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A novel distributing–collecting
on-line insulation monitoring
system and line selection
technology for the DC supply
system

Chen Feng, Pingfeng Ye, Zhengzhong Gao*, Haiyang Jiang,
Xiangyu Zang and Xiangxing Zhang

College of Electrical Engineering and Automation, Shandong University of Science and Technology,
Qingdao, China

At present, the power supply system of 5G base stations is a micro smart grid, it
generally uses 240 V DC power supply with multiple branches, and leakage
accidents will threaten personal and property safety, so it is vital to identify the
fault line accurately and remove the faults rapidly. In this paper, the leakage
phenomenon of transmission lines in the HVDC power supply system of a 5G
communication base station is studied. To address the issue of multi-branch line
leakage diagnosis and line selection in the 240 V DC system, a new distributed DC
insulation monitoring and fault line selection technology and system are
proposed. The distributed DC insulation monitoring line selection technology
is used to collect the leakage current of each branch by setting a unique single-
core DC leakage transformer and process the signal primarily. In addition, a high-
resistance bridge switchgear is added to the bus bar. According to different
leakage currents caused by the imbalance of the bridge before and after the
switch, the insulation resistance of electrodes to the ground is calculated
accurately, which solves the problem that the current technology cannot
judge the fault of the positive and negative electrodes to the ground at the
same time. Through both simulation and prototype experiments, the feasibility of
this technology and system device in line insulation monitoring and line selection
of the HVDC communication base station power supply system is verified.

KEYWORDS

insulation monitoring system, leakage phenomenon, fault line selection, grounding
selection for DC system, simulation and prototype experiments

1 Introduction

Currently, a high-voltage DC power supply system with a voltage level of 240 V is
widely used as equipment in a signal system, transformer substation, and
communication station because of the complicated environment (Hellgren, 2004; Li,
2012; Chen, 2018a). As these DC power supply systems include many branches and
loads, when the line insulation drops, it is easy to cause grounding, short circuit, and
other faults, endangering personal safety or equipment safety. Therefore, it is necessary
to have a corresponding insulation monitoring device, which can give early warning and
lock the fault location quickly.
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At present, the integral insulation monitoring and protection
technology is adopted in the power supply of communication station
usually. However, it is impossible to select and locate the faulty
branch accurately. The existing insulation monitoring methods with
the function of fault branch selection include the balance-bridge
method and signal injection method. However, there are also many
problems in these methods. For the balance-bridge method of fault
line selection, it is necessary to set the bridge’s parameters accurately,
according to the system type (Huang et al., 2019). If the value of the
bridge parameter is low, the insensitivity of the insulation
monitoring system will cause an inaccuracy of the fault
judgment. On the contrary, if the value of the bridge parameter
is high, the test data will have large deviation and the equipment
maintenance cost will increase. Furthermore, it is difficult to detect
the simultaneous decline of positive and negative insulation
resistances to the ground with current technology (Luo et al.,
2016). In order to detect the insulation state of each electrode,
switchable bridges need to be installed in each branch. This bridge
has caused the line-to-ground insulation resistance to drop actually.
For each additional bridge, the equivalent value of the ground
resistance will be doubled, and the risk of personal electric shock
will increase accordingly (Jiang and Ji, 2009; Yin et al., 2012; Rybski
et al., 2015). At the same time, on one hand, the active power leakage
current sensor installed in the branch is costly; on the other hand, it
is ineffective to detect all kinds of insulation faults. The signal
injection method is greatly affected by the electrical distribution
parameters, and it is impossible to judge the insulation drop in the
complicated environment (Yow-Chyi and Chen-You, 2012;
Olszowiec, 2017).

To solve these issues, a distributing–collecting online insulation
monitoring system is proposed. It adopts the single-core DC-type
current transformers settled in each branch to collect the micro-
current after the insulation fault. Ground insulation monitoring and
line selection can also be realized under various insulation faults. This
paper mainly includes the following aspects: the principle and
technology of leakage protection are analyzed, and the sensor suitable
for the distributed acquisition system is studied. The advantages and
disadvantages of current leakage protection technology are compared
and analyzed. A novel distributing–collecting on-line insulation
monitoring system is proposed, which is more suitable for the DC
transmission system of communication base stations and the use of
remote electrical equipment. The hardware structure and algorithm
principle of the proposed system are developed and designed. It is best to
build the analog communication base station of the DC transmission
system using MATLAB software verification and prototype verification,
carry out experimental verification, and analyze the results to verify the
effectiveness of the system device.

2 Method

2.1 Personal electrical safety issues and
insulation monitoring settings

With reference to the provisions of China’s electrical safety
regulations (GB/T 13870.2-2016), the human body safety current
in the DC system is no more than 50 mA, i.e., when the current
flowing through the human body is below 50 mA, it is not life-

threatening, and people who are subjected to an electric shock
can react in time and avoid continuous injury (Dawalibi et al.,
1990). For the DC power supply system, it is stipulated that the
product of the human electric shock current and the action time
is not more than 30 mA s. By imitating the safety parameters of
the AC system, the safety parameter for the DC system can be
stipulated as 50 mA s. According to China’s human body safety
current standard, adult men’s threshold to get rid of the electric
shock should be no more than 10 mA (Roberts, 2009; Zhao et al.,
2017; Zhenbin et al., 2021).

As shown in Figure 1, the line in the figure represents the line of
the general DC power supply system. When a person touches the
positive pole or negative pole of the line and the insulation of the
other pole drops, an electric shock accident will occur.

Generally, the resistance of the human body rbady is regarded as
1 kΩ, and the voltage level of the DC power supply system for the
communication system is 240 V.

Ik � U0

rk + rbady
. (1)

Calculated by Eq. 1, when the insulation resistance rk of the line
(positive or negative pole) drops to 3.8 kΩ, if the person happens to
touch the other pole (negative or positive pole) of the line, the
current flowing through the person is 50 mA (human body safety
current for the DC system). When the insulation resistance of the
line drops to 24 kΩ, the current flowing through the body is 9.6 mA
(the threshold current to get rid of the electric shock).

In order to guarantee the human safety and ensure certain
reliability, the current flowing through a person must be
controlled under 50 mA. Since the communication system
powered by the DC power supply system is generally installed in
a high tower, there is a great danger of muscle suppression caused by
an electric shock. Therefore, for avoiding an electric shock and
enabling people to get rid of the electric shock in time, it is
recommended to set the tripping operation setting as 28 kΩ
(1.2 times of 24 kΩ).

2.2 Distributed online insulation monitoring
system

2.2.1 The structure of a distributed online insulation
monitoring system

Aiming at the deficiency of the existing insulation monitoring
system, this paper proposes a distributed online insulation monitoring

FIGURE 1
DC personal electric shock safety diagram.
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system. Figure 2 displays the distributed insulation monitoring system.
The whole system consists of a centralized central processing unit and a
dedicated DC residual current transformer distributed in each branch.
Positive and negative cable currents in each branch pass through the
special DC residual current transformer proposed in this paper at the
same time, and the residual current of each branch is extracted using the
principle of the current magnetic field effect canceling each other in the
positive and negative cables for insulationmonitoring. All control signal
transmission, signal collection, and processing are integrated in the
central processing unit of the distributed insulation monitoring device.
The central processing unit uniformly sends out the control signal,
controls, andmodulates the special DC transformer to collect the signal,
and the collected signal is uniformly processed by the central processing
unit. CT1, CT2, . . . CTn are DC insulation monitoring transformers
installed in each branch, and CTall is the DC insulation monitoring
transformer, which is installed at the bus with a high resistance to
ground. R1+, R1-, R2+, R2- . . . Rn+, and Rn- are the insulation resistances
of each branch.Ra andRb are the balanced high resistance to the ground
of the bus.

The entire system consists of a central processing unit and DC
residual current transformers distributed over the branches. The
transformer collects residual current of each branch for insulation

monitoring by the principle that the magnetic field created by
current in different directions cancels each other out.

2.2.2 Distributed online insulation monitoring
transformer

By studying the existing magnetic modulation current
transformers, a new insulation monitoring transformer is
presented, which is more durable, precise, economical, and
practical. The existing magnetic modulation current transformers
are all active transformers; they usually require a control circuit, and
a signal processing and amplifying circuit in them. An alternating
current signal is added to the magnetic core, so the direct current of
the DC power system can be extracted on the secondary side of the
transformer. The current transformer is shown in Figure 3 (Chen
and Sun, 2018; Xie et al., 2016; M; Shi et al., 2022).

The principle of the transformer is as follows: first, the central
processing unit sends out the AC control signal, which is injected
into the magnetic ring of the transformer. The acquisition coil
transmits the collected signal back to the signal processing
module of the central processing unit. Through signal processing,
the DC component is extracted (Wang et al., 2020; Li et al., 2015). As
shown in Figure 3, when the AC signal is injected into the injection

FIGURE 2
Distributed online insulation monitoring system.
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coil on the magnetic ring in the transformer, the AC signal generates
an alternating magnetic field in the magnetic ring. The line under
test passes through the center of the magnetic core. If the line under
test contains a DC signal, the DC signal will generate amagnetic field
offset in a fixed direction in the magnetic ring. The acquisition coil
collects the signals generated by the combined action of AC and DC
signals on the magnetic field, and the injected magnetic field is
changed by the bias of the DCmagnetic field (Zhao et al., 2012; Chen
et al., 2019). The collected signal is processed to obtain the DC
current of the line under test. In order to further reduce the cost, the
central processing unit of the insulation monitoring system is
proposed to inject ac control signals into the transformers of
each branch, control the magnetic-modulated current
transformer to extract the dc current, and collect the residual
current of each branch by the central processing unit so as to
judge the insulation decline state. This method does not require
the transformer of each branch to install the control circuit, and
signal processing and amplification circuit separately and greatly
reduces the cost of the transformer; the control signal is uniformly
sent by the central processing unit, reducing the error and
improving the reliability of insulation monitoring.

The development board of arm STM32F103 selected in this
paper is equipped with three 12-bit ADC converters, with an AD
sampling rate up to 1 MHz. Because the ADC converter can only
collect 0–3.3 V voltage signal and the transformer secondary side
current signal is given, we need to regulate the transformer
secondary side of current signal, as shown in Figure 4. After
current voltage conversion, the in-phase amplifier, pressure
limiting protection, signal processing steps, such as isolation, and
low pass filtering can be collected to the transformer secondary side
current signal, to arm for analysis and calculation.

2.2.3 Analysis and determination for the insulation
fault

In view of the possibility of each cable in the complex DC power
system having an insulation drop, the distributed insulation
monitoring system can realize the real-time online monitoring of
the insulation state of each branch in the system.

Figure 2 shows high-resistance grounding in the DC power
supply system. If the grounding fault or insulation degradation
occurs in the positive pole of branch 1, there is leakage current I1+,
which flows into the earth and flows back to the negative pole
through high-resistance grounding of the bus; at this time, the
current of branch 1 is increased and ΔI1 > 0. Transformer 1 of
branch 1 can collect the DC leakage current in real-time and upload
it to the central processing unit.

Figure 2 shows Ra and Rb are the high resistance of neutral point
grounding bus, communication equipment in the 240V power
supply system. The resistance value is generally set to 200 kΩ.
Rn+ and Rn− are the positive and negative insulation resistance of
the n branch. The cable-related parameters show the system of intact
cable insulation resistance of approximately 40 MΩ. Taking branch
n as an example, Figure 5 shows the simplified circuit. Ra, Rb, Rn+,
and Rn- constitute the bridge balance. When no insulation drop
occurs, Rn+ is equal to Rn-, Ra is equal to Rb, and the bridge becomes
balanced, and ΔIn � In+ − In− � 0.

When a single-terminal ground fault occurs, the positive
insulation resistance Rn+ in branch n decreases, the negative
resistance Rn- remains unchanged, and the bridge is unbalanced.
The leakage current flows from the positive electrode through the
positive insulation resistance Rn+ into the earth and flows back to the
negative electrode from the bus high resistance Rb to form a circuit.
At this point, the measured current of the branch n CTn is

FIGURE 3
Traditional magnetic modulation and improved distributed modulation transformers.
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ΔIn � In+ − In− ≠ 0. Since the negative resistance Rn- is unchanged,
In− ≈ 0; it is negligible, so ΔIn � In+.

According to the Kirchhoff’s voltage law (Quintela et al., 2009),

U � RaIa + Rb ΔIn + Ia( ), (2)
Rn+ � RaIa

In+
� Ra U − RbΔIn[ ]

In+
. (3)

Because the anode voltage U is observed to be 240 V, high-
resistance Ra and Rb are 200 kΩ; the drain-current value ΔIn is
obtained from the transformer CTn, and the value of positive
insulation resistance Rn+ can be obtained.

Similarly, if the negative monopole insulation drops, the negative
insulation resistance Rn- in the branch n drops, the positive resistance
Rn+ remains unchanged, the bridge is unbalanced, and the leakage
current flows from the negative electrode through the negative
insulation resistance Rn- into the earth and flows from the bus high-
resistance Ra back to the positive electrode to form a circuit, which is
opposite to the positive insulation decreasing leakage current. At this
point, the current measured by CTn in branch n is ΔI′n.
ΔI′n � In+ − In− ≠ 0. Since the positive resistor Rn+ is unchanged,
In+ ≈ 0; it is negligible, so ΔI′n � In−.

U � Rb Ib + Ra ΔI′n + Ib( ), (4)

Rn− � RbIb
In−

� Rb U − RaΔI′[ ]
△I′n Ra + Rb( ) . (5)

Because the anode voltage U is considered to be 240V, high-
resistance Ra and Rb are obtained to be 200 kΩ, the leakage current
value ΔIn is obtained by CTn, by substituting Eq. 5, and the value of
negative insulation resistance Rn- can be obtained.

Section 2.1 has been demonstrated that the insulation resistance
alarm value should be greater than 28 k.

Therefore, the set values for the insulation monitoring system
are Rn ≥ 2.8 × 104Ω. It can be found that the positive electrode-to-
earth insulation fault and the negative electrode-to-earth insulation
fault measure the opposite current direction when the monopole
insulation fault occurs. Then, the calculation shows that the
insulation resistance is less than the setting value when
|ΔIn|≤ 5.26 × 10−4A. Therefore, when the system branch
transformer detects leakage current |ΔIn|> 5.26 × 10−4A, the
system raises an alarm and through ΔIn direction to determine
the positive or negative insulation fault.

The monitoring principle analysis and formula derivation for the
single-terminal grounding fault arementioned previously. This principle
can also be extended to realize the on-line monitoring function for
insulation of one or more branches at the same time. It is only necessary
to calculate the insulation resistance of each branch individually.

However, in the DC power supply system, in addition to the
monopole insulation drop, there are also single-branch double-stage
insulation drop faults. Because the aforementioned principles are
derived from the monopole insulation drop, it is not applicable to
the case of the anode and cathode simultaneous drop. Therefore, the
balanced resistance switching principle is adopted in this paper, that
is, a resistance switching device is added to the high-resistance
connection of the distribution bus to realize the monitoring
technology of this kind of fault. Figure 6 shows that a new
resistance Rc and switching device are added to the positive pole
of the bus. The switching device is selected to be closed every 5 s for a
duration of 1 minute before disconnecting. Its simplified equivalent
circuit diagram is shown in Figure 6.

In Figure 6, the initial state of switch K is state 1. Ra and Rb are
the high resistances at the neutral point of the bus; Rc is the
switchable high resistance, which is used to change the state of
the bridge; Rn+ and Rn- are, respectively, the insulation resistance
values of positive and negative pole cables in branch n; and ΔIn is the
leakage current, ΔIn � In+ − In−. U2 is the negative electrode-to-
earth voltage, which is the terminal voltage of Rb or Rn-.

FIGURE 4
Signal conditioning circuit.

FIGURE 5
Equivalent circuit of the single-pole grounding fault.
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If the positive and negative pole wires of branch n suffer from
insulation decline at the same time, the equation under state 1 can be
obtained according to the following circuit principle:

U

Ra//Rn+ + Rb//Rn−
� U2

Rb//Rn−
, (6)

U2 � Ia + ΔIn( )Rb, (7)
U2 � U − IaRa. (8)

Combining Eqs 7, 8, we observe that

Ia � U − ΔInRb

Ra + Rb
, (9)

U2 � Rb U + ΔInRb( )
Ra + Rb

. (10)

Switch K is closed, followed by state 2; ΔI′n is the leakage current
at state 2, where ΔI′n � In+′ − In−′ . U2

′ is the negative electrode-to-
earth voltage, that is, the terminal voltage of Rb or Rn- can be
obtained according to the following circuit principle:

U

Ra//Rc//Rn+ + Rb//Rn−
� U2

′

Rb//Rn−
, (11)

U2 � I′a + ΔI′n( )Rb, (12)
U2

′ � U − I′aRa. (13)
Combining Eqs 12, 13, we observe that

Iac � U − ΔI′nRb

Ra//Rc + Rb
, (14)

U2
′ � Rb U + ΔI′nRb( )

Ra//Rc + Rb
. (15)

Combining Eqs 6, 11, we observe that

Rn+�
1

Ra//Rc

RaRb
×

U−ΔI′nRb( ) Ra+Rb( )
U+ΔI′n × Ra//Rc( ) Ra+Rb( )− U+ΔInRa( ) Ra//Rc+Rb( )

, (16)

Rn−�
1

R2
a Ra+Rb( )

R2
b
U+△InRa( ) Ra+Rb( ) ×

U−△InRb( ) U−△I′nRb( )
U+△I′n × Ra//Rc( ) Ra+Rb( )− U+△InRa( ) Ra//Rc+Rb( )

.

(17)

Because Ra, Rb, and Rc are known for 200 kΩ, U is the negative
voltage on both ends as its value is 240 V, and ΔI′n and ΔIn can be
measured using a branch transformer, which can calculate the value
of insulation resistance R.

Therefore, when the transformer of the branch and the
transformer of the high-resistance side of the bus bar detect
leakage current, the decrease in the conductor insulation
resistance value can be determined in real time, according to the
direction and size of the leakage current of the positive and negative
branches. If the value is less than the setting value, the system will
give an alarm and produce corresponding actions. Compared to the
probability that both poles of a branch have an insulation decrease, a
single-pole insulation fault is more likely to happen. So, it is
necessary to allocate time for monitoring each fault in a
reasonable way. Table 1 shows the time allocation for switch K
switching to monitor two faults. The resistance switching device is
the switch K shown in Figure 2.

The switching frequency of switch K is 6 s/time. If switch K is
closed, the bridge is unbalanced, and the system is efficient to detect
the condition that the insulation resistance of the positive and
negative poles is decreased to the same value at the same time.
Furthermore, if the switch is turned off, a single-pole insulation
decrease could be detected in this mode.

3 Results

3.1 Simulation of the single-electrode
grounding fault

The Simulink model based on MATLAB is shown in Figure 7.
First, the state of the power supply system during normal

operation is simulated and analyzed. When the insulation is well,
the insulation resistance of each branch is approximately 40 MΩ.
The results show that the leakage current measured by each
transformer is 0.

The second step is to simulate monopole to ground insulation
descent. Branch 1 is set as the faulty branch. In order to ensure the
diversity and comprehensiveness of the simulation, it is assumed
that the grounding resistance of the branch with an insulation fault
is 100 kΩ, 75 kΩ, 50 kΩ, 28 kΩ, and 8 kΩ. When the monopole
insulation drops in the positive or negative insulation, the leakage
current value is equal, and the current direction is opposite. It can be
determined whether the positive insulation or the negative
insulation decreases by the current direction. Therefore, only the
positive insulation decreases are simulated.

As shown in Figure 8, the comparison between the simulation
results and the calculation formula shows the relationship between
the leakage current and insulation resistance when different
monopole-to-ground insulation resistance values are simulated.
The curve in the figure is the formula of calculating insulation
resistance by leakage current in Section 2 of this paper.

When the monopole-to-the ground insulation fault occurs, the
smaller the monopole-to-the ground insulation resistance is, the
greater the leakage current will be. The simulation results are in
perfect agreement with the calculated results. Through comparison,
it can be seen that the formula proposed in this paper can accurately

FIGURE 6
Equivalent circuit diagram.
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calculate the insulation resistance for the monopole insulation
decline.

If there is insulation degradation in multiple branches at the
same time, there will be leakage current in all branches with an
insulation fault and the high-resistance grounding bus-bar.
Therefore, it could recognize insulation degradation in all
branches through this technology.

3.2 Simulation of the multi-electrode
grounding fault

In the third step, the insulation of the anode and cathode drops
at the same time. In the simulation figure, the branch containing Rc
contains a circuit breaker to simulate the two states of bridge
resistance before and after switching (before the cut is state
1 and after the cut is state 2). In order to carry out a

comprehensive analysis, the following positive and negative
insulation resistance values are selected: 150 kΩ, 100 kΩ, 75 kΩ,
50 kΩ, 28 kΩ, and 8 kΩ. Leakage current ΔI under state 1 and
leakage current ΔI′ under state 2 were measured, and the data were
drawn in the three-dimensional coordinate system, as shown in red
dots in Figures 9, 10, respectively, for the simulation results. In the
figure, x axis and y axis represent positive and negative insulation
resistance, respectively. The z-axis in the two figures shows the
leakage current ΔI under state 1 and the leakage current ΔI′ under
state 2. Eqs 18, 19 were recorded into the coordinate system, as
shown in the surface in Figure 9. When the positive and negative
insulation resistances were given different values, the leakage current
ΔI under state 1 and the leakage current ΔI′ under state 2 were
shown.

In state 1, the greater the difference between the positive
electrode-to-ground insulation resistance and the negative
electrode-to-ground insulation resistance is, the greater the

TABLE 1 Time allocation of switch K.

Condition of K Switching cycle of K (s) Monitoring mode

Closed 1 Balanced insulation decreases in two poles of the branch

Broken 5 Single-pole insulation decreases

FIGURE 7
Simulation mode of the distributed insulation monitoring system.
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leakage current value will be, and the direction is related to the
insulation resistance at the poles. When Rn+>Rn−, the leakage
current is negative; when Rn+<Rn−, the leakage current is
positive; and when Rn+ � Rn−, the leakage current is 0. At this
point, it is impossible to judge the insulation resistance to the
ground, so the bridge resistance needs to be switched to state 2. In
state 2, it can be seen that due to the imbalance of high resistance

of bus grounding, when the positive electrode-to-earth insulation
resistance is much greater than the negative electrode-to-earth
insulation resistance, the leakage current value is the maximum,
and the leakage current is negative. When Rn+ × Rb � Rn− × Ra//c,
the leakage current is 0 due to the bridge balance.

It can be seen from the comparison that the formula proposed in
this paper can accurately calculate the insulation resistance of the
anode and cathode for the simultaneous decline of the anode and
cathode insulation.

3.3 Analysis of the experiment

In order to test the proposed distributed insulation
monitoring system in this paper, an experimental setup was
built, and a prototype device of the system was made for
experiments. Figures 11 and 12 shows the experimental setup
of insulation monitoring system proposed in this paper. Eight
branches can be collected and calculated simultaneously. Figure
11 shows the central processing module of the system in this
paper, whose function is to transmit the detection control signal,
process the collected signal, calculate the insulation resistance,
and complete the alarm or transmit the result to the upper
computer. As shown in Figure 12, the signal acquisition
module passes the positive and negative poles of each branch
through the center of the current transformer at the same time.

FIGURE 9
Simulation results are compared with the theoretical values under state 1.

FIGURE 8
Simulation results and the calculation formula.
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The current transformer sends the acquisition signal to the A/D
acquisition module of the central processing module and to the
oscilloscope used in the experiment. The positive and negative
lines of one branch are simultaneously passed through the single-
core DC current transformer. The transformer is powered by the

central processing module, and the range is ± 10uA~2 mA. The
circuit of the transformer is shown in Figure 13.

First, the single insulation drop detection was verified. In order
to carry out a comprehensive analysis, three branches were selected
for the failure test. For each branch, first, the negative insulation
resistance was kept unchanged, and the positive electrode was

FIGURE 10
Simulation results are compared with the theoretical values under state 2.

FIGURE 11
Central processing module of the system.

FIGURE 12
Transformer connection situation.
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connected to the ground, 100 kΩ, 75 kΩ, 50 kΩ, 28 kΩ, and 8 kΩ.
Multiple measurements of leakage current ΔI are averaged.
Figure 14 shows the comparison between the experimental
results and theoretical calculations. The error bar represents
experimental data, and the curves are theoretical values. It is
observed that the lower the insulation resistance to ground is, the
smaller the resulting error will be.

It can be seen from this that the designed prototype can
accurately determine and calculate the single pole-to-ground
insulation resistance drop fault.

Then, the condition of positive and negative insulation
resistances falling simultaneously was verified, the system bus
contained switching resistance Rc, the resistance value of

positive and negative insulation resistances to the ground was
changed, and the leakage current ΔI before switching and ΔI′
after switching was recorded. As shown in the following table,
the calculated insulation parameter and its error for system with
multi-branch insulation degradation are shown in Table 2.

The comparison between the calculated insulation parameters and
the theoretical insulation parameters shows that themonitoring error of
the system will gradually increase with the decrease in the difference of
positive and negative line insulation resistances. However, the error of
insulation resistance calculated by the system based on distributed
selection is less than ± 3%, which fully meets the basic requirements of
the system. Therefore, this principle can be applied to online insulation
monitoring for all kinds of degradation.

FIGURE 13
Experimental equivalent circuit.

TABLE 2 Simulation and theoretical parameter table of multi-branch cable insulation monitoring.

Positive
insulation

resistance/KΩ

Negative
insulation
resistance/

KΩ

State
1 leakage
current
ΔI/mA

State
2 leakage
current
ΔI′/mA

Calculated
value of
positive
insulation

resistance/KΩ

Calculated
value of
negative
insulation

resistance/KΩ

Positive
insulation
resistance
error rate

Negative
insulation
resistance
error rate

150 150 0 −0.280 153 151 2% 0.66%

150 28 −0.662 −1.331 150.2 28 0.1% 0%

100 28 −0.539 −1.232 100.2 28.2 0.2% 0.7%

100 75 −1.116 −0.522 101 75.8 1% 1.06%

75 50 −0.120 −0.062 76.5 51 2% 2%

75 28 −1.674 −1.12 75.4 28.3 0.5% 1%

50 50 0 −0.436 51 51 2% 2%

28 50 0.288 −0.071 27.3 48.7 −2.5% −2.6%

28 8 −0.631 −1.46 28.3 8.08 1% 1%

8 28 0.627 −0.36 27.8 7.99 0.71% 1.25%
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4 Conclusion

Based on the analysis of the existing problems of the leakage
protection technology for DC power supply systems in domestic and
abroad, and focus on the insulation degradation fault of the DC
power system in the communication station, this paper proposes an
on-line insulation monitoring system based on distributed selection.
This system can realize online insulation monitoring, and can
quickly and accurately diagnose the faulty branch with insulation
degradation, single-line grounding fault, and the grounding fault of
the remote equipment shell

Through experiments and simulations, the conclusions are as
follows:

(1) When the monopole-to-ground insulation drops, the smaller
the monopole-to-ground insulation resistance is, the greater the
leakage current will be. The simulation and experiment basically
agree with the calculation results, which prove that the formula
proposed in this paper can calculate the insulation resistance
accurately.

(2) When both positive and negative insulation resistances are
decreased, in state 1, the larger the difference between the
positive pole-to-ground insulation resistance and the
negative pole-to-ground insulation resistance is, the larger
the leakage current value will be, and the direction is related
to the insulation resistance at the poles. When Rn+>Rn−, the
leakage current is negative; when Rn+<Rn−, the leakage
current is positive; and when Rn+ � Rn−, the leakage
current is 0. At this point, it is impossible to judge the
insulation resistance to the ground, so the bridge
resistance needs to be switched to state 2. In state 2, it can
be seen that due to the imbalance of high resistance of bus
grounding, when the positive electrode-to-earth insulation
resistance is much greater than the negative electrode-to-

earth insulation resistance, the leakage current value is the
maximum, and the leakage current is negative. When
Rn+ × Rb � Rn− × Ra//c, the leakage current is 0 because of
the bridge balance. The simulation results are in good
agreement with the calculated values, which proves the
theory proposed in this paper. Compared with the
calculated results, the experimental results have some
errors; the error rate is less than 3%, in line with the
general engineering standards. Therefore, it is shown that
the distributed DC insulation on-line monitoring technology
proposed in this paper can accurately complete the
calculation and fault judgment of the positive and negative
insulation resistances of each branch.
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FIGURE 14
Comparison experimental results and theoretical calculation of
the single branch.

Frontiers in Energy Research frontiersin.org11

Feng et al. 10.3389/fenrg.2023.1291552

16

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1291552


References

Chen, Y. (2018a). Research on common DC current detection technolog. Low. Volt.
Appar. 22, 82–86. doi:10.16628/j.cnki.2095-8188.2018.22.015

Chen, Y., and Sun, J. (2018). Research on residual current protection device with DC
component detectio. Electr. Energy Manag. Technol. 14, 37–41. doi:10.16628/j.cnki.
2095-8188.2018.14.007

Chen, Z., Li, H., Liu, L., Xiang, L., and Bai, B. (2019). DC bias treatment of hybrid type
transformer based on magnetic flux modulation mechanism. IEEE Trans. Magnetics 55
(6), 1–4. doi:10.1109/tmag.2019.2903566

Dawalibi, F. P., Southey, R. D., and Baishiki, R. S. (1990). Validity of conventional
approaches for calculating body currents resulting from electric shocks. IEEE Trans.
Power Deliv. 5 (2), 613–626. doi:10.1109/61.53063

Hellgren, O. (2004). “A key to expanding older DC systems with new equipment,” in
Intelec 2004. 26th annual international telecommunications Energy conference, 241–247.
doi:10.1109/INTLEC.2004.1401473

Huang, Y., Qin, J., Liu, N., Huang, H., Zhang, J., Bi, L., et al. (2019). Differential
current method of unbalanced bridge with double bridge arm for DC insulation
detection. Electr. Energy Manag. Technol. 11, 57–61. doi:10.16628/j.cnki.2095-8188.
2019.11.011

Jiang, J., and Ji, H. (2009). “Study of insulation monitoring device for DC system based
on four-switch combination,” in 2009 international conference on computational
intelligence and software engineering, 1–4. doi:10.1109/CISE.2009.5363460

Li, H. (2012). Application analysis of high voltage DC power supply system (240V) in
a test project. Intelec 2012, 1–7. doi:10.1109/INTLEC.2012.6374511

Li, K., Niu, F., Wu, Y., Wang, Y., Dai, Y., Wang, L., et al. (2015). Nonlinear current
detection based on magnetic modulation technology. IEEE Trans. Magnetics 51 (11),
1–4. Art no. 4004804. doi:10.1109/tmag.2015.2446134

Luo, Z., Ren, X., Yang, H., Cai, G., Qing, C., and Luo, Y. (2016). “Research on the
insulation monitoring devices for DC power system based on the detection technology
of DC bus to grounding capacitance,” in 2015 2nd international forum on electrical
engineering and automation, 117–120. doi:10.2991/ifeea-15.2016.24

Olszowiec, P. (2017). Influence of insulation monitoring devices on the operation of
DC control circuits. Power Technol. Engineeing 6 (50), 653–656. doi:10.1007/s10749-
017-0768-1

Quintela, F. R., Redondo, R. C., Melchor, N. R., and Redondo, M. (2009). A general
approach to Kirchhoff’s Laws. IEEE Trans. Educ. 52 (2), 273–278. doi:10.1109/te.2008.
928189

Roberts, D. (2009). 50-V shock hazard threshold. IEEE Trans. Industry Appl. 46 (1),
102–107. doi:10.1109/TIA.2009.2036541

Rybski, R., Kaczmarek, J., and Kontorski, K. (2015). Impedance comparison using
unbalanced bridge with digital sine wave voltage sources. IEEE Trans. Instrum. Meas. 64
(12), 3380–3386. doi:10.1109/TIM.2015.2444255

Shi, M., Miao, H., Fei, J., Ge, X., Xiao, X., Wu, F., et al. (2022). “The development of
DC leakage current monitoring device,” in 2022 IEEE 5th international electrical and
Energy conference (CIEEC) (Nangjing, China: IEEE).

Wang, S., Li, H., Liu, Q., Huang, Q., and Liu, Y. (2020). “Design of a DC residual
current sensor based on the improved DC component method,” in 2020 IEEE power &
Energy society general meeting (PESGM) (Canada: Montreal, QC), 1–5.

Xie, Z., Han, S., and Wang, L. (2016). “The magnetic modulation of DC transformer
core characteristics analysis,” in 2016 3rd international conference on information
science and control engineering (ICISCE), 1433–1438. doi:10.1109/ICISCE.2016.306

Yin, G., Liu, Y., Xu, H., Li, M., and Li, J. (2012). “The new DC system insulation
monitoring device based on phase differences of magnetic modulation,” in
2012 international conference on systems and informatics (ICSAI2012), 585–658.
doi:10.1109/ICSAI.2012.6223065

Yow-Chyi, L., and Chen-You, L. (2012). Insulation fault detection circuit for
ungrounded DC power supply systems. SENSORS 2012, 1–4. doi:10.1109/ICSENS.
2012.6411550

Zhao, H., Xiao, X., and Sun, Q. (2017). Identifying electric shock in the human body
via α dispersion. IEEE Trans. Power Deliv. 33 (3), 1107–1114. doi:10.1109/TPWRD.
2017.276616

Zhao, X., Li, L., Lu, J., Cheng, Z., and Lu, T. (2012). Characteristics analysis of the
square laminated core under DC-biased magnetization by the fixed-point harmonic-
balanced FEM. IEEE Trans. magnetics 48 (2), 747–750. doi:10.1109/tmag.2011.2174776

Zhenbin, C.,Weiya, C., Xiangyu, C., Qiao, H., Lu, H., and Qiu, N. (2021). A newmethod
of insulation detection on electric vehicles based on a variable forgetting factor recursive
least squares algorithm. IEEE Access 9, 73590–73607. doi:10.1109/access.2021.3079332

Frontiers in Energy Research frontiersin.org12

Feng et al. 10.3389/fenrg.2023.1291552

17

https://doi.org/10.16628/j.cnki.2095-8188.2018.22.015
https://doi.org/10.16628/j.cnki.2095-8188.2018.14.007
https://doi.org/10.16628/j.cnki.2095-8188.2018.14.007
https://doi.org/10.1109/tmag.2019.2903566
https://doi.org/10.1109/61.53063
https://doi.org/10.1109/INTLEC.2004.1401473
https://doi.org/10.16628/j.cnki.2095-8188.2019.11.011
https://doi.org/10.16628/j.cnki.2095-8188.2019.11.011
https://doi.org/10.1109/CISE.2009.5363460
https://doi.org/10.1109/INTLEC.2012.6374511
https://doi.org/10.1109/tmag.2015.2446134
https://doi.org/10.2991/ifeea-15.2016.24
https://doi.org/10.1007/s10749-017-0768-1
https://doi.org/10.1007/s10749-017-0768-1
https://doi.org/10.1109/te.2008.928189
https://doi.org/10.1109/te.2008.928189
https://doi.org/10.1109/TIA.2009.2036541
https://doi.org/10.1109/TIM.2015.2444255
https://doi.org/10.1109/ICISCE.2016.306
https://doi.org/10.1109/ICSAI.2012.6223065
https://doi.org/10.1109/ICSENS.2012.6411550
https://doi.org/10.1109/ICSENS.2012.6411550
https://doi.org/10.1109/TPWRD.2017.276616
https://doi.org/10.1109/TPWRD.2017.276616
https://doi.org/10.1109/tmag.2011.2174776
https://doi.org/10.1109/access.2021.3079332
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1291552


Nomenclature

Parameter

rbady Resistance of the human body

rk Insulation resistance

U0 Voltage level of the DC power supply system for the communication
system

CTn DC insulation monitoring transformers installed in branch n

CTall DC insulation monitoring transformer which is installed at the bus with
high resistance to ground

Rn+/Rn− Insulation resistance of branch n

Ra/Rb Balanced high resistance to ground of the bus

U Anode voltage

Rn Set values for the insulation monitoring system

Rc New resistance and switching device to the positive pole of the bus

K Initial state of the switch

Variable

Ik Current flowing through the body

I1+ Leakage current

ΔIn Current increment of branch n

ΔI′n Current measured by CTn in branch n

U2 Negative electrode-to-earth voltage

ΔI Leakage current
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Spatio-temporal load migration
potential of data centers:
Evaluation and application

Lei Zhu, Shutan Wu*, Haoyu Liu, Qi Wang and Yi Tang

School of Electrical Engineering, Southeast University, Nanjing, China

The wide distribution of data centers and the delay tolerance of computing tasks
endow data center loads with adjustable characteristics in both temporal and
spatial dimensions. Due to the characteristics of abundant spatiotemporal
flexibility, data centers can participate in the optimization of power system
operation and regulation. To quantify this flexibility, this paper proposes a
spatiotemporal load migration potential evaluation model. Meanwhile, a data
center energy management strategy is combined with the characteristics of
spatiotemporal load migration, which deeply exploits the migration potential
through the spatiotemporal redistribution of delay-tolerant tasks, as well as
server ON/OFF scheduling and CPU operating frequency scaling across
different spatial locations. A case study demonstrates that adopting the
proposed approach considering an energy management strategy can
effectively improve the load migration potential of data centers. The migration
characteristics of data centers have great application prospects in reducing
carbon emissions and enhancing operational flexibility.

KEYWORDS

data centers, spatio-temporal load migration, potential evaluation, energy management
strategy, flexibility

1 Introduction

The gradual replacement of traditional thermal power sources with high-penetration
renewable energy sources poses a significant challenge to power systems in dealing with
multidimensional uncertainties. The inadequate regulation capacity on the power generation
side necessitates the participation of flexible resources on the load side in power dispatching,
thereby improving the flexibility of power systems (Han et al., 2022). For example, energy
storage systems (Ma et al., 2022) and temperature-controlled loads (Song et al., 2022) are
commonly used to adjust the temporal distribution of loads to alleviate peak power demand
and decrease the power supply pressure on the power generation side. With the continuous
advancement of digital infrastructure construction, new types of spatially distributed
resources (e.g., data centers (DCs), communication base stations, and electric vehicles)
have emerged to provide novel solutions for power load adjustment. These resources can
intercommunicate through various wide-area networks (i.e., computation networks (Chen
et al., 2021a), communication networks (Fan et al., 2021) and transportation networks (Yuan
et al., 2022)) to indirectly realize the spatial migration of power energy.

The surge in demand for data processing is prompting cloud service operators to
build more geographically distributed DCs, with the aim of achieving low-latency and
highly reliable services, which makes DCs emerge as major electricity consumers
(Martijn and Fons, 2021). According to reports, the electricity consumption of DCs
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reached approximately 3% of the total amount globally in 2016
(Danilak, 2017), and it is still doubling every 4 years (Long et al.,
2022). In some metropolises, such as Beijing in China, the power load
capacity occupied by DCs has already accounted for 8% of the total
power load capacity in 2021. Given the rapid expansion of data centers
at the spatiotemporal scale and migration level, it is of great
importance to fully exploit the adjustment potential of DC loads
in power systems.

Current research on utilizing the adjustment capability of DCs
can be primarily categorized into two levels. That is, temporal level
and spatial level. At the temporal level, the workloads of DCs with
low delay sensitivity can be shifted to alternate working hours to
alleviate the power load pressure at a specific time. This
characteristic enables DCs to be integrated into demand response
(Kwon, 2020) to improve frequency quality (Fu et al., 2020) or
smooth power fluctuation (Yang et al., 2018), similar to traditional
interruptible power loads.

What sets DCs apart is their capacity to migrate workloads
spatially, thereby reducing power loads in specific locations to
achieve regulation objectives (Wang et al., 2022). Therefore, the
spatial load migration capability of geo-distributed data centers is
more effective in power dispatch. There have been relevant studies
on the application of spatial loadmigration by DCs for power system
regulation purposes. In terms of operational stability, DCs can
flexibly adjust the spatial distribution of power loads to diminish
voltage violations (Chen et al., 2021b), relieve network congestion
(Chen et al., 2021c) and reduce peak loads (Guo et al., 2021a). In
terms of operational economy, existing studies achieved the optimal
comprehensive operation cost of power systems (Gu et al., 2015) and
renewable energy consumption (Yang et al., 2022) through spatial
scheduling in DCs. In terms of resilience enhancement, DCs can be
dispatched in pre-event prevention (Liu et al., 2022), during-event
emergency control (Yu et al., 2015) and post-event restoration (Liu
et al., 2019) to reduce power loss after extreme events. The benefits of
DCs as spatiotemporal flexible resources for participating in power
grid scheduling have been demonstrated in the abovementioned
literature. However, the differentiation of the spatiotemporal load
migration (STLM) potential of DCs in different scenarios has not
been considered. It is imperative to quantitatively evaluate the STLM
potential of DCs to devise more effective grid regulation strategies
tailored to different scenarios, but this issue remains unexplored in
current research.

The STLM potential of DCs is primarily derived from the
redistribution of workloads, which is heavily influenced by the
energy management strategies implemented within the DCs. By
employing energy management strategies, internal equipment in
data centers can effectively reduce energy consumption and thereby
enhance the STLM potential of DCs. Some energy-saving
technologies and strategies have been studied, such as dynamic
voltage/frequency scaling (DVFS) (Wang et al., 2017), dynamic
cluster server configuration (DCSC) (Li et al., 2012), and the
collaborative control method of information technology (IT)
systems and cooling systems (Fu et al., 2020; Lyu et al., 2021),
achieving the optimization goal of minimum total energy
consumption. However, there is a paucity of research that
integrates internal energy management strategies with external
migration schemes. Inadequate energy management strategies can
amplify the burden on DC task processing and increase the power

supply pressure on the power systems, ultimately resulting in a
significant reduction in the STLM potential of DCs.

This paper proposes a quantitative approach for evaluating the
STLM potential of DCs, which provides a basis for devising diverse
power scheduling strategies. Meanwhile, the DVFS-DCSC
technique, coupled with an energy management mechanism, is
adopted to further enhance the STLM potential of DCs. Then, an
application model of a day-ahead scheduling strategy considering
the STLM potential of DCs is proposed, and the flexibility and
economic efficiency of power systems are significantly improved.
The major contributions of this paper are as follows.

1) An STLM potential evaluation model is established to quantify
the migration loads of urban DCs in different scenarios, which
evaluates the STLM potential by spatiotemporal workload
redistribution.

2) An energy management strategy is applied in the proposed
potential evaluation model to further exploit the STLM
potential of DCs, and server ON/OFF scheduling and CPU
operating frequency selection are optimized to maximize the
STLM potential.

3) A workload optimization scheduling strategy considering
customer satisfaction is established to ensure the quality of
service (QoS) of DCs and avoid workload accumulation. The
STLM ability of tasks with different service-level agreements
(SLAs) is also analyzed in this case.

