some given groups of neurons in 
the hypothalamus show activity under sleep or anesthesia conditions 
(Moore et al., 2012; Zhang et al., 2015; Gelegen et al., 2018). These 
neurons are called anesthetic-activated cells. More recent research 
revealed that anesthetic-activated cells contribute to inducing and 
maintaining the anesthetized and sleep conditions, in addition to the 
awake condition.

Jiang-Xie’s group found the anesthesia-activated cells in the 
supraoptic nucleus in the hypothalamus. An interesting finding was 
that if they activate the neuron’s chemogenetic or optogenetic method, 
the animal stops moving and falls into a slow wave sleep condition. If 
the neurons are conditionally ablated or inhibited, the mice 
continuously move around and cannot fall asleep. In addition, if they 
silence the activity of the neurons, the mice work up from anesthesia 
easily (Jiang-Xie et al., 2019).

Opposite functional types of neurons, whose activity is associated 
with induction and maintenance of awake condition, were also found. 
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Reitz’s group showed that chemogenetic activation of tachykinin 1 
expressing neurons in the preoptic area obliterates both non-rapid eye 
movement (NREM) and rapid eye movement (REM) sleep. Moreover, 
chemogenetic activation of these neurons stabilizes the waking state 
against both Isoflurane- and Sevoflurane-induced unconsciousness 
(Reitz et al., 2021).

These researches shed light on that the specific neurons and 
neuronal circuits in the hypothalamus would contribute to induce and 
maintain the anesthetized and sleep conditions, in addition to awake 
conditions. The anesthetic agents described in the previous section 
may have a strong effect on these specific neurons in the hypothalamus. 
However, the anesthetic agents also impact other neurons, which may 
not be directly associated with the induction and maintenance of 
sleep, anesthetized, and awake animal conditions. Further study of the 
molecular cellular and circuitry contributions to the induction and 
maintenance of sleep, anesthetized, as well as awake animal conditions, 
are demanded. The knowledge will help to interpret the functional 
research data collected in anesthetized animal conditions correctly 
and help to improve the method of anesthesia beyond the current 
anesthetic agents and procedures.

Sensory response in anesthetized and 
awake condition

Anesthesia induces Analgesia, Unconsciousness, Amnesia, 
Akinesia in animals. Therefore, the downstream (or outputs) of the 
neuronal circuits associated with these behavioral and psychological 

traits would be strongly disturbed during anesthesia. Indeed, a large 
number of the research reported the differences in activity of neurons, 
neural population, and functional connectivity of brain areas between 
anesthetized and awake conditions (Nallasamy and Tsao, 2011; Sellers 
et al., 2015; Hu et al., 2024). However, the upstream and peripheral of 
each circuit, such as sensory representation in the primary or 
secondary sensory areas, may be less disturbed by anesthesia.

In the primary visual cortex, anesthetics reduce spontaneous 
neuronal spike activity but promote synchronized activity (Greenberg 
et al., 2008; Aasebø et al., 2017; Lee et al., 2021). The change is larger 
in Isoflurane compared to the Ketamine/Xylazine anesthesia (Aasebø 
et al., 2017). Interestingly, the narrow spiking neurons (presumably 
inhibitory neurons) have a larger decrease in spontaneous spike 
activity compared to the broad spiking neurons (presumably 
excitatory neurons) in anesthesia (Aasebø et al., 2017). To the visual 
stimulation, anesthetized animals showed prolonged neuronal activity 
by the stimulation in a wide area in visual space. In contrast, neuronal 
responses to visual stimulation are more spatially selective and much 
briefer during wakefulness. The difference is owed to the strong 
inhibition of extremely broad spatial selectivity during wakefulness 
(Haider et al., 2012).

In the olfactory bulb, wakefulness greatly enhances the activity of 
inhibitory interneurons of granule cells. As a result, the odor responses 
of the principal neurons of mitral cells are not prominent compared 
to those under anesthetized animals. However, awake animals show 
more sparse and temporally dynamic responses (Kato et al., 2012; 
Blauvelt et al., 2013; Wachowiak et al., 2013). In addition, repetitive 
odor experiences in awake animal condition weaken the odor 

TABLE 1 Anesthetic agents and sedatives.

Name Target receptors/channels Effects and features References

Pentobarbital GABAA receptor agonist Impacts on the medullary system

Depresses cardiovascular and respiratory 

activities

Field et al. (1993), Franks (2008), Dutton et al. 

(2019), Johnson and Sadiq (2022)

Ketamine NMDA receptor antagonist Increase heart rate, blood pressure, and cardiac 

output

Kurdi et al. (2014), Stoicea et al. (2016)

Urethane Potentiate nicotinic acetylcholine, GABA, 

glycine receptors

Inhibit NMDA, AMPA receptors

Minimal effects on cardiovascular and 

respiratory systems, and maintenance of spinal 

reflexes

Spontaneous brain state alterations similar to 

natural sleep

Carcinogen

Maggi et al. (1986), Hara and Harris (2002), 

Pagliardini et al. (2013)

Isoflurane Allosteric modulator of GABAA

Enhance the activity of glycine receptor, 

NMDA receptor agonist

Inhibit the potassium channel conductance

Volatile anesthesia

Increases and decreases the extracellular 

potassium and sodium concentration by the 

Na+/K+ -ATPase impairment, respectively

Grasshoff and Antkowiak (2006), Dickinson 

et al. (2007), Reiffurth et al. (2023)

Xylazine α2-adrenergic receptor agonist Often used together with Ketamine

Anesthesia, muscle relaxation, analgesia, 

hypotension, respiratory depression

Ruiz-Colón et al. (2014)

Chlorprothixene Serotonin (5-HT2), Dopamine (D1, D2, D3), 

Histamine (H1), Muscarinic, and α1-adrenergic 

receptors antagonist

Often used together with Urethane or 

Ketamine/Xylazine

Højlund et al. (2022)

Dexmedetomidine α2-adrenergic receptor agonist Inhibits the norepinephrine release from locus 

coeruleus

Low respiratory depression

Gertler et al. (2001), Franks (2008)

Detailed features of the anesthetic agents were summarized in previous works (Sakai et al., 2005; Sorrenti et al., 2021).
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response of mitral cells gradually for a long time. This mitral cell 
plasticity is odor-specific, recovers gradually over months, and can 
be repeated with different odors. Furthermore, the expression of this 
experience-dependent plasticity is prevented by anesthesia (Kato 
et al., 2012).

In the barrel cortex, electrophysiological responses evoked by 
whisker deflection are reduced in amplitude under anesthetized 
condition (Simons et al., 1992; Devonshire et al., 2010). However, 
delayed activity, probably due to the inputs from the neighboring 
whisker stimulation, is more prominent and prolonged. The reduction 
in response amplitude was considered by the global down-scaling of 
the population response. Interestingly, the variation of the spike 
frequency is larger during wakefulness. The difference is more 
prominent in layer 5A, especially during whisking episodes (De Kock 
and Sakmann, 2009).

These researches indicate that sensory representation in the 
primary sensory areas could be observed in both anesthetized and 
awake animals. However, the amplitude, tuning specificity of sensory 
inputs, and temporal pattern of neuronal activity are not completely 
the same in anesthetized and awake animal conditions. Importantly, 
the anesthesia delivers different impacts on the different layers, 
neuronal types, and sensory systems. The majority of the reasons for 
the difference have not yet been clearly determined. However, it 
probably owes to the combination change of the direct or indirect 
pharmacological impact of anesthetic agents on the recording neurons 
and the top-down signals to each recording neuron between the 
anesthetized and awake animal conditions.

Advantages and disadvantages of 
anesthetized animal research

Advantages: Anesthetized condition is a pharmacologically 
induced artificial condition, which is useful for operating surgery and 
physiological experiments. The akinetic effect minimizes animal 
movement and helps us obtain high-quality experimental data such 
as in vivo electrophysiology or functional optical imaging experiments. 
In addition, the analgesic effect decreases the pain sensation and helps 
to decrease the animal stress of pain or uncomfortable procedures of 
surgery or experiments. Therefore, the biggest advantage of the 
anesthetized animal experiment would be that it allows us to conduct 
functional experiments easily and reliably.

Disadvantage 1: One of the problems of the anesthetized animal 
experiment is the broad and unidentified impacts of anesthetic agents 
on the brains. The normal neuronal activity and response to the 
neuronal transmitters are disturbed by the anesthetic agents. Probably, 
some synaptic transmission and neuronal activity would be enhanced, 
and others would be inhibited to some degree. In other words, the 
brain activity is modified in an anesthetic agent specific manner in 
anesthetized animals. These impacts are more remarkable when 
we monitor the neuronal activity in higher brain centers, where the 
sensory inputs reach after many synaptic transmissions. Therefore, 
functional research on the higher brain center may not be adequate 
under anesthesia in general. However, some of the peripheral sensory 
brain areas, which reached the sensory inputs after the small number 
of synaptic transmissions, would be less impacted by the anesthesia, 
although the centrifugal or top-down signal would be abnormal or less 
active in this case.

Disadvantage 2: Sensory information is actively acquired in 
awake-behaving rodents, such as active movement of whiskers and 
an increase in the sniffing cycle in olfaction (Petersen, 2007; 
Wachowiak, 2011). Anesthetized animals do not have such 
behavioral outputs. Therefore, the research using anesthetized 
animals allows us only to study the passive sensory processing 
without animal behavior attempting to intensely collect and 
recognize the sensory inputs. It would make neuronal response 
simpler and easier to interpret. However, we  need to carefully 
interpret the data concerning the lack of active sensing top-down 
signals, which contribute to sensory recognition in the process 
of perception.

Advantages and disadvantages of 
awake animal research

Advantage: There is no doubt that animal experiments in awake 
conditions are one of the ideal functional experimental conditions 
because they allow us the naturalistic neuronal activity in the 
experiment. In addition, some of the disadvantages of the anesthetized 
animal experiments discussed above are fully or partially overcome by 
the awake animal experiments.

Disadvantage 1: One of the weak points of the awake animal 
experiments is that we could easily capture the large size of noise 
associated with the animal movement. Recent progress in 
experimental skills, such as solid attachment of the recording systems 
on the skull, remarkably improved the weakness. In addition, 
researchers were intensely challenged to compensate for the 
movement artifacts during the offline data analysis. As a result, we can 
now collect more reliable and high-quality neuronal activity in awake 
animals than we  did previously. However, monitoring neuronal 
activity using recording methods sensitive to animal movement, such 
as in vivo intracellular or patch-clamp recording methods, is 
still challenging.

Disadvantage 2: Some of the experimental systems are too large 
and heavy to attach to the animal brain, such as optical imaging 
systems with high numerical aperture lenses. Some probes, such as 
functional ultrasound imaging systems, functional magnetic 
resonance imaging systems, etc., require to be  moved while 
monitoring the brain functions. The head-restrained animal 
experiment would be  the best choice for using such equipment. 
However, the head-restrained animal researches require a relatively 
short time experimental duration (~1 h) to decrease the head-
restrained stress of animals. If it requires a longer (more than 6 h) 
duration, the anesthetized animal experiments have benefits. For 
example, the functional mapping of relatively peripheral areas, such 
as the olfactory bulb, barrel cortex, visual cortex, etc., has the 
advantage of using the anesthetized experiment.

Disadvantage 3: Massive volume of information is processed in 
awake animal brains simultaneously. It is one of the biggest benefits of 
the awake animal experiment, which allows us to understand the 
naturalistic brain function in vivo. However, it also has a tradeoff. Too 
much activity makes it difficult to capture or extract the critical signals 
among the flood of massive neuronal activities. Turning off some of 
the neuronal activity or neuronal pathways in awake animal 
experiments may help to dissect the brain function and focus on 
discussing the specific neuronal activity and pathways in some cases.
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Disadvantage 4: Usually, the recording system is attached over the 
skull, or the recording probes are implanted in the target brain area 
under anesthesia before the awake animal experiment. In this case, 
we  need to consider postoperative delirium to have the proper 
recovery time after the anesthetized surgery (Peng et al., 2016). Even 
if the animal shows normal activity after the surgery, animal 
performance for some experimental tasks may not be the same as that 
before the surgery. Therefore, the careful evaluation of the animal 
recovery from the anesthetized surgery is required for the awake 
animal experiments associated with anesthetized animal surgery.

Discussion

Considering the advantages and disadvantages discussed above 
session, the current method of anesthesia would be advantageous in 
some of the experiments, such as (1) Mapping the passive sensory 
inputs, (2) Evaluating the synaptic interaction or pharmacological 
impact in the local circuit, and (3) Measuring the neuronal activity 
under stressful in awake animal conditions.

In addition, some of the disadvantages of awake animal 
experiments will be overcome by the progress of technologies in the 
future. For example, the large and heavy recording systems will 
become more compact and lighter. They will be less stressed when 
attached to the animal skull. Therefore, these disadvantages could 
be partially solved in the future.

Recent studies showed the potential that anesthesia and sleep 
conditions may be inducible by the control of the specific neuronal 
types and circuits. These discoveries will shed light on the potential of 
new types of anesthesia. Suppose we will be able to control the activity 
of the proper number and group of anesthetic/awake associate neurons 
by chemogenetic or optogenetic tools and control the anesthetized/
awake states of animals in the future. In that case, this procedure will 
become a new type of anesthesia and minimize the impact of anesthesia 
on other brain functions such as respiration and cardiovascular 
systems. It will increase the controllability of the anesthesia, may 
decrease the animal death associated with the failure control of the 
respiratory and cardiovascular systems, and increase the success rate 
of the animal surgery. In addition, if we know the specific neurons and 
neuronal circuits affected by the anesthesia, we could avoid studying 
these neurons and circuits, and focus on studying the other neuronal 
circuits, which have normal activity of received minimum impact of 
the new anesthesia, as like awake animal research more easily and 
efficiently than current awake animal experiments. Understanding the 
essential neuronal and circuitry mechanisms that induce sleep/
anesthesia and awake animal conditions would extend the anesthetized 
animal research beyond the current limitation and help to understand 
the more naturalistic brain function in anesthetized animal conditions.

Summary

In this review, we attempt to summarize the molecular mechanism 
of popular anesthetic agents, the relationship between hypothalamic 
neurons and anesthesia/sleep/awake conditions, sensory activities 
under anesthesia, the advantages and disadvantages of anesthetized 
and awake animal experiments, and discuss the potential of future 
anesthesia. This would help in conducting anesthetized experiments 
and future animal research.

Author contributions

SN: Writing – original draft, Writing – review & editing. SH-I: 
Writing – review & editing. SK: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by JSPS KAKENHI Grant Numbers JP23K08930 (SK), JSPS 
KAKENHI Grant Numbers JP21K07280 and 24 K10495 (SH-I), 
Japan-US Brain Research Cooperation program (SK), and the Takeda 
Science Foundation (SK).

Acknowledgments

The authors apologize to those whose work was not included here 
due to space limitations.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Aasebø, I. E. J., Lepperød, M. E., Stavrinou, M., Nøkkevangen, S., Einevoll, G., 

Hafting, T., et al. (2017). Temporal processing in the visual cortex of the awake and 
anesthetized rat. eNeuro 4:59. doi: 10.1523/ENEURO.0059-17.2017

Allen, W. E., DeNardo, L. A., Chen, M. Z., Liu, C. D., Loh, K. M., Fenno, L. E., et al. 
(2017). Thirst-associated preoptic neurons encode an aversive motivational drive. 
Science 357, 1149–1155. doi: 10.1126/science.aan6747

Århem, P., Klement, G., and Nilsson, J. (2003). Mechanisms of anesthesia: towards 
integrating network, cellular, and molecular level modeling. Neuropsychopharmacology 
28, S40–S47. doi: 10.1038/sj.npp.1300142

Blauvelt, D. G., Sato, T. F., Wienisch, M., and Murthy, V. N. (2013). Distinct 
spatiotemporal activity in principal neurons of the mouse olfactory bulb in anesthetized 
and awake states. Front. Neural Circuits 7:46. doi: 10.3389/fncir.2013.00046

Brown, E. N., Lydic, R., and Schiff, N. D. (2010). General anesthesia, sleep, and coma. 
N. Engl. J. Med. 363, 2638–2650. doi: 10.1056/NEJMra0808281

Buljubasic, N., Rusch, N. J., Marijic, J., Kampine, J. P., and Bosnjak, Z. J. (1992). 
Effects of halothane and isoflurane on calcium and Potassium Channel currents in 
canine coronary arterial cells. Anesthesiology 76, 990–998. doi: 
10.1097/00000542-199206000-00020

76

https://doi.org/10.3389/fncir.2024.1426689
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org
https://doi.org/10.1523/ENEURO.0059-17.2017
https://doi.org/10.1126/science.aan6747
https://doi.org/10.1038/sj.npp.1300142
https://doi.org/10.3389/fncir.2013.00046
https://doi.org/10.1056/NEJMra0808281
https://doi.org/10.1097/00000542-199206000-00020


Nagayama et al. 10.3389/fncir.2024.1426689

Frontiers in Neural Circuits 06 frontiersin.org

Date, A., Bashir, K., Uddin, A., and Nigam, C. (2020). Differences between natural 
sleep and the anesthetic state. Future Sci. 6. doi: 10.2144/fsoa-2020-0149

De Kock, C. P. J., and Sakmann, B. (2009). Spiking in primary somatosensory cortex 
during natural whisking in awake head-restrained rats is cell-type specific. Proc. Natl. 
Acad. Sci. USA 106, 16446–16450. doi: 10.1073/pnas.0904143106

Devonshire, I. M., Grandy, T. H., Dommett, E. J., and Greenfield, S. A. (2010). Effects 
of urethane anaesthesia on sensory processing in the rat barrel cortex revealed by 
combined optical imaging and electrophysiology. Eur. J. Neurosci. 32, 786–797. doi: 
10.1111/j.1460-9568.2010.07322.x

Dickinson, R., Peterson, B. K., Banks, P., Simillis, C., Martin, J. C. S., Valenzuela, C. A., et al. 
(2007). Competitive inhibition at the Glycine site of the N -methyl-d-aspartate receptor by 
the anesthetics xenon and IsofluraneEvidence from molecular modeling and 
electrophysiology. Anesthesiology 107, 756–767. doi: 10.1097/01.anes.0000287061.77674.71

Dutton, J. W., Artwohl, J. E., Huang, X., and Fortman, J. D. (2019). Assessment of pain 
associated with the injection of sodium pentobarbital in laboratory mice (Mus musculus). J. 
Am. Assoc. Lab. Anim. Sci. 58, 373–379. doi: 10.30802/AALAS-JAALAS-18-000094

Field, K. J., White, W. J., and Lang, C. M. (1993). Anaesthetic effects of chloral hydrate, 
pentobarbitone and urethane in adult male rats. Lab. Anim. 27, 258–269. doi: 
10.1258/002367793780745471

Franks, N. P. (2008). General anaesthesia: from molecular targets to neuronal 
pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370–386. doi: 10.1038/nrn2372

Franks, N. P., and Lieb, W. R. (1994). Molecular and cellular mechanisms of general 
anaesthesia. Nat. Cell Biol. 367, 607–614. doi: 10.1038/367607a0

Gelegen, C., Miracca, G., Ran, M. Z., Harding, E. C., Ye, Z., Yu, X., et al. (2018). 
Excitatory pathways from the lateral Habenula enable Propofol-induced sedation. Curr. 
Biol. 28, 580–587.e5. doi: 10.1016/j.cub.2017.12.050

Gertler, R., Brown, H. C., Mitchell, D. H., and Silvius, E. N. (2001). Dexmedetomidine: 
a novel sedative-analgesic agent. Proc. (Bayl. Univ. Med. Cent.) 14, 13–21. doi: 
10.1080/08998280.2001.11927725

Grasshoff, C., and Antkowiak, B. (2006). Effects of isoflurane and enflurane on 
GABAA and glycine receptors contribute equally to depressant actions on spinal ventral 
horn neurones in rats. Br. J. Anaesth. 97, 687–694. doi: 10.1093/bja/ael239

Greenberg, D. S., Houweling, A. R., and Kerr, J. N. D. (2008). Population imaging of 
ongoing neuronal activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751. 
doi: 10.1038/nn.2140

Haider, B., Häusser, M., and Carandini, M. (2012). Inhibition dominates sensory 
responses in the awake cortex. Nat. Cell Biol. 493, 97–100. doi: 10.1038/nature11665

Hara, K., and Harris, R. A. (2002). The anesthetic mechanism of urethane: the effects on 
neurotransmitter-gated ion channels. Anesth. Analg. 94, 313–318. doi: 
10.1213/00000539-200202000-00015

Højlund, M, Blanner Wagner, C, Wesselhoeft, R, Andersen, K, Fink-Jensen, A, and 
Hallas, J (2022) Use of chlorprothixene and the risk of diabetes and major adverse 
cardiovascular events: a nationwide cohort study. Basic Clin Pharmacol Toxicol. 130, 
501–512. doi: 10.1111/bcpt.13711

Hu, Y., Du, W., Qi, J., Luo, H., Zhang, Z., Luo, M., et al. (2024). Comparative brain-
wide mapping of ketamine- and isoflurane-activated nuclei and functional networks in 
the mouse brain. eLife 12:88420. doi: 10.7554/eLife.88420

Jenkins, A., Franks, N. P., and Lieb, W. R. (1999). Effects of temperature and volatile 
anesthetics on GABAAReceptors. Anesthesiology 90, 484–491. doi: 
10.1097/00000542-199902000-00024

Jiang-Xie, L. F., Yin, L., Zhao, S., Prevosto, V., Han, B. X., Dzirasa, K., et al. (2019). A 
common neuroendocrine substrate for diverse general anesthetics and sleep. Neuron 
102, 1053–1065.e4. doi: 10.1016/j.neuron.2019.03.033

Johnson, AB, and Sadiq, NM (2022) Pentobarbital - StatPearls - NCBI bookshelf. 
StatPearls [Internet] Available at: https://www.ncbi.nlm.nih.gov/books/NBK545288/ 
(Accessed April 28, 2024).

Jones, M. V., Brooks, P. A., and Harrison, N. L. (1992). Enhancement of gamma-
aminobutyric acid-activated cl- currents in cultured rat hippocampal neurones by three 
volatile anaesthetics. J. Physiol. 449, 279–293. doi: 10.1113/jphysiol.1992.sp019086

Kato, H. K., Chu, M. W., Isaacson, J. S., and Komiyama, T. (2012). Dynamic sensory 
representations in the olfactory bulb: modulation by wakefulness and experience. 
Neuron 76, 962–975. doi: 10.1016/j.neuron.2012.09.037

Krasowski, M. D., and Harrison, N. L. (2000). The actions of ether, alcohol and alkane 
general anaesthetics on GABAA and glycine receptors and the effects of TM2 and TM3 
mutations. Br. J. Pharmacol. 129, 731–743. doi: 10.1038/sj.bjp.0703087

Kurdi, M. S., Theerth, K. A., and Deva, R. S. (2014). Ketamine: current applications in 
anesthesia, pain, and critical care. Anesth. Essays Res. 8, 283–290. doi: 
10.4103/0259-1162.143110

Lee, H., Tanabe, S., Wang, S., and Hudetz, A. G. (2021). Differential effect of anesthesia 
on visual cortex neurons with diverse population coupling. Neuroscience 458, 108–119. 
doi: 10.1016/j.neuroscience.2020.11.043

Maggi, C. A., Santicioli, P., and Meli, A. (1986). Somatovesical and vesicovesical 
excitatory reflexes in urethane-anaesthetized rats. Brain Res. 380, 83–93. doi: 
10.1016/0006-8993(86)91432-0

Moore, J. T., Chen, J., Han, B., Meng, Q. C., Veasey, S. C., Beck, S. G., et al. (2012). 
Direct activation of sleep-promoting VLPO neurons by volatile anesthetics 
contributes to anesthetic hypnosis. Curr. Biol. 22, 2008–2016. doi: 10.1016/j.
cub.2012.08.042

Nallasamy, N., and Tsao, D. Y. (2011). Functional connectivity in the brain: effects of 
anesthesia. Neuroscientist 17, 94–106. doi: 10.1177/1073858410374126

Pagliardini, S., Funk, G. D., and Dickson, C. T. (2013). Breathing and brain state: 
urethane anesthesia as a model for natural sleep. Respir. Physiol. Neurobiol. 188, 324–332. 
doi: 10.1016/j.resp.2013.05.035

Peng, M., Zhang, C., Dong, Y., Zhang, Y., Nakazawa, H., Kaneki, M., et al. (2016). 
Battery of behavioral tests in mice to study postoperative delirium. Sci. Rep. 6, 1–13. doi: 
10.1038/srep29874

Petersen, C. C. H. (2007). The functional organization of the barrel cortex. Neuron 56, 
339–355. doi: 10.1016/j.neuron.2007.09.017

Reiffurth, C., Berndt, N., Gonzalez Lopez, A., Schoknecht, K., Kovács, R., 
Maechler, M., et al. (2023). Deep isoflurane anesthesia is associated with alterations in 
ion homeostasis and specific Na+/K+-ATPase impairment in the rat brain. 
Anesthesiology 138, 611–623. doi: 10.1097/ALN.0000000000004553

Reitz, S. L., Wasilczuk, A. Z., Beh, G. H., Proekt, A., and Kelz, M. B. (2021). Activation 
of preoptic tachykinin 1 neurons promotes wakefulness over sleep and volatile 
anesthetic-induced unconsciousness. Curr. Biol. 31, 394–405.e4. doi: 10.1016/j.
cub.2020.10.050

Ruiz-Colón, K., Chavez-Arias, C., Díaz-Alcalá, J. E., and Martínez, M. A. (2014). 
Xylazine intoxication in humans and its importance as an emerging adulterant in abused 
drugs: a comprehensive review of the literature. Forensic Sci. Int. 240, 1–8. doi: 10.1016/j.
forsciint.2014.03.015

Sakai, E. M., Connolly, L. A., and Klauck, J. A. (2005). Inhalation anesthesiology and 
volatile liquid anesthetics: focus on isoflurane, desflurane, and sevoflurane. 
Pharmacotherapy 25, 1773–1788. doi: 10.1592/phco.2005.25.12.1773

Scott, N., Prigge, M., Yizhar, O., and Kimchi, T. (2015). A sexually dimorphic 
hypothalamic circuit controls maternal care and oxytocin secretion. Nat. Cell Biol. 525, 
519–522. doi: 10.1038/nature15378

Sellers, K. K., Bennett, D. V., Hutt, A., Williams, J. H., and Fröhlich, F. (2015). Awake 
vs. anesthetized: layer-specific sensory processing in visual cortex and functional 
connectivity between cortical areas. J. Neurophysiol. 113, 3798–3815. doi: 10.1152/
jn.00923.2014

Shafer, A. (1995). Metaphor and anesthesia. Anesthesiology 83, 1331–1342. doi: 
10.1097/00000542-199512000-00024

Simons, D. J., Carvell, G. E., Hershey, A. E., and Bryant, D. P. (1992). Responses of 
barrel cortex neurons in awake rats and effects of urethane anesthesia. Exp. Brain Res. 
91, 259–272. doi: 10.1007/BF00231659

Sorrenti, V., Cecchetto, C., Maschietto, M., Fortinguerra, S., Buriani, A., and 
Vassanelli, S. (2021). Understanding the effects of anesthesia on cortical 
electrophysiological recordings: a scoping review. Int. J. Mol. Sci. 22:1286. doi: 10.3390/
ijms22031286

Sternson, S. M. (2013). Hypothalamic survival circuits: blueprints for purposive 
behaviors. Neuron 77, 810–824. doi: 10.1016/j.neuron.2013.02.018

Stoicea, N., Versteeg, G., Florescu, D., Joseph, N., Fiorda-Diaz, J., Navarrete, V., et al. 
(2016). Ketamine-based anesthetic protocols and evoked potential monitoring: a risk/
benefit overview. Front. Neurosci. 10:180420. doi: 10.3389/fnins.2016.00037

Szymusiak, R., Gvilia, I., and McGinty, D. (2007). Hypothalamic control of sleep. Sleep 
Med. 8, 291–301. doi: 10.1016/j.sleep.2007.03.013

Tan, C. L., Cooke, E. K., Leib, D. E., Lin, Y. C., Daly, G. E., Zimmerman, C. A., et al. 
(2016). Warm-sensitive neurons that control body temperature. Cell 167, 47–59.e15. doi: 
10.1016/j.cell.2016.08.028

Wachowiak, M. (2011). All in a sniff: olfaction as a model for active sensing. Neuron 
71, 962–973. doi: 10.1016/j.neuron.2011.08.030

Wachowiak, M., Economo, M. N., Díaz-Quesada, M., Brunert, D., Wesson, D. W., 
White, J. A., et al. (2013). Optical dissection of odor information processing in vivo 
using GCaMPs expressed in specified cell types of the olfactory bulb. J. Neurosci. 33, 
5285–5300. doi: 10.1523/JNEUROSCI.4824-12.2013

Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M., and Dulac, C. G. (2014). 
Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509, 
325–330. doi: 10.1038/nature13307

Zhang, Z., Ferretti, V., Güntan, I., Moro, A., Steinberg, E. A., Ye, Z., et al. (2015). 
Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 
adrenergic agonists. Nat. Neurosci. 18, 553–561. doi: 10.1038/nn.3957

77

https://doi.org/10.3389/fncir.2024.1426689
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org
https://doi.org/10.2144/fsoa-2020-0149
https://doi.org/10.1073/pnas.0904143106
https://doi.org/10.1111/j.1460-9568.2010.07322.x
https://doi.org/10.1097/01.anes.0000287061.77674.71
https://doi.org/10.30802/AALAS-JAALAS-18-000094
https://doi.org/10.1258/002367793780745471
https://doi.org/10.1038/nrn2372
https://doi.org/10.1038/367607a0
https://doi.org/10.1016/j.cub.2017.12.050
https://doi.org/10.1080/08998280.2001.11927725
https://doi.org/10.1093/bja/ael239
https://doi.org/10.1038/nn.2140
https://doi.org/10.1038/nature11665
https://doi.org/10.1213/00000539-200202000-00015
https://doi.org/10.1111/bcpt.13711
https://doi.org/10.7554/eLife.88420
https://doi.org/10.1097/00000542-199902000-00024
https://doi.org/10.1016/j.neuron.2019.03.033
https://www.ncbi.nlm.nih.gov/books/NBK545288/
https://doi.org/10.1113/jphysiol.1992.sp019086
https://doi.org/10.1016/j.neuron.2012.09.037
https://doi.org/10.1038/sj.bjp.0703087
https://doi.org/10.4103/0259-1162.143110
https://doi.org/10.1016/j.neuroscience.2020.11.043
https://doi.org/10.1016/0006-8993(86)91432-0
https://doi.org/10.1016/j.cub.2012.08.042
https://doi.org/10.1016/j.cub.2012.08.042
https://doi.org/10.1177/1073858410374126
https://doi.org/10.1016/j.resp.2013.05.035
https://doi.org/10.1038/srep29874
https://doi.org/10.1016/j.neuron.2007.09.017
https://doi.org/10.1097/ALN.0000000000004553
https://doi.org/10.1016/j.cub.2020.10.050
https://doi.org/10.1016/j.cub.2020.10.050
https://doi.org/10.1016/j.forsciint.2014.03.015
https://doi.org/10.1016/j.forsciint.2014.03.015
https://doi.org/10.1592/phco.2005.25.12.1773
https://doi.org/10.1038/nature15378
https://doi.org/10.1152/jn.00923.2014
https://doi.org/10.1152/jn.00923.2014
https://doi.org/10.1097/00000542-199512000-00024
https://doi.org/10.1007/BF00231659
https://doi.org/10.3390/ijms22031286
https://doi.org/10.3390/ijms22031286
https://doi.org/10.1016/j.neuron.2013.02.018
https://doi.org/10.3389/fnins.2016.00037
https://doi.org/10.1016/j.sleep.2007.03.013
https://doi.org/10.1016/j.cell.2016.08.028
https://doi.org/10.1016/j.neuron.2011.08.030
https://doi.org/10.1523/JNEUROSCI.4824-12.2013
https://doi.org/10.1038/nature13307
https://doi.org/10.1038/nn.3957


Frontiers in Neural Circuits 01 frontiersin.org

Endogenous opioids in the 
olfactory tubercle and their roles 
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Olfactory dysfunctions decrease daily quality of life (QOL) in part by reducing 
the pleasure of eating. Olfaction plays an essential role in flavor sensation and 
palatability. The decreased QOL due to olfactory dysfunction is speculated to 
result from abnormal neural activities in the olfactory and limbic areas of the 
brain, as well as peripheral odorant receptor dysfunctions. However, the specific 
underlying neurobiological mechanisms remain unclear. As the olfactory 
tubercle (OT) is one of the brain’s regions with high expression of endogenous 
opioids, we hypothesize that the mechanism underlying the decrease in QOL 
due to olfactory dysfunction involves the reduction of neural activity in the OT 
and subsequent endogenous opioid release in specialized subregions. In this 
review, we provide an overview and recent updates on the OT, the endogenous 
opioid system, and the pleasure systems in the brain and then discuss our 
hypothesis. To facilitate the effective treatment of olfactory dysfunctions and 
decreased QOL, elucidation of the neurobiological mechanisms underlying the 
pleasure of eating through flavor sensation is crucial.

KEYWORDS

olfactory tubercle, opioid, quality of life, prodynorphin, preproenkephalin, dopamine, 
brain reward system

Introduction

The emergence of coronavirus disease, which is often accompanied by olfactory 
dysfunctions or degeneration, has led to the need for re-evaluation of the impact of olfaction 
in quality of life (QOL) (Coelho et al., 2021). Olfactory dysfunctions can arise from various 
causes, such as viral infections, allergic rhinitis, and trauma (Hummel et al., 2017; Miwa et al., 
2019). Olfactory dysfunction decreases daily QOL, with reduced food enjoyment as a 
significant factor (Croy et al., 2014). Olfaction is a key component of flavor sensation; when 
food is masticated and swallowed food, odorants are detected via the olfactory epithelium 
through the retronasal pathway, wherein olfactory sensory neurons send food odorant signals 
the brain (Lawless, 1991; Shepherd, 2011; Shiotani et al., 2024). Why does the inability to sense 
flavor affect the pleasure of eating? In other words, which neurobiological mechanisms connect 
flavor sensations and pleasure of eating? The key factors of decreased QOL owing to olfactory 
dysfunction have been considered as changes in the activity of olfactory and limbic neural 
circuits (Rochet et al., 2018). Here, we hypothesized that the endogenous expression of opioids 
in the olfactory tubercle (OT) is involved in the neurobiological mechanisms underlying 
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pleasure sensation through olfaction while eating (Maegawa et al., 
2022). In this review, we provide an overview of the recent updates on 
the structure and function of the OT, briefly summarize the 
endogenous opioid system in the mammalian brain, and review the 
gene expression of prodynorphin and preproenkephalin in the 
OT. We, then, explore the pleasure systems in the brain, emphasizing 
the involvement of opioids in hedonic sensations. Finally, we discuss 
the hypothesis that olfactory dysfunctions decrease daily QOL by 
suppressing opioid release from the anteromedial subregion of the OT 
while eating.

Structure and functions of the OT

The OT is a part of the ventral striatum and is anatomically 
continuous with the nucleus accumbens (NAc), a chief target of the 
mesolimbic dopaminergic pathway (Heimer, 1978; Heimer et  al., 
1987; Ikemoto, 2007). The term “olfactory tubercle” refers to the 
region on the basal surface of the frontal lobe between the olfactory 
tract and nucleus of the diagonal band in humans (Crosby and 
Humphrey, 1941; Allison, 1954; Sakamoto et  al., 1999). The OT 
receives dense synaptic inputs from the central olfactory areas, such 
as the olfactory bulb, anterior olfactory nucleus, tenia tecta, and 
piriform cortex, which may transmit olfactory information to the OT 
(Haberly and Price, 1977, 1978a,b; Berendse et al., 1992). In addition, 
the OT receives synaptic inputs from the prefrontal cortex, amygdala, 
and hypothalamus as well as dopamine input from the ventral 
tegmental area (VTA) (Ikemoto, 2007; Zhang et al., 2017a,b). Despite 
its olfactory label, the OT exhibits multimodal sensory responsiveness 
that is not limited to olfaction (Wesson and Wilson, 2011).

The principal neurons of the OT comprise three major subtypes: 
the medium spiny neurons (MSNs), dwarf cells, and granule cells, all 
of which are GABAergic (Millhouse and Heimer, 1984; Xiong and 
Wesson, 2016). MSNs are distributed throughout the OT, forming a 
dense cell layer (also referred to as layer II). OT MSNs project their 
axons primarily onto the ventral pallidum (Heimer et al., 1987; Walaas 
and Ouimet, 1989; Zhou et al., 2003; Lee et al., 2023). Dwarf cells are 
clustered in the lateral part of the OT, forming the cap region that is 
interspersed throughout the anteroposterior axis (Hosoya and Hirata, 
1974). Granule cells are clustered from the anteromedial surface to the 
deep layers of the central OT, forming a continuous structure of the 
Islands of Calleja (ICj) (Fallon et al., 1978; de Vente et al., 2001). The 
axonal targets of the granule cells are MSNs in the OT, which project 
their axons to the VTA, suggesting the role of granule cells in the 
disinhibition of dopamine release from the VTA (Zhang et al., 2023). 
Dopamine receptor subtypes are expressed differently by these 
principal neurons: MSNs express D1 or D2 dopamine receptors, dwarf 
cells express D1 receptors, and granule cells express D3 receptors (Le 
Moine and Bloch, 1995; Yung et al., 1995; Murata et al., 2015; Zhang 
et al., 2021).

The anatomically distinct domains of the OT play different roles 
in physiological and behavioral responses (Yamaguchi, 2017; Murata, 
2020). In previous studies, reward motivation functions of the OT 
were implicated by intra-cranial self-administration of addictive 
drugs (Ikemoto, 2010; Berridge and Kringelbach, 2015). The 
anteromedial domain of the OT in particular support self-
administration in rats (Ikemoto, 2003; Ikemoto et al., 2005; Shin et al., 
2008), and its involvement in odor-guided appetitive behaviors also 

has been revealed. Specifically, behavioral attraction to an odor cue 
associated with sugar-reward induces c-fos activation in the 
anteromedial OT (Murata et al., 2015). Optogenetic and DREADD 
manipulations of dopamine inputs from the VTA to medial OT have 
revealed this pathway to mediate the acquisition and execution of 
odor preference (Zhang et al., 2017a). The cytochemical architecture 
of the anteromedial OT develops postnatally, and the response of 
c-fos expression to eating matures during the late weaning period 
(Murofushi et al., 2018). Conversely, the lateral OT is involved in 
odor-guided aversive behaviors. Aversive behavioral response to an 
odor cue associated with electrical foot shock induces c-fos activation 
of MSNs and dwarf cells in the lateral OT (Murata et  al., 2015). 
Projection neurons responsive to predator odors and rotten food 
odors in the olfactory bulb project their axons to the cap region in the 
lateral OT (Igarashi et al., 2012). Additionally, optogenetic activation 
of predator odor-responsive glomerulus in the olfactory bulb induces 
aversive behavior and Egr1 activation in the cap region (Saito et al., 
2017). Associative learning of conditioned odor stimuli with distinct 
sugar rewards, or with electrical foot shocks, shapes the 
responsiveness of the anteromedial and lateral OT domains, 
respectively (Sha et al., 2023). The altered response of the OT domains 
is accompanied by increased axonal bouton size and higher 
expression of the excitatory synaptic structure (VGluT1) in the axon 
terminals from the olfactory bulb and anterior piriform cortex to the 
OT (Sha et al., 2023). In addition to regional differences, the subtypes 
of OT neurons play different physiological and behavioral roles. 
Optogenetic activation of D1-expressing MSNs in the anteromedial 
OT elicits place preference, whereas activation of D2-expressing 
MSNs in the same site elicits place aversion (Murata et al., 2019). 
Further, D3-expressing granule cells in the ICj are involved in 
grooming behavior and suppression of depression-like behaviors 
(Zhang et al., 2021, 2023).

Mesolimbic dopamine circuits play crucial roles in incentive 
motivation, and also reinforcement learning and valence coding 
(Schultz, 1998, 2016), and a series of studies have revealed the role of 
the OT in this context (Gadziola et al., 2015; Millman and Murthy, 
2020; Oettl et al., 2020; Winkelmeier et al., 2022). Distinct roles for the 
subtypes of D1- and D2-expressing neurons of the OT in 
reinforcement learning have also been suggested but remain 
controversial. Gadziola et al. (2020) demonstrated that D1-expressing 
neurons flexibly represent rewarded odors during reversal learning, 
and activation of D1-expressing neurons promotes engagement in a 
reward-motivated task. Martiros et al. (2022) validated the role of 
D1-expressing neurons by demonstrating that they robustly and 
bidirectionally represent odor valence, responding similarly to odors 
that predicted similar outcomes, regardless of odor identity. Martiros 
et al. (2022) also showed that D2-expressing neurons were conversely 
more selective for odor identity than valence. However, Lee et al. 
(2023) proposed that although D1-expressing neurons show larger 
response magnitudes to rewarded odors than other odors, this is 
better interpreted as identity encoding with enhanced contrast rather 
than value encoding. As the OT has a laterality of anatomical and 
functional domains, future studies should be conducted for both cell 
types (D1 vs. D2) and anatomical domains (medial vs. lateral) to 
clarify the roles of OT neurons in valence coding and odor identity. In 
summary, the OT is part of the ventral striatum and plays a crucial 
role in motivating animals to acquire and execute adaptive behaviors 
through valence coding and reinforcement learning.
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Endogenous opioid systems in the 
mammalian brain and expression of 
dynorphins and enkephalins in the OT

The opioid system is a highly diverse peptide-neurotransmitter 
system that provides pain relief and euphoric effects (Emery and Akil, 
2020). Endogenous opioids are composed of three main neuropeptide 
families: the β-endorphins derived from the pro-opiomelanocortin 
gene (Pomc), the enkephalins derived from preproenkephalin (Penk) 
and prodynorphin (Pdyn) genes, and the dynorphins derived from the 
Pdyn gene. Each of these families contains multiple peptides with 
diverse binding characteristics (Przewlocki, 2022). The system 
includes three opioid receptors: the mu, delta, and kappa. The opioid 
peptides have been portrayed to bind primarily to particular receptors 
(β-endorphins: mu, enkephalins: delta, and dynorphins: kappa); 
however, the lack of one-to-one correspondence between signal 
peptides and its receptors should be emphasized. Members of all three 
peptide families are capable of activating the three receptors to varying 
degrees, particularly the dynorphins (Emery and Akil, 2020). 
Therefore, all opioid receptor types within a brain region may 
simultaneously be activated by different or by even the same peptide. 
A fourth receptor-peptide pair, nociceptin and its receptor, are also 
part of the opioid system and play roles in pain and motivation (Di 
Cesare Mannelli et al., 2015; Kiguchi et al., 2016; Parker et al., 2019). 
This pair was more recently discovered than the others and is not 
reviewed here (Mollereau et al., 1994; Meunier et al., 1995).

Pomc expression in the brain is limited to the arcuate nucleus of 
the hypothalamus, nucleus of the solitary tract, and pituitary gland 
(Bronstein et al., 1992). The regions that express Pdyn and Penk are 
widely distributed in the brain (Harlan et al., 1987; Merchenthaler 
et al., 1997), and their details have not been included in this review. 
Here, we focused on the striatum, one of the brain’s regions with high 
Pdyn and Penk expression (Figure 1A). Neurons in the dorsal striatum 
and NAc generally express either Pdyn or Penk (Furuta et al., 2002); 
Pdyn is expressed by D1 neurons and Penk by D2 neurons (Curran 
and Watson, 1995). The ventral striatum has a cell cluster between the 
NAc and OT, where D1 neurons co-express Pdyn and Penk, and no D2 
neurons are observed (Curran and Watson, 1995). In a recent report, 
we  evaluated the cellular profiles of Pdyn- and Penk-expressing 
neurons in mouse OT (Maegawa et  al., 2022). These results are 
consistent with those of the dorsal striatum and NAc, in that D1 
neurons express Pdyn and D2 neurons express Penk. In addition, 
we found that the OT had D1 neurons co-expressing Pdyn and Penk 
in the dense cell layer and a higher frequency of co-expressing D1 
neurons in the anteromedial OT than in the anterolateral OT 
(Figure 1B).

The three types of opioid receptors are widely distributed in the 
brain and show a high degree of overlap in their regional expression 
patterns, particularly in regions involved in pain, affect, and rewards 
(Mansour et al., 1988; Mansour and Watson, 1993). Describing the 
details of the opioid receptor distribution is beyond the scope of this 
review. We  focused on brain regions with mu, delta, and kappa 
receptor expression that are positionally proximate to the OT and have 
axonal projections from the OT, as demonstrated by in situ 
hybridization of mRNA and peptide binding assays (Mansour et al., 
1987, 1994). Mu receptor expression is localized in the caudate 
putamen, NAc, lateral and medial septa, diagonal band of Broca, bed 
nucleus of the stria terminalis, thalamus, habenula, interpeduncular 

nucleus, and substantia nigra. Delta receptor expression is found in 
the caudate putamen, NAc, OT, ventromedial hypothalamus, and 
amygdala. Kappa receptor expression is localized in the claustrum, 
endopiriform nucleus, caudate putamen, NAc, OT, medial preoptic 
area, bed nucleus of the stria terminalis, amygdala, hypothalamus, 
periventricular thalamus, substantia nigra, and ventral tegmental area.

Implications of the OT opioids on the 
pleasure of eating and QOL

Opioids are neurochemical molecules related to feelings of 
pleasure (Barbano and Cador, 2007). Dopamine is often 
misunderstood as a pleasure mechanism in the brain (Berridge and 
Dayan, 2021). Our understanding of the brain’s pleasure system can 
be traced back to the discovery of intracranial self-stimulation in rats 
by Olds and Milner (1954). Olds (1956) had originally interpreted that 
the rats engaged in intense lever pressing to self-stimulate because the 
electrical stimulation of the brain was pleasurable. Subsequent studies 
have since demonstrated that spontaneous approaching and reward-
seeking behaviors such as lever pressing for a reward involve the 
dopamine system (Wise et  al., 1978). Therefore, dopamine was 
initially considered to be a pleasure substance (Wise, 1980); however, 
later studies suggested that appetitive behavior due to dopamine 
activation or hypothalamic electrical stimulation should be interpreted 
as reflecting motivated “wanting” but not necessarily pleasurable 
hedonic impact or “liking” (Berridge and Robinson, 2016). To 
objectively measure an animal’s hedonic impact, an affective taste 
reactivity test is widely used whereby a sweet sucrose solution is 
passively infused into the animal’s oral cavity, and its facial and bodily 
movements are observed. Typical responses to sweet sucrose infusion 
are intaking behaviors such as rhythmic tongue protrusions, and used 
as objective measurement of hedonic “liking” reactions (Berridge, 
2000; Steiner et al., 2001). Ablation of the dopamine neurons in the 
VTA does not reduce the hedonic “liking” reaction to the sucrose oral 
infusion, despite abolishing the animal’s voluntary food and water 
intake (Berridge et al., 1989). Furthermore, electrical stimulation of 
the lateral hypothalamus that activates dopamine neurons does not 
increase the hedonic “liking” reaction, despite dramatically increasing 
food intake (Berridge and Valenstein, 1991). At present, dopamine is 
not considered a pleasure-inducing substance but rather is related to 
motivation, craving, and prediction error for learning adaptive 
behavior (Wise, 2008; Kringelbach, 2010; Berridge and Kringelbach, 
2015; Schultz, 2016).

In contrast, opioids are neurotransmitters, and their agonists 
enhance and antagonists block hedonic “liking” reactions associated 
with intake behaviors such as rhythmic tongue protrusions in response 
to sucrose sweetness. Blocking the opioid system by systemic naltrexone 
injection inhibits the hedonic “liking” reactions (Parker et al., 1992), and 
systemic morphine injection increases the hedonic “liking” reactions 
(Doyle et al., 1993). In addition, the microinjection of opioids into the 
rostrodorsal NAc medial shell, caudal VP, caudal insular cortex, and 
rostromedial orbitofrontal cortex enhances the hedonic reactions of 
“liking” to sucrose taste (Peciña and Berridge, 2005; Smith and Berridge, 
2007; Castro and Berridge, 2014, 2017); these local subregions are 
known as hedonic hotspots (Morales and Berridge, 2020). The 
dynorphins-kappa receptor system generally known to induce 
unpleasantness when systemically administrated, but can oppositely 
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enhance the “liking” reactions when a kappa agonist is locally injected 
into the NAc hedonic hotspot, similar to mu and delta agonist 
microinjections (Castro and Berridge, 2014). The OT is 
neuroanatomically and neurochemically similar to the NAc in that both 
have GABAergic projections to the VP and express Pdyn and Penk. 
Studies have demonstrated that OT plays a crucial role in reward 
seeking-motivated behavior, a hallmark of the dopamine-related brain 
reward system (Ikemoto, 2003; Murata et al., 2015; Zhang et al., 2017a). 
Having a hedonic hotspot is another feature of some brain reward 
structures (Morales and Berridge, 2020), which raises the possibility that 
the OT may have its own hedonic hotspot where opioid stimulation 
might enhance “liking” reaction to sucrose sweetness.

