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Editorial: Security, governance,
and challenges of the new
generation of
cyber-physical-social systems

Yuanyuan Huang1* and Xin Lu2

1Department of Network Engineering, Chengdu University of Information Technology, Chengdu, China,
2School of Computer Science and Informatics, De Montfort University, Leicester, United Kingdom
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Editorial on the Research Topic
Security, governance, and challenges of the new generation of cyber-
physical-social systems

In recent years, the transformation of devices and systems into intelligent,
interconnected entities has given rise to the concepts widely recognized as the
Internet of Things (IoT) and cyber-physical systems (CPSs). The integration of
social networks with CPSs leads to an innovative paradigm known as cyber-
physical-social systems (CPSSs). CPSS, harmonizing the cyber, physical, and
social spaces, constitutes the next evolution of intelligent systems. It is founded
on the integration of embedded systems, computer networks, control theory, and
sensor networks. A typical CPSS is comprised of sensors, controllers, actuators, and
communication networks. Its salience lies in the seamless connection of physical
devices to the Internet and social networks, thereby imbuing these devices with
capabilities such as computation, communication, precise control, remote
coordination, and autonomy. The applicability of CPSS spans diverse fields,
including intelligent transportation systems, telemedicine, smart grid
technology, aerospace, smart home appliances, environmental monitoring,
intelligent buildings, defense systems, and weaponry. Thus, CPSS stands as a
vital component of a nation’s essential infrastructure.

CPSS exhibits a range of distinctive features, including the amalgamation of human
and computer intelligence, the integration across various spatial domains, inherent
network heterogeneity, and the incorporation of multi-source information. In the
context of CPSS, data serves as a vital link, seamlessly connecting the three principal
components: cyber systems, physical mechanisms, and social constructs. Information
from physical and social systems is conveyed to the corresponding information system via
network channels. Simultaneously, this information system reciprocates by supplying
feedback to the physical and social domains through meticulous computation and
informed decision-making processes. Nevertheless, the heterogeneous nature of CPSS,
coupled with their reliance on confidential and sensitive data, and expansive deployment,
makes them susceptible to an array of security threats. These threats span across the
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cyber, physical, and social realms, presenting significant challenges
related to privacy and trust.

This Research Topic is dedicated to presenting original
research and insightful reviews, emphasizing innovations and
enhancements in the domains of advanced attacks, system
security, privacy, and trust technology in CPSS. Submissions
focusing on detection and defense strategies employing artificial
intelligence and big data are particularly encouraged. This
includes a wide range of topics, including but not limited to,
theoretical foundations, design methodologies, modeling
techniques, configuration approaches, representational
frameworks, data processing mechanisms, analytical
methods, and their relevant applications within the
context of CPSS.
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A Cyber-physical-social systems
approach to the semantic
segmentation of pulmonary
embolism

Siyu Zhan1,2, Xin Lei3, Lu Guo4, Mingxiu Xiong5, Tingyu Liu6*,
Shuang Liu7 and Hao Yu3

1Laboratory of Intelligent Collaborative Computing, University of Electronic Science and Technology of
China, Chengdu, Sichuan, China, 2Trusted Cloud Computing and Big Data Key Laboratory of Sichuan
Province, Chengdu, Sichuan, China, 3School of Optoelectronic Science and Engineering, University of
Electronic Science and Technology of China, Chengdu, China, 4Department of Pulmonary and Critical
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China, Chengdu, China, 5School of Medicine, University of Electronic Science and Technology of China,
Chengdu, China, 6School of Network and Communication Engineering, Chengdu Technological
University, Chengdu, China, 7Yingcai Experimental College, University of Electronic Science and
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Cyber-Physical-Social Systems (CPSS) epitomize the modern era’s intelligent
connectivity. They integrate physical devices, computer networks, and social
networks, forming an innovative paradigm for intelligent systems. Utilizing CPSS
to enhance intelligence, automation, and remote services in healthcare
represents a primary research focus. Pulmonary embolism, a prevalent
condition resulting from the blockage of the pulmonary artery and its
branches by emboli, leads to a spectrum of clinical syndromes marked by
impaired pulmonary circulation and right heart dysfunction, contributing to
sudden and unpredictable fatalities. Nevertheless, the diagnosis of pulmonary
embolism remains challenging due to non-specific clinical presentations,
constrained diagnostic capabilities, delayed diagnoses, insufficient physician
knowledge, and suboptimal diagnostic techniques. Consequently, we
introduce the innovative LSCU-Net architecture within the CPSS framework,
designed to develop an automated segmentation and intelligent assessment
system for pulmonary embolism, facilitating its automated and intelligent
detection. The experimental findings demonstrate that the model accurately
segments pulmonary embolism, evidenced by a Jaccard index of 0.6958, a Dice
coefficient of 0.8193, a Mean Pixel Accuracy (mPA) of 0.8519, and an accuracy of
0.9993. Empirical studies reveal that our proposed model substantially surpasses
existing models in performance. Consequently, this model can aid physicians in
the diagnosis of pulmonary embolism during clinical practice. The established
pulmonary embolism automatic segmentation and assessment system also
showcases the application successes of CPSS in intelligent remote healthcare.
The system’s development and deployment not only streamline physicians’
diagnostic processes but also elevate public health standards and advance
CPSS research within the medical domain.
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1 Introduction

In recent years, the paradigm of Cyber-Physical Social Systems
(CPSS [1]) has emerged. As an interdisciplinary field, CPSS
integrates theories and technologies from computer science,
physics, and social sciences, with a focus on exploring the
interactions among sensors, physical systems, and social
networks, and is dedicated to intelligent decision-making and
optimization. Particularly in the field of medical image
processing, the adoption of CPSS offers new opportunities to
surmount the challenges of medical image data processing.
Investigating the utilization of CPSS to achieve remote,
automated, and intelligent medical treatment is a key area of
interest. The medical treatment field is rapidly evolving from a
traditional centralized treatment approach by hospitals and experts
to a patient-centric distributed treatment model.

CPSS powers smart personal healthcare. In CPSS, the
integration of physical devices, social networks, and networked
systems enables the real-time monitoring of patient data
(including blood pressure, vital signs, and activity monitoring)
and facilitates the conversion of these data from the physical to
the digital realm. This process not only endows devices with the
ability to compute, coordinate remotely, and operate autonomously,
but also advances medical treatment towards greater remoteness,
automation, and intelligence. In this context, H et al. [2] introduced
a doctor recommendation algorithm based on the doctor’s
diagnostic and treatment efficacy and the patient’s personal
preferences in 2014. In 2018, Q et al. [3] focused on e-medical
services leveraging social networks and proposed an e-medical
system model that utilizes the green CPSS framework to detect
and predict disease transmission.

This study aims to conduct an in-depth analysis of CPSS
applications within the medical field, with a particular focus on
the efficacy of CPSS in supporting pulmonary embolism patients
through remote, real-time, and intelligent treatment modalities.

Pulmonary embolism (PE), a prevalent medical condition, is
characterized by a spectrum of diseases or clinical syndromes
wherein endogenous or exogenous emboli obstruct the
pulmonary artery and its branches, leading to impaired
pulmonary circulation and right ventricular dysfunction [4].
Pulmonary embolism represents a critical health threat and is a
primary cause of unexpected sudden death [5, 6]. Extensive data
indicate that pulmonary embolism has a high global incidence.
Annually, the United States sees between 650,000 and 700,000 new
cases of pulmonary embolism, with a mortality rate surpassed only
by cancer and coronary heart disease, making it the third leading
cause of death [7]. In France, the incidence of pulmonary embolism
rivals that of myocardial infarction fatalities, with over 100,000 new
cases reported annually [6]. The resulting disability and morbidity
from PE are significant drivers of medical expenditures and bear
socioeconomic implications [8–14].

The diagnosis of pulmonary embolism remains challenging
owing to the non-specific clinical manifestations of the condition,
constrained diagnostic resources, delays in seeking medical
attention, and the lack of physician awareness coupled with
inappropriate diagnostic methods. Pulmonary embolism clinically
presents as respiratory dysfunction. Numerous conditions can cause
this symptom, making it challenging for physicians to directly

associate this clinical feature with pulmonary embolism.
Consequently, the majority of patients with pulmonary embolism
do not receive an accurate diagnosis in their lifetime, with
misdiagnosis rates reaching as high as 70%. An American study
examining the correlation between the timing of pulmonary
embolism diagnosis and mortality revealed that each hour of
diagnostic advancement reduced the patient’s mortality risk
by 5% [15].

Prior to the extensive adoption of artificial intelligence (AI)
technology, especially deep learning, in medical image analysis,
medical image segmentation was heavily dependent on
traditional image processing techniques. Traditional image
segmentation methods have played a pivotal role in analyzing
medical images, including X-rays, MRIs, CT scans, and
ultrasound images. These methods typically entail manual or
semi-automatic processes and rely on a variety of mathematical
and algorithmic approaches to identify and delineate the boundaries
of distinct structures within the images. Traditional medical image
segmentation methods can be broadly classified into several
categories: 1) Threshold-based methods [16], which classify pixels
within the image as target or background by predefining a
characteristic feature. 2) Region-based methods [17], which
extract the target area by delineating a sub-region manually and
subsequently merging adjacent pixels with similar attributes. 3)
Edge-based segmentation methods [18], which achieve
segmentation by identifying pixels where edges undergo
significant changes at the juncture between the target and
background areas, effectively delineating the boundaries. 4) Atlas-
based segmentation methods [19], through the incorporation of
shape information and the utilization of prior knowledge, these
methods can yield improved segmentation outcomes even for
medical images with indistinct boundaries and substantial noise.

In practical applications, the unique shape and contour of
pulmonary embolism lesions in CTPA images make it so that
traditional image segmentation methods often fail to achieve
optimal outcomes in segmenting pulmonary embolism.

To address the above challenges, researchers are working to
develop methods that utilize Cyber-Physical-Social Systems (CPSS)
to enhance medical diagnosis. In 2014, researchers such as Long [20]
introduced fully convolutional neural network (FCN) by enhancing
the traditional convolutional neural network architecture. FCN
abandons the fully connected layer in traditional convolutional
neural networks and instead uses deconvolution layers. This
change brings significant advantages - the network can handle
image inputs of any size and is no longer limited to a fixed input
size. However, this approach is not without drawbacks. The network
needs to use basic upsampling technology at the back end of the
processing process to match the size of the original image. This step
often leads to the loss of a large amount of spatial information, thus
limiting the accuracy of the network in image segmentation tasks,
resulting in segmentation results. Accuracy is compromised.

Then in 2015, Ronneberger et al. [21] proposed the U-Net
architecture based on FCN, aiming to more effectively utilize the
rich contextual information in images. U-Net further optimizes the
performance of fully convolutional networks through carefully
designed downsampling and upsampling operations, and
introduces four key components: encoder, decoder, bottleneck
layer, and skip connection. The proposal of U-Net is widely
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regarded as a milestone in the field of encoder-decoder network
structure, especially in the field of medical image segmentation.
U-Net not only demonstrates excellent performance, but also
promotes rapid progress in this field.

Owing to U-Net’s superior performance in medical image
segmentation, we aimed to enhance U-Net accordingly to better
suit the pulmonary embolism segmentation task. In comparison to
traditional medical image segmentation methods, the automatic
segmentation of pulmonary embolism via deep learning presents
multiple challenges. The pulmonary embolism region is small in
comparison to the lung area, and the marked imbalance between
positive and negative samples can impair the model’s predictive
accuracy, potentially leading to a complete loss of predictive
capability [22]. Therefore, we have incorporated an attention
mechanism into the U-Net architecture, thereby directing the
model’s focus more towards the pulmonary embolism region.
Furthermore, considering the challenge of accessing and the
limited information in medical datasets, we have endeavored to
integrate the Bi-LSTM architecture into the U-Net framework to
capture the inter-slice information pertinent to pulmonary
embolism. Additionally, to tackle the substantial imbalance of
positive and negative samples in the pulmonary embolism
dataset, we employ a hybrid loss function combining Cross-
Entropy Loss (CELoss) and Tversky Loss (TLoss) during the
neural network’s training.

This article’s principal contributions are as follows:

(1) An enhanced LSCU-Net, derived from the U-Net
architecture, was developed. This framework integrates
contextual information to automatically and accurately
identify and segment pulmonary embolism, thereby aiding
medical professionals and reducing the rate of misdiagnosis,
and actualizing the application of CPSS in medical image
segmentation.

(2) During model training, a hybrid loss function combining
CELoss and FTLoss addresses the challenges of small
pulmonary embsolism targets and disproportionate scales
between pulmonary embolism and background in
segmentation tasks.

(3) Experimental results demonstrate that our proposed
method achieves the following metrics on the test set: a
Jaccard index (JAC) of 0.6958, a Dice similarity coefficient
(DSC) of 0.8206, a Mean Pixel Accuracy (mPA) of 0.8519,
and an accuracy of 0.9993, thereby substantiating the
method’s feasibility.

2 Methods

2.1 LSCU-net

The U-Net architecture is extensively employed in medical
image segmentation tasks due to its advantageous compact model
parameterization, minimal data requirements, and rapid training
capabilities. As depicted in Figure 1, the U-Net model is an
evolution of the Fully Convolutional Network (FCN). The
network’s structure resembles the letter ‘U᾽, which is the
origin of its nomenclature. The U-Net framework primarily
consists of four key components: the encoder, decoder, skip
connections, and a bottleneck layer. The encoder module
comprises convolutional and pooling layers, serving primarily
to downsample and extract features. The decoder module,
consisting of convolutional and upsampling layers, is chiefly
responsible for localizing the target and reconstructing the
image dimensions. Skip connections merge the encoder and
decoder information along the channel dimension, facilitating
the integration of contextual data.

The enhanced architecture of our neural network model, termed
Long Short-Term Memory and Convolutional Block Attention
Module U-Net (LSCU-Net), is depicted in Figure 2. This model
is a modification of the benchmark U-Net architecture. In
comparison to the standard U-Net model, the principal
enhancements of the LSCU-Net include:

(1) Integration of the Convolutional Block Attention Module
(CBAM) into the encoder module to refine the neural
network’s learning strategy, thereby focusing more acutely
on pertinent areas within the channel and spatial dimensions.

FIGURE 1
Schematic diagram of U-net model.
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The attention mechanism [23] constitutes a significant concept
within the domain of deep learning. It emulates the human cognitive
process of attention and concentration during information
processing. This mechanism enables the neural network model to
focus more intensively on pertinent information throughout the
training phase, thereby enhancing the model’s capacity for
representation learning and feature selection with respect
to input data.

The Convolutional Block Attention Module (CBAM) [24],
proposed by Sanghyun et al. in 2018, is an attention mechanism
module within the realm of deep learning. Figure 3 illustrates its

structure. CBAM’s central concept involves the simultaneous
introduction of channel and spatial attention sub-modules,
enabling the neural network model to concurrently attend to
both channel and spatial information.

Figure 4A illustrates how the channel attention module captures
the interdependencies among various channels. This module
computes the significance of each channel by processing the
input features, subsequently assigning weights to minimize
extraneous information across channels, which enhances the
feature extraction quality. The computation is described by the
following formula:

FIGURE 2
Schematic diagram of LSCU-net model.

FIGURE 3
CBAM.
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Fs � σ W1 W0 FC
avg( )( ) +W1 W0 F C

max( )( )( )

Where σ is the activation function sigmoid,W1、W2 represents
two different convolution operations, and FC

avg、 F C
max represents

average pooling and maximum pooling.
Figure 4B illustrates that the spatial attention module captures

dependencies across various locations within the feature
map. Utilizing channel attention as a basis, the spatial attention
module computes the significance weights for each position,
subsequently applying these weights to the feature map to
attenuate information from irrelevant locations. The computation
is described by the following formula:

Fs � σ f 7×7 FS
avg ; F

S
max[ ]( ))

Where σ is the activation function sigmoid, f 7×7 represents a
convolution operation with a convolution kernel size of 7 × 7, and
FS
avg、 F S

max represents average pooling and maximum pooling.

2) Incorporate a Bi-LSTM into the bottleneck layer to capture the
inter-slice sequential information within the pulmonary
embolism dataset.

Given that medical datasets are challenging to obtain, often
contain sparse labeled samples, and limited information, the
extraction of maximal information from the dataset for training
purposes remains a significant challenge in current neural network
research. Considering a dataset of pulmonary embolism obtained
through CTPA imaging, conventional convolutional neural
networks (CNNs) are limited to extracting intra-slice information
from the dataset, failing to capture inter-slice correlations.

In 2018, Chen et al. applied Bi-directional Long Short-Term
Memory (Bi-LSTM) [25] to Chinese word segmentation. Figures 5,
6 depict the architectures of Bi-LSTM and LSTM, respectively. This

model represents an enhancement over the traditional Long Short-
TermMemory (LSTM) architecture [26]. It integrates both forward and
reverse LSTM networks, enabling the processing of input sequences
progressively at each time step. This allows for the acquisition of
information in both forward and reverse temporal directions.

2.2 Dataset

Our study utilized a single dataset: Pulmonary Embolism
Dataset 1 (PEA1). This dataset was developed by the Sichuan
Provincial People’s Hospital.

The PEA1 dataset comprises 15−ΔΔCT scans and 1,210 sliced JPG
images. The original CT data, stored in DICOM format, undergoes
slicing to produce JPG images. Typically, each CT scan encompasses
50–200 axial slices, with dimensions of 512 × 512 pixels for each slice.

The dataset was annotated by professional doctors at the
Sichuan Provincial People’s Hospital using the LABEL ME
software, thus rendering the PEA1 dataset suitable for training
and evaluating the segmentation capabilities of our neural
network. The dataset was partitioned into two subsets: a training
set and a validation set, comprising 1,080 images (90%, 13 cases) and
130 images (10%, 2 cases), respectively.

2.3 Evaluation indicators

The evaluation index is derived from the confusion matrix. The
confusion matrix typically comprises four elements: true positives (TP),
false negatives (FN), false positives (FP), and true negatives (TN). Each
columnof the confusionmatrix corresponds to a predicted category, with
the sum of the column’s entries denoting the number of predictions for
that category; each row pertains to the actual category, and the sumof the
row’s entries reflects the total instances within that category.

FIGURE 4
SA and CA.
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Table 1 presents the evaluation metrics applied and the
corresponding calculation methodologies.

2.4 Loss function

Semantic segmentation of pulmonary embolism presents
challenges including severe category imbalance and the difficulty
of detecting small-scale targets. Figure 7 illustrates a real CTPA
image of a pulmonary embolism patient on the left, and a manually
segmented pulmonary embolism mask image by a medical

professional on the right. The red area represents the pulmonary
embolism lesion, while the black areas denote the background.

Cross-entropy [27] is widely used as a loss function in
classification tasks, defined as the measure of disparity between
probability distributions for a particular random variable or set
of events.

The binary cross-entropy loss function is delineated as:

LossBCE y, y′( ) � − ylog y′( ) + 1 − y( )log 1 − y′( )( )

Here, y′ is the predicted value by the prediction model.

FIGURE 5
Bi-LSTM structure diagram.

FIGURE 6
LSTM structure diagram.
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The Focal Tversky Loss [28] combines Focal Loss and Tversky
Loss, prioritizing challenging examples by diminishing the influence
of simple, common elements, particularly in small regions of interest
(ROIs), through the application of a specific coefficient as detailed
subsequently:

FTLoss � ∑
C

1 − Tlc( )γ

This study is the first to integrate BCE (Binary Cross-
Entropy) loss and FT (Focal Tversky) loss, aiming to enhance
the performance of the neural network model while addressing
the challenges of significant category imbalance and small target
segmentation in the pulmonary embolism dataset.

LOSS � LossBCE + FTLoss

3 Results and discussion

In the course of the study, we performed a series of control
experiments, which included the evaluation of established neural
network architectures, including U-Net, U-Net++, Attention U-Net,
TransU-Net, and the integration of CBAM attention modules into
the U-Net framework, as well as the incorporation of Bi-LSTM

modules. Additionally, we assessed the employment of a hybrid loss
function to address class imbalance and granular target
segmentation in the training phase. For each experimental series,
the training set was employed to retrain the model, subsequently
model segmentation performance on the test set was assessed using
the Jaccard index, Dice coefficient, Mean Pixel Accuracy (mPA),
and accuracy.

As depicted in Figure 8A, is the original CT slice image of the
patient, Figure 8B is the mask image manually segmented by the
doctor, Figure 8C is the segmentation image obtained using the
original U-Net model, and Figure 8D is the segmentation obtained
using the classic model U-Net++ Image, Figure 8E is a segmented
image obtained using the classic model Attention U-Net, Figure 8F
is a segmented image obtained using the classic model TransU-Net
model, Figure 8G is obtained by ourmethod after adding CBAM and
Bi-LSTM modules and using a hybrid loss function
segmented image.

As Table 2 demonstrates, the integration of the CBAM attention
mechanism into the U-Net’s backbone, coupled with the
replacement of the bottleneck layer by a Bi-LSTM and the
adoption of a hybrid loss function, yields the most superior
outcomes. When applied to the test set, it yielded a Jaccard index
of 0.6958, a Dice score of 0.8193, anMPA of 0.8519, and an accuracy
of 0.9993.

FIGURE 7
Original images and ground truths.

TABLE 1 Evaluation indicators.

Evaluation Definition Note

Jac Jac = (A¡ÉB)/(A¡ÈB) Jaccard index

DSC DSC = 2*(A¡ÉB)/(|A|+|B|) Dice similarity coefficient

Accuracy Accuracy = (TP + TN)/(TP + TN + FN + FP) Proportion of samples that predict correctly

mPA@.x mPA@.x = sum(P(i))/N Mean pixel accuracy
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Upon implementing a hybrid loss function tailored for small
object segmentation and addressing class imbalance to train the
model, the Jaccard index (Jac) exhibited an increase from
0.6352 to 0.6419, the Dice Score improved from 0.7769 to
0.7819, the Mean Pixel Accuracy (MPA) rose from 0.6785 to
0.7060, and the Accuracy enhanced from 0.9950 to 0.9986. This
resulted in an overall performance enhancement of the model by
approximately 0.6%, demonstrating that the hybrid loss
function effectively guides the model in addressing the
significant class imbalance issue inherent in the dataset, and
in improving the model’s performance in segmenting
small targets.

Upon integrating the Bi-LSTM module into the original
U-Net architecture, the Jaccard index improved from
0.6419 to 0.6782, the Dice coefficient from 0.7819 to 0.8082,
the Mean Pixel Accuracy from 0.7060 to 0.7767, and the overall
accuracy from 0.9986 to 0.9988. This enhancement bolstered the
model’s overall performance by approximately 3.6%,
demonstrating that replacing the bottleneck layer with the
Bi-LSTM module enables the U-Net model to more

effectively learn inter-sequential information within the
pulmonary embolism dataset, thereby enhancing its feature
segmentation capabilities.

Upon integrating the Convolutional Block Attention Module
(CBAM) into the U-Net architecture, which already includes the Bi-
LSTM module, the Jaccard Index improved from 0.6782 to 0.6958,
Dice score from 0.8082 to 0.8193, Mean Pixel Accuracy (MPA) from
0.7767 to 0.8519, and accuracy from 0.9988 to 0.9993. This
enhancement resulted in an overall performance improvement of
approximately 1.8%, demonstrating that the incorporation of the
CBAMmodule into the U-Net’s backbone enables the U-Net model
to focus more on critical regions within pulmonary embolism
images throughout the training process, thereby enhancing the
model’s performance and feature learning capabilities.

4 Conclusion

This study integrates computer networking, Internet of Things
(IoT), and social networking technologies and utilizes CPSS

FIGURE 8
Contrast test.

TABLE 2 The results.

Method Jac Dice score Mpa Accuracy

U-net trained by CEloss 0.6352 0.7769 0.6785 0.995

U-net++ trained by CEloss 0.673 0.8045 0.7915 0.9987

Attention_U-net trained by CEloss 0.6524 0.7896 0.7488 0.9988

Trans U-net trained by CEloss 0.6873 0.8147 0.8005 0.9988

U-net trained by BCE Loss and FT loss 0.6419 0.7819 0.706 0.9986

U-net with Bi-LSTM trained by BCE Loss and FT loss 0.6782 0.8082 0.7767 0.9988

LSCU-Net trained by BCE Loss and FT loss 0.6958 0.8193 0.8519 0.9993
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technology in the medical management of pulmonary embolism
patients. We have developed an innovative LSCU-Net model and
established a specialized automated segmentation system for
pulmonary embolism. The key contributions are summarized
as follows:

(1) We integrate the CBAM attention mechanism into the U-net
model’s backbone to refine the learning strategy, enhancing
focus on salient features in both channel and spatial
dimensions.

(2) We employ a Bi-LSTM module to supplant the bottleneck
layer, enabling the extraction of inter-slice sequential
information from the pulmonary embolism dataset.

(3) Throughout the training phase, we utilize a hybrid loss function
that merges BCEloss with Focal Tversky Loss, significantly
enhancing the model’s ability to extract features from highly
imbalanced categories and diminutive target datasets.

In future research, we will concentrate our efforts on three
primary areas. First, we aim to explore the latest advancements in
research on Cyber-Physical-Social Systems (CPSS), which seeks to
foster deeper integration among computer networks, the Internet of
Things, and social networks, and apply these insights to pulmonary
embolism treatment research, with the expectation of achieving
significant breakthroughs. Second, considering the limitations of
existing pulmonary embolism datasets, particularly in terms of case
numbers and significant individual variability, we aim to construct
an extensive, detailed, and comprehensive dataset to address these
challenges. Finally, we are dedicated to developing a broad spectrum
of applications and advanced architectures for medical image
segmentation models, while investigating sophisticated and
efficient search algorithms, aiming to enhance the models’
learning capabilities, and then to promote the integrated
application of the Cyber-Physical-Social Systems in the field of
medical treatment.
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Dynamics analysis and optimal
control study of uncertain
information dissemination model
triggered after major
emergencies
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In order to effectively prevent and combat online public opinion crises triggered
by major emergencies, this paper explores the dissemination mechanism of
uncertain information on online social platforms. According to the decision-
making behavior of netizens after receiving uncertain information, they are
divided into eight categories. Considering that there will be a portion of
netizens who clarify uncertain information after receiving it, this paper
proposes a SEFTFbTbMR model of uncertain information clarification
behavior. The propagation dynamics equations of the model are given based
on the theory of differential equations, the basic regeneration number R0 of the
model is calculated, and the existence and stability of the equilibrium point of the
model are analyzed. The theoretical analysis of the model is validated using
numerical simulation software, and sensitivity analysis is performed on the
parameters related to R0. In order to reduce the influence caused by
uncertain information, the optimal control strategy of the model is proposed
using the Hamiltonian function. It is found that the dissemination of uncertain
information among netizens can be suppressed by strengthening the regulation
of social platforms, improving netizens’ awareness of identifying the authenticity
of information, and encouraging netizens to participate in the clarification of
uncertain information. The results of this work can provide a theoretical basis for
future research on the uncertain information disseminationmechanism triggered
by major emergencies. In addition, the results can also provide methodological
support for the relevant government departments to reduce the adverse effects
caused by uncertain information in the future.

KEYWORDS

major emergencies, uncertain information, classical epidemic transmission model,
optimal control model, uncertain information clarification behavior

1 Introduction

Digital new media platforms are essentially unbounded, interactive, and anonymous,
which brings a significant degree of convenience to users but also introduces certain hidden
dangers. When a major emergency occurs, various network clusters form to discuss the
event. Although the internet users within these clusters are eager to obtain relevant
information about the event, its uncertainty and urgency often mean that the relevant
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departments are unable to announce details to the public in the early
stages of the response. Thus, during this information window, some
internet users use digital new media to disseminate uncertain
information, which may cause unnecessary panic among
uninformed internet users, possibly leading to social disquiet and
unrest. Thus, to reduce the secondary effects caused by the
dissemination of uncertain information after major emergencies,
it is critical to construct a model of dissemination of uncertain
information and analyze the mechanisms whereby such information
is transmitted.

This paper develops an epidemic propagation dynamics model
and uses optimal control theory to analyze the delivery mechanism
of uncertain information dissemination among internet users. First,
based on different decision-making behaviors, netizens are
categorized into eight groups: unknowns S, thinkers E, uncertain
information publishers F, clarifiers of uncertain information T,
internet users who believe uncertain information Fb, internet
users who only believe true information Tb, internet users who
do not believe any online information M, and information
immunizers R. We then construct the SEFTFbTbMR uncertain
information dissemination model. Second, the model is solved to
find the basic regeneration number R0 of the system, and the

equilibrium points P0 and P* that exist without and with
uncertain information dissemination, respectively, are calculated.
The stability of points P0 and P* is then analyzed, and numerical
simulations are conducted using Matlab 2017b to verify the
theoretical derivations. Finally, to control the scale of uncertain
information dissemination and increase the proportion of thinkers
and clarifiers of uncertain information, an optimal control model is
established based on the SEFTFbTbMR uncertain information
dissemination model.

The main contributions of the research reported in this paper
are as follows: 1) Considering that there will be some netizens who
will exhibit behaviors such as clarifying or re-disseminating the
uncertain information after receiving it, this paper divides the
netizens into eight categories according to decision-making
behavior in the process of uncertain information dissemination.
2) During the construction of the model, we consider not only the
dissemination of uncertain information but also the dissemination
of true information that clarifies the uncertain information. 3) In
order to reduce the influence caused by uncertain information, the
Hamiltonian function is utilized to propose the optimal control
strategy of the model. The research in this paper provides a
theoretical basis for dealing with the uncertain information

FIGURE1
Organizational diagram of the current study.
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dissemination mechanism triggered by major emergencies, and the
related conclusions provide methodological support for reducing the
adverse effects of uncertain information.

2 Related work

Since the outbreak of COVID-19, various studies have examined
major emergencies from different perspectives. Tan [1], Yao [2], Gao
[3], and Zhang [4] conducted studies from the perspective of emergency
management after the occurrence of a major emergency. Other scholars
have investigated the impact of major emergencies, such as Ukwuoma
[5], Benifa [6], Asif [7], and Fazmiya [8], who analyzed the physical
effects of major emergencies on humans from a medical perspective,
using COVID-19 as an example. Mo et al. [9] argued that major
emergencies have both an emotional as impact as well as a huge
economic impact. Cheng et al. [10] found that secondary disasters of
major emergencies can have an impact on international oil prices. Yang
et al. [11] concluded that major emergencies can seriously affect the
public’s emotions and cause a certain amount of panic. Similarly, De las
Heras-Pedrosa et al. [12] argued that major emergencies can also have
serious psychological effects on the public. Atehortua et al. [13] reported
that the occurrence of major emergencies is followed by large amounts
of uncertain information emerging on social networks, leading to the
spread of panic. Jalan et al. [14] argued that, after a major emergency,
the uncertain information disseminated across new media can cause
more panic in the public than traditional media reports. Zhang et al.
[15] found that the subsequent control of major emergencies can be
hampered by the dissemination of uncertain information after the
occurrence of a major emergency.

In the study of uncertain information, it is critical to examine
the various actors in the process of information dissemination.
Crokidakis [16], Zhao [17], and Yin [18] studied the crucial role
of social media in the dissemination of uncertain information.
Allington et al. [19] argued that social media platforms are the
main disseminators of uncertain information, and Centola [20]
showed that netizens tend to believe information when it is
received from several different sources. Zhang et al. [21] used the
behaviors of online media, internet users, and the government in
response to the Chinese COVID-19 Shuanghuanglian incident
as an example to examine the dissemination of information.
Choi [22] argued that although opinion leaders play a driving
role in the dissemination of information, they are not typically
its creators. Studies have examined the mechanisms whereby
uncertain information is disseminated, including that of Li et al.
[23], who examined the information dissemination process
under major emergencies, and that of Li et al. [24], who
investigated the propagation of uncertain information
following an incident. Wei [25] analyzed the propagation
process of uncertain information using the theory of heat
conduction in physics. Litou et al. [26] studied how to
increase the rate of information dissemination at the lowest
cost. Wang et al. [27] argued that a higher-status initial
disseminator could achieve a faster rate of dissemination,
whereas Hong et al. [28] showed that centralizing the release
of truthful information effectively reduces the dissemination
rate of uncertain information among netizens.

The Susceptible Infected Recovered (SIR) model [29] was
first introduced in 1927 by Kermack and McKendrick to study
the transmission mechanism of epidemics in populations using a

FIGURE 2
Flowchart of the propagation dynamics equations for the SEFTFbTbMR model.
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kinetic approach. Their mathematical model underwent further
enhancement in 1932 [30] and 1933 [31]. Subsequently,
researchers have continued to develop and extend this model
to account for the dynamics of infectious diseases, and have
progressively merged it with disciplines such as mathematics,
sociology, complexity science, cybernetics, and computer
science [32–34]. The epidemic transmission model has been
extensively utilized in studying cross-disciplinary information
transmission owing to the similarity of the transmission pattern
of information with that of epidemics [35]. [36] developed the

M-SDI model, which uses public comments to assess the credibility of
online information; in a subsequent study, they introduced the SRFI
model [37], which uses numbers of reads and retweets to measure
uncertainty in online content. Rui et al. [38] proposed the SPIR model
based on discrete-time dynamics. Trpevski et al. [39] developed an
uncertain information dissemination model with two different
acceptance probabilities based on the SIS model. Zan [40]
constructed the DSIR and C-DSIR models by considering the
simultaneous existence of multiple uncertain pieces of information
in the real world.

FIGURE 3
Evolution of Internet user populationswhenR0< 1. (A) all typesof Internet users are present at t =0. (B) some types of Internet users are not present at t =0.
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Based on the above-mentioned studies, we find that most
scholars often assume that only uncertain information is
disseminated among netizens in the process of researching
the dissemination mechanism of uncertain information, and
the decision-making behavior of netizens after receiving
uncertain information is relatively simple. However, in
reality, due to the characteristics of digital media technology,
Internet users can not only receive uncertain information but
also real information that clarifies uncertain information.
Moreover, with the continuous improvement of their own

quality, some netizens, when faced with uncertain
information, will make a judgment by investigating and
collecting evidence or thinking for moment, thus
spontaneously clarifying the uncertain information and
ultimately choosing to publish real information. Considering
the above realities, this paper divides netizens into eight
categories according to different decision-making behaviors in
the process of uncertain information dissemination. When
constructing the model, we consider not only the
dissemination of uncertain information but also the

FIGURE 4
Evolution of Internet user populationswhenR0 > 1. (A) all typesof Internetusers are present at t =0. (B) some types of Internet users are notpresent at t =0.
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dissemination of truthful information that clarifies the uncertain
information.

3 The model

The workflow of the current study in this paper is shown in
Figure 1 below, which consists of four main steps: 1) Internet user
behavior classification. 2) Construction of the model. 3) Calculation
of equilibrium points. 4) Stability analysis of equilibrium points.

The model construction and derivation process in this paper
follows the literature [41]. The specific steps are as follows: First, we
construct the SEFTFbTbMR model based on the classical infectious
disease model. To find the equilibrium point of the model, we
calculate the basic regeneration number of the system, R0, using the
next-generation matrix method [42]. We then judge the local
asymptotic stability and global asymptotic stability of the
equilibrium point using the Routh-Hurwitz criterion [43] and
Liapunov’s second method [44], respectively. Finally, we conduct
numerical simulations of the model.

FIGURE 5
Effect of variations in δ and B on R0.

FIGURE 6
Effect of variations in α1 and μ1 on R0.
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3.1 Construction of the uncertain
information dissemination model

The classical epidemic transmission dynamics model mentioned
in the literature [29] is given below:

dS

dt
� −βSI

dI

dt
� βSI − γI

dR

dt
� γI

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (1)

where S refers to susceptible, I refers to infected, R refers to
recovered, β is the rate of infection, and γ is the rate of recovery.

In this paper, on the basis of the classical epidemic disease
dissemination dynamics model given as Eq. 1, the Internet users in
the digital new media platform are divided into eight categories
according to their behavior after receiving uncertain information
as follows:

(1) The unknowns S are ordinary internet users who have not
received uncertain information;

(2) The thinkers E are internet users who, after receiving
uncertain information, think about the veracity of this
information before acting (i.e., neutral actors);

(3) The uncertain information publishers F are Internet users
who, after receiving uncertain information, choose to
disseminate the uncertain information;

(4) The clarifiers of uncertain information T are Internet users
who, after receiving uncertain information, choose to
investigate, obtain evidence, and release true information;

(5) The internet users who believe in uncertain
information, Fb;

(6) The internet users who only believe in truthful
information, Tb;

(7) The internet users who do not believe any information, M;
(8) The information immunizers R are Internet users who are not

interested in either uncertain or true information.

Combining the above eight categories of Internet users with
different decision-making behaviors, this paper amends the classical
infectious disease SIR model given as Eq. 1 to construct an uncertain
information dissemination model, which is defined as the
SEFTFbTbMR model. The propagation rules of the
SEFTFbTbMR model are as follows:

(I) At moment t, the total number of netizens in the network is
N(t), comprising the eight groups identified above, that is,

S t( ) + E t( ) + F t( ) + T t( ) + Fb t( ) + Tb t( ) +M t( ) + R t( ) � N t( ).
(2)

(II) B individuals enter the system per unit time. These individuals
are ordinary internet users who have not received uncertain
information (i.e., the transfer rate of unknown internet users in
the system is B). Individuals in the eight groups exit the system
at the same removal rate g.

(III) The propagation rate of uncertain information is δ.
When S makes contact with F and receives some item
of uncertain information, one of the following four
choices is made: S chooses to propagate the uncertain
information immediately, thus becoming a new member
of population F; S chooses to clarify the uncertain
information immediately, thus becoming a new
member of population T; S chooses to think
appropriately before acting, thus becoming a new
member of population E; or S does not take any

FIGURE 7
Effect of variations in α3 and μ2 on R0.
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interest in the uncertain information and chooses to
withdraw from the discussion, thus becoming a new
member of population R. The proportions of
transformations into F, T, E, and R are α1, α2, α3, and
α4, respectively; where α1 + α2 + α3 + α4 � 1.

(IV) Members of population E are converted to population Fwith
probability β1 and to population T with probability β2.
Members of population F are converted to population T
with probabilityω after learning the true information. As the
uncertain information and the true information in the

system come into contact, members of population F will
be converted to population Fb with probability μ1 and to
population M with probability μ2. Members of T will be
converted to population Tb with probability η1 and to
population M with probability η2. As the information is
time-sensitive, populations Fb, M, and Tb convert to
population R with probabilities γ1, γ2, and γ3, respectively.

Based on the above propagation rules, the dynamics for the
SEFTFbTbMR model can be written as follows:

FIGURE 9
Effect of variations in g and β2 on R0.

FIGURE 8
Effect of variations in β1 and ω on R0.
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dS

dt
� B − δFS − gS

dE

dt
� α3δFS − β1E − β2E − gE

dF

dt
� α1δFS + β1E − ωF − μ1F − μ2F − gF

dT

dt
� α2δFS + β2E + ωF − η1T − η2T − gT

dFb

dt
� μ1F − γ1Fb − gFb

dM

dt
� μ2F + η2T − γ2M − gM

dTb

dt
� η1T − γ3Tb − gTb

dR

dt
� γ1Fb + γ2M + γ3Tb + α4δFS − gR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (3)

The flow chart of the propagation dynamics equations for the
SEFTFbTbMR model is shown in Figure 2.

Based on Equations 2, 3, we obtain

dN t( )
dt

� B − gN t( ). (4)

When N0 � N(0), Eq. 4 yields N(t) � (N0 − B
g)e

−gt + B
g,

namely, lim
t→∞N(t) � B

g. Thus, we can judge the positive invariant
set of system (3) to be

Ω �
S, E, F, T, Fb,M, Tb, R ∈ R+

8 :

0≤ S + E + F + T + Fb +M + Tb + R≤
B

g

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭
. (5)

3.2 Calculation of equilibrium points

Summing up the equilibrium equations in system (3), it can be
concluded that there exists an equilibrium point of the system
without uncertain information propagation, which is defined as

P0 � B

g
, 0, 0, 0, 0, 0, 0, 0( ). (6)

Based on the fundamental regeneration number in propagation
dynamics [42], we define the total number of times a member of
population F transforms a member of population S into a new
member of population F during the average propagation period as
the fundamental regeneration number of uncertain information
propagation, denoted as R0. The R0 of the system can be
calculated by the next-generation matrix method. Letting
X � (F, E, T, Fb,M, Tb, R, S)Τ, system (3) can be rewritten as

dX

dt
� F X( ) − V X( ), (7)

where

F X( ) � α1δFS, α3δFS, 0, 0, 0, 0, 0, 0( )Τ, (8)

V X( ) �

−β1E + ωF + μ1F + μ2F + gF
β1E + β2E + gE

−α2δFS − β2E − ωF + η1T + η2T + gT
−μ1F + γ1Fb + gFb

−μ2F − η2T + γ2M + gM
−η1T + γ3Tb + gTb

−γ1Fb − γ2M − γ3Tb − α4δFS + gR
−B + α1δFS + α2δFS + α3δFS + α4δFS + gS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The Jacobianmatrix for Equations 8, 9 at equilibrium point (6) is
calculated as follows:

DF X( ) � F 0
0 0

[ ], (10)

DV X( ) � V 0
V1 V2

[ ], (11)

where

F �
α1δ

B

g
0

α3δ
B

g
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

V � ω + μ1 + μ2 + g −β1
0 β1 + β2 + g

[ ]. (13)

According to the literature [45], the R0 of system (3) is
equivalent to the spectral radius of the matrix FV−1:

R0 � ρ FV−1( ) � Bδ α1 β1 + β2 + g( ) + α3β1[ ]
g β1 + β2 + g( ) g + μ1 + μ2 + ω( )

. (14)

From the definition of R0, there exists an equilibrium point of
the system with uncertain information propagation when R0 > 1,
which can be expressed as

P* � S*, E*, F*, T*, Fb*,M*, Tb*, R*( ). (15)

Equilibrium point (15) should satisfy

B − α1δF*S* − α2δF*S* − α3δF*S* − α4δF*S* − gS* � 0
α3δF*S* − β1E* − β2E* − gE* � 0
α1δF*S* + β1E* − ωF* − μ1F* − μ2F* − gF* � 0
α2δF*S* + β2E* + ωF* − η1T* − η2T* − gT* � 0
μ1F* − γ1Fb* − gFb* � 0
μ2F* + η2T* − γ2M* − gM* � 0
η1T* − γ3Tb* − gTb* � 0
γ1Fb* + γ2M* + γ3Tb* + α4δF*S* − gR* � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (16)

A specific expression for equilibrium point (15) in terms of R0
can be obtained by performing calculations on system (16):

S* � β1 + β2 + g( ) g + μ1 + μ2 + ω( )
δ α1 β1 + β2 + g( ) + α3β1[ ]

� B

gR0
, (17)

E* � δα3F*S*
β1 + β2 + g

� α3B R0 − 1( )
β1 + β2 + g( )R0

, (18)

F* � B − gS*
δS*

� g R0 − 1( )
δ

, (19)
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T* � β2E* + α2δF*S* + ωF*
g + η1 + η2

� R0 − 1( )
g + η1 + η2

β2α3B

β1 + β2 + g( )R0
+ α2B

gR0
+ gω

δ
[ ], (20)

Fb* � μ1F*
γ1 + g

� gμ1 R0 − 1( )
δ γ1 + g( )

(21)

M* � μ2F* + η2T*
γ2 + g

� R0 − 1( )
γ2 + g

gμ2
δ

+ η2
g + η1 + η2

β2α3B

β1 + β2 + g( )R0
+ α2B

gR0
+ gω

δ
[ ]{ },

(22)

Tb* � η1T*
γ3 + g

� η1 R0 − 1( )
g + η1 + η2( ) γ3 + g( )

β2α3B

β1 + β2 + g( )R0
+ α2B

R0
+ gω

δ
[ ], (23)

R* � γ1Fb*+ γ2M*+ γ3Tb*+α4δF*S*
g

� γ1μ1 R0 − 1( )
δ γ1 +g( )

+ Bα3 R0 − 1( )
gR0

+ γ2 R0 − 1( )
g γ2 +g( )

gμ2
δ

+ η2
g+ η1 + η2

β2α3B

β1 + β2 +g( )R0
+ α2B

gR0
+ gω

δ
[ ]{ }

+ η1γ3 R0 − 1( )
g g+ η1 + η2( ) γ3 +g( )

β2α3B

β1 + β2 +g( )R0
+ α2B

R0
+ gω

δ
[ ].

(24)

3.3 Stability analysis of equilibrium points

Theorem 1. When R0 < 1, β1 + β2 + 2g + μ1 + μ2 + ω> δα1B
g ,

equilibrium point P0 is locally asymptotically stable in the
feasible domain Ω.

Proof: The Jacobian matrix J(P0) of system (3) at equilibrium point
P0 is

J P0( ) �

−g 0 −δB
g

0 0 0 0 0

0 −β1 −β2 −g
α3δB

g
0 0 0 0 0

0 β1
α1δB

g
−μ1 −μ2 −ω−g 0 0 0 0 0

0 β2
α2δB

g
+ω −g− η1 − η2 0 0 0 0

0 0 μ1 0 −g− γ1 0 0 0

0 0 μ2 η2 0 −g− γ2 0 0

0 0 0 η1 0 0 −g− γ3 0

0 0
α4δB

g
0 γ1 γ2 γ3 −g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

Let the eigenvalues of matrix (25) beNi (i � 1, 2, 3, . . . , 8). From
matrix (25), six of the eigenvalues are negative:

N1 � −g< 0, N2 � −g − η1 − η2 < 0, N3 � −g − γ1 < 0, N4

� −g − γ2 < 0, N5 � −g − γ3 < 0, N6 � −g< 0

The remaining two eigenvalues are also eigenvalues of matrixA1,
which is

A1 �
−β1 − β2 − g

α3δB

g

β1
α1δB

g
− μ1 − μ2 − ω − g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

The eigenvalues of A1 satisfy the following quadratic equation:

λ2 + c1λ + c2 � 0, (27)
where

c1 � β1 + β2 + 2g + μ1 + μ2 + ω − δα1B

g
, (28)

c2 � −δα1B − δBα1β1
g

− δBα3β1
g

− δBα1β2
g

+ β1g + β2g + g2 + β1μ1

+ β2μ1 + gμ1 + β1μ2 + β2μ2 + gμ2 + β1ω + β2ω + gω

� −δα1B − δBα1β1
g

− δBα3β1
g

− δBα1β2
g

+ β1 + β2 + g( )

× μ1 + μ2 + g + ω( ).
(29)

From β1 + β2 + 2g + μ1 + μ2 + ω> δα1B
g , it can be seen that c1 > 0.

From R0 � Bδ[α1(β1+β2+g)+α3β1]
g(β1+β2+g)(g+μ1+μ2+ω)< 1, we have

(β1 + β2 + g)(g + μ1 + μ2 + ω) − δα1B − δBα1β1
g − δBα3β1

g − δBα1β2
g > 0.

Therefore, c2 > 0.
Based on the Routh–Hurwitz criterion [43], it can be concluded

that the locally asymptotically stable equilibrium point P0 lies within
the feasible domain Ω when
R0 < 1, β1 + β2 + 2g + μ1 + μ2 + ω> δα1B

g , which proves Theorem 1.

Theorem 2. When R0 < 1, δB≤g2, the equilibrium point P0 is
globally asymptotically stable in the feasible domain Ω.

Proof:We construct the Lyapunov function around the equilibrium
point P0 as follows:

LP0 t( ) � E t( ) + F t( ) + T t( ) + Fb t( ) + Tb t( ) +M t( ) + R t( ). (30)

Based on system (3), the derivative of the Lyapunov function
(30) at equilibrium point P0 is

LP0′ t( ) � E′ t( ) + F′ t( ) + T′ t( ) + Fb′ t( ) + Tb′ t( ) +M′ t( ) + R′ t( )
� α3δFS − β1E − β2E − gE + α1δFS + β1E − ωF − μ1F

− μ2F − gF + α2δFS + β2E + ωF − η1T − η2T − gT

+ μ1F − γ1Fb − gFb + μ2F + η2T − γ2M − gM + η1T

− γ3Tb − gTb + γ1Fb + γ2M + γ3Tb + α4δFS − gR

� δS − g( )F − g E + T + Fb + Tb +M + R( ).
(31)

From Eq. 5, we know that S≤ B
g, and because δB≤g2, it

follows that
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LP0′ t( )≤ δB

g
− g( )F − g E + T + Fb + Tb +M + R( )≤ 0. (32)

Based on Equations 31, 32, it can be concluded that LP0′(t) � 0 is
only true if F � E � T � Fb � Tb � M � R � 0. For system (3), the
only solution on Ω that satisfies LP0′(t) � 0 is P0. Based on the
LaSalle invariance principle [46], it can be demonstrated that the
globally asymptotically stable equilibrium point P0 exists in the
feasible domain Ω when R0 < 1, δB≤g2 is true, which
proves Theorem 2.

Theorem 3.When R0 > 1, α3β1+α1(β1+β2)α1
< μ1 + μ2 + ω, the uncertain

information propagation equilibrium point P* is locally
asymptotically stable in the feasible domain Ω.

Proof: The Jacobian matrix J(P*) of system (3) at equilibrium point
P* with uncertain information propagation is

J P*( ) �

−g− δF* 0 −δS* 0 0 0 0 0
α3δF* −β1 −β2 −g α3δS* 0 0 0 0 0
α1δF* β1 α1δS*− μ1 −μ2 −ω−g 0 0 0 0 0
α2δF* β2 α2δS*+ω −g− η1 −η2 0 0 0 0
0 0 μ1 0 −g− γ1 0 0 0
0 0 μ2 η2 0 −g− γ2 0 0
0 0 0 η1 0 0 −g− γ3 0

α4δF* 0 α4δS* 0 γ1 γ2 γ3 −g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(33)

We denote the eigenvalues of matrix (33) as
Hi (i � 1, 2, 3, . . . , 8). It is apparent from matrix (33) that five of
the eigenvalues are negative:

H1 � −g< 0, H2 � −g − η1 − η2 < 0, H3 � −g − γ1 < 0, H4

� −g − γ2 < 0, H5 � −g − γ3 < 0

The remaining three eigenvalues are also eigenvalues of matrix
A2, which is

A2 �
−g − δF* 0 −δS*
α3δF* −β1 − β2 − g α3δS*
α1δF* β1 α1δS* − μ1 − μ2 − ω − g

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (34)

Converting the elements of matrix A2 to an expression
containing R0(14) yields matrix A*:

A* �

−gR0 0 − δB

gR0

α3g R0 − 1( ) −β1 − β2 − g
α3δB

gR0

α1g R0 − 1( ) β1
α1δB

gR0
− μ1 − μ2 − ω − g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

For ease of writing and derivation later, we let the elements of
matrix (35) be

K1 � gR0, K2 � δB

gR0
, K3 � −α3g R0 − 1( ), K4 � β1 + β2 + g,K5

� −α3δB
gR0

K6 � −α1g R0 − 1( ), K7 � −β1, K8

� − α1δB

gR0
− μ1 − μ2 − ω − g( ) � α3β1 μ1 + μ2 + ω + g( )

α3β1 + α1 β1 + β2 + g( )

Because R0 > 1, we have that
K1 > 0, K2 > 0, K4 > 0, K8 > 0, K3 < 0, K5 < 0, K6 < 0, K7 < 0.

Writing matrix A* as

A* �
−K1 0 −K2

−K3 −K4 −K5

−K6 −K7 −K8

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (36)

the eigenvalues satisfy the following one-dimensional
cubic equation:

λ3 + h1λ
2 + h2λ + h3 � 0, (37)

where

h1 � K1 + K4 + K8 > 0, (38)
h2 � K1K4 −K2K6 − K5K7 +K1K8 +K4K8, (39)

h3 � −K2K4K6 +K2K3K7 − K1K5K7 +K1K4K8

� K1 K4K8 −K5K7( ) +K2 K3K7 − K4K6( ). (40)

First, to determine the positive and negative solutions of Eq. 39,
recall that K6 < 0. Then, K1K4 − K2K6 +K1K8 > 0, and

K4K8 −K5K7 � − β1 + β2 + g( )
α1δB

gR0
− μ1 − μ2 − ω − g( ) − α3δBβ1

gR0

� −α1δB β1 + β2 + g( ) + β1 + β2 + g( ) μ1 + μ2 + ω + g( )gR0 − α3δBβ1
gR0

� β1 + β2 + g( ) μ1 + μ2 + ω + g( )gR0 − α3δBβ1 + α1δB β1 + β2 + g( )[ ]
gR0

� Bδ α1 β1 + β2 + g( ) + α3β1[ ] − α3δBβ1 + α1δB β1 + β2 + g( )[ ]
gR0

� Bδ − Bδ( ) α1 β1 + β2 + g( ) + α3β1[ ]
gR0

� 0.

(41)

Therefore, h2 > 0.
Second, to determine the positive and negative solutions of Eq.

40, if K3 < 0, K6 < 0, K7 < 0, then K2(K3K7 − K4K6)> 0. Thus,
based on Eq. 41, we have that h3 > 0.

From Equations 38–40, the values of h1h2 and h1h2-h3 are
respectively

h1h2 � K1
2K4 +K1K4

2 −K1K2K6 −K2K4K6 −K1K5K7 −K4K5K7

+K1
2K8 + 3K1K4K8 +K4

2K8 −K2K6K8 −K5K7K8

+K1K8
2 +K4K8

2,

(42)
h1h2 − h3 � K1

2K4 + K1K4
2 − K1K2K6 −K4K5K7 +K1

2K8

+ 2K1K4K8 +K4
2K8 − K2K6K8 −K5K7K8 + K1K8

2

+ K4K8
2 − K2K3K7

� K1
2 K4 + K8( ) + K4 + K8( ) K4K8 − K5K7( )

− K2 K3K7 +K6K8( )
+ K1 K4

2 − K2K6 + 2K4K8 +K8
2( ).

(43)
Finally, to determine the positive solutions of Eq. 43, recall that

K6 < 0 and K4K8 − K5K7 � 0. Therefore, the following must hold:

K1
2 K4 + K8( ) + K4 + K8( ) K4K8 −K5K7( )
+K1 K4

2 −K2K6 + 2K4K8 + K8
2( )> 0

The calculation of K3K7 +K6K8 is simplified as follows:
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K3K7 +K6K8 � α3g R0 − 1( )β1 + α1g R0 − 1( ) α1δB

gR0
− μ1 − μ2 − ω − g( )

� g R0 − 1( ) α3β1 +
α1

2Bδ

gR0
− α1 g + μ1 + μ2 + ω( )[ ]

� g R0 − 1( ) α3β1 α3β1 + α1 β1 + β2 − μ1 − μ2 − ω( )[ ]
α3β1 + α1 β1 + β2 + g( )

.

(44)

Because R0 > 1, α3β1+α1(β1+β2)α1
< μ1 + μ2 + ω, we have that

K3K7 +K6K8 < 0. Because K2 > 0, we have that
−K2(K3K7 +K6K8)> 0, and it follows that h1h2 − h3 > 0.

Based on the Routh–Hurwitz criterion [43], it can be
concluded that the locally asymptotically stable uncertain
information propagation equilibrium point P* lies within the
feasible domain Ω when R0 > 1, α3β1+α1(β1+β2)α1

< μ1 + μ2 + ω, which
proves Theorem 3.

Theorem 4. When R0 > 1, the uncertain information propagation
equilibrium point P* is globally asymptotically stable in the feasible
domain Ω.

Proof:We construct the Lyapunov function around the equilibrium
point P* as follows:

LP* t( ) � S t( ) − S*[ ] + E t( ) − E*[ ] + F t( ) − F*[ ] + T t( ) − T*[ ]
+ Fb t( ) − Fb*[ ] + Tb t( ) − Tb*[ ] + M t( ) −M*[ ] + R t( ) − R*[ ]{ }

2

.

(45)

Based on system (3), the derivative of the Lyapunov function
(45) at the equilibrium point P* is

LP*′ t( ) � 2
S t( ) − S*[ ] + E t( ) −E*[ ] + F t( ) −F*[ ] + T t( ) −T*[ ]
+ Fb t( ) −Fb*[ ] + Tb t( ) −Tb*[ ] + M t( ) −M*[ ] + R t( ) −R*[ ]{ }

× S′ t( ) +E′ t( ) +F′ t( ) +T′ t( ) +Fb′ t( ) +Tb′ t( ) +M′ t( ) +R′ t( )[ ]

� 2
S t( ) − S*[ ] + E t( ) −E*[ ] + F t( ) −F*[ ] + T t( ) −T*[ ]
+ Fb t( ) −Fb*[ ] + Tb t( ) −Tb*[ ] + M t( ) −M*[ ] + R t( ) −R*[ ]{ }

× B−g S+E+F+T+Fb+Tb+M+R( )[ ].
(46)

From point P* in Eq. 15, it follows that
B − g(S* + E* + F* + T* + Fb* + Tb* +M* + R*) � 0, namely, B �
g(S* + E* + F* + T* + Fb* + Tb* +M* + R*).

Therefore, Eq. 46 can be expressed as

LP*′ t( ) � 2
S t( ) − S*[ ] + E t( ) − E*[ ] + F t( ) − F*[ ]
+ T t( ) − T*[ ] + Fb t( ) − Fb*[ ] + Tb t( ) − Tb*[ ]
+ M t( ) −M*[ ] + R t( ) − R*[ ]

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

g S* + E* + F* + T* + Fb* + Tb* +M* + R*( ) − g
S + E + F + T
+Fb + Tb +M + R

( )[ ]

� −2g
S t( ) − S*[ ] + E t( ) − E*[ ] + F t( ) − F*[ ] + T t( ) − T*[ ]
+ Fb t( ) − Fb*[ ] + Tb t( ) − Tb*[ ] + M t( ) −M*[ ]
+ R t( ) − R*[ ]

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

2

≤ 0
(47)

From Eq. 47, it can be concluded that LP*′(t) � 0 only
if S(t) � S*, E(t) � E*, F(t) � F*, T(t) � T*, Fb(t) � Fb*, Tb(t) �
Tb*, M(t) � M*, R(t) � R* all hold. From system (3), the only
solution on Ω that satisfies LP*′(t) � 0 is P*. Based on the LaSalle
invariance principle [46], it can be demonstrated that the
globally asymptotically stable equilibrium point P* of uncertain

information propagation exists in the feasible domain Ω when
R0 > 1 holds, which proves Theorem 4.

3.4 Numerical simulation analysis of
equilibrium point stability

To verify the theoretical derivations, we now assign values to the
parameters and perform numerical simulations using Matlab2017b.
As these parameters cannot be obtained directly in practical cases,
we use reasonable values within the context of the situation. The
relevant parameters are assigned based on the following scenarios:

Scenario 1: To verify the local and global asymptotic stability of
equilibrium point P0 in the feasible domain Ω for R0 < 1, the
parameters are assigned as follows:

B � 1, g � 0.2, α1 � 0.2, α2 � 0.2, α3 � 0.5, α4 � 0.1, β1 � 0.2,
β2 � 0.3, μ1 � 0.4, μ2 � 0.3, η1 � 0.3, η2 � 0.3,ω � 0.6,
γ1 � 0.5, γ2 � 0.5, γ3 � 0.5, δ � 0.02

⎧⎪⎨
⎪⎩ .

(48)
Based on the parameters in (48), we have that R0 � 0.0229< 1,

which satisfies the basic assumptions of Theorems 1 and 2. To
further explore whether the initial values of the various Internet user
populations in the system impact the final stability of the
equilibrium point P0, we maintain the values in (48) and conduct
numerical simulations with different initial values. Figure 3 shows
the evolution of equilibrium point P0 over time when R0 < 1.

From Figure 3, it is evident that, regardless of the initial
proportions of the Internet population, every Internet user
eventually becomes an unknown entity. Thus, equilibrium point
P0 is asymptotically stable within the feasible domainΩwhen R0 < 1,
which is consistent with the theory.

Based on Scenario 1, we can know that in the real world, when a
major emergencies occurs in a certain place, as long as R0 < 1, the
uncertain information in the online social platform will be gradually
forgotten by the netizens over time. In this case, the relevant government
departments do not need to make additional interventions, and the
uncertain information does not affect the stability of society.

Scenario 2: To verify the local and global asymptotic stability of
equilibrium point P* in the feasible domain Ω for R0 > 1, the
parameters are assigned as follows:

B � 1, g � 0.2, α1 � 0.4, α2 � 0.15, α3 � 0.4, α4 � 0.05, β1 � 0.2,
β2 � 0.2, μ1 � 0.2, μ2 � 0.2, η1 � 0.3, η2 � 0.3,ω � 0.3, γ1 � 0.5,
γ2 � 0.5, γ3 � 0.5, δ � 0.5

⎧⎪⎨
⎪⎩ .

(49)
Based on the parameter values in (49), we have that

R0 � 1.4815> 1, which satisfies the basic assumptions of
Theorems 3 and 4. To further explore whether the initial values
of the various Internet user populations impact the final stability of
equilibrium point P*, we maintain the values in (49) and conduct
numerical simulations with different initial values. Figure 4 shows
the evolution of the equilibrium point P* when R0 > 1.

From Figure 4, it is evident that, regardless of the initial populations
of each state in the system, all users eventually become an unknown
entity. Thus, the uncertain information propagation equilibrium point
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P* is asymptotically stable within the feasible domain Ω when R0 > 1,
which is consistent with the theory.

Based on Scenario 2, we can know that in the real world, when a
major emergencies occur in a certain place, when R0 > 1, the
uncertain information in the online social platform will keep
spreading among netizens over time. In this case, if the relevant
government departments do not intervene, it will lead to the
continuous spread of panic among netizens, which will eventually
affect the stability of society.

4 Optimal control model

Based on the SEFTFbTbMR uncertain information dissemination
model, it is recommended that netizens be encouraged to clarify
uncertain information as much as possible, or to think and judge
uncertain information instead of posting random remarks; this action
will reduce the impact of uncertain information. Therefore, the
number of thinkers and clarifiers of uncertain information should
be increased. Thus, we now examine the effect of modifying the
model’s proportionality constants α2, α3, β2, and ω into control
variable functions α2(t), α3(t), β2(t), and ω(t), respectively.

The objective function is defined as follows:

J α2, α3, β2,ω( ) � ∫
tf

0

E t( ) + T t( ) − ψ1

2
α2

2 t( ) − ψ2

2
α3

2 t( ) − ψ3

2
β2

2 t( )

−ψ4

2
ω2 t( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt,

(50)

where tf is the end moment, and ψ1, ψ2, ψ3, and ψ4 are the weight
coefficients of each function.

We seek to satisfy the following system constraints:

dS

dt
� B − gS − α1δFS − α2 t( )δFS − α3 t( )δFS − α4δFS

dE

dt
� α3 t( )δFS − β1E − β2 t( )E − gE

dF

dt
� α1δFS + β1E − ω t( )F − μ1F − μ2F − gF

dT

dt
� α2 t( )δFS + β2 t( )E + ω t( )F − η1T − η2T − gT

dFb

dt
� μ1F − γ1Fb − gFb

dM

dt
� μ2F + η2T − γ2M − gM

dTb

dt
� η1T − γ3Tb − gTb

dR

dt
� γ1Fb + γ2M + γ3Tb + α4δFS − gR

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (51)

The initial conditions necessary to satisfy system (60) are

S 0( ) � S0, E 0( ) � E0, F 0( ) � F0, T 0( ) � T0,
Fb 0( ) � Fb0,M 0( ) � M0, Tb 0( ) � Tb0, R 0( ) � R0

, (52)

where

α2 t( ),α3 t( ),β2 t( ),ω t( ) ∈U ≜
α2,α3,β2,ω( )

∣∣∣∣ α2 t( ),α3 t( ),β2 t( ),ω t( )( )
measurable,
0≤α2 t( ),α3 t( ),β2 t( ),ω t( )≤1,∀t ∈ 0, tf[ ]

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭.

(53)

Theorem 5. There exists an optimal control tuple
(α2*, α3*, β2*,ω*) ∈ U such that

J α2*, α3*, β2*,ω*( ) � max J α2, α3, β2,ω( ): α2, α3, β2,ω( ) ∈ U{ }.
(54)

Proof: Set X(t) � (S(t), E(t), F(t), T(t), Fb(t), Tb(t),M(t),
R(t))T and

L t, X t( ), α2 t( ), α3 t( ), β2 t( ),ω t( )( )

� E t( ) + T t( ) − ψ1

2
α2

2 t( ) − ψ2

2
α3

2 t( ) − ψ3

2
β2

2 t( ) − ψ4

2
ω2 t( )

The existence of optimal control tuples is contingent upon
fulfilling the following criteria:

1. The set of control variables and corresponding state variables
must constitute a nonempty set.

2. The control set U must be closed and convex.
3. The right-hand side of (60) should take the form of a linear

system comprising state variables and control variables.
4. The product of the target generalization must be convex on U.
5. There is a constant k1 > 0, k2 > 0, l> 0 such that the product of

the intended generalized function satisfies

−L t, X t( ), α2, α3, β2,ω( )≥ k1 α2| |2 + α3| |2 + β2
∣∣∣∣

∣∣∣∣2 + ω| |2( ) l
2 − k2.

(55)

As conditions 1–3 are straightforward, only conditions 4 and
5 are proved.

First, it is easy to obtain inequalities based on system (51):

S′≤B, E′≤ α3 t( )δFS, F′≤ α1δFS + β1E, T′≤ α2 t( )δFS + β2 t( )E
+ ω t( )F, Fb′≤ μ1F,M′≤ μ2F + η2T, Tb′≤ η1T, R′≤ γ1Fb + γ2M

+ γ3Tb + α4δFS..