4) A day-ahead scheduling method that integrates the STLM of
DCs with DVFS-DCSC technology is proposed based on the
proposed evaluation model. The carbon emissions and the CPU
utilization are better optimized compared with the conventional
scheduling strategy.

The remainder of this paper is organized as follows. The
theoretical basis of DCs’ spatiotemporal flexibility is introduced
in Section 2. The DC model and STLM potential evaluation model
are established in Sections 3, 4, respectively. In Section 5, case studies
on the STLM potential evaluation of DCs and day-ahead scheduling
strategies considering energy management strategies are carried out,
and the results are displayed and discussed accordingly. Section 6
gives a brief conclusion.

2 Theoretical basis of DC STLM
potential

The coupling architecture of the computation network and power
system is shown in Figure 1. The DC load exhibits high flexibility in
both the temporal and spatial dimensions. The prioritization of
workloads and the emerging trend of cloud interconnectivity
among DCs endow them with the capability of STLM. Therefore,
the spatiotemporal workload redistribution among DCs is the basis
for them to participate in the STLM of power loads.

Many studies have been performed on temporal load migration,
which will not be discussed in detail. This section focuses on spatial
load migration, which refers to a scheduling method that involves
either shedding loads at some locations or migrating loads that
ought to exist in one center to other centers (Wang et al., 2022). The
migration potential of spatially flexible loads can be assessed
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quantitatively from various perspectives, including the temporal
scale, spatial scale, and migration level. The temporal scale
determines the response speed of load migration, the spatial
scale determines the coverage range of load migration, and the
migration level determines the extent to which migration
scheduling can contribute to overall system performance.
Regional DCs achieve spatial interconnection via backbone
optical networks, whose extremely high transmission speeds
and minimal delay rates of merely 0.02 ms/km (Zhou et al.,
2016) enable rapid load migration across timescales ranging
from seconds to hours. In addition, the optical fiber network
also has the characteristics of high bandwidth and strong
reliability, facilitating the interconnection not only of local
distribution network DCs but also of transnational DCs. Hence,
the spatial range of data load migration can span several kilometers
to several thousand kilometers. To accommodate the ever-
increasing data business requirements, modern large-scale DCs

must be capable of sustaining loads that can measure in the tens of
megawatts, thereby necessitating migration levels spanning from
hundreds of kilowatts to tens of megawatts.

The STLM potential of DCs is related to many factors, including
the number and capacity of fiber links connected to them, their
workload processing capacity, and the number of tasks assigned to
each time period. However, the potential relying on only the
spatiotemporal redistribution of workloads is relatively limited,
and the STLM potential of DCs can be further enhanced through
optimization of their energy management strategies. DVFS is an
efficient and feasible energy management technology for DCs,
improving the utilization of a server via discrete adjustments to
CPU operating voltage or frequency, thereby reducing the power
consumption. Meanwhile, DCSC reduces total cluster power
consumption by consolidating the load on a subset of machines
and turning off the rest during low workload periods (Guo et al.,
2021b). Adopting the DVFS-DCSC energy management strategy, as
seen in Figure 2, can not only reduce the target DCs’ energy
consumption but also improve the ability of other DCs to
undertake workloads, thus further enhancing the STLM potential
of the target DC.

3 Modeling and characteristics of DCs

Considering the factors affecting the DCs’ STLM, the models of
DC power consumption, DVFS technology, DCSC technology,
optical network power consumption, workloads and QoS are
established in this section.

3.1 Power consumption model of DC

The DC is mainly composed of IT equipment, cooling
equipment and distribution equipment, and the energy
consumption of DC can be expressed as (1). Among them, the
IT equipment energy consumption accounts for the largest

FIGURE 1
Coupling architecture of the computation network and power network.

FIGURE 2
DVFS-DCSC energy management strategy.
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proportion of the total energy consumption, which has the widest
range of changes. As the core element of IT equipment, servers are
the key equipment for massive data computing and processing,
which accounts for the largest proportion of IT equipment energy
consumption. Therefore, it can be used to represent the total energy
consumption of IT equipment, as shown in (2). In the typical server
power consumption model, the part of the CPU changes the most,
and the power consumption of other components, such as memory,
hard disk and network, can be regarded as approximately constant
(Jin et al., 2020). Therefore, the power consumption model of a
single server can be represented by the superposition of fixed power
and dynamic power, which is expressed as (3).

PDC � PIT + PCO + PEL (1)
PIT � Mser · Pser (2)

pser � pser
fixed + pser

dyna (3)

where PDC denotes the power consumption of the DC; PIT denotes
the power consumption of IT equipment; PCO denotes the power
consumption of cooling equipment; and PEL denotes the power
consumption of distribution equipment. Mser is the number of
servers owned by the data center; Pser is the power consumption
of the servers. pser

fixed and pser
dyna denote the fixed power and dynamic

power of the servers, respectively.
The cooling energy consumption PCO depends on the amount

of heat generated by servers, and the heat is almost entirely
derived from the computing energy consumption (Liu et al.,
2018). In DCs, the energy consumption of cooling and
distribution systems can be estimated based on the typical
power usage effectiveness (PUE). PUE is defined as the energy
consumption ratio of the entire DC to the IT equipment, so PDC

can be expressed as (4).

PDC � PUE · PIT (4)

3.2 DVFS model of DC

For the status of DC operation, there are many DCs with
redundant server configurations and low CPU utilization in most
time periods. DVFS changes the power consumption of the DC by
discretely adjusting the CPU operating voltage or frequency. To
facilitate actual operation, this paper only considers the adjustment
of the CPU operating frequency f and sets several suitable frequencies
for selection, as shown in (5). Each operating frequency has a
corresponding server processing capacity, which is proportional to
this frequency. The dynamic power of the server is related to the third
power of the CPU operating frequency. The higher the CPU operating
frequency is, the stronger the ability to process the workloads, although
the consequence of energy consumption greatly increases. The CPU
utilization can be calculated by the ratio of the capacity needed for task
processing to the server processing capacity, as shown in (6–8).When f
is constant, pser

dyna is proportional to U, which is described in (9). For
processing the same number of tasks, the CPU consumes less energy
under a lower frequency. Therefore, the frequency can be reduced in
the period of fewer workloads to improve the CPU utilization and
decrease the DC energy consumption.

f ∈ fCPU
1 , fCPU

2 ,/, fCPU
k−1 , f

CPU
k{ } (5)

U � λ

μ
(6)

λ � L

Mser
(7)

L � ∑
task∈TASK

Mprocess
task · γtask (8)

Pser
dyna � Aser · f3 · U (9)

where f CPU denotes the working frequency of the CPU.U is the CPU
utilization rate; λ is the tasks processed by a server during unit time;
μ is the processing capacity of a server. Aser denotes the dynamic
power consumption coefficient of a server; L denotes the total load
that the DC needs to process; Mprocess

task denotes the total number of
processed tasks; γtask denotes the CPU capacity required to process
one task; TASK is a set of task types.

According to the abovementioned analysis, DVFS can be applied
to enhance the STLM potential of DCs. The DCs to which migration
terminates can increase f to undertake more tasks, while the DCs
from which migration originates can decrease f to reduce energy
consumption, which can further expand the DC migration load.
Given that DVFS can be executed within a fewmilliseconds (Li et al.,
2012), it represents a viable strategy for scheduling within temporal
scales ranging from seconds to hours.

3.3 DCSC model of DCs

On the one hand, adjusting the dynamic power of the server has a
good energy-saving effect on the DC. On the other hand, the fixed
power of the server is also a part that cannot be ignored. The spatial
migration of power loads in DCs is achieved through the
spatiotemporal redistribution of workloads. This part has limited
migration potential and cannot cope well with extreme situations
such as large power shortages in power systems. Although the fixed
power cannot freely change the spatial distribution of power loads
through data load redistribution among DCs such as the dynamic
power, local DCs can shut down the current idle servers while
simultaneously activating new servers elsewhere within the network
to tackle increased workload demand. Therefore, it can be considered
that the fixed power of servers also has the ability of spatial migration.
In other words, the ON/OFF operation of geographically distributed
servers transforms fixed power into a schedulable spatial resource.
Since the cooling energy consumption of the DC depends on the heat
generated by the IT equipment, it will also change with the regulation of
the IT equipment for a constant PUE, thereby reducing the total energy
consumption and greatly improving the STLM potential of DCs.

To prolong the service life of the servers as much as possible,
the servers should avoid frequent ON/OFF operation, thereby
setting a minimum ON/OFF time to force them to maintain at
least for a period before becoming another state, as shown in (10).
The ON/OFF operation of a server is a second-level delay process,
so DCSC is more suitable as a minute-level or hour-level
scheduling method.

It1 � 1, It2 � 0, It3 � 1
∀t1 < t2 < t3, t2 − t1 ≥MD, t3 − t2 ≥MD

(10)
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where It denotes the operating state of a server at time t, 1 represents
ON, 0 represents OFF, andMD denotes the minimumON/OFF time
of a server.

3.4 Power consumption model of optical
networks

The interconnection communication network that DCs rely on is
generally composed of backbone optical networks, which have large
transmission capacity, extremely fast transmission speed and much
lower delay. For typical optical networks, the energy consumption can
be generated by an IP layer, an optical–electric–optical layer and a
wavelength-division multiplexing layer (Zhang et al., 2015). The
networks’ energy consumption is jointly borne by the source node
and destination node (Deylamsalehi et al., 2018), assuming that the
source node and the destination node bear half of the network energy
consumption.

Referring to the power consumption model of the server, a
simplified power consumptionmodel of the optical network can also
be expressed as the superposition of fixed power and dynamic power
(Dayarathna et al., 2016). The fixed power is the elementary energy
consumption of the communication equipment, which is unrelated
to network traffic. The dynamic power is the energy consumption of
the network transmission and is related to the network traffic (Sun
et al., 2013). Furthermore, the bandwidth and traffic within optical
networks can be likened to the processing capacity and workload
demand of CPUs in servers. The power consumption of the optical
fiber link (i, j) is shown in (11), and (12) represents the power
consumption of network element (NE) node i.

Pnet
ij � pnet

fixed + lij · pnet
dyna (11)

Pnet
i � 1

2
∑

j: i,j( )∈E
Pnet
ij (12)

where Pnet
ij denotes the power consumption of link (i, j) and pnet

fixed

and pnet
dyna denote the fixed power and dynamic power of the optical

fiber network, respectively. lij is the traffic of link (i, j); E is the set of

optical fiber links. ∑
j: (i,j)∈E

Pnet
ij represents the sum of the power

consumption of all links connected to node i.

3.5 Models of workloads and QoS

When exploring the DCs’ STLMpotential, it is necessary to find an
appropriate trade-off strategy between adjusting the power
consumption of IT equipment and meeting the users’ requirements
for QoS. The workload can be divided into delay-sensitive tasks and
delay-tolerant tasks according to the SLA (Cupelli et al., 2018). Delay-
sensitive tasks, such as live broadcast, real-time payment and real-time
measurement, need to be processed immediately after the arrival of the
tasks at tar, and thus, they are not suitable to be migrated to other DCs
for processing as spatially flexible resources. In contrast, delay-tolerant
tasks, such as image processing and scientific computing, only need to
be completed before the deadline tmax. The QoS constraints are shown
in (13), where Δttr,qu denotes the queuing waiting time for migration,

Δttr denotes the needed time for task migration, Δtpro,qu denotes the
waiting time for processing in the queue, and Δtpro denotes the needed
time for task processing. As shown in Figure 3, different types of tasks
have different SLAs for the deadline of completion, which can vary
from a few minutes to several hours, so they have great spatiotemporal
flexibility. Aftermigration to other DCs at tar’, the tasks can be stored in
the hard disk without immediate processing. Consequently, the time
points tmig and tst for migration and processing can be freely selected to
achieve the optimal operation strategy.

Δttr,qu + Δttr + Δtpro,qu + Δtpro ≤ t max (13)
To avoid the backlogs being processed near tmax, a task-scheduling

optimization strategy considering customer satisfaction is established.
The variation in customer satisfaction with waiting time is not
completely linear but rather a nonlinear curve. Prolonged wait
times lead to reduced customer perception, ultimately resulting in
a diminishing marginal rate of satisfaction. Positive values denote
satisfaction, whereas negative values imply dissatisfaction. Since all
tasks need to be strictly processed before tmax according to the SLA,
the negative part of the curve is not considered. The cosine distributed
time satisfaction function is truncated from the part of the cosine
function curve, which is expressed as (14). The curve changes little
around the thresholds Li andUi, and the slope of themiddle part of the
curve is larger. LetUi be tmax, and let Li be set as a reasonable value. To
enable the tasks to be completed under the conditions of achieving
high time satisfaction, the average customer satisfaction can be set to
be greater than a certain fixed value.

S t( ) �
1, t ∈ 0, Li[ ]

0.5 + 0.5 cos
π

Ui − Li
· t − Ui + Li

2
( ) + π

2
( ), t ∈ Li, Ui[ ]

⎧⎪⎪⎨
⎪⎪⎩

(14)
To clarify the completion of each batch task in each time period,

matrix A is established as shown in (15). A is a T-order sparse
matrix, and its lower-left corner and upper-right corner are
composed of zero elements. The zero elements in the lower-left
corner indicate that the tasks arriving at t cannot be processed ahead
of t, and the zero elements in the upper-right corner indicate that the
number of tasks violating SLAs is none, which meets the maximum
response time constraints of QoS. The average value of customer
satisfaction Stask can be defined as the ratio between the total
satisfaction and the total number of tasks processed, which can
be calculated in (16) and (17).

A �

Mfin
task,11 Mfin

task,12 Mfin
task,13 / Mfin

task,1tmax
task

0 0 / 0

0 Mfin
task,21 Mfin

task,22 / Mfin
task,2 tmax

task
−1( ) Mfin

task,2tmax
task

0 / 0

..

. ..
. ..

. ..
. ..

.

0 / 0 Mfin
task, T−tmax

task( )1 Mfin
task, T−tmax

task( )2 Mfin
task, T−tmax

task( )3 / Mfin
task, T−tmax

task( )tmax
task

0

0 / 0 0 Mfin
task, T−tmax

task
+1( )1 Mfin

task, T−tmax
task

+1( )2 / Mfin
task, T−tmax

task
+1( ) tmax

task
−1( ) Mfin

task, T−tmax
task

+1( )tmax
task

0 / 0 0 0 Mfin
task, T−tmax

task
+2( )1 / Mfin

task, T−tmax
task

+2( ) tmax
task

−2( ) Mfin
task, T−tmax

task
+2( ) tmax

task
−1( )

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 / 0 0 0 0 0 Mfin
task, T−1( )1 Mfin

task, T−1( )2
0 / 0 0 0 0 0 0 Mfin

task,T1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

�Stask �
∑

ttask
max

t�1
Mfin

task,t · Stask t( )

∑
ttask max

t�1
Mfin

task,t

(16)

Mfin
task,t � ∑

T+1−t

a�1
Mfin

task,a t+a−1( ) (17)
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where Mfin
task,ab denotes the number of tasks received at time a

and finished in period (b-1, b]; ttask max denotes the deadline
of completion time for task; Stask(t) denotes the satisfaction
value of completing the task in period (t-1, t); and Mfin

task,t

denotes the number of all tasks finished in period (t-1, t].

4 Potential evaluation model of the
DCs’ STLM

The above models can be applied to the STLM potential
evaluation of DCs, and the corresponding objective functions and
constraints are set in the section.

4.1 Objective function of STLM potential
evaluation

Considering the energy management strategy, optical network
allocation, and QoS, the potential evaluation model of the DCs’
STLM is established. To obtain the maximum STLM of region i, the
minimum sum of the power consumption of the DC and NE in
region i at time T is taken as the objective function, as expressed in
(18) and (19).

min Ptotal
i � ∑

T

t�1
PDC
i,t( + Pnet

i,t
⎞⎠ (18)

where

PDC
i,t � PUEi · [MON

i,t · pser
fixed

+∑
k∈K

∑
task∈TASK

Mprocess
i,k,t,task · γtask

μi,k
· Aser · f3

i,k
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pnet
i,t � 1

2
∑

j: i,j( )∈E
pnet
fixed + lij,t · pnet

dyna( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

4.2 Constraints of STLM potential evaluation

4.2.1 Constraint of power balance
(20) and (21) ensure that the regional power systems meet the

real-time balance of power, and the power supply of the grid is less
than its maximum output.

PPV
i,t + Pgrid

i,t � PLoad
i,t + PDC

i,t + Pnet
i,t (20)

Pgrid
i,t ≤Pi,grid

max (21)
where PPV

i,t and PLoad
i,t denote the predicted value of PV generation and

power load in area i at time t; PDC
i,t , P

net
i,t and Pgrid

i,t denote the power
consumption of DC/NE/grid in area i at time t, respectively; and
Pi,grid

max denotes the upper limit of output power of grid region i.

4.2.2 Constraint of DCSC in DCs
(22) and (23) indicate that the number of servers ON cannot

exceed the total number of servers owned by DCs, and to handle the
tasks beyond the plan well, maintaining a certain minimum number
of active servers is imperative. (24) and (25) calculate the number of
newly ON/OFF servers at time t. (26–29) calculate the number of
servers that can be turned ON/OFF at time t based on the minimum
ON/OFF time, thus providing (30) and (31) with the upper limit of
the number of servers that can be turned ON/OFF, avoiding the loss
of serving life of servers due to the frequent ON/OFF operation.

Mi � MON
i,t +MOFF

i,t (22)
Mi,ON

min ≤MON
i,t ≤Mi (23)

Moffon
i,t � MON

i,t −MON
i,t−1 + MON

i,t −MON
i,t−1

∣∣∣∣
∣∣∣∣

2
(24)

Monoff
i,t � MON

i,t −MON
i,t−1

∣∣∣∣
∣∣∣∣ −MON

i,t +MON
i,t−1

2
(25)

for 1≤ t≤MDi

Monable
i,t � Mi −MON

i,t −∑
t

n�1
Monoff

i,n (26)

FIGURE 3
IT workload models with different delay tolerances.
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Moffable
i,t � Mi −MOFF

i,t −∑
t

n�1
Moffon

i,n (27)

for MDi + 1≤ t≤T

Monable
i,t � Mi −MON

i,t − ∑
t

n�t−MDi+1
Monoff

i,n (28)

Moffable
i,t � Mi −MOFF

i,t − ∑
t

n�t−MDi+1
Moffon

i,n (29)

for 1≤ t≤T

0≤Monoff
i,t ≤Moffable

i,t (30)
0≤Moffon

i,t ≤Monable
i,t (31)

whereMON
i,t andMOFF

i,t denote the number of servers ON/OFF in DC
i at time t; Moffon

i,t and Monoff
i,t denote the number of newly ON/OFF

servers in DC i at time t; andMonable
i,t andMoffable

i,t denote the number
of servers that can be turned on/off in DC i at time t.

4.2.3 Constraint of DVFS in DCs
(32) represents the number of servers operating at each

operating frequency after adopting DVFS technology. (33) forces
the average CPU utilization of servers at each operating frequency to
be less than an upper limit, which avoids CPU saturation and is
conducive to stable hardware operation.

MON
i,t � ∑

k∈K

MON
i,k,t (32)

∑
task∈TASK

Mprocess
i,k,t,task · γtask ≤Ui,k

max ·MON
i,k,t · μi,k (33)

where Ui,k
max denotes the upper limit of the CPU utilization rate.

4.2.4 Constraint of QoS
To reduce the impact on the processing plans of other DCs, this

part only redistributes the receiving tasks of the source DC i
temporally and spatially. (34–36) enforce that all types of tasks
must be completed within a designated maximum response time
according to the SLAs while dictating the relationship between the
number of tasks received by and processed at destination DCs.

∑
k∈K

Mprocess
i,k,t,task � Mprocess

i,t,task (34)

for 1≤ t≤T − ttask max + 1, ∀task ∈ DU

∑
t

n�1
Min

i,n,task ≤ ∑
ttask

max+t−1

n�1
∑
N

m�1
Mprocess

m,n,task ≤ ∑
ttask

max+t−1

n�1
Min

i,n,task (35)

for 1≤ t≤T, ∀task ∈ DU

∑
t

n�1
∑
N

m�1,m ≠ i

Mprocess
m,n,task ≤∑

t

n�1
∑
N

m�1,m ≠ i

Mmig
m,n,task ≤∑

t

n�1
Min

i,n,task −Mprocess
i,n,task( )

(36)
whereMprocess

i,t,task denotes the total number of tasks processed by DC i in
time period t; DU is the set of delay-tolerant tasks; N is the number of
DCs in the network;Min

i,n,task denotes the number of tasks allocated to
DC i by the front-end server in time period n; and Mmig

m,n,task denotes
the number of tasks that migrated to DC m in time period n.

(37) makes the average customer satisfaction of each type of task
greater than a preestablished threshold, which not only shortens the
waiting time for processing tasks but also avoids the accumulation of
unprocessed workloads.

�Stask ≥ Sc,∀task ∈ DU (37)
where Sc is the satisfaction requirement of customers.

4.2.5 Constraints of optical network transmission
(38–40) explain the condition that task migration should satisfy

for optical network traffic. (38) is the constraint of NE node traffic
conservation, which represents the number of tasks that the network
switching equipment i transmits to node j. When the tasks migrate
from DC i to DC j, if node i is the migration destination, the net
number of tasks received by DC i is Mmig

i,t,task. If node i is neither a
migration source nor a destination, no task migrates into DC i,
which is connected to NE i. If the node is a source, the number of
tasks received by DC i is equal to the negative number of tasks
migrated into other DCs. (39) and (40) calculate the occupied
bandwidth of link (i, j) at time t and limit the maximum optical
network traffic.

∑
j: i,j( )∈E

Mtask
ij,t − ∑

j: j,i( )∈E
Mtask

ji,t �
− ∑

N

m�1,m ≠ i

Mmig
m,t,task s → d( ), i � s

0, i ≠ s ∩ i ≠ d
Mmig

i,t,task s → d( ), i � d

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(38)
lij,t � ∑

task∈DU

Mtask
ij,t +Mtask

ji,t( ) · βtask, i, j( ) ∈ E (39)

0≤ lij,t ≤ lij
max, i, j( ) ∈ E (40)

whereMtask
ij,t denotes the number of tasks migrated fromNE i to NE j

at time period t; βtask denotes the bandwidth required to migrate one
task; and lij max denotes the maximum bandwidth of link (i,j).

4.3 Day-ahead scheduling model
considering the STLM potential of DCs

The proposed spatiotemporal migration model of DCs
considering DVFS-DCSC technology can be applied to not only
the potential evaluation but also the day-ahead scheduling strategy
of multi-DCs. The day-ahead scheduling takes the minimum carbon
emissions of all DCs and NEs as the objective function, and the tasks
in each DC can be redistributed temporally and spatially. Therefore,
the constraint can be adjusted as (41):

minC � ∑
T

t�1
e ·∑

N

i�1
PDC
i,t + Pnet

i,t( ) · Δt⎡⎣ ⎤⎦ (41)

where C is the total carbon emissions of all DCs and NEs in time
period T and e is the CO2 emission density.

5 Case study

As shown in Figure 4, the urban distribution network with six
DCs is used for the case study. Region 1 is a light-industrial area,
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regions 2 and 6 are residential areas, region 3 is a heavy-
industrial area, and regions 4 and 5 are commercial areas.
The weather conditions of each region are the same, and the
loads and PV generation are shown in Figure A1 in the
Appendix. The number of tasks allocated to each DC in each
time period is shown in Figure A2 in the Appendix. The delay-
tolerant tasks handled by DCs account for 60% of the total tasks,
and there are seven types of tasks. The capacity needed for
processing, the bandwidth needed for migration, the
proportion and the maximum response time for each type of
task are shown in Figure A3 in the Appendix. Each DC adopts the
same type of server, and the relevant parameters of the DC are
presented in Table 1. Each DC must maintain the activation of a
minimum of 50% of its servers. A case study of the STLM
potential evaluation and day-ahead scheduling of DCs is
solved in MATLAB 2021a using Gurobi 9.5.1 to demonstrate
the validity of the proposed model.

5.1 STLM potential evaluation of DCs
considering the DVFS-DCSC energy
management strategy

To quantify the maximum STLM potential of the DC to deal
with certain emergency situations such as load shortages, the
proposed method is used to evaluate the STLM potential.

5.1.1 Migration results
The power spatiotemporal changes in each DC before and after

migration are shown in Figures 5A, B. Without loss of generality, the
STLM characteristics and effects of DC1 are discussed in detail, and
the following conclusions can be drawn:

1) After adopting the DVFS-DCSC STLMmethod, the migration
effect of DC1 is obvious. During the valley period of task
processing, DC1 operates with the minimum number of

needed activated servers, resulting in minimal power
variation. Conversely, during the peak period of task
processing, the migration capacity of DC1 is limited by the
optical network capacity and the processing capacity of other
DCs, resulting in small power peaks.

2) The total number of tasks processed by all DCs before and after
migration adheres to conservation. However, the power
consumption reduction of DC1 is nonconservative with the
power consumption increase of other DCs responsible for
processing the migrated tasks. This is because the server’s
dynamic power is proportional to the cube of the CPU
operating frequency. Given identical processing tasks, higher
frequencies result in greater power consumption.

The case study compares the migration effect of three
scheduling strategies: time-domain migration, STLM and
STLM considering the DVFS-DCSC energy management
strategy. Figure 6 shows the power curve of DC1 after
adopting various control strategies. The results show that the
power consumption of DC1 with the STLM mechanism is
reduced by 32.83% compared to that of only time-domain
migration. However, the DVFS-DCSC method not only
reduces the power consumption of DC1 but also improves the
ability to bear the workload of other DCs. As shown in this figure,
adopting the STLM mechanism considering the DVFS-DCSC
energy management strategy proposed in this paper, compared
with the STLM mechanism and time-domain migration
mechanism alone, the power consumption of DC1 is reduced
by 37.96% and 58.33%, respectively. Therefore, the STLM
potential of DCs can be significantly enhanced through the
proposed method.

5.1.2 Migration and processing of delay-tolerant
tasks

Figures 7A, B display the migration and processing plans of
DC1’s delay-tolerant tasks. The comparison between the two
figures reveals some incongruities in the tasks processed and
received by destination DCs during the same time period. This
difference arises due to the tasks’ inherent tolerance for delays,
whereby they may be temporarily stored in the hard disks of
servers with no immediate processing needed and subsequently
dispatched for processing at an optimal time. Figure 7A shows
that the number of tasks migrated from DC1 in each period
changes roughly according to its original plan of task arrival, but
the overall change is not large. This is because DC1 has only two
links connected to other DCs, and its migration potential is
limited by the bandwidth of links (1,2) and (1,6). For
example, at 14:50, the tasks are almost all migrated to
DC2 and DC3. At this time, links (1,2) and (1,6) have no idle
transmission capacity, with the consequence that more tasks
cannot be migrated outside. DC5 has four links connected to
other DCs, so its STLM potential is more considerable than that
of DC1.

5.1.3 Influence ofmigration on the server operating
state

For a single DC, the change in the operating state of each
server is the direct cause of the change in the power consumption.

FIGURE 4
The urban DC network with six DCs.

Frontiers in Energy Research frontiersin.org08

Zhu et al. 10.3389/fenrg.2023.1289275

26

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1289275


The DVFS-DCSC STLM mechanism changes the CPU operating
frequency and the number of active servers in each DC to
enhance the STLM potential of DCs. The number of servers
turned on by each DC is shown in Figure 8. As exemplified by
DC1 and DC5, their server operating status and frequency are
shown in Figures 9A, B, respectively. At the peak time of task
processing, almost all servers are turned on by each DC. At the
valley of task processing, to reduce power consumption, the
servers turned on by DC1 and 5 are mostly under operating
frequency f1, and a small part is under other frequencies. During
peak hours, the migration capacity of DC1 is limited, and some
tasks that cannot be migrated outside need to be handled locally.
Therefore, more servers are turned on and operate under the

operating frequency f2. DC5 is in a heavy-load state after
receiving the tasks migrated from DC1, and many servers are
under operating frequency f5, which makes its power
consumption at a rather high level.

5.1.4 Total power consumption before and after
load migration

As shown in Figure 10, after adopting this method to maximize
the STLM potential of DC1 (as shown by the blue line), the total
power consumption of all DCs and NEs decreases compared to the
pre-migration stage without an energy management strategy,
depicted by the pink line. This reduction occurs because the
energy consumption modes of all DCs are optimized during the

TABLE 1 Parameters of DC.

Parameters Value

Base power consumption of a server pser
fixed (W) 53

CPU optional operating frequency fk (GHz) {1, 1.5, 2, 2.7, 3}

Processing capacity corresponding to each operating frequency μk {5, 7.5, 10, 13.5, 15}

Aser(W/GHz3) 6.5

Upper limit of CPU utilization Umax 0.9

PUE 1.3

Number of servers in each DC Mi {4, 5, 4, 4, 5, 4}*104

Base power consumption of an optical network link pnet
fixed (W) 1720

Dynamic power consumption of an optical network link pnet
dyna (W/Gbps) 12.8

Bandwidth of each link lmax (Gbps) 400

MD (min) 30

CO2 Emission Intensity e (t/MWh) 0.85

Customer satisfaction requirement Sc 0.6

FIGURE 5
Comparison results before and after migration.
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migration process. However, if all DCs have already adopted
the DVFS-DCSC method for energy consumption optimization
before migration (as shown by the yellow line), the total power
consumption after migration will be considerably higher than
that before migration. This implies that maximizing the STLM
potential of DCs will involve certain economic sacrifices and may
lead to increased carbon emissions within the entire DC network.
This is because in the peak period of task processing, the
destination DCs are already heavily burdened with their own
processing workloads. At this time, to continue processing tasks
from DC1, more servers must be turned on, and the CPU
operating frequency must be scaled to a higher level. The
tasks that can be processed by DC1 under a lower operating
frequency can only be completed under a higher operating
frequency in other destination DCs, which explains why the
overall energy consumption will increase after migration.
Therefore, to ensure the overall economy and low-carbon
emissions, grid operators should retain part of the STLM
potential when formulating the demand response scheme. The

remaining STLM potential can be exploited and applied in
emergency dispatching scenarios.

5.2 Day-ahead scheduling strategy for
minimum carbon emissions

5.2.1 Scheduling results
The total carbon emissions of all DCs and optical networks

before and after DVFS-DCSC & STLM scheduling are compared, as
shown in Figure 11. Compared with the time-domain migration
method and DVFS-DCSC technology alone, the total carbon
emissions are reduced by 32.92% and 10.21%, respectively, after
adopting the proposed method.

As displayed in Figure 12, after scheduling with the DVFS-
DCSC STLM, the average utilization rate of the CPU is increased
from 39.89% to 83.14%, which effectively reduces the number of
redundant servers and total power consumption. Most of the
time after migration, the average utilization rate of CPU has
reached more than 70%. For the moment of low utilization, even
if there are fewer workloads allocated for processing, the number
of servers each DC turns on must exceed the minimum
requirement.

5.2.2 Influence of migration on the server
operating state

To illustrate the impact of the proposed scheduling scheme
on the operating state of the server, we take the 7th type of task
(with the maximum response time of 8 h shown in Figure A3 in
Appendix) as an example and obtain the processing results in
each time period according to matrix An in Eq. 13, which is
shown in Figure 13. In this figure, each row represents the batch
processing plan of the incoming tasks at one point, and each
column represents the number and composition of tasks
completed at each time, which indicates that this type of task
has a great ability for temporal migration. That is, we can

FIGURE 7
The migration and processing schemes of DC1’s delay-tolerant tasks.

FIGURE 6
Comparison results under different migration methods.
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FIGURE 9
The number of servers operating under each operating frequency in DC1 and DC5.

FIGURE 10
The total power consumption of DCs and NEs before and after migration.

FIGURE 8
The number of active servers in each DC in each period.
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intuitively obtain the temporal migration results of different
delay-tolerant tasks in this scheduling scheme.

However, the delay-tolerant tasks with a long time of tmax, such
as 4 h or 8 h, account for a small proportion. That is, the overall
ability for time-domain (temporal) migration of all tasks is relatively
weak. Meanwhile, due to the unobvious spatiotemporal differences
in the task arrangement among DCs, the purpose of the STLM in
day-ahead scheduling is to spread the tasks handled by each DC
equitably, thereby minimizing the number of active servers and
maintaining low-frequency server operation as much as possible. In
each time period, the number of active servers in each DC is shown
in Figure 14. As exemplified by DC1 and DC5, in contrast to the case
study of potential evaluation, the server operating states of these two
DCs are relatively close, are shown in Figures 15A, B, respectively.
Since the task allocation plan of DC1 has more tasks than those of
other DCs and other DCs are already in heavy loads during the peak
of task processing, it is not necessary to migrate more tasks but to
process them locally.

FIGURE 11
Comparison results of total carbon emissions before and after migration.

FIGURE 12
Comparison results of the CPU average utilization rate before and after scheduling.

FIGURE 13
Processing results of the 7th type of task in each time period.
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6 Conclusion

Due to the great spatiotemporal flexibility of data loads, this
paper proposes an approach to evaluate the STLM potential of DCs.
The proposed model is further applied to the day-ahead scheduling
of urban DCs, minimizing daily carbon emissions. The case study
verifies the effectiveness of the STLM model and energy
management strategy. The following conclusions are drawn:

1) The spatiotemporal redistribution of delay-tolerant tasks, as well
as server ON/OFF scheduling and CPU operating frequency
scaling in different spatial locations, provides DCs with STLM
potential.

2) Due to the operating characteristics of the servers, the utilization
of STLM potential is often accompanied by increased energy

consumption, which comes at the cost of the economy of the
entire system. However, in an emergency, DCs need to provide
power support with maximum STLM potential, regardless of the
economy.

3) In the day-ahead scheduling of urban DCs, in contrast to
emergency control, the purpose of the STLM is to spread the
tasks handled by each DC evenly in space, reducing the number
of servers turned on and increasing the proportion of servers that
operate under low frequencies.

The STLM potential evaluation model of DCs and the proposed
day-ahead scheduling scheme provide a novel approach to exploring
spatiotemporal flexible resources. Considering the significant
differences between DCs and other forms of spatially flexible
loads, subsequent research must be undertaken to devise a

FIGURE 14
The number of active servers in each DC in each time period.

FIGURE 15
The number of servers operating under each operating frequency in DC1 and DC5.
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collaborative scheduling strategy for managing diverse spatially
flexible loads.
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Appendix

FIGURE A1
PV generation and loads of an urban power system.

FIGURE A2
Number of workloads in each DC in each time period.

FIGURE A3
Parameters of each type of task.
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Nomenclature

Abbreviations

DC Data center

STLM Spatiotemporal load migration

DVFS Dynamic voltage/frequency scaling

DCSC Dynamic cluster server configuration

IT Information technology

PUE Power usage effectiveness

NE Network element

SLA Service-level agreement

QoS Quality of service

EMS Energy management strategy

Parameters

Aser Dynamic power consumption coefficient of a server

PUEi Power usage effectiveness of DC i

pserfixed/p
net
fixed Base power consumption of a server/fiber link

PPV
i,t /P

Load
i,t

Predicted value of PV generation and power load in area i at
time t

Mi Number of servers in DC i

Mi,ON
min Minimum number of servers required to be ON in DC i

MD Minimum ON/OFF time of a server

U CPU utilization rate

L Total load that the DC needs to process

γtask CPU capacity needed of processing one task

λ Tasks processed by a server during unit time

Mprocess
task Total number of processed tasks

fk CPU operating frequency of a server under operating status k

μk Processing capacity of a server under fk

Umax Upper limit of CPU utilization

Pi,grid
max Upper limit of output power of grid region i

ttask max Deadline of completion time for task

Sc Customer satisfaction requirement

Min
i,t,task Number of incoming tasks in DC i at time t

βtask Bandwidth needed of migrating one task

lij max Maximum bandwidth of link (i,j)

E Set of the optical fiber links

K/TASK/DU/E Set of CPU operating status/task types/delay-tolerant task
types/links

e CO2 emission intensity

Variables

PDC
i,t /P

net
i,t /P

grid
i,t

Power consumption of DC/NE/grid in area i at time t

MON
i,t /MOFF

i,t Number of servers ON/OFF in DC i at time t

pserdyna/p
net
dyna Dynamic power consumption of a server/fiber link

Ui,k,t Average CPU utilization of servers under fk in DC i at time t

Moffon
i,t /Monoff

i,t
Number of newly ON/OFF servers in DC i at time t

Monable
i,t /Moffable

i,t
Number of servers can be turned on/off in DC i at time t

MON
i,k,t Number of servers under fk in DC i at time t

Mmig
i,t,task

Number of tasks migrated to DC i at time t

Δttr,qu/Δttr/Δtpro,qu/
Δtpro

Queuing waiting time/needed time for task migration/
waiting time for processing in the queue/needed time for task
processing

Pnet
ij Power consumption of the link (i, j)

Mtask
ij,t

Number of tasks migrated from NE i to NE j at time t

Mfin
task,ab

Number of tasks finished in (b-1, b] periods coming at time a

Mfin
task,t

Number of all tasks finished in (t-1, t] periods

Stask Average customer satisfaction
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A KRR-UKF robust state
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networks
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State estimation is an integral component of energy management systems.
Employing a state estimation methodology that is both accurate and resilient is
essential for facilitating informed decision-making processes. However, the
complex scenarios (unknown noise, low data redundancy, and reconfiguration)
of the distribution network pose new challenges for state estimation. In the
context of this study, we introduce a state estimation technique known as the
kernel ridge regression and unscented Kalman filter. In normal conditions, the
non-linear correlation among data and unknown noise increases the difficulty of
modeling the distribution network. Thence, kernel ridge regression is developed
to map the data into high-dimensional space that transforms the non-linear
problem into linear formulations base on the data rather the complicate grid
model, which improves model generalization performance and filters out
unknown noises. In addition, with the unique prediction correction mechanism
of the Kalman method, the kernel ridge regression-mapped state value can be
revised by the measurement, which further enhances model accuracy and
robustness. During abnormal operating conditions and taking into account the
presence of faulty data within the measurement system, we initiate the use of a
long short-term memory network and combined convolutional neural network
(CNN) model, referred to as the ATT-CNN-GRU. This model is utilized for the
prediction of pseudo-measurements. Subsequently, we use an outlier detection
method known as ordering points to identify the clustering structure to effectively
identify and substitute erroneous data points. Cases on the IEEE-33 bus system
and 109-bus system from a city in China show that the method has superior
accuracy and robustness.

KEYWORDS

deep learning, kernel ridge regression, outlier detection method, state estimation,
unscented Kalman filter

1 Introduction

Power system state estimation (PSSE), playing a key role in safety monitoring
(Samuelsson et al., 2006) and optimal dispatching (Bai et al., 2016), is a necessary data
support for the energy management system (EMS) (Guo et al., 2014; Zhao et al., 2019a).
However, the information uploaded via grid measurement equipment exists as bad data and
unknown noise, which severely restricted the performance of state estimation (Du et al.,
2010). Hence, there is an urgent need for a more effective state estimation method.
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In general, the state estimation techniques could be broadly
classified into parameter methods represented by the Kalman filter
(KF) (Zadeh et al., 2010; Rosenthal et al., 2017) and data-driven
methods such as machine learning (Weng et al., 2016; Mestav et al.,
2019a). The KF determines the best estimate of state using the
forecast-correction mode, and this superior feature inspires many
scholars to focus on the estimation algorithms under the KF
framework (Kalman, 1960). In the work of Ghahremani et al.
(2016), an extended Kalman filter method utilizing PMU was
introduced to identify and estimate the system state and
unidentified variables inputs when the noise is assumed to be
Gaussian. The method was further developed by Zhao (2018),
which combined the H∞ and extended Kalman filter (HEKF).
The HEKF model parameters are improved by considering the
effect of uncertainties (varying generator transient reactance,
uncertain inputs, and noise statistics) on the dynamic model of
the system. Moreover, it is effective when the noise statistics and
transient reactance are unknown. Zhao et al. (2019b), to improve
accuracy and accelerate convergence, introduced a comprehensive
and robust dynamic state estimation framework that leverages the
unscented Kalman filter (UKF) and the ability to deal with (Ji et al.,
2021) weak observation dynamic variables, which enhances filter
performances against bad data. These aforementioned methods
improve the performance of the Kalman-like algorithms, but
such methods are restricted in practical applications because
most of the noise in the actual power system may not follow the
Gaussian distribution.

To address the aforementioned problems, a generalized
maximum likelihood UKF(GM-UKF) estimation approach was
introduced by Zhao et al. (2018), which can improve data
redundancy and filter bad data, and the undetermined Gaussian
and non-Gaussian noises are also filtered out by the generalized
maximum likelihood-estimator, which enhanced the filter
effectiveness and robustness. Dang et al. (2020) presented a
minimum error entropy UKF (MEE-UKF), which exhibits the
robustness and validity with respect to multimodal distribution
noises. In conclusion, Kalman-like methods use prediction
equations to correct measuring equations and are widely used in
industry. However, the parameter model behaves very differently
when choosing different parameter combinations, and the flexibility
of these methods may be limited or even fail to converge. In
addition, the calculation speed and accuracy still need to be
improved.

The difficulties posed by these issues have necessitated the
exploration of data-driven approaches, which utilize historical
data for offline training and real-time data for online state
estimation. The data-driven methods may have an excellent
performance if the dataset is sufficient. The deep neural network
(DNN) was proposed by Mestav et al. (2018); it learns the
probability distribution of grid data to estimate the state online,
which results in better robustness and accuracy. This method was
further developed by Zhang et al. (2019); a deep recurrent neural
network is utilized to forecast the state by leveraging the long-term
non-linear correlations embedded within the historical data. This
approach has notably enhanced the accuracy of estimation. Netto
et al. (2018) introduced a robust, data-driven Kalman filter
incorporating the generalized maximum likelihood Koopman
operator (GM-KKF) to expedite convergence speed. Compared

with the Kalman filter, the Koopman operator using a batch-
mode regression formulation improves nearly one-third in terms
of the computation speed. In the work of Mestav et al. (2018),
Bayesian state estimation was trained by the DNN, and the DNN can
overcome computation complexity in Bayesian estimation, which
has robustness for bad data and missing data. It is noted that some
time series algorithms can also handle missing and abnormal data,
which was proposed in our previous work (Ji et al., 2021). The long
short-term memory (LSTM) method is combined with the outlier
detection technology to predict the outlier, thus improving the
robustness of the filter, which proves that the time series
prediction method can be applied in PSSE. Furthermore, we
notice that the convolutional neural network combined with the
attention mechanism (ATT-CNN) can also filter data feature via
convolutional operation (Kollias et al., 2021). However, none of
these studies have focused on the estimation performance in the
presence of network reconfiguration or reduced redundancy of
measurements in practical application.

This paper introduces a robust method for power system state
estimation built upon the kernel ridge regression and unscented
Kalman filter (KRR-UKF). This approach makes several key
contributions, which are given as follows.