Thus, we propose the following hypothesis: odorants in food are 
detected by olfactory neurons in the olfactory epithelium through the 
retronasal pathway and signaled to the brain, eliciting flavor 

sensations. Simultaneously, the signals of these odorants are 
transmitted to the anteromedial OT, inducing the release of 
dynorphins and enkephalins and resulting in a sensation of pleasure. 
In olfactory dysfunctions, retronasal airflow is blocked, inhibiting the 
first step of this cascade. It then suppresses both activation and opioid 
release in the anteromedial OT, which reduces the pleasure of eating 
(Figure 2). The anteromedial OT contains Pdyn-Penk-coexpressing D1 
neurons, which may effectively induce pleasure, as well as appetitive 
motivation, in response to food odorants and flavors. Whether food 
odorants are detected by the anteromedial OT via the retronasal 
pathway remains unclear; therefore, we speculate this based on the 
analogy that food-related odors and actual food intake activate the 
anteromedial OT (Murata et al., 2015; Murofushi et al., 2018; Sha 
et al., 2023). Al-Hasani et al. (2018) demonstrated in vivo detection of 
optically evoked endogenous opioid peptide release by neurons in the 

FIGURE 1

Pdyn-Penk co-expressing D1 neurons in the mouse OT. (A) Single probe in situ hybridization for Pdyn, Penk, Drd1, and Drd2. The pictures show 
coronal sections of the anterior OT and NAc (approximately at Bregma +1.94  mm). Regions delineated by red lines are a cluster of Pdyn-Penk-Drd1 
co-expressing cells. Drd2 signals were not observed in the cluster. Adjacent sections from one mouse were used for the four images. (B) Triple 
fluorescence in situ hybridization for Pdyn, Penk, and Drd1 in the anteromedial OT. White arrowheads indicate the colocalization of Pdyn-Penk-Drd1 
mRNAs. D, dorsal; V, ventral; M, medial; L, lateral. Figures are modified from Maegawa et al. (2022).
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NAc, supporting the idea that neural activation of OT neurons leads 
to the release of dynorphins and enkephalins. Midroit et al. (2021) 
demonstrated a correlation between the pleasantness of odors and the 
activity of the OT in humans. Future studies should investigate the 
relationship between the pleasantness of odors, neural activity of the 
OT, and opioid release.

Discussion

We hypothesize that endogenous opioids in the OT, especially in 
the anteromedial domain, may contribute to neural processing of the 
pleasure of eating through flavor sensations. Olfactory dysfunction 
may lead to the disrupted processing within the OT, potentially 
reducing the daily QOL. The following crucial questions should 
be addressed in future to test this hypothesis: is the anteromedial OT 
able to enhance hedonic “liking” reactions to oral sucrose infusion? 
Does the flavor sensation of food stimulate the anteromedial OT and 
elicit opioid local release? Which neural circuits are targeted by 
opioids released from the anteromedial OT? What are the specific 
roles of Pdyn-Penk-coexpressing D1 neurons in the anteromedial OT 
compared with other types of OT neurons?

Although this review has focused on the endogenous opioids, 
we  did not aim to de-emphasize the involvement of other 
neurotransmitters, including dopamine, in decreased QOL due to 
olfactory dysfunctions. As mentioned earlier, dopamine is a key 

neurotransmitter underlying incentive motivation for rewards (Wise, 
2004). A lack of motivation is another symptom that accompanies 
olfactory dysfunctions, significantly affecting daily QOL (Keller and 
Malaspina, 2013; Marin et al., 2023). Olfactory dysfunctions can go 
beyond decreased QOL: they are bi-directionally associated with 
psychiatric disorders, including depression (Kohli et al., 2016; Taquet 
et  al., 2021; Hasegawa et  al., 2022). Ablation or inhibition of 
D3-expressing granule cells in the OT leads to depression-like 
behaviors and negatively impacts dopamine release from the VTA 
(Zhang et al., 2023). Conversely, olfactory enrichment has been shown 
to be a beneficial treatment strategy for depression (Leon and Woo, 
2022). OT neural activity enhancement could be a treatment approach 
for depression through restoration of appropriate dopamine activity. 
Given that the OT is a hub region within mesolimbic dopamine neural 
circuits (Ikemoto, 2007), it likely plays important roles in both opioid-
regulated pleasure sensation and dopamine-regulated motivation 
(Morales and Berridge, 2020). Further clarification of the neurobiology 
of the OT under olfactory dysfunctions is essential for developing 
more effective treatments for decreased QOL.
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FIGURE 2

A hypothetical model of OT opioid-mediated QOL and its impairment due olfactory dysfunctions. In a healthy condition, food-related olfactory inputs, 
including food odorants via the retronasal pathway, are conveyed to the anteromedial OT, where Pdyn-expressing and Pdyn-Penk-coexpressing D1 
neurons are activated. Subsequently, opioid peptides are released from D1 neurons in the anteromedial OT, resulting in hedonic pleasure sensation. In 
some cases of olfactory dysfunctions, the retronasal airflow is blocked, inhibiting the transmission of the olfactory inputs to the anteromedial OT. This, 
in turn, impairs neural activation and opioid release of the anteromedial OT, which reduces the sensation of pleasure. Red circles, Pdyn-expressing D1 
neurons; green circles, Pdyn-Penk-coexpressing D1 neurons; blue circles, Penk-expressing neurons D2. OTam, anteromedial olfactory tubercle; OTal, 
anterolateral olfactory tubercle; NAc, nucleus accumbens; VP, ventral pallidum; D, dorsal; V, ventral; M, medial; L, lateral. Stereotax atlas from Franklin 
and Paxinos (2008).
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The olfactory epithelium (OE) is directly exposed to environmental agents

entering the nasal cavity, leaving OSNs prone to injury and degeneration.

The causes of olfactory dysfunction are diverse and include head trauma,

neurodegenerative diseases, and aging, but the main causes are chronic

rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced

airflow due to local inflammation, inflammatory cytokine production, release

of degranulated proteins from eosinophils, and cell injury lead to decreased

olfactory function. It is well known that injury-induced loss of mature OSNs

in the adult OE causes massive regeneration of new OSNs within a few

months through the proliferation and differentiation of progenitor basal cells

that are subsequently incorporated into olfactory neural circuits. Although

normal olfactory function returns after injury in most cases, prolonged olfactory

impairment and lack of improvement in olfactory function in some cases poses a

major clinical problem. Persistent inflammation or severe injury in the OE results

in morphological changes in the OE and respiratory epithelium and decreases

the number of mature OSNs, resulting in irreversible loss of olfactory function. In

this review, we discuss the histological structure and distribution of the human

OE, and the pathogenesis of olfactory dysfunction associated with CRS and

viral infection.

KEYWORDS

olfactory epithelium, olfactory dysfunction, respiratory metaplasia, chronic
rhinosinusitis, viral infection

Introduction

The sense of smell is extensively used in everyday life, from the perception of danger
signals, such as smoke and noxious gases to the detection of spoiled food and the
psychosocial effects of food (Croy et al., 2014; Rebholz et al., 2020).

The etiology of olfactory dysfunction varies widely and includes chronic rhinosinusitis
(CRS), upper respiratory tract viral infection, head trauma, allergic rhinitis, and aging.
However, among these, CRS and viral infection account for about 60% of all cases
(Seiden, 2004; Rombaux et al., 2016). In CRS and viral infections, olfactory perception
is reduced due to decreased airflow caused by mucosal swelling and polyp formation,
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as well as by injury to olfactory sensory neurons (OSNs)
by pathogens such as viruses, bacteria, eosinophil granule
products, and inflammatory cytokines (Kern, 2000; Seiden, 2004;
Wrobel and Leopold, 2004).

Different types of olfactory epithelium (OE) injury and OE
regeneration after injury have been reported (Imamura and
Hasegawa-Ishii, 2016). Irrespective of the type of OE injury,
tissue regeneration is usually complete within 1–2 months after
injury (Kikuta et al., 2015; Imamura and Hasegawa-Ishii, 2016).
However, some patients with CRS experience a decreased sense
of smell despite having an open olfactory cleft and normal
nasal airflow, or show no improvement in olfactory function
despite polyp removal (Apter et al., 1992; Kikuta et al., 2016).
Similarly, olfactory dysfunction caused by viral infections takes
time to improve and may persist for months to a year and
more (Liu et al., 2023). Therefore, understanding the anatomical
or histological characteristics of the human OE, as well as the
histological changes and pathophysiology after injury, is essential
for developing appropriate treatment strategies for prolonged
olfactory dysfunction.

This review describes the histological features of the human
OE and discusses the pathogenesis of olfactory dysfunction
associated with CRS and viral infections, as well as persistent
olfactory dysfunction.

Odor reception in humans

The ciliary membranes of the OSN contain olfactory receptors
(ORs), which are responsible for odor detection. ORs are members
of the G-protein-coupled seven-transmembrane receptor family
and constitute the largest gene family (Buck and Axel, 1991; Buck,
2000) in the human genome with nearly 400 OR-coding genes
(Zozulya et al., 2001; Young et al., 2002; Zhang and Firestein, 2002;
Godfrey et al., 2004; Malnic et al., 2004). The OE is divided into
zones I, II, III, and IV (from the dorsomedial to ventral region),
which contain densely packed OSNs.

In many vertebrates including humans, OR genes are classified
into two classes, class I and class II, based on differences in
their amino acid sequences (Glusman et al., 2001; Imai et al.,
2010). OSNs expressing class I genes (class I OSNs) are distributed
within zone 1, corresponding to the dorsomedial region of the OE,
while OSNs expressing class II genes (class II OSNs) are widely
distributed in zones II-IV (Mori and Sakano, 2011). The presence
of a zone structure in the OE has not been confirmed in human,
but in the macaque, a higher primate phylogenetically related to
humans, OSNs expressing specific ORs are scattered throughout
the OE but are restricted to specific zones, suggesting the presence
of a zone structure (Ressler et al., 1993; Horowitz et al., 2014;
Mori and Sakano, 2021).

Cellular composition of the
human OE

The human OE lacks the distinct laminar structure observed
in the mouse OE. The OSN density is very low and the OSNs
are sparsely distributed (Omura et al., 2022). Furthermore, OSN

density is not uniform; mature OSNs are abundant and present at a
relatively high density near the cribriform plate (dorsal to the nasal
cavity), but their density gradually decreases with distance from the
cribriform plate (Figure 1).

The human OE is composed of five cell types: immature or
mature OSNs, sustentacular cells (SCs), microvillar cells (MVCs),
tubular cells of Bowman’s glands, and basal cells (BCs) (Moran
et al., 1982; Morrison and Costanzo, 1990; Féron et al., 1998;
Kalinke et al., 2011).

OSNs are bipolar neurons that extend one dendrite on the
surface of the OE to the mucus layer and project one unmyelinated
axon to the olfactory bulb (OB) (Yee et al., 2010). Individual OSN
dendrites have olfactory vesicles at their tips and are attached to 10–
15 non-motile, elongated cilia. The axons of OSNs cross the basal
membrane and merge to form non-myelinated nerve bundles called
fascicles (Jafek, 1983; Morrison and Costanzo, 1990).

SCs are tall cells with a nucleus on the apical side that extend
their projections from the surface of the epithelium to the basal
layer (Jafek, 1983; Morrison and Costanzo, 1990). Two or more
neighboring SCs wrap around the dendrites of OSNs, structurally
and electrically isolating the OSN (Bryche et al., 2020). They are also
involved in supplying glucose to OSNs and maintaining ion balance
within the OE (Vogalis et al., 2005; Lemons et al., 2017; O’leary
et al., 2019; Ualiyeva et al., 2020). Furthermore, SCs defend the OE
by phagocytosing and detoxifying olfactory toxins using metabolic
enzymes such as cytochrome P450 and glutathione S-transferase.
They also contribute to local immunity by producing inflammatory
cytokines when local inflammation persists (Jafek, 1983).

MVCs are non-neuronal cells with rigid microvilli and
some express TRPM5. TRPM5-postive cells express choline
acetyltransferase and the vesicular acetylcholine transporter (Ogura
et al., 2011; Saunders et al., 2014) and stimulate SCs by
releasing acetylcholine, which protects the OE by promoting the
metabolism and removal of olfactory toxicants (Ogura et al., 2011;
Genovese and Tizzano, 2018).

Bowman’s glands are spaced across the basal membrane at
regular intervals and are responsible for the production and
secretion of mucus, which covers the luminal surface of the OE.

BCs are spherical stem cells that differentiate into OSNs
(Morrison and Costanzo, 1990). Unlike in mice, there is no
distinction between horizontal basal cells (HBCs) and globose basal
cells (GBCs) in human (Graziadei and Graziadei, 1979; Holbrook
et al., 2011), but morphologically, human BCs resemble GBCs in
mice (Hahn et al., 2005).

Distribution of the human OE

In human, the proportion of the nasal cavity occupied by the
OE is markedly lower than that in rodents; in rats, the OE accounts
for about 50% of the nasal cavity, whereas in human, it occupies
about 3% (Gross et al., 1982).

The human nasal cavity consists of three nasal concha
(superior, middle, and inferior). The OE is localized in the
superior nasal concha, particularly in a limited area corresponding
to its upper anterior two-thirds (Omura et al., 2022). In mice,
the respiratory epithelia (RE) and OE are clearly distinguishable
and are not histologically intermingled. However, in human, the
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FIGURE 1

OE structure and the distribution of the OE in mouse and human. (A) Uniform distribution of the mouse OE. In mouse, OSNs are arranged in a
laminar pattern and are evenly distributed in both the dorsal and ventral regions of the OE. OSN, olfactory sensory neuron; OE, olfactory epithelium;
OB, olfactory bulb; BC, basal cell; MVC, microvillar cell; SC, sustentacular cell. (B) Heterogeneous distribution of the human OE. The human OE
lacks a well-defined stratified structure and is generally more sparsely distributed. It also has a lower density of OSNs than mouse. The dorsal surface
of the OE contains more mature OSNs, while the ventral surface contains fewer mature OSNs.

boundary between RE and OE is unclear and is characterized
by patchy areas of mixed RE and OE (Nakashima et al., 1984;
Morrison and Costanzo, 1990; Omura et al., 2022). Areas of
OE degeneration and respiratory epithelialization increase with
age (Nakashima et al., 1984; Paik et al., 1992), but do not
necessarily correlate with loss of olfactory function, because
OE degeneration and OSN reduction are also observed in
adults with normal olfactory function (Nakashima et al., 1984;
Omura et al., 2022).

OE injury is associated with CRS

CRS is defined as a chronic inflammatory disease of the
sinus mucosa that persists for more than 3 months (Fokkens
et al., 2020), and is the most frequent etiology of olfactory
dysfunction (Rombaux et al., 2016). Approximately 60–80% of
CRS patients experience a decreased sense of smell (Banglawala
et al., 2014). CRS phenotypes are classified into two types: CRS
with nasal polyps (CRSwNP) and CRS without nasal polyps
(CRSsNP) (Fokkens et al., 2020). CRSwNP causes a high rate
of olfactory dysfunction and is associated with eosinophil-driven
inflammation, eosinophilic cationic proteins (ECPs), and injury
to OSNs by inflammatory cytokines released from eosinophils
(Epstein et al., 2008; Li et al., 2010; Acharya and Ackerman, 2014;
Yan X. et al., 2020).

In animal models of CRS, in addition to the release of
inflammatory cytokines (such as TNF-a and interferon-c) from
SCs and OSN cell death, BC proliferation and differentiation
are arrested, resulting in neuroepithelium remodeling and the
replacement of neuroepithelium with RE (Jafek et al., 2002; Yee
et al., 2009; Lane et al., 2010; Goncalves and Goldstein, 2016;

Choi and Goldstein, 2018; Marin et al., 2022). Furthermore,
prolonged inflammation increases c-Jun N-terminal kinase activity,
a promoter of apoptosis, within the OSN and local eosinophil
infiltration (Victores et al., 2018). Intranasal administration of
ECP to mouse OEs for 2 weeks results in OSN apoptosis and
thinning of OEs, similar to previous observations in human (Kikuta
et al., 2021). Interestingly, ECP induces apoptosis not only in
OSNs but also in some BCs. In fact, histological analysis of
human OEs frequently showed massive infiltration of inflammatory
cells, such as lymphocytes, macrophages, and eosinophils, and
reduced numbers of OSNs and squamous metaplasia (Kern, 2000;
Rombaux et al., 2016; Wu et al., 2020; Marin et al., 2022).
Consistent with the location of direct injury to the OE, axonal
bundles may fail to extend from the OE beyond the basal
membrane and are observed within the OE as tangles of nerve
fibers (Holbrook et al., 2005). Indeed, the degree of the OE
inflammation and eosinophil infiltration correlates closely with
reduced olfaction in CRS patients (Soler et al., 2009; Kashiwagi
et al., 2019). Furthermore, persistent inflammation leads to
increased mucus secretion from Bowman’s glands, and disruption
of the balance of potassium and sodium ion concentrations
in the mucus reduces olfactory reception (Selvaraj et al., 2012;
Rombaux et al., 2016).

OE injury following viral infection

Post-viral olfactory dysfunction (PVOD) is the second most
common type of olfactory dysfunction and accounts for about 30%
of patients with olfactory dysfunction (Seiden, 2004). Many viruses
have been reported to infect OSNs, including influenza A virus
(Van Riel et al., 2014), herpes virus (Esiri, 1982), paramyxo virus
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(Van Riel et al., 2015), parainfluenza virus (Van Riel et al., 2015),
adeno virus (Yamada et al., 2009), and Japanese encephalitis virus
(Yamada et al., 2009), based on the analysis of samples and tissues
obtained from experimentally inoculated animals. These viruses
utilize various receptors such as the sialic acid (e.g., influenza
virus, parainfluenza virus, and adenovirus) (Connor et al., 1994;
Villar and Barroso, 2006) and heparan sulfate receptors (e.g.,
herpes virus and Japanese encephalitis virus) (Eisenberg et al.,
2012; Perera-Lecoin et al., 2013) to enter the OSN. Although
these receptors are similarly expressed in human OSNs, it is still
unclear whether these viruses directly enter human OSNs. Seasonal
influenza virus A (H3N2), pandemic influenza virus A (H1N1), and
highly pathogenic avian influenza virus A (H5N1) have been shown
to attach to the apical side of human OSNs, and it is suggested
that these viruses can infect human OSNs (Van Riel et al., 2015).
Biopsies of the olfactory mucosa of patients with PVOD show
OE degeneration and morphological changes in the RE (Seiden,
2004). In addition, in the mucosal intrinsic layer below the basal
membrane, OSN axons are prominently replaced by collagen fibers
(Holbrook et al., 2005).

Olfactory tests employing combinations of odors with different
chemical structures has been used to characterize OE damage in
patients with PVOD (Kikuta et al., 2023). Olfactory stimulation
with β-phenylethyl alcohol, γ-undecalactone, and isovaleric acid,
known as the T&T olfactometer test in Japan, allows PVOD patients
to discriminate between different odors, while odor stimulation
with prosultiamine, known as the intravenous olfactory (IVO) test
in Japan, does not allow odor discrimination. The former group of
odors activates both class I and class II OSNs, while the latter odor
primarily activates class I OSNs (Takahashi et al., 2004; Igarashi
and Mori, 2005; Mori and Sakano, 2011; Kikuta et al., 2023). Thus,
it has been suggested that virus-induced OE injury may occur
heterogeneously in a cell type-dependent manner, with preferential
injury to class I OSNs (Kikuta et al., 2023).

Coronavirus disease 2019 (COVID-19) is caused by SARS-
CoV-2, but the mechanism of infection differs from that of other
viruses that cause the common cold (Belouzard et al., 2012). In
addition to the angiotensin-converting enzyme 2 (ACE2) receptor,
transmembrane protease serine 2 (TMPRSS2) activity is required
for SARS-CoV-2 infection (Hoffmann et al., 2020). Co-expression
of ACE2 and TMPRSS2 has been observed only in SCs, Bowman’s
glands, MVs, and BCs, but not in OSNs (Cooper et al., 2020).
In golden hamsters, SARS-CoV-2 infects intestinal cells but not
OSNs (Bryche et al., 2020). OE samples from COVID-19 patients
have been found to contain coronavirus antigens in cells within
the OE, and although the type of infected cell has not been
identified, their shape and antigen localization suggest that the virus
targets non-OSN cells (Cantuti-Castelvetri et al., 2020). However,
infection of non-OSN cells increases inflammatory cytokines in
the human OE (Torabi et al., 2020), and in experiments using
golden hamsters, shedding of OSN cilia was observed histologically
(Bryche et al., 2020).

Discussion

The human OE lacks a regular laminar structure, and a mixture
of the RE within the OE is observed even in people with a

normal sense of smell. With respect to OSN density, the dorsal
OE has a higher density of mature olfactory OSNs than the ventral
OE (Figure 1). The areas of low OSN density in the ventral
OE coincide with areas of high airflow, suggesting that airflow
is a chronic mechanical stimulus affecting the OE and that the
epithelium in this area of the OE may be degenerative. Since
mice show no such differences in OSN density, it is possible
that the human OE is especially susceptible to injury from
airflow stimulation.

The olfactory loss associated with CRS is caused by mechanical
obstruction of the olfactory cleft by polyps in the nasal cavity
and/or edematous changes in the nasal mucosa, resulting in
reduced airflow to the OE (Kern, 2000; Banglawala et al., 2014;
Rosenfeld et al., 2015; Gudis and Soler, 2016). In addition, direct
injury to the OE by inflammatory cytokines and degranulation
proteins from eosinophils also reduce olfactory function (Aiba
and Nakai, 1991; Doty and Mishra, 2001; Lane et al., 2010). In
mouse experiments, repetitive injury, such as chronic inflammation
and aging have been reported to activate HBCs, which depletes
their potential to produce OSNs (Håglin et al., 2020). Eventually,
HBCs produce respiratory epithelial cells instead of OSNs by
altering retinoic acid metabolism and are involved in respiratory
transformation (Håglin et al., 2020). Thus, severe inflammation and
BC damage to the OE leads to prolonged olfactory dysfunction
by reducing the number of functional OSNs and promoting
respiratory transformation (Figure 2). However, since respiratory
transformation is observed even in adults with normal olfactory
function, it is unclear to what extent OE degeneration must
progress before olfactory loss becomes apparent. Rats can detect
food odors even after more than 90% of the olfactory mucosa
has degenerated (Youngentob et al., 1997), suggesting that the
peripheral olfactory system has significant reserve capacity. If
this is also the case in humans, patients who are aware of their
decreased sense of smell may be in the final stages of extensive
OE degeneration.

It is unclear whether differences exist in olfactory dysfunction
between aging and CRS, but histological changes in OB may
produce differences in olfactory function. Human studies have
reported that OB volume, the thickness of the glomerular layer,
and the number of mitral cells and glomeruli decrease with age
(Bhatnagar et al., 1987; Meisami et al., 1998; Yousem et al.,
1998). Furthermore, cell division in the mouse subventricular zone
decreases with age, but granule cell density in the OB increases
with age (Enwere et al., 2004; Richard et al., 2010), suggesting
that granule cell turnover in the OB is reduced and granule
cells live longer in aging animals (Sui et al., 2012). Decreased
turnover of granule cells with aging may reduce the likelihood
of neural circuit reorganization. On the other hand, persistent
nasal inflammation in mice treated with lipopolysaccharide causes
marked atrophy of the OB and more intense damage in tufted
cells than in mitral cells (Hasegawa-Ishii et al., 2019, 2020).
Furthermore, peripheral immune cells have been shown to
transiently infiltrate the olfactory nerve layer, the glomerular
layer, and the external plexiform layer, suggesting that chronic
inflammation, including CRS, may also induce histological changes
in the OB (Asano et al., 2022). A detailed study of the relationship
between olfactory function and histological changes in the OB
may reveal differences in olfactory dysfunction between aging and
chronic inflammation.
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FIGURE 2

OE injury caused by CRS and viral infection. (A) Two types of the OE
injury. Left, normal human OE: OSN axons extend to the OB and
form synapses with projection neurons in the OB. Middle, CRS with
polyps: OE is injured by inflammatory cytokines and eosinophilic
cationic proteins from eosinophils, resulting in apoptotic cell death.
Right, viral infection: viruses (except COVID-19) infect OSNs directly
and cause apoptotic cell death. CRS, chronic rhinosinusitis; OSN,
olfactory sensory neuron; OE, olfactory epithelium; OB, olfactory
bulb; BC, basal cell; MVC, microvillar cell; SC, sustentacular cell;
ECP, eosinophilic cationic protein. (B) Histological changes after OE
injury. Persistent inflammation and basal cell damage in the OE can
inhibit axonal elongation of newly generated OSNs and/or result in
a transition from olfactory to respiratory epithelium, leading to
prolonged olfactory dysfunction.

In contrast to olfactory loss caused by reduced airflow, which
can be improved by surgical treatment, no established treatment
currently exists for OE injury. Therefore, to develop a treatment
strategy, it is important to determine whether olfactory dysfunction
is due solely to reduced airflow or to concomitant OE damage. The
IVO test measures the time (defined as latency) and duration of
odor perception after intravenous administration of prosultiamine
and is widely used in clinical practice. Reduced airflow does not
prolong onset latency in the IVO test, but OE injury does, and
prolonged latency correlates with a reduction in the number of
mature OSNs (Kikuta et al., 2016). Accordingly, OE injury is
likely in cases with prolonged latency, and it is estimated that
approximately 60% of CRS cases are complicated by OE injury
(Kikuta et al., 2016).

The main mechanism of PVOD is decreased airflow caused
by swelling of the olfactory cleft mucosa by local inflammation,
increased mucus production, and changes in mucus composition
(Akerlund et al., 1995; Schlosser et al., 2016; Victores et al.,
2018; Cooper et al., 2020). Thus, in most cases, olfactory function
recovers with the disappearance of nasal symptoms (Hummel
et al., 1998a,b; Zhao et al., 2014), but in some patients, olfactory
loss may persist for more than a year. This is presumably
due to the OE damage caused by viral infection or the local

immune response (Duncan and Seiden, 1995; Welge-Lüssen and
Wolfensberger, 2006; Cavazzana et al., 2018). Viruses that invade
OSNs can be transported to the olfactory bulb (OB) via OSN
axons. However, OSN apoptosis, a defense mechanism against OE
damage, can prevent this propagation (Mori et al., 2002, 2004;
Kanaya et al., 2014). When mice are infected intranasally with
influenza H3N1 virus, apoptosis of the infected OSNs inhibits the
spread of the viruses. Conversely, infection with herpes viruses
does not induce OSN apoptosis and the viruses can spread
to the OB (Mori et al., 2002). Thus, OSN apoptosis may act
positively by preventing the entry of viruses into the central nervous
system via the OSN, but may also act negatively by promoting
olfactory dysfunction.

Olfactory dysfunction caused by COVID-19 is less severe than
that caused by other common cold viruses, with olfaction restored
in about 70% of cases within 2 weeks after the onset of initial
symptoms (Lechien et al., 2020; Yan C. H. et al., 2020). The
fact that COVID-19 infects SCs, MVs, and BCs, but not OSNs
may be one factor contributing to the favorable prognosis of
olfactory dysfunction in COVID-19 patients (Belouzard et al., 2012;
Cooper et al., 2020).

Regardless of the type of virus, severe injury to OSNs and
other components of the OE can result in incomplete regeneration,
and similar to the histopathology of CRS, degeneration and
morphological changes in the OE are observed (Seiden, 2004;
Figure 2). The histological changes that occur during the
regenerative process may be one of the factors contributing to the
prolongation of olfactory symptoms.

Since a variety of immune cells are known to be involved in
inflammatory responses in the OE, research into the types and
activities of the immune cells involved will be required to elucidate
the mechanisms before efficacious treatments for olfactory
dysfunction can be developed. However, various therapeutic
interventions with variable efficacy are available, including steroid
administration, which has anti-inflammatory effects, for the
treatment of olfactory dysfunction caused by CRS (Rudmik
et al., 2013; Chang and Glezer, 2018). Biological therapies
such as anti-IgE monoclonal antibody, IL-4 receptor alpha
subunit antagonist, and anti-IL-5 are promising treatments for
nasal polyps and could significantly improve olfaction (Gevaert
et al., 2013; Bachert et al., 2016, 2017). In addition, localized
intranasal administration of insulin in mice has been reported to
suppress OSN apoptosis and promote OE regeneration, suggesting
that insulin could have potential as a novel therapeutic agent
(Kikuta et al., 2021; Kuboki et al., 2021). In human, insulin
nasal spray has also been reported to be effective against
COVID-19-induced olfactory dysfunction (Cherobin et al., 2023).
Understanding the histological architecture of the human OE
and the pathophysiology of each disease will be fundamental
in establishing new therapies for controlling inflammation and
preventing irreversible OE damage.
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A specific olfactory bulb 
interneuron subtype Tpbg/5T4 
generated at embryonic and 
neonatal stages
Akio Tsuboi *

Graduate School of Pharmaceutical Sciences, Osaka University, Toyonaka, Japan

Various mammals have shown that sensory stimulation plays a crucial role 
in regulating the development of diverse structures, such as the olfactory 
bulb (OB), cerebral cortex, hippocampus, and retina. In the OB, the dendritic 
development of excitatory projection neurons like mitral/tufted cells is 
influenced by olfactory experiences. Odor stimulation is also essential for the 
dendritic development of inhibitory OB interneurons, such as granule and 
periglomerular cells, which are continuously produced in the ventricular-
subventricular zone throughout life. Based on the morphological and 
molecular features, OB interneurons are classified into several subtypes. The 
role for each interneuron subtype in the control of olfactory behavior remains 
poorly understood due to lack of each specific marker. Among the several 
OB interneuron subtypes, a specific granule cell subtype, which expresses the 
oncofetal trophoblast glycoprotein (Tpbg or 5T4) gene, has been reported 
to be  required for odor detection and discrimination behavior. This review 
will primarily focus on elucidating the contribution of different granule 
cell subtypes, including the Tpbg/5T4 subtype, to olfactory processing and 
behavior during the embryonic and adult stages.

KEYWORDS

Tpbg/5T 4, olfactory bulb, granule cells, activity-dependent development, fate map

1 Introduction

Sensory inputs are essential for the development and plastic modification of neural 
circuits in vertebrates (Lepousez et al., 2013). Olfactory sensory neurons (OSNs) detect 
individual odorants by expressing corresponding odorant receptors in OSNs on the 
olfactory epithelium (Mori and Sakano, 2011, 2021). The convergence of OSN axons on 
specific glomeruli within the olfactory bulb (OB) enables the activation of distinct 
neuronal circuits and facilitates the dendritic development of specific types of inhibitory 
interneurons through excitatory projection neurons in the OB (Mori and Sakano, 2011, 
2021; Lepousez et  al., 2013). Neural progenitors like transit-amplifying cells and 
neuroblasts are generated from neural stem cells (NSCs) in the ventricular-
subventricular zone (V/SVZ) near the lateral ventricles, not only during early 
development but also in adulthood (Obernier and Alvarez-Buylla, 2019). These 
neuroblasts migrate through the rostral migratory stream (RMS) to the OB, where they 
mature into inhibitory interneurons that release gamma-aminobutyric acid (GABA), 
including granule cells (GCs) and periglomerular cells (PGCs) (Lledo and Valley, 2016) 
(Figure  1A). Within the OB, GCs and PGCs establish reciprocal connections with 
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glutamatergic excitatory projection neurons like mitral cells 
(MCs) and tufted cells (TCs) (Figure 1A). GCs and PGCs receive 
glutamatergic inputs from MC/TC dendrites and return 
GABAergic outputs to them (Lledo and Valley, 2016). The 
survival and integration of newly born OB interneurons into 
existing neural networks are affected by odor-evoked neural 
activity (Lledo and Valley, 2016). Furthermore, olfactory 
deprivation and odor-rich environments, respectively, hinder and 
enhance the dendritic branching and spine formation of newborn 
OB interneurons (Bressan and Saghatelyan, 2021). Despite 

advancements in this area, the specific role of a particular subtype 
of newborn interneurons in modulating olfactory behaviors 
remains unclear due to the absence of distinct markers for them.

2 Embryonic and adult neurogenesis

The generation of OB interneurons in the rodent brain occurs in 
the V/SVZ during both embryonic and adult stages. Neurogenesis in 
the embryonic phase commences with neuroepithelial cells localized 

FIGURE 1

Cell fate of multiple subtypes of olfactory bulb (OB) interneurons. (A) The mammalian OB is structured into distinct layers: the glomerular layer (GL), 
external plexiform layer (EPL), mitral cell layer (MCL), and granule cell layer (GCL). Olfactory sensory signals from olfactory sensory neurons (OSN) in 
the olfactory epithelium (OE) are transmitted by excitatory projection neurons such as mitral cells (MCs) and tufted cells (TCs) to inhibitory 
interneurons like granule cells (GCs) and periglomerular cells (PGCs). (B) Distribution of neural stem cells in the ventricular-subventricular zone (V/SVZ) 
in specific areas. Adult OB interneurons are generated in different subregions of the V/SVZ (upper row; a), migrate through the rostral migratory stream 
(RMS), and subsequently differentiate into distinct subtypes of mature interneurons in the OB, including GCs (GII, GIII, GIIIM, and CalR) and PGCs (TH and 
CalR). (C) Transcriptome cell type classification of whole mouse brain. A transcriptome classification tree is organized into 7 neighborhoods, 34 classes, 
and 338 subclasses. The subpallium-GABA neighborhood comprises 7 classes, one of which is the OB-IMN-GABA class containing 30 subclasses. 
Notably, the Frmd7 Gaba_1 subclass includes Tpbg/5T4 and Lgr6 genes. The content in panel (C) is adapted from the extended data figure in the study 
by Yao et al. (2023), with permission from the journal. (D) Spatial expression of the OBINH-3-[Gad1_Tpbg_Tiam2] subcluster genes in the mouse OB, 
based on the “Spatial-Portal” website (https://www.spatial-atlas.net/Brain/spatial.html). This site presents a spatial molecular atlas of the adult mouse 
central nervous system generated by Xiao Wang’s lab with STARmap PLUS, an imaging-based targeted in situ sequencing platform (Shi et al., 2023).
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in the V/SVZ, which undergo a transformation into radial glial cells 
(RGCs) (Obernier and Alvarez-Buylla, 2019). This transition involves 
the loss of certain epithelial characteristics by neuroepithelial cells, 
such as tight junctions, and the acquisition of astroglial features 
marked by the expression of various astrocytic markers. Multiple 
intrinsic signals work in concert to facilitate this shift and ensure 
neurogenesis during embryonic development (Obernier and Alvarez-
Buylla, 2019). Initially, RGCs function as fate-restricted neural 
progenitors, giving rise to transit-amplifying precursors or neuroblasts 
through symmetric mitosis, which further differentiate into neurons 
(Merkle and Alvarez-Buylla, 2006). In later stages of development, 
RGCs also generate glial cells like astrocytes and oligodendrocytes 
(Merkle and Alvarez-Buylla, 2006).

During the adult stage in the V/SVZ, radial glial-like NSCs 
generate various types of newborn interneurons that migrate to the 
OB through the RMS (Obernier and Alvarez-Buylla, 2019). The 
location of adult NSCs within areas of the V/SVZ determines the types 
of OB interneurons produced (Merkle et al., 2014) (Figure 1B). While 
it has been observed that adult NSCs originate from embryonic 
progenitors in the V/SVZ (Fuentealba et al., 2015; Furutachi et al., 
2015), the timing of spatial determination of cell fate remains unclear, 
specifically whether neural progenitors in the V/SVZ subareas, where 
adult NSCs are present, are the same as those in the forebrain subareas 
where embryonic NSCs are. Adult neural progenitors are generated 
between embryonic days 13.5 and 15.5 but remain mostly inactive 
until reactivated postnatally. The majority of RGCs become active 
from late embryonic stages to postnatal day 15, with a small subset of 
NSCs remaining quiescent during embryonic development. These 
dormant NSCs are responsible for adult neurogenesis in the V/SVZ 
(Fuentealba et al., 2015; Furutachi et al., 2015). NSCs are activated to 
produce intermediate progenitor cells, which then give rise to 
neuroblasts. These neuroblasts, along with their immature neural 
precursors, migrate in chains through the RMS to the OB, where they 
differentiate into mature OB interneurons, including GCs and PGCs 
(Kaneko et al., 2017). In adult rodents, the RMS serves as a conduit for 
a substantial number of neuroblasts to reach the OB (Lledo and Valley, 
2016; Obernier and Alvarez-Buylla, 2019). In an experiment involving 
adult mice (at postnatal weeks 8) labeled with bromodeoxyuridine 
(BrdU), over 20,000 newborn neurons were observed to reach the OB 
14 days after BrdU injection, indicating robust neurogenesis and 
extensive plasticity in the V/SVZ (Yamaguchi and Mori, 2005). In 
addition, local neuronal proliferation in the OB was noted to 
be particularly active in the initial days following birth (Lemasson 
et al., 2005).

3 Fate map of Tpbg/5T4 GCs

Inhibitory GCs, characterized by their small cell bodies lacking 
axons, have spinous basal dendrites and a spinous apical dendrite that 
extends from the GC layer into the external plexiform layer (EPL) and 
contacts MC/TC lateral dendrites via large spines housing the 
reciprocal synapses (Shepherd et  al., 2007) (Figure  1A). GCs, the 
predominant neuronal subpopulation within the OB, are involved in 
both recurrent and lateral inhibition of MCs/TCs at the EPL, where 
GCs receive glutamatergic synaptic input from MC/TC lateral 
dendrites and provide recurrent GABAergic synaptic output to them 
(Egger and Thomas Kuner, 2021). The vast majority (>95%) of 

neurons generated in the V/SVZ during adulthood differentiate into 
GCs within the OB (Winner et al., 2002). Initially, GCs are categorized 
into multiple subtypes based on the morphology of their dendrites 
and the positioning of their cell bodies within the GC layer. Studies 
utilizing horseradish peroxidase injection and Golgi staining have 
revealed that rodent GCs can be classified into three primary subtypes: 
intermediate (GI), deep (GII), and superficial (GIII) subtypes (Shepherd 
et al., 2007), and further subcategorized into deep branching (GIV) and 
shrub branching (GV) subtypes (Merkle et al., 2007). Subsequently, 
mature GCs are identified by specific marker genes such as calretinin 
(CalR), Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), 
oncofetal trophoblast glycoprotein (Tpbg, also known as 5T4), 
metabotropic glutamate receptor 2 (mGluR2), and neurogranin 
(Imamura et al., 2006; Batista-Brito et al., 2008; Gribaudo et al., 2009; 
Merkle et al., 2014; Nagayama et al., 2014; Malvaut et al., 2017).

As mentioned above, adult NSCs in distinct subregions of the V/
SVZ generate OB interneurons with diverse GC subtypes (Merkle 
et al., 2007, 2014) (Figure 1B). It was previously uncertain whether 
these spatial cell fate decisions are predetermined during early 
development. Recent advancements in gene barcoding techniques 
have enabled the mapping of single cell spatial distribution, revealing 
that different classes of adult-born OB interneurons are associated 
with specific types of embryonic-born neurons, depending on the V/
SVZ subareas (Fuentealba et  al., 2015) (Figure  1B). For instance, 
superficial GCs and dopaminergic (TH: tyrosine hydroxylase) PGCs 
originating in the dorsal V/SVZ during adulthood were found to 
be clonally linked to cortical neurons produced in the corresponding 
area during the embryonic development (Figure 1B). These findings 
suggest that the spatial determination of cell fate is established early 
during the embryonic stage in progenitor cells, which are shared NSCs 
between the embryonic forebrain and adult OB.

Tpbg/5T4 GCs and CalR GCs are located in the MC layer and/or 
the superficial GC layer, respectively (Imamura et al., 2006; Nagayama 
et al., 2014) (Figure 1B). Tpbg/5T4 GCs are present in superficial GCs 
nearby the MC layer (GIIIM) based on their location and dendritic 
morphology (Imamura et al., 2006; Yoshihara et al., 2012; Fuentealba 
et al., 2015), while CalR GCs are in the other superficial GCs (GIII) 
with a different cell lineage from Tpbg/5T4 (Merkle et  al., 2014; 
Fuentealba et  al., 2015; Yao et  al., 2023) (Figure  1B). In addition, 
different subtypes of OB GCs were generated preferentially at different 
stages, e.g., from embryonic day 12.5 to postnatal day 30 (Batista-Brito 
et al., 2008). Tpbg/5T4 GCs, present in the superficial GC (GIIIM) layer, 
were produced mainly from embryonic day 15.5 to the day of birth 
(Sakamoto et al., 2014; Takahashi et al., 2016) (Figure 2D), whereas 
production of CalR GCs, present in the superficial GC (GIII) layer, 
began immediately after birth and continued until postnatal day 56 
(Batista-Brito et al., 2008). Tracing the genetic lineage of postnatally-
born neurons has revealed that nearly 90% of GCs in the deep GC 
(GII) layer of mice at postnatal day 90 were marked as postnatally-born 
neurons, whereas only about 40 and 60% were labeled in the MC 
(GIIIM) layer and the superficial GC (GIII) layer, respectively (Sakamoto 
et al., 2014). These results suggest that GCs generated at embryonic 
stages like Tpbg/5T4 are maintained in the superficial GC (GIIIM) layer 
(Figure 2D), while GCs produced after birth are mainly integrated into 
the deep GC (GII) layer.

High-throughput single-cell RNA sequencing (scRNA-seq) of the 
mouse OB albeit no spatial information identified 38 distinct cell 
clusters including 18 neuronal clusters, each of which has the 
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similarity of transcriptional profiles and allows detailed classification 
of single-cell molecular markers (Tepe et al., 2018). Expression profiles 
with RNA in situ hybridization (ISH) from the Allen Brain Atlas (Lein 
et al., 2007) further classified the neuronal clusters into14 mature/
immature inhibitory neuron clusters, one of which is the n12-GC-6 
cluster consisting of Slc32a1 (vesicular GABA transporter), known to 
be expressed in mature inhibitory interneurons, Tpbg/5T4 and so on 
(Tepe et al., 2018). Recently, a high-resolution spatial transcriptomic 
atlas of cell types for the entire mouse brain was generated, in 
combination of a scRNA-seq dataset with a spatial transcriptomic 
dataset by multiplexed error-robust fluorescence ISH (MERFISH) 
(Chen et al., 2015; Yao et al., 2023). Through characterization of the 

molecular markers and regional specificity of each cell-type class, the 
subpallium-GABA class has been subdivided into seven subclasses, 
each likely originating from distinct developmental pathways 
(Figure 1C). Within these subclasses, one particular group comprises 
a combination of five non-neuronal cell types and four GC/immature 
neuron types, notably including the GABAergic OB immature neuron 
(OB-IMN-GABA) type (Yao et al., 2023) (Figure 1C). The OB-IMN-
GABA type originates in the V/SVZ, migrates through the RMS, and 
matures into GCs and PGCs in the OB. During the developmental 
lineage of the OB-IMN-GABA type, neuroblasts in the SVZ and RMS 
express cell cycle-related markers like Top2a and Mki67. Upon exiting 
the RMS, immature OB interneurons exhibit markers such as Sox11 

FIGURE 2

Role of the Tpbg/5T4 GC subtype within the OB neural circuit. (A) Schematic representation of the OB neural circuit. Superficial GCs nearby the MC 
layer (GIIIM) harboring Tpbg/5T4 GCs exhibits a preference for establishing connections with the lateral dendrites of external TCs (eTCs) located in 
the surface segment of the external plexiform layer (EPL). Conversely, GCs situated in the deep GC layer (GII) predominantly form connections with 
MCs in the deep segment of the EPL. These distinct pathways of MCs and TCs facilitate the transmission of varied odor information to discrete 
regions of the olfactory cortex. GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; GCL, granule cell layer. (B) Two categories 
of eTCs. Tpbg/5T4 GCs establish dendritic synapses with two types of eTCs: burst type eTCs lacking lateral dendrites that exhibit frequent 
spontaneous firing; non-burst type eTCs possessing lateral dendrites that do not exhibit such firing behavior. (C) Tpbg/5T4 GCs connecting to non-
burst type eTCs that display reduced dendritic branching in Tpbg/5T4-knockout (KO) mice. Notably, GABAergic inputs to non-burst type eTCs are 
significantly diminished in Tpbg/5T4 KO mice, whereas inputs to burst type eTCs remain unaffected. Consequently, olfactory functions such as odor 
detection and discrimination are impaired in Tpbg/5T4 KO mice. (D) Integration of Tpbg/5T4 GCs produced at embryonic and adult stages. 
Bromodeoxyuridine labeling reveals that embryonic-born Tpbg/5T4 GCs are predominantly integrated in the OB (depicted in blue), with minimal 
integration observed in adult-born Tpbg/5T4 GCs (depicted in green) (Takahashi et al., 2016).
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and S100a6, while mature OB interneurons are characterized by 
Frmd7 expression (Yao et  al., 2023). The OB-IMN-GABA type is 
further categorized into 30 subtypes, one of which is the Frmd7 
Gaba_1 subtype containing Tpbg/5T4 and Lgr6 (Leucine-rich repeat 
[LRR]-containing G-protein coupled receptor 6). Notably, a previous 
study by Yu et al. (2017) has indicated the co-expression of Lgr6 with 
Tpbg/5T4 in GCs at the superficial GC (GIIIM) layer.

Similarly, using an in situ RNA-sequencing method on brain 
slices along with the high-throughput scRNA-seq analysis (Zeisel 
et al., 2018), a high-quality spatial transcriptomic atlas of cell types 
has been made across the adult mouse brain to identify 26 major cell 
clusters, including 13 neuronal clusters (Shi et al., 2023). They are 
further classified into 190 neuronal subclusters that contains seven 
OB inhibitory neuron (OBINH) subclusters, one of which is the 
OBINH-3-[Gad1_Tpbg_Tiam2] subcluster. Based on the “Spatial-
Portal” website (https://www.spatial-atlas.net/Brain/spatial.html), 
expression of Gad1 (Glutamate decarboxylase 1; GCs, and PGCs), 
Tiam2 (T-cell lymphoma invasion and metastasis 2; neuroblasts, 
GCs, and PGCs) and Tpbg/5T4 appears to be  overlapped in the 
superficial GC (GIIIM) layer (Yoshizawa et al., 2002; Shi et al., 2023) 
(Figure 1D). Members of the Frmd7 Gaba_1 subtype (Yao et  al., 
2023) is similar but, not identical to those of the OBINH-3-[Gad1_
Tpbg_Tiam2] subcluster (Shi et al., 2023), because in the superficial 
GCs nearby the MC layer (GIIIM), contamination of glutamatergic 
MCs seems to be unavoidable. These results demonstrate that the 
OBINH-3-[Gad1_Tpbg_Tiam2] subcluster represents a cell lineage 
associated with Tpbg/5T4 in the OB.

4 Physiological roles of Tpbg/5T4 GCs

Imamura et al. (2006) hypothesized that a group of membrane 
proteins present in specific layers within the OB neural circuit would 
play a role in the establishment of dendritic synaptic connections 
specific to those layers. They identified specific subtypes of OB 
interneurons, Tpbg/5T4 GCs and PGCs, within the superficial GC 
(GIIIM) and glomerular layers, respectively (Figure 2A). Tpbg/5T4 is a 
member of the LRR membrane protein family, characterized by a 
N-terminal extracellular domain comprising seven LRRs, each 
consisting of 24 amino acids (Imamura et al., 2006; Yoshihara et al., 
2012; Zhao et  al., 2014). Notably, Tpbg/5T4, among membrane 
proteins with extracellular LRRs, exhibits high conservation not only 
in mice (King et al., 1999) and humans (Myers et al., 1994) but also in 
non-mammalian species such as Drosophila CG6959 (Özkan et al., 
2013) and zebrafish Wnt-activated inhibitory factor 1 (WAIF1) 
(Kagermeier-Schenk et al., 2011). It has been revealed by unilaterally 
naris occluded mice that expression of Tpbg/5T4 in OB interneurons 
is reliant on neural activity triggered by odors (Yoshihara et al., 2012). 
Further, experimental manipulations involving Tpbg/5T4 loss and 
gain of function have revealed that Tpbg/5T4 is essential for the 
dendritic branching of Tpbg/5T4 GCs in response to odor stimuli 
(Yoshihara et  al., 2012). These findings suggest a crucial role for 
Tpbg/5T4 GCs in the processing of olfactory information within the 
neural circuits of the OB.

In the OB, inhibitory GCs synapse with excitatory projection 
neurons, such as MCs and TCs (Figure 2A). Previous studies have 
shown that early-born superficial GCs and late-born deep GCs tend 
to preferentially connect with the lateral dendrites of TCs and MCs, 

respectively (Geramita et  al., 2016). In addition, Takahashi et  al. 
(2016) identified two subtypes of external TCs (eTCs): non-burst type 
eTCs with inactive lateral dendrites; burst type eTCs that frequently 
exhibit spontaneous firing (Ma and Lowe, 2010) (Figure 2B). The 
apical dendrites of Tpbg/5T4 GCs establish GABAergic synapses with 
both non-burst and burst type eTCs. It has been shown utilizing OB 
slices from Tpbg/5T4 knockout (KO) mice that electrode stimulation 
induced GABAA receptor-mediated postsynaptic currents in burst 
type eTCs, while significantly reduced responses were observed in 
non-burst type eTCs (Takahashi et al., 2016) (Figure 2B). Given the 
reciprocal dendritic synapses formed between OB GCs and projection 
neurons (Shepherd et al., 2007), the experiment exploring excitatory 
inputs from eTCs to Tpbg/5T4 GCs in Tpbg/5T4 KO mice revealed a 
notable decrease in those in Tpbg/5T4-KO than wild-type mice 
(Takahashi et al., 2016). This is consistent with reduction of dendritic 
branching in Tpbg/5T4-deficient cells (Yoshihara et  al., 2012) 
(Figure  2C). These results demonstrate that neural activity in the 
non-bursting type eTCs is regulated by Tpbg/5T4 GCs (Figure 2B).