(56)

Therefore, condition 4 holds.
Second, for any t≥ 0, there exists a positive constant Z satisfying

|X(t)|≤Z. Hence,

−L t, X t( ), α2, α3, β2,ω( ) � ψ1

2
α2

2 t( ) + ψ2

2
α3

2 t( ) + ψ3

2
β2

2 t( )
+ ψ4

2
ω2 t( ) − E t( ) − T t( )

≥ k1 α2| |2 + α3| |2 + β2
∣∣∣∣

∣∣∣∣2 + ω| |2( ) l
2 − 2Z.

(57)

Setting k1 � min ψ1
2 ,

ψ2
2 ,

ψ3
2 ,

ψ4
2{ }, k2 � 2Z, l � 2, condition

5 then holds.
At this point, all optimal control tuples have been successfully

verified, proving Theorem 5.

Theorem 6. For the optimal control tuple (α2*, α3*, β2*,ω*) ∈ U
for system (51), there is an associated variable ρi(i � 1, 2, ..., 8)
such that
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dρ1
dt

� ρ1 + ρ4( )α2 t( )δF + ρ1α4δF + ρ3α1δF + ρ1F + ρ2S( )α3 t( )δ

+ρ8α4δF + ρ1g + ρ1α1δF

dρ2
dt

� 1 + ρ2 − ρ4( )β2 t( ) + ρ2 β1 + g( ) − ρ3β1

dρ3
dt

� ρ1 − ρ4( )α2 t( )δS − ρ5μ1 + ρ8α4δS + ρ1 − ρ2( )α3 t( )δS

+ρ1 −α1δS + α4δS[ ]

+ ρ3 − ρ4( )ω t( ) − ρ6μ2 + ρ3 −α1δS + μ1 + μ2 + g[ ]
dρ4
dt

� 1 − ρ7η1 − ρ6η2 + ρ4 η1 + η2 + g( )

dρ5
dt

� ρ5 γ1 + g( ) − ρ8γ1

dρ6
dt

� ρ6 γ2 + g( ) − ρ8γ2

dρ7
dt

� ρ7 γ3 + g( ) − ρ8γ3

dρ8
dt

� ρ8g,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)
with the following boundary conditions:

ρ1 tf( ) � ρ2 tf( ) � ρ3 tf( ) � ρ4 tf( ) � ρ5 tf( ) � ρ6 tf( ) � ρ7 tf( )

� ρ8 tf( ) � 0.

(59)
Furthermore, the optimal control tuple (α2*, α3*, β2*,ω*) ∈ U

for the state system can be obtained from the following equation:

α2* t( ) � min 1, max 0,
ρ1 − ρ4( )δFS

ψ1

{ }{ }

α3* t( ) � min 1, max 0,
ρ1 − ρ2( )δFS

ψ2

{ }{ }

β2* t( ) � min 1, max 0,
ρ2 − ρ4( )E

ψ3

{ }{ }

ω* t( ) � min 1, max 0,
ρ3 − ρ4( )F

ψ4

{ }{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Proof: To derive the necessary expressions for the optimal control
system and control tuple, we define a Hamiltonian function with a
penalty term, with the following expression serving as a guideline:

H � −L t,X t( ), α2 t( ), α3 t( ), β2 t( ),ω t( )( )
+ ρ1 B − gS − α1δFS − α2 t( )δFS − α3 t( )δFS − α4δFS[ ]
+ ρ7 η1T − γ3Tb − gTb[ ] + ρ2 α3 t( )δFS − β1E − β2 t( )E − gE[ ]
+ ρ6 μ2F + η2T − γ2M − gM[ ]
+ ρ3 α1δFS + β1E − ω t( )F − μ1F − μ2F − gF[ ]
+ ρ5 μ1F − γ1Fb − gFb[ ]
+ ρ4 α2 t( )δFS + β2 t( )E + ω t( )F − η1T − η2T − gT[ ]
+ ρ8 γ1Fb + γ2M + γ3Tb + α4δFS − gR[ ] − λ11α2 t( )
− λ12 1 − α2 t( )( ) − λ21α3 t( ) − λ22 1 − α3 t( )( ) − λ31β2 t( )
− λ32 1 − β2 t( )( ) − λ41ω t( ) − λ42 1 − ω t( )( ),

(61)

where the penalty term λij(t)≥ 0 satisfies λ11(t)α2(t) � λ12(t)(1 −
α2(t)) � 0 at the optimal control point for α2*, λ21(t)α3(t) � λ22(t)(1 −
α3(t)) � 0 at the optimal control point for α3*, λ31(t)β2(t) � λ32(t)(1 −
β2(t)) � 0 at the optimal control point for β2*, and λ41(t)ω(t) �
λ42(t)(1 − ω(t)) � 0 at the optimal control point for ω*.

Based on Pontryagin’s maximum principle [47], the
concomitant system can be expressed as follows:

dρ1
dt

� −∂H
∂S

,
dρ2
dt

� −∂H
∂E

,
dρ3
dt

� −∂H
∂F

,
dρ4
dt

� −∂H
∂T

,

dρ5
dt

� − ∂H
∂Fb

,
dρ6
dt

� −∂H
∂M

,
dρ7
dt

� − ∂H
∂Tb

,
dρ8
dt

� −∂H
∂R

.

(62)

The boundary conditions of this system are

ρ1 tf( ) � ρ2 tf( ) � ρ3 tf( ) � ρ4 tf( ) � ρ5 tf( ) � ρ6 tf( ) � ρ7 tf( )

� ρ8 tf( ) � 0.

(63)
The optimality conditions in terms of α2* are

∂H
∂α2*

� ψ1α2 t( ) − ρ1δFS + ρ4δFS − λ11 + λ12 � 0. (64)

Thus, the optimal control equation can be written as

α2
* � ρ1 − ρ4( )δFS

ψ1

+ λ11 − λ12. (65)

To obtain the final optimal control equation without λ11 or λ12,
the following three cases are discussed separately.

1. For t | 0< α2*(t)< 1{ }, λ11(t) � λ12(t) � 0, the optimal control
equation can be expressed as follows:

α2
* � ρ1 − ρ4( )δFS

ψ1

. (66)

2. For t|α2*(t) � 1{ }, λ11(t) � 0, the optimal control equation can
be expressed as follows:

1 � α2
* � ρ1 − ρ4( )δFS − λ12

ψ1

. (67)

Because λ12(t)≥ 0, we have that (ρ1−ρ4)δFS−λ12
ψ1

≥ 1.

3. For t|α2*(t) � 0{ }, λ12(t) � 0, the optimal control equation can
be expressed as follows:

0 � α2
* � ρ1 − ρ4( )δFS + λ11

ψ1

. (68)

Based on these three cases, the final optimal control equation for
α2*(t) can be written as

α2
* t( ) � min 1, max 0,

ρ1 − ρ4( )δFS
ψ1

{ }{ }. (69)

Similarly, the final optimal control equation for α3*(t) is

α3
* t( ) � min 1, max 0,

ρ1 − ρ2( )δFS
ψ2

{ }{ }, (70)

and that for β2*(t) is
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β2
* t( ) � min 1, max 0,

ρ2 − ρ4( )E
ψ3

{ }{ }. (71)

Finally, the optimal control equation for ω*(t) can be written as

ω* t( ) � min 1, max 0,
ρ3 − ρ4( )F

ψ4

{ }{ }. (72)

We have now obtained system (51), which includes the initial
conditions (52), and the accompanying system (58), which includes
the boundary conditions. The optimal control system can now be
expressed as follows:

dS

dt
� B − gS − α1δFS − min 1, max 0,

ρ1 − ρ4( )δFS
ψ1

{ }{ } t( )δFS

−min 1, max 0,
ρ1 − ρ2( )δFS

ψ2

{ }{ } t( )δFS − α4δFS

dE

dt
� min 1, max 0,

ρ1 − ρ2( )δFS
ψ2

{ }{ } t( )δFS − β1E

−min 1, max 0,
ρ2 − ρ4( )E

ψ3

{ }{ } t( )E − gE

dF

dt
� α1δFS + β1E − min 1, max 0,

ρ3 − ρ4( )F
ψ4

{ }{ } t( )F − μ1F − μ2F − gF

dT

dt
� min 1, max 0,

ρ1 − ρ4( )δFS
ψ1

{ }{ } t( )δFS

+min 1, max 0,
ρ2 − ρ4( )E

ψ3

{ }{ } t( )E

+min 1, max 0,
ρ3 − ρ4( )F

ψ4

{ }{ } t( )F − η1T − η2T − gT

dFb

dt
� μ1F − γ1Fb − gFb

dM

dt
� μ2F + η2T − γ2M − gM

dTb

dt
� η1T − γ3Tb − gTb

dR

dt
� γ1Fb + γ2M + γ3Tb + α4δFS − gR

dρ1
dt

� ρ1 + ρ4( )min 1, max 0,
ρ1 − ρ4( )δFS

ψ1

{ }{ } t( )δF + ρ1α4δF + ρ3α1δF

+ ρ1F + ρ2S( )min 1, max 0,
ρ1 − ρ2( )δFS

ψ2

{ }{ } t( )δ + ρ8α4δF + ρ1g + ρ1α1δF

dρ2
dt

� 1 + ρ2 − ρ4( )min 1, max 0,
ρ2 − ρ4( )E

ψ3

{ }{ } t( ) + ρ2 β1 + g( ) − ρ3β1

dρ3
dt

� ρ1 − ρ4( )min 1, max 0,
ρ1 − ρ4( )δFS

ψ1

{ }{ } t( )δS − ρ5μ1 + ρ8α4δS

+ ρ1 − ρ2( )min 1, max 0,
ρ1 − ρ2( )δFS

ψ2

{ }{ } t( )δS + ρ1 −α1δS + α4δS[ ]

+ ρ3 − ρ4( )min 1, max 0,
ρ3 − ρ4( )F

ψ4

{ }{ } t( ) − ρ6μ2 + ρ3 −α1δS + μ1 + μ2 + g[ ]

dρ4
dt

� 1 − ρ7η1 − ρ6η2 + ρ4 η1 + η2 + g( )

dρ5
dt

� ρ5 γ1 + g( ) − ρ8γ1

dρ6
dt

� ρ6 γ2 + g( ) − ρ8γ2

dρ7
dt

� ρ7 γ3 + g( ) − ρ8γ3

dρ8
dt

� ρ8g

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(73)

where

S 0( ) � S0, E 0( ) � E0, F 0( ) � F0, T 0( ) � T0, Fb 0( ) � Fb0,M 0( )
� M0, Tb 0( ) � Tb0, R 0( ) � R0ρ1 tf( ) � ρ2 tf( ) � ρ3 tf( )

� ρ4 tf( ) � ρ5 tf( ) � ρ6 tf( ) � ρ7 tf( ) � ρ8 tf( ) � 0.

(74)
This completes the proof of Theorem 6.

5 Discussion

This paper investigates the dissemination mechanism of
uncertain information triggered by major emergencies on
online social platforms. Based on the construction of the
SEFTFbTbMR model of uncertain information clarification
behavior, the optimal control strategy of the model is
proposed using the Hamiltonian function. It is known from
the analysis of the model that the size of the basic
regeneration number plays a crucial role in predicting whether
uncertain information can eventually die out. When the basic
regeneration number is < 1, uncertain information can die out
automatically over time. When the basic regeneration number
is > 1, uncertain information will always exist on the online social
platform, which can significantly disrupt society.

During major emergencies, due to limited resources for public
opinion control, uncertain information may spread unchecked on
online social platforms. This can lead to some netizens
unintentionally or intentionally becoming disseminators of such
information. Currently, government departments are responsible
for investigating and managing major emergencies. However, it may
not be possible for them to effectively control and remove all sources
of uncertain information within a short period of time. The value of
this study lies in its ability to provide theoretical support for relevant
government departments to reduce the adverse effects caused by the
propagation of uncertain information in the future. The
experimental results of this article help to deepen our
understanding of the propagation mechanism of uncertain
information among Internet users and further enrich the related
theories and methods of uncertain information
propagation research.

5.1 Sensitivity analysis of the basic
regeneration number R0

The experimental results of this paper show that the value of the
basic regeneration number determines whether uncertain
information can be disseminated in the online social platform.
The basic regeneration number R0 is jointly composed of
different parameters in the model. Therefore, this section focuses
on the influence of related parameters on the basic
regeneration number.

To analyze the influence of parameter value changes on the basic
regeneration number R0, we obtained the first-order partial
derivatives for each parameter in R0. A positive sign in the
partial derivative function indicates a positive influence of the
parameter on R0. If the sign of the partial derivative function is

Frontiers in Physics frontiersin.org15

Li et al. 10.3389/fphy.2024.1349284

31

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349284


negative, it indicates that the parameter has a negative impact on the
basic reproduction number R0.

∂R0

∂B
� δ α1 β1 + β2 + g( ) + α3β1[ ]
g β1 + β2 + g( ) g + μ1 + μ2 + ω( )

> 0 (75)

∂R0

∂δ
� B α1 β1 + β2 + g( ) + α3β1[ ]
g β1 + β2 + g( ) g + μ1 + μ2 + ω( )

> 0 (76)
∂R0

∂α1
� Bδ

g g + μ1 + μ2 + ω( )
> 0 (77)

∂R0

∂α3
� Bδβ1
g β1 + β2 + g( ) g + μ1 + μ2 + ω( )

> 0 (78)

∂R0

∂β1
� Bδα3 β2 + g( )
g β1 + β2 + g( )2 g + μ1 + μ2 + ω( )

> 0 (79)

∂R0

∂β2
� − Bδα3β1

g β1 + β2 + g( )2 g + μ1 + μ2 + ω( )
< 0 (80)

∂R0

∂g
� −

Bδ
α1 β1 + β2 + g( )2 2g + μ1 + μ2 + ω( )
+α3β1[ β1 + β2( ) 2g + μ1 + μ2 + ω( )
+g 3g + 2μ1 + 2μ2 + 2ω( )]

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

g2 β1 + β2 + g( )2 g + μ1 + μ2 + ω( )2
< 0 (81)

∂R0

∂μ1
� − Bδ α1 β1 + β2 + g( ) + α3β1[ ]

g β1 + β2 + g( ) g + μ1 + μ2 + ω( )2
< 0 (82)

∂R0

∂μ2
� − Bδ α1 β1 + β2 + g( ) + α3β1[ ]

g β1 + β2 + g( ) g + μ1 + μ2 + ω( )2
< 0 (83)

∂R0

∂ω
� − Bδ α1 β1 + β2 + g( ) + α3β1[ ]

g β1 + β2 + g( ) g + μ1 + μ2 + ω( )2
< 0 (84)

To visualize the impact of various parameter values on R0, we
used Matlab 2017b numerical simulation software. Based on the
assignment result (49), we kept the remaining parameters constant
and varied the value range of B from 1 to 5, δ from 0.1 to 1, and the
rest of the parameters from 0 to 1. We conducted numerical
simulations in groups of two by two to determine the effects of
different parameter values on R0.

Figure 5 shows that the basic regeneration number R0 increases
as parameters B and δ increase. 1) The larger the number of new
Internet users in the social platform per unit of time, the more
conducive to the spread of uncertain information. The larger the
base of Internet users, the greater the number of individuals who
may be concerned about uncertain information, and the more
likely it is that such information will become widely known. 2) The
speed at which uncertain information spreads affects its
propagation. In other words, the more Internet users on a
social platform who come into contact with the publisher of
uncertain information, the more likely it is to spread. Thus, the
spread of uncertain information can be curbed by limiting the
speech flow of certain netizens on social media platforms or
blocking specific keywords.

Figure 6 shows that the basic regeneration number R0 increases
with parameter α1 and decreases with parameter μ1. 1) When
unknown people receive uncertain information, they promote the
spread of uncertain information in social platforms if they choose to
believe in the content of the uncertain information and
spontaneously spread it. 2) Publishers of uncertain information
who receive true information on social platforms and choose not
to publish their own statements, regardless of whether they believe in

the true information or not, inhibit the spread of uncertain
information on social platforms.

Figure 7 shows that the basic regeneration number R0 increases
with parameter α3 and decreases with parameter μ2. 1) When the
unknown person receives the uncertain information, if he does not
spread the uncertain information, but keeps a wait-and-see attitude,
it will promote the spread of uncertain information in the social
platform. 2) If an uncertain information publisher receives real
information on a social platform, they may choose not to publish
their own speech, regardless of whether they believe the real
information or not. This can help inhibit the spread of uncertain
information on the platform.

Figure 8 shows that the basic regeneration number R0 increases
with an increase in parameter β1 and decreases with an increase in
parameter ω. 1) The dissemination of uncertain information in
social platforms is facilitated when the thinker still chooses to believe
in the content of the uncertain information and disseminates it after
forensically examining and thinking about the uncertain
information. 2) The spread of uncertain information on social
media is hindered when the person who originally shared the
uncertain information realizes that it is false after receiving
accurate information and decides to clarify it.

According to Figure 9, the basic regeneration number R0

decreases as parameters g and β2 increase. 1) The higher the
number of netizens exiting in the social platform per unit time,
the more conducive to suppressing the spread of uncertain
information. 2) The spread of uncertain information on social
media can be reduced when individuals recognize that the
information is false and take the time to clarify it after gathering
evidence and carefully considering the information.

5.2 Comparison with existing research on
uncertain information dissemination

This section compares the research in this paper with existing
research on uncertain information dissemination. In their study of
uncertain information dissemination [21], only distinguish between
the decision-making behavior of online media and that of Internet
users. However, they fail to consider that different Internet users
may exhibit various decision-making behaviors when faced with
uncertain information. Some may even adopt the same decision-
making behaviors as online media [24, 43]. Only considered two
decision-making behaviors of Internet users: dissemination or
thinking. However, in reality, some Internet users choose to
clarify uncertain information when faced with it, while others
maintain their behavior after contacting other Internet users. In a
previous study [46], observed this effect but did not consider that
some netizens may not immediately change their minds after
interacting with others, but rather become more thoughtful.

Compared to the studies conducted by the aforementioned
scholars on uncertain information dissemination, this paper
considers not only the fact that Internet users exhibit multiple
decision-making behaviors when faced with uncertain
information, but also that some of them choose to clarify such
information. Additionally, it acknowledges that Internet users are
influenced not only by uncertain information, but also by real
information. This paper categorizes Internet users into eight
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groups based on their decision-making behaviors during uncertain
information dissemination. The model considers both the
dissemination of uncertain information and the dissemination of
real information that clarifies uncertain information, making it
highly innovative.

5.3 Limitations and future prospects

The research presented in this paper has the following
limitations. First, in constructing the uncertain information
dissemination model, the impact of time lags on uncertain
information dissemination was not considered. In reality,
information dissemination has a certain degree of lag, and
Internet users receive uncertain information at inconsistent
times. Therefore, in future research, we will add a time lag to
our model. Second, this paper does not differentiate the
communication ability of Internet users, whereas, in reality, the
information released by opinion leaders is more likely to be trusted
by ordinary Internet users. Therefore, in the future, we will
combine complex networks with the uncertain information
dissemination model to study the propagation mechanism
based on different network structures. Finally, this study only
used Matlab for the numerical simulations, without any real data.
Therefore, in future research, we will integrate real data where
possible and simulate real cases.

6 Conclusion

This paper has described the SEFTFbTbMR uncertain
information dissemination model, which is based on the classical
SIR epidemic dynamics model. The next-generation matrix method
was used to calculate the basic regeneration number and equilibrium
points of the model, and the local stability and global stability of the
equilibrium points were theoretically analyzed according to the
Routh–Hurwitz criterion and the Lyapunov function,
respectively. The accuracy of the theoretical derivation was
verified through numerical simulations, and the sensitivity of the
basic regeneration number to various parameters was analyzed.
Finally, to reduce the influence of uncertain information, optimal
control theory was applied to the model, and a strategy was
proposed. This will further enrich the relevant theories and
methods for the propagation of uncertain information. The main
results of this study are as follows:

(1) Strengthen the supervision of social platforms to block the
dissemination of uncertain information (i.e., reduce the value
of δ in the model, and increase the values of μ1 and μ2). When
major emergencies occur, social platforms can use their own
authority to supervise related information so as to reduce the
emergence of uncertain information at the source. After
uncertain information has emerged, the flow of some
published remarks should be limited on the platform, or
certain keywords should be blocked to reduce the
dissemination rate. This suppresses the dissemination of
uncertain information.

(2) Improve the ability of internet users to determine the
authenticity of information, improve the reward and
punishment mechanism, and encourage users to participate
in the clarification of uncertain information (i.e., increase the
values of ω and β2 in the model and reduce the values of β1, α1,
and α3). Following a major emergency, the relevant
governmental departments should release the real
information related to the events in a timely manner and
provide materials to support Internet users in carrying out
independent investigations. The government should also seek
to punish Internet users who release uncertain information to
reduce its spread. Internet users who publish true information
should be rewarded so as to encourage expression of users’
own opinions and greater participation in clarifying uncertain
information.
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Single-photon-based quantum
secure protocol for the socialist
millionaires’ problem
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The socialist millionaires’ problem, emanating from the millionaires’ problem,
allows two millionaires to determine whether they happen to be equally rich
while remaining their riches undisclosed to each other. Most of the current
quantum solutions to the socialist millionaires’ problem have lower efficiency
and are theoretically feasible. In this paper, we introduce a practical quantum
secure protocol for the socialist millionaires’ problem based on single photons,
which can be easily implemented and manipulated with current technology. Our
protocol necessitates the involvement of a semi-honest third party (TP) responsible
for preparing the single-photon sequences and transmitting them to Alice who
performs Identity or Hadamard operations on the received quantum sequences via
her private inputs and the secret keys, producing new quantum sequences that are
subsequently sent to Bob. Similarly, Bob encodes his private inputs into the
received quantum sequences to produce new quantum sequences, which are
then sent to TP. By conducting single-particle measurements on the quantum
sequences received from Bob, TP can ascertain the equality of private inputs
between Alice and Bob, and subsequently communicate the comparison result to
them. To assess the feasibility, the proposed protocol is simulated on IBMQuantum
Cloud Platform. Furthermore, security analysis demonstrates that our protocol can
withstand attacks from outsiders, such as eavesdroppers, and from insider
participants attempting to grab the private input of another participant.

KEYWORDS

single photons, quantum secure protocol, the socialist millionaires’ problem, semi-
honest third party, quantum cryptography

1 Introduction

Since Bennett and Brassard [1] introduced the pioneering quantum key distribution
(QKD) protocol in 1984, leveraging the distinctive properties of quantum mechanics
instead of relying on computational complexity problems and demonstrating its
unconditional security, a multitude of quantum cryptographic protocols have since
been developed. These include quantum secret sharing [2–4], quantum secure direct
communication [5–7], and quantum key agreement [8, 9], aiming to address various
cryptographic tasks. Quantum cryptography offers significant security advantages
compared to classical cryptography, which is vulnerable to attacks from quantum
algorithms (e.g., Shor’s algorithm [10]).

In 1982, Andrew Yao [11] proposed the concept of the millionaires’ problem, with the
aim of solving the following task: two millionaires, each possessing their own wealth, seek to
ascertain the wealthier party without revealing their financial status. Boudot et al. [12]
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introduced an efficient scheme for the socialist millionaires’
problem, relying on three standard assumptions: discrete
logarithm, the Diffie–Hellman, and the Decision Diffie–Hellman.
In this problem, two millionaires aim to ascertain the equality of
their wealth. Nevertheless, as noted by Lo [13], securely evaluating
an equality function in a two-party setting is deemed impossible.
Consequently, the involvement of a third party (TP) becomes
imperative to address the millionaires’ problem. Indeed,
addressing the socialist millionaires’ problem is tantamount to
formulating a private comparison protocol for confidentially
comparing secrets. The reliability of the third party (TP) can be
categorized into three types: completely honest, semi-honest, and
dishonest. Since completely honest TP involvement in real life is
hard to find, and implementing dishonest TP is difficult, semi-
honest TP, who may misbehave but cannot collude with the
participants, is a more reasonable and widely used approach in
designing private comparison protocols up to now.

Quantum private comparison (QPC), which combines
quantum mechanics and classical private comparison, can be
used to solve the socialist millionaires’ problem that achieves the
comparison of the equality or inequality of two secrets while
ensuring the security of information transmission. The first QPC
protocol, incorporating EPR pairs and decoy photons, was
suggested by Yang et al. [14] in 2009, which allows the
equality relationship of two secrets to be determined by
involving a TP who is barred from accessing either the
comparison result or the private inputs. To conserve quantum
resources, Chen et al. [15] introduced a QPC protocol using
triplet entangled states. In this protocol, the classical message can
be divided into multiple groups, and comparison results can be
obtained even if not all data are completely compared. Lin et al.
[16] identified vulnerabilities in the protocol described in Ref.
[15], noting its susceptibility to intercept-resend attacks and
emphasizing the need for improvements. Afterward, several
QPC protocols were proposed using different quantum states
as carriers of quantum information, such as single photons [17],
Bell states [18, 19], multi-qubit entangled states [20–24], and
multi-qubit cluster states [25–28]. In addition, Ye [29] proposed
a QPC protocol using cavity quantum electrodynamics (QED),
which requires two-atom product states as carriers of quantum
information, and one two-atom product state can be utilized to
perform the equality comparison of 1 bit in each round. Chen
et al. [30] introduced a QPC protocol utilizing quantum walks on
a circle. This protocol requires a two-particle quantum walk state
and a quantum walk operator, and it can improve efficiency by
allowing private inputs to be compared all at once rather than bit
by bit. In order to compare the relationship of arbitrary single-
qubit states, Huang et al. [31] constructed a QPC protocol by
utilizing the special property of rotation encryption
and swap test.

The QPC protocols mentioned above mainly utilize low-
dimensional quantum states as carriers of quantum
information, with the classical message encoded on these
quantum states. In most quantum states, a single quantum
state can only convey 1 bit of information, limiting the
transmission efficiency of quantum states. To address the
issue, some scholars have focused on developing QPC
protocols based on high-dimensional quantum states instead

of low-dimensional quantum states since high-dimensional
quantum states can encode a greater amount of information.
In 2011, Jia et al. [32] introduced d-level GHZ states to solve the
millionaire problem. The private inputs are encoded into the
phase of the initial quantum entangled states by performing local
operations, and the phase information can be obtained by
performing collective measurements. In 2013, Yu et al. [33]
introduced d-level single particles to construct the QPC
protocol, with the aim of comparing the size relationship of
private inputs. Guo et al. [34] used entanglement swapping of
d-level Bell states to determine the equality and size relationship
of two secrets. Since the particles can be used multiple times, the
scheme has an advantage in efficiency. After that, Li and Shi [35]
proposed a QPC protocol utilizing quantum Fourier transforms,
wherein the encoding of private inputs into the phase of the
quantum state sent from the third party is employed. This
protocol achieves higher communication efficiency by
employing secret-by-secret comparisons rather than bit-by-bit
comparisons. Ji et al. [36] used (n+1)-qubit GHZ states as
quantum resources to compare the participants’ secrets, and
the requirement of quantum devices can be reduced as the
protocol only employs quantum states and quantum
measurements without the need for any entanglement
swapping and unitary operations. Wu and Zhao [37] proposed
a QPC based on d-level Bell states to determine the equality and
size relationship of two secrets.

Based on the analysis of the aforementioned protocols, it can
be deduced that QPC protocols utilizing low-dimensional
quantum states as quantum information carriers, have lower
transmission efficiency. In contrast, implementing high-
dimensional quantum states-based QPC protocols poses
challenges with current quantum technologies. In this paper,
we introduce a practical QPC protocol to address the socialist
millionaires’ problem utilizing single photons, as they are easier
to implement and manipulate with current technology. This
protocol utilizes single photons as carriers of quantum
information, with TP tasked with preparing groups of
quantum sequences and transmitting them to Alice who
performs Identity or Hadamard operations on the received
quantum sequences via her private inputs and the secret keys
to obtain new quantum sequences, which are then sent to Bob.
Similarly, Bob encodes his private inputs into the received
quantum sequences to produce new quantum sequences,
which are then sent to TP. By conducting single-particle
measurements on the quantum sequence received from Bob,
TP can ascertain the equality of private inputs between Alice
and Bob, and subsequently communicate the comparison results
to them. Two simulation experiments are conducted on IBM
Quantum Experience to showcase the feasibility of the proposed
protocol. Additionally, the incorporation of decoy photons
enables the detection of any potential eavesdropping during
the eavesdropping detection process.

The remaining sections of this paper are structured as follows:
Section 2 introduces preliminary knowledge, Section 3 outlines the
detailed steps of the proposed quantum secure protocol for the
socialist millionaires’ problem, Section 4 conducts two simulation
experiments, and Section 5 provides the corresponding analysis for
the proposed protocol. Finally, Section 6 concludes the paper.
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2 Preliminary knowledge

In this section, we will primarily introduce the Identity and
Hadamard operations, which are equivalent to two quantum
gates. In essence, a quantum gate can be represented as a
unitary matrix. When performing a quantum gate on an
n-qubit quantum state, the unitary matrix is of size 2n × 2n.
For a single photon, also known as a single qubit, the unitary
matrix is of size 2 × 2. Therefore, Identity or Hadamard
operations can be represented as a 2 × 2 unitary matrix, as
shown in the following equation.

I � 1 0
0 1

( ), H � 1�
2

√ 1 1
1 −1( ) (1)

For a single qubit, performing the Identity operation will
not change its state, while the state will change when
performing the Hadamard operation. That is
| 0〉 ↔ | + 〉, | 1〉 ↔ | − 〉.

Theorem 1. When using the Z-basis to measure | 0〉 and | 1〉
respectively, the measurement results yield | 0〉 and | 1〉
respectively with a probability of 1. However, when using
Z-basis to measure | + 〉 and | − 〉 respectively, the
measurement results yield | 0〉 and | 1〉 respectively, with an
equal probability of 0.5.

Proof. The measurement operators of Z-basis can be
represented as M0 � | 0〉〈0 | and M1 � | 1〉〈1 | , where M0 and
M1 are Hermitian matrices and satisfy the completeness equation,
that is,

I � M†
0M0 +M†

1M1 (2)

When performing themeasurement on | 0〉with the Z-basis, the
probabilities that the measurement results yield | 0〉 and | 1〉
respectively can be given by

p1 0| 〉( ) � 〈0 |M†
0M0 0| 〉 � 〈0 | 0| 〉〈0 | 0| 〉 � 1 (3)

p1 1| 〉( ) � 〈0 |M†
1M1 0| 〉 � 〈0 | 1| 〉〈1 | 0| 〉 � 0 (4)

When performing themeasurement on | 1〉with the Z-basis, the
probabilities that the measurement results yield | 0〉 and | 1〉
respectively can be given by

p2 0| 〉( ) � 〈1 |M†
0M0 1| 〉 � 〈1 | 0| 〉〈0 | 1| 〉 � 0 (5)

p2 1| 〉( ) � 〈1 |M†
1M1 1| 〉 � 〈1 | 1| 〉〈1 | 1| 〉 � 1 (6)

When performing the measurement on | + 〉 with the Z-basis,
the probabilities that the measurement results yield | 0〉 and | 1〉
respectively can be given by

p3 0| 〉( ) � 〈+ |M†
0M0 +| 〉 � 〈0 | + 〈1 |�

2
√ 0| 〉〈0 | 0| 〉 + 1| 〉�

2
√ � 1

2
(7)

p3 1| 〉( ) � 〈+ |M†
1M1 +| 〉 � 〈0 | + 〈1 |�

2
√ 1| 〉〈1 | 0| 〉 + 1| 〉�

2
√ � 1

2
(8)

When performing the measurement on | − 〉 with the Z-basis,
the probabilities that the measurement results yield | 0〉 and | 1〉
respectively can be given by

p4 0| 〉( ) � 〈− |M†
0M0 −| 〉 � 〈0 | − 〈1 |�

2
√ 0| 〉〈0 | 0| 〉 − 1| 〉�

2
√ � 1

2
(9)

p4 1| 〉( ) � 〈− |M†
1M1 −| 〉 � 〈0 | − 〈1 |�

2
√ 1| 〉〈1 | 0| 〉 − 1| 〉�

2
√ � 1

2
(10)

From Eqs 3–6, we can conclude that when using the Z-basis to
measure | 0〉 and | 1〉 respectively, the measurement results are | 0〉
and | 1〉 respectively with a probability of 1. From Eqs 7–10, we can
also conclude that when using the Z-basis to measure | + 〉 and
| − 〉 respectively, the measurement results are | 0〉 and | 1〉
respectively with the same probability of 0.5.

Theorem 2. When using the X-basis to measure | 0〉 and | 1〉
respectively, the measurement results are | + 〉 and | − 〉
respectively with an equal probability of 0.5. However, when
using the X-basis to measure | + 〉 or | − 〉 respectively, the
measurement results yield | + 〉 and | − 〉 respectively with a
probability of 1.

Proof. The measurement operators of X-basis can be
represented as M+ � | + 〉〈 + | and M− � | − 〉〈 − | , where M+
and M− are also Hermitian matrices and satisfy the completeness
equation as well, that is,

I � M†
+M+ +M†

−M− (11)

When performing the measurement on | 0〉 with the X-basis,
the probabilities that the measurement results yield | + 〉 and | − 〉
respectively can be given by

p5 +| 〉( ) � 〈0 |M†
+M+ 0| 〉 � 〈0 | +| 〉〈+ | 0| 〉 � 1

2
(12)

p5 −| 〉( ) � 〈0 |M†
−M− 0| 〉 � 〈0 | −| 〉〈− | 0| 〉 � 1

2
(13)

When performing the measurement on | 1〉 with the X-basis,
the probabilities that the measurement results yield | + 〉 and | − 〉
respectively can be given by

p6 +| 〉( ) � 〈1 |M†
+M+ 1| 〉 � 〈1 | +| 〉〈+ | 1| 〉 � 1

2
(14)

p6 −| 〉( ) � 〈1 |M†
−M− 1| 〉 � 〈1 | −| 〉〈− | 1| 〉 � 1

2
(15)

When performing the measurement on | + 〉 with the X-basis,
the probabilities that the measurement results yield | + 〉 and | − 〉
respectively can be given by

p7 +| 〉( ) � 〈+ |M†
+M+ +| 〉 � 〈+ | +| 〉〈+ | +| 〉 � 1 (16)

p7 −| 〉( ) � 〈+ |M†
−M− +| 〉 � 〈+ | −| 〉〈− | +| 〉 � 0 (17)

When performing the measurement on | − 〉 with the X-basis,
the probabilities that the measurement results yield | + 〉 and | − 〉
respectively can be given by

p8 +| 〉( ) � 〈− |M†
+M+ −| 〉 � 〈− | +| 〉〈+ | −| 〉 � 0 (18)

p8 −| 〉( ) � 〈− |M†
−M− −| 〉 � 〈− | −| 〉〈− | −| 〉 � 1 (19)

From Eqs 12–15, we can also conclude that when using the
X-basis to measure | 0〉 and | 1〉 respectively, the measurement
results are | + 〉 and | − 〉 respectively with the same probability of
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0.5. From Eqs 16–19, we can also conclude that when using the
X-basis to measure | + 〉 and | − 〉 respectively, the measurement
results are | + 〉 and | − 〉 respectively with a probability of 1.

3 Quantum secure protocol for the
socialist millionaires’ problem

The quantum secure protocol for the socialist millionaires’
problem is run between two participants, each of whom
possesses two secret inputs, A and B, respectively. The two
participants aim to determine the equality relationship between A
and B. The binary representations of A and B in FL

2 can be
represented as A′ � (a1, a2,/, aL) and B′ � (b1, b2,/, bL), where
L is the length of A′ and B′. If the length of A′ and B′ is less than L,
Alice and Bob fill in the high digit with adequate zeros. A semi-
honest third party is engaged in the preparation of the sequence of
single photons. In the entire process, TP may have access to some
immediate computation processes, but she cannot collude with any
participant. Before the protocol is executed, TP shares a secret key
TA � (ta1, ta2,/, taL) and TB � (tb1, tb2,/, tbL) between Alice
and Bob via a secure QKD protocol, respectively. Additionally, Alice
and Bob also share a secret key AB � (ab1, ab2,/, abL) using a
secure QKD protocol.

The detailed steps of the proposed protocol are described in the
following procedure.

Step 1: TP prepares λ groups of quantum sequences denoted as
S � (⊗L

i�1s1i ;⊗L
i�1s2i ;/⊗L

i�1sλi ), with each group being equivalent and
containing L photons randomly selected from
| 0〉, | 1〉, | + 〉, | − 〉{ }. Then, she prepares δ decoy photons and

inserts them into the sequence S at random positions to produce a
new sequence S′ and notes the positions of the decoy photons in S′
and each quantum state in sequence S. Finally, TP sends S′ to Alice.

Step 2:Upon receiving S′, Alice and TP perform the eavesdropping
detection to identify the presence of any eavesdropper. When TP
knows that Alice has received S′, TP securely conveys the positions
of the decoy photons and their corresponding measurement bases to
Alice through a classical channel. Subsequently, Alice measures the
decoy photons using the provided measurement bases and
communicates the measurement results back to TP. TP then
compares these results with the originally prepared δ decoy
photons. If they are different, the process is returned to Step 1.
Otherwise, they proceed with the following steps.

Step 3: Alice discards the decoy photons to get S. If
ai ⊕ tai ⊕ abi � 0, Alice applies the Identity operation to each
photon within the λ groups in S. Otherwise, Alice applies the
Hadamard operation to each photon within the λ groups in S.
Let the resultant sequence be SA. To detect the eavesdropper, Alice
adds δ decoy photons into SA to produce a fresh sequence S′A , which
is then sent to Bob.

Step 4: Upon receiving S′A, Alice and Bob perform the eavesdropping
detection in the samemanner as TP. If no eavesdropper is detected, Bob
removes the decoy photons from S′A to get SA. If bi ⊕ tbi ⊕ abi � 0, Bob
performs the Identity operation. Otherwise, Bob performs the

Hadamard operation. Let the resultant sequence be SB. To prevent
eavesdropping, Bob adds δ decoy photons into SB to produce a fresh
sequence S′B, which is then sent to TP.

Step 5: Upon receiving S′B, TP interacts with Bob in the same
manner as Alice and Bob to check whether the eavesdropper exists.
If not, TP gets SB by removing the decoy photons from S′B. In the
following, TP applies the Identity or Hadamard operation to each
photon within the λ groups in SB to produce a new sequence STP. If
tai ⊕ tbi � 0, TP performs the Identity operation. Otherwise, TP
performs the Hadamard operation. TP measures each photon of the
λ groups in STP with themeasurement basis determined by the initial
prepared quantum state in S to get the measurement results. If the
photon stays in | 0〉 or | 1〉, the measurement basis is the Z-basis,
Otherwise, the measurement basis is the X-basis.

Step 6: TP communicates the comparison results to both Alice and
Bob. If all measurement results in STP are the same as the initially
prepared quantum state in S, A and B are identical. Otherwise, A and
B are different.

4 Simulation experiments

Since single photons are easier to implement and manipulate
compared to low-dimensional and high-dimensional quantum
states, we simulate the aforementioned protocol on IBM
Quantum Experience using two concrete examples to
demonstrate its feasibility and correctness. The specifics of two
simulation experiments are outlined below.

4.1 Simulation I. Alice and Bob desire to
compare their private inputs, with A = 12 and
B = 12, respectively

A and B can be denoted as A′ � 1100 and B′ � 1100 in the form
of binary representations in FL

2 . For the sake of simplicity, any
eavesdropping or attacks will not be considered in the simulation
experiments. We assume that TP shares the secret keys TA � 1011
and TB � 1001 respectively, and then Alice and Bob also share a
secret key AB � 1101.

Suppose that the initial quantum sequence prepared by TP is
S � | 0〉, | 1〉, | + 〉, | − 〉{ }. After that, Alice performs the
operators H, I, H, I{ } on each photon of S to get SA �
H | 0〉, I | 1〉, H | + 〉, I | − 〉{ } and then she sends SA to Bob. In
the same way, Bob performs the operator H, I, I, I{ } on each
photon of SA to get SB � HH | 0〉, II | 1〉, IH | + 〉, II | − 〉{ } and
then she sends SB to TP. Finally, TP performs the operators
I, I, H, I{ } on each photon of SB to get STP �
IHH | 0〉, III | 1〉, HIH | + 〉, III | − 〉{ } � | 0〉, | 1〉, | + 〉, | − 〉{ }
and then measures STP with the measurement bases determined
by the initially prepared quantum state in S to get the
measurement results. That is, TP measures STP with basis
Z, Z, X, X{ } to get the measurement results denoted as
| 0〉, | 1〉, | + 〉, | − 〉{ }. Therefore, we can see that all

measurement results are the same as the initially prepared
quantum state, indicating that A and B are identical.
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The quantum circuit for Case I is depicted in Figure 1. By
executing the quantum circuit on IBM Quantum Experience, we
can obtain the measurement results shown in Figure 2. In
Figure 2, the string on the horizontal axis represents the
measurement outcome, corresponding to q [0]-q [3] from
right to left. The value on the vertical axis represents the
quasiprobability. It is important to note that both the
measurement bases selected in q [2] and q [3] are the X basis,
and the measurement outcome 1 and 0 are considered as | + 〉
and | − 〉 respectively. From Figure 2, we can see that the final
measurement outcome is | 0〉, | 1〉, | + 〉, | − 〉{ }, which is the

same as the initial prepared quantum state. This indicates that
A and B are identical.

4.2 Simulation II. Alice and Bob desire to
compare their private inputs, with A = 55 and
B = 22, respectively

A and B can be represented as A′ � 110111 and B′ � 10110 in
the form of binary representations in FL

2 . Suppose that L = 6, we can
see that the length of B′ is less than L, Bob will fill in the necessary 0s

FIGURE 1
The quantum circuit of Simulation I.

FIGURE 2
The measurement outcome in Figure 1.
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at the higher digits and thus B′ � 010110. We assume that TP shares
the secret keys TA � 101011 and TB � 100101 between Alice and
Bob, respectively, and Alice and Bob also share a secret key AB �
101101.

Suppose that the initial quantum sequence prepared by
TP is S � | + 〉, | 1〉, | 0〉, | + 〉, | − 〉, | 1〉{ }. Afterward, Alice
performs the operators H,H, I, I, I,H{ } on each photon of S to
get SA � H | + 〉, H | 1〉, I | 0〉, I | + 〉, I | − 〉, H | 1〉{ } , which is then
sent to Bob. In the same way, Bob performs the operators
I,H,H,H,H, I{ } on each photon of SA to get
SB � IH | + 〉, HH | 1〉, HI | 0〉, HI | + 〉, HI | − 〉, IH | 1〉{ }, which
is then sent to TP. Finally, TP performs the operators
I, I, H, H,H, I{ } on each photon of SB to get STP �
IIH | + 〉, IHH | 1〉, HHI | 0〉, HHI | + 〉, HHI | − 〉, IIH | 1〉{ } �
| 0〉, | 1〉, | 0〉, | + 〉, | − 〉, | − 〉{ } and then TP measures STP

using the measurement bases determined by the initially
prepared quantum state in S to obtain the measurement
results. That is, TP measures STP with basis X, Z, Z, X, X, Z{ }
to get the measurement results denoted as
| + 〉or | − 〉, | 1〉, | 0〉, | + 〉, | − 〉, | 0〉 or | 1〉{ }. Therefore, we

can see that not all measurement results are the same as the
initially prepared quantum state, indicating that A and B
are different.

The quantum circuit for Case II is depicted in Figure 3. By
executing the quantum circuit on IBMQuantum Experience, we can
obtain the measurement results shown in Figure 4. It is important to

note that the measurement basis selected in q [0], q [3], and q [4]
are all based on the X basis. The measurement outcome
1 and 0 can be considered as | + 〉 and | − 〉 respectively.
From Figure 2, we can see that the measurement
outcome is | + 〉or | − 〉, | 1〉, | 0〉, | + 〉, | − 〉, | 0〉 or | 1〉{ },
which corresponds to the measurement outcome q [0]-q [5]
from right to left. Since the measurement outcome is not the
same as the initial quantum state, A and B are different.

5 Analysis

5.1 Correctness analysis

In the proposed protocol, TP prepares λ groups of quantum
sequences denoted as S � (⊗L

i�1s1i ;⊗L
i�1s2i ;/⊗L

i�1sλi ), which is sent to
Alice. Then, Alice applies the Identity or Hadamard operation to
each photon within the λ groups in STP according to her private
inputs and the secret keys. Thus, we can get

SA � ⊗L
i�1 IorH( )s1i ;⊗L

i�1 IorH( )s2i ;/⊗L
i�1 IorH( )sλi( ) (20)

After that, SA is sent to Bob. Bob also applies the Identity or
Hadamard operation to each photon within the λ groups in SA
according to her private inputs and the secret keys. Thus, we can
also get

FIGURE 3
The quantum circuit of Simulation II.
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SB � ⊗L
i�1 IorH( ) IorH( )s1i ;⊗L

i�1 IorH( ) IorH( )s2i ;/⊗L
i�1 IorH( ) IorH( )sλi( )

(21)

After that, SB is sent to TP. TP also applies the Identity or
Hadamard operation to each photon within the λ groups in SB to
produce a new sequence STP. If tai ⊕ tbi � 0, Bob performs the
Identity operation. Otherwise, Bob performs the
Hadamard operation.

There are four cases that should be considered.
Case I: If ai � 0 and bi � 0, then

STP � ⊗L
i�1s

1
i ;⊗

L
i�1s

2
i ;/⊗L

i�1s
λ
i( ) (22)

When TP measures each group of quantum states in STP with
the measurement bases determined by the initially prepared
quantum state in S. We can easily observe that all the ith qubits
in each group of STP are the same as the initially prepared ith qubits
in each group of S, indicating that A and B are identical.

Case II: If ai � 1 and bi � 0, then

STP � ⊗L
i�1Hs1i ;⊗

L
i�1Hs2i ;/⊗L

i�1Hsλi( ) (23)

When TP measures each group of quantum states in STP with
the measurement bases determined by the initially prepared
quantum state in S. It is easy to see that not all the ith qubits in
each group of STP are the same as the initially prepared ith qubits in
each group of S, indicating that A and B are not identical.

Case III: If ai � 0 and bi � 1, then

STP � ⊗L
i�1Hs1i ;⊗

L
i�1Hs2i ;/⊗L

i�1Hsλi( ) (24)

We can see that STP in Case III is the same as in the Case II, and
thus we can deduce that A and B are not identical.

Case IV: If ai � 1 and bi � 1, then

STP � ⊗L
i�1s

1
i ;⊗

L
i�1s

2
i ;/⊗L

i�1s
λ
i( ) (25)

Similarly, we can also observe that STP in Case VI is the same as
in Case I, and thus we can deduce that A and B are not identical.

Therefore, the above results reveal that our protocol is correct.

5.2 Security analysis

5.2.1 External attacks
External attacks involve an outsider eavesdropper, Eve, who may

attempt to obtain valuable information about Alice’s or Bob’s private
inputs during the transmission of the quantum sequence between the
participants. Unfortunately, decoy photons are used during the
transmission of each quantum sequence. Both the sender and receiver
of the quantum sequences will perform the eavesdropping detection to
verify the presence of any eavesdropper. This technique guarantees the
security of the quantum sequence transmission, and any external attacks
including intercept-resend attack, auxiliary particle attack, the man-in-
the-middle attack and denial-of-service (Dos) attacks are invalid. In this
context, we primarily delve into the security aspects of the proposed
protocol concerning intercept-resend attacks, entanglement-measure
attacks, and Trojan-Horse attacks in detail.

5.2.1.1 The intercept-resend attack
The intercept-resend attack refers to the outsider eavesdropper,

Eve, intercepting the sequence sent from the previous participant
during the transmission of each quantum sequence. Once Eve
obtains the quantum sequence that carries the private inputs, she
has the option to measure them using the Z-basis and send a fake
sequence whose states match the measurement results instead of the
initial quantum sequences to the original receiver. We assume that
when a sender’s initial quantum state is | 0〉 or | 1〉, and Eve
intercepts and measures it with the Z-basis, she will evade
eavesdropping detection. If Eve measures it using the X-basis, she
will successfully evade eavesdropping detection with a probability of

FIGURE 4
The measurement outcome in Figure 3.
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1/2. For any selected decoy photon, the probability that Eve can
correctly choose the measurement basis is 1/2. Therefore, the error
rate of a decoy state that Eve introduced in the eavesdropping
detection is (1 − 1

2 × 1 − 1
2 ×

1
2) � 1

4. Since the number of decoy
photons is δ, the probability of detecting the decoy states that
Eve resends incorrectly is 1 − (34)

δ
. It is important to note that if

δ is sufficiently large, the error rate introduced by Eve in the
eavesdropping detection will approach 1, indicating that Eve’s
eavesdropping will be detected by the sender and the receiver,
and the entire protocol process will need to be restarted.
Therefore, the intercept-resend attack carried out by Eve is
invalid, and her attempts to pilfer any valuable information
regarding Alice’s or Bob’s private inputs prove futile.

5.2.1.2 The entanglement-measure attack
The entanglement-measure attack involves an outsider

eavesdropper, Eve, intercepting the sequence sent from the
previous participant during the transmission of each quantum
sequence. She then performs unitary operations to entangle the
prepared auxiliary particle sequence E � |E0〉, |E1〉,/, |En〉{ }
with the intercepted single-photon sequence. And the unitary
operations performed on each single photon can be denoted as

U Ei| 〉 0| 〉 � a e00| 〉 0| 〉 + b e01| 〉 1| 〉 (26)
U Ei| 〉 1| 〉 � c e10| 〉 0| 〉 + d e11| 〉 1| 〉 (27)

U Ei| 〉 +| 〉 � U Ei| 〉 ⊗
0| 〉 + 1| 〉�

2
√

� 1�
2

√ a e00| 〉 0| 〉 + b e01| 〉 1| 〉 + c e10| 〉 0| 〉 + d e11| 〉 1| 〉( )

� 1�
2

√
a e00| 〉 ⊗

+| 〉 + −| 〉�
2

√ + b e01| 〉 ⊗
+| 〉 − −| 〉�

2
√

+c e10| 〉 ⊗
+| 〉 + −| 〉�

2
√ + d e11| 〉 ⊗

+| 〉 − −| 〉�
2

√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
2

+| 〉 a e00| 〉 + b e01| 〉 + c e10| 〉 + d e11| 〉( )
+ −| 〉 a e00| 〉 − b e01| 〉 + c e10| 〉 − d e11| 〉( )

⎡⎣ ⎤⎦

(28)
U Ei| 〉 −| 〉 � U Ei| 〉 ⊗

0| 〉 − 1| 〉�
2

√

� 1�
2

√ a e00| 〉 0| 〉 + b e01| 〉 1| 〉 − c e10| 〉 0| 〉 − d e11| 〉 1| 〉( )

� 1�
2

√
a e00| 〉 ⊗

+| 〉 + −| 〉�
2

√ + b e01| 〉 ⊗
+| 〉 − −| 〉�

2
√

−c e10| 〉 ⊗
+| 〉 + −| 〉�

2
√ − d e11| 〉 ⊗

+| 〉 − −| 〉�
2

√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1
2

+| 〉 a e00| 〉 + b e01| 〉 − c e10| 〉 − d e11| 〉( )
+ −| 〉 a e00| 〉 − b e01| 〉 − c e10| 〉 + d e11| 〉( )

⎡⎣ ⎤⎦

(29)
| e00〉, | e01〉, | e10〉, | e11〉{ } are four pure quantum states that are

determined by the unitary operations U, and they satisfy the
following condition.

∑
α,β

〈eα,β
∣∣∣∣eα,β〉 � 1 (30)

Moreover, the parameters a, b, c, and d satisfy the condition, e.g.,
|a|2 + |b|2 � 1 and |c|2 + |d|2 � 1. In the proposed protocol, the

eavesdropping detection is performed between each transmission
of the quantum sequence. If the decoy photon is in state | 0〉 or | 1〉
and Eve wants to avoid detection, the parameters b and cmust satisfy
b � c � 0. Similarly, if the decoy photon is in state | + 〉 or | − 〉 and
Eve wants to avoid detection, then a | e00〉 − b | e01〉 + c | e10〉 −
d | e11〉 � �0 and a | e00〉 + b | e01〉 − c | e10〉 − d | e11〉 � �0. Therefore,
we can easily deduce that

a e00| 〉 � d e11| 〉 (31)
When Substituting Eq. 31 and b � c � 0 into Eqs 26–29, we

can get

U Ei| 〉 0| 〉 � a e00| 〉 0| 〉 (32)
U Ei| 〉 1| 〉 � a e00| 〉 1| 〉 (33)
U Ei| 〉 +| 〉 � a e00| 〉 +| 〉 (34)
U Ei| 〉 −| 〉 � a e00| 〉 −| 〉 (35)

From Eqs 32–35, we can easily see that the auxiliary particles are
not related to the intercepted ones. No matter what the intercept
particles are, the auxiliary particles will always be in | e00〉. As a
result, Eve will fail to evade eavesdropping detection by performing
the entanglement-measure attack, and her attempts to pilfer any
valuable information regarding Alice’s or Bob’s private inputs also
prove futile.

5.2.1.3 The Trojan-Horse attacks
The Trojan-Horse attacks [38] mainly include the delay-photon

attack and the invisible photon eavesdropping attack. These attacks
may occur in a two-way communication protocol where quantum
states are returned to the sender. Since our protocol is a two-way
communication protocol, the initial quantum sequence prepared by
TP is returned to TP and the quantum sequence is transmitted in a
circular mode. Therefore, the Trojan-Horse attacks should be
considered. In order to prevent these attacks, both the
Wavelength Quantum Filter (WQF) and the Photons Number
Splitter (PNS) should be equipped to remove invisible photons
and separate legitimate photons from delayed photons, respectively.

5.2.2 Participants’ attack
Since the participants have the legal capacity to access more

information compared to an outside eavesdropper, the dishonest
individual has a high probability of obtaining the private input of the
dishonest participant without being detected. Therefore,
participants’ attack as high security risk should be prevented by
taking appropriate measures. Here, we analyze three types of attacks
by participants that are aimed at obtaining the private input of the
participants.

5.2.2.1 The attack from TP
As a semi-honest party, TP may exhibit improper behavior, but

she cannot collude with either Alice or Bob. If TP intends to usurp
the private input of Alice or Bob, she may perform external attacks
similar to Eve. Unfortunately, this action will be detected, as
discussed in Section 5.2.1, and TP cannot avoid detection by
eavesdropping. Although TP has some advantages in generating
the initial quantum sequences used for information transmission
and receiving the sequences encoded with private inputs and secret
keys, TP can only gain knowledge about the comparison result. In
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other words, TP is able to determine whether a bit of Alice and Bob is
identical or not, but it will not disclose whether the bit of Alice or
Bob is 0 or 1. In addition, both SA and SB are encoded with the
private inputs and the secret keys shared, TP remains unable to
access any information regarding the private inputs of Alice and Bob
without knowledge of the key AB. Therefore, the proposed protocol
is resistant to TP’s attack.

5.2.2.2 The attack from Alice
When TP sends S to Alice, Alice can intercept and measure it

directly. And then she sends carefully prepared quantum sequences
denoted as SA″ to Bob. When Bob applies the Identity or Hadamard
operation to each photon within SA″ via his private inputs and the
secret keys to obtain new quantum sequences denoted as SB′, which
is sent to TP. Afterward, Alice launches the intercept-resend attack
on SB′ that Bob sends to TP. In other words, Alice can intercept SB′
and send a fake sequence SB″ to TP. Once TP receives the counterfeit
sequence SB″, Bob will convey the positions of the decoy photons
and their corresponding measurement bases. Simultaneously, Alice
is aware of the positions of the decoy photons in SB″ and she can
discard them. Then Alice measures the remaining particles in SB″ to
obtain the measurement result. Although this attack can be
identified through the eavesdropping detection mechanism, Alice

has already obtained the final states, allowing her to deduce the
operations that Bob performs. However, Bob’s actions are influenced
by his private inputs and the confidential key TB shared exclusively
between TP and Bob. Alice remains unable to access any
information regarding Bob’s secrets without knowledge of the
key TB.

5.2.2.3 The attack from Bob
When Alice sends SA to Bob, Bob can measure each particle in

SA directly and obtain the measurement result. Bob can also infer
which operations that Alice performs. However, this attack will not
work. Firstly, the sequence S prepared by TP will not be disclosed to
Bob due to the simi-honesty of TP. Once Bob intends to know S by
performing outside attacks just like Eve does, he will be detected in
the eavesdropping detection. In addition, SA is encoded with the
private inputs of Alice and the secret key TA shared between TP and
Alice, and Alice also remains unable to access any information
regarding Alice’s secrets without knowledge of the key TA.

In summary, the proposed protocol remains resilient against
attacks from the participants, ensuring that the secrets of both Alice
and Bob are not compromised.

5.3 Efficiency analysis and comparison

In most of QPC protocol, the qubit efficiency is an important
indicator for evaluating the utilization rate of quantum states. However,
it does not take into account the decoy photons used in eavesdropping
detection, which can be considered as an independent process.

The qubit efficiency [39] ηe is given by

ηe �
ηc
ηt

(36)

Where ηc represents the total number of bits that Alice and Bob
want to compare, and ηt represents the total number of qubits used,
excluding the decoy photons. In our protocol, L-length classical-bit
information needs to be encoded using λL single photons as the
information carriers to encode them. Therefore, the qubit efficiency
of the proposed protocol is ηe � 1

λ, where λ represents the number of
repetitively prepared quantum sequences.

Next, we will discuss the value of E(λ), which represents the
average number of times the quantum sequences are repetitively
prepared. In Section 5.1, we can conclude that for all ith qubits in
each group of quantum states in STP, the measurement result of STP

FIGURE 5
The relationship between L and E(λ).

TABLE 1 Comparison among some typical two-party QPC protocols.

[14] [15] [17] [18] [28] Ours

Quantum state used EPR pairs GHZ state Single photons Bell states Five-particle cluster state Single photons

Quantum measurement Bell-basis Single-particle Single-particle GHZ-basis Single-particle Single-particle

Entanglement swapping No No No Yes Yes No

Unitary operation Yes Yes Yes No Yes Yes

QKD used No No Yes Yes No Yes

Qubit efficiency 25% 33% 25% 50% 40% [50%, 100%)
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is the same as the initial prepared quantum state S if and only if
ai � 0 and bi � 0 as well as ai � 1 and bi � 1. Therefore, the
probability that the measurement result matches the initial
prepared quantum state for a qubit is 1

2. We denote the
measurement result of one qubit being different from the initially
prepared quantum state as Situation I. For a L-length sequence, the
probability of Situation I appearing once is 1 − (12)L. How many
times should TP prepare the initial quantum state to make Situation
I appear once?We denote X as the event. Suppose that in Situation I,
when preparing λ groups of quantum sequences, the distribution of
X is denoted as

P X � λ( ) � 1
2

( )
L

( )
λ−1

1 − 1
2

( )
L

( ) (37)

E(λ) can be calculated as

E λ( ) � ∑
∞

λ�1
λP X � λ( ) � ∑

∞

λ�1
λ

1
2

( )
L

( )
λ−1

1 − 1
2

( )
L

( )

�
1 − 1

2
( )

L

( )

1
2

( )
L lim

n ����→∞∑
n

λ�1
λ

1
2

( )
L

( )
λ

� 1

1 − 1
2

( )
L

(38)

When L is large, we can obtain (12)L → 0 and E(λ) → 1. The
relationship between E(λ) and L can be seen in Figure 5. From Fig.8,
it is evident that E(λ) � 2 when L � 1, and E(λ) � 1.001 when
L � 10. Meanwhile, as L gradually increases, E(λ) approaches 1.
Therefore, the value of E(λ) � (1, 2], and ηe � 1

E(λ) � [0.5, 1).
Table 1 illustrates a comparison between the proposed protocol

and previous two-party QPC protocols.
Table 1 reveals that our protocol utilizes single photons as

carriers of quantum information, which is more feasible than Bell
states and multi-particle states. Although both Ref. [17] and our
protocol utilize single photons as quantum resources, the qubit
efficiency in Ref. [17] is only 25%, which is lower with our
protocol with the qubit efficiency of [0.5, 1). Additionally, our
protocol only utilizes unitary operations, which are relatively
easier to implement compared to the entanglement swapping
technology. The QKD technology does not used in Refs. [14, 15,
28] to share the secret key, but it is performed before the protocol
begins and its cost can be ignored. Therefore, our protocol is
more practical and efficient compared to the previous protocols
[14, 15, 17, 18, 28].

6 Conclusion

A single-photon-based quantum secure protocol for the socialist
millionaires’ problem is presented in this article. By utilizing single
photons as quantum information carriers, encoding the private input
through Identity or Hadamard operations, and obtaining the classical

outcome via single-particle measurement, the protocol is easier to
implement and manipulate compared to other existing protocols. By
executing the protocol, TP can ascertain the equality of Alice and Bob’s
private inputs and subsequently communicates the result to them.
Furthermore, the protocol’s feasibility is tested through simulation on
IBMQuantumCloud Platform. Security analysis demonstrates that any
attempt by eavesdroppers or insider parties to grab the private input of
another participant is invalid. Currently, the quantum protocols for the
socialist millionaires’ problem are primarily designed assuming that all
users, including TP, have complete quantum capabilities. In the future,
we aim to investigate the development of a quantum protocol that
accommodates classical users who can only reflect or measure the
received quantum states.
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Introduction: Internet of things (IoT) compose of million of devices connected
together over the internet. IoT plays a vital role now a days and especially in
future, themost of themonitoring and data collection. The data should be secure
while collection and as well in the process of transferring till the destination
whether Service Organization Control (SOC) or to cloud for storage. In this paper,
a secure IoT based intelligent monitoring system is proposed.

Methods: An intelligent IoT station that interacts via cellular connection to relay
data to the cloud is constructed using the Waspmote platform. The algorithm is
injected to automatically filter and only keep the new data for transfer to avoid
redundancy. The advanced encryption standard (AES) 256-bit method is enabled
for onboard data encryption and then the generated cipher text is transmitted.
The encrypted data is then stored over the cloud to ensure privacy. Moreover, the
mobile application (mApp) is developed to be installed on handheld devices for
calling the secure data from the cloud, decrypting it, and displaying it as per user
input, whether real-time or historical.

Results andDiscussion: The encryption algortihmhelps in securing the proposed
monitoring system from brute force, man in the middle, phishing, spoofing, and
denial of service (DoS) attacks. The results of the real testbed experimentation
demonstrate the complexity evaluation and reliability of IoT monitoring systems
with end-to-end data security in terms of encryption algorithm delay and data
rate, respectively.

KEYWORDS

cloud, eHealthcare, intelligent, IoT, privacy, security, smart cities, smart grid

1 Introduction

The Internet of Things (IoT), which is widely used in daily life, is built by any device that
has been enabled with internet protocol (IP) and can establish communication through the
Internet. The cellular networks further boost this IoT technology that eventually enables the
smart city concept [1]. The IoT is predicted to grow at an exponential rate by 2023, with
approximately 30 billion linked devices. This equates to more than three gadgets for every
person on Earth, and given recent events that have resulted in a more dramatic surge in
online engagement, this number is likely to be substantially higher [2].The IoT has become
more important in mobility, monitoring technologies, and modern data communication.

OPEN ACCESS

EDITED BY

Amin Ul Haq,
University of Electronic Science and
Technology of China, China

REVIEWED BY

G. Palai,
Gandhi Institute For Technological
Advancement, India
Riaz Ullah Khan,
University of Electronic Science and
Technology of China, China
Jalaluddin Khan,
KL University, India

*CORRESPONDENCE

Ridha Ouni,
rouni@ksu.edu.sa

RECEIVED 17 December 2023
ACCEPTED 06 February 2024
PUBLISHED 07 March 2024

CITATION

Saleem K, Zinou MF, Mohammad F, Ouni R,
Elhendi AZ and Almuhtadi J (2024), End-to-end
security enabled intelligent remote IoT
monitoring system.
Front. Phys. 12:1357209.
doi: 10.3389/fphy.2024.1357209

COPYRIGHT

© 2024 Saleem, Zinou, Mohammad, Ouni,
Elhendi and Almuhtadi. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 07 March 2024
DOI 10.3389/fphy.2024.1357209

46

https://www.frontiersin.org/articles/10.3389/fphy.2024.1357209/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1357209/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1357209/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1357209&domain=pdf&date_stamp=2024-03-07
mailto:rouni@ksu.edu.sa
mailto:rouni@ksu.edu.sa
https://doi.org/10.3389/fphy.2024.1357209
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1357209


Everyday things may now connect to the Internet and communicate
with each other thanks to IoT. IoT allows for the interoperability of a
large number of applications and devices [3,4]. Security, throughput,
large-scale connection, and ultra-reliability are all new criteria to
evaluate the performance of IoT. Cellular networks play a critical
role in enabling IoT by connecting and supporting communication
of a large number of things via the Internet [5,6].

Several studies have investigated issues including scalability,
availability, mobility, reliability, and flexibility [7]. Mobility
management, interoperability of hybrid networks, and large
network volumes are all design considerations for Internet
Protocol version 6 (IPv6). In IoT devices, for real-time routing
with IPv6, the Routing Protocols for Low-Power and Lossy
Networks (RPL) were introduced to communicate over the
Internet directly, without packet translation. However, because of
the limited IoT node resources, an algorithm with high complexity is
not a good option [8] and therefore requires some intelligent
mechanisms.