(1) A data-driven KRR approach is first developed in power system
state estimation. Considering the data correlation in PSSE is non-
linear and complicated, which is hard to be solved using the linear
ridge regressionmethod, the kernel trick is applied tomap data into
linear space, which can auto-adjust the model based on the input
data rather the mechanismmodel parameters and express the data
relation precisely and insensitive to unknown noises. Thereby,
reconstructing state transition and measuring models in the UKF
can improve the robustness and accuracy of PSSE notably.

(2) An improved deep learning model the ATT-CNN-GRU is first
proposed to provide pseudo-measurements. The ATT module
can calculate the attention weights of the input data and assist
the CNN to obtain local features and filter noise, and then, the
selected valuable features are passed to the gated recurrent unit
(GRU) for establishing a more suitable model for the relevant
data, which can accelerate computation speed and improve
accuracy compared with LSTM.

(3) An ordered point to identify the cluster structure (OPTICS)
outlier detection method is presented to detect outliers, which is
less sensitive to noise and the changes of parameters, allowing us
to identify outliers accurately and quickly.

In Section 2, the KRR algorithm is described. The KRR-UKF is
described in Section 3. A novel time series model through the ATT-
CNN-GRU is depicted in Section 4, which ensures robustness in the
case of abnormal data. The robustness and wide applicability of the
estimator are tested in Section 5. Finally, conclusions are derived in
Section 6.

2 Kernel ridge regression

The main task of PSSE in the distribution network (DN) is to
obtain the voltage and phase information synchronously when giving
the relevant measurement information and pseudo-measurements of
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a distribution network; the formulation of state and measurement
equations at time t are expressed as follows:

xt � Otxt−1 + wt, (1)
zt � f xt( ) + vt. (2)

In an actual scenario, the measurement information is acquired
using a smart meter, PMU that is susceptible to the unknown noises
wt, and the state equations are also corrupted by process noise vt;
these noises are usually assumed to follow Gaussian. However, due
to the channel communication noise, ambient temperature, and
diverse system operating conditions, the process and measurement
noise are always not Gaussian-distributed. Therefore, in order to
filter out the unknown noise in the system, the key issue is how to
establish the noise wt and vtmodels properly. With this regard, Eq. 1
and 2 can be built based on the KRR method to perform SE in the
distribution network. Based on that, we make the assumption that
there exist n nodes and l lines within the DN, which can be depicted
by a graph Ҁ = {N, L, N = 1,2 . . . N}, the total dataset count is
designated as M, and the DNmeasurements set at bus n and line nm
at time t are denoted by zn � Pn

t , Q
n
t , P

nm
t , Qnm

t , t � 1, 2, 3/M{ }. Let
the voltage at the bus n be defined as xn

t � Vn
t∠θ

n
t . Then, the

measurements and state sets are assumed as Z � zn, n ∈ N{ } and
Xn � xn1 , x

n
2/xn

t , t � 1, 2,/M{ }, respectively, to collect the DN
information. The set is considered the state estimation set for bus
n, with Y � yn, n ∈ N{ } representing the state estimation dataset.

2.1 Ridge regression

According to the ridge regression method (Hoerl et al., 1970),
the ridge regression model can be set as f (W) =WTX withWT= (w1,
w2 / wn)

T, and the cost function is given as follows:

L W( ) � ∑
n

i�1
wT

i xi − yi

����
����22, (3)

where wi
Txi is the weighted training sample of voltage information

and yi is the corresponding estimation, and we assume the estimated
value is

W1 � argminL W( ). (4)
Considering that there may be insufficient power state

information in practical, due to which matrix W might become
invertible or model overfitting might occur, the regularization
framework argmin[L(W) + ηP(W)] is introduced, and the
estimated value of W1 can be given as follows:

Wt � XTX + η−1T( )−1XTY, (5)
where the estimated value W1 is the sum of a generalized non-
negative semidefinite matrix and a diagonal matrix. As the sum is
positive definite, W1 is reversible, which can suppress overfitting.

2.2 Kernel ridge regression

KRR is a powerful machine learning method used to capture the
connection between output and input datasets. The kernel method
canmap themeasurement or state information into high-dimensional

space; thus, all data are replaced by their feature vector:
X →X̂, Y →Ŷ; then, according to wood bury matrix identity
(Murphy, 2012),

E − FH−1G( )−1FH−1 � E−1F H − GE−1F( )−1, (6)
where H-1 = η-1 I, F = X̂, G = −X̂, and E = I, andW1 can be restated
as follows:

W1 � X̂
T

ηI + X̂X̂
T( )

−1
Ŷ. (7)

Equation 7 can be further restated as follows:

W1 � ∑
n

i�0
αiX̂, α � X̂X̂

T + ηI( )
−1
Ŷ. (8)

Therefore, when a new state data X̂* is added to the dataset, the
predicted value can be computed by projecting it to solution W1 as
follows:

Y* � WT
1 X̂* � XTX̂ XTX + ηI( )−1Ŷ � κ X̂( ) K + ηI( )−1Ŷ, (9)

where κ(X̂) � K(X, X̂) and K is the kernel function. In this paper,
the radial basis function is selected as follows:

K X, X̂( ) � exp − X − X̂
����

����
2

2σ2
⎛⎝ ⎞⎠. (10)

For the parameter selection issues, the five-fold cross validation
can be used to optimize the kernel ridge regression convergence
speed and accuracy (Arlot et al., 2010).

3 Kernel ridge regression and
unscented Kalman filter

The state estimation model denoted by Eq. 1 and Eq. 2 can be
reformed as follows:

Xt+1 � g Xt( ) + qt, (11)
Zt+1 � f Xt+1( ) + pt. (12)

The state variables Xt and Xt+1 include the amplitude and phase
of voltage, which are passed through by the transition function g;
besides, the measurements Zt+1 contain real and reactive power flow
measurements of relevant node and branch, which are passed
through by the measuring function f. qt and pt are the noises
following Gaussian distribution. However, the functions g and f
are non-linear functions, and the estimation after passing the state or
measurement through these two functions is no longer Gaussian. So,
to effectively use the Kalman filter for a posteriori probability
estimation, the UKF uses the unscented transformation method
to simulate real distribution of the dataset.

The transition and the measuring functions g and f can be
replaced by the KRR model so as to learn the covariances of the
unknown noise in measurement and state information. A set of
state–measurement relations needs to be identified to form the
training data of KRR. In the transition model, xt-1 is mapped to
state transition Δx = xt-xt-1, and the state xt can be calculated by
combining the previous state transition. In the measuring model,
state xt is mapped to measurement zt. Then, the formulations of the
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training sets in transition and the measuring functions are shown as
follows:

mf � xt−1,Δx{ }
mg � zt, xt{ }{ . (13)

KRR approximates the functions g and f, and they are denoted
by K̂

f
and K̂

g
, respectively. Thus, (11) and (12) are rewritten as

follows:

xt � K̂
f
mf( ) + εt, (14)

zt � K̂
g
mg( ) + δt, (15)

where the noises εt are distributed following a mean of 0 Gaussian
distribution co-variance K̂

f(mf) and K̂
g(mg). To further remove

the impacts of the non-Gaussian noise, we use an approximate
parametric system model (Julier et al., 2000), and (14) and (15) are
rewritten as follows:

x′
t � K̂

f
mf( ) + ε̂t + f̂ m̂f( ), (16)

z′t � K̂
g
mg( ) + δ̂t + ĝ m̂g( ), (17)

where m̂f � xt−1, xt − K̂
f(mf){ }, m̂g � xt, zt − K̂

g(mg){ },
ε̂t ~ N(0, f̂(m̂f), and δ̂t ~ N(0, ĝ(m̂g)) . The sigma points can
be given by the following equation:

γ � ������
n + λ( )√

χt−1 � μt−1, μt−1 + γ
���
θt−1

√
, μt−1 − γ

���
θt−1

√
( ){ , (18)

where μt−1 and θt−1 are the mean and covariance of x′t, respectively.
The sigma nodes are calculated using the KRR transition model.

�χit � K̂
f
χit−1( ). (19)

The average and variance of the transition noiseQt can be acquired
through the predictive in KRR at the prior mean sigma point.

Qt � K̂
f
μt−1, m̂f( ), (20)

μ̂t � ∑
2N

i�1
wi

m�χ
i
t

θ̂t � ∑
2N

i�1
wi

c �χit − μ̂t) �χit − μ̂t)T + Qt( .(

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(21)

Then, the new sigma points are given as follows:

χ̂t � μ̂t, μ̂t + γ

��
θ̂t

√
, μ̂t − γ

��
θ̂t

√
( ). (22)

We can obtain the predicted measurements using the KRR
model, and the resultant sigma points are applied for calculating
the mean values ẑt and St along with their associated uncertainties.

ẑit � K̂
g
χ̂it( )

ẑt � ∑
2N

i�1
wi

mẑ
i
t

⎧⎪⎪⎨
⎪⎪⎩

, (23)

Rt � K̂
g
μt−1, m̂g( )

St � ∑
2N

i�1
wi

c ẑit − ẑt( ) ẑit − ẑt( )
T + Rt

⎧⎪⎪⎨
⎪⎪⎩

, (24)

where Rt is the measurement noise. We can compute the Kalman
gain Kt and use it to update the state estimate.

θ̂
x,z

t � ∑
2N

i�1
wi

c X̂
i

t − μ̂t( ) ẑit − ẑt( )
T

Kt � θ̂
x,z

t S−1t

⎧⎪⎪⎨
⎪⎪⎩

, (25)

μt � μ̂t +Kt zt − ẑt( )
θt � θ̂t −KtStKT

t

{ . (26)

The KRR-UKF inherits the advantages of the UKF for
linearization and can automatically adjust the model and learn
the noise characteristics in the data. The non-parametric model
can analyze samples directly without prior assumptions about the
sample dataset, if less training data are available; to put it differently,
the KRR that is built with more input data offers more accurate
result. In addition, to save time cost, a parallel computing algorithm
is casted to accelerate calculation speed (Ko et al., 2007).

4 Robust power system state
estimation

Abnormal measurements (Zhang et al., 2020) seriously affect the
collection and analysis of user electricity consumption information,
so data detection and replacement are extremely necessary.

4.1 ATT-CNN-GRU prediction

4.1.1 ATT
The attention mechanism (ATT) abstracts the weight

information of historical time series data by calculating the
influence weight of each input data separately and performs
weighted average processing on all information weight factors, so
as to realize the adaptive weight distribution and enhance the
predictive precision of the algorithm. It is assumed that the ATT
mechanism is used to calculate attention distribution between
voltage data V= (v1, v2 . . . vi, i = 1 .. n-1) with timescales from
1 to n-1 and voltage data vn at time n. First, the correlation between
each historical voltage data V and vn is computed through the
utilization of the score function s. Then, the outcome is normalized
using the SoftMax function, and the attention distribution of VN at
each historical voltage input is obtained. The formula of αi is given as
follows:

ai � SoftMax s vi, vn( )( ) � exp s vi, vn( )( )
∑
n

i�1
exp s vi, vn( )( )

. (27)

Finally, we weighted the historical voltage data based on the
obtained attention distribution to get the input information that the
next CNN model should focus on.

Att � ∑
n−1

i�1
αivi. (28)

4.1.2 CNN
Since the state information is recorded in chronological order

that has a robust correlation, the CNN can be employed to extract
relevant characteristics from the historical operation data (Wu et al.,
2022). With the superiority of convolutional operations of the CNN,
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it is possible to perform a more advanced and abstract
representation of unprocessed data (Jensen et al., 2017).

The convolutional layer performs convolutional operations on
the information in receptive field by designing convolutional kernels
of appropriate size to abstractly represent the raw data. The feature
map C with input S of the convolutional layer can be represented as
follows:

C � P S ⊗ Wc + bc( ), (29)
where ⊗ is the convolutional operation, the rectified linear unit
(ReLU) (Hara et al., 2015) is selected, and P is the activation function.

There are two types of pooling layers, namely, max-pooling and
mean-pooling. In this paper, the choice is made to use max-pooling.
This operation preserves robust features while discarding weaker
ones. Additionally, it aids in the reduction of the number of
parameters to mitigate the risk of overfitting.

In this paper, the CNN is harnessed to capture the features
within the raw data and eliminate noise and unstable elements by
multi-dimensional data mining. The processed and relatively stable
data are passed into the LSTM network as a whole for long-term
sequence prediction.

4.1.3 GRU
The GRU is a variant of the LSTM algorithm. Compared with

traditional LSTM (Hochreiter et al., 1997), the GRU simplifies the
network structure by reducing the gate function and greatly improves
the operational efficiency. By introducing the gate function, we can
mine the time sequence regularity of relatively long interval and delay.
The structure of the GRU is shown in Figure 1.

In period t, the GRU receives input from two external sources,
namely, the present state x′t and the concealed state ht−1. The
operational workflow of the GRU can be segregated into two
distinct steps.

4.1.3.1 Reset gate
This gate function reduces the risk of gradient explosion in the

model by dropping some information about the data that is not
relevant to the prediction moment and deciding how much
information needs to be saved.

rt � σ Wr ht−1, x′
t[ ]( ). (30)

4.1.3.2 Update gate
The reset gate has the same structure as the t update gate and

determines the degree to which the low-weight information is forgotten
and how much memory is retained to update to the current cell.

ut � σ Wu ht−1, x′
t[ ]( ). (31)

The newly updated memory content utilizes the reset gate to
preserve information related to the past and calculate the Hadamard
product (*) of the reset gate rt and [ht−1, x′

t]. The Hadamard results
will be summed and passed to the hyperbolic tangent activation
function (tanh). Thence, ht retains the influence of historical data on
the current prediction and regulates the influx of input data by
employing gating mechanisms, deciding what information should
be propagated to the subsequent unit, avoiding the gradient
disappearance problem.

ĥt � tanh Wĥ · rtp ht−1, xt( )[ ]( )
ht � 1 − ut( )pht−1 + utpĥt

{ . (32)

4.1.4 ATT-CNN-GRU
The ATT-CNN is employed to find time series data patterns,

which are imported as a whole into the GRU model for long time
series prediction to improve prediction stability, and the steps are
given as follows.

1. Data pre-processing: The data are normalized and then split into
next sets according to the GRU model training method
(Sutskever et al., 2013).

2. ATT-CNN unit: The pre-processed data are distinguished from
their strong and weak features. The weak features are removed,
and the strong features are extracted as the next unit input.

3. GRU unit: Utilizing the output from the preceding unit as input
to construct the time series prediction model.

4. Output: Exporting the results of ATT-CNN-GRU prediction.

More training details can be found in the work of Vinvals et al.
(2015), where theATT-CNN-GRU is used to fast predict the state vector.
Next, an OPTICS-based abnormal detection method is first introduced
and combined with the ATT-CNN-GRU to handle the outliers.

4.2 Abnormal data detection and
replacement

After obtaining the predicted state value, the corresponding
measurement data can be obtained through the power flow equation
(PF) (Tinney et al., 1967).

Pn
t � Vn

t ∑
N

n�1
Vm

t Gnm cos θnmt + Bnm sin θnmt( )

Qn
t � Vn

t ∑
N

n�1
Vm

t Gnm sin θnmt − Bnm sin θnmt( )

Pnm
t � Vn,2

t Gnm − Vn
t V

m
t G

nm cos θnmt − Vn
tV

m
t G

nm sin θnmt
Qnm

t � −Vn,2
t Bnm − Vn

tV
m
t B

nm sin θnmt + Vn
tV

m
t B

nm cos θnmt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (33)

FIGURE 1
Structure of the GRU
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For outliers such as missing and error measurements, the
anomaly detection method is applied to deal with these outliers.

OPTICS is a commonly used detection algorithm, which can
efficiency discover the oddly shape cluster. OPTICS creates a
neighborhood Nε(z*i ) of radius ε for each z*i , and there should
be no less thanMinPts data points in the neighborhood, where z*i is
the new input measurement at time i. Some definitions are given as
follows.

Directly density-reachable: If the new measurements z*i and z*j
satisfy z*i ∈ Nε(z*j) and card(Nε(z*j))≥MinPts, then z*i is
considered to be reachable by z*j density directly, and z*j is
regarded as core object, where the card(Nε(z*j)) denotes the
quantity of elements contained in the set Nε(z*j).

Density-reachable: For the dataset z*r, zr+1
* ,/, zr+s* , if

z*i i ∈ [r, r + s − 1] can be reachable by zi+1* density directly, then
z*i is density-reachable from zi+1* .

Density-connected: If z*i and z*j are reachable by z*k density
directly, then z*i and z*j are density-connected.

Core distance: The minimum neighborhood radius that makes
z*i a core object can be expressed as follows:

cd z( ) � d z,Na
ε z( )( ), if Nε z( )| |≥MinPts

undefined, if Nε z( )| |<MinPts
{ , (34)

whereNa
ε(z) denotes the dataNε(z) that is the ath nearest neighbor

to the data z, and z is the core object.

4.2.1 Reachability distance
The reachability distance is given as follows:

rd z*i ,z
*
j( )� undefined if card Nε z*i( )( )≤MinPts

max cd z*j( ),d z*i ,z
*
j( )( )

∣∣∣∣∣ if card Nε z*i( )( )≥MinPts
{ ,

(35)
where rd(z*i , z*j) is the minimum distance at which z*i can be
reachable by z*j density directly, and z*j is a core object.

In practical applications, the dispatch center only needs to
import historical data into our KRR-UKF method and perform
modeling and then collect real-time data to perform real-time
filtering. Meanwhile, the model can also expand the training set
based on the actual production data to optimize the filter. The
specific flow of the robust KRR-UKF at time t is shown in
Figure 2.

The selection of parameters ε and MinPts can be found in the
work of Ankerst et al. (1999). The OPTICS and ATT-CNN-GRU are
used to handle the outliers, which consist of the following steps.

1. Computing reachability distance: Data zi in new measurement
dataset Z are selected randomly as the current object, and then,
the reachability distance of all other measurements in Z is
calculated with respect to the current object.

2. Marking the data: Data with the smallest reachability distance
from the current object are found, and then, the current object is
replaced with that set of data and is marked as processed.

3. Getting the smallest reachability distance: The reachable
distances of the unprocessed data from the current object are
calculated in turn, and if any of these reachable distances is
smaller than the reachable distance calculated in step 2, then the

corresponding data are replaced with the current object. If not,
the current object remains unchanged.

4. Iteration: Steps 2 and 3 are repeated until all data in Z have been
processed.

5. Classifying the data: The calculated reachable distance ε′ of each
data is compared with ε; if ε′ < ε, then the reachable distance is
meaningful, and the corresponding data are considered normal.
Otherwise, it is marked as outlier.

6. Predicting the state: The predicted measurements in period t of
node n can be computed via the ATT-CNN-GRU.

ẑn � P̂
n

t , Q̂
n

t , P̂
nm

t , Q̂
nm

t{ }. (36)

7. Outlier replacement: If the input data are marked as outliers, the
corresponding measurements are replaced by (39).

5 Case studies

Simulations are carried on a IEEE 33-bus system and a realistic
109-bus system from a city in China to verify the robustness under
different circumstances. The ATT-CNN-GRU and KRR-UKF
models are developed using PYTHON on the NVIDIA GTX-
1660TI with 16 GB RAM. The system state and measurement
dataset are obtained from the MATPOWER toolkit. We use the
mean absolute error (MAE) and root mean squared error (RMSE)
(Hossain et al., 2020).

5.1 IEEE 33-bus system

The load data on Belgian grid of 2020 are selected to generate
8,760 measurement state sets, in which a total of 4,000 sets of data

FIGURE 2
Flow chart of the robust KRR-UKF method.
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are randomly selected as the training set. The load data of 2021 on
Belgian grid are used to generate 8,760 data as the test set.

5.2 Scenario 1: with only Gaussian noise

We assume that the noise follows the Gaussian distribution. We
compare the UKF with the KRR-UKF and GP-FSE (Ji et al., 2021)
under ideal conditions. It is noted that in the existing references on
PSSE based on Kalman filtering, in this section, Gaussian noise with
a mean value of 0 and a variance of 10−6 is added into the sample
data, and the filter performance of the three algorithms is shown in
Figure 3.

As shown in Figure 3, under the ideal conditions, there is a
substantial disparity between the estimated state obtained
through UKF and the true value. Furthermore, we can see
from Figure 3, as data-driven algorithms, the KRR-UKF and
GP-FSE have a better prediction performance than the UKF, and
the difference between the estimated state via the KRR-UKF and
the actual value is exceedingly minute. This is because kernel
ridge regression is a powerful non-parametric tool that has the
capability to acquire noise characteristics and smoothing
parameters from the training data; thus, it is also deduced that
the accuracy of GP-FSE is slightly inferior to the method we have
introduced.

To intuitively demonstrate the effectiveness of these filters, the
MAE and RMSE of the KRR-UKF are shown in Figure 4A. In
addition, to further illustrate the robustness of our methods,
Gaussian noise characterized by a mean of 0 and a variance of
and 10−4 is added to the sample data.

Figure 4 illustrated theMAE andRMSE of the KRR-UKF algorithm
maintained at the range of 10−5–10−6 under different noises. The
proposed KRR maps the non-linear correlation into high dimension
for precisely tracking data characteristics. Then, the five-fold cross-
validationmethod also assignsmore appropriate parameters to the noise
data for optimizing the estimated results. As displayed in Figure 4A, the
data-driven approach we propose exhibits remarkable accuracy and
stability, and Figure 4B shows that the proposed method still has
excellent prediction accuracy when the noise covariance is increased
to 10−4. Furthermore, the RMSE ismore sensitive to predicting abnormal
values, but the RMSE of the KRR-UKF estimation results remains at 10−6

under different noise levels, which demonstrates that the method has
good robustness to the Gaussian noise.

5.3 Scenario 2: with non-Gaussian noise

To test KRR-UKF performances under different non-Gaussian
noises, the weights are 0.95 and 0.05, the bimodal Gaussian noise with
covariance matrices of 10−6 I and 10−5 I is added. The KRR-UKF has
the ability to assign higher weight to the predicted value information
with small deviation, thus filtering out non-Gaussian noise data.

In Figure 5 (a), when the degree of noise deviating from theGaussian
distribution increases, the proposed KRR-UKF still maintains the
estimation performance similar to scenario 1, and its MAE and
RMSE can be kept at 10−6 and 10−5, respectively, which proves that
the method can filter non-Gaussian noises. In order to showcase the
robustness of the KRR-UKF approach, Laplace noise and Cauchy noise
are added, the covariance matrix of Laplace is 10−5 I, and the location
parameter and scale location parameter are 0 and 10−5I, respectively.

In Figure 5, theMAE of the KRR-UKF filter increases slightly, and
the error remains at 10−5, which indicates that the proposed KRR-
UKF is robust to different non-Gaussian noises. To fully verify the
robustness of the KRR-UKF, noises that further deviate from the
Gaussian distribution are added to the datasets of the KRR-UKF and
GP-FSE, the bimodal Gaussian noise covariance matrices of the two
models are 10−6 I and 10−4 I, respectively; and the noise weight ratio is
gradually changed from 0.95/0.05 to 0.5/0.5, with a step size of 0.05.

In Table 1, both methods show an increase in MAE as the
deviation of non-Gaussian noise grows and finally remains at the
order of 10−4, but due to the lack of correction of predict equation,
the MAE of GP-FSE has nearly tripled, and its RMSE increases to
1.190 × 10−4, which means the instability of GP-FSE increases
further. However, the kernel ridge regression method can
optimize the parameters; thus, enabling the model adapts the
unknown noise exactly and corrects the estimation results more

FIGURE 3
Filtering result of node 6 of three algorithms.

FIGURE 4
KRR-UKF performance on node 6. (A)MAE and RMSE of the KRR-
UKF with small Gaussian of noise (B) MAE and RMSE of the KRR-UKF
with large Gaussian of noise.
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accurately. The RMSE of the proposed method fluctuates between
5.857 × 10−5 and 1.231 × 10−5, which demonstrates that the proposed
KRR-UKF has good robustness and stronger stability.

5.4 Scenario 3: with reduced measurement
redundancy

The proposed KRR-UKF method uses the historical data to
model the measuring equation in certain topology network; the
ratio between the number of measurement quantities and state
quantities is defined as measurement redundancy, which is
crucial to determine the result of state estimation. The
historical data used in this model include nodal voltage, phase
angle (V, θ), nodal active and reactive power (P, Q), and
associated branch (Pnm, Qnm). We take the voltage of bus 18 as
the test state consistent with scenario 2. The 100s estimated
results are compared with the calculated value using PF under
noiseless condition.

In Table 2, as the measurement redundancy increases, the
MAE and RMSE gradually decline, which is due to the facts that
more measurement information can be used to eliminate the
influence of bad data and errors. The parallel computing method
can compute the state mapped values of multiple measurements
simultaneously, so when the redundancy increases, there is no
significant increase in consumption time. When the redundancy
reaches 4, the time consumption of the KRR-UKF only increased
33% and remained in the order of milliseconds, indicating that
the proposed method can work properly with reduced
measurement redundancy.

5.5 Scenario 4: under network
reconfiguration

To demonstrate the proposed filter performances when the
topology network changes, we take node 24 as an example.
Table 3 gives two network structures, and the topology changes
from structure A to structure B at 50s. Half of the KRR-UKF training
set comes from structure A and half from topology B.

The performance under the condition of small Gaussian noise is
plotted in Figure 6.

In Figure 6, the voltage amplitude estimated by the KRR-
UKF aligns closely with the actual value. It should be noted that
the proposed KRR-UKF can model only based on the input data,
free from the limitations of the mechanism model. Thus, when
the topology network changes at 50s, both RMSE and MAE can
be maintained at around 10−5. It can be inferred that the
approach is capable of performing under network
reconfiguration by simply expanding the training set, which is
sufficient to deal with the topological changes in the distribution
network.

FIGURE 5
Filtering performance of node 6 in non-Gaussian of noise. (A) In
small noise, (B) under Laplace noise, and (C) under Cauchy noise.

TABLE 1 Performance of the two algorithms under different weight noises.

Weight ratio KRR-UKF GP-FSE KRR-UKF GP-FSE

MAE MAE RMSE RMSE

0.95/0.05 1.221 × 10−5 1.192 × 10−5 1.231 × 10−5 1.428 × 10−5

0.9/0.1 5.474 × 10−5 6.921 × 10−5 2.221 × 10−5 1.442 × 10−5

0.85/0.15 8.758 × 10−5 7.083 × 10−5 2.612 × 10−5 3.098 × 10−5

0.8/0.2 8.948 × 10−5 1.211 × 10−4 3.642 × 10−5 6.281 × 10−5

0.75/0.25 1.007 × 10−4 1.574 × 10−4 2.943 × 10−5 6.270 × 10−5

0.7/0.3 1.331 × 10−4 3.551 × 10−4 4.804 × 10−5 8.018 × 10−5

0.65/0.35 1.642 × 10−4 3.903 × 10−4 5.307 × 10−5 7.821 × 10−5

0.6/0.4 2.026 × 10−4 4.026 × 10−4 5.625 × 10−5 9.026 × 10−5

0.55/0.45 1.354 × 10−4 5.091 × 10−4 6.760 × 10−5 9.778 × 10−5

0.5/0.5 1.880 × 10−4 5.129 × 10−4 8.857 × 10−5 1.190 × 10−4

TABLE 2 Performances of the KRR-UKF using different datasets.

Dataset MAE RMSE Time (s)

{Vn}-{Pn} 6.958 × 10−5 3.898 × 10−5 0.021

{Vn}-{Pn, Qn} 6.272 × 10−5 3.463 × 10−5 0.026

{Vn}-{Pn, Qn, Pnm} 5.133 × 10−5 2.726 × 10−5 0.027

{Vn}-{Pn, Qn, Pnm, Qnm} 4.341 × 10−5 2.203 × 10−5 0.031
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5.6 Scenario 5: with abnormal or missing
data

Due to communication channel interruption, flicker, and
abnormal data transmission problems in the data acquisition
system, abnormal or missing data may occur. To demonstrate
the feasibility of using the ATT-CNN-GRU for outlier
replacement, this section takes the voltage of node 11 as an
example. This paper sets up two cases.

Case 1. assumed that 30% of the active power is abnormal in the
measurement data of node 11, and the gross error is 15%.

Case 2. assumed that there are 20% missing in the measurement
data of node 11.

The OPTICS clustering algorithm is applied to detect and label
outliers, and then, the proposed ATT-CNN-GRU is used to predict
and replace the abnormal measurements. The model tuning mainly
includes the number of convolutional layers, and the voltage
estimation results of different layers are shown in Table 4.

In Table 1, the estimation accuracy and estimation efficiency of the
CNN are optimal for a number of layers of 2. We list the voltage
prediction results of ATT-CNN-LSTM and the ATT-CNN-GRU with
the same structure in Table 5 to substantiate the effectiveness.
Comparing with ATT-CNN-LSTM, the prediction accuracy and
stability of the ATT-CNN-GRU improved by 12.51% and 16.39%,
respectively, because our method optimizes parameter structure and
integrates global and local features to avoid losing necessary feature
data. Thence, the time required to predict the data reduces consumption
of time by 14.75% compared with ATT-CNN-LSTM, which proves that
the method can accurately and efficiently replace the bad data.
Therefore, the ATT-CNN-GRU is selected to handle outliers, and
the filtering results of the KRR-UKF after ATT-CNN-GRU
replacing the anomalous data are shown in Figure 7.

In Figure 7A, the MAE of the KRR-UKF maintained at 10−5,
through the ATT-CNN module, the improved GRU can extract
coarse-grained features from the fine-grained features in data. To a
certain extent, it can solve the problems of memory loss and gradient
dispersion induced by excessively long steps in the GRU, which
provides the proposed method with accurate measurement data for
filtering. From the results of Figure 7 (b), the filtering curve
fluctuates very slightly and ensures filtering accuracy.

In Table 6, the WLS has the least calculation time, but the
estimation accuracy is the worst. Nevertheless, the KRR-UKF uses
improved LSTM algorithms for data replacement, so there will be
time loss when abnormal conditions occur, and still has milli-second
calculation time, which fulfills the criteria for achieving real-time
state estimation accuracy.

The KRR-UKF also displays relatively heightened estimation
accuracy under abnormal conditions with an RMSE of 3.4 × 10−5,
which is nearly 33% accurate than a GP-FSE. Hence, the KRR-UKF
emerges as a relatively optimal choice for real-time state estimation
in the IEEE 33-bus system.

5.7 109-bus system from a city in China

In this section, a 109-bus distribution network system from a
city in China is selected for a practical application test. We obtained
the operation data in August 2020, randomly selected 2,880 groups
as the training set, and used 2,880 groups of data in August 2021 as

TABLE 3 Two different structures of the IEEE-33 system.

Index Open switches

Structure A S33, S34, S35, S36, and S37

Structure B S7, S9, S14, S32, and S37

FIGURE 6
Filtering performance of node 24 when topology changes. (A)
Filter performance of the KRR-UKF when the topology network
changed. (B) MAE and RMSE of the KRR-UKF when the topology
network changed.

TABLE 4 Estimation results for different numbers of convolutional layers.

Number of layers MAE RMSE Execution time (ms)

1 4.509 × 10−4 2.585 × 10−4 14.79

2 9.903 × 10−5 8.021 × 10−5 15.54

3 2.119 × 10−4 1.067 × 10−4 15.92

4 2.031 × 10−4 9.852 × 10−5 17.23
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the testing dataset. We randomly choose 20% data from the test set
for exception handling, in which 10% data are replaced by 0 value
and 10% data are randomly reduced by 15%. The estimation results

of the KRR-UKF, GP-FSE, and UKF under normal conditions are
shown in Figure 8.

As shown in Figure 8, the filtering curves UKF fluctuate, and the
accuracy decreases due to unknown noise, which is affected by
unknown noise and has many deviation points. However, the KRR-
UKF can maintain the same trend as the true value in general.

In Table 7, comparing with the simulation result in scenario 1, the
accuracy of the UKF is greatly reduced due to the unknown noise. The
GP-FSE model is affected by non-Gaussian noise in training data and
lack of predictive steps to correct it. The error increases to 10−3.
However, the KRR-UKF still shows favorable performance, whose
RMSE is 3.22 × 10−4. The calculation time of the KRR-UKF is 0.292 s,
which also fulfills the requirements of real time state estimation. In

TABLE 5 Comparison of forecast results of different algorithms.

Predicted duration (s) Algorithms MAE RMSE Execution time (s)

1,000 ATT-CNN-GRU 8.048 × 10−5 6.103 × 10−5 1.856

ATT-CNN-LSTM 9.199 × 10−5 7.612 × 10−5 2.177

FIGURE 7
Filtering performance for node 11. (A) MAE of the KRR-UKF in
case 1&2. (B) estimation results of KRR-UKF in case 1&2.

FIGURE 8
Filtering performance of different algorithms.

TABLE 6 RMSE and computing time of different algorithms.

Index Algorithm Normal Abnormal

RMSE WLS 7.1 × 10−3 --

UKF 5.4 × 10−4 7.8 × 10−3

CSS (Prasad et al., 2017) 2.6 × 10−4 --

Method in the work of Kong et al. (2022) 3.8 × 10−4 --

GP-FSE 7.5 × 10−6 4.5 × 10−5

KRR-UKF 5.1 × 10−6 3.4 × 10−5

Time (ms) WLS 2.1 --

UKF 29.4 28.9

CSS (Prasad et al., 2017) -- --

Method in the work of Kong et al. (2022) 19.1 --

GP-FSE 32.51 39.24

KRR-UKF 46.56 40.21
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conclusion, the proposed KRR-UKF has sufficient accuracy and
robustness that can be applied in practical engineering.

6 Conclusion

In this paper, a KRR-UKF method, which can improve the
exactitude and robustness of state estimation, is proposed. The test
results prove that the proposed KRR-UKFmethod can filter unknown
noise in the power system, and the ATT-CNN-GRU can enhance the
accuracy of the predicting outlier, as well as in the conditions of
topology network changes or reduced measurement redundancy.
Furthermore, the performances of the KRR-UKF method are only
related to the dataset; that is to say, there is no need to consider the
actual physical model.Moreover, compared to existing algorithms, the
KRR-UKF exhibits significant enhancements in both estimation
accuracy and computational efficiency.

Although the KRR-UKF shows extraordinary performances on
state estimation, when the system is in three-phase unbalanced states,
the results of state estimation may become worse. Furthermore, the
method introduced in this paper necessitates a considerable volume of
historical operational data for model training, imposing a slightly
higher requirement on data accuracy without considering the
placement of measurement equipment and acquisition accuracy in
real industry. Further verification of the feasibility of application to
industry is still required.
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Nomenclature

11.1 Indices

i Index of node

n/m Index of branch

t Index of time

11.2 Sets

N Set of all bus

S Training data

W Set of weight

X Set of state

Y Set of estimation

Z Set of measurement

11.3 Parameters

bc ∈ Rd Biases vector of convolution

bi ∈ Rd Biases vector of the input stage

bf ∈ Rd Biases vector of the forget stage

bo ∈ Rd Biases vector of the output stage

bm ∈ Rd Biases vector of the current state

ct Cell state in prior t

ht−1 Hidden state in prior t

I Unit matrix

qt Process noises that follow Gaussian

pt Measurement noises that follow Gaussian

wt Process noises

vt Measurement noises

Wr ∈ Rd×2d Weighted matrices of the reset state

Wu ∈ Rd×2d Weighted matrices of the update state

Wĥ ∈ Rd×2d Weighted matrices of the output state

O ∈ Rd×2d Weighted matrices of the transition function

Xk Reactance of branch k

ζ Trend vector in period t

η Hyperparameter of the regularization function

11.4 Variables

Bnm
t Susceptance of branch nm in period t

C Mapped output of convolution

Gnm
t Conductance of branch nm in period t

Pn
t Active power of bus n in period t

Pnm
t Active power of branch nm in period t

Qn
t Reactive power of bus n in period t

Qnm
t Reactive power of branch nm in period t

Vn
t Voltage magnitude of bus n in period t

θnt Phase angle of bus n in period t

θnmt Phase angle difference between bus n and m in period t

ϒi Output of the transition function

11.5 Functions

f(·) Measuring function

g(·) Transition function

L(·) Cost function

P(·) Regularization function

σ Active function tanh
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storage hydropower plants with
multi-type of units in day-ahead
electricity market considering
water head effects
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Pumped-storage hydropower plant (PSHP) is a type of valuable energy storage
system and a flexible resource to the modern power system with increasing
renewable energy integration. As independent market participants, a PSHP can
participate in both the energy market and frequency regulation market to
maximize its revenue and contribution to the secure and economic operation
of the power system. In some PSHPs, both fixed-speed and variable-speed units
are installed to improve the flexibility, especially when operating in the pumping
mode. However, it’s difficult to deal with the nonlinear relationships among power,
flow, and water head in pumping and generating modes. This paper proposes
iterative solutionmethods for scheduling the PSHP by considering the relationship
between power and flow at different water heads for different types of units. The
scheduling problem is established as a scenario-based optimization formulation
by considering PSHP’s participation in both the energy market and frequency
regulation market. In each iteration, the optimal dispatch model is formulated as a
Mixed Integer Linear Programming (MILP) problem. Case studies are performed
and simulation results validate the effectiveness of the model and the iterative
solution methods.

KEYWORDS

pumped-storage hydropower plant, water head effects, scenario-based optimization,
fixed-speed units, variable-speed units

1 Introduction

The large-scale development of renewable energy, such as wind and solar, is very
important to achieve the targets of carbon neutrality (Outlook, 2020; Stančin et al., 2020).
However, the volatile and intermittent characteristic of renewable energy generation brings
great challenges to power balance of power systems (Cai et al., 2019). Energy storage systems,
especially pumped storage hydropower plants (PSHP), will play a key role in the future
power systems with very high penetration of renewable power generation.

Currently, pumped-storage hydropower units can be divided into fixed-speed units and
variable-speed units. Compared to variable-speed units, fixed-speed units are mature and
used in most pumped storage hydropower plants worldwide (Yang and Yang, 2019;
Vasudevan et al., 2021). Meanwhile, with the development of AC excitation technology,
power can be adjusted for variable speed units in pumping mode. In addition, variable-speed
units can generate a lower percentage of the rated power in comparison to fixed-speed units,
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which means that variable-speed units have a stronger power
regulation capability to cope with future large-scale renewable
energy output fluctuations and renewable energy consumption.

In the US and some regions in Europe, PSHPs can participate in
the local electricity market as independent players. The PSHPs can
pump water to store energy when the electricity tariff is low, while
generating to get profits during periods with high electricity price (Kim
et al., 2021; Liu et al., 2021). Therefore, the PSHP declares its generating
and pumping curve in the day-ahead market according to the forecast
electricity price and receives the revenue as a price-taker. In Emmanuel
and Denholm (2022), a modified price-taker model with a market
feedback function is established to simulate the impact of increased
storage including PSHP. A market participation strategy and schedule
for a PSHPwith hydraulic short-circuit technology are proposed using a
price-taker model presented in Kwon et al. (2021). However, with the
development of pumped storage unit technology and the improvement
of the electricity market, pumped storage power plants can participate
not only in the energy market, but also in the regulation and reserve
market (Chazarra et al., 2017). In Chazarra et al. (2017), a scheduling
model is established for a closed-loop PSHP participating in both the
energy and secondary regulation market. Besides, using variable-speed
units also makes it possible to get profits from the regulation market,
when units operate in pumping mode (Rayati et al., 2022). By
establishing an accurate model for PSHPs, PSHPs can be dispatched
effectively, contributing to improving the overall benefits of PSHPs.

In the previous research, studies related to the optimal
scheduling of PSHPs were mostly based on the constant head
model, which means PSHPs were considered to maintain a
constant head in operation. With this assumption, power shows
a linear relationship with the flow in pumping and generating
modes. In Bruninx et al. (2015); Moradi et al. (2017); Li et al.
(2018); Abdelshafy et al. (2020); He et al. (2020), different
coefficients are used to describe the linear relationship between
the power and flow in pumping mode and generating mode. The
pumping and generating constraints with corresponding coefficients
are included in the optimization model. In fact, many PSHPs are
head-sensitive plants, meaning the actual pumping and generating
power of the pumped storage units is influenced by the combination
of the head and flow. In order to dispatch PSHPs more effectively, it
is necessary to establish an optimal dispatch model for PSHPs
reflecting the nonlinear relationship of “power-flow-water head”
for both fixed-speed and variable-speed units in pumping and
generating modes.

Some researchers proposed linearized methods to accurately
demonstrate the relationship between the flow and power under
different hydraulic heads (Su et al., 2019; Toubeau et al., 2019; Wang
et al., 2021; Yuan et al., 2021). In Toubeau et al. (2019), nonlinear
pump/turbine head-dependent curves are modeled and linearized to
decrease the endogenous uncertainties in the models. In Su et al.
(2019); Wang et al. (2021), the MILP formulation is used to model
the hydropower plants, which can give an approximate model to
demonstrate the model of plants with nonlinear and non-convex
features. However, it takes a long time or cannot get the optimal
solution, when the PSHP contains multiple units or too many
linearized constraints with a large number of binary variables
included in the model to give a better approximation. Besides,
the different operating characteristics of variable-speed and fixed-

speed units make it difficult to optimize the scheduling of pumped
storage power plants with multi-type of units.

Two major contributions have been made in this paper. One of
the contributions is to propose an optimal day-ahead dispatch
method for a PSHP containing multi-type of units considering
the effect of hydraulic heads. The optimization objective is to
maximize the revenue of PSHPs in the energy market and the
regulation market. Nonlinear characteristics among the “power-
flow-water head” of fixed-speed and variable-speed units are
considered to establish a more realistic model for the PSHP.
The other contribution is to propose an iterative method for
solving the optimal scheduling model of the PSHP considering
the influence of hydraulic effects. A heuristic-based acceleration
method is proposed to improve the effectiveness of the
computational results. The proposed method significantly
shortens the solution time compared to directly solving
complicated linearized models and gives a better
approximation solution for the model. Therefore, it is more
practical for the proposed algorithm to be used in engineering.

The remaining of this paper is organized as follows. Section 2
establishes the day-ahead dispatch model to maximize the revenues
for the PSHP in the energy market and regulation market. Section 3
introduces the mathematical formulation of the fixed-speed and
variable-speed units in both pumping and generating states. Section
4 describes the iteration strategy for optimal scheduling. Several
cases are conducted in Section 5 to validate the correctness and
effectiveness of the method of the proposed methods. Finally,
conclusions are drawn in Section 6.

2 Basic day-ahead dispatch model for a
PSHP containing multi-type units

In contrast to a fixed-speed unit, the pumping power of a
variable-speed unit can be changed in the pumping mode.
Therefore, a PSHP containing multi-type of units can participate
in energy and frequency regulation with higher flexibility. By
optimizing the generating and pumping power of units, it is
possible for the PSHP’s operator to get more revenue by fully
making use of the multiple units. Considering the participation
of PSHP in both energy and frequency regulation markets, we
construct the basic day-ahead self-scheduling model for a PSHP
to maximize the expected total revenue in this section.