Would the reduced inhibition of non-burst type eTCs and 
decreased excitation of Tpbg/5T4-deficient GCs impact on olfactory 
behavior in mice? In order to assess the physiological significance of 
Tpbg/5T4 GCs in odor processing within the OB neural circuit, 
Takahashi et al. (2016) examined odor detection thresholds in wild-
type and Tpbg/5T4 KO mice using the habituation-dishabituation test. 
The results revealed that Tpbg/5T4 KO mice exhibited significantly 
lower sensitivity to odor detection compared to wild-type mice, with 
a difference of approximately 100-fold. Furthermore, in an odor 
discrimination learning task, Tpbg/5T4 KO mice were unable to 
differentiate between two simultaneously presented odors but showed 
no impairment when the odors were presented individually 
(Takahashi et al., 2016). Notably, when exposed to a non-food-related 
odorant, Tpbg/5T4 KO mice displayed prolonged search times for 
buried food pellets. Conversely, these mice did not exhibit any 
difficulties in  locating buried food pellets in the absence of other 
odors. To confirm the phenotype of global Tpbg/5T4 KO mice, the 
OB-specific Tpbg/5T4 knockdown (KD) experiment was performed 
by injection of Tpbg/5T4-shRNAs-expressing lentiviral vectors into 
both the lateral ventricles and OBs of postnatal day 1 mice, giving rise 
to knockdown specific to Tpbg/5T4 GCs in the adult OB (Takahashi 
et al., 2016). The OB-specific Tpbg/5T4 KD showed the same defect 
as the global Tpbg/5T4 KO in the odor detection thresholds and 
olfactory behavior tests, further demonstrating that Tpbg/5T4 GCs in 
the OB are required for both odor detection and odor discrimination 
behaviors as illustrated in Figure 2C.

5 Perspectives

The findings from olfactory behavior tests conducted on Tpbg/5T4 
KO mice (Takahashi et al., 2016) diverge from those documented in 
prior research: either the inhibition or activation of neural activity in 
adult-born OB interneurons, including GCs, did not yield significant 
effects on odor detection and basic odor discrimination (Abraham 
et al., 2010; Alonso et al., 2012; Sakamoto et al., 2014). This discrepancy 
could be attributed to variations in the subtypes of OB interneurons 
manipulated genetically in each study. Given that OB interneurons 
can be categorized into multiple subtypes based on their expression 
markers, such as the OBINH-3-[Gad1_Tpbg_Tiam2] (Shi et al., 2023), 
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it is postulated that each interneuron subtype forms a unique local 
circuit within the OB (Shepherd et al., 2007).

Sakamoto et al. (2014) proposed that around 25% of GCs in adult 
mice originate from embryonic NSCs, while Lemasson et al. (2005) 
indicated that postnatal neurogenesis peaks at postnatal day 7 and 
then decreases to one-third by postnatal day 60. The genetic trace 
experiment indicated that nearly 90% of GCs in the deep GC (GII) 
layer are produced continuously by postnatal day 90 after birth 
(Sakamoto et al., 2014). Consequently, adult-born GCs engineered to 
express the diphtheria toxin fragment A gene are predominantly 
integrated into the deep GC (GII) layer and tend to connect with MCs 
rather than TCs (Bardy et al., 2010), resulting in no impairment in 
odor detection and basic olfactory discrimination but a deficiency in 
complex learned olfactory discrimination (Sakamoto et al., 2011, 
2014). Similarly, genetic inhibition and ablation of other OB GC 
subtypes, CaMKIIα GCs and neurogranin GCs, respectively, 
distributed across the GC layer, exhibits a necessity for learned 
olfactory discrimination (Malvaut et al., 2017; Gribaudo et al., 2021). 
Furthermore, chemogenetical inhibition of CalR GCs, by injection of 
the AAV harboring Gi-coupled DREADDs into the GC layer of 
CalR-Cre knockin mice, showed the impairment in complex olfactory 
discrimination, but not in simple learned olfactory discrimination 
(Hardy et al., 2018). This may be because CalR GCs are produced and 
integrated into the neural circuit during not only the neonatal stage 
but also the adult stage, even though they exist in the superficial GC 
(GIII) layer (Batista-Brito et al., 2008).

In contrast, the genetic trace experiment indicated that GCs born 
during the embryonic stage appear to be retained in the MC and 
superficial GC layers (approximately 40 and 60% of GCs, respectively) 
in postnatal day 90 mice (Sakamoto et  al., 2014). Consequently, 
Tpbg/5T4 GCs, generated during embryonic and perinatal periods 
and situated in the superficial GC (GIIIM) layer, demonstrate a 
requirement for odor detection and basic olfactory discrimination 
(Takahashi et al., 2016) (Figure 2C). Likewise, the GC-specific KO 
mice of GABAA receptor β3 subunit (Gabrb3), where the AAV 
harboring Cre was injected into the GC layer of Gabrb3-floxed mice, 
showed reduced GABAAR-mediated inhibitory postsynaptic currents 
in GCs and increased recurrent inhibition in MCs. The effect on 
neural activity was restricted to part of the embryonic- and postnatal-
born GCs, leading to impairment in discrimination both dissimilar 
and highly similar odors, but not in the learning of odor discrimination 
(Nunes and Kuner, 2015).

Recent studies have suggested that within the EPL of the OB, 
local dendrodendritic circuits may differentiate into parallel pathways 
for MCs and TCs, particularly eTCs (Fourcaud-Trocmé et al., 2014). 
The eTCs projecting to the anterior olfactory nucleus and the rostral 
part of olfactory tubercle (Igarashi et  al., 2012), appear to 
be specialized in rapid odor detection and quick behavioral responses 
necessary for distinguishing between distinct odors. It is also possible 
that MCs projecting broadly to the olfactory cortex (Miyamichi et al., 
2011; Igarashi et  al., 2012) may excel in discrimination learning 
between closely related odors, such as enantiomers. I hypothesize that 
embryonic-born GCs, including Tpbg/5T4 GCs, are involved in 
fundamental olfactory responses crucial for survival, while adult-
born GCs are more associated with learned olfactory behaviors 
(Alonso et  al., 2012; Sakamoto et  al., 2014). The distinct roles of 
embryonic- and postnatal-born GCs in olfactory processing and 

behavior may be attributed to the generation of different GC subtypes 
at various stages and subregions of the V/SVZ (Lemasson et al., 2005; 
Batista-Brito et  al., 2008; Sakamoto et  al., 2014; Fuentealba 
et al., 2015).

Interestingly, mammalian retina has a distinct laminar 
structure consisting of photoreceptor (rod and cone) cells, 
interneurons such as horizontal cells, bipolar cells (BCs) and 
amacrine cells (ACs), and retinal ganglion cells. Single-cell 
transcriptomics has revealed that Tpbg/5T4 belongs to a cluster of 
BCs divided into 15 clusters, and two clusters of ACs divided into 
63 clusters within the mouse retina (Shekhar et al., 2016; Yan et al., 
2020). Moreover, using scRNA-seq along with ISH images from the 
Allen Brain Atlas (Lein et al., 2007), it has been found that the 
subiculum pyramidal cells can be resolved into eight subclasses, 
one of which is the Tpbg/5T4 subclass (Cembrowski et al., 2018). 
These subclasses are mapped onto adjacent spatial domains, 
ultimately creating a complex layered and columnar organization 
with heterogeneity across the dorsal-ventral, proximal-distal, and 
superficial-deep axes in the mouse subiculum. Since OB neural 
circuits possess a notable high proportion of interneurons, 
glomerular columnar organizations, and intensive dendrodendritic 
communications, these observations suggest that Tpbg/5T4 plays 
a crucial role in shaping the laminar structure and function in the 
OB, retina, subiculum, and other brain regions.
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As an evolutionarily ancient sense, olfaction is key to learning where to find 
food, shelter, mates, and important landmarks in an animal’s environment. Brain 
circuitry linking odor and navigation appears to be  a well conserved multi-
region system among mammals; the anterior olfactory nucleus, piriform cortex, 
entorhinal cortex, and hippocampus each represent different aspects of olfactory 
and spatial information. We review recent advances in our understanding of the 
neural circuits underlying odor-place associations, highlighting key choices of 
behavioral task design and neural circuit manipulations for investigating learning 
and memory.

KEYWORDS

hippocampus, piriform cortex (PC), virtual reality, cognitive map, olfaction, entorhinal 
cortex, learning and memory

An ancient and important cognitive ability: 
odor-space integration

Across evolutionary distant species, animals have harnessed their sense of smell to navigate 
and survive in diverse habitats. This enduring significance of olfaction is reflected in the 
remarkable structural similarity of olfactory neural circuits. For example, the three-layered 
cytoarchitecture of the mammalian olfactory cortex resembles the pallial structures of 
amphibians and reptiles and distinguishes the mammalian olfactory cortex from the 6-layered 
neocortical areas for vision, hearing, or touch (1–6). This review will focus on rodents, though 
there are parallels to research in other organisms, notably insects (7–10).

Foraging for food is one of many odor-driven tasks that a rodent must perform to survive. 
Consider a mouse searching for something to eat: while vision and other senses may contribute 
to the search, olfaction is key to, say, finding seeds buried in a forest (11), for example by 
following odor plumes to their source (12, 13). It may further benefit the mouse in the long 
term to remember the location of this seed stash. By piecing together a map of scents at the 
stash and along the way home, the mouse can plan for more efficient future foraging. This 
ability to integrate spatial and olfactory information may in fact be more central to olfactory 
system evolution than other tasks such as odorant discrimination (9). Also critical is an ability 
to update this information as the environment changes; if the stash is eaten, the mouse will 
have to expand its map with new food sources.

In this review, we illustrate neural mechanisms underlying the integration of odor and 
space. We first discuss candidate multi-area circuit structures. We then review recent findings 
that support the functional role of these circuits revealed through cleverly designed behavioral 
tasks combined with neural recording and manipulation. We discuss research into changes in 
representations during learning and summarize ongoing technological advances that will help 
address key open questions.
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Neural circuits for odor-space coding

Several regions of the olfactory system, including the olfactory 
bulb (OB), anterior olfactory nucleus (AON), and piriform cortex 
(PCx), connect directly to higher-level spatial processing and memory 
areas such as the hippocampus (HPC) and lateral entorhinal cortex 
(LEC). With both bottom-up and top-down inputs, each area is 
proposed to play an important role in the transfer of odor information 
from the periphery and its integration with contextual and spatial 
information. We will describe each area’s key cell types, and how inter-
areal connectivity is proposed to underlie function.

Olfactory input: from periphery to cortex

Odor information detected by olfactory sensory neurons (OSNs) 
in the olfactory epithelium is relayed to the olfactory cortex via mitral 
and tufted cells in the OB. Areas of the olfactory cortex, which include 
the AON, PCx, and LEC, receive olfactory input via molecularly 
distinct subtypes of mitral and tufted cells that preferentially project 
to AON, PCx, or LEC (Figure 1A) (14–18).

PCx is divided into molecularly and functionally segregated 
anterior piriform (aPCx) and posterior piriform (pPCx), with their 
boundary traditionally defined by the termination of the lateral 
olfactory tract (LOT) (Figure 1A) (19). There are major differences in 
circuitry between the aPCx and pPCx: aPCx receives more input from 
mitral and tufted cells in OB and has more bidirectional connections 
with AON, while pPCx is more connected to higher order areas like 
LEC and the cortical amygdala (COA) (16, 18, 20–22). The circuitry 
is in line with functional segregations between aPCx and pPCx, as 
aPCx is thought to primarily encode odor identity, and pPCx plays a 

more important role in the association and encoding of context and 
spatial position (23–29).

The PCx is organized in a trilaminar structure: an axonal layer 
I where afferent inputs from OB and AON are received, a dense layer 
II containing semilunar and pyramidal cells, and a deep layer III 
containing mostly pyramidal cells (Figure 1B). Output projections 
from PCx are largely segregated by layers, as molecularly distinct layer 
IIb cells and layer III pyramidal cells preferentially project back to OB 
and to frontal cortical regions, while layer IIa semilunar cells 
preferentially project to LEC and COA (19–22). Furthermore, 
projections of deep layer cells to frontal regions are segregated along 
the anterior/posterior axis, with projections from aPCx to orbitofrontal 
cortex (OFC) and from pPCx to medial prefrontal cortex (mPFC), and 
these frontal areas play unique roles in olfactory learning and 
representations of odor value (21, 30–32). The neural circuitry and 
cytoarchitecture of the olfactory cortex therefore correspond to the 
differential routing of olfactory information to regions throughout 
the brain.

Space and context: hippocampal formation

The hippocampal formation plays a key role in spatial learning 
and memory, as place cells, grid cells, and head direction cells 
selectively encode an animal’s position in their environment (33). 
HPC has strong bidirectional connections with the entorhinal cortex 
and receives other parahippocampal inputs and projections to higher-
order areas like the amygdala and striatum (34). For the scope of this 
review, we focus primarily on its connection with the olfactory cortex 
via bidirectional connections with LEC. Although there is a large 
degree of intrinsic connectivity within the hippocampus, the 

FIGURE 1

Brain circuitry for integrating olfactory-spatial information. (A) Schematic of brain regions involved in odor-place coding, with arrows indicating 
connections between brain regions. The lateral olfactory tract (LOT) traditionally defines the boundary between anterior (a) and posterior (p) PCx. OB, 
olfactory bulb; M, mitral cells; T, tufted cells; AON, anterior olfactory nucleus; PCx, piriform cortex; LEC, lateral entorhinal cortex; MEC, medial 
entorhinal cortex; HPC, hippocampus. (B) Circuitry between PCx, LEC, and HPC with main excitatory projection cell types. Information from olfactory 
areas OB and AON is relayed to PCx via layer I. PCx layer IIa semilunar (SL) cells project to LEC layer I, and LEC projects back to PCx via layer IIb CB+ 
pyramidal cells (Pyr). LEC projects to dentate gyrus granule cells (GC) from layer IIa RLN+ fan cells (Fan) via the perforant pathway. Information 
received from LEC is routed through HPC via the trisynaptic circuit, from granule cells to pyramidal cells in CA3 and CA1, and back to LEC to deep layer 
Vb pyramidal cells. (C) Flow chart indicating the flow of odor and spatial information from the main brain regions implicated in odor-place coding: 
AON, PCx, LEC, and HPC. Odor information from PCx and spatial information from HPC are directed to LEC. The LEC then relays processed odor 
information to HPC and processed spatial information back to PCx. The AON receives direct input from HPC and has been suggested as an alternate 
integrator of odor and spatial information.
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hippocampal circuit is classically defined by the ‘trisynaptic circuit’: 
HPC receives input from the entorhinal cortex via dentate gyrus (DG) 
granule cells, transfers this information through the HPC via synaptic 
connections between CA3 and CA1 pyramidal cells, and then routes 
information back to the entorhinal cortex both directly and indirectly 
via the subiculum (Figure 1B) (35).

The connectivity patterns of HPC vary along the dorsal/ventral 
axis. Dorsal HPC receives most of its input from the entorhinal 
cortex. By contrast, ventral HPC is more connected to amygdalar, 
limbic, and olfactory regions. There is some evidence that these 
differences in circuitry relate to differences in the functional role of 
dorsal vs. ventral HPC, with more spatial coding in dorsal HPC and 
a larger role of ventral HPC in learned emotional behaviors (36–39). 
This functional segregation, however, remains an open question. It is 
important to note that recording studies in the HPC tend to focus on 
the dorsal sections, including the ones to be  discussed later in 
this review.

Odor and spatial integration: lateral 
entorhinal cortex and anterior olfactory 
nucleus

The LEC is a member of both the olfactory cortex and the 
hippocampal formation and has strong bidirectional connections 
between olfactory regions (OB, AON, and PCx), HPC, and 
parahippocampal areas like the MEC, perirhinal cortex, and 
postrhinal cortex (Figure 1A) (19, 34, 40). The two primary layer II 
cell types in LEC are reelin-expressing (RLN+) fan cells in layer IIa 
and calbindin-expressing (CB+) pyramidal cells in layer IIb 
(Figure 1B), which together are known to encode odor information 
(41–43). Most input from the LEC to HPC is via RLN+ fan cells 
projecting to DG and a subset of CB+ pyramidal cells projecting to 
CA1, suggesting that the LEC transfers “processed” odor information 
to HPC (Figures 1B,C) (42). Moreover, CB+ cells project back to OB 
and PCx (Figure  1B) (41). Due to these strong connections with 
olfactory areas and HPC, we propose that LEC is an “integrator” of 
olfactory sensory information and contextual/place information.

Although MEC is more weakly connected to olfactory areas, both 
MEC and LEC send projections to DG granule cells. This may indicate 
that HPC can integrate information from both of these areas: spatial 
information from MEC and contextual information from LEC (44). Thus, 
it is possible that MEC, despite a lower responsiveness of its cells to odor, 
is part of the overarching circuitry that positions an animal in their 
environment and allows them to generate olfactory-spatial memories.

The AON is also proposed to be involved in integrating odor and 
spatial information due to its direct input from HPC (Figures 1A,C). 
There is a unique topographic gradient between CA1 neurons in HPC 
and AON, with the ventral HPC projecting to medial AON, dorsal and 
intermediate HPC projecting to lateral AON (45). These connections 
are proposed to play a role in odor contextualization, as hippocampal 
feedback projections to AON transfer spatiotemporal information, 
which is then integrated with odor information to form olfactory 
memory representations (46, 47). Also, inter-hemispheric feedback 
connections exist from AON to OB (19, 48, 49). These contralateral 
projections are believed to be  relevant for stereosampling, where 
responses to odors are compared between left and right nostrils to aid 
in odor localization.

Neural representations during 
behavior

Recent experiments have explored how the connectivity detailed 
above functionally integrates odor and spatial information. 
Electrophysiological recording and calcium imaging have been the most 
common methods for observing neural activity during behavior. Some 
studies employ manipulation of neural activity with techniques including 
optogenetics and chemogenetics, probing the causal role of specific 
populations. In parallel, increasingly complex task designs incorporate 
strategic perturbations or closed loop behavioral interventions.

These studies variously emphasize one or more interrelated 
questions. How are different odor-spatial relationships represented? How 
do these representations differ across brain areas? How do these areas 
communicate with each other? How do representations change across 
learning? The following section highlights some key recent advances in 
this research program, especially the use of advanced recording and/or 
manipulation techniques within cleverly designed behavioral tasks.

Odors in virtual space

A particularly popular paradigm is the virtual reality (VR) linear 
track, in which a head-fixed rodent walks on a wheel, sphere, or 
treadmill, with sensory cues applied to simulate the experience of 
moving along a straight corridor (Figure  2). Using VR permits 
presentation of odor and other cues with a level of precision that is 
difficult or impossible to achieve with freely-moving mice. 
Additionally, head-fixation enables recording and manipulation 
techniques that use hardware that is too large for implantation in 
moving animals. Most of the studies we highlight below use some 
version of a VR linear track.

Odor representations in CA1 are driven by 
spatial information and salience

Radvansky and Dombeck pioneered the use of olfactory stimuli 
in a VR linear track paradigm (51). Using a custom olfactometer, they 
precisely controlled odor delivery and presentation of visual cues to 
mice on a spherical treadmill. They showed that mice anticipated 
rewards (seen as increased lick rates) at opposite ends of a virtual track 
even when track position was indicated only by odor gradients. 
Hippocampal CA1 activity revealed odor-driven place cells in much 
the same way comparable visual and multisensory tasks show (52, 53).

Similarly, Fischler-Ruiz and colleagues investigated encoding of 
two localized odor landmarks (Figure 2) (54). They found place cells 
spanned the track’s length, while noting a heightened density of place 
cells responsive to the odor landmarks. The vast majority of these 
place cells were only responsive to one of the two landmarks along the 
track, meaning that they were not simply responding to the odor cue, 
but contained an integrated representation of location with the odor. 
Swapping which odor appeared at the landmarks led place fields to 
remap, suggesting that the different odor identities were perceived as 
distinct contexts and that the place coding was intertwined with the 
odor landmarks.

In a revised paradigm, Radvansky and colleagues trained mice to 
associate either odor or visual cues with reward (55). They observed 
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substantial recruitment of additional CA1 cells in response to salient 
cues in both olfactory and visual tasks. In these tasks both olfactory 
and visual cues were presented, but only one would correspond to 
reward. Importantly, the cues were not stationary landmarks but 
moved along the track, eliciting place-like firing leading up to, 
during, and after the reward relative to the changing location. 
However, since the odor cue was always spatially tied to reward in the 
olfactory task, CA1 recruitment could have been due to either odor 
or reward expectation. Importantly, different populations of cells 
would fire in relation to the cue-reward depending on the cue 
modality and task demands. The proportion of visuo-spatial and 
olfacto-spatial tuned neurons substantially differed between tasks, 
indicating that the task or reward relevance of sensory input 
influences hippocampal mapping. Together, this suggests that sensory 
cues that predict reward overshadow irrelevant cues in CA1 neurons. 
A further inference is that hippocampal odor-spatial coding is 
dynamic and adapts to distinct behavioral contexts.

Dentate gyrus granule cells segregate odor 
and place coding populations

Other regions of HPC, notably DG, have been implicated in the 
encoding of odor and spatial information. In this section, we describe 
activity recorded in DG in response to multiple strategic manipulations to 
the VR linear track paradigm, summarize functionally identified cell types, 
and consider connectivity that may be essential to these response profiles.

Tuncdemir and colleagues performed an impressive number of 
variations on the linear track task, while always delivering reward at 
random (56). Their experimental setup involved a treadmill equipped 
with stable textural cues to demarcate the track’s beginning and end. 
Initially, mice were introduced to an odor cue near the track’s center, 
consistently positioned relative to the start and end points (Figure 2). 
Neural activity exhibited place-like tuning along the track’s length, with 
notable enrichment at the lap cues and the odor landmark, mirroring 
observations from the previously mentioned experiments in CA1 (54).

FIGURE 2

Odor-spatial paradigms for characterizing neural activity across brain areas. Left-top: A typical VR linear track set-up including a rodent head-fixed 
under a recording device (e.g., two-photon microscope) walking on a sphere or wheel while odor is delivered through a nose cone and visuals are 
shown on screens. Left-bottom: Simplified depictions of select VR linear tracks featured in this review. Odors are represented by translucent red and 
purple blocks on the track. Water drops represent reward. Specific visual contexts shown in green and gray. Beneath each track are simplified 
depictions of featured cell activities from each study. Bump represents an uptick in activity. Cell descriptions are labeled in the first panel for each 
experiment. Experiments labeled by citation above track depictions. Right-top: Schematic of a freely-moving rodent, allocentric spatial perspective 
represented in green, egocentric represented in red. Right-bottom: Freely-moving task from Igarashi et al. (50), depicting the correct paths to reward 
depending on odor presentation, odor A signals a reward at the left, odor B signals reward at the right. Bottom-right: Task from Poo et al. (27) with four 
odor trials from the same port depicted.
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Investigating further, they introduced laps where the odor cue was 
spatially shifted or omitted altogether (Figure 2). This manipulation 
revealed that the majority of cells initially recruited to the odor 
landmark would be better classified as cue cells, as their responses 
shifted or disappeared, respectively. However, some place cells 
persisted, suggesting that cue manipulation did not induce remapping. 
With the shifting location of the odor cue, these observations look 
similar to CA1 neurons described earlier (55), however these odor 
cues were not tied spatially to the randomly supplied reward.

In a series of additional experiments, the researchers compared 
coding of cues of different sensory modalities, odor cues in different 
visual contexts, and cues when presented multiple times across the 
track (56). They found that cues of all modalities were represented in 
equivalent ways by mostly separate populations of cue cells, that cue 
cells remained stable across different contexts, and that cue cells fired 
reliably to their respective cue whenever presented. In comparison, 
they found that place cells in the same region were less stable, drifting 
across days, and remapping in different contexts. Thus, by leveraging 
simple alterations of the task, the authors were able to differentiate 
between and characterize two important cell populations in DG: place 
cells and cue cells. They did note that when an odor cue was 
consistently presented in the same location, the amplitude of cue cell 
responses was increased, indicating that there is some level of spatial 
modulation occurring in DG odor cue cells (56).

Given this interesting dichotomy between cell populations in the 
DG, one might ask where cue cells and place cells get their 
information. The authors propose that these separate populations of 
cue cells and place cells receive projections from LEC and MEC, 
respectively. LEC is often associated with sensory cues and salience, 
while MEC is primarily involved in spatial processing (57, 58). Indeed, 
the robust connection from LEC to DG was already implicated in the 
transfer of odor information to DG (59, 60). While this particular 
connection may convey odor identity and salient cues, the LEC has 
also been shown to output specific salient spatial information (61, 62).

Encoding of reward locations in LEC and 
PCx

Recent work delved into the role of the LEC in encoding reward 
location (61). By introducing uncued reward at a particular location along 
the track, researchers were able to identify specific pre-reward, reward 
consumption, and post-reward cells. When the location of this reward 
changed, these three cell types adjusted to the new location quickly. They 
also demonstrated that LEC activity was crucial for learning the position 
of salient cues, as inhibiting the LEC deterred learning of new 
reward locations.

In a similar reward navigation task, Bowler and colleagues 
highlighted a dichotomy between LEC and MEC projections to CA1 
(62). They found LEC axons encoded both reward and spatial position. 
When the goal location was changed, the LEC axons appeared to 
mostly remap. This finding is consistent with CA1 activity described 
above, where neurons remapped according to moving reward cues 
(55). In contrast, MEC axons displayed only spatial coding, remapping 
with context changes, similar to classic place cells described in CA1 
(54) and DG (56). Together, these studies illuminate pathways for 
odor and space integration from the entorhinal cortices to different 
areas of the HPC, with LEC appearing to exert direct influence over 
CA1 and remapping in relation to salient cues.

As part of the primary olfactory cortex, PCx is traditionally studied 
for its role in coding basic odor information such as odor identity and 
intensity (25, 63–66). Yet robust bidirectional connections with the LEC, 
AON, and OB suggest some higher associative role for the area (16, 20–
22). Thus, Federman and colleagues conducted a comprehensive 
investigation into the coding capabilities of PCx through a multi-cue 
multi-context paradigm (67). In a linear track setup using two odor cues 
and two visually distinct contexts, Federman paired one conjunction of 
these variables with a reward shortly after the presentation of the odor. 
Initially, cells responded primarily to the odor cues (Figure 2). However, 
with continued exposure and learning of the environmental and olfactory 
associations, more cells responded to each salient feature of the task, 
including their many combinations. Notably, the authors report both odor 
specific cells, context specific cells, and conjunctive odor-context cells. 
This study showed that PCx can represent behaviorally-relevant odor-
spatial information (67).

Freeing behavior: two dimensions and the 
choice of head-fixation

Thus far, we have summarized studies illustrating diverse coding 
of odor-spatial information across several key brain areas, with 
emphasis on the use of a VR linear track. In terms of our hypothetical 
mouse, we have imagined them foraging for seeds only in a hallway. 
In addition to this line of VR linear track research, other studies have 
sought to reap the benefits of head-fixed recording in concert with 
more complex two-dimensional navigation tasks, for example, 
employing a spherical ball and a two-dimensional VR world (68) or a 
floating platform (69). Even in these cases, the use of head-fixation 
removes important real-world cues. For example, an absence of 
translational vestibular input and other self-motion cues can produce 
impairments in two-dimensional place tuning (70, 71). Such 
limitations motivate parallel studies in more ecologically relevant 
freely-moving conditions, that we summarize next.

Spatial coding in different reference frames

Whether in VR or freely moving conditions, including a second 
dimension opens up consideration of multiple spatial reference frames 
(Figure 2). For example, we often think of space as a fixed map of 
locations depicted in relation to each other. This perspective is called 
“allocentric,” for example with directions referred to as north, south, 
east, and west. Simultaneously, we can experience the world in an 
“egocentric” perspective, using directions to locations such as front, 
back, left, and right that depend on our place in the world. While 
peripheral sensory input is inherently egocentric, both perspectives 
are used for encoding information in the brain, and it is thought that 
the allocentric perspective is dominant by the time sensory 
information gets to HPC (72).

Early research into spatial coding was approached primarily from an 
allocentric perspective, including discoveries of place, grid, and head-
direction cells (73–77). Recently, however, studies have identified more 
egocentric coding throughout the brain. Wang and colleagues 
characterized spatial coding in the LEC, finding egocentric coding of 
several aspects of the environment that would be difficult to recognize in 
a linear track task (78). By leveraging natural exploratory behavior in 
mice, they discovered cells tuned to boundaries, items, and goal locations. 
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Together, these findings suggest that the peri-reward cells in LEC 
discussed earlier could be encoding egocentric coordinates of the reward 
location (61).

Part of the difficulty in identifying egocentric coding is that cells 
could be tuned to any of a variety of locations or items in an environment, 
and tasks must be designed specifically to dissociate different possible 
coordinate-systems. For example, Igarashi and colleagues trained rats to 
discriminate two different odors associated with corresponding reward 
locations (Figure 2) (50). They used egocentric terms “left” and “right” to 
describe reward locations, but the task design could equivalently 
be described in allocentric terms such as “East” and “West.” The goal of 
their study was not to explore different spatial frameworks, so they did 
not include additional spatial complexity, such as rotating or flipping the 
environment between trials or sessions. However, this study revealed 
synchrony between LEC and CA1 during odor-place association, which 
we will discuss further below.

In order to differentiate between allocentric and egocentric 
coding, it is necessary to examine neural activity during more spatially 
complex behaviors. Poo and colleagues trained rats to associate four 
different odors with reward at each of four different ports in a plus 
shaped arena (Figure 2) (27). Notably, the trial initiation port also 
changed locations between each trial, requiring the association of each 
odor to an allocentric place (e.g., North reward port) rather than to an 
egocentric action (e.g., Left turn to reward port). Interestingly, they 
found place-like neural tuning not only in CA1. Owing to the clever 
task design, they further were able to dissociate odor identity from 
odor delivery location and found both odor selective cells and place-
like cells in posterior PCx. They were also able to determine that pPCx 
spatial coding was allocentric, something that had not yet been 
described. These spatial PCx cells were concentrated at odor/reward 
delivery ports indicating that the posterior PCx may represent 
locations relevant to olfactory task demands.

Learning integrated odor-space 
representations

An animal is not born with a cognitive map of the world. 
Representations must be learned through experience and updated as 
the world changes. The olfactory-hippocampal circuit is especially 
equipped to facilitate learning, but there are still many unknowns in 
how representations change across these brain areas to encode new 
information. So far, we  have touched only briefly on studies that 
investigate changes in neuronal activity during learning. Here 
we elaborate these findings and propose connections between them.

Inter-areal synchronization during 
associative learning

Neural activity synchronization has long been associated with 
learning and memory and navigation (79, 80). Studies have found 
synchronization between key areas during olfactory-spatial task 
performance (27, 50). Igarashi and colleagues demonstrated 
synchronization of the CA1 and LEC during the presentation of odor cues 
in their left–right odor association task (50). Poo and colleagues found 
PCx spatial neurons were synchronized with CA1 firing (27). Taken 
together, these studies suggest that all three areas are synchronized during 
odor-place association, and further that top-down connections to PCx 

may be responsible for its spatial coding. Meanwhile, odor tuned cells in 
PCx tended to be synchronized to the sniff cycle, suggesting that these 
cells were more directly influenced by OB (27).

Igarashi and colleagues also observed synchrony evolve over multiple 
days as they added new odors, forcing rats to learn new odor-spatial 
associations; as rats learned to perform with higher accuracy, the 
synchronization of the LEC and CA1 also increased (50). This 
phenomenon may reflect Hebbian strengthening of synapses (81, 82). 
Indeed, the authors found that the selectivity of odor representations in 
LEC and CA1 was highly correlated with this inter-areal coupling, and 
suggested that this coupling may be responsible for the formation of 
associative representations in both areas.

Intrinsic and learned representations

Complementary studies distinguish representations that seem to 
be intrinsic to a given brain area from new representations recruited 
through learning. For example, while place cells in CA1 appear almost 
instantly upon introduction to a new environment (83) [with some 
nuances to consider (77)], the appearance of odor landmark tuning was 
highly correlated with behavioral indications that animals learned the 
significance of these environmental cues (54). Similarly, odor was strongly 
represented in CA1 when it predicted reward, but not when another cue 
was more important to the task (55). Together, these findings support that 
CA1 forms representations of salient odors in space through associative 
learning. Anterior PCx seems to mirror this process, with initial coding 
only of odor, followed by recruitment of more contextual, spatial, and 
conjunctive odor-context cells with learning (67). Fully trained rats show 
both spatial and odor representations in posterior PCx. It is unclear 
whether posterior PCx automatically represents spatial information in a 
new environment, but the concentration of spatial cells around 
behaviorally relevant locations suggests that they are recruited through 
learning (27). Given synchrony between CA1 and PCx and the diverse 
representations that form in both areas over the course of learning, it 
appears that these areas may be sharing information to encode salient 
odor-spatial associations.

A role for LEC in mediating odor-place 
integration across areas

How does the PCx-HPC circuit know what information to 
integrate? The LEC is particularly well poised to manage this process. 
With bidirectional connections to both CA1 and PCx, the LEC stands 
in position to gate information between them.

Indeed, the LEC has been shown to be important in both spatial 
and olfactory learning. For example, one study demonstrated that the 
LEC is required for learning new reward locations (61), while others 
show that inhibiting LEC pathways to either CA1 or DG impairs new 
olfactory association learning (42, 60). Interestingly, these studies 
noted that learning was impaired, while pre-learned associations were 
not affected. This suggests that LEC plays a specific role in encoding 
new information, especially odor and spatial associations, thus 
we hypothesize that LEC acts as a key gateway for pairing these salient 
associations by inducing multi-areal oscillations and forming 
complementary representations in HPC and PCx.

Lee and colleagues go farther, identifying dopaminergic inputs to 
the LEC as key to learning new associations in an odor discrimination 
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task (60). Dopamine is one possible trigger to identify novel salient 
information. The literature on dopamine is vast, and the idea that it 
may signal novel information underlying learning is key (84–86). 
That said, the LEC is a highly connected area, and yet unidentified 
connections may also be  important for triggering the process of 
forming new odor-spatial associations (87).

Interestingly, the LEC sends the bulk of its output projections to 
DG. Both in LEC fan cells and the DG cells to which they project, odor 
exposure elicits activity without prior learning (59, 88). As explained 
earlier, DG maintains separate populations of place cells and cue cells 
throughout several manipulations, with little evidence of integration (56). 
This sparsity may be important to differentiate between contexts and 
distinct episodes (44). During an odorant discrimination task, 
representations in DG get more sparse and more specific to the odor 
identities; further, the connection between LEC and DG is important in 
learning these representations (59). Thus, DG may be responsible for 
cueing specific contexts, and signaling CA1 to represent salient context-
dependent information.

Taken together, these observations may suggest that learning of odor-
place associations cause CA1 and PCx to become more tuned to both 
odor and spatial information, perhaps owing to correlated firing and 
strengthened connections with each other, mediated by 
LEC. Simultaneously, DG forms a sparse representation of contextual 
information that corresponds to learned associations in CA1, for example 
making it possible for odors to hold different spatial associations in 
different contexts. We propose that associations between CA1 and PCx 
are gated by the LEC, which then entrains the CA1-LEC-PCx network in 
order to tie PCx and CA1 representations together.

Under this model (Figure  3), after introduction to a novel 
environment, PCx would primarily represent odor and CA1 space. As 
the animal recognized that an odor cue always preceded a reward 
location, synchronization of PCx, LEC, and CA1 would increase. This 
synchronization would signal inter-areal communication that 
strengthened their connections. These connections would then lead 
to the emergence of odor-evoked ensembles in CA1 and spatially 
tuned ensembles in PCx. Given that both areas would then contain the 
integrated odor-spatial associations, this would also account for the 
observation that LEC is needed for learning new associations, but not 
recalling ones previously formed (42, 60, 61).

Future perspective

Acquiring data throughout the learning process is challenging. 
However, emerging tools are making it possible to acquire, store, 
analyze, and share the vast and multifaceted data produced by 
olfactory-spatial learning experiments. New indicators and better 
imaging technologies are rapidly being developed (89–92), while the 
channel count of electrophysiological recording has dramatically 
increased (93, 94). Larger datasets impose additional data management 
requirements, relying on improvements in storage size and decreasing 
costs (95, 96), and data standards such as NeuroData Without Borders 
(97). Videographic analysis of behavior has been tremendously 
advanced by automated tools such as DeepLabCut (98) and MoSeq 
(99), and an array of post-processing analysis pipelines, e.g., VAME 
(100), B-Soid (101), DeepPoseKit (102), or Keypoint-MoSeq (103).

Together, these technologies will support novel and advanced 
investigation of how sensory experience in a dynamic environment 

shapes the synaptic, cellular, and circuit mechanisms enabling 
behaviors relying on the integration of odor and space.
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FIGURE 3

Cell activity changes with olfactory-spatial learning across the PCx-
HPC circuit. Summary model of the flow of information along the 
HPC-LEC-PCx pathway. Schematics represent circuitry in a novel 
environment (left) and after an association is learned (right). Synchrony 
between areas is represented by a blue wavy line. Arrows between 
areas represent projections from cell populations with indicated 
tuning. Spatial (scarlet), odor (chartreuse), and conjunctive cell 
(orange) activity are represented by colored outlines. Learning is 
represented in blue between circuitry models, with synchrony and 
synaptic plasticity icons to symbolize the changes made between the 
two timepoints. Gray arrows to and from LEC represent connections 
that exist but are not thought to be synchronized before learning. 
Dashed boundaries represent cell populations that contain more than 
one firing type; for example, the DG exhibits odor cue cells and place 
cells even in novel environments, while the CA1 in the learned 
condition contains place cells and odor-place cells.
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Memory-guided motor shaping is necessary for sensorimotor learning. Vocal

learning, such as speech development in human babies and song learning in

bird juveniles, begins with the formation of an auditory template by hearing adult

voices followed by vocally matching to the memorized template using auditory

feedback. In zebra finches, the widely used songbird model system, only males

develop individually unique stereotyped songs. The production of normal songs

relies on auditory experience of tutor’s songs (commonly their father’s songs)

during a critical period in development that consists of orchestrated auditory and

sensorimotor phases. “Auditory templates” of tutor songs are thought to form in

the brain to guide later vocal learning, while formation of “motor templates”

of own song has been suggested to be necessary for the maintenance of

stereotyped adult songs. Where these templates are formed in the brain and

how they interact with other brain areas to guide song learning, presumably with

template-matching error correction, remains to be clarified. Here, we review

and discuss studies on auditory and motor templates in the avian brain. We

suggest that distinct auditory and motor template systems exist that switch their

functions during development.

KEYWORDS

auditory, song learning, critical period, sensorimotor learning, songbird, template
matching

Introduction

Sensorimotor learning depends on memory formation, followed by matching a motor
pattern to the memorized template. When learning to speak, human babies shape their
auditory detection skills based on the sensory environment. Later, they sculpt their
vocalization using auditory feedback, which is restricted within the range of acquired
auditory perception. Similalrly, songbirds learn to sing first by memorizing a tutor’s
songs (TS), commonly their father’s songs, and then by matching their vocalizations to
the memorized TS via auditory feedback during the song-learning period (Figure 1).
Depending on the bird species, only males or both sexes sing to attract mating partners, to
identify their territory, and to facilitate individual recognition. Early behavioral studies in

Abbreviations: AFP, anterior forebrain pathway; AIV, ventral intermediate arcopallium; CMM,
caudomedial mesopallium; LC, locus coeruleus; LMAN, lateral magnocellular nucleus of the anterior
neostriatum; NCM, caudal mesopallium; Nif, nucleus interface; RA, robust nucleus of the arcopallium;
RAcup, “cup” adjacent to RA; SNc, substantia nigra pars compacta; TS, tutor’s songs; Uva, nucleus
Uvaeformis; VP, ventral pallidum; VTA, ventral tegmental area.
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FIGURE 1

Conceptual diagram of the zebra finch song learning process:
template formation and template matching. Juveniles form a tutor
auditory template by listening to tutor’s songs, which may facilitate
formation of own song motor template. Juveniles develop their
own adult songs by matching their vocalization to the template
(unclear whether tutor song template or own song template), using
auditory feedback. Template matching with auditory feedback is
believed to continue until adulthood, as disturbing auditory
feedback leads to song degradation.

white crowned sparrows (Zonotrichia leucophrys), which form
memories and start to sing in different seasons, explained
beautifully the multistep process of song learning; isolation after
hearing and memorizing TS in the spring does not prevent juveniles
from developing normal adult songs and learning from TS when
they start to sing in the fall. If juveniles are isolated from TS before
auditory learning or are deafened in the period between auditory
and sensorimotor learning, song learning fails to develop properly.
These behavioral studies emphasize the importance of forming
auditory memories of TS by listening to the tutor and the necessity
of auditory feedback during sensorimotor learning (Konishi, 1965;
Marler, 1970).

In zebra finches (Taeniopygia guttata), the widely used songbird
model system, only males sing, and females do not. Male zebra
finches develop individually unique songs in the largely overlapping
auditory and sensorimotor learning phases and retain them
throughout their life. Their songs are similar, but never identical,
to TS, which is important for identity recognition. Sensorimotor
learning ends irrespectively of the level of similarity between
own song and TS or song maturity. Thus, the pre-determined
time course of song learning based on age is suggested. These
observations raise questions on how error signals shape the motor
pattern of singing, especially in later phases of song learning,
if auditory memories of TS instruct sensorimotor learning and
regulate the song-learning time window. Alternatively, do birds
construct a “motor template” by hearing TS? The “template” and
“template matching” theories have been discussed in songbird
research for decades, but only vague and occasionally confusing
definitions of song templates (auditory memory of TS or a bird’s
own motor pattern) have been provided. In this review, we sought
to discuss how and where in the brain song templates are stored to
be utilized for song learning.

“Template matching” theory

In describing the song template system, Peter Marler
determined in his early studies that templates serve as filters
to detect own species song first, and later for the formation of
memories of TS and motor learning guidance; these definitions
suggest that templates have multiple functions depending on

the developmental time course (Marler, 1970). Marler later
described preactive (active) and latent templates. The former
normally acts as a filter for preferential learning from own
species songs and later guides song learning if birds are not
exposed to adult songs, while the latter guides motor learning
with respect to the formed memory of adult songs (Marler,
1984; Marler and Nelson, 1992; Marler, 1997). Marler and others,
with slight variations, have indicated that template formation
requires auditory experiences of conspecific adult songs in
addition to innate predispositions. Normally birds learn to sing
by hearing TS, suggesting that memories of TS function as
templates, while isolated birds use an internal song model as
template [reviewed in Mooney (2009)]. While isolated songs
feature abnormal acoustic characteristics, such as longer duration
and limited variety of syllables with relatively simple features,
prolonged isolation (over generations) somewhat normalizes songs,
suggesting the presence of innate predispositions (Fehér et al.,
2009). Templates may facilitate memory formation of TS (or
memories of TS are “templates” as themselves) and for shaping
motor learning later. Whether auditory memory of TS and motor
templates, namely the preactive and latent templates described
in the early work of Peter Marler, are distinct has yet to be
clarified.

TS memories are believed to be formed for song learning (tutor
templates), as social isolation (absence of tutor template) leads
to abnormal song development. However, zebra finches do not
develop an exact copy of TS for their own song development.
Each individual among siblings intentionally develops own unique
songs by coping distinct parts of father’s songs (Tchernichovski
and Nottebohm, 1998). Additionally, song learning concludes
regardless of the level attained (similarity to TS), but depending on
a developmental time course. These notions indicate that template
matching with error correction with TS auditory memories alone
would not lead to the development of individual songs and suggest
that motor templates must be established. In the following sections,
we discuss the brain circuits that host specific song templates and
aspects of their temporal development.

Song motor template in the
premotor area, HVC, the apex of the
song system

HVC sits at the apex of the song system and constitutes the
premotor area for singing behavior (Figure 2). Pioneering chronic
multiunit recordings in HVC have shown firing activity when an
adult male zebra finch sings (McCasland and Konishi, 1981). HVC
comprises two types of projection neurons and interneurons and
shows auditory responsiveness to playback of bird’s own songs
(BOS) under anesthesia (Mooney, 2000). Other studies, including
a detailed electrophysiological study with antidromic neuronal
identification in awake singing birds, have revealed sequential
sparse firing in a group of HVC neurons, which extends over the
entire song duration (Hahnloser et al., 2002). Cooling HVC affects
the temporal pattern of vocal behavior by slowing down the timing
of the song (Long and Fee, 2008). Even in the absence of tutoring
experiences, sequential activity in HVC can be observed, while pre-
existing sequences become tightly associated with new own song
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FIGURE 2

Neural circuits for template matching. Neural circuits necessary for
song production and learning have been well identified as the song
system (colored in cyan). Area X, the basal ganglia locus of the song
system, is reported to receive dopaminergic error signals from VTA
when auditory feedback is distorted. The premotor region of the
song system, HVC, also receives sensory inputs from multiple
auditory areas, including the telencephalic nucleus interface (NIf).
Optogenetic activation of NIf projections to HVC encode the
duration of song syllables. In contrast, accumulated studies have
suggested that tutor memory forms in a higher auditory area, the
caudal mesopallium (NCM), from which we found a transient
projection to HVC during the song learning period.

after exposure to TS (Mackevicius et al., 2023). These series of
studies have suggested that microcircuits within HVC regulate the
generation of the song motor pattern. Perturbating the activity
of the motor thalamic nucleus Uvaeformis (Uva), which projects
to HVC, and imaging of Uva synaptic activity in HVC further
support a model whereby thalamic input to “starter cells” in HVC
drives sequential neuronal activity in the nucleus (Moll et al., 2023).
Moreover, fractions of HVC neurons projecting to Area X (HVCx
neurons) have reported to work as “mirror neurons” (Prather
et al., 2008; Fujimoto et al., 2011). Studies in swamp sparrows
and Bengalese finches revealed that antidromically identified single
HVCx neuronal units exhibit neuronal firing both during singing
and BOS playback, exactly the same time in the song phase,
suggesting auditory-vocal information in single neurons. Notably,
these studies were performed in adult zebra finches in which songs
are “crystallized”. Contingent aversive stimulation in adult birds
shifts the pitch of targeted syllables, but the pitch reverts to baseline
when the perturbation is removed, suggesting that song templates
are retained after song crystallization (Janata and Margoliash, 1999;
Sober and Brainard, 2009). Is this template a TS auditory memory?
Does the TS auditory template or the motor template (preactive or
latent) guide song learning?

Song motor plasticity driven by the
anterior forebrain pathway (AFP)

Early studies on the lateral magnocellular nucleus of the
anterior neostriatum (LMAN), the output region of the basal
ganglia–thalamocortical loop of the song system, were implicated
LMAN as the site associated with the tutor template. After LMAN
lesions, juveniles loose motor plasticity which leads to poor song

learning from TS (Bottjer et al., 1984; Scharff and Nottebohm,
1991). Juvenile LMAN neurons respond to playback of TS (Solis
and Doupe, 1997, 1999). However, LMAN neurons do not respond
to TS that is no longer similar to bird’s own song by re-learning
from another tutor (Yazaki-Sugiyama and Mooney, 2004). Later
studies have shown that LMAN contributes to acute song motor
plasticity. LMAN activity is higher when zebra finches are singing
undirected songs than direct songs, which are characterized by
less variable acoustic features (Sossinka and Böhner, 1980; Jarvis
et al., 1998; Hessler and Doupe, 1999). LMAN lesion reduces
song variability in adults, suggesting defects in motor plasticity,
similar to the previous finding in juveniles. Microsimulation of
LMAN alters the song motor pattern (Kao et al., 2005). LMAN
projects to a motor area, the robust nucleus of the arcopallium
(RA), where neurons receive direct inputs from HVC. As described
above, several studies have suggested that LMAN is responsible
for error/error corrections (the output of a comparator). Still,
important questions remain regarding the source of auditory
feedback and the site of representation of the TS memory template.
Additionally, whether the TS or motor template is compared to
auditory feedback remains to be clarified.

Auditory feedback to the song
system

Recent studies using advanced techniques that allow
manipulation of specific inputs to HVC have reported that
optogenetical activation of the telencephalic nucleus interface
(NIf) input at HVC synapses shapes the duration of syllables, while
severing the NIf–HVC projection before, but not after, auditory
learning from tutor disrupts song learning from tutor (Zhao
et al., 2019). HVC rhythmic activity emerges in parallel with the
emergence of new syllables during development (Okubo et al.,
2015). Interestingly, in vivo intracellular recordings in awake zebra
finches revealed that HVC neurons projecting to RA respond to TS
in juveniles, but these responses are suppressed by local inhibitory
circuits in adults (Vallentin et al., 2016).

