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Thymus physiology and T-cell homeostasis are controlled by hormones, 
neurotransmitters, cytokines and other factors that modulate stromal-cell interactions, 
influence thymocyte development and selection processes, survival and migration, 
between others. 

In the context of this Research Topic on “Hormones, Neurotransmitters, and T cell 
development in Health and Disease”, authors discuss the control of thymus physiology 
by glucocorticoids (GC), growth hormone (GH) and sex hormones, norepinephrine 
(NE) and other molecules that seem impact upon thymocyte/microenvironmental 
interactions, like galectin-3 (Gal-3) ephrins (Eph), extracellular matrix proteins and 
integrins (like VLA-5). Moreover, some of them draw attention to about how diverse 
maturation steps and/or the interactions between stromal and thymocytes can be 
affected in pathological states like diabetes or infections.
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As shown schematically in the figure, this topic highlight the following notions: 
1) GH shows counterregulatory effects against GC rather than influence directly 
T cell homeostasis;
2) Interactions between sex hormones and noradrenergic secretion may influence 
thymus homeostasis and involution; 
3) Gal-3 are crucial to thymocyte-stromal cell interactions and influence thymic 
architecture. Moreover, Gal-3 seem to be involved in the regulation of steroidogenic 
pathway; 
4) Ephrins are crucial to assembly the thymic connections between thymocytes 
and the epithelial network, but have a relative importance in supporting normal 
thymopoyesis; 
5) Pathologic situations like diabetes, or infectious diseases caused by parasites 
or bacteria alters the normal development of T-lymphocytes and might influence 
tolerance process. DN: double-negative (CD4-CD8) thymocytes; DP: double-positive 
(CD4+CD8+) thymocytes; SP: simple-positive thymocytes; LT: T lymphocyte; FN: 
fibronectin; PVS: peri-vascular space; BM: bone marrow; DBT: diabetes; Eph: Ephrins. 
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Editorial on the Research Topic

Hormones, Neurotransmitters, and T-Cell Development in Health and Disease

Thymus physiology, T-cell development, and peripheral T-cell homeostasis are controlled by
a large variety of soluble molecules and their cognate receptors, targeting both the lymphoid
and non-lymphoid compartments. Hormones, neurotransmitters, and cytokines influence the
functions of distinct microenvironmental cells, including their maturation, survival, and antigen
presentation. Additionally, they affect thymocyte survival, migration and selection, thus shaping
the pool of mature T-cells in the periphery. Importantly, some of these circuits can be affected in
pathological states.

Beneficial effects of the somatotrope axis on thymopoiesis have been extensively reported. Most
of the data derive from studies carried out in mouse models with multiple pituitary deficiencies
(i.e., lacking GH, PRL, and thyrotropic hormones), making it difficult to identify the real effect of
GH on T cell homeostasis. Here, Bodart et al. show a series of studies carried out in GhrhKO mice,
revealing the absence of thymic involution (in terms of relative weight or cellularity), accompanied
only by minor changes in the proportions of thymocyte subsets. Authors also obtained data
compatible with a faster commitment of double negative thymocytes in the thymopoietic process
accompanied by an increased thymic output of naïve T cells, this later observation being consistent
with a reduction of central memory T cells in secondary lymph organs. Taken together, these
findings point out that the integrity of the GHRH/GH/IGF-1 axis is not required for thymocyte
and peripheral T cell homeostasis in basal conditions, although it can influence the splenic B cell
compartment. Overall, these data suggest that GH beneficial effects upon thymus homeostasis may
be rather related with the positive counter regulatory effects of GH and PRL against the stress
caused by glucocorticoids.

Additionally, it is known that with aging, thymic involution is accompanied by a diminution
the thymopoietic capacity. The thymus is highly innervated by noradrenergic fibers and there is
also a local production of norepinephrine, and both thymocytes and microenvironmental cells
express adrenergic receptors. Leposavić and Pilipović examined the influence of sex steroids
upon thymopoiesis during both perinatal/peripubertal evolving periods. The authors show that
such hormones alter the adrenergic thymic microenvironment, although the mechanisms are still
unknown. Yet, the available data insinuate that pharmacological handling of noradrenergic effects
upon the thymus may improve the deleterious effects of aging on thymopoiesis.

Glucocorticoids can act on practically all types of cells, particularly T cells, showing to have
upon these cells important immunosuppressive and anti-inflammatory effects, but also affect their

5
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phenotype, secretion profile, as well as survival and migratory
properties. Here, Liberman et al. explored deeply the complexity
of glucocorticoid effects upon immune cells (particularly on
developing T cells), and the glucocorticoid receptor-mediated
regulation. Importantly, authors also discuss how glucocorticoids
induce both paradoxical anti- and pro-inflammatory responses,
particularly in certain areas of the brain, in order to develop
more effective treatments and avoid side effects, like toxicity and
drug resistance.

Thymocyte-microenvironmental cell interactions are known
to be critical for thymus homeostasis. The studies made by
Oliveira-de-Abreu et al. strengthens the notion that changes
in thymocyte/microenvironmental cell contact cause profound
thymic alterations. For example, in the absence of Galectin-
3 (Gal-3; a molecule abundantly expressed in the thymus that
acts as a de-adhesive factor), the thymus showed abnormalities
in developing T-cell number, proliferation, and death, with
proportional enlargement of the DN1 compartment and a severe
disorganization of the epithelial network. These findings reveal
that Gal-3 is not only relevant for thymocyte homeostasis,
but also to the maintenance of thymic architecture. Strikingly,
glucocorticoid secretion is enhanced in the absence of Gal-3,
possibly by a rise of both the adrenal and thymic steroidogenic
machinery. How Gal-3 regulates glucocorticoid secretion has not
yet been established and demands further studies. In contrast,
Muñoz et al. adduce that not necessarily a disorder of the
thymic epithelial network results in altered T development.
Previous studies of the group showed that Ephrins (Eph) and
their receptors seem to be relevant in both temporal and
topologic thymocyte/thymic epithelial cell (TEC) interactions,
modulating intrathymic thymocyte migration. Mice deficient
in EphB2 and EphB3 showed severe abnormalities in TEC
morphology, but relatively normal thymocyte subpopulations
and immunocompetence. Here, the authors provide evidence
supporting the notion that, regardless of Eph-deficient mice
exhibited an altered epithelium, their TECs could express
all necessary molecules to support thymocyte development
and differentiation.

Two additional articles focused on diabetes, discussing
possible relationships between thymic alterations, the
development of autoreactive T lymphocytes and the
establishment of abnormal immunoendocrine and metabolic
profiles. Mendes-da-Cruz et al. discuss thymic disturbances
observed in a well-established model of type-1 diabetes, as are
NOD (non-obese diabetic) mice. A hallmark of the NOD thymus

is the presence of enriched areas in simple-positive CD4+ and
CD8+ thymocytes, possibly secondary to a defective expression
of the fibronectin receptor VLA-5. It is well-known that
diminished insulin-derived peptide expression in the thymus
may favor the breakdown of insulin tolerance. Nevertheless,
recent data show that expression of several miRNA is altered
in the thymus of NOD mice, suggesting that some of them
are involved in the mechanism underlying the generation of
autoreactive cells. In addition, Andreone et al. make an insightful
review of how hormones and neurotransmitters influence
diverse T compartments under metabolic imbalance triggered by
diabetes and their role in aggravating the disease.

Last, D’Attilio et al. and Pérez et al. review the
immunoendocrine alterations reported during tuberculosis
and Chagas disease, respectively. Although the real impact
at the thymic level of both diseases in humans requires even
more studies, data from experimental models strongly suggest
that thymic abnormalities that take place in response to
Micobacterium tuberculosis and Trypanosoma cruzi could act as
contributing factors to pathology.

In the last years our understanding of the intricate network
of neurotransmitters, hormones, cytokines and other molecules
that play a major role in the regulation of T cell development and
biological functions has increased enormously, but substantial
challenges remain to provide a more comprehensive picture. The
articles presented in this Research Topic reveal new evidence
that illustrates the complex circuitries affecting the thymus and
T cell homeostasis in both health and disease and point to
further directions of future research.
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The severe Deficiency of the 
somatotrope gh-releasing 
hormone/growth hormone/insulin-
like growth Factor 1 axis of Ghrh−/− 
Mice is associated With an important 
splenic atrophy and relative  
B lymphopenia
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Alain Plenevaux2, Roberto Salvatori3, Vincent Geenen1*† and Henri Martens1†
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Center, University of Liege, Liège, Belgium, 3 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, 
The Johns Hopkins University, Baltimore, MD, United States

A debate is still open about the precise control exerted by the somatotrope GH-releasing 
hormone (GHRH)/growth hormone (GH)/insulin-like growth factor 1 axis on the immune 
system. The objective of this study was to directly address this question through the 
use of Ghrh−/− mice that exhibit a severe deficiency of their somatotrope axis. After 
control backcross studies and normalization for the reduced global weight of trans-
genic mice, no difference in weight and cellularity of the thymus was observed in 
Ghrh−/− mice when compared with C57BL/6 wild-type (WT) control mice. Similarly, no 
significant change was observed in frequency and number of thymic T cell subsets. In 
the periphery, Ghrh−/− mice exhibited an increase in T cell proportion associated with a 
higher frequency of sjTREC and naïve T cells. However, all Ghrh−/− mice displayed an 
absolute and relative splenic atrophy, in parallel with a decrease in B cell percentage. 
GH supplementation of transgenic mice for 6 weeks induced a significant increase in 
their global as well as absolute and relative splenic weight. Interestingly, the classical 
thymus involution following dexamethasone administration was shown to recover in 
WT mice more quickly than in mutant mice. Altogether, these data show that the severe 
somatotrope deficiency of Ghrh−/− mice essentially impacts the spleen and B compart-
ment of the adaptive immune system, while it only marginally affects thymic function 
and T cell development.

Keywords: somatotrope axis, gh-releasing hormone, growth hormone, insulin-like growth factor 1, thymus, 
developmental immunology

Abbreviations: LN, lymph node; WT, wild-type; FSC, forward scatter; SSC, side scatter; TREC, T-cell receptor excision circle; 
Sj, signal joint; RT-qPCR, real-time quantitative PCR; DN, double-negative; DP, double-positive; SP, single-positive; TCM, 
central memory T cell; TEM, effector memory T cell; GC, glucocorticoid.
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inTrODUcTiOn

Integrated homeostasis of living organisms closely depends on 
the intimate crosstalk between the major systems of cell-to-cell 
signaling, the immune, nervous, and endocrine systems. Growth 
hormone (GH) secretion by somatotroph cells of the antehypo-
physis is stimulated by the hypothalamic GH-releasing hormone 
(GHRH) and its biological effects are mediated by GH receptor, 
a member of the class I cytokine receptor superfamily (1). Most 
of the metabolic effects of GH on peripheral tissues are direct, 
while the growth-promoting action is mainly indirect, through 
the endocrine and paracrine–autocrine insulin-like growth factor 
1 (IGF1).

Already in 1930, Philip E. Smith observed that hypophysec-
tomy in rats induced a severe thymic involution (1). Numerous 
studies in two mouse models of pituitary deficiency, the 
Snell–Bagg and Ames Dwarf mice—mutated in Pit1 and Prop1 
transcription factors, respectively—confirmed the regulation 
of the immune system by pituitary hormones since those mice 
exhibited a thymo-dependent immune deficiency that could be 
prevented or reversed by administration of GH and thyroxine 
(2–4). This was reinforced by the observation of aged-atrophic 
thymus rejuvenation by GH-producing pituitary adenoma cells 
(5). The effects mediated by GH and IGF1 on immune cells have 
been extensively reviewed (6, 7).

Positive effects of the somatotrope axis on human thymo-
poiesis have also been reported. Treatment of HIV+ patients 
with GH in combination with highly active antiretroviral 
therapy increases thymic volume, CD4+ naïve T cell number, 
and thymopoiesis evaluated by the frequency of signal joint 
(sj) T-cell receptor excision circles (TRECs) (8). One-month 
withdrawal of GH in patients with adult GH deficiency dimin-
ished thymic output of new T  cells and intrathymic T-cell 
proliferation, as evidenced by the decrease in sjTREC frequency 
and sj/DJβTREC ratio, respectively, and these parameters 
were restored 1  month after GH resumption (9). Given their 
important beneficial effects on thymopoiesis, GH and IGF1 are 
more and more considered for their use as immunomodulatory 
agents in acquired immune deficiencies such as in HIV infec-
tion and aging.

Despite this large experimental evidence, the role of GH 
in immunologic regulation remains controversial and is still 
discussed. In contradiction with previous studies, some authors 
observed a normal thymus weight and number of T-cell subsets 
in Snell–Bagg dwarf and in lit/lit (GHRH receptor-deficient mice) 
mice (10–12). Dorshkind and Horseman (13) concluded that the 
immunomodulatory properties of the pituitary hormones GH 
and prolactin essentially result from their ability of counteracting 
the negative effects mediated by stress-induced glucocorticoids 
(GCs) upon the immune system.

The objective of this study was to investigate the basal thymic 
and immunologic phenotype of a transgenic mouse model with 
a severe deficiency of the somatotrope axis resulting from a 
targeted disruption of the GHRH gene (14). Ghrh−/− mice exhibit 
a dwarf phenotype due to a severe GH and IGF-1 deficiency that 
can be supplemented either at the hypothalamic, hypophysial, or 
peripheral levels of the somatotrope axis (15–17).

MaTerials anD MeThODs

Mice
GhrhKO mouse strain (C57BL/6 background) was previously 
developed by one of us as previously described (14). Wild-
type (WT) C57BL/6 mice were obtained from Charles River 
Laboratories. Both strains were kept and bred at the animal facil-
ity of the University of Liège. All animals were bred in ventilated 
cages at the Central Animal Facility of Liege University (GLP 
certified, LA.2610359) of the University of Liège with a 12-h 
light/12-h dark cycle with food and water ad  libitum. We per-
formed a backcross between those two strains, to obtain animals 
with completely identical genetic background. Briefly, GhrhKO 
and C57Bl/6 mice were bred together to obtain a F1 generation 
of heterozygous (HZ) animals. F1 animals were mated together 
and gave rise to F2 mice with Ghrh+/+ (called WT in the text), 
Ghrh+/− (HZb), and Ghrh−/− (called GhrhKO in the text) animals 
(respectively, 25, 50, and 25% proportion expected). Mouse 
genotype was identified phenotypically: original Ghrh−/− mice 
have agouti color, a dominant trait, where agouti gene is located 
near the Ghrh mutated gene, so they are transmitted together. 
Therefore, WT backcrossed F2 mice are black and normal-sized; 
HZ backcrossed animals are agouti and normal-sized and KO 
backcrossed mice are agouti and dwarf. Normal-sized and dwarf 
mice were separated at least 4  weeks before any experiment. 
Male and female mice of 3, 6, or 18 months were used for the 
characterization experiments, and 3 or 18  months for the GH 
supplementation experiments. All the experiments were con-
ducted with approval of the Institutional Animal Care and Use 
Committee of the University of Liège (permit no. 1305) in strict 
accordance with the guidelines for the care and use animals set 
out by the European Union.

Tissue and cell Preparation
Mice were euthanized by i.p. injection of ketamine (100 mg/kg)– 
xylazine (10  mg/kg) followed by cardiac puncture. Thymus, 
spleen, and inguinal lymph nodes (LNs) were removed and 
weighted. A piece of liver was also removed when needed for 
IGF-1 quantification. PBMC were isolated from whole blood 
by centrifugation in Lympholyte®-Mammal density separation 
medium (Cedarlane), according to the manufacturer’s instruc-
tions. Single-cell suspensions were obtained from the thymus, 
spleen, and LN by mechanical disruption, followed by two washing 
steps at 500 g for 5 min in Dulbecco’s phosphate-buffered saline 
(DPBS, Lonza). An additional RBC lysing step was performed to 
eliminate RBC from splenic cell suspension by incubating 5 min 
in 1 ml of RBC Lysis Buffer Hybri-Max (Sigma-Aldrich) before 
a final washing step. Cell suspensions were then passed through 
70-µm Nylon cell strainer (Falcon) and diluted to the appropri-
ated concentration in DPBS.

Flow cytometry
For analysis of lymphocyte subpopulations in thymus, blood, 
spleen, and LN, cells were stained with the following mAbs: 
anti-mouse CD45.2 FITC (clone 104), CD19 Brilliant Violet 510 
(1D3), CD44 APC (IM7), CD62L PE (MEL-14) were purchased 
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TaBle 1 | Outer and inner primers for T-cell receptor excision circle 
quantification.

name sequences out sequences in

CD4 1 CCAACCAACAAGAGCTCAAGGA AGCTCAAGGAGACCACCATGT
CD4 2 CCCAGAATCTTCCTCTGGT TGGTCAGAGAACTTCCAGGT
Jα61 AACTGCCTGGTGTGATAAGAT GGAGTATCTCTTTGGAGTGA
Jα58 CCCAGGACACCTAAAAGGAT AACTCGCACAGTGGAGGAAA
REC1 AGTGTGTCCTCAGCCTTGAT GAAAACCTCCCCTAGGAAGA
dβ1 TATCCACTGATGGTGGTCTGTT GACGTTGGCAGAAGAGGATT
Jβ1.1 CATGTTTGACATTGCCACAAGT AGCGATTACTCCTCCTATGGT
Jβ1.2 CTCTCTTCACCCCTTAAGATT GTAAAGGAACCAGACTCACAGTT
Jβ1.3 TGAGGCTGGATCCACAAAGGT TCAAGATGAACCTCGGGTGGA
Jβ1.4 GGGCCATTAGGAAACGTGAT GCAGGAAGCATGAGGAAGTT
Jβ1.5 GGAGGAAGGAAGGATGGTGA CAGAGTCCTGCCTCAAAGAA
Jβ1.6 CCTGTGACATGCCTCATGGTA TCAGGTCTCAGGGATCTAAGA
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from BD Biosciences. Anti-mouse CD4 eFluor®450 (RM4-5), 
CD8a Pe-Cyanine7 (53-6.7), CD90.2 (Thy-1.2) APC (53-2.1), and 
Foxp3 PE (FJK-16s) were purchased from eBioscience.

Cells were counted in Neubauer Chamber and approximately 
500,000 cells were used for flow cytometry analysis. Briefly, cells 
were washed in DPBS and labeled with a cocktail of mAbs specific 
for cell surface Ag diluted in DPBS containing 2% FBS. After 
20 min incubation at 4°C in the dark, labeled cells were washed in 
DPBS containing 2% FBS and resuspended in DPBS before analy-
sis. For Foxp3 intracellular staining, cells were labeled for surface 
Ag, washed in DPBS, fixed, and permeabilized with fixation/
permeabilization solution (Anti-Mouse/Rat Foxp3 Staining Set, 
eBioscience) according to the manufacturer’s instructions and 
stained for intracellular Foxp3. Labeled cells were analyzed on a 
BD FACS Verse (BD Biosciences) using BD FACS Suite Software 
(BD Biosciences). Number of cells was calculated in function of 
the volume of cell suspension analyzed by the FACS Verse and 
multiplied by the dilution factor and the factor of proportion 
of cell suspension used for flow cytometry compare to the total 
volume of suspension.

Trec Quantification
PCR quantification (qPCR) of sjTREC and DJβTREC were 
performed according to a protocol adapted from Dulude et al. 
(18), using CD4 gene as a reference single-copy gene. Briefly, 
cells were lysed in lysing buffer containing Tris–HCl (10 mM; 
pH 8.3), Tween 20 (0.05%), Igepal (0.05%), and proteinase K 
(100 µg/ml) for 30 min at 56°C followed by proteinase K inac-
tivation (10 min at 95°C). DNA from cell lysates was preampli-
fied in an iCycler (Bio-Rad) using outer primers (Table 1) and 
GoTaq® Flexi DNA Polymerase (Promega) with the following 
conditions: initial denaturation at 95°C for 10  min; 22 cycles 
of amplification at 95°C for 30 s; 60° for 30 s; 72°C for 2 min; 
final elongation 72°C for 10 min; and cooling at 15°C. In this 
first-step of amplification, CD4 gene was coamplified together 
with the sj- or DJβTREC. Plasmids containing CD4 and sj61 
or DJβ4 sequences were preamplified in the same way and 
used to generate standard curves. PCR products were diluted 
and CD4 and TREC amplicons were quantified by qPCR in 
a LightCycler480 thermocycler (Roche Diagnostics) using 
Takyon™ No Rox SYBR MasterMix Blue dTTP (Eurogentec) 

and inner primers (Table 1) with the following conditions: 5 min 
of initial denaturation at 95°C; 40 cycles of amplification at 95°C 
for 10 s; 60°C for 15 s; 72°C for 10 s; and cooling at 40°C. Results 
were analyzed on the LightCycler480 Software and expressed in 
number of TREC per 106 cells. All probes were purchased from 
Eurogentec. Total sjTREC content was estimated by multiplex 
quantification of δREC1/jα61 and δREC1/jα58 rearrangements, 
since they account for almost 100% of total sjTREC frequency 
(18). Similarly, dβTREC content was obtained by multiplex 
nested-PCR of dβ1 rearrangement with Jβ1.1-1.6. An internal 
control was added to each run of qPCR to evaluate the run-to-
run variation. When the SD for the control sample was above 
10%, a correction factor (TREC content of control sample in 
this run/mean TREC content of control sample for all run) was 
applied to each sample of the run.

gh supplementation
Mice were daily injected i.p. with either human recombinant GH 
(1 mg/kg in 100 µl DPBS, Genotonorm, Pfizer) or DPBS as control 
for 6 weeks. Two weeks before injection, a blood sample was taken 
from the tail for TREC quantification. At day 0 before injection 
and once per week after the beginning of the treatment, glycemia 
and weight were measured to follow the effect of GH treatment 
and a blood sample (130 µl in WT and 65 µl in KO mice) was 
taken from the tail weekly for flow cytometry analysis or TREC 
quantification (each analysis was alternatively performed every 
second week). After 6 weeks of treatment, mice were euthanized 
by i.p. injection of ketamine (100 mg/kg)–xylazine (10 mg/kg) 
followed by cardiac puncture and thymus, spleen, LN, and liver 
removal.

Igf1 Quantification by real-Time 
Quantitative Pcr
Igf1 transcripts were analyzed as previously described (19). 
RNA extraction was performed using NucleoSpin® RNA kit 
(Macherey-Nagel) according to the manufacturer’s instruc-
tions. Liver tissue extracts kept at 4°C in RNAlater (Qiagen) 
and thymic cell suspensions were disrupted in lysis buffer 
containing β-mercaptoethanol and stored at −80°C until RNA 
extraction. After extraction, RNA concentration was measured 
by NanoDrop ND-1000 (Thermo Scientific) and 500  ng were 
used for reverse-transcription with oligo-dT using Transcriptor 
first strand cDNA synthesis Kit (Roche). Quantitative PCR 
was performed in the iCycler (Bio-Rad) using Taqman probes 
technology and iQSupermix (Bio-Rad) with the following 
primers: Igf1 forward CAGGCTATGGCTCCAGCATT; Igf1 
reverse ATAGAGCGGGCTGCTTTTG; probe 6-FAM-AGGGC 
ACCTCAGACAGGCATTGTGG-BHQ-1. Mouse hypoxanthine–
guanine phosphoribosyltransferase (HPRT, Mm01324427_m1 
TaqMan Gene Expression Assays, Applied Biosystems) in the 
following conditions: polymerase activation at 50°C for 2  min; 
preliminary denaturation at 95°C for 10 min; 50 cycles of ampli-
fication 95°C for 15 s; 60°C for 1 min. Mouse Hprt was used as a 
housekeeping gene. Number of copies for Hprt and total Igf1 were 
calculated from the linear regression of standard curve generated 
from serial dilution of plasmids specifics for each gene.
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TaBle 2 | Effects of somatotrope deficiency on weight and number of cells of lymphoid organs.

3 Months 6 Months 18 Months

c57Bl/6 wild-type (WT) 
(n = 3♂ 12♀)c

GhrhKO  
(n = 10♂ 6♀)c

c57Bl/6 WT 
(n = 2♂ 6♀)b

GhrhKO  
(n = 4♂ 12♀)c

c57Bl/6 WT 
(n = 3♂ 6♀)c

GhrhKO  
(n = 1♂ 5♀)a

Body weight (g)
Male ♂ 24.5 ± 0.18 13.1 ± 0.18*** 32.0 ± 1.15(a) 16.7 ± 0.41***(a) 33.6 ± 5.01 15.9
Female ♀ 21.3 ± 0.36 11.8 ± 0.14*** 24.4 ± 0.75(a) 15.9 ± 0.54***(a) 27.0 ± 0.23(a,b) 24.7 ± 2.26(a,b)

Thymus
Absolute weight (mg) 53.2 ± 4.28 29.6 ± 2.56*** 58.6 ± 5.61 29.62 ± 1.87*** 23.4 ± 2.78(a,b) 29.9 ± 2.40
Relative weight (mg/g of body weight) 2.5 ± 0.24 2.2 ± 0.25 2.3 ± 0.26 1.7 ± 0.12 0.9 ± 0.12(a,b) 1.2 ± 0.12(a,b)

Absolute number of cells (×106) 47.3 ± 6.11 32.4 ± 4.56* 35.5 ± 3.14 20.8 ± 1.82*(a) 16.3 ± 7.90(a) ND
Relative number of cells (×104/mg of thymus) 84.3 ± 15.76 107.9 ± 18.00 62.7 ± 5.58 76.3 ± 7.93 38.7 ± 12.27(b) ND

spleen
Absolute weight (mg) 79.1 ± 3.19 31.0 ± 2.04*** 77.7 ± 9.4 35.6 ± 1.86*** 97.4 ± 4.51(a) 59.2 ± 8.19***(a,b)

Relative weight (mg/g of body weight) 3.6 ± 0.15 2.2 ± 0.06*** 3.1 ± 0.43 2.2 ± 0.10** 3.4 ± 0.25 2.2 ± 0.19**
Absolute number of cells (×106) 44.8 ± 4.61 20.3 ± 2.05*** 51.3 ± 6.08(a) 18.1 ± 1.78*** 21.5 ± 3.18(a,b) 18.5 ± 3.68
Relative number of cells (×104/mg of spleen) 56.7 ± 5.11 63.6 ± 3.53 52.5 ± 3.79 50.2 ± 4.25(a) 21.5 ± 2.22(a,b) 34.8 ± 7.36(a)

Data (mean ± SEM) are representative of onea, twob, or threec independent experiments.
ND, not determined.
Unpaired t-test or Mann–Whitney test were used according to the Gaussian distribution of each set of data. Significant difference from age-matched WT mice ***p < 0.001, 
**p < 0.01, *p < 0.05; significant difference compared to 3-(a) or 6-(b)month-old mice from the same strain.
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Dexamethasone (DXM) administration
Mice were injected i.p. with 20 mg/kg Dexamethasone dihydrog-
enophosphat-Dinatrium (Aacidexam 5 mg/ml, Aspen) or DPBS 
as control. The day of injection was referred to as d0. MRI sessions 
were performed at day 0, 2, 5, 10, and 14 to follow thymic involu-
tion and recovery. At d15, mice were euthanized and thymus, 
blood, spleen, and LN were removed for further analysis.

Mri Data acquisition and Processing
Anesthesia was induced with isoflurane 4% in air, and then 
maintained by reducing the ratio to 1.5% for the duration of the 
acquisition (flow rate: 0.8  l/min). The mice were placed prone 
in a stereotaxic holder (Minerve, France). The breathing rate 
was monitored during the entire scan and the body temperature 
maintained at 37 ±  0.5°C with an air warming system (Minerve, 
France). MRI anatomical images were acquired on a 9.4  T MRI 
DirectDrive VNMRS horizontal bore system with a shielded 
gradient system (Agilent Technologies, Palo Alto, CA, USA) and a 
40-mm inner diameter volumetric coil (Agilent Technologies, Palo 
Alto, CA, USA). Fast spin echo multislices sequence were acquired 
using the following parameters adapted from Brooks et  al. (20)  
and Beckmann et al. (21): TR/TEeff = 2,000/40 ms, matrix = 192 × 192, 
FOV  =  20  mm  ×  25  mm, 10 contiguous slices focused on the 
region of interest (thickness  =  1.0  mm, in-plane voxel size: 
0.104 mm × 0.130 mm). Anatomical images were analyzed using 
PMOD software version 3.6 (PMOD Technologies Ltd., Zurich, 
Switzerland). The thymus was manually segmented, thanks to its 
difference in signal intensity from the surrounding tissues, on each 
contiguous slice (thereafter refer as region-of-interest, ROI). The 
PMOD tools allow direct computing of the organ volume, by multi-
plying the effective slice thickness with the surface areas of each ROI.

statistical analysis
Statistical analyses were performed on the Prism 4.0 software 
(GraphPad). Kolmogorov–Smirnov and Shapiro–Wilk normality 

tests were performed to evaluate the Gaussian distribution of 
results. Unpaired t-test was applied when Gaussian distribution 
was verified, and Mann–Whitney test for non-Gaussian distribu-
tions. For multi-parametric analysis of GH supplementation, 
two-way ANOVA with Bonferroni post-test was used.

resUlTs

somatotrope Deficiency in ghrhKO Mice 
affects lymphoid Organ Weight and 
cellularity
As previously described (14), GhrhKO mice have a dwarf phenotype, 
with an adult weight 50% smaller than control counterpart (Table 2 
and Table S1). Female but not male mutant mice catch up weight of 
WT mice with age, but it is mainly due to fat accumulation (personal 
observation). Both spleen and thymus are smaller in GhrhKO mice 
(Table 2 and Table S1). When corrected to total body weight, the 
spleen remains proportionally smaller in mutant mice (about 40% 
reduction). On the opposite, the relative thymus weight is similar 
between normal and mutant mice and decreases at 18 months of age 
in both strains (Table 2 and Table S1). Since the absolute weight in 
GhrhKO thymus is stable with time, unlike WT mice, this decrease 
in relative weight could not be attributed to thymic atrophy, but 
rather to the significant increase in total body weight.

The absolute number of CD45+ leukocytes in spleen and LNs 
and CD90.2+ (Thy1.2) thymocytes in thymus are also reduced 
in GhrhKO mice compared to WT mice (Table 2 and Table S1). 
When corrected to the weight of the corresponding organ, they are 
no differences in relative cellularity between both strains (Table 2 
and Table S1). Both mutant and normal mice undergo a loss of 
cell number and density with age in the two organs. Moreover, 
thymic involution is clearly evidenced by the age-dependent loss 
of the absolute thymocyte number in both strains. Loss of cells 
is accompanied by reduction in tissue weight in 18-month-old 
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FigUre 1 | Thymus phenotype and function. (a) Representative flow cytometry plots showing the four thymic subpopulations double-negative (DN) (CD4−CD8−), 
double-positive (DP) (CD4+CD8+), CD4+ single-positive (SP) (CD4+CD8−), and CD8+ SP (CD4−CD8+) cells, identified within the CD90.2+ population. FoxP3+ Treg cells 
are studied inside the CD4+ SP population. 30,000 events are recorded. (B,c) Frequencies of the four thymic T-cell subpopulations (B) and FoxP3+ Treg cells (c) in 
thymus of KO (white circles, n = 12–16) and wild-type (WT) (black circles, n = 5–9) mice at 3, 6, or 18 months. Data (mean ± SEM) are representative of two to three 
independent experiments. Unpaired t-test was used for statistical analysis. (D) sjTREC, dβTREC, and sj/dβ ratio in splenocytes of KO (white circles, n = 12) and WT 
(black circles, n = 6–12) mice at 3 and 6 months are shown. Data (mean ± SEM) are representative of two independent experiments. Unpaired t-test was used for 
statistical analysis. ***p < 0.001, **p < 0.01, *p < 0.05.
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C57BL/6 mice. On the contrary, thymic T-cell disappearance in 
GhrhKO mice seems to be equally compensated by fat or other 
tissue as thymus absolute weight does not vary with time.

somatotrope Deficiency is associated 
With Minor changes in Thymocytes 
subsets repartition
Thymopoiesis is first assessed by analyzing thymocyte phe-
notype. Thymic T-cells are subdivided in four subpopulations 
based on their expression of CD4 and CD8 surface molecules. 
The most immature CD4−CD8− subset is called double-negative 

(DN) cells. They evolve and acquire expression of both CD4 
and CD8 to become double-positive (DP) cells, then mature to 
single-positive (SP) CD4+ or CD8+ cells by losing expression 
of either CD8 or CD4 molecules, respectively (Figures 1A,B; 
Table S2 in Supplementary Material). Flow cytometry analysis 
of thymic T-cell subpopulations shows a significant decrease 
(about one-third) in frequency of DN subset in GhrhKO com-
pared with C57BL/6 mice (WT: 3.3 ± 0.13% vs KO: 2.2 ± 0.12% 
at 3  months and WT: 3.8  ±  0.31% vs KO: 2.5  ±  0.07% at 
6 months), compensated by an increase in DP cells at 3 months 
(84.8 ± 0.70% for WT vs 87.0 ± 0.36% for KO) and CD8+ SP 
cells at 6 months (2.1 ± 0.11% for WT vs 2.8 ± 0.12% for KO; 
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Figure 1B; Table S2 in Supplementary Material). At 18-month-
old, frequency of DN cells in mutant mice increases compare 
to younger animals, to be equal to values in normal mice 
(WT: 3.4  ±  0.20% and KO: 3.55  ±  0.34%). In addition, Treg 
cells in CD4+ SP subset (Figure 1C; Table S2 in Supplementary 
Material) increases in thymus of mutant mice (p  =  0.011 for 
3 months, p = 0.208 for 6 months, and p = 0.013 for 18 months).

Taken together, those results could indicate a faster commit-
ment of GhrhKO DN cells in the thymopoietic process, leading 
to lower frequency of the most immature thymic T-cells and 
increasing number of the subsequent stages of development. 
Finally, at advanced age (18 months), thymocyte frequency and 
number return to values equivalent to WT mice.

Trec numbers are increased  
in ghrhKO Mice
A widespread method to assess thymic function is the quantifica-
tion of TREC, the small circles of DNA produced during TCR 
rearrangement of segment genes coding for α and β chains of the 
T-cell receptor for the antigen (TCR). They offer the advantage to 
be stable in cells and as duplicated during mitosis, slowly diluted 
by cell proliferation. dβTREC are created at an early stage of thy-
mopoiesis during β chain rearrangement in DN cells and sjTREC 
are products of δ locus deletion in DP and SP cells. Therefore, 
sjTREC are present in almost all recent thymic emigrants (RTE) 
and are markers of thymic output, while the ratio of the later one 
(sj) by the earliest one (dβ) reflects intrathymic proliferation of 
thymocytes (18). Measurement of TREC content in splenocytes 
of GhrhKO mice reveals a twofold increase number of sjTREC 
compared with age-matched WT mice and a threefold and four-
fold increase in dβTREC content at 3 and 6 months, respectively 
(Figure 1D). Conversely, the intrathymic proliferation estimated 
by the sj/dβ ratio is reduced in 3-month-old mutant mice. Results 
were similar in blood PBMC (Figure S1 in Supplementary 
Material). Collectively, those results indicate an increased thymic 
output of naïve T cells with decreased intrathymic proliferation. 
Moreover, TREC analysis shows that thymopoiesis is not impaired 
at 6  months, with values similar to 3-month-old mice in both 
WT and mutant (Figure 1D). Unfortunately, we were unable to 
measure TREC in 18-month-old mice due to the difficulty to 
obtain such old animals. However, data could be inferred from 
GH supplementation experiment, where TREC are measured in 
blood of 3- and 18-month-old mice 2  weeks before GH treat-
ment and show a clear reduction of thymic output at 18 months 
in both strains while intrathymic proliferation is reduced only 
in WT mice (Figure 3E; Figure S1 in Supplementary Material). 
This reveals that a decline in thymopoiesis occurs similarly in WT 
C57BL/6 and GhrhKO between 6 and 18 months of age.

lymphocytes Distribution in Periphery  
is slightly Disturbed in ghrhKO Mice
To determine if somatotrope deficiency could also affect peri-
pheral lymphocytes, flow cytometry analyses of spleen, inguinal 
LNs, and blood were performed. GhrhKO mice present an approxi-
mately 10% reduction of B-cell frequency at 3 and 6  months, 
while T-cell proportion is increased (Figure  2A,B; Table  3). 

Differences tend to attenuate with aging, since 18-month-old 
KO mice are not different from age-matched WT mice. Among 
T cells, distribution of CD4 and CD8 T cells is also disturbed in 
mutant mice, but depends on age and organ analyzed. Indeed, 
there is no difference in the spleen of 3-month-old mutant mice. 
At 6 months, the slightly decreased proportion of CD4 T cells and 
the increased proportion of CD8 T cells in GhrhKO observed when 
comparing by t-test is not significant when two-way ANOVA was 
used (Table 3; Table S3 in Supplementary Material) suggesting 
the time variation biased the difference between mutant and WT 
mice. On the contrary, the increased proportion of CD4 and the 
decrease in CD8 is observed at 18 months whatever the test used 
(Figure  2B; Table  3; Table S3 in Supplementary Material). In 
LN, mutant mice shows a constant increased in CD4 T cells and 
decreased in CD8 T-cell frequencies (about 5%) compared with 
normal mice (Table 3; Table S3 in Supplementary Material). The 
CD4/CD8 ratio in LN and blood of both normal and mutant mice 
decreases with time, an expected effect of aging (22).

Differences in lymphocytes subsets distribution were further 
studied by exploring the naive or memory character of CD4 and 
CD8 T cells. In mice, the low expression of CD44 is specific to 
naive T  cell, while differential expression of L-selectin CD62L 
allows to separate central memory T  cells (TCM) and effector 
memory T  cells (TEM) in the CD44high quadrant. The pool of 
naive T cells (CD44lowCD62Lhi) is greater in GhrhKO compared 
with WT mice, with an doubled frequency of naive cells inside 
the CD4 subset and a moderate increase of 10% among CD8 
T  cells (Figure  2C; Table  3). On the contrary, the proportion 
of memory cells is reduced, mostly through the CD44hiCD62Lhi 
central memory (TCM) pool. This is consistent with the observed 
increase of TREC in GhrhKO mice, since TREC are present in 
newly formed naive cells exported from the thymus.

Finally, since Treg proportion seems higher in thymus of 
GhrhKO mice, FoxP3+ Treg cells were next analyzed among CD4 
T cells in periphery. As expected, Treg compartment enlarges with 
time, but in similar proportions between GhrhKO and WT mice, 
except in the spleen of 3-month-old GhrhKO mice where Treg 
proportion is higher than in control mice (p <  0.001; Table 3; 
Table S3 in Supplementary Material). Taken together, those data 
demonstrated changes in the distribution of some lymphocytes 
subsets in peripheral lymphoid organs, without any evidence of 
lymphopenia.

gh supplementation is Unable to restore 
normal Phenotype in ghrhKO Mice
To determine if GH supplementation could restore a normal 
phenotype in GhrhKO mice, animals were injected with a replace-
ment dose of human recombinant GH or DPBS as control. Young 
and old mutant and WT mice were tested to see if GH action 
varies with aging. The efficiency of GH treatment was validated by 
its effects on weight and liver IGF1 stimulation (Figures 3A,C). 
Indeed, both GhrhKO and WT mice show significant weight gain 
during GH treatment, compared with control mice, even though 
the effect is far more important (Bonferroni test following two-
way ANOVA: p < 0.001 KO vs WT for 3 months mice after 6 weeks 
of GH treatment) in KO mice with a ~45% increase for 3 months 

12

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


FigUre 2 | Lymphocytes distribution in periphery. (a) Representative flow cytometry plots showing immunophenotyping of peripheral lymphoid compartments 
(blood, spleen, and lymph nodes). CD19+ B cells and CD3+ T cells are analyzed within the CD45+ population. T cell population is divided into CD4+ and CD8+ 
T cells. 20,000 CD45+ events are recorded. (B) Proportions of B and T cells in the spleen of KO (white circles, n = 6–16) compared with wild-type (WT) (black 
circles, n = 8–15) mice at 3, 6, and 18 months. Data (mean ± SEM) are representative of two to three independent experiments except for the KO18M group 
analyzed in a single experiment. Unpaired t-test was used for statistical analysis. ***p < 0.001, *p < 0.05. (c) Representative flow cytometry plots for phenotyping  
of naïve and memory T cells in the spleen of 3-month-old WT and KO mice. Naïve (CD44lowCD62Lhi), TCM (CD44hiCD62Lhi), and TEM (CD44hiCD62low) cells are 
analyzed within the CD3+CD4+ (blue) or CD3+CD8+ (red) populations.
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compared with ~11 for WT mice (Figure 3A). Spleen and thy-
mus in mutant mice are also significantly heavier in GH-treated 
relatively to DPBS-injected, particularly the spleen whose mass 
is doubled compared with control-injected mice (Figure  3B). 
Moreover, GH treatment stimulates Igf1 expression in the liver of 
GhrhKO mice, although it does not reach values in normal mice 
(Figure 3C). This demonstrates that a 6-week treatment with GH 
is able to compensate the somatotrope deficiency by inducing 
weight gain and IGF-1 stimulation without completely restoring 
values measured in normal mice.

The impact of GH treatment upon immune system was first 
evaluated in the thymus. No differences are observed between 
GH- or control-injected mice regarding the distribution of the 
four thymocyte sub-population and Treg cells in the thymus 
(Figure  3D). Similarly, TREC number and Sj/dβ ratio during 
GH treatment does not significantly differ from control-injected 
mice (Figure 3E). Young animals exhibit a decrease in both Sj and 
dβTREC during treatment with GH or vehicle alone that does 
not appear in old mice. Nevertheless, no differences appear at 3 
or 18 months neither between control and GH-injected animals. 
This suggests that aging is not a factor that sensitizes mice to GH.

Next, the ability of GH injections to restore lymphocytes 
phenotype in periphery was also studied. There were no detect-
able differences in the frequency of all lymphocytes subtypes 
in the LN of GH-treated mutant mice compared with control 
(Figure S2 in Supplementary Material, lower panel). However, 
in the spleen, GH significantly increased B-cell frequency and 

decreased T cells (p =  0.002 and 0.001, respectively; Figure S2 
in Supplementary Material, upper panel), increased frequency 
of CD4 T cells (p = 0.043), as well as increased CD8 naive pool 
and decreased CD8 TCM (p = 0.025 and 0.005, respectively, data 
not shown). The other subtypes were not affected by GH treat-
ment. Finally, a blood sample was taken 1 week of two to follow 
the frequency of lymphocytes across the time. Flow cytometry 
experiments revealed huge week-to-week variations in all the 
groups studied (Figure S2 in Supplementary Material). Even if 
two-way ANOVA analysis revealed some significant effects of 
the treatment (decreased B cells, increased T cells, and decreased 
CD8 TCM in KO3M; increased CD4 TEM and decreased CD8 
naïve T cells in KO18M, data not shown), it is still unclear if the 
differences are due to a real effect of GH or to random variations 
that would affect both control and GH-treated mice. Globally, 
those results suggest that GH supplementation is not sufficient to 
restore a normal phenotype in GhrhKO mice.

ghrhKO Mice show a Delayed recovery 
of Their Thymic Volume after DXM-
induced Thymic atrophy
Stress hypothesis suggests that somatotrope deficiency could 
lead to inability for the immune system to correctly respond to 
stressful events. To explore this hypothesis, GhrhKO mice were 
challenged with DXM, a synthetic GC that induces a reversible 
thymic atrophy. After a single DXM injection, MRI sessions were 
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FigUre 3 | Effects of growth hormone (GH) supplementation (6 weeks) on metabolic and immune parameters. (a) Weight variations expressed in percentage of 
starting value (weight at d0) are shown for 3- (above) and 18-month (below) old wild-type (WT) (filled line) and KO mice (dotted line) injected with GH (red) or control 
Dulbecco’s phosphate-buffered saline (black). Two-way ANOVA test (time and treatment) was used for statistical analyses (n = 7–10 per group). (B) Igf1 expression 
in the liver of KO and WT mice after 6 weeks of GH (red) or control (white) treatment was measured by real-time quantitative PCR and normalized to expression of 
Hprt. Two-way ANOVA test (treatment and strain) with Bonferroni post-test were used for statistical analyses (n = 6–10 per group). ***p < 0.001, *p < 0.05. (c) 
Absolute weight of spleen (above) and thymus (below) of young and old KO mice after 6 weeks of GH (red) or control (black) treatment. Two-way ANOVA test 
(treatment and age) was used for statistical analyses (n = 10 per group). (D) Representative flow cytometry plots of immunophenotyping of thymus from control- and 
GH-injected mouse. (e) Variations of peripheral sjTREC, dβTREC, and sj/dβ ratio during GH supplementation (red) and control (black) in 3- (filled line) and 
18-month-old (dotted line) KO mice. Two-way ANOVA test (time and treatment) was used for statistical analyses (n = 10 per group). (a,B,c,e) Data (mean ± SEM) 
are representative of two independent experiments.
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performed at days 0, 2, 5, 10, and 14 to quantify thymic volumes 
in a longitudinal follow-up (Figure 4). Both WT and KO mice 
showed a significant loss of more than 50% of thymic volume 
at day 2, demonstrating the DXM-induced atrophy. At day 5, 
thymic volume increased to reach normal values as soon as day 
10 in WT mice and even rise above starting volume at day 14. 

Even if statistical significance was low (GhrhKO d10 vs GhrhKO  
d0: p  =  0.616, GhrhKO d14 vs GhrhKO d0: p  =  0.505, paired 
t-test), GhrhKO DXM-injected mice did not seem to completely 
restore their thymic volumes at days 10 and 15 (only 70% of the 
starting volume) but volumes were not significantly different from 
control-injected group, probably because of high variation rate in 
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TaBle 3 | Effects of somatotrope deficiency on frequency of lymphocytes subpopulations in spleen, lymph node (LN), and blood.

3 Months 6 Months 18 Months

Frequency (% of parent population) c57Bl/6 wild-type  
(WT) (n = 15)c

GhrhKO  
(n = 16)c

c57Bl/6 WT  
(n = 8)b

GhrhKO  
(n = 16)c

c57Bl/6 WT  
(n = 9)c

GhrhKO  
(n = 6)a

spleen
B cell 60.0 ± 1.36 52.5 ± 1.18*** 61.4 ± 0.85 51.7 ± 1.06*** 61.9 ± 1.67 60.8 ± 2.52
T cell 30.6 ± 1.23 35.5 ± 1.17** 28.9 ± 1.25 33.9 ± 1.41* 28.3 ± 1.84 22.6 ± 2.12*
T CD4 57.4 ± 0.66 56.2 ± 1.04 57.0 ± 0.40 54.3 ± 0.86* 55.7 ± 1.08 62.9 ± 2.52*
T CD8 36.7 ± 0.61 36.9 ± 1.08 36.0 ± 0.67 38.8 ± 0.81* 37.1 ± 0.93 31.4 ± 2.83*
CD4 naive 12.0 ± 0.62 29.7 ± 1.30*** 12.1 ± 0.75 21.0 ± 1.36*** 3.4 ± 0.36 9.6 ± 2.67
CD4 TCM 61.7 ± 2.20 45.6 ± 1.42*** 52.1 ± 2.03 50.7 ± 1.39 21.2 ± 2.57 21.5 ± 4.04
CD4 TEM 24.6 ± 1.62 23.7 ± 1.47 35.5 ± 2.08 27.9 ± 1.99* 74.7 ± 2.60 68.5 ± 6.33
CD8 naive 47.9 ± 1.05 57.5 ± 1.26*** 47.1 ± 1.74 59.2 ± 1.55*** 17.9 ± 2.18 29.8 ± 6.02
CD8 TCM 40.8 ± 1.31 31.0 ± 1.02*** 42.6 ± 1.57 31.2 ± 1.48*** 59.4 ± 3.69 44.5 ± 2.15**
CD8 TEM 7.1 ± 0.69 7.3 ± 0.59 9.4 ± 0.57 7.6 ± 0.42* 22.4 ± 2.89 24.4 ± 4.17
Treg 14.0 ± 0.38 17.3 ± 0.60*** 17.9 ± 0.69 18.0 ± 0.61 29.3 ± 1.98 29.2 ± 2.43

ln
B cell 33.8 ± 1.85 26.5 ± 1.56** 39.8 ± 3.42 27.6 ± 1.94** 53.6 ± 2.50 48.1 ± 4.08
T cell 63.2 ± 1.82 70.1 ± 1.60** 56.5 ± 3.43 68.2 ± 2.27* 43.3 ± 2.66 42.3 ± 4.04
T CD4 53.1 ± 0.71 57.8 ± 1.13** 50.4 ± 0.48 55.5 ± 1.05** 42.0 ± 0.95 48.4 ± 1.99*
T CD8 43.5 ± 0.74 39.0 ± 1.15** 44.5 ± 0.38 40.8 ± 1.00* 49.8 ± 1.07 42.4 ± 2.46*
CD4 naive 15.2 ± 0.97 35.7 ± 1.72*** 16.6 ± 0.66 31.4 ± 1.78*** 10.6 ± 1.33 24.5 ± 3.37**
CD4 TCM 72.1 ± 1.80 48.7 ± 1.95*** 63.0 ± 4.68 54.3 ± 1.70* 52.9 ± 2.39 37.6 ± 3.25**
CD4 TEM 11.5 ± 0.99 13.4 ± 1.29 18.7 ± 4.17 13.3 ± 0.88 36.2 ± 3.01 37.1 ± 5.15
CD8 naive 57.6 ± 1.19 66.4 ± 1.21*** 59.7 ± 1.31 65.1 ± 1.51 39.5 ± 2.72 40.2 ± 4.64
CD8 TCM 37.3 ± 1.25 25.4 ± 0.84*** 34.5 ± 1.44 28.0 ± 1.73 54.1 ± 2.21 47.5 ± 4.29
CD8 TEM 2.6 ± 0.21 2.8 ± 0.21 3.5 ± 0.27 3.0 ± 0.25 5.9 ± 0.81 9.2 ± 1.66
Treg 12.5 ± 0.53 12.5 ± 0.22 16.1 ± 0.51 16.3 ± 0.70 30.3 ± 2.13 30.7 ± 2.12

Blood
B cell 46.1 ± 2.65 43.3 ± 2.55 54.2 ± 3.10 43.1 ± 5.39 75.7 ± 3.58 51.2 ± 5.26**
T cell 38.7 ± 1.64 30.4 ± 3.62* 29.8 ± 3.83 33.3 ± 6.31 17.2 ± 2.00 26.5 ± 3.78*
T CD4 54.9 ± 1.55 55.3 ± 0.96 52.2 ± 1.94 49.6 ± 3.53 35.5 ± 2.03 51.5 ± 3.38**
T CD8 42.5 ± 1.58 37.3 ± 1.43* 44.9 ± 2.09 46.1 ± 2.95 58.2 ± 2.53 44.5 ± 3.79*
CD4 naive 15.8 ± 0.88 27.1 ± 4.20** 19.3 ± 1.93 31.9 ± 2.87** 18.7 ± 6.06 30.6 ± 4.45
CD4 TCM 76.7 ± 1.72 36.6 ± 5.31*** 67.3 ± 2.22 49.9 ± 4.06** 51.9 ± 5.02 40.9 ± 4.03
CD4 TEM 6.6 ± 0.90 27.8 ± 7.45*** 12.1 ± 1.79 14.0 ± 2.83 34.9 ± 6.08 28.3 ± 8.25
CD8 naive 53.4 ± 2.86 31.7 ± 6.19** 48.6 ± 3.18 44.9 ± 4.03 32.5 ± 5.99 38.8 ± 6.74
CD8 TCM 42.6 ± 3.00 42.8 ± 1.87 40.5 ± 2.03 41.52 ± 2.39 49.0 ± 5.05 50.5 ± 4.66
CD8 TEM 2.6 ± 0.46 17.4 ± 5.08* 8.4 ± 1.81 8.34 ± 1.71 20.8 ± 6.55 10.5 ± 2.94
Treg 9.2 ± 0.98 8.0 ± 0.63 7.5 ± 0.90 7.8 ± 0.44 13.0 ± 0.92 11.2 ± 1.99

Data (mean ± SEM) are representative of onea, two,b or threec independent experiments.
Values significantly different from age-matched WT mice ***p < 0.001, **p < 0.01, *p < 0.05.
CD19+ B cells and CD3+ T cells are analyzed within the CD45+ population. T cell population is divided into CD4+ and CD8+ T cells. 20,000 CD45+ events are recorded. Naïve 
(CD44lowCD62Lhi), TCM (CD44hiCD62Lhi), and TEM (CD44hiCD62low) cells are analyzed within de CD3+CD4+ or CD3+CD8+ populations. FoxP3+ Treg cells are studied inside the CD4+ 
SP population.
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control mice. However, the recovery (assessed in percentage of 
corresponding starting value for each mouse) was significantly 
different between WT and KO mice at days 10 and 14 (Figure 4B). 
This suggests a delayed restoration of thymic volumes after DXM-
induced thymic atrophy in somatotrope-deficient mice compared 
with WT mice. However, this difference was not supported by 
analysis of thymus weight and cellularity obtained after sacrificing 
the mice at day 15 (Figure 4C). Indeed, they were no difference 
between control and DXM-injected animals in both WT and KO 
mice regarding those parameters, neither for TREC intrathymic 
content. Nevertheless, intrathymic proliferation reflected by sj/dβ 
ratio was higher in DXM-injected compared with control for WT 
but not mutant animals (Figure 4C). This revealed an increased 
thymic activity in WT mice 2 weeks after DXM injection, which 
was not observed in GhrhKO mice. Altogether, MRI analyses 

of thymic volumes and sj/dβ ratio results suggested a delayed 
and less efficient thymic recovery in GhrhKO mice after DXM-
induced thymic atrophy while weight and cell number measures 
showed normal thymic restoration after 15 days. This apparent 
discrepancy might be attributed to the individual variation bias 
that cannot be avoided when animals are sacrificed at each time 
point for organ weighing.