In the model, the PSHP is regarded as a price-taker of the
electricity markets, and the uncertainties of demand for frequency
regulation are also considered. The nonlinear characteristics of
“power-flow-water head” for the fixed-speed and variable-speed
units in the PSHP are modeled and elaborated in the next section.

2.1 Objective function

The objective function includes the revenues of PSHP trading in
energy market Re and the regulation market Rr, as well as the
startup/shutdown cost of the pump CPH.

max ∑
t

∑
ω∈Ω

αω Re
ω,t + Rr

ω,t( ) − CPH
t (1)
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Re
ω,t � Gse

ω,t + Gve
ω,t − Pse

t − Pve
ω,t( )Δt · λet (2)

Rr
ω,t � Gsr

ω,t + Gvr
ω,t + Pvr

ω,t( ) · λrpt +mλret( )Δt (3)
CPH

t � CsuNsu
t + CsdNsd

t + CvuNvu
t + CvdNvd

t (4)
Eq. 2 represents the revenues of PSHP with fixed-speed and

variable units in the energy market. Eq. 3 depicts the revenues of the
PSHP from the regulation market. The payment of regulation
services consists of a capacity payment and a performance-based
payment. The former payment indicates the opportunity costs of
enabled capacities, while the latter reflects the contribution to the
frequency regulation. As uncertainties exist in the Automatic

Generation Control (AGC) signal, a scenario-based optimization
objective function is established to consider the uncertainty of the
AGC signals. Eq. 4 shows the total startup and shutdown cost of the
PSHP at time t.

2.2 Constraints

Nsp
t+1 � Nsp

t +Nsu
t −Nsd

t (5)
Nvp

t+1 � Nvp
t +Nvu

t −Nvd
t (6)

Nsp
t ,N

su
t , N

sd
t , N

vp
t , Nvu

t , N
vd
t ≥ 0 (7)

∑
t

Nsu
t k( ) +Nsd

t k( )≤A ·Ns (8)

∑
t

Nvu
t k( ) +Nvd

t k( )≤A ·Nv (9)

0≤Pstate
t + Gstate

t ≤ 1 (10)
0≤Nsg

t ≤NsG
state
t (11)

0≤Nsp
t ≤NsP

state
t (12)

0≤Nvg
t ≤NvG

state
t (13)

0≤Nvp
t ≤NvP

state
t (14)

0≤Nsg
t ≤Ns −Nsp

t−1 (15)
0≤Nvg

t ≤Nv −Nvp
t−1 (16)

Constraints (5–7) show the number of units in the pump state in
operation. Constraints (8, 9) limit the number of times that units can
switch between the pump state and the generation state. Constraint
(10) guarantees that the PSHP cannot pump and generate at the
same time. The number of units in operation should be less than the
total number of units by constraints (11–14). Besides, units are not

FIGURE 1
Nonlinear relationship among water head, flow and power for a variable-speed unit. (A) generation mode, (B) pumping mode.

FIGURE 2
Typical water heads and the corresponding function for fixed-
speed units in generating mode.
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allowed to change from pump state to generation state between
adjacent dispatch periods according to constraints (15–16).

Pse
t � Nsp

t · �Psp (17)
Gs, exp

ω,t � Gse
ω,t + sup/dwω,t Gsr

ω,t (18)
0≤Gsr

ω,t ≤ �G
sg
ω,t − Gse

t (19)
0≤Gsr

ω,t ≤Gse
ω,t − Gsg

ω,t
(20)

Gv, exp
ω,t � Gve

ω,t + sup/dwω,t Gvr
ω,t (21)

0≤Gvr
ω,t ≤ �G

vg
ω,t − Gve

ω,t (22)
0≤Gvr

ω,t ≤Gve
ω,t − Gvg

ω,t
(23)

Pv, exp
ω,t � Pve

ω,t − sup/dwω,t Pvr
ω,t (24)

0≤Pvr
ω,t ≤ �P

vp
ω,t − Pve

ω,t (25)
0≤Pvr

ω,t ≤Pve
ω,t − Pvp

ω,t
(26)

Constraints (17–26) show the pumping and generating power
constraints for fixed-speed and variable-speed units in the PSHP.
The pumping and generating power for each unit should be within
the feasible operating region. As the PSHP participates in the
regulation market, the expected pump and generation power is
limited by constraints (18, 21, 24). The operating power is the sum of
the pump and generation power participating in the day-ahead
market and the actual power participating in the regulation market.

Vu
ω,t � Vu

ω,t−1 − Qg
ω,t·Δt + Qp

ω,t·Δt (30)
Vd

ω,t � Vd
ω,t−1 + Qg

ω,t·Δt − Qp
ω,t·Δt (31)

�V
u ≥Vu

t ≥V
u (32)

�V
d ≥Vd

t ≥Vd (33)
ΔV max ≥Vu

Tall
− Vu

0 ≥ − ΔV max (34)

The volume constraints of the upper and the lower reservoirs are
shown in constraints (30–34). Constraints (30, 31) represent the
volume balance of the PSHP between dispatch periods. In operation,
the amount of water stored in the reservoir should not exceed the
reservoir capacity. Besides, the daily volume change should be
limited by constraint (34) to guarantee the reservoir’s starting
volume of the next day.

3 An improved model for the nonlinear
“power-flow-water head”
characteristics of PSHP

In Section 2, a general day-ahead scheduling model is
established for PSHP. However, the model does not include
detailed constraints to describe the relationship between the
water flow and the power for the fixed-speed and variable-speed
units. In this section, an improved mathematical model for the units
are established considering the nonlinear relationship among power,
flow, and water head.

3.1 Overview of the traditional constant
water head (CWH) model

This is the most commonly used model in the previous studies,
but it has an obvious error as the hydraulic effects on the power and
flow are not considered. Under the constant water head hypothesis,
the power is approximately proportional to the flow.

Qg
ω,t � 1

ηg · ρ0·g·h0
Gs, exp

ω,t + Gv, exp
ω,t( ) (35)

Qp
ω,t �

ηp
ρ0·g·h0

Pse
t + Pv, exp

ω,t( ) (36)

Equations (35) and (36) indicate the linear relationship between
the water flow and the generating/pumping power of the PSHP. The
water head is assumed to maintain as h0 in operation. However, the
water head varies with the volume of the reservoirs, leading to the
inaccuracy of the model.

3.2 An improved linearizedmodel based on a
cluster of typical water heads (ACTWH)

In operation, the variation of the water head influences the flow
and the pumping/generating power. Usually, the detailed
parameters can be obtained through experiments before the unit
is put into operation.

Figure 1 shows the nonlinear relationship among water head,
flow, and power for a variable-speed unit in generating/pumping

FIGURE 3
Flowchart of the iteration method.
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mode, separately. In order tomaintain the operating life of the unit up
to the design life, there are restrictions on the operating zone of the
unit in generating/pumping modes. Without loss of generality, this
section constructs a pumping and generating model for the units
considering the water head effects according to references (Wood
et al., 2013; Mousavi et al., 2019; Alvarez, 2020). The data used can be
found at https://pan.baidu.com/s/14QUJkkbEkAr10JZ7XhvUFA?
pwd=1111. In real application, the model parameters can be
replaced based on experimental data during the optimization.

For the fixed-speed units in generation mode and variable-speed
units in generating/pumping mode, the power is approximately
proportional to the flow at the same water head. A series of linear
functions reflecting the relationship between power and flow can be
established by choosing a cluster of water heads at equal distances as
shown in Figure 2.

The function of the power varying with flow at any water head
can be represented by the linear function at the nearest typical water
heads. For example, when the water head is between l1 and l2 in
Figure 2, the relationship between power and flow can be
represented by the line named Water Head 1. Assuming that the
water head is close to the jth typical water head at time k under
scenario ω, the constraints for the units in generating/pumping
mode can be represented by

Qsg
ω,t � ksg,jt Gs, exp

ω,t + bsg,jt Nsg
ω,t (37)

Qsp
t � bvg,jt Nsp

t (38)
Qvg

ω,t � kvg,jt Gv, exp
ω,t + bvg,jt Nvg

t (39)
Qvp

ω,t � kvp,jt Pv, exp
ω,t + bvp,jt Nvp

t (40)
Qj,sg ·Nsg

t ≤Qsg
ω,t ≤ �Q

j,sg ·Nsg
t (41)

Gj,sg ·Nsg
t ≤Gsg

ω,t ≤ �Gi
j,sg ·Nsg

t (42)
Qj,vg ·Nvg

t ≤Qvg
ω,t ≤ �Q

j,vg ·Nvg
t (43)

Gj,vg ·Nvg
t ≤Gvg

ω,t ≤ �G
j,vg ·Nvg

t (44)
Qj,vp ·Nvp

t ≤Qvp
ω,t ≤ �Q

j,vp ·Nvp
t (45)

Pj,vp ·Nvp
t ≤Pvp

ω,t ≤ �P
j,vp ·Nvp

t (46)
Vj

u ≤Vu
ω,t ≤ �Vj

u (47)

Equations (37)–(40) show the linearized function of flow
varying with power at typical water head j in hour t under
scenario ω for the fixed-speed and variable-speed units in
generating/pumping mode, respectively. Constraints (41–46)

demonstrate the upper and lower limits of the power and flow
for fixed-speed and variable-speed units in the generation/pumping
state. Constraint (47) shows the volume limits of upper reservoir.

4Customized iterative solutionmethod
for the ACTWH based PSHP

The optimal scheduling model for a PSHP with multi-type of
units is established based on the ACTWH idea in Sections 2, 3. The
objective function of the model is (1), and the constraints of the
model are composed of (5)-(34) and (37)-(47). In this model, the
indices of the water heads at each hour in (37)-(47) are hyper-
parameters, which influences the choice of the solution method.

One solution method is to reformulate the ACTWH-based
model as an MILP problem by the Big M technique. In this case,
the model can be directly solved by commercial solvers, and details
are given in the Appendix. However, there is a dilemma when using
the Big M technique based direct solution method (DSM): 1)
increasing the typical water heads introduce many auxiliary
binary variables and relevant constraints, which significantly
increases the complexity and solution time of the model; 2) a
small number of typical water heads are unable to precisely
reflect the nonlinear relationship between power and flow at
different water heads.

4.1 Design of the customized iterative
solution method (CISM)

To relieve the bottleneck of DSM, CISM is designed in this
section to shorten the solution time and improve the practicability of
the ACTWH-based model for PSHPs. The procedures are detailed
below and illustrated by Figure 3.

Firstly, the volume of reservoirs (i.e., Vu,0
ω,t and Vd,0

ω,t) and
pumping/generating state (i.e., Pstate

t and Gstate
t ) are calculated by

solving the dispatch model of PSHPs under CWH hypothesis, where
the objective function is (1) and the constraints include Constraints
(5)–(36). This is a simple MILP model and can be rapidly solved by
commercial solvers. Set the iteration counter i = 1, and the iteration
begins.

In the ith iteration, according to Vu,i−1
ω,t , Vd,i−1

ω,t , Pstate
t and Gstate

t

obtained above, the water heads at each hour in daily operationHi
ω,t

can be renewed by referring to the design parameters of the PSHP.

FIGURE 4
Iterative searching process for the optimal dispatch results.
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Then the renewed water headsHi
ω,t are introduced into the dispatch

model composed of (1), (5)-(34) and (37)-(47) to uniquely
determine the hyper-parameter j in constraints (37)–(47). By
solving the renewed dispatch model, the updated Vu,i

ω,t and Vd,i
ω,t

are obtained. The iteration continues until the relative errors of Vu,i
ω,t

and Vd,i
ω,t are less than the predefined gap, otherwise run to the (i+1)-

th iteration and set i = i+1.
Finally, the results of the last iteration are the optimal dispatch

strategy considering the effects of the water heads.
With CISM, the renewal of water heads is decoupled with the

optimization of the ACTWH-based model, and the auxiliary binary
variables and constraints in DSM are all eliminated, which reduce
the complexity and solution time.

4.2 Proof of CISM by deduction from the
fixed-point view

The iteration of CISM can be described by the interaction
between the Hω, Φω and Vω presented in Figure 4. Each box in
Figure 4 represents some key state variables, and links between boxes
stand for the corresponding decision processes formulated above,
which constitute one closed directed loop.

For such interacted models, the optimal solutions should make
them reach optimality simultaneously, which is not guaranteed.
Hence, we adopt the fixed-point theory to analyze whether the
solutions exist or not.

First, we define some mappings according to the logic in
Figure 4:

• {Φω} =MWH({Hω}): According to the proposed ACTWH idea,
with the water head Hω given, mapping MWH determines the
parameters of the linear function at the typical water heads,
which are denoted by {Φω}. It is illustrated by Figure 2 that
MWH is constructed by a mapping function instead of an
optimization process, so its feasibility is ensured. Besides, the
mapping in Figure 2 is obviously continuous because the
variation of {Hω} falling in the domain cannot cause step
changes in {Φω}.

• {Vω} = MDM({Φω}): Mapping MDM represents the optimal
dispatch model of a PSHP participating in energy and
frequency regulation markets, which is an optimal power

TABLE 1 Total revenues of PSHP for different model.

SMCWHH CISM DSM

Revenues in Energy Market (M¥) 1.17 1.15 1.78

Revenues in Regulation Market (M¥) 3.12 2.24 2.30

Startup/Shutdown Cost (M¥) 0.05 0.05 0.05

Total Profits (M¥) 4.24 3.34 4.03

Solving Time(s) 87.6 184.9 15,123

FIGURE 5
Clearing price in energy and regulation market.

FIGURE 6
Operation results of PSHP with CISM under scenario 5.

FIGURE 7
Water head profiles under scenario 5 with different solution
methods.
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flow problem. MDM can also be seen as continuous because: 1)
Φω is regard as constant parameters instead of optimization
variables; 2) Vω is not composed of the dual variables of the
binding constraints in the optimal dispatch model, so there are
no step changes in Vω with respect to the variation of Φω.

• {Hω} =MVH({Vω}): Once the volumes of water in the upper and
the lower reservoirs Vω are known, the corresponding water
levels of the two reservoirs can be easily derived. The difference
between the two water levels is the value of the water head Hω,
so the mapping between Vω and Hω (i.e., MVH) is obviously a
continuous function, whose feasibility is also ensured likeMWH.

Then the loop in Figure 4 can be described by mapping Mwhole

defined as follows:

Hω{ } � Mwhole Hω{ }( ) � MVH MDM MWH Hω{ }( )( )( ) (48)
With the water head space A defined as

A � Hw{ }∣∣∣∣Hw
min ≤Hw ≤Hw

max{ }, (49)

it can be seen that Mwhole is a self-mapping A→A. Since the
mappings MWH, MDM, and MVH are continuous, composite
mapping Mwhole is also continuous.

Due to the continuity, convexity and compactness of A, the fixed
point is proved to exist inA according to the Brouwerfixed point theorem
(Kellogg et al., 1976), which is the solution to the interacted optimization
problem shown in Figure 4. Such fixed-point problem can be commonly
solved by the iterative method, which we have given in Figure 4.

5 Case studies

5.1 Simulation settings and parameters

A PSHP with 7 fixed-speed units and 2 variable-speed units is
used to perform the case study, with the goal of maximizing its total

revenue. The rated power of the fixed-speed units is 300 MW, while
the counterpart of variable-speed units is 330 MW. The operation
characteristics of the units are shown in Figure 1. Bath County PSHP
is chosen to carry out the case studies, and the relationship between
the volume and the water head is proportionally scaled by referring
to Shisanling PSHP, China. The basic parameters of Bath County
PSHP given in (Cao et al., 2021) are used.

The interval between two adjacent typical water heads is 10 m,
while the counterpart for a cluster of water heads is 2 m. At each
chosen water head, the power approximately shows a linear
relationship to the flow. Therefore, the discretized model of the
“power-flow-water head” for units can be used to optimize the
operation of PSHP. The time interval is 15 min in daily operation,
while the bidding power in the regulation market remains the same
in an hour.

The forecast prices for energy and regulation are from
(Kazempour et al., 2009). The RegA-type regulation signals of
PJM market for a whole year are used to establish the energy
demand for frequency regulation (Zhang et al., 2018; Cheng
et al., 2023; Zhou et al., 2024). The energy demand for frequency
regulation are calculated by averaging regulation signals in every
15 min, and the k-means clustering method is used to generate
10 scenarios to represent the potential frequency regulation
requirements. The probability of scenarios ranges between 0.8%
and 47.1%. Besides, according to historical statistical data, the
average regulation mileage is 2.75 (Xia et al., 2016).

The models are solved by using GUROBI 9.1.0 solver and CVX
toolbox in MATLAB environment (Grant and Boyd, 2014). Besides,
numerical simulations are performed on a laptop containing an Intel
Core i7-4700MQ CPU with 2.4 GHz and 16 GB of RAM.

5.2 Simulation results

The objective of the model is to maximize the profits of the
PSHP with multi-type of units. According to the simulation results,
the solution time of DSM is significantly longer than that of the other
methods. This subsection compares the optimization results solved
by three solution methods, including Solution Method under CWH
Hypothesis (SMCWHH), DSM and CISM.

Table 1 shows the operational results of PSHP under different
solution methods. According to the results, the PSHP can get more
profits from the regulation market than the energy market.
SMCWHH is the fastest solution method, and the total profit is
also the largest. In fact, since the water head increases in pump

TABLE 2 Total revenues of PSHP with different number of variable-speed units.

Number of variable-speed units

0 1 2 3 4 5

Revenue in Energy Market (M¥) 1.20 1.23 1.15 1.00 0.41 0.47

Revenue in Regulation Market (M¥) 1.65 1.87 2.24 2.58 3.37 3.50

Start-up Cost (M¥) 0.05 0.05 0.05 0.05 0.04 0.04

Total Revenue (M¥) 2.80 3.05 3.34 3.53 3.74 3.93

TABLE 3 Total revenues of PSHP in different operation mode.

Regular mode HSC mode

Revenue in Energy Market (M¥) 1.15 0.73

Revenue in Regulation Market (M¥) 2.24 2.99

Start-up Cost (M¥) 0.05 0.05

Total Revenue (M¥) 3.34 3.67
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mode, more energy needs to be cost. Besides, the actual generation
power declines with the decrease of water head, which further leads
to a decrease in revenue. Therefore, more profit is expected to be
gotten for SMCWHH, which is an error for the solution method.

Figure 5 demonstrates the clearing price in the energy and
regulation market (Kazempour et al., 2009). According to
Figure 5, the electricity price is low between 0:00 and 7:00. The
total pumping and generating power of PSHP with CISM under
scenario 5 is shown in Figure 6. The units pump when the electricity
is low, while generating when the electricity is high. For the fixed-
speed units, the units can only participate in the regulation market in
generation mode.When the PSHP generates power, more power can
participate in the regulation market to get more profits.

Figure 7 shows the water head profiles calculated by different
solution methods. In daily operation, the water heads with the
volume of water stored in the reservoirs. Besides, the change in
water heads has an effect on the power and flow. For the constant
water head model, the water heads remain the same in daily
operations, causing errors to some extent. Since the relationship
between power and flow at different heads can be better
approximated, the model solved by CISM can give the closest
solution to the actual operation.

5.3 Discussions

Sensitivity analyses are performed by setting the different
number of variable-speed units in the subsection. Besides, this
part also shows the change of revenue of PSHP, when the PSHP
is working in the hydraulic short-circuit mode.

5.3.1 Impact of the number of variable-speed units
on simulation results

Assuming the total number of units is 9 in the PSHP, Table 2
compares the effect of different variable-speed units on the profits of
the PSHP by setting the number of variable-speed units from 0 to 5.
According to Table 2, the revenue of the PSHP is mainly from the
regulation market. As the generating power of variable-speed units
can change in a wider range at the same water head compared to the
fixed-speed units and its pumping power can also be changed in
pumping mode, a PSHP with more variable-speed units can gain
more revenue from the regulation market.

5.3.2 Impact of hydraulic short-circuit (HSC) mode
for PSHP

In HSC mode, PSHP can pump and generate simultaneously.
Although the efficiency of the HSC mode is less than the regular
mode, the power of PSHP can be regulated within a wider range
under the HSC mode. Table 3 demonstrates the operation results of
PSHP in the regular and HSC mode. When the PSHP works in HSC
mode, it loses 0.42 M¥ in the energy market. However, working in
HSC mode also makes the PSHP gain 0.75 M¥ more in the
regulation market than the PSHP working in the regular mode.
According to Table 3, the PSHP can gain more profits from the
regulation market in HSC mode.

6 Conclusion

This paper proposes an optimal scheduling method for the
PSHP with variable-speed and fixed-speed units considering
variable head effects. The objective is to maximize the profits of
the PSHP by participating in the energy and regulation markets. The
nonlinear relationship of power and flow for the variable-speed
and fixed-speed units is established in detail by considering the
water head effects. Besides, two iteration solution methods for
revising the water head are proposed to optimize the operation of
multi-type of units in PSHP. The numerical results show that the
scheduling results are closer to the actual operation than the
results under the assumption of constant water head. The
iteration solution method considering a cluster of water heads
can give the most practical solution with less time. Moreover, the
PSHP can get more profits by installing more variable-speed
units or by operating in short-circuit mode. Besides, PSHP is
expected to participate in the intra-day market to further
improve the flexibility of the power systems, so its two-stage
dispatch model considering the water head effects is among our
future work.
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Appendix: Direct Soution Method
(DSM) under Typical Water Head

The dispatch model based on ACTWH proposed in Section II
and III can be reformulated as an MILP model as follows.

Firstly, to ensure that the water head at any hour is represented
by only one typical water head, we add an equality constraint (48).

∑
Hc

j�1
Lj
ω,t� 1 (A1)

where all Ljω,t is an 0–1 variable, and only one of them can take 1 in
hour t. If Ljω,t is 1, the water head in scenario ω in hour t is
represented by typical water head j.

Then, with the introduction of Ljω,t, constraints (37)–(46) can be
reformulated as

−M 1 − Lj
ω,t( )≤Qsg

ω,t − ksg,jGsg
ω,t + bsg,jNsg

t( )≤M 1 − Lj
ω,t( ) (A2)

−M 1 − Lj
ω,t( ) + Qj,sg ·Nsg

t ≤Qsg
ω,t ≤M 1 − Lj

ω,t( ) + �Q
j,sg ·Nsg

t (A3)
−M 1 − Lj

ω,t( ) + Gj,sg ·Nsg
t ≤Gsg

ω,t ≤M 1 − Lj
ω,t( ) + �Gi

j,sg ·Nsg
t (A4)

−M 1 − Lj
ω,t( )≤Qsp

ω,t − bsp,jNsp
t ≤M 1 − Lj

ω,t( ) (A5)
−M 1 − Lj

ω,t( )≤Qvg
ω,t − kvg,jGvg

ω,t + bvg,jNvg
t( )≤M 1 − Lj

ω,t( ) (A6)
−M 1 − Lj

ω,t( ) + Qj,vg ·Nvg
t ≤Qvg

ω,t ≤M 1 − Lj
ω,t( ) + �Q

j,vg ·Nvg
t (A7)

−M 1 − Lj
ω,t( ) + Gj,vg ·Nvg

t ≤Gvg
ω,t ≤M 1 − Lj

ω,t( ) + �G
j,vg ·Nvg

t (A8)
−M 1 − Lj

ω,t( )≤Qvp
ω,t − kvp,jPvp

ω,t + bvp,jNvp
t( )≤M 1 − Lj

ω,t( ) (A9)

−M 1 − Lj
ω,t( ) + Qj,vp ·Nvp

t ≤Qvp
ω,t ≤M 1 − Lj

ω,t( ) + �Q
j,vp ·Nvp

t

(A10)
−M 1 − Lj

ω,t( ) + Pj,vp ·Nvp
t ≤Pvp

ω,t ≤M 1 − Lj
ω,t( ) + �P

j,vp ·Nvp
t (A11)

where a large number M called Big M is introduced to coordinate a
series of exclusive constraints at different typical water heads. When
Ljω,t is 1, the power and flow should be limited within the allowable
range at water head j, and the flow shows a linear relationship with
the power. When Ljω,t is 0, all of the constraints are relaxed.

Lj
ω,t · Vj

u ≤Vu,j
ω,t ≤L

j
ω,t · �Vj

u (A12)

∑
Hc

j�1
Vu,j

ω,t � Vu
ω,t (A13)

Constraints (A12)-(A13) are supplementary volume constraints
for the upper reservoir in operation. As the volume of reservoir is
equally divided by the typical water heads, the actual volume at each
moment can only be in one of these intervals. When Ljω,t is 1, it
means the volume in scenario ω in hour t is within the range from
Vj

u to �Vj
u. Otherwise, the volume is not within the interval.

According to the reformulation above, the model solved by the
direct method is constructed as:

1) The objective function is shown as (1);
2) The constraints consist of Constraints (5)–(34) and (A1)–(A13).

In theory, such an MILP problem can be directly solved by
commercial solvers, which is not elaborated here.
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Nomenclature

1 Set and Index

i Index for times of iteration

j Index for typical water head

t Index for hour t

ω Index for scenario

Ω Index for set of all scenarios

sp,sg Index for fixed-speed units in pumping/generating mode

vp,vg Index for variable-speed units in pumping/generating mode

se,ve Index for power in energy market for fixed-speed/variable-speed units

sr,vr Index for power in regulation market for fixed-speed/variable-speed
units

CWH Index for the optimization model under constant water head
hypothesis

2 Constant and Parameters

g Gravitational acceleration, in m/s2

ρ0 Water density, in kg/m3

αω Probability of the scenario ω

A Total startup/shutdown time of the units in a day

Csu, Csd Startup and shutdown cost for the fixed-speed units, in ¥

Cvu , Cvd Startup and shutdown cost for the variable-speed units, in ¥

m average mileage

Ns, Nv Number of fixed-speed and variable units

h0 Average water head, in m

Hc Total number of typical water heads

λet Electricity tariff of energy market in hour t, in ¥/MWh

λrpt Electricity tariff of regulation capacity, in ¥/MW.

λret Electricity tariff of regulation mileage, in ¥/MWh

�p(·), p (·) Maximum/Minimum rated pumping power for units, in MW.

�g(·), g (·) Maximum/Minimum rated generating power for units, in MW.

�p(·),j, p (·),j Maximum/Minimum pumping power for units at water head j,
in MW.

�g(·),j, g (·),j Maximum/Minimum generating power for units at water head j,
in MW.

k(·),j Slope of the linear function mapping power to flow for units at water
head j

b(·),j Intercept of the linear function mapping power to flow for units at
water head j

sup/dwt
Upward/Downward average regulation signal in hour t

Δt Time interval

Tall Total number of time intervals in a day

�Vu , V u Maximum/Minimum volume of upper reservoir

�Vd , V d Maximum/Minimum volume of lower reservoir

ΔV max Allowable change of the volume of the reservoir

3 Variables

Pstate
t , Gstate

t Binary variables for pumping/generating state in hour t

Ljω,t Binary variables for showing water head position in scenario ω in
hour t

Nsu
t , N

sd
t

Number of startup/shutdown fixed-speed units

Nvu
t , Nvd

t
Number of startup/shutdown variable-speed units

N(·)
t

Number of units in operation in hour t

P(·)
t

Pumping power in hour t, in MW.

G(·)
t

Generating power in hour t, in MW.

Gs, exp
t Expectation value of generating power of fixed-speed units

participating in electricity market in hour t, in MW

Gv, exp
t ,

Pv, exp
t

Expectation value of generating/pumping power of variable-speed
units participating in electricity market in hour t, in MW

Vu
t , V

d
t

Volume of upper/lower reservoir in hour t, in m3

Q(·)
t

Pumping/Generating flow for units in hour t, in m3/s

Re
ω,t , R

r
ω,t Total revenues of PSHP in energy market/regulation market in

scenario ω in hour t
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Attentive multi-scale aggregation
based action recognition and its
application in power substation
operation training

Yi Wu1, Gang Ren1, Bing Jiang2, Wei Dai3, Ning Ji1* and Xi Chen1

1Technican Training Center of State Grid Jiangsu Electric Power Co., Ltd., Suzhou, China, 2College of
Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications,
Nanjing, China, 3State Grid Jiangsu Electric Power Co., Ltd., Nanjing, China

With the rapid development of the power system and increasing demand for
intelligence, substation operation training has received more attention. Action
recognition is a monitoring and analysis system based on computer vision and
artificial intelligence technology that can automatically identify and track
personnel actions in video frames. The system accurately identifies abnormal
behaviors such as illegal operations and provides real-time feedback to trainers or
surveillance systems. The commonly adopted strategy for action recognition is to
first extract human skeletons from videos and then recognize the skeleton
sequences. Although graph convolutional networks (GCN)-based skeleton-
based recognition methods have achieved impressive performance, they
operate in spatial dimensions and cannot accurately describe the dependence
between different time intervals in the temporal dimension. Additionally, existing
methods typically handle the temporal and spatial dimensions separately, lacking
effective communication between them. To address these issues, we propose a
skeleton-based method that aggregates convolutional information of different
scales in the time dimension to form a new scale dimension. We also introduce a
space-time-scale attention module that enables effective communication and
weight generation between the three dimensions for prediction. Our proposed
method is validated on public datasets NTU60 and NTU120, with experimental
results verifying its effectiveness. For substation operation training, we built a real-
time recognition system based on our proposed method. We collected over
400 videos for evaluation, including 5 categories of actions, and achieved an
accuracy of over 98%.

KEYWORDS

substation operation, skeleton-based action recognition, multi-scale aggregation,
attention mechanism, spatio-temporal fusion

1 Introduction

Substations are an essential part of power systems and their safe operation is crucial to
ensure the reliability of power supply. The safety awareness and standardized operation of
substation operators are important factors to ensure the safe operation of substations.
Therefore, incorporating artificial intelligence especial action recognition technology into
substation operation training can effectively improve the safety awareness and standardized
operation level of substation operators, thereby ensuring the safe operation of substations.
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For example, dangerous or erroneous action of substation operators
can be identified and warned.

In order to recognize action, skeleton data can first be extracted
from a video sequence and then recognized. This approach has the
advantage of fast processing speed and avoidance of interference
from changes in background and lighting in the video.

However, action recognition based on skeleton data remains a
challenging task, as it not only requires modeling the spatial domain
(between joint points) but also better describing temporal features. Early
studies used manually designed features to process skeleton data, but
these features had limited expressive power and could not describe
complex actions. In recent years, deep learning methods, especially
those based on graph convolutional networks (GCN), have achieved
superior performance. The human skeleton can be considered a graph
structure composed of joint points and natural connections between
them, making skeleton data suitable for modeling in the spatial domain
(between joint points). However, GCN cannot be used for time domain
modeling. Existing methods for recognizing GCN-based classes
typically use traditional one-dimensional convolution to describe
temporal features, but due to the varying length of dependency
between moments, the kernel size has a significant impact on
recognition accuracy. Additionally, these methods often alternately
process spatial and temporal information, resulting in insufficient
interaction between the temporal and spatial dimensions and unable
to fully explore the inherent connections between time and space.

To address these issues, we propose in this paper a time-domain
multi-scale information aggregation method for human skeleton-
based action recognition. In order to accurately capture the
dependency between varying length moments, the convolution
results of multiple time-domain convolutional kernels are
aggregated at a new scale dimension, producing a four-
dimensional tensor including time, space, feature channels, and
scale. To enable the network to automatically select important
features, this paper proposes a time-space-scale fusion attention
mechanism that fully integrates information across different
dimensions to produce a scale-sensitive attention weight to
reweight the original feature tensor. The method is validated on
two publicly available datasets: NTU60 and NTU120. We have
deployed our method at substation operation training locations,
building a real-time behavior recognition system.We collected more
than 400 video sequences, including five different action categories,
with an overall recognition rate of 98%.

2 Related works

Computer vision has been increasingly applied in the power
system due to its ability to analyze large amounts of data and detect
anomalies. By analyzing video footage or sensor data, computer
vision algorithms can identify potential issues in the power grid such
as damaged equipment, broken wires, or other hazards that could
lead to outages or safety concerns. For example, the system in (Chan
et al., 2004) was able to conduct automatically intruder detection,
fire alarm zone detection and substation meter reading in power
substations. Automatic busbar detection from images can be
conducted in (Chen et al., 2015). Mobile robots for electric
power substation equipment’s inspection was surveyed in (Allan
and Beaudry, 2014; Lu et al., 2017; Dong et al., 2023). Automatic

safety helmet detection for operators was achieved in (Li et al., 2017).
In this paper, we focus on the actions of substation operators and
develop algorithms to automatically identify their actions, providing
a basis for subsequent analysis of the standardization and safety of
their actions.

For skeleton-based action recognition, early methods employed
manually designed features (Vemulapalli et al., 2014; Weng et al.,
2017), with limited generalization ability and unable to extend to
recognizing various complex actions. With the development of deep
learning, methods based on recurrent neural networks (RNN),
specifically long short-term memory networks (LSTM) were
proposed to model the time domain (Du et al., 2015; Liu et al.,
2016; Zhang et al., 2017). With the introduction of graph
convolutional networks (GCN) and their superior performance,
more and more research has been conducted based on GCN.

Graph neural networks (GNNs) (Wu et al., 2020) can handle
graph data with arbitrary topology, and have been extensively studied
in recent years. In these studies, graph convolutional networks
(GCNs) were first introduced as the first-order approximation of
local spectral convolutions (Kipf and Welling, 2016), due to their
simple mean neighborhood aggregator, they are widely used for
processing various graph data, including human skeleton data.
However, existing methods for skeleton-based action recognition
based on GCNs (Yan et al., 2018; Li et al., 2019; Cheng et al.,
2020; Shi et al., 2020) tend to focus on improving the information
processing in the spatial domain, while using a single one-dimensional
convolution with a fixed receptive field in the temporal domain. This
makes the network unable to model complex temporal dependencies
and separate the time and spatial domains, resulting in limited
exchange of information between them. To address these issues,
this paper proposes a multi-scale time-domain information fusion
network that effectively models complex relationships in the temporal
domain, and a time-space-channel-scale fusion mechanism that fully
communicates the four different data dimensions.

3 Proposed method

3.1 Method overview

The overall framework of the proposed method is shown in
Figure 1. After three-dimensional (or two-dimensional) skeleton
data goes through a series of spatial-temporal processing units, it
passes through fully connected layers and obtains classification
results by using the softmax function. Each spatial-temporal
processing unit consists of two parts: a spatial processing unit
and a temporal processing unit. The spatial processing unit is
conducted by adaptive graph convolution (AGCN), while the
temporal processing unit is the core of our method, which
consists of multi-scale convolutional aggregation and space-time-
scale fusion attention mechanism (STSA). In this method, the
number of spatial-temporal processing units is set to 10.

3.2 Multi-scale aggregation

To overcome the problem of single receptive field in temporal
convolution and difficulty in describing complex temporal
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FIGURE 1
Overall architecture of the proposed method.

FIGURE 2
Diagram of space-time-scale fusion attention.

TABLE 1 Performance evaluation on NTU RGB + D dataset compared with other
methods.

Method (year) Cross-sub (%) Cross-view (%)

ST-GCN (Yan et al., 2018) 81.5 88.3

2s-AGCN (Shi et al., 2019) 88.5 95.1

Dynamic-GCN (Ye et al., 2020) 91.5 96.0

Adaptive-ST-GCN (Chen et al., 2021a) 91.5 96.0

MSTGCN (Chen et al., 2021b) 91.5 96.6

EfficientGCN-B4 (Song et al., 2022) 90.8 96.7

GSTLN (Dai et al., 2023) 91.9 96.6

Proposed 92.1 96.5

The bold values are the maximum values.

TABLE 2 Performance evaluation on NTU RGB + D 120 dataset compared with
other methods.

Method (year) Cross-sub (%) Cross-set (%)

ST-GCN (Yan et al., 2018) 70.7 73.2

2s-AGCN (Shi et al., 2019) 82.9 84.9

Dynamic-GCN (Ye et al., 2020) 87.3 88.6

Adaptive-ST-GCN (Chen et al., 2021a) 88.4 88.3

MSTGCN (Chen et al., 2021b) 87.5 88.8

EfficientGCN-B4 (Song et al., 2022) 88.7 88.9

GSTLN (Dai et al., 2023) 88.1 89.3

Proposed 88.9 89.7

The bold values are the maximum values.
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dependencies, we propose in this paper a multi-scale convolutional
aggregation method. The effectiveness of using multiple
convolutional kernels to obtain different receptive fields has been
validated in previous works. However, in these works, the results of
multiple convolutional kernels are usually added or connected to
achieve the purpose of multi-scale information aggregation. In this
way, the importance of information at multiple scales is the same,
making it difficult for the network to adaptively select scale
information and have poor flexibility. This paper proposes to
aggregate multi-scale information into a new scale dimension
and then combine it with subsequent space-time-scale fusion
attention mechanism to enable the network to fully fuse different
dimensions of information and re-weight features based on the
principle of adaptively selecting important information at time-
space-scale dimensions.

Let the input features beX ∈RC×T×V, and after passing through S
different sizes of convolutional kernels, we get S equally sized
features. We aggregate them in the new scale dimension into a
feature tensor: X1 ∈ RC×T×V×S.

3.3 Space-time-scale fusion attention

The output tensor of the multi-scale aggregation has four
dimensions: space, time, scale, and feature channel. As shown in
Figure 2, we then perform feature reduction along space, time and
scale dimension respectively, the reduction operation named MC
module consists of a mean pooling layer (M) and a 1 × 1
convolution block (C). The resulted feature tensors are:
F1 ∈ RC×T×1×S, F2 ∈ RC×1×V×S, and F3 ∈ RC×T×V×1, which are then
expanded to C × T × V × S respectively and added as
X2 ∈ RC×T×V×S. This process can be written as:

X2 � RV F1( ) + RT F2( ) + RS F3( )
in which

F1 � MCV X( )
F2 � MCT X( )
F3 � MCS X( )

where MC(.) the MC module, R(.) is the repeat operation.
After reduction along a certain dimension, the information in

the remaining dimensions can be fully fused without interference
from the reduced dimension. The final addition operation will
further merge the fusion results of each dimension. In the
implementation, replication can be completed by the automatic
expansion function of the addition operation (most deep learning
frameworks such as PyTorch, Tensorflow, etc., support this
function).

TABLE 3 Results of ablation experiments.

Method Cross-sub (%)

Kernels: 3, 5, 7 88.6

Kernels: 3, 5, 7, 9 88.7

Kernels: 5, 7, 9, 11 88.8

Kernels: 5, 7, 9 88.9

Kernels: 7, 9, 11 88.7

Kernels: 7, 9, 11 88.7

w/o STSA 88.3

Fusion time-scale 88.3

Fusion space-time 88.6

Fusion space-scale 88.5

The bold values are the maximum values.

FIGURE 3
Visualization result of the learned attention by STSA.
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3.4 Adaptive GCN

The skeleton can be represented as a graph structure, with joint
points as vertices and connections between joint points as edges. Let

the set of joint feature vectors be denoted by P � Pi{ }Vi�1, where V is
the number of joint points. The set of edges can be represented by an
adjacency matrix A. By obtaining the adjacent points of each vertex,
a neighborhood can be obtained for performing convolution
operations similar to those used in image data:

pi′ � ∑
pj∈N pi( )

pjwij

WhereN(Pi) is the neighborhood of Pi. A linear approximation
to the above convolution operator was proposed in (Kipf and
Welling, 2016):

P′ � Λ−1
2 A + I( )Λ−1

2PW

Where P is the matrix of the combination of all the vertex
features, and

Λij � ∑
j

Aij + Iij( )

FIGURE 4
Five categories of substation operation actions.

TABLE 4 Number of samples in each action category.

Category Num. Of samples

1. Verify electricity 86

2. Cabinet operation (standing) 92

3. Cabinet operation (crouching) 84

4. Rotate the switch handle 78

5. Pull the capacitor switch 81

Total 432
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In this paper, an adaptive topology structure similar to (Chen Y.
et al., 2021) is used, where A is considered as a trainable parameter
while the adjacency matrix serves as the initial values for A. This
allows the network to go beyond the natural connections in
topological structure and better describe the complex
relationships between joint points.

4 Experiments

4.1 Evaluation on public datasets

The effectiveness of the proposed method was evaluated on two
publicly available datasets: NTU-RGB + D (Shahroudy et al., 2016)
and NTU-RGB + D 120 (Liu et al., 2019).

1) NTU-RGB + D: This dataset is a large-scale three-dimensional
human skeleton action recognition dataset. It contains
56,880 skeleton motion clips. These actions were performed
by 40 volunteers using three different perspectives of the
Kinect v2 camera, categorized into 60 classes. Two common
benchmarks used on this dataset are: 1) Cross-subject (cross-
subject): training samples are from 20 volunteers, while testing
samples are from the remaining 20 volunteers. 2) Cross-view
(cross-view): training samples are from two camera perspectives,
while testing data comes from a different perspective.

2) NTU RGB + D 120: This dataset is currently the largest three-
dimensional human skeleton based action recognition dataset. It
was created by adding an additional 57,367 skeleton motion clips
to the NTU-RGB + D dataset, surpassing the number of categories
to over 60. As a result, the dataset includes a total of
113,945 samples with more than 120 categories. Likewise, the
newly added samples were also captured using three different
perspectives of the Kinect v2 camera. Two common benchmarks
used on this dataset are: 1) Cross-subject (cross-subject): training
samples are from 53 volunteers, while testing samples come from
the remaining 53 volunteers. 2) Cross-setup (cross-setup): training
and testing samples are split based on the camera setup number.

The proposed method is implemented using the PyTorch deep
learning framework, and training is completed on an RTX
3090 GPU. Stochastic gradient descent (SGD) algorithm with a
learning rate of 0.1 and momentum of 0.9 is adopted as the
optimizer. In all experiments, the number of training epochs is

65, with the first 5 rounds serving as warm-up to make trainingmore
stable.

As shown in Tables 1, 2, the proposed method is compared against
existing methods on NTU RGB + D dataset and NTU RGB + D
120 dataset. These comparative methods are all of relatively high
performance in recent years. As can be seen from Table 1, the
proposed method achieved the best performance on the NTU RGB
+ D dataset in the Cross-sub benchmark. On the other benchmark:
Cross-view, although performance is not best, it also had a small gap
with the best performance. From Table 2, we can see that the proposed
method achieved the best performance on two benchmarks of NTU
RGB + D 120 (Cross-sub and Cross-set). These results demonstrate the
effectiveness of proposed method. All the results are recognition top-1
accuracy, which is computed as the number of corrected predicted
samples divided by the total number of samples.

In order to evaluate the impact of different combination of
temporal convolution kernels, we conduct a series of experiments on
cross-sub benchmark of NTU RGB + D 120, the evaluation results
are shown in Table 3. The method with kernels of sizes 5, 7,
9 achieved the best performance. Adopting larger kernels or
smaller kernels will not boost the performance. We also tried
adding more convolutional kernels, but this did not lead to an
improvement in performance.