Not only auditory feedback but dopaminergic signals have also
been reported to shape song learning, as reported in reinforcement
learning (Scharff and Nottebohm, 1991; Brainard and Doupe,
2000). The basal ganglia locus of the song system, Area X,
receives dopaminergic inputs from the ventral tegmental area
(VTA) (Person et al., 2008). VTA receives auditory inputs from
the surrounding part of the arcopallium (ventral intermediate
arcopallium [AIV]) (the “cup” adjacent to RA [RAcup]), suggesting
a role in auditory feedback. Area X projects to the ventral
pallidum (VP), which projects to VTA and the substantia nigra pars
compacta (SNc) (Gale et al., 2008). VP receives inputs from AIV
and sends projections to HVC and RA (Li and Sakaguchi, 1997).
This architecture collectively demonstrates that the basal ganglia–
thalamocortical pathway forms a loop with dopaminergic inputs.
Inactivating VTA neurons in Bengalese finches (Lonchura striata
var. domestica) disrupts the ability of the birds to shift pitches
of songs to avoid aversive stimulation (Hoffmann et al., 2016).
Electrophysiological recordings from VTA neurons have revealed
a role in computing performance error signals upon distorted
auditory feedback (Gadagkar et al., 2016) and natural fluctuations
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in performance of VTA neurons projecting to Area X (Duffy et al.,
2022). Dopaminergic signals in Area X are depend on performance,
and diminishing during courtship (Roeser et al., 2023). To compute
error-based reinforcement signals, neurons require inputs from
both auditory feedback of own vocalization and a template (target
motor pattern). A question remains unresolved: is this template a
memory of TS or a motor template? The studies described here
were performed in adult birds, which raises the issue of whether
the template matching systems during juvenile song learning and
adult song maintenance overlap.

Auditory memory in auditory
forebrain: song memory and song
discrimination

As described in the previous sections, auditory
guiding/feedback signals to HVC appear to instruct song learning,
while performance error is computed in the VTA–Area X circuit.
Except for the information on syllable length from NIf to HVC,
the type of information that arrives at HVC or VTA for template
matching and its source remains largely unknown. In addition
to research on the song system, more recent studies have shown
that TS memories are stored in brain regions within the auditory
pathways, especially in higher auditory areas. The expression
level of the immediate-early gene, ZENK, a molecular marker
for neuronal activity, in the zebra finch higher auditory area,
the caudomedial nidopallium (NCM), is higher in birds exposed
to TS playback than in those exposed to unfamiliar zebra finch
songs (Gobes et al., 2010). In both sexes, NCM has been suggested
to be the site of memory storage of auditory experiences, not
exclusively for song learning. NCM lesions after conditioning with
song stimulation diminishes song discrimination ability in adult
males (Gobes and Bolhuis, 2007; Canopoli et al., 2014; Yu et al.,
2023), while lesions in adult females disrupt song preference to
experienced songs (Tomaszycki and Blaine, 2014).

A series of studies have suggested the involvement of NCM
in song learning as a TS memory brain region. ZENK expression
levels upon TS exposure positively correlate with the amount of
song learning from a tutor (Bolhuis et al., 2000, 2001; Terpstra
et al., 2004). Pharmacological blockade of a signaling pathway in
NCM prevents juveniles to learn from TS (London and Clayton,
2008). An electrophysiological study revealed distinct habituation
rates in NCM auditory responses upon repeated exposure to TS
and unfamiliar song (Phan et al., 2006). We have reported that
a small subset of juvenile NCM neurons show almost exclusive
auditory responsiveness to a learned TS (Yanagihara and Yazaki-
Sugiyama, 2016; Katic et al., 2022). In contrast to the other brain
loci in the song system, nearly all neurons are selective to the bird’s
own song (Doupe and Konishi, 1991; Solis and Doupe, 1997; Janata
and Margoliash, 1999). In NCM, electrophysiological experiments
revealed two types of neurons distinct in their spiking shapes and
firing rates (Schneider and Woolley, 2013; Yanagihara and Yazaki-
Sugiyama, 2016), including inhibitory neurons (Spool et al., 2021).
Only a subset (∼15%) of broader spiking NCM neurons acquire
selectivity to TS soon after (∼1 h) listening to tutor singing (Katic
et al., 2022). This timeline parallels a previous finding, in that TS
memory forms by hearing only a few renditions of songs. The

responsiveness of these neurons is exclusive to TS and not even
to birds’ own songs, suggesting that they comprise the neuronal
substrates of auditory memory.

Despite cumulative studies that has implicated the zebra
finch NCM in memory formation, neither a direct anatomical
connection between NCM and the song system (Vates et al., 1996)
nor instructive NCM neuronal activity during juvenile singing
has been elucidated. NCM has reciprocal connections with the
caudomedial mesopallium (CMM) which projects to HVC (Vates
et al., 1996). While AFP in the song system receives dopaminergic
reinforcement signals for song learning as discussed in the previous
paragraph, NCM receives inputs from the noradrenergic locus
coeruleus (LC), the brain region that controls attention and arousal
states and noradrenergic release (Velho et al., 2012). LC to NCM
inputs are suggested to send social information for song learning
(Katic et al., 2022). These connectivity patterns collectively show
that the song system and auditory pathway are integrated with
a neuromodulatory system (Figure 2). Using viral technology to
manipulate gene expression in target neurons and whole-brain
axonal tracing with tissue clearing, we recently reported a transient
projection to HVC from the subset of NCM neurons responsive
to TS playback. The TS-responsive NCM neurons project to
HVC, HVC-shelf, AIV, CMM, and Area X in juveniles, but the
HVC projection disappears in adults. Inducing cell death in
these NCM TS-responsive neurons by targeting the expression of
CaCaspase disrupts song learning in juveniles but not in adults
(Louder et al., 2024). While these results do not specify which of
the projections from NCM are necessary for song learning, the
NCM–HVC temporal connections comprise a candidate circuit
for auditory TS memory-guided sensorimotor learning; moreover,
dynamic rewiring of the interareal neural circuit may regulate
the developmental time course of song learning. This raises
the question of the fate of TS auditory memories over the
developmental period.

Discussion

Whether a brain area is related to the process of distinguishing
individual songs or in memory formation and storing cannot
be decidedly determined in lesion experiments. Rather than
disrupting auditory memories, the lesion experiments described
above might have interrupted song discrimination. Sensory
memories are thought to last long, perhaps permanently. In some
bird species, sensory and sensorimotor learning is separated by
2–3 months, suggesting (at a minimum) month-long auditory
memories. In zebra finches that learned two songs sequentially from
two distinct tutors, the level of Zenk expression upon exposure
to TS correlates with the amount of song learning from either
tutor (Olson et al., 2016), suggesting that NCM is the substrate
for TS memory encoding in adults, while neuronal substrates for
TS memory in adults have yet to be identified. Auditory memories
of TS are necessary for song learning, but storage may occur in
different brain regions in juveniles and adults, specifically before
and after song learning.

Similarly, while auditory learning can be extended if TS are
not provided (e.g., in isolation), the song crystallizes at a specific
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developmental time regardless of the level of learning. Even in
the absence of TS experiences, juvenile birds start to sing at a
specific time point during development. These observations suggest
that the time course of sensory and sensorimotor learning are
independently regulated but well-coordinated. Forming a memory
during early auditory learning is necessary and TS memories
are thought to guide sensorimotor learning. The higher auditory
area is a strong, but likely not exclusive, candidate as the locus
of TS memory encoding. Moreover, different brain regions may
be responsible for the generation of auditory memory to guide
sensorimotor learning during development and song recognition
in the latter stage. Detailed dissections of neural circuits over
the entire song learning period and manipulation of specific
circuits during song learning are expected to enrich knowledge
on the song template, TS template, or own song motor template
systems, and provide insights into the relevant spatial and temporal
characteristics in the brain. Furthermore, such studies likely have
implications for bilingualism in humans. Early experiences of
adults in non-native language settings have positive influences
on auditory discrimination ability of bowling or intonations even
when speaking ability of the second language is limited. Retention
of connections that guide the flow from auditory memories to the
motor area may be a key factor for re-opening re-learning or new
song learning in adults. Hearing is one thing, doing (mimicking)
might be another. The long-existing song template theory should
be explored in more depth to thoroughly understand its concepts.
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The olfactory system plays crucial roles in perceiving and interacting with

their surroundings. Previous studies have deciphered basic odor perceptions,

but how information processing in the olfactory system is associated with

learning and memory is poorly understood. In this review, we summarize

recent studies on the anatomy and functional dynamics of the mouse olfactory

learning pathway, focusing on how neuronal circuits in the olfactory bulb

(OB) and olfactory cortical areas integrate odor information in learning. We

also highlight in vivo evidence for the role of the lateral entorhinal cortex

(LEC) in olfactory learning. Altogether, these studies demonstrate that brain

regions throughout the olfactory system are critically involved in forming and

representing learned knowledge. The role of olfactory areas in learning and

memory, and their susceptibility to dysfunction in neurodegenerative diseases,

necessitate further research.

KEYWORDS

olfactory, lateral entorhinal cortex (LEC), Olfactory learning, olfactory cortex,
hippocampus

1 Introduction

Olfaction is a crucial ability for animals to detect environmental cues that are relevant
for survival such as rewarding foods or dangerous predators. The sense of smell is also
critical for human beings when we are involved in daily activities and experience the
surrounding world. In the recent COVID-19 pandemic, nearly 88% of patients experienced
olfaction loss in the short term (Lechien et al., 2020). A study also observed long-term
structural changes in the brain such as tissue damage in the primary olfactory cortex
and limbic regions that are functionally connected with the olfactory pathway (Douaud
et al., 2022). Structural changes were also observed in memory-related regions including
the entorhinal cortex and the hippocampus (Douaud et al., 2022). Furthermore, olfactory
loss is associated with cognitive decline and declarative memory impairment in long-
term COVID-19 patients (Fiorentino et al., 2022). Due to the overlapping vulnerability
of olfactory and memory-related regions, it is even possible that long-term Covid infection
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could contribute to increased risks of neurodegenerative diseases
like Alzheimer’s disease (AD). Thus, it is increasingly urgent
to investigate the neural circuit dynamics behind olfaction
and memory. Among different model organisms, rodents
are particularly adept in olfactory tasks and possess multiple
homologies with higher mammals, offering valuable insights
into the neural circuits and dynamic representations of olfaction
(Ache and Young, 2005). As previous research has established the
basic odor representation component of the olfactory system, the
current field has introduced new perspectives on how animals
associate odor cues with specific outcomes, and how the neural
representations of odors change across learning along different
regions of the olfactory pathway. In this review, we will cover the
circuit mechanisms of olfactory regions and their dynamics during
olfactory learning.

1.1 Anatomy of olfactory pathway in
rodents

Olfactory information is first detected by olfactory sensory
neurons (OSNs) located in the olfactory epithelium (OE) within
the nasal cavity (Buck, 1996; Mori et al., 1999) (Figure 1). OSNs
relay signals to the olfactory bulb (OB), which contains two types
of projection neurons: mitral cells (MCs) and tufted cells (TCs)
(Shepherd, 2004). From there, MCs and TCs send information
to several olfactory cortical areas in the brain (Miyamichi et al.,
2011; Igarashi et al., 2012; Nagayama et al., 2014). Olfactory
cortex is defined as areas that receive direct input from the OB,
including 9 major brain regions: anterior olfactory nucleus (AON),
olfactory tubercule (OT), anterior piriform cortex (aPir), posterior
piriform cortex (pPir), lateral entorhinal cortex (LEC), nucleus
of the lateral olfactory tract (nLOT), anterior cortical amygdaloid
nucleus (ACo), posterolateral cortical amygdaloid nucleus (PLCo)
and tenia tecta (TT) (Paxinos, 2004; Shepherd, 2004; Igarashi et al.,
2012). TCs signal mainly to the anterior portion of the olfactory
cortex including the AON and the OT, while MCs are thought to
be the main output neurons of OB and project to all the olfactory
cortical regions (Igarashi et al., 2012; Nagayama et al., 2014;
Chen et al., 2022) (Figure 1).

The organization of the olfactory system is unique. First, the
olfactory system does not have a thalamic relay and contains
only three primary layers of information processing: OE as the
first layer, OB as the second, and the remaining olfactory cortical
regions tied for the third. It is surprising that olfaction could
be encoded in this three-layer hierarchy system as this is not
observed in other sensory modalities such as the visual system
where the primary (V1), secondary (V2), and third (V4) visual
cortex are sequentially connected. The second unique feature is
the odor representation pattern in the olfactory cortex. While
the odor representation of OB neurons is spatially organized
(Mori et al., 2006), the piriform cortex (PC), which has the
largest area among the olfactory cortex, receives divergent axonal
projections from mitral cells (Miyamichi et al., 2011; Igarashi et al.,
2012) and responds to odors in distributed neuronal ensembles
lacking a topographical pattern (Stettler and Axel, 2009). This is
also not observed in other associational sensory cortical regions
like V1 or primary auditory cortex in mammals (Malach, 1989;

Ojima et al., 1991) but only in higher regions such as V4 and
primary somatosensory cortex (area 3b) in monkeys (Hansen et al.,
2007), suggesting the role of olfactory cortex as a higher association
cortex.

1.2 The role of olfactory regions in
learning

Previous studies have identified the anatomical connections
of the olfactory bulb and olfactory cortex regions, but the
functions of these regions remain largely unknown. By contrast,
as most prior studies measured the neuronal responses of OB
in basic odor detection, studies from the past few years have
begun to reveal the function of OB in learning. Intrinsic optical
imaging of OB showed an increase in the number of activated
glomeruli in mice trained on a go/no go odor discrimination
task, and this learning-induced potentiation lasted up to 5 weeks
(Abraham et al., 2014). Targeting recordings specifically to MCs
showed that, after learning, synchronized activity in MCs carries
information about odor value (rewarded or unrewarded) (Doucette
et al., 2011). Additionally, when task difficulties depended on
the similarities of odorants that mice need to discriminate, the
fraction of responsive MCs increased over weeks for mice trained
with the difficult task, and decreased in mice with the easy task,
demonstrating experience-dependent plasticity in the OB (Chu
et al., 2016). Moreover, recordings from evoked field postsynaptic
potentials demonstrated that connections between OB-PC inputs
were enhanced during rule learning (Cohen et al., 2015). These
studies suggest that the OB not only functions as a sensory relay
station but also endures plasticity-related changes across learning.

Recent studies have also found plasticity-related changes in
some of the olfactory cortex regions, including the OT, AON,
TT and the LEC. A paper reported learning-dependent plasticity
in OT, with the anteromedial domain of OT responding more
to appetitive odor cues and the lateral domain responding to
aversive cues after learning (Murata et al., 2015). This suggests
that OT is involved in the expected outcome representation of
specific stimuli, with activation of different domains based on
the outcome valence. Moreover, optogenetic stimulation of either
the OB-OT or Pir-OT pathway alone elicited food-searching
behavior in mice trained with reward, as well as shock avoidance
in aversively-trained mice (Sha et al., 2023). Both of these
synaptic connections could potentially explain learning-induced
potentiation of the OT (Sha et al., 2023). Additionally, TT
neurons are tuned to specific task elements with learning, such
as temporal epochs and approach behavior (Shiotani et al., 2020).
For AON, memory engram-like activities were detected using cFos
labeling after mice were exposed to an odor-context paradigm,
and inhibition of AON engram activity disrupted the odor-
contextual associative memory recall (Aqrabawi and Kim, 2020).
Anatomically, topographical projections from the hippocampus
to AON were revealed previously (Aqrabawi and Kim, 2018b),
and this HPC-AON input is necessary for forming olfactory-
contextual memory (Aqrabawi and Kim, 2018a). Collectively, these
experiments provide new insights into how we understand the
olfactory system – that is, that each of the olfactory regions
is presumably involved in specific aspects of olfactory learning.
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FIGURE 1

Schematic of mouse olfactory pathway anatomy. Individual areas are highlighted with different colors. Projections from mitral cell are shown in
green, tufted cell projections in orange, back projection from LEC layers IIb and V in dark red, and projections from hippocampus neurons in blue.
Arrows indicate axonal projections, and boutons indicate direct synaptic connection. MC, mitral cell; TC, tufted cell; AON, anterior olfactory nucleus;
TT, tenia tecta; OT, olfactory tubercle; aPir, anterior piriform cortex; pPir, posterior piriform cortex; nLOT, nucleus of the lateral olfactory tract; ACo,
anterior cortical amygdaloid; PLCo, posterolateral cortical amygdaloid nucleus; LEC, lateral entorhinal cortex; DG, dentate gyrus.

FIGURE 2

Schematic representation of lateral entorhinal cortex (LEC) layer input/output projections. Inputs from olfactory bulb (OB) and piriform cortex (Pir)
reach LEC layer I; Reelin (RE) positive cells project to medial entorhinal cortex (MEC) and dentate gyrus (DG) (shown in dark red); Calbindin (CB)
positive pyramidal cells in layer II project to olfactory areas, medial prefrontal cortex (mPFC), and amygdala (AMG) (shown in green); Layer III
pyramidal cells mainly project to CA1 and subiculum (SUB) (shown in yellow). Layer Va cells express E twenty-six variant transcription factor 1 (Etv1),
and project to mPFC and AMG, as well as olfactory areas (shown in purple); Feedback from these areas reach layer Vb. Layer Vb cells express
Chicken ovalbumin upstream promoter transcription factor-interacting protein 2 (Ctip2) and project within the LEC (shown in dark blue). LEC layer II
and VI receive dopaminergic inputs from midbrain ventral tegmental area (VTA) and substantial nigra pars compacts (SNc) (shown in red).

Future studies should further clarify the distinct roles of individual
regions and identify the circuit mechanisms supporting learning-
induced changes in these olfactory areas.

2 The role of the LEC in olfactory
learning

2.1 Anatomical connections of LEC

Among the olfactory cortical areas, LEC is unique in that
it is also a constituent of the memory system. LEC is situated
between olfactory regions and the hippocampus, serving as an

information transfer station between the two. LEC is a six-layer
structure with distinct input/output properties and distinct cell
types comprising each layer (Figure 2). It receives direct inputs
from MCs via the LOT and makes bidirectional connections with
Pir (Agster and Burwell, 2009; Igarashi et al., 2012; Diodato et al.,
2016). LEC also receives inputs from the insular cortex (Agster
and Burwell, 2009). These axon terminals reach LEC mainly in the
superficial layer I, which contains mostly the apical dendrites of
layer II cells (Burwell and Amaral, 1998). Inputs from the perirhinal
and postrhinal cortex terminate at layer II, which may allow
for the integration of object representations with olfactory cues
(Doan et al., 2019) (Figure 2).
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LEC layer II is a dense cell layer. Layer IIa contains mostly
reelin++ (RE+) principal cells (fan cells) and IIb contains
calbindin+ (CB+) pyramidal cells. Fan cells project mainly via the
perforant pathway to the dentate gyrus (DG), where information is
sent to hippocampal CA3 and CA1 for further processing (Leitner
et al., 2016) (Figure 2). This allows LEC to serve as the major
gateway for sensory information entering memory processing
regions. Fan cells that project to DG also project to the superficial
layer of the medial entorhinal cortex (MEC), allowing feedforward
inhibition to pyramidal cells in MEC circuits (Vandrey et al., 2022).
LEC layer IIb CB+ pyramidal cells do not innervate DG but rather
send feedback projections mainly to the OB, Pir, contralateral LEC,
and neocortical areas such as the medial prefrontal cortex (mPFC)
(Kerr et al., 2007; Agster and Burwell, 2009; Leitner et al., 2016;
Ährlund-Richter et al., 2019).

LEC layer III contains pyramidal cells projecting mostly to CA1
and subiculum (SUB), and projections from these hippocampal
regions terminate back in the deep layer of LEC. In deep layer
V, neurons project to the mPFC, amygdala (AMG), olfactory
bulb, anterior olfactory nucleus, and piriform cortex (de Olmos
et al., 1978; Insausti et al., 1997). Recently, layer V cells have
been divided into layers Va and Vb, using two marker proteins.
Layer Va cells express E twenty-six (ETS) variant transcription
factor 1 (Etv1), whreas Layer Vb cells express chicken ovalbumin
upstream promoter transcription factor (COUP-TF) interacting
protein 2 (Ctip2) (Sürmeli et al., 2016; Ohara et al., 2018) (Figure
2). Layer Va cells are the main output neurons projecting outside
the LEC, whereas layer Vb cells are considered mostly for intrinsic
projections within the LEC, synapsing onto both layer Va and the
superficial layer of LEC (Ohara et al., 2018). Based on the looping
structure of input/output connectivity in LEC sublayers (superficial
layer LEC → hippocampus → deep layer LEC → neocortex),
it is likely that the deep layer LEC receives olfactory-memory
representations from the hippocampus and sends this feedback
information to various cortical regions, where it is integrated for
higher-level cognition and long-term memory maintenance.

2.2 LEC involvement in learning

Due to its intricate input/output connection with the
hippocampus, multiple lines of research have focused on LEC’s
role in learning and memory. While the MEC was thought to
represent the spatial component of learning (“where”), as supported
by the discoveries of spatially modulated grid cells (Fyhn et al.,
2004; Hafting et al., 2005), LEC cells have low spatially selective
firing (Hargreaves et al., 2005). Rather, LEC may represent visual,
olfactory, and somatosensory information about items and objects
(Young et al., 1997; Deshmukh and Knierim, 2011; Tsao et al.,
2013; Igarashi et al., 2014). To identify how LEC neurons encode
memories of items/objects, we recently recorded layer IIa fan
cells using optogenetic assisted cell-type-specific recording method
when mice were learning odor-outcome association (Lee et al.,
2021). We found a group of LEC fan cells that developed
spike responses to both newly learned rewarded odor cues and
pre-learned rewarded cues, a signature of generalization during
learning. Another group of fan cells responded only to punished
cues. These results suggest that the LEC forms a “cognitive map”

of odor items during memory encoding. The cognitive map refers
to an internal brain representation of a physical spatial map, first
conceptualized by Tolman from his observations on rats running
in a maze (Tolman, 1948), then supported by the discovery of place
cells in the hippocampus (O’Keefe and Dostrovsky, 1971). Recently,
the concept of the cognitive map has been extended to non-spatial
elements (Behrens et al., 2018). The Lee et al. work suggested that
the LEC classifies and stores information of items depending on
their associated reward or punishment outcomes, a signature of
cognitive map formation about learned items (Lee et al., 2021;
Igarashi et al., 2022). We consider that the concept of cognitive
map is similar to the idea of “memory schema,” a term for “acquired
knowledge” in psychological studies (Bartlett, 1932; Craik, 1943; Tse
et al., 2007). In this context, the LEC (and presumably other brain
regions) formulate schema from previous learning, and use schema
to guide the acquisition of subsequently learned knowledge, which
is referred to as “assimilation” (Igarashi et al., 2022).

3 Neuromodulatory inputs
underlying olfactory learning

The olfactory areas receive dense neuromodulatory inputs
presumably contributing to olfactory learning, including
dopaminergic projections from the midbrain ventral tegmental
area (VTA) and substantia nigra (SN), cholinergic inputs from
the diagonal band of Broca (DB) and the basal forebrain, and
serotonergic inputs from the raphe nuclei (Hokfelt et al., 1974,
Björklund and Dunnett, 2007; Petzold et al., 2009). Among these
neuromodulatory systems, the most extensive research has been
conducted on dopamine (DA). Even though OB does not receive
direct DA inputs from midbrain VTA, it has been indicated that
the OB contains numerous dopaminergic neurons within the
glomerular layer (Halasz et al., 1981) and expresses DA type
2 receptor (D2R) (Coronas et al., 1997; Koster et al., 1999).
OT, as part of the ventral striatal system, receives extensive DA
inputs from VTA (Ikemoto, 2007; Zhang et al., 2017), and phase
stimulation of the DA terminals in OT induces neuronal plasticity
of cue-reward pairing (Oettl et al., 2020). Moreover, LEC receives
dense DA inputs from the VTA/SN, found mainly in layers II
and VI (Hokfelt et al., 1974; Fallon et al., 1978; Björklund and
Dunnett, 2007) (Figure 2). However, whether DA inhibits or
facilitates LEC layer II synaptic transmission remains controversial
(Caruana and Chapman, 2008; Glovaci and Chapman, 2015). We
recently demonstrated that DA inputs from the VTA control the
development of cue-reward representation in LEC layer IIa fan cells
during associative learning (Lee et al., 2021). Additionally, both
OB and Pir receive cholinergic inputs from the horizontal limbs of
diagonal band of Broca (HDB), suggesting that acetylcholine could
also modulate these regions in learning (Luskin and Price, 1982;
Zaborszky et al., 1986). For example, while previous exposure to
similar odorants increases the odor discrimination ability, this
learned enhancement was reversed by an acetylcholine antagonist
(Fletcher and Wilson, 2002). These results collectively indicate that
neuromodulatory inputs such as DA and acetylcholine could guide
olfactory memory formation and control information flow in the
entorhinal-hippocampal circuit for learning.
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4 Discussion and conclusion

In this review, we attempted to summarize currently available
knowledge about the mouse olfactory system in learning with
anatomical underpinnings. The fact that neocortical regions like the
medial prefrontal cortex (mPFC) receive direct input from several
olfactory cortical regions (i.e. PC, TT, AON, LEC) suggests that
olfactory information is directly integrated for cognitive functions
such as decision-making and adaptive responses (Witter et al., 2000;
Agster and Burwell, 2009; DeNardo et al., 2015; Diodato et al.,
2016; Moberly et al., 2018; Loureiro et al., 2019). Also of note is
the strong connectivity between olfactory areas and the amygdala
(Price, 2003), which could provide a neural basis for the emotional
aspect of olfactory memory.

We also emphasized the special role of LEC as an interface
for the olfactory memory circuit in associative learning and its
modulation by dopaminergic inputs. The LEC forms cognitive
maps for non-spatial olfactory items during olfactory learning
(Igarashi et al., 2022). It remains largely unknown whether the
function of cognitive map/schema formation, found in the LEC,
is shared in other olfactory regions, or their target cortical
areas. Future work is needed to decipher their roles in cognitive
map formation during learning. Another important topic for
future study is the critical role of the LEC in AD. Olfactory
impairment is demonstrably correlated with AD and is amongst
the first symptoms reported by many AD patients (Waldton,
1974; Serby et al., 1991). Moreover, the LEC is thought to be
one of the first regions exhibiting histological and functional
signatures of AD (Van Hoesen et al., 1991; Braak and Braak,
1992; Igarashi, 2023). It is likely that LEC dysfunction underlies
the progression of both smell and memory loss. How the early
stage of olfactory representations is altered in disease and affects
higher-level cognition requires future investigation.

Our experience with the surrounding environment involves a
convergence of many sensory modalities. An interesting property
of olfactory cortical regions (e.g., OT, Pir and LEC) is their multi-
modal representations outside of olfaction. Pir receives projections
from the primary auditory cortex (A1) (Budinger et al., 2006),
and studies have shown that OT cells respond to auditory stimuli
(Wesson and Wilson, 2010). In LEC, somatosensory and visual
inputs may converge with olfactory information to form a more
complete representation of the outside world (Hoogland et al.,
1987; Burwell and Amaral, 1998). The mechanisms of multimodal

features of olfactory regions also call for investigation in future
studies.
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somatosensory cortex: sensory
experience and beyond
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Early life experiences shape physical and behavioral outcomes throughout

lifetime. Sensory circuits are especially susceptible to environmental and

physiological changes during development. However, the impact of different

types of early life experience are often evaluated in isolation. In this mini

review, we discuss the specific effects of postnatal sensory experience,

sleep, social isolation, and substance exposure on barrel cortex development.

Considering these concurrent factors will improve understanding of the

etiology of atypical sensory perception in many neuropsychiatric and

neurodevelopmental disorders.

KEYWORDS

somatosensory perception, barrel cortex development, early life experience, sensory
deprivation, REM Sleep, early social isolation, cross-modal sensory experience

1 Introduction

Early life experiences can have profound and life-long physical, emotional, and
behavioral consequences (Felitti et al., 1998; Hughes et al., 2017; Lokhandwala and
Spencer, 2022). During postnatal development, maturation of circuits involved in sensory
perception occurs first, and this process is particularly sensitive to physiological and
environmental influences (Chang and Merzenich, 2003; Maitre et al., 2017; Badde et al.,
2020; reviews: Hensch, 2004; Fox et al., 2010). In rodents, whisker-mediated tactile input
is one of the earliest developed sensory modalities (Akhmetshina et al., 2016; Smirnov
and Sitnikova, 2019). Tactile inputs are present at birth, while visual and auditory
inputs do not occur until the second postnatal week in mice (Colonnese et al., 2010;
Akhmetshina et al., 2016; Makarov et al., 2021). This feature allows tactile sensory inputs
to interact with intrinsic programs to uniquely shape sensorimotor circuit maturation
(Bragg-Gonzalo et al., 2021).

The developing somatosensory cortex is dominated by synchronous neural activity
until the end of the second postnatal week (Khazipov et al., 2004; Minlebaev et al., 2007;
Golshani et al., 2009; Tolner et al., 2012; Yang et al., 2013). Its precise patterns and timing
are essential for many activity-dependent processes during early postnatal development
(Winnubst et al., 2015; Wong et al., 2018; Duan et al., 2020; review: Leighton and Lohmann,
2016). Such activity has been suggested to originate from at least four sources: (1) external,
passive tactile sensory inputs onto the whiskers from the dam, littermates, and nesting
materials (Akhmetshina et al., 2016); (2) sensorimotor feedback generated by involuntary
whisker and limb twitches (Khazipov et al., 2004; Tiriac et al., 2014; Dooley et al., 2020);
(3) cross-modal sensory inputs, such as odor-driven activity via direct early excitatory
connections from the olfactory cortex to somatosensory cortex (Henschke et al., 2018;

Frontiers in Neural Circuits 01 frontiersin.org125

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2024.1430783
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2024.1430783&domain=pdf&date_stamp=2024-07-08
https://doi.org/10.3389/fncir.2024.1430783
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncir.2024.1430783/full
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1430783 July 5, 2024 Time: 11:42 # 2

Nwabudike and Che 10.3389/fncir.2024.1430783

Cai et al., 2024); 4) internally generated, spontaneous neural
activity independent from the periphery or movement (Moreno-
Juan et al., 2017; Mizuno et al., 2018; Nakazawa et al., 2020;
Banerjee et al., 2022). Multiple lines of evidence support that
activity from these different sources co-exist in the first two
postnatal weeks. While spontaneously occurring and whisker
stimulation-induced oscillatory activity are both present already at
birth, inactivation of the tactile sensory periphery with lidocaine,
which occludes tactile sensory inputs and sensorimotor feedback
from whisker twitches, reduces but does not abolish synchronous
activity (Yang et al., 2009). In addition, barrel column-related
patchwork activity in L4 excitatory neurons is uncorrelated with
whisker movement and does not disappear after infraorbital nerve
transection at P4 (Mizuno et al., 2018; Nakazawa et al., 2018).
There is still considerable ongoing debate over whether the four
sources of activity mentioned above are distinct – for example,
what proportion of activity that has been attributed as “internally-
generated activity” is due to sensorimotor feedback given that the
circuitry enabling movement-related sensory feedback is already
functional in the thalamus embryonically (Antón-Bolaños et al.,
2019; Dooley et al., 2020; Blumberg et al., 2022). Latest data
demonstrating that synchronous activity in the barrel cortex can
be driven by chemosensation also raises the possibility that the
remaining synchronous activity after inactivation of tactile sensory
periphery could have, at least in part, originated from other
sensory modalities (Cai et al., 2024; Wang et al., 2024). Further
investigations will be required to confirm or resolve potential
overlaps between sources of early neural activity in the barrel
cortex.

Given the complexity of early neural activity as discussed above,
in this minireview we will focus on summarizing the role of the
following early-life sensory experiences on the development of
somatosensory cortex: (1) external tactile sensory inputs; (2) sleep
in the context of permitting sensorimotor feedback; (3) recently
discovered cross-modal olfactory sensory inputs. While there might
be overlap in mechanisms, we will not focus on internally generated
intrinsic activity here (review: Leighton and Lohmann, 2016). We
will also discuss recent findings that have uncovered the impact of
other early-life factors, including isolation and substance exposure
(Figure 1).

2 Neonatal tactile sensory
experience

In the whisker sensory system, tactile sensory input to the
whiskers is transduced by mechanoreceptors in each whisker
follicle on the snout, then carried by afferent fibers to the
trigeminal nucleus of the brainstem, the ventroposteromedial
nucleus of the thalamus (VPM) and finally to the somatosensory
cortex (reviews: Petersen, 2007; Diamond et al., 2008). In layer 4
(L4) of the barrel cortex, cytoarchitectonic cylindrical structures
known as “barrels” correspond to individual whiskers (Woolsey
and van der Loos, 1970). Synaptic connections of within barrel
cortex have been extensively characterized, making it an excellent
model for investigating experience-dependent circuit maturation.
Peripheral manipulations have been widely used and demonstrated
to produce marked alterations in the structure and function of

the developing barrel cortex. These studies provide a wealth of
information on the age-, layer-, cell type-, and synaptic connection-
specific effects of postnatal sensory experience (review: Erzurumlu
and Gaspar, 2012). Below we will summarize effects of tactile
sensory deprivation via peripheral manipulations on barrel cortex
synaptic connectivity (thalamocortical and intracortical), neuronal
maturation, and behavior.

Thalamocortical afferents (TCAs) to the barrel cortex play
a critical role in instructing barrel formation and organization,
dendritic remodeling, and neuronal maturation (Li et al., 2013;
Matsui et al., 2013; Pouchelon et al., 2014; Young et al.,
2023). Disruption of presynaptic vesicle fusion, glutamatergic
neurotransmission, or cAMP signaling at thalamocortical synapses
alters barrel patterning (Abdel-Majid et al., 1998; Iwasato et al.,
2000; Inan et al., 2006; Ballester-Rosado et al., 2010; Narboux-Nême
et al., 2012; Li et al., 2013; Suzuki et al., 2015). The TCAs are also
particularly sensitive to sensory deprivation. When sensory input
is eliminated by infra-orbital nerve transection or whisker follicle
cauterization before postnatal day (P) 3, TCA arbors no longer
cluster and cylindrical barrels are replaced by elongated fused bands
that extend through L4 of the barrel field (Van der Loos and
Woolsey, 1973; Killackey and Belford, 1979; Wong-Riley and Welt,
1980; Jeanmonod et al., 1981; Jensen and Killackey, 1987). Similar
manipulations that result in permanent peripheral damage at later
timepoints, between P4 and P6, lead to TCA disorganization but
not a complete loss of barrel structure, while normal barrel patterns
are preserved when manipulations occur after P6 (Woolsey and
Wann, 1976; Belford and Killackey, 1980; Jeanmonod et al., 1981;
Bates and Killackey, 1985; Higashi et al., 1999). Neonatal whisker
trimming or plucking, which limits tactile sensory experience
without causing peripheral structural damage, does not alter the
cytoarchitectonic barrel structure; instead, it leads to changes in
the strength of thalamocortical and intracortical synapses (Finnerty
et al., 1999; Allen et al., 2003; Sadaka et al., 2003; Schierloh et al.,
2004; Bender et al., 2006; Chittajallu and Isaac, 2010; Simons et al.,
2015). For instance, the density and efficacy of thalamocortical
synapses decrease following chronic whisker trimming (Sadaka
et al., 2003). Following extended whisker regrowth, thalamic
drive to excitatory neurons rebounds to above control levels,
suggesting that sensory inputs can restore and even heighten the
efficacy of thalamocortical synapses after early-life manipulations
(Simons et al., 2015). Sensory deprivation also weakens intracortical
synapses at L4-to-L2/3 connections and increases lateral synaptic
transmission across barrel columns, resulting in increased neuronal
responses to deflection of surrounding non-principal whiskers
(Fox, 1992; Finnerty et al., 1999; Lendvai et al., 2000; Stern et al.,
2001; Allen et al., 2003; Shepherd et al., 2003; Schierloh et al., 2004;
Bender et al., 2006; Lee et al., 2007). When whisker regrowth is
allowed, L4 neurons continue to show broadened sensory-evoked
responses (Simons and Land, 1987; Shoykhet et al., 2005). In
summary, these studies establish that sensory experience from the
periphery plays a central role in regulating thalamocortical and
intracortical circuit assembly during development.

During the early postnatal period, cortical GABAergic
interneurons also receive significant thalamic inputs and shape
circuit function in a sensory experience-dependent manner. In
the first postnatal week, direct TCAs from the VPM preferentially
form synaptic connections with select interneuron subtypes,
such as somatostatin-expressing (SST) interneurons in L5 and
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FIGURE 1

Types of Early Life Experiences and Susceptible Developmental Programs in the Barrel Cortex. In rodents, early sensory experience, sleep, social
isolation, and perinatal substance exposure can alter the development of the barrel cortex. Different developmental programs may be affected by
these factors across varying sensitive periods. These programs include thalamocortical innervation, intracortical circuit assembly (including
maturation of excitatory and inhibitory circuits), experience-dependent synaptic remodeling, and synchronous cortical activity. Figure created with
Biorender.com.

Reelin-expressing (Re) interneurons in L1 (Marques-Smith et al.,
2016; Tuncdemir et al., 2016; Che et al., 2018; Pouchelon et al.,
2021). These thalamic inputs to interneurons are dynamically
remodeled during development−VPM inputs to SST, Re, and
Vasoactive intestinal peptide-expressing (VIP) interneurons
weaken by the end of the second postnatal week, while VPM inputs
to parvalbumin-expressing (PV) interneurons and PV-driven feed-
forward inhibition continue to strengthen (Daw et al., 2007; Che
et al., 2018; Kastli et al., 2020; Modol et al., 2020). The transient
TCA connections are required for the maturation of stable
circuit connectivity that persists into adulthood (Anastasiades
et al., 2016; Marques-Smith et al., 2016; Tuncdemir et al.,
2016). It has been hypothesized that interneurons are more
sensitive to early-life sensory experience due to their protracted
postnatal development (review: Micheva and Beaulieu, 1997).
This hypothesis is supported by recent studies demonstrating that
sensory deprivation specifically reduces VPM to interneuron inputs
and interneuron activity, resulting in delayed cell maturation and
alterations in intracortical connectivity (Chittajallu and Isaac,
2010; Marques-Smith et al., 2016; Che et al., 2018; Duan et al.,
2020; Bollmann et al., 2023). Whisker plucking from the first
postnatal week to adulthood decreases L4 surround inhibition,
inhibitory synaptic strength, and the total number of interneurons
(Micheva and Beaulieu, 1995a,b; Shoykhet et al., 2005; Gainey et al.,
2016). Taken together, these studies demonstrate that developing
interneurons are uniquely positioned to relay thalamic inputs and
regulate responses to early sensory experiences, thus playing a
significant role in shaping cortical circuit formation and function.

Early sensory deprivation also has profound behavioral
consequences. Infant-trimmed rodents can differentiate between
rough and smooth textures but show difficulty distinguishing
between two distinct rough textures (Carvell and Simons, 1996).
This is thought to be a consequence of permanent deficits in
surround inhibition, which decreases the animal’s perceptual ability
in tasks that require information from multiple whiskers (Carvell
and Simons, 1996; Shoykhet et al., 2005). Trimming also alters
explorative whisking and behavioral strategies during gap-crossing
tasks (Lee et al., 2009; Papaioannou et al., 2013). Intriguingly, the

effects of early sensory deprivation are especially evident in socio-
cognitive behavioral tasks. Animals that have been vibrissectomized
are more social and explorative, displaying less emotional reactivity
and diminished early withdrawal response from novel tactile
stimuli (Shishelova, 2006; Lee et al., 2009; Soumiya et al., 2016;
Wang et al., 2022). Furthermore, sensory deprivation through
whisker removal reduces excitatory synaptic transmission as well
as the synthesis and secretion of the neuropeptide oxytocin, while
both oxytocin injection and increased sensory experience rescues
excitatory synaptic transmission (Zheng et al., 2014). Nevertheless,
it remains to be determined through what specific mechanisms
early tactile sensory experience influences the development of
higher-order social, emotional, and cognitive function.

3 Sleep and sleep deprivation

Similar to human infants, neonatal rodents spend the majority
of their time sleeping (Blumberg et al., 2022). The younger the
animal, the more time it spends in active (rapid-eye-movement,
REM) sleep states (Jouvet-Mounier et al., 1969). During the first
two weeks of life, rodents spend between 45 to 80% of their time
in REM sleep, 20 to 35% in wakeful states, and up to 25% in non-
REM sleep, while in adult rodents, REM sleep time decreases to
8.5% and time spent awake rises to 43% (Jouvet-Mounier et al.,
1969; Blumberg et al., 2022). As discussed previously, sensorimotor
feedback generated by myoclonic twitches is a main source of
early synchronous activity in the barrel cortex (Blumberg et al.,
2022). Recent studies correlating electrophysiological recordings of
barrel cortex activity with whisker motion show that up to 75%
of spontaneous somatosensory cortical activity is directly related
to passive whisker movement (Akhmetshina et al., 2016; Dooley
et al., 2020). These twitches during REM sleep are more likely
to generate network activity in the barrel cortex than movements
during wakefulness (Dooley et al., 2020). Therefore, REM sleep
during development serves to enable muscle twitches important
for activity-dependent circuit maturation in the barrel cortex. In
support of this, REM sleep during development has been shown
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to support heightened synaptic remodeling, in particular synaptic
elimination (Yang and Gan, 2012; Li et al., 2017; Zhou et al., 2020;
review: Sun et al., 2020), a process essential for the development
of mature and functional circuits (Faust et al., 2021). In addition,
REM sleep increases coherence between distant brain regions,
facilitating the formation of long-range connections that direct
complex sensory-based behaviors in adulthood (Rio-Bermudez
et al., 2020).

Early-life sleep deprivation may also alter inhibitory circuits –
persistent decrease in PV interneuron number has been reported
in adult voles whose sleep was disrupted between P14 and P21
(Jones et al., 2019). Behaviorally, prairie voles that were sleep-
deprived as neonates display aberrant exploratory behavior and pair
bond formation during adulthood (Jones et al., 2019). Together,
these findings indicate that REM sleep is essential for synaptic
remodeling during early life, and therefore may have far-reaching
behavioral effects.

4 Neonatal cross-modal sensory
experience

While multisensory integration via direct thalamocortical
and intracortical connections across modalities in adults is well
appreciated (review: Driver and Noesselt, 2008), less is known
about when multisensory connectivity is established, and whether
it contributes to the maturation of and the early activity in
primary sensory cortices. In developing Mongolian gerbils, several
thalamic nuclei project to two or more sensory cortices between
P1-P9, and the non-matched modality projections are pruned away
after P15 (Henschke et al., 2018). Direct connections between
primary visual, auditory, and somatosensory cortices occur later
than multisensory interconnections at the thalamic level, occurring
at the onset of sensory experience around P15. In addition, the
number of multisensory connections drastically increases following
the loss of early sensory experience (Henschke et al., 2018),
suggesting that sensory experience from other modalities is able to
alter the development and function of the somatosensory cortex
during early postanal development. In support of this notion,
whisker deprivation or dark rearing reduces excitatory synaptic
transmission in the correspondent sensory cortex and cross-
modally in other sensory cortices through an oxytocin-dependent
mechanism (Zheng et al., 2014).

Direct intracortical excitatory connections have also been
demonstrated to trigger early synchronous activity in the
somatosensory cortex. In mouse slice culture between embryonic
day (E)18-P12, waves of spontaneous electrical activity initiate
in the septum and ventral cortex and propagate dorsally across
the cortex, including the somatosensory region (Conhaim et al.,
2011). This is consistent with the recent finding that there is
direct, transient excitatory connectivity from the olfactory cortex
to the somatosensory cortex, and in vivo odor-driven activity
propagates broadly across the cortex during the first postnatal week
(Cai et al., 2024). This odor-evoked activity enhances whisker-
evoked activity in the barrel cortex, while neonatal odor deprivation
leads to somatosensory defects in adult mice, suggesting that
there is a cross-modal critical window for nasal chemosensation-
dependent somatosensory function maturation (Cai et al., 2024).

Interestingly, recent work quantifying prenatally active neurons in
mice using Targeted Recombination in Active Populations (TRAP)
identified the piriform cortex as the most abundantly TRAPed
region, indicating that early piriform neurons may represent
an interconnected hub-like population whose activity promotes
recurrent connectivity in the developing cortex (Wang et al., 2024).
In summary, early cross-modal sensory experience, in particular
olfactory inputs, can have large impact on the proper maturation
and function of the somatosensory cortex.

5 Social isolation

During early postnatal life, social isolation is a well-
documented stressor that can alter cortical synaptic function. Social
isolation in pups has been shown to affect synaptic spine density
in the barrel cortex, though the effects vary with different isolation
protocols (Bock et al., 2005; Takatsuru et al., 2009). When neonatal
rodents are isolated for 6 hours daily during 3-day-long periods in
the first and second postnatal week, AMPA receptor trafficking in
L4-to-L2/3 synapses in the barrel cortex is significantly reduced in
isolated pups when compared to pups that are allowed to remain
with littermates (Miyazaki et al., 2012; Miyazaki et al., 2013). These
synaptic effects are at least in part attributed to the instability of
synapses – increased mushroom spine turnover has been observed
as a result of social isolation in pups (Takatsuru et al., 2009;
Takatsuru et al., 2015). On the other hand, 3-hour daily isolation
from P2 to P14 has been shown to increase neuronal activity in
the adult barrel cortex and raise baseline glutamate levels, which,
in a pattern not observed in control animals, rises even further
following exposure to physical stressors (Toya et al., 2014). These
deficits persist after limiting peripheral inputs, which suggests that
mechanisms distinct from sensory experience are responsible for
the circuit changes associated with social isolation.

Social isolation activates glucocorticoid signaling widely across
the brain (Mccormick et al., 1998; review: Cacioppo et al.,
2015). Rodents that underwent neonatal isolation show long-
term increases in basal corticosterone levels in the barrel
cortex (Toya et al., 2014). Elevated glucocorticoid levels have
been shown to increase glutamate release in frontal cortical
areas (Treccani et al., 2014). Although similar mechanisms
have not been directly demonstrated in the barrel cortex, high
glucocorticoid levels may also contribute to aberrant glutamatergic
homeostasis observed in this region. Indeed, repeated brief
exposure to maternal separation results in significantly enhanced
spine density in L2/3 pyramidal neurons in the somatosensory
cortex (Bock et al., 2005). Acute administration of corticosterone
induces higher spine turnover rate in the juvenile barrel cortex
compared to control juvenile animals and the turnover rate
observed in glucocorticoid treated adults (Liston and Gan,
2011). Pharmacologically decreasing endogenous glucocorticoid
signaling through repeated dexamethasone injections decreases
spine turnover, and chronic steroid administration eliminates
dendritic spines formed prior, in earlier developmental periods
(Liston and Gan, 2011). These findings suggest that stress
hormones, released in response to a wide variety of stressors
including social isolation, can highjack mechanisms of synaptic
plasticity during development and have long-term social and

Frontiers in Neural Circuits 04 frontiersin.org128

https://doi.org/10.3389/fncir.2024.1430783
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1430783 July 5, 2024 Time: 11:42 # 5

Nwabudike and Che 10.3389/fncir.2024.1430783

cognitive behavioral consequences (Moriceau et al., 2009; review:
Sullivan and Holman, 2010).

Recent evidence has identified glial regulation of synaptic
function as another potential mechanism through which early
social isolation can affect sensory circuit development. Early
sensory experience alters cortical synaptic pruning, a process
mediated by microglia and astrocytes (Kalambogias et al., 2020;
Gesuita et al., 2022). Neonatal social isolation leads to increased
microglial process motility both at baseline and in response
to sensory stimulation (Takatsuru et al., 2015). Additionally,
astrocytes contribute to the developmental changes in L4-to-
L2/3 synaptic plasticity by regulating the switch from long-term
depression (LTD) to long-term potentiation (LTP) (Martinez-
Gallego et al., 2022). The precise mechanistic connections
between early life stress, glucocorticoid signaling, microglial and/or
astrocytic dysfunction, and long-term synaptic instability are still
unclear. Further investigations of glial development in the barrel
cortex will be informative for understanding experience-dependent
maturation of somatosensory circuits.

6 Early life exposure to psychoactive
substances

Perinatal exposure to psychoactive substances has also been
shown to alter barrel cortex development. The most studied of
these substances is ethanol. In humans, consumption of alcohol
during pregnancy can cause Fetal Alcohol Syndrome (FAS), a
developmental disorder characterized by intellectual disability,
facial anomalies, and behavioral deficits (review: Popova et al.,
2023). Preclinical rodent models of FAS show that both prenatal
and early postnatal (P4-P10) alcohol exposure decrease the area
size of the barrel cortex (Miller and Potempa, 1990; Margret
et al., 2005, 2006; Powrozek and Zhou, 2005; Chappell et al.,
2007). Prenatal ethanol exposure also decreases the number of
glia and neurons in the barrel cortex (Miller and Potempa, 1990;
Powrozek and Zhou, 2005). This is likely due to the broad
apoptotic effect of alcohol exposure in the neonatal brain (Smiley
et al., 2019). Between P4 and P7, when alcohol-induced apoptosis
reaches maximum levels, intraperitoneal administration of alcohol
suppresses spontaneous activity in the barrel cortex and decreases
body movements (Lebedeva et al., 2017). Perinatal alcohol exposure
decreases the excitability of L5 pyramidal neurons and the cell
density of PV interneurons (Granato et al., 2012; Saito et al., 2019).
On a behavioral level, adolescent mice exposed to alcohol prenatally
show diminished tactile sensitivity (Delatour et al., 2019). These
data suggest that early ethanol exposure disrupts normal barrel
cortex development and sensory perception by inhibiting cortical
activity and increasing apoptosis, which could lead to impaired
circuit maturation and organization.