DiscUssiOn

Despite a large amount of literature about the effects of GH 
upon immune system, its implication in immune physiology is 
still unclear and controversial. Most of the previous works were 
done in mouse model with multiple pituitary deficiencies (GH, 
PRL, and thyrotropic hormones), making it difficult to identify 
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FigUre 4 | Follow-up of dexamethasone (DXM)-induced atrophy and recovery. (a) Representatives MRI slices showing thymus [region-of-interest (ROI), yellow] of 
wild-type (WT) and KO at d0 and d14 after DXM injection. Lines show three successive slices around the maximal ROI. (B) Evolution of thymic volumes normalized 
in% of d0 value is shown for WT (blue) and KO (red) mice treated with DXM (filled line, n = 6 per group) or control solution (dotted line, n = 4 per group). Paired t-test 
was used for effect of DXM vs d0. ap: < 0.05, bp < 0.01. Two-way ANOVA test (time and treatment) with Bonferroni post-test (WT vs KO for DXM or Ctrl treatment) 
was used for statistical analyze of genotype variation. *p < 0.05, ***p < 0.001. (c) Thymus weight, sjTREC and sj/dβ ratio of WT (blue) and KO (red) mice at d15 
post DXM- (circle, n = 6 per group) or control-injection (square, n = 4 per group). Unpaired t-test was used for statistical analysis. *p < 0.05. (B,c) Data 
(mean ± SEM) are representative of two independent experiments.
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the precise role of each hormone. Here, we investigated a model 
never used for immune characterization with a unique specific 
deficiency of the somatotropic GHRH–GH–IGF1 axis due to 
Ghrh deletion, in an attempt to elucidate the physiological role 
of somatotropic hormones in immune system development and 
function. We found no severe thymic or immunological defect in 
those mice. Within the thymus, they present a slight reduction in 
the proportion of the most immature thymocyte subset, but the 
relative weight and cellularity of this primary immune organ is 
similar to that in normal mice, even in old animal.

Age-induced changes in lymphocytes distribution in periph-
eral lymphoid organs were studied in mutant and Ghrh−/− mice. 
It is important to note that we cannot exclude some bias (1 of 
20 parameters will reach a p  <  0.05 randomly, cohort effects 
in aged animals, etc.) in analysis and interpretation of so many 
parameters. Therefore, careful and critical interpretation should 
be applied. Here, only consistent repeated results were taken into 
consideration. A first conclusion drawn from analysis of spleen, 
LNs and blood was that the differences observed between normal 
and Ghrh−/− mice at 3 months (i.e., lower B-cell and higher T-cell 

frequencies and higher proportion of naïve T cells and diminution 
of memory pool in KO vs WT mice) were maintained through-
out life. Altogether, analysis did not reveal a strong differential 
effect of aging on peripheral lymphocytes between Ghrh−/− and 
normal mice. Both maintained relatively constant proportion of 
B and T  cells and, as expected, they experienced a shift in the 
pool of naïve to memory T cells, within which mostly TEM were 
increased. Frequency of CD4 T cells decreased in the blood and 
LN of normal and mutant mice, but an inverted increase of CD8 
frequency was observed only in WT organs. This resulted in a 
decreased CD4/CD8 ratio in the two compartments of the two 
types of aged mice, although the intensity of this decrease was 
more important in WT mice.

In periphery, GhrhKO mice exhibit a decreased frequency 
of B cells, concomitant with a rise in proportion of T cells. The 
spleen is the only immune organ that remains smaller than in 
the WT counterpart when taking into account the body weight 
of the animal. The pool of naïve T  cells is more important in 
somatotrope-deficient mice, a result also supported by the higher 
number of TREC in spleen and blood of GhrhKO mice. A 6-week 
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GH supplementation is unable to restore those parameters to 
normal in our experimental model. Nevertheless, GhrhKO mice  
do not present any obvious immunodeficiency or thymic atro-
phy. Taking together, those results indicate that the integrity of 
the somatotrope axis is not required for T cell immune system 
development in basal conditions.

Our results are in contradiction with previous work conducted 
in multi-deficient dwarf mouse model (Snell–Bagg and Ames) 
where were observed lymphopenia, decreased relative weight 
thymus, early thymic involution and reduced primary immune 
response compared to non-dwarf animals (2–4). This immuno-
deficiency is characterized by decreased number of thymic cells 
and dramatic decreased in proportion of DP thymocytes (23). 
Moreover, GH treatment could partially restore immune param-
eters (3, 23). Therefore, authors concluded that GH had significant 
effect on T cell development within the thymus. However, in most 
of the studies demonstrating a decreased thymic cellularity, the 
absolute number of cells was compared without normalizing to 
the smaller size of dwarf mice (23), and it cannot be so assumed 
that the smaller thymus size is due to a direct effect of GH upon 
the thymus or to spatial pressure linked to growth retardation. We 
and others (10, 11) demonstrated that even though a diminished 
absolute number of cells, GH-deficient mice had a normal thymic 
cellularity when corrected to their smaller size.

Other works are in agreement with our findings in GhrhKO 
mice. The B cell frequency decrease is coherent with the previously 
observed impairment of bone marrow B cell production in dwarf 
mice model (11, 24). Very interestingly, this specific absolute and 
relative decrease in spleen size has been observed in human with 
a GHRH receptor mutation leading to dwarfism, establishing a 
link between our animal model and observation in human (25). 
A team studied dwarf Snell–Bagg mice and found no differences 
in lymphocytes distribution or function in thymus, while the 
spleen demonstrated a higher frequency of T  lymphocytes and 
lower frequency of B lymphocytes compared with control (10). 
The number of splenic cells—but not thymic lymphocytes—was 
50% of normal counterparts when corrected to total body weight, 
similar to what we found in GhrhKO mice. Another group, 
using a panel of mouse strains affected with different pituitary 
hormone deficiencies, showed that primary B cell development 
defect was not dependent on hypophysial hormones, but was 
controlled by thyroid hormones. Nevertheless, GH could be 
involved in B cell reduction within secondary lymphoid organs 
(11). Indeed, thyroid axis-deficient mice exhibit a defect in bone 
marrow B lymphopoiesis and normal splenic B cells frequency, 
while the opposite was found in GH-deficient lit/lit mice. In 
both cases, thymus was unaffected by hormone deficiency. 
Our study in GhrhKO mice confirms these observations, since 
we observed an almost normal thymus, but diminished B cells 
frequency in periphery (spleen, LNs, and blood). This reduction 
goes along with increasing proportion of T  cells. Interestingly, 
the growing literature about effects of pituitary hormones upon 
B-lymphopoiesis strongly suggests a role for GH and IGF-1 as 
positive regulators of B cells (11, 26–29). It has been shown that 
GH receptor has a wider expression on B  cells that on T  cells 
(50% compared with 20%, respectively) (30), suggesting a higher 
sensitivity to GH for this lymphocyte subset. Moreover, there 

are evidences that IGF-1 is able to increase the amount of bone 
marrow B lineages cells and splenic B cells as well as accelerate 
B cell reconstitution after bone marrow transplantation (26, 31). 
Similarly, GH-transgenic mice exhibits higher number of total 
lymphocytes, an effect more important in B cells than T cells (28). 
Taking this into account, it is not surprising that GhrhKO and lit/
lit mice display B lymphopenia.

One surprising result is the marked increase in the number 
of TREC in GhrhKO mice, with an opposite decrease of sj/
DJβTREC ratio. Previous works from our lab and others are in 
favor of a positive role of somatotrope hormones upon TREC 
production. In GH-deficient patient, withdraw of GH treatment 
induced a drop in sjTREC frequency and sj/DJβTREC ratio, 
followed by recovery after GH resumption (9). Furthermore, 
HIV+ patient treated with GH showed increased TREC fre-
quency in PBMC (8). In mice, IGF-1 administration resulted 
in significant increase in TREC number measured in thymus 
and periphery (32). Therefore, we expected that GH and IGF-1 
deficiencies could lead to TREC diminution measured in blood. 
One hypothesis to explain our opposite result here is that GH 
absence affects peripheral proliferation of cells and/or cell 
activation in response to antigen more than thymic prolifera-
tion. Indeed, TREC, which are excision circles of DNA resulting 
from T  cell receptor rearrangement, are stable in the cell but 
not duplicated during mitosis, leading to their progressive dilu-
tion across peripheral proliferation. So, interpreting sjTREC 
content as a marker of thymic output should be done carefully, 
regarding this dilution bias. On the contrary, the intrathymic 
proliferation rate estimated by sj/dβTREC ratio is independent 
of peripheral proliferation since it represents the ratio between a 
TREC created lately in the thymus (sj) to one formed early (dβ). 
Here, the apparent increase in thymopoiesis indicating by the 
higher number of TREC could be a false interpretation due to a 
less important proliferation rate in periphery of GhrhKO mice. 
In vitro and in  vivo studies demonstrated that GH and IGF-1 
are able to stimulate T cell proliferation (32, 33). Importantly, 
sj/dβTREC ratio could truly reflect a decreased intrathymic 
proliferation in young mutant mice, as expected according to 
studies described above. A second hypothesis would involve a 
decreased cell activation and is reinforced by the high frequency 
of naïve T cells found in somatotrope-deficient mice. If GhrhKO 
lymphocytes are less sensitive to antigen stimulation, they do 
not undergo the activation process, which implicates clonal 
proliferation and induction of memory cells. Therefore, TREC 
are less diluted, and pool of naïve cells stays more important 
than in normal mice. This theory of hyposensibility to antigen 
activation could explain the decreased sensitivity of GhrhKO 
mice to induction of EAE (34). Moreover, this is in agreement 
with the current stress hypothesis (13), according to which pitui-
tary hormones are immunoregulators that counteracts negative 
effects of stress, including physiological and biological stress, 
like antigen challenge. The absence of one or more of those stress 
hormones could result in inability of the immune system to deal 
with stressful situations.

The stress hypothesis was first proposed by Dorshkind and 
Horseman based on their observation that mice deficient for 
GH/IGF-1, PRL, or thyroid hormones have a normal humoral 

17

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


Bodart et al. Immunologic Phenotype of Ghrh−/− Mice

Frontiers in Endocrinology | www.frontiersin.org June 2018 | Volume 9 | Article 296

and cellular response (35), a result in contradiction with previ-
ous statements in literature (2, 4, 23, 36, 37). Afterward, they 
discovered that Snell–Bagg dwarf mice housed in non-stressful 
conditions, separately from their normal littermates, had no 
thymopoiesis defects, in contrast to animals held in less stringent 
conditions (13, 38). Reviewing literature in this context reconciles 
the contradictory findings about immunodeficiency in pituitary-
deficient mice. Most of the studies showing a depressed immune 
system dependent on pituitary hormones (2–4) were conducted 
40  years ago when housing conditions were less healthy and 
could be source of physiological and psychological stress. On 
the opposite, we and others (10, 38), keeping the animals in 
stress-limited and highly sanitary environment, found normal 
thymus and immune system. This hypothesis is reinforced by 
the evidence that GH can inhibit cortisol-induced lymphopenia 
in hypophysectomized rats (39). Moreover, GH secretion is 
stimulated after stress exposition (40). A mechanism for this 
GH inhibition of GCs action involves the Jak2/Stat5 pathway, 
one of the GH-signaling pathways (41). It has been shown that 
Stat5 protein can form a complex with the GC receptor which 
diminishes the activation of promoters containing GC response 
elements and therefore inhibits GC-induced gene activation 
(42). PRL, another pituitary hormone which share the Stat5 
signaling pathway, has been shown to suppress in vivo lympho-
cytes apoptosis induced by DXM, a synthetic GC (43). The role 
of PRL as anti-stress hormone was confirmed in mouse experi-
mental Trypanosoma cruzi infection, characterized by increased 
levels of GC, and inversely decreased levels of PRL, and where 
PRL restoration limited thymic atrophy and DP thymocytes 
apoptosis (44). It is plausible that GH, sharing the transduction 
pathway with PRL, could act through a similar mechanism on 
stress-induced immunosuppression. The presently described 
GhrhKO mouse constitutes an interesting experimental model 
to assess this question. According to the stress hypothesis, 
somatotrope deficiency in those mice drives an altered resist-
ance to stress. Indeed, mimicking GC-induced stress by DXM 
administration reveals here a slower thymus recovery in mutant 
mice, as demonstrated by MRI quantification of thymic vol-
umes and sj/dβ ratio. To the best of our knowledge, this is the 
first time thymus regeneration after DXM-induced atrophy is 
longitudinally followed by MRI. This method was validated by 
Brooks and colleagues as a non-invasive way to measure thymus 
involution induced by DXM, giving high statistical power using 
less animals compared with measurement of tissue weight (35). 
However, considering the high variability observed in thymic 
volumes of control-injected mice and the small size of each 
group, results should be interpreted with caution. Moreover, 
thymus weight and cellularity as well as TREC number measured 
1 day after the last MRI session showed normal values in mutant 
mice injected with DXM. Altogether, those results do not allow 
to firmly validate the stress hypothesis. Challenges with other 
type of stress, like infectious stress, are currently performed.

Aging is considered as a stressful situation for the immune 
system. It is well known that thymus undergo severe atrophy 
with aging, and elderly are less resistant to infections and 
autoimmune diseases (45). GH deficiency has been described to 
extend lifespan and delay immune aging (46, 47). For example, a 

study in Snell–Bagg and GHRH-R-deficient mice showed a 40% 
increased longevity regarded to WT mice and some parameters of 
aging immune system were also improved: similar proportion of 
memory cells and T cell function compared with young animals 
(47). This is consistent with the antagonistic pleiotropy theory, 
according to which genes conferring reproductive advantages are 
selected throughout evolution, despite their deleterious effects at 
long term (48). However, in our study, the somatotrope deficiency 
is not an aggravating factor for the aging immune system. Thymus 
atrophy, seen by the decreased weight and cellularity of the organ 
as well as TREC number, is parallel between mutant and normal 
mice. It should be pointed that our model is a genetic defect in 
GHRH that affect all the somatotrope axis since the beginning 
of development. The results should therefore be taken with 
precautions when comparing to acquired GH deficiency like it is 
postulated with aging.

Another surprising conclusion of this work is the inefficiency 
of GH supplementation to restore immune parameters, despite 
the clear metabolic effects of the treatment. Indeed, GH-daily 
injection in GhrhKO mice results in increased body, spleen, and 
thymus weight and stimulation of IGF-1 production in the liver, 
as expected (16). However, none of the immune parameters 
analyzed, i.e., thymic and peripheral lymphocytes phenotype and 
TREC content, was modified by the 6-week-long treatment, even 
in old animals. This is surprising since numerous works showed 
that GH injection had beneficial effects on thymic function  
(3, 23), especially in aged rodents where it could reverse thymic 
involution (5) and on antibody production (37). Once again, 
stress hypothesis can explain the discrepancy between our results 
and literature. Another possibility is that IGF-1 is the main actor 
of somatotrope actions in the immune system (9, 49), and the 
dose of GH injected (1 mg/kg) was not able to induce the produc-
tion of a sufficient amount of IGF-1. Indeed, IGF-1 was under 
detection limit of 4.0 ng/ml in serum of GH-injected GhrhKO 
mice (data not shown).

Altogether, these data show that the severe somatotrope 
deficiency of Ghrh−/− mice essentially impacts the spleen and 
B compartment of the adaptive immune system, while it only 
marginally affects thymic function and T cell development. Our 
laboratory is now investigating the susceptibility of Ghrh−/− mice 
to T-independent and T-dependent pathogens.
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“Branislav Janković ”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia

The thymus is sexually differentiated organ providing microenvironment for T-cell 
precursor differentiation/maturation in the major histocompatibility complex-restricted 
self-tolerant T cells. With increasing age, the thymus undergoes involution leading to 
the decline in efficacy of thymopoiesis. Noradrenaline from thymic nerve fibers and “(nor)
adrenergic” cells is involved in the regulation of thymopoiesis. In rodents, noradrenaline 
concentration in thymus and adrenoceptor (AR) expression on thymic cells depend on 
sex and age. These differences are suggested to be implicated in the development of 
sexual diergism and the age-related decline in thymopoiesis. The programming of both 
thymic sexual differentiation and its involution occurs during the critical early perinatal 
period and may be reprogrammed during peripubertal development. The thymic (re)
programming is critically dependent on circulating levels of gonadal steroids. Although 
the underlying molecular mechanisms have not yet been elucidated fully, it is assumed 
that the gonadal steroid action during the critical perinatal/peripubertal developmental 
periods leads to long-lasting changes in the efficacy of thymopoiesis partly through (re)
programming of “(nor)adrenergic” cell networks and AR expression on thymic cells.

Keywords: thymic noradrenergic innervation, noradrenaline-synthesizing thymic cells, adrenoceptors, sex 
steroids, thymic involution, thymic programming/reprogramming

The thymus is organ in which T cells are continually generated in a highly dynamic process comprising 
T-cell receptor (TCR) gene rearrangement, lineage commitment, and selection (1). These processes 
are linked to distinct rates of proliferation and cell death by apoptosis (1). With increasing age, the 
thymus atrophies and declines in functions, the phenomenon termed involution (2). Consequently, 
thymic generation of naïve T cells declines (2, 3). This leads to the shrinkage of peripheral TCR 
repertoire and the expansion of memory T cell compartment, i.e., to the changes covered by the 
canopy term immunosenescence (3–5). At the clinical level, the immunosenescence is associated 
with a greater susceptibility to infections (6, 7), an impaired response to vaccinations (8, 9), and 
an increased propensity for malignant diseases (10, 11). In addition, according to the U.S. Center 
for Disease Control, approximately 80% of aged individuals are afflicted with at least one chronic 
disease as a result of a declination of immune function. Consequently, factors contributing to the 
thymic involution and mechanisms of their action are becoming the subject of increased interest 
in the scientific and healthcare communities alike. It should be emphasized that understanding of 
the mechanisms underlying thymic involution is important not only for moderating the deleterious 
effects of immunosenescence, but also for envisaging strategies to “rejuvenate” the immune system. It 
is noteworthy that even in a significant thymic involution thymopoiesis does not cease completely, so 
it may be enhanced (12). The thymic “rejuvenation” becomes particularly important after exposure 
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to chemotherapy, ionizing radiation, and some infective agents 
(e.g., HIV-1) (13).

There is evidence that (i) early perinatal programming of the 
thymus is crucial for the development of thymic involution, and 
consequently the efficacy of immune responses from early life 
through adulthood (14), and (ii) this phenomenon is sexually 
dimorphic (14, 15). Consistently, sex differences in the organ size, 
structural organization, and thymopoiesis (14–22), and conse-
quently T-cell immune response (23, 24), have been observed. A 
more rapid thymic involution was found in male compared with 
female mice (25). Consequently, adult females have the ability 
to reject allografts more efficiently, a greater ability to combat 
various viral and bacterial infections, and superior antitumor 
responses (23).

There are data indicating that the early programming of the 
thymus development/involution is shaped by genetic, environ-
mental, and hormonal factors (14). The role of genetic factors 
has been shown in both mice and rats (26–31). These genetically 
based differences are suggested to be connected to strain differ-
ences in susceptibility to various pathologies involving immune 
mechanisms (26–30). Environmental factors, such as malnutri-
tion, and exposure to endocrine disruptors, in early postnatal life 
are also shown to influence the pace of thymic involution (32). 
Alterations in circulating levels of sex steroids in the critical early 
postnatal developmental “window” may influence not only sexual 
dimorphism in structural and functional thymic parameters, but 
also the timing of thymic involution (15, 21, 33). Furthermore, 
gonadal steroids may influence sexual dimorphism in thymo-
poiesis, and the age-related decline in its efficacy through: (i) 
modulating thymic extrinsic (encompassing noradrenergic nerve 
fibers) and intrinsic [composed of noradrenaline-synthesizing 
cells, i.e., “(nor)adrenergic” cells] adrenergic regulatory net-
works, in terms of their density/noradrenaline content and (ii) 
adrenoceptor (AR) expression on thymic cells (34, 35). In addi-
tion, it should be pointed out that the ablation of gonadal steroids 
during the peripubertal developmental “window” leads not only 
to short-term increase in thymic weight and enhancement of thy-
mopoiesis, but also to the long-lasting thymic “rejuvenation” (33).

The central goal of this mini review is to summarize recent 
findings and current knowledge related to the mechanisms of 
indirect (nor)adrenaline-mediated action of gonadal steroids on 
the programming/reprogramming of thymic involution, as its 
action may be easily controlled by many drugs in use for non-
immune indications.

THYMiC eXTRinSiC AnD inTRinSiC 
(nOR)ADReneRGiC ReGULATORY 
neTwORKS

Thymic extrinsic (nor)adrenergic network
The thymus receives extensive noradrenergic innervation 
(36, 37). The varicose noradrenergic fibers terminate in close 
proximity to thymocytes (37, 38), and various subsets of thymic 
non-lymphoid (stromal) cells (38–41). In rodents, noradrenergic 
fibers appear in the thymus in late embryonic period, and their 
density increases during prepubertal development (42, 43). The 

data on postpubertal changes in their density are inconsistent 
(44–50). In advanced age, in rodents of distinct (sub)strains has 
been observed decrease, increase and lack of changes in thymic 
noradrenergic nerve fiber density compared with young adult 
(sub)strain-matched ones (44–50). This inconsistency is most 
likely linked to (sub)strain and sex-dependent differences in the 
kinetics of postpubertal changes in thymic noradrenergic inner-
vation. It has also been suggested that the noradrenaline content 
in thymic nerve fibers, and consequently thymic noradrenaline 
concentration vary with age (44–50). In addition, both thymic 
parameters were found to be greater in male than in age-matched 
female rats (51) (Figure 1).

Thymic intrinsic (nor)adrenergic network
Many types of mature immune cells synthesize and secrete 
catecholamines (52–54). The investigations of the expression 
of tyrosine hydroxylase (TH), the key rate-limiting enzyme in 
catecholamine synthesis in freshly isolated thymic cells, cultured 
thymocytes and cells from adult thymic organ culture revealed 
that thymic cells, including thymocytes, synthetize noradrena-
line (34, 51, 55). TH-immunoreactive cells were found across all 
thymocyte subsets delineated by CD3 expression levels, but their 
frequency was highest among the most mature CD3high thymo-
cytes (51). In addition, TH-immunoreactive cells were observed 
in various thymic non-lymphoid cell subpopulations (44, 51). 
Their density varies across distinct thymic microenvironments. 
They are frequent at the medullary side of the corticomedullary 
junction, whereas their density is moderate and poor in the 
subcapsular cortex, and intracortically/intramedullary, respec-
tively (51). This is important as various thymic non-lymphoid 
cell subsets are strategically positioned in particular thymic 
microenvironments to orchestrate thymocyte differentiation/
maturation (56). TH immunoreactivity was observed in thymic 
epithelial cells (TECs) (39, 51, 57–59), macrophages, and den-
dritic cells (44, 60). In TEC population, TH immunoreactivity 
was found in neural crest-derived thymic nurse cells (51, 57, 58), 
type 1 (subcapsular/perivascular), and type 5 (located mainly in 
corticomedullary region) cells (39, 51, 59). The density of both 
lymphoid and non-lymphoid TH-immunoreactive cells was 
shown to be higher in male than in female rats (51) (Figure 1). 
In addition, the overall noradrenaline content in thymocytes 
was found to be greater in male compared with female adult rats 
(51) (Figure 1). Although studies in rat adult thymic organ and 
thymocyte cultures suggested that noradrenaline from thymic 
“(nor)adrenergic” cells is implicated in the fine tuning of thymo-
poisesis (55), a role for thymic intrinsic adrenergic network in 
thymic homeostasis is still far from being understood. It is note-
worthy that intrinsic (nor)adrenergic cellular networks: (i) have 
also been identified in some other tissues and (ii) suggested to be 
particularly important under specific conditions, e.g., following 
sympathectomy, gonadectomy, chronic stress (45, 61–65), as it 
allows for mainly local regulation of the catecholamine influence 
(64, 66).

AR expression on Thymic Cells
To corroborate modulatory role for noradrenaline in the thy-
mus is the expression of ARs on both thymocytes and thymic 
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FiGURe 1 | Influence of alterations in circulating ovarian steroid levels in critical developmental periods on programming/reprogramming of thymic extrinsic and 
intrinsic adrenergic networks. This figure indicates (middle schemes) sex differences in noradrenaline content in noradrenergic nerve fibers and thymocytes, density 
of tyrosine hydroxylase (TH)-expressing (“adrenergic”) cells, density of β2-adrenoceptor (AR)+ thymic cells and thymocyte β2-AR surface density in young adult rat 
thymus, and influence of (upper scheme) single injection of testosterone on the third postnatal day to female rats and (lower scheme) ovariectomy in peripubertal 
period on noradrenergic nerve fiber and thymic “adrenergic” cell density and their noradrenaline content, as well as the density of AR-expressing thymic cells and 
thymocyte AR surface density in young adult rats.
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non-lymphoid cells. Thymic cells express β2- and α1-AR (67–70). 
Their expression is reciprocally regulated during thymocyte 
maturation (50, 71, 72). The most mature CD3high thymocytes 
predominantly express β2-AR, whereas α1-AR expression is 

predominant on the most immature CD3− thymocytes (50, 60, 70, 
72). There is sexual diergism in the expression of β2-AR on thy-
mocytes. Immunophenotyping showed the higher frequency of 
β2-AR-expressing cells among thymocytes from female compared 
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with male young adult rats, but lower density of the receptor on 
their surface (73) (Figure 1). In addition, autoradiographic stud-
ies indicated a sexually dimorphic pattern of postnatal changes in 
the density of β-AR in rat thymus (69). There are no data on sex 
differences in α1-AR expression on thymocytes.

The expression of β2-AR was also demonstrated on cortical 
(aminopeptidase A+), and medullary (UEA-1+) TECs, CD68+ 
macrophages, and OX62+ dendritic cells (44). In addition, 
α1-AR-immunoreactive cells were observed among TECs and 
macrophages located predominantly in subcapsular/subtrabecu-
lar and corticomedullary thymic regions (60). Thymic dendritic 
cells also express α1-AR (74). The subsets of β2-AR+ and α1-AR+ 
non-lymphoid cells were shown to co-express TH (60). Thus, not 
only paracrine, but also autocrine noradrenaline action may be 
expected in the thymus.

GOnADAL STeROiDS AnD 
PROGRAMMinG/RePROGRAMMinG OF 
THe THYMiC (nOR)ADReneRGiC 
neTwORKS AnD AR eXPReSSiOn

early Postnatal Thymic Programming
The thymus is sexually differentiated organ (15). The sexual 
differentiation in the thymus, as in the brain areas controlling 
gonadotropin release, occurs during the critical perinatal period, 
and is governed by sex steroid-dependent mechanisms (15). In 
addition, the widely accepted organizational/activational hypote-
sis of the bran development is extended to encompass the thymic 
differentiation (15). According to the original hypothesis, in the 
absence of testicular androgens during the critical period (start-
ing at the late prenatal period and continuing, at least, to day 5 
postpartum), the areas controlling gonadotropin release develop 
in a primarily female manner (75–78). Conversely, the presence of 
testicular androgens leads to their defeminization/masculiniza-
tion, a phenomenon known as neonatal androgenization (77–79). 
This postpones sexual maturation and leads to development of 
non-ovulatory ovaries with estrogen hyporesponsiveness (78, 
80, 81). The mechanisms of testosterone action in the brain and 
thymus are extremely complex, as in both organs it converts into 
estrogen (15, 75–78), and consequently does not act only through 
androgen receptors (82). The binding of estradiol to classical estro-
gen receptor (ER)α or ERβ in the cytoplasm of target cells causes 
the receptor dimerization and translocation in nucleus, where the 
dimer associates with various coactivators to enable binding to 
the estrogen response elements (EREs) in or near the promoters 
of target genes (83). Estradiol can also influence expression of 
genes that do not harbor EREs in their promoter regions. In this 
case, ligand-activated ERs do not bind DNA directly, but through 
protein–protein interactions with other classes of transcription 
factors at their respective response elements in promotor region 
of their target genes (84). In addition, estradiol may act through 
membrane G protein-coupled ER (GPER, previously termed 
GPR30) (84). This involves mobilization of diverse signaling 
pathways and may depend on a number of conditions, like the 
availability of signal transduction molecules and downstream 
targets (84).

It was shown that a single injection of testosterone on the third 
postnatal day enhanced thymic growth and postponed thymic 
involution in female rats, which normally starts around puberty 
(85, 86). Accordingly, long-lasting changes in thymopoiesis, 
mirrored in the enhanced thymocyte differentiation/maturation 
in adult animals were observed (86). In addition, neonatal andro-
genization facilitated the generation of CD4−CD8+TCRαβhigh 
cells, and consequently shifted CD4+/CD8+ recent thymic 
emigrant ratio in peripheral blood toward the latter (86). The 
thymopoietic changes were ascribed to thymocyte overexpres-
sion of Thy-1, as its overexpression reduces thymocyte negative 
selection and favors maturation of CD8+ T cells (87). Considering 
CD8+ T cell dominance in the periphery of males when compared 
with females (23, 88), the previous findings indicate defeminiza-
tion/masculinization of T-cell compartment in adult neonatally 
androgenized rats, i.e., speak in favor of a sex steroid role in the 
sexual differentiation of thymus.

Although aware of the complexity of changes in neuroendo-
crine-thymic communications in neonatally androgenized rats, 
in this review we focused on those mediated by catecholamines. 
Neonatal androgenization was shown to increase thymic 
noradrenaline concentration in adult rats (35). This mainly 
reflected the increase in nerve fiber noradrenaline content 
(35). Consistent with the so-called transsynaptic action of 
sex steroids on neurotransmitter synthesis (89), the previous 
finding may be explained by an augmented sympathetic tone 
in neonatally androgenized rats (90, 91). However, the higher 
noradrenaline concentration partly reflected the greater density 
of noradrenaline-synthesizing cells and noradrenaline content 
per cell (35) (Figure 1). Considering that the circulating level of 
testosterone was elevated in neonatally androgenized rats (35), 
this could be associated with data indicating that androgens 
prominently transactivate TH promoter (92). In light of data 
from other studies (51), the previous findings suggest thymic 
defeminization/masculinization in neonatally androgenized 
rats (Figure 1).

As additional sign of defeminization/masculinization (73), 
the frequency of β2-AR-expressing cells within thymocytes (35) 
was diminished in neonatally androgenized rats (Figure  1). In 
addition, neonatal androgenization decreased β2-AR density on 
thymocytes (35) (Figure 1). Given that in many cell types estro-
gen, acting through classical ERs, upregulates β2-AR expression 
(93, 94), the alterations in β2-AR density could reflect estrogen 
hyporesponsiveness (80, 95). This hyporesponsiveness most  
likely emerged from the ER interaction with an excess of estrogen 
(as a result of testosterone aromatization) during the critical 
period (96, 97). The interaction of receptor with excess ligand in 
the critical period is shown to cause misprinting substantiated in 
diminished receptor binding capacity and responsivity in later life 
(96, 97). The elevation of thymic noradrenaline concentration fol-
lowing the testosterone injection could also impair the efficacy of 
β2-AR signaling (through the hormonal misprinting) (35), lead-
ing to the diminished noradrenaline action as the ultimate effect. 
In favor of this assumption is the increase in Thy-1 expression in 
adult neonatally androgenized rats (83). Namely, the incubation 
of murine thymocytes with noradrenaline causes time- and con-
centration-dependent decreases in the Thy-1 mRNA levels, which 
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are completely preventable by propranolol (98, 99). Moreover, 
given that: (i) noradrenaline upregulates α1-AR expression (100) 
and (ii) long-lasting α1-AR blockade facilitates thymocyte dif-
ferentiation/maturation toward CD4+CD8−TCRαβhigh cells (70), 
the contribution of an augmented α1-AR signaling (reflecting its 
increased density and/or noradrenaline concentration) to the 
thymocyte maturation skewed toward CD4−CD8+ TCRαβhigh cells 
in adult neonatally androgenized rats cannot be ruled out.

In favor of the role of sex steroids in perinatal programming 
of thymic noradrenergic networks are also data showing that 
orchidectomy in the critical perinatal period lowers levels of both 
neurally- and thymocyte-derived noradrenaline in adult rats and 
thereby contributes to the deceleration of the thymic involution 
(34). This is consistent with data indicating that not only in pres-
ence of excess ligand in the critical periods, but also in its absence 
the ligand–receptor connection changes for life (101).

To summarize, the previous findings indicate that alterations 
in circulating levels of sex steroids in the critical perinatal period 
may affect the programming of the sexually dimorphic (nor)
adrenaline influence on thymopoiesis. However, the molecular 
mechanisms standing behind this phenomenon remain to be 
elucidated.

Peripubertal Thymic Reprogramming
It has been suggested that the hormonal changes occurring at the 
time of puberty lay the framework for biological differences that 
persist throughout life (102). In addition, the original organi-
zational/activational hypothesis of sexual differentiation of the 
brain has been extended to include puberty (76, 103). Namely, 
ovariectomy in peripubertal period leads to a long-lasting post-
ponement/alleviation of the postpubertal decline in thymopoiesis 
(33, 104). This could be partly related to ovariectomy-induced 
changes in thymocyte proliferation (35). Given that the age-
related decline in thymopoiesis has been partly related to the rise 
in the thymic noradrenaline level (44, 50, 105), one may assume 
that the peripubertal ovariectomy affects thymic adrenergic 
networks. Indeed, it was shown that it diminishes the thymic 
noradrenaline level in young adult (2-month-old) rats (45). This 
reflected the decrease in the density of noradrenergic nerve fibers 
and noradrenaline content in both noradrenergic nerve fibers 
and non-lymphoid cells, as thymocyte noradrenaline content 
increased (45) (Figure  1). These changes were preventable by 
estrogen supplementation (45). This could be explained by the 
following facts: (i) estrogen represents the key factor in remod-
eling of noradrenergic innervation in some other tissues (106) 
and (ii) is implicated in the regulation of TH expression (107). 
Estrogen is suggested to regulate TH gene expression through 
direct genomic effects, as the TH promoter contains several ele-
ments, including the activation protein 1 and Sp1/Egr1 motifs 
that might mediate estrogen action on TH gene (108, 109). The 
thymic cell type-specific effects of peripubertal ovariectomy on 
TH expression could be explained by data indicating that estrogen 
may regulate TH transcription in opposite direction through ERα 
and ERβ (110). Given that estrogen may influence TH expression 
trough extragenomic and indirect genomic effects, it may also 
be supposed that estrogen, through the same ER, may produce 

opposing effects by interacting with proteins with distinct action 
on gene transcription in distinct cells (111, 112). In peripuber-
tally ovariectomized rats, the density of noradrenergic nerve 
fibers and TH-expressing non-lymphoid cells remained lower 
than in age-matched controls until the age of 11 months (45). 
On the other hand, thymocyte noradrenaline, which was elevated 
in 2-month-old peripubertally ovariectomized rats, continued to 
rise until the age of 11 months (45). In 11-month-old peripuber-
tally ovariectomized rats it was comparable with controls (45). 
Thus, it seems that the ovariectomy-induced changes are long 
lasting (45).

In addition, peripubertal ovariectomy in young adult rats 
diminished the average thymocyte surface density of β2-AR, 
but it increased that of α1-AR (reflecting estrogen, and estrogen 
and progesterone deficiency, respectively) (45) (Figure 1). These 
changes, despite the rise in circulating estrogen level post-
ovariectomy because of extragonadal synthesis (113), remained 
stable until the age of 11 months (45). This could be related to 
a decreased sensitivity to estrogen action, as a consequence of 
peripubertal hormone misprinting. Finally, it is noteworthy 
that the increased noradrenaline content in thymocytes and 
diminished frequency of β2-AR+ thymocytes in young adult 
ovariectomized rats suggested that peripubertal ovariectomy 
instigates some signs of thymic defeminization/masculinization 
(51, 73) (Figure 1).

The putative role of peripubertal orchidectomy in long-
lasting reprogramming of the thymic adrenergic networks has 
not been examined. However, 1 month following peripubertal 
orchidectomy the changes in both extrinsic and intrinsic 
noradrenergic networks were similar to those described 
1  month following ovariectomy in the same age (44, 45). In 
addition, an impaired β-AR-mediated influence on thymus 
led to more efficient thymocyte positive selection/less efficient 
negative selection, and preferential differentiation/matura-
tion of thymocytes into mature CD4+CD8−TCRαβhigh cells in 
orchidectomized rats (44), i.e., to a more “feminine” pattern of 
T-cell development (23).

COnCLUSiOn

In summary, a growing body of evidence indicates that both 
thymic sexual differentiation and involution are, at least 
partly, “controlled” during the critical developmental periods 
by gonadal steroids. In addition, it suggests that the gonadal 
steroid-mediated thymic (re)programming involves extrinsic 
and intrinsic noradrenergic regulatory networks and AR 
expression on thymic cells. The challenge remains to elucidate 
the molecular mechanisms underlying these gonadal steroid-
induced effects. Nonetheless, it may be assumed that (i) altera-
tions in circulating levels of gonadal steroids during the critical 
developmental periods (either induced endogenously or by 
endocrine disruptors in the environment) lead to long-lasting 
effects on thymopoiesis and (ii) pharmacological manipulation 
with (nor)adrenaline action on thymus may be useful means 
in preventing/moderating deleterious effects of aging on 
thymopoiesis.
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Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune 
response and have been used since decades to treat various inflammatory and autoim-
mune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in 
the search for novel therapeutic strategies aimed to reduce pathological signaling and 
restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are 
studies suggesting that under certain conditions GCs may also exert pro-inflammatory 
responses. For these reasons the understanding of the GR basic mechanisms of action 
on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutro-
phils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a 
continuous matter of interest and may reveal novel therapeutic targets for the treatment 
of immune and inflammatory response.

Keywords: glucocorticoids, inflammation, FKBP51, transactivation, transrepression

iNTRODUCTiON

Living organisms must sustain a dynamic equilibrium in order to maintain homeostasis and survival 
which is constantly challenged by internal or external stressors. In order to appropriately cope with 
stressful stimuli, they have developed a highly conserved regulatory system. This neuroendocrine 
system consists mainly of the hypothalamic–pituitary–adrenal (HPA) axis and the autonomic nerv-
ous system. Glucocorticoids (GCs), are the end-product of the HPA axis, and play an important role 
in the maintenance of both resting and stress-related responses. If the stress response is dysregu-
lated, homeostasis is altered and probably a wide range of adverse effects may appear on many vital 
physiological functions, such as growth, development, metabolism, reproduction, immune response, 
cognition, and behavior.

GCs act on almost all types of cells and in particular in the immune cells they have been shown 
to have powerful immunosuppressive and anti-inflammatory activities (1–5). As a result of their 
anti-inflammatory properties, GCs are widely used to help treat many different conditions, such as 
allergic, autoimmune, inflammatory, and hematological alterations. Interestingly, an accumulating 
body of evidence now strongly suggests that GCs can have both pro- and anti-inflammatory roles 
under specific conditions. The pro-inflammatory activity of GCs is most apparent in the central 
nervous system (CNS). These opposite effects work together in order to resolve cellular responses to 
inflammatory stimuli and also as a protective mechanism “priming” the immune cells to efficiently 
respond to the noxa or stressor and then restore homeostasis (6).
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Upon peripheral or cerebral immune stimulation, the HPA axis 
is activated. When the immunogenic stress occurs in the brain, 
local inflammatory components activate the HPA axis. However, 
if the challenge takes place outside the brain, multiple pathways 
bring together stimulatory signals from the periphery to the HPA 
axis. Mounting evidence suggests that cytokine signals access to 
the brain through different pathways. These pathways mainly 
include: cytokines passing across the blood–brain barrier; by 
specific saturable transport molecules on the brain endothelium; 
activation of endothelial cells of brain capillaries that release 
second messengers within the brain parenchyma; transmission 
of cytokine signals via afferent nerve fibers and finally by periph-
erally activated monocytes that can enter into the brain (7–11). 
The induction of these different mechanisms modulates cytokine 
activity in the brain (12–14).

The accurate regulation of the HPA axis activity is critical, 
since GC imbalances can result in many different pathological 
conditions (13, 15). Long-term treatment with GCs may result 
in a plethora of harmful undesired side effects, such as diabetes, 
hypertension, growth retardation, dyslipidemia, osteoporosis, 
glaucoma, muscle atrophy, and is also related to many important 
behavioral alterations, among others (16, 17). Chronic exposure 
to GCs can also be associated with GC insensitivity, reducing the 
efficacy of the therapy (18). Also, alterations or deficits in the HPA 
axis response are tightly associated with a wide range of autoim-
mune and inflammatory diseases (19–24).

In this review, we will discuss the role of GCs on the immune 
and inflammatory cells in the periphery and also the physiologi-
cal importance and mechanisms implicated in the apparent para-
doxical functions of GCs in the brain in order to appropriately 
maintain a coordinated homeostatic response.

THe GLUCOCORTiCOiD ReCePTOR (GR)

As a small lipophilic hormone, GCs can rapidly diffuse into cells 
and exert their main actions. These actions are elicited by the 
binding of GCs to their intracellular receptor, the GR. The GR is 
a hormone-activated transcription factor (TF) that belongs to the 
superfamily of nuclear hormone receptors (25). GR is a modular 
protein composed of three distinct regions with different func-
tions (Figure  1A). The N-terminal domain (NTD) contains a 
transactivation domain called activation function 1 (AF1) that 
is responsible for the transcriptional activation and is implicated 
in the association with coregulators and the basal transcription 
machinery. The DNA-binding domain (DBD) is composed of 
two zinc fingers that have been shown to be important for GR 
homodimerization and DNA-binding specificity. The hinge 
region, which separates the DBD from the ligand binding domain 
(LBD), is a flexible linker structure which is implicated in allow-
ing proper DNA binding, dimerization, and nuclear translocation 
of the receptor (26). The C-terminal LBD, contains the ligand 
binding site and a second transactivation domain (AF2) regulated 
by hormone binding (27). The AF2 transactivation domain is 
important for the interaction with co-chaperones, coregulators, 
and other TFs (28). The LBD also encompasses a dimer interface 
which is critical for GR function and the binding of the heat 
shock protein (Hsp) 90 (29). The DBD and LBD both contain 

nuclear localization signals, which are important for GR nuclear 
translocation. The DBD also contains the nuclear export signal 
sequence (NES) which targets it for export from the cell nucleus 
to the cytoplasm through the nuclear pore complex.

Some degree in the heterogeneity in GR proteins may result 
from alternative splicing (30) (Figure  1B). The specificity and 
sensitivity of different target tissues to GCs has been reported 
to be related to GR isoforms (30). The GRα is the predominant 
isoform, and it is the one that transduces GCs signaling in the 
cell (31). There are other four additional splice variants identified: 
GRβ, GRγ, GR-A, and GR-P. GRβ differs from GRα in the carboxy 
terminal sequence, rendering GRβ non-responsive to GCs (32, 
33), with no transcription of target genes. Therefore, GRβ can be 
described as a dominant negative inhibitor of GRα activity. GRβ 
does not bind GC agonists, however, it does bind to the GR antag-
onist RU-486 (34). GRβ can inhibit GRα transcriptional activity 
by different molecular mechanisms including competition for 
glucocorticoid response elements (GRE), interference with the 
activity of coregulators, and formation of inactive dimers (35, 36). 
In most tissues, GRβ is expressed at very low levels. However, 
abundant GRβ expression has been described especially in some 
inflammatory cells, such as lymphocytes and macrophages, and 
have been related to GCs resistance in diseases such as asthma 
(37), rheumatoid arthritis (38), ulcerative colitis (39), systemic 
lupus erythematosus (40), and acute lymphoblastic leukemia and 
chronic lymphocytic leukemia (41, 42). Considering that GRβ 
can inhibit GRα activity, the modulation of GRα/GRβ expression 
ratios may be an interesting approach to regulate GC sensitiv-
ity (42, 43). In addition, eight alternative translation initiation 
sites increase the repertory of GR proteins to almost 40 distinct 
isoforms of GR protein (44) (Figure 1B).

At the cellular level, GC availability is also modulated by 
enzymes of the 11β-hydroxysteroid dehydrogenase (11β-HSD) 
family, mainly 11β-HSD1 and 11β-HSD2 which regulate the 
conversion of active cortisol into inactive cortisone. 11β-HSD1 
favors the conversion of cortisol from cortisone, increasing local 
GC activity (45). In contrast, 11β-HSD2 catalyzes cortisol to 
cortisone, thereby reducing GC availability. Thus, the balance 
in the expression of these two enzymes in a given tissue or cell, 
regulates GC-mediated responses. In addition, some studies 
show that inflammatory cytokine signaling modulates the relative 
expression of 11β-HSD genes, favoring 11β-HSD1 and inhibiting 
11β-HSD2 (46, 47), adding another level of regulation of GC 
activity.

Another important level for fine-tuning the cellular response 
to GCs in different environmental situations is the modulation 
of GR activity by posttranslational modifications (PTMs). These 
PTMs include phosphorylation, acetylation, ubiquitination, 
and sumoylation, which may accurately regulate GR activity 
in response to diverse external stimuli (48) (Figure  1A). In 
particular, SUMO conjugation has been extensively described 
to modulate GR transcriptional activity (49–52). GR contains 
three consensus sumoylation sites. Two sumoylation sites located 
at the NTD have been demonstrated to be part of the synergy 
control (SC) motif sequence (50). The SC motifs consist of 
short regulatory sequences which are important for inhibiting 
the synergistic transactivation. SUMO conjugation to the two 
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FiGURe 1 | The glucocorticoid receptor (GR) structure, isoforms, and mechanisms of transcriptional regulation. (A) Full human GRα protein has an N-terminal 
domain (NTD), a DNA-binding domain (DBD), a ligand binding domain (LBD) and a hinge region (H) between DBD and LBD. They have different associated 
functions, e.g., transactivation, dimerization, nuclear localization, DNA binding, and heat-shock protein 90 binding. The receptor can be post-translationally modified 
by phosphorylation (P), ubiquitination (U), acetylation (A) and sumoylation (S). Regions associated with transactivation (activation function 1 and 2: AF1 and AF2) are 
shown. (B) The GR has various isoforms which result from alternative splicing and multiple transcriptional start sites at exon 2. The colors indicate NTD (red, exon 2), 
DBD (green, exons 3–4), H (light blue, exon 5) and LBD (dark blue, exon 5–9). The 5′ and 3′-untranslated regions are colored in gray. There are five patterns of 
alternative splicing that result in GR isoforms α, β, P, γ, A. Each of them has eight translational variants (A, B, C1, C2, C3, D1, D2, D3) depending on the 
transcriptional start site (“*” denotes an alternative splice donor site in the intron between exons 3 and 4). (C) The GR, carrying GC ligand, translocates to the 
nucleus and regulates gene expression. GR can directly activate/inactivate gene expression by interacting with GREs/nGREs, it can bind to GREs and modulate 
gene transcription by interacting with neighboring DNA-bound transcription factors (TFs) (composite mechanism) and it can act by attaching itself to DNA-bound 
TFs (tethering mechanism). Abbreviations: TF, transcription factor; GRE, glucocorticoid response element; nGRE, negative glucocorticoid response element; TFRE, 
transcription factor response element.
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NTD sumoylation sites is responsible for the functional effect 
of the SC motifs and thereby they inhibit GR activity (50, 53) 
(Figure 1A). It has also been demonstrated that in the presence 
of the sumoylation enhancer, RSUME (54), a SUMO peptide is 
conjugated to the third sumoylation site located in the LBD of 
the GR. Sumoylation in the LBD may be important for inducing 
GR-mediated transcriptional regulation during stress adaptation 
(55) (Figure  1A). A genome-wide analysis of GR sumoylation 
impact on gene expression, showed that genes differentially 
regulated by this PTM are mostly related to proliferation and 
apoptosis pathways and also strongly suggests that sumoylation 
can regulate genome-wide chromatin occupancy of the GR (56). 
Also, GR SUMO conjugation is influenced by other PTMs such as 
phosphorylation in order to fine-tune GR transcriptional activity 
in a target gene-specific manner (57). Important coregulators of 
the GR are also modified by SUMO conjugation, such as Hsp90, 
GRIP1, and also FKBP51, further regulating GR activity (58–62). 
Therefore, PTMs that impact on the GR but also on key molecules 
that fine-tune its activity, helps to understand the complexity of 
GR-mediated regulation of its target gene expression (2, 48).

GCs ANTi-iNFLAMMATORY ACTiONS

The GR forms complex with chaperone molecules, such as Hsp90 
and 70, and immunophilins, such as FKBP51, FKBP52, Cyp44, 
and PP5 (63). FKBP51 binds to the unbound GR and reduces 
GR activity mainly by reducing GR hormone binding and its 
nuclear translocation. Therefore, FKBP51 is considered as an 
inhibitor of GR transcriptional activity. Upon ligand binding, 
the GR exchanges FKBP51 for FKBP52, which is able to interact 
with the dynein motor protein, facilitating GR translocation to 
the nucleus (64). Interestingly, FKBP51 overexpression has been 
associated with GC resistance in autoimmune diseases. FKBP51 
expression was found to be enhanced in sputum samples from 
patients with chronic obstructive pulmonary disease (65). 
Moreover, in a genome-wide profiling focused on the iden-
tification of epithelial gene markers of asthmatic patients and 
response to corticosteroids, GC treatment was found to induce 
FKBP51 expression, which in turn was associated with a poor 
response to corticosteroids, suggesting a role of FKBP51 in GC 
resistance (66, 67). Also, enhanced expression of FKBP51 has 
been found in bone marrow cells in patients with rheumatoid 
arthritis (68). Evidence also suggests that FKBP51 modulates 
NFĸB-dependent gene expression, with possible implications 
for various inflammatory and immune pathways (69–73). 
Considering that GR is a key modulator of immune and inflam-
matory responses, FKBP51 dysregulation may provide the basis 
for a role of FKBP51 in these processes (66). Moreover, FKBP51 
has recently been shown to be a target of SUMO conjugation and 
that sumoylation of FKBP51 is necessary for its association to 
Hsp90 and modulates FKBP51-mediated inhibition of GR activ-
ity in neuronal cells (58). In the brain, FKBP51 has been shown 
to be important for the development of psychiatric diseases 
and the response to antidepressant treatment, suggesting that 
regulation of FKBP51 activity might be an interesting approach 
for modulating GR outcome in the stress response and also in 
the inflammatory context (74–76).

Once in the nucleus, the activated GR can regulate gene 
expression by different mechanisms known as genomic effects 
(Figure  1C) (27). The genomic mechanism involves changes 
in the levels of specific genes: binding of GR to GREs in the 
promoters of its target genes and activation of transcription 
(transactivation); DNA binding of the GR with other TFs to 
“composite” elements which contain a GRE and an overlapping 
response element of another TF (binding can lead to gene activa-
tion or repression); or binding of the GR to a TF (e.g., NFĸB; or 
AP1) by means of a “tethering” mechanism without contacting 
DNA, to influence the activity of the TF (this mechanism is 
considered to be the prevailing mechanism for transrepression) 
(2, 77, 78). Furthermore, GR-mediated transcriptional repression 
can be exerted via GR binding to a negative GRE (nGRE) (79). 
Binding to these nGRE prevent receptor dimerization through 
a strong negative cooperativity and alters the conformation of 
GR residues that are critical for transcriptional activation so that 
negative regulation is accomplished (80). A growing body of 
evidence shows that GC can also mediate non-genomic actions 
that do not require protein synthesis and are implicated in rapid 
cellular responses. For example, in the cytoplasm the activated 
GR can acutely interact with signaling pathways, such as PI3K, 
JNK, 14-3-3 proteins, and components of the T  cell receptor 
signaling complex (81), modulating pro-inflammatory gene 
expression. In thymocytes, the activated GR can translocate to 
mitochondria and induce a rapid apoptotic response (82). In 
addition, membrane-bound GR on monocytes was reported to 
mediate non-genomic effects (82). On the other hand, binding of 
GCs to GR can modify the recruitment of different factors such 
as the multiprotein chaperone complex that participate in many 
signaling pathways, modifying secondary signaling cascades and, 
therefore, may further regulate the immune response (78, 83). 
GCs may also exert anti-inflammatory responses by direct nega-
tive interaction with components of the MAPK pathway, such as 
ERK, c-Jun NH2-terminal kinases (JNK), and p38 isoforms 
(p38) regulating their activity (84). Further studies are required 
to clarify the implications of non-genomic GC-mediated activity 
in the immune and inflammatory context.