Furthermore, the massive mobile interconnectivity, the IP-based
open architecture, the cloud, the dynamic heterogeneity device
kinds, and the diversity of the underlying access network
technologies that employ information sharing and data pre-
processing, together raise security concerns [5,9,10]. The
immense use of these systems at Gb/s causes a lot of problems.
Because of the gigantic complexity of large-scale security, data
privacy and IoT deployment are the most important concerns,
particularly for vital applications [11,12].

In order to provide remote monitoring with end-to-end security
and user privacy, this article provides a useful IoT station-based
monitoring system that is equipped with data encryption. Starting
from reviewing the related literature and analyzing the issues to decide
and choose the best possible options such as routing protocol, cloud
setup, and encryption algorithm according to the components’
limitations. Furthermore, various circumstances have distinct
libraries and technical information accessible. As a result, there are
several stages involved in the reconfigurations: Waspmote scripting,
server configuration handling HTML pages, data transmission over
UDP, and, last but not least, mApp development. The Waspmote
IoT device consists of a smart city board equipped with temperature,
humidity, Carbone Monoxide – CO, and Carbon dioxide – CO2
sensors. The miniaturized IoT station encrypts every communication
before sending it to the cloud and gathering sensor readings in real
time. The encrypted data is kept on the cloud and accessed on the
portable device using an iOS native app. Themain contribution of this
paper includes:

• Propose a secure intelligent IoT monitoring system by
integrating multiple devices and flashing them with
developed program.

• Enable system with most simplest end-to-end security
architecture starting from the IoT device to the user side.

• Develop a mobile application to call, decrypt, and show the
real time and/or historical data.

• Conduct real-life scenario experiments to check the complete
system reliability.

The proposed system could help in many different scenarios, for
example, it can be linked with smart home accessories to control the

air conditioner temperature to reduce energy consumption and
assist the smart grid. Knowing the air quality in the user house is
another benefit of the system. Moreover, it could be installed in
different locations across the city to measure air quality which
enables smart cities to help in multiple health situations such as
people with respiratory disease. The rest of the paper is organized as
follows. Section 2 presents a background of IoT applications and
reviews some related work. Section 3 describes the methodology of
designing a secure intelligent IoT monitoring system. The
implementation and results are presented in Section 4. Finally,
Section 5 concludes this paper with future work.

2 Literature review

As our world becomes more linked, new IoT applications are
appearing in every industry, whether large or small. 5G also plays a
crucial role in enabling new IoT capabilities [6]. We have a unique
vantage point as a major provider of storage solutions from
endpoints to edge devices through the core because storage is a
critical component in enabling various IoT use cases. We’ll go over
some of the current IoT application cases in this article
as follows [13].

Smart Cities: Parking, Transportation, Energy [7], and More:
Creating smarter, more efficient cities is one of the most exciting IoT
use cases [10]. Healthcare: Whether it is a mobile device gathering
patient information at an emergency room, or an on-body
monitoring system for continuous glucose, IoT devices at the
edge are transforming patients’ healthcare experiences.
Autonomous and Connected Vehicles: Vehicles will eventually
achieve Level 5 autonomy and drive autonomously without the
need for human intervention. To achieve this, almost 1 terabyte of
data will be stored onboard soon, with the number rising to 2+
terabytes in the next decade. Smart Agriculture: Farmers today are
harnessing the potential of the Internet of Things to streamline their
operations. Connected technology can track animals while they
graze in open pastures as the usage of free-range livestock grows
more widespread. Smart sensors can also be used in irrigation
systems to save water by ensuring the proper moisture level in
the soil for a certain crop [14]. AR/VR: Augmented reality (AR) and
virtual reality (VR) are gaining popularity in a variety of industries,
including entertainment, commerce, gaming, and medical
procedures, to provide “extended reality” experiences. Wearables,
Fitness Trackers, and Smart Watches: The wearables business is
booming, thanks to an infusion of new personal devices.

Indeed, according to a recent analysis, the sector is predicted to
reach 520.1 million units by 2025, up from 181.5 million units in
2019, representing a 19.9% CAGR over the projection period
(2020–2025). Companion Robots: Companion robots are an IoT
use case that has emerged in tandem with the 2020 pandemic.
Proposed secure intelligent IoT monitoring system. Many of the
researchers used machine learning and deep learning algorithms on
the server or the where the computing is perform tomake the system
optimized. For example, in [15] presents a new methodology that
uses state-of-the-art predictive models like Artificial Neural
Network and Blockchain-based traceable mechanisms to prevent
the spread of new variants of COVID-19 based on a Blockchain-
based traceable model that tracks and traces. Another [16] outlines a
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novel approach to statistically analyze the current state of affairs and
predict COVID-19 breakouts in the future. The technique analyzes
the present state of affairs in nations all around the world using
weekly mobility data. To create a prediction framework, the
approach is assessed using a multi-layer perceptron neural
network (MLPNN), a deep learning model. Cronbach's alpha, the
Case Fatality Ratio (CFR), and other measures were calculated to
assess the forecasting's success.

Several approaches have been discussed in the literature for
efficient monitoring. The devices have a linkage with other devices in
the era of the internet of things (IoT). The prediction and
monitoring systems have become more efficient and integrated
with different applications to notify people robustly in real time.
The connectivity with different APIs and applications requires data
security, data integrity, and end-to-end privacy. The presented
approaches lack data security and end-to-end security. Several
approaches and techniques have been presented in this section
highlighting monitoring systems [17].

In [18] an IoT-based smart environment analyzing system was
presented to map the humidity, CO2 level, and temperature
intensity. The data in the presented system is transmitted from
the sender nodes to the receiver nodes and organized in the database.
Android application and LabVIEW were utilized to monitor and
share the weather information efficiently but the information
sharing and data transmission did not follow the end-to-end
secure channel for communication. The sleep time of the
microcontroller and the power consumption of the sensors are
the limitations of the proposed monitoring system.

An efficient API [19] is designed to secure the communication
between applications hosted on the cloud and smart sensors using
middleware secure communication. The presented approach secures
communication using end-to-end security protocols by overcoming
the challenges of devices like network attenuation, computation
power, network buffer, and energy. Optimal scheme decider and
session resumption algorithm utilized to secure the communication
between devices and sensors. The session resumption algorithm
resumes the device connection, disconnected due to network
glitches. Supervised machine learning was employed to connect
with the secure network using the optimal scheme decider method.
The results of the presented technique show that secure
communication can be performed robustly using the certificate
and pre-shared keys. The main security concern of the proposed
model is replaying checksum and collision attacks.

An advanced [20] IoT based-environment monitoring model is
presented for real-time weather prediction as well as wind speed,
humidity, and UV index measurement. Several sensors are utilized
to collect data from the environment and data is transmitted to web
pages to plot the real time graphs of weather changes. The
monitoring system also comprises a monitoring app that is
utilized to send alerts to people about sudden weather changes
through a notification. The data collected from sensors using a web
page for statistical graph plotting can be accessed anywhere using an
API. The API is utilized to analyze and predict accurate predictions
from past data as well as real-time weather analysis. The collected
data from sensors for weather prediction can be utilized for future
prediction due to compact data size. The present monitoring system
did not comply with end-to-end data privacy and security which is a
drawback of the implemented system.

A wireless sensor network (WSN) [21] was utilized to design an
IoT-based weather monitoring system. The main goal of the
presented approach is to monitor the weather in remote areas
and provide access to the data collected in these areas through
the Internet. The presented model contains two types of nodes. One
is for information extractions with access through webpages
anywhere on the internet and the other sends alerts about the
harshness of weather to people when the parameter of data
collected for weather prediction exceeds the threshold limit. The
proposed system collects data and provides access over the internet
but does not deal with the data security required for data access and
data transmission. IoT systems normally are based on wireless
network sensors (WSN). WSNs are utilized for the weather
monitoring system to measure and predict the weather
conditions and data is transmitted over the network.

The article [22] stress the significance of patient data security
and privacy in IoT-enabled healthcare systems. The authors provide
an IoT sensor-enabled medical healthcare (SMSH) system's safe
surveillance technique. The suggested method entails keyframe
picture encryption and intelligently recorded video summaries
onto the server. First, a well-organized keyframe extraction
process is triggered by the visual sensor to extract relevant
picture frames, after which an alarm is delivered to the
appropriate authority within the healthcare system. Second, the
ultimate determination of what transpired with the keyframes that
were taken is kept secure from any hackers. In [23] the authors
conduct further research by using cosine-transform encryption to
make it more secure from any adversary.

A novel WSN-based weather monitoring is introduced in [24].
The implemented system collects data from the environment of
different conditions like air, humidity, heat and cold and stores all
the data on the cloud-based storage system. The stored data can be
provided to a single client or multiple users on their smartphones
when people want to know the weather conditions. The presented
WSN-based system has been implemented in real time to evaluate
the adaptability, sustainability, and scalability of the weather
monitoring architecture. The limitation of the proposed model
includes power availability in remote areas which can be
improved using solar panels in the wild.

The authors in [25] offers a process for IIoT ecosystem
validating efficacy at every step. The technique is built on
perceptively extracted keyframes, gorgeous monitoring, and
lightweight cosine functions processed by hybrid approach
chaotic map keyframe image encryption. Compared to the earlier
keyframes image encryption approach, the generated result has a
shorter execution time, is more resilient, and can be implemented at
a reasonable cost while maintaining security [23].

In [26], the authors introduce a class of smart electronic gadget
for automotive applications that manages an anti-theft IoTs
security system. The gadget contributes significantly to the
development of the smart city framework and is intended to
reduce the workload for security officers. The way the gadget
operates is to prevent unauthorized individuals from accessing the
car until an authorized password is provided or an SMS is
delivered to the car. The gadget may also be used to remotely
operate the vehicle's engine-stopping system. It has been
demonstrated that the produced prototype is both affordable
and appropriate for real-world use. An effective IoT alert
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system based on MQTT protocol was introduced that enables
compact and quick communication. To sum up, the article
presents a novel device that is efficient, cost-effective, and
suitable for practical implementation, and it is a significant
contribution to the field of automobile security.

In [27] presents a new kind of monitoring system that is based
on an ant colony optimization algorithm. The system is designed to
monitor the rural environment and provide real-time data to the
users. The system is composed of three parts: the sensor network, the
data processing unit, and the user interface. The sensor network is
responsible for collecting data from the environment, while the data
processing unit processes the data and sends it to the user interface.
The user interface is responsible for displaying the data to the user in
a user-friendly way. The ant colony optimization algorithm is used
to optimize the routing of the data from the sensor network to the
data processing unit. The algorithm is designed to minimize the
energy consumption of the sensor nodes and to maximize the
lifetime of the network. The experimental results show that the
proposed system is efficient and effective in monitoring the rural
environment. The summarized comparison of the related work is
presented in Table 1.

3 Methodology

Since IoT is quickly growing, the number of connected devices is
increasing and getting more powerful. There are lots of devices that
could be used as an IoT development platform, including Arduino
Genuino UNO, Raspberry Pi 3, WeIO, BeagleBone, and Nanode.
Each one has its advantages and disadvantages. One of these
platforms, Waspmote has the most battery life that lasts from
1 to 5 years depending on the application. Moreover, it simplifies
the hardware connection because it has an API to deal with different
parts of the platform modules rather than interact directly with
the pins [28].

Waspmote is a sensor gadget that may be used to create IoT
projects. The IoT hardware architecture has been specifically

engineered to operate at exceptionally low power consumption.
Any of the sensor interfaces, as well as the radio modules, can be
turned on and off using digital switches. Waspmote is the lowest
consumption IoT platform on the market (7 µA) thanks to three
different sleep modes [29] Figure 1 shows the hardware layout
for Waspmote.

Another major feature of Waspmote is over the air
programming, in recent years, the notion of Wireless
Programming, also known as Programming Over the Air
(OTAP), has been utilized to reprogram mobile devices such as
cell phones. With the new concepts of IoT, M2M, and the Wireless
Sensor Networks where networks consist of hundreds or thousands
of nodes, OTAP is taken in a new direction, and for the first time it is
used with both licenses such as 5G and unlicensed protocols such as
WiFi [29,30]. The main benefits of OTAP are:

• Allow for firmware upgrades or changes without requiring
physical access;

• The latest firmware is installed by requesting an FTP server,
which helps to preserve battery life;

• Upgrade an entire network in a matter of minutes.

In order to implement the project, the following hardware parts
are required:

• 1x Waspmote 802.15.4 uFL;
• 1x Waspmote Gas Sensors Board v20;
• 1x Temperature Sensor;
• 1x Humidity Sensor;
• 1x Carbone Monoxide Sensor;
• 1x Carbone Dioxide Sensor;
• 1x 2300 mAh LiPo Battery;
• 1x miniUSB Cable;
• 1x Cellular Module.

The required software are:
• Waspmote IDE (https://development.libelium.com/
waspmote-ide-v06/download-ide-windows).

TABLE 1 Realted work comparison.

References Hardware Sensors

Mote Connectivity Algorithm Cloud Encryption App Temp Hum CM CD

[22] - - YOLOv3 MATLAB Sim
based

- CTC-IES 256 - - - - -

[21] Arduino
Uno

WiFi Exp ✓ - ✓ ✓ ✓ - ✓

[16] - - YOLOv3 MATLAB Sim
based

- STC-IES 256 - - - - -

[25] - - MLPNN - Sim based - - - - - - -

[24] Arduino
Uno

XBee Pro + 2G
Cellular

Exp ✓ - ✓ - ✓ ✓ ✓

[27] - - ACO Sim based ✓ - - - ✓ - -

Proposed Design Waspmote WiFi + 3G Cellular Exp ✓ AES 256 iOS ✓ ✓ ✓ ✓

where: MLPNN, Multi-layer Perceptron Neural Network; Sim, Simulation; Exp, Real Testbed Experimentation; CTC, Cosine-Transform-based Chaotic Sequence; STC, sine tent cosine; IES,

Image Encryption System; ACO, Ant Colony Optimization; Temp, Temperature Sensor; Hum, Humidity Sensor; CM, Carbone Monoxide Sensor; CD, Carbone Dioxide Sensor.
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• Waspmote API v32 (http://downloads.libelium.com/
waspmote-pro-api-v032.zip).

Note that downloading the IDE will come with the latest API
version, but it is needed to downgrade into v32 because the Gas
Sensors Board v20 requires an API version of 32.

Networking plays a main role in IoT where any IoT device needs
to communicate to perform the purpose that was intended to serve.

Several possibilities could be used to connect with theWaspmote
IoT platform. We list them below:

• Connect using a WiFi module.
• Connect using a Xbee module.
• Connect using a Cellular module.

The first two options limit the connection to the local area
network (LAN). To connect and transfer the IoTmeasurements over

the internet, the Cellular module is used. This module is enabled
with 3G (Third Generation) cellular networks that operates on
specific frequency bands. The 3G network primarily uses the
UMTS (Universal Mobile Telecommunications System)
technology for which the frequency range is 2100 MHz band
12 and the data transfer rates of up to 2 Mbps. In two ways
mainly 3G dealt with the high-frequency noise and interference,
firstly 3G base stations use smart antennas (such as MIMO) to
enhance signal reception and reduce interference. These antennas
dynamically adjust their beam patterns to focus on specific users or
areas. Secondly, 3G employs robust error correction techniques that
detect and correct errors in transmitted data, ensuring reliable
communication. In the next step, the signal is generated from the
IoT device towards the end user’s mobile phone to view it in the
developed mobile iOS application.

The flowchart, given in Figure 2, shows how the data is
transferred.

FIGURE 2
Data flow.

FIGURE 1
Waspmote layout.
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Yet, the data is transferred as plain text, and if someone
accesses the website or hijacks the forwarded packets using a
man-in-a-middle attack, the hacker can easily monitor or even
manipulate the actual data or even launch other attacks [11].
Therefore, the end-to-end security is implemented from the
onboard frame encryption based on an advanced encryption
standard (AES) algorithm with a key length of 256 bits [31] to
ensure information authenticity and confidentiality. The onboard
AES algorithm encrypts the message m based on electronic
codebook (ECB) cipher mode with ZERO padding at Waspmote
to generate cipher c as given in (1) [32].

cn � e k,mn( ) (1)

Where e represents the encryption process, k is the predefined
key, and n is the sequence of the plaintext blocks from the beginning
till the end.

The c is transferred to the given destination over the cloud as
per configuration for storage in an encrypted form to maintain
data security and privacy. The user can call the data from the
cloud on the handheld device through the mApp. The data c
transfers from the cloud to mApp is still encrypted, until and
unless the user inputs the given key for decryption d. The real-
time data is called, decrypted with k based on (2) [32], and
displayed as soon as the c reaches the server from the IoT
station. In addition to the real-time data, the history can be
viewed by the user based on the duration entered by the user.
The history data also reaches the user side in encrypted form c
and is displayed on mApp; after getting d by the mApp when a
user unlocks it by k.

mn � d k, cn( ) (2)

Furthermore, the Waspmote IoT station is enabled with an
intelligent mechanism to check and prevent messages with similar

environmental values. The mote periodically senses the
environmental values and tally with the previous memorized
record. If the values are similar, the mote copies the new values
in the memory and erases the old record, locally. Otherwise, the
message is generated, encrypted, and forwarded with only the new
values. In this way, frequent messaging can be avoided to help
minimise massive network traffic and especially traffic overload.
Secondly, the reduction in communication maximizes the
battery lifetime.

On the security side, the intelligent mechanism makes it very
hard for a cryptanalyst to exploit the irregular communication and
as well to analyze the similarities due to the newer value in each
transmission.

4 Implementation and results

We have started by installing the Waspmote platform IDE
(Integrated Development Environment) on our computer. It is
needed to connect and deploy code into the hardware itself
through a significant capability in supporting Windows, macOS,
and even Linux. After making the hardware connections and
installing the battery, we run the default program that comes
with the hardware. It reports every 5 s the battery level, MAC
address, and the temperature of the board. However, the IDE
terminal was not able to recognize the message as shown
in Figure 3.

The baud rate should be set to 115200 instead of 9600 because
this value is used by Waspmote v1.2. Now, the message is
decoded and shown correctly in Figure 4. The next step is to
install the Waspmote Smart Cities Board to equip the required
sensors. Then, we wrote and installed the program which reads
both humidity and temperature, and the output is presented
in Figure 4.

FIGURE 3
Message not recognized by IDE terminal.

FIGURE 4
Message recognized by IDE terminal.
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The next step consisted of deploying the rest of the sensors, which
are CO2 (Carbon Dioxide) and CO (Carbon Monoxide) sensors.
Figure 5 shows the fully equipped Smart Cities Board.

However, when working on the code that reads all the sensor
readings from the board, some major errors appeared and the
code was not compiling at all. After investigation, we detected that
the signal names were turned out (renamed) in the Interrupt
Vector Table. Unfortunately, the given solution did not solve the
issue and introduced a new range of errors! After multiple
searches, the problem was identified. The Smart Sensors City
Board requires an API of version 32, as mentioned in Section 3,
which leads to a downgrade of the API. Finally, the problem is
resolved and can compile the code and read the sensor values as
shown in Figure 6.

4.1 Networking

The Cellular module configuration is set up in the first step
including the APN, username, password, and PIN for the sim. Then,
the Waspmote can send user datagram protocol (UDP) and/or
transmission control protocol (TCP) packets. Due to the traffic
overhead issues and other reasons as listed below the UDP is enabled.

• UDP packet is much simpler than TCP.
• UDP is a connectionless protocol, so we do not need to deal
with establishing a connection process.

• According to the selected application, the packet loss does not
matter, but the massive traffic overhead can reduce the lifetime
of the device.

In the second step, cloud service is availed with the information
as given in Figure 7.

After running the Ubuntu Linux distribution, the server is
connected by using a secure shell protocol (SSH), and then a UDP
connection is configured. The firewall settings are configured in the
system according to the traffic requirements. The UDP on port 6000 is
opened by entering the following command:

sudo ufw allow 6000/udp.
The firewall is then restarted to update the settings:
sudo ufw disable.
sudo ufw enable.
The UDP part is completed at this point. The third step in the

experimentation consists of running the server as an HTML server,
which is achieved through an Apache server using the
following commands:

sudo apt install apache2.

FIGURE 5
Fully equipped smart sensor board for Waspmote.

FIGURE 6
The code output.
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systemctl enable apache2.
systemctl start apache2.
The server is now configured to run as an HTML web server,

that can be accessed directly by entering the server IP in the web
browser. One last step to enable the server to receive UDP packets
and write their content directly to the HTML page is enabled by
entering these commands.

First, the directory is changed to the path where the Apache
server is running:

cd/var/www/html
Second, UDP packets are captured by using NetCat tool:
nc -u -l 6000 -k > index.html
where
nc: the command to use NetCat tool.
-u: use UDP.
-l: listening mode.
6000: is the port number to allow the UDP traffic early in

the firewall.

-k: keep the connection alive. This command is very important
to keep the tool continuously listening. Otherwise, the tool will stop
listening after receiving the first packet and needs to enter the
command manually multiple times.

> index.html: write the received content into the webpage
defined by the directory that we are running the Apache web server.

Figure 8 shows the received data from the IoT device and is
displayed on the HTML page.

4.2 Encryption

In order to protect the data, encryption has been enabled in the
intelligent monitoring system before sending the data to ensure secure
transfer and storage. This is one of the reasons for choosing the
Waspmote platform as it supports encrypting frames before sending.
Therefore, the AES 256 encryption algorithm is included for the
secure transfer as shown in the generated ciphertext in Figure 9.

FIGURE 8
Single record data stored on the cloud and displayed on the HTML page.

FIGURE 7
Cloud Configuration.

FIGURE 9
The ciphertext transferred and stored on the cloud.
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4.3 Mobile application and data decryption

The native iOS application is built to enable the user to discover
the environmental readings globally in real-time, which were sent
from the IoT device over the internet.

Every message “send”, as shown in Figure 8 from the IoT
device, begins with <= > using # separator. This information is
utilized to create an object called a frame to map the data in the
app. Figure 10 shows the frame structure declaration and
initialization.

In the initialization process, each frame is mapped to the
corresponding value that it represents. For example, the 3rd

element in the original frame represents the frame sequence
number, the 4th element represents the temperature sensor value,
and the 5th element represents the sensor humidity value.

The encrypted data needs to be decrypted for further analysis or
viewing. The decryption is performed by using the function inside
the app as shown in Figure 11.

Furthermore, the rest of the app code uses the user interface (UI)
and manages different states of the app, including data encryption,
decryption, or in case the key is wrong. The screenshot of the sensed
data output along with the mobile application coding is shown in
Figure 12. In addition, a video recording of the app in action can be
accessed via https://youtu.be/Vt5Jz_cZ_xk.

FIGURE 11
Decryption function.

FIGURE 10
Frame structure.
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4.4 Result analysis

The proposed IoT based monitoring system has been
experimented with in real time. In the first scenario, both normal
data and encrypted data are collected locally through a WLAN
connection for about 96 h. Figure 13 shows the delay (in ms) given
for various encryption algorithms. The average encryption delay at
the node from the collected 617 records is 451.1 msec.

In the second scenario, the IoT Waspmote is configured to
send encrypted data over a cellular network and store it on the
cloud. The ciphertext is then called on the mobile side by the
developed iOS application. The legitimate user can access the
data by entering the correct passcode. The process on the
backend starts when the application calls the ciphertext and
decrypts it based on the passcode entered by the user. In this

scenario, the experiment run four times, in first the packet is
generated every 5 s and sent as normal open data. In the second,
the packet is generated every 50 s and sent as normal data. In the
third, the packet is generated every 5 s but the Waspmote
encrypts the data and sends it as ciphertext. In the last
experimentation, the packet is generated every 50 s and sent as
ciphertext. When data is transferred to the cloud, the configured
droplet on the configured cloud shows the data rate of transferred
ciphertext with 5 milliseconds packet rate shown in Figure 14 and
with 50 milliseconds in Figure 15. While observing Figure 14, the
high bandwidth of about 2.7 kb/s can be seen, because of the high
packet rate generated on the Waspmote side. Figure 15 shows
very little bandwidth of about 48 bits per second in front of
Figure 14, due to the packets generated by Waspmote with
long duration.

FIGURE 13
Delay comparison.

FIGURE 12
The sensed data output with mobile application coding.
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5 Conclusion

The intelligent monitoring secure IoT station has been
proposed, implemented and tested experimentally in this
research paper. The related literature is reviewed and according
to the most recent IoT requirements, the important privacy and
security issues in remote sensing are addressed. The device has
been coded and transformed into a complete secure remote
monitoring system along with a developed mApp to fetch data

from the cloud in a secure manner. The Waspmote based IoT
station is intelligent in a manner to eliminate frequent
communication and data packet redundancy. End-to-end
security is enabled, starting from the onboard data encryption
on the IoT station. The testbed of the intelligent IoT station is
experimentally tested which shows the performance with the high
data rate of up to 200 packets per second that comes up with a
bandwidth of 2.7kilobit per second.In future, multiple IoT remote
monitoring stations will be programmed and deployed to check the

FIGURE 15
Cloud receiving Ciphertext with Less Bandwidth.

FIGURE 14
Cloud receiving ciphertext with high bandwidth.
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compatibility and performance. The encrytion algorithm will be
enhanced with better security because AES 256 is not guaranteed
against quantum attacks. Moreover, the system will be enabled
with mobile monitoring nodes to enable eagle eye viewing and as
well better connectivity between multiple nodes especially in the
case of multi hop communication.
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Software Cost Estimation (SCE) is one of the research priorities and challenges in
the construction of cyber-physical-social systems (CPSSs). In CPSS, it is urge to
process environmental and social information accurately and use it to guide
social practice. Thus, in response to the problems of low prediction accuracy,
poor robustness, and poor interpretability in SCE, this paper proposes a SCE
model based on Autoencoder and Random Forest. First, preprocess the project
data, remove outliers, and build regression trees to fill in missing attributes in the
data. Second, construct a Autoencoder to reduce the dimensionality of factors
that affect software cost. Subsequently, the performance of the model was
trained and validated using the XGBoost framework on three datasets:
COCOMO81, Albrecht, and Desharnais, and compared with common cost
prediction models. The experimental results show that the MMRE, MdMRE,
and PRED (0.25) values of the proposed model on the COCOMO81 dataset
reached 0.21, 0.16, and 0.71, respectively. Compared with other models, the
proposed model achieved significant improvements in accuracy and robustness.

KEYWORDS

software cost estimation, Autoencoder, random forest, COCOMO,
dimensionality reduction

1 Introduction

In the era of big data, the new paradigm of computer-based platforms and people-
oriented approaches has gradually demonstrated its strong vitality and potential value,
triggering a new form of research on complex system modeling, analysis, control, and
management, which is known as cyber-physical-social systems (CPSSs). One of the
main issues in CPSS research is how to use data as a guide and construct accurate
models to regulate social relationships between people, which is also an important issue
in software engineering research. As a part of software engineering, Software Cost
Estimation (SCE) not only needs to collect and analyze multi-dimensional information
about software development needs, but also needs to consider the team’s collaborative
ability and personnel management costs [1–4]. The predicted results generated through
computer algorithms will provide managers with unprecedented efficient management
capabilities and improve the team’s resource allocation efficiency, building an efficient
communication bridge between engineering development and personnel management,
thus improving the quality of software development and reducing the risk of research
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and development failure. Therefore, how to accurately predict the
costs of software development has been one of the most
important topics studied in software engineering in recent
years [5, 6].

However, in practical applications, due to the large number
of indicators used for project evaluation and unclear functional
requirements in the early stages of development, managers can
hardly accurately predict the cost of software development in
most cases, resulting in erroneous decisions and unnecessary
losses for the company. In addition, with the continuous
development of software development technology, object-
oriented programming has become the dominant paradigm of
software development. Object-oriented design principles such as
the single responsibility principle, low coupling, and high
cohesion also increase the difficulty of cost estimation [7].
The long development cycle of large-scale software
engineering, the significant differences between different
projects, and the limited availability of previous project data
for cost evaluation hinder the feature learning and data fitting of
the constructed model, further limiting the accuracy of
the results.

In the process of software development, many cost estimation
tasks are completed manually by managers. However, with the
expansion of software engineering, the difficulty of implementing
this method and the accuracy of the results are unsatisfactory.
Therefore, many studies have proposed more automated and
intelligent techniques to complete this task. Esteve and Aparicio
[8] used the ID3 algorithm to generate a large number of decision
trees to classify software modules with high development intensity.
In [9], the author studied the application of fuzzy ID3 decision tree.
This method is designed by combining the concepts of
ID3 algorithm and fuzzy set theory, and uses MMRE and Pred
as the criteria for measuring prediction accuracy. The above
algorithms all use weak classifiers or regressors to generate
prediction models. Although the convergence speed of the
models are fast, due to the large differences in mathematical
features between different projects, the robustness of the models
are poor, making them difficult to obtain reliable prediction results
[10, 11]. While deep learning based methods can explore the
potential correlations between various attributes better, they
require a large amount of data to train the weights of neural
networks. Considering the small size of the dataset used in SCE, the
model obtained by this method cannot converge well, resulting in
low prediction accuracy [12].

To improve the problem of low prediction accuracy and
insufficient model robustness in SCE, this paper proposes a
SCE model based on Autoencoder and Random Forest. By
using neural networks to non-linearly recombine some
attributes, various factors that affect software cost are
comprehensively reflected from different perspectives,
making the new attributes have stronger interpretability and
reduce the losses in the final prediction results due to
deviations in some attribute values. At the same time, using
the Random Forest model to achieve SCE avoids the problem of
low model accuracy caused by insufficient data sets, resulting in
a model with strong generalization and robustness, which can
achieve more reliable prediction results in practical
applications.

2 Theory and methods

2.1 Dimensionality reduction

Usually, several attributes are used to describe different
characteristics of the projects from multiple dimensions in SCE.
Richer dimensional information can more comprehensively
characterize the cost of a project and improve the accuracy of
predictions, but to some extent it also increases the difficulty of
data collection, making the prediction results vulnerable to noise
[13]. In addition, there may be strong correlations among attributes,
resulting in certain attributes affecting the result of prediction
together from a single dimension, reducing the robustness and
interpretability of the model. To solve this problem, we will use
dimensionality reduction method on the original data, reorganizing
some variables with complex relationships into a few comprehensive
factors, so that the recombined factors can reflect the cost of software
development from different perspectives, avoiding the problem of
low model accuracy caused by large estimation bias of
single attribute.

Principal Component Analysis and Factor Analysis methods
have been widely applied in the field of software engineering [14,
15]. However, as linear dimensionality reduction methods, they
often fail to achieve good dimensionality reduction effects in
scenarios where complex data and high data structure
preservation requirements are present. In recent years, with the
widespread application of artificial neural networks in the field of
data dimensionality reduction [16, 17], Autoencoder, as a nonlinear
dimensionality reduction method, can more accurately identify and
reorganize data attributes, fully explore the potential correlations
between data, and has strong anti-interference ability for noise in
data, which is suitable for dimensionality reduction of data in
software engineering [18, 19]. The Autoencoder used for
dimensionality reduction only contains the encoding part, which
consists of an input layer, several hidden layers, and an output layer.
Its structure is shown in Figure 1. In the encoder, input data is passed
through a series of hidden layers for transformation and mapping to
the output layer. Each hidden layer consists of multiple neurons,
each of which is connected to neurons in the previous layer and

FIGURE 1
Structure of the Autoencoder uesd for dimensionality reduction.
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undergoes nonlinear transformation through an activation function.
The goal of the encoder is to learn an encoding function that maps
input data to a low-dimensional representation in the encoding
layer. This encoding process is usually achieved through
optimization methods such as backpropagation and gradient
descent. By adjusting the network’s weights and biases, the
encoder gradually learns a set of features that can effectively
represent the input data. The training process of Autoencoder
usually uses unsupervised learning methods, which only use the
input data itself without requiring label information. This allows
Autoencoder to be trained on unlabeled data, thereby better
adapting to the complex data distribution in software engineering.

2.2 Random forest model

At present, existing prediction models mainly include methods
based on the function point method and neural network-based
methods. The prediction results of the former are more subjective
and have lower prediction accuracy, because in the early stages of a
project, there is usually only a user requirement document, lacking
a complete software system specification document. Neural
network-based evaluation methods require a large amount of
sample data to train the neural network, but historical SCE data
is often limited, resulting in models that cannot converge to good
results. In addition, the poor interpretability of deep learning
models is not conducive to evaluating the quality and stability
of the model. To achieve the desired prediction accuracy and
convergence speed, we used a Random Forest model to implement
the task. Considering that historical data is often limited in
practical applications, we adopted the XGBoost algorithm
framework to build the model to accelerate the model’s
convergence process.

The XGBoost algorithm [20] uses second-order Taylor
expansion to calculate the loss function, adds a regularization
term to the GBDT objective function, and uses first and second-
order derivatives to approximate the objective function. This
approach simplifies the model and effectively reducing the risk of
overfitting. The objective function of XGBoost consists of two parts:
the loss function and the regularization term:

L ϕ( ) � ∑
n

i�1
l ŷi, yi( ) +∑

K

k�1
Ω fk( )

Where i represents the i th sample in the dataset, n is the total
number of samples, and k represents the k th regression tree.
l(ŷi, yi) represents a traditional differentiable convex loss
function, which measures the difference between the true label
and the predicted label. Ω(fk) is a regularization term that helps
smooth learning weights and avoid overfitting the model. Its
calculation formula is as follows:

Ω f( ) � γT + 1
2
λ w‖ ‖2

γ and λ are the regularization parameters, w is the weight vector of
the leaf node. When the regularization parameter is set to zero, it
becomes a traditional gradient boosting tree.

Since all CART trees are binary trees, the difference between the
objective function and the structural score after branching in the
algorithm can be measured using the following formula:

Gain � 1
2

G2
L

HL + λ
+ G2

R

HR + λ
[ − GL + GR( )2

HL +HR + λ
] − γ

γ is a punishment item. GL andHL are calculated from the left child
node, GR and HR are calculated from the right child node. (GL +
GR) and (HL +HR) are calculated through intermediate nodes.

As a tree model, XGBoost simplifies the modeling process while
preserving as much original data information as possible. This
algorithm performs well in regression tasks, with higher fitting
accuracy, robustness, and generalization ability than other
traditional machine learning regression algorithms, and is widely
used in data prediction tasks. Therefore, in the practical application
of SCE, even with fewer training samples, a model with high
prediction accuracy can still be obtained from XGBoost algorithm.

3 Model building strategy based
on XGBoost

3.1 Framework of the model

Figure 2 shows the framework of the SCEmodel proposed in this
article, including data preprocessing, XGBoost-based prediction
model training, cost prediction, and prediction result analysis
stages. The specific process is as follows:

FIGURE 2
Framework of our SCE model.
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1) Project data preprocessing stage. Clean the data, remove
abnormal values from the data, and fill in missing
attributes; The Autoencoder is used to reduce the
dimensionality of the cleaned data and eliminate redundant
information in the dataset. Finally, normalize the data to unify
the dimensions of different features.

2) Model training stage. Use the preprocessed data to train the
XGBoost Random Forest model. After training reaches the
maximum iteration number, the optimal prediction model
is output.

3) Software cost prediction stage. Input the data to be evaluated
into the model to generate the predicted cost value.

4) Prediction result analysis stage. Determine whether the error
of the prediction result is within an acceptable range, convert
the numerical value of the result to different levels, and use the
results in subsequent software development evaluations.

3.2 Data preprocessing

In practical applications, some data attributes used for software
cost evaluation may have missing values or significant deviations
from the true values, which can affect the accuracy of the prediction
results. To solve this problem, we use the box plot method to remove
outliers from the data to avoid the impact of extreme values on the
prediction results. Then for all missing values, we use a linear
regression tree model to fill them in. Specifically, we select an
attribute with missing values as the dependent variable and other
attributes as the independent variables to construct a regression tree
model. We use the constructed regression tree model to predict the
values of missing values, and repeat this step until all missing values
are filled.

Then, the Autoencoder is used to reduce the dimensionality of
the cleaned data. By using neural networks to transform high-
dimensional data into a new low-dimensional coordinate system,
the purpose of eliminating redundant information in the data is
achieved. If the reduced-dimensional data has too many factors, it

will make the model more susceptible to noise and reduce its
robustness. On the other hand, having too few factors will lead
to a low expression rate of the data and prevent the effective
extraction of potential information from the original data.
Therefore, we determined the optimal number of factors based
on the scree plot in factor analysis and the practical significance
of SCE, and the final reduced-dimensional data contained six
dimensions, as shown in Figure 3.

3.3 Model training

After completing data preprocessing, each data sample will
consist of six independent variables and one dependent variable,
which is the actual cost value. Predicting the cost of software is
essentially finding the mapping relationship between independent
variables and dependent variables. To enhance the accuracy and
robustness of the model, we will construct several linear regression
trees and use gbtree as a booster to construct a Random Forest
model. First, shuffle the dataset and split it into a training set and a
testing set. Then, generate the optimal model using the training
dataset. The specific algorithm is shown in Table 1. After generating
the model, the test dataset will be used to evaluate the effectiveness of
the model. By comparing the gap between the true value and the
model’s estimated value, it can be determined whether themodel has
overfitting and whether the prediction error is within an
acceptable range.

3.4 Model prediction

After the training of the Random Forest model based on
XGBoost, a mapping relationship between factors that affect
software cost and the value of that is established, thus providing
the ability to assess future software engineering cost. The relevant
attributes of the new software engineering project are passed into the
model, and after data cleaning and filling, dimensionality reduction
and normalization, a column vector with 6 factors is obtained. By
inputting it into the trained Random Forest model, the predicted
cost value can be obtained.

3.5 Result postprocessing

In order to use the obtained prediction results to guide the actual
software development work, we also need to further analyze and
process the results. In practical software development, in order to
reduce the risk of project failure caused by excessive deviation in cost
estimation, it is necessary to further provide a confidence interval for
the prediction results, with a confidence level generally taken as 0.80.
If the confidence interval is too large, it indicates that the reliability
of the results obtained by using this model to predict is poor, and
other methods should be used for prediction. If the confidence
interval size is within a reasonable range, it indicates that the model’s
prediction effect is good. At this point, in order to highlight the
practical significance of the prediction effect, the specific numerical
value can be converted into five levels (very low, low, moderate, high,
very high) to represent different cost extents. Finally, the prediction

FIGURE 3
Scree plot uesd to determine the number of dimensions.
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results will be handed over to the project managers to guide the
subsequent software development work.

4 Results and analysis

4.1 Dataset introduction and preprocessing

To verify the effectiveness of the model on different datasets, we
will use three different datasets to test the accuracy of the model,
namely, COCOMO81, Albrecht, and Desharnais. The

COCOMO81 dataset [21] is one of the most popular datasets for
SCE, containing data from 63 projects. Each project contains
17 attributes, 15 of which are independent variables and 2 of
which are actual cost sizes. The Albrecht dataset contains data
from 24 projects implemented by the IBM DP Services
organization. These data include the count of four types of
external input/output elements of the entire software application,
the number of Source Lines Of Code (SLOC) including annotations,
and the number of functional points per project; The Desharnais
dataset consists of data from 81 software projects at a Canadian
software company. These 81 projects are subdivided into 46 projects

TABLE 1 Model training algorithm steps based on XGBoost.

Training algorithm for SCE model based on XGBoost

Input Training dataset Φ � (X1 , y1), (X2 , y2), . . . , (Xm , ym){ }.
Initialize weights W, bias b, learning rate lr and hyperparameters such as the number of Random Forest trees
and the maximum depth of each tree

Output The Random Forest model with the best prediction accuracy

Dependency Loss function Loss

while the preset number of iterations has not been reached do
Feed the training dataset into the model and generate output values
Compare the output value with the actual value and calculate the error E;
Calculate the partial derivative of the weight W and bias b for errors respectively
Update weight W and bias b by using the following formula: W → W − lr × ∂E

∂W, b → b − lr × ∂E
∂b

end

Output model

FIGURE 4
Covariance thermogram of various attributes in the COCOMO81 dataset.
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in traditional environments, 25 projects that “improve” traditional
environments, and 10 projects in micro-environments based on
their technical environments. It is one of the most classic datasets
that can be used for SCE.

The preprocessing of the three datasets includes outlier removal,
missing value filling, data dimensionality reduction, and
normalization. After analysis using the box plot method,
7 attribute values from COCOMO81, 3 attribute values from
Albrecht, and 4 attribute values from Desharnais were
eliminated. Then, linear regression tree models were built on the
three datasets to predict the removed outliers and original missing
values. Then, a correlation analysis was conducted on the datasets, as
shown in Figure 4. There was a strong data correlation between the
attributes of the three datasets, making it suitable for using
Autoencoder for data dimensionality reduction. The hidden layer
of the Autoencoder contains three fully connected layers. The first
layer contains 20 neurons, the second layer contains 30 neurons, and
the third layer contains 10 neurons. The activation function after
each layer uses ReLu, and the output layer contains 6 neurons,
meaning that the output data contains six dimensions. Finally, the
dimension-reduced data is normalized using the Sigmoid function.

4.2 Model training

To ensure that the model can fully converge, we divide the
dataset into a training set and a testing set, with the training set
accounting for 90% and the testing set accounting for 10%. For the
training set data, we use the XGBoost distributed gradient boosting
framework to train the model. In order to determine the parameters
that can generate the best Random Forest, this experiment uses the
method of adjusting hyperparameters rather than theoretical
analysis. During the hyperparameter tuning process, different
parameter value combinations are used to establish Random
Forest models. Then, the parameters that generate the best
predictive model are considered to be the most appropriate

hyperparameters for that model. The hyperparameters obtained
for each model are shown in Table 2.

4.3 Evaluation criteria in SCE

This article will use three indicators, MMRE, MdMRE, and
PRED to evaluate the model [22]. The calculation methods and their
meanings of each indicator are shown in Table 3, all of which are
based on the Magnitude of Relative Error (MRE):

MRE � act − est| |
act

Where act represents the actual software cost and est represents
the software cost predicted by the model.

4.4 Evaluation and discussion

The performance of the model trained by using the Autoencoder
and Random Forest methods on the three test sets is shown in
Table 4. As can be seen from the results, the difference between the
MMRE and MdMRE indicators for different data sets is quite small,
indicating that the prediction results are relatively stable, with no
individual prediction result showing significant deviation from the
true values. Although Albrecht’s training set only contains
21 training samples, the model still has high prediction accuracy
on this dataset, which also indicates that the random forest model
has a high convergence rate and can obtain accurate prediction
results when there is insufficient historical software evaluation data.
The performance of the model on the Desharnais dataset is lower
than the previous two models, mainly due to the presence of some
missing values in the data. The attributes after filling in the data
using regression trees still have some differences from the true
values, which reduces the accuracy of the model prediction to
some extent.

TABLE 2 Performance of the model on different datasets.

Dataset Maximum depth Tree number Learning rate

COCOMO81 8 10 0.1

Albrecht 8 6 0.1

Desharnais 7 5 0.1

TABLE 3 Model evaluation indicators and their meanings.

Evaluation Criteria Description

MMRE � 1
n∑

n

i�1
MREi

Mean MRE (Mean MRE, MMRE) is one of the most commonly used model prediction criteria

MdMRE � Median(MRE) Median MRE (Median MRE, MdMRE) is often used in conjunction with MMRE to measure the
degree of dispersion of prediction results. MdMRE is not sensitive to outliers and can more
accurately reflect the overall distribution of data

PRED x( ) � 1
n × ∑

n

i�1

1,MREi ≤ x
0, otherwise

{
Where n denotes the total number of projects and k denotes the number of projects whose MRE is
less than or equal to x. normally, x is set to be 0.25
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The prediction results on three datasets show that the SCE
method using a combination of Autoencoder and Random Forest
has strong generalization ability, and can still better fit the results in
different engineering projects. The Autoencoder can identify a small
number of independent common factors that govern the
relationships between multiple attributes, and predict the state of
the common factors by establishing a quantitative relationship
between the common factors and the original variables. This can
help discover some objective regularity between different software
engineering projects, and thus abstract a common model for
evaluating the size of software costs. At the same time, the
Random Forest composed of several regression trees can clearly
demonstrate the process of model prediction, as shown in Figure 5,
which enhances the interpretability of the model and provides a
reliable basis for subsequent management to analyze project costs.

To further compare the performance differences of different
SCEmodels, Table 5 lists the performance of the three models on the
COCOMO81 dataset. As can be seen from the table, deep learning-
based algorithms such as HACO-BA performed poorly, mainly due
to insufficient training data sets resulting in underfitting of the
model. Compared to other algorithms, the model proposed in this
article has a lower MdMRE value and a higher PRED value,

indicating that the model has good consistency in prediction
results across different project data, stable model performance,
and high prediction accuracy. The cost evaluation in practical
software engineering is mainly aimed at reducing development
risks and promoting the rational allocation of resources, so the
robustness of the prediction model is even more important.
Comprehensively evaluated by various indicators, the model
proposed in this article based on Autoencoder and Random
Forest has better performance.

In subsequent engineering analysis, factor analysis methods can
be used to draw radar charts to further analyze the factors that affect
the size of software cost, and rational allocation of resources can be
used to make up for development shortcomings, thereby
accelerating the software development process. We combine the
scree plot method and practical significance of SCE to
comprehensively determine the optimal number of factors. When
the number of factors is 6, the eigenvalue of the matrix reaches the
inflection point, and the expression rate of these factors reaches 81%.
Therefore, the number of factors after dimensionality reduction is
determined to be 6. By looking at the contribution rates of the
original attributes to each factor, we named the six factors according
to their practical significance. The radar chart of common factors

TABLE 4 Performance of the model on different datasets.

Dataset MMRE MdMRE PRED(0.25)

COCOMO81 0.21 0.16 0.71

Albrecht 0.37 0.36 0.33

Desharnais 0.38 0.37 0.22

FIGURE 5
Visualization of decision tree prediction process.

TABLE 5 Performance of different models on the COCOMO81 dataset.

Model MMRE MdMRE PRED(0.25)

HACO-BA 3.47 4.47 0.06

PSO-FLANN 0.38 0.33 0.43

Ours 0.21 0.16 0.71
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after dimensionality reduction of a data sample is shown in Figure 6.
It can be seen from the figure that the development environment of
the project is relatively simple, and the R&D personnel have strong
abilities. However, the software performance requirements and data
scale are high, and the team’s collaboration ability is poor. Team
managers should strengthen team communication and
collaboration, and focus on algorithm design to reduce the spatial
and temporal complexity of software, thereby achieving a
multiplier effect.

5 Conclusion

In order to adapt to the issue of comprehensive processing of
social information and use it to improve production efficiency in
CPSS, this paper proposes a novel SCE model based on
Autoencoders and Random Forest, and evaluates its feasibility
and performance through theoretical and experimental analysis.
This article first introduces the improvement of Autoencoder and
Random Forest algorithms on model accuracy and robustness, and
analyzes the advantages of these two methods compared to
traditional methods and neural network algorithms. Then, the
overall framework and algorithm flow of the model are
introduced, which are divided into four stages: data
preprocessing, model training, cost prediction and result analysis.
Finally, the performance of the model on three datasets,
COCOMO81, Albrecht, and Desharnais, is introduced, and it is
compared with common SCE algorithms to analyze the advantages
and disadvantages of different algorithms. Compared with other
algorithms, the proposed algorithm model has better accuracy and
astringency, and can better complete the cost prediction task in
practical software engineering.

At present, there is still much room for improvement in the
evaluation models based on Autoencoder and Random Forest, such
as low accuracy on datasets with ordinal attributes and significant
influence by dataset on model accuracy. Future work should focus

more on data processing and data imbalance issues to further
improve the performance of the model.
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Deep learning-powered malware
detection in cyberspace: a
contemporary review
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This article explores deep learning models in the field of malware detection in
cyberspace, aiming to provide insights into their relevance and contributions. The
primary objective of the study is to investigate the practical applications and
effectiveness of deep learning models in detecting malware. By carefully
analyzing the characteristics of malware samples, these models gain the ability
to accurately categorize them into distinct families or types, enabling security
researchers to swiftly identify and counter emerging threats. The PRISMA
2020 guidelines were used for paper selection and the time range of review
study is January 2015 to Dec 2023. In the review, various deep learning models
such as Recurrent Neural Networks, Deep Autoencoders, LSTM, Deep Neural
Networks, Deep Belief Networks, Deep Convolutional Neural Networks, Deep
Generative Models, Deep Boltzmann Machines, Deep Reinforcement Learning,
Extreme Learning Machine, and others are thoroughly evaluated. It highlights
their individual strengths and real-world applications in the domain of malware
detection in cyberspace. The review also emphasizes that deep learning
algorithms consistently demonstrate exceptional performance, exhibiting high
accuracy and low false positive rates in real-world scenarios. Thus, this article
aims to contribute to a better understanding of the capabilities and potential of
deep learning models in enhancing cybersecurity efforts.

KEYWORDS

artificial intelligence, cyberspace data security, deep learning, malware detection,
network security

1 Introduction

This comprehensive review delves into the burgeoning role of deep learning (DL)
models in the face of the ever-evolving menace of malware in cyberspace. Malware
represents a continuously evolving cybersecurity threat, and traditional detection
technologies often struggle to keep up with the rapid creation of new malware types
[1]. However, deep learning models have gained significance in this field due to their ability
to automatically learn features from large datasets [2]. Deep learning models also possess
the remarkable capability to adapt to emerging threats by learning from extensive and
diverse datasets [3]. They excel in extracting intricate and subtle features within malware
samples, a task that may be challenging for rule-based or signature-based systems. This
feature extraction prowess contributes to heightened accuracy in distinguishing between
benign and malicious files, thereby reducing false positives that can disrupt legitimate
operations. Moreover, deep learning models offer speed, efficiency, scalability, and
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continuous improvement, making them invaluable tools for real-
time or near-real-time detection and response in the dynamic
landscape of cybersecurity [4]. Figure 1 illustrates different
categories in malware analysis.

DL models can reliably categorize malware samples into
numerous families or types by analyzing their individual
properties, assisting security researchers and practitioners in
recognizing and responding to emerging threats more
efficiently [5]. This review aims to provide an in-depth
understanding of various DL architectures utilized in this field,
including Recurrent Neural Networks (RNNs), Deep
Autoencoders (DAEs), Long Short-Term Memory (LSTM)
networks, Deep Neural Networks (DNNs), Deep Belief
Networks (DBNs), Deep Convolutional Neural Networks
(CNNs), and Deep Generative Models (such as Generative
Adversarial Networks or GANs). RNNs are designed for
sequential data processing and can capture dependencies in
data over time. They are commonly used in tasks like natural
language processing and speech recognition. Deep DAEs are
utilized for unsupervised learning and data compression. They
comprise an encoder and a decoder and find applications in
feature learning and anomaly detection. LSTMs, a type of RNN,
have specialized memory cells that capture long-term
dependencies in data. They are particularly effective in
sequential tasks where retaining context is crucial. DNNs
consist of multiple layers of interconnected neurons and are
employed for supervised learning tasks like image and speech
recognition. They form the core of many deep learning
applications. DBNs are generative models composed of multiple
layers of stochastic, latent variables. They are used in tasks such as
feature learning, collaborative filtering, and dimensionality
reduction. CNNs are designed for processing grid-like data,
such as images, and use convolutional layers to automatically
learn spatial hierarchies of features. They find wide applications in
image and video analysis. Deep Generative Models, including
GANs, are capable of generating data rather than classifying it.
GANs, for example, consist of a generator and a discriminator that
compete in a game, resulting in the generation of realistic data.
They are often used in image generation and data augmentation.
This review investigates these models in terms of their unique
capabilities and applications in the field of cybersecurity.

1.1 Limitations of previous reviews

In recent research, various issues and challenges related to
malware detection using data mining have been extensively
explored [6]. One significant challenge is the imbalance of
classes within datasets, which affects the accuracy and
robustness of malware detection models. Additionally, the
need for open and public benchmarks, the emergence of
concept drift, and the concerns surrounding adversarial
learning techniques all pose significant obstacles to the
effectiveness of these detection mechanisms. Furthermore, the
interpretability of models remains a critical concern, impeding
the deployment of reliable and understandable solutions. When it
comes to Cyber-Physical System (CPS) malware detection, the
complexity of different malware classes and their numerous

variants ma kes detection even more challenging [7]. The rise
of Advanced Persistent Threats (APTs) adds another layer of
sophistication, demanding advanced strategies to combat
coordinated and purposeful attacks. Analyzing malware,
including static and dynamic aspects, presents difficulties in
understanding and identifying malware, necessitating robust
detection strategies. While signature-based and behavior-based
methods offer distinct advantages, they also face challenges
related to accuracy and efficiency in classifying programs as
malicious or benign [6].

An examination of the strengths and weaknesses of signature-
based and behavior-based malware detection reveals that each
method has its own merits and shortcomings [6]. Signature-
based detection is fast and efficient but struggles to detect
polymorphic malware, whereas behavior-based detection excels in
identifying unconventional attacks but faces challenges regarding
storage and time complexity. Ransomware detection and prediction
techniques have received significant attention, particularly in the
context of machine learning methods [8]. However, there has been a
lack of emphasis on predicting ransomware, and identified
shortcomings in real-time protection and 0-day ransomware
identification highlight the need for more comprehensive
approaches. Adversarial machine learning exploitation and
concept drift further complicate the landscape of machine
learning models in this domain.

Deep Learning (DL)-based malware detection frameworks
encounter several challenges, including data imbalance,
interpretability issues, susceptibility to adversarial attacks, the
need for regular updates, and difficulties in achieving cross-
platform detection [9]. Efficient feature extraction techniques and
the recognition of new characteristics in 0-day malware add further
complexity to the development and deployment of DLmodels. Deep
learning for 0-day malware detection and classification focuses on
learning paradigms, feature types, benchmark datasets, and
evaluation metrics. API/System calls are the most common type
of feature, and prevalent benchmark datasets include Drebin.
Evaluation metrics encompass Accuracy, Precision, Recall, F1-
score, False Positive Rate, False Negative Rate, Area Under the
Curve, and Evasion rate.

In the domain of Android malware detection using machine
learning, challenges and advancements in static analysis have been
explored [10]. Machine learning techniques applied to features
extracted through static analysis have shown varying degrees of
success, relying on tools like APK Tool and Androguard for
decompiling and analyzing APK files. The challenges posed by
adversarial attacks for PE (Portable Executable) malware are
multifaceted. Adversarial attacks in both feature-space and
problem-space encounter difficulties in maintaining the format,
executability, and maliciousness of PE files. The taxonomy of
attacks includes white-box attacks, where the attacker has full
knowledge of the model, and black-box attacks, where limited or
no knowledge of the model’s internals presents additional challenges
[11]. Feature-space attacks involve direct manipulation of features,
while problem-space attacks entail altering the actual inputs, such as
PE files. These challenges highlight the need for robust defenses
against adversarial threats in the context of malware detection.
Table 1 provides a comparison with previous review papers with
a similar focus.
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1.2 Motivation and objectives of this review

The rapidly evolving landscape of cybersecurity presents an
ongoing challenge, particularly in the realm of malware detection.
Traditional methods struggle to keep pace with the relentless
creation of new malware variants. They struggle to keep up with
evolving threats, making deep learning’s ability to autonomously
extract features from vast datasets crucial. Deep Learning models
excel in discerning intricate patterns within malware, offering
scalability, efficiency, and continuous improvement. As a result,
there’s a pressing need for innovative solutions that can adapt to
emerging threats and provide robust protection against cyberattacks.

This review aims to delve into the burgeoning role of deep
learning models in combating malware threats in cyberspace. It
provides a thorough exploration of various deep learning
architectures and their applications in malware detection. By
analyzing the strengths and limitations of each model, the review
offers valuable insights to researchers and practitioners seeking to
harness deep learning techniques for cybersecurity. Recognizing the
dynamic nature of cyber threats, the review also sheds light on the
evolving landscape of malware and the increasing sophistication of
cyber-attacks. It identifies future research directions, emphasizing
the need for innovative DL-based solutions that can adapt to
dynamic malware behavior and effectively counter
adversarial attacks.

1.3 Contributions of this review

The main contributions of this article are as follows:

a) This review provides a critical assessment of the existing
literature in the field of deep learning-powered malware

detection in cyberspace. Further, it helps to identify gaps
and areas for improvement, guiding future research
directions and ensuring a more comprehensive
understanding of the subject matter.

b) This review extends the scope of traditional approaches to
encompass the rapidly growing threat landscape targeting
mobile devices. This expansion of focus ensures that the
review remains relevant and up-to-date with emerging
trends in cybersecurity, providing insights into the unique
challenges and opportunities presented by mobile malware.

c) By including recent tools in malware analysis and detection,
this review offers readers a comprehensive overview of the
current state-of-the-art technologies and methodologies
available for combating malware threats. This enables
researchers and practitioners to stay abreast of the latest
advancements in the field and make informed decisions
when selecting and implementing detection tools and
techniques.

d) By incorporating a diverse range of tools in malware detection,
including behavioral analysis tools, threat intelligence
platforms, deception tools, and memory forensic tools, this
review provides a holistic perspective on the multifaceted
nature of malware detection. This ensures that readers gain
insights into the various approaches and methodologies
employed in the detection and analysis of malware,
enhancing their understanding of the complexities involved
in combating cyber threats.

e) By highlighting open challenges in the field of malware
detection using deep learning, this review identifies areas
where further research and development are needed to
address existing gaps and limitations. This stimulates
discussion and collaboration within the research
community, fostering innovation and driving progress
towards more effective and robust solutions for malware
detection using deep learning techniques.

2 Survey methodology

Figure 2 illustrates the process of article selection for this review,
adhering to the PRISMA guidelines [13]. A comprehensive search
for deep learning models in malware analysis and detection was
conducted in three databases, namely, Google Scholar, Scopus, and
Web of Science, spanning from January 2015 to December 2023. The
search string “Cyberspace, Deep Learning, and Malware Detection”
was employed to collect relevant articles. Inclusion and exclusion
criteria were applied to determine the articles to be included in the
review. Specifically, the articles had to be written in English,
published in peer-reviewed journals or conferences, and relevant
to both malware analysis and detection and deep learning. During
the initial stage, 900 non-duplicate articles were obtained, as
depicted in Figure 2. Following the screening of titles and
abstracts, 457 articles were excluded. Subsequently, 171 articles
for which full-text reports could not be retrieved were also
removed from consideration. Additionally, 272 articles were
assessed for eligibility, leading to the removal of 133 articles with
incomplete information. Finally, a total of 139 articles met all the
criteria and were selected for this review.

FIGURE 1
Categories in malware analysis.
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3 Deep learning-powered malware
detection in cyberspace

Deep learning (DL) models are highly proficient in
autonomously learning features from extensive datasets, making
them particularly suitable for detecting malware in the digital realm.
By thoroughly analyzing malware samples, DL models acquire the
capability to accurately categorize them into distinct families
or types.

DL models undergo training using comprehensive sets of
extracted attributes, including elements such as opcode
sequences, API calls, and system calls. This training empowers
the models to differentiate intricate patterns that distinguish
malware from benign software. Consequently, these well-trained
models can be deployed to classify new and previously unknown
samples, providing a powerful tool for robust detection and in-depth
analysis of malware. Figure 3 illustrates the current taxonomy of
deep learning models for malware detection in cyberspace.
Additionally, Table 2 provides a summary of research conducted
on deep learning models for malware detection in cyberspace.

3.1 Recurrent neural networks

Recurrent Neural Networks (RNNs) play a significant role in the
field of malware detection in cyberspace due to their ability to handle
sequential input data. In the context of malware detection, RNNs are
useful for assessing system calls, API calls, and network traffic

generated by software applications to identify potentially harmful
activities. System calls provide insights into a program’s actions
within the system, allowing the detection of deviations from normal
software behavior that may indicate malicious activity. API calls
reveal how a program interacts with the underlying system, enabling
the identification of specific APIs used for malicious purposes, such
as modifying system settings. Network traffic data is crucial for
detecting malware that communicates with external servers,
attempts data exfiltration, or engages in suspicious data exchange
over the network.

RNNs excel at analyzing sequences of data and capturing
temporal dependencies in the behavior of potentially malicious
software. They are particularly effective at processing sequential
data encountered in malware analysis, such as sequences of system
calls, API calls, or network traffic generated by software. By being
exposed to sequential data, RNNs become adept at discerning
correlations and patterns that indicate malware behavior. They
take sequential data as input, working through it one element at
a time and updating their internal state based on the observed data.
This mechanism allows RNNs to capture temporal dependencies
and patterns in the data, which is essential for understanding the
dynamic nature of malware. The hidden state within RNNs serves as
a form of memory, retaining information about previous
observations and enabling the contextualization of past events
while predicting the current one. However, these strengths are
counterbalanced by challenges inherent in its application. There
is a limitation that Kaspersky malware family classification criteria
of the malware sample used for analysis in this paper may not be

TABLE 1 Comparison with previous review articles with a similar background. (✔: Yes and ✘: No).

Reference Year Summary of the main contributions Deep
learning

Open
challenges

Future
directions

Our Review - The review examines the effectiveness of Deep Learning models in detecting
malware, as well as highlighting the existing challenges and potential future
opportunities

✔ ✔ ✔

[9] 2023 This work presents a survey of deep learning techniques for 0-day malware
detection and classification, elaborating on the taxonomy of resilient
techniques for 0-day attacks

✔ ✔ ✘

[7] 2023 The review discusses the significant impacts of malware threats on Cyber-
Physical Systems and explores the application of nature-inspired
metaheuristic algorithms as a means to counter these threats

✘ ✘ ✔

[8] 2023 This work offers a thorough overview of the evolution, taxonomy, and
research related to ransomware. It specifically focuses on the challenges and
detection techniques within the realm of cybersecurity

✔ ✘ ✔

[10] 2022 This work provides a critical review of machine learning approaches used for
Android malware detection. It covers various learning methods and their
organization based on feature use

✔ ✘ ✔

[11] 2022 The review discusses the utilization of Indicators of Compromise (IOCs),
machine learning methods, and deep learning-based methods in tools and
anti-malware products

✔ ✔ ✔

[12] 2020 This survey provides a detailed overview of traditional machine learning
methods, including their challenges and limitations in the field. It also
highlights recent trends, particularly in deep learning, and discusses open
research issues

✔ ✔ ✘

[6] 2018 This work offers a systematic and detailed survey of malware detection
mechanisms that utilize data mining techniques. It classifies the approaches
into two categories: signature-based methods and behavior-based methods

✔ ✔ ✘
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accurate. Only the types and order of the APIs were taken into
consideration that were called when extracting patterns for APIs
called by malware and evaluating them. Since the API itself is
higher-level than the machine code or assembly in the computer,
the performance may be improved if the semantic criteria and
semantic distinction of malware API to be extracted [1].

To train RNNs for malware detection, historical data is used to
adjust their internal parameters. Backpropagation through time is
employed to update the model’s weights and biases based on
prediction errors, allowing the them to learn patterns associated
with malware. Additionally, their temporal modeling capabilities
enable the identification of anomalous behavior trends within an
application over time, facilitating the early detection of novel or
previously undiscovered strains of malware. The ability of RNNs to
capture nuanced and evolving behavioral patterns makes them a
valuable tool in malware detection. They enhance security by
providing a dynamic, adaptable, and context-aware approach to
identifying malicious software, especially in the face of rapidly
changing cybersecurity threats. RNNs are effective at identifying
evasive and polymorphic malware, which employ techniques to
avoid detection and continually change their code to generate

different variants. RNNs can tackle these challenges by
recognizing deviations from normal behavior and analyzing the
evolving patterns in the code.

Addressing data imbalance in training RNNs demands a
strategic approach. One method involves data augmentation,
wherein synthetic data is generated by introducing variations to
the existing minority class samples, thereby enriching the dataset.
Additionally, employing sampling techniques such as oversampling
(replicating minority class samples) or undersampling (reducing the
number of majority class samples) can help balance the dataset
distribution. Moreover, integrating cost-sensitive learning proves
effective by assigning varying costs to misclassification errors across
different classes, thereby accommodating the imbalance and
enhancing model performance. These strategies collectively
empower RNNs to navigate the challenges posed by skewed data
distributions, ultimately fostering more robust and accurate
predictions.

Experiments were conducted with 787 malware samples
belonging to nine families. In the experiments that were carried
out, representative API call patterns of nine malware families on
551 samples were extracted as a training set and performed

FIGURE 2
Selection of articles adhering to the PRISMA guidelines.
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classification on the 236 samples as a test set. Classification accuracy
results using API call patterns extracted from RNN were measured
as 71% on average. The results show the feasibility of our approach
using RNN to extract representative API call pattern of malware
families for malware family classification. First, the similarities of the
representative API call patterns with extracted from each family and
the API call sequences of the malware belonging to the test set are
compared. Then, top three representative API call patterns were
selected with the highest similarity compared to each malware in the
test set and compare the top three family results with the correct

answer. Jaccard similarity coefficient was used as the
similarity measure [1].

Experimental results using a balanced dataset showed 83%
accuracy and a 0.44 loss, which outperformed the baseline model
in terms of the minimum loss. The imbalanced dataset’s accuracy
was 98%, and the loss was 0.10, which exceeded the state-of-the-art
model’s accuracy. This demonstrates how well the suggested model
can handle malware classification [23].

One successful application of RNNs in malware detection is
dynamic behavioral analysis. This involves analyzing software

FIGURE 3
Current Deep learning Models for Malware Detection in Cyberspace–Taxonomy.
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TABLE 2 Details of works on deep learning-powered models for malware detection in cyberspace.