The impact of other psychoactive substances on somatosensory
circuit development is less characterized. Prenatal and postnatal
opioid exposure has also been shown to increase apoptosis in
cortical neurons and microglia, and methadone may specifically
decrease the number of GABAergic synapses (Bajic et al.,
2013; Grecco et al., 2022). Postnatal (P2-P7) injection of
1(9)-tetrahydrocannabinol (THC), the primary psychoactive
component of cannabis, results in premature retraction and

pruning of TCAs during the first postnatal week (Itami et al.,
2016). Nicotine, at concentrations similar to those produced by
maternal tobacco smoking, desensitizes nicotinic acetylcholine
(ACh) receptors in subplate neurons thus diminishing the ACh-
driven spontaneous activity in the barrel cortex during the first
postnatal week (Hanganu and Luhmann, 2004; Dupont et al., 2006).
Overall, these substances may exert long-term effects through
pathways that converge upon the disruption of early cortical
activity required for sensory circuit development.

7 Conclusion

Various types of early life experience—including but not
limited to sensory inputs, sleep, social interactions, and substance
exposure—exert effects on postnatal circuit organization and
contribute to the development of normal or dysfunctional
somatosensation. The physiological and environmental factors
discussed here will contribute to the understanding of the etiology
of atypical sensory perception in many neurodevelopmental and
neuropsychiatric disorders, providing considerations on the timing
of therapeutic interventions.
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Olfactory neurogenesis plays 
different parts at successive 
stages of life, implications for 
mental health
Jules Dejou 1, Nathalie Mandairon 1† and Anne Didier 1,2*†

1 INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and 
Neuropathology of Olfactory Perception Team, Lyon, France, 2 Institut Universitaire de France, Paris, 
France

The olfactory bulb is a unique site of continuous neurogenesis, primarily 
generating inhibitory interneurons, a process that begins at birth and extends 
through infancy and adulthood. This review examines the characteristics of 
olfactory bulb neurogenesis, focusing on granule cells, the most numerous 
interneurons, and how their age and maturation affect their function. Adult-
born granule cells, while immature, contribute to the experience-dependent 
plasticity of the olfactory circuit by enabling structural and functional synaptic 
changes. In contrast, granule cells born early in life form the foundational 
elements of the olfactory bulb circuit, potentially facilitating innate olfactory 
information processing. The implications of these neonatal cells on early life 
olfactory memory and their impact on adult perception, particularly in response 
to aversive events and susceptibility to emotional disorders, warrant further 
investigation.

KEYWORDS

neurogenesis, olfactory bulb, mouse, development, learning, memory, mental 
disorders

Introduction

Inhibitory neurons of the olfactory bulb (OB), periglomerular cells and granule cells 
(GCs), which shape the output message of the OB (Nagayama et  al., 2014), are formed 
throughout life, from pre-and neonatal periods, to adulthood and senescence. Although 
forming a continuum across life, bulbar neurogenesis characteristics evolve with aging. Bulbar 
neurogenesis relies on stem cells and amplifying progenitors sitting in the proliferative 
subventricular zone (SVZ). They give birth to neuroblasts, proceeding along the rostral 
migratory stream to the core of the OB before differentiating and integrating the granule 
(GCL) and periglomerular cell layers of the OB (Luskin, 1993; Alvarez-Buylla and Garcı́a-
Verdugo, 2002; Winner et al., 2002). In the early postnatal period, an additional neurogenic 
zone in the OB core produces over 50% of new interneurons, before this zone gradually ceases 
to be a proliferative niche (Lemasson et al., 2005). Distinctive features of adult-born versus 
neonatal neurons include their rate of production, pattern of integration and final location in 
the OB as well as sensitivity to environment. In this review we emphasize recent advances that 
established the role of adult neurogenesis in experience-dependent plasticity of the OB 
circuits and enabled distinguishing bulbar interneurons born at different stages of life. These 
advances emerged mostly from rodent studies and focused on the GCs, the most abundant 
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neuronal population targeted by neurogenesis. We  also briefly 
examine the role of early neurogenesis in vulnerability to 
mental disorders.

Descriptive features of olfactory 
neurogenesis across the life span

The rate of neurogenesis

The rate of neurogenesis in the OB, i.e., of new neurons formed, 
is the highest between P0 until P14, corresponding to the ontogeny of 
approximatively 75% of GCs and relies on high proliferation and 
virtually no cell death (Lemasson et al., 2005; Sakamoto et al., 2014). 
As the animal reaches sexual maturity (2-month-old), GCs are more 
prone to death (Lemasson et al., 2005; Sakamoto et al., 2014) and by 
10 months, proliferation is decreased by 50 to 75% in the SVZ (Rey 
et al., 2012; Shook et al., 2012) accounting for the reduction in the 
number of new GCs formed in the OB. In the last part of life 
(18-month-old), proliferation in the SVZ is not further reduced but 
survival of the newly formed GCs decreases, leading to the lowest rate 
of neurogenesis in life (senescent rate) (Rey et al., 2012). Thus, the rate 
of neurogenesis in the mouse OB distinguishes between neonatal, 
juvenile, adult and senescent stages with transitions whose gradual or 
abrupt nature is not clearly documented.

Neuronal addition versus replacement

There is a consensus that neonatal neurogenesis follows an 
addition mode: the newborn GCs integrate the developing OB, 
enabling its growth. This is supported by the lack of cell death reported 
for these neonatal neurons (Lemasson et al., 2005; Platel et al., 2019). 
In the adult stage, the data are more contradictory. Several studies 
labeled dividing cells by thymidine analogs (such as 5-Bromo-2′-
deoxyuridine, BrdU) and reported a loss of up to 50% of adult-born 
neurons within 4 to 6 weeks after their birth (Lemasson et al., 2005; 
Mandairon et al., 2006b). This suggests that new GCs compete for 
survival within the OB network but that not all of them succeed. In 
line with this, genetic tagging allowing continuous follow-up of newly 
formed GCs revealed that adult-born neurons end up forming at least 
60% of the GCs in 18-month-old mice, without increasing neuronal 
density (Imayoshi et al., 2008). This supports the conclusion that in 
adults, neurogenesis follows a replacement mode where newborn 
neurons replace dying ones. However, Platel et  al. (2019), using 
bi-photon time-lapse observations, reported a lack of adult-born GCs 
death supporting an addition mode in adult as in the developing 
OB. BrdU toxicity was brought forward to explain previous reports of 
cell death affecting adult-born GCs. Noteworthy, studies using viral 
vectors or non-toxic doses of BrdU did detect differences in survival 
between neonatal and adult-born neurons (Lemasson et al., 2005; 
Sakamoto et al., 2014). Interestingly, due to technical constraints (i.e., 
600 μm depth limitation, labeling of dorsal SVZ neuroblasts, targeting 
the superficial GCL (De Chevigny et al., 2012)), bi-photon analysis 
captures GCs in the superficial GCL which is preferentially populated 
by neonatal GCs that do not show cell death in BrdU studies 
(Lemasson et al., 2005). This suggests that superficial GCs may have 
different survival properties compared to those targeting the deeper 

GCL. Thus, the survival rate of adult-born neurons may depend both 
on the age of the animals and the depth of the GCs in the GCL.

In the neuron’s replacement framework, many questions remain 
such as which GCs are selected to be renewed and what specific parts 
they play versus the non-renewed ones.

Synaptic maturation patterns

The dynamic integration of newborn GCs shows remarkable 
differences depending on when they were born. Neonatal GCs need 
more time to migrate from the SVZ to the OB than their adult 
counterparts (Lemasson et al., 2005). Then, in the adult brain, it takes 
about a month for a neuroblast arriving in the OB to acquire the 
anatomy and connectivity of a fully mature GC (Carleton et al., 2003; 
Kelsch et al., 2008; Tufo et al., 2022) according to a “listen then act” 
mode where synaptic inputs develop before outputs. More specifically, 
inputs originating mainly from centrifugal axons contact first basal 
dendrites of adult-born GCs while the later developing output is via 
dendrodendritic synapses in the external plexiform layer of the OB 
(Whitman and Greer, 2007). Regarding these dendrodendritic 
reciprocal synapses, it appears that the excitatory mitral-to-granule 
part forms before the inhibitory granule-to-mitral part (Hinds and 
Hinds, 1976). In contrast, synaptic inputs and outputs occur 
simultaneously in neonatal GCs, resulting in the ability of these 
neurons to emit action potentials shortly after their arrival in the OB 
(Kelsch et  al., 2008; Breton-Provencher and Saghatelyan, 2012). 
Selective genetic alteration of GABAA receptors in migrating 
neuroblasts or immature GCs delays their synaptic integration and 
morphological maturation (Pallotto et al., 2012). This early sensitivity 
to GABA could explain how olfactory stimulation promotes the 
integration of very young (1–2 week-old) adult-born GCs (Mandairon 
et al., 2006a), since olfactory inputs would activate inhibitory GCs and 
thus increase GABA release. As they integrate in the bulbar circuits, 
newborn GCs become capable of responding to olfactory stimulation. 
The younger the neurons, the more excitable they are, and long-term 
potentiation is easier to induce in 2- to 3-week-old adult-born neurons 
than in older ones (Magavi, 2005; Gao and Strowbridge, 2009; Nissant 
et  al., 2009). These peculiar features of maturing adult-born GCs 
suggest that they play selective parts in odor-induced circuit plasticity 
(Figure 1).

At mid-age (10-12-month-old), the number of adult-born GCs is 
reduced to about one third of that observed in 2-month-old animals 
but their dendritic and synaptic equipment is similar (Greco-Vuilloud 
et al., 2022) and little is known regarding integration patterns of GCs 
born in the aged brain (18-month-old).

Functional implications of bulbar 
neurogenesis

Adult OB neurogenesis contributes to 
olfactory learning in a task-specific manner

Olfactory perception and MCs responses to odorants evolve with 
experience and learning (Kay and Laurent, 1999; Doucette and 
Restrepo, 2008; Gschwend et al., 2015). The contribution of permanent 
neurogenesis to this plasticity has been addressed in adult mice, using 

134

https://doi.org/10.3389/fncir.2024.1467203
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org


Dejou et al. 10.3389/fncir.2024.1467203

Frontiers in Neural Circuits 03 frontiersin.org

a variety of olfactory tasks, such as olfactory enrichment, associative 
or perceptual olfactory discrimination learning. All increase the 
number of adult-born GCs in the OB by improving their survival 
(Rochefort et al., 2002; Alonso et al., 2006; Mouret et al., 2008; Belnoue 
et  al., 2011; Mandairon et  al., 2011). Olfactory experience also 
increases the proportion of adult-born GCs responding to a learned 
odorant (Belnoue et al., 2011; Sultan et al., 2011; Moreno et al., 2012). 
On the contrary, ablation of neurogenesis by antimitotic drugs 
(Breton-Provencher et  al., 2009; Moreno et  al., 2009) or SVZ 
irradiation (Lazarini et al., 2009) prevents discrimination learning. 
Optogenetic inhibition (Forest et al., 2019a) or activation of adult-
born GCs (Alonso et al., 2006; Grelat et al., 2018) respectively impairs 
or accelerates learning performances. This establishes a causal 
relationship between the adult-born GCs’ activity and 
olfactory learning.

At the cellular level, olfactory learning or deprivation acts on 
adult-born GCs notably through structural plasticity. Indeed, both can 
lead to addition, elimination or relocation of dendritic spines at both 
long (hours-days) and short (minutes) timescales (Saghatelyan et al., 
2005; Kelsch et al., 2008; Livneh and Mizrahi, 2011; Lepousez et al., 
2014; Breton-Provencher et al., 2016; Sailor et al., 2016; Hardy and 
Saghatelyan, 2017; Mandairon et al., 2018; Forest et al., 2019a; Ferreira 
et al., 2024). Some molecular actors of adult-born GCs structural 
plasticity have been identified such as Npas4, an activity-dependent 
protein promoting pruning in response to sensory inputs (Belvindrah 
et al., 2011; Yoshihara et al., 2014) or FMRP, a regulator protein of 

local translation in dendrites (Daroles et  al., 2016; Messaoudi 
et al., 2024).

The plasticity of adult-born neurons can be task-specific. In the 
context of olfactory perceptual learning in mice, in which two 
perceptually close odorants are learnt to be discriminated by passive 
exposure, spine density was increased on apical dendrites of adult-
born GCs as was MCs inhibition, promoting discrimination through 
pattern separation. In contrast, when discrimination is acquired by 
olfactory associative learning in which the two perceptually close 
odorants are learnt to be discriminated by rewarding one odorant of 
the pair, spine density on adult-born neurons was reduced and 
activation of MCs increased, thereby strengthening of MCs’ responses 
to the reinforced odorant to enable discrimination (Mandairon et al., 
2018). As another example of the task-specificity of adult-born GCs 
involvement, a non-operant paradigm of olfactory associative 
conditioning showed no dependence on adult-born neurons 
(Imayoshi et al., 2008; Breton-Provencher et al., 2009) unlike operant 
conditioning (Lazarini et al., 2009; Mandairon et al., 2011; Sultan 
et  al., 2011). Interestingly, odor fear conditioning, a non-operant 
learning associating an odorant to an electric shock, does require adult 
neurogenesis (Valley, 2009). Thus, task engagement, motivation and 
context are key factors in the contribution of new GCs to the plasticity 
of the bulbar network related to experience and learning, which 
remains difficult to disentangle.

Taken together, these data indicate that in young adult mice, 
different forms of olfactory experience non-specifically increase the 

FIGURE 1

Distinctive features of neonatal versus adult postnatal neurogenesis. Newly formed GCs at neonatal and adult stages are represented by red and blue 
dots, respectively. Proliferation mode. Neonatal GCs originate from the SVZ and the OB core in the same proportion, whereas adult neurogenesis is 
almost exclusively dependent on the SVZ. The neurogenesis rate peaks at neonatal stage. Migration. Although the distance between the SVZ and the 
OB is greater at the adult stage, adult-born GCs migrate to the OB faster compared to their neonatal counterparts. Neonatal and adult-born GCs 
preferentially join the superficial and deep regions of the GCL, respectively. Structural integration. Due to their differential targeting inside the GCL, 
neonatal and adult-born GCs preferentially contact tufted and mitral cells, respectively. For neonatal GCs, inputs (gray dots) and outputs (reciprocal 
synapses, bidirectional arrows) are simultaneously established on the proximal and distal dendrites, then on the basal dendrites. Adult GCs follow a 
“first listen then act” mode: inputs are established on the proximal and basal dendrites, then form inputs-outputs through dendro-dendritic synapses. 
Functional integration. Neonatal GCs can emit action potentials shortly after the end of their migration, which is not the case for adult-born GCs. Cell 
death. Neonatal GCs have a much higher survival rate than adult-born GCs, which undergo massive turnover (~50%, dotted GC). EPL, External 
Plexiform Layer; GCL, Granule Cell Layer; LV, Lateral Ventricle; MCL, Mitral Cell Layer; RMS, Rostral Migratory Stream; SVZ, Subventricular Zone.
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survival of adult-born GCs, while their synaptic integration pattern 
appears to be finely tuned to the task, allowing individuals to adapt to 
the needs of a changing olfactory environment.

Implication of newly formed neurons 
depending on their birthdate and 
maturation level

A question raised by permanent neurogenesis concerns the 
specificity of the role of newborn GCs according to the age of the brain 
in which they are born and their own level of maturation. This dual 
temporality makes this a complex question to address experimentally. 
Neonatal GCs increase their dendritic spine density until day 26 
(Kelsch et al., 2008). During this period of maturation, they are prone 
to exhibit LTP (Gao and Strowbridge, 2009). But how immature 
neonatal GCs contribute to early-life olfactory perception and odor-
guided behaviors is poorly understood. It has been suggested that they 
represent the building blocks of OB functions linked to vital, innate, 
enduring, and inflexible olfactory behaviors (Lemasson et al., 2005; 
Alonso et al., 2012; Muthusamy et al., 2017; Grelat et al., 2018). The 
evidence in support of this view is indirect, based in particular on the 
different local circuits mediated by the GCs located in the superficial 
GCL, which houses the majority of GCs born in the neonatal period, 
and the deeper GCs, the main target of adult-born neurons and 
neuronal renewal. Superficial GCs mainly come into contact with 
tufted cells (TCs), while deeper GCs are more in contact with MCs. 
TCs and MCs exhibit different olfactory response dynamics and 
cortical projections (Nagayama et al., 2010; Miyamichi et al., 2011; 
Fukunaga et al., 2012; Igarashi et al., 2012) leading to the hypothesis 
of the existence of two parallel circuits: neonatal GCs and TCs 
involved in odor detection and operational at the early stage of 
development and adult-born GCs and MCs, operating from the first 
weeks of life, handling more complex olfactory demands. However, 
this segregation may be too simplistic, as even if they have preferential 
targeting in the GCL, GCs may target deep or superficial parts 
regardless of their date of birth, and their location in the GCL does not 
completely condition their local connectivity (Yoshihara et al., 2012; 
Takahashi et al., 2018; Tsuboi, 2020).

The functional role of adult-born GCs may also depend on their 
level of maturation. They are better rescued from cell death by 
olfactory learning (Alonso et  al., 2006; Mandairon et  al., 2006a; 
Mouret et al., 2008; Belnoue et al., 2011) and activated by olfactory 
inputs in their immature state (14- to 28-day-old) (Magavi, 2005; 
Whitman and Greer, 2007; Nissant et al., 2009; Breton-Provencher 
and Saghatelyan, 2012). Immature adult-born GCs also exhibit 
learning-induced structural plasticity not shown by mature neonatal 
GCs (Breton-Provencher et  al., 2016; Forest et  al., 2019a). Their 
optogenetic inhibition impaired learned discrimination while the 
same photo-inhibition applied on mature neonatal GCs impaired only 
complex perceptual discrimination learning (Forest et  al., 2019a). 
Interestingly, photo-activation of mature adult-born GCs (10- to 
12-week-old) can accelerate associative olfactory learnings (Alonso 
et al., 2012; Grelat et al., 2018; Bragado Alonso et al., 2019).

From 10-month-old, olfactory enrichment no longer increases the 
survival of immature GCs (Rey et al., 2012). At the same time, they 
show impaired structural plasticity in response to olfactory learning 
and lower performances (Greco-Vuilloud et  al., 2022). Such 

impairments of neurogenesis may, at least in part underlie olfactory 
cognitive decline, prompting exploration of ways to maintain a higher 
level of olfactory plasticity with age (Terrier et al., 2024). In the aged 
brain, new neurons become very rare, questioning their 
functional significance.

To conclude, GCs born in the adult brain play a decisive and specific 
role in experience-induced plasticity during their immature state. GCs 
born early after birth are essential for assuming innate olfactory 
behaviors, not least because they are the only ones present at birth. In 
addition, and given their high survival rate, it’s tempting to speculate that 
they might retain a lifelong memory of early olfactory events that could 
escape the fading caused by neuronal turnover (Figure 2) (Frankland 
et al., 2013; Epp et al., 2016; Forest et al., 2019b). Finally, GCs differ not 
only based on their location in the GCL but also on their origin in the 
SVZ (Merkle et al., 2007, 2014), morphology, transcriptome (for recent 
studies see Takahashi et al., 2016, 2018; Malvaut et al., 2017; Hardy et al., 
2018; Tsuboi, 2020; Fernández Acosta et al., 2022) but this diversity has 
not yet been considered in functional studies of adult bulbar neurogenesis.

Role of centrifugal feedbacks

Regardless of the age of the animal, the integration of newborn GCs 
in the OB is context-dependent, suggesting that it may be controlled by 
top-down inputs. The OB sends projections to olfactory cortices 
(Igarashi et  al., 2012; Hanson et  al., 2020) which in turn, send 
information to the OB (Luskin and Price, 1983; Shipley and Adamek, 
1984; Padmanabhan et al., 2018; In’t Zandt et al., 2019). Interestingly, 
cortical fibers establish synaptic contacts with adult-born GCs 
(Arenkiel et al., 2011; Deshpande et al., 2013; De La Rosa-Prieto et al., 
2015) whose density is increased by olfactory learning (Lepousez et al., 
2014) and activation can induce LTP (Nissant et al., 2009). Recently, the 
chemogenetic stimulation of the anterior olfactory nucleus 
glutamatergic feedbacks to the OB was shown to reduce adult-born 
GCs survival (Libbrecht et al., 2021). In contrast, the GABAergic inputs 
from the horizontal band of Broca area (HDB) favor their survival 
(Hanson et al., 2020). This study also revealed that GABAergic contacts 
from the HDB on newly formed GCs are denser in the superficial than 
in the deep part of the GCL, and thus may have different impact 
neonatal versus adult-born GCs. The centrifugal inputs develop early 
in life, from birth or the immediate post-natal period (piriform cortex, 
anterior olfactory nucleus), or from the second week of life (cortical 
amygdala, lateral entorhinal cortex) suggesting that the top-down 
influence on newly formed cells occurs from birth and evolves as a 
function of the individual’s age (Kostka and Bitzenhofer, 2022).

The OB is also the target of the noradrenergic, cholinergic 
(Mandairon and Linster, 2009; Mouret et al., 2009; Schilit Nitenson 
et al., 2019; Zhou et al., 2022) and serotoninergic (Banasr et al., 2004; 
García-González et  al., 2017) neuromodulatory systems whose 
influence is critical to olfactory learning. In adults, the action of the 
noradrenergic and cholinergic systems on newborn GCs are required 
for the perceptual olfactory learning to occur (Moreno et al., 2012; 
Schilit Nitenson et al., 2019). Thus, it seems that these two systems 
have synergic effect enabling the integration of newborn GCs in the 
OB circuitry. In associative learning, inhibiting noradrenergic actions 
did not affect behavioral responses nor neurogenesis rate (Vinera 
et  al., 2015), suggesting task-specificity of the neuromodulatory 
systems actions. The noradrenergic fibers coming from the Locus 
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Coeruleus are present at birth. They are inhibitory on GCs at neonatal 
stages (Pandipati and Schoppa, 2012) and play a role in neonatal 
imprinting behaviors (Moriceau and Sullivan, 2004). Regarding 
acetylcholine, the time course of development of its contacts with 
newly-formed GCs and function are largely unknown.

Implication for mental health

Neuropsychiatric conditions like depression, anxiety, 
schizophrenia or borderline personality disorder often stem from early 
life stress (Anda et al., 2006; Pietrek et al., 2013; Youssef et al., 2019; 
Lippard and Nemeroff, 2020; McKay et al., 2022), and are accompanied 
by olfactory dysfunctions (Naudin et al., 2012; Kazour et al., 2017; 
Kamath et al., 2018; Crow et al., 2020; Li et al., 2020; Athanassi et al., 
2021; Chen et al., 2021; Marin et al., 2023). Adult neurogenesis has 
been shown to play a part in animal models of depression (Siopi et al., 
2016; Ren et al., 2021) but translation to humans is uncertain because 
the existence of adult neurogenesis in humans is controversial 
(Lucassen et al., 2020; Duque et al., 2022; Alshebib et al., 2023; Alonso 
et al., 2024). In contrast, could alteration of early life neurogenesis play 
a part in the vulnerability to psychiatric diseases induced by early life 
aversive events? Indeed, neurogenesis during childhood in humans is 
less prone to debate (Sanai et al., 2011; Dennis et al., 2016; Mathews 
et al., 2017; Cipriani et al., 2018; Sorrells et al., 2018). The large overlap 
in neural structures mediating emotional behavior and processing of 
olfactory signals suggests that the OB could contribute to emotional 
disturbances (Kontaris et al., 2020; Bhattarai et al., 2022). In support 
to this hypothesis, early life stress reduced developmental olfactory 
neurogenesis (Naninck et al., 2015). Thus, altering the neurogenesis at 
this developmental step could durably alter OB structure and function 

and contribute to long-lasting olfactory deficits and alteration of 
emotional behavior (Athanassi et al., 2021; Marin et al., 2023).
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FIGURE 2

Hypothetical model of odor and memory processing by newly formed GCs according to the age of the animal. GCs activated in response to an 
odorant are represented by stars. An odorant processed at the infant stage is encoded by neonatal GCs, which show little cell death. The local network 
is reactivated by the odorant during recall, allowing the persistence of the memory. An odorant processed at the adult stage is encoded by adult-born 
GCs, showing greater renewal (blue dotted dots). The local network is only partially reactivated, possibly explaining the decay of the olfactory memory. 
Note that an adult olfactory learning can also recruits neonatal GCs. GCL, Granule Cell Layer; GCs, Granule Cells.
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Auditory space has been conceptualized as a matrix of systematically arranged

combinations of binaural disparity cues that arise in the superior olivary complex

(SOC). The computational code for interaural time and intensity differences

utilizes excitatory and inhibitory projections that converge in the inferior

colliculus (IC). The challenge is to determine the neural circuits underlying this

convergence and to model how the binaural cues encode location. It has been

shown that midbrain neurons are largely excited by sound from the contralateral

ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending

projections from the lateral superior olive (LSO) to the IC have been reported

to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used

CBA/CaH mice (3–6 months old) and applied unilateral retrograde tracing

techniques into the IC in conjunction with immunocytochemical methods with

glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze

the projection patterns from the LSO to the IC. Glycinergic and glutamatergic

neurons were spatially intermixed within the LSO, and both types projected to

the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally

and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly

equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The

somatic size and shape of these neurons match the descriptions of LSO principal

cells. A minor but distinct population of small (< 40 µm2) neurons that labeled

for GlyT2 did not project to the IC; these cells emerge as candidates for

inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral

projection of glycine and glutamate neurons from the LSO to the IC. The

differences between our results and those from previous studies suggest that

species and habitat differences have a significant role in mechanisms of binaural

processing and highlight the importance of research methods and comparative

neuroscience. These data will be important for modeling how excitatory and

inhibitory systems converge to create auditory space in the CBA/CaH mouse.

KEYWORDS

binaural hearing, sound localization, lateral superior olive, glycine, glutamate, principal
cells
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1 Introduction

The auditory system is constantly tracking inputs received from
the two ears. Principal neurons of the lateral superior olive (LSO)
combine excitatory glutamatergic projections from the ipsilateral
cochlear nucleus (Cant and Casseday, 1986; Doucet and Ryugo,
2003) with inhibitory glycinergic input from the homolateral
medial nucleus of the trapezoid body (MNTB) that is driven by
activation of the contralateral cochlear nucleus (Kuwabara and
Zook, 1991; Banks and Smith, 1992). The convergence of this
binaural information using interaural level and timing differences
is sent to the inferior colliculus (IC) (Grothe and Park, 1995;
Franken et al., 2018; Williams et al., 2022). Electrophysiological
recordings from the inferior colliculus reflect the output of the
LSO with maximal excitation leading from the contralateral ear
and inhibition when the sound is delivered to the ipsilateral ear
(Hind et al., 1963; Kuwada et al., 1984; Grothe and Park, 1995;
Park et al., 2004; Ono and Ito, 2015; Ono et al., 2020). The
computation of sound location is achieved by the manner in which
the auditory system utilizes neural responses created by ongoing
interaural differences in time, level, and spectral cues (Mosieff and
Konishi, 1981; Tollin and Yin, 2005; Yin et al., 2019). These binaural
functions are crucial for the brain to sort the various auditory
streams that bombard the system constantly and to make sense of
our auditory scene.

The lateral superior olive (LSO) contains a heterogenous
population of neurons with either ascending or descending
projections, which are suggested to function separately in
information processing (Ryugo et al., 2011; Williams et al.,
2022). Defining its ascending circuitry is considered crucial to
understanding mechanisms of auditory stream segregation. It had
been suggested using tract-tracing methods that principal neurons
of the LSO have bilateral and symmetric projections to the IC
(cat. Adams, 1979; greater horseshoe bat, Schweizer, 1981; gerbil,
Nordeen et al., 1983; mustache bat, Ross et al., 1988; Mexican free-
tailed bat, Grothe, 1994; Wistar albino rat, Kelly et al., 1998); we
quantitatively support this conclusion for the CBA/CaH mouse
(Williams et al., 2022). There are, however, disagreements as to the
symmetry and chemical nature of these projections: (1) ipsilateral
projections are entirely glycinergic and inhibitory (Willard and
Martin, 1984; Saint Marie et al., 1989; Moore et al., 1995; Mellott
et al., 2021), (2) low frequency neurons project ipsilaterally, whereas
high frequency neurons project contralaterally (Glendenning and
Mastereton, 1983; Oliver, 2000), and (3) low frequencies project
contralaterally and high frequencies project ipsilaterally (Henkel
and Brunso-Bechtold, 1993).

The data that include transmitter chemistry with the
corresponding laterality of LSO projections to the IC are also
conflicting. Published reports to date suggest that ipsilateral
projections are primarily glycinergic, and the contralateral
projections are glutamatergic. These differences, however, could
be due to variations across species (cats, Saint Marie et al., 1989)
or chinchillas and guinea pigs, Saint Marie and Baker, 1990;
bat, Klug et al., 1995; Long-Evans rats and Swiss Webster mice,
Ito and Oliver, 2010; gerbils, Mellott et al., 2021; CBA/CaH
mouse, Williams et al., 2022), age (Helfert et al., 1989; Nerlich
et al., 2017), cell staining methods for determining amino acid
chemistry including in situ hybridization (Mellott et al., 2021);

immunohistochemistry (Storm-Mathisen et al., 1983; Wenthold
et al., 1986; Koch and Sanes, 1998; Williams et al., 2022); and
pathway tracing such as HRP histochemistry (Glendenning et al.,
1992), dextran amines (Williams et al., 2022), and selective uptake
and transport of radiolabeled glycine (Saint Marie and Baker,
1990; Glendenning et al., 1992). In the context of differences in the
species, age of the subjects at the time of examination, and methods
employed, variations in the results should not be surprising. The
challenge is to advance our knowledge about binaural hearing
by understanding the brain differences as they relate to species,
species habitat, and methods of research.

This present study sought to confirm the bilateral and
symmetrical LSO projections to the IC (Williams et al., 2022) and to
extend our understanding of excitatory and inhibitory effects in the
mouse. Using retrograde labeling and antibody staining methods in
the CBA/CaH mouse, we sought the following: (1) to determine the
projection pattern of glycinergic and glutamatergic LSO neurons
to the IC, (2) to assess somatic size of the different classes of LSO
neurons, and (3) to infer LSO influences on sound localization
mechanisms.

2 Materials and methods

2.1 Mouse model of hearing

This study was conducted in line with the Australian Code for
the Care and Use of Animals for Scientific Purposes (2013). Usage
of all animals were in accord to the Animal Ethics Committee
protocols (Animal Research Authority: 20-02 and 21-13) and
utilizing the principals of Replacement, Reduction and Refinement
with the approval from the Garvan Institute of Medical Research
Animal Ethics Committee. A total of 20 CBA/CaH mice of either
sex and aged between 4 and 6 months old were used. CBA/CaJ mice
(Strain #000654) were imported from The Jackson Laboratory (Bar
Harbor, ME) by the Australian BioResources Facility (Mossvale,
New South Wales, AUS), renamed CBA/CaH as requested by The
Jackson Laboratory, and an inbred colony established. These mice
were chosen because they exhibit exhibits stable auditory brainstem
response (ABR) thresholds for up to one year (Zheng et al., 1999;
Sergeyenko et al., 2013; Muniak et al., 2018) and are commonly
used to model normal animal hearing (Berlin, 1963; Ohlemiller
et al., 2016).

2.2 Hearing status

All animals underwent ABR testing prior to experimentation.
Mice were anesthetized using ketamine/xylazine (100 mg/kg;
20 mg/kg), and placed in a double-walled, sound-attenuating
chamber (Sonora Technology, Gotenba, Japan) on a heating pad.
Once areflexic to a toe-pinch, the recording, reference, and ground
electrodes were placed in the skin on the cranial vertex, left
pinna, and biceps femoris, respectively. A MF-1 speaker (Tucker-
Davis Technologies, TDT) was positioned 45◦ off the midline
and 10 cm from the pinna where alternating condensation and
rarefaction click stimuli (100 µsec square wave pulses) and tone
stimuli at 4, 8, 16, 24, 32, 40, and 48 kHz (5 ms duration,
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0.5 ms rise/fall) were generated using a software-controlled signal
processor, RZ6/BioSigRZ (TDT), and delivered from 90 to 30 dB
SPL in 10 dB decremental steps to either ear separately. Stimulus
presentations (n = 512) were delivered at a rate of 10/s for each
level and the evoked responses were amplified (RA16PA/RA4LI;
TDT), bandpass filtered from 0.5 to 3 kHz, recorded, and averaged
(RZ6; TDT). Hearing threshold was defined as the sound level
at which the peak ABR amplitude was four times the standard
deviation of the average baseline noise level (Bogaerts et al., 2009).
Only mice with normal auditory brainstem response thresholds
and audiograms (Zheng et al., 1999; Taberner and Liberman, 2005;
Muniak et al., 2018) were used in this study.

2.3 Tract tracing from the inferior
colliculus to the lateral superior olive

Following ABR testing, each individual animal was placed
in an atraumatic DKI stereotaxic head holder. The surgical
approach to the IC began by making a skin incision on the dorsal
surface of the head to expose the cranial sutures, bregma, and
lambda. Approximately 5.2 mm posterior to bregma, a unilateral
craniotomy (roughly 2 mm2) was made overlying the IC using a
#11 scalpel and a surgical pick. Pressure injections (0.5 µl at a rate
of 100 nl per minute) of the retrograde tracer, Fluorogold (FG; 4%
in saline, Fluorochrome, Denver, CO, USA) were made using a
manual microinjector (Sutter Instruments, Novato, CA) with the
needle tip directed into the central nucleus of the IC at a depth of
1.0– 1.5 mm by a micro manipulator (DKI Model 961, Tujunga,
CA) using the stereotaxic coordinates of Paxinos and Franklin
(2008). Following the IC injection, bone wax was applied to cover
the craniotomy, and VetBond tissue adhesive was used to close the
incision site for the post-surgical survival period. Retrograde tracer
was placed in only one ICs in order to distinguish LSO neurons with
ipsilateral or contralateral ascending projections (Supplementary
Figure 1).

2.4 Tissue preparation

Fourteen days after an IC injection, animals were administered
an intraperitoneal, lethal injection of Lethabarb (200 mg/kg
bodyweight). When the animal was unresponsive to a paw pinch,
the chest cavity was surgically opened and the heart isolated.
The descending aorta was clamped, the right atrium punctured,
and an 20g surgical needle, connected to a feeding syringe by
flexible tubing, inserted into the left ventricle. The upper body
and head were perfused transcardially with 3–5 ml of 1% sodium
nitrate in phosphate-buffered saline, followed by 60 ml of 4%
paraformaldehyde (in 0.1M phosphate buffer, pH 7.4) delivered at
a rate of approximately 20 ml per minute. The head was removed,
the calvaria partially opened to expose the brain, and the head post-
fixed for another 2–3 h. The brain was then completely dissected
out of the skull under an operating microscope and the brain
post-fixed overnight at room temperature in 0.1M buffered 4%
paraformaldehyde. The following day, the brain was embedded in
a gelatin-albumin mixture hardened with 4% paraformaldehyde,

sectioned into 60 µm-thick sections using a vibrating microtome
(Leica VT1200S, Nussloch, DE), and collected in serial order in
buffer using 24-well tissue culture plates.

2.5 Immunostaining with either GlyT2 or
vGLUT2

FG-labeling of the LSO principal cells was observed following
unilateral FG injections into one IC. Sections containing the
SOC were counterstained for the glycine transporter 2 (GlyT2)
using rabbit anti-GlyT2 (n = 7, Cat# PA5-69264, Thermofisher,
Massachusetts, USA) or for the vesicular glutamate transporter
2 (vGLUT2) using rabbit anti-vGLUT2 (n = 5, Cat# 42-7800,
Thermofisher, Massachusetts, USA). Sections were incubated in
0.1% Photoflo (Kodak, Rochester, NY, USA) for one hour, followed
by an hour in 20% normal goat serum. Sections were washed three
times in buffer and incubated at 4◦C overnight in either 1:1000
rabbit anti-GlyT2 primary antibody and 2% normal goat serum or
in 1:1000 rabbit anti-vGLUT2 primary antibody and 2% normal
goat serum. One section per case was not exposed to the primary
antibody and used as a negative control.

The following day, sections were exposed to either rabbit anti-
GlyT2 or rabbit anti-vGLUT2 antibodies, rinsed in buffer, and
placed in 1:200 goat anti-rabbit IgG cross-absorbed secondary
antibody, Alexa FluorTM 488 (Cat# A-11008, RRID:AB_143165,
Thermofisher, Massachusetts, USA). After one hour, sections were
rinsed in buffer, mounted on standard microscope slides, and
coverslipped with VectaShield (H-1400; Vector Labs, California,
USA).

The principal neurons labeled from FG injections were viewed
under the fluorescent microscope with a wide band ultraviolet
excitation filter (Zeiss 19012 AT Filter). GlyT2 or vGLUT2 was
viewed under the fluorescent microscope using 499 nm excitation
filter [Zeiss (Colibri) Filter Set 59 HE]. The specific fluorescent
label from the IC injections and antibody staining prevents cross-
over of the label when viewing through the microscope. The
MNTB served as a positive control for the GlyT2 neuronal labelling
(Supplementary Figure 2).

2.6 Cresyl violet Nissl stain

Cresyl violet (CV) staining was performed on separate cases
or sections whose fluorescent signals had faded using a protocol
modified from Humason (1979). This basophilic dye stains acidic
components of Nissl bodies, ribosomes, and chromatin to reveal
the cell bodies and nuclei of neurons (and supporting cells and
vasculature). The sections were hydrated in distilled water for
5 min, followed by a 10-min incubation in 0.1% CV dye at room
temperature. The slides were rinsed in distilled water, followed by
rinses in 70% alcohol, 95% alcohol and then differentiated (95%
alcohol with 10 drops of glacial acetic acid) for one minute to
remove excess staining. Rehydration in decreasing concentration
of alcohol (one-minute periods in 70, 50, 30%, and distilled water)
further removes excess CV for air-drying overnight and cover
slipping with Permount the next day.
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2.7 Quantification of LSO neurons and
microscopy

Examination of tissue was conducted using a Zeiss AxioPlan
microscope fitted for brightfield and fluorescent microscopy. The
following objectives were used with our Zeiss AxioPlan microscope:
100x Oil Plan Neuofluar, NA 1.3; 40x Plan Apochromat NA
1.2; 25x Plan Neofluar NA 0.60; and 10x Planachromat NA
0.25). The high numerical aperture (NA) of each objective
optimized final image resolution (300 dpi) and avoided empty
magnification. Serial sections of the CV-stained LSO were imaged
from the rostral to caudal extremities of the nucleus, guided
by the facial and pontine nuclei respectively, to determine the
boundaries of the LSO. Criteria for neuron identification and
counting were established to reveal three cytologic categories: large
periolivary (PO) cells, medium-sized principal cells, and small cells
(Supplementary Figure 3).

Further analyses of neuron types were made using projection
data and transmitter histochemistry for all sections through each
LSO. Cell counts were performed in the contralateral and ipsilateral
LSO nucleus for principal projecting (FG) neurons, GlyT2+ only
neurons, vGLUT2+ only neurons, and those that double-labeled
(FG and GlyT2 neurons or FG and vGLUT2 neurons). Brightfield
photomontages (40x objective) at 3 focal planes through each
section containing the LSO were compiled and stacked (300
dpi resolution, Adobe Photoshop 2024). Without moving the
x-y position of the microscope stage, z-stacks of fluorescent
photomicrographs through the same LSO were collected using the
UV excitation filter, and the GlyT2 and vGLUT2 neurons from
images taken with the 499 nm filter. Manual counts were conducted
for the principal cells and for cells labeled with the antibodies;
counts for double labeled neurons were made by superimposing the
micrographs from the two different filters to determine which cells
were double-labeled.

Neuronal criteria were established for the counts and included
only cells with a clear, sharp somatic outline and a visible nucleus
(Supplementary Figure 4 and Supplementary Table 1). Other
blurry globules, holes, and artifacts in the tissue were ruled out
using the criteria for labeled cells. A ratio of all the principal IC
projecting neurons labeled in the ipsilateral and contralateral LSO
was calculated for all cases. Photomicrographs (40x objective) of
neurons labeled with either GlyT2 or vGLUT2 were imported into
Photoshop and the cell body outline was drawn and filled on a
separate layer to represent the cell body silhouette area. TIFF files
of the drawn silhouette area were loaded into FIJI ImageJ2 (V
2.14.0/1.54f) to quantify the area of the GlyT2 and vGLUT2 somata.

Counts for the projecting neurons, glycinergic neurons,
glutamatergic neurons, and CV-stained neurons were compared
and related to previous counts reported in the literature. No
correction factor was applied in these counts (Hedreen, 1998).
Statistical analyses were performed on the data output from the
neuronal counts, ratios, and cell size using Descriptive Statistics,
Mann Whitney two-tailed test, and Two-way ANOVA using Šídák’s
Multiple Comparison Test (Prism 9, 2021 GraphPad software,
San Diego, CA USA). Means, standard deviations, p-values, and
statistical tests are provided.

3 Results

Principal neurons with ascending projections and intrinsic
neurons with descending projections exhibited similar somatic
anatomy using standard tracing techniques, but could be
differentiated by chemical stains: intrinsic efferent neurons stained
with cholinergic markers, whereas principal neurons did not.
Within this grouping, there are principal cells with ipsilateral or
contralateral projections that have been inferred to be glycinergic
or glutamatergic, respectively (Glendenning and Mastereton, 1983;
Saint Marie et al., 1989; Saint Marie and Baker, 1990; Moore et al.,
1995; Mellott et al., 2021). In most studies, glycinergic neurons
are reported to project almost entirely to the ipsilateral IC (Saint
Marie and Baker, 1990). In the gerbil, 76% of the principal neurons
are glutamatergic with contralateral projections to the IC (Mellott
et al., 2021), whereas in the C57BL/6 mouse, 98.6% of vGLUT2
neurons projected to the contralateral IC (Haragopal et al., 2023).
In the CBA/CaH mouse, half of the retrogradely labeled cells
had projections to the ipsilateral IC and the other half to the
contralateral IC (Williams et al., 2022). Our goal was to determine
the chemistry associated with the laterality of these IC projections.
We labeled glycinergic and glutamatergic neurons using antibodies
directed against the transporters, GlyT2 and vGLUT2, respectively,
in tissue that contained retrogradely labeled LSO principal cells
following retrograde tracer injections into the IC.

3.1 Labeling of LSO principal cells
co-labeled with GlyT2

Large unilateral retrograde tracer (FG) injections were made
into the CNIC to label LSO principal neurons. A bilateral, mostly
homogeneous labeling pattern of neurons filled both LSO nuclei
(Figure 1, yellow). Within the LSO, a few larger, polygonal neurons
were somewhat concentrated around the dorsal hilus within the
borders of the LSO. These multipolar cells were distinctly larger
than principal cells and could also be found lightly scattered
throughout the LSO. They resembled the previously described
periolivary neurons (PO) located within and around the LSO
(Williams et al., 2022).

In the same tissue, GlyT2 immunohistochemistry was
performed to reveal labeled cells and fibers (Figure 1A-row 2 and
Figure 1B-row 4). The majority of GlyT2 labeled neurons were
medium in size, fusiform in shape, and resembled principal cells
(Williams et al., 2022). These cells were distributed throughout
the LSO. A subset of GlyT2-labeled neurons was small and oval-
shaped, featuring scant cytoplasmic staining by CV; these did not
co-label with the retrograde tracer injected in the IC. Another
small population of neurons had larger, oblong somata residing
within and around the LSO, and resembled previously described
PO cells (Supplementary Figure 5A).

Principal cells projecting to the IC were co-labeled by GlyT2 in
the ipsilateral and contralateral LSO (Figure 2), were surrounded
by neighboring GlyT2 positive axons and dendrites, and featured
an opaque nucleus that was readily identifiable. The nuclei in FG-
labeled neurons were obscured by the cytoplasmic fluorescence. By
illuminating and photographing the fluorescence of the retrograde
tracer using one fluorescent filter, and capturing the fluorescence
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FIGURE 1

Photomicrographs of IC projecting neurons (yellow) and GlyT2 neurons (blue) in the LSO. Principal neurons were labeled via a unilateral injection of
FluoroGold (FG) into the right IC. This tissue was then counterstained by GlyT2 immunohistochemistry. (A) Low magnification montages of the SOC
(10x objective) show the contralateral and ipsilateral LSO with retrogradely labeled principal neurons (top panels, yellow) and GlyT2 staining (bottom
panels, blue). Micrographs of the same LSO were captured using a different fluorescent filter to reveal both types of labeled neurons. The MNTB
contains well-labeled GlyT2 neurons as a positive control. (B) Higher magnification images (25x objective) of the same LSOs shown in A, illustrating
double-labeled FG and GlyT2 neurons (red arrowheads) in relatively equal numbers. These results also show that some GlyT2 neurons project to the
ipsilateral IC, some to the contralateral IC, and some to neither. FG, FluoroGold; GlyT2, glycine transporter 2; LSO, lateral superior olive; CN VIII,
vestibulocochlear nerve; IC, inferior colliculus; MNTB, medial nucleus of the trapezoid body; SOC, superior olivary complex. Scale bar equals
250 µm (A) and 100 µm (B).

of the GlyT2 label with another filter, the two images of the
same section were overlayed to reveal a population retrogradely
labeled cells that co-labeled with GlyT2 (Figure 3). Notably, not
all labeled IC-projecting neurons were GlyT2-positive, and not
all GlyT2-positive neurons were IC-projecting. Unlike previous

reports (Glendenning and Mastereton, 1983; Saint Marie et al.,
1989; Saint Marie and Baker, 1990; Mellott et al., 2021; Haragopal
et al., 2023), the co-labeled neurons in our study demonstrated that
glycinergic neurons projected in equal numbers to the ipsilateral
and contralateral IC.
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FIGURE 2

Photomicrographs (40x objective) and drawings of LSO principal neurons (yellow) labeled via FG injections into the IC and counterstained with
GlyT2 (blue). (A) Top row shows FG-labeled neurons (a, yellow with black outlines) and corresponding drawing of the labeled cells (a’) from the
contralateral LSO. In row 2, GlyT2-labeled cells are shown with black outlines (b) and corresponding drawings (b’). The red arrowheads indicate the
double-labeled cells in the photomicrographs and drawings. (B) Upper row shows ipsilateral projecting neurons (FG, yellow) with black outlines (c)
and corresponding drawings of the labeled cells (c’). The bottom row shows that the ipsilateral projecting GlyT2-labeled neurons (d, d’) have a
similar size and shape compared to the contralateral-projecting neurons. The IC-projecting cells that co- label with GlyT2 immunostaining are
indicated by red arrowheads. FG, FluoroGold; GlyT2, glycine transporter 2; LSO, lateral superior olive; CN VIII, vestibulocochlear nerve; IC, inferior
colliculus; MNTB, medial nucleus of the trapezoid body; SOC, superior olivary complex. Scale bar equals 25 µm.
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FIGURE 3

Photomicrographs (100x oil objective) and drawings of double-labeled LSO neurons (rows 1–6). Principal neurons were first labeled via a unilateral
injection of the retrograde tracer (FG) into the IC (column 1). This tissue was then stained by GlyT2 antibodies (column 2) revealing that some FG
neurons were also labeled for GlyT2 in either the ipsilateral or contralateral LSO. Not all principal neurons were double labeled. The neuronal shape
of FG and GlyT2 neurons from either the ipsilateral or contralateral LSO are shown (columns 3–4). Double-labeled neurons containing FG and GlyT2
are identified by their overlapping position and near identical somatic features (column 5). An occasional large neuron resembling periolivary
neurons (* in row 2) was doubled labeled. Not all GlyT2-stained principal neurons project to the IC, and not all IC-projecting neurons co-label with
GlyT2. FG, FluoroGold; GlyT2, glycine transporter 2; LSO, lateral superior olive; CN VIII, vestibulocochlear nerve; IC, inferior colliculus; MNTB, medial
nucleus of the trapezoid body; SOC, superior olivary complex. Scale bar equals 25 µm.
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3.2 Labeling of LSO principal cells
co-labeled with vGLUT2

In a separate set of animals, vGLUT2 immunohistochemistry
was used to counterstain the retrogradely labeled IC-projecting
neurons in order to compare and contrast co-labeled neurons
within the ipsilateral and contralateral LSO. The labeling pattern
of vGLUT2 for retrogradely labeled principal neurons was similar
to that of GlyT2 labeling: there was a population of ipsilateral and
contralateral IC-projecting neurons that co-labeled for vGLUT2.
Not all IC-projecting neurons labeled with vGLUT2, and not
all vGLUT2-labeled neurons were IC-projecting (Figure 4). The
vGLUT2 antibodies labeled cell bodies and surrounding fibers,
which created a level of background staining. Regardless, the
fusiform appearance of principal neurons was evident (Figures 4,
5). Consistent with other staining techniques in the LSO, a small
population of distinctly larger, multipolar neurons tended to reside
around the dorsal hilus and resembledPO neurons (Supplementary
Figure 5B).