It has been shown that several of the undesirable metabolic side 
effects associated with chronic GC treatment are mediated via 
transactivation. However the anti-inflammatory effects of GCs 
are mainly mediated via the transrepression elicited by a mono-
meric GR with the activity of TFs, such as NFĸB and AP1 (1–3, 
85). These TFs are involved in the activation of pro-inflammatory 
and immunoregulatory genes, such as inflammatory cytokines, 
cytokine receptors, adhesion molecules, and chemotactic pro-
teins that play a key role for the coordination of the inflamma-
tory response (1, 86–88). The first example of the transrepressive 
mechanism was the inhibitory interaction described between GR 
and AP1 (89), which results in the inhibition of IL2 expression 
(90). NFĸB is present in almost all immune cells and regulates 
the expression of inflammatory cytokines. Thus, inhibition of 
NFĸB activity is an important feature for GR-mediated anti-
inflammatory activity (85, 91). It also inhibits NFAT-dependent 
IL2 transcription (92). The main mechanism of the GR action 
over these TFs is via transrepression: the activated GR acts by 
binding proximal to the NFĸB or AP1-binding site and interacts 
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with these TFs inhibiting gene expression (93). The transrepres-
sion mechanism is not restricted to these TFs, but has expanded 
including among others, CREB, STAT, and T-bet (1–3, 94).

Alterations in chromatin structure have been reported to be 
important for regulating GC actions. The GR can differentially 
interact with proteins that have histone acetyltransferase (HAT) 
activity, but also with histone deacetylases and kinases that can 
influence the chromatin environment modifying chromatin 
accessibility and further regulating immune and inflammatory 
gene expression (3). In addition, chromatin accessibility has been 
reported to pre-determine GR binding patterns and, therefore, 
is critical for cell-specific outcome, providing new molecular 
basis for the tissue selectivity (95, 96). By all these different 
mechanisms, GCs regulate important functions, not only in the 
periphery but also in the brain.

Synthetic analogs of GC are often employed in the clinic in 
the therapy of allergic, inflammatory, and autoimmune disorders 
(97–99). It is generally accepted that GR-mediated transrepres-
sion holds the beneficial anti-inflammatory action, whereas their 
side effects are due mainly to the direct binding of GR to GREs 
as depicted before (98–100). However, transactivation is also 
necessary for the induction of several anti-inflammatory genes, 
such as MAP kinase phosphatase 1 (101), glucocorticoid-induced 
leucine zipper (102), and inhibitor kappa B-alpha (IĸBα) (85). 
Therefore, the ideal GC analogs should be those that have high 
repressive activity against inflammatory mediators, but low 
transactivation activity, causing minimal side effects. Several 
steroidal and nonsteroidal ligands have been reported to have this 
dissociated function between transactivation and transrepressive 
mechanisms (97–99, 103). These compounds were shown to 
repress the activity of key inflammatory and immune TFs in vivo 
(104–107). However, GCs can induce gene expression not only 
by binding to GRE, but also in combination with other TFs and 
also by binding to promoter regions in a mechanism that does 
not involve GR dimerization or DNA interaction; therefore, 
unexpected secondary side effects might appear (78).

GCs may exert acute anti-inflammatory effects through the 
release of annexin-A1 (ANXA1) (108). Originally, this protein 
was suggested to have anti-inflammatory actions because it was 
described to inhibit phospholipase A2 (109). However, ANXA1 
has been reported to regulate different cellular processes, such as 
migration, growth, differentiation, apoptosis, membrane fusion 
during exocytosis, lipid metabolism, and cytokine expression. 
Importantly, in the HPA axis, ANXA1 has been reported to play 
a critical role in the negative feedback exerted by GCs, therefore, 
affecting hypothalamic-releasing hormones secretion possibly 
via non-genomic mechanisms (110).

GCs ACTiviTY ON PeRiPHeRAL iMMUNe 
CeLLS

GCs mediate immunosuppressive functions by acting on almost 
all types of immune cells (Figure 2). GCs can regulate the phe-
notype, survival, and functions of monocytes and macrophages 
which have crucial roles in tissue homeostasis and innate immu-
nity. GCs exhibit anti-apoptotic effects promoting the survival of 

anti-inflammatory macrophages (111). The intrinsic molecular 
mechanism involves a prolonged induction of the extracellular 
signal-regulated kinase/MAPK (ERK/MAPK) pathway resulting 
in inhibition of caspase activities and expression of anti-apoptotic 
genes (111). GCs can also improve the phagocytic activity of these 
cells and stimulate the clearance of harmful elements, such as 
neutrophil clearance (112–114). GCs also suppress immunostim-
ulatory functions of these cells and inhibit the release of various 
pro-inflammatory mediators, such as cytokines, chemokines, 
and reactive oxygen through different mechanisms (115, 116). 
Functional clustering of GC-regulated genes by human anti-
inflammatory macrophages by microarray technology indicated 
induction of phagocytosis and motility as well as repression of 
adhesion, apoptosis, and oxidative burst (117, 118).

GCs can regulate the maturation, survival, and migration 
toward the lymph nodes and motility of dendritic cells (DCs), 
and also inhibit their immunogenic functions (Figure  2). GCs 
were shown to reduce the ability of DCs to stimulate T cells by 
inhibiting the upregulation of co-stimulatory molecules and 
cytokines, such as IL6, IL12, and TNFα and by inducing the 
tolerance-inducing transcription factor GILZ (119–125). The 
distinct actions exerted by GCs in immature and mature DCs are 
due to differential expression of GR translational isoforms (126).

GCs are important modulators of neutrophilia (Figure  2). 
Leukocyte extravasation is the movement of leukocytes out of 
the circulation and toward the site of tissue damage or infection. 
Rolling, adhesion, activation, and transmigration are necessary 
to arrive to the damaged tissue. GCs can modulate each of these 
steps. Rolling and adhesion is mediated by the interaction of the 
leukocyte integrins with the endothelial counterparts, which are 
inhibited by GCs (127–129). Also, GCs increase the number of 
circulating neutrophils in the blood stream by favoring their 
egress from the bone marrow and also inhibiting their migration 
to inflammatory sites by hindering the expression of adhesion 
molecules (32, 129, 130).

GCs exert distinct immunomodulatory actions on T  cells 
(Figure  2). GCs decrease the number of circulating T  cells by 
favoring their migration back to the bone marrow and second-
ary lymphoid tissues or through the induction of chemokine 
receptors, adhesion molecules, and matrix metalloproteinases 
(131, 132). The steroid hormone also favors T  cells apoptosis. 
GC-induced apoptosis of T cells requires the dimerization of the 
GR (133) and is mediated via the induction of Puma and Bim 
expression (134–137). The relative expression of distinct GR 
isoforms increases the susceptibility of T cells to GC-induced cell 
death (138). Helper T (Th) cells are important players of the adap-
tive immunity (1). Upon antigen stimulation, naive Th cells can 
differentiate into different subsets: Th1, Th2, Th17, or regulatory 
T (Tregs) cells among others, each with specific effector functions. 
Th1 cells express the lineage-specific TF T-bet and STAT4 and 
release pro-inflammatory cytokines, such as IFNγ and IL2 (139). 
Th1 cells help in the activation of effector T cells, natural killer 
(NK)  cells, and macrophages at the site of infection, promote 
effective immune responses against intracellular pathogens and 
are also implicated in autoimmune pathologies. Th2 lymphocytes 
selectively express the TF GATA3 and are characterized by the 
expression of IL5, IL4, IL10, and IL13 and are important for the 
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FiGURe 2 | Glucocorticoid (GC) activity on periphery immune cells. GCs act upon almost every immune cell type. GCs promote an anti-inflammatory state on both 
monocytes and macrophages. GCs prevent monocytes into entering apoptosis and inhibit the liberation of pro-inflammatory mediators by both types of cells. 
Particularly in macrophages, GCs promote phagocytosis and motility, while they inhibit adhesion, apoptosis and oxidative burst. They also act upon neutrophils 
function by inhibiting rolling, adhesion and activation. GCs act toward dendritic cells by promoting their maturation, survival, migration and motility, and at the same 
time GCs inhibit their ability to activate T cells by suppressing the production of pro-inflammatory molecules. A naïve helper T (Th) cell can differentiate into different 
Th lineages and GCs exert different actions. They act upon Th1 by decreasing T-bet transcriptional activity and suppressing the production of pro-inflammatory 
molecules such as IL-2 and IFNγ. They also suppress GATA3 activity in Th2 cells inhibiting the expression of IL-4 and IL-5. The action of GCs toward Th17 and 
regulatory T cells is not yet well understood.
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proper eradication of extracellular pathogens (140). Also, Th2 
cells activate B cells to produce antibodies and play a triggering 
role in the activation/recruitment of eosinophils and mast cells in 
allergic responses. IL17-producing Th17 cells selectively express 
RORγt and also RORα (141, 142). Th17 cells play an important 
role in autoimmune diseases and in host defense against infec-
tion. Treg cells mainly express the TF Foxp3 and inhibit effector 
T-cell differentiation and proliferation and suppress autoimmune 
and allergic responses (143). GCs inhibit the expression of many 
T cell cytokines (1) and can produce a shift from Th1-mediated 
cellular immunity to mediating humoral Th2 responses at physi-
ological doses or chronic treatment (144). Upon acute treatment 
with GCs, they inhibit the synthesis of Th1 cytokines like IL2 
and IFNγ and reduce STAT4 activity (145) and also reduce 
Th2 cytokines expression (146). The molecular mechanism by 
which GCs inhibit Th1 responses involves the reduction of T-bet 
transcriptional activity by the inhibitory interaction between GR 
and T-bet that results in diminished binding of T-bet to DNA 

(94) (Figure  2). Also GCs where shown to reduce mRNA and 
protein levels of T-bet (94). The activity of the Th2-specific TF 
GATA3 is also suppressed by GCs via two main mechanisms: 
first by GR-mediated inhibition of GATA3 translocation into 
the nucleus and second by the inhibition of GATA3 phospho-
rylation by GC-induced MKP1 expression (147, 148) (Figure 2). 
Furthermore, STAT6 activity also involved in Th2 differentiation 
is inhibited by GCs (149). How GCs modulate Th17-mediated 
responses has not been extensively studied, and the importance 
of Th17 modulation by GCs for the suppression of allergic or 
autoimmune diseases remains unclear (150). In rheumatoid 
arthritis, GC treatment diminished IL17 levels (151). In addition, 
in rat lymphocytes methylprednisolone inhibited IL17 expres-
sion due to the inhibition of RORγt expression (152) (Figure 2). 
However, several studies strongly suggest that GC resistance is 
associated with a pathogenic inflammatory Th17 phenotype that 
is refractory to GCs (150, 153, 154). Recently, a gene-expression 
profiling to characterize the steroid-resistant phenotype showed 
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FiGURe 3 | Glucocorticoids (GCs) actions in the brain. Acute stressors 
promote an inflammatory phenotype in the brain. (A) In the microglia, GCs 
bind to the glucocorticoid receptor (GR) which then promotes the translation 
of the toll-like receptor 2 (TLR2) by interacting with STAT5 and NFƙB 
response elements. TLR2 then exerts a pro-inflammatory response by 
promoting the production of inflammatory cytokines. (B) In macrophages, 
GCs promote the expression of the purinergic receptor P2Y2R which then 
produces IL-6 in response to ATP. Moreover, GCs enhance the expression of 
NLRP3 which in turn promotes the production of pro-inflammatory 
cytokines.
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that Th17  cells have restricted genome-wide responses to GCs 
and that they are refractory to GC inhibition at this level. In addi-
tion, Th17 cells were sensitive to suppression with the calcineurin 
inhibitor, cyclosporine A, suggesting that the clinical efficacy of 
cyclosporine A in the treatment of steroid resistance may be due 
to its selective inhibition of Th17 cells (155). Another interesting 
study has shown that Th17 cells are insensitive to GC-induced 
apoptosis and had high levels of BCL-2, knockdown of which sen-
sitized Th17 cells to GC-induced cell death (156). Also, lung Th17 
development in the murine severe asthma model was enhanced 
by GCs, supporting a role of Th17 cells in GC-refractory inflam-
matory conditions such as asthma (157).

In contrast to the inhibitory effect of GCs on pro-inflamma-
tory effector T  cells, it has been shown that Treg cells, which 
are key suppressors of T cell-dependent immune responses, are 
enhanced upon dexamethasone treatment by being more resist-
ant to GC-induced cell death (158) (Figure 2). Also, GCs where 
shown to amplify IL2-dependent expansion of Treg cells and 
to enhance their capacity to reduce experimental autoimmune 
encephalomyelitis (EAE) in mice (159). In addition, GCs increase 
the percentage of Treg cells that express Foxp3 in patients with 
multiple sclerosis (160). In vivo, T cell-specific targeted GR dele-
tion in pregnant animals undergoing EAE, resulted in a reduction 
of Treg population and a loss of pregnancy-induced protection, 
suggesting that steroid hormones can shift the immunological 
balance in favor of Tregs via differential engagement of the GR 
in T cells (161). However, others have found that GC treatment 
suppresses the expression of Foxp3 Tregs in an EAE model (162) 
and also in lungs of allergic mice (163).

In addition to their well-studied anti-inflammatory and 
immunosuppressive activity, an increasing body of evidence has 
revealed situations in which GCs have the opposite effect. This has 
been shown to depend on the dose, timing, duration of exposure, 
and cell population or tissue analyzed (164). The paradoxical pro-
inflammatory role of GCs is mostly evident in the brain, where 
accumulating evidence show that GCs elicit different immune 
responses depending on the affected brain regions.

GCs ACTiONS iN THe BRAiN

There is a significant body of evidence indicating that GCs can 
suppress the innate immunity in the brain after a peripheral or 
cerebral challenge (23). In this way, in adrenalectomized mice, 
there is an induction in the levels of pro-inflammatory cytokines 
in the brain following LPS injection (165–168). Studies also dem-
onstrated that GCs inhibit the release of pro-inflammatory media-
tors in microglial cells treated with LPS (169, 170). Experiments 
performed in vivo support these findings by revealing that dexa-
methasone causes a strong reduction in LPS induction of NFĸB 
expression in the brain (171). In addition, COX inhibitors were 
demonstrated to increase the expression of pro-inflammatory 
genes in the brain during systemic inflammation by reducing 
the activation of the HPA axis and the release of GCs (172, 173). 
This same effect took place when the GR antagonist RU486 was 
administrated (172, 173). Also, systemic inflammation, through 
the increase in circulating GCs, has been reported to have the 
ability to prevent the cerebral innate immune response induced 

by intraparenchymal endotoxin injection (174). Mice treated with 
the GR antagonist RU486 before intracerebral LPS administration 
showed an increase in the pro-inflammatory response, which in 
turn induced neuronal death. These findings suggest that GCs are 
important for protecting the brain during innate immunity (175, 
176). Interestingly, when mice lacking GR in microglia were chal-
lenged with an intracerebral administration of LPS, the activation 
of the toll-like receptor 4 signaling pathway induced cellular 
lesion, and also neuronal and axonal damage (177). In addition, 
microglial cell cultures have reduced motility and increased 
amoeboid morphology in the absence of GR expression. This 
study strongly suggests that microglial GR is the principal media-
tor preventing neuronal degeneration triggered by LPS and that it 
also contributes to the protection of other cell types (177), having 
an important role in promoting neuronal survival.

The majority of GC pro-inflammatory activity has been 
described in animal models of acute or chronic stress which 
occurred previous to peripheral or cerebral immune challenges. 
For instance, acute stressors were reported to induce the expres-
sion of pro-inflammatory cytokines in specific brain regions, 
such as the hippocampus, following LPS peripheral challenge 
(178–180). GCs were also found to upregulate microglial activa-
tion markers including the toll-like receptor 2 pro-inflammatory 
pathway (178, 181) (Figure 3A). It was also shown that chronic 
unpredictable stress was able to potentiate LPS-mediated activa-
tion of NFĸB activity in the frontal cortex and hippocampus via 
GC production (182). Also, chronically stressed animals that were 
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injected with LPS in the prefrontal cortex or the hippocampus, 
exhibited microglia activation, an increase in pro-inflammatory 
mediators and loss of astroglia and neurons. These effects were 
reduced with RU486 administration (183, 184). The prefrontal 
cortex is important in many brain functions and is a target for 
neurodegenerative diseases. It has been reported that in this 
brain region, TNFα expression and activation of MAPK signal-
ing pathway is upregulated by chronic stress after intracortical 
LPS injection in a GR-dependent manner suggesting a syner-
gistic effect between inflammation and stress. This fact could 
ultimately explain the relationship described between stress 
and some neurodegenerative pathologies (183, 184). In order to 
investigate if stress-induced GCs is responsible for the response 
of brain immune cells to pro-inflammatory stimuli, animals 
were acutely stressed and 24 h later hippocampal microglia were 
challenged with LPS ex vivo. Treatment in vivo with RU486 and 
adrenalectomized inhibited the microglial pro-inflammatory 
response, indicating that stress-induced GCs are able to sensitize 
the microglial pro-inflammatory function (185, 186). Therefore, 
stress may act “priming” central innate immunity to a subse-
quent immune challenge by making the neuroimmune context 
more responsive to inflammation, also favoring GC insensitivity 
or reducing the HPA response (187). In addition, acute restraint 
stress, inescapable tail shock and other stressors induce many 
inflammatory mediators, reduce immunoregulatory proteins 
and trigger microglia activation and proliferation (188–193). 
In addition, GCs have been reported to increase the expression 
of the purinergic receptor P2Y2R (Figure 3B) which promotes 
the secretion of inflammatory mediators in response to ATP 
(194). Recent data also indicate that GCs induce the expression 
of NLRP3 (NLRP3: nucleotide-binding domain, leucine-rich-
containing family, pyrin domain-containing 3) in macrophages, 
which is a critical component of the inflammasome (Figure 3B). 
The GC-dependent induction of NLRP3 sensitizes the cells to 
extracellular ATP and significantly enhances the ATP-mediated 
release of pro-inflammatory molecules. This effect was specific 
for GCs and dependent on the GR and suggests that GCs sen-
sitize the initial inflammatory response in the context of acute 
cellular damage or death (32). In addition, GCs and TNFα were 
shown to coregulate immune gene expression when combined 
(195). These results suggest that the final outcome of GCs pro- or 
anti-inflammatory activity depends on the activation state and 
signaling context. GCs are also able to modulate the inflamma-
tory response to LPS in different ways according to the brain 
region (180, 182). For example, GR activation during chronic 
stress increases LPS-induced NFκB activation and TNFα, IL1β, 
and iNOS expression in the hippocampus and frontal cortex, 

but exhibits contrary effects in the hypothalamus (182). It is 
important to keep in mind that a pro-inflammatory context 
does not necessarily mean that damage will take place. Timing 
is a key parameter that will determine the final outcome of the 
inflammatory response. While exaggerated inflammation can 
favor neuronal dysfunction and cell death, pro-inflammatory 
mediators may at first induce the removal of the pathogen, the 
recruitment of immune cells and initiate tissue remodeling in 
order to appropriately cope with the pathogen and therefore, 
restoring homeostasis.

CONCLUSiON

GCs are widely used in the clinic to control not only peripheral, 
but also CNS inflammatory response. However, the prolonged 
administration of this steroid hormone is often ineffective and 
can even worsen the outcome of the disease. Considering the 
known undesirable metabolic side effect, the induction of pro-
inflammatory responses and the existence of GC resistance, GCs 
should be used carefully. Future research should be focused not 
only in understanding the molecular basis of GCs side effects 
and resistance, but also in dissecting how GCs induce pro-
inflammatory responses in order to avoid serious detrimental 
consequences, particularly in the brain. In the future, a combi-
nation of different therapeutic approaches may lead to a more 
effective treatment and may help to lower the doses or duration 
of GC treatment thus minimizing the risk of toxicity and drug 
resistance (196). Finally, taking into account inter-individual 
differences in patient responsiveness to GC treatment, where 
different molecular mechanisms might be implicated, future 
directions should be in support of a customized and personal-
ized treatment to meet individual patient needs.
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Maintenance of thymus homeostasis is a delicate interplay involving hormones,

neurotransmitters and local microenvironmental proteins, as well as saccharides, acting

on both thymocytes and stromal cells. Disturbances in these interactions may lead

to alterations on thymocyte development. We previously showed that galectin-3, a

β-galactoside-binding protein, is constitutively expressed in the thymus, interacting

with extracellular matrix glycoproteins and acting as a de-adhesion molecule, thus

modulating thymocyte-stromal cell interactions. In this work, we aimed to investigate

the participation of galectin-3 in the maintenance of thymus homeostasis, including

hormonal-mediated circuits. For that, we used genetically engineered galectin-3-deficient

mice. We observed that the thymus of galectin-3-deficient mice was reduced in

mass and cellularity compared to wild-type controls; however, the proportions of

different thymocyte subpopulations defined by CD4/CD8 expression were not changed.

Considering the CD4−CD8− double-negative (DN) subpopulation, an accumulation of

the most immature (DN1) stage was observed. Additionally, the proliferative capacity

of thymocytes was decreased in all thymocyte subsets, whereas the percentage of

apoptosis was increased, especially in the CD4+CD8+ double-positive thymocytes. As

glucocorticoid hormones are known to be involved in thymus homeostasis, we evaluated

serum and intrathymic corticosterone levels by radioimmunoassay, and the expression

of steroidogenic machinery using real-time PCR. We detected a significant increase in

corticosterone levels in both serum and thymus samples of galectin-3-deficient mice,

as compared to age-matched controls. This was paralleled by an increase of gene

transcription of the steroidogenic enzymes, steroidogenic acute regulatory protein (Star)
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and Cyp11b1 in thymus, 11β-Hydroxysteroid Dehydrogenase (Hsd11b1) in the adrenal,

and Cyp11a1 in both glands. In conclusion, our findings show that the absence of

galectin-3 subverts mouse thymus homeostasis by a mechanism likely associated

to intrathymic and systemic stress-related endocrine circuitries, affecting thymocyte

number, proliferation and apoptosis.

Keywords: galectin-3, thymus, thymocytes, proliferation, cell death, glucocorticoid, steroidogenic machinery

INTRODUCTION

Galectins are a family of 15 β-galactoside-binding lectins,
containing at least one conserved carbohydrate-recognition
domain, which can be found in the nucleus, cytosol, and
bound to cell membrane glycoconjugates or to extracellular
matrix glycocomponents (1). Depending to their location into
the cell, galectins can influence cell proliferation, adhesion,
migration, signaling, differentiation, and apoptosis (1, 2). They
were also shown to modulate immune functions in health
and disease (3, 4). We showed that galectin-3 is constitutively
expressed by epithelial and phagocytic cells in both thymic
cortex and medulla. Galectin-3 interacts with glycoconjugates
on thymocyte surface and extracellular matrix glycoproteins
acting as a de-adhesion molecule, thus modulating thymocyte-
stromal cell interactions (5). Furthermore, we also noted that
galectin-3 accumulates in the thymus of Trypanosoma cruzi
infected mice, being related to increased thymocyte death
and exit to the periphery, and consequent thymus atrophy
(6).

Thymus involution is a physiological phenomenon of the
organ, related to aging, leading to progressive alterations in the
thymus microenvironment, with loss of thymus mass, thymic
epithelial cell (TEC) number and function, resulting in a decrease
in thymopoiesis. In consequence, a decrease in the immune
function is observed in the elderly, with less resistance to
infections, autoimmune diseases and cancer (7, 8). On the
other hand, acute thymic involution is related to pathological
conditions, such as metabolic and infectious diseases (9, 10).

In addition, activation of the hypothalamus–pituitary–adrenal
axis induced by stress or some diseases, including diabetes
and Chagas disease, was shown to cause severe atrophy of
the thymus (11, 12). Glucocorticoids decrease proliferation and
increase apoptosis of immature CD4+CD8+ double-positive
(DP) thymocytes, inducing a strong atrophy in the thymus (13,
14). These actions of glucocorticoids on thymus are related to
endocrine and paracrine actions of this hormone, since thymus
presents the steroidogenic machinery, including StAR, 11β-
HSD1, and 11β-HSD2, and is capable to produce glucocorticoids
(15, 16).

Considering the multifunctional role of galectin-3 as a
regulator of cell adhesion, migration, proliferation, signaling,
differentiation and apoptosis, our hypothesis is that galectin-
3 is a key player to maintain thymus homeostasis. Here, we
undertook this study to evaluate the role of galectin-3 on thymus
homeostasis in association with its effects on local and systemic
production of glucocorticoids.

MATERIALS AND METHODS

Mice
Male BALB/c wild type (WT) and galectin-3 deficient mice (4–
6 week old) were obtained from the Oswaldo Cruz Foundation
animal facilities, Rio de Janeiro, Brazil. Galectin-3 deficient mice
(Gal-3−/−) were generated by backcrossing with their BALB/c
littermates for 9 generations (17). Mice were housed in groups
of three in a temperature-, humidity-, and light-controlled (12 h
light: 12 h darkness cycle) colony room. Mice were given ad
libitum access to food and water. All protocols for the use and
care of animals were approved by the Ethics Committee for the
Use of Experimental Animals of the Oswaldo Cruz Foundation,
under licenses number L-024/09 and L-004/2014.

Analysis of T Cell Subpopulations
Individual thymuses were minced, resuspended in phosphate
buffered saline solution (PBS) (Sigma Aldrich, St Louis, MO,
USA) with 5% Fetal Calf Serum (FCS) (Cultilab, Campinas,
SP, Brazil) and counted in Neubauer chamber in the presence
of Trypan Blue (Sigma Aldrich) for evaluation of cell viability.
Trypan Blue evaluation of cell viability in fresh thymocytes
showed that about 95 and 85% of cells were alive in the thymus of
WT and Gal-3−/− mice, respectively. The phenotype of the main
thymocyte subpopulations was evaluated by Flow Cytometry
with the use of monoclonal antibodies to mouse CD4, CD8,
CD44, and CD25 conjugated to different fluorochromes (BD, San
Diego, CA, USA). Control isotype immunoglobulins conjugated
to correspondent fluorochromes were used for negative staining
determination (BD). Briefly, 106 thymocytes were incubated for
15min with 2 µL of normal mouse serum for blockage of
unspecific binding, and subsequently with 10 µL of different
antibody combinations for 30min. Cells were then washed
in PBS, fixed with 1% formaldehyde and analyzed by Flow
Cytometry in a FACSCanto II equipped with the FACSDiva
Software (BD). Data were analyzed with the Summit 4.3 Software
(Dako Cytomation,Carpinteria, CA, USA).

Evaluation of Thymocyte Proliferation
For evaluation of spontaneous thymocyte proliferation,
thymocytes were incubated for 3 h in RPMI medium (Sigma
Aldrich) with 10% FCS containing 60µM bromodeoxyuridine
(BrdU) (Sigma Aldrich). Cells were then incubated with anti-
CD4, anti-CD8, anti-CD44, anti-CD25 monoclonal antibodies
(BD) conjugated to different fluorochromes. After washings,
cells were permeabilized using the kit BD Cytofix/CytopermTM

(BD). Subsequently, BrdU incorporated to cell DNA was exposed
by treatment of cells with 100U DNAse I (Roche, Mannheim,
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BW, Germany) for 40min at room temperature. Cells were then
washed twice for 5min at 450 × g, and subsequently incubated
with FITC conjugated anti-BrdU (eBioscience, Inc., San Diego,
CA, USA). Samples were acquired in a FACSCanto II device (BD)
and analyzed with Summit 4.3 Software (Dako Cytomation).

Measurement of Thymocyte Apoptosis
For evaluation of cell death, thymocytes were first stained
for surface molecules CD4 and CD8 conjugated to different
fluorochromes (BD), washed, suspended in Annexin V buffer and
treated for 10min with 1µLAnnexin V conjugated to fluorescein
isothiocyanate (FITC) (BD) according to the manufacturer’s
recommendations. Cells were immediately analyzed by Flow
Cytometry using a FACSCanto II device (BD) equipped with the
FACSDiva Software (BD).

Immunofluorescence
The evaluation of thymic epithelial compartment was performed
by immunofluorescence. Thymuses (5 animals/group)
were removed and frozen in Tissue Tek (Optimal Cutting
Temperature Compound, Sakura Finetek, Torrance, CA,
USA). Slices of 5 µm-thick thymic sections were obtained in
cryostat (Leica CM 1850 - Leica Microsystems Inc.; Buffalo
Grove, IL, USA) and fixed in cold acetone for 5min. Tissue
sections were then incubated with 2.5% BSA in PBS for 1 h
and subsequently subjected to the indirect immunofluorescence
technique for immunolabeling with pan-cytokeratin antibody
(Dako), or unrelated control IgG (Molecular Probes, Carlsbad,
CA, USA) for 1 h at room temperature. Sections were then
washed three times in PBS and incubated for 45min with the
secondary anti-rabbit antibody conjugated to Alexa Fluor 546
(Molecular Probes). Sections were washed again three times in
PBS and mounted with Fluoroshield containing 4′,6-diamidino-
2-phenylindole - DAPI (Sigma Aldrich) for nuclear staining.
Samples were analyzed using a Carl Zeiss Axio Imager Upright
Microscope (Zeiss, Oberkochen, BW, Germany).

Histology
Thymus histological analysis was performed by Hematoxylin
& Eosin technique. Thymuses (3 animals/group) were fixed
in buffered 10% formalin (Millonig buffer) for 48 h. Paraffin-
embedded 5-µm sections were mounted on glass slides. The
sections were deparaffinized with xylene, and rehydrated by
a graded series of ethanol washes. Sections were then left in
running water for 1min, stained with Hematoxylin for 10min,
washed in running water for 1min, and incubated in Eosin
solution for 3min (Sigma, Aldrich). Photos were taken using the
Leica DM 2500 microscope.

Evaluation of Corticosterone Levels
Serum and thymus samples were obtained simultaneously from
WT and Gal-3−/− mice.

Animals were euthanized in a CO2 chamber, during the nadir
(08:00 h) of the circadian rhythm as described previously (18),
and the blood was immediately collected from the abdominal
aorta. After blood coagulation, individual sera was collected
and stored at −20◦C until use. Thymus samples were obtained

and kept at a −20◦C until use. After thawing, the thymuses
were suspended in 150 µl PBS and then triturated in tissue
homogenizer. The homogenates were centrifuged at 10,000 × g
for 15min at 4◦C. Serum and thymus corticosterone levels were
detected by radioimmunoassay (RIA) following manufacturer’s
guidelines (MP Biomedicals, Solon, OH, USA). Final intrathymic
corticosterone levels were represented by the ratio of hormone
concentration in supernatants and thymus mass.

Gene Expression of Steroidogenic
Enzymes in Adrenals and Thymuses
Thymus and adrenal total RNA from WT and Gal-3−/−

animals were obtained using the RNeasy Micro Kit (Qiagen,
Valencia, CA, USA). The quantification was performed in the
spectrophotometer NanoDrop 1000 (Thermo Ficher Scientific,
Waltham, MA, USA). For the synthesis of cDNA, equivalent
samples were used in 1 µg of RNA, using SuperScript III First-
Strand Synthesis System (Invitrogen, Carlsbad, CA, USA), in the
presence of a random primer, according to the manufacturer’s
recommendation. For the analysis of gene expression by real-
time PCR, 100 ng of cDNA samples were diluted in Power
SYBR Green PCR Master Mix (Applied Biosystems, Carlsbad,
CA, USA) in the Step One Plus system (Applied Biosystems). The
PCR method was performed at 95◦C for 10min followed by 40
cycles at 95◦C for 15 s, 60◦C for 1min. The specificity of reaction
products was verified through the dissociation curve. The data
were analyzed by ABI Prism SDS v1.3.1 software. All primers
were designed using the Primer Express 3.0 specific program
for 7500 FAST Real Time PCR System. cDNA was amplified
using specific murine primer sequences described in Table 1.
After 40 cycles of amplification, expression of cytochrome P450,
family 11, subfamily a, polypeptide 1 (Cyp11a1), Cyp11b1,
steroidogenic acute regulatory protein (Star), and hydroxysteroid
11-beta dehydrogenase 1 (Hsd11b1) was assessed by comparing
the expression of each to the normalizer constitutive reference
transcript Rpl-13a (ribosomal protein L13A), using the Ct
method as previously described (2−dCt × 1,000) (19), subsequent
to the following primer efficiency analysis. Each experiment was
run in triplicate with different cDNA preparations from the same
mice.

Galectin-3 Inhibition Experiments
In order to investigate the possibility that the lack of galectin-3
is related to thymocyte death observed in our Gal-3−/− mice, we
performed in vitro experiments using GCS-100, a modified citrus
pectin described to act as galectin-3 inhibitor (kindly donated by
Dr. S. Patel, La Jolla Pharmaceutical Company, San Diego, CA).
Briefly, 106 thymocytes of 3-5 WT mice were cultured in RPMI
1640 medium supplemented with 10% fetal calf serum, 2mM
L-glutamine, 1mM sodium pyruvate, 55µM 2-mercaptoethanol
(Gibco, Grand Island, NY), 100 U/mL penicillin, 0.1 mg/mL
streptomycin and 0.25µg/mL amphotericin B (Sigma Aldrich) in
the presence of GCS-100, in the concentrations of 50–800µg/mL,
for 24 h at 37◦C in a humidified atmosphere containing 5%
CO2. For comparison we included in the experiment thymocytes
treated with dexamethasone (0.01µM). Cells were subsequently
incubated with antibodies to CD3, CD4 and CD8 conjugated to
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TABLE 1 | Sequence of specific murine primers used for real time qPCR.

Gene (primer) Sequence

Star

Forward 5′-TCACTTGGCTGCTCAGTATTGAC-3′

Reverse 5′-GCGATAGGACCTGGTTGATGA-3

Cyp11a1

Forward 5′-GACCTGGAAGGACCATGCA-3′

Reverse 5′-TGGGTGTACTCATCAGCTTTATTGA-3

Cyp11b1

Forward 5′-TCAGTCCAGTGTGTTCAACTATACCA-3′

Reverse 5′- GCCGCTCCCCAAAAAGA-3′

Gapdh

Forward 5′-CCATCACCATCTTCCAGGAG-3′

Reverse 5′-GCATGGACTGTGGTCATGAG-3′

Hsd11d1

Forward 5′-TGGTGCTCTTCCTGGCCTACT-3′

Reverse 5′-CTGGCCCCAGTGACAATCA-3′

Rpl13

Forward 5′-CCAAGCAGGTACTTCTGGGCCGGAA-3′

Reverse 5′-CAGTGCGCCAGAAAATGCGGC-3′

different fluorochromes (BD), washed, suspended in Annexin V
buffer and treated for 10min with Annexin-V and 7-AAD for
viability evaluation. Cells were immediately analyzed by Flow
Cytometry using a FACSCanto II device (BD) equipped with the
FACSDiva Software (BD).

Statistical Analysis
Data were evaluated to ensure normal distribution and were
statistically analyzed by unpaired t-test or ANOVA using the
Tukey’s multiple comparison test. Data are shown as individual
values and median or mean ± standard error (used for real time
PCR analysis). Tests were performed using GraphPad Prism 5.0
software (Graphpad Software, San Diego, CA, USA).

RESULTS

Lack of Galectin-3 Induces Thymus
Atrophy With Microenvironmental
Alterations
We initially observed that galectin-3 deficient mice (Gal-3−/−)
have a significant thymus atrophy with lower mass and cellularity
compared to wild type (WT) BALB/c mice (Figures 1A–C).
It is important to note that no significant differences were
observed considering body mass of both strains of mice.
Once the maintenance of adequate thymic architecture is
fundamental to thymocyte differentiation, thymus atrophy is
frequently accompanied by morphological tissue alterations. So,
we evaluated thymus microscopic structure in Gal-3−/− mice
using Hematoxylin & Eosin staining. We observed that thymus
cortex andmedulla are preserved in bothWT and Gal-3−/− mice
(Figures 1D,E). However we noticed the presence of concentric
structures formed by TEC, similar to Hassall bodies, in the

thymic medullary region of Gal-3−/− mice (Figure 1G), that are
not seen in WT thymuses (Figure 1F). We also evaluated the
status of the epithelial component of thymic microenvironment
by staining thymus sections with anti-pan-cytokeratin antibody.
Immunofluorescence data showed a deep disorganization of the
thymic epithelial network, with visible TEC-free regions in the
thymus of Gal-3−/− mice (Figures 1I,K) that were not observed
in WT animals (Figures 1H,J).

Lack of Galectin-3 Modulates Thymocyte
Differentiation
In order to verify if galectin-3 interferes with thymocyte
differentiation, we analyzed thymocyte phenotype by flow
cytometry using the membrane markers CD4, CD8, CD25 and
CD44. We did not find changes in the percentage of thymocyte
subpopulations defined by CD4 and CD8 when we compared
the two strains of mice (Figures 2A,B). However, considering
absolute cell numbers, Gal-3−/− mice showed a significant
decrease in all thymocyte subpopulations (Figure 2C).

The most immature thymocytes are DN for CD4 and CD8,
and these cells can be further subdivided in four subsets
considering the expression of CD25 and CD44 on their cell
membrane. The homeostasis of DN thymocytes is crucial
for thymocyte development, as during this stage extensive
proliferation, TCR rearrangement and commitment to the αβ or
γδ T cell lineages take place. DN1 cells, the most immature DN
subpopulation, express CD44 on their cell membrane, but not
CD25. Thymocytes sequentially express both CD44 and CD25
(DN2 cells), then lose the expression of CD44 and express only
CD25 (DN3 cells), and ultimately are negative for both CD44
and CD25 (DN4 cells; also known as pre-DP) (20). Analysis of
DN thymocyte subpopulations in the Gal-3−/− mice showed
a significant increase in the percentage of DN1 thymocytes
and a decrease in cells in the DN3 stage compared to control
WT animals, without alterations in the percentage of DN2 and
DN4 cells (Figures 2D,E). In absolute numbers, Gal-3−/− mice
showed a decrease in all DN subpopulations (Figure 2F).

Lack of Galectin 3 Interferes With
Thymocyte Proliferation and Death
Proliferation and apoptosis are important events for thymocyte
development and maintenance of thymus cellularity. We
evaluated if the decrease in thymus mass and cellularity observed
in Gal-3−/− mice was related to changes in the rates of both
phenomena. Spontaneous thymocyte proliferation, evaluated
after 3-h incubation with the thymidine analog BrdU, was
decreased both in percentages and absolute numbers in total
Gal-3−/− thymocytes when compared to WT (Figures 3A,B).
Percentages of spontaneous proliferation were decreased in
DN, DP and CD4+ subpopulations (Figure 3C). However,
considering absolute numbers DN, DP and CD8+, but not CD4+

cells showed decreased proliferation rate (Figure 3D). We finally
evaluated the levels of spontaneous proliferation in DN subsets
of thymocytes and observed a decrease in all DN subpopulations,
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FIGURE 1 | Thymus atrophy and microenvironmental alterations in the absence of galectin-3. (A) Shows comparative thymus pictures of WT and Gal-3−/− mice.

Thymus mass (B) and cellularity (C) of Gal-3−/− mice are shown in comparison to WT control mice. Hematoxylin & Eosin stained sections of thymus of WT (D,F) and

Gal-3−/− (E,G) mice. Presence of concentric Hassall body-like structures is shown in Gal-3−/− thymus (white arrow in G) but not in WT mice (F).

Immunofluorescence staining with anti-pan-cytokeratin is shown in the thymus of WT (H,J) and Gal-3−/− (I,K) mice. Inserts in (H,J) show negative controls. Asterisks

in (I,K) denote DAPI stained TEC-free regions. Blue staining in panels: DAPI, used to show cell nuclei. Images are representative of 5 animals/group. Bar in (A):

0.25 cm. C, Cortex; M, Medulla.
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FIGURE 2 | Modulation of thymocyte differentiation in the absence of galectin-3. (A) Shows representative dot plots obtained after CD4/CD8 staining of WT and

Gal-3−/− thymocytes. (B,C) Respectively show percentage and absolute numbers of thymocyte subpopulations defined by CD4/CD8 staining of WT and Gal-3−/−

mice. Data are representative of 14 animals/group. (D) Shows representative dot plots for CD44/CD25 staining of WT and Gal-3−/− thymocytes. (E,F) Respectively

show percentage and absolute numbers of DN thymocyte subpopulations defined by CD44/CD25 staining of WT and Gal-3−/− mice. Data are representative of 10

animals/group. *p < 0.05; **p < 0.01; ***p < 0.001.

from DN1 to DN4, both in percentage and absolute numbers
(Figures 3E,F).

The results of cell death analysis, evaluated after labeling
cells with Annexin V, showed statistically significant increase
in the percentage of Annexin V+ DP thymocytes of Gal-3−/−

mice, compared toWT animals (Figure 3G). No differences were
observed in absolute numbers (Figure 3H).

Lack of Galectin-3 Increases Serum and
Intrathymic Corticosterone Levels
Considering the participation of glucocorticoids on thymus
involution, we initially evaluated the levels of corticosterone in
the serum and thymus of both strains of mice. We detected high
corticosterone levels in both serum and thymus of Gal-3−/− mice

compared toWT animals (Figure 4). In adrenal glands, Gal-3−/−

mice presented an increase in the expression of steroidogenic
enzyme genes Cyp11a1 (Figure 5B) and Hsd11b1 (Figure 5D),
but did not alter the gene expression of Star (Figure 5A) and
Cyp11b1 (Figure 5C), while in the thymus of Gal-3−/− mice
we noticed higher expression of Star (Figure 5E), Cyp11a1
(Figure 5F), and Cyp11b1 (Figure 5G), and no difference in
Hsd11b1 (Figure 5H) gene expression.

Inhibition of Galectin-3 in WT Mice
Increases Thymocyte Apoptosis
To determine in which extent the increased thymocyte
apoptosis observed in Gal-3−/− mice was due to the
primary lack of galectin-3 or to the high corticosterone

Frontiers in Endocrinology | www.frontiersin.org July 2018 | Volume 9 | Article 36548

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Oliveira-de-Abreu et al. Galectin-3 Absence Disturbs Thymus Homeostasis

FIGURE 3 | Changes in thymocyte proliferation and death in the absence of galectin-3. BrdU incorporation by total thymocytes of WT and Gal-3−/− mice is shown in

percentage (A) and absolute cell numbers (B). (C,D) Respectively show BrdU incorporation by CD4/CD8-defined thymocyte subpopulations in percentage and

absolute numbers. (E,F) Respectively show BrdU incorporation by DN thymocyte subpopulations in percentage and absolute numbers. Data are representative of 10

animals/group. (G,H) Respectively show percentage and absolute numbers of Annexin V+ cells in total and CD4/CD8-defined thymocyte subpopulations. Data are

representative of 5 animals/group. *p < 0.05; **p < 0.01; ***p < 0.001.

levels observed in these animals, we treated thymocytes
obtained from WT mice with different concentrations of
GCS-100, a modified citrus pectin described to function as
a galectin-3 inhibitor (21, 22), or dexamethasone in vitro
for 24 h. Our results showed that thymocytes treated with
different concentrations of GCS-100 for 24 h were more

susceptible to apoptosis than untreated cells, as shown by the
staining with 7-AAD/Annexin V (Figure 6). Moreover, DP
thymocytes were the most susceptible cells comparing different
thymocyte subpopulations. As expected, dexamethasone-
treated thymocytes were induced to apoptosis, mainly DP cells
(Figure 6E).
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FIGURE 4 | Increase in serum and intrathymic corticosterone levels in the absence of galectin-3. Radioimmune assay analysis of serum (A) and intrathymic (B)

corticosterone levels of WT and Gal-3−/− mice. Final intrathymic corticosterone levels were represented by the ratio of hormone concentration in supernatants and

thymus mass. Data are representative of 10 animals/group. ***p < 0.001.

DISCUSSION

Thymocyte differentiation from bone marrow-derived
precursors is dependent on their interactions with the thymic
microenvironment, composed of stromal cells, namely TEC,
fibroblasts, macrophages, dendritic cells; extracellular matrix
(ECM) molecules, represented by fibronectin, laminin, type IV
collagen; and soluble proteins, such as cytokines, chemokines,
galectins, and with the neuro and endocrine systems (12, 23).
In the present study we showed that the lack of galectin-3
consistently affected thymus homeostasis in association to local
and systemic glucocorticoid production. Initially, we noticed
that thymus mass and cellularity were significantly decreased
in Gal-3−/− mice compared to WT, presenting also alterations
in the epithelial component of the thymic microenvironment,
with regions without TEC in the thymus. These alterations in
the structure of thymus epithelial network observed in Gal-3−/−

mice could, at least partly, explain the reduction of cellularity in
this organ, once we previously demonstrated that galectin-3 is
expressed by epithelial cells of both thymus cortex and medulla,
playing a de-adhesive role by modulating thymocyte interactions
with stromal cells and ECM components (5). Furthermore,
the present data suggest that galectin-3 is not only important
for the interactions of thymocytes with the thymic stroma, but
also to the maintenance of thymic architecture and thymocyte
homeostasis.

Next, we showed that the absolute numbers of different
thymocyte subsets, defined by CD4 and CD8 molecules, were
affected in Gal-3−/− mice. The lack of galectin-3 seems to affect
all thymocyte subpopulations, impacting the organ as a whole.
Interestingly, considering DN thymocytes, the most immature
subset in which important events of thymocyte differentiation
occur, we observed an accumulation of DN1 and a decrease in
DN3 cells, whereas in absolute numbers all DN subpopulations
were decreased. In fact, we detected that thymocytes of Gal-
3−/− mice proliferate significantly less than those of WT, and
this reduction was importantly noted in DN thymocytes. These
alterations may affect all thymocyte development, leading to

decreased thymus mass and cellularity, as in the DN stage
extensive proliferation, TCR rearrangement and commitment
to the αβ or γδ T cell lineages were described to happen (20).
Our data, pointing the DN subset as strongly affected in the
absence of galectin-3, might be related to critical interactions of
the lectin with its ligands within specific niches in the subcapsular
or cortical zones of the thymus. Further mechanistic studies are
warranted to elucidate such a possibility.

It is also important to mention that in Gal-3−/− mice,
thymocyte death was increased in DP subset, the most
numerous of the thymocyte subpopulations. Different data in
the literature showed that galectin-3, a multifunctional molecule
included in the class of matricellular proteins (1, 24, 25),
acts both extracellularly, where it participates in cell adhesion
and migration, and intracellularly, being able to regulate
proliferation, apoptosis and cell signaling (3). In fact, galectin-
3 was shown to protect cells from apoptosis, as it has the
NWGR motif highly conserved in the BH1 domain of the Bcl-
2 gene family, a well characterized suppressor of apoptosis,
and was shown to interact with Bcl-2 (26, 27). Moreover,
the expression of galectin-3 was shown to be upregulated
in proliferating fibroblasts, suggesting a possible role for this
lectin in the regulation of cell growth (28). Considering the
important thymus atrophy noted in Gal-3−/− mice, and that
immature thymocytes are extremely sensitive to glucocorticoids
we evaluated the levels of serum and thymus GC in these mice.
Our results showed that Gal-3−/− mice present extremely higher
levels of serum and thymus corticosterone compared to WT.
Previous works described the endocrine and paracrine actions
of GC on thymocyte physiology, and that thymus presents the
steroidogenic machinery, including StAR, 11β-HSD1 and 11β-
HSD2 and is able to produce GC itself (15, 16), and express
GC receptors (29, 30). Indeed, GC were shown to decrease
proliferation and increase apoptosis of immature thymocytes
(13, 14). Furthermore, blockage of GC receptors was shown
to partially revert thymus atrophy observed in Trypanosoma
cruzi infected mice (31). We showed here that the production
of GC seems to be modulated by the lack of galectin-3, with
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FIGURE 5 | Changes of steroidogenic machinery in the absence of galectin-3. Gene expression of steroidogenic enzymes Star (A,E), Cyp11a1 (B,F), Cyp11b1(C,G),

and Hsd11b1 (D,H) in adrenals and thymuses of WT and Gal-3−/− mice was measured by qPCR. The values were normalized to the constitutive reference transcript

Rpl-13a. Values are represented as (2-dct) of gene expression are shown as mean ± standard error. Each experiment was run in triplicate with different cDNA

preparations from the same mice. Data are representative of 4 animals/group. *p < 0.05; ***p < 0.001.
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FIGURE 6 | Inhibition of galectin-3 increases thymocyte apoptosis. (A) Shows % of living cells (7-AAD−/Annexin V−) in total thymocytes treated for 24 h with different

concentrations of GCS-100 (50–800µg/mL) or dexamethasone (0.01µM). (B–E) Respectively show % of living cells (7-AAD−/Annexin V−) in CD4SP, CD8SP,

DN/CD3− and DP thymocyte subpopulations submitted to the same treatments. Data show one representative of two independent experiments with 3

animals/group, with similar results. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

concomitant increase in steroidogenic machinery both in the
adrenals and thymus. We believe that high GC content in Gal-
3−/− mice may be involved in thymus atrophy, namely increased
immature thymocyte death and decreased proliferation.Wemust
also keep in mind that the lack of galectin-3, an anti-apoptotic
molecule, may also be involved in the increased thymocyte
death observed in Gal-3−/− mice. To elucidate how much
of the changes on thymocyte cellularity are due to hormonal

changes and how much are due to the lack of galectin-3, we
treated thymocytes from WT mice in vitro with a galectin-
3 inhibitor (GCS-100) or with dexamethasone, and evaluated
cell susceptibility to apoptosis. GCS-100 was previously shown
to induce apoptosis in different cell lines and to regulate
susceptibility to cell death (21, 22, 32). We showed here that
thymocytes treated with different doses of GCS-100 were more
susceptible to cell death in vitro. Moreover, double-positive
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thymocytes were the most affected cells, as observed also after
dexamethasone treatment. From our new data, we suggest that
both the increased GC contents and the lack of galectin-3 are
likely to contribute to thymus atrophy in Gal-3−/− mice. Taking
together our in vivo and in vitro results, it is important to point
out the divergence regarding cell death susceptibility of double-
positive subset in the absence of galectin-3. Further studies
approaching in vivo treatment of thymocytes with GCS-100
inhibitor are needed to clarify this point. Another important issue
to be considered is the production of other galectins by thymic
epithelial cells described to induce apoptosis in thymocytes,
namely galectins −1, −8 and −9 (33–36). It is possible that the
lack of the anti-apoptotic galectin-3, together with the presence
of the pro-apoptotic galectins −1, −8 and −9 would unbalance
thymocyte homeostasis, favoring thymocytes to bemore sensitive
to pro-apoptotic effects of other galectins secreted by the thymus
microenvironment and even to apoptotic factors such as GC.

We should also have in mind that the lack of galectin-
3 during all lifespan of Gal-3−/− mice may have pleiotropic
effects, influencing different organs that in sequence may affect
the thymus. In fact, the lack of galectin-3 was shown to cause
changes in the bonemarrow, an important contributor to thymus
cellularity with the generation of T cell precursors. This tissue
was shown to be drastically modified in Gal-3−/− mice with
reduced cell density (37). Alterations on B cell precursors were
defined, but nothing was described for thymocyte precursors
(38). A detailed study on T cell precursors of Gal-3−/− mice is
missing.

Interesting changes in the thymus microenvironment
were also observed in Gal-3−/− mice in relation to WT,
such as the appearance of concentric structures similar to
Hassall bodies, which are not commonly seen in young mouse
thymuses. Hassall bodies are formed by TEC expressing
high molecular weight cytokeratins, and represent advanced
stages of TEC maturation (39). These alterations may be
related to the high corticosterone contents observed in
our mice, as GC hormones are able to induce senescence
and changes in cytokeratin and ECM expression in TECs
(40–42). The existence of a galectin-3/GC circuitry has
not been well established up to now and demands further
studies. It is not clear if the levels of GC hormones interfere
with galectin-3 secretion and vice-versa. However, previous
studies showed that mice submitted to stress or macrophages
treated with GC have decreased galectin-3 expression
(43–45).