In order to evaluate the role of the space-time-scale fusion
attention (STSA) mechanism, we conducted an experiment with
STSA removed. As shown in Table 3, the performance drops
significantly, which demonstrate the effectiveness of the STSA.
We also evaluate the role of different dimensions in STSA by
removing one of the dimension branches. As shown in Table 3,
we evaluate time-scale, space-time and space-scale fusion
respectively. Among them, space-time fusion yields relatively
better result, which is yet lower than space-time-scale fusion.

To visualize the content learned by our network, especially the
STSA attention mechanism proposed in this paper, we present the
results of the STSA attentionmechanism in the first temporal-spatial
processing unit in Figure 3. The example is a “drinking water”
scenario. Red indicates high weights, and blue indicates low weights.
The weights are normalized using the following equation:

wnormalized � w−min
max −min

In terms of the scale dimension (kernel size k), we can see that at
different scales, the network focuses on different contents, which
means that the network has the ability to adaptively select the scale.

TABLE 5 Action recognition results of the five action categories and overall results.

Category Acc. (%) (proposed) Acc. (%) (Chen et al., 2021a) Acc. (%) (Yan et al., 2018) Acc. (%) (Shi et al., 2019)

1. Verify electricity 100 100 98.1 96.2

2. Cabinet operation (standing) 97.3 94.6 92.4 89

3. Cabinet operation
(crouching)

100 100 94 92

4. Rotate the switch handle 93.5 93.5 89.4 87.2

5. Pull the capacitor switch 100 94 91.8 89.8

Overall 98.3 96.5 92.9 90.9
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4.2 Application in power substation
operation training

The proposed method was applied to operation training in
power substation. We collected the operation videos of trainees
during the training process and used body posture estimation
algorithm Alphapose (Fang et al., 2022) to extract 2D skeleton
data of human bodies for action recognition. The model was trained
on Halpe dataset (Fang et al., 2022) which is able to extract 2D
skeleton including 26 joints. In order to make the network’s
structure unchanged, the 2D data is treated the same way as 3D
skeleton data. The action categories of trainees were divided into five
types: 1) verify electricity; 2) cabinet operation (standing); 3) cabinet
operation (crouching); 4) rotate the switch handle; 5) pull the
capacitor switch. Examples of the five categories of actions are
shown in Figure 4. The colors in Figure 4 represent different
parts of human skeleton. We collected multiple videos from
multiple perspectives of operators for each category. Similarly to
NTU60, we resampled the skeleton data extracted from each video
in time, and all the resampled skeleton data had the same dimension
in time. We selected 60% of them as training samples and the
remaining as testing samples. The number of samples in each action
category is listed in Table 4.

The recognition system runs on a PC with Intel i9 CPU, 32 GB
RAM and RTX3090 GPU. The system is able to achieve real-time
recognition. For each frame, the computation time of posture
estimation is 41 ms, and the computation time of action
recognition is 12 ms, so the system runs at 18.9 FPS which is
sufficient for most of the real-time applications.

In these five action categories, the first and third categories are
relatively easy to identify, while the remaining three categories are
more similar, with the main difference being hand movements. The
proposed method is compared against (Yan et al., 2018; Shi et al.,
2019; Chen Y. et al., 2021). The proposedmethod and (Chen Y. et al.,
2021) achieved 100% accuracy in the first and third categories. And
the other two methods (Yan et al., 2018; Shi et al., 2019) made wrong
predictions in these two categories. The proposed method also
achieved all correct classification results in the fifth category
which outperforms other three methods. The overall recognition
rate of the method in this paper exceeded 98% which outperformed
(Chen Y. et al., 2021) by 1.8% (Yan et al., 2018), by 5.4% and (Shi
et al., 2019) by 7.4%. See Table 5 for comparison results. From the
results, we can learn that the action of “Rotate the switch handle” is
most prone to misclassification. Though the proposed method
achieved an accuracy of 93.5% ranking first alongside (Chen Y.
et al., 2021), in our future work, we will conduct further research on
this category of action.

5 Conclusion

In this paper, we propose a skeleton-based action recognition
method that aggregates convolutional information of different scales
in the time dimension and a space-time-scale attention module that
enables effective communication and weight generation between
dimensions. Our proposed method is validated on public datasets
NTU60 and NTU120, with experimental results demonstrated its
effectiveness. For substation operation training, we built a

recognition system and collected hundreds of videos for evaluation,
including 5 categories of actions, and achieved satisfactory recognition
accuracy.
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Due to the problems such as fuzzy state assessment grading boundaries, the
recognition accuracy is low when using traditional fuzzy techniques to grade the
switchgear state. To address this problem, this paper proposes a switchgear state
assessment and grading method based on deep belief network (DBN) and
improved fuzzy C-means clustering (IFCM). Firstly, the switchgear state
information data are processed by normalization method; then the feature
parameters are extracted from the switchgear state information data by using
DBN, and finally the extracted feature parameters are categorised according to the
condition of switchgear equipment through clustering using IFCM. The
experimental results show that the accuracy of the method in assessing the
switchgear state under small sample conditions reaches 94, which exceeds the
accuracy of other switchgear state assessment grading methods currently in use.

KEYWORDS

deep belief networks, partial discharge, improved fuzzy c-means clustering, multisource
data fusion, switchgear state assessment

1 Introduction

Switchgear is a critical component in power systems, playing a vital role in the control,
protection, and other aspects of line operations. Safe and dependable operation of the power
system is dependent on operational condition of switchgear. (Subramaniam et al., 2021;
Montanari et al., 2022). The current periodic maintenance approach involves blind
inspection and maintenance without knowing the operational status of the switchgear,
often leading to the wastage of maintenance resources. Online monitoring and status
evaluation of the switchgear are significant for ensuring its normal operation, reducing
maintenance frequency, and further bolstering the dependability of the power grid. (Zhong
et al., 2015; Wang et al., 2017).

At present, the status assessment of switchgear primarily relies on signals detected from
partial discharges, temperature, humidity, voltage, current, etc. Among them, the analysis of
partial discharge signals has become a crucial basis for switchgear status assessment (Yumbe
et al., 2013; Janssen et al., 2014). Based on this, scholars from both China and abroad have
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successively proposed classic switchgear status assessment methods
such as the Key Gas Method (KGM) (Razi-Kazemi and Niayesh,
2021), IEC Ratio Method (IRM) (Zhou et al., 2023), and Duval
Triangle Method (DTM) (Liang et al., 2009). However, these
methods are based on knowledge accumulated over a long period
and have inherent limitations, making it difficult to guarantee the
accuracy of status assessment. As machine learning continues to
advance, intelligent techniques such as the Support Vector Machine
(SVM) (Zhong et al., 2018), Bayesian Networks (Ding et al., 2014),
and Extreme Learning Machine (ELM) (Chang et al., 2013) have
been widely applied to switchgear status assessment and have
achieved certain diagnostic effects. However, they also have some
shortcomings. SVM performs admirably when applied to problems
involving small samples; however, its nature restricts it to binary
classification, rendering it suboptimal when applied to complex
problems involving multiple classes and data, such as switchgear
status assessment. (Kim et al., 2019). Bayesian Networks require the
satisfaction of many conditional attributes for use, which is not
conducive to practical engineering applications (Chen et al., 2020).
ELM has fast training speed, but its robustness is poor (Faiz and
Soleimani, 2017; Fang et al., 2023), which cannot meet the
requirements for long-term stable diagnosis. In addition, the
multi-source data collected on-site often lack data labels,
restricting the further development of the above methods in
switchgear status assessment.

Given these issues, some unsupervised learning methods have
been introduced into switchgear status assessment, such as Fuzzy
C-means Clustering (FCM) (Dai et al., 2017; Qiu et al., 2022), which
can effectively classify unlabeled samples and provide a good
interpretation of DGA data (Dehghani et al., 2020). However,
due to the presence of local minima in its membership function,
the diagnostic accuracy of this method is affected. In order to tackle
this issue, LI Enwen and others introduced a method for evaluating
the status of switchgear that utilises Improved Fuzzy C-means
Clustering (IFCM). (Wang et al., 2015; de Assis et al., 2019),
which expand the conventional membership function by
incorporating an exponential form. This method effectively
solved the local minima problem present in the traditional
membership function, resulting in further improvements in
diagnostic accuracy compared to FCM. However, this method
has difficulties in ensuring the proportion of low-level signals in
the distance calculation, affecting the further improvement of
diagnostic accuracy (Hinow and Mevissen, 2011). Additionally,
both FCM and IFCM base their classifications on the similarity
between fault data, without uncovering the differences between
different fault types, making it difficult for their diagnostic results
to fulfil the requirements of operational engineering applications.

To address the above issues, this paper proposes a switchgear
status assessment method based on Deep Belief Network (DBN) and
Improved Fuzzy C-means Clustering (DBN-IFCM). By leveraging
the DBN’s ability to extract abstract features from data, this method
performs feature extraction on the original fault data. While
ensuring the retention of important information from each
feature, it avoids the loss of small signal features during direct
distance calculation. Additionally, the features extracted are more
representative of the essence of each fault than the original data.
Using these feature data in place of the original data for clustering
further improves the accuracy of switchgear status assessment. By

establishing Cluster Validity Indicators (CVI) based on a weighted
ensemble, which assess the validity of the clustering results, the
proposed evaluation method is ultimately validated using actual
detection data from a switchgear. By conducting a comparative
analysis of the clustering outcomes produced by various algorithms,
the evaluation method’s superiority is confirmed.

2 Improved fuzzy c-means clustering
based on DBN

2.1 Improved fuzzy clustering algorithm

The process of dividing a set of physical or abstract objects into
multiple clusters comprised of similar objects is known as clustering.
This process aims to discover the natural groupings of data samples,
ensuring high similarity within each cluster while keeping the
similarity between different clusters as low as possible. In
contrast to the supervised learning process of classification,
clustering operates without the need for pre-defined classes or
labelled samples. In order to facilitate data comprehension and
analysis, clustering assigns similar data points to the same segment
according to predetermined criteria. In the sample space R
containing various sample points, there is a data set X = {x1, x2,
. . . , xn} consisting of n data points, where xi∈R. The data setX is then
divided into several disjoint data sets Cm through a specific method,
which can be represented as:

X � C1 ∪ C2 ∪/∪ Cm

Ci ∩ Cj � ∅ i ≠ j( ){ (1)

The conventional Fuzzy C-means (FCM) algorithm integrates
fuzzy and clustering theories, recognising that equipment states are
not binary and that a fuzzy region of similarity exists between
various defect states. Fuzzy comprehensive evaluation is a method
used to make a reasonable comprehensive evaluation of things that
are influenced by multiple attributes or factors. Through fuzzy
comprehensive evaluation, a clear conclusion can be derived,
reflecting the cat-egory of an object’s attributes at a certain
membership level, following the “maximum membership degree”
principle. Based on the basic idea of fuzzy criteria, membership
relations are used as the partitioning condition, and the maximum
membership degree principle is applied to segment samples,
transitioning from “non-membership” to “membership” and
breaking the restrictions of absolute partitioning. After
introducing membership functions, samples no longer belong
directly to a specific category, but instead reflect their degree of
membership through their membership degrees to each category.
This not only allows for the classification of sample information but
also provides a more intuitive reflection of the degree of membership
of each sample.

The concept underlying the FCM clustering method is outlined
in the algorithm. The clustering sample set X = {x1, x2, . . . , xn} is
partitioned into c classes, 2 < c < n, in the sample space R; x1, x2, . . . ,
xn denote the clustering samples; n is the number of samples; and the
clustering centre matrix is denoted by V=(v1, v2, . . . , vc)

T. The
calculation of the objective function of FCM is represented by
formula (2):
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min J X,V, v1, v2,/, vk,/, vc( ) � ∑
c

k�1
∑
n

i�1
um0
ki d

2
ki (2)

s.t.0< uki < 1,

∑
c

k�1
uki � 1, (3)

Where uki represents membership degree correlation among the
points in the sample xi (i = 1,2, . . . ,N) and the clustering center vk,
m0 represents the fuzzy index, with the value range [1.5, 2.5], and dki
signifies the Euclidean separation between the sample point and xi
and each clustering center vk.

The Lagrange multiplier method is employed to minimise the
objective function of the FCM algorithm, and defining it as a
Lagrangian function with the constraint conditions, the iterative
formulas for the membership degree matrix and clustering centers
can be finally obtained.

The update formula for membership degree and clustering
centre is as follows:

uik � 1

∑
f

k�1
dij/dik( )

2
, (4)

vk �
∑
n

i�1
uik

2 · xi

∑
n

i�1
uik

2

. (5)

Where dij signifies the Euclidean separation between the sample
point and xi and each clustering center vk. When the clustering
objective function satisfies the convergence condition, or the
algorithm iterates to the maximum number of times required,
the clustering ends.

FCM is an effective clustering method; however, the selection of
initial centroids has a substantial influence on the clustering results
due to the local search-based updates of the clustering centres and
membership functions during the iteration process. The utilisation
of arbitrary initial centroids facilitates the objective function’s
descent into local optimal values, which substantially
compromises the precision of state evaluation. FCM is
additionally extremely susceptible to anomalies, noise data, and
initialization conditions. The utilisation of the Euclidean distance as
a distance metric introduces susceptibility to aberrant influence,
thereby impeding the attainment of superior
classification outcomes.

Therefore, firstly, the idea of point density is introduced. Starting
from the perspective of information granularity, the clustering
effectiveness function is constructed using the principle of
granularity analysis. This function can evaluate the effectiveness
of clustering results based on the cohesion and coupling of
information granularity. In this function, the density of points
around is used to reflect the density of sample distribution, and
to determine the degree of influence of sample points on clustering.
By using the effectiveness function to evaluate the clustering results,
the best clustering results and the most appropriate number of
clustering categories can be selected, thereby improving the
deficiency of traditional FCM in randomly selecting initial
clustering centers. The density function is defined as follows,
with respect to each sample point xi:

Zi � ∑
n

j�1,j ≠ i

1
dij

, dij ≤ e, 1≤ i≤ n, (6)

dij � xi − xj










, 1≤ i≤ n, 1≤ j≤ n, (7)

Where, e signifies the range limit value of the density, satisfying min
(dij)<e <max (dij). Based on empirical judgment, selecting the most
dense area in dij yields better results. The larger Zi is, the more
sample points there are around sample point xi.

The clustering results are immediately influenced by the centre
selection in the conventional FCM algorithm, which requires each
iteration update to initialise the clustering centre. It becomes
challenging to ascertain the optimal number of clustering
categories when the selected number fails to correspond with the
characteristics of the data distribution. Calculating the utmost
number of clustering categories for the sample set is the initial
step in resolving this issue. Subsequently, the point density function
is employed to determine the point density of each sample point.
The initial clustering centres are determined by the function value
size of the first points. The optimal number of clustering categories is
then determined by comparing the effectiveness function values of
clustering results across all clustering category numbers.

In clustering algorithms, the clustering standard of “highest
similarity within classes, highest distinction between classes” has
always been upheld. This can also be expressed as the distance within
the same category being the smallest, and the distance between
different categories being the largest. According to this clustering
standard, the clustering centers between categories are merged
successively, that is, merging the two categories with the smallest
distance and closest to each other. Two clustering centres must be
measured in order to determine the distance between two categories.
By means of several consolidations, one can acquire an additional
classification and a clustering hub. This constitutes the
fusion procedure:

1) Determine the separation between any two clustering centres
using the Euclidean distance formula.

2) Compare the values and merge the clustering centers that are
closer than the set merge threshold;

3) Update the clustering center.

The range of clustering category is c ∈ (5, �
n

√ ). The clustering
iteration start from c =

�
n

√
. Then, the process merge the center

FIGURE 1
DBN network structure.
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points with close distance. Also, the number of clustering centers
continues to decrease, and finally loop decrement until the lower
limit of the number of categories.

2.2 Deep belief network

The Deep Belief Network is constructed by layering multiple
restricted Boltzmann machines (RBMs), upon which it is built. The
Boltzmann machine consists of two entirely connected layers, each of
which is a two-layer neural network comprising a visible and concealed
layer. In Figure 1, the DBN network architecture is illustrated.

A complete connection exists between neurons in adjacent
layers, but none between neurons in the same layer. This
principle is adhered to by every individual neuron. An inherent
property of neurons is that their activation conditions are
independent of one another; the state of a single neuron will
influence other neurons with a specific probability. hj denotes the
jth neuron in the hidden layer, which was obtained via the weight
matrix from the previous layer RBM. vi signifies the ith visible layer
neuron and simultaneously functions as the input to the subsequent
RBM. Denoted as follows is the RBM energy function:

E v, h( ) � −∑
i

aivi −∑
j

bjhj −∑
i

∑
j

viωijhij

� −aTv − bTh − vTWh,
(8)

Where, ai represents the bias amount of vi in the visible layer, bi
represents the bias amount of hi in the visible layer; ωij represents the
weight coefficient between the neuron vi in the visible layer and the
neuron hj in the hidden layer. And the joint probability distribution
function is as follow:

p v, h( ) � 1
Z
exp −E v, h( )( )

� 1
Z
exp aTv( ) exp bTh( ) exp vTWh( )

(9)

Where, Z is the normalization factor. Consequently, it is possible to
express the conditional probabilities of the visible and concealed
layers of RBM as:

p vi � 1|h( ) � σ ai +∑
j

ωijhj⎛⎝ ⎞⎠ (10)

p hj � 1
∣∣∣∣v( ) � σ bi +∑

i

ωijhi⎛⎝ ⎞⎠ (11)

Where, σ(x) � 1/1 + e−x is the nonlinear Sigmoid function,
giving the network non-linear mapping capabilities and
enhancing the network’s representation ability. The joint
distribution of (v,h) corresponds to the likelihood function
as follows:

p v( ) � ∑
h

p v, h( ) � 1
Z

∑
h

e−E v,h( )

p h( ) � ∑
v

p v, h( ) � 1
Z

∑
v

e−E v,h( )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

. (12)

Through network training, the model is fitted to the training
dataset, so that the output distribution can represent the key
features of the samples as much as possible. Therefore, given the
training sample X = {x1, x2, . . . , xn}, the log likelihood function
expression of the training dataset is as follows:

L D;W, a, b( ) � 1
N

∑
N

n�1
logp v̂ n( );W,a, b( ) (13)

The process of network training is illustrated in Figure 2.
Unsupervised layer-by-layer training is implemented initially as
shown in Figure 2A. The forward propagation technique is
employed to efficiently extract state features from the initial
sample data in order to diagnose the switchgear equipment. The
initial sample data is utilised as the input for the RBM in the first
stratum as shown in Figure 2B. The output of each subsequent layer
RBM is then utilised as the input for the subsequent layer RBM. By
spatially mapping the samples across multiple RBM layers,
additional feature information is preserved. The output of the
final layer RBM is classified by the BP network, and the weight
parameters in the network are subsequently modified via the
backward propagation method in multiple iterations as shown
in Figure 2C.

FIGURE 2
Training process of three RBMs in DBN model.
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3 Switchgear state assessment based
on DBN-FCM

3.1 Selection of equipment evaluation
state variable

Switchgears in different conditions will inevitably exhibit unique
differences in certain characteristic parameters. Some features with
significant variations can be directly assessed by humans through visual
or auditory means for a preliminary evaluation of the equipment’s
health status. However, there is still a substantial amount of feature
information in the equipment that cannot be perceived, and the health
status judged based on intuitive information is not sufficient, making it
difficult to accurately represent the equipment’s condition. Therefore,
when using multi-source data for assessment, the selection of
characteristic parameters for evaluating the switchgear will greatly
affect the results of the equipment state assessment. The state of the
switchgear is influenced by multiple characteristic factors, which are
interrelated yet diverse, exhibiting different health capabilities under
different conditions. When selecting characteristic parameters, it is
necessary to ensure that all necessary information is covered while
avoiding redundancy and omission of information.

The parameters of the switchgear state mainly come from grid
information, cabinet information, power outage test information,
live detection information, and online monitoring information.
Considering the practical field testing and modeling needs, this
paper has selected five types of state quantities as the feature
information of the samples based on the existing distribution
network equipment state evaluation guidelines, as shown in Table 1.

3.2 Selection of equipment evaluation
state variable

By utilising the existing distribution network equipment state
evaluation guidelines and observing the equipment’s health status, it
is possible to classify the current health condition of the switchgear into
one of five categories: severe, attention, good, or very good. The
correspondence between the health status grades and the current
operating status of the switchgear is shown in Table 2.

Based on the state results and operating status table, and
referring to the measured key characteristic parameters of the
equipment and routine equipment state analysis, the
correspondence between the characteristic parameter values and
the equipment state is determined, with reference to relevant
technical specifications, as shown in Table 3.

Given the significant variations in the numerical ranges of
different features, which may lead to the model being overly
sensitive to certain features or ignoring others, there is a
potential impact on the model’s accuracy and stability. In this
paper, the selected features undergo normalization based on their
upper and lower limits, converting data of various scales or ranges
into a unified standard range. This ensures that all feature values fall
between [0, 1], eliminating dimensional differences between data
and enabling a fairer comparison and balance of the impact of
different features on the model.

TABLE 1 State quantities and corresponding feature information.

State variable Corresponding feature information

v1 Partial discharge amplitude measured by TEV

v2 Partial discharge pulse number measured by TEV

v3 Partial discharge amplitude measured by Ultrasonic method

v4 Equipment information score

v5 Pre-test inspection score

TABLE 2 Switchgear operation state evaluation standards.

Evaluation result Operation state

Very good Switchgear operates in normal condition

Good Switchgear operates in basically normal condition

Attention There are hidden dangers of insulation in the switchgear, but it can still continue to operate

Abnormal There are hidden dangers of accidents in the switchgear, which can run for a short time

Severe There is a major accident hidden danger in the switch cabinet, and the operation should be stopped immediately

TABLE 3 State quantity evaluation standard range.

State variable Very good Good Attention Abnormal Severe

v1/dB 0–5 5–10 10–20 20–30 30–50

v2 0–50 50–100 100–200 200–300 300–400

v3/dB −6~-3 −3~0 0–6 6–250 25–68

v4 90–100 80–90 70–80 60–70 0–60

v5 90–100 80–90 70–80 60–70 0–60
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3.3 Switchgear state analysis process based
on DBN and improved FCM

The switchgear state analysis process based on DBN feature
extraction and improved FCM clustering method is illustrated in
Figure 3, with specific steps as follows:

1) Data Preprocessing: Process the collected sample data for data
anomalies, divide them into labeled and unlabeled training sets,
as well as test sets, and normalize them based on Table 3.

2) DBN Network Training: Use the unlabeled training set for layer-
by-layer unsupervised training of the entire DBN network until
the number of RBMs equals the preset number of hidden layers.
Then, use the labeled samples in conjunction with the BP
algorithm to perform classification training on the model after
unsupervised training, updating the network’s weight parameters
through the backpropagation algorithm.

3) DBN Feature Extracting: Following the completion of training,
determine the quantity of nodes to be included in each concealed
layer of the DBN and execute feature extraction in accordance
with this quantity.

4) Improved FCM Clustering Analysing: Build a multi-source data
state detection model, set initial values, and initialize the
membership degree matrix; input the extracted features into
the improved FCM clustering model; continuously iterate and
solve based on the cluster centers and membership degree
functions until convergence conditions are met.

5) The belonging State Calculating:Calculate the belonging state of
the sample points in the test set based on the above methods,
compute the distance to the cluster centers, and determine the
sample points’ state of affiliation based on the principle of
maximum membership degree.

4 Case study

4.1 Experimental preparation

To validate the feasibility of the method proposed in this
research, we selected a dataset of 44 groups of switchgear live
detection data from a 10 kV distribution room. The live detection
operation was carried out on 6 May 2022, with an ambient
temperature of 25°C and a relative humidity of 53%. The partial
discharge detector used was the portable online partial discharge
detector produced by Nanjing Zhongda Intelligent Technology Co.,
Ltd., with the model PDSwitch3.0 and a sampling rate set at
100MSa/s. Switchgear model is HXGN17-12, is a three-phase AC
rated voltage 10 kV, rated frequency 50 Hz indoor box-type AC
metal-enclosed switchgear. The field experiment is shown
in Figure 4.

In addition to background noise data, environmental condition
data, and operational years of the switchgear, the detection data for
each switchgear comprises TEV and ultrasonic data from six
detection points on the switchgear. Following the process of
denoising and standardising the detection data of the switchgear,
a dataset comprising the switchgear’s multi-dimensional features
was constructed.

Through data screening, this experiment determined to use
1000 groups of experimental data as the entire experiment’s
samples, with 700 training samples (including 200 unlabeled
samples and 500 labeled samples) and 300 test samples (all
labeled and arranged by different statuses). In these data, the

FIGURE 3
Switchgear state analysis process.

FIGURE 4
Field experiment.
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data of TEV amplitude, TEV pulse number, ultrasonic amplitude,
equipment information score, and pre-test inspection score
obtained from the live test are displayed in Figure 5. To enhance
the accuracy of the evaluation results and avoid significant
discrepancies between the evaluation results and reality, when the
values of different parts of the switchgear differ, the worst value of
the important parts of the switchgear is taken as the measurement
value of that feature.

4.2 Result analysis

The number of nodes in each layer of DBN is 5-6-9-10-5, the
number of trainings in the unsupervised pre-training phase is
256 and the learning rate is 0.1, the number of trainings in the
fine-tuning phase is 64 and the learning rate is 0.05. The specific
error curve is shown in Figure 6.

The aggregate training error of the network decreases
progressively as the number of training iterations increases, as
illustrated in Figure 6. The error drops quickly at the beginning
of training, and after the training error reaches 0.2, its rate of
decrease gradually slows down. The error meets the requirements
after 2000 training iterations. After the training of the DBN was
completed, the well-trained DBN network was used to extract

features from a test set of 300 samples. Some of the extracted
features are shown in Figure 7.

The final features derived by the DBN from a luminance image
are displayed in Figure 7. A brightness value that is less than one
signifies a value of the matrix near zero, whereas a brightness value
that is greater than one signifies a value near one. As shown in
Figure 7, the distribution of the same fault across various dimensions
is generally consistent, whereas the distributions of distinct faults
vary across these dimensions. Different types of faults exhibit
distinct distributions, which facilitates the differentiation of
switchgear states.

In order to cluster the fault-free data attributes of the daily
inspection dataset, the K-means algorithm was implemented.
Unknown is the number of clusters utilised in K-means
clustering. A subjective artificial setting for the number of
clusters devoid of any theoretical foundation is incapable of
producing effective clustering outcomes. In order to determine
the optimal number of categories, we compute the sum of
squared errors and determine the number of clusters in
accordance with the actual circumstance. The loss function J
(c,u) for the current K value is obtained by summing the squared
errors of all clusters:

J c, u( ) � ∑
n

i�1
xi − uci‖ ‖2, (14)

Where, xi denotes the ith sample, ci signifies the cluster to which xi is
assigned, uci signifies the cluster’s centre point, and n signifies the
total number of samples.

Commonly used clustering effectiveness analysis often adopts a
single internal effectiveness index, which lacks an analysis and
research on the characteristics of the switchgear dataset, resulting
in certain one-sidedness. Internal effectiveness indexes are sensitive
to background noise and are suitable for datasets with clear
classifications, evaluating clustering results from aspects such as
separability, compactness, and overlapping. However, the
switchgear dataset has characteristics like strong adhe-siveness,

FIGURE 5
Detection data of various parameters for the switchgear in the
distribution room.

FIGURE 6
Training error curve.
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unclear geometric classification, and vague distribution properties.
Using a single internal effectiveness index cannot fully reflect the
effectiveness of clustering results. In order to assess the quality of
clustering on an unidentified dataset with unknown structure and
properties, this study develops the CVI index by weighted
integration of four indexes: silhouette coefficient, Davies-Bouldin
index, Calinski-Harabasz index, and silhouette coefficient. These
indices reflect geometric structural features and take into account
the inherent characteristics of the switchgear dataset. The criteria of
CVI is defined as:

CVI � ∑
4

i�1
ωifi x( ) � ω1f1 + ω2f2 + ω3f3 + ω4f4 (15)

Where, ωi is the weight of the ith effectiveness index, and fi is the ith
effectiveness index. f1 is the silhouette coefficient, an index used to
measure the density and dispersion of clustering categories. f2 is the
Calinski-Harabasz index, an index used to measure the tightness
within categories. Its advantage lies in its simplicity, directness, and
fast calculation speed, with a larger value indicating better clustering
results. f3 is the Davies-Bouldin Index (DBI), also known as the
classification appropriateness index, used to measure the degree of

rationality in classification. A smaller DBI value indicates better
clustering results. f4 is also the Davies-Bouldin Index.

The switchgear multidimensional feature dataset was classified
using the K-means clustering algorithm; the CVI line relationship
for various K values is depicted in Figure 8. As shown in Figure 8, the
clustering structure effectiveness index indicates that when K = 5,
i.e., when the switchgear states are divided into five categories, there
is a significant clustering effect.

At the same time, the clustering results obtained for K = 3, K =
4, and K = 5 were visualized using the t-SNE dimensionality
reduction algorithm, as shown in Figure 9. The effect of the
clustering procedure proposed in this paper is favourable, as
distinct boundaries exist between groupings. Comparing the
t-SNE visualizations for K = 3 and K = 4, K = 5 is verified to
be the optimal number of categories. When K = 3, it represents
that the healthy operating states of the switchgear will be divided
into three categories, lacking more detailed classification, making
it difficult for maintenance personnel to make good decisions
about the switchgear. When K = 4, the number of data labeled
“good” is roughly equal to the “general” data, which does not
conform to the evaluation results of daily live maintenance,
indicating an over-partitioning phenomenon at this time.

FIGURE 7
TEV, ultrasonic, equipment information and pre-test inspection features extracted by the DBN.
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When K = 5, this scheme clearly and reasonably divides the health
status of partial discharge in the live detection of switchgear. The
number of switchgears that need immediate inspection and
troubleshooting is small, followed by the switchgears that need
more attention, while most of the data shows that the switchgears
are still operating stably, conforming to the evaluation criteria of
general on-site operation and maintenance.

Using the above fuzzy clustering method, the state of the
switchgear in this distribution room was assessed, and the
assessment outcomes are illustrated in Figure 10. The
abnormality of the state assessment result for switchgear 32 is
evident, switchgears 35 and 39 are marked as needing attention,
and the assessment results of the other switchgears are all very
good. Among them, the TEV amplitude of the live electrical test
data of switchgears 35 and 39 was found to be excessively high.
Also, the ultra-sonic amplitude of the live electrical test data of
switchgear 32 was found to be excessively high. It is evident from
the clustering outcomes that the approach suggested in this
article aligns with the results of the state evaluation carried
out in adherence to the protocols for assessing the condition of
distribution network equipment. The health evaluation method
suggested in this article has the capability to provide an unbiased
reflection of the switchgear’s operational condition.
Maintenance strategies for the switchgear’s future operation

and upkeep can be devised using the results of the state
assessment.

4.3 Comparison

Finally, the state of the switchgear was assessed using the
above sample features, and the results were compared with other
diagnostic methods, as shown in Table 4. Compared with
traditional FCM and IFCM methods, this method has
achieved a significant improvement in state assessment
accuracy. Compared with traditional FCM and IFCM
clustering methods, the accuracy has increased by 36% and
22%, respectively, using the proposed method. Compared with
the switchgear state assessment methods of DBN-FCM, DBN-
IFCM improves on the membership degree function of FCM,
solving the problem of local minima in membership degrees and
further enhancing diagnostic performance. Compared with deep
learning methods based on DBN and ReLU-DBN, the
classification effect of the proposed method is also
significantly improved.

From Table 4, it can be seen that the switchgear state assessment
method based on deep belief networks and fuzzy clustering
proposed in this paper has a good state assessment effect and

FIGURE 8
Loss function, contour coefficient, calinski-harabasz index and davies-bouldin index under different K values.
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high assessment accuracy. It solves the problem of lack of depth in
feature extraction and insufficient assessment accuracy in traditional
state assessment methods, providing a new method for switchgear
state assessment and fault diagnosis.

The following discussion focuses on the impact of the signal-to-
noise ratio (SNR) on the accuracy of switchgear state assessment.
Keeping other parameters constant, we consider scenarios with
SNRs of −10dB, -5dB, 0dB, 5dB, and 10 dB. We compare the
diagnostic results of four different switchgear state assessment
methods under various SNR conditions, as shown in Figure 11.

As shown in Figure 11, at lower SNRs (−10 dB), the diagnostic
accuracy and robustness of the switchgear state assessment technique
based on DBN are comparatively inferior to those of the other three
methods. To address the issue of strong noise interference, this paper
utilizes fuzzy clustering, which better interprets the scenarios where the
physical boundaries between state gradations are not very clear. Under
the condition of an SNR of −10dB, the diagnostic relative error is able to
be maintained at 5.65%. The proposed method meets the accuracy
requirements for switchgear state assessment under low SNR
conditions.

FIGURE 9
Visualization of clustering effect in unclustered as well as different clustering K values.

FIGURE 10
State evaluation results of switchgears in the distribution room.

Frontiers in Energy Research frontiersin.org10

Xiao et al. 10.3389/fenrg.2023.1335184

77

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1335184


5 Conclusion

Aiming at the problems of fuzzy boundary delineation and
low accuracy of state assessment grading in traditional fuzzy
methods for state assessment, the paper proposes a switchgear
state assessment framework based on DBN and IFCM (DBN-
IFCM). The method uses DBN to extract feature parameters from
normalized switchgear condition data, and adopts IFCM c to
cluster the extracted feature parameters to appropriately assess
switchgear condition. The main conclusions of this paper are
as follows:

1) The DBN-IFCM-based switchgear state assessment method is
able to accurately classify the state of the switchgear with
satisfactory results, and the state assessment classification
accuracy rate is up to 94%. Compared with traditional
clustering methods such as FCM and IFCM, the accuracy of
the proposed method is improved by 36% and 22%, respectively;
compared with deep learning methods based on DBN-FCM,
DBN and ReLU-DBN, the grading accuracy of the proposed
method is improved by 0.9%, 1.8% and 1%, respectively.

2) The switchgear state assessment method based on DBN-IFCM
is capable of learning the characteristics of various graded

states from a large amount of state data, overcoming the
disadvantage of traditional clustering methods that cannot
learn autonomously.

3) Compared with other deep neural network switchgear state
assessment methods, using fuzzy clustering better explains
situations where the physical boundaries between state grades
are not very clear. Additionally, this method provides a new
perspective for addressing state grading issues when
label samples are scarce or label information is difficult
to obtain.
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Calculation of electricity sales
based on multi-factor correlation
analysis

Jian Zhou1, Jianjun Tuo2, Lingbo Wang1, Yaqi Shi3 and
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Company, Lanzhou, China, 3School of Artificial Intelligence, China University of Mining and
Technology-Beijing, Beijing, China, 4School of Mechanical and Electrical Engineering,
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Electricity sales is one of the important assessment indexes of a power grid
company’s operation. Since electricity sales is closely related to many factors,
how to consider the influence of multiple factors and improve the accuracy of the
calculation of electricity sales is a difficult problem that needs to be solved
urgently. In this paper, we first analyze the six dimensions affecting electricity
sales and select the key influencing factors that can be quantified statistically.
Secondly, the key influencing factors are screened according to Pearson’s
correlation coefficient and then the calculation model of electricity sales is
established based on the random forest algorithm. Finally, we validate the
feasibility and validity of the proposed calculation method for electricity sales
through a case study.

KEYWORDS

electricity sales, investors, correlation, random forest, calculation accuracy

1 Introduction

Electricity sales is an important efficiency assessment index for the operation and
management of power grid companies. Calculation of electricity sales is one of the
fundamental tasks in the operation of the electricity market. It helps utilities understand
the quantity and amount of electricity they sell so that they can make accurate financial
analyses and market forecasts. However, the amount of electricity sales in a region is affected
by many complex factors. For example, grid investment has a profound impact on electricity
sales. The current large-scale rough investment strategy is no longer applicable, the precise
investment strategy has been applied in many countries, and how to accurately invest to
enhance electricity sales has become the focus of the investment strategy of many power grid
enterprises. In addition, the economic situation, technological development, and other
factors also have a certain degree of impact on electricity sales. Under the current
transmission and distribution tariff policy, the positive growth of electricity sales directly
determines the economic efficiency of the grid company, which is an important basis for
judging whether the value of grid assets is preserved or increased. Therefore, It is necessary to
analyze and process the data of electricity sales at a deeper level and discover its inherent
change rules at the same time. It can provide the basis for the operators of power grid
enterprises to support their business decisions, and help them better understand the market
development trend and make correct business decisions.

With the development of data technology, it is an effective way to construct the
calculation model of electricity sales by mining the intrinsic relationship between the
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historical data of multiple factors and electricity sales. At present,
most of the relevant research results are focused on accurate
forecasting of electricity sales, and the commonly used
forecasting methods are the time series method (Billinton et al.,
1996; Toyoda et al., 1970; Pektas and Cigizoglu, 2013), regression
analysis method (Dudek, 2016; Sarduy et al., 2016), and grayscale
forecasting method (EI-Fouly et al., 2006; Li et al., 2011). First of all,
historical electricity sales data have time series characteristics, time
series-based forecasting methods are widely used in the field of
electricity sales forecasting (Madden, 2005). Kim M et al. (2023)
applied a new model and scientific approach to power prediction in
IoT and big data environments using traditional time series
prediction methods. The work (Sarkodie et al., 2017) used an
Autoregressive Integrated Moving Average (ARIMA) model to
forecast the electricity consumption in Ghanaian regions up to
2030. This method requires high data accuracy and can only
handle relatively smooth time series data. However, electricity
sales are usually perturbed by stochastic factors such as
temperature, precipitation, and season, which cannot be handled
by this method. Secondly, the regression analysis method is similar
to the time series-based electricity sales prediction method, which
constructs a regressionmodel for the prediction of electricity sales by
mining the historical data of electricity sales. The difference is that
this method considers different factors affecting electricity sales,
which makes the model more stable by considering the factors of
electricity sales from a higher dimension. The work (Lai et al., 2023)
built the annual contribution electricity forecast model based on
Logistic regression analysis. The work (Vu et al., 2015) analyzed the
importance of climate for the prediction of electricity sales under
different geographical conditions and established a multiple
regression model for the prediction of monthly electricity demand
by selecting appropriate variables. The predictive accuracy of the
proposedmodel is also verified based on the data of New SouthWales,
Australia. Finally, the gray prediction method, proposed by Deng
(Chan et al., 2010), is a multidisciplinary theory for analyzing gray
systems. The method has been widely used in many fields such as
agriculture, industry, and environmental systems research (Cai and
Liao, 2021). As an important part of the gray system theory, the gray
forecasting model has been widely used in time series forecasting due
to its simplicity and ability to describe unknown systems with only
four data points (Mohamed and Bodger, 2004a; Mohamed and
Bodger, 2004b). Electricity demand forecasting can be regarded as
a gray system problem because we know that some factors such as
population, economic conditions, and weather have an impact, but we
are not sure how they affect the electricity demand (H Morita et al.,
1996; Zhou et al., 2005 proposed a simple triangular gray pre-method
to forecast electricity demand. On this basis, it is combined with the
idea of interval prediction in multiple regression, and the method’s
feasibility is proved through actual case analysis. However, the gray
prediction also has some defects, when electricity sales are in a smooth
change the method predicts poorly. Therefore, the methods in the
above-mentioned literatures are only suitable for dealing with linear
data, which does not work for electricity sales with non-linear and
non-stationary characteristics.

In order to improve the accuracy of electricity sales calculations,
this paper intends to establish a calculation model of electricity sales
by analyzing and screening the factors based on correlation ranking
and random forest algorithm. The use of big data technology to

analyze and quantify the relationship between grid investment and
electricity sales growth in different regions has a positive effect on
grid companies to further improve the level of investment precision.
The main contributions of this paper are as follows:

(1) The influencing factors on electricity sales are selected by
analyzing different dimensions and the Pearson’s correlation
coefficient is utilized to filter out the key influencing factors.

(2) The artificial intelligence algorithm is introduced into the
calculation method of electricity sales to improve the accuracy.

2 Materials and methods

2.1 Analysis of dimensions and key factors
affecting electricity sales

According to the experts’ selection and actual operation
experience, it is known that the six dimensions of infrastructure,
technological transformation, inherent loss, load development,
power supply construction and power supply characteristics have
a greater impact on power sales, which are analyzed as follows.

2.1.1 Infrastructure
Grid infrastructure is the hardware facilities to guarantee the

power supply, such as transmission and distribution lines,
substations, and auxiliary equipment. The infrastructure directly
determines the maximum power supply capacity of the region,
which in turn affects the amount of electricity sales. In this
dimension, the total amount of grid infrastructure investment is
chosen as one of the key influencing factors. The total investment in
grid infrastructure should be compatible with the local load
development level, and its calculation formula is as follows:

CT
1 � ∑

I

i�1
CT

ne,i + CT
tr,i + CT

au,i( ) (1)

Where T is the statistical period, CT
1 is the total investment in

grid infrastructure under the statistical period, CT
ne,i, C

T
tr,i, C

T
au,i is the

total investment in transmission line construction, distribution line
construction, and transformer construction in the ith region under
the statistical period, respectively. I is the total number of regions.

2.1.2 Technological transformation
Electricity technology renovation is the improvement of assets

such as existing grid production equipment, facilities and related
auxiliary facilities by utilizing advanced technologies, equipment,
processes and materials. The total amount of investment in
agricultural network upgrading and transformation is selected as
one of the key influencing factors under this dimension, and its
calculation formula is as follows:

CT
2 � ∑

I

i�1
CT

pe,i + CT
pf,i + CT

af,i( ) (2)

Where CT
2 is the total amount of investment in upgrading and

transforming the agricultural network under the statistical cycle, and
CT
pe,i, C

T
pf,i, C

T
af,i is the total amount of investment in assets such as

equipment, facilities, and related auxiliary facilities for improving
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the production of power grids in the ith region under the statistical
cycle, respectively.

Reforming and upgrading rural distribution grids can improve
the power supply capacity of agricultural grids, thus boosting the
growth of electricity sales.

2.1.3 Intrinsic loss
When electricity is transmitted over long distances, it generates

active losses in the lines and transformers, which directly affects the
transmission efficiency. When the power generation remains
unchanged and the loss is too high, the power transmitted to the
customer side will decrease, which will inevitably cause a decrease in
power sales. Under this dimension, the line loss rate is selected as one
of the key influencing factors, and its calculation formula is as follows:

ΔP% �
∑
8760

i�1
ΔEi

EG·∑
(3)

Where ΔP% is the annual average line loss rate, ΔEi is the
statistical line loss power per hour, and EG·∑ is the total power
generation for the year.

2.1.4 Load development
With the increasing electrification of industrial, agricultural,

commercial, and residential loads, the load power demand is
increasing, which is the intrinsic reason for the growth of
electricity sales. Under this dimension, the maximum load power
for the year is selected as one of the key influencing factors, the value
of which is obtained from the yearly statistics and labeled as P T

max .