Two different fluorescent filters were used for separately
illuminating the IC-projecting neurons and the vGLUT2 neurons
so that the images could be superimposed to reveal three types
of neurons: (1) retrogradely labeled principal cells that co-labeled
with vGLUT2; (2) principal cells that were vGLUT2 negative; and
(3) vGLUT2 neurons that did not co-label with principal neurons
projecting to the IC (Figures 5, 6). These neurons were observed
bilaterally in the LSO.

3.3 Distribution of labeled LSO neurons

The LSO of representative IC injection cases, counterstained
by GlyT2 and vGLUT2 antibodies, were drawn, aligned in
register, and stacked in the z-plane. The positions retrogradely
labeled LSO principal neurons, immunostained GlyT2 neurons,
immunostained vGLUT2 neurons, and double-labeled neurons
(FG and GlyT2 or FG and vGLUT2) were mapped. The results
demonstrate that these various principal neurons are intermixed
and distributed relatively uniformly throughout the LSO (Figure 7).
The double-labeled neurons represent a smaller population
compared to that of the IC projecting neurons or the GlyT2
and vGLUT2 immunolabeled neurons alone. Importantly, double-
labeled IC projecting cells were observed in both the ipsilateral and
contralateral LSO.

3.4 Counts of double-labeled neurons

The double-labeled neurons (FG and GlyT2 or FG and
vGLUT2) were quantified by performing neuronal counts across
serial sections from separate GlyT2 (n = 7) and vGLUT2 (n = 5)
cases (Table 1). These cases received a single unilateral injection
of a retrograde tracer, FG, into the IC. We observed an average
of 704 ± 201.6 labeled neurons in the ipsilateral LSO and
701.6 ± 152.2 labeled neurons in the contralateral LSO. The
spatial distribution of the projecting neurons in the LSO nuclei
appeared symmetrical (Figure 7). This qualitative assessment
was confirmed by the near-equal numbers of ipsilateral and

contralateral projecting neurons whose ratio averaged near unity
(Tables 1, 2A-projecting cells).

The experiments on retrograde labeling coupled to transmitter
immunocytochemistry were conducted in two separate series,
separated in time by several months. We first made IC injections
for the GlyT2 counterstaining (n = 7 mice), and after the resulting
histology was finished, initiated IC injections for the vGLUT2
counterstaining (n = 5 mice). In spite of following the same
procedures for both sets of experiments, injections from the
second set resulted in a larger number of retrogradely-labeled
cells compared to those of the first. As a result, we performed an
ipsilateral:contralateral ratio analysis within each individual mouse
rather than on raw counts; this strategy normalized the data from
all the animals (Table 2). The IC-projecting GlyT2 neurons yielded
an average ipsilateral:contralateral count ratio of 0.98 ± 0.29
(Table 2B), whereas the ipsilateral:contralateral count ratio for IC-
projecting vGLUT2 neurons was 0.98 ± 0.08 (Table 2C). There
was no statistical difference between these two sets of ratios (Mann
Whitney two-tailed test, p = 0.876).

The IC-projecting neurons that doubled-labeled with GlyT2
exhibited bilateral symmetry in the labeling pattern across all
seven cases, with a count ratio equal to 1.05 ± 0.23 (Table 2D).
The average number of double-labeled neurons in the ipsilateral
(GlyT2: 168.6 ± 31.8; vGLUT2: 187.0 ± 27.2) and contralateral
(GlyT2: 161.0 ± 47.6; vGLUT2: 197.6 ± 25.7) LSO was also
relatively consistent across animals (n = 12; Table 1) and revealed
no statistical difference (Table 3, 2-way ANOVA).

The symmetry in the labeling pattern for GlyT2 double-labeled
projecting neurons was further evident across all cases by dividing
the number of double-labeled neurons in the ipsilateral nucleus by
the total number of IC projecting neurons in the ipsilateral nucleus,
which revealed 29.7 ± 6.3% of neurons in the ipsilateral LSO
were co-labeled and 26.3 ± 8.3% of neurons in the contralateral
LSO were co-labeled (Table 1). The double-labeled neurons were
intermixed with single-labeled projecting neurons and single-
labeled GlyT2 neurons. There was no significant difference in
the percentages when comparing the co-labeled neurons in the
ipsilateral versus the contralateral LSO (2-way ANOVA, p = 0.88;
Figure 8A and Table 3).

When double-labeled vGLUT2 neurons were averaged across
five cases, the ipsilateral LSO contained 21.4 ± 2.3% IC-projecting
neurons compared to the 24.6 ± 2.8% contralateral IC-projecting
neurons (Table 1). No significant difference was found in the
percentages of double-labeled vGLUT2 neurons with ipsilateral
or contralateral projections (2-way ANOVA, p = 0.79; Figure 8A
and Table 3). In a similar way, the percentages of doubled-labeled
GlyT2 projecting neurons and vGLUT2 projecting neurons in the
ipsilateral and contralateral LSO nuclei also revealed no significant
differences (Table 3).

3.5 Cresyl violet staining features

In CV-stained material, the cytoplasm of principal cells lacked
large stacks of rough endoplasmic reticulum, also known as Nissl
bodies. Free ribosomes, however, were plentiful and gave the
cytoplasm a fine, granular light-blue texture. A pale spherical
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FIGURE 4

Photomicrographs of IC projecting neurons (yellow) and vGLUT2 neurons in the LSO. Principal neurons were labeled via a unilateral injection of the
retrograde tracer, FG (yellow), into the right IC and counterstained with vGLUT2 immunohistochemistry (magenta fluorescence). (A) Low
magnification montages of the SOC (10x objective) show the contralateral and ipsilateral LSO with retrogradely labeled principal neurons (top
panels, yellow) and vGLUT2 staining (bottom panels, magenta). (B) Higher magnification images (25x objective) of the same tissue in A, revealed
double-labeled neurons for FG (upper panels) and vGLUT2 (bottom panels) in the contralateral and ipsilateral LSO (red arrowheads) in approximately
equal numbers. Some vGLUT2 neurons project to the ipsilateral IC, some to the contralateral IC, and some to neither. vGLUT2, vesicular glutamate
transporter 2; others as in Figure 1.

nucleus with a single nucleolus occupied the middle of the spindle-
shaped cell body. Views of the principal cell away from its center-
of-gravity often missed the pointed ends of the spindle but revealed
an oval cell body dominated by the presence of the central nucleus
(Williams et al., 2022).

Counts in CV material were made according to four types
of cells identifiable in the tissue (Supplementary Figure 3 and
Supplementary Table 1): principal cell with nucleus present,

principal cell with no nucleus present, small cell with nucleus
present, small cell with no nucleus present. A total of 2277 neurons
were counted in the left LSO, and a total of 2785 counted in the
right LSO. For the IC projecting neurons, we counted 703 ± 174.7
labeled neurons per LSO. From previous work (Williams et al.,
2022), there is an average of 362 ± 25.4 lateral olivocochlear
efferents and from this study, an average of 412 ± 54.5 GlyT2 and
528 ± 106.6 vGLUT2 neurons in each LSO nucleus. The sum of
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FIGURE 5

Photomicrographs (40x objective) and drawings of LSO principal neurons (yellow) labeled by FG injections into the IC and immunostained for
vGLUT2 (magenta). (A) Top row shows FG-labeled neurons (a, yellow with black outlines) and corresponding drawing of the labeled cells (a’) from
the contralateral LSO. In row 2, vGLUT2-labeled cells are shown (b, with black outlines) and drawings only (b’). The red arrowheads indicate the
double-labeled cells in the photomicrographs (a, b) and schematic drawings (a’, b’). (B) Row c shows ipsilateral projecting neurons (FG, yellow with
black outlines) and corresponding drawings of the labeled cells (c’). The bottom row shows that the ipsilateral vGLUT2-labeled neurons (d) can be
matched to the contralateral-projecting neurons by location and somatic shape (d’). The double-labeled neurons are indicated by red arrowheads.
These results confirm that some vGLUT2 neurons project to the ipsilateral IC, some to the contralateral IC, and some not to either. FG, FluoroGold;
GlyT2, glycine transporter 2; LSO, lateral superior olive; CN VIII, vestibulocochlear nerve; IC, inferior colliculus; MNTB, medial nucleus of the
trapezoid body; SOC, superior olivary complex. Scale bars equal 25 µm.
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FIGURE 6

Photomicrographs (100x oil objective) and drawings of double-labeled LSO neurons (rows 1–6). Principal neurons were first retrogradely labeled via
a unilateral injection of FG into the IC (column 1). This tissue was then stained by vGLUT2 antibodies (column 2) revealing that some FG neurons
were co-labeled by a vGLUT2 antibody in either the ipsilateral or contralateral LSO. Not all principal neurons were double labeled. The neuronal
shape of FG and vGLUT2 neurons from either the ipsilateral or contralateral LSO are shown (columns 3–4). Double-labeled neurons containing FG
and vGLUT2 are identified by their overlapping position and near identical somatic features (column 5). Not all vGLUT2-stained neurons project to
the IC, and not all IC-projecting neurons co-label with vGLUT2. Scale bar equals 25 µm.
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FIGURE 7

Representative IC-injection cases counterstained by GlyT2 antibodies or vGLUT2 antibodies demonstrate their bilateral distribution in the LSO.
Neurons that project to the IC and/or are immunostained by GlyT2 (A) or vGLUT2 (B) antibodies were mapped onto outlines of their corresponding
sections and collapsed in a z-stack for the contralateral and ipsilateral LSO. The distribution of labeled cells was relatively uniform and bilaterally
symmetrical across the LSO for all cases, consistent with the tonotopic results of Williams et al. (2022). FG, FluoroGold; GlyT2, glycine transporter 2;
LSO, lateral superior olive; CN VIII, vestibulocochlear nerve; IC, inferior colliculus; MNTB, medial nucleus of the trapezoid body; SOC, superior olivary
complex. Scale bar equals 100 µm.

the average number of IC-projecting neurons, LOCs, GlyT2 and
vGLUT2 neurons in one LSO equals 2005. The projection pattern
of these neurons is summarized in Figure 8B.

3.6 Soma silhouette area of the labeled
neurons

Neuronal size variations were observed from the different
sets of stained tissue−LSO projecting neurons revealed qualitative
medium and large neurons; GlyT2-labeled neurons were small,
medium, and large (Figures 9A–C); and vGLUT2-stained neurons
were medium and large. These qualitative observations were
confirmed in quantitative analyses using soma silhouette area. The
data confirmed a small population of small glycinergic neurons
that were revealed by GlyT2 antibodies and related to small LSO
neurons stained by CV (Figure 9).

Analysis of soma silhouette area was used to analyze neuron
size groups in the LSO (Supplementary Figure 6). In our previous
study (Williams et al., 2022), we determined that the principal
neurons have an average cell area of 123.9± 26.6 µm2, comparable

to medium sized GlyT2- and vGLUT2-labeled neurons in this
study.

GlyT2 neurons could be classified into three size categories
(Figure 9): large cells, which had polygonal somata and resided
around the borders of the LSO; medium-sized neurons,
corresponding to descriptions of the principal cells with fusiform
somata and unipolar or bipolar dendritic extensions; and small
cells featuring somata that were < 40 µm2, oval, and containing a
pale spherical nucleus.

Soma silhouette values for GlyT2 neurons were consistent with
a tri-modal distribution (Figure 10 and Table 4): small GlyT2
neurons had an average cell size equal to 37.73 ± 8.30 µm2, the
medium sized neurons had an average size equal to 100.9 ± 25.54
µm2, and the large neurons had an average cell size equal to
215.0 ± 48.46 µm2 (Supplementary Figure 6A). In the population
of LSO-projecting neurons that co-labeled with GlyT2, these small
neurons of the mouse LSO had not been previously described.

Neurons labeled with vGLUT2 antibodies revealed a relatively
uniform group of cells that resembled the descriptions of the
principal neurons. These neurons were medium sized, averaging
114.0 ± 40.61 µm2 (Figure 10). A small population of large
polygonal neurons were observed around the LSO borders and fit
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TABLE 1 Counts for LSO neurons in the ipsilateral and contralateral LSO nuclei.

Animal ID Immuno label
stain

Total IC
projecting

IC projecting
without
immuno

Immuno
label

Double
labeled

% Double
labeled

Ipsilateral

AM1634 GlyT2 559 439 327 120 21.5

AM1643 GlyT2 603 415 485 188 31.2

AM1644 GlyT2 625 410 447 215 34.4

AM1655 GlyT2 651 494 468 157 24.1

AM1656 GlyT2 465 280 323 185 39.8

AM1657 GlyT2 661 487 381 174 26.3

AM1671 GlyT2 464 323 424 141 30.4

Average± SD 575.4± 82.8 406.9± 79.8 407.9± 65.6 168.6± 31.8 29.7± 6.3%

Contralateral

AM1634 GlyT2 619 542 352 77 12.4

AM1643 GlyT2 676 530 491 146 21.6

AM1644 GlyT2 558 401 427 157 28.1

AM1655 GlyT2 783 601 431 182 23.2

AM1656 GlyT2 582 356 415 226 38.8

AM1657 GlyT2 704 507 432 197 27.9

AM1671 GlyT2 446 304 369 142 31.8

Average± SD 624± 109.7 463± 109.8 416.7± 45.7 161.0± 47.6 26.3± 8.3%

Ipsilateral

AM1664 vGLUT2 1129 921 555 208 18.4

AM1665 vGLUT2 740 556 574 184 24.9

AM1671 vGLUT2 691 548 339 143 20.7

AM1672 vGLUT2 876 687 546 189 21.6

AM1673 vGLUT2 984 773 603 211 21.4

Average± SD 884± 108.9 697± 156.6 523.4± 105.4 187.0± 27.2 21.4± 2.3%

Contralateral

AM1664 vGLUT2 1020 791 593 229 22.5

AM1665 vGLUT2 703 509 576 194 27.6

AM1671 vGLUT2 699 541 319 158 22.6

AM1672 vGLUT2 732 528 591 204 27.9

AM1673 vGLUT2 897 694 588 203 22.6

Average± SD 810.2± 42.8 612.6± 124 533.4± 120.0 197.6± 25.7 24.6± 2.8

Manual counts for LSO neurons labeled via IC retrograde injections and immune-histochemistry with GlyT2 (n = 7) or vGLUT2 (n = 5) were counted to reveal populations of single and double
labeled neurons.

the descriptions of PO neurons (mean 230.4 ± 42.15 µm2; Table 4
and Supplementary Figure 6B). The IC-projecting neurons that co-
labeled with vGLUT2 showed similar sizes to vGLUT2 neurons
that did not project to the IC. No small neurons were stained by
vGLUT2 antibodies.

3.7 Summary

The present findings demonstrate that the population of
principal cells of the LSO include bilateral and symmetric

projections of glycine and glutamate cells to the IC in the CBA/CaH
mouse. We previously documented that these projections are
tonotopic (Williams et al., 2022). The organization of these
projections to the IC add to our knowledge of how excitation and
inhibition contribute to the separate binaural processing demands
for localizing high and low frequency sounds. We also observed
that not all GlyT2- or vGLUT2-labeled neurons project to the IC:
these must project to other brain stem sites, such as the cochlear
nucleus, superior olivary complex, nuclei of the lateral lemniscus,
or thalamus.

Frontiers in Neural Circuits 13 frontiersin.org153

https://doi.org/10.3389/fncir.2024.1430598
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1430598 August 7, 2024 Time: 13:1 # 14

Williams and Ryugo 10.3389/fncir.2024.1430598

TABLE 2 Ratio between neurons in the ipsilateral and contralateral LSO
nuclei labeled with either FG, GlyT2, vGLUT2, or double labeled.

Counts Label Ipsilateral Contralateral Ratio

A Projecting cells

Case

AM1634 FG 559 619 0.91

AM1643 FG 603 676 0.89

AM1644 FG 625 558 1.12

AM1655 FG 651 783 0.83

AM1656 FG 465 582 0.79

AM1657 FG 661 704 0.94

AM1671 FG 464 446 1.04

AM1664 FG 1129 1020 1.10

AM1665 FG 740 703 1.05

AM1671 FG 691 699 0.98

AM1672 FG 876 732 1.19

AM1673 FG 984 897 1.09

Total − 8448 8419 1.00

B GlyT2 cells

Case

AM1634 GlyT2 337 352 0.96

AM1643 GlyT2 485 491 0.99

AM1644 GlyT2 447 427 1.05

AM1655 GlyT2 468 431 1.09

AM1656 GlyT2 323 415 0.78

AM1657 GlyT2 381 432 0.88

AM1671 GlyT2 424 369 1.14

Total − 2865 2917 0.98

C vGLUT2 cells

Case

AM1664 vGLUT2 555 593 0.94

AM1665 vGLUT2 574 576 0.99

AM1671 vGLUT2 339 319 1.06

AM1672 vGLUT2 546 591 0.92

AM1673 vGLUT2 603 588 1.02

Total − 2617 2667 0.98

D Double labeled cells

Case

AM1634 FG + GlyT2 120 77 1.56

AM1643 FG + GlyT2 188 146 1.29

AM1644 FG + GlyT2 215 157 1.37

AM1655 FG + GlyT2 157 182 0.86

AM1656 FG+ GlyT2 185 226 0.82

AM1657 FG + GlyT2 174 197 0.88

AM1671 FG + GlyT2 141 142 0.99

Total FG +
GlyT2

− 1180 1127 1.05

(Continued)

TABLE 2 (continued)

Counts Label Ipsilateral Contralateral Ratio

AM1664 FG +
vGLUT2

208 229 0.91

AM1665 FG +
vGLUT2

184 194 0.95

AM1671 FG +
vGLUT2

143 158 0.91

AM1672 FG +
vGLUT2

189 204 0.93

AM1673 FG +
vGLUT2

211 203 1.04

Total FG +
vGLUT2

− 935 988 0.95

The ratio of labeled neurons between ipsilateral and contralateral neuronal counts was
calculated for each case by dividing the ipsilateral count by the contralateral count. A
ratio closest to 1.0 inferred symmetrical labeling between neuronal counts of both nuclei.
(A) Principal neurons labeled via retrograde tracing in ipsilateral and contralateral LSO
nuclei were counted. The total average ratio for the 11 cases is 1.0. Cases with alternate
sections labeled with either GlyT2 or vGLUT2 and were counted for the principal neurons
independently. (B) GlyT2 neurons labeled in the ipsilateral and contralateral LSO nuclei
were counted. The average ratio of GlyT2 neurons between both nuclei was 0.98. (C)
vGLUT2 neurons labeled in the ipsilateral and contralateral LSO nuclei were counted
and the resulted in an average ratio equal to 0.98. The ratio of GlyT2 neurons between
both nuclei was 0.98. (D) Doubled neurons were those retrogradely labeled neurons
counterstained with either GlyT2 or vGLUT2. The average ratio of principal neurons double
labeled with GlyT2 equalled 1.05; and the average ratio of principal neurons double labeled
with vGLUT2 equalled 0.95.

TABLE 3 2-WAY ANOVA results comparing projecting neurons double
labeled with GlyT2 or vGLUT2 immuno-histochemistry.

Double label projecting cell comparison

Average % of double
labeled cells

Mean Diff. P-value Outcome

GlyT2-ipsi GlyT2-contra 3.4 0.88 ns

29.7 26.3

GlyT2-ipsi vGLUT2-ipsi 7.8 0.24 ns

29.7 21.4

GlyT2-ipsi vGLUT2-contra 3.2 0.94 ns

29.7 24.6

GlyT2-contra vGLUT2-ipsi 4.4 0.79 ns

26.3 21.4

GlyT2-contra vGLUT2-contra −0.17 >0.99 ns

26.3 24.6

vGLUT2-ipsi vGLUT2-contra −4.6 0.79 ns

21.4 24.6

Comparisons were made between the ipsilateral and contralateral LSO nuclei and between
stains. The results revealed no significant difference across all comparisons. Data expanded
from Table 1. ipsilateral, ipsi; contralateral; contra.

4 Discussion

The ability to determine the spatial location of a sound is a
remarkable accomplishment of the ears and brain. The localization
of a sound source is computed by acoustic cues that are created
by the physical interactions of the sound with the head and the
two ears, including pinna and ear canals. The cues are analyzed by
the central auditory system, which uses the neural signals to create
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FIGURE 8

Summary of normalized numbers of GlyT2- and
vGLUT2-projections to the IC. (A) Counts of double-stained
neurons were normalized for each animal against the total number
of IC projecting cells due to uncontrollable individual differences as
well as variations in IC injections placement and size, retrograde
transport efficiency, sensitivity of antibody lots, and degree of tissue
fixation. The plot confirms what histological analyses suggested:
there is no statistical difference between the relative numbers of
GlyT2 and vGLUT2 staining of LSO principal cells or between their
ipsilateral and contralateral projections to the IC. (B) Graphic
illustration of the projection ratios of GlyT2 and vGLUT2 to a single
IC. The inputs to the opposite IC are not shown but would be a
mirror image.

a representation of auditory space. The practical consequence of
this ability is to avoid unseen dangers, to orient to the sounds of
a potential mate or foe, and to separate simultaneously occurring
acoustic streams.

Two ears are clearly important because differences in timing
and intensity of arrival of sound at the ears provide binaural cues for
sound localization in the azimuthal plane (Jeffress, 1948; Boudreau
and Tsuchitani, 1970; Guinan et al., 1972; Grothe, 2000; Konishi,
2000). In the classic model, low frequency sounds produce binaural
timing differences, whereas high frequency sounds yield interaural
sound level differences (Stevens and Newman, 1936). In addition,

the reflections of sounds off the head and pinna and within the ear
canals create spectral cues crucial for distinguishing sound distance,
elevation, and front-back positioning (Reiss and Young, 2005).

Interaural distance, the distance between the two ears, is a
factor that is related to LSO development and to the range of
sound localizing abilities across species (Masterton et al., 1969).
In a general way, animals with smaller heads have better sound
localizing abilities but other factors such as animal niche and
considerations of predator vs. prey also play a role. A relationship
between interaural distance and high frequency hearing has been
noted, but there are exceptions (Irving and Harrison, 1967;
Masterton et al., 1969; Moore and Moore, 1971; Heffner and
Masterton, 1990). The LSO is a major nucleus in the SOC that
is involved in transmitting binaural auditory signals to higher
structures and controlling cochlear receptor sensitivity via its
descending projections (Dewson, 1967; Liberman, 1980; Darrow
et al., 2006; Malmierca and Ryugo, 2011). All extant animals are
specialized and adapted to survive in their particular environmental
niche, whether it be by reproduction strategies, predation, or
complex social systems (Dunbar, 2009). These specializations will
be reflected in brain anatomy and physiology.

4.1 Cell types and neurotransmitters

LSO principal neurons that project to the IC are crucial for
modeling the role of excitation and inhibition in binaural hearing
(Finlayson and Caspary, 1991; Glendenning et al., 1992; Henkel
and Brunso-Bechtold, 1993; Brunso-Bechtold et al., 1994; Franken
et al., 2018). Not surprisingly, the exploration of cell types and
neurotransmitter expression involved in the auditory pathways
have been a subject of extensive study over the years and across
species including cats, mice, rats, humans, and ferrets (Adams,
1979; Ollo and Schwartz, 1979; Glendenning and Mastereton, 1983;
Cant, 1984; Helfert and Schwartz, 1986, 1987; Helfert et al., 1989;
Eybalin, 1993; Henkel and Brunso-Bechtold, 1993; Rietzel and
Friauf, 1998; Kulesza, 2008).

Generalities regarding cell types have been impeded by
variations in cell staining such as basophilic and silver proteinate
dyes (Taber, 1961; Irving and Harrison, 1967; Fech et al.,
2017), histochemistry (Warr, 1975), immunocytochemistry (Storm-
Mathisen et al., 1983; Wenthold et al., 1986; Vetter et al., 1991;
Helfert et al., 1992; Berrebi and Spirou, 1998; Kulesza, 2014;
Williams et al., 2022), and Golgi techniques (Scheibel and Scheibel,
1974; Ollo and Schwartz, 1979; Rietzel and Friauf, 1998). The Golgi-
method has had more limited utility because of its preference
to work in younger animals (Ryugo and Fekete, 1982). Different
staining methods inherently require separate criteria for names
because different stains are designed to reveal distinct features
of the neurons. Cross validation for different methods has only
become available recently with the advent of immunocytochemical
double-labeling procedures.

Studies also used different pathway tracing techniques that
varied in sensitivity and therefore in reliability. HRP histochemistry
(Adams, 1979; Schweizer, 1981; Nordeen et al., 1983; Glendenning
et al., 1992) was the first true neuronal tracer (LaVail et al.,
1973) and its sensitivity was dependent on a variety of conditions,
particularly on the chromogen used (Mesulam, 1978; Adams,
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FIGURE 9

Photomicrographs (100x oil) with corresponding drawings of large, medium, and small GlyT2-labeled neurons of the LSO. GlyT2 immunostaining
revealed a small population of large and small GlyT2-labeled cells that were intermixed with the dominant, medium-sized principal neurons. GlyT2
neurons were traced to illustrate the cell body silhouette and its resident nucleus. (A) Large GlyT2-labeled neurons were sprinkled around the
borders of the nucleus and the dorsal hilus. These border neurons were similar in size, shape, and location to previously described periolivary
neurons (Williams et al., 2022). (B) Medium-sized GlyT2-labeled neurons met the criteria of principal neurons. (C) The cell bodies of the small
GlyT2-labeled neurons were round-to-oval in shape and never labeled by retrograde tracer injections in the IC. (D) CV staining revealed small cells
to have granular and slightly lumpy cytoplasm and a round nucleus with pale grainy chromatin and prominent nucleolus. Scale bar equals 25 µm.

1981). The discovery that biotinylated dextran amines could be
transported along axons and finely visualized by reactions with
diaminobenzidine represented a crucial advance in pathway tracing
sensitivity (Reiner et al., 2000). This new method became the

standard for identifying pathways in the auditory brain stem
(Loftus et al., 2004; Gómez-Álvarez and Saldaña, 2016; Williams
et al., 2022), but could be replaced by the constantly evolving
technology that has introduced a perhaps even more selective and
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FIGURE 10

Cell size histogram for labeled LSO neurons. The outlines of cell bodies exhibiting a distinct nucleus were drawn from photomicrographs (100x oil)
so that somatic silhouette area and shape could be calculated: (A) GlyT2 immunostaining, (B) double-labeled by FG and GlyT2, (C) vGLUT2
immunostaining, and (D) double-labeled by FG and vGLUT2. (A) GlyT2 labeling revealed three population based on somatic size: small, medium and
large, which aligned with qualitative descriptions provided in Figure 9. A histogram of somatic area showed three peaks (red arrows) that were
consistent with three populations based on somatic size. Panel (B) Somatic size differences revealed two population peaks (red arrows) for GlyT2
neurons that projected to the IC: medium-sized and large neurons. No small GlyT2 neurons were observed projecting to the IC. Panel (C) vGLUT2
antibodies labeled medium-sized and large neurons in the LSO; these two populations resembled the previously described LSO principal and PO
neurons, respectively. No small neurons were observed in the LSO stained by vGLUT2 antibodies. Panel (D) Neurons double-labeled by FG and
vGLUT2 antibodies revealed two population peaks (red arrows) for medium-sized and large neurons attributed to the principal and periolivary
neuronal classes. These histograms demonstrate that principal/medium-sized neurons dominate the LSO but that small and large neurons are also
present. Histogram bin width equalled 5 µm2.

sensitive method of axon tracing using viral vectors (Lanciego
and Wouterlood, 2020; Qiu et al., 2022). A less common method
using the selective uptake and transport of radiolabeled glycine
(Saint Marie and Baker, 1990; Glendenning et al., 1992) and
amino acid receptor immunolabeling (Koch and Sanes, 1998) have
contributed to the literature on cell types, potential transmitter,
and cell type location in the LSO. All of these various methods
fundamentally require replication using different methods but in
the same species. In short, global conclusions regarding cell types,
transmitter chemistry, and IC projections have been generally
hampered by studies using different species, ages, methods, and
naming criteria.

The investigation of neurotransmitter expression, particularly
regarding glycine and glutamate, has yielded general agreement
where the ipsilateral projection from the LSO to the IC was
inhibitory and glycinergic and the contralateral projection from the
LSO to the IC was excitatory and glutamatergic (Figure 11). There
were, however, differences regarding the extent of contralaterally
projecting glycinergic neurons and/or ipsilaterally projecting

glutamatergic neurons (Helfert et al., 1989; Saint Marie et al., 1989;
Saint Marie and Baker, 1990; Klug et al., 1995; Cant and Benson,
2006; Mellott et al., 2021; Haragopal et al., 2023). In studies that did
not analyze cell chemistry, projections were reported as bilateral
and symmetrical (Adams, 1979; Schweizer, 1981; Nordeen et al.,
1983; Ross et al., 1988; Grothe, 1994; Kelly et al., 1998). We have
shown in the CBA/CaH mouse that glycinergic and glutamatergic
principal cells of the LSO project bilaterally, symmetrically, and
topographically to the IC (Williams et al., 2022; present report).

A comment of cell chemistry seems in order. It has been
reported that vGLUT2 is found only in a subset of “nerve terminals”
whose distribution appears sorted by “level” along the neuraxis.
However, the expression and distribution might also be dependent
on the excitatory state or the neuron’s packaging/release properties
at the time (Fremeau et al., 2004). It has also been reported
that vGLUT2 is present in cell bodies (Fremeau et al., 2001;
Li et al., 2020). Since vGLUT2 is reported to be distributed
extrasynaptically (Gomeza et al., 2003), it is not surprising
that it has also been observed in LSO principal cells using
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TABLE 4 Representative cell size of GlyT2, vGLUT2, and projecting neurons, and double labeled neurons.

GLYT2

GlyT2 (small) GlyT2 (medium) GlyT2(large) GlyT2 IC projecting
(medium)

GlyT2 IC projecting
(large)

Number of cells 38 212 18 94 18

Area median (µ m2) 38.2 99.5 208.7 100.5 180.8

Area mean± standard
deviation (µ m2)

37.73± 8.3 100.9± 25.5 215.0± 48.5 99.14± 22.9 180.8± 21.2

vGLUT2

vGLUT2(medium) vGLUT2(large) vGLUT2 IC projecting (medium) vGLUT2 IC
Projecting (large)

Number of cells 346 38 122 16

Area median (µ m2) 123.3 222.8 99.4 200.7

Area mean± SD (µ m2) 114.0± 40.6 230.4± 42.2 103.1± 24.8 202.7± 44.0

FG

IC projecting principal cells(medium) IC projecting principal cells (large)

Number of cells 551 64

Area median (µ m2) 95.9 148.0

Area mean± SD (µ m2) 96.9± 22.5 157.2± 28.4

Labeled LSO neurons were divided into categories based on their labeling technique and drawn and measured for cell size silhouette area (µm2) from multiple cases. GlyT2 featured a population
of small neurons that were not seen in vGLUT2 material.

immunostaining (Blaesse et al., 2005; Ito and Oliver, 2010) or in situ
hybridization (Ito et al., 2010). There remains much to be learned
about vGLUT2—its synthesis, regulation, trafficking, and activity-
dependence (Martinez-Lozada and Ortega, 2023). In our hands, the
vGLUT2 antibody behaves like a specific marker for glutamatergic
LSO neurons, which was our goal in the first place.

There is also an issue as to the distribution of GlyT2 staining.
GlyT2 has been reported to be primarily in terminal endings
(Altieri et al., 2014; Gessele et al., 2016; Mellott et al., 2021),
although in our work, GlyT2 antibodies clearly label what may
be interpreted as glycinergic cell bodies. Neurons of the MNTB
are known to be glycinergic (e.g., Helfert et al., 1989), and
MNTB somata stain prominently in our material using GlyT2
antibodies (Supplementary Figure 2; Milinkeviciute et al., 2017
using a CBGlyT2-EGFP mouse). The MNTB staining serves as
a positive control for our LSO staining. This staining of MNTB
and LSO neurons using GlyT2 antibodies is also consistent with
images shown by others (Friauf et al., 1999; Ngodup et al., 2020).
These variations may be related to why the contralateral glycinergic
projections from the LSO to the IC was not observed in the
C57BL/6 mouse (Haragopal et al., 2023) or the gerbil (Mellott et al.,
2021). Alternatively, the variations may be strain-specific or due to
differences in technique.

4.2 Excitation and inhibition

The physiological features of LSO cells have been featured by
no activity in the absence of sound, excitatory responses from
ipsilateral sounds, and suppressed activity by contralateral sounds.
Single-unit, extracellular recordings revealed the narrow, V-shaped
excitatory and inhibitory tuning curves with similar characteristic
frequencies (Tsuchitani and Boudreau, 1966, 1967; Guinan et al.,

1972). While the LSO is best known for processing interaural level
differences, the inhibitory effects of the contralateral ear are most
pronounced when the stimuli are closely matched in frequency
(Boudreau and Tsuchitani, 1968, 1970; Tollin and Yin, 2002)
although there are more recent data suggesting that LSO neurons
are also sensitive to the timing of sound onset (Franken et al., 2018),
sound envelope emphasizing interaural time differences (Joris
and Yin, 1998), or timing information extracted from binaural
interactions (Benichoux et al., 2018). These data clearly reveal that
the binaural balancing of excitation and inhibition for incoming
signals in the LSO is influenced by the various spectral and
temporal properties of the sound.

Excitation of a cell by presenting a CF tone in the ipsilateral ear
increases as the intensity with which that sound is played increases
until reaching a plateau. In parallel, contralateral inhibition
measured by a decrease in spikes occurs with increasing intensity of
the sound. It is the intensity difference between the ipsilateral and
contralateral sound that will elicit or inhibit the spike output. The
LSO is equipped to carry out differentiation of incoming sounds
based on their level differences while the frequency involvement of
this phenomenon remains vital (Goupell and Stakhovskaya, 2018).
The convergence of excitatory and inhibitory inputs within the
LSO will determine how principal cells acquire their sensitivity for
binaural level and time differences.

4.3 Projections

The establishment of excitatory and inhibitory neurons
in the LSO represents the next stage in the mechanics of
sound localization. It is at this level where excitatory inputs
converge onto certain types of neurons in the LSO, leading
to the initiation of second-order excitatory and inhibitory
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FIGURE 11

Schematic diagram of excitatory and inhibitory projections from LSO cells as reported for a few species of mammals. The pattern of glycinergic and
glutamatergic projections in the cat suggested that inhibitory projections were entirely ipsilateral, and that excitatory projections were
predominately contralateral (Saint Marie et al., 1989). This pattern was essentially replicated in the bat (Klug et al., 1995). The gerbil resembled the
cat, with the additional observation that there was a small group of glycinergic neurons that projected to the contralateral IC (Mellott et al., 2021).
The chinchilla and guinea pig featured only ipsilateral glycinergic projections; no glutamate labeling was shown. Contralateral projections were
shown by retrograde transport of horseradish peroxidase but without transmitter information (Saint Marie and Baker, 1990). In the CBA/CaH mouse,
we observed a bilateral and symmetric projection to the IC for both glycinergic and glutamatergic LSO neurons. These variations in projection
patterns are hypothesized to reflect processing differences forged by adaptive mechanisms for different habitats and survival demands.

projections. The distribution of these projections is important
for thinking about how auditory space is constructed, at
least in terms of following how ipsilateral ear excitation
becomes transformed into binaural responses that convey
excitation or inhibition.

When considering the nature of IC-projecting principal cells,
approximately 25% of them were double labeled bilaterally by

GlyT2 or vGlUT2. We did not perform double immunolabeling
with the projection experiments, but if we consider both types
of staining separately, half of the IC-projecting cells were labeled
by GlyT2 or vGLUT2. This situation implies that the other half
of the IC-projecting cells are not using glycine or glutamate.
Another consideration must deal with the GlyT2 and vGLUT2
immunolabelled cells that do not appear to project to the IC.
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We need to know what the chemistry is for these cells and
where they project.

In the mouse, it would appear that the mechanisms for binaural
processing between the LSO and IC could have a basic repetitive
organization. Such a prediction is based on our observation
that projections of principal cells are bilateral, topographic, and
symmetrical. As such, we propose that a binaural spatial processing
unit in the IC could be modeled by bilaterally-matched pairs of
isofrequency laminae. This idea is consistent with observed on-
going binaural disparity in frequency-intensity spectra as one of the
cues for determining the direction of a sound, especially in species
with a small head (Harper and McAlpine, 2004; Harper et al., 2014)
or a small or absent medial superior olive (Irving and Harrison,
1967; Masterton et al., 1967). The test of such a hypothesis still
requires new knowledge about brain stem circuits of the auditory
system (Glendenning and Masterton, 1998) and how the various
ascending projections are synaptically arranged with the multiple
cell types comprising an IC lamina (Oliver, 2000; Loftus et al., 2004,
2010).

An important issue is to understand the differences in results
reported for the C57BL/6 mouse (Haragopal et al., 2023) versus
what we report for the CBA/CaH mouse. One possibility concerns
the mouse strain: the use of the C57BL/6 strain is advantageous for
genetic manipulations (Hasan et al., 2004; Hawrylycz et al., 2011)
but perhaps not for hearing research. C57BL/6 mice progressively
lose hearing starting at 2 months of age (Henry and Chole, 1980;
Willott et al., 1985; Ison and Allen, 2003), and high frequency
hearing loss starts as early as 6 weeks of age (Ouagazzal et al., 2006).
In addition, auditory efferents decline rapidly after 6 weeks of age
(Zhu et al., 2007, and there is evidence for central compensatory
plasticity Willott and Turner, 1999). In contrast, the stable hearing
thresholds of CBA/CaJ mice over time provide a more reliable
model and reference for normal hearing mouse strains (Zheng
et al., 1999).

There are also technical details in the Haragopal et al. (2023)
publication that should be considered. The IC injection volume
of only 80 nl of Fluoro-Ruby may not be sufficient to yield a
reliable labeling pattern vis-à-vis the contralateral and ipsilateral
distribution. The injection site in their (Figure 2) does not include
the lateral third of the CNIC. Our pressure injection volumes were
significantly greater. In addition, the use of in vitro hybridization is
reported to weaken the fluorescent signal of their retrograde tracer,
Fluoro-Ruby, but the authors do not show the effectiveness of the
anti-TRICT retrieval treatment or include in situ hybridization
controls. The authors do not provide criteria for what they consider
labeling nor provide photographic evidence for such labeling. The
low magnification of their photomicrographs and undefined arrows
and arrowheads likewise raise issues in their cell counts and the
ipsilateral/contralateral nature of their projections.

There remains the question for how the “what” component of
sound is integrated with the “where” component (Romanski et al.,
1999; Cloutman, 2013; Rauschecker, 2018). Binaural networks are
important in dynamic sound processing. Proprioceptive, visual,
and vestibular systems provide additional information about head
and body position, movement, and gravity, and as such, contribute
significantly to the “where” component (Rice et al., 1992; Wright
and Ryugo, 1996; Kanold and Young, 2001; Kanold et al., 2011).
These multisensory systems establish and maintain on-going
relationships between sound sources and the position of the listener

in space (Ryugo et al., 2003; Wu and Shore, 2018; Ansorge et al.,
2021; Ryugo and Milinkeviciute, 2023). Understanding how these
sensory circuits and their cellular constituents work together are
key to grasping how mammals cope in an acoustic environment
where sound is constantly changing in spectral-temporal features,
loudness, and position.

4.4 LSO counts

In our study, we performed unilateral IC injections, which
labeled neurons in the LSO that double labeled with approximately
20–30% of neurons labeled with either GlyT2 or vGLUT2 in the
ipsilateral or contralateral nuclei. We would expect that for bilateral
IC injections, the number of double labeled neurons in each LSO
for GlyT2 and vGLUT2 cases would increase by twofold. When
trying to resolve the overall number of neurons in the LSO, we must
consider not just the principal cells, or those that project to the IC,
but also the principal neurons who project DNLL or CN and the
LSO efferents that project to the ipsilateral cochlea.

The number of AChE-stained cells of the LSO was concluded to
represent the total number of LOC neurons because the number of
retrogradely labeled, HRP-neurons equaled the number of AChE-
stained neurons in adjacent sections and because HRP labeled
neurons showed close correspondence to AChE staining when
double-labeling methods were used (Warr, 1975). Similar results
were found in the CBA/CaH mouse using the retrograde tracer,
FluoroGold, with AChE and ChAT (Suthakar, 2017; Williams
et al., 2022). These results imply that cholinergic staining of LOC
efferents avoids the question of incomplete marking of LOCs due
to inadequate access to the tracer.

The relative presence of other neuroactive substances In LOC
neurons such as GABA, glycine, dopamine, dynorphin, and nitric
oxide seems to vary with age, species, method of staining, laterality
of projection, and history of noise exposure (Helfert et al., 1989;
Vetter et al., 1991; Vetter and Mugnaini, 1992; Kandler et al., 2002;
Maison et al., 2002; Nabekura et al., 2003; Schaeffer et al., 2003; Niu
et al., 2004; Jenkins and Simmons, 2006; Wu et al., 2020). In our
hands, the retrograde labeling of LOC efferents using FG injections
in the cochlea did not co-label with GAD67 positive cells from our
transgenic GAD67/EGFP mice (Suthakar, 2017) or with GAD67
positive immunostained cells in CBA/CaH mice. A summary of
LSO neuronal counts across studies and involving different labels
is provided in Supplementary Table 1.

4.5 Consideration of methods of study

The variety of results that accompany differences in species, age,
habitat, and hearing range and sensitivity could provide important
links to the study data and some variable that might not have
been previously considered, perhaps yielding novel insight into its
neural substrate. In our study, we attempted to label LSO neurons
using a CBGlyT2-EGFP (Zeilhofer et al., 2005) backcrossed > 10
generations with CBA/CaH mice but could not detect label in
LSO neurons. Our attempts to label LSO neurons in the mouse
with antibodies against vGLUT1 was also unsuccessful, whereas
this method did stain LSO neurons in the rat (Ito and Oliver,
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2010). We were unable to determine if the CBA/CaH mouse
LSO did not use vGLUT1 transporter or if the antibody or our
method was flawed. Superimposed on the inherent differences
between species is the fact that different research methods will
also yield different kinds of data: (1) intact animal versus in vitro
slice preparations for physiologically characterizing cell properties;
(2) basic dyes, immunocytochemistry, in situ hybridization, or
transgenic animals for specific cell staining; (3) age of subject for
examining growth and development; (4) anterograde, retrograde or
viral tracing for describing neuronal circuits; and (5) microscopic
visualization technique (brightfield, fluorescent, confocal, light
sheet, multiphoton, scanning and electron microscopy). Simple
things like staining artifacts—fixation and tissue preservation,
tissue distortion while staining, tissue stretching when mounting
sections on microscope slides, tissue shrinkage when dehydrating
sections for coverslipping−all contribute to microscopic changes.
By recognizing the potential sources of variability inherent to any
study, we will be better prepared to interpret comparative data.

4.6 Species differences

It has been shown that different species exhibit varying
immunochemical and IC-projection characteristics related to the
frequency response properties of the neurons under study (Saint
Marie et al., 1989; Brunso-Bechtold et al., 1994; Barnes-Davies et al.,
2004; Mellott et al., 2021). There are reports of a low frequency
bias for ipsilateral projections to the IC and a high frequency bias
for contralateral projections (cat, Glendenning and Mastereton,
1983; gerbil, Mellott et al., 2021). A quite different conclusion was
reached in the ferret where the laterally-situated low frequency
neurons preferentially projected to the contralateral IC, whereas
the medially-situated high frequency neurons projected to the
ipsilateral IC (Henkel and Brunso-Bechtold, 1993). Because cats
and ferrets are both small carnivoran species and potent predators,
such differences might not be expected. Species by itself, however,
does not ensure trait uniformity: there are many different strains of
mice that are specialized for one feature or another (e.g., Fontaine
and Davis, 2016; Smith, 2019).1 The available data suggest that there
is still much to be learned about brain size and circuits as they relate
to evolution, species, habitat, and behavior.

Perhaps we need to consider additional details that influence
body anatomy, behaviour, reproduction, and ecology. For example,
cats and ferrets are both carnivorous mammals with flexible body
structure adapted for hunting (Barratt, 1997; Marshall, 2020), but
belong to different families: cats are felines, whereas ferrets are
weasels. Cats are solitary hunters with distinct predatory behaviors
(Marshall, 2020) and are found in various habitats, occupying a
wide range of ecological niches (Miller, 1996), not unlike that
of ferrets (McKay, 2012). It is of some interest that the cat was
domesticated some 10,000 years ago (Driscoll et al., 2009). In
contrast, the ferret was domesticated roughly 2,000 years ago
(Davison et al., 1999), providing less time for environmental
pressures to induce brain and behavior changes.

Mice and rats are small rodents, herbivorous, and thigmotaxic
with whiskers that guide them to walls or other points of hiding

1 https://www.jax.org

(Harris, 1979; Traweger et al., 2006). They belong to the same
taxonomic family, live in colonies, occupy simple burrows, and
display complex social behaviors in fields, forests, or domestic
regions (Rossi, 1975; Ehret and Riecke, 2001; Bonthuis et al.,
2010; Hikishima et al., 2017; Netser et al., 2020). However,
rats are considered natural predators of mice (Liu et al., 2017),
and predator-prey relationships are suspected to contribute to
differences in brain circuitry (Apfelbach et al., 2005).. Gerbils live in
family groups, are gregarious, and known for their more elaborate
burrows and burrowing behavior (Fisher and Llewellyn, 1978).
Because of these variations in habitat and behavior, we can infer
that they have an impact on how each species processes and locates
sound.

The natural habitats of the chipmunk, gerbil, and kangaroo
rat are moderately elaborate underground burrows, whereas the
rat and the mouse are known to create shallow and somewhat
simple burrows (Supplementary Figure 7; Storer, 1948; Elliott,
1978, Avenant and Smith, 2003; Scheibler et al., 2006; Weber et al.,
2013; Vorhies and Taylor, 2015). In marked contrast, the naked
mole rat lives in complex burrows, highly branched with up to 6 km
of total tunnel length and extending across as much as 6 football
fields (Buffenstein et al., 2012; Park and Buffenstsein, 2012). In
burrows, the transmission of high frequency sounds is significantly
reduced and the need for sound localization is generally limited
to front-back distinctions (Heth et al., 1986; Begall et al., 2007;
Okanoya et al., 2018; Barker et al., 2021). It should not be surprising
that the auditory system of burrowing animals differs from that
of above-ground mammals, and these differences can be reflected
their audiograms (Supplementary Figure 8) as well as how sound
is processed by the LSO (Moore and Moore, 1971). The differences
between common auditory research subjects such as gerbils, guinea
pigs, chinchillas, cats, and mice could be associated with anatomical
specializations that underlie mechanisms of binaural processing.

Differences in results and/or conclusions presented in
published reports are worthy of additional mention. In terms of
comparative neurobiology, there is an unstated assumption that
there should be a basic blueprint of the mammalian brain, upon
which evolution adds, modifies, and improves the plan and adapts
novel solutions to help resolve challenging circumstances. The
selection of a research subject is often guided by the premise that a
specific feature of the subject can be related back to some human
quality for translational medical relevance, to a basic generalizable
plan of the nervous system, or to some remarkable specialization
such as echo location. The immediate aim might be to identify in
a simpler system how a particular process works, and the bigger
picture might be to reveal brain specializations that evolved to
optimize a process that ensures a species survival in a particular
habitat. There is, rightly or wrongly, an assumption that the
nervous system uses a fixed set of solutions to improve information
processing and species survival. In the face of species specializations
and even minor genetic variations in the same species, cognitive
demands placed on communication, hunting, predator avoidance,
and reproductive success could have consequences on brain
structure and function yet to be determined. The fine details of
how auditory circuits are conceptually and technically constructed
are crucial for understanding the biology of hearing.

Frontiers in Neural Circuits 21 frontiersin.org161

https://doi.org/10.3389/fncir.2024.1430598
https://www.jax.org
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1430598 August 7, 2024 Time: 13:1 # 22

Williams and Ryugo 10.3389/fncir.2024.1430598

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Ethics statement

This study was reviewed and approved by the Garvan Institute
of Medical Research and St Vincent’s Hospital Animal Ethics
Committee. This study was performed in strict accordance with
the Australian Code for the Care and Use of Animals for Scientific
Purposes (2013) and the ethical guidelines of the National Health
and Medical Research Council (NHMRC) of Australia. All animals
were handled according to Animal Ethics Committee protocols
(Animal Research Authority: 19-33, 20-02, and 21-13).

Author contributions

IW: Writing–review and editing, Writing–original draft,
Visualization, Software, Resources, Project administration,
Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. DR: Writing–review and editing, Writing–
original draft, Validation, Supervision, Project administration,
Funding acquisition, Conceptualization.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of the article. This
research was made possible from the following funding sources:
NHMRC Grant 1080652 to DR, a bequest from Helen Morgan,
and donations to the Hearing Research Lab from Charlene and

Graham Bradley, Sue and Haydn Daw, and Alan and Lynn
Rydge. The donors had no role in the direction, analysis, or
publication of this work.