Another intriguing alteration that called our attention in the
thymus of Gal-3−/− mice was the presence of TEC-free regions
in the thymic cortex, that were not observed in WT mice.
Similar data were described previously in the thymus of aged
mice and could be restored by oral zinc supplementation, as
this chemical element is fundamental to thymus homeostasis,
influencing the production of the thymic hormone thymulin, as
well as TEC and thymocyte development (46). Cortical TEC-
free regions have also been described in the thymus of different

lupus strains of mice (NZB, MRL/MP-lpr/lpr, BXSB/MpJ Yaa,
and C3H/HeJ-gld/gld), which undergo premature involution,
but not in normal strains, including BALB/c, C57BL/6, and
DBA (47). Changes in the thymic microenvironment, such as
the occurrence of cortical TEC-free areas, may be harmful
for T cell maturation, including positive selection that is
dependent on cortical TEC/thymocyte interactions, reflecting
in the accumulation of immature thymocytes and decreased
thymus cellularity. Although no data relate these “TEC-free”
regions to dysregulated selective events in the thymus, it is
possible that the disturbed TEC-thymocyte interactions observed
in Gal-3−/− mice contributes to the decrease in thymus
cellularity.

CONCLUSION

Our data suggest that the lack of galectin-3 unbalances the
steroidogenic machinery homeostasis in both thymus and
adrenal, leading to an increase in local and systemic GC
production, which in turn contributes to thymus atrophy
by increasing thymocyte apoptosis and reducing thymocyte
proliferation and TEC function. Besides, the direct effects of
galectin-3 absence, such as defective intrathymic thymocyte
migration, impaired proliferation and increased susceptibility to
apoptosis, must be considered in the scenario of thymus atrophy
observed in Gal-3−/−mice.
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For a long time, the effects of distinct Eph tyrosine kinase receptors and their ligands, 
ephrins on the structure, immunophenotype, and development of thymus and their main 
cell components, thymocytes (T) and thymic epithelial cells (TECs), have been studied. In 
recent years, the thymic phenotype of mutant mice deficient in several Ephs and ephrins 
B has been determined. Remarkably, thymic stroma in these animals exhibits important 
defects that appear early in ontogeny but little alterations in the proportions of distinct 
lymphoid cell populations. In the present manuscript, we summarize and extend these 
results discussing possible mechanisms governing phenotypical and functional thymo-
cyte maturation in an absence of the critical T–TEC interactions, concluding that some 
signaling mediated by key molecules, such as MHCII, CD80, β5t, Aire, etc. could be 
sufficient to enable a proper maturation of thymocytes, independently of morphological 
alterations affecting thymic epithelium.

Keywords: thymus, thymocytes, thymic epithelial cells, eph, ephrins

iNtrODUctiON

The organogenesis of complex tissues requires the coordinated differentiation of cells at the correct 
time and place. A central role for Eph kinase receptors and their ligands, ephrins in these processes, 
has been claimed (1, 2) and, particularly, in the thymus (3). Both Eph and ephrins provide positional 
information for cells, regulating cell-to-cell contacts, cell migration, cell survival and differentiation. 
Eph receptors include EphA (10 members) that preferentially, but not exclusively, bind ephrins-A 
(6 members) and EphB (6 members) that interact with ephrins-B (3 members). In this system, Eph/
ephrin binding results in a bidirectional signaling, forward in the case of Eph and reverse in that of 
the ephrins (4). Both molecules that partially govern the establishment of the neural network in the 
central nervous system (5) also modulate the thymocyte migration throughout the thymic compart-
ments (6) and temporal and topological thymocyte (T)–thymic epithelial cell (TECs) interactions 
(3, 7). The relevance of such cell-to-cell interactions has been classically recognized, but some recent 
data question its importance (8). In the present analysis, we limit the relevance of T–TEC crosstalk 
to explain the absence of a clear thymocyte phenotype in thymi exhibiting a severely altered thymic 
epithelial network.
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tHe tHYMic PHeNOtYPe OF ephB-
DeFicieNt Mice

Phenotypes of thymocytes and TECs are remarkably different 
in EphB2 and EphB3 knockout thymi. Three major features 
characterize these thymi: hypocellularity, profound alterations in 
the morphology and histology of TECs, and few changes occur-
ring in the proportions of distinct thymocyte subpopulations. In 
addition, these phenotypes appear early in the thymus ontogeny 
and gradually increase when T–TEC interactions become more 
intense in WT thymi.

Absence of ephB2 and/or ephB3 courses 
With Low Number of Both thymocytes 
and tecs
The lack of Eph or ephrins courses with thymic hypocellularity 
that affect both thymocytes (9, 10) and TECs (11, 12), and the 
blockade of Eph/ephrin signaling reduces thymic cell numbers 
(13, 14).

Low numbers of recent emigrants seeding the mutant thymi 
and their slow maturation (10, 15) are a major cause of the thymic 
hypocellularity, in addition to their increased apoptosis and 
reduced proportions of cycling thymocytes (9). Reduced propor-
tions of cycling thymocytes could be associated with decreased 
Delta-like 4 (Dll4) and IL7 receptor α chain transcript (12) as 
is also observed in thymocytes exhibiting specific deletion of 
ephrin-B1 and ephrin-B2 (16), both molecules involved in the 
maturation of developing double-negative (DN) thymocytes (17, 
18).

Reduced lymphoid immigrants affect, by turn, the proportions 
of immature MTS20+ TECs (10) contributing to their delayed 
maturation and decreased TEC numbers. Also, altered propor-
tions of cycling TECs and apoptotic TECs account for TEC 
hypocellularity of mutant thymi (12). Fetal and postnatal thymi 
of EphB2- and/or EphB3-deficient mice show higher proportions 
of apoptotic TECs than WT ones, which correlates with a reduced 
thymic K8+ epithelial network (19). At E12.5, cell proliferation is 
delayed in Eph-deficient TECs as a consequence of the delayed 
seeding of lymphoid progenitor cells into mutant thymic primor-
dium (10, 12). Later, decreased proportions of cycling cells, which 
could be partially related to decreased transcripts of FGF7 and its 
receptor FGFR2IIIb (12) involved in thymic epithelium prolifera-
tion (20, 21), have been related with the delayed maturation of 
mutant thymic epithelium.

Delayed Maturation of tec subsets Also 
Occurs in ephB-Deficient thymi
Important morphological and immunohistochemical changes 
occur in the epithelial cell subpopulations of EphB-deficient 
thymi, including the presence of K5+K8+MTS10+ immature med-
ullary TECs (mTECs), high numbers of K5−K8−MTS20+ cells and 
K5+K8+ cortical TECs (cTECs) and increased number and size of 
K5−K8− epithelial-free areas (11, 22). By flow cytometry, we con-
firmed delayed maturation of immature MTS20+ TECs, cTECs 
defined by the expression of Ly51, CD205, MHCII, CD40 and β5t, 
and mTECs identified by UEA-1, Cld3/4, SSEA-1, MHCII, CD40, 

CD80, and Aire medullary markers (12, Montero-Herradón et al 
2017, submitted manuscript)1. This defective epithelial matura-
tion culminates in the aberrant phenotypes of mutant adult thymi, 
in which the 3D epithelial network is disrupted by the inability of 
thymocytes and TECs to adequately intermingle.

On the other hand, although it has been reported that the absence 
of one or several Eph has no phenotype because of the known prom-
iscuity of this molecular system, in which practically any Eph and 
ephrin can interact thus favoring a certain overlapping (23, 24), we 
recently demonstrated a specificity in the effects of EphB2 and EphB3 
on TECs. Remarkably, although both EphB2 and EphB3 are necessary 
for a proper development of both cortical and medullary epithelia, 
the lack of EphB2 results in a more severe medulla phenotype than 
that of EphB3−/− mTEC (Montero-Herradón et al 2017, submitted 
 manuscript)1, whereas the thymic cortex of EphB3−/− mice is particu-
larly affected (12).

Morphological changes in the Mutant tecs
The absence of EphB specifically affects the TEC morphology. 
In the medulla, mTECs undergo a shortening of cell processes 
appearing as globular cells in both EphB2−/− and EphB3−/− thymi, 
but in the cortex EphB2−/− cTECs show reduced cell processes 
resulting in a rounded cell shape, whereas EphB3−/− cTECs 
exhibit long, perpendicular cell processes. Independently of the 
changes undergone, mutant cells appear considerably separated 
from both thymocytes and other TECs (11). In order to confirm 
whether the lack of either EphB2 or EphB3 affected TEC shape, 
reaggregate thymus organ cultures (RTOCs) formed from WT 
fetal thymus lobes treated (or not) with either blocking anti-EphB2 
or anti-EphB3 antibodies were examined. In treated RTOCs, 
TEC morphology was similar to that of the respective mutant 
thymi: rounded in those treated with anti-EphB2 and exhibiting 
long, perpendicular cell processes in those receiving anti-EphB3 
(Figures 1A,B). In these conditions, epithelial cell processes were 
significantly shorter in both EphB2−/− or anti-EphB2-treated 
RTOCs and longer in EphB3−/− and anti-EphB3-treated RTOCs, 
than in WT RTOCs (Figures 1C,D).

It is largely known that the Eph/ephrin signaling modulates 
cytoskeleton and cell adhesion (25). More specifically, in RTOCs, 
the blockade of Eph signaling by soluble ephrin-B1Fc provokes 
TEC rounding with the disappearance of cell processes and 
disorganization of the cytoskeleton (13). In agreement, EphB2 
and EphB3 regulate the morphology of neuronal dendrite spines 
(26), the lack of ephrin-B2 elongates muscle cells and induces 
lamellipodium formation (27), and bone marrow-derived mesen-
chymal stromal cells treated with EphB2-Fc or EphB4-Fc fusion 
proteins undergo roundness and reduced size (28). It is evident, 
therefore, that morphological changes in TECs of EphB-deficient 
thymi hinder the establishment of proper cell-to-cell contacts 
between thymocytes and TECs, critical for the adequate matura-
tion of both thymic cell components, as previously indicated for 
the increased apoptotic TECs found in mutant thymi.

1 Montero-Herradon S, Garcia-Ceca J, Zapata AG. Delayed maturation of mTEC 
in EphB-deficient thymi is recovered by RANK signaling stimulation. Manuscript 
submitted (2017).
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FigUre 1 | Thymic epithelial cell (TEC) morphology in reaggregate thymus organ cultures (RTOCs) established with either WT cells or EphB-deficient cells, or 
RTOCs treated with either blocking anti-EphB2 or anti-EphB3 antibodies. (A,B) Standard immunofluorescence study of the TEC network stained with an 
anti-PanCytokeratin antibody (PanCK, Green) and details of the TEC morphology in the different established RTOCs. Notice the shortened epithelial cell processes 
(arrows and insert dotted line) in RTOCs established with EphB2−/− cells (A) or treated with a blocking anti-EphB2 antibody (B) and the elongated cell processes 
(arrows and insert dotted line) in RTOCs established with EphB3−/− cells (A) or treated with anti-EphB3 antibody, as compared with their respective WT controls (A) 
or isotype control antibodies [(B), control]. The inserts illustrate the morphology of these cells. Scale: 50 µm. (c,D) Morphometric analysis of the length of cell 
processes in RTOCs established with either EphB2- or EphB3-deficient cells or RTOCs treated with blocking anti-EphB2 or anti-EphB3 antibodies. Note the 
reduced length of cell processes in RTOCs established with EphB2−/− cells (c) or treated with anti-EphB2 antibody (D), while those established with EphB3−/− cells 
(c) or treated with anti-EphB3 antibody (D) show longer cell processes as compared with their control RTOCs. The length of cell processes was measured in pixels 
in those cells whose cell body appeared sectioned. Five RTOCs of each experimental group were studied measuring about 25 cells and a total of 100–150 cell 
processes by reaggregate. The significance of the Student’s t-test probability is indicated as ***p ≤ 0.005.
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Histological Organization of thymic 
cortex and Medulla
In the thymic medulla of both fetal EphB2- and EphB3-deficient 
thymi, there are profound modifications that after birth, they 
remain in EphB2−/− medulla and improve partially in EphB3−/− 
thymi. Mature thymic medulla is organized from individual 
islets that expand and fuse after birth (29). By contrast, in mutant 
thymi, particularly in EphB2−/− ones, a unique adult thymic 
medulla is impaired and only small isolated foci remain. Adult 
EphB3-deficient thymi have a more organized central medulla but 
small, scattered medullary foci also appear (11). Furthermore, the 
quantification of these medullary foci in RTOCs established again 
with either WT, EphB2−/−, EphB3−-/−, blocking anti-EphB2- or 
anti-EphB3-treated fetal thymus lobes confirmed the existence of 
more and significantly smaller foci in mutant and treated lobes, 
with differences between those deficient in EphB2 and EphB3 
(Montero-Herradón et al 2017, submitted manuscript)1.

tHe cONDitiON OF t ceLLs iN  
ephB-DeFicieNt Mice

Although lower numbers of lymphoid progenitor cells seed 
both mutant adult and embryonic thymi than in WT mice (10, 
15), their subsequent progression does not result in notable 
changes in the percentages of distinct thymocyte subsets. Some 
delayed maturation of the DN cell subpopulations occurs with 
increased proportions of total DN cells and unchanged values of 
both double-positive (DP) cells and single-positive thymocytes. 
Within the DN cell populations, DN1 cells increased, whereas 
DN3 cell compartment underwent a significant reduction (9, 10). 
Decreased proportions of DN3 thymocytes could be associated 
with changes in TCR selection or molecules involved in their 
maturation, such as Dll4 and IL7 whose transcripts diminish in 
EphB-deficient thymi (12). In addition, Luo and colleagues (16) 
reported a reduced expression of the IL7 receptor α chain in 
ephrin-B1/ephrin-B2-deleted thymocytes.

On the other hand, analysis of the TCR repertoire of mutant 
CD4+ cells by using a battery of antibodies specific to different TCR 
rearrangements only found increased proportions of Vβ3+CD4+ 
cells in both thymus and lymph nodes (30), and the peripheral 
lymphoid organs (peripheral blood, spleen, lymph nodes) did 
not exhibit an altered architecture, a disturbed topological dis-
tribution of lymphoid and macrophage areas (30) nor significant 
changes in the proportions of CD4/CD8 T lymphocyte subpopu-
lations (9). Presumably, the mesenchyme-derived stroma of both 
spleen and lymph nodes is less affected than TECs by the lack of 
EphB. On the other hand, no changes occur in the proportions 
of TH1 (TCRαβ+CD4+IFNγ+), TH2 (TCRαβ+CD4+IL4+), and 
TH17 (TCRαβ+CD4+IL17+) cells between mutant and WT mice 
in either spleen or inguinal lymph nodes. Nor do the proportions 
of splenic TCRαβ+CD4+CD25+Foxp3+ Treg change when values 
of EphB2−/− (0.83 ± 0.25), EphB3−/− (0.72 ± 0.16), and WT mice 
(0.96 ± 0.27) are compared. By contrast, Treg of inguinal lymph 
nodes show significantly higher values in EphB2−/− (4.29 ± 0.40) 
and EphB3−/− mice (4.23 ± 0.44) than in WT ones (3.89 ± 0.45).

Recently, we evaluated other lymphoid cell populations 
particularly those involved in thymocyte selection within the 

thymus. No differences occurred in either positive selected 
TCRαβhiCD4+CD8+CD69+ and TCRαβhiCD4+CD8−CD69+ 
thymocytes in both EphB2- (3.00 ± 0.61; 8.00 ± 1.91) and EphB3 
(2.17 ± 0.40; 6.60 ± 1.73)-deficient thymi, as compared to WT 
values (2.47 ± 0.66; 7.09 ± 3.00). Nor did the percentage of both 
total TCRαβhiFoxp3+ and TCRαβhiCD4+Foxp3+ regulatory T cells 
(Treg) change when EphB2−/− mice (0.94 ± 0.06; 0.69 ± 0.10) and 
WT ones (0.90  ±  0.18; 0.66  ±  0.12) were compared, although 
values in EphB3−/− thymi were slightly lower, but not significantly, 
than in the other two mice analyzed (0.68 ± 0.07; 0.54 ± 0.04).

Negative selection was evaluated in WT and EphB-deficient mice 
comparing the proportions of total caspase3+CD5+CD69+CD4+ 
cells and Caspase3+CD5+CD69+CD4+CD8+ cells, as previously 
proposed (8, 31). No significant differences were observed in the pro-
portions of the two cell populations: Caspase3+CD5+CD69+CD4+ 
(WT: 0.035  ±  0.011; EphB2−/−: 0.026  ±  0.008; EphB3−/−: 
0.035  ±  0.013) and Caspase3+CD5+CD69+CD4+CD8+ (WT: 
0.031 ± 0.009; EphB2−/−: 0.039 ± 0.008; EphB3−/−: 0.020 ± 0.004). 
Mutant mice living in non-sterile conditions did not show appar-
ently immunological deficits (30) or any signs of autoimmunity 
since no substantial lymphoid infiltrates occur in their livers or 
salivary glands (unpublished data).

t-ceLL DeveLOPMeNt iN AN ALtereD 
tHYMic ePitHeLiUM

Taken together, these results confirm that, except for increased 
proportions of mutant DN thymocytes and lymph node Treg 
cells, the percentages of immunocompetent cells do not vary 
significantly in EphB-deficient animals. Nevertheless, more 
functional, in vivo approaches are necessary to definitively deter-
mine the immunological conditions of EphB-deficient animals. 
By contrast, the TEC network is deeply altered in these mutants 
making it difficult to explain how these changes do not affect 
thymocyte development since T–TEC interactions are considered 
critical for functional maturation of T cells (32, 33).

Results on the effects of Eph/ephrins on thymocyte matura-
tion are few and contradictory presumably reflecting different 
background of mutant mice, protocols used to evaluate effects 
of Eph/ephrins and/or specificity of molecules studied, as previ-
ously discussed (3). No anomalies have been described in mice 
with conditionally deleted EphB4 gene in TECs (34), deficiency 
in EphB6 (24), or in four Ephs, EphB1, B2, B3, and B6 (23). 
However, other authors have found poor in  vitro responses 
of EphB6−/− T  cells after anti-CD3 plus anti-CD28 stimula-
tion together as well as in  vivo decreased hypersensitivity and 
autoimmune responses (35). On the other hand, the deletion of 
either ephrin-B1 or ephrin-B2 in thymocytes does not course 
with thymus phenotypes (36, 37) but the lack of two molecules 
results in alterations in thymocytes and thymic structure (38), 
and low sensitivity to different autoimmune models, including 
experimental autoimmune encephalomyelitis (39) and collagen-
induced arthritis (40). We also observed decreased values of 
positive selected TCRαβhiCD69+ thymocytes in ephrin-B1 and/
or ephrin-B2 deleted in TECs, particularly when using outbred 
mouse strains. In this case, changes in these lymphoid subsets 
course with profound alterations in the histological thymus 
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organization (41). In addition, the thymus of EphA4-deficient 
mice show reduced proportions of both DP TCRαβhi cells and 
CD69+ cells in correlation with the collapse of thymic cortex (42).

A first glance at these results could suggest a possible 
association with the pattern of Eph/ephrin expression. At the 
earliest stages of thymic development, when TEC predominates 
in T-cell numbers, the proportions of EphB2, EphB3, and ephrin-
B2-expressing cells rise to the highest values, sharply declining 
later, except for ephrin-B2+ cells that remain high until E14.5. 
Furthermore, in these early stages, the proportions of Eph/
ephrin B expressing TECs are significantly higher than those of 
eph/ephrin B+ thymocytes (12). It is tentative to speculate that a 
greater EphB-dependent effect could occur in cell types contain-
ing higher numbers of cells expressing these molecules.

Another important point is the condition of thymocyte-
TEC contacts in EphB-deficient thymi. Many features of these 
thymi do not favor the establishment of such interactions. Thus, 
increased proportions of apoptotic TECs and the appearance of 
huge epithelial-free areas make difficult thymocyte-TEC contacts 
in EphB-deficient mice (22). The point is to determine whether 
these changes are sufficient to provoke severe deficits in the 
molecular communications between thymocytes and TECs that 
result in holes in the T-cell repertoire or, by contrast, whether the 
remaining unchanged epithelial areas expressing key molecules 
for thymic functional selection, such as β5t, Aire, MHCII, and 
CD80 are capable of supporting an efficient T-cell maturation. 
Some recent results relating to the number and cell composition 
of thymic nurse complexes (TNCs) in EphB-deficient thymi con-
stitute an illustrative example of our hypothesis. Previously, we 
demonstrated impaired establishment of DP T–TEC conjugates 
derived from mutant thymi (13).

Thymic nurse complexes were first considered a kind 
of ex vivo specialized thymic microenvironment for T-cell 
maturation in which a single cTEC constituted lymphostro-
mal complexes with 7–50 thymocytes (43, 44). We analyzed 
comparatively TNCs (Figure 2A) isolated from either WT or 
EphB-deficient thymi, confirming the expression in them of 

cTEC (i.e., Ly51, CD205, CD40) markers and MHCII, but not 
of MTS20 or MTS10 typical molecules of immature cells and 
mTECs, respectively. Both epithelial cells and thymocytes of 
nurse complexes also express EphB2, EphB3, and their ligands, 
ephrin-B1 and ephrin-B2, but the number of complexes yielded 
from mutant thymi was significantly lower than those from WT 
ones (Figure 2B). Most isolated TNCs contained 6–10 thymo-
cytes and those composed of more than 21 thymocytes were 
the least represented. Mutant TNCs showed a similar range but 
exhibited significant reduced numbers of the most frequent 
ones containing 6–10 thymocytes (Figure  2C), suggesting 
that the lack of Eph/ephrin B affected the T–TEC interactions 
necessary to form the TNCs.

Although it is currently recognized that nurse complexes 
are special cortical areas involved in positive selection where 
long-lived DP thymocytes undergo secondary TCRα chain rear-
rangements (45), we failed to find changes in the proportions 
of positively selected TCRαβhiCD69+ thymocytes indirectly 
suggesting that alterations found in TNCs from EphB-deficient 
thymi are not sufficient to impair positive selection.

These results demonstrate therefore that mutant TECs 
express all the molecules necessary to interact with developing 
thymocytes and to promote their proper differentiation, although 
their appearance and maturation is delayed with respect to the 
WT epithelium (12, Montero-Herradón et al 2017, submitted 
manuscript)1. In this respect, it has been claimed that just a few 
unaltered areas of thymic stroma could be sufficient to support a 
quite normal T-cell development (21, 46). Conditional deletion of 
Stat3 in K5+ TEC that courses with changes in medulla histology 
and decreased proportions of mature MHCIIhiAire+ mTECs does 
not affect autoimmune reactivity (47). More recently, specific 
deletion in TECs of the LTβR gene produces important changes 
in mTECs, including the disruption of typical 3D medulla organi-
zation with small, scattered medulla foci, and reduced numbers 
of mTECslo, mTECshi, and Aire cells (8), quite similar to the 
phenotype described for the thymic medulla of EphB-deficient 
mice. However, the frequencies of CD4+ and CD8+ thymocytes 

FigUre 2 | Analysis of thymic nurse complexes (TNCs) in adult WT and EphB-deficient thymi. (A) Representative thymic nurse complex formed by thymic epithelial 
cells, stained with an anti-PanCytokeratin antibody (PanCK, Green) and thymocytes identified by using an anti-CD45 antibody (Red). Nuclei are stained with Hoechst 
33342 (Blue). Scale: 20 µm. (B) A significantly lower percentage of isolated TNC in EphB2−/− and EphB3−/− thymi than in WT ones. (c) According to the number of 
thymocytes included in the TNCs, six different groups could be established. The figure shows the TNC numbers of WT and EphB-deficient thymi after the analysis of 
30 TNCs. In both WT and mutant thymi, the distribution is similar but the frequency of those containing 6–10 thymocytes, which represent the half of total TNC 
analyzed, is lower in mutant than in WT ones. The significance of the Student’s t-test probability is indicated as *p ≤ 0.05. ns: non-significant.
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Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of

insulin-producing cells in the pancreas, by direct interactions with autoreactive pancreas

infiltrating T lymphocytes (PILs). One of the most important animal models for this

disease is the non-obese diabetic (NOD) mouse. Alterations in the NOD mouse thymus

during the pathogenesis of the disease have been reported. From the initial migratory

disturbances to the accumulation of mature thymocytes, including regulatory Foxp3+

T cells, important mechanisms seem to regulate the repertoire of T cells that leave

the thymus to settle in peripheral lymphoid organs. A significant modulation of the

expression of extracellular matrix and soluble chemoattractant molecules, in addition to

integrins and chemokine receptors, may contribute to the progressive accumulation of

mature thymocytes and consequent formation of giant perivascular spaces (PVS) that are

observed in the NODmouse thymus. Comparative large-scale transcriptional expression

and network analyses involving mRNAs and miRNAs of thymocytes, peripheral T CD3+

cells and PILs provided evidence that in PILs chemokine receptors and mRNAs are

post-transcriptionally regulated by miR-202-3p resulting in decreased activity of these

molecules during the onset of T1D in NOD mice. In this review, we discuss the

abnormal T-cell development in NOD mice in the context of intrathymic expression of

different migration-related molecules, peptides belonging to the family of insulin and

insulin-like growth factors as well as the participation of miRNAs as post-transcriptional

regulators and their possible influence on the onset of aggressive autoimmunity during

the pathogenesis of T1D.

Keywords: non-obese diabetic mouse, type 1 diabetes, thymus, autoimmune diabetes, insulin, insulin-like growth

factor, miRNA
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INTRODUCTION

Type 1 diabetes (T1D) is a multifactorial disease caused by
autoimmune destruction of pancreatic beta cells, which results
in a breakdown of insulin production and glucose metabolism
(1). The mechanisms involved in autoimmunity during the
pathogenesis of T1D include factors of humoral immunity, such
as the presence of circulating autoantibodies (anti-insulin, among
other islet autoantibodies), that can be used as biomarkers of
the disease (2–4). Mechanisms involving cellular immunity are
evidenced by the presence of mononuclear cell infiltrates in
the islets of Langerhans. CD8T cells are the most predominant
infiltrating-cells, followed by macrophages, CD4T cells, B
lymphocytes and plasma cells (5). In addition to the cellular
infiltrate, the upregulation of MHC class I on β-cells may
increase their susceptibility to T-cell–mediated killing (6). Most
of the studies in humans were performed in pancreas samples
removed post-mortem. Due to the limited availability concerning
the samples and difficulties in studying the mechanisms of
autoimmunity in humans, the use of experimental models are
essential for studies on the pathogenesis of T1D. Among the
available experimental models, the non-obese diabetic (NOD)
mouse is particularly well characterized. They spontaneously
develop the disease and present several characteristics that are
similar to the pathogenesis of the human T1D (7, 8). Briefly,
insulitis starts in general at 3 weeks of age in female mice,
concomitantly with the appearance of initial thymic alterations,
and the disease onset occurs at 10–12 weeks, depending on
the colony. At this point, different alterations in the thymus
have been described, as we discuss below. Nevertheless, before
entering this discussion, it seems worthwhile to provide a
basic background on some physiological aspects of the thymus,
including the intrathymic T-cell differentiation, as well as
production of hormones by thymic cells.

THE THYMUS AND THYMOCYTE
DEVELOPMENT

The thymus is a primary lymphoid organ where T cells
are generated. Inside the thymic tissue, precursor cells pass
through distinct differentiation stages until becoming mature
CD4 or CD8 single-positive (SP) thymocytes expressing the T-
cell receptor (TCR), which are ready to emigrate to peripheral
lymphoid organs and properly finish their maturation (9). Cell
differentiation occurs in parallel with cell migration, so that
the immature double-negative (DN) for the CD4−CD8− co-
receptors and double-positive (DP) CD4+CD8+ thymocytes are
localized in the cortical region of the thymic lobules, while
more mature CD4SP or CD8SP thymocytes are localized in
the medulla (10). DP thymocytes express low amounts of TCR
after gene rearrangement. This expression is increased during
differentiation to TCRhigh CD4SP or CD8SP cells. Differentiating
cells undergo apoptosis if their TCR interact with high
avidity with self-antigens coupled to major histocompatibility
complex (MHC) class I or class II molecules expressed
by microenvironmental cells in the thymus, in a process

called negative selection. Alternatively, some clones that
recognize self-antigens with high avidity become regulatory
CD4+CD25+Foxp3+ T cells (Treg), a mechanism that seems to
depend on TCR signaling avidity and duration, TGF-β-mediated
survival and cytokines, such as IL-2, IL-7, and IL-15 (11, 12).
These thymus-derived Treg cells account for the majority of
Tregs in the periphery, compared with Tregs differentiated from
conventional naïve T cells (13). Together, these processes avoid
the development of self-antigen reactive cells and therefore
prevents autoimmunity (14).

In the thymus, the expression of many peripheral tissue
antigens (PTAs) in medullary thymic epithelial cells (mTEC) is
regulated by the autoimmune regulator (AIRE) transcription
factor (15). The PTAs are presented by MHC molecules and
can induce negative selection of autoreactive thymocytes (16).
The homozygous loss or mutations in the Aire gene cause
the autoimune polyendocrinopathy–candidosis–ectodermal
dystrophy (APECED) syndrome in humans, characterized by the
development of autoimmune diseases including T1D in 10–20%
of the cases (17–19). In mice, Aire disruption leads to immune
cell infiltration in several organs and APECED-autoimmune like
manifestations (15, 20).

While migrating through the thymic lobules, developing
thymocytes also interact with other microenvironmental cells
such as dendritic cells (DCs) and macrophages, as well as
with extracellular matrix (ECM) molecules and soluble proteins
such as cytokines, chemokines, growth factors and thymic
hormones (thymulin and thymopoietin, for example). Other
hormones produced by endocrine glands (growth hormone,
glucocorticoids, prolactin, oxytocin and insulin) can also be
produced locally, and play a role in the physiology of the thymus
and the generation of the T-cell repertoire (10).

INTRATHYMIC EXPRESSION OF PEPTIDES
AND RECEPTORS FROM THE INSULIN/IGF
FAMILY

Insulin is a polypeptidic hormone produced as a pre-
prohormone, the pre-proinsulin, which is processed to proinsulin
that is cleaved, in turn, to mature insulin. Only pancreatic beta
cells are capable to secrete mature insulin in response to glucose
(21). Despite that, proinsulin gene is naturally expressed at low
levels in fetal and postnatal thymi in humans, rats and mice
(22). Although the expression of proinsulin in the thymus is not
necessary for T cell differentiation and growth (23, 24), variations
in the expression of the insulin gene in the thymus, but not in the
pancreas, in both humans and mice, can modulate self-tolerance
to insulin, with the expression levels being inversely correlated
with T1D susceptibility (21, 25).

In humans, the insulin gene is under the control of a variable
number of tandem repeats (VNTR) minisatellites, mapping 5′

to the insulin gene promoter. VNTR, commonly known as
IDDM2 susceptibility locus, are extremely polymorphic regions
both in size and sequence (25, 26), and three allele classes have
been characterized: class I, composed by 20–63 repeats of the
consensus unit ACAGGGGTCTGGGG, class II alleles containing
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64–139 repeats and class III alleles containing 140 to >200
repeats. Although VNTR have little effect in pancreatic insulin
transcription, class I alleles in the thymus correlate with low and
class III with high levels of insulin mRNA (25, 27).

There is no VNTR regions in mice, but two nonallelic insulin
genes Ins1 and Ins2 encoding proinsulin 1 and 2 respectively
(28, 29). Both insulin genes are expressed by 1–3% of mTECs
in the thymus under control of AIRE (15, 30, 31), but Ins2
expression is predominant in the thymus. Although suggested
that this predominant expression leads to a higher tolerance
to proinsulin 2 (32), it was demonstrated that proinsulin 2
expression leads to T cell tolerance to an epitope shared by
both proinsulin 1 and 2 (33). The copy numbers of insulin gene
in the mouse thymus inversely correlates to the numbers of
insulin-specific autoreactive T cells in the periphery, so that mice
expressing low levels of thymic insulin, (even though pancreatic
insulin remains unaltered), present peripheral reactivity to
insulin, whereas mice with normal thymic insulin expression
have no significant response (34). This effect is transferable
by thymic transplantation (35), showing that thymic insulin
expression plays a critical role in thymic selection and T1D
susceptibility.

Insulin-like growth factors (IGF) 1 and 2 are polypeptidic
growth factors, members of the family of insulin-related peptides,
produced in many tissues where they can play endocrine and
paracrine functions (36). Both IGF-1 and 2 can bind to type 1
and 2 IGF receptors (IGF-1R/IGF-2R) with high affinity and to
insulin receptors (INS-R), with low affinity (37). All the genes of
the insulin family are expressed in the thymus during the fetal life;
IGF2 is predominantly expressed in the rat, mouse and human
thymi by TEC and Thymic Nurse Complexes (TNC), followed
by IGF1, expressed by TECs and macrophages. The proinsulin
genes are expressed by mTECs and DCs (38–41). In general,
protein levels are related with gene levels in the case of these
molecules.

After birth, IGF-2 gene expression and protein levels decrease
and reach the same levels of IGF-1 (32). IGF-2 participates
both in T cell development and negative selection (42). Studies
using fetal thymic organ cultures (FTOC) demonstrated that
the blockage of IGF-mediated signaling between TEC and
thymocytes inhibits early T cell proliferation and differentiation
(23). Specific anti-IGF-1 antibodies treatment lead to a decreased
DN relative cell numbers while the inhibition of IGF-2, IGF-
1R or IGF-2R impaired differentiation from the DN to the
DP stage. The same study showed a decrease in total T
cell numbers under treatment with anti-IGF-1R and anti-IGF-
2R antibodies. Moreover, transgenic IGF-2 expression resulted
in abnormalities in the terminal differentiation and increased
proliferation of TECs. The deposition of fibronectin and laminin
is enhanced in human TEC cultures and in the thymus of IGF-2
transgenic mice, in parallel with the enhancement of thymocyte
adhesion to TEC monolayers and thymocyte migration
(43).

IGF-2 expression by the thymic epithelium is under control
of AIRE, and the IGF-2 gene is located adjacent to the Ins
gene (44, 45). Its predominant expression among insulin family
members could be explained by IGF-2 close homology to the

other members with high conserved peptides sequences of the
family. This could lead to the development of tolerance to IGF-
2 and related molecules, including insulin (45). Igf-2−/− mice
present weaker tolerance to insulin when compared with wild
type animals and the production of specific antibodies to IGF-2
is more difficult than to IGF-1 or insulin (46–48).

IGF-1 and its receptor are implicated in several growth
hormone (GH) effects in the thymus, as TEC proliferation and
thymocyte/TEC adhesion (49), as we further discuss below.

GH/IGF-1 AXIS IN THE THYMUS

Growth hormone is a member of a family of growth factors that
includes prolactin and other hormones. It is produced and stored
mainly in the anterior pituitary under control of hypothalamic
hormones, as the GH-releasing hormone, hypothalamic GH
release-inhibiting factor and somatostatin (50), although the
production by other cell types was observed, including leukocytes
and TECs (51). The early experiments showing that GH is
thymotropic revealed that GH-deficient mice present thymus
atrophy and this effect is also observed after GH anti-serum
treatment of mice with intact pituitary (52).

TheGH receptor (GHR) is expressed in cortical andmedullary
TECs (53, 54) as well as in thymocytes (51, 55), and plays a
role in thymic function and T-cell differentiation. The decline
of GH production is related with thymic involution (56).
Moreover, transgenic mice overexpressing GH have an enlarged
thymus, as well as mice and humans treated with recombinant
forms of the hormone (57). GH can also modulate the thymic
microenvironment by increasing the secretion of cytokines,
chemokines and thymulin, consequently modulating thymocyte
adhesion and migration (57–60).

As mentioned above, some of the GH effects in the thymus
are mediated by IGF-1. Murine TEC lines treated with GH or
IGF-1, present an enhancement in ECM molecules production
as type IV collagen, fibronectin and laminin, besides the
expression of the integrins VLA-5 (alpha 5 beta 1 integrin,
a fibronectin receptor) and VLA-6 (alpha 6 beta 1 integrin,
a laminin receptor). Treatment with GH also augmented the
thymocyte/TEC adhesion, a phenomenon that was blocked by
anti-IGF-1 and anti-IGF-1R antibodies (61).

Since the interactions of thymocyte and TECs are crucial for
thymocyte development and thymus physiology, one can argue
that together, the GH/IGF-1 axis, besides IGF-2 and insulin
can shape the T-cell repertoire. Moreover, it is conceivable that
defects in the negative selection against PTAs related to this
family might cause autoimmunity, as for example T1D, in the
case of insulin-related peptides expressed intrathymically.

THYMIC ALTERATIONS IN NOD MICE

Several morphological and phenotypic alterations are observed
in the NOD mouse thymus. The most evident is the formation
of giant perivascular spaces (PVSs), which are filled with mature
CD4SP and CD8SP cells, B cells and regulatory Foxp3+ cells
(62–64). We have described that cells inside giant PVSs present
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TABLE 1 | Alterations observed in the NOD mouse thymus.

Alteration* Affected

compartments

References

THYMIC PARENCHYMA STRUCTURES

PVS ↑↑↑ Medullary region (62)

TECs ↓ Medullary region (62)

CELL MIGRATION-RELATED MOLECULES

VLA-5 ↓↓↓ Mainly CD4SP CD8SP

and Foxp3+ regulatory

T cells

(64, 65)

VLA-4 ↑ DP, CD4SP and

CD8SP thymocytes

(64, 65)

VLA-6 ↑↑↑ All thymocyte

subpopulations

(64)

CXCR4 ↓ CD8SP thymocytes (64)

CXCL12 ↑ Mainly inside giant

PVSs

(64)

Fibronectin ↑ Mainly inside giant

PVSs

(64, 65)

Laminin ↑ Mainly inside giant

PVSs

(64, 65)

Type I and IV

collagens

↑ Mainly inside giant

PVSs

(62)

INSULIN FAMILY-RELATED PEPTIDES AND RECEPTORS

Insulin ↓↓ mTECs (66)

IGF-1, IGF-2,

INS-R,

IGF-1R,

IGF-2R

ND – –

GH, GHR ND – –

miRNAs

miR-19a ↓/– Thymocytes

TCR+/NKT17

(67)

miR-19b ↓/– Thymocytes

TCR+/NKT17

(67)

miR-133b –/↑↑ Thymocytes

TCR+/NKT17

(67)

miR-124a ↑/– Thymocytes

TCR+/NKT17

(67)

miR-326 ↓/– Thymocytes

TCR+/NKT17

(67)

*Alteration comparing NOD with other inbred mouse strains; PVS, perivascular space;

TEC, thymic epithelial cell; IGF, insulin-like growth factor; INS-R, insulin receptor; IGF-R,

insulin-like growth factor receptor; GH, growth hormone; GHR, growth hormone receptor;

NKT17, IL-17-producing natural killer T cells; ND, not described.

a defect in the membrane expression of the integrin-type
fibronectin receptor VLA-5 (CD49e/CD29) that may lead to their
accumulation and retention in the thymus (65). The formation
of giant PVSs also changes the TEC network and ECM contents,
both inside PVS and in the thymic parenchyma. Particularly,
there is an important deposition of fibronectin inside these spaces
(Table 1).

The accumulation of thymocytes and enlargement of PVS
starts to be observed at 4 weeks of age in female mice, which
are more susceptible for T1D. Clear-cut giant PVS are observed
in pre-diabetic mice (9–12 weeks of age), that already present
insulitis (62).

Ex vivo functional assays revealed that NOD thymocytes have
a defect in the migratory capacity toward fibronectin, but not
laminin. Interestingly, migration toward the chemokine CXCL12
is enhanced, and a synergic effect is observed when CXCL12
is combined with ECM molecules. In the case of fibronectin
combined with CXCL12, despite the synergic effect, migration
of NOD thymocytes is reduced compared with controls
(64, 65).

Another experimental strategy trying to understand the role
of VLA-5 in thymocyte accumulation in giant PVS in NOD
mice comprised ECM-transmigration assays, which mimic the
migration of thymocytes through fibronectin-enriched PVSs
and then the transmigration through endothelium. These
experiments revealed that NOD thymocytes that first encounter
fibronectin molecules transmigrate less then controls (64).
Conversely, differences in transmigration assays were not
observed when laminin was applied, reinforcing the concept
that VLA-5/fibronectin interactions can play a role in the
accumulation of thymocytes in PVS during the pathogenesis of
T1D (Figure 1).

As mentioned above, thymic insulin expression plays a
role in thymic selection processes and T1D development. The
expression levels of insulin genes are also altered in the NOD
mouse thymus. The Ins2 gene expression is normal at 2 weeks
of age but become lower at 3 weeks, which may favor loss
of tolerance to insulin in NOD mice (66, 68). Moreover,
Ins2−/− NOD mice have accelerated insulitis and autoimmune
diabetes onset in females, increased disease in males, with
enhanced prevalence of insulin autoantibodies and stronger
insulin response (33). Conversely, insulitis and diabetes onset
were delayed in NOD Isn1−/− mice, which can be explained
by the dominance of the Ins2 gene in the thymus, whereas
Ins1 is more prominent in pancreatic beta cells (69). Prevention
of both insulitis and diabetes can be seen in transgenic NOD
mice expressing increased levels of Ins2 under the MHC class
II promoter (70), and also after intrathymic administration of
insulin (71).

The expansion of autoreactive T cell clones in NOD mice
can also be affected by proinsulin gene expression. Although
the numbers of CD4SP and CD8SP thymocytes do not change,
proinsulin-1 or−2 deficiency in NOD mice causes changes in
the T-cell repertoire generated in the thymus and peripheral
lymphoid organs, and is associated with a significant expansion
of insulin–reactive CD8SP T cell clones in the pancreatic draining
lymph node (72).

The effects of IGF-1 on cell trafficking were also analyzed in
the adoptive T cell transfer model in NODmice (73). T cells from
diabetic NOD Thy-1.2 mice were injected into congenic NOD
Thy-1.1 mice. In this model, reconstitution of the thymus of
irradiated recipients with donor cells was not influenced by IGF-
1 treatment, but the percentage of donor T cells was significantly
reduced in the spleen of IGF-1 treated mice in contrast to the
thymus, suggesting that IGF-1 could influence T cell trafficking
from the thymus to peripheral lymphoid organs. This might be
due to effects of IGF-1 upon the Sphingosine kinase/sphingosine-
1-phosphate axis, as demonstrated for myoblast differentiation
(74).
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FIGURE 1 | Thymic alterations that can play a role in autoimmune pathogenesis of T1D. Different thymic alterations are observed in the NOD mouse thymus

concerning the expression and role of molecules involved in cell adhesion and migration, peptidic hormones under control of the AIRE gene and miRNAs. The

diminished insulin expression in the thymus and miRNA modulation of PTAs can lead to the generation of autoreactive cells. The defect in VLA-5 membrane

expression on thymocytes and modulation of chemokine receptors are related with the accumulation of thymocytes, including Foxp3+ regulatory cells, and the

formation of fibronectin-enriched giant PVSs. This accumulation of thymocytes may also be modulated by IGF-1, and can explain the reduced Treg numbers in

peripheral lymphoid organs and pancreas affecting the balance between Tregs and effector T cells, although this is still controversial. Tregs can also present defective

activation. In peripheral lymphoid organs, the transition of T cells to PILs is under control of miRNAs that can modulate the expression of chemokine receptors and

consequent migration of these cells to the pancreas. Together, these changes may possibly be due to intrathymic hormonal imbalance, comprising the expression of

insulin, IGF-1 and IGF-2.

The role of IGF-2 specifically in the thymus of NOD
mice is not yet defined. However, transcriptome studies
revealed that IGF-2 mRNA is downregulated when comparing
mTECs from newborn and 5 week old NOD mice (75). A
downmodulation was also observed for Ins1 and Ins2 mRNA
expression. Interestingly, the same was observed in BALB/c
mice for both IGF-2 and Ins-2, but not for Ins-1 mRNA.
Moreover, the reconstruction of post-transcriptional miRNA-
mRNA interaction networks revealed that some miRNAs,
including the miR-647 that targets IGF-2 mRNA, were included
in the network of BALB/c, but not in the NOD mice
(75). In this context, since the expression of PTA mRNAs
(and the respective proteins) in mTECs is important for
the negative selection process, the mechanisms that inhibit

the regulatory action of miRNAs may be acting in these
cells.

The expression of other miRNAs is altered in the thymus
of NOD mice when comparing with C57BL/6 mice (Table 1).
The miR-19a, miR-19b and miR-326 are downregulated whereas
miR-124a is upregulated on TCR+ thymocytes. MiR-133b is
upregulated only in natural killer T (NKT) cells in the thymus
(67). This miRNA targets and regulates the transcription factor
Th-POK, which negatively regulates the differentiation of IL-17
producing NKT cells (NKT17). Thus, the diminished expression
of Th-POK can induce the differentiation of NKT17 cells and
explain the enhanced numbers of these cells in the thymus and
peripheral lymphoid organs of NOD mice (67), which can be
related with exacerbation of diabetes (76).
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THE ROLE OF MIRNAS THROUGHOUT
TRANSITION OF THYMOCYTES INTO
PANCREAS INFILTRATING LYMPHOCYTES

During the period of evolution of autoimmune reactivity in
NOD mice, even before the appearance of clinical signs of
T1D, thymocytes that differentiate into peripheral CD3+ T
lymphocytes sequentially modulate (up- or down-regulate), a
significant set of mRNAs that encode proteins involved in the
intrathymic negative selection, T cell maturation, differentiation
and autoreactivity (77). Among the peripheral T lymphocytes
residing in the spleen and/or in the lymph nodes some
autoreactive clones will evolve into PILs in mice and humans (1,
78, 79). Insulin-specific CD4 and CD8T cells targeting multiple
epitopes are predominant in the islet infiltrating T cells in
pre-diabetic NOD mice pancreas (80), with proinsulin 2 being
proposed as the major isoform recognized by those cells (33).

During the transition of peripheral T lymphocytes into PILs,
a large set of mRNAs is transcriptionally modulated causing
changes in the transcriptome profile of these cells with parallel
modulation of miRNAs. These transcriptional changes are robust
enough to hierarchize the different cell types (thymocytes, CD3+

peripheral T lymphocytes and PILs) and the different stages of
NOD mice regarding the onset of T1D (pre- or diabetic animals)
according to their respective mRNA or miRNA expression
signatures (81). The miRNA modulation strongly suggests that
transition into PILs would be under posttranscriptional control,
i.e., the effect of specificmiRNAs upon target mRNAs that encode
proteins involved in this process.

The reconstruction of miRNA-mRNA interaction networks,
based on differential expression profiling of peripheral T
lymphocytes during their transition into PILs in NOD mice
predicted mRNA targets in an unbiased way. As these cells
develop into CD3+ peripheral T cells and then into PILs,
thymocytes exhibited miRNA interactions with mRNA targets
that encode proteins related to apoptosis, cell adhesion,
positive and negative selection in the thymus. The interactions
involving miR-202-3p with CCR7 mRNA were highlighted
in the work of Fornari et al. (81), showing that CCR7
is involved with the control of central tolerance and mice
lacking this chemokine receptor generated autoreactive T cells
(82). Moreover, CCR7 directs T-cells toward the pancreas
of NOD mice, since desensitization of CCR7 blocked T-
cell migration from the bloodstream into pancreatic islets
(83).

A second interaction emphasized was miR-202-3p-CD247
mRNA in NOD mice (81). Under disturbance during TCR
signaling, the CD3 zeta chain enhanced autoimmune diabetes in
mice (84).

The evidence at this moment suggests that the transition into
PILs is under post-transcriptional control exerted by miRNAs
(Figure 1). Interestingly, some miRNAs such as miR-375, miR-
30d and miR-9, can control insulin synthesis and secretion by
pancreatic beta-cells (85) in NOD mice. Whether miRNAs also
regulate the intrathymic production of proinsulin/insulin and
IGF remains unknown.

FUTURE DEVELOPMENTS AND
CONCLUDING REMARKS

Although the precise biological mechanism(s) underlying
how differentiating thymocytes evolve to autoreactive T-
cells infiltrating and destroying pancreatic beta cells are not
elucidated, it is likely that disturbances of gene and miRNA
signatures may be part of this process, as well as changes
in the profiles of cell migration of both thymocytes and
peripheral T lymphocytes. In this context, besides the questions
raised throughout the text, other important questions remain
unanswered, such as the possible direct role of the thymic
alterations in the pathogenesis of T1D and the presence of similar
alterations in humans.

In humans, serum GH levels are enhanced in T1D patients
(86), and IGF-1 and IGF-1R mRNA levels are reduced in
peripheral blood mononuclear cells (87). The circulation levels
of GH are enhanced whereas IGF-1 levels are diminished in
NOD diabetic mice 4 weeks after the appearance of glycosuria
(88), suggesting similarities in hormone imbalance between T1D
patients and NODmice at least after disease diagnosis.

Hormonal imbalance in the thymus can be involved in the
control of the physiology of the organ in NOD mice and
humans, as the properly maturation of the cells, cell adhesion,
migration, accumulation and egress, by the modulation of ECM
molecules and integrins, chemokines and chemokine receptors,
sphingosine-1-phosphate and sphingosine-1-phosphate receptor
1 (10, 64, 65, 89). As an example, GH/IGF-1 axis can modulate
the expression of cytokines, chemokines and ECMmolecules and
receptors in the thymus (61). GHmodulates thymocyte adhesion
and migration properties, and promotes thymocyte egress (59).
The effects of GH can be regulated by IGF-1, which can in turn
bind IGF-R and insulin receptor (90). Lower insulin levels in the
thymus are related with reactivity to insulin in the periphery,
including in NOD mice (33). Together, these mechanisms can
shape the T cell repertoire and change the frequency of Tregs and
the ratio of Treg and effector T cells (34, 45). The diminished
frequency of Tregs in NOD mice is controversial, and most
studies in T1D patients have reported no differences in the
frequency of Tregs in peripheral blood. Likewise, phenotype
and diminished suppressive capacity have been reported in both
NOD and T1D patients (64, 91–93).Whether these specific issues
are related with hormonal imbalance during the pathogenesis of
T1D, comprising the expression of insulin, GH/IGF-1 and IGF-2,
need further investigation.
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It is well established that there is a fine-tuned bidirectional communication between 
the immune and neuroendocrine tissues in maintaining homeostasis. Several types of 
immune cells, hormones, and neurotransmitters of different chemical nature are involved 
as communicators between organs. Apart of being key players of the adaptive arm of 
the immune system, it has been recently described that T lymphocytes are involved in 
the modulation of metabolism of several tissues in health and disease. Diabetes may 
result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and 
insulin resistance (type 2 diabetes), both influenced by genetic and environmental com-
ponents. Herein, we discuss accumulating data regarding the role of the adaptive arm 
of the immune system in the pathogenesis of diabetes; including the action of several 
hormones and neurotransmitters influencing on central and peripheral T  lymphocytes 
development and maturation, particularly under the metabolic burden triggered by dia-
betes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver 
tissues during diabetes, which together enhances pancreatic β-cell stress aggravating 
the disease.

Keywords: T lymphocytes, inflammation, insulin resistance, adipose, muscle, liver, cytokines

iNTRODUCTiON

Pioneering work in the 1980s provided the first evidence of the cross-talk between the neuroendo-
crine and immune systems (1–4). It is now well established that there is a fine-tuned bidirectional 
communication between these tissues in maintaining homeostasis. Several types of immune cells, 
hormones, and neurotransmitters of different chemical nature are involved as communicators 
between organs influencing immune development and function (5, 6). Additionally, it has been 
described that T lymphocytes apart of being key players of the adaptive arm of the immune system, 
are involved in the modulation of metabolism in several tissues in health and disease (7–13).

Diabetes is a highly prevalent endocrine-metabolic disease with a constant growing rate, affecting 
nearly half a billion people worldwide (14). It is characterized by an imbalance in glucose homeo-
stasis, which result mainly from lack of insulin production in the pancreas [type 1 diabetes (T1D)] 
or insufficient insulin production and peripheral insulin resistance [type 2 diabetes (T2D)] both 
influenced by genetic and environmental components.

In this Review, we discuss existing data about the role of the adaptive arm of the immune system 
in the diabetes pathophysiology; including the action of several hormones and neurotransmitters 
influencing on central and peripheral T  lymphocytes development and maturation, particularly 
under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector 
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lymphocytes in peripheral tissues during diabetes, which together 
enhance pancreatic β-cell stress aggravating the disease.

THe ROLe OF T CeLLS iN THe 
PATHOGeNeSiS OF T1D

Type 1 diabetes is a T  cell-mediated autoimmune disease that 
selectively destroys insulin-producing β-cells. The key roles for 
both CD4+ and CD8+ T cells in the immune response that drives 
T1D have been extensively described (15, 16). It is now widely 
accepted that endogenous and/or exogenous initiating factors, 
operating on a genetic susceptibility background and permissive 
environmental framework, are necessary for the development 
of autoreactive T  lymphocytes that infiltrate pancreatic islets 
(insulitis) (17).