Reference Malware
type

DL models used Brief focus Key contributions Limitations Performance metrics

[5] Smart Vehicular

Network malware

Duelling Deep Q Learning Detect abnormal network traffic and classification of

attack

• Improve detection accuracy using a supervised machine

learning task based on agent-environment interaction using

a modified duelling DQN model

• Low Recall compared to existing systems • The experimental results showed that SIMPLE achieves an

accuracy of 90% in a 5-way classification task on new

malware families

• The algorithm is modified such that it can pick a supervisor

to implement an interaction mechanism as a supervised

algorithm for action, state, and reward

• Demonstrates the efficacy of the suggested invasion

detection strategy and the enhancement in classification

performance over conventional ML algorithms

[14] IoT botnet CCR-ELM Lightweight framework to detect IoT botnet and botnet

clusters

• Framework for detecting IoT botnets and botnet clusters.

The framework works with data regarding automated

behaviour

• Requires more memory space with the addition of data • The proposed ensemble method achieves the best outcome

with the highest accuracy 99.9%, compared to state-of-the-

art machine learning, deep learning, and ensemble models

• The Zeek Network Analysis Framework is used for

reassembling the network flow. Every network flow

produces 27 statistical and behavioural records pertaining

to network communication, application-level protocols,

and payload exchanged

• For the botnet detection portion of ELM, overall efficacy

improves as the number of concealed nodes rises. A botnet

family’s behaviour may vary based on the device it infects

and the stage at which it is deployed

[15] Worms CNN Model Anomaly based intrusion detection, classification of an

event as malignant or benign

• In context of accuracy and recall, the devised model

outperforms popular models such as NB, J48, RF, Bagging,

and Adaboost

• Cannot distinguish fuzzy attacks • Support Vector Machine (SVM), and AdaBoost algorithms

and they achieved the highest accuracy rate of 99,80% with

the Decision Tree classifier• Multiclass classification accuracy has room for

improvement

[16] Malware Detection in

Fog Computing

CNN Optimization of detection and classification mechanism

for malware detection in Fog Computing

• Structured and powerful malware detection system can be

deployed in fog computing by utilising a feature reduction

ability that takes a screenshot of a file and converts it into an

image and gives a new way for feature reduction by reading

only a specific number of bytes per 1 KB of data and

splitting an image into chunks, which divides a large file

into fixed-size output images

• When detecting files with specific extensions such

as.7zip, which have a fewer number of files in the training

dataset, the model performs poorly

• They used Convolutional Neural Network (CNN)

algorithm for classification and achieved an accuracy rate

of 94%

• The training of a model involves the inclusion of

disturbance to improve the model’s accuracy. This method

obtained a 97.2% success rate, used 16 times fewer features

than other approaches, and was able to manage enormous

files

• Model detects chunks of large file as malware even if it is

benign due to lack of adequate samples in training

dataset.

[17] Android malware • SERLA• SimHash andCNN The framework uses disassembly technology to produce

bytes file and asm file for each executable file and a special

matrix generation technique to produce three 256x

256 square matrices. The three matrices are then utilised

as the three channels of an RGB image and combined to

create a colour image. Furthermore, to improve the

discriminative power of the RGB images, we apply

adaptive histogram equalization processing utilizing the

CLAHE (Contrast Limited Adaptive Histogram

Equalization) data augmentation technique. In

conjunction with the oversampling method for training

neural networks, trained models for malware detection

and family classification are ultimately obtained

• Proposed a comprehensive detection and classification

framework for malware that can convert executable files

into their corresponding bytes and asm files. Therefore, we

create a steady dataset containing both normal software

samples and malware samples. This dataset can be utilised

for a wider range of malware detection experiment

categories.

• A novel approach is introduced for data representation,

which leverages binaries and word vectors derived from

both bytes’ files and asm files. This innovative method aims

to extract comprehensive information from software

samples, enabling a more holistic understanding of the data.

It considers the characteristics of more aspects of the data

samples and can provide more valuable assistance for the

training of the detection model, thereby enhancing the

detection performance.

• The labelling method used cannot filter normal software

with 100% accuracy.

• Compilation configuration is also one of the noticeable

issues. Different compilation configurations will make

the code with the same function compiled into different

assembly files, which can cause wrong classification of the

detection model

• The experimentation on a recent data set which includes

11,120 applications showed that an accuracy of 97% on

average can be achieved.

• SWORD obtained an accuracy of 94.2% in experiments on a

data set containing 2000 Android samples from various

sources

(Continued on following page)
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TABLE 2 (Continued) Details of works on deep learning-powered models for malware detection in cyberspace.

Reference Malware
type

DL models used Brief focus Key contributions Limitations Performance metrics

• In conjunction with the data augmentation technique in

computer vision, an optimised deep neural network SERLA

based on SEResNet50, Bi-LSTM, and an attention

mechanism is developed for malware detection. Compared

to other neural network malware detection models and even

state-of-the-art methods, our model is superior in all

evaluation metrics, as demonstrated by experimental results

[18] Malware Dragonfly-based DGDBN Cloud security and malware detection • Development of a novel Dragonfly-based Genetic Deep

Belief Network (DGDBN) technique for safeguarding VMs

in cloud environments

• Limited information on dataset and real-world testing • The authors prove that such gradient approximation

mechanism allows the objective function to converge to

optima with probability 1, where in their experiments only

a 2% accuracy loss is observed on average on GoogleLeNet

training

[19] Android malware DAE-CNN (Deep

Autoencoder-CNN)

Large-scale Android malware detection • The research proposes a hybrid model combining a Deep

Autoencoder (DAE) and Convolutional Neural Network

(CNN) to enhance large-scale Android malware detection

• The research discusses the model’s performance in terms

of accuracy and training time reduction but does not

specify if it was tested in a real-world environment or

against a broader range of Android malware. • Real-

world testing is crucial to validate the model’s practical

effectiveness

• Showed an excellent performance with an overall detection

accuracy of 99.3% for Probe, Remote to Local, Denial of

Service and User to Root type of attacks

• To enhance efficiency, the research introduces DAE as a

pre-training method for CNN. This approach significantly

reduces training time, specifically an 83% reduction

compared to CNN-S

• The model incorporates ReLU activation functions, sparsity

rules, and the combination of convolutional and pooling

layers with the full-connection layer to enhance feature

extraction capability

[20] Botnet Malware Khaos (DGA Model) Domain Generation Algorithm (DGA) for botnets • The research introduces Khaos, a novel Domain Generation

Algorithm (DGA) for generating domain names used in

botnet command and control (C&C) servers. Khaos is

designed to enhance anti-detection capabilities

• The study does not address the adaptability of Khaos to

evolving malware threats

• Two image conversion methods, byteplot and space-filling

curves, were used to represent the malware samples, and a

ResNet-50 architecture was used to train models on the

image datasets. The models were then tested against a

projected gradient descent attack. It was found that without

GAN-generated data, the models’ prediction performance

drastically decreased from 93%–95%–4.5% accuracy
• The study leverages neural language models and the

Wasserstein Generative Adversarial Network (WGAN) to

design Khaos. By mimicking real domain names through

the arrangement of syllables and acronyms, Khaos aims to

create domain names that are challenging for detection

• The dynamic nature of botnets and malware requires

continuous innovation to stay ahead of detection

methods

[4] Cybersecurity

Threats

EDRBM (Ensemble Deep

Restricted Boltzmann Machine)

Classification of cybersecurity threats in large-scale

networks

• The research introduces Ensemble Deep Restricted

Boltzmann Machine (EDRBM) as a novel deep learning

model for the classification of cybersecurity threats in large-

scale network environments. This represents a significant

advancement in the field of threat detection

• The content does not delve into the data and

computational resources needed for implementing

EDRBM in large-scale network environments

• When tested on all the features of the NSL-KDD data set,

the deep learning method obtaines very low result

compared with the mentioned methods, but when it is

tested on six features, the method in terms of accuracy

metric gets the high result and composed of 75.75%

• EDRBM is applied to classify cybersecurity threats, with a

specific emphasis on malware attacks. It serves as a

classification model capable of differentiating between

benign and malicious network traffic flowsets

• Real-world implementation may require significant

resources, and these requirements should be considered

[21] Malware Families Shallow Convolutional Neural

Network (CNN)

Assessing the vulnerability of malware classifier to dead

code insertion and adversarial attacks

• Introducing a Double Q-network-powered framework to

induce misclassification in malware families

• Lack of discussion about the impact of these attacks in

real-world settings

• The model outperforms other CNN architecture by a

significant margin on the accuracy metric, where 98.85%

was achieved on both datasets, Benign and Malicious PE

Files dataset and MalwareDataSet, and 98.37% was

achieved on the Classification of Malwares dataset.
• Training an AI agent to insert dead code instructions into

malware samples

• No information on the resource requirements for

deploying the proposed framework

• Demonstrating significant classification accuracy reduction

in malware classifier

• Ethical and legal aspects related to malware

manipulation and evasion are not addressed

• Achieving 100% evasion rate for specific malware families • Specific limitations associated with the proposed

framework are not discussed

(Continued on following page)
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behavior, such as file operations, system calls, registry accesses, and
network interactions, to identify potentially malicious activities.
They can create behavioral profiles of software by observing and
analyzing its interactions with the operating system and external
resources. These profiles can be compared against known malware
behavior patterns to identify potential threats. RNNs excel in
anomaly detection, crucial for identifying malware that exhibits
unusual or unexpected behavior. By continuously learning and
adapting to evolving malware behavior, RNN-based systems can
update their models to detect novel threats, making them effective
against 0-day attacks. They also reduce false positives by focusing on
behavioral analysis, prioritizing potential threats for security
professionals to investigate. RNNs can consider the context of
each action within a software’s behavior, distinguishing legitimate
activities from malicious ones. Given their proficiency in processing
ordered data, RNNs are well-suited for tasks involving time series
data. They adapt to various application domains, including speech
recognition, language modeling, translation, and image captioning,
where sequential data analysis is crucial [1].

3.2 Deep autoencoder

Deep Autoencoders (DAEs) have ascended as potent tools in the
fight against malware, particularly within the realm of unsupervised
learning. DAEs are a type of neural network that encodes high-
dimensional input into a lower-dimensional representation and
then decodes it back into its original format. They serve as
valuable tools for uncovering the inherent characteristics and
patterns exhibited by benign software applications. By training
on extensive datasets of benign applications, DAEs learn and
internalize the defining traits of harmless programs.

Labeled datasets are crucial in training DAEs for malware
detection. These datasets play a pivotal role in imparting the
model with the ability to discern nuanced patterns that
distinguish benign software from malicious counterparts.
Operating within a supervised learning framework, they are
trained on input-output pairs derived from labeled datasets. Each
input represents features extracted from both benign and malicious
samples, enabling the model to comprehend the distinctive
characteristics associated with each class. This process contributes
to the model’s generalization ability, allowing it to recognize
common patterns indicative of malware across different
variations and instances, ensuring effectiveness on previously
unseen data.

Addressing data imbalance in training deep DAEs and
variational autoencoders (VAEs) involves employing several
strategic approaches. One method involves leveraging the
inherent generative capacity of VAEs to counter data scarcity by
generating synthetic data. This technique helps balance the class
distribution, enhancing the model’s ability to learn from
underrepresented classes. Additionally, adversarial training can be
utilized to foster robustness against imbalances. By exposing the
model to adversarial examples, it learns to create more resilient
representations, mitigating the impact of data imbalance. These
strategies collectively empower them to handle skewed datasets
effectively, improving their capacity to generalize and learn
meaningful representations across all classes.T

A
B
LE

2
(C

o
n
ti
n
u
e
d
)
D
e
ta
ils

o
f
w
o
rk
s
o
n
d
e
e
p
le
ar
n
in
g
-p

o
w
e
re
d
m
o
d
e
ls

fo
r
m
al
w
ar
e
d
e
te
ct
io
n
in

cy
b
e
rs
p
ac

e
.

R
e
fe
re
n
ce

M
al
w
ar
e

ty
p
e

D
L
m
o
d
e
ls

u
se
d

B
ri
e
f
fo
cu

s
K
e
y
co

n
tr
ib
u
ti
o
n
s

Li
m
it
at
io
n
s

P
e
rf
o
rm

an
ce

m
e
tr
ic
s

•
E
nh

an
ci
n
g
ev
as
io
n
su
cc
es
s
ra
te
s
th
ro
ug
h
de
ep

re
in
fo
rc
em

en
t
le
ar
ni
ng

w
it
h
th
e
D
ou

bl
e
Q
-l
ea
rn
in
g

al
go
ri
th
m

•
V
al
id
at
in
g
re
su
lts

on
th
e
P
or
ta
bl
e
E
xe
cu
ta
bl
e
fi
le
s
da
ta
se
t

fo
r
re
pr
od

uc
ib
ili
ty

[2
2]

St
eg
an
og
ra
ph

y
C
on

vo
lu
ti
on

al
N
eu
ra
lN

et
w
or
ks

(C
N
N
)
an
d
E
xt
re
m
e
Le
ar
ni
ng

M
ac
hi
ne
s
(E
LM

)

T
ra
in
in
g
m
ac
hi
ne

le
ar
ni
ng

m
od

el
s
fo
r
m
al
w
ar
e

cl
as
si
fi
ca
ti
on

ba
se
d
on

fe
at
ur
es

ob
ta
in
ed

w
it
ho

ut

di
sa
ss
em

bl
y
or

co
de

ex
ec
ut
io
n

•
In
tr
od

uc
in
g
a
m
et
ho

d
to

vi
su
al
iz
e
m
al
w
ar
e
sa
m
pl
es

as

im
ag
es

fo
r
cl
as
si
fi
ca
ti
on

•
La
ck

of
sp
ec
ifi
c
in
fo
rm

at
io
n
ab
ou

t
th
e
m
al
w
ar
e
ty
pe
s
or

da
ta
se
t
us
ed

in
th
e
ex
pe
ri
m
en
ts

•
T
he

av
er
ag
e
ac
cu
ra
cy

fo
r
th
e
un

w
ei
gh
te
d
m
od

el
is
96
.5
%
,

w
hi
le

fo
r
th
e
w
ei
gh
te
d
m
od

el
w
e
ob
ta
in

a
sl
ig
ht

im
pr
ov
em

en
t
at

97
.7
%

•
E
va
lu
at
in
g
tw
o
m
ac
hi
ne

le
ar
ni
ng

te
ch
ni
qu

es
:
C
N
N
s
an
d

E
LM

s

•
N
o
di
sc
us
si
on

of
th
e
re
al
-w

or
ld

ap
pl
ic
ab
ili
ty

or

pe
rf
or
m
an

ce
of

th
e
pr
op

os
ed

ap
pr
oa
ch

•
D
em

on
st
ra
ti
ng

th
at

E
LM

s
ac
hi
ev
e
co
m
pa
ra
bl
e
ac
cu
ra
cy

to

C
N
N
s
w
it
h
si
gn
ifi
ca
nt
ly

fa
st
er

tr
ai
ni
ng

ti
m
es

•
T
he

pa
pe
r
do

es
no

t
ad
dr
es
s
th
e
po

te
nt
ia
l
lim

it
at
io
ns

of

im
ag
e-
ba
se
d
m
al
w
ar
e
cl
as
si
fi
ca
ti
on

in
te
rm

s
of

ac
cu
ra
cy

or
se
cu
ri
ty

•
Sh
ow

in
g
th
at
E
LM

s
an
d
C
N
N
s
pe
rf
or
m

w
el
lw

it
h
bo
th

on
e-

di
m
en
si
on

al
an
d
tw
o-
di
m
en
si
on

al
da
ta

Frontiers in Physics frontiersin.org09

Redhu et al. 10.3389/fphy.2024.1349463

76

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1349463


When presented with novel applications, DAEs can assess
whether they deviate significantly from the learned benign
patterns. This assessment is made possible by evaluating the
reconstruction error generated during the decoding process. A
high reconstruction error indicates a substantial departure from
the expected benign behavior, raising suspicion of potential
malicious activity. They can also be seamlessly integrated with
other machine learning algorithms, enhancing the
comprehensiveness of malware detection strategies.

The approach without autoencoder, both precision and recall
are 99 Percentage for just the Bi-LSTMmodel in detecting malicious
activities in cyber security. Average precision and recall of the
performed model with autoencoder is 93% [24].

The architectural framework of DAEs consists of two pivotal
stages: encoding and decoding. In the decoding phase, the
compressed representation is reconstructed back to its original
form, with each network layer performing a distinctive
transformation on the input data. Their adaptability benefits
applications like natural language processing (NLP), picture
recognition, identity verification, and data reduction.

While DAEs have ascended as potent tools in the fight against
malware, deploying them for real-world malware detection comes
with various challenges. Scalability is a significant challenge, as
training and deploying DAEs at scale can strain organizational
infrastructure. Efficient scaling becomes essential as datasets grow
in size and models become more complex. The demand for
computational resources, especially during training, poses another
challenge. Organizations must address the need for processing
power, which can lead to longer inference times and increased
operational costs. Real-time analysis, crucial for timely malware
identification, can be challenging with DAEs, particularly those with
complex architectures that struggle to achieve low-latency
predictions. Imbalances in real-world malware datasets pose
challenges related to biased models favoring the majority class,
resulting in suboptimal detection of less common or emerging
malware variants. The interpretability and explainability of DAEs,

often seen as black-box models, become critical in a production
setting to gain the trust of security analysts and stakeholders [24].

In malware detection, a comparative analysis reveals distinctive
strengths and weaknesses among DAEs, traditional machine
learning algorithms, and other deep learning approaches. DAEs
excel in unsupervised feature learning and automatically capture
intricate representations vital for complex tasks. Their ability to
detect anomalies without labeled data is advantageous for
identifying new malware variants. Traditional machine learning
algorithms, like Decision Trees, offer superior interpretability and
computational efficiency but rely onmanual feature engineering and
have limitations in anomaly detection [19]. Deep learning
approaches, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), excel in spatial and temporal
contexts but require large labeled datasets and can be
computationally intensive. Factors like interpretability, data
availability, and analysis requirements play a crucial role in
choosing among DAEs, traditional algorithms, or other deep
learning models. DAEs, with their focus on unsupervised feature
learning and anomaly detection, stand out in the malware detection
toolkit, each approach presenting unique strengths tailored to the
demands of the cybersecurity landscape.

Deep Autoencoders (DAEs) find practical application in
unsupervised learning for discerning inherent traits within benign
software. They leverage extensive datasets of benign applications to
learn characteristic features. Through this learning process, DAEs
become adept at identifying deviations from these established
norms, effectively flagging potential malware presence. By
analyzing and detecting anomalies in software behavior, DAEs
serve as a valuable tool in the continuous battle against
cybersecurity threats, enabling proactive identification of
suspicious activities and potential threats [25].

Unsupervised learning presents a promising avenue for discerning
the inherent traits of malware, and its efficacy lies in the ability to
perform effective feature learning without relying on labeled data.
However, despite its potential, DAEs encounter notable challenges.

FIGURE 4
Categories of recent tools in malware analysis and detection.
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Scalability poses a significant hurdle during both training and
deployment phases, demanding innovative solutions to handle the
complexities of large-scale data. Additionally, the vulnerability to
adversarial attacks presents a pressing concern, necessitating robust
defense mechanisms to fortify these models. Furthermore, integrating
unsupervised learning methodologies with existing security
infrastructure proves to be a challenging task, demanding a concerted
effort to harmonize these disparate elements effectively. Thus, while
holding considerable promise, the practical implementation of
unsupervised learning in identifying malware characteristics
necessitates a strategic approach to mitigate these formidable challenges.

3.3 LSTM

The Long Short-Term Memory (LSTM) architecture has
demonstrated its effectiveness in virus detection due to its ability
to identify long-term dependencies within sequential data. LSTMs
are a type of recurrent neural network (RNN) that use memory cells
and gates to control the flow of information within the network. This
makes them valuable for analyzing sequences of system calls, API
calls, or network traffic generated by applications, especially in the
context of malware detection in cyberspace. By processing
sequential data using LSTM networks, patterns and correlations
indicative of malicious behavior can be discovered. The following
techniques are used in this scenario:

a) Sequence Encoding: System call sequences are encoded into
numerical vectors, where each system call is represented as an
integer or a one-hot encoded vector. This encoding enables
effective processing by the LSTM network.

b) Sequence Padding: Sequences are often padded or truncated to
a fixed length to ensure uniform input lengths. This step is
crucial for creating consistent input for the LSTM.

c) LSTM Architecture: LSTM layers are utilized to capture the
temporal dependencies and the order of system calls within the
encoded sequences. LSTMs excel at modeling long-range
dependencies, making them well-suited for this task.

d) Output Classification: The output of the LSTM layer is
typically connected to a classification layer responsible for
distinguishing between benign and malicious behavior based
on the patterns learned from the system call sequences.

Like system call analysis, LSTM networks can be used for
analyzing sequences of API calls to detect malware in cyberspace.
The techniques involved are similar to those used in system call
analysis, including sequence encoding, padding, LSTM architecture,
and output classification. Additionally, they can also be utilized to
model the behavior of an application over time, enabling the
identification of anomalous activities that may indicate the
presence of a new or previously undiscovered malware strain
[25]. For enhanced malware detection strategies, LSTMs can also
be seamlessly integrated with other machine learning techniques,
such as Convolutional Neural Networks (CNNs).

The development of the LSTM architecture was primarily
motivated by the need to address the vanishing gradient problem
present in standard neural networks [26]. This problem arises when
each connection within a network has its individual weight that
remains unchanged over time, leading to training difficulties. As a
type of RNN, LSTMs leverage memory cells and gating mechanisms
to effectively control the flow of information, making them well-
suited for the analysis of sequences involving system calls, API calls,
or network traffic while identifying patterns and correlations
indicative of malicious behavior.

A high-quality dataset consisting of 2,060 benign and memory-
resident programs was created. In other words, the dataset contains
1,287,500 labeled sub-images cut from the MRm-DLDet
transformed ultra-high resolution RGB images. MRm-DLDet was

FIGURE 5
Open challenges–deep learning-powered malware detection in cyberspace.
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implemented for Windows 10, and it performs better than the latest
methods, with a detection accuracy of up to 98.34%. Twelve diferent
neural networks were trained and the F-measure up to 99.97% [27].

To address the challenges posed by data imbalance in LSTM
training, several strategies are employed. One approach involves
employing data augmentation techniques, which entail generating
synthetic data by introducing variations to the existing minority
class samples. This method aids in balancing the dataset and
providing the model with more diverse instances to learn from.
Another valuable strategy involves leveraging sampling techniques
such as oversampling or undersampling. Oversampling involves
replicating minority class samples to balance the class distribution,
while undersampling focuses on reducing the number of majority
class samples. These methods help create a more equitable
representation of classes within the dataset, enabling the LSTM
to learn effectively from both the majority and minority classes.
Furthermore, adopting cost-sensitive learning techniques proves
beneficial. By assigning varying costs to misclassification errors in
different classes, the model can account for the imbalance and
prioritize accurate classification of the minority class. This
approach ensures that the LSTM places appropriate emphasis on
correctly identifying instances from both the majority and minority
classes, thereby enhancing overall performance despite data
imbalances [26].

LSTM’s mastery in capturing temporal dependencies enables a
deep comprehension of malware’s dynamic behavior over time.
However, this strength comes with inherent challenges. The
resource-intensive nature of training poses a significant obstacle,
while vulnerability to adversarial attacks is a critical concern.
Additionally, the constant need for updates to align with the
ever-evolving array of malware variants presents an ongoing
demand. Despite these hurdles, the methodology’s proficiency in
unraveling intricate data sequences remains a promising frontier in
the realm of deciphering and combating malware conduct.

3.4 Deep neural network

Deep Neural Networks (DNNs) have gained prominence in
virus detection due to their remarkable capacity to comprehend
complex patterns and data characteristics. DNNs represent a class of
artificial neural networks characterized by numerous interconnected
layers of nodes. These layers collaboratively process incoming data,
ultimately yielding predictions or classifications. In the realm of
malware detection in cyberspace, DNNs are trained on extensive
datasets encompassing both benign and malicious programs,
enabling them to discern the fundamental attributes and patterns
inherent to each class.

Leveraging the knowledge acquired from this training, DNNs
can effectively categorize new applications as either benign or
malicious based on their intrinsic characteristics. They exhibit
versatility in assessing diverse forms of input data, spanning
system calls, API calls, and network traffic, making them
adaptable to various malware detection scenarios. For instance, in
API call pattern recognition, Convolutional Neural Networks
(CNNs), a type of DNN, can effectively analyze sequences for
anomaly detection or malware identification by representing each
API call as a feature vector. In network traffic analysis, DNNs,

including CNN architectures, excel at detecting spatial patterns
within data for intrusion detection, often extracting features from
packet headers or payloads. Additionally, CNNs prove valuable in
image-based malware detection, where they process images of
executable files to identify malicious code patterns. Furthermore,
the ability of DNNs to integrate multiple forms of input data in
multimodal threat analysis, combining features from system calls,
API patterns, and network traffic, highlights their capability for
comprehensive threat assessment [28].

The utilization of transfer learning allows DNNs trained on one
malware classification task to be fine-tuned for related challenges,
showcasing their adaptability and knowledge transfer capabilities in
cybersecurity applications. The training process for DNNs typically
involves backpropagation, a technique that seeks to minimize the
loss function’s value through the gradient descent approach. The
training process involves several key stages, starting with the
initialization of weights and biases, a critical step that establishes
the foundation for effective learning [29]. As the input data
undergoes forward propagation, traversing through the network’s
layers, activations are computed, and the output is generated based
on the current parameters. Simultaneously, the loss function
calculates the disparity between the predicted output and actual
labels, providing a quantifiable metric for the network’s
performance. Backpropagation follows, utilizing the chain rule to
compute gradients and propagate errors backward through the
network. This process enables the network to discern the
contribution of each weight to the overall error. Subsequently,
gradient descent optimization adjusts the weights and biases to
minimize the loss function, guiding the network toward optimal
configurations for proficient malware detection. The entire sequence
of forward propagation, loss calculation, backpropagation, and
weight updates iterate over multiple epochs, allowing the network
to progressively refine its parameters. These iterative adjustments
enhance the network’s capacity to generalize and effectively identify
previously unseen malware variants, underscoring its effectiveness
in the realm of cybersecurity. Resampling methods such as
oversampling, undersampling, or using techniques like SMOTE
(Synthetic Minority Over-sampling Technique) can rebalance the
dataset, ensuring equal representation of classes. Additionally,
adjusting class weights during training serves as a means to
penalize misclassifications of the minority class more heavily,
allowing the model to prioritize learning from the
underrepresented data. These strategies collectively aim to
mitigate the impact of data imbalance, enabling DNNs to better
generalize and make more accurate predictions across all classes in
the dataset.

A deep neural network based malware detection system that
Invincea has developed, achieves a usable detection rate at an
extremely low false positive rate and scales to real world training
example volumes on commodity hardware. Their system achieves a
95% detection rate at 0.1% false positive rate (FPR), based on more
than 400,000 software binaries sourced directly from our customers
and internal malware databases [28].

To generate predictions or classifications, DNNs
meticulously process data through their interconnected layers
of nodes. When applied to malware detection, these networks can
be trained on extensive datasets containing both benign and
malicious programs, equipping them with the knowledge needed
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to distinguish between the two categories. By synergizing DNNs
with other machine learning techniques, such as Deep
Autoencoders (DAEs) or Long Short-Term Memory (LSTM)
networks, a more comprehensive and robust approach to
malware identification can be achieved. Deep Autoencoders, as
unsupervised models, play a pivotal role in feature learning and
extraction, providing compact and meaningful representations of
input data, particularly valuable in high-dimensional spaces like
raw system call sequences or network traffic patterns. This
enhances the model’s robustness against various malware
variants by capturing latent features and anomalies during
pre-training on unlabeled data. On the other hand, Long
Short-Term Memory Networks excel in capturing temporal
dependencies and sequences, crucial for understanding
dynamic aspects of malware behavior over time. Integrated
into a DNN architecture, LSTMs contribute temporal context
awareness, enabling the model to discern evolving patterns
exhibited by sophisticated malware. Ensemble learning
techniques, such as stacking or bagging, further amplify the
model’s robustness by combining the strengths of DNNs,
DAEs, and LSTMs [28]. The ensemble approach leverages the
diversity of information captured by each component, resulting
in a more accurate and resilient model less sensitive to noise and
outliers. Additionally, the utilization of transfer learning
facilitates knowledge transfer from related tasks, such as
feature learning or sequential modeling, enhancing the DNN’s
generalization performance in malware identification.

While leveraging DNNs has significantly propelled the field of
malware detection towards greater accuracy and efficiency, their
application comes with inherent limitations and challenges. Firstly,
scalability issues pose a substantial hurdle, as training large-scale
DNNs demands significant computational resources and can be
financially burdensome. The complexity of DNN architectures,
coupled with the extensive data required for effective training,
exacerbates this challenge, particularly for organizations with
limited computational capabilities. Secondly, interpretability
challenges impede the widespread adoption of DNNs in malware
detection in cyberspace. DNNs are often considered black-box
models, lacking transparency in their decision-making processes.
In intricate tasks like malware detection, understanding the rationale
behind a specific decision is crucial for building trust and ensuring
alignment with the expectations of security experts. Adversarial
attacks constitute another formidable challenge. DNNs are
susceptible to intentional manipulations of input data by
malicious actors, leading to misclassifications and compromising
the reliability of malware detection systems. Such attacks pose a
significant security risk, requiring robust defenses to mitigate their
impact [29]. Furthermore, the issue of data imbalance within
malware datasets complicates the generalization performance of
DNNs. Imbalances, where certain types of malware are
underrepresented, can result in model biases towards prevalent
classes, leading to suboptimal detection of less common or
emerging malware variants. Lastly, the lack of explainability in
DNNs’ decision-making processes hinders their integration into
security workflows. The opacity of these models makes it challenging
for security analysts to comprehend the basis for a classification,
impeding effective collaboration between automated systems and
human experts.

3.5 Deep Belief Network

Deep Belief Networks (DBNs) are powerful tools in the realm of
malware detection in cyberspace. These neural networks excel at
capturing intricate patterns and features within vast datasets,
making them invaluable for identifying malicious software. DBNs
are particularly effective in analyzing software behavior and
identifying anomalies or suspicious activities. They have the
ability to autonomously discover relevant features, which is
advantageous in the context of rapidly evolving malware. By
processing various aspects of software behavior, such as system
calls, API calls, or network traffic patterns, DBNs can differentiate
between normal software operations and potentially harmful ones.
This approach allows for the detection of previously unseenmalware
strains or novel attack techniques, making them a critical
component of modern cybersecurity systems. The versatility and
adaptability of DBNs in handling large and diverse datasets make
them an essential tool for protecting against the ever-growing
landscape of malware threats [2].

End-to-end deep learning architectures, specifically
Bidirectional Long Short-Term Memory (BiLSTM) neural
networks, are employed for the static behavior analysis of
Android bytecode. Unlike conventional malware detectors that
rely on handcrafted features, this system autonomously extracts
insights from opcodes. This approach demonstrates the superiority
of deep learning models over traditional machine learning methods,
offering a promising solution to safeguard Android users from
malicious applications [30].

Researchers have also explored the suitability of deep learning
models for mobile malware detection. They utilize a deep neural
network (DNN) implementation called DeepLearning4J (DL4J),
which successfully identifies mobile malware with high accuracy
rates. The study suggests that adding more layers to the DNN
models improves their accuracy in detecting mobile malware,
showcasing the feasibility of using DNNs for continuous learning
and anticipating new types of attacks [22].

An anti-malware system that uses customized learning models,
which are sufficiently deep, and are end to end deep learning
architectures report an accuracy of 0.999 and an F1-score of
0.996 on a large dataset of more than 1.8 million Android
applications [2]. The SOFS-OGCNMD system achieves system’s
average accuracy is 98.28%, average precision is 98.65%, recall is
98.53%, and F1-Score is 98.47 [22].

In addition, a method has been proposed to address the
challenges of malware detection in Cyber-Physical Systems (CPS)
within the Internet of Things (IoT). The model, called Snake
optimizer-based feature selection with optimum graph
convolutional network for malware detection (SOFS-OGCNMD),
demonstrates remarkable results in accuracy, precision, recall, and
F1-Score, outperforming recent models and contributing to the
protection of CPS and IoT systems from evolving cyber threats [18].

Furthermore, a system has been designed to enhance the security
of power systems through a Deep Belief Network (DBN)-based
malware detection system. This system deconstructs malicious code
into opcode sequences, extracts feature vectors, and utilizes DBN
classifiers to categorize malicious code. It effectively utilizes
unlabeled data for training and outperforms other classification
algorithms in terms of accuracy. The research showcases the
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potential of DBNs for enhancing malware detection accuracy and
reducing feature vector dimensions, thereby contributing to
safeguarding power systems from cyber threats.

3.6 Deep convolutional neural network

The realm of malware detection in cyberspace, particularly in
the context of evolving cyber threats, is experiencing a surge in
innovative approaches driven by deep learning and convolutional
neural networks (CNNs). Deep Convolutional Neural Networks
(DCNNs) have emerged as robust and efficient technologies for
detecting malware. Their ability to automatically extract complex
features from various forms of data makes them exceptionally well-
suited for this task. In the context of malware analysis, CNNs excel at
processing and identifying malicious patterns within binary code,
enabling the detection of known malware strains and even the
discovery of novel threats. These networks are particularly
effective in detecting malware through the analysis of file content
and structure, which includes identifying suspicious code segments
and unusual behaviors. Deep CNNs offer a significant advantage in
terms of adaptability as they can be trained on diverse and evolving
datasets to keep up with the continuous evolution of malware.
Additionally, their capacity to handle large-scale data and discern
subtle variations in binary files enables the identification of both
prominent and more subtle malicious patterns. They are at the
forefront of malware detection, contributing to the defense against
the ever-growing sophistication of cyber threats [3].

DCNNs have proven to be highly effective in tasks related to
image processing, excelling in capturing intricate spatial hierarchies
and patterns. Their performance, often measured through precision,
recall, and F1-score, is particularly notable in image classification
tasks, especially when trained on extensive and diverse datasets.
When compared to traditional machine learning models like SVM
or Random Forest, DCNNs consistently outshine them in image-
related tasks, showcasing a superior ability to discern complex
patterns. Transfer learning models, such as VGG16 or ResNet,
compete strongly with them, benefiting from pre-trained
networks on large datasets. However, DCNNs, especially those
incorporating transfer learning architectures, often emerge as
leaders, demonstrating heightened precision, recall, and F1-score
by leveraging their effective feature extraction capabilities. In tasks
involving sequential data, where Recurrent Neural Networks
(RNNs) excel in capturing temporal dependencies, DCNNs
maintain their superiority in scenarios where spatial features hold
more significance, as seen in image-related tasks. Ensemble models,
combining various techniques, present a competitive alternative,
sometimes matching or exceeding DCNNs’ performance,
particularly in cases where diverse models contribute to
improved generalization. These models find a significant
application in the financial sector, particularly in credit scoring.
In credit scoring, financial institutions aim to predict the probability
of a loan applicant defaulting on a loan. This prediction is based on a
myriad of factors including credit history, income, employment
status, and others. Ensemble models combine various machine
learning models like Decision Trees, Logistic Regression, and
Neural Networks to assess these factors. In the real world, this
translates to more accurate credit scoring, which helps financial

institutions in reducing the risk of loan defaults while approving
more loans for credit-worthy applicants.

The evaluation of DCNNs on diverse datasets is indispensable
for gauging their generalizability and robustness across various
malware types. Assessing these models on multiple datasets
provides crucial insights into their adaptability and real-world
performance. Key considerations include exploring malware
variability, addressing imbalances in datasets, accounting for
temporal aspects in malware evolution, cross-domain evaluation
to assess adaptability, examining scenarios involving transfer
learning, evaluating resilience against adversarial attacks,
accounting for geographical variations in malware prevalence,
ensuring versatility in handling different feature representations,
and maintaining consistent evaluation metrics such as precision,
recall, F1-score, and area under the ROC curve. This comprehensive
approach to evaluation enables researchers and practitioners to
develop DCNN models that can effectively navigate the dynamic
and complex landscape of malware detection, ensuring their efficacy
across diverse and evolving cybersecurity scenarios.

An advanced intelligent IoT malware detection model proposed
based on deep learning and ensemble learning algorithms, called
DEMD-IoT achieves the best outcome with the highest accuracy
99.9%, compared to state-of-the-art machine learning, deep
learning, and ensemble models [3]. The 4L-DNN model
outperforms other DNN architecture by a significant margin on
the accuracy metric, where 98.85% was achieved on both datasets,
Benign and Malicious PE Files dataset and Malware Dataset, and
98.37% was achieved on the Classification of Malwares dataset [31].

To address the challenges related to malware detection, the
DEMD-IoT model leverages the power of deep learning and
ensemble learning techniques. It comprises a stack of three one-
dimensional convolutional neural networks (1D-CNNs) tailored to
analyze IoT network traffic patterns. Themodel also features a meta-
learner, utilizing the Random Forest algorithm, to integrate results
and produce the final prediction. DEMD-IoT’s advantages lie in its
ensemble strategy to enhance performance and the use of
hyperparameter optimization to fine-tune base learners. Notably,
it employs 1D-CNNs, avoiding the complexity of preprocessing
phases. Empirical evaluation on the IoT-23 dataset demonstrates
that this ensemble method outperforms other models, achieving a
remarkable accuracy of 99.9% [31].

Another study introduces a web-based malware detection
system centered on deep learning, specifically a one-dimensional
convolutional neural network (1D-CNN). Unlike traditional
methods, it focuses on static features within portable executable
files, making it ideal for real-time detection. The 1D-CNN
architecture, tailored for these executable files, facilitates efficient
feature extraction. Comparisons with state-of-the-art methods
across diverse datasets confirm the model’s superiority. As
malware poses a significant security threat, this web-based system
offers user-friendly malware detection, reducing vulnerability to
cyberattacks and benefiting individuals and organizations alike.
The study emphasizes the importance of deploying deep learning
models in web-based applications to enhance usability and
accessibility [32].

In another paper, the authors propose an efficient neural
network model, EfficientNetB1, for classifying malware families
using image representations of malware at the byte level. By
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employing computer vision techniques, they aim to detect
sophisticated and evolving malware. The evaluation of various
pretrained CNN models highlights the importance of minimizing
computational resource consumption during training and testing.
EfficientNetB1 achieves an impressive accuracy of 99% in classifying
malware classes, requiring fewer network parameters compared to
other models. This work contributes to the field of cybersecurity by
providing a novel approach that combines efficient neural network
models and diverse image representation methods for accurate and
resource-efficient malware classification [33].

To address the persistent challenge of malware detection in
Windows systems, a Convolutional Neural Network (CNN)-based
approach is used. It leverages the execution time behavioral features
of Portable Executable (PE) files to identify and classify elusive
malware. The approach was evaluated using a dataset comprising
MIST files, generating images from N-grams selected by various
Feature Selection Techniques. Results from 10-fold cross-validation
tests showcase the remarkable malware detection accuracy,
particularly when employing N-grams recommended by the
Relief Feature Selection Technique. In comparison to other
machine learning-based classifiers, this CNN-based approach
outperforms them, offering a promising solution to enhance
malware detection in Windows systems.

3.7 Deep generative models

Deep Generative Models offer a promising avenue for enhancing
malware detection techniques in cyberspace. These models operate by
generating synthetic data that mimics the characteristics of malicious
code, thereby providing an innovative approach to detect malware. By
leveraging techniques such as Variational Autoencoders (VAEs) or
Generative Adversarial Networks (GANs), deep generative models can
create artificial malware samples to diversify training datasets. This
augmentation helps improve the robustness of malware detection
systems, enabling them to recognize new and evolving threats. These
models can also be employed in anomaly detection, identifying
deviations from normal software behavior, which often indicates the
presence of malware. Furthermore, they can generate features that
enhance feature-based malware detection in cyberspace. Their
adaptability and ability to generate data like malicious code samples
contribute to strengthening the overall cybersecurity landscape, offering
a proactive approach to identifying and combating
malware threats [34].

In contrast, state-of-the-art methods and alternative approaches
encompass signature-based detection, heuristic-based detection, and
traditional machine learning models. Signature-based methods are
efficient in identifying known malware through predefined patterns
but face limitations in detecting novel threats. Heuristic approaches
rely on rules and behavioral patterns, demonstrating adaptability but
may produce false positives or negatives. Traditional machine
learning models, while interpretable and computationally
efficient, are constrained by the need for manual feature
engineering and may struggle with high-dimensional data.
Interpretability favors signature-based and heuristic-based
methods, as well as certain traditional machine learning models,
over deep generative models. However, the adaptability to novel
threats is shared by deep generative models and heuristic-based

approaches, distinguishing them from the limitations of signature-
based methods. Deep generative models, with their strengths in
unsupervised learning and anomaly detection, offer a promising
avenue for addressing challenges posed by evolving and novel
malware threats.

The two features extracted from the data with their respective
characteristics are concatenated and entered into the malware
detector of a hybrid deep generative model. By using both
features, the proposed model achieves an accuracy of 97.47%,
resulting in the state-of-the-art performance. [34]. A model
which was verified by extensive experiments on the benchmark
datasets KDD’99 and NSL-KDD effectively identifies normal and
abnormal network activities. It achieves 99.73% accuracy on the
KDD’99 dataset and 99.62% on the NSL-KDD dataset [35].

To tackle the challenge of detecting obfuscated malware, which
often employs techniques like null value insertion and code
reordering to evade traditional detection methods, a deep
generative model is proposed. This model combines both global
and local features by transforming malware into images to capture
global characteristics efficiently and extracting local features from
binary code sequences. By fusing these two types of features, the
model achieves an impressive accuracy of 97.47% [36]. A novel
approach is also introduced that leverages generative adversarial
networks (GANs) for plausible malware training and augmentation.
By training a discriminator using malware images generated by
GAN models, the framework enhances the robustness of detection
against 0-day malware. This eliminates the need for inefficient
malware signature analysis, reducing signature complexity. The
study emphasizes the importance of understanding 0-day
malware features through explainable AI techniques and suggests
future work on expanding the framework’s applicability [35].
Despite the inherent black-box nature of these models,
Explainable AI (XAI) provides a set of methodologies to shed
light on their decision-making processes. Layer-wise Relevance
Propagation (LRP) assigns relevance scores to input features,
aiding in the identification of crucial patterns for 0-day malware
features. Saliency maps highlight significant regions in input data,
offering interpretability by emphasizing key areas in images or
sequences. Integrated Gradients calculates feature attribution,
providing nuanced insights into how variations in input features
contribute to the identification of 0-day malware characteristics.
Local Interpretable Model-agnostic Explanations (LIME) generates
faithful interpretations by perturbing input instances, creating
surrogate models for better understanding. Attention mechanisms
focus on relevant parts of input sequences, aiding in the
interpretation of the importance of different elements,
particularly beneficial for sequential data. Counterfactual
explanations generate alternative instances, showcasing the
impact of input feature variations on model predictions,
enhancing understanding of 0-day malware identification. Rule-
based explanations extract decision rules approximating the
behavior of deep generative models, offering a simplified
representation for accessibility and understanding by security
analysts. These explainability methods collectively contribute to a
more transparent and interpretable framework, allowing analysts to
dissect and comprehend the decision-making processes of deep
generative models in the complex domain of 0-day
malware detection.
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To tackle network intrusion detection, where high-dimensional
data, the scarcity of labeled samples, and real-time detection pose
challenges, the proposed solution utilizes deep learning. It employs a
multichannel Simple Recurrent Unit (SRU) model that outperforms
traditional LSTM algorithms in efficiency and accuracy. To address
the scarcity of labeled samples, a generative adversarial model
(DCGAN) is used to generate training data, significantly
improving system detection rates and reducing false alarms. The
paper introduces efficient data preprocessing and demonstrates an
impressive detection accuracy of 99.73% on KDD datasets. The
SRU-based approach offers real-time intrusion detection capabilities
and enhances network security [20].

While offering unique strengths, Deep Generative Models also
come with several drawbacks in the context of malware detection in
cyberspace. One key limitation lies in their interpretability, as these
models are often perceived as black-box systems, making it
challenging for security analysts to comprehend and trust their
decision-making processes. Moreover, the computational intensity
required for training, stemming from complex architectures and
large datasets, poses practical challenges for deployment,
particularly in resource-constrained environments. Data
dependency is another drawback, with deep generative models
relying on substantial amounts of labeled data for effective
training. Acquiring diverse and representative datasets for various
malware types can be logistically challenging, considering the
dynamic nature of the cybersecurity landscape. Additionally,
these models are vulnerable to adversarial attacks, similar to
other deep learning approaches, which pose a threat to their
reliability in real-world scenarios. The need for large-scale
training data is a practical concern, as optimal performance often
hinges on access to extensive and diverse datasets. Adapting to the
dynamic nature of cybersecurity threats is another limitation,
requiring frequent updates and retraining to effectively address
new malware variants. Incorporating domain knowledge or
expert-defined rules into the learning process can be difficult for
deep generative models, hindering their ability to leverage human
expertise in refining malware detection.

3.8 Deep Boltzmann machine

Deep Boltzmann Machines (DBMs) are powerful tools in
malware detection in cyberspace. These deep learning algorithms
excel in capturing intricate patterns within large datasets. When
used for malware detection, they analyze binary code or behavioral
data to identify malicious patterns and anomalies. By modeling the
complex relationships between features, they effectively distinguish
between benign and malicious software. DBMs offer the advantage
of unsupervised learning, making them adept at uncovering novel
and previously unseen malware variants. They can identify subtle
and evolving threat vectors, making them crucial in the battle against
constantly changing malware. Additionally, DBMs can be used for
feature extraction, reducing data dimensionality and enhancing the
efficiency of other detection algorithms.

Compared to other malware detection techniques, including
traditional machine learning algorithms, Convolutional Neural
Networks (CNNs), and Recurrent Neural Networks (RNNs), each
approach brings its unique attributes. Traditional algorithms are

known for their interpretability but may require manual feature
engineering. CNNs excel in spatial feature extraction for image-
based tasks. RNNs outperform DBMs in handling sequential data
and capturing temporal dependencies.

In the field of cybersecurity, DBMs play a pivotal role in
bolstering defenses and ensuring the early identification of
emerging malware threats [37]. A multi-objective RBM model
aims to improve robustness and data classification accuracy. This
study addresses challenges such as dataset imbalance, complex deep
learning network models, and the need for multiple objectives. It
leverages non-dominated sorting genetic algorithms (NSGA-II) to
tackle imbalanced malware families. The proposed model, in
conjunction with NSGA-II, significantly enhances data
classification accuracy within HetNets, demonstrating its
effectiveness in safeguarding data fusion processes [38].

To tackle dimensionality, Subspace-based Restricted Boltzmann
Machines (SRBM) introduce a novel approach that combines RBMs
with subspace learning. SRBM efficiently reduces feature
dimensionality while considering non-linear feature relationships.
Compared to other methods like PCA and Stacked Auto Encoder
(SAE), SRBM stands out with significant improvements in
performance metrics, enhancing efficiency and accuracy in
Android malware detection [4].

To explore the application of deep learning in the detection of
Denial of Service (DoS) attacks, a deep Gaussian-Bernoulli-type
RBM is introduced with additional layers, optimizing
hyperparameters for improved detection accuracy. This deep
RBM model supports continuous data and demonstrates superior
accuracy when compared to alternative RBM models, such as
Bernoulli-Bernoulli RBM. The study underscores the importance
of developing systems capable of detecting malicious behavior
within network traffic, particularly in the context of
DoS attacks [39].

In order to confirm the effect of the proposed method (RBM +
NSGA-II) on the accuracy of data classification, the recall rate values
with five other methods are compared. The methods are GIST +
KNN, GIST + SVM, GLCM + KNN, GLCM + SVM, and DRBA, and
the recall rates are 91.7, 91.4, 92.3, 93, and 94.5 percent, respectively
[37]. The method proposed here has a recall rate of 95.83 percent.
Next, by comparing the values of loss, recall rate, and false alarm rate
with, it was found that the proposed multi-objective RBMmodel has
loss values (loss = 0.083, 0.080, and 0.086) and recall rate values
(recall = 88.64, 93.48, and 95.83 percent) are all better in three
different resolutions, and the value of FPR at 50 × 50 resolution is
slightly worse (FPR = 12.5 percent is greater than
11.50 percent) [37].

Obtaining and labeling appropriate training data for Deep
Boltzmann Machines (DBMs) in malware detection presents
multifaceted challenges with implications for model
generalizability and real-world applicability. Firstly, imbalances in
class distribution within malware datasets pose a challenge,
potentially leading to biased model training and diminished
effectiveness in detecting less common malware types.
Annotating malware samples is resource-intensive, and the
dynamic cybersecurity landscape introduces new variants
regularly, contributing to limitations in dataset size and
timeliness. This can hinder the model’s capacity to generalize to
evolving threats. Moreover, inherent biases in malware datasets
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from different sources create potential limitations. Models trained
on biased datasets may struggle to generalize across different
contexts, impacting performance when faced with malware
variants from underrepresented sources or regions. The active
involvement of malicious actors in crafting adversarial samples
further complicates the training process. Adversarial samples,
intentionally manipulated to deceive the model, can compromise
the robustness and reliability of the DBM in real-world scenarios.
Additionally, the heterogeneous nature of malware, ranging from
simple to highly sophisticated attacks, presents a challenge in
capturing this diversity within a single training dataset. A lack of
diversity may result in a model that struggles to identify novel and
sophisticated malware types, further constraining its efficacy in
practical, real-world scenarios.

3.9 Deep reinforcement learning

Deep reinforcement learning (DRL) plays a crucial role in
enhancing malware detection by introducing innovative
approaches to address evolving cybersecurity challenges. This
advanced technique utilizes artificial intelligence and deep
learning algorithms to train intelligent agents that learn to
make decisions based on interactions with malware samples.
These agents can determine optimal sequences of actions to
modify malware, making it more difficult for anti-malware
engines to detect. DRL is particularly effective in scenarios
where traditional machine learning approaches struggle,
especially in dealing with adversarial attacks. By allowing the
agents to iteratively interact with malware, it is possible to
enhance the agility and evasiveness of malware, making
detection more challenging. This approach empowers
researchers and cybersecurity professionals to proactively
combat cyber threats, adapt to new evasion techniques, and
continuously strengthen their malware detection systems [40].

In comparison to established methods, signature-based
detection techniques prove effective in identifying known
malware patterns, offering computational efficiency and a well-
established presence in cybersecurity practices. Heuristic-based
approaches leverage rules and behavioral patterns, adapting to
new threats through heuristic updates. While computationally
efficient, heuristics may generate false positives or negatives
based on predefined rules. Traditional machine learning models,
such as Support Vector Machines (SVMs) or Random Forests,
provide interpretability and efficiency but may struggle with
complex relationships in data due to their reliance on manual
feature engineering. Analysis of these approaches reveals the
superiority of DRL techniques in sequential decision-making
tasks and adaptability to dynamic environments, addressing
limitations seen in signature-based and traditional machine
learning methods.

One method explores the evolution from traditional signature-
based methods to machine learning-based algorithms for malware
detection. While machine learning approaches have significantly
improved detection accuracy, they remain vulnerable to adversarial
attacks. The study delves into the creation of adversarial samples to
test the resilience of these systems, particularly focusing on binary
file modification. It discusses the complexities involved in avoiding

corruption of the binary and the need to strengthen the defenses of
machine learning models. The research highlights the ongoing need
to enhance the robustness of malware classifiers against adversarial
attacks. Another study introduces a novel framework called DQEAF
(Deep Q-Learning for Evading Anti-Malware Engines), which
employs DRL to bypass anti-malware engines. This framework
trains an artificial intelligence agent to iteratively interact with
malware samples and determine optimal sequences of non-
destructive actions that modify the samples, enabling them to
evade detection. The study emphasizes the effectiveness of this
approach, achieving a 75% success rate in evading detection by
anti-malware engines, particularly in the context of Portable
Executable (PE) samples [40].

Alternative approaches delve into network security and leverage
Software-Defined Networking (SDN) to optimize traffic analysis
through Deep Packet Inspection (DPI). One such approach utilizes
deep reinforcement learning, specifically Deep Deterministic Policy
Gradient (DDPG), to intelligently allocate sampling resources in
SDN-capable networks. The goal is to capture malicious network
flows while minimizing the load on multiple traffic analyzers. The
study showcases the efficacy of this approach in achieving more
efficient traffic monitoring and cyber threat detection, highlighting
the importance of data-driven decisions in traffic sampling [41].
Additionally, the vulnerability of a leading malware classifier to dead
code insertion is explored, and a framework employing deep
reinforcement learning, specifically a Double Q-network, is
introduced to induce misclassification in the classifier. An
intelligent agent, trained through a convolutional Q-network,
strategically inserts NOP instructions into malware code
sequences. The results demonstrate a significant reduction in the
classifier’s accuracy, showcasing the potential for evasion using the
dead code insertion technique.

One of the primary performance metrics of DRLs lies in the
rewards earned over time, depicting the agent’s learning progress by
maximizing cumulative rewards through interactions with an
environment. The reported values for the performance
comparison were an average of 500 iterations with a 95%
confidence interval. Parameter values used for network
topologies. traffic steering overheads than other methods while
maintaining a load-balancing of traffic analyzers over 88% [41].

DRL models exhibit remarkable adaptability to new and
unknown malware samples, making them valuable assets in the
ever-changing landscape of cybersecurity. Their adaptability arises
from the models’ ability to learn optimal strategies through
dynamic interactions with their environment, mirroring real-
world cybersecurity scenarios effectively. In the realm of
malware detection, DRL models such as Deep Q Networks
(DQN) or Proximal Policy Optimization (PPO) excel in
sequential decision-making tasks. This capability proves vital in
scenarios where the identification process involves a series of
actions and responses, enabling these models to learn optimal
sequences of actions for effective detection and response to
emerging threats. The models exhibit a remarkable feature
learning capability, automatically extracting relevant patterns
from raw input data. This reduces the reliance on predefined
features or signatures, facilitating adaptability as the models can
discover novel patterns associated with new malware samples
without explicit feature engineering.
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DRL models shine in 0-day threat detection, showcasing their
prowess in identifying previously unseen and unknown threats. By
learning from the dynamics of the environment and comprehending
the underlying patterns of normal andmalicious behavior, DRLmodels
can adeptly adapt to emerging threats that lack historical data or
predefined signatures. The support for continuous learning allows
the models to stay current with the evolving threat landscape,
ensuring they can effectively counter emerging risks. Reinforcement
learning agents within DRL can dynamically adjust their policies based
on feedback from the environment, enabling the model to update its
knowledge as it encounters new malware samples. This dynamic policy
adjustment significantly enhances the model’s ability to handle
unknown threats effectively.

Tackling data imbalance is pivotal for effective model training. One
key strategy involves reward balancing, a technique aimed at adjusting
reward mechanisms to address the imbalance between minority and
majority classes. This approach seeks to ensure that the learning process
does not disproportionately favor the majority class while neglecting the
minority. By fine-tuning the reward system, the algorithm can be guided
to allocate appropriate attention to underrepresented scenarios,
encouraging the model to learn from these instances as rigorously as
from the dominant ones. This balance fosters a more comprehensive
understanding of the environment, enabling the reinforcement learning
agent to make informed decisions across diverse situations. By
strategically adjusting reward structures, DRL algorithms can
overcome data imbalance challenges, ultimately enhancing their
adaptability and performance in complex real-world scenarios.

While this model holds promise for malware detection in
cyberspace, its practical use faces notable challenges. High
computational requirements, especially for complex models
like Deep Q Networks and Proximal Policy Optimization, pose
a constraint, particularly in resource-constrained environments.
Additionally, the demand for substantial training data raises
concerns about data efficiency, affecting performance when
labeled malware samples are limited. Lengthy training times of
DRL models, particularly deep neural networks, can hinder
timely deployment in dynamic cybersecurity scenarios. The
black-box nature of DRL models presents interpretability
challenges, making it difficult to understand the decision-
making processes and the features crucial for malware
detection in cyberspace. Moreover, sample inefficiency,
sensitivity to hyperparameters, and difficulties in generalizing
across diverse malware variants further limit the effectiveness of
DRL. Vulnerability to adversarial attacks adds another layer of
concern, as intentional manipulations could compromise the
reliability of the model. Deploying DRL models at scale in
complex network environments requires addressing scalability
challenges. Ethical considerations, especially regarding privacy
and potential misuse, necessitate compliance with regulatory
frameworks for responsible deployment. Balancing these
challenges is crucial for unlocking the full potential of DRL in
the realm of cybersecurity.

3.10 Extreme Learning Machine

Extreme Learning Machine (ELMs) are increasingly used in
malware detection due to their versatility and efficiency. ELMs excel

in feature extraction, making them suitable for processing various
data types crucial for malware analysis. Their single hidden layer
with randomized weight assignments enables them to process many
features quickly, which is beneficial for comprehensive malware
detection in cyberspace. While this allows for quick processing of
many features, it may not capture complex relationships and
dependencies in the data as effectively as models with multiple
hidden layers and optimized weight assignments. ELMs are
particularly favored for their fast-training process, as they do not
involve iterative weight optimization. This speed and their ability to
handle diverse data types make ELMs a valuable tool in the ongoing
battle against malware [42].

While this may be beneficial for efficiency, it could also limit the
model’s ability to fine-tune and improve its performance over time.
Iterative weight optimization techniques, such as backpropagation,
are commonly used in other machine learning models to refine the
model’s predictions and achieve higher accuracy. Research in this
field addresses the pressing challenges posed by malware, with a
primary focus on improving accuracy, automation, and efficiency in
the detection process. Data Imbalance can pose a significant
problem in ELM training but several strategies can help address
this challenge. Resampling techniques like oversampling or
undersampling methods are effective approaches. Oversampling
involves increasing the instances of the minority class, while
undersampling reduces the instances of the majority class, aiming
to balance the dataset’s representation. This helps prevent the model
from being biased toward the majority class. Another valuable
strategy is weighted learning, where different weights are assigned
to samples based on their class. By assigning higher weights to
minority class samples and lower weights to majority class samples,
the learning process becomes more balanced, allowing the model to
better discern patterns from the less represented class.

Notably, one of these studies introduces an innovative approach
in the form of a Two-hidden-layered Extreme Learning Machine
(TELM), which departs from conventional backpropagation
techniques to offer a streamlined and faster approach to malware
detection in cyberspace. This approach incorporates dependencies
of malware sequence elements, effectively enhancing the accuracy of
classification while dramatically reducing both training and
detection time. The practical implications of this study are
profound, particularly in safety-critical systems such as healthcare
and the Internet of Things (IoT), where rapid and reliable malware
detection is imperative [43].

While the Two-hidden-layered Extreme Learning Machine
(TELM) and the Gauss-Mapping Black Widow Optimization
with Deep Learning Enabled Android Malware Classification
(GBWODL-AMC) demonstrate efficacy in malware detection,
they exhibit specific limitations and trade-offs. TELM,
characterized by its two-hidden-layer extreme learning
architecture, faces challenges in interpretability due to the
inherent complexity of deep learning models. The model’s
decision-making processes might be challenging to decipher,
potentially impacting the trust users place in its outputs.
Additionally, TELM’s performance is contingent on the
availability of sufficient labeled training data, making it
susceptible to constraints in scenarios where obtaining diverse
datasets is difficult. The computational intensity of training
TELM models, especially with larger datasets and intricate
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architectures, can pose challenges in resource-constrained
environments.

On the other hand, GBWODL-AMC, which integrates Gauss-
Mapping Black Widow Optimization, introduces its own set of
limitations. The model’s effectiveness is tied to the appropriateness
of the chosen optimization technique, and its dependency on this
specific strategy may limit its applicability across diverse problem
domains. Hyperparameter sensitivity poses a trade-off, requiring
careful experimentation to select optimal values and avoid reduced
model performance. Deep learning components within GBWODL-
AMC are susceptible to potential overfitting, especially when dealing
with complex datasets, which may hinder the model’s generalization
to new, unseen data. Similar to TELM, the model’s interpretability
may be compromised due to the inherent complexity of deep
learning architectures.

It is common for Android malware to employ code obfuscation
techniques to evade detection. In response, a cutting-edge model, the
Gauss-Mapping Black Widow Optimization with Deep Learning
Enabled Android Malware Classification (GBWODL-AMC), is
introduced. This model combines novel feature selection
techniques with deep extreme learning, and through meticulous
parameter optimization, it achieves a remarkable accuracy rate of up
to 98.95%. The significance of this research extends to the realm of
mobile device security, providing a promising solution for more
effectively combating Android malware.

Another technique delves into the critical domain of detecting
obfuscated malware within network traffic. It introduces the
MalHyStack hybrid classification model, a powerful fusion of
machine learning algorithms and deep learning [44]. This model,
through the incorporation of feature subset selection and a balanced
dataset, achieves exceptional accuracy rates that surpass existing
models. The broader implication of this research is evident in its
ability to combat obfuscated malware efficiently while maintaining a
high degree of accuracy.

In comparing Extreme Learning Machines (ELMs) and
Convolutional Neural Networks (CNNs) for malware detection
across a broader range of datasets, each approach exhibits
distinct strengths and weaknesses. ELMs are characterized by
their fast training times, simplicity, and non-iterative training,
making them efficient for large datasets and resource-constrained
scenarios. However, ELMs may face challenges in capturing
hierarchical features and may require manual feature engineering,
limiting their suitability for complex data, such as images or
sequences. On the other hand, CNNs excel in spatial feature
extraction, hierarchical representation learning, and end-to-end
learning, making them particularly effective for image-based
malware detection tasks [42]. Their ability to automatically learn
hierarchical representations from raw data eliminates the need for
extensive manual feature engineering. Nonetheless, CNNs come
with computational intensity during training, interpretability
challenges due to their black-box nature, and a dependency on
large labeled datasets, posing challenges in data acquisition. When
applied to image-based malware detection, ELMs may perform well
under resource constraints, while CNNs are likely to outperform
ELMs due to their proficiency in spatial feature extraction. In
handling sequential data like API calls or network traffic, ELMs
may struggle with temporal dependencies and might require
additional feature engineering, whereas CNNs, with modifications

like 1D convolutions or recurrent layers, offer a more robust
performance. For multimodal data encompassing a combination
of images and sequences, ELMs may need careful feature
engineering, while CNNs, capable of processing both types of
data, provide a more comprehensive solution. In terms of
generalization across diverse malware datasets, ELMs might face
challenges, especially with complex hierarchical features. In contrast,
CNNs, with their inherent capacity for hierarchical representation
learning, demonstrate potential for better generalization across a
broad spectrum of malware datasets [43].

In the realm of malware detection, enhancing the interpretability
of deep learning models holds immense importance for establishing
trust, comprehending model predictions, and gaining insights into
classification decisions. To achieve this, several key approaches have
emerged. Feature visualization techniques enable the understanding
of the specific characteristics or patterns that the model identifies as
indicative of malware. Techniques like activation maximization or
gradient-based methods visualize salient features, such as sequences
of system calls or network traffic patterns. Saliency maps, generated
through methods like Grad-CAM, highlight crucial regions in the
input data that influence the model’s output, shedding light on the
importance of different input features in model decisions. Attention
mechanisms, prevalent in models like transformers, aid in
understanding the model’s processing of sequential data by
visualizing attention weights, indicating the elements of input
sequences that hold more significance [44]. Transforming
complex models into interpretable rule-based systems,
accomplished through rule extraction algorithms or decision tree
induction, simplifies model logic and facilitates comprehension.
Layer-wise relevance propagation helps attribute relevance to
input features by discerning the contribution of different model
layers to the final decision. Model distillation aims to simplify
complex models while retaining performance, training smaller,
more interpretable models to mimic the behavior of intricate
deep learning models. Techniques like Integrated Gradients or
SHAP values quantify the impact of each input feature on model
output, providing a clear understanding of feature importance.
Moreover, domain-specific visualization tools tailored for
malware analysis offer interactive dashboards or tools for security
analysts, enabling intuitive exploration of model decisions and
deeper insights into malware behavior.

3.11 Attention models

In the ongoing battle against malware, traditional detection
methods are struggling to keep pace with the constant innovation
of cybercriminals. Attention models, a powerful deep learning
technique, are emerging as a game-changer. These models do not
treat all aspects of a file equally; instead, they learn from vast datasets
of malware and benign software to identify the most critical
features–the red flags that scream “malicious.” The
polymorphism in malicious components has deteriorate the
situation, as malicious files, which essentially belong to the same
malware “family” and have the same form of malicious behavior, are
constantly modified, or obfuscated using various strategies to make
them appear to be many different files [45]. By focusing on these key
elements, attention models can achieve higher accuracy in detecting
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both known and unknown malware strains, while also reducing the
number of innocent files mistakenly flagged as threats. This ability to
adapt and learn makes them invaluable in the fight against ever-
evolving cyber threats. Traditional methods often suffer from a high
rate of false positives, mistakenly quarantining harmless files.
Existing gray image based malware detection and classification
approaches are primarily based on conventional machine
learning or deep learning with Convolutional Neural Networks
(CNNs). GIST + kNN pioneers the application of machine
learning in malware classification on the Malimg dataset.
Subsequent studies relied on features extracted from PCA
features, N-gram application programming interface (API)
sequences, opcodes, control flow graphs, text semantics of
network traffic and URLs, system calls, OS-level information flow
and the network activities of the malware. While these
advancements have broadly elevated the field, they require
manual feature design, deep foundational knowledge, and even
the construction of complex network system environments for
detection and classification [45]. Attention models, by placing
less weight on irrelevant features, can significantly reduce these
false alarms. This translates to less wasted time and resources for
security teams, allowing them to focus on genuine threats.
Additionally, some attention models offer a degree of
explainability. They can provide insights into why a particular
file was classified as malware, helping security professionals
understand the attacker’s techniques and potentially identify
vulnerabilities that need to be addressed.