Acknowledgments

We thank Dr. Thomas Parks for his comments on earlier
versions of the manuscript and Anastasia Filimontseva for technical
assistance. We also acknowledge the long standing support to the
lab by Katanyu Pongstaphone. We also thank the reviewers for their
constructive criticisms.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncir.2024.
1430598/full#supplementary-material

References

Adams, J. (1979). Ascending projections to the inferior colliculus. J. Comp. Neurol.
183, 519–538. doi: 10.1002/cne.901830305

Adams, J. C. (1981). Heavy metal intensification of DAB-based HRP reaction
product. J. Histochem. Chytochem. 29:775. doi: 10.1177/29.6.7252134

Altieri, S. C., Zhao, T., Jalabi, W., and Maricich, S. M. (2014). Development of
glycinergic innervation to the murine LSO and SPN in the presence and absence of
the MNTB. Front. Neural Circuits 8:109. doi: 10.3389/fncir.2014.00109

Ansorge, J., Wu, C., Shore, S. E., and Krieger, P. (2021). Audiotactile interactions in
the mouse cochlear nucleus. Sci. Rep. 11:6887. doi: 10.1038/s41598-021-86236-9

Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. and McGregor, I. S.
(2005). The effects of predator odors in mammalian prey species: a review of field and
laboratory studies. Neurosci. Biobehav. Rev. 29, 1123-1144. doi: 10.1016/j.neubiorev.
2005.05.005

Avenant, N. L., and Smith, V. R. (2003). The microenvironment of house mice
on Marion Island (sub-Antarctic). Polar Biol. 26, 129–141. doi: 10.1007/s00300-002-
0464-x

Banks, M. I., and Smith, P. H. (1992). Intracellular recordings from
Neurobiotin-labeled cells in brain slices of the rat medial nucleus of the
trapezoid body. J. Neurosci. 12, 2819–2837. doi: 10.1523/JNEUROSCI.12-07-02819.
1992

Barker, A. J., Koch Lewin, G. R., and Pyott, S. J. (2021). Hearing and vocalizations
in the naked mole-rat. Adv. Exp. Med. Biol. 1319, 157–195. doi: 10.1007/978- 3- 030-
65943- 1

Barnes-Davies, M., Barker, M. C., Osmani, F., and Forsythe, I. D. (2004). Kv1
currents mediate a gradient of principal neuron excitability across the tonotopic axis
in the rat lateral superior olive. Eur. J. Neurosci. 19, 325–333. doi: 10.1111/j.0953-816x.
2003.03133.x

Barratt, D. G. (1997). Home range size, habitat utilisation and movement patterns of
suburban and farm cats Felis catus. Ecography 20, 271–280. doi: 10.1111/j.1600-0587.
1997.tb00371.x

Begall, S., Burda, H., and Schleich, C. (2007). Subterranean rodents: News from
underground. Berlin: Springer Science+Business Media.

Benichoux, V., Ferber, A., Hunt, S., Hughes, E., and Tollin, D. (2018). Across species
“natural ablation” reveals the brainstem source of a noninvasive biomarker of binaural
hearing. J. Neurosci. 38, 8563–8573. doi: 10.1523/jneurosci.1211-18.2018

Berlin, C. L. (1963). Hearing in mice via GSR audiometry. J. Speech Hear. Res. 6,
359–368. doi: 10.1044/jshr.0604.359

Berrebi, A. S., and Spirou, G. A. (1998). PEP-19 immunoreactivity in the cochlear
nucleus and superior olive of the cat. Neuroscience 83, 535–554. doi: 10.1016/s0306-
4522(97)00407-7

Frontiers in Neural Circuits 22 frontiersin.org162

https://doi.org/10.3389/fncir.2024.1430598
https://www.frontiersin.org/articles/10.3389/fncir.2024.1430598/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncir.2024.1430598/full#supplementary-material
https://doi.org/10.1002/cne.901830305
https://doi.org/10.1177/29.6.7252134
https://doi.org/10.3389/fncir.2014.00109
https://doi.org/10.1038/s41598-021-86236-9
https://doi.org/10.1016/j.neubiorev.2005.05.005
https://doi.org/10.1016/j.neubiorev.2005.05.005
https://doi.org/10.1007/s00300-002-0464-x
https://doi.org/10.1007/s00300-002-0464-x
https://doi.org/10.1523/JNEUROSCI.12-07-02819.1992
https://doi.org/10.1523/JNEUROSCI.12-07-02819.1992
https://doi.org/10.1007/978-
https://doi.org/10.1111/j.0953-816x.2003.03133.x
https://doi.org/10.1111/j.0953-816x.2003.03133.x
https://doi.org/10.1111/j.1600-0587.1997.tb00371.x
https://doi.org/10.1111/j.1600-0587.1997.tb00371.x
https://doi.org/10.1523/jneurosci.1211-18.2018
https://doi.org/10.1044/jshr.0604.359
https://doi.org/10.1016/s0306-4522(97)00407-7
https://doi.org/10.1016/s0306-4522(97)00407-7
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1430598 August 7, 2024 Time: 13:1 # 23

Williams and Ryugo 10.3389/fncir.2024.1430598

Blaesse, P., Ehrhardt, S., Friauf, E., and Nothwang, H.G. (2005). Developmental
pattern of three vesicular glutamate transporters in the rat superior olivary complex.
Cell Tissue Res. 320, 33–50. doi: 10.1007/s00441-004-1054-8

Bogaerts, S., Clements, J. D., Sullivan, J. M., and Oleskevich, S. (2009). Automated
threshold detection for auditory brainstem responses: Comparison with visual
estimation in a stem cell transplantation study. BMC Neurosci. 10:104. doi: 10.1186/
1471-2202-10-104

Bonthuis, P. J., Cox, K. H., Searcy, B. T., Kumar, P., Tobet, S., and Rissman, E. F.
(2010). Of mice and rats: Key species variations in the sexual differentiation of brain
and behavior. Front. Neuroendocrinol. 31:341–358. doi: 10.1016/j.yfrne.2010.05.001

Boudreau, J. C., and Tsuchitani, C. (1968). Binaural interaction in the cat superior
olive s segment. J. Neurophysiol. 31, 442–454. doi: 10.1152/jn.1968.31.3.442

Boudreau, J. C., and Tsuchitani, C. (1970). Cat superior olive S-segment cell
discharge to tonal stimulation. Contrib. Sens. Physiol. 4, 143–213. doi: 10.1016/ B978-
0- 12- 151804- 2.50011- 5

Brunso-Bechtold, J. K., Linville, M. C., and Henkel, C. K. (1994). Terminal types
on ipsilaterally and contralaterally projecting lateral superior olive cells. Hear. Res. 77,
99–104. doi: 10.1016/0378-5955(94)90257-7

Buffenstein, R., Park, T., Hanes, M., and Artwohl, J. E. (2012). Naked mole rat.
The laboratory rabbit, guinea pig, hamster, and other rodents. New York, NY: Elsevier,
1055–1074. doi: 10.1016/b978-0-12-380920-9.00045-6

Cant, N. B. (1984). The fine structure of the lateral superior olivary nucleus of the
cat. J. Comp. Neurol. 227, 63–77. doi: 10.1002/cne.90227 0108

Cant, N. B., and Benson, C. G. (2006). Wisteria floribunda lectin is associated with
specific cell types in the ventral cochlear nucleus of the gerbil, Meriones unguiculatus.
Hear. Res. 216–217, 64–72. doi: 10.1016/j.heares.2006.01.008

Cant, N. B., and Casseday, J. H. (1986). Projections from the anteroventral cochlear
nucleyus to the lateral and medial superior olivary nuclei. J. Comp. Neurol. 247,
457–476. doi: 10.1002/cne.902470406

Cloutman, L. L. (2013). Interaction between dorsal and ventral processing streams:
Where, when and how? Brain Lang. 127, 251–263. doi: 10.1016/j.bandl.2012.08.003

Darrow, K. N., Maison, S. F., and Liberman, M. C. (2006). Cochlear efferent feedback
balances interaural sensitivity. Nat. Neurosci. 9, 1474–1476. doi: 10.1038/nn1807

Davison, A., Birks, J. D. S., Griffiths, H. I., Kitchener, A. C., Biggins, D., and Butlin,
R. K. (1999). Hybridization and the phylogenetic relationship between polecats and
domestic ferrets in Britain. Biol. Conserv. 87, 155–161. doi: 10.1016/S0006-3207(98)
00067-6

Dewson, J. H. (1967). Efferent Olivocochlear Bundle: Some relationships to noise
masking and to stimulus attenuation. J. Neurophysiol. 30, 817–832. doi: 10.1152/jn.
1967.30.4.817

Doucet, J. R., and Ryugo, D. K. (2003). Axonal pathways to the lateral superior olive
labeled with biotinylated dextran amine injections in the dorsal cochlear nucleus of
rats. J. Comp. Neurol. 461, 452–465. doi: 10.1002/cne.10722

Driscoll, C. A., Clutton-Brock, J., Kitchener, A. C., and O’Brien, S. J. (2009). The
taming of the cat. Sci. Am. 30, 68–75.

Dunbar, R. I. M. (2009). Darwin and the ghost of phineas gage: Neuro-evolution and
the social brain. Cortex 45, 1119–1125. doi: 10.1016/j.cortex.2009.05.005

Ehret, G., and Riecke, S. (2001). Mice and humans perceive multiharmonic
communication sounds in the same way. Proc. Natl. Acad. Sci. U.S.A. 99, 479–482.
doi: 10.1073/pnas.012361999

Elliott, L. (1978). Social behavior and foraging ecology of the Eastern Chipmunk
(Tamias striatus) in the Adirondack mountains. Smithsonian Contrib. Zool. 265,
1–107. doi: 10.5479/si.00810282.265

Eybalin, M. (1993). Neurotransmitters and neuromodulators of the mammalian
cochlea. Physiol. Rev. 73, 309–373. doi: 10.1152/physrev.1993.73.2.309

Fech, T., Calderón-Garcidueñas, and Kulesza, R. J. Jr. (2017). Characterization of
the superior olivary complex of Canis lupus domesticus. Hear. Res. 351, 130–140.
doi: 10.1016/j.heares.2017.06.010

Finlayson, P. G., and Caspary, D. M. (1991). Low-frequency neurons in the lateral
superior olive exhibit phase-sensitive binaural inhibition. J. Neurophysiol. 65, 598–605.
doi: 10.1152/jn.1991.65.3.598

Fisher, M. F., and Llewellyn, G. C. (1978). The Mongolian gerbil: Natural
history, care, and maintenance. Am. Biol. Teach. 40, 557–560. doi: 10.2307/444
6413

Fontaine, D. A., and Davis, D. B. (2016). Attention to background strain is essential
for metabolic research: C57BL/6 and the international knockout mouse consortium.
Diabetes 65, 25–33. doi: 10.2337/db15-0982

Franken, T. P., Joris, P. X., and Smith, P. H. (2018). Principal cells of the brainstem’s
interaural sound level detector are temporal differentiators rather than integrators.
Elife 7:e33854. doi: 10.7554/eLife.33854

Fremeau, R. T., Troyer, M. D., Pahner, I., Nygaard, G. O., Tran, C. H., Reimer,
R. J., et al. (2001). The expression of vesicular glutamate transporters defines two
classes of excitatory synapse. Neuron 31, 247–260. doi: 10.1016/s0896-6273(01)
00344-0

Fremeau, R. T., Voglmaier, S., Seal, R. P., and Edwards, R. H. (2004). VGLUTs define
subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci.
27, 98–103. doi: 10.1016/j.tins.2003.11.005

Friauf, E., Aragón, C., Löhrke, S., Westenfelder, B., and Zafra, F. (1999).
Developmental expression of the GlycineTransporter GLYT2 in the auditory system
of rats suggests involvement in synapse maturation. J. Comp. Neurol. 412, 17–37.
doi: 10.1002/(SICI)1096-9861(19990913)412:1<17::AID-CNE2<3.0.CO;2-E

Gessele, N., Garcia-Pino, E., Omerbašić, D., Park, T. J., and Koch, U. (2016).
Structural changes and lack of HCN1 channels in the binaural auditory brainstem
of the naked mole-rat (Heterocephalus glaber). PLoS One 11:e0146428. doi: 10.1371/
journal/pone.0146428

Glendenning, K. K., and Mastereton, R. B. (1983). Acoustic chiasm: Efferent
projections of the lateral superior olive. J. Neurosci. 3, 1521–1537. doi: 10.1523/
JNEUROSCI.03-08-01521.1983

Glendenning, K. K., and Masterton, R. B. (1998). Comparative morphometry of
mammalian central auditory systems: Variation in nucleiu and form of the ascending
system. Brain Behav. Evol. 51, 59–89. doi: 10.1159/000006530

Glendenning, K. K., Baker, B. N., Hutson, K. A., and Masterton, R. B. (1992).
Acoustic chiasm V: Inhibition and excitation in the ipsilateral and contralateral
projections of LSO. J. Comp. Neurol. 319, 100–122. doi: 10.1002/cne.903190110

Gomeza, J., Ohno, K., and Betz, H. (2003). Glycine transporter isoforms in the
mammalian central nervous system: Structures, functions and therapeutic promises.
Curr. Opin. Drug Discov. Dev. 6, 675–682.

Gómez-Álvarez, M., and Saldaña, E. (2016). Different tonotopic regions of the lateral
superior olive receive a similar combination of afferent inputs. J. Comp. Neurol. 524,
2230–2250. doi: 10.1002/cne.23942

Goupell, M. J., and Stakhovskaya, O. A. (2018). Across-channel interaural-level-
difference processing demonstrates frequency dependence. J. Acoust. Soc. Am. 143,
645–658. doi: 10.1121/1.5021552

Grothe, B. (1994). Interaction of excitation and inhibition in processing of pure tone
and amplitude-modulated stimuli in the medial superior olive of the mustached bat.
J. Neurophysiol. 71, 706–721. doi: 10.1152/jn.1994.71.2.706

Grothe, B. (2000). The evolution of temporal processing in the medial superior olive,
an auditory brainstem structure. Prog. Neurobiol. 61, 581–610. doi: 10.1016/s0301-
0082(99)00068-4

Grothe, B., and Park, T. J. (1995). Time can be traded for intensity in the lower
auditory system. Naturwissenschaften 82, 521–523. doi: 10.1007/bf01134488

Guinan, J. J., Norris, B. E., and Guinan, S. S. (1972). Single auditory units in the
superior olivary complex: II: Locations of unit categories and tonotopic organization.
Int. J. Neurosci. 4, 147–166. doi: 10.3109/00207457209164756

Haragopal, H., Mellott, J. G., Dhar, M., Kanel, A., Mafi, A., Tokar, N., et al. (2023).
Tonotopic distribution and inferior colliculus projection pattern of inhibitory and
excitatory cell types in the lateral superior olive of mice. J. Comp. Neurol. 531,
1381–1388. doi: 10.1002/cne.25515

Harper, N. S., and McAlpine, D. (2004). Optimal neural population coding of an
auditory spatial cue. Nature 430, 682–686. doi: 10.1038/nature02768

Harper, N. S., Scott, B. H., Semple, M. N., and McAlpine, D. (2014). The neural code
for auditoryu space depends on sound frequency and head size in an optimal manner.
PLoS One 9:e108154. doi: 10.137/journal.pone.0108154

Harris, S. (1979). History, distribution, status and habitat requirements of the
harvest mouse (Micromys minutus) in Britain. Mammal. Rev. 9, 159–171. doi: 10.1111/
j.1365-2907.1979.tb00253.x

Hasan, M. T., Friedrich, R. W., Euler, T., Larkum, M. E., and Giese, G. (2004).
Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control.
PLoS Biol. 2:0763. doi: 10.1371/journal.pbio.0020163

Hawrylycz, M., Baldock, R. A., Burger, A., Hashikawa, T., and Johnson, G. A. (2011).
Digital atlasing and standardization in the mouse brain. PLoS Comp. Biol. 7:e1001065.
doi: 10.1371/journal.pcbi.1001065

Hedreen, J. C. (1998). What was wrong with the Abercrombie and empirical cell
counting methods? A review. Anat. Rec. 250, 373–380.

Heffner, R. S., and Masterton, R. B. (1990). “Sound localization in mammals: Brain-
stem mechanisms,” in Comparative perception, Vol. 1, eds M. A. Berkley and W. C.
Stebbins (New York, NY: John Wiley & Sons), 285–314.

Helfert, R. H., and Schwartz, I. R. (1986). Morphological evidence for the existence
of multiple neuronal classes in the cat lateral superior olivary nucleus. J. Comp. Neurol.
244, 533–549. doi: 10.1002/cne.902440409

Helfert, R. H., and Schwartz, I. R. (1987). Morphological features of five neuronal
classes in the gerbil lateral superior olive. Am. J. Anat. 179, 55–69. doi: 10.1002/aja.
1001790108

Helfert, R. H., Bonneau, J. M., Wenthold, R. J., and Altschuler, R. A.
(1989). GABA and glycine immunoreactivity in the guinea pig superior
olivary complex. Brain Res. 501, 269–286. doi: 10.1016/0006-8993(89)
90644-6

Helfert, R. H., Juiz, J. J., Bledsoe, S. C., Bonneau, J. M., Wenthold, R. J., and
Altschuler, R. A. (1992). Patterns of glutamate, glycine, and GABA immunolabeling

Frontiers in Neural Circuits 23 frontiersin.org163

https://doi.org/10.3389/fncir.2024.1430598
https://doi.org/10.1007/s00441-004-1054-8
https://doi.org/10.1186/1471-2202-10-104
https://doi.org/10.1186/1471-2202-10-104
https://doi.org/10.1016/j.yfrne.2010.05.001
https://doi.org/10.1152/jn.1968.31.3.442
https://doi.org/10.1016/
https://doi.org/10.1016/0378-5955(94)90257-7
https://doi.org/10.1016/b978-0-12-380920-9.00045-6
https://doi.org/10.1002/cne.90227
https://doi.org/10.1016/j.heares.2006.01.008
https://doi.org/10.1002/cne.902470406
https://doi.org/10.1016/j.bandl.2012.08.003
https://doi.org/10.1038/nn1807
https://doi.org/10.1016/S0006-3207(98)00067-6
https://doi.org/10.1016/S0006-3207(98)00067-6
https://doi.org/10.1152/jn.1967.30.4.817
https://doi.org/10.1152/jn.1967.30.4.817
https://doi.org/10.1002/cne.10722
https://doi.org/10.1016/j.cortex.2009.05.005
https://doi.org/10.1073/pnas.012361999
https://doi.org/10.5479/si.00810282.265
https://doi.org/10.1152/physrev.1993.73.2.309
https://doi.org/10.1016/j.heares.2017.06.010
https://doi.org/10.1152/jn.1991.65.3.598
https://doi.org/10.2307/4446413
https://doi.org/10.2307/4446413
https://doi.org/10.2337/db15-0982
https://doi.org/10.7554/eLife.33854
https://doi.org/10.1016/s0896-6273(01)00344-0
https://doi.org/10.1016/s0896-6273(01)00344-0
https://doi.org/10.1016/j.tins.2003.11.005
https://doi.org/10.1002/(SICI)1096-9861(19990913)412:1<17::AID-CNE2<3.0.CO;2-E
https://doi.org/10.1371/journal/pone.0146428
https://doi.org/10.1371/journal/pone.0146428
https://doi.org/10.1523/JNEUROSCI.03-08-01521.1983
https://doi.org/10.1523/JNEUROSCI.03-08-01521.1983
https://doi.org/10.1159/000006530
https://doi.org/10.1002/cne.903190110
https://doi.org/10.1002/cne.23942
https://doi.org/10.1121/1.5021552
https://doi.org/10.1152/jn.1994.71.2.706
https://doi.org/10.1016/s0301-0082(99)00068-4
https://doi.org/10.1016/s0301-0082(99)00068-4
https://doi.org/10.1007/bf01134488
https://doi.org/10.3109/00207457209164756
https://doi.org/10.1002/cne.25515
https://doi.org/10.1038/nature02768
https://doi.org/10.137/journal.pone.0108154
https://doi.org/10.1111/j.1365-2907.1979.tb00253.x
https://doi.org/10.1111/j.1365-2907.1979.tb00253.x
https://doi.org/10.1371/journal.pbio.0020163
https://doi.org/10.1371/journal.pcbi.1001065
https://doi.org/10.1002/cne.902440409
https://doi.org/10.1002/aja.1001790108
https://doi.org/10.1002/aja.1001790108
https://doi.org/10.1016/0006-8993(89)90644-6
https://doi.org/10.1016/0006-8993(89)90644-6
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1430598 August 7, 2024 Time: 13:1 # 24

Williams and Ryugo 10.3389/fncir.2024.1430598

in four synaptic terminal classes in the lateral superior olive of the guinea pig. J. Comp.
Neurol. 323, 305–325. doi: 10.1002/cne.903230302

Henkel, C. K., and Brunso-Bechtold, J. K. (1993). Laterality of superior olive
projections to the inferior colliculus in adult and developing ferret. J. Comp. Neurol.
331, 458–468. doi: 10.1002/cne.903310403

Henry, K. R., and Chole, R. A. (1980). Genotypic differences in behavioral,
physiological and anatomical expressions of age-related hearing loss in the laboratory
mouse. Audiology 19, 369–383. doi: 10.3109/00206098009070071

Heth, G., Frankenberg, E., and Nevo, E. (1986). Adaptive optimal sound for vocal
communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia
42, 1287–1289. doi: 10.1007/BF01946426

Hikishima, K., Komaki, Y., Seki, F., Ohnishi, Y., Okano, H. J., and Okano, H. (2017).
In vivo microscopic voxel-based morphometry with a brain template to characterize
strain-specific structures in the Mouse Brain. Sci. Rep. 7:85. doi: 10.1038/s41598-017-
00148-1

Hind, J. E., Goldberg, J. M., Greenwood, D. D., and Rose, J. E. (1963). Some
discharge characteristics of single neurons in the inferior colliculus of the cat. II.
Timing of the discharges and observations on binaural stimulation. J. Neurophysiol.
26, 321–341. doi: 10.1152/jn.1963.26.2.321

Humason, G. L. (1979). Animal tissue techniques, 4th Edn. San Francisco, CA:
W.H.Freeman and Company.

Irving, R., and Harrison, J. (1967). The superior olivary complex and audition: A
comparative study. J. Comp. Neurol. 130, 77–86. doi: 10.1002/cne.901300105

Ison, J. R., and Allen, P. D. (2003). Low-frequency tone pips elicit exaggerated
startle reflex in C57BL/6J mice with hearing loss. J. Assoc. Res. Otolaryngol. 4, 495–504.
doi: 10.1007/s10162-002-3046-2

Ito, T., and Oliver, D. L. (2010). Origins of glutamatergic terminals in the inferior
colliculus identified by retrograde transport and expression of VGLUT1 and VGLUT2
genes. Front. Neuroanat. 4:135. doi: 10.3389/fnana.2010.00135

Ito, T., Bishop, D. C., and Oliver, D. L. (2010). Expression of Glutamate and
inhibitory amino acid vesicular transporters in the rodent auditory brainstem. J. Comp.
Neurol. 519, 316–340. doi: 10.1002/cne.22521

Jeffress, L. A. (1948). A place theory of sound localization. J. Comp. Physiol. Psychol.
41, 35–39. doi: 10.1037/h0061495

Jenkins, S. A., and Simmons, D. D. (2006). GABAergic neurons in the lateral
superior olive of the hamster are distinguished by differential expression of gad
isoforms during development. Brain Res. 1111, 12–25. doi: 10.1016/j.brainres.2006.06.
067

Joris, P. X., and Yin, T. C. T. (1998). Envelope coding in the lateral superior olive.
III. Comparison with afferent pathways. J. Neurophysiol. 79, 253–269. doi: 10.1152/jn.
1998.79.1.253

Kandler, K., Kullmann, P., Ene, F., and Kim, G. (2002). Excitatory action of an
immature glycinergic/GABAergic sound localization pathway. Physiol. Behav. 77,
583–587. doi: 10.1016/S0031-9384(02)00905-8

Kanold, P. O., and Young, E. D. (2001). Proprioceptive information from the
pinna provides somatosensory input to cat dorsal cochlear nucleus. J. Neurosci. 21,
7848–7858. doi: 10.1523/jneurosci.21-19-07848.2001

Kanold, P. O., Davis, K. A., and Young, E. D. (2011). Somatosensory context
alters auditory responses in the cochlear nucleus. J. Neurophysiol. 105, 1063–1070.
doi: 10.1152/jn.00807.2010

Kelly, J. B., Liscum, A., van Adel, B., and Ito, M. (1998). Projections from the
superior olive and lateral lemniscus to tonotopic regions of the rat’s inferior colliculus.
Hear. Res. 116, 43–54. doi: 10.1016/S0378-5955(97)00195-0

Klug, A., Park, T. J., and Pollak, G. D. (1995). Glycine and GABA influence
binaural processing in the inferior colliculus of the mustache bat. J. Neurophysiol. 74,
1701–1713. doi: 10.1152/jn.1995.74.4.1701

Koch, U., and Sanes, D. H. (1998). Afferent regulation of glycine receptor
distribution in the gerbil LSO. Microsc. Res. Tech. 41, 263–269. doi: 10.1002/(sici)1097-
0029(19980501)41:3\&lt;263::aid-jemt9\&gt;3.0.co;2-u

Konishi, M. (2000). Study of sound localization by owls and its relevance to humans.
Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 459–469. doi: 10.1016/s1095-
6433(00)00232-4

Kulesza, R. J. Jr. (2008). Cytoarchitecture of the human superior olivary complex:
Nuclei of the trapezoid body and posterior tier. Hear. Res. 241, 52–63. doi: 10.1016/
j.heares.2008.04.010

Kulesza, R. J. Jr. (2014). Characterization of human auditory brainstem circuits
by calcium-binding protein immunohistochemistry. Neuroscience 258, 318–331. doi:
10.1016/j.neuroscience.2013.11.035

Kuwabara, N., and Zook, J. M. (1991). Classification of the principal cells of the
medial nucleus of the trapezoid body. J. Comp. Neurol. 314, 707–720. doi: 10.1002/
cne.903140406

Kuwada, S., Yin, T. C., Buunen, T. J., and Wickesberg, R. E. (1984). Binaural
interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison
of monaural and binaural response properties. J. Neurophysiol. 51, 1306–1325. doi:
10.1152/jn.1984.51.6.1306

Lanciego, J. L., and Wouterlood, F. G. (2020). Neuroanatomical tract-tracing
techniques that did go viral. Brain Struct. Funct. 225, 1193–1224. doi: 10.1007/s00429-
020-02041-6

LaVail, J. H., Winston, K. R., and Tish, A. (1973). A method based on retrograde
intraaxonal transport of protein for identification of cell bodies of origin of axons
terminating within the CNS. Brain Res. 58, 470–477. doi: 10.1016/0006-8993(73)
90016-4

Li, S.-H., Zhang, C.-K., Qiao, Y., Ge, S.-N., Zhang, T., and Li, J.-L. (2020).
Coexpression of VGLUT1 and VGLUT2 in precerebellar neurons in the lateral
reticular nucleus of the rat. Brain Res. Bull. 162, 94–106. doi: 10.1016/j.brainresbull.
2020.06.008

Liberman, M. C. (1980). Efferent synapses in the inner hair cell area of the cat
cochlea: An electron microscopic study of serial sections. Hear. Res. 3, 189–204.
doi: 10.1016/0378-5955(80)90046-5

Liu, Y.-J., Li, L.-F., Zhang, Y.-H., Guo, H.-F., Xia, M., Zhang, M.-W., et al. (2017).
Chronic co-species housing mice and rats increased the competitiveness of male mice.
Chem. Sens. 42, 247–257. doi: 10.1093/chemse/bjw164

Loftus, W. C., Bishop, D. C., and Oliver, D. L. (2010). Differential patterns pof
inputs create functional zones in central nucleus of inferior colliculus. J. Neurosci. 30,
13396–133408. doi: 10.1523/JNEUROSCI.0338-10.2010

Loftus, W. C., Bishop, D. C., Saint Marie, R. L., and Oliver, D. L. (2004). Organization
of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior
olive. J. Comp. Neurol. 472, 330–344. doi: 10.1002/cne.20070

McKay, J. (2012). New complete guide to ferrets. Stroud: Quiller Publishing Ltd.

Maison, S. F., Adams, J. C., and Liberman, M. C. (2002). Olivocochlear innervation
in the mouse: Immunocytochemical maps, crossed versus uncrossed contributions,
and transmitter colocalization. J. Comp. Neurol. 455, 406–416. doi: 10.1002/cne.10490

Malmierca, M. S., and Ryugo, D. K. (2011). “Descending connections of auditory
cortex to the midbrain and brain stem,” in The auditory cortex, eds J. A. Winer and C. E.
Schriener (New York, NY: Springer), 189–208. doi: 10.1007/978-1-4419-0074-6_9

Marshall, F. (2020). Cats as predators and early domesticates in ancient human
landscapes. Proc. Nat. Acad. Sci. U.S.A. 117, 18154–18156. doi: 10.1073/pnas.
2011993117

Martinez-Lozada, Z., and Ortega, A. (2023). Milestone review: Excitatory amino
acid transporters – beyond their expected function. J. Neurochem. 165, 457–466.
doi: 10.1111/jnc.15809

Masterton, B., Heffner, H., and Ravizza, R. (1969). The evolution of human hearing.
J. Acoust. Soc. Am. 45, 966–985. doi: 10.1121/1.1911574

Masterton, R. B., Diamond, I. T., Harrison, J. M., and Beecher, M. D. (1967). Medial
superior olive and sound localization. Science 155, 1696–1697. doi: 10.1126/science.
155.3770.1696-a

Mellott, J. G., Dhar, M., Mafi, A., Tokar, N., and Winters, B. D. (2021). Tonotopic
distribution and inferior colliculus projection pattern of inhibitory and excitatory cell
types in the lateral superior olive of Mongolian gerbils. J. Comp. Neurol. 530, 506–517.
doi: 10.1002/cne.25226

Mesulam, M. M. (1978). Tetramethyl benzidine for horseradish peroxidase
neurohistochemistry: A non-carcinogenic blue reaction product with superior
sensitivity for visualizing neural afferents and efferents. J. Histochem. Cytochem. 26,
106–117. doi: 10.1177/26.2.24068

Milinkeviciute, G., Muniak, M. A., and Ryugo, D. K. (2017). Descending projections
from the inferior colliculus to the dorsal cochlear nucleus are excitatory. J. Comp.
Neurol. 525, 773–793. doi: 10.1002/cne.24095

Miller, J. (1996). The domestic cat: Perspective on the nature and diversity of cats.
J. Am. Vet. Med. Assoc. 208, 498–502. doi: 10.2460/javma.1996.208.04.498a

Moore, D. R., Russell, F. A., and Cathcart, N. C. (1995). Lateral superior olive
projections to the inferior colliculus in normal and unilaterally deafened ferrets.
J. Comp. Neurol. 357, 204–216. doi: 10.1002/cne.903570203

Moore, J. K., and Moore, R. Y. (1971). A comparative study of the superior olivary
complex in the primate brain. Folia Primatol. 16, 35–51. doi: 10.1159/000155390

Mosieff, A., and Konishi, M. (1981). Neuronal and behavioral sensitivity to binaural
time differences in the owl. J. Neurosci. 1, 40–48. doi: 10.1523/JNEUROSSCI.01-01-
00040.1981

Muniak, M. A., Ayeni, F. E., and Ryugo, D. K. (2018). Hidden hearing loss and
endbulbs of Held: Evidence for central pathology before detection of ABR threshold
increases. Hear. Res. 364, 104–117. doi: 10.1016/j.heares.2018.03.021

Nabekura, J., Katsurabayashi, S., Kakazu, Y., Shibata, S., Matsubara, A., Jinno, S.,
et al. (2003). Developmental switch from GABA to glycine release in single central
synaptic terminals. Nat. Neurosci. 7, 17–23. doi: 10.1038/nn1170

Nerlich, J., Rübsamen, R., and Milenkovic, I. (2017). Developmental shift of
inhibitory transmitter content at a central auditory synapse. Front. Cell. Neurosci.
11:211. doi: 10.3389/fncel.2017.00211

Netser, S., Meyer, A., Magalnik, H., Zylbertal, A., de la Zerda, S. H., Briller, M., et al.
(2020). Distinct dynamics of social motivation drive differential social behavior in
laboratory rat and mouse strains. Nat. Commun. 11:5908. doi: 10.1038/s41467-020-
19569-0

Frontiers in Neural Circuits 24 frontiersin.org164

https://doi.org/10.3389/fncir.2024.1430598
https://doi.org/10.1002/cne.903230302
https://doi.org/10.1002/cne.903310403
https://doi.org/10.3109/00206098009070071
https://doi.org/10.1007/BF01946426
https://doi.org/10.1038/s41598-017-00148-1
https://doi.org/10.1038/s41598-017-00148-1
https://doi.org/10.1152/jn.1963.26.2.321
https://doi.org/10.1002/cne.901300105
https://doi.org/10.1007/s10162-002-3046-2
https://doi.org/10.3389/fnana.2010.00135
https://doi.org/10.1002/cne.22521
https://doi.org/10.1037/h0061495
https://doi.org/10.1016/j.brainres.2006.06.067
https://doi.org/10.1016/j.brainres.2006.06.067
https://doi.org/10.1152/jn.1998.79.1.253
https://doi.org/10.1152/jn.1998.79.1.253
https://doi.org/10.1016/S0031-9384(02)00905-8
https://doi.org/10.1523/jneurosci.21-19-07848.2001
https://doi.org/10.1152/jn.00807.2010
https://doi.org/10.1016/S0378-5955(97)00195-0
https://doi.org/10.1152/jn.1995.74.4.1701
https://doi.org/10.1002/(sici)1097-0029(19980501)41:3\&lt;263::aid-jemt9\&gt;3.0.co;2-u
https://doi.org/10.1002/(sici)1097-0029(19980501)41:3\&lt;263::aid-jemt9\&gt;3.0.co;2-u
https://doi.org/10.1016/s1095-6433(00)00232-4
https://doi.org/10.1016/s1095-6433(00)00232-4
https://doi.org/10.1016/
https://doi.org/10.1016/j.neuroscience.2013.11.035
https://doi.org/10.1016/j.neuroscience.2013.11.035
https://doi.org/10.1002/cne.903140406
https://doi.org/10.1002/cne.903140406
https://doi.org/10.1152/jn.1984.51.6.1306
https://doi.org/10.1152/jn.1984.51.6.1306
https://doi.org/10.1007/s00429-020-02041-6
https://doi.org/10.1007/s00429-020-02041-6
https://doi.org/10.1016/0006-8993(73)90016-4
https://doi.org/10.1016/0006-8993(73)90016-4
https://doi.org/10.1016/j.brainresbull.2020.06.008
https://doi.org/10.1016/j.brainresbull.2020.06.008
https://doi.org/10.1016/0378-5955(80)90046-5
https://doi.org/10.1093/chemse/bjw164
https://doi.org/10.1523/JNEUROSCI.0338-10.2010
https://doi.org/10.1002/cne.20070
https://doi.org/10.1002/cne.10490
https://doi.org/10.1007/978-1-4419-0074-6_9
https://doi.org/10.1073/pnas.2011993117
https://doi.org/10.1073/pnas.2011993117
https://doi.org/10.1111/jnc.15809
https://doi.org/10.1121/1.1911574
https://doi.org/10.1126/science.155.3770.1696-a
https://doi.org/10.1126/science.155.3770.1696-a
https://doi.org/10.1002/cne.25226
https://doi.org/10.1177/26.2.24068
https://doi.org/10.1002/cne.24095
https://doi.org/10.2460/javma.1996.208.04.498a
https://doi.org/10.1002/cne.903570203
https://doi.org/10.1159/000155390
https://doi.org/10.1523/JNEUROSSCI.01-01-00040.1981
https://doi.org/10.1523/JNEUROSSCI.01-01-00040.1981
https://doi.org/10.1016/j.heares.2018.03.021
https://doi.org/10.1038/nn1170
https://doi.org/10.3389/fncel.2017.00211
https://doi.org/10.1038/s41467-020-19569-0
https://doi.org/10.1038/s41467-020-19569-0
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1430598 August 7, 2024 Time: 13:1 # 25

Williams and Ryugo 10.3389/fncir.2024.1430598

Ngodup, T., Romero, G. E., and Trussell, L. O. (2020). Identification of an inhibitory
neuron subtype, the L-stellate cell of the cochlear nucleus. eLife 9:e54350. doi: 10.7554/
eLife.54350

Niu, X., Bogdanovic, N., and Canlon, B. (2004). The distribution and the modulation
of tyrosine hydroxylase immunoreactivity in the lateral olivocochlear system of the
guinea-pig. Neuroscience 125, 725–733. doi: 10.1016/j.neuroscience 2004.02.023

Nordeen, K. W., Killackey, H. P., and Kitzes, L. M. (1983). Ascending auditory
projections to the inferior colliculus in the adult gerbil, Meriones unguiculatus.
J. Comp. Neurol. 214, 131–143. doi: 10.1002/cne.902140203

Ohlemiller, K. K., Jones, S. M., and Johnson, K. R. (2016). Application of mouse
models to research in hearing and balance. J. Assoc. Res. Otolaryngol. 17:493e523.
doi: 10.1007/s10162-016-0589-1

Okanoya, K., Yosida, S., Barone, C. M., Applegate, D. T., Brittan-Powell, E. F.,
Dooling, R. J., et al. (2018). Auditory-vocal coupling in the naked mole-rat, a mammal
with poor auditory thresholds. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav.
Physiol. 204, 905–914. doi: 10.1007/s00359- 018- 1287- 8

Oliver, D. L. (2000). Ascending efferent projections of the superior olivary complex.
Microsc. Res. Tech. 51, 355–363. doi: 10.1002/1097-0029(20001115)51: 4< 355::AID-
JEMT5> 3.0.CO;2- J

Ollo, C., and Schwartz, I. R. (1979). The superior olivary complex in C57BL/6 mice.
Am. J. Anat. 155, 349–373. doi: 10.1002/aja.1001550306

Ono, M., and Ito, T. (2015). Functional organization of the mammalian auditory
midbrain. J. Physiol. Sci. 65, 499–506. doi: 10.1007/s12576-015-0394-3

Ono, M., Bishop, D. C., and Oliver, D. L. (2020). Neuronal sensitivity to the
interaural time difference of the sound envelope in the mouse inferior colliculus. Hear.
Res. 385:107844. doi: 10.1016/j.heares.2019.107844

Ouagazzal, A.-M., Reiss, D., and Romand, R. (2006). Effeccts of age-related hearing
loss on startle reflex and prepulse inhibition in mice on pure and mixed C57BL and 129
genetic background. Behav. Brain Res. 172, 307–315. doi: 10.1016/j.bbr.2006.05.018

Park, T. J., and Buffenstsein, R. (2012). Digging the underground lif e. The Scientist.∗

Park, T. J., Klug, A., Holinstat, M., and Grothe, B. (2004). Interaural level difference
processing in the lateral superior olive and the inferior colliculus. J. Neurophysiol. 92,
289–301. doi: 10.1152/jn.00961.2003

Paxinos, G., and Franklin, B. J. (2008). The mouse brain in stereotaxic coordinates,
3rd Edn. Sydney, NSW: Elsevier.

Qiu, L., Zhang, B., and Gao, Z. (2022). Lighting up neural circuits by viral tracing.
Neurosci. Bull. 38, 1383–1396. doi: 10.1007/s12264-022-00860-7

Rauschecker, J. P. (2018). Where, when, and how: Are they all sensorimotor?
Towards a unified view of the dorsal pathway in vision and audition. Cortex 98,
262–268. doi: 10.1016/j.cortex.2017.10.020

Reiner, A., Veenman, C. L., Medina, L., Jiao, Y., Del Mar, N., and Honig, M. G.
(2000). Pathway tracing using biotinylated dextran amines. J. Neurosci Methods 15,
23–37. doi: 10.1016/s0165-0270(00)00293-4

Reiss, L. A., and Young, E. D. (2005). Spectral edge sensitivity in neural circuits of the
dorsal cochlear nucleus. J. Neurosci. 25, 3680–3691. doi: 10.1523/ JNEUROSCI.4963-
04.2005

Rice, J. J., May, B. J., Spirou, G. A., and Young, E. D. (1992). Pinna-based spectral
cues for sound localization in cat. Hear. Res. 58, 132–152. doi: 10.1016/0378-5955(92)
90123-5

Rietzel, H. J., and Friauf, E. (1998). Neuron types in the rat lateral superior olive
and developmental changes in the complexity of their dendritic arbors. J. Comp.
Neurol. 390, 20–40. doi: 10.1002/(SICI)1096-9861(19980105)390:1<20::AID-CNE3$
>$3.0.CO;2-S

Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., and
Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains
in the primate prefrontal cortex. Nat. Neurosci. 2, 1131–1136. doi: 10.1038/16056

Ross, L. S., Pollak, G. D., and Zook, J. M. (1988). Origin of ascending projections to
an isofrequency region of the mustache bat’s inferior colliculus. J. Comp. Neurol. 270,
488–505. doi: 10.1002/cne.902700403

Rossi, A. C. (1975). The “mouse-killing” rat: Ethological discussion on an
experimental model of aggression. Pharmacol. Res. Commun. 7, 199–216. doi: 10.1016/
0031-6989(75)90020-x

Ryugo, D. K., and Fekete, D. M. (1982). Morphology of primary axosomatic endings
in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held.
J. Comp. Neurol. 210, 239–257. doi: 10.1002/cne.902100304

Ryugo, D. K., and Milinkeviciute, G. (2023). Differential projections from the
cochlear nucleus to the inferior colliculus in the mouse. Front. Neural Circuits
17:1229746. doi: 10.3389/fncir.2023.1229746

Ryugo, D. K., Haenggeli, C.-A., and Doucet, J. R. (2003). Multimodal inputs to
the granule cell domain of the cochlear nucleus. Exp. Brain Res. 153, 477–485. doi:
10.1007/s00221-003-1605-3

Ryugo, D. K., Popper, A. N., and Fay, R. R. (2011). Auditory and vestibular efferents.
New York, NY: Springer-Verlag.

Saint Marie, R. L. S., Ostapoff, E.-M., Morest, D. K., and Wenthold, R. J. (1989).
Glycine-immunoreactive projection of the cat lateral superior olive: Possible role in
midbrain ear dominance. J. Comp. Neurol. 279, 382–396. doi: 10.1002/cne 902790305

Saint Marie, R. L., and Baker, R. A. (1990). Neurotransmitter-specific uptake
and retrograde transport of [3H]glycine from the inferior colliculus by ipsilateral
projections of the superior olivary complex and nuclei of the lateral lemniscus. Brain
Res. 524, 244–253. doi: 10.1016/0006-8993(90)90698-B

Schaeffer, D. F., Reuss, M. H., Riemann, R., and Reuss, S. (2003). A nitrergic
projection from the superior olivary complex to the inferior colliculus of the rat. Hear.
Res. 183, 67–72. doi: 10.1016/s0378-5955(03)00219-3

Scheibel, M. E., and Scheibel, A. B. (1974). Neuropil organization in the superior
olive of the cat. Exp. Neurol. 43, 339–348. doi: 10.1016/0014-4886(74)90175-7

Scheibler, E., Liu, W., Weinandy, R., and Gattermann, R. (2006). Burrow systems
of the Mongolian gerbil (Meriones unguiculatus Milne Edwards, 1867). Mammal. Biol.
71, 178–182. doi: 10.1016/j.mambio.2005.11.007

Schweizer, H. (1981). The connections of the inferior colliculus and the organization
of the brainstem auditory system in the greater horseshoe bat (Rhinolophus
ferrumequinum). J. Comp. Neurol. 201, 25–49. doi: 10.1002/cne 902010104

Sergeyenko, Y., Lall, K., Liberman, M. C., and Kujawa, S. G. (2013). Age-related
cochlear synaptopathy: An early-onset contributor to auditory functional decline.
J. Neurosci. 33, 13686–13694. doi: 10.1523/JNEUROSCI.1783-13.2013

Smith, J. C. (2019). A review of strain and sex differences in response to pain and
analgesia in mice. Comp. Med. 69, 490–500. doi: 10.30802/AALAS-CM-19-000066

Stevens, S. S., and Newman, E. B. (1936). The localization of actual sources of sound.
Am. J. Psychol. 48:297. doi: 10.2307/1415748

Storer, T. I. (1948). Control of rats and mice. California agricultural extension
service. Circular 138:142. doi: 10.5962/bhl.title.53398

Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Haug,
F.-M., et al. (1983). First visualization of glutamate and GABA in neurones by
immunocytochemistry. Nature 301, 517–520. doi: 10.1038/301517a0

Suthakar, K. (2017). Changes in the descending auditory system in hearing loss: Focus
on auditory efferents. Ph.D. thesis. Sydney, NSW: University of New South Wales.

Taber, E. (1961). The cytoarchitecture of the brain stem of the cat. I. Brain stem
nuclei of cat. J. Comp. Neurol. 116, 27–69. doi: 10.1002/cne.901160104

Taberner, A. M., and Liberman, M. C. (2005). Response properties of single auditory
nerve fibers in the mouse. J. Neurophysiol. 93:557e569. doi: 10.1152/jn00574.2004

Tollin, D. J., and Yin, T. C. (2002). The coding of spatial location by single units in
the lateral superior olive of the cat. I. Spatial receptive fields in azimuth. J. Neurosci.
22, 1454–1467. doi: 10.1523/jneurosci.22-04-01454.2002

Tollin, D. J., and Yin, T. C. (2005). Interaural phase and level difference sensitivity
in low-frequency neurons in the lateral superior olive. J. Neurosci. 25, 10648–10657.
doi: 10.1523/jneurosci.1609-05.2005

Traweger, D., Travnitzky, R., Moser, C., Walzer, C., and Bernatzky, G. (2006).
Habitat preferences and distribution of the brown rat (rattus Norvegicus Berk.) in the
city of Salzburg (Austria): Implications for an urban rat management. J. Pest Sci. 79,
113–125. doi: 10.1007/s10340-006-0123-z

Tsuchitani, C., and Boudreau, J. C. (1966). Single unit analysis of cat superior olive s
segment with tonal stimuli. J. Neurophysiol. 29, 684–697. doi: 10.1152/jn.1966.29.4.684

Tsuchitani, C., and Boudreau, J. C. (1967). Encoding of stimulus frequency and
intensity by cat superior olive S-segment cells. J. Acoust. Soc. Am. 42, 794–805. doi:
10.1121/1.1910651

Vetter, D. E., Adams, J. C., and Mugnaini, E. (1991). Chemically distinct rat
olivocochlear neurons. Synapse 7, 21–43. doi: 10.1002/syn.890070104

Vetter, D. E., and Mugnaini, E. (1992). Distribution and dendritic features of
three groups of rat olivocochlear neurons. Anat. Embryol. 185, 1–16. doi: 10.1007/
BF00213596

Vorhies, C. T., and Taylor, W. P. (2015). Life history of the kangaroo rat: Dipodomys
spectabilis spectabilis merriam. Boulder, CO: Palala Press.