While the association of class II HLA genes polymorphisms 
with T1D risk has been known for over 40  years (18), recent 
single-nucleotide polymorphisms (SNPs) genotyping technolo-
gies allow the description of many additional T1D susceptibility 
genes (19–21). Intriguingly, most of these genes are coding for 
cytokines, cytokine receptors, and factors that regulate T  cell 
differentiation, suggesting that control of T  cell identity may 
be an important element of the genetic contribution to disease 
susceptibility and onset.

The process of T  cell differentiation that takes place in the 
thymus is regulated by many molecules such as hormones, 
neuropeptides, and neurotransmitters involving both endocrine 
and paracrine signaling pathways (6). A variety of peptide and 
nonpeptide hormones modulate the proliferation, differentiation, 
migration, and apoptosis of developing thymocytes. The dysfunc-
tion in the hormonal control of T cell differentiation is associated 
with the development of diseases that are influenced by immune 
cells, including diabetes.

Currently, there is a wide consensus that T1D is a Th1-mediated 
pathology and INF-γ is implicated as the main driver cytokine 
of the process of autoimmune islet destruction; meanwhile, Th2 
cell-type would play a protective role (22–29). However, not all 
emerging data from mouse models and patients are consistent 
with the dominance of a Th1 response in T1D; multiple addi-
tional T cell differentiation phenotypes are now recognized with 
distinct functions (30, 31).

The role of Th17 lymphocytes in T1D is not fully under-
stood. Murine models and human studies suggest that IL-17 is 
upregulated in the early stages of diabetes development but it 
is still not clear if this cytokine, or indeed if the Th17 subset, is 
necessary for disease (32–38). It was shown that genetic IL-17 
silencing had no effect and did not protect NOD mice from 
spontaneous autoimmune diabetes (39). Some studies suggested 
that an increase of T cells co-expressing IFN-γ and IL-17 could 
be a feature of T1D development (36, 40–42). Several types of 
cells of the immune system, attracted by signals from the islets, 
contribute to the selective β-cell death through the release of cyto-
toxic inflammatory cytokines, such as IL-1β, IFN-γ, and TNF-α  
(43, 44). Recent studies performed in human β-cells suggested that 
pancreatic IL-17 contributes to the pathogenesis of T1D by two 
mechanisms, exacerbating β-cell apoptosis and increasing local 

production of chemokines by islets exposed to pro-inflammatory 
cytokines (e.g., IL-1β +  IFN-γ and TNF-α +  IFN-γ) (45). In a 
study of children in various phases of diabetes-associated autoim-
munity and clinical disease upregulation of IL-17 and Th1/Th17 
plasticity in peripheral blood were observed in stages of advanced 
β-cell autoimmunity and impaired glucose tolerance and clinical 
T1D (42). Activated Th17 immunity was not observed in patients 
with early β-cell autoimmunity, indicating that Th17 may be a 
marker of late preclinical autoimmune diabetes which correlates 
with impaired β-cell function. Analysis of pancreatic lymph 
nodes in T1D patients showed higher frequency of Th17 cells in 
comparison with non-diabetic controls (46). The consolidation of 
Th17 cells as part of T1D pathophysiology focused attention on 
additional cytokines, outside of those associated classically with 
the Th1/Th2 paradigm (IFN-γ and IL-4, respectively).

IL-21 is a pleiotropic cytokine produced mainly by T folli-
cular helper (Tfh) cells, Th17 cells, and natural killer (NK) cells. 
Although it has been demonstrated that IL-21 enhances Th17 
differentiation and it can be produced by Th17  cells to exert 
autocrine feedback (47, 48), existing data indicated that the 
role of IL-21 in the development of diabetes is more than just 
an effect on Th17 differentiation. Preclinical studies performed 
in the NOD mice demonstrate that the IL-21 pathway is criti-
cal for disease development (49–51). It acts in a paracrine and 
autocrine fashion affecting the differentiation and function of 
several immune cell types in the context of T1D, including CD4+ 
and CD8+ T cells, NK cells, B cells, macrophages, and dendritic 
cells (52, 53). Moreover, transgenic overexpression of IL-21 in 
the pancreatic islets results in autoreactive T cell infiltration and 
β-cell apoptosis in C57BL/6 mice, a strain free of any kind of 
autoimmunity signs (54).

As aforementioned, IL-21 is the signature cytokine for Tfh 
cells, the T  lymphocyte subset that is specialized in providing 
help for B cell antibody production (55). Islet autoantibodies are 
the best currently available biomarkers to detect ongoing autoim-
mune process and T1D development risk (56). The production 
of such antibodies by autoreactive B  cells is largely dependent 
on the function of Tfh cells. By means of an unbiased microar-
ray approach and flow cytometry assay, a recent study assessed 
T cell differentiation in a mouse model of spontaneous autoim-
mune diabetes revealing that islet-specific T  cells responding 
to pancreatic antigens show mainly the characteristic features 
of differentiated Tfh cells (57). Also, adoptive transfer of T cells 
with a Tfh phenotype from diabetic animals is highly efficient at 
inducing diabetes to murine recipients. Furthermore, peripheral 
memory CD4+ T cells from patients with T1D expressed elevated 
levels of Tfh cell markers (57). In accordance, an increase in 
peripheral blood Tfh cells has also been reported in three T1D 
patient independent cohorts, one of which comprised exclusively 
new-onset patients (58–60).

Interleukin-2 (IL-2) is critical for maintaining the function 
of the CD4+ regulatory T  cells (Tregs), which in turn regulate 
autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune 
diseases, such as T1D (61, 62). The involvement of the IL-2 
pathway in the physiopathology of T1D first emerged from NOD 
mice; a reduced IL-2 production by the susceptibility allele (NOD 
disease-associated SNPs in IL-2 promoter) led to a consequent 
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reduction of Treg function (63, 64). In humans, certain SNPs of 
the IL-2 receptor gene, IL2RA, encoding the α subunit (CD25) 
as well as of other genes in the IL-2 pathway, were identified as 
susceptibility determinants for T1D (65–68). Accordingly, an 
attenuated IL-2/IL-2R signaling was observed in Treg and Teff 
cells of T1D patients (69). In a clinical study with recently diag-
nosed T1D subjects, treatment with low doses of recombinant 
human IL-2 successfully induced a 10–20% increase in circulat-
ing Tregs whereas reduced Teffs, NK cells, and eosinophils (70); 
these findings lay the groundwork for the potential therapeutic 
use of rhIL-2 for treating T1D.

At present, emerging evidence suggests that pancreatic-resident 
Treg subsets have unique effects on the suppression of immune 
responses in T1D (71). Those distinguishable Treg subpopulations 
that reside in tissues exhibit special phenotype and function in 
response to local signals, thereby promoting tissue homeostasis 
(72). Among those special Treg subsets found in pancreatic tissues 
and pancreatic lymph nodes involved in preventing inflammation 
during T1D are: IL-10 secreting ICOS+ Tregs (73, 74), CXCR3+ 
Tregs (75), and TGF-β-expressing Tregs (76).

In summary, several studies regarding T  cell differentiation 
in T1D clearly demonstrated not only the role of Th1 cells but 
also the possible involvement of other kind of T-effector cells co-
expressing IFN-γ and IL-17, IL-21 producing T cells such as Tfh 
cells as well as circulating and pancreatic-resident Tregs.

T CeLLS CONTRiBUTiON TO ADiPOSe 
TiSSUe iNFLAMMATiON AND OBeSiTY-
ASSOCiATeD DiABeTeS

Type 2 diabetes is a metabolic disease characterized by hyper-
glycemia resulting from either or both impaired β-cell insulin 
secretion and increased peripheral insulin resistance; particularly 
in muscle, liver, and fat (77). The pathogenesis of T2D is complex, 
it is a multifactorial disease that involves behavioral and environ-
mental factors modulating T2D risk alleles in multiple genes. The 
pancreatic islets respond to the decrease in insulin-stimulated 
glucose uptake by enhancing their β-cell mass and insulin secre-
tory activity. When β-cell function can no longer compensate for 
the prevailing insulin resistance, impaired glucose tolerance and 
T2D develop.

β-cell dysfunction precedes diabetes, and endoplasmic reticu-
lum (ER) stress contributes to insulin secretory failure. β-cells 
are particularly susceptible to ER stress due to the high rate of 
insulin demand in response to rapid changes in glycemia levels. 
Many environmental factors, including inflammatory cytokines 
(78), reactive oxygen species (ROS) (79), and viral infections 
(80), may induce ER stress in β-cells associated with T1D trig-
gering. Dysfunctional β-cells of NOD mice show feature ER stress 
before overt diabetes (81) and strategies directed to ameliorate 
ER stress may have therapeutic potential (82). Also, several lines 
of evidence link inflammation-associated obesity, ER stress, and 
T2D. The association of ER stress and T2D has been reviewed 
recently (83).

Inflammation was first linked to insulin resistance and T2D in 
the early 1990s; an induction of TNF-α expression was systemically 

and locally observed in adipose tissue from four different rodent 
models of obesity and diabetes (84). Since then, several studies 
have described elevated circulating levels of diverse inflammatory 
factors, such as acute-phase proteins, cytokines, and chemokines 
in patients with T2D (85–88). Currently, T2D is recognized as 
a chronic, low-grade inflammatory disease with involvement of 
pro-inflammatory cytokines and immune cells, including B and 
T cell subsets as pathogenic mediators (89, 90).

The inflammatory process observed in T2D is usually linked 
to obesity, a critical risk factor for the disease. Moreover, altered 
lipolysis in response to over nutrition and rapidly expanding 
adipose tissue results in elevation of pro-inflammatory saturated 
free fatty acids (FFAs). FFAs trigger metabolism-associated 
inflammation through toll-like receptors (TLRs), particularly 
TLR2 and TLR4, activating signaling pathways that lead to local 
adipose tissue infiltration by immune cells and systemic insulin 
resistance (91). The activation of TLR2/4 induces the produc-
tion of inflammatory cytokines by dendritic cells, macrophages, 
endothelial cells, and pancreatic islets, as well. During diabetes, 
high circulating levels of glucose, FFAs, and pro-inflammatory 
cytokines contribute to insulin resistance and alterations in the 
immune system (91). Of note, the TLR2/TLR4 expression levels 
are upregulated in obese individuals (92). Moreover, TLR2- and 
TLR4-deficient mice are protected from the metabolic undesir-
able effects of high-fat diet (93) and experiments administering 
TLR2 antisense-oligonucleotides to high-fat-fed mice recovered 
insulin sensitivity in adipose tissue (94). Furthermore, nutrient 
excess may also induce local inflammation in the pancreatic islets 
(12, 95–97). Tissue inflammation has been detected in pancreatic 
islets of T2D patients, along with increased levels of cytokines 
and chemokines. Moreover, all T2D animal models investigated 
to date display some degree of insulitis (98, 99). TLR2/4 ligands 
are central in macrophages activation and consequent reduction 
of insulin secretion from pancreatic β-cells mainly by action 
of IL-1β and IL-6 on decreased insulin gene expression (100). 
Also, downstream MyD88-dependent and independent signal-
ing pathways of FFAs-activated TLR2/4 induce differential gene 
expression and cellular responses leading to islet inflammation 
and β-cell dysfunction [reviewed in Ref. (101)].

Macrophages are the major immune cell type in adipose tissue, 
and its relative abundance increased from 5% in lean subjects to 
a level of up to 50% in obese patients. Moreover, the increase in 
number is accompanied by an evolution from the anti-inflamma-
tory M2- to the pro-inflammatory M1-phenotype (102); adipose 
tissue macrophages (ATMs) produce a significant proportion 
of the inflammatory factors that are upregulated during obesity  
(95, 96, 103). Therefore, first studies on inflammatory regulation 
of T2D have been focused on the innate arm of the immune 
system. However, more recent studies suggest that adaptive 
immune cells, especially T lymphocytes, generally accumulate in 
obese adipose tissue in parallel with macrophages and also play 
a pivotal role in the pathophysiology of T2D (104). Moreover, 
studies in a mice model of T2D suggest that the accumulation of 
T lymphocytes in the adipose tissue might occur even before the 
arrival of macrophages (105).

T cells play a key role during the sequence of events that lead 
macrophage adipose tissue infiltration. In particular, CD8+ T cells 
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are activated in adipose tissue which in turn, primer the recruit-
ment and activation of macrophages within this tissue. In fact, 
infiltration of CD8+ effector (CD62L− CD44+) T lymphocytes are 
described as one of the earliest events during the development 
of adipose tissue inflammation in mice due to obesity caused 
by ad libitum access to a high-fat diet (106). CD8+ T infiltration 
takes place in obese individuals too, as the expression of CD8A in 
subcutaneous adipose tissue was found elevated in comparison 
with lean subjects. Interestingly, CD8+ T  lymphocytes not only 
precede adipose tissue infiltration by other immune cells, they 
are also required for the maintenance of inflammation in obese 
adipose tissue, since CD8+ T depletion attenuated adipose tissue 
inflammation and ATMs recruitment, and ameliorated insulin 
resistance and glucose intolerance in obese mice. CD8−null mice 
fed a high-fat diet show moderate imbalance of glucose homeo-
stasis. In this respect, gain of function experiments in where CD8+ 
T  cells were administered into obese CD8−null mice aggravate 
glucose intolerance and insulin resistance, reinforcing the notion 
that CD8+ T  cells are essential for M1 macrophage infiltration 
and subsequent inflammation in diet-induced obese mice (106).

Visceral adipose tissue (VAT) inflammation involves a complex 
communication network between different T cell subpopulations 
expanded by factors that drive differentiation into several kinds 
of pro-inflammatory effectors. Adipose tissue T cell populations 
changed with increasing obesity in mice, and an increase in the 
ratio of CD8+ to CD4+ was reported by various research groups 
(9, 10, 106, 107). Particular T cell subpopulations play key roles 
in glucose homeostasis in human and mice. Winer and colleagues 
reported the importance of VAT resident CD4+ T  lymphocytes 
as modulators of insulin sensitivity in mice under diet-induced 
obesity; glucose homeostasis was compromised when pathogenic 
IFN-γ-secreting Th1  cells accumulated in adipose tissue and 
overwhelmed the static numbers of Th2 and Treg cells. In fact, 
total absence of INF-γ improved insulin resistance in obese INF-γ 
KO mice in comparison with control animals having the same 
diet (108). It was reported that Rag1− mice, known to be deficient 
in lymphocytes, developed a T2D phenotype on a high-fat diet, 
and when adoptively transferred with CD4+ T cells but not CD8+ 
T cells, normalized glucose tolerance; in particular Th2 signals 
from the transferred CD4+ T  cells were crucial in the protec-
tive effect (10). Clinical studies have confirmed the abundant 
infiltrate of Th1, Th2, and Th17 CD4+ T cells, as well as IFN-γ+ 
CD8+ T cells in adipose tissue of healthy overweight and obese 
humans (109); pro-infammatory Th1, Th17, and IFN-γ+ CD8+  
T cells were markedly increased in VAT relative to subcutaneus 
adipose tissue. Also, McLaughlin and colleagues confirmed the 
positive correlation between the relative dominance of Th1 vs Th2 
responses in the adipose tissue and peripheral blood and insulin 
resistance.

A distinctive T  cell subpopulation which infiltrates VAT, in 
a B-lymphocyte dependent way, has been recently identified 
and resembles senescence-T  cells that show up in secondary 
lymphoid organs with age (110). Phenotypically they are dis-
tinguished by expression of CD44hiCD62LloCD153+PD-1+ on 
the surface of CD4+ T cells and their feature characteristic is the 
large production of pro-inflammatory osteopontin upon T cell 
receptor (TCR) stimulation in parallel with compromised IFN-γ 

and IL-2 secretion. Moreover, they expressed increase senescence 
associated markers, such as β-gal, γ-H2AX, and Cdkn1a/Cdkn2b. 
This osteopontin-expressing T cells linked visceral adiposity with 
immune aging (110).

Invariant natural killer T (iNKT) cells are innate T  cells 
involved in inflammatory responses. Adipose tissue-resident 
iNKT cells protect against obesity and metabolic disorder reduc-
ing inflammation in obese individuals (111); they are enriched 
in human adipose tissue and their number is reduced in obesity 
(112). iNKT cells express semi-invariant CD1d-restricted TCRs 
that recognize glycolipid antigens on major histocompatibility 
complex-like molecule CD1d (113, 114). Huh et  al. reported 
that the absence of CD1d in adipocytes aggravates inflammation 
in adipose tissue and insulin resistance in obesity suggesting 
that adipose CD1d is a central activator of adipose iNKT cells. 
Activated iNKT  cells would stimulate counter regulation of 
inflammation leading to reduced pro-inflammatory responses 
and insulin resistance in obesity (115).

The relationship between T2D and Th17 cells has also been 
studied (116). Obesity has been shown to promote expansion of 
peripheral or adipose tissue-resident IL-17-producing T cells, in 
human and mice models. In humans, peripheral Th17 cells are 
increase in T2D patients (117) and positively correlated with body 
mass index (BMI) but not in metabolically healthy obese subjects 
(118). Interestingly, T  cells from obese T2D donors produced 
more IL-17 than that from non-diabetic counterparts and this 
production correlates with T2D severity (118). In diet-induced 
obese mice an IL-6-dependent expansion of the Th17 T  cell 
pools was observed (119). Specific adipose tissue dendritic cells 
isolated from obese animals and humans were associated with 
the differentiation of Th17 cells in vitro (120). Studies performed 
by Zúñiga and colleagues showed an in vitro effect of IL-17 on 
differentiated adipocytes, impairing glucose uptake; in vivo, IL-17 
deficiency enhanced glucose tolerance and insulin sensitivity in 
young mice (121).

The role of Treg cells in the maintenance of self-tolerance and 
the suppression of potentially autoreactive T cells is well known. 
However, the importance of Treg cells in metabolism has been 
recognized when it was found that lean adipose tissue enriched 
in Treg cells (~50% of the CD4+ T cell compartment) controls 
metabolic status. Indeed, Treg cells in adipose tissue of lean mice 
provide anti-inflammatory signals to prevent tissue inflamma-
tion. Interestingly, Treg cell proportion in the abdominal fat 
decreases dramatically with obesity (9, 10, 122) resulting in fat 
tissue inflammation and insulin resistance. Moreover, Feuerer 
et  al. demonstrated that cytokines differentially synthesized by 
fat-resident Tregs directly affected the synthesis of inflammatory 
mediators and glucose uptake by cultured adipocytes. Winer 
et al. associated this Treg mediated protection to the production 
of IL-10 in ATMs and the restraint of pro-inflammatory mac-
rophage activity, which improves insulin sensitivity.

In accordance, studies in humans showed that the relative pro-
portion of Treg cells in visceral and subcutaneous fat decreased in 
patients with T2D and negatively correlated with BMI (9, 118) and 
that there is a decrease in Treg to Th17 and Th1 cell ratios (117). 
A recent study add complexity to the Treg role on the mecha-
nisms underlying insulin resistance, supporting the concept that 
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age-associated and obesity-associated IR are driven by distinct 
adipo-immune populations (123). Bapat and colleagues showed 
that a particular subset of fat-resident regulatory T  cells (fTreg 
cells) accumulate in VAT as a function of age but not obesity. 
Additionally, the authors suggest that fTreg cells are function-
ally distinct from splenic Tregs; while certain canonical genes 
are similarly expressed, they have discrete expression signatures 
(i.e., higher expression levels of PPARγ and IL-33 receptor, ST2). 
Taking advantage of the high expression of ST2 on the surface of 
fTreg cells, Bapat and co-workers deplete fTreg cells by means of 
anti-ST2 administration. Interestingly, selective depletion of fTreg 
cells increases adipose tissue insulin sensitivity implicating these 
cells as drivers of age-associated insulin resistance (123). Contrary, 
in vivo stimulation of fTreg cells expansion within adipose tissue 
by treatment with IL-33 decreases insulin sensitivity. All these data 
suggest that distinct pathophysiologies undergo obesity and age-
associated insulin resistance and support the notion that adipo-
resident immune cells play a central role in adipose tissue glucose 
regulation and consequently, whole-body glucose homeostasis  
in mice.

Interestingly, recent evidences in mice and human suggested 
that the adipose tissue inflammation associated with obesity, in 
particular the T cell imbalance, and the impairment in insulin 
sensitivity, persist even after weight reduction (124, 125). It 
remains to be elucidated the precise mechanistic pathways of 
glucose regulation by T cells in human beings.

In summary, the evidence involving the role of T  cells in 
adipose tissue inflammation and insulin resistance suggests that 
the interplay between T  cells, macrophages, and adipocytes is 
essential. These cells communicate each other in the local adipose 
tissue environment to activate a sequence of events leading to an 
inflammatory state. It has been described the role of CD8+ T cells, 
Th1 and Th17 cells contributing to the obesity-induced insulin 
resistance phenotype, whereas Th2 cells and Tregs would play a 
protective role. However, the identity of the trigger that initiates 
T  lymphocyte infiltration within adipose tissue in obesity still 
remains unknown.

LiveR AND GASTROiNTeSTiNAL 
ReSiDeNT T CeLLS iN MeTABOLiC 
DiSORDeRS

The liver participates in immunological responses and hepatocytes 
are also recognized as active immunological mediators among 
other well-known intrahepatic immune cells (126). There is a 
subset of innate-like T cells, named mucosal-associated invari-
ant T (MAIT) cells, that recognizes small molecules presented 
on the non-polymorphic MHC-related protein 1 (MR1) by 
antigen-presenting cells and express a semi-invariant TCR (127). 
Like iNKT cells, these non-conventional T cells exhibit restricted 
TCR diversity recognizing metabolites on MR1 and play a major 
role in host protection from intracellular pathogens. MAIT cells 
are scarce in lymphoid tissues, comprising a high proportion of 
the total intrahepatic and gastrointestinal tract T cells population 
in humans, having a relevant role as an innate immune barrier 
against microbial invasion. However, their role in diseases begins 

to be clarified recently. Interestingly, MAIT cells activate under 
changes in the composition of gut microbiota and home to 
inflamed tissues. Magalhaes et al. reported for the first time the 
existence of MAIT cells abnormalities in severe obese and T2D 
patients (128). Both, obese and T2D patients showed a decreased 
in the number of circulating blood MAIT cells as well as dramatic 
changes in their functionality, i.e., an activated phenotype asso-
ciated with high Th1- and Th17-type cytokines production. In 
obese individuals, an elevated number of MAIT cells in inflamed 
adipose tissue was found suggesting their recruitment from 
circulation.

Many studies have linked the microbiota, gut integrity, and 
metabolic disorders. MAIT  cells might play a role involving 
the immune system as a fundamental part of these complex 
interactions. Recently, Rouxel et al. described that MAIT cells, 
exhibiting high production of granzyme B and pro-inflamma-
tory cyokines, might directly kill β-cells in humans and NOD 
mice as well (129). As in the case for T2D patients, a reduced 
frequency of MAIT  cells in peripheral blood of children with 
recent diagnosis of T1D was described, but not in those who are 
suffering from the disease for a long period of time. All these 
evidences highlight the role of MAIT cells in the maintenance 
of homeostasis within the complex interplay between mucosal 
integrity and normal islet responses. It would be interesting to 
investigate the functionality of gastric-resident MAIT  cells in 
gastroparesis, a well-recognized complication of diabetes, since 
it has been demonstrated a connection between these cells with 
inflammatory bowel disease (130).

Although the mechanisms triggering and sustaining autoim-
munity are not fully understood, the interaction of the intestinal 
environment with microbiota and, its epithelial integrity play a 
role in the development of T1D, and the disease in NOD mice 
(131, 132). A recent paper highlights the relevance of intestinal 
IL-10-producing type 1 regulatory T (Tr1) cells in the control of 
Teffs and development of diabetes (133). Increased differentiation 
of Tr1 cells may account by IL-27 and TGF-β action on intestine. 
These Tr1 cells have the ability to migrate to islets where they can 
suppress diabetogenic T cells via IL-10 signaling. Moreover, gut 
microbial metabolites augment the number and function of Treg 
cells, limiting the frequency of autoreactive T cells and protecting 
against autoimmune diabetes in NOD mice (134).

SKeLeTAL MUSCLe ReSiDeNT T CeLLS 
AND GLUCOSe HOMeOSTASiS

Skeletal muscle is the predominant tissue of insulin-mediated 
glucose uptake in the postprandial state in humans (135); moreo-
ver, lipid accumulation in this tissue is associated with insulin 
resistance. Muscle insulin resistance is a major factor in the etiol-
ogy of the metabolic syndrome and T2D (136). The increase in 
macrophages number within skeletal muscle has been associated 
to metabolic risk markers and insulin resistance in humans and 
mice (137, 138). However, little is known about the contribution 
of T cells infiltration to skeletal muscle inflammation and insulin 
resistance. Skeletal muscle T cells infiltration occurs in high-fat 
diet-fed mice (139). T  cells localize within skeletal muscle in 
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intermuscular and perimuscular adipose tissue suggesting that 
they might play a role in obesity-induced skeletal muscle inflam-
mation and insulin resistance (13). Within skeletal muscle T cells 
polarized into pro-inflammatory INF-γ-secreting Th1-type 
inducing myocyte inflammation and insulin resistance through 
activation of JAK/STAT pathways, while Treg cells diminish 
in number. Interestingly, TCRb−/− (TCR beta chain null) diet-
induced obese mice show reduced skeletal muscle inflammation 
partially attributable to the lack of Th1 cells, confirming the role 
of T cells in skeletal muscle inflammation (139). Signals such as 
chemokines/cytokines/adhesion molecules that induce T  cells 
infiltration into skeletal muscle are not yet identified. However, 
CD11a−/− mice exhibited low inflammatory gene expression in 
VAT (140).

Administration of JAK1/JAK2 inhibitors in vivo reduces T cells 
infiltration within skeletal muscle and attenuates insulin resist-
ance (13). Although there is no information, to our knowledge, 
about the presence of T cells infiltration in skeletal muscle in T1D, 
it has been described that a particular subpopulation of CD4+ 
T cells is associated with cachexia in NOD mice (141). In T2D, 
the level of transcriptome and proteome expression of activated 
T cells and muscle differ relative to non-diabetic controls (142). 
T cells, in particular Treg subsets, have homeostatic functions in 
muscle tissue repair regulating both the inflammatory response, 
by promoting the switching from M1 to M2 macrophages, and 
the activation of myogenic stem cells (143). However, further 
investigation will be required to choose any T lymphocyte subsets 
as potential targets for improving cachexia in diabetes.

HORMONeS, NeUROPePTiDeS, AND 
NeUROTRANSMiTTeRS MODULATe  
T CeLL FUNCTiON iN DiABeTeS

T cell capacity to respond against foreign antigens while avoiding 
reactivity to self-peptides is mainly determined by cellular selec-
tion of developing T cells in the thymus (144). Positively selected 
cells migrate to the peripheral lymphoid organs and target tissues; 
however, extrathymic pathways of T cell differentiation have also 
been demonstrated to contributing to the generation of a wide 
functional spectrum of TCR repertoire.

Several hormones and neurotransmitters impact thymic 
microenvironment and peripheral tissues affecting T cell devel-
opment in health and disease (6). In particular, numerous studies 
performed in human and mice models analyzed the neuroendo-
crine-immune systems relationship under the metabolic burden 
of diabetes.

Growth Hormone (GH)—insulin-Like 
Growth Factor-1 (iGF-1)
Growth hormone exerts pleiotropic functions modulating 
from carbohydrate, protein, and fat metabolism to the immune 
response (145). It is secreted by the anterior pituitary and also 
produced by immune tissues thereby acting in an autocrine/
paracrine manner on immune cells (146).

It was reported that a single point mutation within the 
DNA binding domain of Stat5b, a central transcription factor 

downstream GH receptor, is a key molecular defect in NOD mice 
that limits Foxp3 expression in Treg cells (147, 148). Transgenic 
NOD mice overexpressing GH show normal glycemia through-
out their lives; histochemical analysis of the pancreas revealed 
the development of peri-insulitis, but showed little or no islet 
infiltration or β-cell destruction (149). The authors demonstrated 
that this protective outcome involves several GH-mediated 
mechanisms on T cells, altering cytokine environment against a 
Th1 response, maintaining the activity of Treg cell subsets, and 
affecting Th17/Th1 plasticity. Additionally, sustained GH expres-
sion positively influenced β-cell viability.

Conversely, human studies reported that the incidence of 
T1D during GH replacement therapy in GH-deficient children 
was comparable with that of the general population (150–152) 
and described an association of GH treatment with disturbances 
on carbohydrate metabolism. The hyperglycemic effect of GH 
has been well-described mainly due to their action on liver, 
muscle, and adipose tissue (153–155). It is known that many of 
the GH effects are mediated by the production of IGF-1; thy-
mocytes produce and release IGF-1 and also express its cognate 
receptor (156).

Several studies propose IGF-1 as a key factor able to induce 
protection from T1D. Human recombinant IGF-1 administration 
in NOD mice reduces the severity of insulitis and the incidence of 
autoimmune diabetes (157–159). The protective T cell-mediated 
effects of IGF-1 on T1D arose more recently. Anguela and col-
leagues showed that plasmid-delivered overexpression of IGF-1 
in the liver prevents the development of hyperglycemia in a 
mice model of T1D; decreasing pancreatic infiltration, reducing 
apoptosis, and increasing replication of β-cell. In this experi-
mental model, they observed an increase of intra-pancreatic 
Treg cell numbers and proposed an indirect effect mediated by 
IL-7-producing dendritic cells that improved Treg survival or 
by the conversion of conventional T cells into Tregs by TGF-β 
secreted from the liver (160). In a latter study, it was demonstrated 
that IGF-1 directly stimulates Treg cells proliferation in vitro in 
both mouse and human. Moreover, in vivo IGF-1 treatment via 
continuous delivery specifically stimulated proliferation of Treg 
but no other T cell subtypes and exerted protective action against 
autoimmune diabetes in two mice models [NOD and multiple 
low-dose streptozotocin (STZ) injections in C57BL/6J mice] 
(161). It is noteworthy that the protective effect of IGF-1 treat-
ment might be also exerted at the β-cell level (162–164).

Glucocorticoids (GCs)
Glucocorticoids are endogenous modulators of several bio-
logical processes including regulation of metabolism and stress 
response, and development of the immune system. In particular, 
GCs broadly affect T cell differentiation and function (165) with 
positive or negative effects depending on the dose at which they 
are exposed (166). Synthetic GCs are widely used for their immu-
nosuppressive and anti-inflammatory properties to treat several 
immune disorders and preventing transplant rejection (167). 
Brief dexamethasone treatment during acute infection prevents 
virus-induced autoimmune diabetes in a rat model by down-
modulating Th1 responses and restoring the balance between 

77

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

CD8+ T and Treg cells (168). However, the well-described severe 
side metabolic effects, such as osteoporosis, hypertension, and 
insulin resistance, induced by the chronic administration of 
GCs limits its therapeutic use for autoimmune diabetes (169). 
It is widely recognized the inhibitory action of GCs, when 
pharmacologically administered in vivo, on the proliferation of 
several human subpopulation of Ag- and mitogen-stimulated 
T cells (170). Mechanistically, the underlying inhibitory effects 
have been attributed to the ability of GCs to restrain gene expres-
sion of cytokines. In this respect, IL-2 has been indicated as the 
principal growth factor for T  lymphocyte proliferation (171) 
However, under physiologic concentrations GCs show contrast-
ing effects promoting TCR-stimulated T cell proliferation (172). 
CD4 acts as an important coreceptor during Ag recognition by 
the TCR, contributes to the assembly of TCR-MHC-II complex 
and thus, increases the sensitivity of T cell to the Ag presented by 
MHC-II lowering the amount of Ag required to mount an effec-
tive immune response. Corticosterone accelerates the expression 
of CD4 on T  cell membrane (173). It has been reported that 
physiologic concentration of GCs regulates CD4 expression upon 
T  lymphocyte challenge by Concavalin A or TCR stimulation. 
Also, CD8 expression is induced by GCs on activated mature 
T cells (174). Therefore, TCR triggering induces the expression 
of CD4 and CD8 on T lymphocytes and physiologic levels of GCs 
increase this process enhancing T cell activation.

Glucocorticoids affect gene expression by two main GR- 
dependent and -independent intracellular mechanisms that exert 
several biological effects. These differential mechanisms have 
fueled the interest in the study and development of new GR-ligands 
with dissociative properties combining GCs’ anti-inflammatory 
properties with a reduced side effect profile (175, 176). These 
particular dissociated GR-ligands hold potential for their use in 
Th1-mediated immune disorders. CpdA is a dissociating com-
pound which does not stimulate GR response elements-driven 
gene expression (177). It has been reported that CpdA regulates 
T cells through inhibition of the master transcription factor T-bet 
and induction of GATA-3, thus inhibiting Th1 and favoring Th2 
response (178).

In pregnant women at risk of preterm delivery, GCs are 
routinely administered in order to improve fetal lung develop-
ment and newborn survival (179). The association of increased 
exposure to cortisol in  utero (due to stress, pharmacological 
treatment, or impaired function of 11β-HSD-2) with long-term 
effects on glucose-insulin homeostasis has been demonstrated 
in human and animal models (180–183). However, studies 
regarding the effects of prenatal GCs on the development of 
autoimmunity are limited. Recently, using a mice model, Tolosa 
and colleagues demonstrated that prenatal administration of 
betamethasone increases apoptosis of developing thymocytes and 
induces changes in the TCR repertoire decreasing the frequency 
of pathogenic T cells and protecting from T1D development in 
NOD mice (184, 185). Conversely, an epidemiological study in 
Danish cohorts indicated the existence of an increased risk for 
T1D and T2D in young children who received prenatal steroid 
treatment (186). Under this scenario, a role of prenatal GCs 
exposure on pancreas development and T cell effects cannot be 
ruled out (187).

Ghrelin and Leptin
Peptide hormones known to be involved in the control of eat-
ing behavior, glucose metabolism, and energy homeostasis, 
such as ghrelin and leptin, also exert regulatory effects on the 
immune system via their actions on several leukocytes, includ-
ing T  lymphocytes. Ghrelin and leptin are considered to play 
mutually antagonistic actions on food intake at the hypothalamic 
area (188, 189). The interplay between leptin and ghrelin at the 
level of immune cells was recently recognized. It seems likely 
in general terms that orexigenic peptides like ghrelin may play 
a role in promoting endogenous anti-inflammatory responses. 
On the other hand, anorexigenic agents like leptin might assist 
inflammation.

Ghrelin is mainly produced by endocrine-like cells in the 
stomach and released into peripheral blood. Also, the synthesis 
and secretion of ghrelin by T lymphocytes have been described 
(190). Human T  lymphocytes constitutively express low levels 
of ghrelin which significantly increase upon cellular activation 
by stimulated TCR. Moreover, ghrelin enhances proliferation of 
peripheral CD4+ T cells and thymic murine T cells upon activa-
tion with anti-CD3/-CD8 mAbs and during its administration 
in vivo, respectively (191).

It was shown that ghrelin attenuated age-associated and 
GC-mediated thymic atrophy, and stimulated thymocyte prolif-
eration in young and old mice in vivo through activation of its 
receptor GHS-R1a (191). Thymus involution with age correlates 
with lower expression levels of intrathymic ghrelin and its recep-
tor, and exogenous administration of ghrelin partially reversed 
thymus involution and, consequent improvement of thymic 
progenitors and mature T lymphocytes (192). In addition, ghrelin 
action on suppressing inflammation might be attributed to the 
observed inhibition of T derived pro-inflammatory cytokines 
expression and Th17 development (190, 193). The acylated form 
of ghrelin exerts potent inhibitory effects on the expression of 
pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, 
as well as adhesion molecules by TCR-stimulated T cells. It has 
been suggested that these inhibitory actions of acylated ghrelin 
are mediated by GHS-R1a via specific blocking of NF-κB and/or 
STAT3 signaling (190).

There is also evidence that ghrelin is synthesized by T cells 
and inhibition of its production by using siRNA resulted in 
stimulation of INF-γ, IL-17 and other chemokines upon TCR 
ligation indicating that ghrelin might also influence T cell micro-
environment regulating immune responses (193). Interestingly, 
ghrelin downregulates leptin-induced pro-inflammatory Th1 
responses (190), suggesting that apart from counteract each 
other’s function at the level of energy homeostasis their interplay 
might influence T cells function as well. Ghrelin administration 
delays the development of autoimmune diabetes by reducing 
islet infiltration in BioBreeding rats; unfortunately, there is 
absence of information whether this hormone has any effect 
on diabetogenic T lymphocytes in this setting (194). However, 
it might be possible the regulation of diabetogenic T  cell 
population through indirect mechanisms such as, an increase 
in the number or potency of Treg cells due to the reported 
modulatory effects of ghrelin on monocytes and dendritic  
cells (190, 195).
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Leptin is an adipokine mainly secreted by white adipose tissue, 
which belongs to the family of the long-chain helical cytokines 
(IL-2, IL-15, and IL-12) commonly associated with pleiotropic 
functions. Leptin regulates feeding behavior and metabolism 
(196), hematopoiesis (197), angiogenesis (198), and reproduction 
(199). Also, leptin exerts modulatory actions on the immune 
systems (200). It was shown that leptin induces proliferation 
and secretion of IL-2 by CD4+ T  lymphocytes in humans and 
mice (201). In addition, leptin assists Th1  cell-biased immune 
responses stimulating the secretion of INF-γ by T  cells (202). 
Therefore, leptin promotes pro-inflammatory immune responses 
like the antigen-specific Th1-type directed against β cells observed 
in T1D. In fact, it has been reported that administration of leptin 
during early life accelerates the development of autoimmune dia-
betes in the NOD mice (203). Interestingly, Materese et al. found 
that circulating leptin peaked soon before the onset of hypergly-
cemia and spontaneous diabetes in female prone NOD mice. The 
administration of leptin enhanced the production of IFN-γ by 
peripheral T lymphocytes. On the other hand, a mutated version 
of the leptin-receptor in NOD mice suppresses autoimmune 
diabetes progression (204). All these evidences point leptin with 
its permissive action on the development of polarized Th1-type 
autoimmunity against β cells.

insulin
Only sparse data are available regarding the role of insulin on 
T lymphocytes. It has been reported that insulin infusion resulted 
in reduction of NF-κB and ROS generation, and increase in IκB in 
mononuclear cells, all changes characteristic of an anti-inflamma-
tory effect at the molecular level (205). Unfortunately, this study 
did not address whether there is a similar response to insulin 
treatment in all mononuclear cells or there is a particular cellular 
type more sensible to insulin action. Later, it was elucidated that 
insulin drives T cell differentiation toward an anti-inflammatory 
Th2-phenotype by mechanisms that involve ERK activation (206). 
Nevertheless, other study found that in T cells isolated from obese 
subjects incubation with supra-physiological concentration of 
insulin did not alter the Th1/Th2 balance suggesting that insulin 
signaling in lymphocytes is strongly impaired in obesity, shift-
ing T-cell differentiation toward a pro-inflammatory phenotype 
(207). During diabetes there is a high occurrence of apoptosis in 
lymphocytes and insulin treatment reduces this effect, suggest-
ing that insulin may act as a pro-survival factor for lymphocytes 
(208). Moreover, there is evidence in favor of a role of insulin in 
promoting obesity-associated adipose tissue inflammation (209).

A recent theoretical study simulated how hyperinsulinemia 
might alter the dynamics of the CD4+ T regulatory network (210); 
the analysis showed how high insulin levels affect the differentia-
tion and plasticity of CD4+ T cells favoring stabilization of inflam-
matory Th1 and Th17 and reducing the stability of Treg types. 
In line with this in silico observations, it has been demonstrated 
in vitro that Tregs express the insulin-receptor and that high levels 
of insulin specifically inhibits IL-10 production via AKT/mTOR 
signaling and impairs the ability of Treg cells to suppress TNF-α 
production by macrophages (211). Moreover, the authors showed 
that Tregs from the VAT of hyperinsulinemic diet-induced obese 
mice exhibited a specific decrease in IL-10 production, as well as a 

parallel increase in IFN-γ production; suggesting that hyperinsu-
linemia may contribute to the development of obesity-associated 
inflammation via modulation of Treg function.

Resting T  lymphocytes do not express detectable levels of 
insulin-receptor; however, after activation its expression is sig-
nificantly increased (206, 212, 213). A more recent study suggests 
that upregulation of the insulin-receptor on activated T cells is 
critical for T cell function and efficient adaptive immune response 
(214). In conditions of impaired insulin-receptor expression, 
T-effector activities are diminished resulting in attenuated clinical 
symptoms in a T-cell-mediated multiple sclerosis model in vivo 
(214). Fischer et  al. showed that silencing the insulin-receptor 
on T  lymphocytes disrupts their function, such as reducing 
cytokine production, proliferation, and migration without 
affecting thymocytes development. Interestingly, the absence of 
insulin-receptor affected CD4+ and CD8+ T subsets whereas the 
frequency and potency of Treg cells were unaffected (214).

T  lymphocytes use aerobic glycolysis (Warburg effect) upon 
activation and their increase in glucose demand is facilitated by 
induction of the insulin-receptor along with GLUT1 (215). Given 
the critical dependence on glucose upon activation, glycemic 
status should be considered as a factor affecting T cell function. 
The diabetic state, where circulating glucose levels are elevated, 
provides an environment of oxidative stress and activation of 
the inflammatory pathways. Transgenic expression of Glut1 
augmented T cell activation and led to accumulation of readily 
activated memory-phenotype T cells with signs of autoimmunity 
in aged mice (216). Increased glucose uptake may lead to exces-
sive T cell activity and accumulation as a result of enhanced T cell 
activation and/or inhibition of T cell death following stimulation. 
Moreover, human CD4+ and CD8+ T cells differ in the relative use 
of the metabolic pathways contributing to functional responses. 
Thus, CD4+ T subset shows higher basal glycolysis mainly 
attributed to elevated expression of glycolytic enzymes and CD8+ 
T subpopulation showing a decrease in glycolysis upon activa-
tion and greater dependency on mitochondrial metabolism for 
cytokine production. Also, it was demonstrated that the binding 
affinity of specific antigens fine-tune T  cell metabolism (217). 
Therefore, T  lymphocyte insulin-receptor/GLUTs expression, 
insulin and glucose levels as well as, the affinity of antigens with 
cognate TCR of different T cell subsets all have implications to 
consider for therapeutic manipulation in the setting of hypergly-
cemia and hyperinsulinemia (T2D) and, during T-cell-mediated 
T1D featured by elevated glycemia and lack of insufficient insulin 
levels.

Prolactin (PRL)
Prolactin is a pituitary hormone not only essential for reproduc-
tion and lactation but also involved in immunological responses. 
PRL and its receptor are expressed by various extra-pituitary 
tissues, including lymphoid cells (218, 219). PRL has a stimula-
tory action on the immune system; it affects differentiation and 
maturation of both, B and T lymphocytes, stimulates lymphocyte 
proliferation and macrophage function, and enhances inflamma-
tory responses and production of immunoglobulins (220–222).

Increase serum PRL has been detected in autoimmune 
disorders including T1D and elevated prolactinemia was also 
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observed in T2D (223–225). The association between circulat-
ing PRL levels and glucose homeostasis has been controversial. 
Within the physiological range, higher serum PRL levels seem 
to be associated with insulin resistance in men (226) and with 
reduced glucose tolerance in the third trimester of pregnancy 
in women (227). Conversely, higher circulating PRL levels were 
associated with lower prevalence of diabetes and impaired glu-
cose regulation in a large cohort of middle-aged and elderly men 
and postmenopausal women (228).

Experimental studies suggested a protective role associated 
with PRL modulation of T cell development; PRL reduces insuli-
tis and protects against autoimmune diabetes in NOD mice (229) 
in the autoinmune diabetes model induced by low-dose STZ 
administration in C57BL/6 mice (230). Further studies in this 
latter experimental model showed that PRL treatment enhances 
a Th2 response by increasing the frequency of IL-10 positive sple-
nocytes and down-modulating the featured expression of the Th1 
cytokines IFN-γ and TNF-α in splenocytes (231). Furthermore, 
PRL-expanded Treg (CD4+ Foxp3+) population and improved 
the efficacy of short-term low-dose anti-CD3 treatment (which 
induce a transient CD4+ and CD8+ T cell depletion) at achieving 
diabetes remission in the NOD mice (232). Conversely, severe 
hyperprolactinemia induced by anterior pituitary ectopic trans-
plantation increases the incidence of diabetes in the NOD mice 
(233). A study analyzing the in vitro effect of PRL on CD4+ T cell 
suggested that the modulatory effect is dose dependent; low-dose 
PRL promotes Th1 response through increases in its Th1-driven 
transcription factor T-bet, whereas higher doses have suppres-
sive effects (234). Therefore, differences obtained in clinical and 
experimental studies might be explained on the basis of the PRL 
differential effect on T  cells, glucose metabolism, and insulin 
resistance depending of the hormone concentration impacting 
on target tissues.

Moreover, it was demonstrated that PRL stimulates insulin 
secretion and proliferation of β-cells in murine and human islets 
(235–237) and in particular during pregnancy (238). Thus, a 
further protective action of PRL exerted at β-cells level could not 
be ruled out in the experimental models studied.

Oxytocin (OXT)
Oxytocin is an essential neuropeptide involved in the regula-
tion of maternal behavior, lactation, and parturition (239). In 
the central nervous system OXT is expressed in subpopulations 
of hypothalamic neurons, stored in the neurohypophysis and 
released into circulation. Besides its central origin, OXT is 
produced and released in peripheral tissues acting in a paracrine 
and autocrine fashion via widely expressed OXT receptors (240). 
In addition to the abovementioned physiological functions in 
mammals, the modulatory effect of the OXT-secreting system 
on immune system activity and metabolic homeostasis has come 
to gain attention.

Oxytocin effects on immune functions include thymus physio-
logy, immunologic defense, homeostasis, and surveillance (241). 
However, scarce information exists regarding the interaction of 
OXT with T lymphocytes in diabetes. CD38, a membrane ADP-
ribosyl cyclase expressed in several cells such as lymphocytes and 
β-cells, is involved in OXT secretion (242); targeted disruption of 

CD38 accelerates autoimmune diabetes in NOD mice by enhanc-
ing autoimmunity (243). CD38-deficient mice presented a dis-
balance between T-effector and Treg cells and an age-dependent 
increase in a diabetogenic CD8 clonotype, along with impaired 
insulin secretion and an elevated plasma glucose level.

Recent studies have shown that the impairment of OXT sign-
aling is associated with disturbance of metabolic homeostasis, 
resulting in obesity and diabetes. In mice under a high-fat diet, 
there was a significant increase in both OXT and OXT receptor 
levels in the brain, as well as an increase in OXT receptor in the 
islets (244). OXT receptor-deficient mice exhibited increase β-cell 
death under metabolic stress conditions resulting in impaired 
insulin secretion and glucose intolerance under a high-fat diet 
(244). Both OXT- and OXT receptor-deficient mice developed 
late-onset obesity (245, 246).

On the other hand, peripheral OXT treatment improved 
glucose tolerance and reduced food intake and visceral fat mass 
in mice under diet-induced obesity (247, 248). Moreover, OXT 
treatment improved glucose homeostasis and induced tissue 
regenerative changes of pancreatic islets after STZ-induced dia-
betes in rats (249); similar results were obtained in mice (248). 
Conversely, worsening of basal glycemia and glucose tolerance 
were observed under OXT treatment in ob/ob animals (250) 
suggesting that OXT effects on glucose metabolism may depend 
on the interaction with leptin signaling.

A central action of OXT on glucose homeostasis was also 
observed. Intranasal OXT delivery enhanced glucose tolerance 
and β-cell response in healthy men challenged with an oral glucose 
tolerance test (251). Furthermore, OXT nasal spray treatment in 
obese patients effectively reversed obesity and related lipid disor-
ders and improved blood glucose and insulin postprandial levels 
(248). In addition, third-ventricle injections of OXT improved 
glucose intolerance and fasting blood insulin levels in mice under 
chronic high-fat diet feeding and led to significant improvements 
in glucose tolerance, β-cell insulin secretion, and blood insulin 
levels in the multiple low-doses administration of STZ-induced 
autoimmune diabetes in mice (248).

Sexual Steroids
For most of autoimmune diseases, females are generally more 
frequently affected than males. This is the case for systemic 
lupus erythematosus, rheumatoid arthritis, and multiple scle-
rosis. However, sexual dimorphism in autoimmune diabetes 
prevalence is observed in NOD mice but not in humans (252). 
One of the main factors contributing to gender differences in 
immune system is sex hormones. The effects exerted by female 
(estrogen, progesterone) and male (androgens) steroid hormones 
on T  lymphocytes might explain gender differences in specific 
autoimmune diseases (253).

Several studies indicate that testosterone has suppressive 
effects on T cells by inhibiting Th1 differentiation of naive CD4+ 
T cells and pro-inflammatory cytokine production and enhanc-
ing the expression of anti-inflammatory cytokines (254, 255).  
Ovarian hormones also modulate T  lymphocyte function.  
In vivo and in vitro evidence indicate that progesterone, which 
promotes maternal–fetal tolerance during pregnancy, favors the 
Th2, and suppresses Th1 and Th17 responses, and has a potent 
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Treg induction activity promoting the production of anti- 
inflammatory cytokines like TGF-β1 and IL-10 (256, 257). Nume-
rous evidences support estrogens influence on the development 
and maintenance of thymic and peripheral T cell function with 
dual effects depending on factors, such as steroid concentra-
tion, target cell, and timing (258). Estradiol at periovulatory 
to pregnancy levels stimulates IL-4 and IL-10 production and 
inhibits TNF-α from CD4+ T cells and increases Th2 and Treg 
phenotype, which might shift the immune response toward 
tolerance (258, 259). On the other hand, at lower concentrations, 
estradiol stimulates TNF-α, IFN-γ, and IL-1β production (258, 260). 
Scarce information is available regarding sexual steroids and 
T cell interaction under the burden of diabetes.

NOD mice spontaneously develop diabetes with a strong female 
prevalence; a more invasive and destructive insulitis, leading to 
an earlier onset and higher incidence is observed in females (261). 
Moreover, the incidence of diabetes was significantly decreased in 
female NOD mice, but increased in male, by castration at the time 
of weaning (262, 263). Furthermore, long-term administration of 
androgen or its derivatives to young female NOD mice resulted in 
a decrease in the percentage of CD4+ T cells in peripheral blood 
mononuclear cells and the incidence of diabetes (264, 265). Bao 
and colleagues demonstrated that sex hormones modulate the 
Th1/Th2 balance in the early stages of the T cell-mediated auto-
immune process in the NOD mice; IFN-γ expression was signifi-
cantly higher in pancreatic and lymph node-T cells from young 
females, whereas IL-4 expression was higher in male counterparts. 
This differential expression, enhancing Th1 immune response in 
female NOD mice, was found to be due to the upregulation of 
IL-12 induced IFN-γ production through activation of STAT4 by 
estrogen (266). Additionally, it was suggested that male-specific 
gut microbiome play a protective role in NOD mice that is medi-
ated, at least in part, via microbiota metabolism of sex hormones 
(267). Conversely, estradiol administration was found to restore 
immunomodulatory functions of iNKT cells and preserve female 
NOD mice from both spontaneous and cyclophosphamide-
induced diabetes (268).

A clear sexual dimorphism is observed related to glucose 
metabolism and obesity-associated T2D. The sex difference in 
the prevalence of diabetes was reversed during reproductive life, 
there are more men with T2D at middle age while there are more 
affected women after menopause (269), suggesting a protective 
role of estrogens. Consistent with this observation, continuous 
estradiol treatment (pregnancy levels) in males inhibited weight 
gain and the associated onset of hyperglycemia in an islet amyloid 
(huIAPP)-dependent murine model of diabetes; histological 
analysis of the pancreas revealed estradiol prevented deposition 
of islet amyloid and preserved islet mass and β-cells insulin 
content (270). Mice of both sexes develop a vulnerability to STZ-
induced insulin deficiency when estradiol production or signal-
ing is genetically suppressed (aromatase-deficient, ArKO−/− and 
ERα-deficient, ERKO−/− mice); in these mice, estradiol treatment 
prevents STZ-induced β-cell death and helps sustain insulin pro-
duction, and prevents diabetes (271). Estradiol protective effect 
on β-cells was also observed in isolated human pancreatic islets; 
estradiol treatment of cytokine-challenged islets increases islet 
viability by lowering NF-κB activity and caspase-9 activation and 

cytokine-induced cell death. Additionally, estradiol improved 
glucose-stimulated insulin response in vitro and in vivo function-
ality of treated human islets after transplantation in the portal 
vein of STZ-induced NODscid mice (272).