2.1.5 Power supply construction
In recent years, renewable energy has become an important part

of the global new energy market. In this dimension, new energy
installed capacity is chosen as one of the key influencing factors, and
its calculation formula is as follows:

P∑
T � ∑

I

i�1
PT
wp,i + PT

pi,i + PT
ot,i( ) (4)

Where P∑
T is the total amount of new energy installed under the

statistical cycle, and PT
wp,i, P

T
pi,i, P

T
ot,i is the installed capacity of wind

power, photovoltaic, and other new energy in the ith region, respectively.

2.1.6 Power supply characteristics
While the proportion of installed new energy has increased

significantly, the new energy has the characteristics of intermittent
supply and high volatility, which poses a hidden danger to the safe
and orderly operation of the power system, and inversely restricts its
grid-connected capacity, leading to short-term power supply
tightness in some areas, indirectly affecting electricity sales.
Therefore, under this dimension, the maximum load utilization
hours of new energy is chosen as one of the key influencing factors,
and its calculation formula is as follows:

T∑ � ∑
8760

i�1

Ei

Ci
(5)

Where T∑ is the maximum load utilization hours of new energy,
Ei is the power generation on day i, and Ci is the maximum power

generation on day i. This calculation method can solve the problem
of capacity expansion.

Figure 1 shows the trend of seven types of data, including line
loss rate, maximum load of electricity consumption, new energy
installation and utilization hours, completion of grid infrastructure
investment, completion of agricultural network upgrading and
electricity sales in a region from 2015 to 2022. According to
Figure 1, it can be seen that: line loss rate is approximately
inversely correlated with electricity sales, installed capacity of
new energy is positively correlated with electricity sales, and the
rest have no consistent correlation characteristics. In this case, it is
particularly important to screen key influencing factors, which may
have a greater impact on electricity sales. Therefore, it is necessary to
screen the key influencing factors to make the calculation of
electricity sales more efficient.

2.2 Calculation method of electricity sales
based on multi-factor correlation analysis

In this chapter, the Pearson correlation coefficient is first
proposed to screen the key influencing factors, which provides
the theoretical basis for the correlation simulation conducted in
Chapter 4; Then, it introduces the calculation model of electricity
sales based on the random forest algorithm, which puts forward a
new idea for the computation of electricity sales under the influence
of multiple factors.

2.2.1 Correlation analysis of key factors affecting
electricity sales

Based on the above analysis, it is clear electricity sales are
affected by a variety of factors, including, but not limited to,
market demand, economic development, policy support, energy
mix, etc. These factors may interact with each other and have
varying degrees of influence on electricity sales. Therefore, if all
the influencing factors are directly used in the calculation of
electricity sales, the calculation accuracy and generalization ability
of the model may be affected due to the excessive dimensions of the
input data.

To solve this problem, correlation analysis is introduced to help
filter key factors, which is a statistical method that measures the
degree of association between variables. Through correlation
analysis, the most relevant factors to electricity sales can be
found and used in the calculation of electricity sales, thus
reducing the dimensionality of the input data and improving the
computational efficiency of the model.

In this paper, the Pearson correlation coefficient is introduced
for key factor screening, whose calculation formula is as follows

P �
∑
n

i�1
Xi − �X( ) Yi − �Y( )

����������
∑
n

i�1
Xi − �X( )2

√ ����������
∑
n

i�1
Yi − �Y( )2

√ (6)

Where X is the quantitative value of the influencing factor, Y is
the amount of electricity sold, �X and �Y represent the mean value ofX
and Y, respectively. The value of P is taken between −1 and 1. The
larger the absolute value of P, the higher the correlation between the
variables X and Y. The smaller the absolute value of P, the lower the
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correlation between the variable X and the variable Y. The criterion
is shown in Table 1.

Therefore, according to the Eq. 6, the Pearson correlation
coefficient between the sales of electricity and six types of data,
such as line loss rate ΔP%, maximum load of electricity
consumption P T

max , installed capacity of new energy P∑
T,

utilization hours of new energy T∑, completion of upgrading
and transformation of the agricultural network CT

2 , and
completion of investment in grid infrastructure CT

1 . Then, |P|
greater than 0.4 were selected as key influencing factors to build
the calculation model to achieve higher calculation accuracy with
smaller data dimensions.

2.2.2 Computational models and methods based
on random forests

This subsection establishes a mapping of the relationship
between different influencing factors and electricity sales,
achieving accurate linkage. In this paper, the random forest
regression algorithm is selected. Random Forest Regression
(RFR) algorithm as a machine learning algorithm, has been
applied to several fields. Compared with regression algorithms
such as SVM, the RFR algorithm does not require normalization
of data and can perform feature selection through the algorithm

itself, resulting in better robustness. The schematic diagram of the
algorithm principle is shown in Figure 2:

The main decision tree algorithm used for random forest
regression is the CART (classification and regression tree)
algorithm. The decision tree algorithm alone often performs well
on training data, but due to the drawbacks of overfitting, the model
does not have universality and engineering application capabilities.
To make up for the shortcomings of decision trees, the concept of
random sampling is introduced into the RF algorithm. Its
algorithmic formulation is based on the decision tree regression
model, and the prediction function for each decision tree can be
expressed as shown in Eq. 7:

fk x( ) � ∑
Jk

j�1
ckjI x ∈ Rkj( ) (7)

Where k denotes the kth decision tree, x denotes the input sample,
Jk denotes the number of leaf nodes of the kth decision tree, ckj denotes
the predicted value of the jth leaf node of the kth decision tree, and Rkj

denotes the set of samples of the jth leaf node of the kth decision tree.
The prediction function of a multiple decision tree can be

expressed as:

f x( ) � 1
K
∑
K

k�1
fk x( ) (8)

With the number of decision trees k.
In this paper, the computational model based on random forest

is calculated as follows:

Step 1: Data preparation: The dataset including the filtered
influencing factors is divided into two parts, the training set Tr
and the test set Te according to a certain proportion. The training set
is used to train the model and the test set is used to evaluate the
performance of the model.

FIGURE 1
Schematic correlation between key influencing factors and electricity sales.

TABLE 1 The degree of relevance for the Pearson correlation coefficient.

Range of |P| Degree of relevance

0.0≤ |P| ≤0.2 Very weakly correlated or uncorrelated

0.2≤ |P| ≤0.4 Weak correlation

0.4≤ |P| ≤0.6 Moderately relevant

0.6≤ |P| ≤0.8 Strong correlation

0.8≤ |P| ≤1.0 Highly relevant
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Step 2: Model construction and training: Initialize the model and
set some model parameters to control the behavior of the random
forest, such as the number of decision trees, the way of feature
selection, the way of decision tree growth, and so on.

The model will construct multiple decision trees based on the
samples in the training set and the values of the target variables, and
perform feature selection and segmentation on each tree. This
splitting continues until all the training samples at the node
belong to the same class, and the optimal model for the
calculation of electricity sales is obtained without pruning during
the splitting process of the decision tree.

Step 3: Calculation results and evaluation: Based on the optimal
random forest model, the sales electricity of the samples in the test
set can be calculated. Themodel will average or weighted average the
calculation results of each decision tree to get the final regression
results. For model evaluation, the Relative Root Mean Square Error
(RRMSE) is used to measure the deviation between the observed
(true values) and calculated values. Its calculation formula is as
follows:

RRMSE �

������������
1
N ∑

N

t�1
yt − y′

t( )2
√

max y( )
(9)

Where yt is the true value of the electricity sales in the t th

region, y′
t is the calculated value of electricity sales in the t th

region, and max(y) is the maximum electricity sales in N
regions.

3 Results

3.1 Calculation process of electricity sales

In this paper, the dataset of electricity sales of 13 cities in a region
in recent years is used to conduct a case study, with a statistical
period of years. These historical data come from historical data
collected by power grid companies. The specific steps of electricity
sales calculation are as follows:

First, the six key factor indicators of each city in each calendar year
are calculated according to the six-dimensional formulas in Section 2.
Among them, the data from 2015–2018 is regarded as the training set,
totaling 52 sets of data, and the data in 2021 is used as the test set Te,
totaling 13 sets of data Then, correlation analysis is performed on the
training setTr, and the Pearson correlation coefficients between the key
factors and the electrical sales are shown in Figure 3.

Through analyzing and screening, three items with absolute
values greater than 0.4, namely, line loss rate ΔP%, maximum load
of electricity consumption P T

max , and completion of grid
infrastructure investment CT

1 , are selected as the key factors to
construct the new training set Tr′ and test set Te′.

Finally, a random forest-based electricity sales calculation model
is established. In the experiments, the iteration number is set to 30.
Based on the training set Tr′, the model is trained, and the optimal
electricity sales model is obtained by continuously optimizing the
loss function, and finally, the computational effect is evaluated by
using the data in the test set Te′ to verify the effectiveness of the
model.

FIGURE 2
Random Forest algorithm schematic.
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3.2 Analysis of the results of electricity sales
calculations

To validate the proposed method for calculating electricity sales
based on correlation factor analysis and random forest, ablation
experiments and comparative experiments are conducted in this
section. To demonstrate the advancement of Random Forest, the
SVR model is built as the control group. Moreover, the calculation
models based on all influencing factors are constructed for SVR and
RF in this section as a comparison, respectively.

FIGURE 3
The results of the Pearson correlation analysis.

FIGURE 4
The plot of the calculation results of the two models. (A) RF. (B) SVR.

FIGURE 5
Graph of calculation results after screening of key factors.

TABLE 2 Relative error in the calculation results of electricity sales.

Model RF (%) SVR (%)

Pre-screening 7.79 14.39

Post-screening 6.75 13.77
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In the calculation of electricity sales based on the SVR model, it
is necessary to carry out the normalization of all the data to the same
scale, which is conducive to improving the accuracy. In addition, a
linear kernel function is adopted in the SVRmodel, which makes the
calculation process simple and efficient.

The calculation results of these two models using different
influencing factors on the test set are shown in Figure 4. The
horizontal axis corresponds to the 13 different regions, and the
vertical axis represents the values of electricity sales. The blue curve
is the real value of electricity sales, while the red and green curves
represent the calculation values of electricity sales before and after
the screening of influencing factors, respectively. In Figure 4A, it can
be seen that the trends of the calculation curves are consistent with
the change of the actual values, and the calculation curve is closer to
the actual one when only three key factors after screening are input.
Similarly, corresponding conclusions can also be drawn in the
calculation curves of electricity sales based on SVR in Figure 4B.
Therefore, both models have shown better computational accuracy
with only three key factors, indicating the importance of multi-
factor screening.

To verify the progressiveness of the RF algorithm, Figure 5
shows the calculation curves of RF and SVR based on three key
influencing factors. The blue curve in the figure shows the actual
value of electricity sales, while the green and red colors represent the
results of the RF model and SVR model calculations, respectively.
From the figure, it can be seen that the green curve is closer to the
blue curve than the red curve in the 6th to 11th regions, whichmeans
the RF model calculations have a smaller error from the true values.
Compared with the RF model, although the calculation results of the
SVR model generally follow the changes in actual values, there is a
significant difference between them. It indicates that the electricity
sales calculation method based on RF shows better performance in
terms of trend capture and accuracy, while the performance of the
SVR model may be affected by a variety of factors, such as data
complexity, leading to a decrease in the reliability of the calculation
results.

The RRMSE values of these two electricity sales calculation
models on the whole test set are obtained according to Eq. 9, as
shown in Table 2. From the indicators in the table, it can be found
that the RRMSE of the calculation after screening the influencing
factors is significantly smaller than before, and based on this, the
RRMSE based on the RF model is lower. Therefore, the electricity
sales calculation model based on random forest proposed in this
paper can reflect the relationship between multi-factors and power
sales and effectively improve the calculation precision.

4 Discussion

By analyzing the importance of calculating electricity sales for
power grid investment, construction, and planning development,
this article has proposed to explore the inherent relationship
between multi-factors and electricity sales, which is an effective
way to improve the calculation accuracy. The Pearson correlation
coefficients have been calculated and three key factors have been

screened out. Then, a calculation model of electricity sales is
constructed based on the RF method. The comparative
experimental results show that the proposed model has
smaller computational errors and higher accuracy. It can
better achieve accurate linkage between investment and
electricity sales for power grid companies, improve the
refinement of management, and enhance the economic
benefits of enterprises.

In addition, due to the limited dataset, this work also has
limitations in analyzing the dimensions that affect electricity
sales. At the same time, there is a possibility of further
optimization in the constructed RF regression calculation model.
Further research will be conducted in the future to address these
issues.
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A hybrid RBF neural network
based model for day-ahead
prediction of photovoltaic plant
power output

Qipei Zhang*, Ningkai Tang, Jixiang Lu, Wei Wang, Lin Wu and
Wenteng Kuang

NARI Research Institute, NARI Technology Co, Ltd, Nanjing, Jiangsu, China

Renewable energy resources like solar power contribute greatly to decreasing
emissions of carbon dioxide and substituting generators fueled by fossil fuels. Due
to the unpredictable and intermittent nature of solar power production as a result
of solar radiance and other weather conditions, it is very difficult to integrate solar
power into conventional power systems operation economically in a reliable
manner, whichwould emphasize demand for accurate prediction techniques. The
study proposes and applies a revised radial basis function neural network (RBFNN)
scheme to predict the short-term power output of photovoltaic plant in a day-
ahead predictionmanner. In the proposedmethod, the linear as well as non-linear
variables in the RBFNN scheme are efficiently trained using the whale optimization
algorithm to speed the convergence of prediction results. A nonlinear benchmark
function has also been used to validate the suggested scheme, which was also
used in predicting the power output of solar energy for a well-designed
experiment. A comparison study case generating different outcomes shows
that the suggested approach could provide a higher level of prediction
precision than other methods in similar scenarios, which suggests the
proposed method can be used as a more suitable tool to deal such solar
energy forecasting issues.

KEYWORDS

photovoltaic power plant, solar energy forecasting, radial basis function neural network,
whale optimization algorithm, low carbon

1 Introduction

In addition to reducing fossil fuel use and assisting electric grid operators in meeting
peak demand during peak hours, solar photovoltaic (PV) energy has become a rapidly
expanding renewable energy source and major energy supply (Hong et al., 2019; Jaihuni
et al., 2022). With the advent of this kind of renewable relevant technology, solar power
production is being integrated more efficiently into the electrical grid with operation features
(Wentz et al., 2022). Nevertheless, solar PV system operators face challenges when their
output power varies due to climate patterns (such as cloudy, rainy, and sunny days; abrupt
weather changes; winter weather; and so on). It is essential for the system to operate reliably
and securely in these cases when solar PV power generated is forecasted accurately with good
enough precision (Li et al., 2019; Succetti et al., 2020). Especially for the short-term
forecasting that involves numerous uncertainty sources, which become extremely hard
for conventional methods depends heavily on the time series modeling (Inman et al., 2013;
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Tuohy et al., 2015). On the other hand, PV plant power output
forecasting is the process of forecasting solar energy production at
the intersection of different domain knowledge in different fields,
such as the energy industry, meteorology, data science, and machine
learning (Inman et al., 2013; Gutierrez-Corea et al., 2016; Reindl
et al., 2017). By forecasting solar irradiance, grid operators, power
traders or solar farms can plan and manage better electricity
production and consumption. This is essential to ensure the
stable operation of the power grid, reducing operating costs, and
promote the widespread usage of renewable energy sources (Islam
et al., 2008; Ellabban et al., 2014). There are a variety of methods for
solar irradiance and energy prediction (Blaga et al., 2019; Han et al.,
2022), including physical model-based methods, statistical methods
and machine learning methods that are mostly dealing with short-
term forecasting issue. Within these methods, physical model-based
approaches depend a lot on modeling and simulation of physical
factors such as solar radiation, clouds, and atmospheric conditions,
which are even highly dynamic during any short time periods. In
comparison, statistical methods, presented in most current works,
build data-driven probabilistic models that can be based on
historical data to predict short-term future solar energy
production (Blaga et al., 2019; Snegirev et al., 2019; Han et al.,
2022) either in long-term or short-term time period. Machine
learning methods, especially deep learning techniques, are also
playing an increasingly important role in solar energy prediction.
These methods learn and automatically extract complex patterns in
the solar power relevant data to provide more accurate predictions.
However, due to the complexity and uncertainty of weather
conditions, solar forecasting remains a challenging task (Zhang
et al., 2013). In order to improve the accuracy of prediction, it is
necessary to consider a variety of factors, such as geographical
location, climatic conditions, seasonal changes, equipment
performance and so on (Sangrody et al., 2017; Sobri et al., 2018).
In addition, real-time data acquisition and processing, model
selection and optimization, uncertainty estimation are also key
issues in solar energy prediction.

In general, solar forecasting is a complex and important task
that involves knowledge and technology from multiple fields.
With the popularization of renewable energy and the
advancement of intelligent grid, solar energy prediction will
play an even more important role in the future (Vanderstar
et al., 2018; Wentz et al., 2022). The work in (Hong et al.,
2019) describes a number of solar power prediction methods
that mostly deal with short-term forecasting issues. A significant
research trend is that recent works have focused heavily on deep
learning techniques that are purely data-driven with model-free
design, especially for short-term small-scale forecasting problem.
Ref (Jaihuni et al., 2022) demonstrates the effectiveness of deep
Recurrent Neural Networks (RNNs) in estimating 1-week solar
radiance using highly accurate Canadian solar data. Ref (Wentz
et al., 2022) shows that the power prediction technique using a
radiance metric and Long Short-Term Memory (LSTM) has a
Mean Absolute Percentage Error (MAPE) of 6.95% that is highly
below the average MAPE of conventional methods. Ref (Succetti
et al., 2020) uses a multiple variable network with associated
parameters such as temperature, wind speed, humidity, solar
radiation, and PV power output, and achieves a Normalized
Mean Absolute Error (NMAE) of 7.91%, which can be taken as

good enough record in day-ahead short-term PV power output
forecasting.

In addition to ANN and Fuzzy Logic, soft computing methods
were applied to obtain accurate energy predictions. A Recurrent
Neural Network method for estimating insolation was presented in
ref (Li et al., 2019) A number of ANNmethods were employed in ref
(Obiora et al., 2021) for predicting solar irradiation, while both
multivariate and univariate methods were employed for forecasting
power. A weather-driven hybrid approach was used in ref (Akhter
et al., 2022) for forecasting solar power output daily, and for
decreasing adverse effects the following day. A climate-driven
prediction model was used in Ref (Gao et al., 2019) for
predicting solar plants for a day ahead, overcoming the effects of
fluctuation. Further, ref (Sridharan, 2023) examined how multi-
linear regression, polynomial regression, logarithmic regression, and
artificial neural networks can be employed for predicting PV power
using data from the prior year. Ref (Sangrody et al., 2017) applied
Backpropagation Neural Network (BPNN) using Lavenberg -
Marquardt algorithms to update weights.

A solar power prediction method based on echo state networks
and principal component analysis was examined in ref (Ling et al.,
2023). ANNs are not the only models used to forecast solar power;
deep learning is likewise used. In ref (Zhang et al., 2019), deep
recurrent neural networks using long short-term memory units
(DRNN-LSTM) were used to forecast solar power and loads
using day-ahead and weekly-ahead historical data. A radiance
prediction algorithm based on LSTM deep neural networks was
used in ref (Jaihuni et al., 2022) to analysis the radiance impact on
solar energy. In neural network modeling, training non-linear
variables requires considerable effort, despite the fact that many
neural network schemes are available. In spite of their problems with
complexities and formulations, meta-heuristic algorithms (MAs)
serve as efficient optimization methods that can help improve the
parameter-tuning. Therefore, numerous MAs are widely applied for
optimizing neural network nonlinear variables, including grey wolf
optimizations, monarch butterfly optimizations (MBOs), genetic
algorithms (GA), biogeography-based optimizations (BBOs),
particle swarm optimizations (PSO), glowworm swarm
optimizations (GSOs), and whale optimization problems
(WOAs), so on. Radical basis function neural networks are
known for their simplicity and ability to approximate non-linear
behavior. An artificial bee colony method was used in (Alzaeemi and
Sathasivam, 2020) for training fuzzy RBFNNs using data
granulation. In (Tsoulos and Charilogis, 2023), a combined PSO-
GA approach was employed for optimizing the evolution of RBF
neural network to predict rain.

The study proposes and implements a whale optimization-
driven RBF neural network to solve the solar production
problem. The study’s main contributions are as follows, 1) the
study uses Whale optimization-driven RBF scheme to train non-
linear variables in RBF scheme for the first time. 2) Efficiency of
suggested WOA-driven model training techniques was evaluated
against conventional MA techniques on a number of nonlinear
model problems.

Following are the sections in the study. Section 2 presents the
general framework and preliminary methods for the PV plant power
output forecasting scenarios, including the proposed WOA-driven
RBF approach. Section 3 presents the simulations and case study
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results to implement the test cases with demonstration of the
numerical values for the performance validation. Section 4
concludes and discusses the major founding with suggestion of
the future research work.

2 Preliminaries of the framework

The following part discusses preliminary techniques such as
competitive swarm optimization and the canonical RBFNN, which
provides good fundamental for the proposed PV plant power output
forecasting framework.

2.1 RBFNN

Traditionally, RBF neural networks are multi-input and single-
output (MISO) neural network structures, using Gaussian functions
acting as the activation function. Figure 1 shows three layers of RBF
neural networks, consisting of input layer, hidden layer, and output
layer. The basic structure could be represented as the following Eq. 1:

y t( ) � ∑
n

i�1
wi.∅i X( ) (1)

In which, y( t ) shows the neural network model output during
t. wi shows the linear output weight of the ith node hidden layer. For
input vector, the radial basis function φi can be determined as
standard Gaussian function formulation in the following way of
Eq. 2:

∅i X( ) � exp − 1
2σ2

i

X − ci‖ ‖2( ), i � 1, 2, . . . , n (2)

Where, σ i shows the Gaussian distributed width and ci shows
center of the ith hidden node. n shows the number of hidden layers.
Euclidean distance formulas and denominator contain non-linear
function variables, requiring efficient optimization methods. The
weighting parameters of RBF-based neural network can be efficiently
computed via combination with any computationally tractable heuristic
optimization method, which makes it easily for parameter tuning
compared with other hyper-parameter sensitive methods.

2.2 Whale optimization algorithm (WOA)

WOA is an optimization algorithm derived from bubble-net
hunt methods used in meta-heuristic algorithms (Mi et al., 2016). In
this algorithm, it is described how humpback whales hunt.
Humpback whales follow the usual bubbles when they encircle
preys, creating a circle or ‘9-shaped path’. Basically, bubble-net
hunting or feeding is explained by humpback whales diving
10–15 m in water and subsequently starting to generate bubbles
encasing preys, followed by following the bubbles and moving
up. According to the algorithm presented in (Mi et al., 2016),
Whale Optimization algorithm (WOA) is modeled in the
following ways.

2.2.1 An encircled prey formula
After encircling the target, the humpback whales update their

location to reach the optimum solution over a series of iterations.

�D � C. �X t( ) −X t( )∣∣∣∣
∣∣∣∣ (3)

�X t + 1( ) � �X t( ) − �A. �D (4)
In which, �A, �D show coefficient vectors. t shows present

iteration. �X*(t) shows the position vector of optimal solution.
X(t) shows the position vector. �A, �D can be described in the
following way:

�A � 2 �a p r − �a (5)
�A � 2 p r (6)

In which, �a reduces linearly from two to zero over during
iteration and r shows a randomly selected number between [0,
1]. In this way, Eqs 3–6 could control the optimal search direction
and learning rate of the global optimality convergence.

2.2.2 Bubble-net attack approach
Humpback whale bubble-net behaviors can be mathematically

described using 2 approaches:

A. Method for shrinking encirclement: In the method, �a was
linearly decreased from two to zero. Random value for vector
in domain amongst [−1, 1].

B. Spiral updating position:As a result of the helix-shaped motion
of the humpback whales and target, the following formula can be
derived as Eq. 7:

�X t + 1( ) � �D′ p ebt p cos 2πl( ) + �X t( ) (7)
In which, l represents a randomly selected number between

[−1, 1]. b shows fixed logarithmic shape. �D′ � | �X*(t) −X(t)| shows
the distance among ith whale to the target mean optimal solution.

During optimization, whales are assumed to follow either a
shrinking encirclement or logarithmic path 50%–60% of the time.
The mathematical model is based on the following Eq. 8:

�X t + 1( ) � �X t( ) − �A �D if p< 0.5
�D′.eN. cos 2πl( ) + �X t( ) p≥ 0.5

{ (8)

In which, p is a randomly selected parameter in the value range
of [0, 1]. �A, �D still indicate the coefficient vectors to tune the learning
rate of optimal solutions.

FIGURE 1
RBF network framework.
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2.2.3 Searching for target
Exploration is done using �A to find the target. Additionally, �A

accepts values above 1 or below −1. There are 2 requirements for
exploration.

�D � �C.Xrand
����→− �X

∣∣∣∣∣
∣∣∣∣∣ (9)

�X t + 1( ) � Xrand
����→− �A �D (10)

Lastly, the following should be followed (Zhang et al., 2013):

• | �A|> 1 would enforce exploration to WOA algorithm for
determining global optimal avoid local optimal.

• | �A|< 1 should be chosen in order to update the location of
present searching agent/optimal solution.

3 Suggested WOA optimized RBF
neural network

An RBF neural network’s architecture and variables must be
defined, just like any other neural network scheme. A scheme
training process can be divided into three main categories
depending on the flexibility of its determination. The first one
involves determining the model structure and non-linear
variables via trial and error and subsequently obtaining linear

weights using minimum squares or various approximations. The
second one involves fixing the model structure including input
and hidden node number and allowing the optimization approach
for training the non-linear and linear variables. Lastly, the third
one involves simultaneous training of the model structure and
variables. As part of the Model Training Type 2 presented in
the study, the WOA approach has been used to train the non-
linear and linear variables based on an established neural network
model framework. As a fitness function for optimizing RBF
networks, the root mean square error (RMSE) has been used,
as shown in Eqs 5, 6)

minf �

��������������
1
Nm

.∑
Nm

i�1
ŷ − ym( )2

√√

(11)

In which, ŷ shows the forecast value and ym shows the measured
information set. It is important to calculate each parameter in
advance of computing ŷ, as expressed in Eq. (12):

ŷ � ∑
nh

i�1
wi.exp − 1

2σ2
i

X − ci‖ ‖2( ), i � 1, 2, . . . , n (12)

An RBF neural network training procedure can likewise be
considered an unrestricted optimization problem along with the
objective function. The decision parameters are expressed in the
following manner, assuming i and j are the input node and hidden
node in Eq. (13):

particle i( ) � c11, c21, . . . , σ1,w1, c12, c22, . . . , cj2, σ2, w2, , . . .[
c1k, c2k, . . . , cjk, σk, wk] (13)

There is full encoding of non-linear variables in all hidden nodes
and their associated linear weighting factors. Figure 2 shows the in-
depth process of this suggested WOA-driven RBF model approach:

1) Initialization:
(a) Input information vectors are selected and adopted into

the RBF neural networks; b) The number of hidden nodes
for RBF neural networks is determined and pre-defined
according to empirical analysis; c) The decision
parameters based on the current framework are encoded
according to the solar power predication factors; d) Decision
parameter values of the entire population are initialized by
random values;

2) Optimization procedure:
(a) The mean value X′

k(t) of the entire population is calculated;
b) The entire population is divided into two categories

FIGURE 2
Process of WOA optimized RBF network.

TABLE 1 PV Power plant information.

Variables Amount

Capacity 1MW

MJB panels 02 Nos

Inverters 02 Nos

Entire number of SCB (String connection box) 24 Nos

Entire number of strings 200

Maximum string current 7.9A

TABLE 2 PCC among the plant output power and various weather variables
within 2022 data.

Factor PCC

Wind direction 6e − 3

Wind speed 101e − 3

Module temperature 802e − 3

Ambient temperature 106e − 3

Solar irradiance 992e − 3
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containing the same number of particles; c) one
population from every category is selected at the
random group and the fitness function Eq. 11 for the
two particles is calculated; d) The loser based on Eqs 9,

10 is updated; e) The new loser and the winner are added to
the upcoming generation population; f) The step 2)-(c) to
step 2)-(e) should be repeated until there are no
whales left.

FIGURE 3
A representation of normalized weather variables and plant output power against normalized time for 8 January 2022 (A) Radiance (B) Ambient and
Module temperatures (C) Wind speed and (D) Wind direction.

FIGURE 5
Optimum Sigma (σopt) for RBF training monthly.

FIGURE 4
RMSE versus sigma for RBF.
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3) Finalization procedure:
(a) The maximum number of iterations should be determined

according pre-defined tolerance; b) The step 2)-(a) should be
repeated until the max number of iterations has been reached;
c) The procedure is terminated via iteration limitation or
convergence tolerance with the optimal value generated.

4 Simulation and case study

Even though PV power output is mainly determined by radiance,
other weather conditions and associated parameters (the temperature of
the module, surrounding temperature, the direction and speed of the
wind) are also important and have impact on the ultimate PV plant
power output. For instance, the open circuit voltage of crystalline silicon
PV modules reduces in response to increasing temperature, reaching a
value of −0.45%/K, and short-circuit current ranges from 0.4%/K to
0.9%/K. Consequently, wind speed is usually used as a predicting
variable to account for the cooling impact, heat dissipation, and PV
panel cleaning. Those weather and environmental conditions could be
coded as corresponding variables in the RBFNN asmodified input data.
The short-term forecasting for PV plant power output should include
considerable determining factors to guarantee the accuracy and
forecasting reliability.

4.1 Simulation setup

Table 1 shows the plant information. Information is captured by the
SCADA system daily and is used to monitor and record weather
conditions. A weather variable’s output is correlated using Pearson
Correlation Coefficient (PCC). The Pearson Correlation Coefficient is
described by Eq. (14) in which x-axis shows the time series of output
power, y-axis shows the time series for all climate dependent parameters.

PCC � n ∑xy( ) − ∑x( ) ��
y

√( )
���������������������������
n∑x2 − ��

x
√

( )2[ ] n∑y2 − ∑y( )2[ ]
√ (14)

The PCC parameter setting for a weather variable is shown
in Table. 2 to illustrate the association among the variable and
the plant’s power output. An example of a radiance and power
output profile is shown in Figure 3A, in which a near-unity PCC
value predicts that radiance and power output are heavily
correlated. In contrast, variables such as module
temperature, ambient temperature, and the direction and
speed of the wind show less correlation with power output
(see Figures 3B, C, D). Wind variables can be key to forecasting
unplanned blackouts in coastal areas such as Odisha due to
adverse climate conditions.

The networks are trained using information from 2012 to 2013.
The information from 2022 to 2023 is either inaccurate (for
example, incorrect SCADA reading) or indicates unusual
circumstances (for example, blackouts). In the absence of power
generation, the information is eliminated using a MATLAB
program. MATLAB’s ‘nntool’ function is used to train the
network during July 2022 and 2023 datasets to produce
forecasts in July 2024. A comparison of the trained ANN’s
output with the calculated 2024 information set helps to
determine how effective the algorithm is.

4.2 Method performance

A neural network schema is trained for information gathered
in July 2022 and July 2023 and evaluated for information gathered
in July 2024. A comparison of the approach with the real output
information of 18 July 2014 is shown in Figure 4. The optimum
Sigma (σopt) of RBF training monthly is shown in Figure 5. In
Figure 6, the proposed approach and others are simulated
alongside the PV power generation of the plant measured on
18 July 2024.

As a result of the proposed approach’s low RMSE, it produces
an improved fit compared with other existing methods that
usually range from 0.7–0.9 for RMSE. As well as a low RMSE,
the algorithm has also produced an irregular envelope around the
real output with limited upper bound and lower bound. In this
way, WOA-RBF actually increases power output envelope by
having greater RMSE than the proposed approach. Although the
proposed approach has the lowest RMSE among others,
simulated output power drops sharply around 0.5 during
normalized time. There is a possibility that at the RBFEF
training, one point of the dataset was anomalous near the
input data point, which can cause unexpected drops in
simulated output.

FIGURE 6
Comparing the output of RBF, FFNN, decision-driven algorithm
and the real power production of the plant.

TABLE 3 The minimal forecasting RMSE error for different weather conditions
in different seasons.

Weather conditions Clear-sky Cloudy

Winter 0.0642 0.0724

Spring 0.0611 0.0695

Summer 0.0622 0.0718

Autumn 0.0628 0.0709
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4.3 Analysis in different application scenarios

With the consideration of different weather condition effect, the
proposed method has also been tested in different application
scenarios via RBFNN parameter tuning according to the clear-
sky day forecasting or cloudy day forecasting applications in
different seasons.

By tuning the optimal hyper-parameters of RBFNN, Table 3
shows the minimal forecasting RMSE error of PV plant power
output for different weather conditions in different seasons.
Compared with other forecasting methods, the proposed one
could deal with more different scenarios since it depends little on
any specific features that should be pre-defined. It is easily observed
that generally speaking most short-term PV power output
forecasting results are better in clear-sky day conditions than
cloudy day conditions due to the uncertain shadowing effect of
massive cloud impact on the sunny irradiance. It is worth
mentioning that this phenomenon is also observed in other
existing methods. The specific forecasting RMSE error also varies
with the season change over the whole year, since the temperature or
humidity condition will play a role as well in determining the specific
energy generation level of PV plant power output.

In Figure 7, we also try the normal distribution fitting for the
forecasting errors to observe the error reduction and error growth
phenomenon in application scenarios of different aggregated PV
plant power output capacity. It can be found that for smaller
60 MW PV plant power output forecasting, the fitting error has a
more stochastic error distribution since the internal aggregation of
PV cell units usually suffers less counteracting effect compared with
larger 230 MW PV plant power output forecasting.

On the other hand, the operation of larger PV plant would
provide larger resource capacity and better forecasting reliability
margin to deal with the manual feature extraction issues. It is
believed that with proper design of the hyper-parameter of
RBFNN framework and gradient calculation of WOA
optimization, the short-term PV plant power output forecasting
could be self-adaptive to the changes of external environmental

weather conditions and power dispatch scheduling of each PV
generation unit.

5 Conclusion

The work proposes a whale optimization algorithm combined
with RBFNN to forecast solar production. The suggested approach
framework allows for simultaneous determination of linear and
non-linear variables in RBFs. Several non-linear evaluations and a
forecast task for solar production have confirmed its
competitiveness. This paper also proposes the whale optimization
algorithm using RBF to help forecast PV power plant output directly
day-ahead in advance with acceptable forecasting errors. A
comparison study case is experimented to generate different
outcomes that shows the proposed approach could provide a
higher level of prediction precision than other conventional
methods in similar scenarios, especially for PV plant power
output in various conditions. According to the specific
application scenarios, this work suggests and concludes the
proposed method can be used as a more suitable tool to deal
with such solar energy and PV plant power output forecasting
problems. In the future work, we will consider more sources of
uncertainty and combine the current method with some auto-
encoder framework to efficiently extract the significant features of
the forecasting problem, which would further improve the short-
term prediction accuracy for large-scale PV plant capacity. The
proposed method can also be combined with the coupled operation
framework to facilitate the end-to-end decision-making of
forecasting-based power system operation.

Data availability statement
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to the corresponding author.

FIGURE 7
The forecasting error with normal distribution fitting for different large-scale aggregated PV plant. (A) 60 MW aggregated PV plant power output
forecasting error fitting. (B) 230 MW aggregated PV plant power output forecasting error fitting.
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Evaluating and forecasting
methods for assessing the health
status of cables under the load of
large-scale electric
vehicle charging

He Lei*, Li Rufeng, Tang Baofeng, Zhou Kaifeng, Jia Binyu and
Xue Lin

State Grid XiongAn New Area Electric Power Supply Company, Xiong’an New Area, Hebei, China

The assessment of the health status and prediction of the lifespan of cable
equipment are critical for ensuring the stability and efficiency of the power
grid. This paper develops a temperature-current-capacity-life calculation
model for cables, considering the fast and slow charging demands of electric
vehicles (EVs). Analyses under scenarios of rapid and slow charging demands are
conducted, introducing a cable health index and establishing a health status
assessment framework based on this index. The framework accounts for
various factors leading to cable faults, offering a comprehensive evaluation of
the health status of cables with different fault rates. Building upon this, a prediction
method using the Fire Hawk Optimization (FHO) Algorithm and Convolutional
Neural Network (CNN) is proposed. This method enhances performance by
optimizing the hyperparameters of Bidirectional Gated Recurrent Unit (BiGRU)
through FHO, effectively searching and determining the optimal hyperparameter
configuration. The impact of different scenarios and varying EV penetration rates
on cable temperature is analyzed through case studies, facilitating the assessment
and prediction of health status.

KEYWORDS

health status assessment, cable, electric vehicle, deep learning, health index

1 Introduction

As modern society’s reliance on electricity intensifies, cables, being an indispensable
component of the power grid, play a pivotal role in ensuring the safety and reliability of the
entire electrical system (Rajendran et al., 2021). The escalating demand for electric vehicle
(EV) charging, especially the high current requirements of direct current fast charging, raises
challenges for cable equipment, leading to increased cable temperatures (Gupta et al., 2021).
This not only impacts their performance and lifespan but also poses potential safety hazards.
Moreover, cable equipment is subject to various internal and external factors such as aging,
climate change, and operational stress, leading to potential performance deterioration over
time (Hossain et al., 2021). Therefore, the health assessment and prediction of cable
equipment’s status are of paramount importance.

Cables are designed with a lifespan of approximately 40 years, predominantly affected by
thermal aging and electrical aging (Li et al., 2007). Thermal aging suggests that a cable’s
lifespan is mainly influenced by load rate, insulation material properties, and ambient
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temperature, whereas electrical aging posits that a cable’s expected
lifespan is inversely proportional to insulation field strength, as
proven in relevant studies. Research documented in (Nemati et al.,
2019) utilizes the Weibull parametric proportional hazard model to
estimate the failure rate of each cable based on its years of usage and
a set of explanatory factors (Dinmohammadi et al., 2019). proposes a
lifespan predictionmodel for submarine cables under specific seabed
conditions and tidal flows, predicting the expected lifespan of cables
affected by erosion and wear. Further (Montanari et al., 2019),
assesses the insulation condition of electrical equipment as a
function of operating time, evaluating the feasibility and scope of
maintenance measures and life extension plans based on aging and
life models (Wang et al., 2019). examines the impact of EV charging
loads on the temperature and thermal life of distribution network
cables, focusing on the harmonic characteristics of 3.3 kW and
6.6 kW AC slow charging under peak and off-peak scenarios.
However, in the context of dual carbon goals, the continuous
increase in EV ownership, reaching 18.21 million in China by
September 2023, and the establishment of DC fast charging and
even Chaoji fast charging standards, allowing charging powers up to
an astonishing 900 kW, impose higher current loads on cables (Yu
et al., 2022). Excessive current loads can lead to overheating and
material degradation, reducing the efficiency and reliability of cables
(Li and Li, 2017). Research in this specific area is not yet
comprehensive, and the lifespan prediction of operational cables
needs to consider stochastic characteristics, including faults due to
defects, external damage, and environmental factors.

In the realm of cable equipment health monitoring and lifespan
prediction, numerous domestic and international researchers have
pioneered a variety of innovative methods, broadly categorized into
model-based predictions and data-based predictions (Liao and
Kottig, 2014). Model-based predictions focus on in-depth analysis
of cable equipment’s structure and material properties, often
involving complex fault mechanism mathematical models
(Ahmad et al., 2022). However, due to their high complexity, the
practical application of these methods is somewhat limited. On the
other hand, data-based prediction methods do not require an in-
depth understanding of mechanisms; instead, they assess the health
and predict the lifespan of equipment by analyzing data and
measurement parameters collected by sensors. These methods are
further divided into statistical methods and machine learning
methods (Carvalho et al., 2019). Traditional machine learning
methods, such as Support Vector Machine (SVM) (Yan et al.,
2020) and Random Forest (RF) (Gan et al., 2022), are favored for
their flexibility and efficiency in extracting shallow features for
health assessment and lifespan prediction. The latest research
trend is employing deep learning technologies, particularly CNN
and Recurrent Neural Networks (RNN) (Han et al., 2021), to process
cable data, aiming to enhance prediction accuracy and robustness.
The application of deep learning in cable equipment’s lifespan
prediction and health status assessment mainly encompasses
Deep Belief Networks (DBN) (Peng et al., 2019), Long Short-
Term Memory networks (LSTM) (Zhang et al., 2018), Gated
Recurrent Units (GRU) (Luo et al., 2020), CNN, Graph Neural
Networks (GNN) (Kong et al., 2022), and Transfer Learning (TL)
(Zhang et al., 2021). These cutting-edge studies are continually
advancing the monitoring and lifespan prediction technologies
for cable equipment.

This paper introduces an innovative approach for assessing and
predicting the health status of cables in the context of large-scale
electric vehicle (EV) charging loads. The key contributions of this
study are summarized as follows:

(1) Development of a cable temperature-current-capacity-life
calculation model. This model conducts a comprehensive
analysis of both rapid and slow charging scenarios and
explores through case studies the impact of different
charging scenarios and EV penetration rates on cable
temperature. This offers new perspectives and solutions for
cable management in EV charging facilities.

(2) Introduction of the concept of a Cable Health Index and the
construction of a cable health status assessment framework
based on this index. Taking into account various factors that
could lead to cable faults, this framework allows for a
comprehensive health assessment of cables with different
fault rates, significantly enhancing the safety and efficiency of
cable usage.

(3) Proposal of a predictive method that combines the FHO
Algorithm with a CNN. This method uses the FHO
algorithm to optimize the hyperparameters of the BiGRU,
enhancing predictive performance. It effectively searches and
determines the optimal hyperparameter configuration, enabling
precise assessment and prediction of cable health status.

The remainder of the paper is organized as follows: Section 2
constructs the cable model considering EV charging demands and
analyzes rapid and slow charging requirements. Section 3 presents a
deep learning-based method for predicting the health status of cable
equipment. Section 4 offers simulation results and discusses the
outcomes of the tests. Finally, Section 5 concludes the study.

2 Cable model considering EV
charging demand

The historical data of cables include operational years and
routine inspections. As operational years increase, the condition
of the cables deteriorates. The lifecycle of a cable follows a “bathtub
curve,” which can be divided into three phases: the early debugging

FIGURE 1
Bathtub curve of failure rates.
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period, the random failure period, and the wear-out period, as
illustrated in Figure 1.

To quantify the impact of EV charging loads on cables, this paper
constructs a cable equipment temperature-current-capacity-life
calculation model, considering both rapid and slow EV
charging demands.