The attention-based feature extraction method allows malicious
code analysts to only analyze parts of malicious code based on the
features extracted by the attention-based feature extraction method,
rather than analyzing the entire malicious code. This is expected to
considerably reduce the efforts required by malicious code analysts [46].
An implementation of the ARI cell with LSTM networks, called ARI-
LSTM enhances the LSTM cell by incorporating ARImechanismwithin
the cell, and use sthe resulting neural network for sequence learning with
ransomware. Through evaluation on a ransomware dataset for the
Windows operating system environment, it is seen that ARI-LSTM
improves the performance of an LSTM in detecting ransomware from
emulation sequences [47].

Cross-dataset experiments conducted on the Windows and
Android datasets, with an accuracy of 90.64% on cross-dataset
detection of the android [45]. The attention-based model yielded
an accuracy that was approximately 12% and 5% higher than those
of the CNN-based and SC-LSTM-based models, respectively [46].

However, attention models are not without their challenges.
Training these complex algorithms requires significant resources.
Large, diverse datasets of malware samples are essential for them to
learn and adapt effectively. Additionally, the computational cost of
training and deploying these models can be substantial. Finally,
while some models offer explanations, their inner workings can be
intricate, requiring expertise to fully comprehend. Despite these
challenges, the potential of attention models is undeniable. Their
ability to learn, adapt, and focus on the most critical features makes
them a powerful weapon in the fight against malware. As these
models continue to evolve and become more accessible, they hold
the promise of a future where cyber defenses are more agile and
effective, constantly learning and adapting to the ever-changing
threat landscape.

3.12 Summary and interpretability of deep
learning models

Choosing the optimal model for malware detection hinges on
several factors, including dataset characteristics, feature
requirements, and performance expectations. Among the
considered models, each possesses unique strengths. Recurrent
Neural Networks (RNNs) excel in capturing temporal
dependencies, making them suitable for sequential data. Deep
Autoencoders prove effective in learning hierarchical
representations, particularly for anomaly detection. Long Short-
Term Memory (LSTM) networks, designed for sequential data,
demonstrate prowess in handling long-term dependencies. Deep
Neural Networks (DNNs) are versatile, capable of learning complex
non-linear mappings. Deep Belief Networks (DBNs) are adept at
unsupervised learning and hierarchical representation learning.

Deep Convolutional Neural Networks (CNNs) are well-suited
for image-based data, capturing spatial hierarchies effectively. Deep
Generative Models can generate new samples, aiding in
understanding data distribution. Deep Boltzmann Machines are
suitable for unsupervised learning and complex dependency
modeling. Deep Reinforcement Learning is designed for tasks
involving agent-environment interactions and policy learning.
Extreme Learning Machines (ELMs) stand out for their fast
training, simplicity, and good generalization.

For malware detection, a combination or ensemble approach
may prove effective. Models like CNNs can extract features from
binary files or images, while RNNs or LSTMs capture temporal
dependencies in malware behavior. Unsupervised learning models
like autoencoders or DBNs can aid in anomaly detection,
identifying novel malware patterns. Experimentation and
evaluation on specific datasets are crucial to determine the most
effective model, and regular updates are essential to adapt to
evolving malware threats.

4 Comparisons with non deep
learning models

In the realm of malware detection, traditional non-deep learning
methods like signature-based detection heavily rely on predefined
patterns, making them susceptible to 0-day threats. Heuristic-based
approaches utilize rules but can struggle to adapt to evolving tactics.
Behavioural analysis, while effective, faces scalability issues and
might overlook subtle anomalies. Non-deep learning machine
learning algorithms such as Decision Trees and SVMs demand
expert feature engineering and struggle with high-dimensional data
complexity [7].

In contrast, deep learning models provide a range of distinct
advantages over these traditional methods. They autonomously
learn intricate features from raw data, bypassing the limitations
of handcrafted features in traditional methods. Their adaptability to
diverse data types and capacity to generalize to new, unseen malware
variants outshine the rigidity of traditional approaches, often reliant
on frequent updates [8]. Deep learning excels in capturing complex
patterns and relationships, particularly in large-scale datasets,
surpassing traditional methods in nuanced pattern
recognition tasks.
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Furthermore, deep learning’s scalability and automation in
handling large datasets streamline feature extraction, whereas
traditional methods may encounter scalability limitations.
However, while traditional methods often boast interpretability
due to explicit rule-based decisions, deep learning models’
complex architectures render them less interpretable, though
ongoing efforts aim to enhance interpretability through emerging
techniques. Additionally, while deep learning can learn from
imbalanced data, it requires specific strategies to effectively
manage class imbalance, a challenge that traditional methods also
encounter, often necessitating sophisticated sampling or weighting
techniques [6, 10–12].

5 Smartphone applications in malware
analysis and detection

Smartphone applications have emerged as valuable assets in the
field of malware analysis and detection. Numerous tools have been
designed for both Android and iOS platforms, leveraging the
computing power and connectivity of smartphones to enhance
the capabilities of security professionals and organizations. These
applications play a pivotal role in scanning and analyzing mobile
apps for known malware signatures, identifying behavioral
anomalies and vulnerabilities. This aids in the early detection of
potentially harmful applications and helps prevent device
compromise [48].

One key feature of these applications is real-timemonitoring, which
keeps a vigilant eye on network traffic, system activity, and app
behavior. This continuous surveillance is crucial for identifying
suspicious or malicious activities on mobile devices, enabling prompt
alerts to users or administrators about unusual behaviors or interactions
with known malicious domains. Integration with Mobile Device
Management (MDM) solutions further enhances the functionality of
these applications. MDM allows organizations to manage and secure
mobile devices remotely, enforce security policies, deploy updates, and,
if necessary, remotely wipe compromised devices. This integration is
particularly beneficial for enterprises looking to safeguard their mobile
device ecosystem [49].

Furthermore, some of these smartphone applications
incorporate threat intelligence feeds, providing access to the latest
information on mobile-specific threats and indicators of
compromise. This integration significantly improves detection
and response capabilities against emerging threats. Another
aspect of these applications is app reputation scanning [50]. They
assess mobile applications based on various factors, including the
source, required permissions, and code behavior. This enables users
and administrators to make informed decisions about app
installation and usage.

Behavioral analysis is another advanced feature offered by some
applications, where they monitor the interactions of mobile apps
with device resources and the network. This method effectively
unveils hidden or obfuscated malicious activities that may not be
evident through static analysis alone. Additionally, there is a focus
on user education within these applications. They provide tips and
information about potential security risks and best practices for safe
mobile device usage, empowering users to become more aware and
vigilant regarding their security [51].

These applications often include the capability to detect rooting
or jailbreaking of devices. Rooted or jailbroken devices are more
susceptible to security risks, and detecting such modifications is
crucial for alerting users and administrators to potential tampering
or compromise. The contribution of smartphone applications to
malware analysis and detection is increasingly significant, especially
as mobile devices become more prevalent targets for cybercriminals.
These applications empower users and organizations to proactively
defend their smartphones and the sensitive data they contain. As the
mobile threat landscape evolves, the importance of these
applications in ensuring mobile security and privacy becomes
even more critical [52].

6 Recent tools in malware analysis
and detection

Machine learning has become a popular approach for malware
detection due to its proficiency in identifying patterns and anomalies
in large datasets [53–55]. Various algorithms, such as Random
Forest, Support Vector Machines, and Neural Networks, are
employed to analyze features extracted from executable files,
including binary code, API calls, and file metadata, effectively
detecting malware. Dynamic analysis tools, which involve
executing malware in a controlled environment to observe its
behavior, have also seen significant advancements. Modern tools
offer capabilities like automated sandboxing and advanced code
instrumentation, allowing for real-time monitoring of system and
network activities and analysis of the malware’s actions. Examples of
these tools include Cuckoo Sandbox, Any. Run, and
Hybrid Analysis.

Behavioral analysis is another critical area, focusing on how
malware behaves upon execution. By using advanced techniques to
detect abnormal behavior patterns, such as process injection and
privilege escalation, these tools can identify malicious actions,
enabling the detection of previously unknown malware. Memory
forensics tools have become increasingly sophisticated, with tools
like Volatility enabling analysts to extract and analyze information
from a system’s RAM. These tools are crucial for uncovering hidden
processes, rootkits, and other memory-resident malware. YARA
rules have gained popularity for creating custom patterns to identify
specific malware characteristics. These rules, defined by security
professionals, are instrumental in both static and dynamic analysis
phases. In response tomalware authors developing sandbox-evading
techniques, analysts have improved sandbox environments tomimic
real systems more closely and developed methods to detect sandbox
detection techniques. Blockchain technology is also being utilized to
create immutable and transparent threat intelligence databases. This
innovation aids in the secure sharing and distribution of malware
indicators, facilitating quicker detection and response to
emerging threats.

Deep learning, including techniques like convolutional and
recurrent neural networks, is increasingly applied in malware
analysis. These methods are capable of learning intricate patterns
and behaviors, enhancing the accuracy of identifying malicious code
and activities. Zero-Day Vulnerability Scanners are evolving to
identify vulnerabilities that might be exploited by malware. These
tools employ a range of techniques, such as static analysis and
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fuzzing, to detect 0-day vulnerabilities. Finally, with the rise of IoT
devices, specialized tools and techniques are emerging for IoT-
specific malware analysis. These tools focus on the unique
characteristics and communication patterns of IoT devices, aiding
in the detection and analysis of potential threats in this growing
domain. Figure 4 illustrates the categories of recent tools in malware
analysis and detection.

6.1 Behavioral analysis tools

Behavioral analysis is a crucial approach in malware analysis and
detection, focusing on how malware behaves when executed in a
controlled environment [56–59]. This technique observes the
dynamic actions and interactions of malware with the host
system and network, allowing for the detection of malicious
behavior that may not be evident through static analysis alone.
The core of behavioral analysis involves creating a dynamic
execution environment, commonly known as a sandbox, where
malware samples can be safely executed. This environment
replicates the target system, enabling the malware to run without
causing harm to the actual host.

Within this setting, various tools monitor different aspects of the
malware’s behavior, including file system interactions, registry
modifications, process creation, and network communication.
These tools log system calls, API functions, and other activities
to meticulously track the sequence of events. Behavioral analysis
tools also establish behavioral signatures that define what constitutes
normal system behavior. By comparing the observed actions of the
malware against these signatures, abnormal and potentially
malicious behavior can be identified, such as attempts to encrypt
files or establish unauthorized network connections. Additionally,
heuristic algorithms and anomaly detection techniques are applied
to the collected data. These algorithms search for patterns that
deviate from the expected norm, flagging activities that indicate
malicious intent. This approach is particularly effective in detecting
previously unknown malware. Once the analysis is complete, these
tools generate comprehensive reports detailing the malware’s
behavior, its impact on the system, and indicators of
compromise (IOCs).

6.2 Threat intelligence platforms

Threat Intelligence Platforms (TIPs) are crucial for enhancing
malware analysis and detection. They offer a structured framework
for collecting, aggregating, analyzing, and disseminating threat
intelligence. These platforms are invaluable for cybersecurity
professionals and organizations as they provide critical insights to
proactively defend against emerging threats [60–63]. A key function
of TIPs is aggregating data from diverse sources, including feeds,
internal logs, open-source intelligence, and proprietary databases.
This data includes indicators of compromise (IOCs) such as
malware signatures, IP addresses, domain names, and file hashes,
thus providing a comprehensive view of potential threats. TIPs also
play a vital role in normalizing and enriching this raw threat data,
ensuring consistency and actionability. They standardize different
data formats and add contextual information, such as source

reputation and known malware families, thereby enhancing the
quality and relevance of the intelligence. Moreover, TIPs employ
sophisticated algorithms to correlate and analyze the collected data.
This process involves identifying patterns, trends, and anomalies
that may indicate malware infections or other malicious activities.
Advanced techniques like machine learning and data analytics are
often utilized to uncover previously unknown threats.

In terms of incident response, TIPs provide real-time alerts and
playbooks for security teams. They enable automated actions based
on received intelligence, such as blocking malicious IP addresses or
isolating infected devices, thereby facilitating swift and effective
responses to threats. Furthermore, these platforms promote the
sharing of threat intelligence within trusted networks and
information-sharing communities. This collaboration allows
organizations to benefit from collective insights and strengthen
their overall security posture. Standards like STIX/TAXII are
often employed to facilitate the exchange of information. TIPs
offer a high degree of customization and can be tailored to meet
the specific needs of an organization. They often integrate with
existing security tools and infrastructures, such as SIEMs, firewalls,
and endpoint protection systems, to provide automated responses
and adaptability to the ever-evolving threat landscape.

Moreover, the storage of historical threat data by TIPs is crucial
for trend analysis and retrospective investigations. This historical
perspective aids in identifying long-term patterns and
understanding how cybercriminal tactics evolve over time. TIPs
assist organizations in compliance reporting by maintaining detailed
records of threat intelligence and incident response activities. These
records are essential for meeting regulatory requirements and
facilitating audits, thus playing a critical role in organizational
compliance strategies.

6.3 Deception tools

Deception tools, a relatively new but increasingly vital
component in the cybersecurity landscape, have demonstrated
remarkable effectiveness in malware analysis and detection. These
tools are designed to create a deceptive environment within a
network with the aim of misleading, confusing, and ultimately
trapping malicious actors and malware. They employ various
strategies and technologies to achieve this goal [64–66]. A
common technique used in deception tools is the deployment of
honeypots and honeynets, which essentially act as decoy systems
created to mimic real assets within a network. These systems are
designed to be enticing to attackers, drawing them in and piquing
their interest. Honeypots can range in complexity, from low-
interaction versions that emulate services and applications at a
basic level, to high-interaction variants that closely simulate real
systems, thus enticing attackers further into the deception.

In addition to these decoy systems, deception tools also generate
counterfeit data and services. This includes forged documents,
credentials, and network shares that appear legitimate and
attractive to attackers. When attackers engage with this deceptive
content, the tools capture their actions, enabling detailed analysis of
their tactics, techniques, and procedures (TTPs). Advanced
simulation techniques are another facet of deception tools, going
beyond simple emulation. These tools can mimic actual network
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behavior, including simulating user actions, generating realistic
traffic patterns, and replicating the unique “personality” of a
network. This level of sophistication makes the deceptive
environment more convincing and effective.

One of the key advantages of deception tools is their ability to
provide early detection of potential threats. When attackers or
malware interact with these deceptive elements, they
inadvertently trigger alerts, notifying security teams of the
presence of a threat. This enables rapid investigation and
response, helping to mitigate risks more efficiently. Beyond mere
detection, these tools play a critical role in attribution and analysis.
By examining how attackers interact with the decoys, security teams
can gain valuable insights into their methodologies. This
understanding is crucial for developing more effective
countermeasures against future attacks. Deception tools are also
adept at luring and containing malware. They can create simulated
vulnerabilities or backdoors specifically designed to be exploited by
malware, allowing for the isolation and detailed analysis of the
malicious code. This capability is particularly useful for studying
malware behavior and developing strategies to neutralize it.

Another significant advantage of deception tools is their ability
to minimize false positives. By focusing on interactions with the
deceptive elements, these tools reduce the volume of irrelevant
alerts, streamlining the workload of security teams and
enhancing the overall efficiency of malware detection. The most
advanced deception tools are adaptive, capable of evolving over time
based on observed attacker behavior. They continuously refine and
update their deceptive elements to make them even more
convincing, ensuring they remain effective against evolving
threats and sophisticated attackers. This adaptive nature
underscores the dynamic and proactive approach of deception
tools in the ongoing battle against cyber threats.

6.4 Memory forensics tools

Memory forensics tools are essential in the field of malware
analysis and detection, providing cybersecurity experts with the
means to examine a computer’s volatile memory (RAM) for
indications of malicious activities [67–69]. In the overall process
of forensic analysis, memory analysis plays a crucial role since
malware often resides in memory to avoid detection and
maintain its presence. These tools facilitate the retrieval of
memory dumps from live systems or capture memory images
from forensic images, which include active processes, data
structures, and code present at the time of acquisition. They
enable detailed analysis of these memory dumps, focusing on
identifying running processes, their memory footprints, and
associated threads. This analytical process is crucial for
identifying suspicious or unauthorized applications that may be
operating covertly.

A significant function of memory forensics tools is malware
detection. They are skilled at scanning memory for known
malicious signatures, patterns, or behaviors. This includes
identifying injected or obfuscated code, rootkits, and other
forms of memory-resident malware that are notoriously difficult
to detect through conventional means. Furthermore, these tools
are instrumental in uncovering evidence of API hooking and

function call redirection, tactics commonly employed by
malware to intercept and manipulate system calls. This
capability is crucial for understanding the extent of the
malware’s control over a system. Detection of rootkits is
another vital aspect of memory analysis, as rootkits are
designed to be invisible to traditional file-based forensics.
Memory forensics tools can reveal hidden processes, files, and
network connections by exploring memory structures.

Advanced memory forensics tools even extend their
capabilities to the examination of kernel memory, a critical area
where essential system data and structures reside. Analyzing this
segment can provide deep insights into the inner workings of the
operating system and any potential manipulations by malware.
These tools can also analyze memory dumps to extract information
about active network connections and related data, assisting in the
identification of malicious network communications. This analysis
of network activity is crucial for understanding how malware
communicates and potentially exfiltrates data. Timeline
reconstruction is another crucial feature offered by memory
forensics tools. By analyzing memory dumps over a period of
time, analysts can piece together a timeline of events, revealing the
sequence in which processes were initiated and actions were
executed. This is particularly helpful in understanding the
development and spread of a malware infection within a
system. The extensibility of many memory forensics tools
through plugin support enhances their utility significantly.
Analysts can utilize custom scripts or leverage pre-built plugins
to automate and refine the analysis process, making these tools
even more powerful in combating sophisticated malware threats.

6.5 Sandboxing with threat intelligence
integration

Sandboxing with integrated threat intelligence represents a
sophisticated and effective approach to malware analysis and
detection by combining isolated environments with up-to-date
threat intelligence [70–72]. This method offers a comprehensive
and dynamic means of understanding and identifying malicious
software. At its core, sandboxing involves executing potentially
malicious code within a controlled and isolated environment,
such as a virtual machine or container. This setup closely mimics
a real system, encouraging malware to demonstrate its full
functionality and intentions. During the sandboxing process,
malware is allowed to run freely, enabling real-time capture of its
behavior, including file system interactions, registry changes,
network communications, and process activities. This dynamic
analysis provides valuable insights into the malware’s execution
flow, evasion tactics, and persistence mechanisms.

The integration of threat intelligence feeds is a crucial aspect of
this approach. These feeds are constantly updated sources of
information, providing the latest data on known threats,
indicators of compromise (IOCs), malware signatures, and other
relevant security details. By incorporating these feeds into the
sandboxing environment, it becomes possible to retrieve up-to-
date threat information instantly. Consequently, the behavior of
the analyzed code can be cross-referenced with this data, facilitating
the detection of matches with known malware. The sandbox also
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plays a vital role in IOC detection by scrutinizing the behaviors and
attributes of the executed code against the IOCs from threat
intelligence feeds. A match suggests that the code under analysis
exhibits characteristics typical of known malicious software. Upon
detecting a match or suspicious behavior, the sandbox generates
alerts and detailed reports. These reports provide valuable
information about the malware’s actions, potential impact, and
IOCs, which are crucial for further investigation and mitigation
efforts. Additionally, integrating sandboxing with incident response
tools can trigger automated responses, such as isolating affected
systems, blocking malicious domains, or generating tickets for
human analysts to investigate further.

Another advantage of this integrated approach is its support for
historical analysis. The threat intelligence within the sandbox allows
for checking previously analyzed samples for known threats, aiding
in the identification of recurring attack patterns and related malware
families. By combining sandboxing with threat intelligence
integration, organizations gain a proactive, responsive, and
insightful method for conducting malware analysis and detection.
This approach not only aids in identifying and mitigating known
threats but also plays a crucial role in addressing emerging threats by
leveraging the latest intelligence data in real-time while closely
monitoring the behavior of suspicious code in a secure and
controlled environment.

7 Open challenges

In the field of malware detection using deep learning, there are
several challenges that need to be addressed and promising avenues for
future research [23, 73–85]. Figure 5 illustrates the open challenges
associated with the deep learning-powered malware detection in
cyberspace. One of the main challenges is the need to enhance the
resilience of deep learning models against adversarial attacks, which are
increasingly employed by malware authors to evade detection.
Additionally, it is crucial to develop interpretable models that shed
light on the decision-making processes of these models. Real-time
detection, particularly in streaming environments, is becoming
imperative to swiftly identify and counteract malware propagation.
As the volume of malware samples and feature spaces continues to
expand, scalability concerns must be addressed [44, 86–98].

Another important area for exploration is the development of
techniques for few-shot and zero-shot learning, which can
facilitate the detection of new and previously unseen malware
strains. This capability is crucial in the ever-evolving threat
landscape. The fusion of data from multiple sources, privacy-
preserving methods for sharing labeled malware samples, and
ethical considerations are also significant areas for research [14,
75, 98–110]. Improving malware detection accuracy can be
achieved through efficiency in model architectures, seamless
integration with existing security systems, cross-domain
transfer learning, hybrid models that combine different deep
learning architectures, and automated feature engineering
methods. User education and awareness also play a pivotal
role in reducing inadvertent installation or interaction with
malware [21, 111–117]. Finally, collaborative threat
intelligence platforms that enable information sharing among
organizations represent a promising approach to collectively

strengthen defenses against malware. Figure 3 illustrates the
open challenges in deep learning-powered malware detection
in cyberspace.

The field of deep learning-poweredmalware detection encompasses
various challenges and solutions [118–123]. One significant challenge is
handling 0-day attacks, as deep learning models traditionally rely on
historical data and struggle against novel, unseen threats [124–128]. To
address this, techniques such as transfer learning and anomaly detection
should be employed to enhance themodels’ ability to detect new threats.
Another area of concern is the collection, standardization,
benchmarking, and reproducibility of malware datasets. The lack of
standardized datasets and evaluation metrics hinders fair comparisons
between different deep learning models. Overcoming this challenge
requires the establishment of standardized benchmarks and datasets for
malware analysis, as well as promoting open data sharing and
collaboration within the research community.

The mathematical provability and interpretability of deep learning-
powered models also pose challenges. These models, especially neural
networks, are often considered “black boxes,” making their decision-
making processes opaque. It is essential to develop interpretable models
or techniques that explain the predictions of deep learning models to
ensure transparency and trust in malware detection systems.
Additionally, class imbalance and distribution bias in training and
testing datasets can significantly impact model performance.
Imbalanced datasets tend to bias models towards the majority class,
resulting in poor performance on minority classes that are often crucial
inmalware detection. Techniques like oversampling, undersampling, or
synthetic data generation, along with tailored evaluation metrics, are
vital for addressing this issue. Adapting to real-world settings and
maintaining context awareness is another hurdle.

Deep learning models may struggle to adapt to rapidly changing
environments, leading to potential obsolescence [129–136]. Developing
dynamic models capable of continuous learning from new data and
adapting to evolving threat landscapes is a solution to this problem. The
lack of benchmark platforms for deep learning-powered malware
detection research also hampers progress and collaboration in the
field. Establishing such benchmark platforms and encouraging
competitions can foster innovation and the development of more
effective malware detection solutions. The aging problem of malware
detection and classification tools is an ongoing challenge. As attackers
evolve their tactics and techniques, malware detection tools often
become less effective over time. To address this, continuous research
and development are necessary to keep these tools updated and capable
of identifying new attack vectors.

8 Future research directions

Deep learning techniques are revolutionizingmalware detection,
offering innovative approaches to tackle the complexity and
sophistication of modern cyber threats. Graph Neural Networks
(GNNs) excel in comprehending intricate relationships within
graph-structured data, enabling a deeper understanding of
malware behavior patterns often missed by traditional models.
Transformer-based architectures, renowned for their success in
natural language processing, hold promise in capturing temporal
dependencies within sequences of system or API calls, potentially
enhancing the comprehension of malware behavior.
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The emergence of meta-learning techniques empowers models
to swiftly adapt to new malware variants or unseen attack patterns,
bolstering the adaptability and generalization of detection systems.
Self-supervised learning, by training models on unlabeled data,
unveils latent features and anomalies within malware, potentially
improving identification accuracy. Federated learning, a
collaborative approach, allows multiple devices or organizations
to jointly train models without compromising data privacy,
leading to more robust and accurate malware detection systems.
A prime example of the effectiveness of Federated Learning is its
application in improving predictive text and autocorrect features on
smartphones. This technology involves training an algorithm across
multiple decentralized devices (or servers) holding local data
samples, without exchanging them. This method is used by
major tech companies to enhance their keyboard applications. In
this scenario, each smartphone has a local model that learns from
the user’s typing behavior. Instead of sending individual data points
(like the words typed) back to a central server, the smartphone
computes an update to the model based on the local data and only
sends this model update back to the server. This way, the central
model gets trained over time with the aggregated updates from
millions of users, without ever having access to specific examples
from any individual’s data. This preserves privacy while still
benefiting from the collective learning of all users.

Adversarial robustness techniques aim to fortify models against
attacks, ensuring the reliability of malware detection systems in the
face of adversarial threats. Continual learning techniques enable
models to evolve with changing environments, incorporating new
malware behaviors while retaining the ability to detect historical
attack patterns. Finally, Explainable AI (XAI) techniques enhance
the interpretability of models, fostering trust and aiding
cybersecurity experts in comprehending model decisions. These
emerging deep learning techniques collectively promise to elevate
the efficacy and resilience of malware detection systems, offering a
more comprehensive defense against evolving cyber threats.

The advancement of technology will significantly contribute to the
progress of research in malware detection using deep learning models
[137–140]. In Explainable Artificial Intelligence, the focus should be on
enhancing the interpretability and transparency of deep learning
models for cybersecurity experts. This entails developing neural
network architectures that are easier to understand and techniques
for generating explanations of model predictions in a human-readable
format. Additionally, in Generative Artificial Intelligence, there is a need
to explore how generative models like GANs and VAEs can be utilized
to generate synthetic malware samples. These samples can be used to
train deep learning models, allowing them to mimic the creativity of
malware authors and enabling more robust model training and testing.
Moreover, in the context of the Internet of Everything (IoE), deep
learning models can be applied to analyze and secure interconnected
devices and networks. It is crucial to address the unique challenges and
vulnerabilities that arise in malware detection within the IoE ecosystem.

The limitations inherent in singular deep learning models for
malware detection necessitate exploration of more advanced
methodologies. Hybrid and ensemble techniques present promising
avenues for enhanced threat coverage and resilience. These approaches
can synergistically combine the strengths of deep learning architectures,
such as convolutional neural networks (CNNs) and long short-term
memory networks (LSTMs), with established methods like rule-based

pre-filtering and feature engineering. For instance, domain knowledge
may be leveraged to extract salient features from code and network
traffic, which can then be fed into CNNs for automated learning of
complex representations. Subsequently, LSTMs can analyze the
remaining data for intricate temporal sequences indicative of novel
malware, reducing computational burden and focusing resources on
potential threats. Ensemble techniques further diversify the defensive
landscape by combining diverse deep learning models trained on
disparate data representations. Meta-learning algorithms can then
orchestrate the collective predictions of these models, resulting in
enhanced generalizability and improved resilience against
evasion attempts.

However, the dynamic nature of the malware landscape
demands agile solutions. Continuous learning techniques
empower models to dynamically update their knowledge base
with incoming data and emerging threats, obviating the need for
complete retraining. Incremental learning approaches, such as
online learning with memory replay, enable models to
continuously learn from new data points while retaining past
knowledge, mitigating the risk of catastrophic forgetting.
Curriculum learning further facilitates this process by gradually
exposing the model to more complex malware samples, building a
robust foundation for accurate real-world detection. Additionally,
meta-learning techniques can equip models with the ability to learn
how to learn quickly on new tasks, enabling rapid adaptation to
novel malware variants.

9 Conclusion

This article delves into the realm of deep learning models for
malware detection in cyberspace, highlighting their significance and
contributions to the field of cybersecurity. Deep learning models
have emerged as powerful tools in combating malware, offering
unparalleled potential in automatically learning features from vast
datasets. However, it is crucial to acknowledge the limitations of
current deep learning techniques in malware detection. These
limitations include the vulnerability of deep learning models to
adversarial attacks and the necessity of large, labeled datasets for
effective training. Future directions in this field could involve
exploring federated learning techniques to enhance privacy and
reduce reliance on centralized data collection. Additionally,
combining multiple deep learning approaches, such as ensemble
models, could further enhance detection capabilities, particularly
against evolving and sophisticated malware threats. The impact of
deep learning on malware detection in cyberspace has been
substantial. These models have revolutionized the field by
providing accurate and efficient means of categorizing malware
into distinct families or types. They empower security researchers
and practitioners to swiftly identify and counter emerging threats,
ultimately strengthening cybersecurity practices. The diversity of
deep learning architectures, including Recurrent Neural Networks
(RNNs) and Deep Convolutional Neural Networks (DCNNs), has
expanded the range of applications in malware detection, making
them a critical tool in the ongoing battle against evolving cyber
threats. As cybersecurity concerns continue to grow, deep learning
emerges as a viable option for advancing the state of the art in
malware identification and analysis.
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Fabry-perot interferometers with
resin scaffolders for high
sensitivity temperature sensing
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Chaoyang Li1,2

1School of Information and Communication Engineering, Hainan University, Haikou, China, 2State Key
Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China

This study explores the development of an innovative Fabry-Perot Interferometer
(FPI) designed for temperature sensing and environmental monitoring. The
device is constructed by embedding optical fibers within a 3D-printed resin
scaffold, forming a structure with an open Fabry-Perot cavity. Intended as an
integral component of Cyber-Physical-Social Systems (CPSS), this FPI structure
aims to enhance the system’s capacity to sense changes in external
environmental conditions. Within the CPSS context, the FPI offers several
advantages, including simple manufacturing processes, low production costs,
and high sensitivity. These benefits contribute to providing precise environmental
feedback to the system, which is essential in implementing effective security and
privacy protection strategies. Experimental evaluations have shown that the FPI
exhibits a high linear sensitivity of 14.330 nm/°C within a temperature range of
34.9°C–38.5°C, confirming its potential for application in CPSS for temperature
monitoring and environmental sensing.

KEYWORDS

3D print, resin scaffold, open fabry-perot resonator, sensor, environmental monitoring

1 Introduction

Recently, Fabry-Perot temperature sensors attracts more and more attention due to the
advantage of small size, high sensitivity, electromagnetic interference resistance, and corrosion
resistance [1–7]. In many fields such as medical care, environmental monitoring, and food
safety [8], It is very sensitive to changes in temperature, so improving the sensitivity of
temperature sensors has always been a concern. As with the Fabry-Perot interferometer (FPI)
[9–11], various types of fiber optic temperature sensors have been proposed and demonstrated,
such as Mach-Zehnder interferometers [12], distributed sensors [13], fiber Bragg grating, and
so on [14–16]. Among them, the FPI has attractedwidespread attention due to its advantages of
low manufacturing difficulty, low cost, and simple structure.

For a typical FPI sensor, its structure consists mainly of two reflective surfaces, when a
beam of light is reflected by the two reflective surfaces multiple times, multiple beams of
different phases will be generated, and the light of different phases will interfere after
entering the optical fiber. In general, the temperature change of the external environment
will cause the phase change of the interference light for two reasons: the thermos-optical
coefficient (TOC) and the coefficient of thermal expansion (TEC). This is the principle of
FPI sensor temperature sensing. Due to the small TOC and TEC of silica, the sensitivity of
traditional all-fiber structure sensors is limited. So high TOC or high TEC materials can be
combined with FPI sensing structures to improve temperature sensitivity [17].
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In recent years, a method has been proposed to use heat-
sensitive materials as auxiliary materials to improve the
temperature sensitivity of FPI sensors. B. Sun et al. proposed a
novel polymer cap FPI with a temperature response of 249 pm/°C
[18]. The sensor is inexpensive to manufacture and the process is
very simple, but the polymer cap interference cavity is directly
exposed to the air, resulting in insufficient structural strength
and easy contamination by the external environment to affect the
performance of the sensor. To solve this problem, the polymer was
filled into the FPI [10, 19, 20]. In 2018, M.Q. Chen et al. filled the FPI
with polydimethylsiloxane (PDMS), which achieved a temperature
sensitivity of 2.7035 nm/°C [21]. D. Fu et al. [22] and C. Lang et al.
[23] proposed that PDMS and dimethicone oil were injected into the
FPI in segments to form a multi-segment air cavity structure. In
2022, H.T. Gao et al., filled a capillary with UV glue, and its
temperature sensitivity reached 1226.64 pm/°C [24], but the
filling process was complex, and it was difficult to manufacture a
thick cavity, even if it had a high TEC, it could not respond to small

temperature changes, and the sensitivity was greatly limited. In
addition, many materials were combined with FPI sensing
structures, such as polymethyl methacrylate (PMMA) [25], Resin
[26], Nafion [27], etc.

In this article, we introduce a high-sensitivity temperature
sensor designed for intelligent environmental monitoring within
Cyber-Physical-Social Systems (CPSS). The sensor’s effectiveness
has been validated empirically. Engineered to deliver precise
temperature readings, our sensor comprises a 3D-printed resin
scaffold that embeds dual single-mode optical fibers (SMFs). This
configuration facilitates seamless integration with CPSS physical
layers. Utilizing a FPI structure, the sensor demonstrated
exceptional temperature sensitivity, achieving 14.330 nm/°C, and
maintained a linearity of 99.9% across a temperature range from
34.9°C to 38.5°C during testing. Such performance is particularly
advantageous in CPSS applications that necessitate stringent
temperature regulation and surveillance. Furthermore, attributes
such as the sensor’s heightened sensitivity, manufacturability, and

FIGURE 1
Schematic diagram of device fabrication. (A) Fabrication of the resin scaffold. (B, C) The process of mounting and fixing optical fibers.
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cost-effectiveness render it a quintessential component within
CPSS infrastructures. The sensor also provides significant
insights that advance sensor technology and environmental
monitoring research.

2 Structure fabrication and
sensing principle

The fabrication process of the FPI structure can be divided into
three steps: firstly, a scaffold for embedding optical fibers is 3D
printed with resin materials as shown in Figure 1A. Then an optical
fiber with a smooth end face is embedded at one end of the resin
scaffold and fixed with UV glue, as shown in Figure 1 b). Finally, an
optical fiber with a smooth end face is embedded in the same way on
the other side of the resin scaffold, so that a Fabry-Perot
interferometer is constructed as shown in Figure 1C.

The 3D structure is shown in Figure 2A: two light-reflecting
surfaces are constructed on the left and right optical fiber end faces
(M1 and M2) to form a Fabry-Perot interferometer. The light
entering the fiber from the left side propagates in the SMF,
partially reflects through M1, and the remaining light is
transmitted in the air cavity and then reflected again in M2.
Eventually, these reflected beams form an interference in the left
SMF. The wavelength of the inclination of the reflection spectrum
can be defined as:

λm � 4nL
2m + 1

, (1)

where m is the order of the interference fringes (m is an integer), n is
the effective refractive index of air and L is the F-P air cavity length.
The distance between λm and λm+1 is called free spectral range (FSR)
and can be expressed as:

FSR � λ2m
2nL

, (2)

as can be seen from Eq. 2, when the refractive index is constant, a
change in the length of the cavity will inevitably lead to a change in
its FSR. The optical fiber coupling platform is used to control the
horizontal movement of the optical fiber to change the cavity length,
and the microscope photograph and the corresponding reflectance
spectrum are shown in Figure 3. It can be seen that increasing the
length of the cavity will lead to a corresponding decrease in the FSR,
which is consistent with Eq. 2.

For wavelength demodulation, a change in the total length of the
FPI cavity results in a shift in the peak of the interference spectrum.
By taking the derivative of Eq. 1, the temperature sensitivity can be
expressed as:

ST � ∂λm
∂T

� λm
1
n
dn
dT

+ 1
L
dL
dT

( ) � λm α + ξ( ), (3)

where α refers to the TOC of the cavity medium (air), with a
sensitivity less than −0.86 × 10−6/°C. ξ refers to the temperature
sensitivity of the FPI cavity, which can be expressed as:

TECm × Lm − TECs × Ls

L
, (4)

among them, TECm and TECs refer to the thermal expansion
coefficient of resin material and silicon dioxide, respectively. Lm
and Ls refer to the length of resin material and optical fiber,
respectively. And L is the length of the FP cavity. The TEC of
the resin material is about 1 × 10−4/°C, and we can see that the TEC
of the resin material is two orders of magnitude higher than the TEC
of silicon dioxide (about ×0.510−6/°C), so the influence of fiber and
air in the test can be ignored. Due to the large TEC of the resin
material, Lm rapidly elongates or shortens under temperature
changes, causing the corresponding elongation or shortening of
L, which will cause a wavelength shift in the inclination angle of the
interference light according to Eq. (1). For this purpose, we
fabricated an FPI sensor with a Lm of about 1068 μm and an L
of about 121 μm for testing (Figure 4).

FIGURE 2
(A) Schematic diagram of FPI structure. (B) Physical diagram of FPI structure.
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3 Experiment and results discussion

The experimental test schematic diagram is shown in Figure 5.
The instruments in the system include a fiber optic circulator, a
heating platform (0.1°C accuracy), a temperature sensor (0.1°C
accuracy), a broadband light source ASE (wavelength range from
1530 nm to 1610 nm), and a spectrum analyzer (OSA, MS9740A
with a resolution of 0.1 nm). A broadband light source is emitted
from ASE, and the light is fed to the proposed FPI structure via a
fiber optic circulator, and the reflected light is collected by a

spectrum analyzer. The FPI structure is fixed on the heating
platform, and the temperature is controlled by the heating
platform. The FPI structure and the temperature sensor are
covered with a plastic Petri dish to ensure the uniformity of the
temperature in the space above the heating platform, and the real-
time temperature in the Petri dish is monitored with a temperature
sensor to correct the temperature error. In the experiment, the
heating platform provided temperatures from 35 °C to 39 °C, and the
actual recorded temperatures under the correction of the
temperature sensor were 34.9°C, 35.8°C, 36.6°C, 37.5°C and 38.4 °C.

Figure 6 show the relationship between wavelength and
temperature of the FPI structure, with the temperature
increasing, the peak wavelength exhibits a redshift, with the
temperature decreasing, the peak wavelength exhibits a blue shift.
The trough around 1538 nm is selected for tracking, and its
temperature sensitivity reaches 14.330 nm/°C and 13.772 nm/°C
when the temperature increases and decreases, respectively.

Stability is an important indicator of the sensor, and to test the
stability of this FPI structure, we set the temperature to 36.6 °C and
recorded the reflectance spectrum every 10 minutes for 1 h. Select
four different wavelengths (1543 nm, 1562 nm, 1581 nm, 1600 nm)
to track and record its wavelength shift, as shown in Figure 7, the
wavelength of each trough is slightly moved back and forth between
long wavelength and short wavelength, and the maximum
wavelength shift of different troughs were 1.76 nm, 1.84 nm,
1.76 nm and 1.76 nm, and the temperature offset corresponding
to wavelength changes is 0.12°C, 0.13°C, 0.12°C and 0.12 °C.
Considering the regularity of wavelength back-and-forth shifts,

FIGURE 4
Microscope image of the FPI sensor.

FIGURE 3
Microscope images and Reflectance spectra of sensor samples of different lengths.
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FIGURE 6
(A) Thewavelength of the sensor is shifted to the right with increasing temperature. (B) Temperature sensitivity of wavelength demodulation. (C) The
wavelength of the sensor is shifted to the left with decreasing temperature. (D) Temperature sensitivity of wavelength demodulation.

FIGURE 5
Experimental establishment of the temperature sensing system.
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it can be speculated that this phenomenon may be caused by
ambient temperature fluctuations.

Repeatability is also an important indicator of the sensor, and we
have also performed repeatability experiments on this FPI structure.
As shown in Figure 8, we first warmed the heating table from 35.1°C
to 38.7°C, then cooled it down to 35.1°C, and then repeated once to
get two cycles. From the figure, we can see that after a continuous
heating and cooling cycle, the peak finally stays at a shorter
wavelength, with a cycle lag of about 5.84 nm, the temperature
sensitivity changes are about 0.889 nm/°C and 0.008 nm/°C,
respectively.

The proposed temperature sensor is compared with the recently
proposed temperature sensors as shown in Table 1. Compared with
[17], the sensitivity of the temperature sensor we proposed is greatly
improved. In [21], there are multiple reflective surfaces in the sensor,
resulting in multiple light interference, which brings great difficulties to
the demodulation. The sensing structure in [22] has a higher
temperature sensitivity, but the liquid is not stable enough, and the
cavity length is difficult to control. In our sensors, the reflective surface is
a fiber end face, which is structurally stable, and the cavity length can be
adjusted with a fiber coupling platform. In [23], filling the capillary with
UV polymer greatly improves the strength and sensitivity of the sensor

FIGURE 7
Test results of the stability of the sensor at 36.6°C. (A) Reflectance spectra recorded at 10-minute intervals. (B) Movement of the reflectance
spectrum trough.

FIGURE 8
Repeatable experimental results of the sensor.
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while controlling the cavity length, but the sensitivity is limited due to
the difficulty of making a longer cavity length.

Nevertheless, the proposed sensor still has some shortcomings,
due to the F-P open cavity, the reflective surfaces are susceptible to
dust contamination in the air. At the same time, compared with the
traditional fiber optic sensor, the addition of the resin bracket greatly
increases the volume of the sensor, but this problem can be
improved by improving the structure of the resin stent.

4 Conclusion

In this study, we address the demand for high-precision
environmental monitoring within CPSS by successfully
developing and empirically validating a novel high-sensitivity
temperature sensor. Uniquely designed to function efficiently
within the CPSS framework, this sensor exhibits remarkable
sensitivity, with a resolution of 14.330 nm/°C in the critical range
of 35–39°C. It is constructed with two coaxial fibers embedded in a
resin support, which is fabricated using advanced 3D printing
technology, enabling ease of production and demodulation.
Moreover, the sensor responds swiftly to real-time environmental
changes, enhancing its applicability within CPSS.

Empirical tests have confirmed the sensor’s attributes:
heightened sensitivity, superb linearity, and steadfast stability
within the temperature range of 34.9°C–38.4°C, thereby meeting
and exceeding the stringent requirements for accuracy and reliability
in CPSS applications.

The significance of this study transcends its technological
innovation; it also makes a substantial contribution to the
enhancement of smarter, more interconnected CPSS environments.
The findings offer an efficacious technical solution for environmental
monitoring that has potential implications for smart cities, intelligent
transportation systems, and advanced building automation.

In summary, our research introduces an innovative approach
to high-precision temperature monitoring and environmental

sensing within CPSS, establishing a foundational platform for
continued scientific inquiry and practical innovation in the
domain. We anticipate that this technology will spur further
advancements in CPSS research and contribute substantially to
the development of an intelligence-driven, efficient, and secure
societal infrastructure.
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Introduction: Aspect-based sentiment classification is a fine-grained sentiment
classification task. State-of-the-art approaches in this field leverage graph neural
networks to integrate sentence syntax dependency. However, current methods
fail to exploit the data augmentation in encoding and ignore the syntactic relation
in sentiment delivery.

Methods: In this work, we propose a novel graph neural network-based architecture
withdual contrastive learning and syntax label enhancement. Specifically, a contrastive
learning-based contextual encoder is designed, integrating sentiment information for
semantics learning. Moreover, a weighted label-enhanced syntactic graph neural
network is established to use both the syntactic relation and syntax dependency,
which optimizes the syntactic weight between words. A syntactic triplet between
words is generated. A syntax label-based contrastive learning scheme is developed to
map the triplets into a unified feature space for syntactic information learning.

Results: Experiments on five publicly available datasets show that our model
substantially outperforms the baseline methods.

Discussion: As such, the proposed method shows its effectiveness in aspect-
based sentiment classification tasks.

KEYWORDS

aspect-based sentiment classification, graph convolutional networks, dual contrastive
learning, syntax label enhancement, bidirectional encoder representations from
transformers (BERT)

1 Introduction

Aspect-based sentiment classification (ABSC) is a fundamental task in sentiment
analysis [1]; [2], which aims to infer the sentiment of a specific aspect in sentences [3].
Generally, the sentiment of each aspect is classified according to a predefined set of
sentiment polarities, i.e., positive, neutral, or negative. For example, in the comment “the
price is reasonable, although the service is poor,” the sentiment toward aspects “price” and
“service” is positive and negative, respectively.
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In general, an ABSC process involves two steps: the identification of
sentiment information toward the aspect from the context and the
classification of the expressed sentiment from predefined sentiment
polarities [4]. Comprehensively, the first step contains key contextual
information learning and aspect–context word relation establishment.
To capture important contextual words and prevent redundant
information, recent publications reveal that encoders and attention
networks are taken to encode the sequential information and determine
the attentive weights of contexts, respectively [5]. Typically, these deep
learning methods are trained via a large amount of textual data to
improve their working performance. Notwithstanding, the existing
manually annotated data resources are still limited, which causes
issues such as model overfitting. As a result, the precise capturing of
key contextual words remains challenging. More recently, contrastive
learning shows its superiority under the condition of limited training
samples. Based on data augmentation, both positive and negative
samples are generated. By setting contrastive loss of training models,
the representations of positive samples are brought closer, while those of
negative samples are pushed apart. In line with the contrastive learning,
the model training can be improved, which paves a way for key
contextual information learning in ABSC tasks.

On the basis of key contextual information, the aspect–opinion
word relation mainly lies in syntax dependency of the sentence [6].
With the parsing of syntax dependency, the relation between the aspect
and context words is built. Ongoing studies substantially focus solely on
the distance of words while neglecting the syntax label of specific
context words toward the aspect. That is, all syntactic relations are
interpreted as the same. Figure 1 shows the syntax structure of a given
sentence. The establishment of the subject–predicate syntactic relation
(nsubj) and adjective modifier syntactic relation (attr) plays a dominate
role in sentiment classification, especially comparedwith other syntactic
information. Moreover, the syntax label is also the foundation of textual
logical reasoning due to its effects in distinguishing the importance
among syntactic relations. Somuch is the significance of the syntax label
that it can be further applied to the aspect–opinion word relation
establishment in ABSC.

To address the above issues in ABSC, we propose a graph
convolutional network (GCN) based on dual contrastive learning
and syntax label enhancement (i.e., DCL-GCN). First, a contrastive
learning-based encoder is devised, which brings the context
representations of the same sentiment closer and pushes those of
different sentiments apart. Furthermore, a weighted label-enhanced
syntactic GCN is put forward, dealing with not only the syntactic

relation but also the syntax dependencies among words. Lastly, a
contrastive learning scheme that focuses on the sentence syntax label
is developed. A syntactic triplet between words is constructed. The
same syntax label-based triplets are given similar semantic
representations, while different syntax label-based triplets are
distinguished. Thereby, the syntax and semantics are integrated,
which contributes to the sentiment classification.

The contribution of our work is three-fold and given as follows:

• A GCN-based ABSC method is proposed with the integration
of dual contrastive learning and syntax label enhancement.
Specifically, the sentence is encoded using contrastive learning
to bring the context representations of the same sentiment
closer and push those of different sentiments apart.

• A weighted label-enhanced syntactic GCN and a contrastive
learning scheme are established to tackle the sentence syntax.
A syntactic triplet between words can be generated. The same
syntax label-based triplets are given similar semantic
representations to facilitate the ABSC.

• Experiments conducted on five benchmark datasets demonstrate
that our model achieves state-of-the-art results. The proposed
method significantly improves the working performance
compared to competitive baselines in the ABSC field.

2 Related work

Owing to the advancement of deep learning networks, current
methods with various structures are widely developed, aiming to
identify their superiority in ABSC tasks [7]. ABSC models are
devised to deal with either semantics [8], syntax [9], or both [10]
from the given text. In this section, these twomajor issues in the field
of ABSC are presented. In order to achieve better working
performance, previous work and their findings about these two
focuses are dedicatedly investigated and depicted.

2.1 Contextual information learning

One bottleneck in ABSC comes from capturing key contextual
words, which considerably affects the aspect–opinion word relation
modeling. Much recent work uses neural networks, attention networks,
or both to concentrate on useful contextual information [11]; [12]. Tang

FIGURE 1
Example of syntax dependency parsing.
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et al. focused on different contextual parts based on LSTM, targeting at
obtaining valuable information [13]. In addition, attention-based neural
networks are proposed to discriminate more relevant features toward
the aspect [14]; [15]. Sun et al. used a BERT-based model to capture
semantic features from contexts via fine-tuning, which significantly
improves the working performance [16]. Text encoders are widely
applied to various tasks [17,18]. Encouragingly, advances in contrastive
learning hold great potential in natural language processing (NLP)
tasks. Suresh et al. integrated contrastive learning strategy into the pre-
training of Bidirectional Encoder Representations from Transformers
(BERT) to improve the model efficacy [19]. A contrastive loss among
different input categories is introduced, while a weight network refines
the differences between each sample pair. In our work, contrastive
learning can be taken to distinguish the contextual representations
during sentence encoding.

2.2 Syntax dependency parsing

The parsing of syntax dependency plays a pivotal role in the field
of ABSC due to its relation establishment between the aspect and
contextual words. Previous work primarily tackles the syntactic
relation of either single or multiple word pairs. In recent years,

the application of a GCN in NLP gave rise to new opportunities in a
number of fields [20]; [21]. Regarding sentence syntax parsing, Sun
et al. transformed the syntax dependency into an adjacency matrix
and propagated the syntactic information using the GCN [22].
Furthermore, Zhang et al. incorporated the aspect-oriented
attention mechanism to benefit the contextual information
extraction toward a specific aspect [23]. To extract both aspect-
focused and inter-aspect sentiment information, an interactive
graph convolutional network (InterGCN) is built to leverage the
sentiment dependencies of the context [24]. Wang et al.
reconstructed the syntax dependency tree rooted at an aspect. A
relational graph attention network (R-GAT) is then proposed to
encode the aspect-oriented dependency tree and to establish the
syntactic relation between the aspect and its opinion words [25].

3 Methodology

A dual contrastive learning GCN (DCL-GCN) is devised on the
task of ABSC. Figure 2 shows the framework of the proposed model. A
pretrained BERT model is used as the sentence encoder. A contrastive
learning scheme is incorporated into contextual encoding duringmodel
training, which enhances the semantic information via sentiment labels

FIGURE 2
Model architecture.
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to obtain differentiated contextual representations. Then, both the
semantic and syntactic features are integrated within a weighted
label GCN, aiming at addressing the syntactic relation of context
words with the aspect. In line with contrastive learning, the syntax
labels of words are used for learning the sentence syntax at a higher
level. The sentiment polarity is predicted by sending the final sentence
representation into a sentiment classifier. More details of the proposed
model are given as follows:

3.1 Contextual encoder with
contrastive learning

The architecture of the contrastive learning-based contextual
encoder is shown in Figure 3. Let X = [w1, . . ., wa, . . ., wa+m−1, . . .,
wn] be a sentence of n words and A = [wa, . . ., wa+m−1] be the aspect of
m words within S. The contrastive learning scheme during sentence
encoding is implemented via data augmentation, feature extraction, and
contrastive loss construction. Inspired by the data augmentation in
image recognition [26]; [27], positive samples of the same polarities are
generated using synonym substitution and random noise injection.
Specifically, synonym substitution refers to randomly replacing words
within the sentence with their synonyms from WordNet, while noise
injection indicates introducing more aspect words and neutral
sentiment words to the sentence. The sentiment is enhanced in (1):

XE � Enchance X( ). (1)

The original sentence X and the data-enhanced sentence XE are
mapped to word vectors within the same feature space. We use the
BERT model obtained through large-scale corpus training by
Kenton et al to enhance the semantics of word representations.
We then train the BERT model in a fine-tuned manner by freezing
part of its parameters, which is written in (2):

hCLS,HX,HA � BERT CLS,X, SEP, A, SEP( ), (2)

where CLS and SEP are BERT tokens representing the overall
representation and the separation of the sentence, respectively. We
thus obtain the sentence-level feature representation hCLS, the word-level
feature representation HX, and the aspect feature representation HA.
Assuming that a batch consisting of k sentences is the model input for
training, the sentence set composed of the original and the enhanced
sentences is Xall � [Xbatch, (XE)batch] � [X1,X2, . . . ,X2k]}, with the
corresponding sentiment polarity set denoted as Yall = [Y1, Y2, . . ., Y2k].
We also have the index set of all sentences as I = [1, 2, . . ., 2k]. For each
sentence in Xall, a set of contrastive learning-based sentences with the
same sentiment polarity is generated, i.e., Pall = [P1, P2. . ., P2k], where
Pi = {p: p ∈ I (Yp = Yi) ∧ (p ≠ i)}. The contrastive learning loss of the
contextual encoder is defined in (3):

LECL � ∑
2k

i�1

−1
|Pi| ∑p∈Pi

log
exp hCLSi *hCLSp /τ( )

∑k∈I/i exp hCLSi *hCLSk /τ( )
, (3)

where τ is a hyperparameter, indicating the temperature coefficient
of contrastive learning. The higher the temperature coefficient is, the
smaller the sum of the loss reaches. The parameter hCLSi stands for
the representation of the ith sentence in Xall after BERT coding. In
such a manner, the context representations of the same sentiment
can be brought closer, and those of different sentiments are
separated, improving the use of contextual and sentiment labels.
Based on contrastive learning, abundant semantic information is
integrated into the encoder, targeting at deriving context
representation with key information.

3.2Weighted label-enhanced syntactic GCN

The framework of the syntactic GCN via weighted label
enhancement is presented in Figure 4. The syntax dependency
of the input sentence is derived using the spaCy toolkit.
Specifically, the sentence syntax dependency is characterized by
a triplet, i.e., (wi, wj, ri,j), where words wi and wj are of the relation

FIGURE 3
Contrastive learning-based contextual encoder.

Frontiers in Physics frontiersin.org04

Huang et al. 10.3389/fphy.2024.1336795

108

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1336795


ri,j. In line with the sentence syntax, we construct a syntax
adjacency matrix AS ∈ Rn×n that denotes the connecting edges
of the syntax dependency tree.

To address the effects of various syntactic labels in the sentiment
classification, a syntax label learning (SLL) unit is built. The main
purpose of the SLL unit is to transform the syntax label matrix to a
learnable syntax label score matrix.

A lexicon R = {relation1: 1, relation2: 2, . . ., relationt: t} that
consists of all syntactic relations from the corpus is constructed,
from which each syntactic label is mapped to an index number. For
each input sentence, all index numbers denote the syntactic relations
consisting of a syntax label matrix. Then, the syntax label adjacency
matrix AL ∈ Rn×n is built based on both the syntax dependency tree
and the lexicon R. All syntax labels can be mapped into a unified
feature space. The weighted score of each syntactic relation is thus
resolved in (4), which is written as a syntax label score adjacency
matrix ALS ∈ Rn×n:

ALS � Emb AL( )*WL*WS, (4)
where Emb (·) represents transforming the syntax label matrix into a
learnable matrix for syntax label characterization, WL ∈ RdL×dS and
WS ∈ RdS×1 are learnable parameter matrices, and dL and dS are
dimensions of AL and AS, respectively. We also have
Emb(AL) ∈ Rn×n×dLS , with dLS standing for the dimension of the
syntax label score space.

Likewise, the same syntactic relation type can have different
degrees of importance within different semantic contexts. For this
reason, the semantics among words are also integrated into the
computation of the syntax label score. We take the multi-head self-
attention (MHSA) mechanism to learn the semantic features and to
revise the syntax label scores based on attentive weights. Notably, the
elements in ALS represent all the syntactic relation scores, which are
not zero. To preserve the original syntax dependencies and remove
irrelevant syntactic information, the basic syntax adjacency matrix is
also used. The weighted syntax label adjacency matrix can be
computed in (5):

AWL
ij � AS

ij*A
W
ij *A

LS
ij (5)

with (6, 7, and 8)

AW � Norm Concat head1, head2, . . . , headh( ) ·Whead( ), (6)

headp � QWQ
p × KWK

p( )
T

				
dhead

√ , (7)

Q � W � HX, (8)
where AS

ij is the syntax adjacency matrix of wi and wj parsed from
the syntax dependency tree; ALS

ij is the syntax label score adjacency
matrix; AW

ij stands for the semantic weight adjacency matrix derived
from the MHSA mechanism; Concat represents the vector

FIGURE 4
Framework of the weighted label-enhanced syntactic graph convolutional network (GCN).
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concatenation; Whead is the parameter matrix during concatenation;
Norm (·) is the normalization operation on the attentive weight
matrix; WQ

p and WK
p are parameter matrices of the pth attention

head in MHSA; dhead denotes the vector dimensions of each head;
and h is a hyperparameter indicating the attention head number.

The working principle of the weighted label-enhanced
syntactic GCN is shown in Figure 5. The input of the GCN is
the weighted syntax label adjacency matrix AWL and the feature
representation HX from BERT. The learning of syntactic
information is derived in (9):

hli � σ ∑
n

j�l
AWL

ij Wl
Sh

l
j + blS⎛⎝ ⎞⎠, (9)

where H0 � HX � [hX1 , hX2 , . . . , hXn ], hljrefers to the word vector of
the jth word in the lth layer of the GCN, with l as an integer and l ∈
[0, F], F is the layer number of the GCN, Wl

S is the learnable
parametric matrix of the lth layer, blS is the bias vector, and σ is an
activation function. The output of the weighted label-enhanced
syntactic GCN is the output of the last layer,
i.e., Hout � [hF1 , hF2 , . . . , hFn ].

3.3 Syntax label-based contrastive
learning scheme

Considering the effect of syntactic information in ABSC, the
node pairs with the same syntax label indicate similar syntactic

features, and those with different syntax labels have differentiated
features. As such, a contrastive learning scheme using syntax labels is
proposed, aiming to enhance the learning of syntactic features at a
higher level.

Assuming that K′ triplets are of syntax dependencies within all
the K sentences, the node-pair set of these triplets is
X′ � [X1′, X2′, . . . , XK′′ ]. The syntax label set of these node pairs
is R′ = [r1, r2, . . ., rK′] with the index set I′ = [1, 2, . . ., K′]. Moreover,
for each node pair in X′, a set of node pairs with the same syntax
label for contrastive learning is constructed,
i.e., Pm′′ � {p′: p′ ∈ I′, (rp′ � rp′) ∧ (p′ ≠ m′)}. The syntax label-
based contrastive learning loss is defined in (10):

LLCL � ∑
K′

m′�1

−1
|Pm′′ | ∑

p′∈Pm′′
log

exp gm′*gp′/τ′( )
∑

t∈I′/m′ exp gm′*gt/τ′( )
, (10)

together with (11)

gm′ � Xm′′ 1[ ]Wcl
1 +Xm′′ 2[ ]Wcl

2( )Wcl
3 + bcl, (11)

where τ′ is the temperature coefficient for contrastive learning
and gm’ represents the semantic feature representation by
mapping the node-pair representations from the syntax
dependency triplet and is normalized before the contrastive
learning loss computation. We define Xm′′ [1] as the feature
representation of the first node in the m′th node pair in X′
andXm′′ [2] as the feature representation of the second node in the
m′th node pair. Both Xm′′ [1] and Xm′′ [2] are obtained from the
BERT encoder, which convey semantic information. In addition,

FIGURE 5
Working principle of the weighted label GCN.
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Wcl
1 , W

cl
2 , and Wcl

3 are learnable parameter matrices, and bcl is a
bias vector.

3.4 Feature fusion

Average pooling is performed on Hout to obtain the syntactic
information-enhanced feature representation Hout in (12),
which is further concatenated with hCLS derived from the
BERT encoder. The final sentence representation ~H is given
in (13).

hout � avgpool hout( ), (12)
~H � hout ⊕ hCLS, (13)

where ⊕ denotes the concatenation operation. The final sentence
representation ~H is sent to a Softmax classifier to obtain the
sentiment polarity in (14):

y � softmax Wo
~H + bo( ). (14)

The pseudocode of the proposed model is given as follows:

1: Input: data D, batch_size N.

2: Output: Sentiment polarity y

3: for i = 0 to n by N do

4: batch ← D [i: i + N]

5: for j in [i, i + batch_size) do

6: hCLS
j ,HX

j � BERT(Xj)
7: AS, AW ← SLL (Xj)

8: AW ← MHSA(HX
j)

9: AWL = AS*AW*ALS

10: Hout
j ← Weighted_Label_Enhanced_GCN(AWL ,HX

j)
11: ~Hj ← Concatenate_Features(Hout

j ,hCLS
j )

12: yj � Softmax(~Hj)
13: end for

14: Ltotal � LCE + αLECL + (1 − α)LLCL

15: Update network by combined loss Ltotal

16: end for

Algorithm 1. Dual contrastive learning-based GCN forward propagation

algorithm.

3.5 Model training

Model training is implemented using cross-entropy and
regularization as the loss function in (15):

LCE � − ∑
x,a( )∈D

∑
c∈C

yc
x,a( )logŷ

c
x,a( ) + λ‖θ‖2, (15)

where (x, a) represents the vector of a sentence–aspect pair; C
refers to the set of sentiment classes; yc

(x,a) is the ground-truth
sentiment distribution of (x, a) with sentiment C, and ŷc

(x,a)
is the predicted one; and λ is the coefficient of L2

regularization.
On account of the training of contrastive learning in our

model, the total loss function Ltotal is composed of the contrastive
learning loss LECL from the contextual encoder, and the

contrastive learning loss LLCL based on the syntax label and
the cross-entropy loss LCE is shown in (16):

Ltotal � LCE + αLECL + 1 − α( )LLCL, (16)
where α is a learnable coefficient to adjust the weights of contrastive
learning losses in loss function.

4 Experiment

4.1 Experimental setup

The working performance of the DCL-GCN is evaluated on
five benchmark datasets, which are Restaurant 14, Restaurant 15,
Restaurant 16, and Laptop 14 from SemEval [28]; [29,30], and
Twitter [31]. The sentiment of each aspect from the datasets is
labeled as positive, neutral, or negative.

Following the idea of [15], the sentences labeled as conflicting
sentiment or without explicit aspects from Restaurant 15 and
Restaurant 16 are removed. Details of each dataset are given in Table 1.

In this experiment, the lexicon size of the BERT model is set to
30,522, the word embedding dimension is 768, and the layer number
of the transformer is 12. The head number of the MHSA is 8, and the
learning rate is 0.00001. The layer number of the weighted label-
enhanced syntactic GCN is 2. Both τ and τ′ in contrastive learning
schemes are set to 0.02. The L2 regularization coefficient is 0.00001.
An Adam optimizer is adopted during training with a data batch size
of 32. All the hyperparameters used in the experiment are given
in Table 2.

4.2 Baseline

In order to verify the effectiveness of the DCL-GCN in ABSC,
five state-of-the-art methods are taken for comparison:

• BERT [32]: The basic BERT model is established based on the
bidirectional transformer. With the concatenation of
sentences and the corresponding aspect, BERT can be
applied to ABSC.

• BERT4GCN [33]: The BERT model and GCN are integrated,
which exploits sequential features and positional information
to augment the model learning.

• R-GAT + BERT [25]: The pre-trained BERT is integrated with
the R-GAT, where BERT is used for sentence encoding.

TABLE 1 Statistics of datasets.

Dataset Positive Neural Negative

Train Test Train Test Train Test

Twitter 1,561 173 3,127 346 1,560 173

Laptop 14 994 341 464 169 870 128

Restaurant 14 2,164 728 637 196 807 196

Restaurant 15 912 326 36 34 256 182

Restaurant 16 1,240 469 69 30 439 117

Frontiers in Physics frontiersin.org07

Huang et al. 10.3389/fphy.2024.1336795

111

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1336795


• DGEDT + BERT [34]: The pre-trained BERT is integrated
with DGEDT, where BERT is used for sentence encoding.

• TGCN + BERT [35]: The dependency type is identified with
type-aware graph convolutional networks, while the relation is
distinguished with an attention mechanism. The pre-trained
BERT is used for sentence encoding.

All results are expressed in percentage values. “-” denotes that
the results are not reported in the published research article. The
best performance achieved is marked in bold.

4.3 Result analysis

We take twometrics, i.e., accuracy andMacro-F1, to evaluate the
working performance of the proposed model. Table 3 shows the
results of six different methods on the task of ABSC. One can
observe that our model achieves the best and most consistent result
among all the evaluation settings. It is clear that the DCL-GCN result
is more remarkable than a range of competitive baselines on all five
benchmark datasets. In line with these results, the following
observations are made.

First, our model achieves the best andmost consistent result among
all the evaluation settings. Theminimumperformance gaps between the
DCL-GCN and the baselines are 1.33% (against the R-GAT) on
Restaurant 14, 1.62% (against the T-GCN) on Restaurant 15, 1.33%
(against the T-GCN) on Restaurant 16, 1.54% (against DGEDT) on
Laptop 14, and 0.22 (against DGEDT) on Twitter. In addition, the
F1 values on Restaurant 15 and Restaurant 16 are 3.64% (against the
T-GCN) and 5.04% (against DGEDT), respectively, higher than the
best-performing baseline method, which are significant.

Second, the syntax-dependent-method (BERT4GCN) performs
worse than models integrated with both syntax dependency and
syntactic relations (R-GCT and T-GCN). The main reason is that
the deeper-level syntactic information can be neglected by solely
exploiting the dependencies among words. By contrast, the syntactic
relation encoded in our model benefits the sentiment
comprehending to a large extent. The highest accuracy of our

model reaches 93.65 on Restaurant 16, indicating the importance
of syntax dependency and syntactic relations in ABSC.