Estrogen protective action on glucose homeostasis is not only 
exerted in the pancreas; several studies indicated that estradiol 
enhances insulin sensitivity in peripheral tissues, improves 
body fat distribution, and reduces adipose tissue inflammation 
(273–275). Estrogen treatment prevented insulin insensitivity and 
reduced the expression of adipose tissue inflammation (Mcp-1 
and Cd68) induced by high-fat diet in ovariectomized mice (274).

Although its protective anti-inflammatory effect on immune 
cells, progesterone has been associated with the development of 
gestational diabetes. It was demonstrated that the hyperglycemic 
effect of gestational levels of progesterone is mostly due to the 
enhancement of insulin resistance (276), particularly by a reduc-
tion of glucose transporter 4 expression in skeletal muscle and 
adipose tissue (277) but also reducing insulin secretion by a non-
genomic mechanism (278). A recent study performed in RINm5F 
β-cell line and primary rat islets show that progesterone, particu-
larly at pharmacological concentrations used for preterm delivery 
prevention, induced apoptosis of pancreatic β-cells through an 
oxidative-stress-dependent mechanism (279), contributing to 
gestational diabetes pathogenesis.

It is well established the impact of testosterone deficiency 
on the development of visceral obesity and insulin resistance in 
men (280, 281). Consistently, androgen receptor-deficient mice 
exacerbates adiposity and insulin resistance induced by a high-
fat diet; elevated serum IL-1β levels and decreased pancreatic 
glucose-stimulated insulin secretion was also observed (282). A 
recent transcriptome analysis of islets from adult male mice lack-
ing androgen receptor selectively in β-cells revealed alterations in 
genes involved in inflammation and β-cell function (283).

Recently, Rubinow and colleagues analyzed lymphocyte 
subsets in subcutaneous adipose tissue biopsies after 4 weeks of 
pharmacological testosterone suppression with a GnRH receptor 
antagonist and controlled testosterone replacement in healthy 
male subjects. In this clinical study, change in serum total tes-
tosterone levels correlated inversely with CD3+, CD4+, and CD8+ 
T cells and ATMs within adipose tissue (275).

At the pancreas level, it was observed a sex specific protective 
action of testosterone on STZ-induced apoptosis in β-cells; the 
cytoprotective effect was seen in gonadectomized male but not 
in female rats (284, 285). Moreover, chronic hyperandrogenism 
induced β-cell dysfunction and failure to compensate high-fat 
diet induce insulin resistance in female mice (286). The sexual 
dimorphism in the modulation of glucose and energy homeo-
stasis by testosterone is evidenced in the clinic, androgen excess 
predisposes to insulin resistance, β-cell dysfunction, and T2D in 
women (281). Nonetheless, further research is needed to reveal 
the mechanisms underlying the sex differences in the metabolic 
effect of testosterone.

Neurotransmitters
Originally, the notion that neurotransmitters act as immu-
nomodulators emerged with the discovery that their release from 
the nervous system could lead to signaling through lymphocyte 
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cell-surface receptors modulating immune response. It is now 
known that neurotransmitters can also be released from immune 
cells and act as autocrine or paracrine modulators.

It has been demonstrated that administration of gamma-
aminobutyric acid (GABA), a major CNS neurotransmitter syn-
thesized from glutamate by glutamic acid decarboxylase (GAD), 
exerts antidiabetic effects by acting on both islet β-cells and the 
immune system in both T1D and T2D models. GABA acts as 
an autocrine excitatory neurotransmitter in human pancreatic 
β-cells through GABA receptors (287, 288).

Gamma-aminobutyric acid promotes proliferation, protects 
β-cells from STZ- and cytokine-induced apoptosis (288), and 
inhibits human β-cell apoptosis following islet transplanta-
tion into NODscid mice (289). This protective effect is also 
observed in  vivo, e.g., GABA treatment prevents insulitis and 
diabetes onset and preserves insulin expression in NOD mice 
and in multiple low-dose STZ-induced diabetes in C57BL/6 mice  

(288, 290, 291) and delays hyperglycemia in the adoptive transfer 
of disease in NODscid mice (292). Moreover, overtly diabetic 
NOD mice treated with GABA improved fasting glycemia, insu-
lin and C-peptide levels and glucose tolerance (291).

Also, GABA receptors are expressed in various immune 
cells, including T cells (292, 293). Low doses of GABA inhibited 
activated T cell responses against islet autoantigens when assayed 
ex vivo (292), suggesting that GABA downregulates diabetogenic 
Teff function in vivo. Later studies showed an anti-inflammatory 
effect of GABA treatment, increasing the frequency and suppres-
sive activity of splenic CD4+Foxp3+ Tregs in pancreatic lymph 
nodes in NOD mice with no changes in GAD-reactive CD4+ 
T cells and decreased circulating inflammatory cytokines in the 
multiple low-dose STZ-induced diabetes model (288, 291).

A beneficial effect of GABA was observed also in T2D experi-
mental models. Oral GABA administration inhibited obesity, 
reduced fasting blood glucose, and improved glucose tolerance and 
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insulin sensitivity in high-fat diet-fed C57BL/6 mice. Moreover, 
even after the onset of obesity and hyperglycemia, GABA treat-
ment improved glucose homeostasis (294). Furthermore, GABA 
treatment inhibited obesity-related inflammation, reducing the 
frequency of VAT macrophage infiltrates and increasing the 
frequency of splenic CD4+Foxp3+ Tregs in high-fat diet-fed  
mice (294).

In accordance with the antidiabetic effect in preclinical models, 
GABA and GABA analogs were also shown to exert insulinotropic 
effects in humans (295, 296).

Interestingly, consistent with the high levels of GAD found 
in the islets of Langerhans, GAD65 is one of the major target 
autoantigens recognized by self-reactive T cells in T1D. Complete 
suppression of β-cell GAD expression in NOD mice blocked 
the generation of diabetogenic T  cells, protected islet grafts 
from autoimmune injury and consequently, the development of 
autoimmune diabetes (297). In fact, potential immunomodula-
tion with GAD therapy has been extensively investigated for the 
prevention or treatment of T1D in humans (298).

Histamine is an inflammatory mediator classically involved in 
allergic reactions but also in the modulation of innate immunity 
and autoimmune reactions. Its diverse effects are mediated by the 
differential expression and regulation of four known histamine 
receptors (termed H1R-H4R) and their distinct intracellular sig-
nals (299). Th1 and Treg cells express relatively high levels of H1R, 
whereas H2R is preferentially expressed by Th2 cells. Histamine 
modulates T lymphocytes by enhancing Th1 responses through 
H1R and downregulates both the 1- and 2-type responses through 
H2R (300); activation of H1R by histamine decreases Treg cell 
suppressive functions.

The association of autoimmune diseases, such as multiple scle-
rosis, rheumatoid arthritis, and diabetes, and elevated serum and 
tissue histamine levels was described many years ago (301–303). 
However, research searching for the possible role of histamine 
signaling on diabetes emerged recently.

In histidine decarboxylase (HDC) deficient NOD mice, the 
lack of endogenous histamine reduces IL-12 and IFN-𝛾 levels and 
delays the onset of autoimmune diabetes (304); the proportion 
CD4+CD25+Foxp3+ Treg cells in spleen and pancreatic lymph 
node remained unchanged. Surprisingly, exogenous histamine 
administration not only failed to increase the incidence of T1D 
but also delayed the onset of disease in both wild-type and 
HDC−/− mice (304).

Central histamine signaling is involved in the control of feeding 
behavior and energy homeostasis. H3R is principally expressed 
in histamine neurons and negatively regulates the synthesis and 
release of histamine. Treatment with a H3R agonist decreases 
appetite, body weight, and insulin resistance in diet-induced 
obese mice (305). On the other hand, targeted disruption of H3Rs 
leads to an obese phenotype (306). Moreover, mice deficient in 
histamine H1R or HDC showed a dysregulation in the leptin 
signaling, impaired glucose tolerance, and are prone to become 
obese on a high-fat diet or at advanced age (307–309).

It was recently reported that the H1R antagonist cetirizine 
partially counteracts cytokine- and oxidative stress-induced 
β-cell death (310). In vivo, H1R antagonist ameliorates high-fat 
diet-induced glucose intolerance in male C57BL/6 mice, but no 
effect was observed on diabetes outcome in female NOD mice, 
suggesting a protective effect of cetirizine against high-fat diet-
induced β-cell dysfunction, but not against autoimmune β-cell 
destruction (311).

CONCLUSiON

T  lymphocytes, as important components of the adaptive arm 
of the immune system, are key players in the modulation of 
metabolism in several tissues in health and disease (see Figure 1). 
The neuroendocrine system plays an essential role controlling the 
number and activity of different T cell subpopulations. Herein, 
we collected data that warrant further investigation on T  lym-
phocytes biology hoping that it would lay the groundwork for 
future translational research that aims to restore homeostasis in 
metabolic disorders and treat diabetes in its multiple forms.

AUTHOR CONTRiBUTiONS

LA and MP contributed to the conception and design of the 
review article and wrote sections of the manuscript; MG created 
the model figure. All authors contributed to manuscript revision, 
read and approved the submitted version.

FUNDiNG

The present work was supported by Consejo Nacional de 
Investigaciones Científicas y Técnicas (CONICET)-Argentina 
and FOCEM-Mercosur Grant COF 03/11 to MP.

ReFeReNCeS

1. Besedovsky H, del Rey A, Sorkin E, Da Prada M, Burri R, Honegger C. 
The immune response evokes changes in brain noradrenergic neurons. 
Science (1983) 221(4610):564–6. doi:10.1126/science.6867729 

2. Besedovsky H, del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feed-
back between interleukin-1 and glucocorticoid hormones. Science (1986) 
233:652–4. doi:10.1126/science.3014662 

3. Blalock JE, Smith EM, Meyer WJ III. The pituitary-adrenocortical axis and 
the immune system. Clin Endocrinol Metab (1985) 14:1021–38. doi:10.1016/
S0300-595X(85)80087-6 

4. Smith EM, Morrill AC, Meyer WJ III, Blalock JE. Corticotropin releasing fac-
tor induction of leukocyte-derived immunoreactive ACTH and endorphins. 
Nature (1986) 321(6073):881–2. doi:10.1038/321881a0 

5. Steinman L. Elaborate interactions between the immune and nervous sys-
tems. Nat Immunol (2004) 5:575–81. doi:10.1038/ni1078 

6. Savino W, Mendes-da-Cruz DA, Lepletier A, Dardenne M. Hormonal con-
trol of T-cell development in health and disease. Nat Rev Endocrinol (2016) 
12(2):77–89. doi:10.1038/nrendo.2015.168 

7. Hotamisligil GS. Inflammation and metabolic disorders. Nature (2006) 
444:860–7. doi:10.1038/nature05485 

8. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/
NF-κB and ER stress link overnutrition to energy imbalance and obesity.  
Cell (2008) 135:61–73. doi:10.1016/j.cell.2008.07.043 

9. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, 
but not obese, fat is enriched for a unique population of regulatory T cells 
that affect metabolic parameters. Nat Med (2009) 15(8):930–9. doi:10.1038/
nm.2002 

83

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1126/science.6867729
https://doi.org/10.1126/science.3014662
https://doi.org/10.1016/S0300-595X(85)80087-6
https://doi.org/10.1016/S0300-595X(85)80087-6
https://doi.org/10.1038/321881a0
https://doi.org/10.1038/ni1078
https://doi.org/10.1038/nrendo.2015.168
https://doi.org/10.1038/nature05485
https://doi.org/10.1016/j.cell.2008.07.043
https://doi.org/10.1038/nm.2002
https://doi.org/10.1038/nm.2002


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

10. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization 
of obesity-associated insulin resistance through immunotherapy. Nat Med 
(2009) 15:921–9. doi:10.1038/nm.2001 

11. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic 
obesity promote liver inflammation and tumorigenesis by enhancing IL-6 
and TNF expression. Cell (2010) 140:197–208. doi:10.1016/j.cell.2009.12.052 

12. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin 
resistance. Nat Rev Endocrinol (2012) 8(12):709–16. doi:10.1038/nrendo. 
2012.114 

13. Khan IM, Perrard XY, Brunner G, Lui H, Sparks LM, Smith SR, et  al. 
Intermuscular and perimuscular fat expansion in obesity correlates with 
skeletal muscle T cell and macrophage infiltration and insulin resistance.  
Int J Obes (Lond) (2015) 39(11):1607–18. doi:10.1038/ijo.2015.104 

14. International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels, 
Belgium: International Diabetes Federation (2017). Available from: http://
www.diabetesatlas.org

15. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of 
islet inflammation in human type 1 diabetes. Clin Exp Immunol (2009) 
155(2):173–81. doi:10.1111/j.1365-2249.2008.03860.x 

16. Campbell-Thompson M, Fu A, Kaddis JS, Wasserfall C, Schatz DA, Pugliese A,  
et al. Insulitis and β-cell mass in the natural history of type 1 diabetes. 
Diabetes (2016) 65(3):719–31. doi:10.2337/db15-0779 

17. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet (2014) 
383(9911):69–82. doi:10.1016/S0140-6736(13)60591-7 

18. Cudworth AG, Woodrow JC. Letter: HL-A antigens and diabetes mellitus. 
Lancet (1974) 2:1153. doi:10.1016/S0140-6736(74)90930-1 

19. Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 
1 diabetes. Curr Diab Rep (2011) 11(6):533–42. doi:10.1007/s11892-011- 
0223-x 

20. Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an 
update. Genes (Basel) (2013) 4(3):499–521. doi:10.3390/genes4030499 

21. Redondo MJ, Steck AK, Pugliese A. Genetics of type 1 diabetes. Pediatr 
Diabetes (2017) 19(3):346–53. doi:10.1111/pedi.12597 

22. Sarvetnick N, Liggitt D, Pitts SL, Hansen SE, Stewart TA. Insulin-dependent 
diabetes mellitus induced in transgenic mice by ectopic expression of class 
II MHC and interferon-gamma. Cell (1988) 52:773–82. doi:10.1016/0092- 
8674(88)90414-X 

23. Rapoport MJ, Jaramillo A, Zipris D, Lazarus AH, Serreze DV, Leiter EH, et al. 
Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the 
onset of diabetes in nonobese diabetic mice. J Exp Med (1993) 178:87–99. 
doi:10.1084/jem.178.1.87 

24. Rabinovitch A. Immunoregulatory and cytokine imbalances in the patho-
genesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes 
(1994) 43:613–21. doi:10.2337/diab.43.5.613 

25. Katz JD, Benoist C, Mathis D. T helper cell subsets in insulin-dependent 
diabetes. Science (1995) 268:1185–8. doi:10.1126/science.7761837 

26. Savinov AY, Wong FS, Chervonsky AV. IFN-gamma affects homing of 
diabetogenic T cells. J Immunol (2001) 167:6637–43. doi:10.4049/jimmunol. 
167.11.6637 

27. Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, et  al. 
Autoreactive T  cell responses show pro-inflammatory polarization in dia-
betes but a regulatory phenotype in health. J Clin Invest (2004) 113:451–63. 
doi:10.1172/JCI19585 

28. Han D, Leyva CA, Matheson D, Mineo D, Messinger S, Blomberg BB, et al. 
Immune profiling by multiple gene expression analysis in patients at-risk 
and with type 1 diabetes. Clin Immunol (2011) 139:290–301. doi:10.1016/j.
clim.2011.02.016 

29. Zaccone P, Burton OT, Gibbs SE, Miller N, Jones FM, Schramm G, et al. The 
S. mansoni glycoprotein ω-1 induces Foxp3 expression in NOD mouse CD4+ 
T cells. Eur J Immunol (2011) 41(9):2709–18. doi:10.1002/eji.201141429 

30. Walker LS, von Herrath M. CD4 T cell differentiation in type 1 diabetes. Clin 
Exp Immunol (2016) 183(1):16–29. doi:10.1111/cei.12672 

31. Arif S, Gibson VB, Nguyen V, Bingley PJ, Todd JA, Guy C, et al. β-cell specific 
T-lymphocyte response has a distinct inflammatory phenotype in children 
with Type 1 diabetes compared with adults. Diabet Med (2017) 34(3):419–25. 
doi:10.1111/dme.13153 

32. Vukkadapu SS, Belli JM, Ishii K, Jegga AG, Hutton JJ, Aronow BJ, et  al. 
Dynamic interaction between T cell-mediated beta-cell damage and beta-cell 

repair in the run up to autoimmune diabetes of the NOD mouse. Physiol 
Genomics (2005) 21:201–11. doi:10.1152/physiolgenomics.00173.2004 

33. Perone MJ, Bertera S, Shufesky WJ, Divito SJ, Montecalvo A, Mathers AR, 
et al. Suppression of autoimmune diabetes by soluble galectin-1. J Immunol 
(2009) 182(5):2641–53. doi:10.4049/jimmunol.0800839 

34. Bending D, De la Peña H, Veldhoen M, Phillips JM, Uyttenhove C, Stockinger B,  
et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-
like cells in NOD/SCID recipient mice. J Clin Invest (2009) 119(3):565–72. 
doi:10.1172/JCI37865 

35. Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C. Th17  cells 
promote pancreatic inflammation but only induce diabetes efficiently in 
lymphopenic hosts after conversion into Th1  cells. Eur J Immunol (2009) 
39:216–24. doi:10.1002/eji.200838475 

36. Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J, et al. 
IL-17 immunity in human type 1 diabetes. J Immunol (2010) 185:1959–67. 
doi:10.4049/jimmunol.1000788 

37. Liu SM, Lee DH, Sullivan JM, Chung D, Jäger A, Shum BO, et al. Differential 
IL-21 signaling in APCs leads to disparate Th17 differentiation in diabe-
tes-susceptible NOD and diabetes-resistant NOD.Idd3 mice. J Clin Invest 
(2011) 121:4303–10. doi:10.1172/JCI46187 

38. Li CR, Mueller EE, Bradley LM. Islet antigen-specific Th17 cells can induce 
TNF-alpha-dependent autoimmune diabetes. J Immunol (2014) 192:1425–32.  
doi:10.4049/jimmunol.1301742 

39. Joseph J, Bittner S, Kaiser FM, Wiendl H, Kissler S. IL-17 silencing does 
not protect nonobese diabetic mice from autoimmune diabetes. J Immunol 
(2012) 188:216–21. doi:10.4049/jimmunol.1101215 

40. Marwaha AK, Crome SQ, Panagiotopoulos C, Berg KB, Qin H, Ouyang Q,  
et  al. Cutting edge: increased IL-17-secreting T  cells in children with 
new-onset type 1 diabetes. J Immunol (2010) 185:3814–8. doi:10.4049/
jimmunol.1001860 

41. Arif S, Moore F, Marks K, Bouckenooghe T, Dayan CM, Planas R, et  al. 
Peripheral and islet interleukin-17 pathway activation characterizes human 
autoimmune diabetes and promotes cytokine-mediated beta-cell death. 
Diabetes (2011) 60:2112–9. doi:10.2337/db10-1643 

42. Reinert-Hartwall L, Honkanen J, Salo HM, Nieminen JK, Luopajärvi K, 
Härkönen T, et  al. Th1/Th17 plasticity is a marker of advanced beta cell 
autoimmunity and impaired glucose tolerance in humans. J Immunol (2015) 
194:68–75. doi:10.4049/jimmunol.1401653 

43. Mandrup-Poulsen T, Bendtzen K, Nerup J, Dinarello CA, Svenson M, Nielsen JH.  
Affinity-purified human interleukin I is cytotoxic to isolated islets of 
Langerhans. Diabetologia (1986) 29:63–7. doi:10.1007/BF02427283 

44. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and β-cell 
loss in type 1 diabetes. Nat Rev Endocrinol (2009) 5:219–26. doi:10.1038/
nrendo.2009.21 

45. Grieco FA, Moore F, Vigneron F, Santin I, Villate O, Marselli L, et  al. 
IL-17A increases the expression of proinflammatory chemokines in human 
pancreatic islets. Diabetologia (2014) 57(3):502–11. doi:10.1007/s00125-013- 
3135-2 

46. Ferraro A, Socci C, Stabilini A, Valle A, Monti P, Piemonti L, et al. Expansion 
of Th17 cells and functional defects in T regulatory cells are key features of 
the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes (2011) 
60(11):2903–13. doi:10.2337/db11-0090 

47. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, et  al. 
Essential autocrine regulation by IL-21 in the generation of inflammatory 
T cells. Nature (2007) 448:480–3. doi:10.1038/nature05969 

48. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, et al. IL-21 initiates 
an alternative pathway to induce proinflammatory T(H)17 cells. Nature 
(2007) 448:484–7. doi:10.1038/nature05970 

49. Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ. IL-21 signaling is 
critical for the development of type I diabetes in the NOD mouse. Proc Natl 
Acad Sci U S A (2008) 105:14028–33. doi:10.1073/pnas.0804358105 

50. Sutherland AP, Van Belle T, Wurster AL, Suto A, Michaud M, Zhang D, et al. 
Interleukin-21 is required for the development of type 1 diabetes in NOD 
mice. Diabetes (2009) 58:1144–55. doi:10.2337/db08-0882 

51. Rydén AK, Perdue NR, Pagni PP, Gibson CB, Ratliff SS, Kirk RK, et  al. 
Anti-IL-21 monoclonal antibody combined with liraglutide effectively 
reverses established hyperglycemia in mouse models of type 1 diabetes. 
J Autoimmun (2017) 84:65–74. doi:10.1016/j.jaut.2017.07.006 

84

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1038/nm.2001
https://doi.org/10.1016/j.cell.2009.12.052
https://doi.org/10.1038/nrendo.
2012.114
https://doi.org/10.1038/nrendo.
2012.114
https://doi.org/10.1038/ijo.2015.104
http://www.diabetesatlas.org
http://www.diabetesatlas.org
https://doi.org/10.1111/j.1365-2249.2008.03860.x
https://doi.org/10.2337/db15-0779
https://doi.org/10.1016/S0140-6736(13)60591-7
https://doi.org/10.1016/S0140-6736(74)90930-1
https://doi.org/10.1007/s11892-011-
0223-x
https://doi.org/10.1007/s11892-011-
0223-x
https://doi.org/10.3390/genes4030499
https://doi.org/10.1111/pedi.12597
https://doi.org/10.1016/0092-
8674(88)90414-X
https://doi.org/10.1016/0092-
8674(88)90414-X
https://doi.org/10.1084/jem.178.1.87
https://doi.org/10.2337/diab.43.5.613
https://doi.org/10.1126/science.7761837
https://doi.org/10.4049/jimmunol.
167.11.6637
https://doi.org/10.4049/jimmunol.
167.11.6637
https://doi.org/10.1172/JCI19585
https://doi.org/10.1016/j.clim.2011.02.016
https://doi.org/10.1016/j.clim.2011.02.016
https://doi.org/10.1002/eji.201141429
https://doi.org/10.1111/cei.12672
https://doi.org/10.1111/dme.13153
https://doi.org/10.1152/physiolgenomics.00173.2004
https://doi.org/10.4049/jimmunol.0800839
https://doi.org/10.1172/JCI37865
https://doi.org/10.1002/eji.200838475
https://doi.org/10.4049/jimmunol.1000788
https://doi.org/10.1172/JCI46187
https://doi.org/10.4049/jimmunol.1301742
https://doi.org/10.4049/jimmunol.1101215
https://doi.org/10.4049/jimmunol.1001860
https://doi.org/10.4049/jimmunol.1001860
https://doi.org/10.2337/db10-1643
https://doi.org/10.4049/jimmunol.1401653
https://doi.org/10.1007/BF02427283
https://doi.org/10.1038/nrendo.2009.21
https://doi.org/10.1038/nrendo.2009.21
https://doi.org/10.1007/s00125-013-
3135-2
https://doi.org/10.1007/s00125-013-
3135-2
https://doi.org/10.2337/db11-0090
https://doi.org/10.1038/nature05969
https://doi.org/10.1038/nature05970
https://doi.org/10.1073/pnas.0804358105
https://doi.org/10.2337/db08-0882
https://doi.org/10.1016/j.jaut.2017.07.006


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

52. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA,  
et al. Interleukin 21 and its receptor are involved in NK cell expansion and 
regulation of lymphocyte function. Nature (2000) 408:57–63. doi:10.1038/ 
35040504 

53. Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for 
cancer and autoimmunity. Annu Rev Immunol (2008) 26:57–79. doi:10.1146/
annurev.immunol.26.021607.090316 

54. Van Belle TL, Nierkens S, Arens R, von Herrath MG. Interleukin-21 
receptor-mediated signals control autoreactive T  cell infiltration in pan-
creatic islets. Immunity (2012) 36:1060–72. doi:10.1016/j.immuni.2012. 
04.005 

55. Vinuesa CG, Tangye SG, Moser B, Mackay CR. Follicular B helper T cells in 
antibody responses and autoimmunity. Nat Rev Immunol (2005) 5:853–65. 
doi:10.1038/nri1714 

56. Regnell SE, Lernmark Å. Early prediction of autoimmune (type 1) diabetes. 
Diabetologia (2017) 60(8):1370–81. doi:10.1007/s00125-017-4308-1 

57. Kenefeck R, Wang CJ, Kapadi T, Wardzinski L, Attridge K, Clough LE, et al. 
Follicular helper T  cell signature in type 1 diabetes. J Clin Invest (2015) 
125:292–303. doi:10.1172/JCI76238 

58. Xu X, Shi Y, Cai Y, Zhang Q, Yang F, Chen H, et al. Inhibition of increased 
circulating Tfh cell by anti-CD20 monoclonal antibody in patients with 
type 1 diabetes. PLoS One (2013) 8:e79858. doi:10.1371/journal.pone. 
0079858 

59. Ferreira RC, Simons HZ, Thompson WS, Cutler AJ, Dopico XC, Smyth DJ, 
et al. IL-21 production by CD4 effector T cells and frequency of circulating 
follicular helper T cells are increased in type 1 diabetes patients. Diabetologia 
(2015) 58:781–90. doi:10.1007/s00125-015-3509-8 

60. Viisanen T, Ihantola EL, Näntö-Salonen K, Hyöty H, Nurminen N, Selvenius J,  
et  al. Circulating CXCR5+PD-1+ICOS+ follicular T helper cells are 
increased close to the diagnosis of type 1 diabetes in children with multiple 
autoantibodies. Diabetes (2017) 66(2):437–47. doi:10.2337/db16-0714 

61. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, et  al. 
Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic 
and suppressive T cells: induction of autoimmune disease by breaking their 
anergic/suppressive state. Int Immunol (1998) 10(12):1969–80. doi:10.1093/
intimm/10.12.1969 

62. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and 
activation of the immune system. Nat Rev Immunol (2012) 12(3):180–90. 
doi:10.1038/nri3156 

63. Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JR, Hearne CM, et al. Genetic 
analysis of autoimmune type 1 diabetes mellitus in mice. Nature (1991) 
351:542–7. doi:10.1038/351542a0 

64. Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, et al. 
Interleukin-2 gene variation impairs regulatory T cell function and causes 
autoimmunity. Nat Genet (2007) 39:329–37. doi:10.1038/ng1958 

65. Vella A, Cooper JD, Lowe CE, Walker N, Nutland S, Widmer B, et  al. 
Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use 
of tag single-nucleotide polymorphisms. Am J Hum Genet (2005) 76:773–9. 
doi:10.1086/429843 

66. Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, Bailey R, et al. Large-
scale genetic fine mapping and genotype-phenotype associations implicate 
polymorphism in the IL2RA region in type 1 diabetes. Nat Genet (2007) 
39:1074–82. doi:10.1038/ng2102 

67. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et  al. 
Robust associations of four new chromosome regions from genome-wide 
analyses of type 1 diabetes. Nat Genet (2007) 39:857–64. doi:10.1038/ng2068 

68. Dendrou CA, Plagnol V, Fung E, Yang JH, Downes K, Cooper JD, et  al. 
Cell-specific protein phenotypes for the autoimmune locus IL2RA using 
a genotype-selectable human bioresource. Nat Genet (2009) 41:1011–5. 
doi:10.1038/ng.434 

69. Schwedhelm K, Thorpe J, Murray SA, Gavin M, Speake C, Greenbaum C, 
et al. Attenuated IL-2R signaling in CD4 memory T cells of T1D subjects is 
intrinsic and dependent on activation state. Clin Immunol (2017) 181:67–74. 
doi:10.1016/j.clim.2017.06.004 

70. Todd JA, Evangelou M, Cutler AJ, Pekalski ML, Walker NM, Stevens HE, et al. 
Regulatory T cell responses in participants with type 1 diabetes after a single 
dose of interleukin-2: a non-randomised, open label, adaptive dose-find-
ing trial. PLoS Med (2016) 13(10):e1002139. doi:10.1371/journal.pmed. 
1002139 

71. Lu J, Zhang C, Li L, Xue W, Zhang C, Zhang X. Unique features of pancreat-
ic-resident regulatory T cells in autoimmune type 1 diabetes. Front Immunol 
(2017) 8:1235. doi:10.3389/fimmu.2017.01235 

72. Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. 
Nat Immunol (2013) 14(10):1007–13. doi:10.1038/ni.2683 

73. Herman AE, Freeman GJ, Mathis D, Benoist C. CD4+CD25+ T  regula-
tory cells dependent on ICOS promote regulation of effector cells in the 
prediabetic lesion. J Exp Med (2004) 199(11):1479–89. doi:10.1084/jem. 
20040179 

74. Kornete M, Sgouroudis E, Piccirillo CA. ICOS-dependent homeostasis and 
function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice. 
J Immunol (2012) 188(3):1064–74. doi:10.4049/jimmunol.1101303 

75. Tan TG, Mathis D, Benoist C. Singular role for T-BET+CXCR3+ regulatory 
T cells in protection from autoimmune diabetes. Proc Natl Acad Sci U S A 
(2016) 113(49):14103–8. doi:10.1073/pnas.1616710113 

76. Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA. CD4+CD25+ 
T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-
beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci U S A (2003) 
100(19):10878–83. doi:10.1073/pnas.1834400100 

77. Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic 
mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat 
Rev Mol Cell Biol (2008) 9(3):193–205. doi:10.1038/nrm2327 

78. Lombardi A, Tomer Y. Interferon alpha impairs insulin production in human 
beta cells via endoplasmic reticulum stress. J Autoimmun (2017) 80:48–55. 
doi:10.1016/j.jaut.2017.02.002 

79. Hansen JB, Tonnesen MF, Madsen AN, Hagedorn PH, Friberg J, Grunnet LG,  
et  al. Divalent metal transporter 1 regulates iron-mediated ROS and pan-
creatic β cell fate in response to cytokines. Cell Metab (2012) 16(4):449–61. 
doi:10.1016/j.cmet.2012.09.001 

80. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. 
Diabetes induced by Coxsackie virus: initiation by bystander damage and not 
molecular mimicry. Nat Med (1998) 4(7):781–5. doi:10.1038/nm0798-781 

81. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, et al. 
Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 dia-
betes in the nonobese diabetic mouse model. Diabetes (2012) 61(4):818–27. 
doi:10.2337/db11-1293 

82. Engin F, Yermalovich A, Nguyen T, Hummasti S, Fu W, Eizirik DL, et  al. 
Restoration of the unfolded protein response in pancreatic β cells protects 
mice against type 1 diabetes. Sci Transl Med (2013) 5(211):211ra156. 
doi:10.1126/scitranslmed.3006534 

83. Meyerovich K, Ortis F, Allagnat F, Cardozo AK. Endoplasmic reticulum 
stress and the unfolded protein response in pancreatic islet inflammation. 
J Mol Endocrinol (2016) 57(1):R1–17. doi:10.1530/JME-15-0306 

84. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor 
necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 
(1993) 259(5091):87–91. doi:10.1126/science.7678183 

85. Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the 
innate immune system: association of acute-phase reactants and interleukin-6 
with metabolic syndrome X. Diabetologia (1997) 40:1286–92. doi:10.1007/
s001250050822 

86. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, 
interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA (2001) 
286:327–34. doi:10.1001/jama.286.3.327 

87. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, 
et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results 
of the prospective population-based European prospective investigation 
into cancer and nutrition (EPIC)-potsdam study. Diabetes (2003) 52:812–7. 
doi:10.2337/diabetes.52.3.812 

88. Herder C, Brunner EJ, Rathmann W, Strassburger K, Tabák AG, Schloot NC, 
et al. Elevated levels of the anti-inflammatory interleukin-1 receptor antago-
nist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care 
(2009) 32:421–3. doi:10.2337/dc08-1161 

89. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat 
Rev Immunol (2011) 11:98–107. doi:10.1038/nri2925 

90. Nikolajczyk BS, Jagannathan-Bogdan M, Shin H, Gyurko R. State of the 
union between metabolism and the immune system in type 2 diabetes. Genes 
Immun (2011) 12:239–50. doi:10.1038/gene.2011.14 

91. Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, et al. 
A subpopulation of macrophages infiltrates hypertrophic adipose tissue 

85

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1038/
35040504
https://doi.org/10.1038/
35040504
https://doi.org/10.1146/annurev.immunol.26.021607.090316
https://doi.org/10.1146/annurev.immunol.26.021607.090316
https://doi.org/10.1016/j.immuni.2012.
04.005
https://doi.org/10.1016/j.immuni.2012.
04.005
https://doi.org/10.1038/nri1714
https://doi.org/10.1007/s00125-017-4308-1
https://doi.org/10.1172/JCI76238
https://doi.org/10.1371/journal.pone.
0079858
https://doi.org/10.1371/journal.pone.
0079858
https://doi.org/10.1007/s00125-015-3509-8
https://doi.org/10.2337/db16-0714
https://doi.org/10.1093/intimm/10.12.1969
https://doi.org/10.1093/intimm/10.12.1969
https://doi.org/10.1038/nri3156
https://doi.org/10.1038/351542a0
https://doi.org/10.1038/ng1958
https://doi.org/10.1086/429843
https://doi.org/10.1038/ng2102
https://doi.org/10.1038/ng2068
https://doi.org/10.1038/ng.434
https://doi.org/10.1016/j.clim.2017.06.004
https://doi.org/10.1371/journal.pmed.
1002139
https://doi.org/10.1371/journal.pmed.
1002139
https://doi.org/10.3389/fimmu.2017.01235
https://doi.org/10.1038/ni.2683
https://doi.org/10.1084/jem.
20040179
https://doi.org/10.1084/jem.
20040179
https://doi.org/10.4049/jimmunol.1101303
https://doi.org/10.1073/pnas.1616710113
https://doi.org/10.1073/pnas.1834400100
https://doi.org/10.1038/nrm2327
https://doi.org/10.1016/j.jaut.2017.02.002
https://doi.org/10.1016/j.cmet.2012.09.001
https://doi.org/10.1038/nm0798-781
https://doi.org/10.2337/db11-1293
https://doi.org/10.1126/scitranslmed.3006534
https://doi.org/10.1530/JME-15-0306
https://doi.org/10.1126/science.7678183
https://doi.org/10.1007/s001250050822
https://doi.org/10.1007/s001250050822
https://doi.org/10.1001/jama.286.3.327
https://doi.org/10.2337/diabetes.52.3.812
https://doi.org/10.2337/dc08-1161
https://doi.org/10.1038/nri2925
https://doi.org/10.1038/gene.2011.14


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-
dependent pathways. J Biol Chem (2007) 282:35279–92. doi:10.1074/jbc.
M706762200 

92. Ahmad R, Al-Mass A, Atizado V, Al-Hubail A, Al-Ghimlas F, Al-Arouj M, 
et  al. Elevated expression of the toll-like receptors 2 and 4 in obese indi-
viduals: its significance for obesity-induced inflammation. J Inflamm (Lond) 
(2012) 9(1):48. doi:10.1186/1476-9255-9-48 

93. Ehses J, Meier D, Wueest S, Rytka J, Boller S, Wielinga P, et  al. Toll-like 
receptor 2-deficient mice are protected from insulin resistance and beta cell 
dysfunction induced by a high-fat diet. Diabetologia (2010) 53:1795–806. 
doi:10.1007/s00125-010-1747-3 

94. Caricilli AM, Nascimento PH, Pauli JR, Tsukumo DM, Velloso LA, 
Carvalheira JB, et al. Inhibition of toll-like receptor 2 expression improves 
insulin sensitivity and signaling in muscle and white adipose tissue of mice 
fed a high-fat diet. J Endocrinol (2008) 199:399–406. doi:10.1677/JOE- 
08-0354 

95. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. 
Obesity is associated with macrophage accumulation in adipose tissue. J Clin 
Invest (2003) 112(12):1796–808. doi:10.1172/JCI200319246 

96. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflam-
mation in fat plays a crucial role in the development of obesity-related 
insulin resistance. J Clin Invest (2003) 112(12):1821–30. doi:10.1172/
JCI200319451 

97. Xia C, Rao X, Zhong J. Role of T lymphocytes in type 2 diabetes and diabe-
tes-associated inflammation. J Diabetes Res (2017) 2017:6494795. doi:10.1155/ 
2017/6494795 

98. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, 
et  al. Glucose-induced β-cell production of interleukin-1β contributes to 
glucotoxicity in human pancreatic islets. J Clin Invest (2002) 110:851–60. 
doi:10.1172/JCI200215318 

99. Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, et al. 
Increased number of islet-associated macrophages in type 2 diabetes. 
Diabetes (2007) 56:2356–70. doi:10.2337/db06-1650 

100. Nackiewicz D, Dan M, He W, Kim R, Salmi A, Rütti S, et al. TLR2/6 and 
TLR4-activated macrophages contribute to islet inflammation and impair 
beta cell insulin gene expression via IL-1 and IL-6. Diabetologia (2014) 
57(8):1645–54. doi:10.1007/s00125-014-3249-1 

101. Yin J, Peng Y, Wu J, Wang Y, Yao L. Toll-like receptor 2/4 links to free fatty 
acid-induced inflammation and β-cell dysfunction. J Leukoc Biol (2014) 
95(1):47–52. doi:10.1189/jlb.0313143 

102. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch 
in adipose tissue macrophage polarization. J Clin Invest (2007) 117:175–84. 
doi:10.1172/JCI29881 

103. Boutens L, Stienstra R. Adipose tissue macrophages: going off track during 
obesity. Diabetologia (2016) 59(5):879–94. doi:10.1007/s00125-016-3904-9 

104. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, et al. T-cell accu-
mulation and regulated on activation, normal T cell expressed and secreted 
upregulation in adipose tissue in obesity. Circulation (2007) 115:1029–38. 
doi:10.1161/CIRCULATIONAHA.106.638379 

105. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, 
et  al. T-lymphocyte infiltration in visceral adipose tissue: a primary event 
in adipose tissue inflammation and the development of obesity-mediated 
insulin resistance. Arterioscler Thromb Vasc Biol (2008) 28(7):1304–10. 
doi:10.1161/ATVBAHA.108.165100 

106. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. 
CD8+ effector T  cells contribute to macrophage recruitment and adipose 
tissue inflammation in obesity. Nat Med (2009) 15(8):914–20. doi:10.1038/
nm.1964 

107. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J 
mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltra-
tion. Int J Obes (Lond) (2008) 32(3):451–63. doi:10.1038/sj.ijo.0803744 

108. Rocha VZ, Folco EJ, Sukhova G, Shimizu K, Gotsman I, Vernon AH, et al. 
Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for 
adaptive immunity in obesity. Circ Res (2008) 103(5):467–76. doi:10.1161/
CIRCRESAHA.108.177105 

109. McLaughlin T, Liu LF, Lamendola C, Shen L, Morton J, Rivas H, et al. T-cell 
profile in adipose tissue is associated with insulin resistance and systemic 
inflammation in humans. Arterioscler Thromb Vasc Biol (2014) 34(12): 
2637–43. doi:10.1161/ATVBAHA.114.304636 

110. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. 
Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin 
Invest (2016) 126(12):4626–39. doi:10.1172/JCI88606 

111. Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, et  al. 
Adipose tissue invariant NKT  cells protect against diet-induced obesity 
and metabolic disorder through regulatory cytokine production. Immunity 
(2012) 37(3):574–87. doi:10.1016/j.immuni.2012.06.016 

112. Lynch L, O’Shea D, Winter DC, Geoghegan J, Doherty DG, O’Farrelly C. 
Invariant NKT  cells and CD1d(+) cells amass in human omentum and 
are depleted in patients with cancer and obesity. Eur J Immunol (2009) 
39:1893–901. doi:10.1002/eji.200939349 

113. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol 
(2007) 25:297–336. doi:10.1146/annurev.immunol.25.022106.141711 

114. Godfrey DI, Berzins SP. Control points in NKT-cell development. Nat Rev 
Immunol (2007) 7(7):505–18. doi:10.1038/nri2116 

115. Huh JY, Park J, Kim JI, Park YJ, Lee YK, Kim JB. Deletion of CD1d in 
adipocytes aggravates adipose tissue inflammation and insulin resistance in 
obesity. Diabetes (2017) 66(4):835–47. doi:10.2337/db16-1122 

116. Chehimi M, Vidal H, Eljaafari A. Pathogenic role of IL-17-producing 
immune cells in obesity, and related inflammatory diseases. J Clin Med (2017) 
6(7):E68. doi:10.3390/jcm6070068 

117. Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W, et al. The imbalance of 
Th17/Th1/Tregs in patients with type 2 diabetes: relationship with met-
abolic factors and complications. J Mol Med (Berl) (2012) 90(2):175–86. 
doi:10.1007/s00109-011-0816-5 

118. Jagannathan-Bogdan M, McDonnell ME, Shin H, Rehman Q, Hasturk H, 
Apovian CM, et  al. Elevated proinflammatory cytokine production by a 
skewed T cell compartment requires monocytes and promotes inflammation 
in type 2 diabetes. J Immunol (2011) 186(2):1162–72. doi:10.4049/jimmunol. 
1002615 

119. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, et al. Obesity 
predisposes to Th17 bias. Eur J Immunol (2009) 39(9):2629–35. doi:10.1002/
eji.200838893 

120. Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, et al. 
Identification of adipose tissue dendritic cells correlated with obesity-asso-
ciated insulin-resistance and inducing Th17 responses in mice and patients. 
Diabetes (2012) 61(9):2238–47. doi:10.2337/db11-1274 

121. Zúñiga LA, Shen WJ, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C,  
et  al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. 
J Immunol (2010) 185(11):6947–59. doi:10.4049/jimmunol.1001269 

122. Kolodin D, van Panhuys N, Li C, Magnuson AM, Cipolletta D, Miller CM, 
et  al. Antigen- and cytokine-driven accumulation of regulatory T  cells 
in visceral adipose tissue of lean mice. Cell Metab (2015) 21(4):543–57. 
doi:10.1016/j.cmet.2015.03.005 

123. Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y, Cheng A, et al. Depletion 
of fat-resident Treg cells prevents age-associated insulin resistance. Nature 
(2015) 528(7580):137–41. doi:10.1038/nature16151 

124. Schmitz J, Evers N, Awazawa M, Nicholls HT, Brönneke HS, Dietrich A, et al. 
Obesogenic memory can confer long-term increases in adipose tissue but not 
liver inflammation and insulin resistance after weight loss. Mol Metab (2016) 
5(5):328–39. doi:10.1016/j.molmet.2015.12.001 

125. Shirakawa K, Endo J, Katsumata Y, Yamamoto T, Kataoka M, Isobe S, et al. 
Negative legacy of obesity. PLoS One (2017) 12(10):e0186303. doi:10.1371/
journal.pone.0186303 

126. Yanagisawa K, Yue S, van der Vliet HJ, Wang R, Alatrakchi N, Golden-Mason L,  
et al. Ex vivo analysis of resident hepatic pro-inflammatory CD1d-reactive 
T cells and hepatocyte surface CD1d expression in hepatitis C. J Viral Hepat 
(2013) 20(8):556–65. doi:10.1111/jvh.12081 

127. Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, et  al. 
An invariant T cell receptor alpha chain defines a novel TAP-independent 
major histocompatibility complex class Ib-restricted alpha/beta T cell sub-
population in mammals. J Exp Med (1999) 189(12):1907–21. doi:10.1084/
jem.189.12.1907 

128. Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, et  al. 
Mucosal-associated invariant T cell alterations in obese and type 2 diabetic 
patients. J Clin Invest (2015) 125(4):1752–62. doi:10.1172/JCI78941 

129. Rouxel O, Da Silva J, Beaudoin L, Nel I, Tard C, Cagninacci L, et al. Cytotoxic 
and regulatory roles of mucosal-associated invariant T cells in type 1 dia-
betes. Nat Immunol (2017) 18(12):1321–31. doi:10.1038/ni.3854 

86

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1074/jbc.M706762200
https://doi.org/10.1074/jbc.M706762200
https://doi.org/10.1186/1476-9255-9-48
https://doi.org/10.1007/s00125-010-1747-3
https://doi.org/10.1677/JOE-
08-0354
https://doi.org/10.1677/JOE-
08-0354
https://doi.org/10.1172/JCI200319246
https://doi.org/10.1172/JCI200319451
https://doi.org/10.1172/JCI200319451
https://doi.org/10.1155/
2017/6494795
https://doi.org/10.1155/
2017/6494795
https://doi.org/10.1172/JCI200215318
https://doi.org/10.2337/db06-1650
https://doi.org/10.1007/s00125-014-3249-1
https://doi.org/10.1189/jlb.0313143
https://doi.org/10.1172/JCI29881
https://doi.org/10.1007/s00125-016-3904-9
https://doi.org/10.1161/CIRCULATIONAHA.106.638379
https://doi.org/10.1161/ATVBAHA.108.165100
https://doi.org/10.1038/nm.1964
https://doi.org/10.1038/nm.1964
https://doi.org/10.1038/sj.ijo.0803744
https://doi.org/10.1161/CIRCRESAHA.108.177105
https://doi.org/10.1161/CIRCRESAHA.108.177105
https://doi.org/10.1161/ATVBAHA.114.304636
https://doi.org/10.1172/JCI88606
https://doi.org/10.1016/j.immuni.2012.06.016
https://doi.org/10.1002/eji.200939349
https://doi.org/10.1146/annurev.immunol.25.022106.141711
https://doi.org/10.1038/nri2116
https://doi.org/10.2337/db16-1122
https://doi.org/10.3390/jcm6070068
https://doi.org/10.1007/s00109-011-0816-5
https://doi.org/10.4049/jimmunol.
1002615
https://doi.org/10.4049/jimmunol.
1002615
https://doi.org/10.1002/eji.200838893
https://doi.org/10.1002/eji.200838893
https://doi.org/10.2337/db11-1274
https://doi.org/10.4049/jimmunol.1001269
https://doi.org/10.1016/j.cmet.2015.03.005
https://doi.org/10.1038/nature16151
https://doi.org/10.1016/j.molmet.2015.12.001
https://doi.org/10.1371/journal.pone.0186303
https://doi.org/10.1371/journal.pone.0186303
https://doi.org/10.1111/jvh.12081
https://doi.org/10.1084/jem.189.12.1907
https://doi.org/10.1084/jem.189.12.1907
https://doi.org/10.1172/JCI78941
https://doi.org/10.1038/ni.3854


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

130. Hiejima E, Kawai T, Nakase H, Tsuruyama T, Morimoto T, Yasumi T, 
et  al. Reduced numbers and proapoptotic features of mucosal-associated 
invariant T  cells as a characteristic finding in patients with inflammatory 
bowel disease. Inflamm Bowel Dis (2015) 21(7):1529–40. doi:10.1097/MIB. 
0000000000000397 

131. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, 
et al. Innate immunity and intestinal microbiota in the development of Type 
1 diabetes. Nature (2008) 455(7216):1109–13. doi:10.1038/nature07336 

132. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen AM,  
et al. The dynamics of the human infant gut microbiome in development and 
in progression toward type 1 diabetes. Cell Host Microbe (2015) 17(2):260–73. 
doi:10.1016/j.chom.2015.01.001 

133. Yu H, Gagliani N, Ishigame H, Huber S, Zhu S, Esplugues E, et al. Intestinal 
type 1 regulatory T  cells migrate to periphery to suppress diabetogenic 
T cells and prevent diabetes development. Proc Natl Acad Sci U S A (2017) 
114(39):10443–8. doi:10.1073/pnas.1705599114 

134. Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, et al. Gut 
microbial metabolites limit the frequency of autoimmune T cells and protect 
against type 1 diabetes. Nat Immunol (2017) 18(5):552–62. doi:10.1038/
ni.3713 

135. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary 
defect in type 2 diabetes. Diabetes Care (2009) 32(Suppl 2):S157–63. 
doi:10.2337/dc09-S302 

136. Osborn O, Olefsky JM. The cellular and signaling networks linking the 
immune system and metabolism in disease. Nat Med (2012) 18(3):363–74. 
doi:10.1038/nm.2627 

137. Fink LN, Costford SR, Lee YS, Jensen TE, Bilan PJ, Oberbach A, et al. Pro-
inflammatory macrophages increase in skeletal muscle of high fat-fed mice 
and correlate with metabolic risk markers in humans. Obesity (Silver Spring) 
(2014) 22(3):747–57. doi:10.1002/oby.20615 

138. Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, et al. Interleukin-10 prevents 
diet-induced insulin resistance by attenuating macrophage and cytokine 
response in skeletal muscle. Diabetes (2009) 58(11):2525–35. doi:10.2337/
db08-1261 

139. Khan IM, Dai Perrard XY, Perrard JL, Mansoori A, Smith CW, Wu H, et al. 
Attenuated adipose tissue and skeletal muscle inflammation in obese mice 
with combined CD4+ and CD8+ T  cell deficiency. Atherosclerosis (2014) 
233(2):419–28. doi:10.1016/j.atherosclerosis.2014.01.011 

140. Jiang E, Perrard XD, Yang D, Khan IM, Perrard JL, Smith CW, et  al. 
Essential role of CD11a in CD8+ T-cell accumulation and activation in 
adipose tissue. Arterioscler Thromb Vasc Biol (2013) 34:34–43. doi:10.1161/
ATVBAHA.113.302077 

141. Zhao C, Wang Z, Robertson MW, Davies JD. Cachexia in the non-obese 
diabetic mouse is associated with CD4+ T-cell lymphopenia. Immunology 
(2008) 125(1):48–58. doi:10.1111/j.1365-2567.2008.02819.x 

142. Stentz FB, Kitabchi AE. Transcriptome and proteome expressions involved 
in insulin resistance in muscle and activated T-lymphocytes of patients with 
type 2 diabetes. Genomics Proteomics Bioinformatics (2007) 5(3–4):216–35. 
doi:10.1016/S1672-0229(08)60009-1 

143. Schiaffino S, Pereira MG, Ciciliot S, Rovere-Querini P. Regulatory T  cells 
and skeletal muscle regeneration. FEBS J (2017) 284(4):517–24. doi:10.1111/
febs.13827 

144. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection 
of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 
(2014) 14(6):377–91. doi:10.1038/nri3667 

145. Bergan-Roller HE, Sheridan MA. The growth hormone signaling system: 
insights into coordinating the anabolic and catabolic actions of growth 
hormone. Gen Comp Endocrinol (2017) 258:119–33. doi:10.1016/j.ygcen. 
2017.07.028 

146. Weigent DA. Lymphocyte GH-axis hormones in immunity. Cell Immunol 
(2013) 285(1–2):118–32. doi:10.1016/j.cellimm.2013.10.003 

147. Davoodi-Semiromi A, Laloraya M, Kumar GP, Purohit S, Jha RK, She JX. 
A mutant Stat5b with weaker DNA binding affinity defines a key defective 
pathway in nonobese diabetic mice. J Biol Chem (2004) 279(12):11553–61. 
doi:10.1074/jbc.M312110200 

148. Murawski MR, Litherland SA, Clare-Salzler MJ, Davoodi-Semiromi A. 
Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 
dependent: implications for the NOD STAT5B mutation in diabetes patho-
genesis. Ann N Y Acad Sci (2006) 1079:198–204. doi:10.1196/annals.1375.031 

149. Villares R, Kakabadse D, Juarranz Y, Gomariz RP, Martínez-A C, Mellado M. 
Growth hormone prevents the development of autoimmune diabetes. Proc 
Natl Acad Sci U S A (2013) 110(48):E4619–27. doi:10.1073/pnas.1314985110 

150. Blethen SL, Allen DB, Graves D, August G, Moshang T, Rosenfeld R. Safety of 
recombinant deoxyribonucleic acid-derived growth hormone: the national 
cooperative growth study experience. J Clin Endocrinol Metab (1996) 
81:1704–10. doi:10.1210/jcem.81.5.8626820 

151. Cutfield WS, Wilton P, Bennmarker H, Albertsson-Wikland K, Chatelain P,  
Ranke MB, et al. Incidence of diabetes mellitus and impaired glucose tol-
erance in children and adolescents receiving growth-hormone treatment. 
Lancet (2000) 355:610–3. doi:10.1016/S0140-6736(99)04055-6 