2.1 Slow charging demand

Considering that the charging mode allows EVs to charge
without exceeding the battery capacity and that the constant
current process in a complete slow charging cycle is very short,
the entire slow charging process is approximated as constant voltage
charging. Assuming that the charging current for slow charging is
0.1C (C refers to battery capacity), the charging power Pc of a typical
EV falls within the range of 2–3 kW and follows a uniform
distribution, with its probability distribution function as (Eq. 1)

fPc x( ) � 1 x ∈ 2, 3[ ]
0 otherwise

{ (1)

The time required for each EV’s slow charging is calculated as
(Eq. 2)

Tc � SW100

100Pc
(2)

Considering two types of slow charging modes: dispersed and
centralized, this study focuses on dispersed slow charging for both
pure electric and hybrid vehicles. Assuming that all slow-charging

EVs finish their last daily trip and return to their parking spots at the
time which marks the beginning of charging. Based on a survey of
American household vehicles, the start time of charging is also
approximated as a normal distribution, with the specific probability
density function as (Eq. 3):

fs x( ) �
1

σs
���
2π

√ exp − x − μs( )2

2σ2
s

[ ] μs − 12( )<x≤ 24

1
σs

���
2π

√ exp − x + 24 − μs( )2

2σ2
s

[ ] 0< x≤ μs − 12( )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(3)

With the initial scale of EVs in the region, combining the EV
driving mileage and charging start time, the remaining battery
charge of each vehicle can be calculated.

2.2 Rapid charging demand

In rapid charging mode, the initial phase of EV charging
generally involves constant current charging, following an
exponential distribution. When the battery is charged to 80% of
its rated capacity, the process is as (Eq. 4):

Pfc t( ) � PNe
− PN

0.9−SOC0( )C t (4)
For instance, PN = 100 kW, for a battery capacity of 60 kW and a
remaining charge of 40%, an EV would require approximately 0.67 h
to charge.

The extent of EV charging and battery swapping demand is
primarily influenced by user behavior, battery capacity, and the
technical level of charging equipment. At a certain stage of
development, constrained by the level of technology, battery
capacity and the power rating of charging equipment are
generally fixed, hence EV charging and swapping demand mainly
depends on daily driving mileage.

To obtain the daily load curve of EV charging and swapping, it is
first necessary to know the daily driving mileage S of EV users and
the electric energy W100 consumed per 100 km by the EV. The
product of these two factors gives the daily power consumption of
the EV. Based on relevant statistical survey data, the daily mileage is
approximated to fit a log-normal distribution, with the
corresponding probability density function as (Eq. 5):

f d( ) � 1
dσD,i

���
2π

√ exp − lnd − μD,i( )
2

2σ2D,i

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, i � 1, 2, ..., 7 (5)

Compared to the dispersed slow charging mode, the rapid charging
mode sees a higher degree of charging demand, mainly affected by the
power consumption during various time periods. This paper assumes
that the distribution of start times for rapid charging is consistent with
the swapping time distribution in the swappingmode. It is also assumed
that when pure electric and hybrid EVs undergo rapid charging, the
remaining battery charge follows a normal distribution of (0.4, 0.133),
leading to a specific probability density function for the remaining
battery capacity (Eq. 6).

fK x( ) � 1
σK

���
2π

√ exp − x − μK( )2

2σ2
K

[ ] (6)

FIGURE 2
Flowchart for predicting cable health status.
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2.3 Cable temperature calculation model

The introduction of nonlinear loads by AC charging of EVs
leads to the generation of harmonics. These harmonic signals affect
both voltage and current, encompassing harmonic voltage and
current. According to the definition by IEC 61000, these are
represented as (Eq. 7) and (Eq. 8):

σTHDu �

����
∑
n

2
U2

n

√

U1
(7)

σTHDi �

����
∑
n

2
I2n

√

I1
(8)

As per the IEC 60287 standard, the core temperature θ of a
10 kV three-core cable can be expressed as θ � θc + θ0, the values of
related parameters can be found in Wang et al. (2019) θc can be
calculated by (Eq. 9).

θc � ∑
n

i�1
I2i RAC i( ) T1 + ciT2 + ci 1 + λ2 i( )( ) T3 + T4( )( ) (9)

2.4 Cable current carrying capacity
calculation model

The harmonic currents generated during the charging process of
EVs can cause the total current carrying capacity of the cable to
exceed its design value, potentially leading to overload and safety
issues. The current carrying capacity of 10 kV three-core cable can
be calculated using (Eq. 10)

Ih,rated �
�������������������������������������������������������

Δθc/∑
n

i�1

I2i
I21
RAC i( ) T1 + 1 + λ1 i( )( )T2 + 1 + λ1 i( ) + λ2 i( )( ) T3 + T4( )( )

√√

(10)

2.5 Cable life calculation model

The harmonic currents produced during the EV charging
process cause additional heating in the cable, affecting its thermal
life. The cable’s life per hour is given by (Eq. 11):

Lh t( ) � 8760 · L0e
− Δw
kBT t( ) (11)

The daily life degradation of the cable is expressed as (Eq. 12):

Ld � ∑
24

t�1

1
Lh t( ) (12)

2.6 Failure rate model

Cable fault sample data follow a Weibull distribution with the
sought parameters. Such a function can simulate various fault
factors by selecting appropriate parameters and can also assess
the systemic reliability when the cable fault rate dynamically

changes. The mathematical model for cable fault rate is shown as
(Eq. 13):

λ t( ) � β

η

t

η
( )

β−1
(13)

To account for the difference in cable fault rates before and after
maintenance, this paper introduces an age regression factor α,
representing the actual change in cable fault rate. The actual
service age of the cable is then given by (Eq. 14):

Treal � T − αT � 1 − α( )T (14)
This allows for the determination of the fault rate after the k-th

maintenance. As shown in (Eq. 15).

λk t( ) � λ t + 1 − α( )kT[ ] � β

η

t + 1 − α( )kT
η

[ ]
β−1

(15)

3 Deep learning-based method for
predicting the health status of
cable equipment

To avoid the issues of cable current carrying capacity overload
and temperature rise caused by concentrated EV charging, this study
proposes a data-driven and weighted Gaussian regression method
for predicting the operational state of cable equipment. This
approach utilizes CNN and LSTM networks to predict
parameters of cable equipment, thereby enhancing the
performance of Gaussian Process Regression (GPR), aiming to
improve the accuracy of predicting parameters like cable
temperature and current carrying capacity.

The proposed FHO-CNN-BIGRU method for predicting the
operational state of cable equipment employs the CNN
algorithm to mine data relationships and mitigate noise
interference. The extracted features are then fed into a
BiGRU model optimized by the FHO Algorithm for time
series prediction, enhancing the stability of the forecasts.
Additionally, this method incorporates a GPR filtering model
to smooth the data using Gaussian process regression, thus
improving data accuracy and reliability. The cable health status
prediction flow chart is shown in Figure 2.

3.1 FHO optimization of BiGRU
hyperparameters

The FHO algorithm is a meta-heuristic algorithm that simulates
the foraging behavior of fire hawks, considering processes like
setting fires, spreading, and capturing prey. Initially, several
candidate solutions are determined as the location vectors of the
fire hawks and prey, using a random initialization process as per the
given formula to identify these vectors’ initial positions in the search
space. As shown in (Eq. 16) and (Eq. 17).

X �
X1

..

.

Xi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

x11x
2
1/xj1
..
.

x1i x
2
i/xji

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

i � 1, 2, . . . , N
j � 1, 2, . . . , D

{ (16)
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xji 0( ) � xji,min + rand · xji,max − xji,min( ) (17)

The distance between a fire hawk m and prey n is calculated to
determine the nearest prey around each fire hawk and define their
territories. As shown in (Eq. 18).

Dm
n �

�������������������
xn − xm( )2 + yn − ym( )2

√
(18)

Then, positions are updated: fire hawk m collects burning sticks
from the main fire and throws them into a specific area to force the
prey to flee. The detailed process of updating positions can be
referred to in the cited literature (Azizi et al., 2023).

Based on the solution process of the aforementioned FHO
optimization algorithm, the steps to optimize the BiGRU model
hyperparameters are as follows:

Step 1: Define the Hyperparameter Search Space. Identify the
hyperparameters of the BiGRU model to be optimized and
establish a range or a set of possible values for each hyperparameter.

Step 2: Initialize Solution Candidates. Generate initial solution
candidates of hyperparameter combinations randomly, in
accordance with the defined search space.

Step 3: Evaluate Initial Solution Candidates. Employ cross-
validation or other suitable methods to train the model and
assess the performance of the initial solution candidates,
calculating their fitness values (such as accuracy, loss
function values, etc.).

Step 4: Set the Global Optimum. Designate the best solution among
the initial candidates as the global optimum.

Step 5: Iterative Optimization. Continuously update the
hyperparameter combinations by generating falcons and prey.
The distance between falcons and prey is computed, and
territories of the falcons are determined. Falcons update their
hyperparameter combinations based on their positions, and prey
both within and outside the territories also update their
combinations. By evaluating the fitness values of the updated
hyperparameter combinations and updating the global optimum
to the current best solution, the FHO algorithm progressively
searches for improved hyperparameter combinations, thereby
enhancing the BiGRU model’s performance through iterative
optimization.

Step 6: Return the Global Optimum. Upon completion of the
iterations, the global optimum is returned as the optimized set of
hyperparameters for the BiGRU model.

3.2 FHO-CNN-BiGRU prediction model

Step 1:Data Preprocessing. Undertake preparatory processing of
the monitoring data for cable equipment, involving data
cleansing and normalization among other procedures, to ready
the input data.

Step 2: Feature Extraction. Utilize a CNN to extract salient features
from the cable equipment monitoring data, capturing key temporal
sequence characteristics.

Step 3: Sequence Modeling. Employ a BiGRU to model the
extracted time series features, considering both historical and
prospective state information.

Step 4: Predictive Output. Utilize the terminal temporal step’s
BiGRU hidden state as the vector representation of the equipment’s
health status, and input this into a fully connected layer for the
prediction of the health state.

Step 5: Model Optimization. Apply the FHO algorithm to refine
hyperparameters such as the convolutional kernel size, GRU’s
hidden unit count, learning rate, and other factors pertinent to
model performance, thereby enhancing the accuracy of health status
prediction.

Step 6: Model Evaluation. Assess the model’s performance using
appropriate metrics (like accuracy, recall, F1 score, etc.), comparing
it against the actual health states of the equipment.

Step 7:Health Status Prediction. Utilize the optimized FHO-CNN-
BiGRU model to predict the health status of cable equipment based
on new monitoring data, thus obtaining prognostications regarding
the health state of the cable apparatus.

3.3 Construction of gaussian process
regression model

Combining the FHO-CNN-BiGRU prediction model, the GPR
model is utilized for its superiority in handling nonlinear problems
to obtain nonlinear mappings between measurements and state
quantities. The integration of FHO-CNN-BiGRU and GPR
algorithms allows for weighting the predicted values from FHO-
CNN-BiGRU and the state estimates from GPR, leading to more
accurate predictions of the cable equipment’s state.

The Gaussian Regression model maps input features to a high-
dimensional space through a set of basis functions, denoted as ψ(·),
thereby facilitating the discovery of linear relationships among data
in this elevated dimensional space. By representing the measured
quantities Z, with these basis functions ψ(·), one can derive the
probability associated with new data.

The GPR uses confidence judgment to estimate results, which
can mitigate noise interference, thereby improving the accuracy of
the estimates. Offline training is first conducted based on the
nonlinear relationship between historical measurement and state
data of cable equipment, followed by state prediction using the
trained model based on new measurement data.

3.4 Method for assessing the health status of
cable equipment

Aging and deterioration are phenomena that span the entire
lifecycle of equipment. Cables, especially those operating in
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humid environments for extended periods, are prone to water
tree aging. The operational state of the cable, maintenance
strategies, construction quality, and operating environment
significantly impact cable deterioration. Maintenance can
enhance the performance of components and extend the
equipment’s life to a certain extent, but it cannot restore the
equipment to its original healthy state, as the rate of deterioration
remains unchanged. Assessing the health status is an effective
way to monitor the condition of cable equipment. Based on the
cable status prediction results, this paper introduces the concept
of a Cable Health Index and constructs a cable health status
assessment framework based on this index. The cable health
status assessment process, as illustrated in Figure 3, involves the
following detailed steps:

Step 1: Data Collection and Processing. Utilize distributed fiber
optic sensors to collect relevant data of the cable, including its
lifespan, insulation thermal resistance, and other parameters.
Combine these with predicted parameters like current carrying
capacity, temperature, and lifespan to construct a health status
assessment dataset. Analyze and process the collected data,

employing methods like Principal Component Analysis to
remove redundant features and repair missing data.

Step 2: Determination of Cable Fault Factor Weights.
Considering the operational conditions of the cable, use the
Analytic Hierarchy Process to calculate the weights of factors
that could potentially cause cable faults, obtaining the weight wi

for the ith type of fault factor. Factors include heavy overload,
lightning strikes, high temperatures, humidity, chemical
corrosion, human-induced damage, animal damage, and
insulation aging.

Step 3: Calculation of Cable Fault Rate. Calculate the cable fault
rate λ(t) and the fault rate λk after kth maintenance using the
designated (Eq. 19). Modify the fault rate based on the cable’s
service age using the appropriate (Eq. 20) to obtain the real-time
fault rate.

FIGURE 5
Charging demand at different EV penetration rates.

FIGURE 3
Cable fault early warning and decision-making process.

FIGURE 4
Daily residential electricity load profile.
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λ t( ) �
0.0198 t≤ 20
6.849
35.536

×
t

35.536
( )

5.849

t> 20

⎧⎪⎨
⎪⎩ (19)

λ* � wi · λk (20)

Step 4: Calculation of Cable Health Index. Utilize the real-time
fault rate to calculate the cable’s real-time health index H*. As
shown in (Eq. 21).

H* � 1
ξ
ln

λ*
K

( ) (21)

Step 5: Assessment of Cable Health Status. Based on the
calculated real-time health index, assess the health status of
the cable. Categorize the cable into different health statuses,
including healthy, sub-healthy, early warning, and damaged,
according to predefined standards and thresholds.

Step 6: Early Warning and Decision-Making. Set warning
thresholds based on the real-time fault rate and health index.
When the fault rate exceeds the threshold or the health index
declines, the system can issue an alert, prompting maintenance

personnel to take appropriate actions such as repair, replacement, or
upgrade of the cable.

4 Case analysis

This paper focuses on a case study of a community with
2000 private EVs. For simplicity in the simulation, it is assumed
that EVs charge at a constant power, with a battery capacity of
70 kWh. The study considers AC slow charging and DC fast
charging, setting the ratio of fast to slow charging at 3:7.
According to the standard charging modes defined in
IEC61851-1, a 6.6 kW AC charging station for electric cars has
a current of 32A, and a 35 kW DC charging station has a current
of 160A. The temperature limit of XLPE cables is set at 90°C. Due
to higher losses in AC cables under the same load conditions
compared to DC cables, the temperature changes caused by fast
charging are not considered initially. Figure 4 shows the typical
daily load curve without considering EV charging, and Figure 5
presents the charging demand curves at different EV
penetration rates.

FIGURE 6
Cable temperature variations under different EV
penetration rates.

TABLE 1 Maximum cable temperatures at different EV penetration rates in various scenarios.

EV penetration rate Temperature (°C)

Considering harmonics Disregarding harmonics Disregarding fast charging

0 63.56 63.56 63.56

10% 67.96 64.85 69.92

20% 71.23 67.55 74.05

30% 76.80 71.61 79.43

40% 83.58 79.56 86.30

50% 91.67 90.03 93.82

FIGURE 7
Temperature impacts in slow charging scenarios at different EV
penetration rates.
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4.1 Impact of EV charging demand on cables

To assess the impact of different scales of EV integration on cable
temperature rise, we analyzed cable temperatures under various
charging demands, setting EV penetration rates at 0%, 10%, 20%,
30%, 40%, and 50%. The simulation tested the cable temperature
variations in each scenario, as shown in Figure 6; Table 1.

From Figure 6, it is evident that with the increase in the number
of EVs, the rising charging demand leads to a continuous increase in
cable temperature. Especially when the EV penetration rate reaches
half of the total number of private cars in the community, the cable
temperature exceeds the permissible limit. At peak demand times,
the cable temperature reaches 91.67°C, exceeding the 90°C limit even
without considering the impact of harmonics. Therefore, reducing
harmonics and improving cable thermal management are crucial for
the reliable operation of cables and the entire distribution system.
Implementing rational orderly charging strategies or incentivizing
users to charge during off-peak hours through time-of-use tariffs
could mitigate the risk of cable current exceeding limits due to the
cumulative demand of charging and base electrical loads.

4.2 Impact of EV charging strategies
on cables

To verify the impact of different charging strategies on cable life, the
temperature variations under slow charging demands at different EV
penetration rates are shown in Figure 7. Additionally, considering the
peak and off-peak periods as defined in (Sun et al., 2019), Figure 8
shows the temperature variation curves for two scenarios at a 50%
penetration rate under time-of-use charging.

From the figures, it is seen that in uncoordinated charging, all EV
users start charging immediately upon returning home, with charging
concentrated between 6 p.m. and 2 a.m. the next day. At 6 p.m., the cable
temperature reaches 91.67°C due to the peak in total electricity demand
from both charging and base loads. Under the influence of time-of-use
tariffs, EV users tend to choose lower-priced periods for charging, mostly
during the peak hours of solar power generation. Although the surge in

charging demand increases the cable temperature, it effectively avoids the
temperature rise caused by “peak upon peak” by occurring during the
low-demandperiod of the grid. The cable temperature remains at 88.28°C,
not exceeding its maximum tolerance, thereby reducing the fluctuation
range of cable temperature. This strategy not only avoids impact on the
cable but also enhances the utilization of solar power in the grid.

4.3 Cable health status assessment and
prediction

An analysis is conducted on the operational status of cables under
the two charging scenarios mentioned above, and a health status
assessment is performed using the health index. The criteria for
classifying health levels are shown in Table 2, and the future health
status of the cables is predicted using the model proposed in this paper.

As indicated in Table 2, S1 represents equipment that meets all
performance standards, with good foundational conditions, intact
technical performance, and stable operational conditions, capable of
withstanding external environmental risks. S2 denotes equipment with
intact functionality and performance, though slightly below the healthy
state, still meeting standard operational requirements. S3 indicates
equipment in basically good condition, capable of performing
specified functions, but with some performance degradation, having
a minor overall impact and needing maintenance. S4 signifies
equipment with severe technical performance deficiencies, unable to
meet operational standards, and posing a threat to system safety and
stability, urgently requiring replacement.

FIGURE 8
Effects of ordered and unordered charging on temperature.

TABLE 2 Health grade classification.

Health index Health level Health status

100 ≥ H ≥ 75 S1 Health

75 ≥ H ≥ 50 S2 Sub-health

50 ≥ H ≥ 20 S3 Early warning

20 ≥ H ≥ 0 S4 Damage

FIGURE 9
Fitted curve of cable failure rates.
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Figure 9 shows an increase in the fault rate of cables over time.
Considering the climate environment of the Xiong’an New Area,
100 cables are selected, and the weights of various fault factors are
calculated using the Analytic Hierarchy Process, as shown in Table 3.

The cable fault rate and health index are calculated based on the
weights of the fault factors and used as initial parameters to predict
future changes in the cable’s health status. Table 4 presents the fault
rates and health information of 10 selected cables and predicts their
future health status.

4.4 Comparison of prediction
method efficacy

To validate the superiority of the method proposed in this study, its
prediction results were compared with those of the Back Propagation
Neural Network (BPNN) and Support Vector Machine (SVM) models,
as shown in Table 5. S1 and S2 respectively correlate to the health grades
outlined in Table 2. The amalgamation of S3 and S4, denoted as S34,
indicates that the cable is in a state of malfunction or pre-alert.

The analysis of the provided data in Table 5 reveals a clear
superiority of the proposed method in accuracy rates across all
categories. It surpasses both BPNN and SVM, achieving 92.5% in

S1, 93.6% in S2, and 90.3% in the combined S34 category, with a
comprehensive accuracy of 92.5%. This consistently higher
performance across all metrics establishes the “Proposed
Method” as the most effective and accurate among the
methods evaluated.

5 Conclusion

In this paper, we proposed amethod for assessing and predicting
the health status of cables under the load of large-scale EV charging.
Through detailed case analysis, the following conclusions
were drawn:

(1) The increase in EV charging demand poses a risk of exceeding cable
temperature limits, particularly under the influence of harmonics in
AC slow charging scenarios. Addressing this involves both
reducing harmonic interference and enhancing cable thermal
management, which are essential for ensuring the reliability of
the cable system and the overall distribution network.

(2) Cables experience more severe operational challenges and increased
risk, especially with prolonged use of AC slow charging by EVs.
Implementing time-of-use tariffs to encourage orderly charging can
mitigate issues like cable current overload from cumulative charging
and base load demands. Additionally, at a 50% EV penetration rate,
uncoordinated charging can lead to cable overloading, while time-
of-use tariffs can help regulate charging demand distribution, thus
reducing peak-to-valley differences and lowering cable temperatures
during high grid load periods.

(3) The method proposed in this paper for assessing and predicting
cable health status effectively evaluates the operational state of
cables and issues timely warnings. It accurately predicts future
changes in cable health, providing essential support for grid
dispatchers to arrange maintenance and operation plans,
thereby enhancing the reliability of the distribution system.

Future research will aim to enhance predictive models and
thermal management, facilitating efficient integration of EVs into
the electrical grid.
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Nomenclature

Parameters

Tc Charging duration

S Daily driving mileage of the EV

W100 Power consumption per 100 km, in kWh/(100 km)

μs , σs Mean and variance

C Rated battery capacity

SOC0 Initial state of charge

RAC AC resistance

T1 Thermal resistance of the insulation layer

T2 Thermal resistance from the shielding layer to the armor layer

T3 Thermal resistance of the armor layer and the outer sheath

T4 External thermal resistance

ci Number of cable cores

θ0 Ambient temperature

kB Boltzmann constant

L0 Designed lifespan of the cable

Δw Activation energy

β Shape parameter

η Scale parameter

xji,max
Upper bound

xji,min
Lower bound

D Dimension

ξ Curvature coefficients

K Proportionality coefficients

Variables

PN Rapid charging power

I1 , In Effective values of the fundamental and nth harmonic currents,
respectively

U1 ,Un Effective values of the fundamental and nth harmonic voltages,
respectively

ℎ Order of the higher harmonics

λ1 Ratio of the shield layer loss to the conductor loss

λ2 Proportion of loss attributed to the armor layer

θc Temperature rise of the cable

Lh(t) Cable’s life at time t

T(t) Cable’s temperature at time t hours

Xi ith candidate solution

N Total number of candidate solutions

xji jth decision variable representing the ith candidate solution

H* Cable’s real-time health index

λ(t) Cable fault rate

λk Fault rate after kth maintenance

ψ(·) Basis functions

Z Measured quantities
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An ultra-short-term forecasting
method for multivariate loads of
user-level integrated energy
systems in a microscopic
perspective: based on
multi-energy spatio-temporal
coupling and
dual-attention mechanism

Xiucheng Yin1, Zhengzhong Gao1*, Yumeng Cheng1, Yican Hao1

and Zhenhuan You2

1Institute of Automation, Shandong University of Science and Technology, Qingdao, China, 2China
Huangdao Customs, Qingdao, China

An ultra-short-term multivariate load forecasting method under a microscopic
perspective is proposed to address the characteristics of user-level integrated
energy systems (UIES), which are small in scale and have large load fluctuations.
Firstly, the spatio-temporal correlation of users’ energy use behavior within the
UIES is analyzed, and a multivariate load input feature set in the form of a class
image is constructed based on the various types of load units. Secondly, in order
to maintain the feature independence and temporal integrity of each load during
the feature extraction process, a deep neural network architecture with spatio-
temporal coupling characteristics is designed. Among them, the multi-channel
parallel convolutional neural network (MCNN) performs independent spatial
feature extraction of the 2D load component pixel images at each moment in
time, and feature fusion of various types of load features in high dimensional
space. A bidirectional long short-term memory network (BiLSTM) is used as a
feature sharing layer to perform temporal feature extraction on the fused load
sequences. In addition, a spatial attention layer and a temporal attention layer are
designed in this paper for the original input load pixel images and the fused load
sequences, respectively, so that the model can better capture the important
information. Finally, a multi-task learning approach based on the hard sharing
mechanism achieves joint prediction of each load. The measured load data of a
UIES is analyzed as an example to verify the superiority of themethod proposed in
this paper.

KEYWORDS

load pixel image, spatio-temporal coupling, attention mechanism, multi-task
learning, MCNN
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1 Introduction

Due to the swift economic and social growth, global warming,
shortage of fossil energy and environmental pollution problems are
becoming more and more prominent (Ji et al., 2018). Promoting the
transformation of the traditional energy system, to improve the
efficiency of energy utilisation and to reduce carbon emissions is
currently a major issue facing the global energy industry (Cheng
et al., 2019a). The traditional energy system is limited to the
independent planning, design and operation of energy systems
such as electricity, gas, heat and cold, which artificially severs the
coupling relationship between different types of energy sources, and
is unable to give full play to the complementary advantages between
energy sources (Wang et al., 2019). Energy utilisation efficiency,
renewable energy consumption, energy conservation and emission
reduction have all encountered bottlenecks (Cheng et al, 2019b). In
response to the above problems, the concepts of energy internet (EI)
and integrated energy system (IES) have been put forward and
highly valued by many countries, which emphasise the development
mode of changing from the production and supply of each energy
source to the operation of joint scheduling of multiple energy
sources (Li et al., 2018; Li and Xu, 2018; Zhu et al., 2021).
Among them, IES, as an important physical carrier of EI, is an
important energy utilisation method in the process of energy
transition, as well as an effective method to promote renewable
energy consumption and improve energy efficiency (Wu et al.,
2016). User-side multivariate load ultra-short-term prediction as
the IES optimal scheduling, the primary premise of energy
management, is no longer limited to the independent prediction
of a single energy consumption, it must take into account multiple
energy systems at the same time (Li et al., 2022), which puts forward
higher requirements for the accuracy and reliability of the IES
multivariate load prediction, and it has become one of the
research hotspots in the energy field at the present time.

Theoretically, traditional load forecasting has developed into a
more developed system that focuses mostly on single loads like
electricity, natural gas, cooling, and heating. Data-driven artificial
intelligence techniques have been extensively employed in the
research of load forecasting applications since the emergence of a
new generation of artificial intelligence technology. On a
technological level, there are two general groups of AI-based load
prediction techniques: deep learning techniques and conventional
machine learning techniques.

To accurately anticipate daily peak demand for the next month,
Gao et al. (2022a) used a hybrid of extreme gradient boosting
(XGBoost) and multiple linear regression (MLR). Short-term load
forecasting in the literature (Singh et al., 2017) was accomplished
with the help of a three-layer feedforward artificial neural network
(ANN). For predicting the following day’s electrical usage over a
period of 24 h, a support vector regression machine (SVM) based
technique was presented in the literature (Sousa et al., 2014). Short-
term electric demand forecasting using a hybrid model based on
feature filtering convolutional neural network (CNN) with long and
short-term memory was developed by Lu et al. (2019). Short-term
cold load prediction in buildings using deep learning algorithms was
achieved by Fan et al. (2017). It was suggested by Gao et al. (2022b)
to forecast the cold load of big commercial buildings using a hybrid
prediction model based on random forest (RF) and extreme learning

machine (ELM), and the benefits of this model were validated in
terms of time complexity and its own superior generalisation ability.
Xue et al. (2019) proposed a heat load prediction framework based
on multiple machine learning algorithms, such as SVM, deep neural
network (DNN), and XGBoost, and then implemented a multi-step
ahead heating load prediction in a district heating system to verify
the superiority of the recursive strategy. A novel empirical wavelet
transform (EWT) technique has been developed in the literature
(Al-Musaylh et al., 2021) for revealing the intrinsic patterns in daily
natural gas consumption demand data. For short-term gas load
forecasting, Xu and Zhu, 2021 created a neural network that
combines a time-domain convolutional network (TCN) with a
bi-directional gated recurrent unit (BiGRU).

The foundation of conventional machine learning techniques is
feature engineering, which is labor-intensive, sensitive to noise and
outliers, and inefficient when dealing with high-dimensional data.
Contrarily, the multi-layer mapping of deep learning allows for the
effective extraction of the data’s deep characteristics, greatly
enhancing the model’s capacity to represent the pattern of
sample distribution. As a result, it demonstrates improved load
forecasting prediction accuracy.

In fact, traditional energy system studies focus on a single type of
energy, while IES considers diverse energy demands and focuses on
high-quality multi-class energy studies (Hu et al., 2019). If the
traditional single-load prediction method is still used, it is
difficult to capture the correlation characteristics between
different loads, and the prediction accuracy cannot be
guaranteed. Therefore, how to properly dispose of the coupling
relationship between multiple loads, set a more complete input
feature set, effectively learn multiple energy coupling information,
and achieve accurate IES multiple load forecasting based on this
information is the focus of current research. The main mainstream
techniques to deal with the coupling are multivariate phase space
reconstruction (MPSR) (Zhao et al., 2016), multi-task learning
(MTL) (Shi et al., 2018), and convolutional neural networks
(CNN) (Li et al., 2022). In addition, Bai et al. (2022) utilized the
minimum redundancy maximum relevance (MRMR) to screen
feature sequences and the Seq2Seq model based on the dual
attention mechanism to learn the spatio-temporal properties of
urban energy load sequences. The above literature verifies that
considering the coupling characteristics among loads helps to
improve the forecasting accuracy, and also verifies the role of the
attention mechanism.

Previously, IES load prediction models have focused on single-
load independent prediction, while single-task load prediction
methods consider every prediction task simply, mutually
independent subproblem, which ignores the coupling
relationships within multiple source loads in IES (Zhu et al.,
2019). Multi-task learning improves model generalization by
using a shared mechanism to train multiple tasks in parallel to
obtain information implicit in multiple related tasks. In recent years,
multi-task learning has been gradually applied to IES multivariate
load prediction. Niu et al. (2022) constructed a new multi-task loss
function weight optimisation method to search for optimal multi-
task weights for balanced multi-task learning (MTL), which
improves the prediction of IES multivariate loads.

Currently, the vast majority of studies on IES multivariate load
forecasting are limited to macroscopic class load forecasting
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methods, focusing only on mining the correlation between each
load’s own sequence and sequences of other external macro-factors.
However, in some cases, the load variation patterns of different load
nodes (e.g., substations, parks, and customers) within the same
region may be potentially correlated in space and time due to the
same external factors (e.g., weather and electricity prices). In order to
improve the IES multiple load forecasting method, it is necessary to
consider the spatial and temporal correlation of each load node in
the IES. At this stage, the research on IES multiple load forecasting
based on microscopic class load forecasting methods is still in its
infancy. Compared with the previous studies, the contributions of
this paper are as follows.

(1) The spatio-temporal correlation of the energy-using behavior
of each load unit in the UIES is comprehensively analyzed,
and each load unit is defined as a load pixel point. Based on
the strong correlation of adjacent pixel points in static images
and with reference to the storage method of color images, an
IES multivariate load input feature set in the form of image-
like based on the microscopic class load prediction method is
proposed, which is a novel method for constructing the IES
input feature set.

(2) A deep spatio-temporal feature extraction network (MCNN-
BiLSTM) for multivariate load prediction is proposed.
Among them, MCNN is used to perform independent
spatial feature extraction for each load component pixel
image, and BiLSTM is used to realize temporal feature
extraction for fused load features at each time step. To
realize end-to-end training from space to time and
collaborative mining of spatio-temporal information.

(3) A multi-head attention mechanism is introduced in the
spatial and temporal dimensions, respectively. This
attention mechanism is a plug-and-play module that is
placed before MCNN and before BiLSTM to enable the
model to pay differential attention to the information in
the original input load pixel image and the fused load
sequence during the learning process.

(4) Using BiLSTM as the feature sharing layer, a multi-task
learning approach under the hard sharing mechanism is
adopted to further learn the inherent coupling information
among electricity, heat, and cold loads. In order to adapt to
the characteristics of the fluctuation of the three load profiles,
as well as to explore the correlation of each load with
meteorological factors and calendar rules, three fully
connected neural networks with different structures are
designed as feature interpretation modules.

2 User-level IES load characterization

2.1 User-level IES energy
coupling mechanism

A user-level IES is an integrated energy system constructed at
the distribution and usage levels to meet the diversified energy needs
of multiple types of users, such as industrial parks, commercial
centres, residential buildings and educational institutions. A typical
interactive structure of a user-level IES is shown in Figure 1, which

can be roughly divided into the IES side and the end-user side. On
the IES side, the IES service provider conducts accurate multiple
load forecasting based on the metered data of users’ energy
consumption of electricity, heat, cooling, etc. collected in real
time through intelligent terminals, so as to coordinate the
transformation, storage, and distribution of energy sources within
the IES to satisfy the diversified energy demand of users.

In IES operation, external energy inputs come from the grid and
the natural gas network, internal energy generation comes from
rooftop photovoltaic systems andmicro-gas turbines, various energy
conversion equipment couples the different energy systems in a flow
of energy, and energy storage equipment is used to increase the
economy and flexibility of the system operation. The IES provider’s
ability to provide electricity, heat, and cooling to its customers for a
variety of energy needs is significantly affected by meteorological
conditions, day-type information and building characteristics. In
terms of meteorological conditions, the demand for heating and
cooling loads varies seasonally with the gradual change in
temperature. In terms of day-type information, the difference in
human production activities between weekdays and holidays results
in differences in energy demand. In terms of building characteristics,
different system functions are important reasons for influencing the
characteristics of energy use. Industrial areas tend to consume large
amounts of electrical loads, and the cooling and heating loads play
an auxiliary role to jointly serve the production schedule. The
fluctuation of cooling and heating loads in commercial and living
areas is closely related to human activities and shows some
correlation. Figure 2 shows the variation of the total electric,
thermal and cooling loads of the user-level IES studied in this
paper under four seasons of the year, and the temperature
variation under the corresponding moments.

As can be seen from Figure 2, the fluctuation of various types of
loads in this UIES is accompanied by obvious seasonal changes. And
the degree of coupling between the loads under different time
periods has a certain degree of variability. Among them, the
demand size of each load in summer and winter seasons has a
large difference, which is especially obvious in the hot and cold
loads. The spring and autumn seasons show a clear transition, with
the change of temperature, the fluctuation of the hot and cold loads
show a diametrically opposite trend, and the cold loads show a high
degree of consistency between the overall external morphology and
the temperature change. In addition, the overall trend of electric load
and cold load is consistent in different periods, which indicates that
the change in demand for cold load also affects the level of electric
energy consumption.

2.2 Spatial correlation analysis of load units

In this paper, buildings and activity places with load collection
equipment are defined as load units in the UIES, and the macro load
sequence of the UIES is aggregated from the corresponding micro
load sequence of each load unit. In UIES, the energy consumption
behavior of users is a dual reflection of the energy demand of load
units at both macro and micro levels, which depends on macro-level
factors such as energy price fluctuations, climate seasons, day-type
information, etc., as well as micro-level factors such as regional
planning layout and building design characteristics. At the macro
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level, UIES is confined to smaller spatial scales, load units are
influenced by the same microclimatic conditions in the same
local area, and the energy use behavior of users maintains a
certain degree of consistency. At the micro level, load units with
similar geospatial locations or with the same functional attributes
tend to have similar energy use habits. However, the types of load
units with different functional attributes and their building sizes are
often different, which directly leads to some differences in users’
energy use habits, energy end-uses (cooling, heating, lighting, etc.)
and the proportion of each energy consumption. In addition, users’
energy use behavior can be simultaneously affected by equipment
accidents and maintenance, extreme weather, major events and

other emergencies, resulting in sudden changes in loads. Figure 3
shows the electrical, thermal and cooling load change curves for the
nine load units in the UIES over a 240-h period.

As can be seen in Figure 3, the three types of loads in each
load unit exhibit a high degree of variability in their external
patterns. Among them, the electrical load is significantly affected
by the variation of day types. In addition to User1, the load
change patterns of User2 to User9 have some correlation, which
is manifested as having continuous fixed large peaks on weekdays
and certain small peaks on double holidays. The fluctuation of the
cold load has no obvious weekday or double holiday pattern,
showing a gradual increase in progressive change. For the heat

FIGURE 1
Simplified model of the UIES interaction structure.

FIGURE 2
Multi-energy load correlation analysis of UIES.
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load, affected by the climate characteristics, its demand scale is
much smaller than the electricity, cold load, the user heat
behavior is more random. In addition to User3, User6 and
User7 heat load changes have a certain correlation, the rest of
the heat load fluctuation of the load unit has a strong randomness
and time-varying changes, the cyclical law of change is
not traceable.

After the above analysis, it can be seen that the non-
independence of load change of load unit is not only related to
its own building functional characteristics, scale size, location and
other factors, but also has a close connection with local climate
characteristics and calendar rules. Various types of load units are
complex aggregates with broad spatial correlation. Therefore, the
load change of each load unit is the deeper “implied information” in

FIGURE 3
Demand for various types of energy of load units. (A) Electric load demand by load unit. (B) Heat load demand by load unit. (C) Cooling 199 load
demand by load unit.
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the change rule of the total load of UIES, and it is the “underlying
logic” that reveals the characteristics of the total load’s external form,
which contains a wealth of information to be mined.

2.3 Temporal correlation analysis of
load units

Time correlation analysis is an essential and important part of
load forecasting work. Referring to time correlation can select
reasonable historical load variation intervals as input features in
the subsequent actual load forecasting work, which is helpful to
improve the model learning efficiency and reduce the
computational overhead of the model. Therefore, in this
paper, a certain number of load units are randomly selected
for time correlation analysis based on Pearson correlation
coefficients, which are shown in Figure 4.

In Figure 4, the time sections of historical data selected in
this paper are the first seven historical moments (numbered
15–21) from the current moment (t + 1), the t + 1 moment and
the first six moments a day ago (numbered 8–14), and the t + 1
moment and the first six moments a week ago (numbered 1–7).
According to the results of the time correlation analysis, the
fluctuation of electric and cold loads has an obvious cyclical law
of change, and the load at the current moment is not only
affected by the load at the neighbouring historical moment
but also has a strong correlation with the load at the same
moment a day and a week ago. Among them, the fluctuation
change of the cold load is the most stable and has strong
predictability. While the temporal correlation of heat load
gradually decreases with the increase in time interval, This is
because changes in heat load demand are easily influenced by
external factors. When the time span is large, the external factors
change a lot, resulting in the heat load fluctuation no longer
having a clear regularity.

3 Integrated load pixel image
construction and spatio-temporal
feature extraction

3.1 Integrated load pixel image construction

Compared with the inter-regional level IES and regional level
IES, the UIES is smaller in size, its lack of random error
elimination due to load aggregation effect, and greater load
volatility. It is sometimes difficult to generalize the internal
change pattern of each total load in the UIES if the
macroscopic class load forecasting method is adopted. From
the analysis in Subsections 2.2 and 2.3, it can be seen that the
load data of each load unit in the UIES contains a large amount of
spatio-temporal data, which is the most intuitive characteristic
information for portraying the change patterns of each type of
total load in the UIES.

FIGURE 4
Time correlation analysis.

FIGURE 5
CNN-based feature extraction for load pixel images.
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This paper is based on a microscopic class load forecasting
method, which focuses on the energy demand of each load unit in
the UIES region, and ultimately produces the overall
consumption forecast results for each type of energy in the
UIES. Compared with the macroscopic class load forecasting
method, this type of method explores the energy consumption
characteristics of users from within the region, and its modeling
is more detailed and thorough, so that more accurate forecast
results can be obtained.

Usually, there is a strong correlation between a pixel point of a
static image and its relative neighbouring pixel points, so in the field
of image recognition, convolutional neural networks are often able
to capture the local features of an image through a small receptive
field so as to form a feature quantity with certain regularity and
correlation in the high-dimensional space. Based on the analysis in
subsection 2.2, it can be seen that there is also a certain correlation
between the load units of UIES, and the correlation is more
significant for load units with the same functional attributes and
closer geospatial locations, which is similar to the pixel law of still
images. Analogous to the application of CNN in the field of image
recognition, as shown in Figure 5. In this paper, each load unit in the
studied UIES is regarded as a load pixel point, and the local feature
extraction capability of CNN is used to mine the hidden information
among load units from local to global perspectives so as to realize
ultra-short-term prediction of various types of total loads
in the UIES.

For a colour image, each pixel contains the three colour
components of RGB, which can be regarded as a superposition
of three layers of two-dimensional arrays, each layer
representing a color channel. In the context of this paper,
each load unit in UIES has different levels of demand for
electricity, heat and cold, so load unit contains the
characteristic information of three kinds of loads. Following
the storage form of color images, each load pixel follows a
certain arrangement to form a comprehensive load pixel image,
which consists of three load component images of electricity,
heat and cold. In this paper, from the functional characteristics
of the load units contained in the studied UIES, the load units
are divided into several categories according to their functional
attributes, and the load units with close spatial locations in each
category are arranged closely. For example, the UIES under
study contains N load units, which constitute a composite load
pixel image of length and width � ��

N
√ �. The load units of each

attribute category are filled with load pixel points of each row
along the image column direction in turn, and finally the blank
load pixel points are processed by complementary 0.

Based on the analyses in subsection 2.3, the integrated load
pixel images with different time delays from the predicted
moment are constructed separately, as shown in Figure 6. In
this paper, the integrated load pixel image at each moment is
regarded as a frame of (� ��

N
√ �×� ��

N
√ �), and the load demand

fluctuation of each load unit in the time period (t − h + 1, t) can
be reflected by stacking h frames. In this way, the input feature is a
three-dimensional matrix with spatio-temporal information and
covering the three load coupling features at the same time, while
the output feature is the total electric, thermal and cooling loads
at the moment t + 1 to be predicted.

3.2 Spatial feature extraction based on
parallel multichannel convolutional
neural network

When CNN performs feature extraction on colour images, it
uses the multi-channel mechanism to access the three colour
channels of the colour image. Although the load pixel image
constructed in this paper has similarities with the colour image,
the three load components of the load pixel are more
independent and have different meanings compared to the
RGB components of the pixel points. Therefore, two aspects
should be taken into account when using CNN for the spatial
feature extraction of load pixels. One is that the feature
independence of each load itself should be preserved in the
feature extraction process. Second, the input features in this
paper are loading pixel images at different moments, which need
to be formed into a standard time-step format before subsequent
time-dependent capturing. If the multi-channel mechanism of
CNN is directly used to extract features from the load
pixel images at different moments, the feature information of
the three loads at different moments will be fused at the
same time in the first convolution process, and the
independence and temporal integrity of the loads
embedded in the input sequences will not be preserved.
Therefore, in this paper, a multi-channel parallel CNN
structure is designed for the research context. Figure 7 shows
its network architecture.