Third, compared with other baselines, the basic BERTmodel has
its own distinctiveness in tackling sentence semantic information.
By incorporating BERT into state-of-the-art methods, the working
performance is substantially improved, which is the outcome of our
model. Notably, the proposed model significantly outperforms the
baselines, demonstrating that the contextual semantics take full
advantage in line with the BERT-based contrastive learning scheme.

It is worth noting that the DCL-GCN gives rise to the enhancement
in both syntax and semantics learning. With the application of the dual
contrastive learning scheme, it is reasonable to expect better working
performance in ABSC, as it is the case.

4.4 Ablation study

The impact of different components in our model is investigated
by conducting an ablation study (Table 4).w/o LECL specifies that the
contrastive learning scheme of the contextual encoder is removed;
w/o LLCL specifies that the syntax label-based contrastive learning
scheme is removed; and w/o WL-GCN indicates that the weighted
label-enhanced syntactic GCN is ablated.

As presented in Table 4, the most significant module in our
model is the weighted label-enhanced syntactic GCN. The exploiting
of syntactic information shows its effectiveness in word sentiment
learning. With the sole utilization of semantics, even with a
contrastive learning strategy, the working performance is inferior
to the syntactic-based methods in all evaluation settings. Clearly, the
integration of semantics and syntax has superiority in ABSC tasks.
Moreover, the removal of the contrastive learning scheme from the
contextual encoder leads to a substantial decrease on all five datasets.
The performance decreases of the accuracy and F1 score on Twitter
are 2.76% and 2.25%, respectively. As a result, the contrastive
learning scheme in the BERT encoder effectively promotes
semantic information learning. By contrast, the syntax label-
based contrastive learning scheme makes a relatively small
contribution to the model. We can infer that the application of

TABLE 2 Parameter settings.

Parameter Value

BERT model lexicon size 30,522

Word embedding dimension 768

Transformer layers 12

Multi-head self-attention (MHSA) heads 8

Learning rate 0.00001

Weighted label-enhanced syntactic graph convolutional network (GCN) layers 2

Τ 0.02

τ′ 0.02

L2 regularization coefficient 0.00001

Batch size 32

Optimizer Adam
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syntax labels also enhances the use of syntactic information and,
thus, contributes to the sentiment classification.

4.5 Impact of hyperparameters

An experiment is carried out to analyze the effect of the self-
attention head number on model working performance. The head
number of the self-attention network is set to [1, 2, 3, . . ., 8]. The model
accuracy with different head numbers is presented in Figure 6.

Apparently, the DCL-GCN achieves the highest accuracy with a
head number of 5 on Laptopt 14 and Restaurant 15 and a head
number of 6 on Twitter, Restaurant 14, and Restaurant 16. In line
with the multi-head self-attention mechanism, the attention head
stands for the vector representation in feature spaces via different
mapping methods. When the number of attention heads is reduced,
the self-attention mechanism operates within a smaller space with
correspondingly fewer semantic features. Accordingly, the proposed
model fails to capture sufficient semantic information. On the other
hand, when the head number exceeds 6, the model parameter size

significantly increases, resulting in overfitting issues during training.
In this way, a test accuracy decrease is inevitable.

4.6 Case study

Two samples are selected to visualize the working performance, in
order to further validate the distinctiveness of DCL-GCN. Specifically,
the representations of the sentence and the words are maintained. We
shall define a parameter φ as the contribution of each word for
sentiment delivery in the sentence, which is defined in Eq. 17:

φ X,wi( ) �
| ~H − ~HX

wi
|

∑n
j�1| ~H − ~HX

wj
|. (17)

The sentiment contribution of each word is shown in
Figure 7. For the sample given in Figure 7A, the contextual
words “professional,” “courteous,” and “attentive” make the
largest contribution toward the aspect “waiters.” Our model is
capable of extracting the most informative words for sentiment

TABLE 3 Experimental results on five public datasets.

Model Twitter Laptop 14 Restaurant 14 Restaurant 15 Restaurant 16

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

BERT [32] 75.00 72.53 78.68 74.64 84.55 77.34 83.40 65.28 89.54 70.47

BERT4GCN
[33]

74.73 73.76 77.49 73.01 84.75 77.11 - - - -

R-GAT +
BERT [25]

76.15 74.88 78.21 74.07 86.60 81.35 - - - -

DGEDT +
BERT [34]

77.90 75.40 79.80 75.60 86.30 80.00 84.00 71.00 91.90 79.00

TGCN +
BERT [35]

76.45 75.25 80.88 77.03 86.16 79.95 85.26 71.69 92.32 77.29

Our DCL-
GCN +
BERT

78.12 76.37 82.42 79.20 87.93 82.53 86.88 75.35 93.65 84.04

The bold values represent the best performance achieved among the different models or methods compared in the table. Specifically, the bold values indicate the highest accuracy and Macro-F1

scores obtained for each dataset (Twitter, Laptop14, Restaurant14, Restaurant15, Restaurant16) in the aspect-based sentiment classification (ABSC) task. These bold values highlight the

superior results of the model we proposed compared to the baseline methods, showcasing its effectiveness in sentiment classification across different datasets.

TABLE 4 Results of the ablation study.

Model Twitter Laptop 14 Restaurant 14 Restaurant 15 Restaurant 16

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

w/o LECL 75.36 74.12 81.28 77.49 85.94 80.18 84.63 72.78 91.44 81.64

w/o LLCL 76.12 74.89 81.13 77.30 86.12 80.67 85.24 73.68 92.17 82.26

w/o
WL-GCN

75.13 73.85 80.62 76.83 85.20 79.47 84.27 72.14 91.23 81.08

Full model 78.12 76.37 82.42 79.20 87.93 82.53 86.88 75.35 93.65 84.04

The bold values represent the best performance achieved among the different models or variations compared in the table. Specifically, the bold values indicate the highest accuracy andMacro-F1

scores obtained for each dataset (Twitter, Laptop14, Restaurant14, Restaurant15, Restaurant16) in the aspect-based sentiment classification (ABSC) task when specific components or modules

of the proposed model are included.
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expressing. The sentence in Figure 7B contains two aspects,
i.e., “food” and “waiting.” For the aspect word “food,” the
proposed model accurately identifies the top two highest
sentiment contribution words as “good” and “so.” Regarding
“waiting,” not only is the the sentiment word “nightmare”
captured but also the syntactic relation words “so. . .that. . .”
for resultative adverbial clause establishment. Both semantics
and syntax are used for sentiment classification.

In our model, the use of contrastive learning enhances the
learning of sentence semantics, and the build of the weighted

label-enhanced syntactic GCN fully exploits the syntactic
information. The integration of semantic information and
syntactic information leads to a competitive manner in ABSC.

5 Conclusion

In this work, we propose a GCN based on dual contrastive
learning and syntax label enhancement for ABSC tasks. To obtain
sentiment information, a contrastive learning scheme is integrated

FIGURE 6
Accuracy of different head numbers.

FIGURE 7
Word sentiment contribution. (A) Weights to aspect “waiters” (B) and weights to aspects “food” and “waiting.”
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to a BERT encoder to enhance the learning of semantic-related
contextual information. Then, our model exploits both the syntax
dependency and syntactic relation, based on which a weighted label-
enhanced syntactic GCN is established. In addition, the learning of
the syntax label is enhanced using contrastive learning. A syntactic
triplet between words is mapped into a unified feature space for
syntax and semantic integration. The rxperimental results reveal
that the proposed model achieves state-of-the-art performance on
five benchmark datasets. The ablation study, the hyperparameter
analysis experiment, and the case study also obtain superior working
performance.

Future work will focus on introducing more information for
further improving the accuracy of ABSC and other sentiment
analysis tasks, such as background knowledge and part-of-speech
information. In addition, the integration of different categories of
information into the model is also considered.
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Driver emotion recognition based
on attentional
convolutional network

Xing Luan1, Quan Wen1* and Bo Hang2
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and Science, Xiangyang, China

Unstable emotions, particularly anger, have been identified as significant
contributors to traffic accidents. To address this issue, driver emotion
recognition emerges as a promising solution within the realm of cyber-
physical-social systems (CPSS). In this paper, we introduce SVGG, an emotion
recognition model that leverages the attention mechanism. We validate our
approach through comprehensive experiments on two distinct datasets,
assessing the model’s performance using a range of evaluation metrics. The
results suggest that the proposed model exhibits improved performance across
both datasets.

KEYWORDS

road rage detection, driver emotion recognition, facial expression recognition, attention
mechanism, deep learning

1 Introduction

The driver emotion recognition has garnered substantial scholarly attention as a
consequential application within cyber-physical-social systems. A driver emotion
recognition system is structured into three pivotal layers: perception, cognition and
decision, and interaction [1]. Within this framework, perception involves the
deployment of sensors in the cockpit to meticulously acquire data pertaining to the
driver’s emotional state. Cognition and decision denote the integration of emotion
recognition models with real-time data to analyze the driver’s emotions. The interaction
layer includes a vehicle warning system to detect and alert on the driver’s emotional
instability or fatigue. This paper endeavors to explore an approach to driver emotion
recognition with a specific focus on the cognitive and decision layers. The emphasis lies in
the sophisticated integration of emotion recognition models with dynamic data streams,
facilitating a nuanced real-time analysis of the driver’s emotional states.

A number of methods for driver emotion recognition by facial expression have emerged
due to the low price of vision sensors and their easy installation and realization in the
driving environment [2]. After acquiring the data, it is also critical to extract the emotional
characteristics from the data. The attention mechanism [3] in deep learning is a way to
mimic human vision, allowing neural networks to focus more on top of important
information and improve the effectiveness of their models. Jiyong Xue proposed a deep
convolutional model based on multi-head self-attention that fuses utterance-level acoustic
features and frame-level acoustic features [4]. Wei Tao proposes an attention-based
convolutional recurrent neural network (ACRNN) which extracted more discriminative
features in EEG (electroencephalogram) signals through the attention mechanism [5].
These methods have yielded excellent results.
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In the field of emotion recognition, researchers often choose the
emotion model (sad, happy, fear, disgust, surprise, and angry)
proposed by Ekman [6] as the starting point of research. From
the perspective of preventing traffic accidents, some emotions are
somewhat redundant. Including an excessive variety of emotions as
the subject of study amplifies model redundancy and diminishes the
recognition rate. Therefore, it is necessary to consider several
emotions that are most relevant to drivers for the study.
Research with drivers of varying ages has found that anger is
associated with speeding, fear with stronger braking, lower
speeds, and poorer lateral vehicle control [7]. Additionally, anger
and happiness were found to be associated with more driving errors
than fear or a neutral emotional state [8]. Henceforth, within this
dissertation, we elect to investigate the emotional domains of
happiness, anger, fear, and sadness as our primary research
subjects. Employing the attention convolutional network, our
objective is to discern and analyze drivers’ facial expressions with
precision and relevance.

2 Related work

2.1 Contact method and contactlessmethod

According to the different information obtained, the types of
driver emotion recognition can be divided into two types: contact
method and contactless method [9]. The contact method uses
special equipment to measure the drivers’ physiological signals
[10, 11], such as body temperature [12], electrocardiographic
signals [13], skin electrical signal [14] et al. While the contactless
method analyzes the drivers facial [15, 16] or voice information [17]
through cameras or microphones. Using the contact method for
emotion recognition has high accuracy and high real-time
performance. However, the effect in actual use is often not
satisfactory. This is not only because the drivers’ physiological
signals are inconvenient to obtain and the identification device is
difficult to wear, but also because the device will cause psychological
stress to the driver, which makes it impossible for drivers to drive
vehicles in a relaxed environment [18].

Within the realm of contactless methods investigations, facial
expressions predominantly serve as indicators of the driver’s
emotional state [19]. Through the scrutiny of the driver’s facial
image information, it becomes feasible to intuitively ascertain the
driver’s ongoing emotional state. Employing this methodology not
only avoids causing any disturbance to the driver but also enables
the continuous monitoring of the driver.

2.2 Face emotion recognition

Miyajia [20] uses Kohonen neural network as a classification
algorithm to recognize the drivers’ facial emotion and proposes an
early warning method of the driver’s angry state. However, the KNN
solely concentrates on the emotion of anger and overlooks other
emotions in drivers that might possibly lead to a collision.
Alessandro [21] used the VGG (Visual Geometry Group) model
to detect the drivers anger and recognized the continuous image by
sliding the window. Both frontal and non-frontal facial expressions

have been explored in literature, however, their precision falls short
when compared to contemporary methods. Geesung [22] used a
variety of CNN (Convolutional Neural Networks) models to test the
driver’s facial expression and acquired the driver’s skin electric
signal to judge the driver’s emotion synthetically. The DRER
model proposed in the literature has an accuracy of 88.6%, but it
only identifies emotional states for a short period. However,
emotions are continuous, and the model requires improvement
to identify emotional states in real-time. H. Varun Chand [16]
presented a multi-layer drowsiness detection system based on CNN
and emotion analysis, which achieved an accuracy rate of 93%. The
spatial transformer network [23] adjusts the image by learning
spatial transformations and applying them to the original image.
This approach significantly reduces the interference of
environmental factors in the extraction of emotional features.
However, real-time monitoring of the driver’s mood has not yet
been attained. In this work, benefiting from attention convolutional
neural networks, we obtain higher recognition accuracy while
maintaining recognition speed.

3 Methods

3.1 Preprocessing

The preprocessing stage mainly includes face detection and
segmentation. When the camera captures an image of the driver,
the first step is to extract the facial information in the image. In this
paper, we use OpenCV (Open-Source Computer Vision Library) to
detect face Haar features [24] by loading the pre-trained classifiers. The
advantage of this method is that the recognition speed is fast, it can be
used for real-time detection, and it has a high recognition rate. At the
same time, themodel is small and can be run on an embedded platform,
which is more suitable for the scene of driver face detection.

3.2 The proposed framework

Figure 1 illustrates the structural framework of SVGG, a driver
emotion recognition model based on attention mechanisms. When
the driver’s face image information is acquired, the face image is first
input into the STN model for face alignment to reduce the
interference of environmental factors. Then the processed image
is inputted into the improved VGG network model for feature
extraction of the image in depth, in which the convolution adopts
the Ghost Module to reduce the parameters of the model and speed
up the inference speed of the network, and the activation function
adopts the Mish function to speed up the convergence speed of the
model. After obtaining the feature maps with complete feature
extraction, the channel attention model ECA-Net will redistribute
the weights of the feature maps in the channel, and finally the feature
maps of multiple channels will be passed through a fully connected
layer for emotion classification and recognition.

3.2.1 Spatial Transformer Networks
Spatial Transformer Networks (STNs) [23] is a neural network

model as well as a spatial attention mechanism. Among the ways of
spatial transformations are translation, rotation or scaling. The

Frontiers in Physics frontiersin.org02

Luan et al. 10.3389/fphy.2024.1387338

118

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1387338


advantage of the spatial transformation network is that the network
can autonomously learn certain key changes in the natural image
without human labeling, and thus adjust the image so that the

network focuses on these changes. Theoretically, the spatial
transform network can be added to any layer of the
convolutional neural network, but in practice, most researchers
add the network to the convolutional neural network before
preprocessing the original image, and then input the image to
the convolutional layer for feature extraction, so as to ensure the
integrity of the original input data. The spatial transform network
only adjusts the pixel positions of the original image, and does not
adjust the size of the original image, i.e., the input and output images
of the spatial transform network have the same size.

The spatial transformation network model was introduced in
2015, which contains three models: Localization net, Grid generator,
and Sampler. The model structure diagram is shown in Figure 2.
When we get the driver’s face image after preprocessing, the image

FIGURE 1
Framework of the model.

FIGURE 2
Spatial transform network. Reprinted with permission from “Driver’s Facial Expression Recognition in Real-Time for Safe Driving” by Mira Jeong,
ByoungChul Ko. The license for this content can be found at https://cvpr.kmu.ac.kr/KMU-FED.htm.

TABLE 1 Comparison of model parameter sizes.

Model No. of parameters (in million)

VGG19 20.1

MobileNet 3.2

LiveEmoNet [30] 1.3

CNN [31] 1.3

SVGG 10
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will go through the spatial transformation network to extract the key
regions of the face. First through the Localization net to generate
affine transformation Aθ . The Grid generator used affine
transformation Aθ to create a sampling grid. At last, the drivers
face image and the sampling grid are taken as inputs to the Sampler.
And we can finally get the most relevant parts of a face image
from Sampler.

Localization net is a small convolutional neural network used to
generate affine transformation parameters. The input image shape is
48*48*1 and the output is Aθ , the affine transformation Aθ has
6 parameters, as Eq. 1. These parameters are constantly optimized
during the training process to identify the most relevant face regions
in an image.

Aθ � θ11,θ12,θ13
θ21,θ22,θ23

[ ] (1)

Grid generator uses the affine transformation matrix Aθ to
create. Assume that pixel in the input image is (xsi , y

s
i ), the pixel

in the output image is (xi
t, y

i
t), and the corresponding relationship

between an input image pixel and output image pixel is as shown in
Eq. 2. It can obtain the values of the output image pixel values by
taking the inverse.

xsi
ysi

( ) � Tθ Gi( ) � Aθ

xti
yti
1

⎛⎜⎝ ⎞⎟⎠ � θ11 θ12 θ13
θ21 θ22 θ23

[ ]
xti
yti
1

⎛⎜⎝ ⎞⎟⎠ (2)

The sampler module is employed for the execution of spatial
transformations. It applies the previous sampling grid to the input

image, to produce the final image which is the most relevant parts of
a face image.

3.2.2 VGG network
The VGG network [23] is employed for recognizing emotions in

driver face images that are processed by the Spatial TransformNetwork.
The VGG19 [23] network contains five convolutional groups and
16 convolutional layers, each of which contains a large number of
redundant computations. For the special environment of driving, in
order to make the VGG network have a more efficient recognition
effect, this paper is influenced by the idea of “Cheap Operations” in
Ghost Net, and adopts the convolutional method of Ghost Module to
improve the convolutional layers in the VGG network. In an ordinary
convolution operation, assuming the input feature map

X ∈ Rh*w*c (3)
where h is the height of the input image,w is the width of the feature
map, and c is the number of channels of the feature map, and the
output feature map

Y ∈ Rh′*w′*n (4)
where, h′ and w′ are the height and width of the feature map,
respectively, and n is the number of channels of the feature map, and
the convolution kernel is, and k is the size of the kernel, and n is the
number of the kernels of the convolution, the computation of this
convolution operation can be expressed in Eq. 5:

F � h′*w′*n*c*k*k (5)
In convolutional operations, the number of n and c is high, so the

feature maps generated by ordinary convolution consume a high
amount of computation and have a large redundancy. Ghost Module,
on the other hand, utilizes the redundancy of convolutional
operations and uses simple convolutional and linear operations to
obtain the same feature maps as normal convolution, which is called
“Cheap Operations”. Specifically, Ghost Module first uses the regular
convolution to generate the eigenfeature map Y′, which contains m
feature maps, the number of m is less than n. The amount of
computation F1 needed after omitting the bias term in the
convolution operation can be expressed as Eq. 6:

F1h′*w′*m*c*k*k (6)
After that, the Ghost Module performs linear operations on the

obtained eigenfeature maps Y′ to generate phantom feature maps,
and the process can be expressed as Eq. 7:

FIGURE 3
Mish activation function.

TABLE 2 Comparison of experimental results on the KMU-FED dataset.

Model Accuracy (%) Recognition speed (ms/frame)

VGG19 94.3 140

SVGG 96.6 80

TABLE 3 Performance in KMU-FED by 5-fold cross-validation.

Model Accuracy (%)

SqueezeNet 89.7

Modified SqueezeNet 95.8

MobileNetV2 93.8

MobileNetV3 94.9

LMRF 95.1

SVGG 96.6
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yij � ∅i,j y
′
i( ),∀i � 1, 2, ...,m, j � 1, 2, ..., s (7)

Comparing the convolution formed by Ghost Module with
ordinary convolution, it can be seen that the computation of
Ghost Module is only 1/s of ordinary convolution, as shown in
Eq. 8. In this paper, s is fixed to 2, i.e., compared with the ordinary
convolution in the VGG network, the computation of the
convolution layer in the improved VGG will be reduced to 1/2.
The total number of parameters for SVGG is 10,067,914 compared
to the literature as shown in Table 1.

rs � n p h′ p w′ p c p k p k
n
s p h′ p w′ p c p k p k + s − 1( ) ns p h′ p w′ p d p d

≈ s (8)

The activation function in VGG networks is the ReLU function,
which is a simple and effective nonlinear activation function and has
been widely used in many neural network models. However, it has an
obvious drawback: the “dead neuron” problem. In the ReLU function,
when the value of the input is less than 0, the output value will always be
0, which means the neuron is “dead”. As the number of neurons
increases, the number of dead neurons will also increase, resulting in
some neurons cannot be effectively used in the backpropagation. Also,
this function does not solve the problem of vanishing gradients. This
problem can be solved by using the Mish activation function, whose
functional formula is shown in Eq. 9 and the graph is shown in Figure 3.

f x( ) � x* tanh ln 1 + ex( )( ) (9)

3.2.3 ECA-Net
ECA-Net [25] represents a lightweight and efficient channel

attention model proficient in capturing inter-channel feature map

information with the introduction of a minimal number of
parameters. Unlike the SENet (Squeeze-and-Excitation Networks)
structure, ECA-Net does not use the fully connected layer in SENet,
but chooses to use one-dimensional convolution to dynamically
adjust the size of the kernel, and establishes the relationship between
the feature channels and the size of the convolution kernel using an
approximate linear mapping to achieve the ability of focusing on
channel convolution information exchange while avoiding
dimensionality degradation.

4 Experiment

4.1 Datasets

The KMU-FED dataset [26] was selected as the primary dataset
to assess the proposed approach. In order to evaluate the
performance of the model more thoroughly, the FER-2013
dataset was also selected for testing (Figure 4).

KMU-FED dataset is a real-world driver’s facial image dataset
collected by the CVPR laboratory of Keimyung University, contains
1,106 emotional images about drivers, the picture pixel is
1,600*1,200. It is a dataset of driver emotions in real
environments captured by infrared cameras placed on the
steering wheel or dashboard and contains emotional pictures of
multiple drivers under different lighting conditions. It contains six
emotions: anger, surprise, happiness, fear, disgust, and sad.

The FER-2013 dataset [32], compiled by Google in 2013, comprises
35,887 grayscale images stored in a CSV file with dimensions of 48 ×
48 pixels. These images are categorized into seven emotions: anger,
disgust, fear, happiness, neutral, sadness, and surprise. Despite being

FIGURE 4
The four expression images contained in the KMU-FED dataset. Reprinted with permission from “Driver’s Facial Expression Recognition in Real-Time
for Safe Driving” by Mira Jeong, ByoungChul Ko. The license for this content can be found at https://cvpr.kmu.ac.kr/KMU-FED.htm.

FIGURE 5
The five expression images contained in the FER-2013 dataset. Reprinted with permission from “Challenges in Representation Learning: Facial
Expression Recognition Challenge” by Dumitru, Ian Goodfellow, Will Cukierski, Yoshua Bengio. https://kaggle.com/competitions/challenges-in-
representation-learning-facial-expression-recognition-challenge.
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originally designed for general in-the-wild conditions and including
animated characters displaying diverse emotions, this dataset is not
explicitly tailored for driver-centric scenarios (Figure 5).

For our analysis, we specifically focus on four emotions,
resulting in a subset of 26,217 images. This subset includes
4,953 images depicting anger, 8,989 images displaying happiness,
5,121 images conveying fear, and 6,077 images depicting sadness.
Notably, since all images in this dataset represent facial expressions,
no additional image preprocessing steps were applied.

4.2 Training procedures and
evaluation criteria

Prior to discussing model performance, we will provide a brief
overview of the training procedures and evaluation criteria used in
this study. Training epochs of the model is set to 300, and an early
stopping strategy is used to avoid overfitting. When the validation
accuracy did not improve in 30 iterations, the training would
stop. The batch size is set to 128, and an Adam algorithm [27], a
useful optimizer, is set to optimize the model parameters. Adam
optimizers learning rate is set to 0.001.

In order to comprehensively validate the effectiveness of the
Ghost Net-SSD algorithm, it is necessary to comprehensively
evaluate both the average precision and the recognition speed of
the algorithm recognition. Among them, the average precision (AP)
is calculated by combining the recognition accuracy (Precision) and
the recall rate (Recall).

Recognition Precision is the probability that a face is correctly
detected among all detected samples, assuming that the number of
samples in which a face is detected is TP and the number of samples
in which a non-face is detected is FP, then the formula for the
Recognition Precision (Precision) can be expressed as Eq. 10.

Recall is the probability of correctly detected faces among all
faces that should be detected. Assuming that the number of
incorrectly detected non-face samples is FN, the formula for
recall (Recall) can be expressed as Eq. 11.

The P-R curve can be established with the recognition precision
rate as the vertical coordinate and the recall rate as the horizontal
coordinate, then the area of the curve combined with the axes is the
Average Precision (AP, Average Precision), which is calculated as
shown in Eq. 12.

Precision � TP
TP + FP

(10)

Recall � TP
TP + FN

(11)

AP � ∫
1

0
P R( )dR (12)

The recognition speed is calculated by synthesizing the
recognition speed of multiple images by the model on the
experimental platform to determine whether the algorithm meets
the real-time requirements.

4.3 Results and analysis

4.3.1 KMU-FED dataset
In order to verify the effectiveness of emotion recognition in real

driving environments, the SVGG model and the VGG19 model are
compared and experimented on the KMU-FED dataset, and the
experimental results are shown in Table 2. As evidenced by the data
presented in Table 2, the SVGG model achieves a recognition
accuracy of 96.6% on the KMU-FED dataset, surpassing the
accuracy of the VGG19 model at 94.3%. This signifies an
improvement of 2.3% relative to the VGG19 model. Regarding
recognition speed, the SVGG model operates at 80 m/frame, while
the VGG19 model exhibits a recognition speed of 140 m/frame. This

TABLE 5 Comparison of results of different models.

Model Accuracy (%)

MobileNetV2 68.3

SqueezeNet 64.5

LiveEmoNet [30] 69.0

CNN(31) 65.0

SVGG 72.4

TABLE 4 Effect of different modules in the model on experimental results.

STN Convolution Activation ECA-
net

Accuracy
(%)

- - - - 70.4

√ - - - 72.0

√ √ - - 71.5

√ √ √ - 71.8

√ √ √ √ 72.4

FIGURE 6
Confusion matrix in KMU-FED.
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represents a significant improvement of 43% in comparison to the
VGG19 network model.

Table 3 demonstrates the results of comparing the recognition
accuracy of different methods on the KMU-FED dataset, from the
data in the table, it can be seen that the SVGG model is higher than
the classical network model in terms of recognition accuracy.
Specifically, compared to the Squeeze Net and
MobileNetV3 models, the recognition accuracy of the SVGG
model has improved by 6.9% and 1.7%. Meanwhile, comparing
the new network models proposed in recent years, such as LMRF
[28], Modified Squeeze Net [29], etc., the SVGG model also has a
more obvious advantage in terms of recognition accuracy, in which
the recognition accuracy of the SVGG model is improved by 1.5%
compared with the LMRF model, and compared with Modified
Squeeze Net. SVGG model has improved the recognition
accuracy by 0.8%.

Figure 6 shows the confusion matrix of the model in the case of
using the KMU-FED dataset. The horizontal axis of the confusion
matrix represents the predicted emotion categorization, the vertical
axis represents the true emotion categorization, and the diagonal of
the matrix represents the correct recognition rate of emotions. In the
figure, the model demonstrates precise recognition of anger,
happiness, and fear. Notably, only a minimal number of
instances portraying sad expressions are misclassified as fear.

4.3.2 FER-2013 dataset
The experiments conducted in the preceding subsection

confirmed the effectiveness of the SVGG model in real-world
driving scenarios. In this subsection, additional experiments will
be carried out on the FER-2013 dataset to assess the model’s
generalization capabilities First of all, this paper does is
experiments on the improvement effect of different modules on
the overall model. The experimental results are shown in Table 4.
Where, the mark "√" indicates that the module is used in the model,
and the mark "-" indicates that the module is not used in the model.

From the results of the experiment in Table 4, it can be seen that
the recognition accuracy of the original model is 70.4%, and the face

alignment implemented by the STN module has the most obvious
effect on the model recognition accuracy improvement, which can
improve the recognition accuracy by 1.6%. The improvement to the
convolution module will make the number of parameters of the
model decrease significantly and improve the recognition speed of
the model, but from the results of this experiment, the improvement
to the convolution module will make the model recognition
accuracy decrease slightly. The activation function module and
the ECA-Net module both have positive enhancement effects for
the model. The recognition accuracy of the SVGG model on the
FER-2013 dataset is 72.4%, which is an improvement of 2.0%
compared to the original model, which verifies the validity of the
model proposed in this paper.

To more thoroughly evaluate the efficacy of the proposed SVGG
model, it is essential to conduct comparative experiments with other
emotion recognition models. In this paper, experimental
comparisons are conducted on the FER-2013 dataset. The
experimental results are shown in Table 5.

From the results of the comparison experiments in Table 5, it can
be seen that in terms of recognition accuracy, the SVGG model has a
significantly higher recognition accuracy than some lightweight
network models. For example, compared with MobileNetV2, the
average accuracy of SVGG model is improved by 4.1%, and
compared with Squeeze Net, the average accuracy of SVGG model
is improved by 7.9%. Also, the recognition accuracy of SVGGmodel is
better than network models optimized for emotion recognition in
recent years, e.g., compared with LiveEmoNet, the recognition
accuracy of SVGG model is improved by 3.4%. Compared with
CNN, the recognition accuracy of SVGGmodel is improved by 7.4%.

Figure 7 shows the accuracy of the two models under the
confusion matrix model. Contrasting the anger that causes road
rage, it can be seen from the figure that our model’s recognition rate
of anger is 7% higher than that of the VGGmodel. At the same time,
it can be seen that the recognition rates of fear and sadness are not
high for both two models, and it is easy to misjudge these two
emotions. This is due to the relatively small amount of data for these
two emotions compared to the other emotions in the dataset.

FIGURE 7
Confusion matrix in FER-2013 used VGG left and our method right.

Frontiers in Physics frontiersin.org07

Luan et al. 10.3389/fphy.2024.1387338

123

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1387338


5 Conclusion

In this paper, an emotion recognition model SVGG based on the
attention mechanism is proposed. The SVGG model addresses
picture jitter in driving environments through a spatial
transformation network for facial alignment. To enhance
recognition speed, it employs the Ghost Module’s convolution
method and the Mish activation function for accelerated
convergence. Addressing low accuracy, the SVGG model utilizes
ECA-Net to redistribute output channel weights. The experimental
results demonstrate that our model achieves a 43% improvement in
processing speed, with a rate of 80 milliseconds per frame, compared
to the VGG model. Furthermore, it attains an accuracy of 96.6% on
the KMU-FED dataset and 72.4% on the FER-2013 dataset,
suggesting its high potential for practical applications.

This paper focuses on analyzing frontal or partially frontal face
images of drivers, emphasizing specific camera placement
requirements within the driving environment. Future research
aims to explore emotion recognition from the driver’s side face,
potentially overcoming camera placement limitations. Additionally,
we consider integrating the perception and interaction layers to
form a more holistic Cyber-Physical Social System, enhancing the
system’s overall functionality in driver-assistance technologies.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.kaggle.com/c/challenges-in-
representation-learning-facial-expression-recognition-challenge/data
https://cvpr.kmu.ac.kr/KMU-FED.htm.

Author contributions

XL: Data curation, Methodology, Software, Writing–original
draft. QW: Conceptualization, Funding acquisition, Methodology,
Resources, Writing–review and editing. BH: Formal Analysis,
Investigation, Supervision, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. Jilin Science
and Technology Development Program Project: Research on
Intelligent Recognition and Prevention of Driver’s Emotions
under Multimodality, Project No. 20230203032SF.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Li W, Wu L, Wang C, Xue J, Hu W, Li S, et al. Intelligent cockpit for intelligent
vehicle in metaverse: a case study of empathetic auditory regulation of human emotion.
IEEE Trans Syst Man, Cybernetics: Syst (2023) 53(4):2173–87. doi:10.1109/tsmc.2022.
3229021

2. Yang L, Yang H, Hu BB, Wang Y, Lv C. A Robust driver emotion recognition
method based on high-purity feature separation. IEEE Trans Intell Transportation Syst
(2023) 24(12):15092–104. doi:10.1109/tits.2023.3304128

3. Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to
align and translate. arXiv (2016). Available from: http://arxiv.org/abs/1409.0473. doi:10.
48550/arXiv.1409.0473

4. Xue J, Li W, Zhang Y, Xiao H, Tan R, Xing Y, et al. Driver’s speech emotion
recognition for smart cockpit based on a self-attention deep learning framework. In:
2021 5th CAA international conference on vehicular control and intelligence (CVCI)
(2021). p. 1–5. Available from: https://ieeexplore.ieee.org/document/9661268.

5. Tao W, Li C, Song R, Cheng J, Liu Y, Wan F, et al. EEG-based emotion recognition
via channel-wise attention and self attention. IEEE Trans Affective Comput (2023) 14(1):
382–93. doi:10.1109/taffc.2020.3025777

6. Ekman P. Facial expression and emotion (1993). Available from: https://www.
s emant i c s cho la r . o rg /pape r /Fac i a l -Expre s s i on-and-Emot ion-Ekman/
b0153a91c7124644f8515625e3a0e41193b2fc23.

7. Roidl E, Frehse B, Höger R. Emotional states of drivers and the impact on speed,
acceleration and traffic violations—a simulator study. Accid Anal Prev (2014) 70:
282–92. doi:10.1016/j.aap.2014.04.010

8. Jeon M, Walker BN, Yim JB. Effects of specific emotions on subjective judgment,
driving performance, and perceived workload. Transportation Res F: Traffic Psychol
Behav (2014) 24:197–209. doi:10.1016/j.trf.2014.04.003

9. Oh G, Jeong E, Kim RC, Yang JH, Hwang S, Lee S, et al. Multimodal data collection
system for driver emotion recognition based on self-reporting in real-world driving.
Sensors (2022) 22(12):4402. doi:10.3390/s22124402

10. Singh RR, Conjeti S, Banerjee R. Biosignal based on-road stress monitoring for
automotive drivers. In: 2012 National Conference on Communications (NCC); 03-
05 February 2012; Kharagpur, India (2012). p. 1–5. Available from: https://ieeexplore.
ieee.org/document/6176845.

11. Singh RR, Conjeti S, Banerjee R. An approach for real-time stress-trend detection
using physiological signals in wearable computing systems for automotive drivers. In:
2011 14th International IEEE Conference on Intelligent Transportation Systems
(ITSC); 05-07 October 2011; Washington, DC, USA (2011). p. 1477–82. Available
from: https://ieeexplore.ieee.org/document/6082900.

12. Muhammad G, Hossain MS. Light deep models for cognitive computing in
intelligent transportation systems. IEEE Trans Intell Transportation Syst (2023) 24(1):
1144–52. doi:10.1109/tits.2022.3171913

13. Prasolenko O, Lobashov O, Bugayov I, Gyulyev N, Filina-Dawidowicz L.
Designing the conditions of road traffic in the cities taking into account the human
factor. In: 2019 6th International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS); 05-07 June 2019; Cracow, Poland
(2019). p. 1–8. Available from: https://ieeexplore.ieee.org/document/8883381.

14. Lingelbach K, BuiM, Diederichs F, VukelićM. Exploring conventional, automated
and deep machine learning for electrodermal activity-based drivers’ stress recognition.
In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 17-
20 October 2021; Melbourne, Australia (2021). p. 1339–44. Available from: https://
ieeexplore.ieee.org/document/9658662.

15. Ujir H, Jee EM, Farhaan Iqbal M, Mun QK, Hipiny I. Real-time driver’s
monitoring mobile application through head pose, drowsiness and angry detection.
In: 2021 8th International Conference on Computer and Communication Engineering
(ICCCE); 22-23 June 2021; Kuala Lumpur, Malaysia (2021). p. 1–6. Available from:
https://ieeexplore.ieee.org/document/9467232.

16. Chand V, Karthikeyan J. CNN based driver drowsiness detection system using
emotion analysis. Intell Automation Soft Comput (2022) 31:717–28. doi:10.32604/IASC.
2022.020008

Frontiers in Physics frontiersin.org08

Luan et al. 10.3389/fphy.2024.1387338

124

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data
https://cvpr.kmu.ac.kr/KMU-FED.htm
https://doi.org/10.1109/tsmc.2022.3229021
https://doi.org/10.1109/tsmc.2022.3229021
https://doi.org/10.1109/tits.2023.3304128
http://arxiv.org/abs/1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://ieeexplore.ieee.org/document/9661268
https://doi.org/10.1109/taffc.2020.3025777
https://www.semanticscholar.org/paper/Facial-Expression-and-Emotion-Ekman/b0153a91c7124644f8515625e3a0e41193b2fc23
https://www.semanticscholar.org/paper/Facial-Expression-and-Emotion-Ekman/b0153a91c7124644f8515625e3a0e41193b2fc23
https://www.semanticscholar.org/paper/Facial-Expression-and-Emotion-Ekman/b0153a91c7124644f8515625e3a0e41193b2fc23
https://doi.org/10.1016/j.aap.2014.04.010
https://doi.org/10.1016/j.trf.2014.04.003
https://doi.org/10.3390/s22124402
https://ieeexplore.ieee.org/document/6176845
https://ieeexplore.ieee.org/document/6176845
https://ieeexplore.ieee.org/document/6082900
https://doi.org/10.1109/tits.2022.3171913
https://ieeexplore.ieee.org/document/8883381
https://ieeexplore.ieee.org/document/9658662
https://ieeexplore.ieee.org/document/9658662
https://ieeexplore.ieee.org/document/9467232
https://doi.org/10.32604/IASC.2022.020008
https://doi.org/10.32604/IASC.2022.020008
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1387338


17. Du G, Wang Z, Gao B, Mumtaz S, Abualnaja KM, Du C. A convolution bidirectional
long short-term memory neural network for driver emotion recognition. IEEE Trans Intell
Transportation Syst (2021) 22(7):4570–8. doi:10.1109/tits.2020.3007357

18. Li W, Cui Y, Ma Y, Chen X, Li G, Zeng G, et al. A spontaneous driver emotion
facial expression (DEFE) dataset for intelligent vehicles: emotions triggered by video-
audio clips in driving scenarios. IEEE Trans Affective Comput (2023) 14(1):747–60.
doi:10.1109/taffc.2021.3063387

19. Luo J, Yoshimoto H, Okaniwa Y, Hiramatsu Y, Ito A, Hasegawa M. Emotion
monitoring sensor network using a drive recorder. In: 2023 IEEE 15th International
Symposium on Autonomous Decentralized System (ISADS); 15-17 March 2023; Mexico
City, Mexico (2023). p. 1–8. Available from: https://ieeexplore.ieee.org/document/10092139

20. Miyajia M. Driver’s anger state identification by using facial expression in
cooperation with artificial intelligence. J Fundam Appl Sci (2017) 9(7S):87–97.
doi:10.4314/JFAS.V9I7S.9

21. Leone A, Caroppo A, Manni A, Siciliano P. Vision-based road rage detection framework
in automotive safety applications. Sensors (2021) 21(9):2942. doi:10.3390/s21092942

22. Oh G, Ryu J, Jeong E, Yang JH, Hwang S, Lee S, et al. DRER: deep learning–based
driver’s real emotion recognizer. Sensors (2021) 21(6):2166. doi:10.3390/s21062166

23. Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K. Spatial transformer
networks. arXiv (2016). Available from: http://arxiv.org/abs/1506.02025. doi:10.48550/
arXiv.1506.02025

24. Viola P, Jones MJ. Robust real-time face detection.

25. Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. ECA-net: efficient Channel Attention
for deep convolutional neural networks. In: 2020 IEEE/CVF conference on computer

vision and pattern recognition (CVPR) (2020). p. 11531–9. Available from: https://
ieeexplore.ieee.org/document/9156697.

26. Jeong M, Ko BC. Driver’s facial expression recognition in real-time for safe
driving. Sensors (2018) 18(12):4270. doi:10.3390/s18124270

27. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv
(2017). Available from: http://arxiv.org/abs/1412.6980. doi:10.48550/arXiv.
1412.6980

28. Jeong M, Nam J, Ko BC. Lightweight multilayer random forests for monitoring
driver emotional status. IEEE Access (2020) 8:60344–54. doi:10.1109/access.2020.
2983202

29. Sahoo GK, Das SK, Singh P. Deep learning-based facial emotion recognition for
driver healthcare. In: 2022 National Conference on Communications (NCC).; 24-
27 May 2022; Mumbai, India (2022). p. 154–9. Available from: https://ieeexplore.ieee.
org/document/9806751.

30. Podder T, Bhattacharya D, Majumdar A. Time efficient real time facial expression
recognition with CNN and transfer learning. Sādhanā (2022) 47(3):177. doi:10.1007/
s12046-022-01943-x

31. Kaviya P, Arumugaprakash T. Group facial emotion analysis system using
convolutional neural network. In: 2020 4th International Conference on Trends in
Electronics and Informatics (ICOEI)(48184); 15-17 June 2020 (2020). p. 643–7.
Available from: https://ieeexplore.ieee.org/document/9143037.

32. Dumitru Goodfellow L, Cukierski W, Bengio Y. Challenges in Representation
Learning: Facial Expression Recognition Challenge. Kaggle (2013). Available online at:
https://kaggle.com/competitions/challenges-in-representation-learning-facial-
expression-recognition-challenge.

Frontiers in Physics frontiersin.org09

Luan et al. 10.3389/fphy.2024.1387338

125

https://doi.org/10.1109/tits.2020.3007357
https://doi.org/10.1109/taffc.2021.3063387
https://ieeexplore.ieee.org/document/10092139
https://doi.org/10.4314/JFAS.V9I7S.9
https://doi.org/10.3390/s21092942
https://doi.org/10.3390/s21062166
http://arxiv.org/abs/1506.02025
https://doi.org/10.48550/arXiv.1506.02025
https://doi.org/10.48550/arXiv.1506.02025
https://ieeexplore.ieee.org/document/9156697
https://ieeexplore.ieee.org/document/9156697
https://doi.org/10.3390/s18124270
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/access.2020.2983202
https://doi.org/10.1109/access.2020.2983202
https://ieeexplore.ieee.org/document/9806751
https://ieeexplore.ieee.org/document/9806751
https://doi.org/10.1007/s12046-022-01943-x
https://doi.org/10.1007/s12046-022-01943-x
https://ieeexplore.ieee.org/document/9143037
https://kaggle.com/competitions/challenges-in-representation-learning-facial-expression-recognition-challenge
https://kaggle.com/competitions/challenges-in-representation-learning-facial-expression-recognition-challenge
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1387338


Malware traffic detection based
on type II fuzzy recognition
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In recent years, a surge in malicious network incidents and instances of network
information theft has taken place, with malware identified as the primary culprit.
The primary objective of malware is to disrupt the normal functioning of
computers and networks, all the while surreptitiously gathering users’ private
and sensitive information. The formidable concealment and latency capabilities
of malware pose significant challenges to its detection. In light of the operational
characteristics of malware, this paper conducts an initial analysis of prevailing
malware detection schemes. Subsequently, it extracts fuzzy features based on
the distinct characteristics of malware traffic. The approach then integrates traffic
detection techniques with Type II fuzzy recognition theory to effectively monitor
malware-related traffic. Finally, the paper classifies the identified malware
instances according to fuzzy association rules. Experimental results showcase
that the proposed method achieves a detection accuracy exceeding 90%, with a
remarkably low false alarm rate of approximately 5%. This method adeptly
addresses the challenges associated with malware detection, thereby making
a meaningful contribution to enhancing our country’s cybersecurity.

KEYWORDS

traffic detection, Malware, fuzzy recognition, feature extraction, association rules

1 Introduction

The Internet hosts various forms of malware, including botnets, network worms, and
malicious phishing websites. This category of malware exhibits distinct characteristics of
malicious network behaviors, such as spam dissemination, the presence of malicious
crawlers, dos attack, and port scanning. These activities have a detrimental impact on
the network data security of both users and enterprises, posing a significant threat to the
network information security of society and the country. Malware has the capability to
establish a persistent, malicious controlling network topology that is highly contagious.
Port-scanning malware conducts polling attacks on the ports of target computers,
particularly targeting commonly used 80. Once the port is attacked and occupied by
malware, it significantly disrupts the normal operation of web pages and hampers users’
regular Internet activities.

Computer users frequently navigate through a substantial number of web pages during
their internet browsing activities. Consequently, numerous malware instances are deployed
across a plethora of websites. This situation exposes users to considerable risks as they
traverse the web, increasing the likelihood of falling into traps that can result in the
compromise of their information, privacy, and property. This phenomenon poses a
significant threat to both social and national internet security, eroding the trust of the
majority of internet users in the national internet security system.
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Simultaneously, the structure of internet cybersecurity is
intricate, making it challenging to precisely characterize the
evolving features of data traffic in certain research fields due to
the inherent uncertainty in research outcomes. Model mathematics
emerges as a solution to address this challenge. The primary role of
fuzzy mathematics is to effectively blur the boundaries of
dichotomous problems. Consequently, this paper employs fuzzy
recognition methodology for the detection of malware traffic in
network communication.

The article has two innovative points:
Firstly, it involves conducting a statistical analysis of malware

traffic through the application of fuzzy recognition theory.
Utilizing fuzzy membership functions, a substantial volume of
traffic is assessed, and the ambiguity characteristics are employed
to extract the value range denoting the maliciousness of
each traffic.

Secondly, the malware detection technique, supported by the
innovative fuzzy mathematics theory, is aptly tailored for the
demands of the current Internet era. Furthermore, tools for
malware identification based on fuzzy recognition are anticipated
to gain widespread adoption among a diverse range of cybersecurity
enterprises and professionals, fueled by continuous innovation and
improvement.

The remainder of this article is structured as follows. Section
2 is the related works of this paper and introduces the theoretical
foundation and methodology of this paper. Section 3 describes
Malware Feature Extraction. Section 4 describes Malware
identification and classification. Section 5 discusses the
experiments and experimental results. Section 6 concludes the
paper with some final remarks and future research directions.

2 Related works

With the rapid proliferation of malware, traditional static
analysis techniques are no longer sufficient to meet the demands
of detection. Consequently, the adoption of fuzzy recognition
theory for classifying and detecting malware has become
increasingly prominent. An illustrative example of this is the
application of fuzzy recognition to analyze network patterns and
behavioral styles. Fuzzy mathematics [1] represents a
contemporary branch of mathematics that emerged in the
20th century. It relies on fuzzy concepts to enable the
estimation and computation of subjects that are not readily
addressed by classical mathematics.

In some foreign countries, current practices involve employing
two-way traffic analysis [2] and sensory inspection of network data
packets [3] to detect specific states of malware, such as inward
scanning, exploits, egg downloading, outward parallel sessions, etc.
When these particular states align with predefined rules, they are
identified as malicious traffic.

In certain security domains in China, the analysis of malware
traffic predominantly relies on the WinPcap [4] function library,
supplemented by external dependent software and applications.
Enterprises leverage their internal functions. An application
designed for monitoring network traffic or a user-friendly
desktop application is developed in alignment with the

specified software system functionality and the assessment of
malicious traffic [5]. Subsequently, the proposed scheme outlines
the specific system structure and optimization process diagram
for each module.

In general, numerous cybersecurity projects, both domestically
and internationally, have proposed effective solutions to mitigate
excessive reliance on source IP, target IP, and the number of host
ports during traffic monitoring. This particular scheme involves
analyzing whether the uplink effective load and total downlink load
of Internet traffic contain distinctive signatures or markers
associated with known malicious programs or software for traffic
classification [6]. It subsequently calculates fuzzy feature values,
thereby achieving a high level of accuracy to some extent. Despite its
accuracy, this solution entails a high analytical cost and demands
significant effort. To alleviate resource consumption in terms of cost,
time, and space, it can be synergistically employed with already
analyzed and low-cost monitoring methods. This way, it can
efficiently filter out straightforward and easily analyzable traffic
in the initial stages.

In addressing the aforementioned challenges, this article
employs malware detection tools grounded in fuzzy
mathematics as the theoretical foundation, with fuzzy
recognition theory serving as the detection method. Through
extensive experimentation involving data statistics and analysis
of data traffic packet captures, the study aims to offer practical
assistance in enhancing the security of personal computers or
enterprise extranets. The objective is to furnish efficient tools for
inspecting malware traffic and analyzing data packets. By
scrutinizing traffic characteristics, along with the expansive
range of malware traffic, and employing fuzzy membership
function calculations, the proposed approach aims to
effectively and efficiently identify malware within IoT or
personal computer network cards.

3 Malware feature extraction

3.1 Feature classification

Cluster analysis serves as a pivotal method in fuzzy feature
classification. Cluster analysis serves as a valuable tool in identifying
fuzzy patterns and similarities within data, providing a means to
navigate the inherent ambiguity and uncertainty associated with the
classification of such fuzzy features. Additionally, cluster analysis
aids in the exploration of the intrinsic structure and patterns
embedded in the data. This facet is particularly crucial for the
classification of fuzzy features, as they may be inherent in the
data’s structure and can be better comprehended and recognized
through the clustering process.

Moreover, the method’s applicability to large-scale datasets
further enhances its significance in the realm of fuzzy feature
classification. These attributes collectively render cluster analysis
advantageous and highly applicable in addressing the challenges
posed by fuzzy features in classification tasks.

In this experiment, the classification of traffic features is
categorized into five intervals based on the similarity of features
and their close relationships: malicious traffic, approximate
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malicious traffic, no obvious features, approximate normal traffic,
and normal traffic. Striking a balance is crucial; excessive intervals
(>5) can diminish recognition accuracy, leading to frequent results

spanning two intervals simultaneously, thereby introducing
ambiguity. Conversely, few classification intervals (0–5) can also
elevate recognition ambiguity, making it challenging to clearly
discern the malicious nature of the traffic. Achieving an optimal
number of intervals is key to ensuring accurate and unambiguous
traffic feature classification results.

KM fuzzy clustering [7] classifies the feature classification of
malicious traffic into five intervals. This method groups the values
recorded under the same quantitative feature into the target dataset. For
each interval, it extracts the maximum and minimum values, using the
minimum value as the closed left endpoint and the maximum value as
the closed right endpoint of the interval. A comprehensive analysis and
summary of numerous sets of malicious data have been conducted, as
illustrated in Table 1. The data characteristics represented are: total
number of data packets, number of uplink data packets, number of
downlink data packets, number of uplink loads, number of downlink
loads, total uplink load, total downlink load, flow duration, uplink data
Avg, downlink data Avg, Uplink minimum load, downlink minimum
load, uplink maximum load, downlink maximum load, uplink load
variance, downlink load variance, uplink load Avg, downlink load Avg,
uplink minimum data, downlink minimum data, uplink maximum
data, downlink maximum data, uplink data Variance, downward
data variance.

3.2 Feature extraction

3.2.1 Feature calculation
Feature extraction represents a pivotal step in fuzzy recognition.

To extract fuzzy features, the initial task involves determining the
weight of each traffic feature. Subsequently, an extensive
examination and analysis of the range of each feature across all
malicious traffic instances are conducted using big data. The testing
data for this experiment is sourced from a malware simulator, which
generates malicious traffic. This traffic is then combined with
normal traffic. The membership function is pre-established based
on the characteristics of traffic emitted by known malware, resulting
in a unique function. Following this, the dataset is utilized for
testing, aiming to identify the number of malicious traffic
instances, analyze the type of malware, and ultimately calculate
the proportion and false alarm rate.

In the experimental section, we scrutinize the features of captured
malicious network samples and public datasets, extracting distinct
characteristics of malware traffic. These characteristics encompass
the five-tuple [8], packet size, port number, DNS response time, and
data packet load. Each type of malware exhibits its unique traits. During
the statistical analysis, we filter out all malicious traffic instances,
focusing on extracting abnormal characteristics from malicious
traffic and HTTP network traffic.

This experiment primarily employs the method of fuzzy cluster
analysis for malware identification. In traffic clustering, we utilize
common clustering algorithms such as database scanning, memory
sharing, K-Means, and design pattern [9]. Particularly, when handling
substantial data with high concurrency, the KM algorithm proves
effective in revealing the actual distribution and transmission of traffic.

As a result, the membership function will be translated into
program code, and the likelihood of malicious traffic will be
calculated by executing the program.

TABLE 1 Fuzzy feature range of traffic.

1 (%) 2 3 4 (%) 5 (%)

all_pkts 94.3–100 66.8%–
84.4%

44.1%–

47.1%
18.5–32.7 0–4.2

up_pkts 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

dw_pkts 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

up_pl_pkts 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

dw_pl_pkts 94.3–100 66.8%–
84.4%

44.1%–

47.1%
18.5–32.7 0–4.2

up_pl_byte 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

dw_pl_byte 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

duration 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

up_avg_plsize 94.3–100 66.8%–
84.4%

44.1%–

47.1%
18.5–32.7 0–4.2

dw_avg_plsize 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

up_min_plsize 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

dw_min_plsize 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

up_max_plsize 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

dw_max_plsize 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

up_stdev_size 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

dw_stdev_size 94.3–100 66.8%–
84.4%

44.1%–

47.1%
18.5–32.7 0–4.2

up_avg_ipt 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

dw_avg_ipt 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

up_min_ipt 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

dw_min_ipt 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

up_max_ipt 94.3–100 66.8%–
84.4%

44.1%–

47.1%
18.5–32.7 0–4.2

dw_max_ipt 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

up_stdev_ipt 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

dw_stdev_ipt 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7
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We can summarize that there are three types of fuzzy
membership functions with a normal distribution:

A x( ) 1 x ≤ a

e
− x−a( )

δ x > b

⎧⎨
⎩ (1)

A x( )
1 x ≤ a

e
− x−a( )

δ x > a

⎧⎨
⎩ (2)

A x( ) 1 x ≤ a

e
− x−a( )

δ x > b

⎧⎨
⎩ (3)

In this experiment, the network is modeled, analyzed, and
detected based on the ecological characteristics of malicious
traffic. These ecological characteristics encompass the utilization
of commands to control communication traffic, which is generated
during the propagation of the network and when the malware
reaches a certain scale.

During the generation and dissemination of malicious traffic by
malicious application software, fuzzy mathematics establishes its own
models and conducts extensive calculations and statistical analysis on

the fuzzy characteristics of network data structures. By considering the
fuzzy characteristics specific to malicious network traffic, we ultimately
perform clustering on such traffic. Leveraging big data investigation
methods, we monitor malicious network traffic to detect common
malicious software and applications. The fuzzy recognition scheme,
based on cluster analysis, utilizes fuzzy clustering to analyze malware
and identify the technical core of the operating system. Employing high-
speed mirroring [10] for saving malicious network traffic, it acts as a
snapshot, subsequently stored on the computer’s hard disk. This traffic
is then input into a malicious network identification system based on
cluster analysis. The system filters, monitors, and analyzes the traffic,
extracts features, and finally conducts cluster analysis to determine the
accuracy or success rate of all enterprise or personal traffic received.

3.2.2 Flow characteristics
The optimal number of classifications is a crucial concept in data

feature segmentation within fuzzy recognition theory. Given the
intricate nature of traffic features, different characteristics exhibit
variations in their thresholds after the application of the fuzzy
clustering analysis algorithm. The optimal number of

TABLE 2 Traffic feature range and weight.

Weights (%) Upper range (%) Lower bound of range (%) Optimal number of classifications

all_pkts 84.4 44.1–47.1 18.5–32.7 4

up_pkts 31 75.9–97.2 25.1–58.2 3

dw_pkts 92.9 35.7–42.4 27–25.2 5

up_pl_pkts 71.3 38.5–52.8 22.3–36.3 4

dw_pl_pkts 84.4 44.1–47.1 18.5–32.7 5

up_pl_byte 45 75.9–97.2 25.1–58.2 3

dw_pl_byte 92.9 35.7–42.4 27–25.2 3

duration 71 38.5–52.8 22.3–36.3 4

up_avg_plsize 84.4 44.1–47.1 18.5–32.7 5

dw_avg_plsize 21.1 75.9–97.2 25.1–58.2 5

up_min_plsize 92.9 35.7–42.4 27–25.2 3

dw_min_plsize 71 38.5–52.8 22.3–36.3 3

up_max_plsize 36.2 75.9–97.2 25.1–58.2 4

dw_max_plsize 92.9 35.7–42.4 27–25.2 5

up_stdev_plsize 1 38.5–52.8 22.3–36.3 4

dw_stdev_plsize 3.3 44.1–47.1 18.5–32.7 5

up_avg_ipt 9.1 75.9–97.2 25.1–58.2 3

dw_avg_ipt 92.9 35.7–42.4 27–25.2 4

up_min_ipt 71 38.5–52.8 22.3–36.3 5

dw_min_ipt 71 38.5–52.8 22.3–36.3 3

up_max_ipt 84.4 44.1–47.1 18.5–32.7 3

dw_max_ipt 7.4 75.9–97.2 25.1–58.2 5

up_stdev_ipt 92.9 35.7–42.4 27–25.2 3

dw_stdev_ipt 1 38.5–52.8 22.3–36.3 4
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classifications is defined as the number at which the threshold is
maximized. At this point, the membership function is most accurate
in determining the feature, resulting in the highest fuzzy recognition
rate. Subsequently, we calculate the similarity of each feature after
determining the optimal number of classifications for individual
features. Ultimately, the optimal number of classifications for the
entire set of traffic features is determined using the maximum
number algorithm, resulting in five intervals.

To align with the feature function described in fuzzy
mathematics, this experiment aims to automatically identify fuzzy
features, learning their range and weight, as illustrated in Table 2.

3.3 Feature membership function

Since malicious traffic generated by different malware exhibits
significant variations in the range of fuzzy features, the fuzzy
features’ membership function is fine-tuned with the aid of artificial
learning. Leveraging an extensive analysis of massive malicious traffic
techniques, we scrutinize and compare identical features to ascertain the
average value and range of each fuzzy data level. Subsequently, we
incorporate this information into the standard fuzzy membership
function. Through program recognition and the application of a
series of mathematical algorithms, we amalgamate normal
distribution characteristics with the membership function of fuzzy
features. Each traffic encompasses dozens of fuzzy features, and
distinct types of traffic are associated with unique fuzzy features. To
illustrate, consider the following fuzzy feature along with its
corresponding membership function:

up_pkts:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60≤ x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

dw_pkts:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

up_pl_pkts:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

dw_pl_pkts:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Upstream Payload Variance:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Downstream Payload Variance:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

In the traffic analysis of certain software, the time interval
proves to be a crucial feature. Therefore, it is essential to examine
the fuzzy feature of time intervals. This involves calculating the
minimum, maximum, average, and variance of the uplink and
downlink time intervals. Subsequently, the weight of the time
interval in the overall fuzzy recognition feature is determined
through computation:

Upstream Mean Time Interval:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Downstream Mean Time Interval:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

e −x−5
6( ) 81< x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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4 Malware identification and
classification

4.1 Fuzzy recognition process

Firstly, in fuzzy recognition theory, the identification process
begins with defining the object to be recognized. Subsequently, the
fuzzy characteristics of the target object are analyzed. Finally,
ambiguity is calculated through functions, and the result interval
is determined to achieve the recognition and classification of
malware. For the experiment, the identification process is divided
into the following steps:

1. Identifying the target object involves the initial step of capturing
and filtering data packets that satisfy specific identification criteria.
Subsequently, the traffic is regarded as the object of identification
in accordance with the five-tuple principle.

2. Conducting fuzzy feature calculation and classification
involves the determination of fuzzy features within the data
flow. Subsequently, cluster analysis is applied to ascertain the
optimal number of interval classifications for each identified
feature. Ultimately, this process culminates in the
establishment of classification intervals for the entirety of
the fuzzy recognition procedure.

3. Following the establishment of classification intervals, the
evaluation of fuzzy features involves assessing the degree of
variation using a normal distribution. Employing the fuzzy
membership functions derived from the normal distribution,
determine the membership functions for each feature within
the data flow.

4. Upon completing all prerequisites, execute fuzzy recognition
computations within the program. Integrate the interval values
of data flow features and the pre-determined membership
functions of features into the program to achieve
comprehensive fuzzy software recognition.

5. Ultimately, leveraging the fluctuation range of recognized data
flow features, proceed with the identification and classification
of malicious software.

4.2 Type I fuzzy recognition

Fuzzy recognition theory posits that the attributes of the object
undergoing recognition exhibit fuzziness throughout the
recognition process. In other words, the standard fuzzy model is
inherently fuzzy. Type I fuzzy recognition theory involves the
manual determination of the variable range of data characteristic
ambiguity. This is achieved through human learning and
experiential judgment, leading to the subdivision of intervals for
data characteristics. By iteratively tuning and calculating, we identify
the maximum threshold through cluster analysis, facilitating
subsequent stages of identification.

Type I fuzzy recognition theory focuses on the proximity of data
features. The proximity of fuzzy sets is inversely proportional to the
size of the outer product: the closer the fuzzy set, the smaller the
outer product. Conversely, the larger the inner product, the closer
the fuzzy set. Hence, closeness serves as a metric to depict the
similarity between two fuzzy sets.

The algorithmic principles guiding the design of the first type of
fuzzy recognition theory include:

1. Maximum Membership Principle;
2. Threshold Principle; This fuzzy algorithm employs a fuzzy

decision-making method to prescribe a specific design plan,
addressing issues that may arise in the current or future
selection of the optimal plan. The objective of fuzzy
decision-making [11] is to rank objects in the domain by
considering their superiority and inferiority, or to choose a
satisfactory plan from the domain using a predefined method.
Ultimately, the application of fuzzy decision-making is
specifically manifested in the realms of scientific technology
and economic management.

4.3 Type II fuzzy recognition

In practical datasets, instances often emerge where data display
ambiguity and uncertainty. Traditional binary classification
methods may fall short in effectively addressing such
complexities. The Type II fuzzy recognition theory excels in
handling issues related to fuzziness and uncertainty, providing a
robust framework for the classification and recognition of data
characterized by fuzziness.

In intricate scenarios, data features can become highly complex,
posing a challenge for traditional classification methods to adapt
effectively. The Type II fuzzy recognition theory demonstrates
notable prowess in managing large volumes of complex data,
enabling the classification and recognition of extensive datasets.
This capability significantly enhances the accuracy and efficiency of
data processing in such complex situations.

Type II fuzzy recognition theory differs from Type I in that it
mandates that the feature set to be recognized possesses attributes
that either completely belong or do not belong at all. In other words,
there is a stringent [0,1] closed interval constraint between feature
elements and fuzzy sets within the fuzzy model lib. Unlike Type I
recognition, Type II recognition dispenses with the need for fuzzy
cluster analysis, as it eschews artificial feature interval classification.
Instead, it directly determines the membership function based on
the established fuzzy standard model lib, thereby facilitating the
identification process.

The design of Type II fuzzy recognition theory adheres to the
following principles:

1. The Proximity Principle.
2. Multi-characteristic Proximity Principle.

We leverage the fuzzy association rules within Type II fuzzy
recognition theory for the classification of fuzzy features. The
primary objective involves parsing and calculating the entire dataset
of malware traffic using big data techniques. Subsequently, we
determine the degree of membership for each fuzzy feature and
assess fuzzy association rules based on support and trust criteria.

Compared to Type I fuzzy recognition, Type II fuzzy recognition
can adjust recognition methods according to specific situations, better
adapting to different scenarios and requirements, thereby improving the
flexibility and applicability of recognition. Moreover, Type II fuzzy
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recognition methods have relatively lower requirements on hardware
devices and software running memory, making them better suited to
meet the needs in resource-limited environments.

Type II fuzzy recognition introduces a novel concept known as
closeness [12]. In contrast to Type I’s fuzzy recognition theory, Type
II involves the comparison of two fuzzy sets: the model fuzzy set and
the standard fuzzy set. The process entails identifying the affiliation
between these sets, establishing fuzzy subsets, and determining the
closeness between subsets and supersets.

4.4 Malware classification

Following the completion of fuzzy identification on the traffic data
collection, a subsequent analysis is essential to extract malicious traffic
and ascertain the type of malware. In this experiment, the calculation of
the fuzzy degree of trust is conducted based on the fuzzy association
rules outlined in Section 3. Ultimately, the degree of trust, represented
by FConf, is employed for the classification of malware:

Dos attack: The predominant fuzzy feature, given its significant
weight, is the time interval of the traffic. Additionally, the port
number serves as a robust criterion for determining its nature. This
type of malware is classified as C1.

Web crawlers: These malware entities engage in the
unauthorized retrieval of users’ or enterprises’ data through the
transmission of malicious crawler data. Consequently, this type of
malware falls under the classification C2.

Mail interception: This category involves the interception or
camouflage of Internet mail on the designated network card. Hence,
this type of malware is classified as C3.

Phishing websites: This category involves the deployment of
phishing advertisements or the malicious download of phishing
software on specific websites. The primary goal is to illicitly obtain
users’ information, primarily targeting individual users. This type of
malware is classified as C4.

Port scanning: This type of malware engages in extensive port
scanning processes on corporate extranets to identify available ports.
It subsequently floods idle ports with numerous malicious and
invalid data packets, creating confusion in corporate network
data and disrupting the analysis of network traffic. Consequently,
this type of malware is classified as C5.

In addition to the aforementioned malware, there are numerous
comprehensive threats, including Pajio and Ofred, among others.
These comprehensive malware variants use a diverse range of
malicious attack methods. Consequently, a thorough traffic
analysis of this type of malware necessitates multiple iterations
for comprehensive understanding.