152. Child CJ, Zimmermann AG, Scott RS, Cutler GB Jr, Battelino T, Blum WF, 
et al. Prevalence and incidence of diabetes mellitus in GH-treated children 
and adolescents: analysis from the GeNeSIS observational research program. 
J Clin Endocrinol Metab (2011) 96:E1025–34. doi:10.1210/jc.2010-3023 

153. Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and 
protein metabolism in human subjects. Endocr Rev (2009) 30:152–77. 
doi:10.1210/er.2008-0027 

154. Bonfig W, Molz K, Woelfle J, Hofer SE, Hauffa BP, Schoenau E, et  al. 
Metabolic safety of growth hormone in type 1 diabetes and idiopathic growth 
hormone deficiency. J Pediatr (2013) 163(4):1095–8.e4. doi:10.1016/j.
jpeds.2013.04.045 

155. Kim SH, Park MJ. Effects of growth hormone on glucose metabolism and 
insulin resistance in human. Ann Pediatr Endocrinol Metab (2017) 22(3): 
145–52. doi:10.6065/apem.2017.22.3.145 

156. de Mello Coelho V, Villa-Verde DM, Farias-de-Oliveira DA, de Brito JM, 
Dardenne M, Savino W. Functional insulin-like growth factor-1/insulin-like 
growth factor-1 receptor-mediated circuit in human and murine thymic epi-
thelial cells. Neuroendocrinology (2002) 75(2):139–50. doi:10.1159/000048230 

157. Bergerot I, Fabien N, Maguer V, Thivolet C. Insulin-like growth factor-1 
(IGF-1) protects NOD mice from insulitis and diabetes. Clin Exp Immunol 
(1995) 102:335–40. doi:10.1111/j.1365-2249.1995.tb03786.x 

158. Kaino Y, Hirai H, Ito T, Kida K. Insulin-like growth factor I (IGF-I) delays the 
onset of diabetes in non-obese diabetic (NOD) mice. Diabetes Res Clin Pract 
(1996) 34:7–11. doi:10.1016/S0168-8227(96)01326-5 

159. Chen W, Salojin KV, Mi QS, Grattan M, Meagher TC, Zucker P, et al. Insulin-
like growth factor (IGF)-I/IGF-binding protein-3 complex: therapeutic 
efficacy and mechanism of protection against type 1 diabetes. Endocrinology 
(2004) 145(2):627–38. doi:10.1210/en.2003-1274 

160. Anguela XM, Tafuro S, Roca C, Callejas D, Agudo J, Obach M, et al. Nonviral-
mediated hepatic expression of IGF-I increases Treg levels and suppresses 
autoimmune diabetes in mice. Diabetes (2013) 62(2):551–60. doi:10.2337/
db11-1776 

161. Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like 
growth factor-1 stimulates regulatory T cells and suppresses autoimmune dis-
ease. EMBO Mol Med (2014) 6(11):1423–35. doi:10.15252/emmm.201303376 

162. George M, Ayuso E, Casellas A, Costa C, Devedjian JC, Bosch F. Beta cell 
expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 
(2002) 109:1153–63. doi:10.1172/JCI0212969 

163. Casellas A, Salavert A, Agudo J, Ayuso E, Jimenez V, Moya M, et  al. 
Expression of IGF-I in pancreatic islets prevents lymphocytic infiltration and 
protects mice from type 1 diabetes. Diabetes (2006) 55:3246–55. doi:10.2337/
db06-0328 

164. Agudo J, Ayuso E, Jimenez V, Salavert A, Casellas A, Tafuro S, et al. IGF-I 
mediates regeneration of endocrine pancreas by increasing beta cell repli-
cation through cell cycle protein modulation in mice. Diabetologia (2008) 
51:1862–72. doi:10.1007/s00125-008-1087-8 

165. Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T  cell development 
and function. Annu Rev Immunol (2000) 18:309–45. doi:10.1146/annurev.
immunol.18.1.309 

166. Mittelstadt PR, Monteiro JP, Ashwell JD. Thymocyte responsiveness to 
endogenous glucocorticoids is required for immunological fitness. J Clin 
Invest (2012) 122(7):2384–94. doi:10.1172/JCI63067 

167. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppres-
sive effects of glucocorticoids, recent developments and mechanistic insights. 
Mol Cell Endocrinol (2011) 335(1):2–13. doi:10.1016/j.mce.2010.04.005 

168. Londono P, Komura A, Hara N, Zipris D. Brief dexamethasone treatment 
during acute infection prevents virus-induced autoimmune diabetes. Clin 
Immunol (2010) 135(3):401–11. doi:10.1016/j.clim.2010.01.007 

87

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1097/MIB.
0000000000000397
https://doi.org/10.1097/MIB.
0000000000000397
https://doi.org/10.1038/nature07336
https://doi.org/10.1016/j.chom.2015.01.001
https://doi.org/10.1073/pnas.1705599114
https://doi.org/10.1038/ni.3713
https://doi.org/10.1038/ni.3713
https://doi.org/10.2337/dc09-S302
https://doi.org/10.1038/nm.2627
https://doi.org/10.1002/oby.20615
https://doi.org/10.2337/db08-1261
https://doi.org/10.2337/db08-1261
https://doi.org/10.1016/j.atherosclerosis.2014.01.011
https://doi.org/10.1161/ATVBAHA.113.302077
https://doi.org/10.1161/ATVBAHA.113.302077
https://doi.org/10.1111/j.1365-2567.2008.02819.x
https://doi.org/10.1016/S1672-0229(08)60009-1
https://doi.org/10.1111/febs.13827
https://doi.org/10.1111/febs.13827
https://doi.org/10.1038/nri3667
https://doi.org/10.1016/j.ygcen.
2017.07.028
https://doi.org/10.1016/j.ygcen.
2017.07.028
https://doi.org/10.1016/j.cellimm.2013.10.003
https://doi.org/10.1074/jbc.M312110200
https://doi.org/10.1196/annals.1375.031
https://doi.org/10.1073/pnas.1314985110
https://doi.org/10.1210/jcem.81.5.8626820
https://doi.org/10.1016/S0140-6736(99)04055-6
https://doi.org/10.1210/jc.2010-3023
https://doi.org/10.1210/er.2008-0027
https://doi.org/10.1016/j.jpeds.2013.04.045
https://doi.org/10.1016/j.jpeds.2013.04.045
https://doi.org/10.6065/apem.2017.22.3.145
https://doi.org/10.1159/000048230
https://doi.org/10.1111/j.1365-2249.1995.tb03786.x
https://doi.org/10.1016/S0168-8227(96)01326-5
https://doi.org/10.1210/en.2003-1274
https://doi.org/10.2337/db11-1776
https://doi.org/10.2337/db11-1776
https://doi.org/10.15252/emmm.201303376
https://doi.org/10.1172/JCI0212969
https://doi.org/10.2337/db06-0328
https://doi.org/10.2337/db06-0328
https://doi.org/10.1007/s00125-008-1087-8
https://doi.org/10.1146/annurev.immunol.18.1.309
https://doi.org/10.1146/annurev.immunol.18.1.309
https://doi.org/10.1172/JCI63067
https://doi.org/10.1016/j.mce.2010.04.005
https://doi.org/10.1016/j.clim.2010.01.007


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

169. Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side 
effects of glucocorticoids. Pharmacol Ther (2002) 96(1):23–43. doi:10.1016/
S0163-7258(02)00297-8 

170. Fauci AS, Dale DC. The effect of in vivo hydrocortisone on subpopulations 
of human lymphocytes. J Clin Invest (1974) 3:240. doi:10.1172/JCI107544 

171. Almawi WY, Beyhum HN, Rahme AA, Rieder MJ. Regulation of cytokine 
and cytokine receptor expression by glucocorticoids. J Leukoc Biol (1996) 
60:563. doi:10.1002/jlb.60.5.563 

172. Wiegers GJ, Labeur MS, Stec IE, Klinkert WE, Holsboer F, Reul JM. 
Glucocorticoids accelerate anti-T  cell receptor-induced T  cell growth. 
J Immunol (1995) 155(4):1893–902. 

173. Wiegers GJ, Stec IE, Klinkert WE, Reul JM. Glucocorticoids regulate 
TCR-induced elevation of CD4: functional implications. J Immunol (2000) 
164(12):6213–20. doi:10.4049/jimmunol.164.12.6213 

174. Ramirez F, McKnight AJ, Silva A, Mason D. Glucocorticoids induce the 
expression of CD8 alpha chains on concanavalin A-activated rat CD4+ 
T cells: induction is inhibited by rat recombinant interleukin 4. J Exp Med 
(1992) 176(6):1551–9. doi:10.1084/jem.176.6.1551 

175. Schäcke H, Schottelius A, Döcke WD, Strehlke P, Jaroch S, Schmees N, et al. 
Dissociation of transactivation from transrepression by a selective gluco-
corticoid receptor agonist leads to separation of therapeutic effects from 
side effects. Proc Natl Acad Sci U S A (2004) 101(1):227–32. doi:10.1073/
pnas.0300372101 

176. Barcala Tabarrozzi AE, Andreone L, Deckers J, Castro CN, Gimeno ML, 
Ariolfo L, et  al. GR-independent down-modulation on GM-CSF bone 
marrow-derived dendritic cells by the selective glucocorticoid receptor 
modulator compound A. Sci Rep (2016) 6:36646. doi:10.1038/srep36646 

177. De Bosscher K, Vanden Berghe W, Beck IM, Van Molle W, Hennuyer N, 
Hapgood J, et al. A fully dissociated compound of plant origin for inflam-
matory gene repression. Proc Natl Acad Sci U S A (2005) 102:15827–32. 
doi:10.1073/pnas.0505554102 

178. Liberman AC, Antunica-Noguerol M, Ferraz-de-Paula V, Palermo-Neto J,  
Castro CN, Druker J, et  al. Compound A, a dissociated glucocorticoid 
receptor modulator, inhibits T-bet (Th1) and induces GATA-3 (Th2) activity 
in immune cells. PLoS One (2012) 7(4):e35155. doi:10.1371/journal.pone. 
0035155 

179. WHO. Improving Preterm Birth Outcomes. Execute Summary. Geneva: WHO 
(2015).

180. Lindsay RS, Lindsay RM, Waddell BJ, Seckl JR. Prenatal glucocorticoid 
exposure leads to offspring hyperglycaemia in the rat: studies with the 11 
beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia 
(1996) 39:1299–305. doi:10.1007/s001250050573 

181. Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR. Glucocorticoid 
exposure in late gestation permanently programs rat hepatic phosphoe-
nol-pyruvate carboxykinase and glucocorticoid receptor expression and 
causes glucose intolerance in adult offspring. J Clin Invest (1998) 101:2174–81. 
doi:10.1172/JCI1567 

182. De Blasio MJ, Dodic M, Jefferies AJ, Moritz KM, Wintour EM, Owens JA. 
Maternal exposure to dexamethasone or cortisol in early pregnancy differ-
entially alters insulin secretion and glucose homeostasis in adult male sheep 
offspring. Am J Physiol Endocrinol Metab (2007) 293(1):E75–82. doi:10.1152/
ajpendo.00689.2006 

183. Kelly BA, Lewandowski AJ, Worton SA, Davis EF, Lazdam M, Francis J,  
et  al. Antenatal glucocorticoid exposure and long-term alterations in 
aortic function and glucose metabolism. Pediatrics (2012) 129(5):e1282–90. 
doi:10.1542/peds.2011-3175 

184. Diepenbruck I, Much CC, Krumbholz A, Kolster M, Thieme R, Thieme D, 
et al. Effect of prenatal steroid treatment on the developing immune system. 
J Mol Med (Berl) (2013) 91(11):1293–302. doi:10.1007/s00109-013-1069-2 

185. Gieras A, Gehbauer C, Perna-Barrull D, Engler JB, Diepenbruck I, Glau L,  
et  al. Prenatal administration of betamethasone causes changes in the 
T cell receptor repertoire influencing development of autoimmunity. Front 
Immunol (2017) 8:1505. doi:10.3389/fimmu.2017.01505 

186. Greene NH, Pedersen LH, Liu S, Olsen J. Prenatal prescription corticoste-
roids and offspring diabetes: a national cohort study. Int J Epidemiol (2013) 
42(1):186–93. doi:10.1093/ije/dys228 

187. Gesina E, Tronche F, Herrera P, Duchene B, Tales W, Czernichow P, et al. 
Dissecting the role of glucocorticoids on pancreas development. Diabetes 
(2004) 53(9):2322–9. doi:10.2337/diabetes.53.9.2322 

188. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, 
et al. A role for ghrelin in the central regulation of feeding. Nature (2001) 
409(6817):194–8. doi:10.1038/35051587 

189. Inui A. Ghrelin: an orexigenic and somatotrophic signal from the stomach. 
Nat Rev Neurosci (2001) 2(8):551–60. doi:10.1038/35086018 

190. Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R,  
et  al. Ghrelin inhibits leptin- and activation-induced proinflammatory 
cytokine expression by human monocytes and T cells. J Clin Invest (2004) 
114(1):57–66. doi:10.1172/JCI200421134 

191. Lee JH, Patel K, Tae HJ, Lustig A, Kim JW, Mattson MP, et  al. Ghrelin 
augments murine T-cell proliferation by activation of the phosphatidyli-
nositol-3-kinase, extracellular signal-regulated kinase and protein kinase 
C signaling pathways. FEBS Lett (2014) 588(24):4708–19. doi:10.1016/j.
febslet.2014.10.044 

192. Dixit VD, Yang H, Sun Y, Weeraratna AT, Youm YH, Smith RG, et al. Ghrelin 
promotes thymopoiesis during aging. J Clin Invest (2007) 117(10):2778–90. 
doi:10.1172/JCI30248 

193. Dixit VD, Yang H, Cooper-Jenkins A, Giri BB, Patel K, Taub DD. Reduction 
of T  cell-derived ghrelin enhances proinflammatory cytokine expression: 
implications for age-associated increases in inflammation. Blood (2009) 
113(21):5202–5. doi:10.1182/blood-2008-09-181255 

194. Baena-Nieto G, Lomas-Romero IM, Mateos RM, Leal-Cosme N, Perez-
Arana G, Aguilar-Diosdado M, et  al. Ghrelin mitigates β-cell mass loss 
during insulitis in an animal model of autoimmune diabetes mellitus, the 
BioBreeding/Worcester rat. Diabetes Metab Res Rev (2017) 33(1):1–13. 
doi:10.1002/dmrr.2813 

195. Orlova EG, Shirshev SV, Loginova OA. Leptin and ghrelin regulate dendritic 
cell maturation and dendritic cell induction of regulatory T-cells. Dokl Biol 
Sci (2015) 462:171–4. doi:10.1134/S001249661503014X 

196. Friedman JM. Leptin, leptin receptors, and the control of body weight. 
Nutr Rev (1998) 56(2 Pt 2):s38–46; discussion s54–75. doi:10.1111/j.1753- 
4887.1998.tb01685.x 

197. Gainsford T, Willson TA, Metcalf D, Handman E, McFarlane C, Ng A, et al. 
Leptin can induce proliferation, differentiation, and functional activation 
of hemopoietic cells. Proc Natl Acad Sci U S A (1996) 93(25):14564–8. 
doi:10.1073/pnas.93.25.14564 

198. Bouloumié A, Drexler HC, Lafontan M, Busse R. Leptin, the product of Ob 
gene, promotes angiogenesis. Circ Res (1998) 83(10):1059–66. doi:10.1161/01.
RES.83.10.1059 

199. Chehab FF, Lim ME, Lu R. Correction of the sterility defect in homozygous 
obese female mice by treatment with the human recombinant leptin. Nat 
Genet (1996) 12(3):318–20. doi:10.1038/ng0396-318 

200. Matarese G, Moschos S, Mantzoros CS. Leptin in immunology. J Immunol 
(2005) 174(6):3137–42. doi:10.4049/jimmunol.174.6.3137 

201. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin 
modulates the T-cell immune response and reverses starvation-induced 
immunosuppression. Nature (1998) 394(6696):897–901. doi:10.1038/29795 

202. Lord GM, Matarese G, Howard JK, Bloom SR, Lechler RI. Leptin inhibits 
the anti-CD3-driven proliferation of peripheral blood T cells but enhances 
the production of proinflammatory cytokines. J Leukoc Biol (2002) 72(2): 
330–8. 

203. Matarese G, Sanna V, Lechler RI, Sarvetnick N, Fontana S, Zappacosta S, 
et al. Leptin accelerates autoimmune diabetes in female NOD mice. Diabetes 
(2002) 51(5):1356–61. doi:10.2337/diabetes.51.5.1356 

204. Lee CH, Reifsnyder PC, Naggert JK, Wasserfall C, Atkinson MA, Chen J, et al. 
Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes 
progression: I. Pathophysiological analysis. Diabetes (2005) 54(9):2525–32. 
doi:10.2337/diabetes.54.9.2525 

205. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, et al. 
Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in 
mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? 
J Clin Endocrinol Metab (2001) 86(7):3257–65. doi:10.1210/jcem.86.7.7623 

206. Viardot A, Grey ST, Mackay F, Chisholm D. Potential antiinflammatory 
role of insulin via the preferential polarization of effector T cells toward a 
T helper 2 phenotype. Endocrinology (2007) 148(1):346–53. doi:10.1210/
en.2006-0686 

207. Viardot A, Heilbronn LK, Samocha-Bonet D, Mackay F, Campbell LV, 
Samaras K. Obesity is associated with activated and insulin resistant immune 
cells. Diabetes Metab Res Rev (2012) 28(5):447–54. doi:10.1002/dmrr.2302 

88

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/S0163-7258(02)00297-8
https://doi.org/10.1016/S0163-7258(02)00297-8
https://doi.org/10.1172/JCI107544
https://doi.org/10.1002/jlb.60.5.563
https://doi.org/10.4049/jimmunol.164.12.6213
https://doi.org/10.1084/jem.176.6.1551
https://doi.org/10.1073/pnas.0300372101
https://doi.org/10.1073/pnas.0300372101
https://doi.org/10.1038/srep36646
https://doi.org/10.1073/pnas.0505554102
https://doi.org/10.1371/journal.pone.
0035155
https://doi.org/10.1371/journal.pone.
0035155
https://doi.org/10.1007/s001250050573
https://doi.org/10.1172/JCI1567
https://doi.org/10.1152/ajpendo.00689.2006
https://doi.org/10.1152/ajpendo.00689.2006
https://doi.org/10.1542/peds.2011-3175
https://doi.org/10.1007/s00109-013-1069-2
https://doi.org/10.3389/fimmu.2017.01505
https://doi.org/10.1093/ije/dys228
https://doi.org/10.2337/diabetes.53.9.2322
https://doi.org/10.1038/35051587
https://doi.org/10.1038/35086018
https://doi.org/10.1172/JCI200421134
https://doi.org/10.1016/j.febslet.2014.10.044
https://doi.org/10.1016/j.febslet.2014.10.044
https://doi.org/10.1172/JCI30248
https://doi.org/10.1182/blood-2008-09-181255
https://doi.org/10.1002/dmrr.2813
https://doi.org/10.1134/S001249661503014X
https://doi.org/10.1111/j.1753-
4887.1998.tb01685.x
https://doi.org/10.1111/j.1753-
4887.1998.tb01685.x
https://doi.org/10.1073/pnas.93.25.14564
https://doi.org/10.1161/01.RES.83.10.1059
https://doi.org/10.1161/01.RES.83.10.1059
https://doi.org/10.1038/ng0396-318
https://doi.org/10.4049/jimmunol.174.6.3137
https://doi.org/10.1038/29795
https://doi.org/10.2337/diabetes.51.5.1356
https://doi.org/10.2337/diabetes.54.9.2525
https://doi.org/10.1210/jcem.86.7.7623
https://doi.org/10.1210/en.2006-0686
https://doi.org/10.1210/en.2006-0686
https://doi.org/10.1002/dmrr.2302


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

208. Otton R, Soriano FG, Verlengia R, Curi R. Diabetes induces apoptosis in 
lymphocytes. J Endocrinol (2004) 182(1):145–56. doi:10.1677/joe.0.1820145 

209. Pedersen DJ, Guilherme A, Danai LV, Heyda L, Matevossian A, Cohen J, 
et al. A major role of insulin in promoting obesity-associated adipose tissue 
inflammation. Mol Metab (2015) 4(7):507–18. doi:10.1016/j.molmet.2015. 
04.003 

210. Martinez-Sanchez ME, Hiriart M, Alvarez-Buylla ER. The CD4+ T  cell 
regulatory network mediates inflammatory responses during acute hyper-
insulinemia: a simulation study. BMC Syst Biol (2017) 11(1):64. doi:10.1186/
s12918-017-0436-y 

211. Han JM, Patterson SJ, Speck M, Ehses JA, Levings MK. Insulin inhibits IL-10-
mediated regulatory T  cell function: implications for obesity. J Immunol 
(2014) 192(2):623–9. doi:10.4049/jimmunol.1302181 

212. Helderman JH, Strom TB. Specific insulin binding site on T and B lym-
phocytes as a marker of cell activation. Nature (1978) 274(5666):62–3. 
doi:10.1038/274062a0 

213. Brown TJ, Ercolani L, Ginsberg BH. Properties and regulation of the 
T  lymphocyte insulin receptor. J Recept Res (1983) 3:481–94. doi:10.3109/ 
10799898309041854 

214. Fischer HJ, Sie C, Schumann E, Witte AK, Dressel R, van den Brandt J, et al. 
The insulin receptor plays a critical role in T cell function and adaptive immu-
nity. J Immunol (2017) 198(5):1910–20. doi:10.4049/jimmunol.1601011 

215. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. 
The CD28 signaling pathway regulates glucose metabolism. Immunity (2002) 
16(6):769–77. doi:10.1016/S1074-7613(02)00323-0 

216. Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ,  
et al. Glucose uptake is limiting in T cell activation and requires CD28-
mediated Akt-dependent and independent pathways. J Immunol (2008) 
180(7):4476–86. doi:10.4049/jimmunol.180.7.4476 

217. Jones N, Cronin JG, Dolton G, Panetti S, Schauenburg AJ, Galloway SAE, 
et  al. Metabolic adaptation of human CD4+ and CD8+ T-cells to T-cell 
receptor-mediated stimulation. Front Immunol (2017) 8:1516. doi:10.3389/
fimmu.2017.01516 

218. Pellegrini I, Lebrun JJ, Ali S, Kelly PA. Expression of prolactin and its receptor 
in human lymphoid cells. Mol Endocrinol (1992) 6(7):1023–31. doi:10.1210/
me.6.7.1023 

219. Hawkins TA, Gala RR, Dunbar JC. The lymphocyte and macrophage profile 
in the pancreas and spleen of NOD mice: percentage of interleukin-2 and 
prolactin receptors on immunocompetent cell subsets. J Reprod Immunol 
(1996) 32(1):55–71. doi:10.1016/S0165-0378(96)00986-2 

220. Spangelo BL, Hall NR, Ross PC, Goldstein AL. Stimulation of in  vivo 
antibody production and concanavalin-A-induced mouse spleen cell mito-
genesis by prolactin. Immunopharmacology (1987) 14(1):11–20. doi:10.1016/ 
0162-3109(87)90004-X 

221. Bernton EW, Meltzer MS, Holaday JW. Suppression of macrophage activation 
and T-lymphocyte function in hypoprolactinemic mice. Science (1988) 
239(4838):401–4. doi:10.1126/science.3122324 

222. Gala RR, Shevach EM. Influence of prolactin and growth hormone on the 
activation of dwarf mouse lymphocytes in vivo. Proc Soc Exp Biol Med (1993) 
204(2):224–30. doi:10.3181/00379727-204-43657 

223. Mooradian AD, Morley JE, Billington CJ, Slag MF, Elson MK, Shafer RB. 
Hyperprolactinaemia in male diabetics. Postgrad Med J (1985) 61(711):11–4. 
doi:10.1136/pgmj.61.711.11 

224. Orbach H, Shoenfeld Y. Hyperprolactinemia and autoimmune diseases. 
Autoimmun Rev (2007) 6(8):537–42. doi:10.1016/j.autrev.2006.10.005 

225. Arnold E, Rivera JC, Thebault S, Moreno-Páramo D, Quiroz-Mercado H, 
Quintanar-Stéphano A, et al. High levels of serum prolactin protect against 
diabetic retinopathy by increasing ocular vasoinhibins. Diabetes (2010) 
59(12):3192–7. doi:10.2337/db10-0873 

226. Daimon M, Kamba A, Murakami H, Mizushiri S, Osonoi S, Yamaichi M, et al. 
Association between serum prolactin levels and insulin resistance in non-dia-
betic men. PLoS One (2017) 12(4):e0175204. doi:10.1371/journal.pone.0175204 

227. Ekinci EI, Torkamani N, Ramchand SK, Churilov L, Sikaris KA, Lu ZX, 
et  al. Higher maternal serum prolactin levels are associated with reduced 
glucose tolerance during pregnancy. J Diabetes Investig (2017) 8(5):697–700. 
doi:10.1111/jdi.12634 

228. Wang T, Lu J, Xu Y, Li M, Sun J, Zhang J, et al. Circulating prolactin associates 
with diabetes and impaired glucose regulation: a population-based study. 
Diabetes Care (2013) 36(7):1974–80. doi:10.2337/dc12-1893 

229. Atwater I, Gondos B, DiBartolomeo R, Bazaes R, Jovanovic L. Pregnancy 
hormones prevent diabetes and reduce lymphocytic infiltration of islets in 
the NOD mouse. Ann Clin Lab Sci (2002) 32:87–92. 

230. Holstad M, Sandler S. Prolactin protects against diabetes induced by multiple 
low doses of streptozotocin in mice. J Endocrinol (1999) 163(2):229–34. 
doi:10.1677/joe.0.1630229 

231. Lau J, Börjesson A, Holstad M, Sandler S. Prolactin regulation of the expres-
sion of TNF-alpha, IFN-gamma and IL-10 by splenocytes in murine mul-
tiple low dose streptozotocin diabetes. Immunol Lett (2006) 102(1):25–30. 
doi:10.1016/j.imlet.2005.06.006 

232. Hyslop CM, Tsai S, Shrivastava V, Santamaria P, Huang C. Prolactin as 
an adjunct for type 1 diabetes immunotherapy. Endocrinology (2016) 
157(1):150–65. doi:10.1210/en.2015-1549 

233. Hawkins TA, Gala RR, Dunbar JC. Prolactin modulates the incidence of 
diabetes in male and female NOD mice. Autoimmunity (1994) 18(3):155–62. 
doi:10.3109/08916939409007991 

234. Tomio A, Schust DJ, Kawana K, Yasugi T, Kawana Y, Mahalingaiah S, et al. 
Prolactin can modulate CD4+ T-cell response through receptor-mediated 
alterations in the expression of T-bet. Immunol Cell Biol (2008) 86(7):616–21. 
doi:10.1038/icb.2008.29 

235. Sorenson RL, Brelje TC, Roth C. Effects of steroid and lactogenic hormones 
on islets of Langerhans: a new hypothesis for the role of pregnancy steroids 
in the adaptation of islets to pregnancy. Endocrinology (1993) 133:2227–34. 
doi:10.1210/endo.133.5.8404674 

236. Stout LE, Svensson AM, Sorenson RL. Prolactin regulation of islet-derived 
INS-1 cells: characteristics and immunocytochemical analysis of STAT5 
translocation. Endocrinology (1997) 138(4):1592–603. doi:10.1210/endo.138. 
4.5089 

237. Freemark M, Avril I, Fleenor D, Driscoll P, Petro A, Opara E, et al. Targeted 
deletion of the PRL receptor: effects on islet development, insulin production, 
and glucose tolerance. Endocrinology (2002) 143(4):1378–85. doi:10.1210/
endo.143.4.8722 

238. Huang C, Snider F, Cross JC. Prolactin receptor is required for normal 
glucose homoeostasis and modulation of beta-cell mass during pregnancy. 
Endocrinology (2009) 150:1618–26. doi:10.1210/en.2008-1003 

239. Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the 
magnocellular hypothalamo-neurohypophysial system. Physiol Rev (2001) 
81(3):1197–267. doi:10.1152/physrev.2001.81.3.1197 

240. Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, 
and regulation. Physiol Rev (2001) 81(2):629–83. doi:10.1152/physrev.2001. 
81.2.629 

241. Wang P, Yang HP, Tian S, Wang L, Wang SC, Zhang F, et  al. Oxytocin-
secreting system: a major part of the neuroendocrine center regulating 
immunologic activity. J Neuroimmunol (2015) 289:152–61. doi:10.1016/j.
jneuroim.2015.11.001 

242. Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, et al. CD38 is 
critical for social behaviour by regulating oxytocin secretion. Nature (2007) 
446(7131):41–5. doi:10.1038/nature05526 

243. Chen J, Chen YG, Reifsnyder PC, Schott WH, Lee CH, Osborne M, et al. 
Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt 
mice by enhancing autoimmunity in an ADP ribosyltransferase 2-depen-
dent fashion. J Immunol (2006) 176(8):4590–9. doi:10.4049/jimmunol.176. 
8.4590 

244. Watanabe S, Wei FY, Matsunaga T, Matsunaga N, Kaitsuka T, Tomizawa K. 
Oxytocin protects against stress-induced cell death in murine pancreatic 
β-cells. Sci Rep (2016) 6:25185. doi:10.1038/srep25185 

245. Takayanagi Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K. 
Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport 
(2008) 19(9):951–5. doi:10.1097/WNR.0b013e3283021ca9 

246. Camerino C. Low sympathetic tone and obese phenotype in oxytocin-de-
ficient mice. Obesity (Silver Spring) (2009) 17(5):980–4. doi:10.1038/
oby.2009.12 

247. Maejima Y, Iwasaki Y, Yamahara Y, Kodaira M, Sedbazar U, Yada T. Peripheral 
oxytocin treatment ameliorates obesity by reducing food intake and 
visceral fat mass. Aging (Albany NY) (2011) 3(12):1169–77. doi:10.18632/
aging.100408 

248. Zhang H, Wu C, Chen Q, Chen X, Xu Z, Wu J, et al. Treatment of obesity and 
diabetes using oxytocin or analogs in patients and mouse models. PLoS One 
(2013) 8(5):e61477. doi:10.1371/journal.pone.0061477 

89

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1677/joe.0.1820145
https://doi.org/10.1016/j.molmet.2015.
04.003
https://doi.org/10.1016/j.molmet.2015.
04.003
https://doi.org/10.1186/s12918-017-0436-y
https://doi.org/10.1186/s12918-017-0436-y
https://doi.org/10.4049/jimmunol.1302181
https://doi.org/10.1038/274062a0
https://doi.org/10.3109/
10799898309041854
https://doi.org/10.3109/
10799898309041854
https://doi.org/10.4049/jimmunol.1601011
https://doi.org/10.1016/S1074-7613(02)00323-0
https://doi.org/10.4049/jimmunol.180.7.4476
https://doi.org/10.3389/fimmu.2017.01516
https://doi.org/10.3389/fimmu.2017.01516
https://doi.org/10.1210/me.6.7.1023
https://doi.org/10.1210/me.6.7.1023
https://doi.org/10.1016/S0165-0378(96)00986-2
https://doi.org/10.1016/
0162-3109(87)90004-X
https://doi.org/10.1016/
0162-3109(87)90004-X
https://doi.org/10.1126/science.3122324
https://doi.org/10.3181/00379727-204-43657
https://doi.org/10.1136/pgmj.61.711.11
https://doi.org/10.1016/j.autrev.2006.10.005
https://doi.org/10.2337/db10-0873
https://doi.org/10.1371/journal.pone.0175204
https://doi.org/10.1111/jdi.12634
https://doi.org/10.2337/dc12-1893
https://doi.org/10.1677/joe.0.1630229
https://doi.org/10.1016/j.imlet.2005.06.006
https://doi.org/10.1210/en.2015-1549
https://doi.org/10.3109/08916939409007991
https://doi.org/10.1038/icb.2008.29
https://doi.org/10.1210/endo.133.5.8404674
https://doi.org/10.1210/endo.138.
4.5089
https://doi.org/10.1210/endo.138.
4.5089
https://doi.org/10.1210/endo.143.4.8722
https://doi.org/10.1210/endo.143.4.8722
https://doi.org/10.1210/en.2008-1003
https://doi.org/10.1152/physrev.2001.81.3.1197
https://doi.org/10.1152/physrev.2001.
81.2.629
https://doi.org/10.1152/physrev.2001.
81.2.629
https://doi.org/10.1016/j.jneuroim.2015.11.001
https://doi.org/10.1016/j.jneuroim.2015.11.001
https://doi.org/10.1038/nature05526
https://doi.org/10.4049/jimmunol.176.
8.4590
https://doi.org/10.4049/jimmunol.176.
8.4590
https://doi.org/10.1038/srep25185
https://doi.org/10.1097/WNR.0b013e3283021ca9
https://doi.org/10.1038/oby.2009.12
https://doi.org/10.1038/oby.2009.12
https://doi.org/10.18632/aging.100408
https://doi.org/10.18632/aging.100408
https://doi.org/10.1371/journal.pone.0061477


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

249. Elabd SK, Sabry I, Mohasseb M, Algendy A. Oxytocin as a novel therapeutic 
option for type I diabetes and diabetic osteopathy. Endocr Regul (2014) 
48(2):87–102. doi:10.4149/endo_2014_02_87 

250. Altirriba J, Poher AL, Caillon A, Arsenijevic D, Veyrat-Durebex C, Lyautey J, 
et al. Divergent effects of oxytocin treatment of obese diabetic mice on adi-
posity and diabetes. Endocrinology (2014) 155(11):4189–201. doi:10.1210/
en.2014-1466 

251. Klement J, Ott V, Rapp K, Brede S, Piccinini F, Cobelli C, et  al. Oxytocin 
improves β-cell responsivity and glucose tolerance in healthy men. Diabetes 
(2017) 66(2):264–71. doi:10.2337/db16-0569 

252. Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. 
Front Neuroendocrinol (2014) 35(3):347–69. doi:10.1016/j.yfrne.2014.04.004 

253. Ortona E, Pierdominici M, Maselli A, Veroni C, Aloisi F, Shoenfeld Y. 
Sex-based differences in autoimmune diseases. Ann Ist Super Sanita (2016) 
52(2):205–12. doi:10.4415/ANN_16_02_12 

254. Kissick HT, Sanda MG, Dunn LK, Pellegrini KL, On ST, Noel JK, et  al. 
Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. 
Proc Natl Acad Sci U S A (2014) 111(27):9887–92. doi:10.1073/pnas. 
1402468111 

255. Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on 
the immune system. Cell Immunol (2015) 294(2):87–94. doi:10.1016/j.
cellimm.2015.02.004 

256. Li X, Wang B, Li Y, Wang L, Zhao X, Zhou X, et al. The Th1/Th2/Th17/Treg 
paradigm induced by stachydrine hydrochloride reduces uterine bleeding 
in RU486-induced abortion mice. J Ethnopharmacol (2013) 145(1):241–53. 
doi:10.1016/j.jep.2012.10.059 

257. Tan IJ, Peeva E, Zandman-Goddard G. Hormonal modulation of the immune 
system – a spotlight on the role of progestogens. Autoimmun Rev (2015) 
14(6):536–42. doi:10.1016/j.autrev.2015.02.004 

258. Straub RH. The complex role of estrogens in inflammation. Endocr Rev 
(2007) 28(5):521–74. doi:10.1210/er.2007-0001 

259. Prieto GA, Rosenstein Y. Oestradiol potentiates the suppressive function 
of human CD4 CD25 regulatory T  cells by promoting their prolifera-
tion. Immunology (2006) 118(1):58–65. doi:10.1111/j.1365-2567.2006. 
02339.x 

260. Gilmore W, Weiner LP, Correale J. Effect of estradiol on cytokine secretion 
by proteolipid protein-specific T cell clones isolated from multiple sclerosis 
patients and normal control subjects. J Immunol (1997) 158(1):446–51. 

261. Kachapati K, Adams D, Bednar K, Ridgway WM. The non-obese diabetic 
(NOD) mouse as a model of human type 1 diabetes. Methods Mol Biol (2012) 
933:3–16. doi:10.1007/978-1-62703-068-7_1 

262. Fitzpatrick F, Lepault F, Homo-Delarche F, Bach JF, Dardenne M. Influence of 
castration, alone or combined with thymectomy, on the development of dia-
betes in the nonobese diabetic mouse. Endocrinology (1991) 129(3):1382–90. 
doi:10.1210/endo-129-3-1382 

263. Rosmalen JG, Pigmans MJ, Kersseboom R, Drexhage HA, Leenen PJ, Homo-
Delarche F. Sex steroids influence pancreatic islet hypertrophy and subse-
quent autoimmune infiltration in nonobese diabetic (NOD) and NODscid 
mice. Lab Invest (2001) 81(2):231–9. doi:10.1038/labinvest.3780231 

264. Fox HS. Androgen treatment prevents diabetes in nonobese diabetic mice. 
J Exp Med (1992) 175(5):1409–12. doi:10.1084/jem.175.5.1409 

265. Toyoda H, Takei S, Formby B. Effect of 5-alpha dihydrotestosterone on T-cell 
proliferation of the female nonobese diabetic mouse. Proc Soc Exp Biol Med 
(1996) 213(3):287–93. doi:10.3181/00379727-213-44060 

266. Bao M, Yang Y, Jun HS, Yoon JW. Molecular mechanisms for gender 
differences in susceptibility to T  cell-mediated autoimmune diabetes in 
nonobese diabetic mice. J Immunol (2002) 168(10):5369–75. doi:10.4049/
jimmunol.168.10.5369 

267. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-
Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-de-
pendent regulation of autoimmunity. Science (2013) 339(6123):1084–8. 
doi:10.1126/science.1233521 

268. Gourdy P, Bourgeois EA, Levescot A, Pham L, Riant E, Ahui ML, et  al. 
Estrogen therapy delays autoimmune diabetes and promotes the protective 
efficiency of natural killer T-cell activation in female nonobese diabetic mice. 
Endocrinology (2016) 157(1):258–67. doi:10.1210/en.2015-1313 

269. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: 
estimates for the year 2000 and projections for 2030. Diabetes Care (2004) 
27(5):1047–53. doi:10.2337/diacare.27.10.2569-a 

270. Geisler JG, Zawalich W, Zawalich K, Lakey JR, Stukenbrok H, Milici AJ, et al. 
Estrogen can prevent or reverse obesity and diabetes in mice expressing human 
islet amyloid polypeptide. Diabetes (2002) 51(7):2158–69. doi:10.2337/ 
diabetes.51.7.2158 

271. Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, et al. Estrogens 
protect pancreatic beta-cells from apoptosis and prevent insulin-deficient 
diabetes mellitus in mice. Proc Natl Acad Sci U S A (2006) 103(24):9232–7. 
doi:10.1073/pnas.0602956103 

272. Contreras JL, Smyth CA, Bilbao G, Young CJ, Thompson JA, Eckhoff DE. 
17beta-Estradiol protects isolated human pancreatic islets against proin-
flammatory cytokine-induced cell death: molecular mechanisms and islet 
functionality. Transplantation (2002) 74(9):1252–9. doi:10.1097/00007890- 
200211150-00010 

273. Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of 
energy balance and glucose homeostasis. Endocr Rev (2013) 34(3):309–38. 
doi:10.1210/er.2012-1055 

274. Shen M, Kumar SP, Shi H. Estradiol regulates insulin signaling and inflam-
mation in adipose tissue. Horm Mol Biol Clin Investig (2014) 17(2):99–107. 
doi:10.1515/hmbci-2014-0007 

275. Rubinow KB, Chao JH, Hagman D, Kratz M, Van Yserloo B, Gaikwad NW, 
et al. Circulating sex steroids coregulate adipose tissue immune cell popula-
tions in healthy men. Am J Physiol Endocrinol Metab (2017) 313(5):E528–39. 
doi:10.1152/ajpendo.00075.2017 

276. Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal 
compared with gestational diabetes mellitus. Am J Clin Nutr (2000) 71(5 
Suppl):1256S–61S. doi:10.1093/ajcn/71.5.1256s 

277. Sugaya A, Sugiyama T, Yanase S, Shen XX, Minoura H, Toyoda N. Expression 
of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of 
ovariectomized rats treated with sex steroid hormones. Life Sci (2000) 
66(7):641–8. doi:10.1016/S0024-3205(99)00636-0 

278. Straub SG, Sharp GW, Meglasson MD, De Souza CJ. Progesterone inhibits 
insulin secretion by a membrane delimited, non-genomic action. Biosci Rep 
(2001) 21(5):653–66. doi:10.1023/A:1014773010350 

279. Nunes VA, Portioli-Sanches EP, Rosim MP, Araujo MS, Praxedes-Garcia P, 
Valle MM, et  al. Progesterone induces apoptosis of insulin-secreting cells: 
insights into the molecular mechanism. J Endocrinol (2014) 221(2):273–84. 
doi:10.1530/JOE-13-0202 

280. Yu IC, Lin HY, Sparks JD, Yeh S, Chang C. Androgen receptor roles in 
insulin resistance and obesity in males: the linkage of androgen-deprivation 
therapy to metabolic syndrome. Diabetes (2014) 63(10):3180–8. doi:10.2337/
db13-1505 

281. Navarro G, Allard C, Xu W, Mauvais-Jarvis F. The role of androgens in 
metabolism, obesity, and diabetes in males and females. Obesity (Silver 
Spring) (2015) 23(4):713–9. doi:10.1002/oby.21033 

282. Dubois V, Laurent MR, Jardi F, Antonio L, Lemaire K, Goyvaerts L, et al. 
Androgen deficiency exacerbates high-fat diet-induced metabolic alter-
ations in male mice. Endocrinology (2016) 157(2):648–65. doi:10.1210/en. 
2015-1713 

283. Xu W, Niu T, Xu B, Navarro G, Schipma MJ, Mauvais-Jarvis F. Androgen 
receptor-deficient islet β-cells exhibit alteration in genetic markers of insulin 
secretion and inflammation. A transcriptome analysis in the male mouse. 
J Diabetes Complications (2017) 31(5):787–95. doi:10.1016/j.jdiacomp.2017. 
03.002 

284. Morimoto S, Mendoza-Rodríguez CA, Hiriart M, Larrieta ME, Vital P, 
Cerbón MA. Protective effect of testosterone on early apoptotic damage 
induced by streptozotocin in rat pancreas. J Endocrinol (2005) 187(2):217–24. 
doi:10.1677/joe.1.06357 

285. Palomar-Morales M, Morimoto S, Mendoza-Rodríguez CA, Cerbón MA. 
The protective effect of testosterone on streptozotocin-induced apoptosis 
in beta cells is sex specific. Pancreas (2010) 39(2):193–200. doi:10.1097/
MPA.0b013e3181c156d9 

286. Navarro G, Xu W, Jacobson DA, Wicksteed B, Allard C, Zhang G, et  al. 
Extranuclear actions of the androgen receptor enhance glucose-stimulated 
insulin secretion in the male. Cell Metab (2016) 23(5):837–51. doi:10.1016/j.
cmet.2016.03.015 

287. Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR,  
et al. Gamma-aminobutyric acid (GABA) is an autocrine excitatory trans-
mitter in human pancreatic beta-cells. Diabetes (2010) 59(7):1694–701. 
doi:10.2337/db09-0797 

90

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.4149/endo_2014_02_87
https://doi.org/10.1210/en.2014-1466
https://doi.org/10.1210/en.2014-1466
https://doi.org/10.2337/db16-0569
https://doi.org/10.1016/j.yfrne.2014.04.004
https://doi.org/10.4415/ANN_16_02_12
https://doi.org/10.1073/pnas.
1402468111
https://doi.org/10.1073/pnas.
1402468111
https://doi.org/10.1016/j.cellimm.2015.02.004
https://doi.org/10.1016/j.cellimm.2015.02.004
https://doi.org/10.1016/j.jep.2012.10.059
https://doi.org/10.1016/j.autrev.2015.02.004
https://doi.org/10.1210/er.2007-0001
https://doi.org/10.1111/j.1365-2567.2006.
02339.x
https://doi.org/10.1111/j.1365-2567.2006.
02339.x
https://doi.org/10.1007/978-1-62703-068-7_1
https://doi.org/10.1210/endo-129-3-1382
https://doi.org/10.1038/labinvest.3780231
https://doi.org/10.1084/jem.175.5.1409
https://doi.org/10.3181/00379727-213-44060
https://doi.org/10.4049/jimmunol.168.10.5369
https://doi.org/10.4049/jimmunol.168.10.5369
https://doi.org/10.1126/science.1233521
https://doi.org/10.1210/en.2015-1313
https://doi.org/10.2337/diacare.27.10.2569-a
https://doi.org/10.2337/
diabetes.51.7.2158
https://doi.org/10.2337/
diabetes.51.7.2158
https://doi.org/10.1073/pnas.0602956103
https://doi.org/10.1097/00007890-
200211150-00010
https://doi.org/10.1097/00007890-
200211150-00010
https://doi.org/10.1210/er.2012-1055
https://doi.org/10.1515/hmbci-2014-0007
https://doi.org/10.1152/ajpendo.00075.2017
https://doi.org/10.1093/ajcn/71.5.1256s
https://doi.org/10.1016/S0024-3205(99)00636-0
https://doi.org/10.1023/A:1014773010350
https://doi.org/10.1530/JOE-13-0202
https://doi.org/10.2337/db13-1505
https://doi.org/10.2337/db13-1505
https://doi.org/10.1002/oby.21033
https://doi.org/10.1210/en.
2015-1713
https://doi.org/10.1210/en.
2015-1713
https://doi.org/10.1016/j.jdiacomp.2017.
03.002
https://doi.org/10.1016/j.jdiacomp.2017.
03.002
https://doi.org/10.1677/joe.1.06357
https://doi.org/10.1097/MPA.0b013e3181c156d9
https://doi.org/10.1097/MPA.0b013e3181c156d9
https://doi.org/10.1016/j.cmet.2016.03.015
https://doi.org/10.1016/j.cmet.2016.03.015
https://doi.org/10.2337/db09-0797


Andreone et al. T Lymphocytes in Diabetes

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 229

288. Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, et al. GABA exerts 
protective and regenerative effects on islet beta cells and reverses diabetes. 
Proc Natl Acad Sci U S A (2011) 108(28):11692–7. doi:10.1073/pnas. 
1102715108 

289. Tian J, Dang H, Chen Z, Guan A, Jin Y, Atkinson MA, et  al. Gamma-
aminobutyric acid regulates both the survival and replication of human 
β-cells. Diabetes (2013) 62(11):3760–5. doi:10.2337/db13-0931 

290. Beales PE, Hawa M, Williams AJ, Albertini MC, Giorgini A, Pozzilli P. 
Baclofen, a gamma-aminobutyric acid-b receptor agonist, delays diabetes 
onset in the non-obese diabetic mouse. Acta Diabetol (1995) 32(1):53–6. 
doi:10.1007/BF00581047 

291. He S, Zhang Y, Wang D, Tao K, Zhang S, Wei L, et al. Rapamycin/GABA 
combination treatment ameliorates diabetes in NOD mice. Mol Immunol 
(2016) 73:130–7. doi:10.1016/j.molimm.2016.01.008 

292. Tian J, Lu Y, Zhang H, Chau CH, Dang HN, Kaufman DL. Gamma-
aminobutyric acid inhibits T  cell autoimmunity and the development of 
inflammatory responses in a mouse type 1 diabetes model. J Immunol (2004) 
173(8):5298–304. doi:10.4049/jimmunol.173.8.5298 

293. Alam S, Laughton DL, Walding A, Wolstenholme AJ. Human peripheral 
blood mononuclear cells express GABAA receptor subunits. Mol Immunol 
(2006) 43:1432–42. doi:10.1016/j.molimm.2005.07.025 

294. Tian J, Dang HN, Yong J, Chui WS, Dizon MP, Yaw CK, et al. Oral treatment 
with gamma-aminobutyric acid improves glucose tolerance and insulin 
sensitivity by inhibiting inflammation in high fat diet-fed mice. PLoS One 
(2011) 6(9):e25338. doi:10.1371/journal.pone.0025338 

295. Cavagnini F, Pinto M, Dubini A, Invitti C, Cappelletti G, Polli EE. Effects 
of gamma aminobutyric acid (GABA) and muscimol on endocrine pan-
creatic function in man. Metabolism (1982) 31(1):73–7. doi:10.1016/0026- 
0495(82)90029-4 

296. Passariello N, Giugliano D, Torella R, Sgambato S, Coppola L, Frascolla N. 
A possible role of gamma-aminobutyric acid in the control of the endocrine 
pancreas. J Clin Endocrinol Metab (1982) 54(6):1145–9. doi:10.1210/jcem- 
54-6-1145 

297. Yoon JW, Yoon CS, Lim HW, Huang QQ, Kang Y, Pyun KH, et al. Control 
of autoimmune diabetes in NOD mice by GAD expression or suppression 
in beta cells. Science (1999) 284(5417):1183–7. doi:10.1126/science.284. 
5417.1183 

298. Ryden AK, Wesley JD, Coppieters KT, Von Herrath MG. Non-antigenic and 
antigenic interventions in type 1 diabetes. Hum Vaccin Immunother (2014) 
10(4):838–46. doi:10.4161/hv.26890 

299. O’Mahony L, Akdis M, Akdis CA. Regulation of the immune response and 
inflammation by histamine and histamine receptors. J Allergy Clin Immunol 
(2011) 128(6):1153–62. doi:10.1016/j.jaci.2011.06.051 

300. Jutel M, Watanabe T, Klunker S, Akdis M, Thomet OA, Malolepszy J, et al. 
Histamine regulates T-cell and antibody responses by differential expression 
of H1 and H2 receptors. Nature (2001) 413(6854):420–5. doi:10.1038/ 
35096564 

301. Frewin DB, Cleland LG, Jonsson JR, Robertson PW. Histamine levels in 
human synovial fluid. J Rheumatol (1986) 13(1):13–4. 