Warr, W. B. (1975). Olivocochlear and vestibular efferent neurons of the feline
brain stem: Their location, morphology and number determined by retrograde axonal
transport and acetylcholinesterase histochemistry. J. Comp. Neurol. 161, 159–181.
doi: 10.1002/cne.901610203

Weber, J. N., Peterson, B. K., and Hoekstra, H. E. (2013). Discrete genetic modules
are responsible for complex burrow evolution in Peromyscus mice. Nature 493,
402–405. doi: 10.1038/nature11816

Wenthold, R. J., Huie, D., Altschuler, R. A., and Reeks, K. A. (1986).
Glycine immunoreactivity localized in the cochlear nucleus and superior
olivary complex. Neuroscience 22, 897–912. doi: 10.1016/0306-4522(87)
92968-x

Willard, F. H., and Martin, G. F. (1984). Collateral innervation of the inferior
colliculus in the North American opossum: A study using fluorescent markers in
a double-labeling paradigm. Brain Res. 303, 171–182. doi: 10.1016/0006-8993(84)
90225- 7

Frontiers in Neural Circuits 25 frontiersin.org165

https://doi.org/10.3389/fncir.2024.1430598
https://doi.org/10.7554/eLife.54350
https://doi.org/10.7554/eLife.54350
https://doi.org/10.1016/j.neuroscience
https://doi.org/10.1002/cne.902140203
https://doi.org/10.1007/s10162-016-0589-1
https://doi.org/10.1007/s00359-
https://doi.org/10.1002/1097-0029(20001115)51:
https://doi.org/10.1002/aja.1001550306
https://doi.org/10.1007/s12576-015-0394-3
https://doi.org/10.1016/j.heares.2019.107844
https://doi.org/10.1016/j.bbr.2006.05.018
https://doi.org/10.1152/jn.00961.2003
https://doi.org/10.1007/s12264-022-00860-7
https://doi.org/10.1016/j.cortex.2017.10.020
https://doi.org/10.1016/s0165-0270(00)00293-4
https://doi.org/10.1523/
https://doi.org/10.1016/0378-5955(92)90123-5
https://doi.org/10.1016/0378-5955(92)90123-5
https://doi.org/10.1002/(SICI)1096-9861(19980105)390:1<20::AID-CNE3$>$ 3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-9861(19980105)390:1<20::AID-CNE3$>$ 3.0.CO;2-S
https://doi.org/10.1038/16056
https://doi.org/10.1002/cne.902700403
https://doi.org/10.1016/0031-6989(75)90020-x
https://doi.org/10.1016/0031-6989(75)90020-x
https://doi.org/10.1002/cne.902100304
https://doi.org/10.3389/fncir.2023.1229746
https://doi.org/10.1007/s00221-003-1605-3
https://doi.org/10.1007/s00221-003-1605-3
https://doi.org/10.1002/cne
https://doi.org/10.1016/0006-8993(90)90698-B
https://doi.org/10.1016/s0378-5955(03)00219-3
https://doi.org/10.1016/0014-4886(74)90175-7
https://doi.org/10.1016/j.mambio.2005.11.007
https://doi.org/10.1002/cne
https://doi.org/10.1523/JNEUROSCI.1783-13.2013
https://doi.org/10.30802/AALAS-CM-19-000066
https://doi.org/10.2307/1415748
https://doi.org/10.5962/bhl.title.53398
https://doi.org/10.1038/301517a0
https://doi.org/10.1002/cne.901160104
https://doi.org/10.1152/jn00574.2004
https://doi.org/10.1523/jneurosci.22-04-01454.2002
https://doi.org/10.1523/jneurosci.1609-05.2005
https://doi.org/10.1007/s10340-006-0123-z
https://doi.org/10.1152/jn.1966.29.4.684
https://doi.org/10.1121/1.1910651
https://doi.org/10.1121/1.1910651
https://doi.org/10.1002/syn.890070104
https://doi.org/10.1007/BF00213596
https://doi.org/10.1007/BF00213596
https://doi.org/10.1002/cne.901610203
https://doi.org/10.1038/nature11816
https://doi.org/10.1016/0306-4522(87)92968-x
https://doi.org/10.1016/0306-4522(87)92968-x
https://doi.org/10.1016/0006-8993(84)
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-18-1430598 August 7, 2024 Time: 13:1 # 26

Williams and Ryugo 10.3389/fncir.2024.1430598

Williams, I. R., Filimontseva, A., Connelly, C. J., and Ryugo, D. K. (2022). The lateral
superior olive in the mouse: Two systems of projecting neurons. Front. Neural Circuits
16:1038500. doi: 10.37247/pans2ed.2.23.13

Willott, J. F., and Turner, J. T. (1999). Prolonged exposure to an augmented acoustic
environment ameliorates age-related auditory changes in C59BL/6J and DB A/2J mice.
Hear. Res. 135, 78–88. doi: 10.1016/s0378-5955(99)00094-5

Willott, J. F., Pankow, D., Hunter, K. P., and Kordyban, M. (1985). Projections from
the anterior ventral cochlear nucleus to the central nucleus of the inferior colliculus
iin young and aging C57BL/6 mice. J. Comp. Neurol. 238, 545–551. doi: 10.1002/cne.
902370410

Wright, D. D., and Ryugo, D. K. (1996). Mossy fiber projections from
the cuneate nucleus to the cochlear nucleus in the rat. J. Comp. Neurol.
365, 159–172. doi: 10.1002/(sici)1096-9861(19960129)365:1&lt159::aid-cne12&gt;3.
0.co;2-l

Wu, C., and Shore, S. E. (2018). Multisensory activation of ventral
cochlear nucleus d-stellate cells modulates dorsal cochlear nucleus
principal cell spatial coding. J. Physiol. 596, 4537–4548. doi: 10.1113/jp27
6280

Wu, J. S., Yi, E., Manca, M., Javaid, H., Lauer, A. M., and Glowatzki, E.
(2020). Sound exposure dynamically induces dopamine synthesis in cholinergic LOC
efferents for feedback to auditory nerve fibers. Elife 9:e52419. doi: 10.7554/eLife.
52419

Yin, T. C. T., Smith, P. H., and Joris, P. X. (2019). Neural mechanisms of binaural
processing in the auditory brainstem. Comp. Physiol. 9, 1503–1575. doi: 10.1002/cphy.
c180036

Zeilhofer, H. U., Studler, B., Arabadzisz, D., Schweizer, C., Ahmadi, S., Layh, B.,
et al. (2005). Glycinergic neurons expressing enhanced green fluorescent protein in
bacterial artificial chromosome transgenic mice. J. Comp. Neurol. 482, 123–141. doi:
10.1002/cne.20349

Zheng, Q. Y., Johnson, K. R., and Erway, L. C. (1999). Assessment of hearing in
80 inbred strains of mice by ABR threshold analyses. Hear. Res. 130, 94–107. doi:
10.1016/s0378-5955(99)00003-9

Zhu, X., Vasilyeve, O. N., Kim, S., Jacobson, M., and Romney, J. (2007). Auditory
efferent feedback system deficits precede age-related hearing loss: Contralateral
suppression of otoacoustic emissions in mice. J. Comp. Neurol. 503, 593–604. doi:
10.1002/cne.21402

Frontiers in Neural Circuits 26 frontiersin.org166

https://doi.org/10.3389/fncir.2024.1430598
https://doi.org/10.37247/pans2ed.2.23.13
https://doi.org/10.1016/s0378-5955(99)00094-5
https://doi.org/10.1002/cne.902370410
https://doi.org/10.1002/cne.902370410
https://doi.org/10.1002/(sici)1096-9861(19960129)365:1&lt159::aid-cne12&gt;3.0.co;2-l
https://doi.org/10.1002/(sici)1096-9861(19960129)365:1&lt159::aid-cne12&gt;3.0.co;2-l
https://doi.org/10.1113/jp276280
https://doi.org/10.1113/jp276280
https://doi.org/10.7554/eLife.52419
https://doi.org/10.7554/eLife.52419
https://doi.org/10.1002/cphy.c180036
https://doi.org/10.1002/cphy.c180036
https://doi.org/10.1002/cne.20349
https://doi.org/10.1002/cne.20349
https://doi.org/10.1016/s0378-5955(99)00003-9
https://doi.org/10.1016/s0378-5955(99)00003-9
https://doi.org/10.1002/cne.21402
https://doi.org/10.1002/cne.21402
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


Frontiers in Neural Circuits 01 frontiersin.org

Vasopressin differentially 
modulates the excitability of rat 
olfactory bulb neuron subtypes
Hajime Suyama 1*†, Gaia Bianchini 2 and Michael Lukas 1

1 Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany, 2 Neural 
Circuits and Behavior Laboratory, The Francis Crick Institute, London, United Kingdom

Vasopressin (VP) plays a crucial role in social memory even at the level of the 
olfactory bulb (OB), where OB VP cells are activated during social interactions. 
However, it remains unclear how VP modulates olfactory processing to enable 
enhanced discrimination of very similar odors, e.g., rat body odors. Thus far, it 
has been shown that VP reduces firing rates in mitral cells (MCs) during odor 
presentation in vivo and decreases the amplitudes of olfactory nerve-evoked 
excitatory postsynaptic potentials (ON-evoked EPSPs) in external tufted cells 
in vitro. We performed whole-cell patch-clamp recordings and population 
Ca2+ imaging on acute rat OB slices. We recorded ON-evoked EPSPs as well as 
spontaneous inhibitory postsynaptic currents (IPSCs) from two types of projection 
neurons: middle tufted cells (mTCs) and MCs. VP bath application reduced the 
amplitudes of ON-evoked EPSPs and the frequencies of spontaneous IPSCs in 
mTCs but did not change those in MCs. Therefore, we analyzed ON-evoked 
EPSPs in inhibitory interneurons, i.e., periglomerular cells (PGCs) and granule 
cells (GCs), to search for the origin of increased inhibition in mTCs. However, VP 
did not increase the amplitudes of evoked EPSPs in either type of interneurons. 
We next performed two-photon population Ca2+ imaging in the glomerular layer 
and the superficial GC layer of responses to stronger ON stimulation than during 
patch-clamp experiments that should evoke action potentials in the measured 
cells. We observed that VP application increased ON-evoked Ca2+ influx in 
juxtaglomerular cells and GC somata. Thus, our findings indicate inhibition by 
VP on projection neurons via strong ON input-mediated inhibitory interneuron 
activity. This neural modulation could improve representation of odors, hence, 
better discriminability of similar odors, e.g., conspecific body odors.

KEYWORDS

vasopressin, olfactory bulb, social discrimination, neuromodulation, neuropeptide

Introduction

Various mammalian species rely on olfaction to identify environmental stimuli, such as food, 
predators, or individual conspecifics. Thus, rodents sniff conspecifics at the initiation of social 
behaviors, allowing them to assess characteristics such as sex or familiarity. For example, male mice 
can discriminate urine from males and females even when they are not able to establish physical 
contact with them (Pankevich et al., 2004). Another example is social memory, also known as social 
discrimination (Engelmann et al., 2011), which is based on recognition of individual conspecifics 
encountered previously. This ability can be  quantified experimentally as rats investigate an 
unknown stimulus rat longer than another with whom they recently interacted. Social memory is 
suggested to be highly dependent on olfaction since the olfactory bulb (OB) is essential for social 
discrimination (Dantzer et al., 1990).
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The central actions of the neuropeptide vasopressin (VP) include 
the modulation of social behavior. Moreover, VP is an important 
enhancer of social memory (Dantzer et al., 1988). More specifically, 
local OB injection of a VP receptor antagonist blocks the ability to 
form memories of conspecifics, whereas additional local application 
of VP prolongs the memory for conspecifics (Dluzen et al., 1998; 
Tobin et al., 2010).

The OB is the very first brain region for processing and filtering 
olfactory signals in mammals. Neural microcircuits in the OB are 
known to integrate and modify signals from the olfactory epithelium 
before transmitting those to the olfactory cortex and other higher 
brain areas, which then trigger behavioral responses. Approximately 
80% of all neurons in the OB are inhibitory interneurons (Shepherd 
et al., 2004), such as periglomerular cells (PGCs) in the glomerular 
layer (GL) and granule cells (GC) in the GC layer (GCL) (Nagayama 
et  al., 2014). Interneurons form synaptic connections onto other 
interneurons or projection neurons, such as middle tufted cells 
(mTCs) and mitral cells (MCs), to inhibit them. The major portion of 
inhibition in the GL is suggested to function as gain control of 
incoming olfactory signals (e.g., Linster and Hasselmo, 1997; Cleland 
and Sethupathy, 2006; Cleland et al., 2007), whereas GCs organize 
spike timing and synchronization of projection neurons (e.g., 
McTavish et al., 2012; Fukunaga et al., 2014; Osinski and Kay, 2016; 
Egger and Kuner, 2021). Although most bulbar neurons express the 
classical neurotransmitter glutamate or GABA, it is known that 
various other substances that are released from either bulbar neurons 
or centrifugal projections affect neural communication in the OB as 
well, including neuromodulators, e.g., dopamine or acetylcholine, and 
neuromodulatory neuropeptides, like VP or cholecystokinin 
(Nagayama et al., 2014; Imamura et al., 2020; Brunert and Rothermel, 
2021; Suyama et al., 2022). A source of endogenous VP that acts on 
social discrimination in the OB is an innate population of 
VP-expressing cells (VPCs) that were characterized as a subpopulation 
of superficial tufted cells (Tobin et al., 2010; Lukas et al., 2019). As 
mentioned above, VP signaling at the level of the OB is essential for 
the social memory of conspecifics (Tobin et al., 2010).

Several of our previous findings support the importance of VP 
neuromodulation in the OB during social memory establishment and 
thereby indicate intrabulbar VP release from VPCs. Thus, bulbar 
VPCs react with increased numbers of activated cells, i.e., positive for 
phosphorylated extracellular signal-regulated kinase, following social 
interaction in vivo and with action potential firing following olfactory 
nerve stimulation during acetylcholine application in in-vitro OB slice 
experiments (Suyama et al., 2021). However, it is still not clear how 
VP modulates olfactory processing on the cellular level to enable 
enhanced discrimination of very similar odor mixtures, such as 
conspecific body odors (Singer et al., 1997).

Tobin et al. (2010) showed that spontaneous firing rates and firing 
rates after odor stimulation in MCs decrease upon VP administration 
in vivo, and we  showed that VP bath application decreases the 
amplitudes of electrical olfactory nerve (ON) stimulation-evoked 
excitatory postsynaptic potentials (EPSPs) in eTCs in vitro (Lukas 
et al., 2019). These initial findings suggest that VP has inhibitory 
effects on excitatory neurons in the OB. Since the prevalent OB VP 
receptors are Gq-coupled excitatory V1a receptors (V1aRs), it is 
unlikely that VP acts directly on excitatory neurons. Therefore, the 
origin of VP inhibitory effects is not yet determined. However, 
we have suggestions from the morphology of VPCs. We previously 

showed the neurite reconstruction of VPCs, including apical dendritic 
tufts in the GL and axons in the GCL (Lukas et  al., 2019). 
VP-neurophysin was found in somata, dendrites, and axons, which 
indicates that VP could be  released from dendrites, e.g., apical 
dendritic tufts, and axons. Biocytin-DAB reconstruction revealed that 
aside from apical dendritic tufts in the glomeruli, VPCs innervate 
densely in the GL and EPL, and in the superficial GCL, they have 
either numerous short but localized branches (type 1) or long-range 
projection along the internal plexiform layer (type 2) (Lukas et al., 
2019). The observation leads to the hypothesis that VP is released in 
the GL and the superficial GCL binds to cells located there. In line 
with the hypothesis, strong signals of V1aR staining were observed in 
the GL (Ostrowski et al., 1994) and in the superficial part of the GCL 
(Tobin et al., 2010). Moreover, the discriminability of similar odors, 
including social discrimination, is regulated by bulbar interneurons, 
which in turn modulate excitatory/projection neurons (Abraham 
et  al., 2010; Oettl et  al., 2016). Thus, we  hypothesized that an 
excitatory action of VP on inhibitory neurons in the GL or the GCL 
enhances the inhibition of excitatory neurons during social  
interactions.

As a first step to examine how VP might enhance the inhibition 
of excitatory neurons during odor processing, we  investigated VP 
effects on the responses of different cell types, including both 
excitatory and inhibitory neurons, to ON stimulation in acute OB 
slices, which mimics sensory activation. Therefore, we  recorded 
ON-evoked EPSPs and spontaneous inhibitory postsynaptic currents 
(IPSCs) in mTCs and MCs that project to the cortices, and ON-evoked 
EPSPs in PGCs and GCs. Furthermore, we performed Ca2+ population 
imaging of ON-evoked responses in the GL and the superficial GCL 
using two-photon microscopy.

Materials and methods

Animals

All procedures were conducted according to the guidelines for the 
care and use of laboratory animals by the local government of 
Oberpfalz and Unterfranken, and we  are monitored and certified 
regarding animal handling and slice preparation by 
institutional veterinarians.

Wistar rats of either sex were purchased from Charles River 
Laboratories (Sulzfeld, Germany) or bred onsite in the animal facilities 
at the University of Regensburg. The light in the rooms was set to an 
automatic 12-h cycle (lights on 07:00–19:00).

Slice preparation

Eleven- to 18-day-old juvenile rats of either sex were used for 
in-vitro electrophysiology and Ca2+ imaging experiments. The rats 
were deeply anesthetized with isoflurane and quickly decapitated. 
Horizontal slices (300 μm) of the OB were cut in ice-cold, carbogenated 
ACSF (artificial cerebrospinal fluid; in mM: 125 NaCl, 26 NaHCO3, 
1.25 NaH2PO4, 20 glucose, 2.5 KCl, 1 MgCl, and 2 CaCl2) using a 
vibratome (VT 1200, LEICA, Wetzlar, Germany) and afterward 
incubated in ACSF at 36°C for 45 min. Until experiments, the slices 
were kept at room temperature (~21°C) in ACSF.
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Electrophysiology

Brain slices were placed in a recording chamber on the 
microscope’s stage and continuously perfused with carbogenated 
ACSF circulated using a perfusion pump (ISM 850, Cole-Parmer, 
Wertheim, Germany). To perform whole-cell patch-clamp 
recordings, cells were visualized by infrared gradient-contrast 
illumination via an IR filter (Hoya, Tokyo, Japan). Glass pipettes for 
recordings were pulled by a pipette puller (Narishige, Tokyo, Japan) 
sized 4–6 MΩ and filled with intracellular solution. The intracellular 
solution for current-clamp recordings contained 
130 K-methylsulfate, 10 HEPES, 4 MgCl2, 4 Na2ATP, 0.4 NaGTP, 10 
Na phosphocreatine, and 2 ascorbate (in mM) at pH 7.2, and the 
intracellular solution for voltage-clamp recordings contained 110 
CsCl, 10 HEPES, 4 MgCl2, 10 TEA, 10 QX-314, 2.5 Na2ATP, 0.4 
NaGTP, 10 Na Phosphocreatine, and 2 ascorbate (in mM) at pH 7.2. 
Recordings were performed with an EPC-10 (HEKA, Lambrecht, 
Germany) digital oscilloscope. The series resistance ranged between 
10 and 30 MΩ. The average resting membrane potentials were − 60 
to −70 mV in MCs and mTCs, −50 to −60 mV in PGCs, and − 70 to 
−80 mV in GCs. Experiments were only started in cases where the 
patched cells had a holding current below approximately −50 pA 
and a stable resting membrane potential. When the resting 
membrane potential is shifted during the ON stimulation 
experiments, the holding current is adjusted to bring the membrane 
potential back to the initial value in order to avoid the effects of 
leakage and the possible direct effects of VP on the resting 
membrane potentials (Table  1). Experiments were performed at 
room temperature (~21°C).

ON stimulation was performed with a glass pipette stimulation 
electrode sized around 2 MΩ. Glass pipettes were filled with ACSF. The 
unipolar electrode was connected to an external stimulator (STG 
1004, Multi-Channel Systems, Reutlingen, Germany). The stimulation 
strength was adjusted via the stimulator’s software (MC_Stimulus, v 
2.1.5), and stimulation was triggered by the amplifier software 
(Patchmaster, v2x73.5, HEKA). Stimulation pipettes were gently 
placed in the ON layer anterior to the area selected for patching using 
a manual manipulator (LBM-7, Scientifica, East Sussex, UK) under 
optical control with the microscope. The stimulation lasted for 100 μs, 
with a current of 20–200 μA for mTCs, 25–350 μA for MCs, 9–100 μA 
for PGCs, or 5–150 μA for GCs. We confirmed the identity of PGCs 
with post-hoc morphological examination. We added biocytin (5 mg/
mL, Sigma-Aldrich, Darmstadt, Germany) in the intracellular solution 
to fill cells during recording and subsequently visualized apical 
dendrite arbors using enzymatic 3,3′-diaminobenzidine-based 
staining (Vector Laboratories, CA, USA) (Lukas et  al., 2019). All 
patched putative PGCs had a soma sized <10 μm and no long-range 

laterally projecting neurite, confirming their identity as PGCs 
(Nagayama et al., 2014).

Experimental design

In current-clamp experiments recording ON-evoked EPSPs, ON 
stimulation was triggered only every 30 s to prevent run-down (Lukas 
et al., 2019). VP was diluted in ACSF ([Arg8]-vasopressin acetate salt, 
Sigma-Aldrich, Darmstadt, Germany, 1 μM) and bath-applied via the 
perfusing system after a baseline recording of 5 min. Traces in the VP 
condition were recorded no earlier than 5 min after the onset of 
administration. Traces were averaged over five stimulations, and two 
such averaged traces, each in the ACSF condition and in the VP 
condition, were analyzed. Averaged amplitudes within conditions 
were normalized to the ACSF condition (100%). The data were 
analyzed with Origin 2020 (Origin Lab Corporation, Northampton, 
MA, USA).

In voltage-clamp experiments, spontaneous IPSCs were recorded 
at 0 mV for 10 min during each condition. VP (1 μM) was bath-applied 
via the perfusion system, and the VP condition was recorded 5 min 
after the onset of administration for 5 min. The frequencies and 
amplitudes of IPSCs were normalized to the ACSF condition (100%). 
The data were analyzed with the Peak Analyzer in Origin 2020.

Population Ca2+ imaging

For population Ca2+ imaging, the AM-dye Cal-520 (1 μM, AAT 
Bioquest, CA, USA) and Alexa 594 (50 μM, Invitrogen) were loaded 
into the superficial GCL or the GL via a glass pipette sized around 
2 MΩ. Loading pipettes were guided by light microscopy and the 
Alexa 594 fluorescence. The Ca2+ dye was loaded for 15 s using the 
Picospritzer III device (Parker Hannifin, NH, USA), followed by 
20 min incubation to allow the Ca2+ dye to be taken up by cells. The 
fluorescence was imaged at a wavelength of 850 nm in raster-scan 
mode using a two-photon resonant scanner (frame rate of 31.5 Hz). 
Femto-2D microscope (Femtonics) was equipped with a Mai Tai 
wideband, mode-locked Ti:Sapphire laser (Spectra-Physics, CA, USA) 
and a 20× Zeiss water immersion objective (Carl Zeiss, Oberkochen, 
Germany). The microscope was controlled by MESc v3.3.4290 
software (Femtonics). ON stimulation (400 μA, 100 μs) was applied 
three times for each condition: control (ACSF) and VP (1 μM). VP was 
bath-applied via the perfusion system, and the VP condition was 
recorded 10 min after the onset of administration.

The raw data of the experiments were imported to Fiji1 and ∆F/F 
in the somata of GCs, juxtaglomerular cells (JGCs, decided by the 
small cell bodies), and the glomeruli were extracted using the ROI 
selection tool. The resulting traces from the three stimulations per 
condition were averaged. ∆F/F amplitudes and integral (from the 
onset of the signal until the signal is back to the baseline or the end of 
the session) were analyzed with Origin 2020. ∆F/F in the VP condition 
was corrected according to the ratio of the basal fluorescence (F0) in 
the VP condition to that in the ACSF condition. Corrected ∆F/F 

1 ImageJ, downloaded from: https://imagej.net/Fiji/Downloads.

TABLE 1 Holding currents during experiments with olfactory nerve 
stimulation.

ACSF (pA) VP (pA) Changes (pA)

mTCs −40.1 ± 25.3 −42.2 ± 23.9 −1.3 ± 3.7

MCs −34.9 ± 16.6 −37.6 ± 16.3 −2.7 ± 8.9

PGCs −11.9 ± 15.2 −14.7 ± 15.7 −2.9 ± 4.0

GCs −13.4 ± 17.3 −17.4 ± 18.0 −4.0 ± 5.6

mTCs, middle tufted cells; MCs, mitral cells; PGCs, periglomerular cells; GCs, granule cells.
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(VP) = ∆F/F (VP) × F0 (VP) / F0 (ACSF). Averaged amplitudes and 
integral within conditions were normalized to the ACSF 
condition (100%).

Ca2+ imaging experiments were performed at room temperature 
(~21°C).

Statistics

Statistics were performed with SPSS (version 26, IBM, Armonk, 
NY, USA). All statistical analysis performed was two-sided, and 
significance was accepted at p < 0.05. All data in the text are shown 
with average ± standard deviation.

Results

VP reduced ON-mediated excitation and 
increased spontaneous inhibition in mTCs 
but not in MCs

We performed patch-clamp recordings in either current-clamp 
or voltage-clamp configuration in mTCs and MCs in acute OB slices 
(Figure  1A). Electrical ON stimulation reliably evoked EPSPs in 
mTCs and MCs. We then compared EPSP amplitudes in the presence 

of VP (1 μM in ACSF) to the control condition (ACSF). In mTCs, VP 
reduced the amplitudes of ON-evoked EPSPs to 60.4 ± 20.5% of 
control (p = 0.012, z = −2.521, related samples Wilcoxon test, n = 8 
from six rats; Figures 1B,C). The amplitudes of ON-evoked EPSPs 
without VP application were stable over time compared to the VP 
condition (95.0 ± 4.6% of control, 10 min after the start of the 
measurement, n = 5 from four rats, p = 0.004, t(11) = 3.657, t-test vs. 
VP). Therefore, we  concluded that the reduction is due to VP 
application but not desensitization of bulbar circuits to ON 
stimulation. In another set of experiments using voltage-clamp 
recordings, VP increased the frequencies of spontaneous IPSCs to 
123.3 ± 23.6% of control (p = 0.012, z = 2.521, related samples 
Wilcoxon test, n = 8 from four rats; Figures  1D,E). However, the 
amplitudes of spontaneous IPSCs were not changed (106.9 ± 24.3%, 
p = 0.263, z = 1.120, related samples Wilcoxon test, n = 8 from four 
rats; Figure  1F), indicating a predominantly presynaptic effect. 
Furthermore, in all experiments (n = 8 from four rats), spontaneous 
IPSCs were abolished following bath application of bicuculline (a 
GABA receptor antagonist, 50 μM), confirming the GABAergic 
origin of these signals (data not shown). Therefore, the data imply 
that VP enhances both ON-evoked and tonic inhibitory modulation 
of mTCs. Surprisingly, we did not observe any of those VP inhibitory 
effects in MCs, even though broad distributions in evoked EPSP 
amplitudes and IPSC frequencies in the VP condition were observed 
[ON-evoked EPSPs: 99.4 ± 20.2% of control, p = 0.929, z = −0.089, 

FIGURE 1

Patch-clamp recordings from mTCs and MCs. (A) The schematic image of the OB slice. ON, olfactory nerve; GL, glomerular layer; EPL, external 
plexiform layer; MCL, mitral cell layer; GCL, granule cell layer; Stim., electrical ON stimulation; PGC, periglomerular cell; eTC, external tufted cell; mTC, 
middle tufted cell; MC, mitral cell; GC, granule cell. Representative current-clamp traces of ON-evoked EPSPs and cumulative data of ON-evoked 
EPSP amplitudes in % to control in mTCs (B,C) and MCs (G,H). Representative voltage-clamp traces of spontaneous IPSCs and cumulative data of 
spontaneous IPSC frequencies and amplitudes in % to control in mTCs (D–F) and MCs (I–K). The bar graphs show average values. Individual data 
points are shown as open circles, and points from the same cell are connected by a line. *p  <  0.05; N.S., non-significant. Black traces: ACSF (control); 
Green traces: VP.
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related samples Wilcoxon test, n = 11 from nine rats (Figures 1G,H); 
frequencies of spontaneous IPSCs: 105.3 ± 38.2% of control, p = 0.889, 
z = 0.140, related samples Wilcoxon test, n = 8 from six rats 
(Figures  1I,J); amplitudes of spontaneous IPSCs: 97.2 ± 10.6% of 
control, p = 0.779, z = −0.280, related samples Wilcoxon test, n = 8 
from six rats (Figures 1I,K)]. This lack of consistent inhibitory effects 
in MCs was somewhat unexpected, as Tobin et al. (2010) showed in 
vivo that VP reduces spontaneous and odor-evoked spiking 
rates in MCs.

VP did not increase evoked EPSPs in 
inhibitory neurons

Where does the inhibition of excitatory projection neurons, e.g., 
eTCs or mTCs, originate from? There are two main populations of 
inhibitory interneurons in the OB. One is in the glomerular layer 
(GL), where synapses between the ON and bulbar neurons reside 
within the glomerular neuropil. Thus, the first modulation of olfactory 
inputs takes place in this layer. There are many cell types of inhibitory 
neurons in the GL, and the most numerous are PGCs (Nagayama 
et  al., 2014). We  performed patch-clamp recordings in PGCs 
regardless of subtypes, as we were not able to differentiate them in our 
experimental setup. ON stimulation-evoked EPSPs in PGCs. 
We observed mixed effects of VP (1 μM) on the amplitudes of evoked 
EPSPs, including increase, decrease, or no changes (Figure  2A). 
Consequently, there was no overall significant difference between VP 
application compared to the control condition (85.4 ± 26.1% of 
control, p = 0.131, z = −1.511, paired Wilcoxon test, n = 11 from nine 
rats; Figure 2B). We further categorized PGCs into either Type A or 
Type C according to their firing patterns, as described by Tavakoli 
et al. (2018). In addition, we examined if hyperpolarizing currents 
evoked sags due to hyperpolarization-induced depolarization. 
Moreover, we visualized patched putative PGCs by filling cells with 
biocytin (see methods) to investigate their morphology. However, 
we could not find any correlation between these electrophysiological 
or morphological characteristics and the different directions of VP 
effects (data not shown).

We next examined the second main population of inhibitory 
interneurons in the OB, the GCs (Nagayama et al., 2014). Unlike 
PGCs, VP consistently decreased the amplitudes of ON-evoked 
EPSPs in GCs to 85.0 ± 11.7% of control (p = 0.012, z = −2.521, 
related samples Wilcoxon test, n = 8 from eight rats; Figures 2C,D). 
Thus, ON-evoked EPSPs were not increased upon VP 
administration in both inhibitory interneuron populations, arguing 
against an increased excitation of interneurons via the sensory 
afferents as a mechanism for the inhibitory action of VP on eTCs 
and mTCs.

VP increased evoked Ca2+ influx in 
inhibitory neurons

While VP did not increase the subthreshold excitability of 
inhibitory neurons, we next wondered whether suprathreshold 
activation might be  enhanced. Therefore, we  performed 
two-photon population Ca2+ imaging to examine VP effects on 
Ca2+ influx in inhibitory interneurons with strong ON 
stimulation, which is likely to evoke action potentials in 
stimulated cells from our experience (400 μA, up to 100 μA, or 
150 μA for EPSP experiments in PGCs or GCs, respectively). 
We  injected the AM-dye Cal-520 into the GL, followed by 
two-photon imaging with a resonant scanner. After JGCs took up 
the dye into their somata, we stimulated the ON and measured 
∆F/F in the JGC somata as well as in the neuropil in the glomeruli 
(Figures 3A,B; Egger et al., 2003). F0 in JGCs increased in the VP 
condition to 125 ± 29.3% of control (p < 0.001, z = 8.882, related 
samples Wilcoxon test; Figure  3C). While there were mixed 
effects, on average VP significantly increased the amplitudes and 
the integral of ON-evoked ΔF/F changes to 156 ± 101% and 
143 ± 106% of control, respectively [Amplitudes: p < 0.001, 
z = 6.376, related samples Wilcoxon test; Integral: p < 0.001, 
z = 3.775, related samples Wilcoxon test, n = 166 from five rats 
(Figures  3B,C)]. F0  in the glomeruli increased in the VP 
condition to 110 ± 14.8% of control (p = 0.041, z = 2.040, related 
samples Wilcoxon test; Figure  3D). The amplitudes and the 

FIGURE 2

Representative current-clamp traces of ON-evoked EPSPs and cumulative data of ON-evoked EPSP amplitudes in % to control in PGCs (A,B) and GCs 
(C,D). The bar graphs show average values. Individual data points are shown as open circles, and points from the same cell are connected by a line. 
*p  <  0.05; N.S., non-significant. Black traces: ACSF (control); Green traces: VP.
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integral of ON-evoked ΔF/F in the glomeruli were similar to 
control, 102 ± 21.6% and 93.3 ± 30.3% of control, respectively 
[Amplitudes: p = 0.754, z = 0.314, related samples Wilcoxon test; 
Integral: p = 0.388, z = −0.863, related samples Wilcoxon test, 
n = 12 from five rats (Figures 3B,D)].

We also performed dye injections in the superficial GCL and 
measured changes in intracellular Ca2+ levels in the GC somata 
(Figures 3E,F). F0 decreased in the VP condition to 88.6 ± 15.3% of the 
control (p < 0.001, z = −7.973, related samples Wilcoxon test; 
Figure 3G). In these experiments, again, there were mixed effects, but 
on average, VP significantly increased the integral but not the 
amplitudes of ON-evoked ΔF/F changes to 164 ± 181% and 114 ± 63% 
of control, respectively [Integral: p < 0.001, z = 3.832, related samples 

Wilcoxon test; Amplitudes: p = 0.558, z = 0.587, related samples 
Wilcoxon test, n = 165 from six rats (Figures 3F,G)].

Therefore, we suggest that VP enhances evoked Ca2+ influx in 
those inhibitory interneurons (Table 2).

Discussion

Origin of VP inhibitory effects in the OB

V1aRs that are predominantly expressed in the olfactory bulb are 
Gαq/11-coupled receptors and thus act in an excitatory manner 
(Birnbaumer, 2002). As mentioned in the introduction, V1aRs are 

FIGURE 3

Representative images of Ca2+ imaging before ON stimulation (left) and after ON stimulation (right) in the GL (A). Gl., glomerulus. Representative traces 
of Ca2+ imaging from corresponding JGCs (left) and from corresponding glomeruli (right) in A (B). Cumulative data of F0 (left) and amplitudes (middle) 
and integral (right) of ΔF/F in JGCs (C) and glomeruli (D). Bar graphs show average values. Individual data points from the same cell are connected by a 
line. *p  <  0.05. Black traces: ACSF (control); Green traces: VP. Representative images of Ca2+ imaging before ON stimulation (left) and after ON 
stimulation (right) in the GCL (E). Representative traces of Ca2+ imaging from the corresponding GCs are shown in E (F). Cumulative data of F0 (left) 
and amplitudes (middle) and integral (right) of ΔF/F in GCs (G). The bar graphs show average values. Individual data points from the same cell are 
connected by a line. *p  <  0.05. Black traces: ACSF (control); Green traces: VP.
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expressed in the GL and the superficial part of the GCL (Ostrowski 
et al., 1994; Tobin et al., 2010). In addition, VPCs innervate densely 
those two layers in the OB (Figure  4; Lukas et  al., 2019). This 
distribution of V1aRs and VPC’s innervation fits our data, showing 
that VP increased the ON-evoked Ca2+ signal in JGCs and GCs in 
those layers. Moreover, VP increases the inhibition of eTCs (Lukas 
et al., 2019) and mTCs (Figure 1). A similar VP-mediated increase of 
inhibition has been shown in other brain regions. For example, VP 
increases the frequency of spontaneous IPSP/Cs in magnocellular 
paraventricular nucleus neurons (Hermes et  al., 2000), as well as 
spontaneous spikes in hippocampal GABAergic neurons, which 
results in an increase in the number of spontaneous IPSCs in 
pyramidal neurons (Ramanathan et  al., 2012). Ramanathan et  al. 
(2012) suggested that increased hippocampal GABAergic inhibition 
of pyramidal cells may result in organized inhibition to establish fine-
tuning of excitation and rhythmic synchronized activity of pyramidal 
neurons that are important for memory consolidation. Since the 
function of bulbar inhibitory networks is suggested to tune excitation 

and modulate oscillatory activity as well, VP effects on bulbar 
inhibitory neurons may help organize excitatory neuron activity.

In current-clamp experiments, we did not observe significant 
changes in the holding current to keep the basal membrane potentials 
the same as the initial values between control and the VP condition, 
and the changes are not different between cell types (Table 1; mTCs: 
p = 0.348, t(7) = 1.006, paired t-test; MCs: p = 0.341, t(10) = 1.000, 
paired t-test; PGCs: p = 0.061, t(10) = 2.108, paired t-test; GCs: 
p = 0.082, t(7) = 2.028, paired t-test; Between cell types: p = 0.285, 
H = 3.788, df = 3, Kruskal–Wallis test). Even though holding currents 
tend to be  more negative in the VP condition, implying 
depolarization, changes are not statistically significant, and 
we  cannot differentiate potential VP effects and the increase of 
leakage currents over time. F0  in the Ca2+ population imaging 
showed different results in the GL and the GCL. F0 in JGCs and 
glomeruli significantly increased (Figures  3C,D), and F0  in GCs 
significantly decreased (Figure 3G) in the VP condition. One can 
assume that VP increases the basal Ca2+ concentration in JGCs and 

TABLE 2 Summary of results regarding ON-evoked responses in different neuron types.

Subthreshold activation (E/IPSPs)
Weak ON stimulation

Suprathreshold activation (Ca2+ influx)
Strong ON stimulation

Excitatory neurons

eTCs (Lukas et al., 

2019)
↓ (ON-evoked EPSPs) –

mTCs ↓ (ON-evoked EPSPs)↑ (spontaneous IPSPs) –

MCs N.S. (ON-evoked EPSPs, spontaneous IPSPs) –

Inhibitory neurons
JGCs/PGCs N.S. (ON-evoked EPSPs) ↑ (amplitude, integral)

GCs ↓ (ON-evoked EPSPs) N.S. (amplitude)/ ↑ (integral)

eTCs, external tufted cells; mTCs, middle tufted cells; MCs, mitral cells; JGCs, juxtaglomerular cells; PGCs, periglomerular cells; GCs, granule cells; N.S., non-significant.

FIGURE 4

Scheme of the overview. (1) Once VPCs are activated, VP is released from their dendrites and axons in both the GL and the superficial GCL. (2) Released 
VP binds to VP receptors, which are expressed in the GL and the superficial GCL, likely on JGCs and GCs. (3) Through VP receptor activation, 
spontaneous GABA release occurs more frequently, leading to more spontaneous inhibitory inputs onto mTCs. (4) Following suprathreshold olfactory 
inputs, VP-bound interneurons are activated stronger and then inhibit e/mTCs and MCs (Tobin et al., 2010).
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decreases it in GCs. However, the dye has been shown to suffer from 
F0 increases over time (Tada et  al., 2014). In addition, photo-
bleaching should be considered. As a result, we cannot definitely 
conclude what causes the F0 changes from our experiments. 
Therefore, further experiments focusing on the VP effects on the 
resting membrane potentials or basal Ca2+ concentrations in OB 
neurons would be beneficial to better understand the direct effects 
of VP. Previous studies on the VP effects on the hippocampus (Urban 
and Killian, 1990) and the lateral septum (Van Den Hooff and Urban, 
1990) showed that only a subset of neurons depolarized and/or fired 
upon VP application. However, even neurons that did not get directly 
excited by VP showed synaptic modulation by VP. Thus, even if VP 
does not change their resting membrane potentials, other 
mechanisms, e.g., intracellular cascades involving ER Ca2+ or DAG 
(Birnbaumer, 2002), would contribute to changing the response to 
the inputs, such as greater Ca2+ influx.

Functional implication of the VP effects: 
different results with weak or strong ON 
inputs

Functional differences between PGCs (inhibition in the GL) and 
GCs have been discussed extensively elsewhere (see review, Devore 
and Linster, 2012, D’Souza and Vijayaraghavan, 2014). Briefly, 
inhibition in the GL tunes activation patterns of projection neurons, 
such as contrast enhancement or concentration invariance (e.g., 
Linster and Hasselmo, 1997; Cleland and Sethupathy, 2006; Cleland 
et al., 2007). For instance, acetylcholine (ACh), which is known to 
activate GL interneurons (Devore and Linster, 2012), enhances the 
contrast of projection neural representation responding to very similar 
odors. Thus, neostigmine (an acetylcholinesterase inhibitor) 
administration in the OB increases differences in the number of MC 
spikes between responses to ethers differing by single carbon chain in 
in-vivo electrophysiology. For example, an MC responds strongest to 
E2 (ethyl acetate) and second strongest to E3 (ethyl propionate), 
differing by only one carbon chain, but the responses are not 
significantly different from each other. In the presence of neostigmine, 
the MC responds less strongly to or gets more inhibited by E3 than 
control. Therefore, responses of the MC to E2 and E3 are discriminable 
(Chaudhury et  al., 2009). Moreover, electrical stimulation of the 
horizontal limb of the diagonal band of Broca (HDB), the center of 
cholinergic top-down projections, decreases glomerular M/TC-tuft 
activity following odor presentation with high concentration, whereas 
increases glomerular activity following low-concentration odor 
presentation in in-vivo Ca2+ imaging, indicating responses are less 
varied to different concentrations of the same odor (Bendahmane 
et  al., 2016). These authors suggested that the less variation of 
responses to different odor concentrations makes neural 
representation reflect more purely the identity of odors. In our hands, 
VP increased the amplitudes of ON-evoked Ca2+ influx into JGCs in 
population imaging. If VP effects and ACh effects on the GL 
interneurons are similar, VP might prevent excitatory neurons from 
firing when they are weakly activated. Therefore, we  observed 
inhibitory VP effects on the amplitudes of subthreshold-evoked EPSPs 
in eTCs (Lukas et  al., 2019) and mTCs (Figure  1). The lack of 
inhibitory effects on MCs is discussed below.

GCs are responsible for the organization of spike timing and 
synchronization of projection neurons that further refine contrast and 

representations of odors (e.g., McTavish et al., 2012; Osinski and Kay, 
2016). Computational analysis showed that the level of GC excitability 
might tune oscillatory frequency in MCs; thus, with low excitability of 
GCs, MCs fire in the gamma range, however high excitability allows 
MCs to fire in beta oscillation (Osinski and Kay, 2016). Oettl et al. 
(2016) showed the modulation of GCs via the oxytocin system in the 
anterior olfactory nucleus (AON). An oxytocin receptor agonist 
increases the frequency of spontaneous EPSCs in GCs from AON 
excitatory neurons, resulting in increased spontaneous IPSCs in MCs. 
In in-vivo electrophysiological recordings in M/TCs, an oxytocin 
receptor agonist applied in the AON lowers basal spiking rates and 
increases odor-evoked spiking rates, thus improving the signal-to-
noise ratio. Conditional oxytocin receptor knockout in the AON 
impairs social memory, showing that the enhanced signal-to-noise 
ratio in M/TCs by activation of GCs is important for discrimination 
of conspecific body odors (Oettl et al., 2016).

Interestingly, the results of ON-evoked EPSPs and ON-evoked 
Ca2+ influx in PGCs (or JGCs) and GCs contradict each other 
(Figures 2, 3). This discrepancy may be explained by the fact that what 
we were observing during recording EPSPs and imaging Ca2+ influx is 
different. During slice experiments, we  performed subthreshold 
activation, whereas, during Ca2+ imaging, we  performed 
suprathreshold activation by ON stimulation. Possibly, VP can 
enhance Ca2+ entry selectively for suprathreshold activation, which is 
probably not related to the initial depolarization but to later phases of 
the signal which involve contributions from NMDARs. V1aRs and 
NMDARs are present at GC somata (Personal communication with 
M. Sassoe-Pognetto; Stroh et al., 2012). In the rat ventral hippocampus, 
VP excites neurons, and the VP effects are blocked by both V1aR and 
NMDAR antagonists, indicating VP effects via modulation of 
NMDARs. Moreover, VP enhances glutamate-evoked spiking (Urban 
and Killian, 1990). In contrast, EPSPs are subthreshold activation that 
are highly dependent on the inputs of the cells. We  observed the 
inhibitory VP effects on excitatory neurons (Figure 1; Tobin et al., 
2010, Lukas et  al., 2019). The results indicate that the inputs of 
inhibitory interneurons, e.g., glutamate released from excitatory 
neurons, are less in the presence of VP. Hence, smaller amplitudes of 
evoked EPSPs in GCs in the VP condition that we observed. Mixed 
results in PGCs might be due to the differences in connectivity, either 
directly connected with the ON or with eTCs (Shao et al., 2009), e.g., 
the ON-driven population is resistant and the eTC-driven population 
is susceptible to the VP administration because eTCs are susceptible. 
Although we did not observe subpopulations that can be divided by 
the VP effects on EPSP amplitudes, morphology, or firing pattern, it 
is worth examining further characteristics, such as molecular markers. 
We  have not performed experiments on interneurons in the EPL 
(Nagayama et al., 2014). Since VPC’s neurites are found in the EPL, it 
would be informative to investigate VP effects on them as well.

Our data showed that VP reduced the amplitudes of ON-evoked 
EPSPs in eTCs (Lukas et al., 2019) and mTCs. These data indicate that 
eTCs and mTCs need stronger ON inputs to fire under the VP 
condition. The suppression of those neurons could result in contrast 
enhancement of the neural representation in the OB (Chaudhury 
et al., 2009). The glomerular GABAergic inhibition includes GABAA 
receptor- and GABAB receptor-mediated pathways. For instance, 
cholecystokinin, which is also expressed in a subpopulation of 
superficial tufted cells, acts on SACs to inhibit presynaptically the ON 
via GABAB receptors, resulting in smaller ON-evoked EPSCs in eTCs 
(Liu and Liu, 2018). Therefore, a similar mechanism is conceivable for 
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VP modulation, and further examination of the involvement of SACs 
or GABAB receptors would give us more insights into the VP-mediated 
inhibition of eTCs and mTCs. Interestingly, unlike for mTCs or eTCs, 
VP did not reduce the amplitudes of evoked EPSPs or increase 
frequencies of spontaneous IPSCs in MCs. This variance in our data 
between mTCs and MCs could be  due to the difference in input 
sources of the two cell types. MCs receive indirect excitatory inputs 
from eTCs (De Saint Jan et al., 2009; Najac et al., 2011), and MCs are 
less sensitive to odor inputs than e/mTCs (Igarashi et al., 2012). If the 
ON-evoked EPSPs in MCs are consequences of the firing of eTCs, the 
ON stimulation intensity in MC experiments may be strong for eTCs, 
so that also during VP application, APs are still evoked in eTCs. Thus, 
during VP application, the same net amount of excitation is 
transmitted to MCs as without VP. Tobin et al. (2010) showed that 
odor-evoked MC firing decreased upon VP administration, although 
we did not observe reduced amplitudes of ON-evoked EPSPs in MCs 
in our experiments (Figure 1). In their in-vivo experiments, Tobin 
et  al. (2010) presented odors that were able to fire MCs. 
We purposefully stimulated the ON electrically in in-vitro slices to 
evoke EPSPs in MCs. Thus, we suggest that the discrepancy between 
the results from Tobin et  al. (2010) and ours might be  due to 
differences in subthreshold and suprathreshold activation of MCs in 
the different experimental setups. The main inputs of GCs are 
dendrodendritic glutamatergic signals from TCs or MCs. If the somata 
of MCs do not show active conduction like in our slice experiments, 
it is unlikely that their lateral dendrites release glutamate to excite 
GCs. As a result, inhibition of MC firing via dendrodendritically 
induced GABA release from GCs cannot be triggered or modulated 
by VP. However, during strong ON stimulation, like odor stimulation, 
MCs fire and excite GCs. If the excitation is strong enough, VP could 
enhance the GC activity as also shown in our Ca2+ imaging 
experiments using suprathreshold ON stimulation (Figure 3). Under 
these conditions, VP-modulated enhanced activation of GCs might 
be  responsible for an increased dendrodenritic GABAergic 
suppression of MC firing as shown in the in-vivo experiments of Tobin 
et al. (2010). However, to finally confirm this hypothesis, further Ca2+ 
imaging or spike analysis experiments using strong ON stimulation 
would be needed. Since Tobin et al. (2010) reported that V1aRs are 
expressed in MCs as well, we cannot exclude that VP directly excites 
MCs, even though we  could not see excitatory effects in our 
experiments. In CA1, VP increases not only the number of 
spontaneous IPSCs but also the number of spontaneous spikes under 
the conditions of glutamatergic and GABAergic receptor antagonists 
in pyramidal neurons (Ramanathan et  al., 2012). Therefore, the 
non-synaptic excitability of projection neurons would be intriguing to 
examine, as mentioned above. Sun et al. (2021) showed interesting 
effects of oxytocin, which also modulates social discrimination at the 
level of the OB (Dluzen et al., 1998; Sun et al., 2021). The authors 
demonstrated that oxytocin directly reduces the excitability of MCs 
via the Gq protein pathway, which, in turn, results in less activation of 
GCs responding to odor presentation. As a direct mechanism like that 
one is also conceivable for VP via V1aR on MCs, these results further 
encourage the examination of direct VP effects on MCs.

In addition to VP and oxytocin, various other neuropeptides are 
involved in the modulation of OB neuron activity (Stark, 2024). For 
instance, Decoster et  al. (2024) recently showed that GnRH 
(gonadotropin-releasing hormone)-expressing neurons in male mice 
are activated upon the presentation of estrus female urine, and 

silencing of GnRH neurons impairs preference toward estrus female 
urine over male urine in male mice. Although it is not clear yet how 
other neuropeptides modulate neural activity in the OB in social 
contexts, it is worth paying attention to other neuropeptidergic 
systems. In addition, there might be  synergic effects of different 
neuropeptides, especially ones that are known to have similar 
behavioral effects, such as VP and oxytocin (Dluzen et al., 1998; Tobin 
et al., 2010; Sun et al., 2021; Suyama et al., 2021).

Possible consequences of VP-mediated OB 
modulation

We previously suggested that social discrimination is a variation 
of perceptual learning because of the association with ACh and the 
close similarity of stimuli, i.e., conspecific body odors, that rats 
discriminate (Suyama et al., 2021). Perceptual learning is possible 
because a subject pays attention to a stimulus during exposures, and 
sensory acuity against the stimulus is enhanced due to a finer neural 
representation. As mentioned above, ACh, an important substance for 
perceptual learning, increases differences in the number of MC spikes 
reacted to odors differing by a single carbon (Chaudhury et al., 2009). 
This change in neural representation results in behavioral outputs like 
habituation. Rats lose their motivation to investigate odor if rats 
perceive it as the same one as they previously investigated, i.e., 
habituation. In controls, rats show habituation to an odor differing by 
a single carbon from a previously exposed odor, suggesting that rats 
cannot distinguish odors differing by one carbon. However, injection 
of neostigmine into the OB enables rats to discriminate those odors 
(Chaudhury et al., 2009). Therefore, neuromodulation of projection 
neuron activity seems to be important for sensory perception, hence 
discrimination as the behavioral output of this enhanced sensory 
perception. We demonstrated that VP modulation may result in less 
mTCs firing via GL contrast enhancement. Furthermore, VP inhibits 
the firing rates of MCs (Tobin et  al., 2010), which can result in 
improved neural representation (Linster and Hasselmo, 1997). 
Although Tobin et al. (2010) did not record the firing rates of mTCs, 
it is plausible that this is the same for all projection neurons. Thus, in 
the VP condition, M/TCs may transmit more precise information to 
higher brain regions, like during the modulatory action of ACh 
(Chaudhury et al., 2009). Taken together, we hypothesize that VP 
inhibits projection neurons differently to reduce sensitivity and 
improve representation in the olfactory cortex.
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