5 Experiments

5.1 Data sets

In this experiment, the dataset comprises network data packets,
with the traffic data collection predominantly categorized into two
segments: malware traffic data and normal traffic data, as outlined in
Table 3 and Table 4:

In this experiment, the malware traffic was generated by the
malicious traffic simulator, directing phishing website traffic to
the network. Simultaneously, the Doser packet sender executed a
simulated Dos attack on a designated port. Furthermore,
the MBlocker mail [13] blocking simulation tool intercepted
mail on the experimental machines. The normal traffic, on
the other hand, involved regular Internet access by the
experimental computer network card, encompassing both the
sending and receiving processes of network data packets.
Various protocols, such as HTTP, FTP, SMTP, RIP, DNS,
ARP, were employed in the traffic packets. Once the normal
traffic reached a specified volume, it was deliberately mixed with
malware traffic packets at an appropriate ratio. Subsequently,
the network simulated the reception of malware attacks based on
this proportion, thus forming the dataset utilized in this
experiment.

5.2 Environment and operation

For environmental configuration, Wireshark was employed
in this experiment to capture data packets for testing purposes.
The data to be tested originated from traffic transmitted through
the SMTP or HTTP protocol. Malicious traffic was generated
through the testing of phishing websites and malware, and
subsequently captured on the experimental machine, as
illustrated in Figure 1.

The equipment used in this experiment comprises an
experimental computer equipped with 8.00 GB of memory and a
64-bit operating system, featuring an x64 processor. In addition to
Wireshark, the primary software tools include Qt Creator and Visual
Studio 2019 as programming tools. The characteristics of the traffics
are saved in Excel tables, and the results are documented in Word
text files.

The initial phase of this experimental program involves parsing
Pcap data packets as the primary input. Specifically, it parses all data
packets within files designated with the. pcap suffix and
subsequently classifies the traffic. The analysis process is as
shown below:

Serial Number:90.
89:725906(Len:60) (capLen:60).
5254 00 12 35 02 08 00 27 e6 9f 5f 08 00 45 00.
0028 00 82 40 00 80 06 2b a2 0a 00 02 0f 1f aa
a2 f3 04 1a 00 50 84 31 f7 72 00 03 f9 c8 50 10
fa f0 6c 5d 00 00 00 00 00 00 00 00.
Serial Number:91.
89:725981(Len:60) (cpLen60).
52 54 00 12 35 02 08 00 27 e6 9f 5f 08 00 45 00.
0028 00 83 40 00 80 06 2b a1 0a 00 02 0f 1f aa
a2 f3 04 1a 00 50 84 31 f7 72 00 04 04 e0 50 10
fa f0 61 45 00 00 00 00 00 00 00 00.
Serial Number:92.
89:726024(Len:60) (capLen:60).
52 54 00 12 35 02 08 00 27 e6 9f 5f 08 00 45 00.
00 28 00 82 40 00 80 06 2b a2 0a 00 02 0f 1f aa
a2 f3 04 1a 00 50 84 31 f7 72 00 04 0a 6c 50 10
f5 64 61 45 00 00 00 00 00 00 00 00.
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5.3 Experimental results

Due to constraints in the program operating environment and
limited CPU memory, this experiment will selectively choose a
subset of traffic from the dataset as samples for testing and
analysis. The goal is to make comprehensive assessments through
multiple analysis and comparison processes, as depicted in Table 5
and Table 6.

The analysis results can be accessed and reviewed from the
Word document. Each analysis produces a distinct Word document,
as illustrated in Table 7.

The malware traffic statistics are presented in Table 8.
The outcomes of the malware identification process are

displayed in Table 9.

In addition to checking through the result Word log document, the
final parsing results can also be directly obtained from the program’s
execution results, as shown in Figure 2. The final analysis result of the
data in the figure ismalware. The total number of data flows is 1,384, the
total number ofmalicious data flows is 11, and the current percentage of
malicious data flows is 0.008%, of which 0.0022% is email interception,
0.00122% is Dos attack, 0.00138% is malicious crawler, and 0.00122% is
phishing website traffic. 0.00122% is a port scan, the identification
success rate is about 96.00%, and the false positive rate is 1%.

In contrast to specific technologies employing approaches focused
on monitoring malware traffic, particularly those dependent on the
fuzzy characteristics of network data to differentiate between diverse
network applications—whether benign ormalicious—with the ultimate
goal of identifying traffic using fuzzy mathematics. Although most of

TABLE 3 Malicious traffic dataset.

Total malicious flows (Entries) Packet size (MB) Traffic percentage (%)

Dos Attack 1,387 765 1.15

Mail Interception 2,456 874 2.04

Malicious Crawlers 3,399 3,240 2.81

Phishing Websites 2,365 2,310 1.96

Port Scanning 1777 965 1.48

Comprehensive Malware 8,365 1,028 6.97

TABLE 4 Normal traffic dataset.

Total malicious flows (Entries) Packet size (MB) Traffic percentage (%)

HTTP Requests 45630 54420 38

SMTP Mail Requests 14721 12351 12.2

FTP File Requests 11023 9,897 9.19

DNS Domain Requests 21100 7,684 17.5

Telnet 350 5568 0.29

SNMP 765 6,327 0.63

FIGURE 1
Packet capture diagram.
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these methods showcase a low false alarm rate coupled with high
accuracy, the primary challenge resides in establishing an appropriate
classification basis for the categorization of network traffic.

Our approach demonstrates a feature balance, referring to a
rational weighing and adjustment of different features in malicious
traffic detection. This ensures that the model comprehensively
considers the contribution of each feature, preventing any single
feature from becoming overly prominent or dominant, thereby
affecting the overall accuracy and stability of detection.

We use fuzzy recognition theory for malicious traffic
monitoring. Through the analysis and extraction of malicious

traffic features, we determine the importance and weights of
different features, maintaining a balance among them.
Additionally, we utilize fuzzy feature extraction methods to
identify malicious traffic. During feature extraction, it is essential
to assess and balance the weights of each feature to ensure the model
comprehensively considers their contributions. Finally, we use
clustering analysis methods to categorize malicious traffic features
into different intervals. Through reasonable classification and
interval assignment, we maintain a balance among features,
preventing any single feature from becoming overly prominent
or dominant.

TABLE 5 Malicious data flow samples.

Total malicious flows (Entries) Packet size (MB) Traffic percentage (%)

Dos Attack 121 45.4 1.15

Malicious Crawlers 54 36.7 2.04

Phishing Websites 79 79.5 2.81

Port Scanning 83 31.4 1.96

Mail Interception 34 42.6 1.48

TABLE 6 Normal data flow samples.

Total malicious flows (Entries) Packet size (MB) Traffic percentage (%)

HTTP Requests 1,235 32.4 38

SMTP Mail Requests 897 19.9 12.2

FTP File Requests 2,548 32.2 9.19

DNS Domain Requests 1,241 49.1 17.5

Telnet 1,090 14.1 0.29

SNMP 765 22.3 0.63

TABLE 7 Data flow recognition results table.

Malicious
traffic

Approximate malicious
traffic

No clear
characteristics

Approximate normal
traffic

Normal
traffic

Fuzziness Level
Classification

92.193% 71.020% 51.531% 20.389% 0.896%

Malware
Determination

Yes Yes Pending No No

Number of Data Flows 135 452 654 124 781

TABLE 8 Malware traffic statistics table.

Malware status Yes

Total Number of Data Flows (Entries) 1,389

Total Number of Malicious Data Flows (Entries) 16

Current Packet Malicious Flow Percentage (%) 0.012%

Recognition Success Rate (%) 96.000%

False Positive Rate (%) 3.000%

TABLE 9 Malware identification results table.

Mail interception 2.67

Dos Attack 4.01

Malicious Crawlers 1.90

Phishing Website Traffic 2.10

Port Scanning 1.88

Trojan Virus 3.00
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This paper predominantly revolves around the application of the
Type II fuzzy recognition theory in the context of a malware traffic
detection method. The targeted scenario involves addressing the
inherent uncertainty and fuzziness associated with data features.
Leveraging fuzzy set theory and its conceptual and operational
aspects, the paper employs fuzzy sets to describe and handle the
intricacies of the problem.

While both Type I fuzzy recognition and Type II fuzzy
recognition fall under the umbrella of fuzzy theory, they diverge
in their approaches to problem-solving. Despite these differences,
both are dedicated to addressing similar challenges. Therefore, this
paper is primarily dedicated to a comparative analysis between Type
I fuzzy recognition and Type II fuzzy recognition.

Type II fuzzy recognition methods adeptly handle the volatility
of fuzzy features, presenting results within a range interval. Even
with minor fluctuations in the results, they do not exert a significant
influence on the overall judgment of malicious traffic, thus
maintaining a higher level of accuracy.

As the application fields of Type II fuzzy set theory continue to
expand with ongoing development, there is a need to delve into the

nature and measurement methods of uncertainty within Type II fuzzy
sets. Building upon an examination of the uncertainty characteristics
and fuzzy entropy of Type II fuzzy sets, we propose the definition of
discrete Type II fuzzy set entropy by extending the conventional fuzzy
entropy definition. This endeavor opens up novel perspectives and
methodologies for the application of Type II fuzzy sets in uncertain
environments, as depicted in Figure 3.

It is evident that opting for Type I fuzzy recognition is more
rational when dealing with messy data and intricate traffic types. On
the other hand, the selection of Type II fuzzy recognition becomes
more accurate in scenarios with a substantial volume of data but
simpler traffic software types. Tailoring the recognition method to
specific circumstances significantly impacts identification accuracy.

Deep learning techniques present a versatile approach to handling
situations characterized by vast datasets and intricate data flows.
However, in the context outlined in this paper, the application of
deep learning typically necessitates a substantial volume of labeled data
for effective training. In the domain of cybersecurity, acquiring large-
scale labeled data poses challenges, particularly when dealing with
labeled data pertaining to malicious traffic.

FIGURE 2
Program result graph.

FIGURE 3
Identification scheme comparison chart.
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Furthermore, in the field of network security, the prompt detection
of malicious traffic demands real-time responsiveness. The training and
inference processes of deep learning models often entail a significant
time investment, rendering them unsuitable for meeting real-time
requirements. As a result, the constraints related to data availability
and real-time processing pose practical challenges to the widespread
application of deep learning in the described cybersecurity scenario.

The approach grounded in fuzzy recognition theory proves
adept at addressing uncertainty and fuzzy patterns within
the realm of network security. It demonstrates adaptability to the
intricate characteristics and dynamic changes inherent in malicious
traffic. The findings affirm that opting for a method based on fuzzy
recognition theory is more fitting within the specific domain and
scenario delineated in this paper.

6 Conclusion

In this paper, we introduce a malware traffic detection approach
grounded in fuzzy-theory recognition, leveraging fuzzy mathematics
as its theoretical foundation. Acknowledging the limitations of the
certainty inherent in classical sets, we leverage the ambiguity offered
by fuzzy sets to establish the variable range of characteristics for the
research object, thereby extending the scope of fuzzy recognition
theory. Ultimately, we use membership functions to compute the
ambiguity of fuzzy features, providing an effective basis for
malware detection.

This method effectively addresses uncertainty and ambiguity
within the realm of cybersecurity, showcasing adaptability to the
intricate characteristics and dynamic changes inherent in malicious
traffic. It automatically recognizes ambiguous features, learning their
ranges and weights to accommodate various types and sizes of
malicious traffic. The utilization of the maximum number algorithm
enhances the precision of classification results, ensuring
greater accuracy.

However, it is essential to note that the method’s computational
process can be complex, particularly when handling large-scale
datasets. This complexity may lead to longer processing times
and increased demands on computational resources. Fuzzy
theoretical models typically involve parameter selection and
tuning, and determining the optimal fuzzy set and affiliation
function necessitates thorough validation and experimentation.

Based on the above analysis, the next steps in research should
focus on the following issues:

1. A versatile and efficient method for collecting multi-source
data in network environments, coupled with the rapid
evolution of malware targeting backbone networks.

2. A malicious traffic detection technique grounded in the temporal
and spatial characteristics of behavior has been devised, endowing
it with broader applications and higher efficacy. This technology
relies on behavioral patterns over time and space for effective
identification of malicious network traffic.

3. The development of three-level hierarchical models
encompassing traffic analysis, fuzzy feature recognition, and
collaborative decision-making.

4. A collaborative-capable malicious traffic detection system
has been created, providing support for multi-party
cooperation, thereby comprehensively safeguarding
network security. This system is designed to facilitate
collaboration among various entities in order to bolster
defenses against potential threats.
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Anomalous process detection for
Internet of Things based
on K-Core

Yue Chang, Teng Hu*, Fang Lou, Tao Zeng, Mingyong Yin and
Siqi Yang

Institute of Computer Application, China Academy of Engineering Physics, Mianyang, China

In recent years, Internet of Things security incidents occur frequently, which is
often accompanied by malicious events. Therefore, anomaly detection is an
important part of Internet of Things security defense. In this paper, we create a
process whitelist based on the K-Core decomposition method for detecting
anomalous processes in IoT devices. The method first constructs an IoT process
network according to the relationships between processes and IoT devices.
Subsequently, it creates a whitelist and detect anomalous processes. Our
work innovatively transforms process data into a network framework,
employing K-Core analysis to identify core processes that signify high
popularity. Then, a threshold-based filtering mechanism is applied to
formulate the process whitelist. Experimental results show that the
unsupervised method proposed in this paper can accurately detect
anomalous processes on real-world datasets. Therefore, we believe our
algorithm can be widely applied to anomaly process detection, ultimately
enhancing the overall security of the IoT.

KEYWORDS

Internet of Things, process network, white list, anomaly detection, process rank

1 Introduction

Due to the limitations of IoT devices, such as low power consumption, small size and
low cost, the security performance of IoT is poor, so these IoT devices are easy to be attacked
by hackers. It remains challenging to protect against hacker attacks. There are many factors
that can be a threat to server security, such as IoT device vulnerability, virus, malicious
procedure, etc. Common attack contains worm, botnet, Trojan horse and DDOS attack
(distributed denial of service). Most of these attacks invade the IoT devices by using the
malicious process and then hackers implement the further attack. In the network security
field, server security occupies an important position. While someone runs the vicious
procedure, it always starts some anomalous processes in the IoT devices. If we can detect
anomalous process as early as possible, then we will solve the problems in the early stage and
avoid heavy loss.

At present, the main technology of anomalous process detection is firewall and
intrusion detection technology. As a cordon between the internal network and the
public network, the firewall blocks most malicious attacks. However, the effect of the
firewall is limited because its defense strategy is static and can only block attacks from the
outside network. Intrusion detection technology effectively remedies the short-comings of
the firewall. Intrusion Detection System can monitor the real-time status of the IoT devices
and detect the anomalous action. Intrusion Detection Systems detect the process mainly by
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process behavior [1], but there is a problem that we cannot find the
anomalous process in time. Besides, Intrusion Detection Systems
heavily depend on rules and expert experience. Some researchers
proposed to detect anomalous processes based on the system call
sequence [2] and this method required kernel process data.

In this work, we detect anomalous processes in IoT devices from
a different perspective. The principle of anomalous processes
detection is that anomalous processes detection only works in a
few IoT devices Therefore, it is necessary to calculate the popularity
of Internet of Things devices, and the higher the popularity is, the
less suspicious process is. Considering the relationship between the
processes and servers, we propose a new approach that can
efficiently detect the malicious process in a short time. The
proposed approach is as follows. Firstly, we build process white
list by using a graph algorithm called K-Core, then we detect the
anomalous processes in the servers based on this white list. The
strength of this proposed method is that we build the anomaly
detection model by constructing the process network. Moreover, our
method is unsupervised and we can find out anomalous processes in
servers quickly.

The rest of this paper is organized as follows. We briefly review
related works in Section 2. Section 3 introduces the proposed
method to build weighted process networks. Detailed explanation
of detecting anomalous processes is presented in Section 3.3, and the
evaluation of the proposed method is discussed in Section 4 and
finally we draw a conclusion and discuss future work in Section 5.

2 Related work

The process can be defined as a basic unit of system dynamic
execution operation and it is a dynamic concept. Processes in servers
are not only the dynamic implementation of programs but also the
resource scheduling and allocation. There is a big difference between
the process and the program. Programs are static instructions or
code sets, while processes are the dynamic execution of programs.
Process monitoring is an important part of network security
technology. Most intrusion detection systems and anti-virus
software have the process monitoring module in the servers.

Considerable research efforts have been devoted to monitoring
the process in the servers. In 1996, Stephanie Forrest et al. firstly
proposed the delay-embedded sequence model, and analyzed the
process behavior based on the system call sequence [2]. In 1998,
Hofmeyr proposed an N-gram anomaly detection model [3], which
is used to monitor the process behavior. Much work so far has
focused on detecting anomalous processes at home and abroad and
made outstanding achievements, such as the Fuzzy ART neural
network algorithm, the method based on the hidden Markov model,
the method based on frequency statistics and method of data
mining. The main focus of this research is to extract the
characteristics of subsequences for the process. These detection
methods ignore the global characteristics of the process with a
shortage of poor timeliness.

Besides, much work has focused on anomaly intrusion detection.
The system detects anomaly behavior by using statistical profiles
such as IDES [4–6], and inductive pattern generation, as in TIM [7].
These methods require an audit trail of actions to all users in servers.
Moreover, these detection methods will perform terribly if we

change the model of user behavior in a new environment. Levitt
et al. proposed the method to define normal behavior for privileged
processes [8, 9]. Sezgin proposed the intrusion detection instrument
called AID4I and achieved better accuracy than traditional intrusion
detection methods in experiments on public datasets [10].

In addition to the detection based on rule matching, there are
also researches that use machine learning to detect anomalies. For
example, Yang et al. constructed LM-BP algorithm from the
characteristics of the Internet of Things [11]. Zhang et al.
designed an intrusion detection system based on genetic
algorithm and deep confidence network, which can adaptively
change the network structure to adapt to different types of
attacks in the Internet of Things [12]. Bhatt et al. designed a
hybrid machine learning detection system called HADS to detect
anomalies in time series with different characteristics generated by
Internet of Things devices [13]. Weinger B et al. use supervised deep
learning to achieve higher detection accuracy through special
processing of data features [14]. Alaiz-Moreton et al. realized
anomaly detection by multi-classifying the traffic of IoT devices
[15]. Nagarajan proposed a new hybrid deep learning in Industrial
Control Systems, which can be used to detect unknown attacks [16].
Al-Wesabi proposed an optimization algorithm based on federated
learning and reached great results in IoT attack detection [17].

In this paper, we proposed an unusual method to detect
anomalous processes. Firstly, we build the weighted process
network based on the relationship between processes and IoT
devices. Then creating a process white list by using the K-Core
decomposition method. Finally, we can detect anomalous process by
comparing with the white list.

3 Materials and methods

Processes running in IoT devices can be divided into four
categories: server system process, the third-party application
process, user-initiated process, and anomalous process. The first
three kinds of processes are common processes, and they are widely
distributed in devices. The last kind of process is running in devices
by hackers or other attackers. The distribution density in the devices
is different among these processes. Then we can establish the process
network topology with these distribution characteristics
of processes.

In this section, we build a graph of processes based on the
relationship between processes and IoT devices. And we will
introduce some definitions used in this paper.

3.1 Establishing the process
network topology

We mainly collect the following two types of process logs, the
real-time status logs of processes in the operating system kernel
and snapshots of processes in the server. We monitor the whole
life cycle of all processes and find out the popular processes that
could be considered as normal processes by analyzing the
process graph.

In this paper, an independent process pi is regarded as a node i.
When process pi and process pj run simultaneously on more than
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one server, there is an edge e(i, j) between the corresponding nodes i
and j, then we can establish a process network graph. As shown in
Figure 1, a process named “init” runs on the database server, and
another process named “sshd” runs on the same database server, so
there is an edge between two corresponding nodes in the process
network graph. By collecting and analyzing all processes data on
multiple devices, we can draw the process network topology graph
like Figure 2.

System processes such as system daemon processes, system log
management processes and kernel processes are very popular in
devices. The execution of these processes guarantees the basic
functions of devices. We can find these processes in mainstream
operating systems such as Ubuntu, CentOS, Red Hat, and Kali. The
second variety of processes is mainly third-party processes such as
Apache and Nginx applications which are very popular in many
devices. The third kind of process is user-initiated process. In

enterprises or huge server clusters, users will startup similar
processes such as the enterprises’ OA system processes. All three
of these processes are popular in the devices. And in the process
network topology graph, the corresponding nodes play an important
role in the whole network graph.

The more popular processes are in the devices, the greater the
core degree of the corresponding nodes are, and the more influential
they are in the process network topology graph. Therefore, the
problem of finding popular processes in devices is transformed into
the problem of finding core nodes in the network graph.

3.2 Building the weighted process graph

Graph density is an important index to measure the edge density
of a network graph [18]. The specific definition of graph density is
the ratio of the actual number of edges to the maximum potential
number of edges in the network. After constructing the process
network graph on the IoT devices, we found that the value of the
process network graph density is too high. And when the number of
IoT devices increases, the graph density changes little. Such a process
network graph structure is not an ideal model to analyze processes.

We make some improvements to the undirected process
network graph shown in Figure 2. The approach is to represent
the progress network with a weighted graph. If two independent
processes pi and pj run on the same nij (nij > 0) server, then there is
an edge e (pi, pj) between two corresponding nodes and the weight
of this edge is wij. The larger the value of nij is, the larger the
corresponding wij is. The specific weight calculation equation is
defined as follows:

wij � Ui ∩ Uj

∣∣∣∣
∣∣∣∣

Ui ∪ Uj

∣∣∣∣
∣∣∣∣

(1)

Where, Ui is the set of devices which process pi has ever been
running in, and Uj is the set of devices which process pj has ever
been running in. | Ui ∩Uj | is the module of intersection and | Ui ∪
Uj | is the module of the union. Here, we normalize all the weights
to ensure that the correlation degree between two processes is in a
reasonable range.

FIGURE 1
Processes in different servers.

FIGURE 2
Process network.
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As shown in Figure 3, process 2 runs in the devices {a, b, c},
process 3 runs in the devices {a, c} and process 5 runs in the devices
{c}, then we perform the following steps. First, we gather the set of
devices which one process has ever been running in, such that U2 is
equivalent to a, b, c{ } . Next, we calculate wij by using Eq. 1. And the
calculation result of w23 is 2

3. After calculating all wij, we can finally
build the weighted graph like Figure 4.

To form the process white list, we impose the following
conditions: 1) Malicious processes run on a small number of
servers; 2) Processes running on a large number of devices are
more trustworthy; 3) The strength of association between two
processes is related to the number of common servers they share.
Based on the premise, we can further deduce that the number of
servers a process resides on has a significant impact on its suspicion
level. For example, when a suspicious process and a common
process run on the same device, the association between the two
processes increases the node degree of the suspicious process, which
is not as expected. To model more realistically, it is necessary to
eliminate this bias. Therefore, we introduce a weighting factor C,
when the number of devices on which a process resides is small, its
weighting factor C is small. When the number of devices is large, the

weighting factor is large, and it is less influenced by the number of
devices. Furthermore, we can define C as following:

C � 1

1 + eγ−min Ui| |, Uj| |( ) (2)

Where, Ui and Uj are the sets of devices, and γ(γ � 0, 1, . . .) is
the correction factor. In different detection scenarios, the value of γ
varies. For example, in a certain IoT environment, specific normal
processes independently run on 4 optical sensor devices. To increase
the confidence in these processes, γ can be set to 2. From the
characteristics of the function curve, the weighting factors of these
specific processes are significantly greater than those of anomalous
processes. According to the definition of the weighting factor C, when
the number of devices on which two associated processes reside is
large, their weighting factor is large. When the number of devices for
one of the processes is small, the calculated weighting factor is small,
indicating a higher suspicion level for that process. Therefore, in the
current definition, the weighting factor C addresses the issue of the
absolute value of device count affecting suspicion levels. Then the new
edge weight of the process network is redefined as following by using
C in Eq. 2:

wij
′ � wijpC (3)

With the above processing, we can construct the weighted
undirected graph based on the relationship between processes
and devices. After analyzing the coreness of all nodes in the
graph, we can obtain the widely popular processes in the devices.
These popular processes are legitimate and can be used to create
process white list.

3.3 Detecting anomalous processes

In this section, K-Core algorithm is proposed to help create a
process white list. According to previous classification, the first three

FIGURE 3
Processes in different IoT servers.

FIGURE 4
Weighted process network.
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kinds of processes are very popular and their nodes are core nodes. If
we find out these core nodes based on K-Core algorithm, then we
can find out the popular processes and write them to the white list.

The node importance of complex networks, including the
influence, status, the popularity of nodes and the synthesis of these
elements, was first raised by social relationship scientists [19, 20].
With the development of society, the research value of this study has
been gradually discovered, and it plays an important role in the
communication network, social network, and engineering practice.
There are many indicators or methods to judge the importance of
nodes, such as degree, betweenness, coreness, degree centrality and
ranking of node importance based on random walk model [21, 22],
the ranking of node importance based on propagation dynamics [23,
24]. Kitsak first proposed that the node importance depends on its
location in the network [25], and then used the K-Core decomposition
algorithm to rank the importance of nodes. Among these indicators
andmethods, the coreness can obtain amore accurate ranking of node
importance than others such as betweenness. And it is easy to realize
with the K-Core algorithm. The time complexity of the K-Core
algorithm is O (N), which is suitable for huge complex networks.

3.3.1 Algorithm description
K-Core decomposition method is classical in graph theory

which can be used to analyze the importance of nodes in the
network [26]. The main idea is to iteratively generate different
kinds of node groups with different k-values (ks). In this work, a
k-core is a maximal group of processes, all of which are connected to
at least k other processes in the group. K-Core is a measure that can
help identify small interlinked core areas on a network.

As shown in Figure 5, there is the K-Core decomposition of a
network. The nodes of the outer layer compose shell 1 (ks � 1), while
the nodes within the central ring compose shell 3 (ks � 3). We can
see that a group is the k-core if it contains all nodes that are
connected to at least k other nodes within the group. Besides, the

k-core contains the (k + 1)-core. When k increases, the core sizes
decrease while the cores become more interlinked and the nodes are
more popular. Algorithm 1 provides the pseudocode for finding the
k-values of networks.

Input: Network graph data.

Output: The list of different k-values

1: ks ← 0, D ← [Φ, . . . , Φ], d ← 0, S ← 0.

2: for all i ← 0 to n do

3: d[i] ← degree(i)

4: D[d[i]].add(i)

5: end for

6: for k to degree(max) do

7: ks � max ks ,k{ }
8: while D[k] not empty do

9: D[k].remove(vertex)

10: S[vertex] ← ks

11: end while

12: ks ← ks + 1

13: end for

14: return S

Algorithm 1. K-Core decomposition.

In Algorithm 1, we define three arrays, D which contains a list of
the nodes with a different degree, d which holds the degree of each
node and S holds the k-values of all nodes. Firstly, we initialize three
arrays and ks. Then we increase the value of k fromminimum degree
to maximum degree of the graph. In this cycle process, we delete the
nodes from D whose degree is equivalent to the present value of ks
and add these nodes to S. Finally, the algorithm returns S which
holds different k-values of all nodes.

3.3.2 Creating process white list based on K-Core
The K-Core decomposition method is used to analyze

unweighted undirected graphs. And this is a major limitation of
k-core decomposition method. However, most real networks are
weighted in practice, and the weight property describes the model’s
important features. In order to overcome these limitations, Garas
and Schweitzer proposed a weighted K-Core decomposition method
[27]. The basic idea is to redefine the weighted degree of a node, they
considered both the degree of a node and the weights of its links.
And the new degree is the multiplication of two types.

In this work, we define a weighted degree of one node which is
the sum over all its link weights. Then we use K-Core decomposition
method to partition a network into sub-structures that are directly
linked to centrality [28]. After finishing one decomposition, we
calculate all nodes’ weighted degree again to prepare the next
decomposition. This procedure is repeated iteratively until all
nodes are removed from the network.

A more detailed description of creating process white list based
on K-Core is as follows:

1) Using the approach in Section 3 to build a weighted
process network;

2) For process pi in the process network, there are m links
{e(pi, p1), e(pi, p2). . ., e(pi, pm)} in total. And the link
weights are {wi1, wi2, . . ., wim} by using Eq. 3, we calculate
the new degree of the weighted process network as follows,

FIGURE 5
Illustration of K-Core concept.
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where, k(i)w is the weighted degree of node i, and j is node who
has the same link with node I;

k i( )w � ∑
m

j�1
wij (4)

3) Using Eq. 4 and the K-Core decomposition method in
Algorithm 1 to calculate all nodes’ k-values. And then we
can obtain a group of different k-values;

4) Choosing a threshold k-value then filter out the processes
whose k-values are less than the threshold value;

5) After filtering, we can obtain the process white list.

3.3.3 Detecting anomalous process
We introduce the method to create a process white list including

building process networks. However, the final goal of our work is to

detect anomalous processes. Therefore, we detect anomalous processes
by using the white list. Users can integrate the proposed method to
some systems. For example, users can use directly detect anomalous
process by comparing with the process white list. Engineering
implementation is involved in detecting anomalous processes based
on white list. And different user scenarios entail different software
architectures. Since our work involves real-time detection of large
volumes of IoT data, we utilize Kafka, Spark, etc. We transmit
process data by Kafka and detect anomalous processes in Spark. The
spark system can help us deal with huge process data in time.

4 Results

In this section, we test our proposed method on the real-world
process data. All of our process data have been generated on IoT

TABLE 1 Statistical properties of process networks.

Number of servers Number of nodes Number of common processes Number of edges Average degree

3 674 359 13,516 40

5 926 513 16,593 36

10 1,048 576 17,842 34

20 1,351 738 20,275 30

30 1,587 852 22,354 28

FIGURE 6
K-values of processes.
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servers. And we gather the snapshots of these servers’ processes at
different time intervals.

4.1 The process network

We build the process network topology structure on different
data sets. As shown in Table 1, we provide some detailed statistical
properties of process networks. In this table, the number of processes
is equivalent to the number of nodes. We obtain the dense network
on processes data of three servers for which the number of edges is
about 20 times higher than the number of nodes. This is supported
by the conclusion that there is a close relationship between processes
and servers. The number of edges is about 14 times higher than the
number of nodes when the number of servers is equivalent to 30.
While the number of servers increase, we can obtain the sparse
process networks.

4.2 The process whitelist

We use the K-Core decomposition method to partition the
process network into sub-structures on ten servers. And Figure 6
shows K-values of all processes. There are 1,048 processes which
run on 10 servers. We can see that about 300 processes are in the
group of 160-core which is the biggest k-value. These processes
are very popular in servers. Moreover, 87% of these processes are
server system processes. This is supported by the appearance that
there are some system processes which are very popular. K-values
of the rest of processes are less than the k-value of system
processes. We can see that there are several obvious steps
from this diagram.

There are some processes whose k-values are less than 10. And
part of them is user-initiated processes such as “python test_one.py”
which runs on only one server. Besides, there are many processes
whose k-values are in the area around the average degree. Most of
these processes are third party processes such as “firefox” and
“nginx.” These processes are popular in some special servers.
Some processes such as “ps–ef,” “ls–al” and “tailf” are system
processes, but not always run on the servers. Therefore, the
k-values of these processes are less than expected.

In our work, we gather process data on 30 servers and obtain
1,587 processes. The servers contain IoT database servers, web
servers, spark clustering servers and so on. Finally, we obtain the
process white list based on K-Core decomposition method. And
Table 2 shows part of the white list.

Ranking refers to the popularity ranking of processes, where a
higher process ranking indicates greater popularity among IoT
devices and lower suspicion. By predefining thresholds, highly
ranked processes are written into the white list, which can then
be used for anomalous process detection. The result in Table 2 shows
that the most popular processes are mainly system processes such as
“init” and “crond.”

4.3 Anomaly detection of real-world data

In Section 3, we discussed how to detect anomalous processes.
The important part is to create a process white list and then we
compare process data with the white list to detect. In this
procedure, we use real-world process data that conclude process
data in database servers and process data in Hadoop clustering
servers. Surprisingly, we find out several anomalous processes in
Hadoop clustering servers which are viciously used to produce
bitcoin. The anomalous processes are “sustes,” “sh mr.sh” and “sh
i.sh” etc. We find that hackers make use of vulnerability to invade
our servers and download malicious procedure such as “mr.sh”
and “i.sh” from proxy servers in a foreign country. We didn’t know
this problem in our Hadoop servers until detecting anomalous
processes based on the process white list. The proposed anomaly
detection method helps us find the threat in clustering servers and
avoid huge damage. Table 3 shows the malicious processes and
vicious proxy IPs.

This real intrusion was mainly from Canada and the malicious
procedure is used to produce bitcoin. The IPs which hackers used in
Table 3 are the experimental servers.

TABLE 2 Process white list.

Rank Process Rank Process

1 init 26 netns

2 sh 27 ksmd

3 top 28 kaluad

4 kthreadd 29 nfit

5 crond 30 jbd2

6 grep 31 rpciod

7 celery 32 postgres

8 migration 33 dbus-launch

9 events 34 redis-server

10 uwsgi 35 sshd

11 java 36 mysql

12 bash 37 python manage.py

13 kworker 38 cut

14 netstat 39 anacron

15 hald 40 kblockd

16 crypto 41 rpm

17 sleep 42 ata_sff

18 deferwq 43 md_misc

19 bioset 44 aio

20 ksoftirqd 45 ext4-dio-unwrit

21 rcu_bh 46 su

22 rcu_sched 47 scp

23 systemd 48 ipv6_addrconf

24 md 49 kintegrityd

25 writeback 50 chown
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5 Discussion

We introduced a novel method to create process white list which
used to detect anomalous processes. Different from previous
approaches, the proposed method transforms the process data into
networks based on the relationship between processes and IoT devices.
Then we use K-Core decomposition method to partition the process
network into sub-structures. It is generally accepted that the K-Cores
with the biggest coreness values represent themost popular nodes of the
whole network. Therefore, we filter processes by controlling threshold
k-value. The popular processes such as system processes are put into the
white list. The rest of the work is simple. Just compare process data with
the white list and we can detect anomalous processes in devices. The
proposed method is unsupervised so we don’t need labeled data. From
the section of experimental results, we can see that processes at the front
of the white list are mainly system processes and they are very popular
in devices. This is consistent with the observation we expected. Notably,
the proposed method helps us find out the threat in clustering devices
and avoid huge damage.

The method proposed in this paper is suitable for detecting less
popular anomalous processes. It is difficult to detect widely
prevalent malicious processes used for attacks when most devices
in the IoT have already been compromised. For example, in DDOS
attack scenarios, attackers may use compromised C&C servers to
send commands to a large number of IoT devices. Therefore,
processes generated by these commands are highly prevalent in
the current IoT environment, and such processes may be included in
our white list, thereby eliminating their suspicion and causing leaks.
One way to address these issues is for security experts to intervene.
After generating the process white list, security experts further
analyze and remove suspicious processes to improve the
credibility of the white list.

The current work does not consider the influence of parent-child
process relationships on correlation. Therefore, in future research,
we consider introducing the natural correlation between processes
to detect anomalous processes. Compared to the undirected graph
structure in the current work, the future plan is to use a directed
graph to represent parent-child process relationships. The
probability that the parent process or child process of a
malicious process is malicious is relatively high. Therefore, after
introducing the directed graph, it is possible to model and detect
malicious process networks more realistically. To address the
limitations of the current work, subsequent work will incorporate
process features such as resource consumption and file transfer into
the attributes of graph nodes. For IoT environments vulnerable to
DDoS attacks, data theft, etc., the calculation function of the weight
factor will be adjusted to achieve better results.
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TABLE 3 Information of malicious processes.

Malicious process Proxy IPs Country

sustes, sh mr.sh, sh i.sh, sh cr.sh 158.69.133.18, 192.99.142.226, 192.99.142.229 Canada
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Personalized and
privacy-preserving federated
graph neural network

Yanjun Liu*, Hongwei Li and Meng Hao

School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu, China

High-performance GNN obtains dependencies within a graph by capturing the
mechanism of message passing and aggregation between neighboring nodes in
the graph, and successfully updates node embeddings. However, in practical
applications, the inherent model structure of the graph is highly susceptible to
privacy attacks, and the heterogeneity of external data can lead to a decrease in
model performance. Motivated by this challenge, this work proposes a novel
framework called Personalized Federated Graph Neural Network for Privacy-
Preserving (PFGNN). Specifically, firstly, this work introduces a graph similarity
strategy. Based on the principle that clients with similar features exhibit stronger
homophily, this work divides all participating clients into multiple clusters for
collaborative training. Furthermore, within each group, this work employs an
attention mechanism to design a federated aggregation weighting scheme. This
scheme is used to construct a global model on the server, which helps mitigate
the difficulty of model generalization resulting from data heterogeneity collected
from different clients. Lastly, to ensure the privacy of model parameters during
the training process and prevent malicious adversaries from stealing them, this
work implements privacy-enhancing technology by introducing an optimized
function-hiding multi-input function encryption scheme. This ensures the
security of both model data and user privacy. Experiments on real datasets
show that our scheme outperforms FedAvg in accuracy, and the
communication overhead is linearly related to the number of clients. Through
this framework, PFGNN can handle all kinds of non-Euclidean structured data,
multiple clients collaborate to train high-quality and highly secure global models.
This work provides the foundation for designing efficient and privacy-preserving
personalized federated graph neural networks.

KEYWORDS

federated learning, graph neural network, privacy preserving, multi-input function
encryption, artificial intelligence

1 Introduction

Cyber-physical-social systems (CPSSs) are a new paradigm extended by cyber-
physical systems (CPSs), which have attracted widespread attention in the academic
community Li et al. [1]. CPSS seamlessly connects networks, physical devices and social
spaces through data. CPSS provides a more comprehensive intelligent system for
federated graph neural networks, thus promoting the rapid development of artificial
intelligence (AI). However, the heterogeneous of graph data in CPSS, coupled with the
limitations of mobile devices and communication overhead during data transmission,
makes CPSS not only vulnerable to privacy attacks, but also the heterogeneity of external
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data can lead to model performance degradation Wang et al. [2].
Therefore, the security and privacy of CPSS graph data have
become a key research object of artificial intelligence.

The introduction of Graph Neural Networks (GNNs) has
successfully applied the concept of deep learning to non-
Euclidean space data sets Bronstein et al. [3]. With its powerful
spatial graph structure, Graph Neural Network helps various
industries deeply explore the value of their own data. GNN
obtains dependencies in the graph by capturing the message
passing mechanism and aggregation method between adjacent
nodes in the graph structure, and converts it into standardized
complete node embedding information and rich data information
Fu et al. [4], Liu et al. [5].

Graph neural network training requires a large amount of graph
data, which is distributed among different data owners. For instance,
as described in Zhang et al. [6], the hospital wishes to train a graph
neural network model for small cell carcinoma of lung (SCLC), each
hospital has its own patient graph network that tracks common
diagnoses of SCLC and other diseases. However, due to privacy
issues and legal and regulatory considerations, these graph data
cannot be shared with others, which leads to data isolation problems.
This prompts us to ponder deeply: How to collaboratively train
GNNs without leaking the local data of each institution? Federated
learning is a distributed machine learning paradigm that not only
protects the privacy of local data but is also the most effective way to
deal with data isolationMcMahan et al. [7]. Federated Learning (FL)
with GNNs, where each client trains a GNNmodel locally and learns
the local embedding information, and then the central server collects
the gradients or model parameters of each client for federated
aggregation Liu et al. [8].

However, an important challenge faced by federated graph
neural networks is the privacy leakage issue Hu et al. [9].
Different from Euclidean spatial data such as pictures and texts,
graph neural networks incorporate additional information because
of their powerful graph structure, such as the information of nodes
in the graph. It is this highly descriptive information that makes the
GNN model extremely vulnerable to privacy attacks Zhang et al.
[10] and even exploited by adversaries, resulting in leakage of
attribute and member information He et al. [11] or affecting data
set reconstruction Olatunji et al. [12]. Moreover, in a federated
graph neural network, the adversary can reversely infer the client’s
local data through node embedding information, leading to the
leakage or even abuse of sensitive data He et al. [13].

Also, a more important challenge is the heterogeneity of graph
dataWang et al. [14]. In the collaborative modeling process, the graph
data of different clients have varying degrees of heterogeneity in graph
structure and node features, so these stored graph data are generally
non independent and identically distributed (non-IID) Liu et al. [15].
This kind of graph data heterogeneity may cause the traditional
federated averaging algorithm (FedAVG) to seriously diverge,
resulting in global model performance degradation Zheng et al.
[16]. Therefore, how to design a federated graph neural network
framework suitable for non-IID graph data is particularly important.

Motivated by this challenge, this work proposes a novel
framework named Personalized Federated Graph Neural
Network for Privacy-Preserving (PFGNN), by which a high-
quality and highly secure global model is trained
collaboratively by multiple clients. The PFGNN framework is

built on a set of state-of-the-art training paradigms, including
graph similarity strategies, attention-based model aggregation
schemes, and implementation of privacy-enhancing techniques
to protect the uploading of sensitive model parameters. The
processing of PFGNN can be divided into three stages to
ensure high quality, high accuracy and high security of graph
neural network training. Based on the above description of the
PFGNN framework, our contributions are as follows.

• Enhanced the performance of federated learning in processing
non-Euclidean spatial data. This work designs a graph
similarity estimation strategy that takes stronger homophily
among clients with similar characteristics as a clustering
reference, while using random graphs as input of the GNN
model to measure the similarity between each client and
server, and dividing the clients into different clusters.

• Improved the accuracy of the global model. In order to
accurately handle model parameters and replace the average
mechanism, this work introduces the attention mechanism to
design a federated aggregation weighting scheme to build a
global model on the server. This global model can alleviate the
difficulty of global model generalization caused by the
heterogeneity of different client data.

• Realized personalized privacy protection. In order to hide the
model parameters during the model training process and
prevent malicious adversaries from stealing the model
parameters, the privacy enhancement technology is
implemented by introducing an optimized Function hiding
multi-input function encryption scheme to ensure the privacy
security of the model data and users.

2 Preliminaries

2.1 Federated learning

Federated learning is a type of distributed machine learning that
can aggregate multiple data sources for collaborative training Lyu et al.
[17]. During the model training process, data storage and model
training are performed locally, and only model parameters or
intermediate results are exchanged with the central server, the
central server integrates different terminal parameters to implement
a complete model training process. Federated learning effectively helps
multiple organizations jointly conduct training and model modeling
on the premise that data does not leave the domain and data security is
met, thereby improving the effectiveness of artificial intelligence
models and mitigating the costs and privacy risks in the traditional
machine learning process.

2.2 Graph neural network

Graph neural network is a framework that uses deep learning to
learn non-Euclidean spatial data. Its superior performance can help
various industries deeply mine data value from complex graph
structures. The GNN framework obtains the dependencies in the
graph by capturing the message passing mechanism and aggregation
method between adjacent nodes in the graph structure, and converts
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it into standardized and standard complete node embedding
information and rich data information. Therefore, GNN has been
rapidly developed and achieved good results in downstream tasks
such as node classification, link prediction, graph and subgraph
generation, etc.

In this work, PFGNN is modeled with the message passing
neural network framework (MPNN) Gilmer et al. [18]. The forward
passing process of MPNN includes two phases: Message Passing and
Readout. In our framework, assume that there are K clients, and the
data set of the kth client is D(k) � (G(k), Y(k)), where
G(k) � (V(k), E(k)), V (k) is the node set of G(k), E(k)is the edge set
of G(k), eij{ }

i,j∈V(k) is the edge feature set.
Phase 1: Message Passing. The function of this phase is to

aggregate the node’s neighborhood sampling information and
update the embedding information of the node itself, as follows:

m k,l+1( )
i � AGG Mt h k,l( )

i , h k,l( )
j , eij( ){ }j ∈ N i( )( ) (1)

h k,l+1( )
i � Ut h k,t( )

i , m k,l+1( )
i( ) (2)

where h(k,l)i � x(k,l)
i is the node feature of the Lth layer of the Kth

client. AGG is an aggregate function, and Mt is a message function,
Ut is the update function, N(i) represents a group of adjacent nodes
of node i.

Phase 2: Readout. The function of this phase is to calculate the
feature vector of the node based on the output layer for different
downstream tasks.

y � Q h k,T( )
i | i ∈ Gp{ }( ) (3)

whereQ is the readout function, which represents the features of
the entire graph neural network, and p represents different
downstream tasks.

2.3 Functional encryption

Function encryption is a lightweight public key encryption
algorithm designed to protect data security. However, function
encryption cannot be applied in real distributed scenarios, such
as federated learning. Therefore, multi-input function encryption
(MIFE) is an enhanced version of function encryption that emerged
for application in distributed scenarios Abdalla et al. [19]. In MIFE,
n participants are allowed to encrypt their own private data and
generate ciphertext CT � (c1, c2 . . . cn), generate the private key skf
through the key generation algorithm and jointly perform function
operations in the ciphertext state. That is to say, holding the
ciphertext CT � (c1, c2 . . . cn) and the private key skf can produce
the calculation result y � f(x1, x2 . . . xn) without revealing any
information about the plaintext. This shows that sensitive data
can be protected during the computing process while effectively
preventing data leakage and privacy violations.

3 Proposed framework

3.1 High-level overview

In this subsection, this work gives a detailed introduction of
PFGNN framework, that is, federated graph neural network for

privacy-preserving. The goal of PFGNN is to achieve accurate,
efficient, low communication cost, privacy-preserving
personalized federated graph neural network. Participants of
PFGNN include a trusted authority (TA) responsible for
public key distribution and private key generation, a central
server that coordinates model training and parameter
aggregation, and a large number of clients that collaboratively
train GNN models. Each client processes its own graph data by
training a local graph neural network and uploads model
parameters to the central server. Then the central server
aggregates the received model parameters and iterates
continuously until an excellent global model is trained. The
framework diagram of PFGNN is shown in Figure 1.

The PFGNN framework aims to achieve accurate, efficient, low-
communication-cost, and privacy-preserving personalized federated
graph neural networks. The specific steps of the PFGNN are
as follows.

1) Global Initialization and Security Parameter Setup: Initially, a
Trusted Authority (TA) conducts global initialization by
defining security parameters λ and generating the master
public key (mpk) and master private key (msk). and then
distributes them to clients.

2) Client Model Training Locally: Clients independently train
their graph neural network (GNN) models locally to obtain
initial node embeddings.

3) Client Grouping: Clients are organized into different
clusters based on the criteria defined by Algorithm 1.
This grouping facilitates cooperation and coordination
among clients.

4) Attention Proportion Generation: Within each cluster,
attention proportions are generated according to the
definition provided in Formula 7. These proportions will be
used to weight the contributions of different clients.

5) Client Upload of Attention Proportion: Each client uploads
their computed attention proportion to a trusted
third party (TA).

6) TA distributes cryptographic keys: TA generates the
corresponding private key according to the proportion of
attention uploaded by the client, and sends it to the server
for decryption, which helps to ensure the data security of
different clients.

7) Encryption ofModel Parameters andAttention Proportion: The
client’s model parameters and attention proportion are
encrypted using an optimized function-hiding MIFE algorithm.

8) Secure Aggregation: Upon receiving the encrypted model
parameters and attention proportion, the server performs a
secure aggregation operation to combine the client’s attention
proportion. Then, the server decrypts to obtain the aggregated
model parameters, thus completing one round of
model training.

3.2 Graph similarity estimation strategy

The heterogeneity of graph data is a major challenge in
federated graph neural network optimization. Consider this
scenario: Assuming there are three clients, the graph structure
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between client 1 and client 3 is significantly different, andmay even
exhibit completely opposite properties. At the same time, there
may be an overlap of nodes between Client 1 and Client 2. These
nodes have similar characteristics and can form a cluster. It is
known that clients with similar characteristics have stronger
homophily McPherson et al. [20]. In order to capture the data
heterogeneity between clients and train an accurate model suitable
for most client data, this work can analyze and measure different
clients based on the similarity of the client’s graph structure,
similar clients are grouped into a cluster. Regarding finding

similarity in graph structure, usually, everyone will use model
parameters or gradients to calculate similarity. In fact, because the
dimensionality is too high, the similarity between parameters will
continue to grow as the dimensionality of the model increases, so
this method has serious flaws.

Inspired by Jeong et al. [21], and making it clear that our
purpose is to measure the similarity between client graph
structures, this work can provide the same input to all client
graph structures (including the server model) and then analyze
the similarity of their output results. In other words, consider all

FIGURE 1
High-lever overview of Personalized Federated Graph Neural Network.

FIGURE 2
The overview of graph similarity estimation strategy.
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graph structure models as a black box function, input the same
graph data, analyze and evaluate the output distance to represent the
similarity between different graph structures. The specific algorithm
is shown in Algorithm 2, where the random graph is initialized by
the stochastic block model Baek et al. [22], and this randomness will
not bias the model structure of any client. The detailed graph
similarity strategy is shown in (Figure 2).

The server uses the similarity function to calculate the
similarity between any client and server model. The
expression is as follows:

S i( ) � ĥ0 · ĥi
ĥ0
�����

����� ĥi
�����

�����
(4)

the server classifies clients whose similarity is higher than a
threshold (such as 0.5) into a cluster.

• Public Parameters: N is the total number of clients, C

is the fraction of client, U is a set of all clients, B is

the local mini-batch size, E is the number of

local epochs.

• Input: the GNN model M(i) on the client G(i), the GNN model

M on the server side

• Output: C clusters.

/* Runs on Server */

Ensure Server executes:

for each round t = 1, 2, . . . do

m ← max (C · N, 1)

Sn ← ui | ui ∈ U{ }m1
Initialize random graph Ĝ

With Ĝ on model M, compute ĥ0

Send Ĝ to client i

end for

/* Runs on Client k */

Ensure Client k executes:

for each local epoch i from 1 to E do do

for for batch b ∈ B do do

With Ĝ on model M(k), compute ĥk

end for

Send ĥk to the server

end for

/* Runs on Server */

Ensure Server executes:

Similarity S(i) calculation with ĥ0 and ĥk based

on Eq. 2

Group into C clusters with S(i)

Algorithm 1. Graph similarity calculation strategy.

3.3 A function encryption optimization
algorithm with attentive aggregation

During the training process of the personalized federated
graph neural network, the client trains the GNN model locally,
generates local node embeddings, and directly uploads the model
parameters or gradients to the server through federated

aggregation, malicious adversaries can steal user data through
model reconstruction attacks. At the same time, since each
client’s graph data has differences in graph structure and node
features, this heterogeneity causes the traditional federated
averaging algorithm to be seriously divergent, so this work
needs to train an effective global model. To solve these
problems, this work proposes a function encryption
optimization algorithm based on attention aggregation, which
not only considers the contribution of the client model to the
global model, but also encrypts the aggregated model parameters
and fusion weights.

3.3.1 A federated graph neural network algorithm
with attentive aggregation

The most important part of the federated graph neural
network is the server-side federated aggregation. In the
traditional federated averaging algorithm, each client is given
the same weight. This averaging processing method is rough and
cannot well evaluate the advantages and disadvantages of the
local model, which will have an adverse impact on the
performance of the model. In order to train efficient global
models and focus on the importance of client models, this
work proposes a federated graph neural network algorithm
with attentive aggregation, focusing on using FL with a central
server to train GNN models.

The intuition behind federated graph neural network
optimization is to find a global model that can improve the
generalizability of distributed clients, the attentive aggregation
algorithm proposed is a simple reward mechanism that can
evaluate the contribution of client model parameters to the
global model. Next, this work focuses on the aggregation
mode of the client model. Specifically, this work takes the
server model parameters as the query and the client model
parameters as the key, calculate their similarity, and obtain
the attention proportion of each client through the SoftMax
function, finally, the model parameters are weighted and
summed according to the attention proportion.

Given the lth layer parameter of the server global model as hl,
h(k,l) represents the model parameter of the lth layer of the kth client,
and the similarity p(k,l) between hl and h(k,l) is calculated by the
Frobenius norm. Which is denoted as:

p k,l( ) � att h k,l( ), hl( ) � τ h k,l( ) − hl
����

����22 (5)

In order to further explore the relationship between client model
parameters and global model parameters, this work uses
hyperparameters τ to adjust the similarity online.

Then, since the similarity may have large differences and needs
to be normalized, this work applies SoftMax function to calculate the
attention proportion of each layer.

q k,l( ) � Sof tMax p k,l( )( ) � exp p k,l( )( )
∑k∈m exp p k,l( )( )

(6)

where q(k,l) represents the attention proportion of the lth layer
model parameter of the kth client. After the server obtains the
attention proportion of each client, it generates a global model based
on the proportion of each client.
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hlt+1 � ∑
m

k�1
q k,l( )
t h k,l( ) (7)

where q(k,l)t is the proportion of the kth client
at time t, and represents the global model parameters at
time t + 1.

3.3.2 Optimized function encryption algorithm
In the process of federated aggregation, in order to defend

against potential adversarial attacks, it is essential to encrypt the
model parameters during transmission. This work has adopted
the enhanced version of the MIFE algorithm, known as the
Function-Hiding Multi-Input Function Encryption (FH-MIFE)
scheme Abdalla et al. [19]. Specifically, in addition to
safeguarding the uploaded model parameters, this work
places particular emphasis on protecting the weights
proportion by each client. The traditional single-layer MIFE
falls short in adequately securing functions that may contain
sensitive information. The FH-MIFE scheme employs a double-
layer encryption process on both plaintext and keys, thereby
enhancing the overall security of the model.

In some actual distributed scenarios, the decryption key
contains a function f, and the function f itself also
contains sensitive information, which allows the decryptor
to obtain the weight value of each user in the decryption
result. This will lead to the leakage of the user’s plaintext
information, so a single layer of function encryption is not
enough to protect the function f with sensitive information.
Therefore, we choose the function hiding multi-input function
encryption scheme, which adds an extra layer of encryption on
the ciphertext and key of the original MIFE. This double-layer
encryption can not only ensure the security of the plaintext
and model, but also protect the function f security,
providing the model with high security and efficiency. In
addition, in the process of model training, the client will fail
due to network instability or connection problems, thus
affecting the secure communication between clients and the
server. However, the PFGNN scheme allows some clients to
exit and rejoin at any time during the training phase, because
the function-hiding multi-input function encryption scheme
does not require the order in which clients join, nor does it
require resetting keys for disconnected clients. Which
sum(Y)> n

2 indicates that TA collects the minimum number
of participating clients and then generates the corresponding
private key. In order to mitigate inference attacks, the sum of
the number of clients participating in aggregation should be
greater than or equal to n

2 ensure the normal progress of
aggregation.

Furthermore, to more effectively apply the function hiding
multiple-input function encryption in federated learning, this
work has optimized the scheme. This work has introduced a
key distribution phase in which the TA distributes
unique public keys to each client based on their respective
IDs. This allows each client to have their own unique public
key for encryption, rather than using a uniform public key.
This improvement enhances the security and flexibility of
the scheme.

• Public Parameters: N is the total number of clients, B

is the local mini-batch size, E is the number of local

epochs, t represents the number of layers of the neural

network, ht(k) represents the model parameters of the

client k.

/*Run on TA*/

Ensure TA executes:

Initialized with mpk, msk

function query − key(yk , εFH−MFH)
if sum(Y)> n

2 then

return sky1y2. . .‖yk
end if

/* Runs on Client k */

Ensure Client k executes:

for each local epoch i from 1 to E do do

for for batch b ∈ B do do

obtain exclusive public key based on ID

function collect-client (ht(k),b)
ck ← EncFH−MIFH

pkk
(ht(k))

end for

Send ck to the server

end for

/* Runs on Server */

Ensure Server executes:

generate batch indices {1, 2, . . . , B}

for b ∈ B do

for k ∈ K do

Ck ← collect-client (ht(k),b)
sky1‖y2‖...‖yk ← query − key(yk , εFH−MIFH)
ht(k) ← DecFH−MIFH

sky1 ‖y2 ‖...‖yk
( Ck{ }kϵK)

end for

end for

Algorithm 2. Optimized function encryption algorithm.

4 Security and privacy analysi

The goal of the PFGNN framework is to train a secure and
efficient personalized federated graph neural network. This work
analyzes the security and privacy of the PFGNN framework
in detail.

4.1 Security analysis

Function Encryption is a cryptographic technique designed
to protect data privacy, while allowing specific function
computations to be performed on encrypted data without
decrypting the data. This encryption method strikes a balance
between privacy preserving and data processing, and is
particularly suitable for scenarios such as federated learning.
To prevent gradient inversion attacks in federated learning,
PFGNN uses function-hiding multi-input function encryption
to prevent collusion between malicious servers and TA, privately
trade key parameters, and protect user encryption model
gradient, so as to protect user privacy.
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The cryptographic security of Function-Hiding MIFE is the top
priority of the security of the PFGNN framework. Function-Hiding
MIFE is a way to resist malicious adversaries from stealing model
parameters and aggregate weights. In this work, to apply function
hiding MIFE to federated learning more effectively, this work
introduces a key distribution stage, in which a third-party server
distributes an exclusive public key based on the ID of each client.
This allows each client to obtain its own unique public key for
encryption instead of using a unified public key. This improvement
does not involve core algorithm processes, such as public key
encryption and private key decryption. Therefore, this algorithm
has no impact on the security of Function-Hiding MIFE. Function-
HidingMIFE is proven to be many-SEL-wFH-IND-secure, the proof
process adopts a hybrid argument method, please refer to Abdalla
et al. [19] for detailed understanding.

4.2 Privacy analysis

Function hiding MIFE provides computational privacy
guarantees for secure aggregation in the PFGNN framework.
Function hiding MIFE provides computational privacy guarantees
for secure aggregation in the PFGNN framework. During the model
training process, the Function-Hiding MIFE protects the model
parameters and client weights from the client to the server, the
decrypted result only contains the aggregated results of the model
parameters, and the model parameters for any specific client are not
available at all. In other words, function hiding MIFE double-
encrypts the plaintext and key, effectively protecting the weight
information of each client during decryption. This method can
prevent malicious adversaries from using the weight of a single client
to effectively speculate on the source of a certain attribute, and
further prevents the adversary from identifying and leaking the
client’s identity through understanding the client’s
background knowledge.

5 Evaluation

In this section, this work evaluates the performance of the
PFGNN scheme. This solution is a federated learning framework
based on graph neural network, including n clients and a central
server. This work mainly studies protocol performance evaluation in
the semi-honest condition. In order to verify the effect of the
proposed scheme, this work implements a federated learning
prototype system based on graph similarity strategy, attentive
aggregation scheme and function encryption, and conducts
accuracy and efficiency experiments on it.

5.1 Experimental settings

In order to evaluate the performance of this scheme, PFGNN
chose to perform the node classification task on three graph
structure datasets, namely, Cora, Pubmed and Citeseer. The
statistical summary of the datasets is shown in Table 1. And
compare it with traditional graph neural network, thus proving

the accuracy and versatility of PFGNN in processing non-
Euclidean data.

During the process of model training, the client trains the graph
neural network locally, taking GraphSAGE as an example, the
propagation depth is L ∈ {1, 2, 3, 4, 5}, the number of iterations
of the client’s local model training is set as 10, the training batch size
is 60. In this work, the maximum layer of the fully connected neural
network is set as 2, and hyperbolic tangent (TanH) is adopted as the
activation function of the hidden layer. Parameter drop rate is d ∈
{0.0, 0.5}, learning rate lr ∈ 5e−4, 5e−3, 1e−3, 1e−2{ }. Since the task of
the graph neural network in this work is node classification, the loss
function adopts cross entropy. In order to prevent the model from
overfitting, an additional regular term L2 is added
L2 ∈ 5e−4, 5e−3, 1e−3, 1e−2, 0.0{ }. All experiments in this work are
conducted on a single machine without the Internet to simulate
communication in federated learning. The training set of the model
is used to train the model, the verification set is used to adjust
parameters, and the test set is used to measure the quality of model
training. When adjusting parameters, the grid search method is
selected to seek the highest accuracy under appropriate
parameter settings.

This work implements PFGNN in python. Like the function
encryption algorithm in MIFE Abdalla et al. [19], this work employs
gmpy2 to implement the Paillier function encryption system.

5.2 Accuracy analysis

5.2.1 Comparison of model accuracy under
different labels

To test the accuracy of the model, PFGNN chose to perform the
node classification task on three graph-structured datasets, namely,
Cora, Pubmed and Citeseer. In order to test the accuracy of models
under different labels, this work divides the Cora data set into C1, C2

and C3, according to the types of labels, where C1 has three label
categories with 1,296 nodes, C2 has two label categories, and finally
C3 has two label categories. Similarly, this paper also divides the
Pubmed and Citeseer data sets into three parts.

In order to study the accuracy of model aggregation under
different labels, this paper assumes that there are three clients (A,
B and C), the data of client A is composed of C1, the data of client
B is composed of C2, and the data of client C is composed of C3. In
other words, the labels for the three clients are different. Next,
comparative experiments were conducted between PFGNN,
traditional Centralized machine learning (Centralized ML),
and the classic FedAvg algorithm on three data sets. The local
model training of the three algorithms is the graph neural
network GraphSAGE. PFGNN is trained in the same way as

TABLE 1 Dataset statistic.

Dataset Node Edge Feature Classes

Cora 2708 5429 1433 7

Pubmed 19717 44338 500 3

Citeseer 3327 4732 3703 6
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FedAvg to verify the advantages of PFGNN with attentive
aggregation.

To evaluate the performance of PFGNN in classification tasks,
this paper examines its average accuracy on three different data sets.
As shown in Table 2, PFGNN performs best in average accuracy on
these datasets, significantly outperforming the other two models. In
particular, compared with the classical FedAvg model, the average
accuracy of PFGNN is improved by 5.4%. This result emphasizes the
superiority of PFGNN in classification tasks and shows that after the
introduction of the attentive aggregation mechanism, it has achieved
satisfactory results in handling data aggregation andmodel updating
in distributed learning scenarios.

5.2.2 Comparison of model accuracy under
different labels and different graphs

The framework of message passing neural network in this paper
is GraphSAGE, which mainly includes two steps: Sample and
Aggregate. Sampling is to sample the number of neighbors
through fixed-length sampling with replacement, thereby
ensuring that each node after sampling has the same number of
neighbors. GraphSAGE model training benefits from the transfer of
adjacent information. Therefore, in order to study the accuracy of
the model under different labels and graphs, this section divides the
data set Cora according to the average edges, the samples with edges
less than or equal to 3 in Cora are recorded as Ca, and the samples
with edges greater than 3 are recorded as Cb. Then, similar to Section
5.2.1, the data of client A comes from the sample number Ca1 of
three label categories in sample Ca, and the data of client B consists
of the sample number Ca2 of two label categories in sample Ca, the
data of client C comes from the Cb3 samples of the two label
categories in sample Cb. In the same way, the two data sets of
Pubmed and Citeseer can be divided.

In this work, PFGNN model and FedAvg model are trained on
three data sets respectively, and their accuracy is compared in
Table 3. The results show that under different labels and
different graphs, PFGNN model performs better than FedAvg,

and the average accuracy rate increases from 5.48% to 7.38%.
This shows that the PFGNN frame is suitable for handling
different scenarios of label and graph distribution, which further
emphasizes the superiority of the PFGNN model on non-IID data.

Centralized ML refers to uploading data to the server during the
training process, performing training and inference on the server,
and finally returning the results to the user. In this work, traditional
machine learning can be regarded as the case where the PFGNN
model has only one client. However, this method involves privacy
and security risks in data uploading, and can also lead to excessive
latency and waste the computing power of the terminal device. To
study the impact of the number of clients on model performance, we
increase the number of clients on the Cora dataset from 3 to 7, with
each client having a different label. The Figure 3 shows that the
accuracy of the PFGNN model increases with the number of clients
and eventually stabilizes. This shows that as the number of clients
increases, the types of tags each client has becomes smaller, but the
performance of the overall model is still improved. This finding
highlights the advantages of PFGNN in dealing with large-scale data
sets, which can effectively utilize attentive aggregation and improve
the performance and scalability of the model.

As shown in Figure 4, in order to test whether PFGNN is
versatility, PFGNN is applied in different graph neural networks
to test the Cora dataset, such as GCNKipf andWelling [23] and GIN
Hard et al. [24]. The green bar in the figure represents GraphSAGE
with PFGNN settings, and the orange bar represents pure

TABLE 2 Performance comparison on three datasets in terms of accuracy.

Dataset Centralized ML FedAvg PFGNN

Cora 0.8345 0.8924 0.9213

Pubmed 0.8134 0.8812 0.9315

Citeseer 0.7237 0.7723 0.8145

Average 0.7905 0.8486 0.8891

TABLE 3 Performance comparison on different labels and different graphs.

Dataset FedAvg PFGNN Improvement (%)

Cora 0.7546 0.8085 7.14

Pubmed 0.7435 0.7734 6.03

Citeseer 0.7137 0.7623 9.04

Average 0.7078 0.7814 7.38

FIGURE 3
Average accuracy comparison of different clients’ number with
different labels.

FIGURE 4
The generality of the PFGNN framework.
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GraphSAGE. The accuracy of PFGNN after 100 rounds of
communication in the figure is higher than 100 epochs iterative
of GraphSAGE, which shows that PFGNN is effective for federated
graph neural networks and can processes various non-Euclidean
structured data and can be easily embedded into other models.

5.3 Computational overhead analysis

The PFGNN runs all encryption schemes under LAPTOP-
OSDQQEMN equipped with lntel(R) Core (TM) i7-8565U CPU.
In order to evaluate the computational overhead of function hiding
MIFE in PFGNN, this work can set different numbers of clients and
compare the encryption time of different schemes.