302. Gill DS, Barradas MA, Fonseca VA, Dandona P. Plasma histamine con-
centrations are elevated in patients with diabetes mellitus and peripheral 
vascular disease. Metabolism (1989) 38(3):243–7. doi:10.1016/0026-0495(89) 
90082-6 

303. Tuomisto L, Kilpeläinen H, Riekkinen P. Histamine and histamine-N-meth-
yltransferase in the CSF of patients with multiple sclerosis. Agents Actions 
(1983) 13(2–3):255–7. doi:10.1007/BF01967346 

304. Alkan M, Machavoine F, Rignault R, Dam J, Dy M, Thieblemont N. Histidine 
decarboxylase deficiency prevents autoimmune diabetes in NOD mice. 
J Diabetes Res (2015) 2015:965056. doi:10.1155/2015/965056 

305. Yoshimoto R, Miyamoto Y, Shimamura K, Ishihara A, Takahashi K, Kotani H,  
et  al. Therapeutic potential of histamine H3 receptor agonist for the 
treatment of obesity and diabetes mellitus. Proc Natl Acad Sci U S A (2006) 
103(37):13866–71. doi:10.1073/pnas.0506104103 

306. Takahashi K, Suwa H, Ishikawa T, Kotani H. Targeted disruption of H3 recep-
tors results in changes in brain histamine tone leading to an obese phenotype. 
J Clin Invest (2002) 110(12):1791–9. doi:10.1172/JCI15784 

307. Masaki T, Yoshimatsu H, Chiba S, Watanabe T, Sakata T. Targeted disrup-
tion of histamine H1-receptor attenuates regulatory effects of leptin on 
feeding, adiposity, and UCP family in mice. Diabetes (2001) 50(2):385–91. 
doi:10.2337/diabetes.50.2.385 

308. Fülöp AK, Földes A, Buzás E, Hegyi K, Miklós IH, Romics L, et  al. 
Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice 
with a targeted disruption of the histidine decarboxylase gene. Endocrinology 
(2003) 144(10):4306–14. doi:10.1210/en.2003-0222 

309. Masaki T, Chiba S, Yasuda T, Noguchi H, Kakuma T, Watanabe T, et  al. 
Involvement of hypothalamic histamine H1 receptor in the regulation of 
feeding rhythm and obesity. Diabetes (2004) 53(9):2250–60. doi:10.2337/
diabetes.53.9.2250 

310. Anvari E, Fred RG, Welsh N. The H1-receptor antagonist cetirizine protects 
partially against cytokine- and hydrogen peroxide-induced β-TC6 cell death 
in vitro. Pancreas (2014) 43(4):624–9. doi:10.1097/MPA.0000000000000076 

311. Anvari E, Wang X, Sandler S, Welsh N. The H1-receptor antagonist cetirizine 
ameliorates high-fat diet-induced glucose intolerance in male C57BL/6 mice, 
but not diabetes outcome in female non-obese diabetic (NOD) mice. Ups 
J Med Sci (2015) 120(1):40–6. doi:10.3109/03009734.2014.967422 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Andreone, Gimeno and Perone. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY).  
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) and the copyright owner are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

91

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1073/pnas.
1102715108
https://doi.org/10.1073/pnas.
1102715108
https://doi.org/10.2337/db13-0931
https://doi.org/10.1007/BF00581047
https://doi.org/10.1016/j.molimm.2016.01.008
https://doi.org/10.4049/jimmunol.173.8.5298
https://doi.org/10.1016/j.molimm.2005.07.025
https://doi.org/10.1371/journal.pone.0025338
https://doi.org/10.1016/0026-
0495(82)90029-4
https://doi.org/10.1016/0026-
0495(82)90029-4
https://doi.org/10.1210/jcem-
54-6-1145
https://doi.org/10.1210/jcem-
54-6-1145
https://doi.org/10.1126/science.284.
5417.1183
https://doi.org/10.1126/science.284.
5417.1183
https://doi.org/10.4161/hv.26890
https://doi.org/10.1016/j.jaci.2011.06.051
https://doi.org/10.1038/
35096564
https://doi.org/10.1038/
35096564
https://doi.org/10.1016/0026-0495(89)
90082-6
https://doi.org/10.1016/0026-0495(89)
90082-6
https://doi.org/10.1007/BF01967346
https://doi.org/10.1155/2015/965056
https://doi.org/10.1073/pnas.0506104103
https://doi.org/10.1172/JCI15784
https://doi.org/10.2337/diabetes.50.2.385
https://doi.org/10.1210/en.2003-0222
https://doi.org/10.2337/diabetes.53.9.2250
https://doi.org/10.2337/diabetes.53.9.2250
https://doi.org/10.1097/MPA.0000000000000076
https://doi.org/10.3109/03009734.2014.967422
https://creativecommons.org/licenses/by/4.0/


May 2018 | Volume 9 | Article 214

Review
published: 01 May 2018

doi: 10.3389/fendo.2018.00214

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Daniella Areas Mendes-Da-Cruz,  

Fundação Oswaldo Cruz  
(Fiocruz), Brazil

Reviewed by: 
Aldo Tagliabue,  

Istituto di Ricerca Genetica e 
Biomedica (CNR), Italy  

Bruno R-s,  
Unidad de Investigación  

Biomédica de Zacatecas  
(IMSS), Mexico

*Correspondence:
Oscar Bottasso 

bottasso@idicer-conicet.gob.ar

Specialty section: 
This article was submitted to 

Neuroendocrine Science,  
a section of the journal  

Frontiers in Endocrinology

Received: 23 November 2017
Accepted: 16 April 2018
Published: 01 May 2018

Citation: 
D’Attilio L, Santucci N, 

Bongiovanni B, Bay ML and 
Bottasso O (2018) Tuberculosis, the 

Disrupted Immune-Endocrine 
Response and the Potential Thymic 

Repercussion As a Contributing 
Factor to Disease Physiopathology. 

Front. Endocrinol. 9:214. 
doi: 10.3389/fendo.2018.00214

Tuberculosis, the Disrupted  
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Instituto de Inmunología Clínica y Experimental de Rosario, UNR-CONICET, Rosario, Argentina

Upon the pathogen encounter, the host seeks to ensure an adequate inflammatory 
reaction to combat infection but at the same time tries to prevent collateral damage, 
through several regulatory mechanisms, like an endocrine response involving the pro-
duction of adrenal steroid hormones. Our studies show that active tuberculosis (TB) 
patients present an immune-endocrine imbalance characterized by an impaired cellular 
immunity together with increased plasma levels of cortisol, pro-inflammatory cytokines, 
and decreased amounts of dehydroepiandrosterone. Studies in patients undergoing 
specific treatment revealed that cortisol levels remained increased even after several 
months of initiating therapy. In addition to the well-known metabolic and immunological 
effects, glucocorticoids are involved in thymic cortical depletion with immature thymo-
cytes being quite sensitive to such an effect. The thymus is a central lymphoid organ 
supporting thymocyte T-cell development, i.e., lineage commitment, selection events 
and thymic emigration. While thymic TB is an infrequent manifestation of the disease, 
several pieces of experimental and clinical evidence point out that the thymus can be 
infected by mycobacteria. Beyond this, the thymic microenvironment during TB may 
be also altered because of the immune-hormonal alterations. The thymus may be then 
an additional target of organ involvement further contributing to a deficient control of 
infection and disease immunopathology.

Keywords: tuberculosis, immune-endocrine communication, inflammation, thymic involution, pathophysiology, 
hormones

TUBeRCULOSiS (TB) AND iTS MAiN PATHOPHYSiOLOGiCAL 
FeATUReS

Mycobacterium tuberculosis (M. tuberculosis), the etiologic agent of TB, is responsible for more 
deaths worldwide than any single pathogen with an estimated 10.4 million patients and 1.3 
million deaths, annually in 2016 (1). Most cases of primary TB infection are clinically and radio-
logically unapparent. These individuals remain persistently infected by M. tuberculosis consti-
tuting non-contagious carriers of the bacillus but setting the stage for subsequent reappearance. 
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About 5% of patients pass from latency to post-primary 
disease within 2  years of primary infection and another 5% 
do so in later lives. While most cases of post-primary TB in 
immunocompetent adults arise from reactivation from latent 
infection, molecular studies showed that exogenous reinfec-
tion accounts for a significant percentage of cases in some 
areas of the world. Adult post-primary TB typically affects the 
best aerated lung regions, preferably the upper lobes (2, 3). 
The histopathological hallmark is a granuloma composed of 
epithelioid cells with variable numbers of Langhans’ giant cells 
surrounded by lymphocytes and a central zone of caseation 
necrosis and variable degree of fibrosis (3–6). The structure is 
surrounded by a fibrous capsule which constitutes a conten-
tion barrier. A spectrum of lesions may be seen from a hard 
granuloma without necrosis and rare organisms to the one 
with multibacillary necrotic lesions in the central zone, even 
within the same patient (7, 8).

Human infection with M. tuberculosis can result in a varied 
degree of organic compromise, ranging from an asymptomatic 
process to frank lung pathology with cavity formation and 
high bacillary load. Such clinical spectrum relies on a complex 
series of interactions between M. tuberculosis and the host 
immune response (4). The defensive reactions mainly involve 
the microbicidal effect of activated macrophages and the capa-
city of cytotoxic lymphocytes to destroy infected macrophages. 
Upon phagocytosis macrophages can produce or receive the 
influence of different cytokines rendering them more effective 
in suppressing bacillary replication and possibly destruction of 
the mycobacterium, i.e., IFN-γ (4, 9). This cytokine is secreted 
primarily by T lymphocytes, particularly the so-called Th1 cells 
which are involved in the protective immunity toward the 
mycobacteria (2), although in some circumstances Th1 immu-
nity can also result in unbalanced pulmonary inflammation  
(9). Possibly, a better correlate of protection deals with the profile 
of cytokine production, since patients with TB disease showed 
elevated frequencies of M. tuberculosis-specific CD4 T  cells 
expressing only TNF-α or TNF-α+IFN-γ+CD4+ T cells, whereas 
cases with latent TB infection showed greater frequencies of 
polyfunctional TNFα+IFN-γ+IL-2+ M. tuberculosis specific CD4+ 
T cells (10–12).

In our laboratory, we have shown that patients with mild forms 
of TB have a suitable Th1 response pattern and that it is gradually 
reduced as the disease progresses (13, 14).

The other mechanism involved in protection comprises the 
elimination of infected macrophages by cytotoxic lymphocytes 
through the classical events of granules containing perforin and 
granzymes or the induction of apoptosis through the Fas-FasL 
interaction. Following the formation of apoptotic bodies, they 
are ingested by phagocytes via the efferocytosis. The efferosome 
surrounds the newly incorporated apoptotic cell followed by 
successive events of fusion with lysosomes, delivery of hydrolytic 
enzymes to this efferosome in maturation and gradual increase 
of its acidification to finally proceed with the destruction of 
apoptotic cells (15). Nevertheless, an increased apoptosis may 
sometimes spread the infection to neighboring macrophages 
considering the extensive apoptosis seen within caseating granu-
lomas of patients with lung TB (16).

THe ALTeReD iMMUNe-eNDOCRiNe 
COMMUNiCATiON iN TB

Tuberculosis constitutes a natural model wherein the essential 
processes required for mounting successful defensive strategies 
and homeostasis maintenance may result detrimental when the 
infection becomes chronic, as the accompanying inflammation. 
Our studies point out that such disorder not only affects the 
containment mechanisms but also the immune-endocrine com-
munication, favoring a more morbid disease course (17).

The bidirectional communication between the neuroen-
docrine and immune systems is well-known. While products 
from the immune response can modify the functioning of 
the endocrine system, hormones like adrenal steroids directly 
affect the activity of immune cells and hence the course of 
disease-states with an inflammatory, autoimmune, or infectious 
background. This interconnection between the immune and the 
neuroendocrine systems is partly due to the stimulatory activ-
ity of inflammatory cytokines on the hypothalamus pituitary 
adrenal (HPA) axis. Briefly, cytokines such as IL-6, IL-1β, and 
TNF-α stimulate the production of corticotropin-releasing 
hormone (CRH) in the hypothalamus with subsequent release 
of adrenocorticotrophin into the pituitary gland, which in turn 
promotes the secretion of steroid hormones at the level of the 
adrenal cortex: cortisol and dehydroepiandrosterone (DHEA) 
(18, 19). Both hormones are known to exert relevant immuno-
modulatory effects. For instance, glucocorticoids (GCs) can 
inhibit Th1 responses, whereas their natural antagonist DHEA 
is able to favor them (18, 19). As part of integrated physiological 
circuits, these endocrine reactions, particularly the HPA axis, 
represent a well-conserved mechanism to control/support 
an intense immune-inflammatory reaction as well as for the 
early mobilization of immune cells and their redistribution to 
mount an adequate defensive response. Nevertheless, when the 
inflammatory condition becomes persistent such prolonged 
immuno-inflammatory aggression leads to a misuse of these 
evolutionarily conserved control mechanisms contributing to 
exacerbate host damage (20, 21).

Regrettably, the implication of these reciprocities in the field 
of pathogenesis, prognosis and treatment of chronic infectious 
diseases remains underestimated.

Beyond inhibiting the development Th1 cells in favor of Th2 
responses (22, 23), GCs also interfere with gene expression for 
pro-inflammatory cytokines, by hindering nuclear factor kappa 
B (NF-κB) signaling (24, 25). More recent studies reveal that 
during the immune response GCs exert differential effects on 
effector and regulatory T cells with an intense inhibition in the 
proliferation of the former and a differential apoptosis of the 
latter (26). Under certain conditions, GCs may also have pro-
inflammatory effects by some not well characterized mechanism. 
These apparently opposing actions would work together to 
prepare the immune system to respond to the stressful stimulus 
(pro-inflammatory effect) and subsequently to restore homeo-
stasis—an anti-inflammatory effect—which is obviously the 
most prominent role of GCs (27). On its own, DHEA is also able 
to inhibit the secretion of pro-inflammatory cytokines such as 
IL-6 and TNF-α (28, 29).
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To ascertain the immunoendocrine alterations during TB, 
we initially studied the circulating levels of cytokines and hor-
mones such as IFN-γ, IL-10, IL-6, cortisol, DHEA, GH in male 
TB patients with different degrees of lung involvement and free 
from endocrine disorders, or treatment with corticosteroids or 
immunomodulatory drugs. Patients presented increased levels 
of IL-6, IFN-γ, and cortisol, whereas DHEA levels were well 
below the control values, the lowest levels corresponding to 
those with advanced disease (30). In line with this, other studies 
in active TB patients from Turkey and South Africa also revealed 
decreased DHEA levels (31–33), whereas cortisol concentrations 
appeared unchanged (31, 32) or slightly increased (33).

At the in vitro level, treatment of peripheral blood mononu-
clear cells (PBMCs) with cortisol, at slightly supraphysiological 
levels, resulted in a decreased proliferation and production of 
IFN-γ to mycobacterial antigen stimulation, with no changes in 
IL-10 production (34). DHEA, on its own, caused a significant 
decrease in the production of TGF-β by PBMCs of patients 
with advanced TB (34), a cytokine which is well known for its 
suppressive and harmful effects on TB (17). When studying the 
functional capacity of dendritic cells exposed to M. tuberculosis 
antigens, cortisol significantly inhibited the secretion of IL-12, 
IFN-γ, and IL-10 by these cells, whereas DHEA increased 
the expression of MHC-I, MHC-II, and CD86, in addition to 
improving IL-12 production and decreasing IL-10 secretion 
(35). DHEA also inhibited the intra-macrophage bacillary 
growth, which was related to a higher level of autophagy (36). 
Collectively, our studies are consistent with the view of a respec-
tive detrimental or favorable influence of cortisol and DHEA on 
the anti-TB immune response.

As part of this interrelation between the endocrine system 
and the immune system, culture supernatants of PBMCs from 
TB patients stimulated with mycobacterial antigens inhibited 
the secretion of DHEA by the human adrenal cell line NCI-
H295-R (30) whereas treatment with anti-TGF-β neutralizing 
antibodies reversed this inhibitory effect (37). This observation 
reinforces the close network of influences underlying immuno-
endocrine regulation, particularly the production level of 
adrenal steroids and immune mediators.

Changes in the immune-endocrine communication may 
be also implicated in situations further contributing to disease 
morbidity. In fact, we have demonstrated that the defective 
in  vitro immune responses of TB patients to mycobacterial 
antigens was related to their reduced body mass index (BMI), 
which was negatively correlated with IL-6 circulating levels (38). 
This cytokine is known to play a role in the regulation of lipid 
metabolism and studies in TB patients indicate that increased 
IL-6 concentrations were associated with loss of appetite (39). 
Regarding hormones, GCs may favor a loss of body mass since 
they mobilize lipid stores by inducing lipolysis in fat cells via 
stimulation of a hormone-sensitive lipoprotein lipase. Also, GCs 
inhibit protein synthesis and stimulate proteolysis in muscle 
cells (40), in addition to reducing food intake and inducing 
body weight loss, probably via increased hypothalamic CRH 
levels, which seems to be catabolic (41). In essence, the immune-
endocrine profile is adverse for the patient being involved in the 
reduction of body weight or consumption state during infections. 

This situation, defined as cachexia is a multifaceted metabolic 
disturbance present in several chronic inflammatory diseases 
or end stage neoplasms comprising weight loss, adipose tissue 
and skeletal muscle depletion, along with reduced appetite. 
The mechanisms underlying cachexia development are com-
plex, encompassing the participation of neurologic, metabolic, 
immuno logic, and endocrinological factors (42–44). In this 
con text, we have recently found that the lower BMI of patients 
coexists with reduced levels of leptin, whereas concentrations  
of IL-6, cortisol, IL-1β, and adiponectin were increased (45).

The basis for the above described alterations has to do with 
the acute phase response (46), an adaptive reaction trying to be 
beneficial for the host at least during the early infection (46). 
This leads to a new metabolic set point attempting to attain 
an optimal functioning of the immunological needs, without 
affecting requirements of some often-competing physiological  
functions (47, 48). Since energy is not a limitless resource, when 
the infection becomes chronic metabolic deficit establishes  
further affecting the defensive reaction and disease outcome.

The link between energy supply and the immune response is 
supported from a study carried out in Africa in which the meta-
bolic needs to cope with measles further impaired body weight 
in undernourished children (49). In turn, malnutrition may also 
affect the immune response through hormonal influences, given 
the respective reduced and increased leptin and GC levels in 
undernourished persons (50, 51). In addition to the inhibitory 
effects of GCs on cell-mediated immune responses (52, 53), 
leptin also displays immunostimulating effects (54, 55). Leptin 
deficient animals show atrophy of lymphoid organs, mainly the 
thymus, which can be reversed upon the leptin administration 
(56). Accordingly, it may be assumed that the consumption state 
of TB patients along with the decreased or increased leptin and 
GCs levels may impact negatively on thymus function.

THYMUS iNvOLveMeNT iN TB,  
FACTS, AND HYPOTHeSiS

Because of the continuous need to replenish mature peripheral 
T  cells that undergo normal turnover throughout life (57), 
preserved thymus during M. tuberculosis infection in the mam-
malian host may be essential for the development of an effective 
immune response against mycobacteria.

Animal studies showed that following erogenic infection, the 
thymus is as likely to be infected with M. tuberculosis as the lung 
tissue (58). Thymic compromise may be observed in bacterial 
infections, including those caused by mycobacteria, i.e., M. tuber-
culosis and M. avium (59–62). Despite some immunological com-
promise, thymus infection also displays compensatory strategies 
aimed at improving thymic function; that is the identification of 
Mycobacterium-reactive T cells within the thymus that migrated 
from the peripheral compartment (63, 64).

As regards to the clinical field, while historical histopathologi-
cal preparations from old patients identified the occurrence of 
thymic TB (65) thymic TB is an infrequent presentation of the 
disease, with a bit more of a dozen cases being reported in the 
literature (66, 67).
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Without being mutually exclusive, it can be assumed that the 
endocrine abnormalities present in TB may also affect the thymus 
by mechanisms that go beyond the infection per  se, resulting 
equally detrimental, i.e., a deficient immune competence or 
thymic selection. In normal conditions, bone marrow T-cell 
progenitors migrate to the thymus to undergo a broad process 
of differentiation and selection. Thymocyte positive selection 
is mediated by thymic epithelial cells (TECs), which not only 
display antigen-presenting activity, but also secrete compounds 
or express cell surface molecules essential for thymocyte develop-
ment. In the medulla, medullary TECs allow the T-cell recogni-
tion of self-antigens by facilitating the expression of tissue-related 
antigens and presenting them to developing thymocytes. Central 
T-cell tolerance also takes place in the thymic medulla, for which 
the removal of harmful and autoreactive T-cell clones is achieved 
(68–70). After entering the thymus, thymocytes representing 
different stages of development occupy distinct regions of the 
thymus. Thymocyte progenitors referred to as double negative 
cells (CD3−CD4−CD8−) locate at the cortico-medullary junction, 
where undergo rapid proliferation, mostly driven by IL-7, and 
further migrate through the cortex toward the medulla. Cells 
unable to rearrange their antigen receptor genes will endure 
apoptosis, whereas those experiencing gene rearrangements of 
the T-cell receptor genes and acquisition of both CD4 and CD8 
coreceptors (CD4+CD8+ double positive—DP cells) undergo 
positive (functional TCR) and negative (non self-reactive TCR) 
selection in the cortex and medulla. Most DP cells have nonfunc-
tional antigen receptors rendering them unable to receive surviv-
ing signals for which they undergo apoptosis (death by neglect). 
The surviving cells, which loss either CD4 or CD8 molecules and 
become single positive (SP) cells, undergo negative selection; 
that is an activation-induced cell death of cells with high affinity 
antigen receptor for self-antigens. Finally, cells leave the thymus 
as CD4−CD8+ (cytotoxic) or CD4+CD8− (helper), SP mature, 
naïve T cells (68–70).

Turning to the disturbed immune-endocrine responses seen 
in TB patients there is reason to believe that such changes, parti-
cularly the ones dealing with adrenal steroids and leptin may 
indirectly compromise thymus function, favoring gland involu-
tion. Thymic involution is the progressive loss of the thymus to 
sustain lymphopoiesis and the ensuing impairment for de novo 
T-cell production. Thymic senescence starts well advanced 
puberty and by 50  years of age 80% of the thymic stroma is 
replaced by adipose tissue. The maximum decline in the thymic 
weight occurs between 30 and 40  years of age (71, 72), which 
might account for some evidence of a lower thymic activity seen 
in individuals older than 40–50 years (73, 74).

Besides aging, thymic involution can be provoked by seve -
ral conditions and factors: among them pregnancy, severe 
infec tions, cancer, irradiation and hormones, like GCs (70). 
In mouse models, high doses of GCs cause thymocyte deple-
tion, involving especially DP thymocytes and TECs (70, 75). 
Some experimental studies also suggest that GC production at 
the thymic level may influence thymocyte differentiation and 
thymic homeostasis (76–78).

According to the neuroendocrine influence on thymic func-
tion, infectious diseases and the malnutrition state that may 

accompany in some cases, i.e., TB, are quite likely to affect thymic 
activity (79, 80).

Although at the experimental level low GCs concentrations 
may rescue thymocytes from the TCR-mediated apoptosis  
(81, 82), the scenario in TB patients is characterized by a chronic 
elevation of cortisol that while being of moderate intensity 
remained so even after several months of treatment initiation 
(83). Furthermore, TB patients also present quite reduced 
amounts of circulating leptin levels (45). This hormone prevents 
starvation-induced thymic atrophy (84) along with a protective 
effect on the loss of lymphoid and TEC populations occurring 
in the stress-induced acute atrophy of the thymus (85). It follows 
that increased cortisol and reduced leptin levels promote an 
unsuitable scenario for a proper thymus function.

Our study in TB patients showed decreased levels of testos-
terone and DHEA, in presence of augmented amounts of GH, 
not accompanied by increased IGF-1 levels, in parallel to modest 
increases estradiol, prolactin (PRL), and thyroid hormones (30) 
(a summary of immune-endocrine alterations is provided in 
Figure 1).

Pretreatment of mice with DHEA was found to result in a 
partial protection from the GC-induced decrease in thymus 
weight and thymocyte death (86, 87). Similarly, administra-
tion of DHEA to male mice partially or completely reversed 
the dexamethasone-inhibited blastogenic response to mitogen 
stimulation (88). Depending on the experimental conditions, 
in vitro treatment with DHEA may promote thymocyte apop-
tosis (89) or even exert an anti-apoptotic effect on these cells 
(90). Studies in rats undergoing a repeated immobilization 
stress showed that DHEA behaved as an anti-stress hormone 
(91), whereas DHEA supplementation in rats undergoing an 
experimental Trypanosoma cruzi infection led to an improved 
thymocyte proliferation and reduced TNF-α production (92). 
Collectively, these findings tip the balance toward a favorable 
role of DHEA on thymus function, for which reduced levels of 
DHEA in TB patients may be also disadvantageous. Hormones 
other than the HPA axis are also likely to influence the thymus 
gland [reviewed in Ref. (71)]. GH is known to increase the 
release of cytokines, chemokines and thymulin (93), and to 
augment the deposition of proteins implicated in cell migration 
(94, 95); whereas PRL facilitates the survival and proliferation 
of early T–cell progenitors (96). Aged rat recipients of cells from 
a pituitary adenoma secreting GH and PRL appeared recovered 
from the thymic involution (97), as well. The extent to which 
GH may be operative in our patient series is uncertain since 
increased GH levels were not accompanied by an increase in 
IGF-1 implying a state of resistance to GH (30). About PRL, 
the increase seen in TB patients was quite low as did thyroid 
hormones (30). In situations of greater exposure thyroid hor-
mones may be beneficial as seen in T3-treated mice (98) or 
the relation between hyperthyroidism with thymic hyperplasia 
because of the increased numbers of thymocytes (99). Since the 
increase in thyroid hormones of TB patients did not fit with a 
clear hyperthyroidism, we remain unsure on the role of these 
hormones on the thymic gland.

Some pieces of evidence point out that sex steroid have 
deleterious effects at the thymic level since thymus atrophy 
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FiGURe 1 | Main features of circulating immune-endocrine alterations in male tuberculosis (TB) patients. Cytokine release by immunocompetent cells  
stimulates the production of releasing factors (RFs) at the hypothalamic levels, like the corticotropin-releasing hormone leading to the pituitary synthesis of 
adrenocorticotropin hormone (ACTH). This is followed by the production of adrenal steroids, cortisol, and dehydroepiandrosterone (DHEA), which are, respectively, 
increased or decreased during TB. Such unbalanced cortisol/DHEA relation along with the altered production of gonadal steroids are much likely to favor a 
Th1→Th2 immune shift, further accompanied by reduced amounts of leptin, an immunostimulating compound. Presence of transforming growth factor beta 
(TGF-β) which is increased in TB, in turn, inhibits DHEA production by adrenal cells. TB patients also displayed increased amounts of growth hormone (GH)  
and prolactin probably related to the protracted inflammation, in addition to augmented levels of thyroid hormones. This pattern of hormonal alterations would 
favor a deficient infection control together with a catabolic status, as exemplified by the reduced body mass index (BMI) and leptin plasma levels seen in  
patients (represented in a separate box dealing with a metabolic component). Solid and dashed lines represent stimulating and inhibiting effects, respectively. 
Abbreviations: FSH, follicle-stimulating hormone; LH, luteinizing hormone; TSH, thyroid-stimulating hormone; IL-6, interleukin 6; IL-1β, interleukin 1 beta; IFN-γ, 
interferon gamma.
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accelerates at puberty (100), whereas administration of andro-
gens or estrogens in adult mice results in a remarkably decreased 
thymopoiesis linked to an increased apoptosis of cortical 
thymocytes (101). In our study, testosterone and estradiol were 
comparatively decreased or increased, respectively (30), for 
which the thymic role of both steroids in the TB scenario 
remains uncertain.

Collectively, the evidence discussed indicates a harmful influ-
ence of immune-endocrine alterations at the level of the thymus; 
however, these changes may be reversible and associated with 
the clinical improvement of patients, leading to an eventual 
normalization of the thymic function.

The scenario present in TB patients can be conciliated with 
the view wherein neuroendocrine hormones released in response 
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FiGURe 2 | Endocrine alterations in tuberculosis (TB) patients and the potential thymic repercussion. Detrimental effects of clinical and endocrine disturbances  
on the thymus gland and function during TB are presented by solid lines, which is the consumption state along with the increased amounts of cortisol and 
pro-inflammatory cytokines in presence of reduced levels of leptin and DHEA. While administration of androgens or estrogens in adult mice leads to a decreased 
thymopoiesis, the thymic influence of gonadal steroids in TB is uncertain, since patients displayed decreased or increased levels of testosterone and estradiol, 
respectively (dashed line). Levels of prolactin and thyroid hormones appeared augmented, but their increases did not reach the values able to mediate a clear 
beneficial effect on the thymus gland (dashed line). The extent to which GH may be favorable at the thymic level remains also unclear since its increased amounts 
were not accompanied by higher IGF-1 values compatible with state of GH resistance (dashed line). The resulting thymic involution mostly because of leptin and 
adrenal steroid changes together with a chronic inflammatory state are likely to lead to premature immunosenescence (dotted line) and the coexisting inflammaging. 
Most of these changes would contribute to worsen the disease course. The left panel represents the preserved (≈) homeostatic situation. Abbreviations: BM, bone 
marrow; BMI, body mass index; HPA, hypothalamic pituitary adrenal; HPG, hypothalamic pituitary gonadal; HPT, hypothalamic pituitary thyroid axes; GH, growth 
hormone; PRL, prolactin; GC, glucocorticoids; DHEA, dehydroepiandrosterone; IGF-1, insulin growth factor like 1; T3, triiodothyronine; T4, thyroxine; IL-6, interleukin 
6; IL-1β, interleukin 1 beta; IFN-γ, interferon gamma.

to psychosocial stress, chronic inflammation or persistent 
infections are likely to result in premature immunosenescence 
(102), particularly when considering the resemblance of immune 
changes seen during aging or chronic GC exposure. In fact, the 
immunosenescence pattern seen in healthy aging is comparable 
to the one observed in subjects under chronic stress or chroni-
cally exposed to GCs, i.e., thymic involution, declined thymic 
exportation of naive T cells, a Th1→Th2 cytokine shift, increased 
circulating levels of pro-inflammatory markers and shorter telo-
mere lengths, compatible with an accelerated aging [reviewed  
in Ref. (103)].

Notably, senescent cells remain metabolically active for 
which they may influence other cells through a process termed 
senescence-associated secretory phenotype (104, 105). That is, 
the secretions of several inflammatory mediators that exacerbate 
senescence in the same cell or propagate to the neighbor ones 
or even systemically amplifying a phenomenon termed inflam-
maging. Many tissues and cell types participate in producing 
pro- and anti-inflammatory stimuli dealing with Inflammaging 
(106). The basis for the establishment of age-related diseases 

involves an excessive production of pro-inflammatory media-
tors coupled to an inefficient anti-inflammatory reaction (107). 
Immunosenescence on its own affects both innate and adaptive 
immunity, thus providing a contributory mechanism to account 
for an increased morbidity (108–110).

A summary of the immune-endocrine alterations encompass-
ing TB and their eventual repercussion on thymic function is 
provided in Figure 2.

CONCLUDiNG ReMARKS

Tuberculosis is a disease wherein the immune response cannot  
cope with mycobacteria for which the infection becomes chro-
nic as did the accompanying immuno-inflammatory state. 
Such situation set the basis for the establishment of an altered 
immune-endocrine response that will not only impact on the 
clinical and metabolic status of patients but also on innate and 
adaptive immune responses. The bulk of evidence discussed 
here also suggests a still not envisaged view in the sense that 
immune-endocrine abnormalities, particularly the unbalanced 
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T cell response plays an essential role in the host resistance to infection by the protozoan 
parasite Trypanosoma cruzi, the causative agent of Chagas disease. This infection is 
often associated with multiple manifestations of T cell dysfunction, both during the acute 
and the chronic phases of disease. Additionally, the normal development of T cells is 
affected. As seen in animal models of Chagas disease, there is a strong thymic atro-
phy due to massive death of CD4+CD8+ double-positive cells by apoptosis and an 
abnormal escape of immature and potentially autoreactive thymocytes from the organ. 
Furthermore, an increase in the release of corticosterone triggered by T. cruzi-driven 
systemic inflammation is strongly associated with the alterations seen in the thymus of 
infected animals. Moreover, changes in the levels of other hormones, including growth 
hormone, prolactin, and testosterone are also able to contribute to the disruption of 
thymic homeostasis secondary to T. cruzi infection. In this review, we discuss the role 
of hormonal circuits involved in the normal T cell development and trafficking, as well 
as their role on the thymic alterations likely related to the peripheral T cell disturbances 
largely reported in both chagasic patients and animal models of Chagas disease.

Keywords: Chagas disease, thymus atrophy, thymocytes, hypothalamus–pituitary–adrenal axis, growth hormone, 
prolactin

iNTRODUCTiON

Chagas disease, or American trypanosomiasis, is a tropical neglected illness caused by the hemo-
flagellate protozoan Trypanosoma cruzi. Chagas disease transmission to humans can be classified 
in primary (vectorial, blood transfusion, congenital, and orally) and secondary (less frequent, such 
as laboratory accident, handling of infected animals, organ transplantation from infected donors, 
and hypothetically through sexual) routes of T. cruzi infection (1, 2). Presently, oral transmission of 
human Chagas disease is the most important transmission route in the Brazilian Amazon region, 
mainly secondary to food/beverage contamination with T. cruzi. It is noteworthy that oral transmis-
sion has been associated with high mortality and morbidity, increased prevalence and severity of 
the cardiac pathology (myocarditis) (3–6). Argentina, Bolivia, Colombia, Ecuador, French Guiana, 
and Venezuela have also reported acute Chagas disease cases associated with contaminated food 
consumption (7–9).
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Trypanosoma cruzi infection is presently considered as a world-
wide health problem with deficiencies in treatment, absence of 
appropriated vaccines and world spreading (10, 11). The infection 
leads to an acute phase, with symptoms such as fever, muscle pain, 
swollen lymph nodes, hepatosplenomegaly, edema, tachycardia, 
dyspnea, pericardial effusion and inflammatory reaction at 
the vector’s biting site of the vector (chagoma) (2, 12). During 
the acute phase, circulating parasite numbers are systemically 
increased, and they are able to infect several tissues and cell types, 
such as skeletal and cardiac myocytes, macrophages, fibroblasts, 
neurons and epithelial cells. For this reason, amastigote nests were 
already described in glands, skeletal muscle, as well as, lymphoid 
and nervous tissues (11, 13). Following recovery from the acute 
phase, the patient enters into a long indeterminate, latent, phase 
with no symptoms and very low parasitism. The latent infection 
may remain silent for 10–30 years. One-third of infected patients 
in the latent phase develop clinical symptoms as chronic cardiac 
dysfunction (cardiomyopathy), megacolon or megaesophagus. It 
is believed that chronic chagasic cardiomyopathy has an autoim-
mune pathophysiological component, with involvement of T and 
B autoreactive cells, as well as promoted by the persistence of the 
parasite. At this phase, life expectancy decreases about 9 years in 
these clinical forms of chronic patients (14).

T Cell Changes During T. cruzi infection
In the immune system, T. cruzi infection promotes changes in 
the dynamics and in the size of T lymphocyte populations, con-
tributing to regional response in primary, including thymus and 
secondary lymphoid organs (15). In infected mice, the thymus 
suffers a strong atrophy in the acute phase, due to massive death 
of CD4+CD8+ double-positive (DP) and CD4+Foxp3+ regulatory 
T cells (Treg) by apoptosis, accompanied by an abnormal escape 
of immature and potentially autoreactive T  lymphocytes from 
the organ (11, 16). Interestingly, T cell abnormal escape was also 
documented in chronically T. cruzi-infected patients (17, 18). 
On the other hand, it is known that under physiological condi-
tions, the re-entry of CD4+ and CD8+ T cells into the thymus is 
restricted to activated/memory cells (19), being driven by CCL2/
CCR2 interactions (20). Some authors speculate that the re-
entrance of T effector cells may influence the tolerance induction 
by promoting Treg development, since they represent the main 
source of IL-2 (21). Furthermore, Treg with a clear maturational 
phenotype were observed in the infected thymus, suggesting that 
they may correspond to peripheral Treg that have re-entered into 
the thymus (16). In any case, the physiological consequences of 
the Treg cell re-entry into the thymus remains undetermined.

Diverse groups have shown an expansion in secondary lym-
phoid organs such spleen and subcutaneous lymph nodes due 
to T and B cell polyclonal activation. In contrast, the mesenteric 
lymph nodes and Payer’s patches show atrophy and T lymphocyte 
death (15, 22–33).

An increase in IL-2 production is involved in subcutaneous 
lymph nodes hyperplasia in T. cruzi infection (15, 31). Spleen and 
subcutaneous lymph node hypertrophy is a consequence of tissue 
T/B lymphocyte activation and proliferation (15, 23, 31, 34, 35).  
Moreover, trans-sialidase, racemase, and T. cruzi DNA seem to 
contribute to T and/or B lymphocyte activation and cytokine 

production by interfering with interaction between dendritic 
cells and lymphocytes (36–40). In contrast to the hyperplasia seen 
in spleen and subcutaneous lymph nodes of infected mice, mes-
enteric lymph node atrophy is related to a local decrease in IL-2 
and IL-4 production, with apoptotic death of T/B lymphocytes 
(15). In a second vein, it has been shown in the mouse model that 
splenectomy or mesenteric lymph node excision prior to T. cruzi 
inoculum increases susceptibility to infection, suggesting that 
these lymphocytes are involved in T. cruzi host immune response 
(15, 22–33).

SYSTeMiC HORMONAL iMBALANCe iN 
CHAGAS DiSeASe

Endocrine and immune systems control several physiological, 
biochemical, and functional activities in the organism both dur-
ing homeostasis, including early development and aging (41), 
as in pathological situations, such as infectious and metabolic 
diseases (42, 43). Immunoendocrine interactions occur through 
bidirectional circuits, characterized by highly specialized signal-
ing molecules known as cytokines and hormones, respectively 
(44). Given the extensive diversity of interactions between 
endocrine and immune cells, it is conceivable that disturbances of 
one or more of these components of the immunoendocrine axes 
lead to the development and/or exacerbation of several illnesses, 
including Chagas disease (42).

The hormonal imbalance in patients with Chagas disease has 
been discussed since the discovery and description by Carlos 
Chagas, who divided the symptomatology of chronic form of 
American Trypanosomiasis according to thyroid, heart, and cen-
tral nervous system disease. In fact, the inclusion of the thyroid 
form of the disease was based on both clinical aspects, association 
of goiter with myxedema, and the detection of the parasite and 
inflammation in thyroid during autopsy (45). Currently, it is 
believed that Chagas disease by itself is not able to cause goiter, 
but may predispose patients to develop goiter (46).

One of the main endocrine circuits studied in Chagas disease 
is the hypothalamus–pituitary–adrenal (HPA) axis, since the 
release of glucocorticoid (GC) hormones is a protective mecha-
nism of the host against the harmful effects of pro-inflammatory 
cytokines (47). Acute T. cruzi infection induces increased cor-
ticosterone levels in both C57BL/6 and BALB/c mouse strains 
(48), indicating a hyperactivation of HPA axis. Such an increase 
in circulating corticosterone levels is in close correlation with 
the hypertrophy of adrenal glands, including its zona fasciculata, 
and a rise in the expression of several steroidogenic enzymes, 
such as cytochrome P450, family 11, subfamily A, polypeptide 1 
(CYP11A1), CYP11B1, 11β-hydroxysteroid dehydrogenase type 
1 (HSD1), and steroidogenic acute regulatory protein (StAR) (49).

This HPA axis activation observed in experimental models 
of Chagas disease is associated with the presence of nests of T. 
cruzi amastigotes in the adrenals, as well as parasite-derived 
antigens in both adrenals and pituitary gland (50). Although 
by now, the underlyning mechanisms are not fully elucidated, 
the presence of T. cruzi-derived antigens (proteins, DNA, or 
glycolipids) in the endocrine glands of HPA axis may promote 
a local inflammatory response via the engagement of TLRs, as 

102

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


Pérez et al. Chagas, T-Cells and Hormonal Imbalances

Frontiers in Endocrinology | www.frontiersin.org June 2018 | Volume 9 | Article 334

shown in bacterial models of infection (51). In particular, the 
stimulation of TLR-9, which recognizes T. cruzi DNA (52), may 
cause the local production of cytokines and consequent increase 
in the release of corticosterone, as seen in a model of sepsis (53). 
Similarly, TLR-2 or TLR-4 pathways might be stimulated by 
TLR agonists expressed by T. cruzi like GPI or GIPL anchors, 
respectively (54). In fact, C57BL/6 mice infected with T. cruzi 
showed, not only in plasma but also intra-adrenal, increased 
levels of TNF-α, IL-1β, and IL-6 (55), suggesting that these 
proinflammatory cytokines are involved in the hyperactivation 
of HPA axis at different levels.

Although infected mice presented the parasite and a pro-
nounced inflammatory response in the pituitary gland, the 
systemic levels of adrenocorticotropic hormone (ACTH) are not 
changed (49, 50), suggesting that the increase in circulating cor-
ticosterone levels noted in infected mice occurs independently 
of ACTH. In fact, both systemic and intra-adrenal cytokine 
production may favor adrenal inflammation during infection, 
which can directly trigger and sustain an alternative way of 
adrenal secretion of GC, resulting uncoupled from the hypo-
thalamic–pituitary unit (56). Structural alterations like vascular 
changes within the endocrine microenvironment may also lead 
to a transient HPA dysfunction (56). Also, local inflammation 
driven by the presence of T. cruzi or their antigens may promote 
the income of inflammatory cells. Strikingly, adrenals of infected 
mice showed leukocyte infiltration, characterized by the presence 
of CD8+ and CD4+ T lymphocytes, as well as macrophages and 
enhanced expression of extracellular matrix (ECM) deposition, 
including fibronectin and laminin (44). These ECM molecules 
might fix pathogen-derived antigens as well as pro-inflammatory 
cytokines released during immune response, thus contributing to 
the establishment of inflammation and sustaining GC production 
(56).

Pituitary hormones, including growth hormone (GH) and 
prolactin (PRL), act as modulators of the immune system (57, 
58). Similarly to GC, GH and PRL are considered stress-related 
hormones (59, 60), having opposing actions of GC on the viability 
and proliferation of thymic cells (61). In GH-/PRL-secreting GH3 
cells, the infection with T. cruzi in vitro induces a reduction in 
the secretion of both GH and PRL (62). These results suggest 
that T. cruzi infection decreases GH and PRL production by the 
pituitary. In fact, chagasic patients showed decreased GH levels 
in response to glucose or insulin compared to healthy subjects 
(63), and mice infected with T. cruzi presented a reduction in 
plasma PRL levels (64). In effect, the low production of PRL by 
pituitary induced by T. cruzi infection seems to directly affect the 
high corticosterone synthesis by the adrenals (65). Interestingly, 
while asymptomatic patients showed a tendency to diminish the 
secretion of GH, individuals with severe cardiomyopathy show 
increased levels of this hormone and also an altered GH/IGF-1, 
suggesting an imbalance in this axis (65).

Besides GC and pituitary hormones, some gonadal steroid 
hormones, including dehydroepiandrosterone-sulfate (DHEA-s) 
and testosterone, can be altered in human or experimental 
Chagas disease (66, 67). Animals infected with T. cruzi presented 
a reduction in serum testosterone levels in the acute phase 
of infection. However, histological analyses in testes, seminal 

vesicles, and epididymis did not reveal any differences between 
control and infected animals (68). In addition, T. cruzi-infected 
animals showed an increase in circulating levels of estradiol (67). 
Regarding DHEA-s levels, rats infected with T. cruzi did not alter 
the DHEA-s systemic levels. However, chronic chagasic patients 
with different degrees of myocarditis presented a marked reduc-
tion in DHEA-s levels. Interestingly, although the alterations 
in the levels of DHEA in animals are not seen in patients with 
Chagas disease, both animals and patients presented an increase 
in GC/DHEA-s ratio, which is important for the development of 
an anti-inflammatory milieu (66, 67).

HORMONeS AND THeiR ReLATiONSHiP 
wiTH THYMUS ATROPHY iN T. cruzi 
iNFeCTiON

T cell response plays an essential role in the host resistance to 
the T. cruzi infection, but sub-clinic and clinic manifestations of 
Chagas disease can be associated with multiple manifestations 
of T  cell dysfunction (69–73). Additionally, as seen in animal 
models of Chagas disease, there is a strong thymic atrophy char-
acterized by loss of thymus weight, massive death of CD4+CD8+ 
DP cells by caspase-dependent apoptosis (32), alterations in the 
double-negative (DN) T-cell population (74, 75), depletion of 
thymic Treg (16) and also an abnormal and premature escape of 
immature and potentially autoreactive DP and DN thymocytes 
from the organ (17, 26, 74, 76). Furthermore, it has been recently 
described that during experimental T. cruzi infection, bone mar-
row aplasia and a diminution in common lymphoid progenitors 
appear before thymic alterations (75).

Due to the possible autoimmune component of chagasic 
myocarditis, it is plausible to hypothesize that thymic selection 
mechanisms could be altered as a consequence of the infection. 
In this regard, in BALB/c mice, some T-cell receptor (TCR) Vβ 
families, which under normal conditions should have undergone 
negative selection through apoptosis, appear in the periphery of 
the immune system during T. cruzi infection and might poten-
tially conduce to autoimmune reactions (77). Nevertheless, in the 
same study, potentially autoimmune mature T cells were not seen 
within the thymus. Using an (OVA)-specific TCR transgenic sys-
tem, we confirmed that the negative selection process is normal 
during experimental T. cruzi infection. In addition, the expression 
of autoimmune regulator factor (AIRE) expression and tissue-
restricted antigen genes were normal in the thymus of infected 
animals (17). However, similarly to what is described in the 
murine model, activated DP T cells with an activated phenotype 
are found in the blood of patients with chronic Chagas disease in 
association with severe myocarditis (17), suggesting that some 
intrathymic checkpoints might be failed. This may have related 
to T cell trafficking alterations due to changes in the patterns the 
ECM protein deposition within the organ, expression of ECM 
receptors on thymocytes and thymic Tregs, as well as changes in 
cell migration-related cytokines (16, 32, 78, 79).

Normal T cell development is tightly controlled not only by 
cell–cell interactions and cytokines, but also by hormones, inter-
acting via a diversity of endocrine and paracrine pathways, acting 
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on thymocytes and thymic microenvironmental cells via specific 
receptors (42, 80). Moreover, thymic cells not only respond to 
systemic levels of hormones but also constitutively synthetize 
and secrete hormones locally, such as GC, GH and PRL. In this 
context, disturbances in hormone levels caused by inflammation 
can interfere with the normal T cell development. Accordingly, 
increased evidence indicates that the thymic alterations seen 
during T. cruzi infection are strongly associated to hormonal 
imbalance, involving systemic or intrathymic axes.

The HPA Axis
It is well known that, if not controlled, systemic effects of GC 
on the adaptive immunity can promote immunological distur-
bances. The HPA axis activation, through the production and 
action of GC, plays a major role in protecting the host against the 
inflammatory acute stress caused by T. cruzi infection (48, 55). 
Nevertheless, immature DP thymocytes are major targets of HPA 
axis activation, since enhanced levels of GC seen in experimental 
acute T. cruzi infection induce DP thymocyte depletion through 
caspase-dependent apoptosis (32, 81). In this regard, blockade 
of GC receptor activity with RU486 prevented DP thymocyte 
apoptosis (48, 55) together with caspase-8 and caspase-9 activa-
tion (32). Interestingly, both thymic epithelial cells and DP thy-
mocytes can also synthetize GC, suggesting that both paracrine 
and autocrine loops influence thymocyte survival during T. cruzi 
infection (82, 83). In addition, T. cruzi is able to infect thymic 
epithelial cells (84), indicating that the parasite per se may alter 
the local production of hormones and determining thymocyte 
fate. Yet, this hypothesis needs experimental confirmation.

GH and PRL
Prolactin is not only produced in the anterior pituitary gland 
but also in a range of tissues including adipose tissue, skin, and 
thymus. Actually, both GH and PRL exert relevant roles upon 
thymus physiology and are constitutively produced and secreted 
by thymocytes and thymic epithelial cells (TEC) (85–87). 
Increased intrathymic expression of GH leads to an enlarged 
thymus, as can be observed in transgenic mice that overexpress 
the hormone or in individuals treated with recombinant forms of 
GH (88–90). In addition, GH and IGF-1 (the hormone that medi-
ates several GH effects) favor thymocyte migration, augmenting 
ECM deposition (85). Moreover, specific receptors for GH, IGF-1 
and PRL are constitutively expressed by TEC and thymocytes, 
indicating autocrine and paracrine regulatory loops, in addition 
to the systemic effects of these hormones (57, 90).

The action of these anti-stress hormones is actually one of the 
ways that counterregulate systemically or in an organ-specific 
fashion, the action of the GC produced during T. cruzi infection. 
We have shown that PRL plays a critical role in balancing the 
effects of corticosterone in the thymus during T. cruzi infection 
(65, 74). In the mouse model of T. cruzi acute infection, we found 
an intrathymic cross-talk between GC receptors (GR) and PRL 
receptors that seems to work to counteract the effects of the infec-
tion, toward the neutralization of GC-related systemic deleterious 
effects on DP thymocyte survival during parasite-induced thymic 
atrophy. Furthermore, we showed that injection of metoclopra-
mide (known to enhance PRL secretion by the pituitary gland), 

during experimental infection, preserved the thymus from atro-
phy during infection with T. cruzi (65). This event was associated 
with partial prevention of DP thymocyte apoptosis as well as 
thymic release of undifferentiated and potentially autoreactive 
DP cells to the peripheral lymphoid tissues. These findings point 
to a modulation of the stress-related hormonal circuits in the 
intrathymic T cell development during T. cruzi infection.

Testosterone and DHeA
Androgens in general, and especially testosterone, have immu-
nosuppressive actions on the immune system, whereas the 
androgen DHEA seems to have immunostimulating properties, 
and counteracts the immunosuppressive effects of GC (91). In 
a second vein, it is widely accepted that sexual dimorphism is 
strongly related with differences in immune function and disease 
outcome. Concerning experimental Chagas disease, females are 
more resistant to infection than males, and androgen depletion 
improved the resistance against T. cruzi (92–94). Interestingly, in 
male mice, DP thymocyte death within thymic nurse cells seems 
to be caused by testosterone (95) and testosterone supplementa-
tion causes a diminution in thymocyte proliferation (96). Unlike 
GC, known to activate caspase-8 and caspase-9-mediated apop-
tosis in thymocytes, testosterone is able to activate thymocyte 
apoptosis through a caspase-3-dependent pathway (95). Studies 
in the rat model of T. cruzi acute infection revealed that DHEA 
supplementation promotes thymocyte proliferation, suggesting 
that DHEA treatment may prevent DP loss and other thymic 
alterations (96). Nevertheless, more studies are needed to evalu-
ate the role of sex hormones in the thymic atrophy that occurs 
during T. cruzi infection.

MeTABOLiC ALTeRATiONS AND 
ADiPOKiNeS

In parallel to the endocrine imbalance, animals infected with 
T. cruzi also show a clear metabolic disturbance, including hypo-
glycemia, weight loss and leptin alterations (97). It is known that, 
besides controlling saciety, leptin plays protective affects upon 
intrathymic T  cell development under physiologic conditions 
(98, 99). Nevertheless, in acute T. cruzi-infected C57BL/6 mice, 
its systemic and adipose tissue derived-expression is sharply 
diminished, suggesting that its loss may fuel thymic atrophy (97) 
However, and unlike what happens in models of experimental 
endotoxemia (100), leptin replacement during the acute infection, 
while attenuating GC release, fails in reversing thymic atrophy 
(97). The reason of this difference should be investigated, but it is 
possible to speculate that thymic ObR expression during T. cruzi 
infection could be also diminished, as previously observed at the 
hypothalamic level (97). In this regard, when infected db/db mice 
(that lack ObR) were reconstituted with the brain ObR, the infec-
tion was less obvious (101). These data suggest that leptin axis is 
dysregulated during infection. Strikingly, in chronic obese model 
of infection and also in human chronic disease, it was reported 
that adipokine disturbances are related to myocardial damage 
and heart autonomic dysfunction (102, 103), while their effects 
upon T cell dynamics has not been estimated.
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FiGURe 1 | Systemic and intrathymic hormonal imbalance affects the thymus during experimental Trypanosoma cruzi infection. Acute T. cruzi infection in mice 
induces a rise in plasma levels of proinflammatory cytokines, which are involved in the hyperactivation of the hypothalamus–pituitary–adrenal (HPA) axis. Pro-
inflammatory cytokines can enhance HPA axis activation, by acting at the hypothalamus–pituitary unit and/or on peripheral glands, i.e., the adrenals. In situ 
inflammatory reactions caused by T. cruzi-derived antigens or structural changes like vascular alterations or an enhanced extracellular matrix deposition in the 
endocrine microenvironment may also lead to sustain glucocorticoid hormone (GC) levels. The increment of systemic and intrathymic GC levels causes thymic 
atrophy by depletion of CD4+CD8+ double-positive (DP) thymocytes through apoptosis. In parallel, there is an abnormal export of immature DP and double-negative 
(DN) T cells to the periphery of the immune system. Growth hormone (GH) and prolactin (PRL) have positive effects upon the thymus, but T. cruzi infection decreases 
GH and PRL production by pituitary cells. Male animals acutely infected with T. cruzi also present a reduction in serum testosterone levels, although DP thymocyte 
death seems to be induced by this androgen, whereas testosterone supplementation induced a diminution in thymocyte proliferation. Abbreviation: H–P unit, 
hypothalamus–pituitary unit.
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CONCLUSiON

There is no doubt that acute T. cruzi infection induces an immu-
noendocrine imbalance, which somehow favors the ability of 
the parasite to settle in the host, and the development of distinct 
pathological events, among which the massive thymocyte death 
and consequent thymic atrophy. Yet, this is a complex network of 
events (summarized in Figure 1 and Table 1) that needs further 
investigation, including the possibility of endocrine axes being 
target for complementary therapeutic intervention in Chagas 
disease.
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TABLe 1 | Effects of hormonal imbalance upon thymocytes during Trypanosoma cruzi infection.

GC DHeA PRL GH Testo Leptin (*) Reference

Weight/size ↓ ↑ ↑ ↑ ↓ ↓ (18, 42, 44, 45, 53, 104)
Cellularity ↓ ↑ ↑ ↑ ↓ ↓ (25, 42, 44, 46, 54, 55, 66, 73, 88, 104)
Apoptosis of DP cells ↑ ↓ ↓ ↓ ↑ ↓ (25, 42, 44, 46, 54, 55, 73, 87, 88, 104)
Loss of Tregs ↑ ND ND ND ND ND (66)
Vβ T-cell repertoire/negative selection ND ND ND ND ND ND (19, 67)
Altering intrathymic cell migration ND ND ND ND ND ND (21, 66, 69, 80)
Escape of DP/DN cells to periphery ND ND ↓ ND ND ND (11, 55, 64, 67, 89, 105)

DP, CD4+CD8+ double-positive; GC, glucocorticoids; DHEA, dehidroepiandrosterone; PRL, prolactin; GH, growth hormone; Testo, testosterone; ND, not determined; ↑, increase; ↓, 
decrease; (*) effects caused by administration.
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