Table 4 clearly shows that as the number of clients increases, the
time required for function encryption and decryption shows
completely different trends. Specifically, as the number of clients
increases, the encryption time on the client side remains almost
constant, while on the server side, the decryption time grows
linearly. However, the secure aggregation scheme of federated
learning has a computational overhead of O(N2). In comparison,
PFGNN only need O(N). Compared with the scheme proposed in
Yin et al. [25], the scheme adopted is not only more efficient, but also
keeps the encryption and decryption time within an acceptable
range even when the number of parameters reaches millions.

5.4 Communication overhead analysis

This work performs a detailed comparison between the PFGNN
framework and VFGNN, especially in terms of communication
overhead within one iteration. This solution is a federated
learning framework based on graph neural network, including n
clients and a central server. The detailed communication overhead is
shown in Table 5. During model training, there is no direct
communication between clients in the PFGNN scheme. This
improvement reduces the total communication overhead from
(n2 + n)/2 to n. This means that the communication overhead is
linearly related to the number of clients throughout the model
training process.

6 Conclusion

This work proposes the Personalized and Privacy-Preserving
Federated Graph Neural Network (PFGNN). The PFGNN
framework is built on a set of state-of-the-art training paradigms,
including graph similarity strategies, attention mechanism-based
model aggregation schemes, and optimized function hiding
encryption scheme to protect the upload of sensitive model
parameters. Experiments on real datasets show that our scheme
outperforms FedAvg in accuracy, and the communication overhead
is linearly related to the number of clients. Through this framework,
PFGNN can handle all kinds of non-Euclidean structured data,
multiple clients collaborate to train high-quality and highly secure
global models. This work provides the foundation for designing
efficient and privacy-preserving personalized federated graph
neural networks.
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TABLE 4 The time overhead of the function encryption scheme.

Clients Enc (Hybrid) Dec (Hybrid) Enc (PFGNN) Dec (PFGNN)

3 4.145 11.654 1.883 2.034

6 4.121 20.234 2.054 2.956

9 4.077 30.345 2.076 4.956

TABLE 5 Communication per iteration for n clients.

Phase Communication VFGNN PFGNN)

Training Process Secure SGD: clients ↔ CSP n n

Secure SGD: clients ↔ clients (n2 − n)/2 0

Secure SGD: TOTAL (n2 + n)/2 n
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Design, analysis and validation of
a microstrip patch antenna with
enhanced coupling for leaf
moisture sensing: an
IoT approach
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An innovative IoT-based system utilizing a modified slotted microstrip patch
antenna with enhanced coupling is presented for precise measurement of leaf
moisture content. The antenna employs a rectangular slot above the feed point
with an advanced coupling technique to enhance sensitivity. The antenna,
fabricated on a 0.8 mm F4B substrate, is designed to resonate within the 2.40
to 3.0 GHz range under unloaded conditions. A parametric analysis focusing on
leaf permittivity ranging from 20 to 30 is conducted to determine the antennas’
sensitivity. Experimental measurements of the reflection coefficient (S11) with
respect to resonant frequency shift are performed with leaf samples as the
samples under test (SUT). Experimental results reveal that the proposed patch
antenna’s sensitivity is significantly enhanced, ranging from 0.57 to 1.67 times
greater than that of traditional patch antennas for the five leaf samples tested. The
antenna exhibits a sensitivity of 0.06 GHz and 0.02 GHz for the modified and
enhanced coupling designs, respectively. The mean relative error between
predicted and measured moisture content values is low at 0.038. The findings
highlight the antenna’s increased sensitivity in detecting leaf moisture content
and illustrate the potential of the proposed IoT-based system for real-time
agricultural monitoring, marking an advancement in precision farming
practices. The study validates the microstrip patch antenna’s capability as a
moisture sensor through detailed sensitivity analysis, frequency shift
measurements, and regression modeling.

KEYWORDS

microstrip, patch, antenna, sensor, IoT, regression analysis

1 Introduction

In recent years, research has demonstrated that antennas can also serve effectively as
sensors in various industrial applications. This emerging field takes advantage of the fact
that antennas interact with their surrounding environment, with factors like nearby objects,
humidity, moisture [1,2], temperature, etc. impacting the antenna’s impedance and
resonance characteristics. By monitoring the variation in antenna parameters, valuable
sensor data can be obtained. Implementing antennas as sensors offers notable advantages in
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industry. Antenna sensors are typically inexpensive compared to
traditional sensor modalities, given the mass production of antennas
for communication purposes. Additionally, it enables wireless
sensing in contexts where wired sensors may be impractical or
impossible to implement. The dual use of antennas for both
communication and sensing furthermore maximizes efficiency
and value. Hence, electromagnetic (EM) resonant sensors
demonstrates a type of sensors capable of providing distributed
sensing. An example of an electromagnetic (EM) resonant sensor
that enables distributed sensing is the microwave patch antenna
(MPA) sensor [3,4].

In recent times, there has been immense interest in
strengthening the sensing capabilities of microstrip patch
antennas. Various ideas and technologies have been employed to
design antennas with sensing capabilities. In the design process of a
microstrip patch antenna, a broadband electromagnetic (EM) signal
is delivered to the radiation patch via a microstrip transmission line.
The radiation patch transmits the portion of the signal that resonates
along the antenna’s resonant frequency, while the remaining signal
is reflected back. Consequently, the frequency spectrum of the
reflected signal demonstrates considerable losses close to the
antenna’s resonant frequencies. Therefore, precise determination
of a material’s permittivity has emerged as a critical factor in
microwave antenna design, owing to its straightforwardness and
non-destructive nature of application [5].

The need of accurate measurement of permittivity of a material
has become an important parameter in the design of microwave
antennas due to their simplicity of design and non-destructive
applications [5]. Planar resonators designs such as split ring
resonators have become increasingly prevalent among various
techniques used for determining permittivity. Such strategies are
preferred due to their cost-effectiveness, low size, simplistic shape,
and relatively simple fabrication [6–8]. In such experiments, the
sample under test (SUT) is taken as part of the resonator and the
permittivity is determined by analyzing the shift in resonant
frequency. Such methods involve addressing the sample under
test (SUT) as a component of the resonator and the permittivity
is calculated by studying the variation in resonant frequency.
Microstrip patch antennas, resembling resonators, have been
researched as sensors for measuring the permittivity of liquid or
solid substances [9]. In literature, a method is suggested for
determining the resonant frequency of a patch antenna clad with
a dielectric substrate. The technique relies on the efficient dielectric
constant of complete design that is proposed to be determined by use
of the variational approach [10].

Subsequently, monitoring the moisture content (MC) is crucial
in precision farming and the food industry as an indicator of the
quality of [11], assessment of numerous quality parameters of
animal food [12], granular materials in containers [13], wheat
[14], grain [15], rice [16], corn kernel [17] and various crops
[18–21]. Accurate and timely measurement of leaf moisture is
essential for optimizing water usage, ensuring plant health, and
improving crop yield [22]. While utilizing a coaxial probe is a
method that can potentially damage the sample, employing
antennas is a preferred non-contact approach for MC
monitoring. Moreover, the need for leaf moisture sensing in
precision agriculture, environmental monitoring, and sustainable
resource management is underscored by its critical role in

optimizing water usage, ensuring plant health, and improving
crop yield [23]. Leaf wetness sensors, as described in the sources,
offer a technological solution to accurately and timely gather data on
leaf moisture, which is essential for several reasons. In agricultural
production, precise and real-time monitoring of plant physiological
data is crucial. One such piece of information is leaf wetness, which
is correlated with plant capacitance. Nevertheless, plants are
susceptible to damage by the methods used currently to measure
leaf capacitance, which would compromise the monitoring’s
accuracy. As a result, it is advisable to avoid frequency bands
where the dielectric constant of water experiences abrupt changes
with temperature.

Therefore, the proposed study introduces a study of microstrip
patch sensor antenna designed for sensitivity enhancement in
permittivity measurement for moisture content. The antenna
employs a few rectangular slots that are loaded above the
microstrip feed line that has an enhanced coupling. The designed
antenna is simulated and fabricated on a F4B substrate with 0.8 mm
thickness. The variation in resonant frequency with respect to
reflection coefficient (S11) is analyzed to verify the sensing
capability of the proposed antenna. The proposed antenna design
with enhanced coupling provides higher sensitivity compared to
traditional patch antenna designs. Hence, the antenna achieves
resonances at lower frequencies while maintaining a compact
size. Moreover, the proposed antenna design achieves a
sensitivity enhancement ranging from 0.57 to 1.67 times higher
than traditional patch antennas for permittivity values between
20 and 30 while maintaining a lower mean relative error (MRE)
between the actual and predicted values of moisture content.
Furthermore, the proposed integration of the antenna sensor into
an IoT-based system for real-time monitoring of leaf moisture
content in agricultural applications marks an advancement in
precision farming practices. Full-wave simulations using ANSYS
EM Suite 2022 are performed and the sensors’ performance is
verified through mathematical calculations and
experimental processes.

2 Design idea

Research indicates that the resonant frequency of a MPA,
intended for integrated sensing capabilities, is impacted by the
dielectric properties of the substrate material and the dimensions
of its radiating component. These radiation characteristics of the
microstrip patch antenna are inherently frequency-dependent [24].
The design of such an antenna encompasses three crucial elements: a
radiating surface, a microstrip feed line, and a dielectric substrate.
The traditional rectangular microstrip patch antenna’s structure is
depicted in Figure 1A.

The standard microstrip patch antenna (CPA) illustrated in
Figure 1A incorporates a patch having a rectangular shape that is
connected via 50Ω microstrip feed line. It is manufactured on an
F4B substrate that has a thickness of 0.8 mm and dielectric constant
(εr) of 2.65. The designed dimensions of the patch are such that h1 =
19.6 mm and w1 = 15.5 mm, respectively. The width (w2) and
calculated length (L1) of the feed line are determined as w2 =
3.2 mm and L1 = 8 mm, respectively. The dimensions of the
substrate are 28.1 mm in length (L) and 39.08 mm in width (W).
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The dimensions, width (W), length (L), change in length (ΔL)
and relative permittivity (Ɛr) of rectangular microstrip patch are
calculated using Eqs 1–4 [25].

W � c

2fr
( )

�����
2

Ɛr + 1

√

(1)

Ɛreff � Ɛr + 1
2

+ Ɛr + 1
2

1 + 12h
W

( )
−0.5

(2)

ΔL � 0.412ph
Ɛreff + 3

10( ). W
h + 2.64

10( )
Ɛreff − 2.58

10( ). W
h + 8

10( )
(3)

L � c
1

2fr

�����
Ɛreff

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − 2ΔL (4)

where, fr is desired resonant frequency, h is height of substrate and c
is speed of light in free space. In order to achieve size reduction at
lower frequencies compared to a design reported in [26], slots have
been incorporated into the antenna structure.

It is known from literature that reducing the gap size can
significantly increase the gap capacitance [27]. With strong
coupling, maximum electric fields are present, making it more
sensitive to overlay permittivity variations. Therefore, a patch

antenna is often referred to as a resonator. The proposed design
utilizes the concept of enhanced coupling at the periphery of a
resonator, as shown in Figure 2. By incorporating an enhanced
coupling idea, insertion loss is reduced and gap capacitance is
considerably increased. Such a method is more frequently utilized
for filters and is used in antenna for same purpose. In addition to

FIGURE 1
Microstrip patch sensor antenna structures: (A) standard rectangular patch antenna; (B) slotted patch antenna; (C) enhanced coupling modified
slotted patch antenna.

FIGURE 2
Enhanced coupling periphery of a ring resonator.
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coupling capacitance, the capacitance of the ring structure can be
further enhanced through mutual coupling. The technique used to
increase mutual coupling by adding additional rings is known as
concentric circular ring [28]. This technique has shown greater
sensitivity in the dielectric characterization of liquid and
powder materials.

Accordingly, a thin rectangular slot is etched radiating above
the microstrip feed line, as depicted in Figure 1B. The slotted
modified patch antenna (MPA) features a rectangular patch with
dimensions of “h1 = 28.3 mm” in length and “w1 = 25.4 mm” in
width, which are connected with the microstrip line. In this
configuration, the microstrip line is designed using length, L1 =
12 mm and width, w2 = 3.2 mm. Consequently, the proposed
enhanced coupling based slotted-patch antenna (ECMPA) sensor
is designed on the basis of MPA with an addition of a semi-circle
with a radius of 6 mm denoted as C1 that provides the enhanced
coupling to the antenna as shown in Figure 1C.

3 Results and discussion

The designed antennas are simulated using a microwave
simulation software, ANSYS EM Suite 2022. Analysis of the S11

parameter for the standard inset-fed rectangular microstrip patch
antenna (CPA) revealed resonant frequency at 5.807 GHz that has a
bandwidth of 400 MHz, as shown in Figure 3A. Subsequently, the
fabricated antenna sensor exhibited resonance at 5.82 GHz. In
addition, the first slotted rectangular microstrip patch antenna
sensor produced a resonant frequency at 2.85 GHz based on
simulation results, in addition to a bandwidth of 300 MHz. On
the other hand, the fabricated design depicted a similar resonant
frequency significantly lower at 2.82 GHz, as indicated in Figure 3B.
Finally, the enhanced coupling based microstrip patch antenna
(ECMPA) has been simulated utilizing the same parameters and
it accomplished dual frequency functioning. The initial resonant
frequency, denoted as f1, is at 2.87 GHz, while the other resonant
frequency, f2, is at 3.27 GHz, as depicted in Figure 3C. However,
measurements revealed the first resonant frequency to be slightly
lower at f1 = 2.86 GHz, and the second higher at f2 = 3.4 GHz. The
measurement of resonant frequency of the all three designed
antennas, i.e., CPA, MPA and ECMPA is determined by
measuring its S11 parameter using a vector network analyzer
(VNA), which represents the power of the microwave signal
reflected by the antenna sensor as a function of frequency. The
VNAwas calibrated to the end of the coaxial cable so the effect of the
microstrip feed is considered to be a part of the antenna sensor.

FIGURE 3
Reflection coefficient values (S11) of the designed antennas (A) standard microstrip patch antenna (CPA); (B) modified slotted microstrip patch
antenna; (C) enhanced coupling slotted microstrip patch antenna (ECMPA).
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4 Sensitivity of the enhanced coupled
microstrip patch antenna

The effectiveness of the designed enhanced coupled microstrip
patch antenna (ECMPA) for sensing purposes is validated through
measurements in variation in the resonant frequency (f) in
gigahertz (GHz) compared to S11 (dB). The electric field
intensity is highest in the area influenced by the loaded slot and
the coupling, forming a capacitor. This sensor detects variations in
the resonant frequency, reflecting the dielectric properties of
leaves. By analyzing experimental results, a connection between
the resonant characteristics and leaf moisture content can be
established. Consequently, during periods of moisture stress in
plants, the sensor can detect significant changes in leaf moisture.
For precise sensing, the leaf being analyzed should be positioned
close to the area with the strongest electric field. The relationship
between frequency and capacitance is described by Eq. 5:

f � 1
2π

����
LsCs

√ (5)

where, f is frequency, Ls and Cs are the inductance and
capacitance of the designed sensor. In accordance with Eq. 5,
the more concentrated the moisture content of the leaf, the larger
the permittivity and capacitance. Consequently, the shift in
resonant frequency can be exploited to detect leaf moisture. A
leaf model also called sample under test (SUT) with a thickness of
0.5 mm and loss tangent of 0.2 is considered in this experiment.
The SUT is positioned over the patch and its relative permittivity
(εr) is diversified in the range of 20–30 with an increment of 1.
Such a range is selectd because the relative permittivity (εr) of
plant-based materials, such as fruits and leaves, typically ranges
from around 20 to 30.2 This range encompasses the dielectric
properties commonly observed in plant tissues
{Doidy, 2019 #128}.

Figure 4 depicts the S11 characteristics of the traditional patch
antenna and the proposed modified slotted patch antenna. For the
traditional patch antenna, it is observed that the resonant frequency
is achieved at 5.12 GHz as the test sample dimension having εr1 = 30.
Moreover, the frequency response of 5.70 GHz is achieved with
value of εr1 = 20.

FIGURE 4
S11 (dB) vs. frequency (GHz) for varying relative permittivity of the SUT: (A) standard rectangular patch antenna; (B) slotted patch antenna; (C)
enhanced coupling modified slotted patch antenna.
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Whereas, for the proposed slot-loaded modified antenna (MPA),
SUT having a permittivity value of εr1 = 30, the antenna demonstrates
its lowest frequency response at 2.24 GHz. Conversely, a higher
frequency response of 2.48 GHz is achieved when the test sample’s
permittivity is set to εr1 = 20. Furthermore, in the case of modified
slotted patch antenna with enhanced coupling (ECMPA), it is observed
that increasing the relative permittivity (εr) from 20 to 30 that led to a
modification in the initial resonant frequency (fr1) of S11,moving it from
2.87 GHz to 2.79 GHz. Furthermore, the second resonant frequency
(fr2) of the designed slotted patch antenna shifted from 3.27 GHz to
3.13 GHz. Moreover, it has been observed that introducing slot and
enhanced coupling provides better frequency responses in MPA and
ECMPA sensors while maintaining acceptable radiation characteristics,
i.e., realized gain is above 4 dB and VSWR less than 2. The detailed
analysis of radiation characteristics has not been provided as it is out of
the scope of paper and it is more focused on sensing analysis.

In order to verify the sensitivity enhancement of the proposed
slotted patch antenna with that of the standard patch antenna, the
frequency change (Δf), relative frequency change in percent (PRFS),
enhancement in PRFS (PRFSE), sensitivity (S) and sensitivity
enhancement (SE), are calculated and plotted with respect to S11
responses using Eqs 6–10 [29]:

Δf � fu − fl GHz( ) (6)
PRFS � Δf

fu
× 100 %( ) (7)

PRFSE � PRFSproposed
PRFSconventional

(8)

S � Δf
ΔƐ

(9)

SE � Sproposed
Sconventional

(10)

where, fu and fl represent the resonant frequency under unloaded
and loaded (with leaf sample) conditions. The relative position of
the sample under test (SUT) just above the patch’s surface plays a
crucial role in determining the total capacitance and effective
relative permittivity of microstrip patch sensor. As a result, the
resonant frequency of S11 displays as a nonlinear function with
regard to the effective relative permittivity [30,31]. indicates that
the sensitivity, S, varied as the relative permittivity modified with
higher values for lower relative permittivity. In this case, when
the permittivity of the SUT is Ɛr = 20, the resonant frequency
shift, Δfr, for the traditional patch antenna is 0.10 GHz, compared
to 0.32 GHz and 0.03 GHz for the two proposed patch antennas.
The percentage resonant frequency shift (PRFS) for the
traditional patch antenna is 1.72%, whereas for primary and
secondary proposed patch antennas, it reached at 5.52% and
0.51% correspondingly as shown in Figure 5B. Therefore, the
percentage resonant frequency shift enhancement (PRFSE) of the
proposed patch antennas is 3.2 and 0.3 accordingly.

FIGURE 5
Comparative plots for sensitivity performance of traditional microstrip patch antenna and proposed slotted patch antennas: (A) sensitivity (S); (B) %
relative frequency shift (PRFS); (C) variable resonant frequency (Δfr).
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Moreover, it is evident from Figure 5C that as the permittivity of the
SUT is increased to Ɛr = 30, the shift in resonant frequency, Δfr for the
typical patch antenna (CPA) reached 0.68 GHz. In comparison, it
reached to 0.56 GHz and 0.20 GHz for the proposed patch antennas,
MPA and ECMPA respectively as depicted in Figure 5C. The PRFS for
the traditional patch antenna is 11.72%. Meanwhile, for the proposed
slotted patch antennas, the percentage is 9.66% and 3.44%, respectively.
Subsequently, the PRFSE for both the initial (MPA) and second designed
slotted patch antennas (ECMPA) is 0.84 and 0.30. Additionally, the S
(sensitivity) of the modified patch antenna (MPA) and enhanced
coupling slotted patch antenna (ECMPA) is 0.06 GHz and
0.020 GHz, respectively. Consequently, the sensitivity Enhancement
(SE) is found out to be 1.61 GHz and 0.575 GHz respectively for the
proposed designs. Therefore, it is evident that the sensitivity of the newly
designed patch antennas at the resonant frequency of concern surpasses
that of conventional patch antennas by a factor ranging from 0.57 to
1.61, within a relative permittivity range of 20–30.

5 Experimental process for
characterization of moisture content
relative to mass

The S11 parameters of the designed fabricated traditional and
slotted patch antennas shown in Figures 6A–C, have been analyzed

by means of an Agilent N5230A network analyzer as indicated in
Figure 7A. The leaf is placed above the designed antenna sensor and
the shift in resonant frequency is measured. The leaf that is used as a
sample is freshly plucked from the renowned Ginkgo tree. It is
important to recognize that sensitivity levels may vary between dead
and living leaves, as well as between different types of leaves, due to
each plant’s unique characteristics in responding to water stress. The
experiments are conducted in a laboratory environment filled with
various objects to simulate the complex signal propagation
challenges encountered in agricultural settings. Measurements
were taken under controlled conditions (temperature of 25°C ±
2°C, and 55% RH ±5% humidity) to simulate agricultural
environments.

For the sensitivity analysis, the modified slotted patch antenna
(ECMPA) is tested under moisture stress. In the moisture content
analysis setup, four (4) distinct levels are chosen with water content
that constitutes to approximately mass ranging from 4.96 g to 5.30 g.
The weighing process is depicted in Figure 7B. Initially, with an
empty sample holder and the dry leaf weighing 4.96 g, there is
negligible change in the resonance frequency, indicating the baseline
measurement scenario. As the leaf’s mass increases due to water
absorption, observable shifts in the resonant frequency occur,
attributable to the varying dielectric properties of the leaf as it
transitions from dry to increasingly moist. For the simplicity of
discussion, four distant moisture levels, i.e., 0%, 1.6%, 3.0%, 5.0%,

FIGURE 6
The fabricated slotted patch antennas: (A) standardmicrostrip patch antenna; (B)modified slottedmicrostrip patch antenna; (C) enhanced coupling
slotted microstrip patch antenna.
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and 6.9% of moisture content are selected. Consequently, the relative
moisture content (mc) in leaf samples, in percentage can be
calculated from Eq. 11:

mc � mwater

mwater +mdryleaf( )
× 100% (11)

where mwater and mdry leaf are the weight of water and weight of dry
leaf sample.

Table 1 summarizes the results from an experiment designed
to measure the moisture content in leaves, where moisture is
quantified by the volume of water added, denoted as Mwet in
grams. The experiment employs the designed enhanced coupled
microstrip patch antenna sensor to detect changes in the
moisture content through shifts in resonant frequency and
insertion loss.

The experimental data convey a clear correlation between the
moisture content of a leaf and the resonant frequency exhibited
by the enhanced coupled patch antenna (ECMPA) sensor. When
the sensor is assessing a dry leaf, devoid of additional moisture,
the recorded resonant frequency stands at 2.85 GHz. As the leaf’s
moisture content escalates to 1.6%, there’s a discernible dip in the

resonant frequency to 2.83 GHz. Progressing to 3.0%, the
frequency further descends to 2.80 GHz, and with a 5.0%
moisture increment, it plunges to 2.79 GHz. The most
substantial moisture level tested, which is 6.9%, correlates with
a resonant frequency of 2.75 GHz. This consistent downward
shift in frequency with rising moisture levels is attributable to the
increased dielectric constant of the leaf material. The addition of
moisture elevates the dielectric constant since water possesses a
higher dielectric constant relative to air. Consequently, as the
moisture content within the sample under test (SUT) surges, the
resonant frequency of the antenna correspondingly diminishes,
affirming the sensor’s capacity to detect and quantify varying
levels of leaf hydration through frequency shifts.

6 Regression analysis

Calibration fitting tool is applied to find out the which of the
techniques among the relative permittivity measurement and
reflection coefficient measurement is best suited for the
sensitivity of the proposed sensor with respect to resonant

FIGURE 7
(A) Test bed with network analyzer (B) weighting process of the leaf after every level of water.

TABLE 1 Mass of wet leaf and moisture content (%age) by adding water.

Mwet Mdry Moisture content (%age) (%) Added water (mL)

4.96 4.96 0 0

5.04 4.96 1.6 10

5.11 4.96 3.0 20

5.21 4.96 5.0 30
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frequency. The graph displayed in Figure 8, shows a linear
regression analysis showing the relationship concerning the
frequency of a slotted patch antenna (MPA) as shown in
Figure 1B and the relative permittivity of a leaf, which is an
indirect measure of its moisture content. As the relative
permittivity increases, the frequency decreases, suggesting that
moisture content has a damping effect on the frequency. The
calibration equation (MC = −0.0345f + 3.323) shows the variation
in moisture content (MC) as a function of frequency (f). The
calibration equation is valid over a range of 2.2 GHz–2.5 GHz as
it is the optimal range for sensor’s performance. The high (R2)
value of 0.9539 indicates a strong linear relationship between
the variables.

Figure 9 displays a plot of resonant frequency against reflection
coefficient for a slotted patch antenna, indicating moisture content
(MC) calibration. As frequency increases from 2.2 to 2.5 GHz, the
reflection coefficient becomes less negative, suggesting less energy is
reflected back and more is absorbed by the load (leaf in this case).
The calibration equation (MC= −17.54f + 26.627) with (R2 = 0.1503)
is displayed, suggesting a weak linear relationship between
frequency and moisture content based on reflection coefficient
values. The low (R2) value indicates that reflection coefficient
alone may not be a strong predictor of moisture content as
mentioned in [32].

Moreover, regression analysis technique is performed for
frequency with respect to permittivity and frequency with respect
to reflection coefficient to find out which approach is much better
for sensing purpose. The model summary tabulated in Table 2
indicates a high correlation coefficient (R) of 0.961, suggesting a
strong positive relationship between the resonant frequency and
moisture content. The R Square value of 0.924 implies that
approximately 92.4% of the variability in the moisture content
can be explained by the model, which is a significant proportion,
indicating a strong model fit. This is further reinforced by the
Adjusted R Square value of 0.916, which slightly adjusts the R
Square value for the number of predictors in the model, ensuring the
model’s validity despite the number of terms. The performed
ANOVA analysis depicts that the regression model is statistically
substantial (p-value <0.001). The coefficients generated reveals the
model’s equation: Each unit decrease in frequency is associated with
a significant increase in moisture content, as shown by the large
negative coefficient for frequency. The calculated t-values and
corresponding p-values indicate that both the intercept and slope
are significantly different from zero, reinforcing the model’s
predictive.

6.1 Calculation of mean relative error

Additionally, the mathematical validation leads to
determining the sensitivity of the experimental data by Eq. 9
whereas the MRE (mean relative error) for the moisture content
is found out by Eq. 12:

MeanRelative Error MRE( ) � MCActual − MCPredicted

MCActual
(12)

Where, MCActual is the moisture content being measured via
experimental analysis depicted in Table 1. The value of predicted
moisture content (PMC) is determined by plotting a calibration
curve between frequency and permittivity of the SUT as depicted
in Figure 8. The calibration curve provided the calibration
equation, i.e., MC = −0.0345f + 3.323. It is calculated at
second level of actual moisture content (AMC), which is at
3.55%. By using the calibration equation, the PMC is derived
at 3.43%. Therefore, the mean relative error (MRE) at this point is
determined as 0.0338 which is an indication of a very low error
between the predicted and measured values. Moreover, the
designed slotted patch antenna sensor depicts better
sensitivity, i.e. 2% and lower MRE, i.e. 0.038 as compared to
previous research work done in moisture content detection [33].

FIGURE 8
Calibration curve for regression analysis related to frequency
(GHz) vs. permittivity (Ɛr).

FIGURE 9
Calibration curve for regression analysis related to frequency
(GHz) vs. reflection coefficient S11 (dB).
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7 Comparison with previous research

Table 3 provides comparative analysis of the proposed ECMPA
sensor with the three sensor designs used for moisture content
detection in different materials. The proposed design of the
enhanced coupled microstrip patch antenna (ECMPA) sensor
presents several advancements over the previous reported designs
[24,34,35] as indicated by various parameters. With dimensions of
47.7 × 56.3 mm2, it is larger than previous design 1, potentially
offering a more extensive surface area for interaction, which can be
crucial for sensing performance. It operates at lower frequencies of
2.87 GHz and 3.2 GHz compared to previous designs 1 and 3, which
could allow for deeper penetration into materials, beneficial for
specific sensing applications. In contrast, its frequencies are
somewhat similar to previous design 2, suggesting possible
similarities in penetration capabilities. The choice of leaf as the
sensing material for the proposed design suggests a specialized or
targeted application, possibly in the agricultural or environmental
monitoring sectors, differing from the rice, granular, and soil
materials of the previous designs. This specificity could leverage
the unique properties of leaves in sensing applications. The substrate
material, F4B, differs from the FR4 used in previous design 1, which
can affect the antenna’s performance characteristics such as
dielectric properties and mechanical stability. Cost-wise, the
proposed design is noted as the cheapest, offering a significant
advantage in terms of affordability and accessibility for widespread
use. Its performance in terms of accuracy is substantiated by a high
R2 value of 0.954, far surpassing the 0.411 and 0.57 of design 1 and
design 3, indicating a reliable and accurate model fitting which is
crucial for sensor efficacy. In terms of moisture sensing, the
proposed design can detect a range from 0.86% to 22.48%,
offering a more precise and suitable range for specific
applications compared to range of previous design 1, 2, and 3.
Finally, its mean relative error (MRE) at 0.30% is significantly lower
than that of the other designs, underscoring its superior accuracy
and reliability in sensing applications.

Hence, it can be proved with this method that he resonant
frequency of the microstrip patch antenna decreases as the moisture
content of the leaf increases due to the variation in relative
permittivity as proved in previous research [36]. It is due to the
fact that the water molecules in the leaf absorb some of the
electromagnetic radiation, which reduces the resonant frequency
of the antenna. This method of measuring leaf moisture content is
non-destructive and can be used in a variety of applications, such as
agriculture, environmental monitoring, and plant
physiology research.

8 IOT system for moisture
content detection

The architectural framework of any system is pivotal in
delineating its structure and elucidating the functionality of its
components. In the realm of IoT-based systems, numerous
architectures have been suggested. The Service Oriented
Architecture (SOA), renowned for its efficacy in smart
applications, is adopted for the proposed IOT based moisture
content detection system due to its simplicity and clear
delineation of components. The IOT system as an architecture,
encompasses four layers: sensing, network, service, and
interface [37].

8.1 Sensing layer

Central to the IoT system is the sensing layer, focused on the
“things”—in our context, a microstrip patch antenna designed for
moisture sensing in leaves. The primary challenge is engineering a
sensor with the precision to detect moisture content accurately.
Utilizing a microstrip patch antenna with slotted enhancements,
based on the principle of effective permittivity changes, we targeted
the microwave frequency range known for its sensitivity to moisture

TABLE 2 Summary of the performed Regression Analysis.

Model R R Square Adjusted R Square Std. Error of the estimate

Moisture Content 0.961a 0.924 0.916 5.2216

TABLE 3 Comparative Analysis with previous designs.

Parameters Proposed design Previous design 1 [24] Previous design 2 [35] Previous design 3 [34]

Size 47.7 × 56.3 mm2 38 × 38 mm2 75.85 × 100 mm2 48.3 × 62.1 mm2

Operating Frequency 2.87 GHz and 3.2 GHz 5.2 GHz and 6.8 GHz 2.45 GHz 8.48 and 10.69 GHz

Sensing Material Leaf Rice Granular Liquids

Substrate F4B FR4 RF Duroid Polytetrafluoroethylene RT Duroid

Sensor Cost Cheapest Relatively High High High

R2 value 0.954 0.411 and 0.379 Not Reported 0.57 and 0.78

Moisture Content (%) 0.86%–22.48% 10.71%–21.87% 0–30 Not Reported

MRE (%) 0.30 0.55 3.54 0.65
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content. Selecting a 2–3 GHz frequency for its compact size and
effective correlation with moisture content, the research embarked
on optimizing the antenna’s sensitivity through various techniques,
including enhanced coupling, to ensure minute variations in
moisture content are detectable.

8.2 Network layer

Achieving reliable wireless connectivity for developed sensor to
transmit data is crucial. By integrating the sensor within a SOA
framework, it ensures modular manageability suited for agricultural
settings [38]. After evaluating various communication technologies,
Bluetooth Low Energy (BLE) emerged as the optimal choice due to
its low energy consumption, compatibility with numerous operating
systems, and effective data rate for our application. This BLE-based
network facilitates seamless data transmission from the sensor to the
gateway, ensuring real-time monitoring of leaf moisture levels.

8.3 Service layer

The service layer, demanding significant computational resources,
is hosted on a robust Dell precision tower 3960 workstation, equipped
to handle the intensive tasks of data storage, analysis, and reporting.
This local-cloud setup not only supports real-time operations but also
enables data analytics, essential for the comprehensive IoT-based leaf
moisture monitoring system. The system is designed to offer a plethora
of services crucial for processing and analyzing the data collected from
the field.

8.4 Interface layer

The user interface, developed in LabView®, allows for direct
interaction with the system, presenting processed data to users in an
accessible manner. This application, coupled with LabView web
services, enables both local and remote monitoring of moisture
levels, facilitating timely decision-making in agricultural
management. Through RESTful API, the system ensures data is
shared seamlessly, allowing users to access real-time information and
thus optimize irrigation practices based on the moisture content
detected by our sophisticated sensor. The flowchart illustration of an
IOT-based leaf moisture content monitoring system is depicted
in Figure 10.

8.5 IOT based monitoring system

Evaluating the effectiveness of a cutting-edge IoT-based leaf
moisture sensing system is the primary aim of the research. An
experimental setup is established, as shown in Figure 11, within a
laboratory designed to replicate the varying conditions typical of an
agricultural setting as proposed by [39]. A microstrip patch antenna
sensor, crucial to the research, is strategically placed fewmeters away
from the gateway node to mirror the real-world deployment
distance in a field, though for visualization purposes in Figure 11,
it is presented next to the gateway.

The selected laboratory environment is intentionally filled with
various objects, such as equipment and furniture, to simulate the
complex signal propagation challenges encountered in agricultural
environments. This configuration is chosen to evaluate the
durability of the wireless network against the physical barriers
common in farming areas. Furthermore, the laboratory included
two WLAN routers positioned at different sites to determine the
system’s capability to withstand interference.

As detailed in Figure 11, the microstrip patch antenna is connected
to a high-precision microwave analyzer, which is equipped with a BLE
adapter, emphasizing the system’s applicability to IoT scenarios. The
calibration of the system is conducted through standardized procedures
to ensure the accuracy of measurements, focusing on the S11 parameter
across a broad frequency spectrum.

Before introducing leaf samples, a baseline performance of the
system is recorded to identify the unloaded resonance frequency.
Subsequently, leaf samples with precise dimensions are placed onto
the sensor, aligning carefully with the antenna’s enhanced coupling
region for accuracy. Multiple measurements are taken for each sample
to verify the consistency of the data. The orientation of the samples is
meticulously arranged to facilitate optimal interaction with the
electromagnetic fields, a vital factor for precise moisture detection.
All experiments are performed under controlled
conditions—maintaining a steady temperature of 25°C ± 2°C and
humidity levels within 55% RH ± 5%—to closely mimic the
operational environment of the IoT-based system in an agricultural
context, thus confirming its potential for practical applications. The
detailed working of the idea is to be presented as future research.

FIGURE 10
Flowchart of an IOT-based leaf moisture content
monitoring system.
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9 Conclusion

The research presented herein introduces an innovative approach to
moisture measurement in foliage through the use of modified slotted
microstrip patch sensor antennas, showcasing amarked improvement in
sensitivity over the conventional patch antenna models. Our findings
reveal that the sensitivity of these newly developed slotted patch antennas
surpasses that of the traditional designs by a factor ranging from 0.57 to
1.67 when tested against dielectric samples with constants in the 20 to
30 range. Fabricated on a 0.8 mm F4B substrate, these antennas achieve
operational resonance frequencies between 2.4 and 3.0 GHz without
load. The key to their enhanced performance lies in the strategic
integration of slots above the antenna’s feed point, coupled with an
advanced coupling technique, elevating their sensitivity levels. Moreover,
an IOT based implementation for real timemonitoring is also presented.
Such improvements position the modified slotted patch antennas as
highly versatile tools, suitable for a wide array of applications that span
from proximity sensing in automated systems to the wirelessmonitoring
of biologicalmaterials, themeasurement of permittivity in both solid and
liquid mediums, and the non-destructive evaluation of moisture content
in soils, foods, and various liquids. This versatility, combined with their
increased sensitivity, underscores the potential of these antennas to
significantly advance the field of IoT implementations by providing
more accurate and reliable sensors for a multitude of applications.
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multi-dimensional feature
fusion hashing
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Along with the continuous breakthrough and popularization of information
network technology, multi-modal data, including texts, images, videos, and
audio, is growing rapidly. We can retrieve different modal data to meet our
needs, so cross-modal retrieval has important theoretical significance and
application value. In addition, because the data of different modalities can be
mutually retrieved by mapping them to a unified Hamming space, hash codes
have been extensively used in the cross-modal retrieval field. However, existing
cross-modal hashing models generate hash codes based on single-dimension
data features, ignoring the semantic correlation between data features in
different dimensions. Therefore, an innovative cross-modal retrieval method
using Multi-Dimensional Feature Fusion Hashing (MDFFH) is proposed. To
better get the image’s multi-dimensional semantic features, a convolutional
neural network, and Vision Transformer are combined to construct an image
multi-dimensional fusion module. Similarly, we apply the multi-dimensional text
fusion module to the text modality to obtain the text’s multi-dimensional
semantic features. These two modules can effectively integrate the semantic
features of data in different dimensions through feature fusion, making the
generated hash code more representative and semantic. Extensive
experiments and corresponding analysis results on two datasets indicate that
MDFFH’s performance outdoes other baseline models.

KEYWORDS

information retrieval, cross-modal retrieval, vision transformer, multi-dimensional
semantic feature, hashing

1 Introduction

The swift growth of multimedia data has brought a lot of demand for cross-modal
retrieval. With the growing scale of data on the Internet, data types are becoming more and
more diversified, including text, images, videos, audio, etc. The data modality that users are
interested in is no longer single, and the user retrieval shows a development trend from
single modality to cross modalities. Data has different modalities and these expression
forms are different, while the semantics behind themmay be related to each other and good
use of different modal data can facilitate our lives to a certain extent. For instance, when you
visit the Great Wall of China, you can retrieve the corresponding text and video
introduction through the photos of the Great Wall. The information supplement helps
you to quickly familiarize yourself with scenic spots for the first time. Besides the field of
daily life, cross-modal retrieval has important applications in many domains such as
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medicine [1], finance [2], and information security [3]. Therefore, it
is an interesting and challenging problem to construct an effective
cross-modal retrieval system.

Since the data distributions and feature representations of
different modal data are different, they cannot be compared
directly. Representation learning can effectively deal with this
problem. In such methods, the aim is to learn a function that
can transform different modalities into a common feature space
[4, 5], where we can compare them directly. Due to the quick
expansion of the data scale and the decline of data retrieval
efficiency, the hashing codes are applied to cross-modal retrieval
tasks [6–8]. This type of method maps high-dimensional features to
the Hamming space by transforming data into hash binary codes
and uses XOR of hash binary codes to calculate the Hamming
distance. Hash binary codes with small Hamming distance have
similar original data, and vice versa.

Through many scholars’ research and efforts, cross-modal
hashing retrieval has achieved many successes. Specifically, based
on artificial features representing the original data, many models
[9–14] are proposed, known as traditional cross-modal hashing
models. Due to the limitations of handmade features, the retrieval
efficiency of such models is hard to further breakthrough. Because of
the good performance in feature learning, deep learning has been
applied in cross-modal hashing retrieval. For example, deep neural
networks can automatically capture the data features and hash
functions in Refs. [15–20].

However, existing deep cross-modal hash models usually only
pay attention to the single-dimensional semantic features of data
and do not fully consider the information complementation between
specific features presented by data in different dimensions. Besides,
the multi-dimensional fusion of semantic information is more
conducive to capturing the semantic correlation of different
modal data, thus helping to narrow the semantic gap. So,
effective fusing of multi-dimensional semantic features of
different modal data is very important in improving cross-modal
retrieval. Because of Transformer’s excellent performance in the
computer vision field in recent years, we try to use it to better learn
the images’ semantic features in different dimensions. Similarly, we
construct a text multi-dimensional fusion module in the text
network, which learns the text multi-dimensional semantic
features. Based on these, we propose a novel method for cross-
modal retrieval, which is called Multi-Dimensional Feature Fusion
Hashing (MDFFH). Our method has these three characteristics.

• MDFFH constructs multi-dimensional fusion modules in
image networks and text networks to learn multi-
dimensional semantic features of data, which can effectively
complement the semantic features of data in specific
dimensions. It is better in semantic relevance, obtained
hash codes are more semantic as well.

• Vision Transformer is integrated with a convolutional neural
network to form an image multi-dimensional fusion module
in MDFFH so the image’s local and global information can be
well fused.

• Feature extraction and hash function generation are well
integrated into a deep learning framework in MDFFH.
Comparative experiments and corresponding analyses on two
datasets show that MDFFH is superior to other baseline models.

This paper mainly includes five sections. The related work is
introduced in Section 2, MDFFH is given in Section 3, and the
experiments and comparative analysis are demonstrated in Section
4. Finally, the conclusion is in Section 5.

2 Related work

Representative cross-modal hashing models: There are two
categories in Cross-modal hashing models. If supervised information
(such as data tags) needs to be used during model training, this type of
model is called an unsupervised model; the other type needs to use
supervision information during model training, which is called a
supervision model. According to the way they learn features, cross-
modal hashing retrieval models are divided into two categories, namely,
hand-craftedmodels and deep networkmodels. Data labels are not used
to guide hash codes’ learning in Unsupervised models during model
training. For instance, the subspace shared by different modal data is
learned and then the correlation between similar different modal data is
maximized in Canonical Correlation Analysis (CCA) [21]. Implicit
factors of different modal data are learned and unified hash codes are
generated based on matrix decomposition in Collective Matrix
Factorization Hashing (CMFH) [22]. In latent semantic sparse
hashing (LSSH), sparse coding and matrix decomposition are used
to capture important structures in images and potential semantics in
texts, respectively [23]. Semantic topics and semantic concepts for
images and texts are learned and discrete characteristics of different
modal data are maintained in Semantic topic multi-modal hashing
(STMH) [25]. Cross-Modal Self-Taught Hashing (CMSTH) [24]
applies semantic information to detect multimodal topics, and then
uses robust matrix decomposition to convert these different modal data
into hash codes that are suitable for quantization. Spectral Multimodal
Hashing (SMH) [26] uses spectrum analysis of correlation matrices of
multi-modal data, learning parameters from the distribution of multi-
modal data to get hash codes. On the contrary, supervised models use
available data labels to learnmore accurate hash features, which is better
than unsupervised models in performance. Semantic correlation
maximization (SCM) [27] applies nonnegative matrix decomposition
and the nearest neighbor preservation algorithm to preserve semantic
consistency within modalities and between modalities. Semantic
Preserving Hashing (SePH) [28] transforms the semantic matrix
into a probability distribution, makes it as close as possible by
minimizing the Kullback-Leibler (KL) divergence, and then applies
logical regression to learn the hash function of each modal data [29].
Hash functions and binary codes can be learned simultaneously by the
data’s similarity matrix with discrete constraints in Enhanced Discrete
Multi-modal Hashing (EDMH) [30].

However, the above unsupervised and supervised models all
belong to hand-crafted models, which are unable to get the feature
relevance between different modal data very well. With the
continuous improvement of feature learning, deep neural
networks are extensively applied in the cross-modal retrieval
field. A deep neural network is introduced into feature learning
in Deep Cross-Modal Hashing (DCMH) [31], so the unified model
includes feature learning and the generation of hash codes. In
Pairwise Relationship Deep Hashing (PRDH) [32], the similarity
degree between different modal data is preserved in hash codes while
taking into account the similarity between the same modal data. A
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high-level semantic similarity matrix of continuous values is
constructed to guide the learning of hash codes in Deep Multi-
level Semantic Hashing (DMSH) [33], which captures the degree of
similarity between different modal data. To generate more
representative image features, Mask Cross-Modal Hashing
(MCMH) [34] effectively combines convolution features with
mask features extracted by the Mask R-CNN. Self-supervised
adversarial Hashing (SSAH) [35] introduces adversarial loss
through the construction of a label network to shorten the
distance between image and text distribution, which brings a
better retrieval effect. Using cosine distance and Euclidean
distance, the same measurement index can accurately reflect the
similarity between different modal data in Deep Semantic Cross-
Modal Hashing Based on Graph Similarity of Modal-Specific
(DCMHGMS) [36]. The distance between similar data can be
reduced by constructing ranking alignment loss to unearth the
semantic structure between different modal data in Deep Rank
Cross-modal Hashing (DRCH) [37, 38]. Semantic weight factors
are constructed to guide the optimization of the loss function and
obtain better retrieval performance in Multiple Deep neural
networks with Multiple labels for Cross-modal Hashing
(MDMCH) [39]. A label network is constructed to jointly guide
the feature learning of different modal data and innovates discrete
optimization strategies to learn hash codes in Deep Discrete Cross-
modal Hashing (DDCH) [40]. To increase the correlation between
hash codes, Deep Cross-Modal Hashing with Hashing Functions
and Unified Hash Codes Jointly Learning (DCHUC) [41] has
constructed a new unified joint hash code framework. To
improve the accuracy of hash codes in comparative learning,
Unsupervised Contrastive Cross-Modal Hashing (UCCH) [42]
proposes a momentum optimizer to make the generated hash
codes more accurate.

Transformer: The excellent performance of the Transformer
is attributed to the exertion of the attention mechanism, and it is
widely used in the field of Natural Language Processing (NLP)
[43]. It can assign attention weight according to the input data, to
determine which part of the data needs attention. On this basis,
limited information processing resources are allocated to
important parts and so the performance of the model is
improved. Google Deep Mind [44] applied it to the computer
vision field for the first time and achieved good performance by
combining it with Recurrent Neural Network (RNN). Bahdanau
et al. [45] prove the effectiveness of attention mechanisms in the
NLP. In [46], Google has successfully constructed the
Transformer network structure based on the attention
mechanism. Due to the limited feature subspace, it is hard to
enhance the performance of this ordinary attention mechanism.
The multi-head attention mechanism is more likely to capture
features from multiple dimensions by dividing attention
operations. Inspired by this important achievement, many
researchers tried to introduce Transformer structure into
computer vision tasks and achieved good results. In 2020, the
Vision Transformer (ViT) proposed by Dosovitskiy et al. [47]
performed well in many image classification tasks, because it can
capture contextual dependencies at different positions in an
image. It is simple and effective, with strong scalability. The
larger the amount of data, the better the performance of the ViT.
When there is enough data for pre-training, the performance of

the ViT is even better than that of the convolutional neural
network model, which fully proves that ViT can extract excellent
features from images.

3 Proposed method

The innovative networks of this paper will be introduced in this
section, and the structural framework of MDFFH is shown in
Figure 1. To facilitate comparison with other models, images and
texts are selected in our model. Our model can be extended to other
modalities easily.

3.1 Notations and problem definitions

Throughout this paper, vectors are denoted by lowercase bold
letters (e.g., z), matrices are represented by uppercase bold letters
(e.g., Z), and the transposition of the matrix Z is expressed as ZT. For
the matrix Z, the ith row, the jth column, the element located in ith
row and jth column and the Frobenius norm are denoted by Zi*, Z*j,
Zij and ‖Z‖F, respetively. The sign function represented by sign(x) is
that the value is −1 when x is less than 0, otherwise, the value is 1.

Assume thatO � On{ }Nn�1 denotes the image-text pair dataset, each
sample on � (xn, yn, ln) includes three parts: one part xn ∈ RDx

represents an image feature vector, another part y ∈ RDy denotes a
text feature vector, and the last part ln ∈ RC denotes the corresponding
category labels, where Dx, Dy and C are the dimensions of these two
modal data’s feature and the number of the category labels respectively.
S ∈ 0, 1{ }N×N is the matrix to measure the similarity degree between
different modalities, called the similarity matrix. Sij = 0 means that xi
and yj are not similar to each other and Sij = 1 denotes that these two
data have at least one same category label. The input data is transformed
into the corresponding hash codes and the similarity degree between
different hash codes is obtained by calculating their Hamming distance
in our model. The more similar the hash codes, the smaller the
Hamming distance; the greater the difference between hash codes,
the greater the Hamming distance. The formula for calculating
Hamming distance is

d ci, cj( ) � 1
2

k − 〈ci, cj〉( ), (1)

In Eq. 1, ci and cj are the hash codes for the vector xi and yj, 〈ci, cj〉
represents their inner product and k is the length of hash codes.

MDFFH aims to obtain two hash functions through training,
one is f(xi; θx) for images, and the other is g(yj; θy) for texts while
maintaining the similarity degree of the original data. Here, θx and θy
denote parameters in the different networks. These hash functions
can convert the data into hash codes with unified dimensions for
comparison.

3.2 Network architecture

The specific details of the networks in our model are as follows.
Image network: Image network is mainly composed of an image

multi-dimensional fusion module and a fully connected neural
network. Specifically, the multi-dimensional image fusion module
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FIGURE 1
The structural framework of MDFFH.

FIGURE 2
Detailed introduction of Vision Transformer.
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includes a Vision Transformer network and a convolutional neural
network. In the Vision Transformer network, the ViT-B/16 model is
chosen as the basic framework and fine-tuned on this basis. We
replace the last MLP Head used for the image classification in the
ViT-B/16 model with a single-layer completely connected network
with 4,096 neurons where the size of each image patch is 16 × 16.
The transformer Encoder has 12 Encoder Blocks, which are shown
in Figure 2. At the same time, the first six layers of CNN-F [48] are
selected as the model of a convolution neural network. In addition,
these two networks are pre-rained on ImageNet [49] to obtain
initialization parameters. Finally, the output results of these two
networks are fused into the multi-dimensional semantic features
learned by the image fusion module by vector concatenation. The
fully connected neural network has three layers, in which the
number of neurons is 8,192, 4,096, and the hash code length in turn.

Text network: Bag-of-Words (BoW) is usually used to convert
text into vectors, but the sparsity of vectors makes it impossible to
fully capture the text’s semantic information. Inspired by [28], we
adopt a text multi-dimensional fusion module to solve this problem.
The text multi-dimensional fusion module extracts the text semantic
features in different dimensions through five average pool layers (the
scales are 1a, 2a, 3a, 6a, and 10a, where “a” represents the
parameter), and uses 1 × 1 convolution layer to integrate
multiple features. At the end of this network, there is a three-
layer completely connected network to extract the text’s hash codes
and the numbers of neurons in every layer are 4,096, 4,096, and the
hash code length.

3.3 Hash code learning

The performance of the cross-modal hashing model depends on
whether generated hash codes can effectively reflect the similarity
degree between different modalities. Generally speaking, the
Hamming distance of hash codes generated by similar original
data should be small, and vice versa. To ensure that MDFFH can
achieve excellent retrieval performance, we have established an
objective function composed of two terms: semantic similarity
loss and hashing code quantization loss. We apply P*i � f(xi; θx)
to denote the learned feature from the image network, where θx
presents the network parameters. Let Q*i � g(yi; θy) denote the
learned feature from the text network, where θy refers to the network
parameters.

To minimize the semantic gap, we transform different modal
data to the same common semantic space to measure similarity.
Here, the formula of the likelihood function can be written
as follows:

p Sij|P*i,Q*j( ) � σ Φij( ), Sij � 1

1 − σ Φij( ), Sij � 0

⎧⎨
⎩ (2)

In Eq. 2, Φij � 1
2P

T
*iQ*j and σ(Φij) � 1

1+e−Φij
. When Sij = 1, the inner

product of P*i and Q*j will be bigger, which is equivalent to that the
two data are more similar. On the contrary, the more dissimilar the
two data are when Sij = 0.

The maximization of the likelihood function is equal to the
maximization of the negative log-likelihood function. To facilitate
the training of MDFFH, the above formula can be converted into the
following formula:

Jsimilarity � − ∑
N

i,j�1
SijΦij − log 1 + eΦij( )( ), (3)

where Φij � 1
2P

T
*iQ*j.

Since the output of the continuous variables from the network is
converted into hash binary codes through symbolic functions, there
is a certain quantization loss. Therefore, we set the quantization loss
term of hash binary codes to reduce this error:

Jquantization � Hx − P‖ ‖2F + Hy − Q‖ ‖2F, (4)

where Hx � sign(P) and Hy � sign(Q).
From Equations 3, 4, we can get the objective function for

optimizing MDFFH as follows:

min
H,θx,θy

J � Jsimilarity + ηJquantization

� − ∑
N

i,j�1
SijΦij − log 1 + eΦij( )( )

+η Hx − P‖ ‖2F + Hy − V‖ ‖2F( ),

(5)

In Eq. 5, η denotes the hyper-parameter of the hash code
quantization loss. Inspired by Jiang et al. [31], we set H � Hx � Hy

during model training.

3.4 Optimization

Given the discreteness of hash codes, we apply an alternating learning
strategy to optimizeMDFFH: at one time, only oneparameter is optimized
while the rest of the parameters are unchanged. In the optimization
process, the model parameters are updated by the back-propagation with
stochastic gradient descent (SGD). The optimization steps are shown in
Algorithm 1. Generally, it includes three steps:

1. Optimize θx with θy and H fixed.
Select any image data xi, and obtain the partial derivative of our

objective function as following in Eq. 6:

∂J

∂P*i
� 1
2
∑
N

j�1
σ Φij( )Q*j − SijQ*j( ) + 2η P*i −H*i( ). (6)

Then through the chain derivation rule, we can get ∂J
∂θx

from ∂J
∂P*i

and optimize θx according to BP.
2. Optimize θy with θx and H fixed.
Select any data yi, and obtain the derivative of the objective

function as following in Eq. 7:

∂J

∂Q*j
� 1
2
∑
N

i�1
σ Φij( )P*i − SijP*i( ) + 2η Q*j −H*j( ). (7)

Then through the chain derivation rule, we can get ∂J
∂θy

from ∂J
∂Q*j

and
optimize θy according to BP.

3. Optimize hash codes H.
The objective function can be converted into the formula as follows:

max
H

tr HT η P + Q( )( )( ) � tr HTR( ) � ∑
i,j

HijRij,

s.t.H ∈ −1,+1{ }k×N
(8)

In Eq. 8 R � η(P + Q). At last, the hash code matrix H is updated
according to the feature matrixes of images and text as following in
Eq. 9:
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H � sign η P + Q( )( ). (9)

3.5 Out-of-sample extension

The hash codes of the data not used for training are
generated by the hash functions learned by MDFFH. For
example, given the query image xq, we can get its hash codes
by the hash function as following in Eq. 10:

hxq � sign f xq; θx( )( ) (10)

Similarly for text data yq, we can get its hash codes by the hash
function as following in Eq. 11:

hyq � sign g yq; θy( )( ) (11)

4 Experiments

Based on two commonly used data sets, namely, MIRFLICKR-
25K [50] and NUS-WIDE [51], we conduct a large number of
experiments comparing the results with some representative

baselines to verify the validity of our model. It is noted that our
model can be easily applied to other similar datasets.

4.1 Datasets

MIRFLICKR-25K [50]: There are 25,000 images from the Flickr
website in this dataset, and every image has text descriptions and
labels, thus forming data pairs. During the experiment, we only retain
20,015 data pairs, because there are too few text descriptions for some
data pairs. For each text description, the Bag-of-Word model is
applied to convert it into 1386-dimensional vector form, and the
corresponding label is transformed into 24-dimensional vector form.
2000 data pairs are randomly selected for querying and the rest for
retrieval. Formodel training, we select 10,000 data pairs from retrieval.

NUS-WIDE [51]: There are 269,648 data pairs in this dataset, and
each includes images, text descriptions, and data labels. There is a total of
81 categories of original data labels in this dataset. We selected 21 of the
most common data labels as the experimental dataset and finally retained
195,834 data pairs after processing. Text descriptions and data labels in
each data pair are converted into 1,000 and 21-dimensional vector forms
through the Bag-of-Word model. The partition of different sets for model
training in this dataset is consistent with the MIRFLICKR-25 dataset.

TABLE 1 MAP scores of different models.

Task Model MIRFLICKR-25K NUS-WIDE

16 bits 32 bits 64 bits Avg 16 bits 32 bits 64 bits Avg

I → T CCA 0.5442 0.5693 0.5787 0.5640 0.3743 0.3781 0.3805 0.3776

CMFH 0.5526 0.5865 0.5907 0.5766 0.4427 0.4527 0.4623 0.4525

SCM 0.6225 0.6379 0.6508 0.6370 0.4807 0.4845 0.4882 0.4844

STMH 0.5984 0.6012 0.6074 0.6023 0.4501 0.4623 0.4779 0.4634

SePH 0.6571 0.6652 0.6717 0.6646 0.5752 0.5838 0.5902 0.5830

DCMH 0.7413 0.7462 0.7549 0.7474 0.5903 0.6031 0.6093 0.6009

DDCH 0.7394 0.7450 0.7575 0.7473 0.5971 0.6083 0.6259 0.6104

DCHUC 0.7118 0.7235 0.7377 0.7243 0.5879 0.5924 0.6068 0.5957

UCCH 0.7392 0.7441 0.7548 0.7460 0.5942 0.6136 0.6366 0.6148

OURS 0.7552 0.7675 0.7879 0.7702 0.6077 0.6365 0.6583 0.6341

T → I CCA 0.5501 0.5713 0.5791 0.5668 0.378 0.3869 0.3874 0.3841

CMFH 0.5638 0.5949 0.5972 0.5853 0.4515 0.4548 0.4614 0.4559

SCM 0.6801 0.6889 0.6941 0.6877 0.4895 0.4917 0.5073 0.4961

STMH 0.6103 0.6126 0.6215 0.6148 0.4476 0.4587 0.4592 0.4551

SePH 0.7183 0.7247 0.7278 0.7236 0.5883 0.5943 0.6124 0.5983

DCMH 0.7632 0.7643 0.7705 0.7660 0.6389 0.6511 0.6571 0.6490

DDCH 0.7596 0.7662 0.7781 0.7679 0.6332 0.6407 0.6460 0.6399

DCHUC 0.7107 0.7254 0.7318 0.7226 0.6185 0.6218 0.6253 0.6218

UCCH 0.7253 0.7268 0.7435 0.7318 0.6442 0.6484 0.6509 0.6478

OURS 0.7657 0.7705 0.7860 0.7740 0.6478 0.6528 0.6650 0.6552

The bold values highlight that our algorithm performs better compared to other algorithms and its variant.
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4.2 Evaluation and baselines

Evaluation: For cross-modal retrieval, researchers usually study
two typical tasks: retrieving text with images and retrieving
images with text.

To evaluate MDFFH’s performance, we select the two most
commonly used evaluation criteria, namely, the Precision-Recall
(PR) Curve and Mean Average Precision (MAP) [52]. The average
accuracy (AP) of any query data is calculated as follows:

AP � 1
K

∑
M

s�1
U s( )V s( ), (12)

where K andM are the numbers of retrieved relevant data and the
retrieval set, U(s) denotes the proportion of the first s retrieved
data related to the query data, and V(s) shows whether the
retrieved sth data is related to the query data, which can be
judged by the category label. If two data are related, V(s) = 1,
otherwise, V(s) = 0. The MAP value can be calculated by
averaging the APs of all query data and is positively correlated
with model performance.

In addition, the PR curve is another indicator for evaluating
the model performance. The performance can be directly judged
by drawing a PR curve of this model: if the area under this curve is
larger, the model performance is better. Moreover, the

FIGURE 3
The PR curves with code length 16. (A) MIRFLICKR-25K. (B) MIRFLICKR-25K. (C) NUS-WIDE. (D) NUS-WIDE.
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corresponding recall and precision can be obtained by altering
the Hamming radius and drawing the PR curve.

Baselines: We compare our MDFFH with nine representative
models, which are CCA, CMFH, SCM, STMH, SePH, DCMH,
DDCH, DCHUC, and UCCH. The first four models belong to
hand-crafted models and the rest are deep network models.

4.3 Implementation details

We use PyTorch, which is a deep-learning framework based on
dynamic tensors, to implement our MDFFH on the NVIDIA RTX
3090 server and the iteration number is set to 300. In the iteration,
the learning rate gradually decreases from 0.03 initialized to 10–6.
The hyper-parameter η is set to 1, and the detailed parameter
analysis is in the section Parameter Analysis. For each model
result, experiments have been run five times and the average
value is obtained as a representative.

4.4 Performance

The MAP scores of MDFFH and nine baseline models based
on two general datasets are shown in Table 1, where “I → T”
represents from image to retrieve text and “T → I” represents
from text to retrieve images. We can find that for hash codes with
different lengths, our model is superior to baseline models. For
example, when we select the MIRFLICKR-25K dataset, compared
with DCMH which is the most representative deep cross-modal
hashing model, MDFFH on “I → T” tasks increased by 3.05% on
average, and its MAP score on text retrieval image tasks increased
by 1.04% on average. On the NUS-WIDE dataset, compared with
DCMH, MDFFH’s MAP score on image retrieval text tasks
increased by 5.52% on average, and its MAP score on text
retrieval image tasks increased by 0.95% on average. In
particular, compared with these five hand-crafted baseline
models, MDFFH has been greatly improved. This proves that
better performance can be achieved by integrating feature
learning and the generation of hash codes into a unified end-

to-end network. At the same time, MDFFH has a better
performance compared with DCMH and DDCH. The reason
is that DCMH and DDCH generate hash codes only using single-
dimensional semantic features, ignoring the information
complementation between multi-dimensional semantic
features, which has certain limitations. On the contrary,
MDFFH applies the image multi-dimensional fusion module
and the text multi-dimensional fusion module to get the
multi-dimensional semantic features of different modal data,
which can mine richer semantic associations and establish
more accurate modal relationships, thus helping to narrow the
modal gap to greatly improve the retrieval accuracy.

When the hash code length is set to 16 bits, the PR curves
of MDFFH and baseline models under MIRFLICKR-25K and
NUS-WIDE datasets are demonstrated in Figure 3. For PR curves
of different models, which curve has a larger area represents
better performance. From this figure, it is clear that the
performance of MDFFH outperforms other baselines, which is
consistent with the application of MAP as a performance
evaluation index.

4.5 Parameter analysis

The influence of hyper-parameter values in the model based
on the MIRFLICKR-25K dataset is studied in this section. The
hash code length is uniformly 16 bits and the experimental results
are shown in Figure 4. The MAP scores of two cross-modal
retrieval tasks change with the hyper-parameter. During the
manual adjustment of the hyper-parameter, the range of
values is 0.01, 0.1, 1, and 2. The experimental results
demonstrate the MDFFH performance can reach the best
under the setting of γ = 1. The initial values of other network
parameters are randomly generated and then determined
through network learning.

4.6 Ablation study

We have designed one variant and carried out experiments to
verify whether the innovative module in MDFFH improves the
overall performance. MDFFH-1 is a variant of MOFFH without a
Vision Transformer. The variant aims to check the important
influence of the innovative image multi-dimensional fusion
module on our model’s retrieval performance. Table 2 shows

FIGURE 4
The sensitivity analysis of the hyper-parameter.

TABLE 2 The MAP scores of MDFFH and its variant.

Task Method MIRFLICKR-25K

16bits 32bits 64bits

I → T MDFFH 0.7552 0.7675 0.7879

MDFFH-1 0.7521 0.7587 0.7649

T → I MDFFH 0.7657 0.7705 0.7860

MDFFH-1 0.7567 0.7606 0.7692

The bold values highlight that our algorithm performs better compared to other algorithms

and its variant.
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the comparative results. From this table, it is clear that MDFFH’s
performance is better than MDFFH-1’s performance on the
MIRFLICKR-25K dataset because of the effective role of the
image multi-dimensional fusion module. The image multi-
dimensional fusion module effectively combines the global
image information concerned by the Vision Transformer with
the local image information concerned by the convolutional
neural network to generate more representative multi-
dimensional semantic features. This can more effectively get
the semantic similarity between different data to learn more
accurate hash mapping functions, and so improve our model
performance.

4.7 Convergence analysis

For analyzing MDFFH’s convergence, experiments are
conducted on MIRFLICKR-25K and NUS-WIDE datasets.
During the experiment, the hash code length is 16 bits and the
relative loss is used as an evaluation criterion. The relative loss of
the ith iteration is the ratio of the loss function value of the ith
iteration divided by the loss function value of the first iteration
and the experimental results are shown in Figure 5. With the
number of iterations increasing, the relative loss value decreases
rapidly and becomes stable, which means our optimization
algorithm is effective.

5 Conclusion

A new cross-modal hashing model named MDFFH is
proposed from the perspective of multi-dimensional semantic
features. The image multi-dimensional fusion module

constructed effectively combines the convolutional neural
network and Vision Transformer and can generate multi-
dimensional semantic features of images with richer semantic
information. Similarly, we apply the text multi-dimensional
fusion module to generate more representative text multi-
dimensional semantic features, which provides a basis for
mining richer semantic associations and building more accurate
modal relationships, thus making the generated hash code more
semantic. Experimental analysis of two general datasets can verify
that our MDFFHmodel improves the performance of cross-modal
retrieval. In future work, we will attempt to investigate its
applications in the field of multimodal generation, multimodal
question answering, and health and medical big data retrieval.
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