FIGURE 6
Integrated load pixel images at different moments.
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In Figure 7, the multichannel convolutional neural network
(MCNN) constructed in this paper has the dual characteristics of
channel depth and network depth. In the channel depth direction,
no information is exchanged between each feature extraction
channel until feature fusion, and the own features of each load
component image under each time section are extracted separately
and independently. The spatial characteristics of the load pixels are
extracted in a sub-category, time-segmented manner. Therefore, the
number of channels of MCNN is always kept as Tse × Nlo during
feature extraction, where Tse is the number of time sections andNlo

is the number of load types in the studied IES. In the direction of
network depth, considering that increasing the pooling layer will
accelerate the convergence speed of the network but also cause
certain information loss phenomenon, so this paper only uses the
convolutional layer for feature extraction. For a certain channel, the
feature extraction process is shown below.

C k( )
i,j � f ∑

M

S�1
C k( )

S,j−1 ⊗ W k( )
i,j + b k( )

i,j
⎛⎝ ⎞⎠C k( )

0,0 ∈ G (1)

In the formula: C(k)
S,j−1 is the S-th feature map in the j − 1-th

convolution layer of the k-th channel; W(k)
i,j is the weight matrix

of the i-th convolution kernel in the j-th convolution layer of the
k-th channel; b(k)i,j is the bias matrix; C(k)

i,j is a feature map output
from the j-th convolution layer; ⊗ is the convolution operation; f
is the activation function; M is the number of feature maps; G is
the original set of each load pixel image; C(k)

0,0 is a load component
image under a certain time section of the input to the
k-th channel.

On the basis of MCNN fully extracting each load component
image under each time section, the final number of feature maps
output by all channels is Tse × Nlo × Mnu, whereMnu is the number
of convolution kernels in the last convolution layer of each channel.
It can be seen that the spatial features of each type of load output by
MCNN not only maintain the feature independence of each load

itself, but also retain the information of the time dimension of each
load feature, which can be expressed as:

Ce,h,c � Ce
t−h+1,C

h
t−h+1,C

c
t−h+1,/,Ce

t ,C
h
t ,C

c
t[ ] (2)

In the formula: Ce,h,c is the set of feature maps for the output of
each channel of the MCNN; Ce, Ch, Cc are the set of spatial
characteristic maps of electrical, thermal and cooling loads at a
given moment in time, respectively.

Before proceeding with the subsequent temporal feature
extraction, the spatial features of various types of loads at the
same moment in time need to be fused again using the multi-
channel mechanism. At this time, the number of channels of MCNN
is Tse, and the input features of each channel are under the same
moment Ce, Ch, Cc. Finally, the output fused load feature maps of
each channel are flattened and the features are spliced in
chronological order in order to form a fused load feature
sequence with a standard time step, as shown in the
following equation:

R � Ft−h+1, Ft−h+2,/, Ft[ ] (3)

In the formula: R is the fused load feature sequence; F is the
fused load feature vector at a certain time section.

3.3 Time-dependent capture based on
bidirectional long and short-term
memory networks

LSTM is a variant of the traditional recurrent neural network
(RNN), which is improved by introducing input gates, forgetting
gates, and output gates, thus solving the long-term dependence
problem of RNN in the training process and avoiding the gradient
explosion and gradient dispersion phenomenon. The rules for
calculating each variable in LSTM are shown below.

FIGURE 7
Multi-channel feature extraction CNN network structure.
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ut � σ Wxuxt +Whuht−1 + bu( )
f t � σ Wxfxt +Whfht−1 + bf( )
ot � σ Wxoxt +Whoht−1 + bo( )
g t � tanh Wxgxt +Whght−1 + bg( )
ct � ct−1 ⊙ f t + g t ⊙ ut

ht � tanh ct( ) ⊙ ot

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(4)

In the formula: ut, f t, ot denote the input gate, forgetting gate and
output gate at time t;Wxu,Wxf,Wxo,Wxg are the weight coefficients
corresponding to xt; Whu, Whf, Who, Whg are the weight coefficients
corresponding to ht−1; bu, bf, bo, bg are the bias vectors; xt is the input
at time t ; ht is the hidden state at moment t; ct is the intermediate state
value; σ is the sigmoid activation function; ⊙ denotes the element-by-
element product. The basic network structure and internal structure of
the LSTM are shown in Figure 8.

In the traditional one-way LSTM, the update of internal
variables follows a strict one-way transfer rule, which leads to a
one-way temporal dependence of the hidden states of the LSTM at
each moment from the history to the future. As shown in Figure 8,
the final state ht of the network is intrinsically related to
(x1, x2,/, xt) at all previous moments, while the hidden state
ht−1 at the previous moment cannot be linked to xt. Therefore,
in the one-way LSTM, only the final hidden state can utilize all the
input information, while the hidden state of the previous moment
cannot be influenced by the subsequent input information. For the
load sequence, there is a close relationship between the historical
moment’s load and the future moment’s load. The one-way LSTM is
only capable of capturing the time dependence of the load sequence
from the past to the future, and is unable to derive feature
information in the reverse direction. This paper uses BiLSTM for
temporal feature extraction of load sequences in order to resolve the
inherent defects of one-way LSTM. Figure 9 depicts the structure of
BiLSTM, which consists of both forward- and backward-facing one-
way LSTMs. BiLSTM can be trained forward and backward. BiLSTM
can fully utilize the input information and perform temporal feature
extraction more comprehensively than one-way LSTM.

As can be seen in Figure 9, the hidden state h of the BiLSTM is
determined by the forward LSTM and the inverse LSTM together
as follows:

h � �h⊕ h
←

[ ] (5)

To summarize the previous analysis, it uses BiLSTM to capture
the temporal dependencies of the fused load feature sequence R
obtained in subsection 3.2. The number of time steps of BiLSTM is h.

FIGURE 8
LSTM network architecture.

FIGURE 9
Bidirectional LSTM network structure.
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The hidden state vector output from the last hidden layer of BiLSTM
is shown as follows:

ht � h1t , h
2
t ,/, hnt[ ] (6)

In the formula: ht is the vector of hidden states output by
BiLSTM; ht is a hidden state at time t; n is the number of hidden
states, which depends on the number of neurons in the top hidden
layer of BiLSTM.

4 Attentional mechanisms and
multitask learning

4.1 Multi-head attention mechanism

The attention mechanism can be viewed as a means of resource
allocation in the model learning process, with the weight parameter
of each feature serving as the resource of interest for the attention
mechanism in deep neural networks. The attention mechanism
focuses the model on important information by adaptively
assigning weights to input variables. This paper proposes a multi-
head attention mechanism model, as shown in Figure 10.

Taking a set of input features X � [x1, x2,/, xM] of dimension
M as an example, a shared linear layer is used to obtain a
preliminary weight vector Y , as shown below:

Y � σ WX + b( ) (7)
Where, Y � [y1, y2,/, yM] denotes the initial weight

coefficients of each input feature; W is the weight matrix; b is
the bias matrix; σ is the linear activation function.

On this basis, because this paper adopts the multi-head attention
mechanism, a total of N linear transformations are performed, and
the preliminary weight vector obtained by the N-th linear
transformation is Y(N) � [y(N)

1 , y(N)
2 ,/, y(N)

M ], and then the N
preliminary weight vectors obtained are averaged to obtain the
preliminary mean weight vector �Y is:

�Y � 1
N

∑
N

S�1
Y S( ) (8)

The relu activation function is used to restrict the initial mean
weight vector �Y � [�y1, �y2,/, �yM] to a non-negative interval, and
then normalize the weight coefficients by the Sigmoid function to
obtain the final attention weight coefficients α � [α1, α2,/, αM], as
shown below:

α � sigmoid relu �y1, �y2,/, �yM[ ]( )( ) (9)

In this paper, the initial mean weight vector �Y is first one-sidedly
suppressed to the positive interval by the Relu function, and then
normalized using Sigmoid. Finally, the final obtained feature
attention weight vector is multiplied with the original input
feature vector by elemental correspondence to obtain the
weighted input feature vector, as shown below:

X′ � α ⊙ X � α1x1, α2x2,/, αMxM[ ] (10)

In the formula: X′ is the weighted eigenvector; ⊙ is the
Hadamard product.

4.1.1 Spatial attention
The most direct input feature of this paper is the load demand of

each load unit at different moments in time, where the proportion of
consumption of the three energy sources varies among load units and
where a portion of the load units consume only one or two types of
energy. Load pixel points that are irrelevant to a certain total load
demand are not only unhelpful to the prediction result but even cause
information interference in the model prediction. In this paper, the
weights assigned to different load pixels can be calculated dynamically
by introducing the spatial attention mechanism. The basic structure of
the spatial attention mechanism model is shown in Figure 10, in which
the input of the multi-head attention mechanism model is the pixel
image of each load component constructed in subsection 3.1, and the
output is the load pixel image after weighting each load pixel point. Due
to the introduction of the spatial attention mechanism, the spatial
attention weights can be used to express the contribution of different
load pixels to each type of total load, so that the prediction model can
focus on “important” load pixels in the learning process.

4.1.2 Temporal attention
Load forecasting is a typical time series forecasting problem,

which is reflected in the extremely high dependence on historical
information. In this paper, the temporal attention mechanism is
introduced into the model to deeply mine the time series
information. The basic structure of the temporal attention

FIGURE 10
Multi-head attention mechanism.
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mechanism is shown in Figure 10, in which the input to the model of
the multi-head attention mechanism is the fused load sequence at
the standard time step in subsection 3.2. Attention weights are
assigned to the fusion features under each time step by the temporal
attention mechanism to increase the model’s attention to the
important time point information during the training process.

4.2 Multitask learning mechanism

The data recorded by UIES contains a large amount of shared
information about energy conversion. Multi-task learning can utilize
this shared information to learn and acquire knowledge amongmultiple
load prediction tasks and train the shared hidden layer on all tasks in
parallel, thus improving the prediction accuracy of each load. In
addition, the parameter sharing strategies for multi-task learning can
be broadly categorized into hard and soft sharing (Niu et al., 2022).
Considering the strong coupling of each load in UIES, this paper
chooses the hard sharing mechanism that is suitable for dealing with
more strongly correlated tasks. The structure of the hard sharing
mechanism for multi-task learning is shown in Figure 11.

For a multi-task learning under a hard sharing mechanism, which
contains multiple learning tasks ym(m ∈ M) and data sets
xi, y1

i , y
2
i ,/, yM

i{ }, (i � 1, 2,/,N), where M is the number of
tasks, N is the number of data samples, and ym

i is the m-th task
label of the i-th data point. fm(x; θsh, θea), x → ym is the prediction
function, where θsh is the shared parameter of each task in the shared
layer, and θea is the independent correlation parameter of each task
itself. Under multi-task learning, the overall objective optimization loss
function is defined as:

L θ( ) � min∑
M

m�1
λmL̂

m
θsh, θea( )

L̂
m

θsh, θea( ) � 1
N

∑
N

i�1
L̂
m

fm xi; θ
sh, θea( ), ym

i( )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(11)

In the formula: λm is the weight coefficient of each task;
L̂
m(θsh, θea) is the loss function; L(θ) is the overall objective

optimization loss function.

5 IES multiple load prediction
framework based on spatio-temporal
coupling and multi-headed attention

The forecasting workflow in this paper is divided into the
following six stages:

Step 1: Load pixel image construction
Based on the load pixel image construction method in

subsection 3.1, a comprehensive load pixel image containing
three load components of electricity, heat, and cold is
constructed at a certain moment, as shown below.

P �
pe
1,1 / pe

1,n

..

.
1 ..

.

pe
n,1 / pe

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

ph
1,1 / ph

1,n

..

.
1 ..

.

ph
n,1 / ph

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

pc
1,1 / pc

1,n

..

.
1 ..

.

pc
n,1 / pc

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

In the formula: P is the integrated load pixel image at a certain
time section; pe, ph, and pc represent the electric load, hot load, and
cooling load pixel points respectively; n × n is the size of the load
pixel image, which can also be regarded as the resolution size.

Based on this, the integrated load pixel images at different
historical moments from the prediction target moment (t + 1)
need to be constructed separately. Further, the time-varying
nature of the load is demonstrated by a frame by frame load
pixel image, and the pixel values at any specific location will be
continuously updated according to a certain temporal resolution, as
shown in equation 13. The dimension size of the input features is
thus n × n × 3h, where n is the spatial dimension, h is the channel
dimension, which is the length of the historical time period.

G � Pt−h+1,Pt−h+2,/,Pt[ ] (13)

Step 2: Spatial attention weighting
Before inputting each load component pixel image into

MCNN for spatial feature extraction, the spatial attention
layer is constructed using the multi-head attention mechanism
proposed in subsection 4.1 of this paper. The input features’
spatial dimension is first reduced to their channel dimension, and
the input feature dimension becomes 1 × 1 × 3nnh, which is then
input to multiple shared linear layers. The dynamic assignment of
spatial attention weights during model learning is realized
according to equation 7 to equation 10, and each load pixel
point is assigned its own spatial attention weight coefficient.
Finally, the attention weight vector is dimensionally recovered as
n × n × 3h, and multiply it with the corresponding load pixel
points of the original load pixel image to obtain a weighted load
pixel image G′.

G′ � αt−h+1Pt−h+1, αt−h+2Pt−h+2,/, αtPt[ ] (14)

αP �
α1,1pe

1,1 / α1,npe
1,1

..

.
1 ..

.

αn,1pe
n,1 / αn,npe

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)

In the formula: α is the attention weight vector of the integrated
load pixel image at a certain moment; α is the attention weight
coefficient of a load pixel point.

FIGURE 11
Multi-task learning network structure based on hard
sharing mechanism.
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Step 3: Spatial feature extraction and fusion
On the basis of step 2, this paper inputs the weighted pixel

images of each load component into the MCNN neural network
architecture constructed in subsection 3.2 for spatial feature
extraction and fusion.

Step 4: Temporal attention weighting
Before inputting the fused load time series obtained from step

3 into the BiLSTM shared layer, the temporal attention layer is
constructed using the multi-head attention mechanism proposed in
subsection 4.1. First, the fusion load feature vectors under each time
step are sequentially input into multiple shared linear layers, and the
feature vectors under each time step are dynamically assigned with
temporal attention weight coefficients based on equations 7 to 10.
Finally, the weighted fusion load time series is obtained by
multiplying the temporal attention weight vector with the feature
vectors under each time step by element. This is shown in the
following equation:

R � βt−h+1Ft−h+1, βt−h+2Ft−h+2,/, βtFt[ ] (16)

In the formula: β is the temporal attention weight vector at a
certain moment.

Step 5: Time-dependent relationship capture
The weighted fused load time series obtained from step4 is input

to BiLSTM feature sharing layer for bidirectional temporal
information mining to extract temporal feature information.

Step 6: Multi-task learning joint prediction
In this paper, a multi-task learning approach based on a hard-

sharing mechanism is used for joint forecasting of electricity,
heat, and cold loads. In this, the parameters of BiLSTM as the
bottom layer are uniformly shared, and the parameters of each
fully connected layer as the top layer are independent of each
other. Due to different physical dynamics and different energy
demand characteristics, the various types of loads have different
fluctuation frequencies. In the UIES studied in this paper, the
electric and thermal load profiles have large local fluctuations
with rich details, while the cooling load profile is relatively
smooth. The same feature interpretation network (the same
top layer structure) cannot simultaneously portray the
fluctuation characteristics of each load curve, and it is difficult
to make the three kinds of loads achieve a better fitting state at the
same time. Therefore, it is necessary to construct independent,
fully connected neural network (FCNN) for the three loads as the
feature interpretation network.

According to the analyses in subsections 2.1 and 2.2, it can be
seen that the actual load changes have obvious correlations with
meteorological factors and calendar rules. In the calendar rule,
hourly, day-type information as well as holiday information are
incorporated. The meteorological factors are selected as
temperature, dew point, irradiance, and humidity. The calendar
rules and meteorological factors as external input features are
extracted through three fully connected layers and spliced with
the output features of BiLSTM, which are input to the top inputs of
electric, heat, and cold loads, respectively, to fully explore the
dependence of each load on the calendar and meteorological
information.

h′
t � h1t , h

2
t ,/, hnt , ct, dt+1[ ] (17)

In the formula: h′t is the extended feature vector; ct is the vector
of meteorological information under the historical moment
preceding the moment to be predicted; dt+1 is a vector of
calendar information under the moment to be predicted.

As shown in Figure 12, the user-level IES multivariate load
prediction framework based on multi-energy spatio-temporal
coupling and spatio-temporal attention mechanism, which is a
neural network framework with deep spatio-temporal correlation,
has been fully completed.

6 Experiment setup and result analysis

6.1 Introduction to data sources

The data source for this paper is the user-level IES at Arizona
State University’s Tempe campus, which is located in a tropical
desert climate with high demand for cooling and electrical loads and

FIGURE 12
UIES multivariate load forecasting framework.
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low demand for heat loads, and a large portion of the cooling loads
come from electric cooling equipment in the IES system. Electricity,
heat, and cooling load data (including all types of load data for
115 load units and all types of total load data) recorded by the
university’s Campus Metabolism project web platform from January
2019 to March 2020 were used, with a time resolution of 1 h. Based
on the forecasting framework in Figure 12, the total electrical,
thermal, and cooling loads for the next 1 h for this IES system
are forecasted. Before constructing the input feature set, considering
that there are some missing and anomalous mutations in the data
stored in this UIES, this paper firstly replaces and supplements the
anomalies and vacancies, and normalizes the original data to the
interval [0,1] according to the following formula for model training.

xω � xφ − xmin

xmax − xmin
(18)

In the formula: xω is the normalized value of a load in a basic
energy consumption unit; xφ is the actual value with a dimension;
xmin and xmax are the minimum and maximum values.

In this paper, each load unit is classified according to its
functional attributes, of which 24 are teaching venues, 15 are
scientific research venues, 13 are administrative venues, 4 are art
venues, 11 are sports venues, 29 are residential venues, 11 are
public activity venues, and 8 are other auxiliary venues. On this
basis, the load component pixel images under different
moments of size 11 × 11 are constructed according to
subsection 3.1.

The determination of the length of the historical time period
h is considered to take into account two aspects, which are the
difficulty of model training and the completeness of the
knowledge embedded in the input features. If h is too small,
there will be insufficient knowledge in the historical sequence for
the model to learn, thus limiting the prediction accuracy and
generalization ability of the model. Conversely, if h is too large
by considering only the completeness of knowledge information
in the historical sequence, it will increase the complexity of
model training and thus affect the optimization of model
parameters. Therefore, the value of h needs to balance the
above two aspects. Combined with the analysis in subsection
2.3 and through a large number of experimental comparisons,

the length of h is finally determined to be 9. The historical data of
t + 1 moments a week ago and a day ago, as well as the historical
data of the first seven historical moments (t − 6 to t) near the
forecast target moment, are taken as the reference for the current
load forecast at t + 1 moments. As a result, the dimension size of
the input features of the prediction model constructed in this
paper is 11 × 11 × 27.

A pixel image of the electrical load at 3 consecutive moments is
shown as an example, as shown in Figure 13 (load is normalized
value). Since the temporal resolution is 1 h, the variation of the
electrical load can be represented as a frame by frame picture at
1 h intervals.

6.2 Basic evaluation indicators

In this paper, the mean absolute percentage error (MAPE) and
root mean square error (RMSE) metrics are selected to evaluate the
forecasting effectiveness of each load, and the expressions are:

RMSE �

���������������

∑
M

θ�1

Y θ( ) − Ŷ θ( )( )
2

M

√√

(19)

MAPE � 1
M

∑
M

θ�1

Y θ( ) − Ŷ θ( )
Y θ( )

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
× 100% (20)

In the formula: Ŷ(θ) is the predicted value of load at the θ -th
sampling point; Y(θ) is the actual value of load at the θ -th sampling
point; M is the number of test samples.

In addition, in order to evaluate the performance of the
multivariate load forecasting model as a whole, this paper
considers the importance of different loads in the system,
assigns different importance weights to different loads, and
evaluates the overall forecasting effect of the model by using
the mean absolute percentage error of multiple weights
(WMAPE). Since the proportion of cold and electric loads in
UIES is high and the proportion of heat loads is low, the weights
of cold loads, heat loads and electric loads are set to 0.4, 0.2 and
0.4, respectively. The expressions of specific evaluation indexes
are as follows.

FIGURE 13
Pixel images of the electrical load at different moments.
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WMAPE � ∑
N

k�1
RkMAPE k( )

∑
N

k�1
Rk � 1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(21)

In the formula: WMAPE is the mean absolute percentage error
of the integrated load; Rk is the importance weight of the k -th type
of load; N is the number of load types.

6.3 Model hyperparameter settings

For theMCNNnetwork proposed in this paper, it is known from
subsection 6.1 that its input feature set is an electrical, thermal, and
cold load pixel image of size 11 × 11 at 9 moments, so the
dimensional size of the MCNN input features is 11 × 11 × 27.
Based on the analysis in subsection 3.2, the number of channels
of MCNN is determined to be 27, and each channel has a 4-layer
independent structure with only convolutional layer and no pooling
layer, and the convolutional kernel sliding step is 1, and no Padding
operation is performed. First, the first convolution layer of each
channel consists of eight convolution kernels of size 5 × 5, thus
covering a larger number of loaded pixel points in the spatial
association domain, so that each pixel point in the generated
feature map can obtain a large perceptual field. Second, the size
of the convolutional kernels in the second to fourth layers is 3 × 3
and the number of convolutional kernels increases in the order of 16,
32, and 64. Finally, the size of each feature map output by MCNN is
1 × 1, and its perceptual field size in theory is the original input load
pixel image, which contains global information, and the number of
feature maps is 27 × 64. Based on this, we again use the multi-
channel idea to set up 9 channels, each with a convolutional kernel
size of 1 × 1 and a number of 64. After one convolution operation,
the spatial features of electric, thermal and cooling loads under the
same time section are fused to form a time series of fused load
features at standard time steps.

The number of neurons and hidden layers are the two critical
hyperparameters for BiLSTM. In the study findings of recurrent
neural networks represented by LSTM used to load prediction,
the majority of them are empirically compared and eventually set

the number of hidden layers in the network from 1 to 5, with the
number of neurons in each hidden layer often not exceeding 200.
BiLSTM has been observed to frequently experience overfitting,
which lowers prediction accuracy when the number of hidden
layers or the number of neurons in the hidden layers is excessive.
In this study, we carried out a number of tests and discovered that
BiLSTM functions best when there are two hidden layers and an
increase in the number of neurons in each layer on the order
of 64,128.

For the three different structures of feature interpretation
modules, the fully connected layer for cold loads is designed as
one layer with 16 neurons. The fully connected layer for electrical
loads is designed as two layers with 32 and 16 neurons per layer,
respectively. The fully connected layer for thermal load is
designed as 3 layers with 64, 32, and 16 neurons per layer,
respectively.

The Adam algorithm is chosen to train the network with a
learning rate of 0.01 within this paper, a batch size of 256, and an
iteration number of 100. To prevent overfitting, a droup-out
operation is added to the training process, and the probability
parameter is kept at 0.9. The model is developed in the Keras
deep learning framework. The hyperparameter configuration of the
model is shown in Table 1.

6.4 Comparative analysis of
prediction results

In order to fully validate the effectiveness of the IES multivariate
load prediction framework (Case 7) proposed in this paper, six
contrasting models are set up in this section. Among them, Case1 to
Case3 are predicted by multi-task learning, and Case4 to Case6 are
predicted by single-task learning. Among them, the multi-task
learning models all consider the coupling characteristics of each
load, while the single-task learning models do not consider the
coupling characteristics of each load.

Case 1: Based on Case 7, the spatial features are extracted using
MCNN without considering the feature independence of each load,
and only the temporal integrity is preserved. The number of

TABLE 1 Network hyperparameter settings.

Number Layer
Name

Number of neurons/Convolutional
kernels

Convolution kernel
size

Number of channels/Attention
heads

1 Attention layer 11 × 11 × 27 = 3267 — 4

2 MCNN layer 1 8 5 × 5 27

3 MCNN layer 2 16 3 × 3 27

4 MCNN layer 3 32 3 × 3 27

5 MCNN layer 4 64 3 × 3 27

6 MCNN layer 5 64 1 × 1 9

7 Attention layer 64 × 9 = 576 — 4

8 BiLSTM layer 64 — —

9 BiLSTM layer 128 — —
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channels of MCNN is 9, and the input feature of each channel is the
integrated load pixel image at the corresponding moment. The
hyperparameters of MCNN, BiLSTM and spatio-temporal
attention layer are the same as Case 7 except that there is no
feature fusion operation based on MCNN. Multi-task learning is
used to simultaneously predict the total electric, cooling and heating
loads at the next moment.

Case 2: The input and output feature sets, model structure and
hyperparameters are the same as Case7, except that the attention
mechanism is not used, and Case2 considers feature independence
and temporal integrity of each load during feature extraction.

Case 3: The historical values of the total electrical, thermal and
cooling loads are used as input features and then BiLSTM is used as a
feature sharing layer for joint prediction of each of the total loads by
multi-task learning. The hyperparameters of BiLSTM are the same
as those of Case7’s BiLSTM.

Case 4: Based on Case7, the coupling characteristics of each load
are not considered. The number of input channels of MCNN is 9,
and the input feature of each channel is the pixel image of a certain
type of load component at the corresponding moment. The
hyperparameters of MCNN, BiLSTM and spatio-temporal
attention layer are the same as Case7 except that there is no
feature fusion operation based on MCNN. The total load of each
category at the next moment is predicted independently using
single-task learning.

Case 5: Same as Case4, but without the spatio-temporal attention
layer based on the multiple attention mechanism.

Case 6: Based on Case 3, the total electrical, thermal, and cooling
loads are predicted separately and independently using single-task
learning without using multi-task learning. The input features are
the historical values of a particular total load itself, and the
hyperparameter configuration is the same as in Case3.

Considering that the energy consumption patterns of this UIES
in summer and winter are quite different, the external
morphological characteristics presented by each load show a
large change. Therefore, in this paper, the comparison
experiments are designed by selecting the data for each load for a
week in winter and summer, respectively. Figure 14; Figure 15 show
the prediction results of electric, thermal, and cooling loads for
1 week in different seasons, and Table 2, Table 3 show the prediction
errors for each case in the test set.

6.4.1 Analysis of the effect of cold load prediction
The results of the cold load forecasts under the summer and

winter time periods are shown in Figure 14A and Figure 15A,
respectively. It is easy to see that the cold load demand size
under the two seasons has a large change. In the summer season,
the daily cold load change has obvious regularity, and the forecast
models can track the load change trend better. In winter, the cooling
load curves shown in the 96th to 120th hour change significantly
compared with the other hours, and it can be seen that the prediction
error in this hour is much larger than the other hours.

(1) Analysis of the effectiveness of multitask learning models for
cold load prediction

In the summer, as shown in Table 2, the prediction accuracies of
Case 1, Case 2, and Case 7 are higher than those of Case 3, which
indicates that, compared with BiLSTM based on macroscopic class
load prediction methods, the microscopic class load prediction
method can learn the intrinsic law of change of the loads better,
which is attributed to the rich information embedded in its input
features. Compared with Case 1, the RMSE of Case 2 is reduced by
6.18%, and the MAPE is reduced by 2.23%. This indicates that even
with the introduction of the attention mechanism in Case 1, better
prediction results can still be achieved by taking into account the
independent characteristics of the loads themselves in the feature
extraction process. Compared with Case 2, the RMSE of Case 7 is
reduced by 15.18%, and the MAPE is reduced by 15.84%.

As shown in Table 3, the prediction accuracy of the models on
cooling loads during the winter time period is ranked as
Case7>Case2>Case1>Case3. The RMSE of Case 1 is reduced by
6.77 percent, and the MAPE is reduced by 3.31 percent as compared
to Case 3. Case 2 had a 1.32% lower RMSE and 10.26% lower MAPE
compared to Case 1. RMSE was reduced by 19.26% and MAPE was
reduced by 20.13% for Case 7 compared to Case 2.

(2) Analysis of the effectiveness of single-task learning models for
cold load prediction

The prediction accuracies of the models for the two seasons with
respect to the cooling loads were ranked as Case 4 > Case 5 > Case 6.
The RMSE and MAPE of Case4 were 17.23% and 10.67% lower in
the summer time period, respectively, as compared to Case5. Under
the winter time period, Case 4 had 11.74% lower RMSE and 17.22%
lower MAPE than Case 5. This indicates that the introduction of the
attention mechanism can strengthen the significant features of the
loaded pixel images and fused load sequences so as to obtain more
important feature information in the feature extraction process and
improve the prediction accuracy of the model.

(3) Multi-task learning model VS. Single-task learning model

During the summer time period, Case 2 had the best prediction
performance among the multi-task models except Case 7. Among
the single-task models, the highest prediction accuracy is achieved
by Case 4. Compared to Case 2, Case 4 has a 2.08% lower RMSE and
a 3.72% lower MAPE. This is because the summer cold load
fluctuation is more regular, and only relying on its own load
pixels is enough for the model to learn its own intrinsic pattern
of change, while the attention mechanism introduced in Case
4 further improves the model performance.

In the winter time period, the prediction accuracy of Case2 is
slightly higher than that of Case4, and its RMSE is reduced by 0.66%
and MAPE is reduced by 1.36% compared with Case4. This is
because the cold load’s volatility is strengthened at this time, and
relying only on its own load pixel does not allow the model to learn
the intrinsic correlation between the cold load and other loads,
which weakens the model’s ability to perceive the fluctuation pattern
of the cold load itself. In addition, the introduction of the attention
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mechanism in Case 4 compensates for the defect of limited
information expressed by input features to a certain extent.

6.4.2 Analysis of the effect of electrical load
prediction

The predicted electric loads for the summer and winter periods
are shown in Figure 14B and Figure 15B, respectively. Combining
Figure 14A and Figure 15A, it can be seen that the electric load
fluctuates more than the cold load, which is especially obvious in the
winter, and the prediction curves of Case1 deviate more from the
actual curves in some time periods, while the prediction curves of
Case7 follow the actual load curves in the best way. Compared with
the cold load forecasting task, the models show more obvious
performance differences in electrical load forecasting.

(1) Analysis of the effectiveness of multitask learning models for
electrical load prediction

As shown in Table 2, the RMSE of Case 1 decreased by
17.02% and the MAPE decreased by 17.10% compared to Case 3.

The reason for the difference in the performance of the two
models is that the input features of Case 3 only include the
historical data of each total load, which covers limited
information and does not allow the model to fully learn the
fluctuation pattern of each load. Compared with Case 1, the
RMSE of Case 2 decreased by 2.78% and the MAPE decreased by
4.08%. This again shows that it is important to maintain the
independence of each load in the feature extraction process. In
addition, the RMSE of Case 7 decreased by 21.78% and the
MAPE decreased by 29.28% compared to Case 2. This again
demonstrates that the attention mechanism improves the model
learning performance.

As can be seen from Table 3, Case 3 had the lowest prediction
accuracy. The RMSE and MAPE of Case1 were reduced by
10.15% and 3.30%, respectively, compared to Case3. The
RMSE and MAPE of Case 2 were reduced by 18.03% and
20.65%, respectively, compared to Case 3. The RMSE and
MAPE of Case 2 were 8.77% and 17.94% lower than Case 1,
respectively. The more drastic load fluctuations in the winter
compared to the summer lead to a further increase in the

FIGURE 14
Results of each load forecast in summer. (A) Cooling load forecast results. (B) Electrical load forecast results. (C) Heat load forecast.
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performance difference between Case1 and Case2 on the load
forecasting task. The RMSE and MAPE of Case 7 are only 5.34%
and 1.12% lower than those of Case 2, respectively. This is due to

the high volatility of electrical loads in winter, resulting in the
introduction of an attentional mechanism that does not have a
significant improvement effect.

FIGURE 15
Results of each load forecast in winter. . (A) Cooling load forecast results. (B) Electrical load forecast results. (C) Heat load forecast.

TABLE 2 Evaluation index of prediction effect of each model in summer.

Model RMSE/MW MAPE/% WMAPE/%

Electrical Heat Cooling Electrical Heat Cooling Combined

Case1 0.897 0.047 1.537 2.225 2.384 2.415 2.332

Case2 0.872 0.040 1.442 2.134 2.017 2.361 2.201

Case3 1.081 0.044 1.988 2.684 2.259 3.127 2.776

Case4 0.832 0.039 1.412 2.087 1.997 2.273 2.143

Case5 0.923 0.041 1.706 2.326 2.058 2.643 2.399

Case6 1.166 0.044 1.914 2.941 2.312 3.107 2.881

Case7 0.682 0.038 1.223 1.509 1.916 1.987 1.585
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(2) Analysis of the effectiveness of single-task learning models for
electrical load prediction

The ranking of the accuracy of the models on the task of
electrical load forecasting under two seasons is
Case4>Case5>Case6. In the summer time period, RMSE for Case
4 was 9.85% lower than Case 5, and MAPE was 10.27% lower than
Case 5. In the winter, the RMSE and MAPE of Case 4 were only
5.85% and 0.51% lower than those of Case 5, respectively.

(3) Multi-task learning model VS. Single-task learning model

The RMSE and MAPE of Case4 are 4.58% and 2.20% lower than
those of Case2 on the electric load forecasting task in the summer
time period, respectively. This indicates that the introduction of the
attention mechanism focusing on the electric load’s own load pixels
is better than mining the potential correlations among loads based
on various types of load pixels. In contrast, under the winter time
period, the RMSE for Case 2 is 2.90% lower than Case 4, and the
MAPE is 8.47% lower than Case 4. The reason for analysing the
above results is the same as that of the cold load forecasting task,
which is because the cold loads in this UIES are mainly from electric
loads, and the trend of electric load changes is largely consistent with
the cold loads.

6.4.3 Analysis of the effect of heat load prediction
The heat load prediction results under the summer and winter time

periods are shown in Figure 14C and Figure 15C, respectively. Among
them, winter is a typical heat-consuming season for thermal systems,
and the heat load demand decreases abruptly during the day and
increases at night with obvious regularity. Each model can track the
actual fluctuation changes of heat load better. For summer, the user heat
demand is small and the heat behavior is random, which directly leads
to the heat load fluctuation being extremely violent, the rule of change is
not traceable. The prediction results of each model can’t fit the actual
curve of heat load well, and some of the prediction results of Case 1 and
Case 5 have a big deviation from the actual value.

(1) Analysis of the effectiveness of multitask learning models for
heat load prediction

The prediction accuracies of the models on the task of heat load
prediction in summer are Case7>Case2>Case3>Case1. Compared to
Case 1, Case 3 has a 6.38% lower RMSE and a 5.24% lowerMAPE. Due
to the extremely random variation of heat load, its correlation with
electricity and cooling load is small. Meanwhile, Case 1 does not
consider the independent characteristics of each load in feature
extraction, which increases the difficulty of the model learning the
fluctuation law of heat load, resulting in poor heat load feature
extraction. This point also illustrates the effectiveness and
reasonableness of Case7 and Case2 in constructing feature extraction
channels independently for each load component pixel image. Case
3 predicts the heat load based on its own historical data and achieves
better prediction results than Case 1.

The prediction accuracies of the models on the heat load
prediction task in winter time are Case7>Case2>Case1>Case3,
and the RMSE and MAPE of Case2 are only 7.69% and 4.32%
lower than those of Case1 and Case2, respectively. This is because
the correlation between the heat load and the electricity and cooling
loads is stronger at this time, and the simultaneous feature extraction
of the pixel images of each load component at the same moment in
time does not have much effect on the learning effect of the model.
Compared with Case 2, the RMSE and MAPE of Case 7 are only
reduced by 5.21% and 6.28%, respectively. This is because the heat
load fluctuation pattern is obvious, and the model can extract the
heat load feature information better, resulting in the improvement
effect of the attention mechanism that is not obvious.

(2) Analysis of the effectiveness of single-task learning models for
heat load prediction

The prediction accuracies of the models on the heat load
prediction task in the two seasons are ranked as Case 4 > Case
5 >Case6. In the summer, the RMSE of Case4 and Case5 are reduced
by 11.36% and 6.81%, respectively, and the MAPE is reduced by
13.62% and 10.98%, respectively, compared with Case6. Case4 and
Case5 extract features from the heat load pixels, which can learn the
complex fluctuation patterns within the heat load in a more detailed
way and are more advantageous than mining feature information
directly from the heat load’s own historical data. In winter time,
compared with Case6, the RMSE of Case4 and Case5 are reduced by

TABLE 3 Evaluation index of prediction effect of each model in winter.

Model RMSE/MW MAPE/% WMAPE/%

Electrical Heat Cooling Electrical Heat Cooling Combined

Case1 0.513 0.104 0.605 1.962 2.728 4.178 3.001

Case2 0.468 0.096 0.597 1.610 2.610 3.749 2.665

Case3 0.571 0.122 0.649 2.029 3.073 4.321 3.224

Case4 0.482 0.107 0.601 1.759 3.012 3.801 2.826

Case5 0.512 0.111 0.681 1.768 3.021 4.592 3.145

Case6 0.595 0.130 0.731 2.167 3.370 5.301 3.661

Case7 0.443 0.091 0.482 1.591 2.446 2.994 2.339
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17.69% and 14.61%, respectively, and the MAPE is reduced by
10.62% and 10.35%.

(3) Multi-task learning model VS. Single-task learning model

During the summer, the RMSE and MAPE of Case 4 were only
2.50% and 0.99% lower than Case 2, respectively. And the RMSE and
MAPE of Case 7 were only 2.56% and 4.05% lower than Case 4,
respectively. This shows that there is no valid information associated
with the change of heat load in the pixel images of electric and cold
loads, and also verifies that the idea of independent feature
extraction for each load component pixel image in the front-end
and fusion of each load feature at the same moment in the back-end
proposed in this paper is correct. During the winter season, RMSE
decreased by 10.28% and MAPE decreased by 13.34% in Case
2 compared to Case 4, and RMSE decreased by 5.21% and
MAPE decreased by 6.28% in Case 7 compared to Case 2. This
indicates that at this time there are signals in the electrical and cold
load pixel images that are related to changes in the heat load, which
helps to improve the feature extraction of the heat load.

6.4.4 The strengths analysis of the model
The data shown in Tables 4 and 5 indicate that Case 7 exhibits

the best level of prediction accuracy for each load when compared
to the other models. This is due to the fact that the proposed
method in this paper is able to predict the multivariate loads of the
UIES in a refined and three-dimensional way by load types and
spatial and temporal characteristics. Case7 performs independent
feature extraction on the pixel images of each load component at

different moments and fuses the spatial features of the loads in the
high-dimensional space, which takes into full consideration the
independence of the features of the loads. The end-to-end
information flow delivery of spatial feature extraction and time-
dependent relationship capture is also realized. In addition, a
multi-head attention mechanism is introduced to assign weight
coefficients to load pixels and fused load features, respectively,
which realizes the model’s differentiated attention among different
features. Finally, multi-task learning is utilised for joint prediction
of each load, which further exploits the coupling characteristics
among loads. Through the close cooperation of the above three
links, the advantages of each module are fully utilised, and more
accurate prediction results are achieved.

7 Conclusion

In this paper, a MCNN-BiLSTM load prediction method
considering multi-energy spatio-temporal correlation is proposed
for small-scale UIES, which realizes the stereoscopic feature
extraction of UIES multivariate load spatio-temporal information.
The following conclusions are obtained:

(1) The load units covered by the user-level IES hide the
multidimensional information of various types of total
loads, for which the input feature set in the form of an
image is built, and with the powerful feature extraction
capability of CNN, the prediction error caused by load
uncertainty can be significantly reduced.

TABLE 4 Comparative analysis of the proposed model Case7 with other models in terms of forecasting accuracy of each load in summer season.

Model RMSE/MW MAPE/% WMAPE/%

Electrical (%) Heat (%) Cooling (%) Electrical (%) Heat (%) Cooling (%) Combined (%)

vs. Case1 23.96 19.14 20.42 32.17 19.63 17.72 32.03

vs. Case2 21.78 5.01 15.18 29.28 5.03 15.84 27.98

vs. Case3 36.91 13.63 38.48 43.77 15.18 36.45 42.90

vs. Case4 18.02 2.56 13.38 27.69 4.05 12.58 26.03

vs. Case5 26.11 7.31 28.31 35.12 6.89 24.82 33.93

vs. Case6 41.51 13.63 36.10 48.69 17.12 36.04 44.98

TABLE 5 Comparative analysis of the proposed model Case7 with other models in terms of forecasting accuracy of each load in winter season.

Model RMSE/% MAPE/% WMAPE/%

Electrical (%) Heat (%) Cooling (%) Electrical (%) Heat (%) Cooling (%) Combined (%)

vs. Case1 13.64 12.50 20.33 18.39 10.33 28.33 22.05

vs. Case2 5.34 5.21 19.26left 1.12 6.28 20.13 12.23

vs. Case3 22.41 25.41 25.73 21.58 20.40 30.71 27.45

vs. Case4 8.09 14.95 19.80 9.55 18.79 21.23 17.23

vs. Case5 13.47 18.01 29.22 10.01 19.03 34.79 25.62

vs. Case6 25.54 30.00 34.06 26.58 27.41 43.52 36.11
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(2) There are many types of user-level IES loads with high
volatility and complex correlations among loads. When
feature extraction is performed for each load, the
independence of each load needs to be fully considered,
which could lead to more accurate results.

(3) Through the experimental comparative analysis, the
introduction of the attention mechanism layer can assist
the model in better mining the intrinsic law of change of
each load, which improves the load prediction accuracy to a
certain extent.

Along with the rise of digital twin technology, the energy system
will develop in the direction of intelligence and digitalization. In the
future, data-driven load forecasting methods will be widely used in
integrated energy systems at all levels. How to combine macroscopic
class load forecasting methods with microscopic class load
forecasting methods, give full play to their respective advantages,
and apply them to IES load forecasting is our next work plan.
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A MIC-LSTM based parameter
extraction method for
single-diode PV model
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In recent years, the installed capacity of renewable energy systems has seen rapid
growth, particularly in photovoltaic (PV) power. Photovoltaic modules, being the
fundamental elements of the PV system, play a crucial role in determining system
performance. However, the challenge arises from the inconsistent decay rates of
PV modules, which significantly impact the accuracy of PV system modeling. To
address this issue, this paper introduces a novel MIC-LSTM based parameter
extraction method for the single-diode PV model. This method focuses on
accurately deriving PV module model parameters under various decay rates.
By establishing a mapping relationship between the current-voltage (I-V) curve
characteristics and the five unknown parameters in the photovoltaic module
model, the proposed method demonstrates high precision in parameter
extraction. Simulation and experimental verifications are carried out to validate
the proposed method, where the extraction accuracy is 99.3%, 98.39%, 98.85%,
97.91%, and 98.36% for the five unknown model parameters.

KEYWORDS

maximal information coefficient, LSTM, parameter extraction, single-diode PV model,
feature value

1 Introduction

Modeling photovoltaic (PV) modules is a key technology for evaluating the
economic benefits of PV generation systems in complex operating conditions.
Accurate PV module models could depict the output characteristics of PV module
under different conditions. The physical PV models can be categorized into single diode
and double diode models based on the number of diodes. The single diode model can be
further divided based on the number of parameters in the equivalent circuit, including
the ideal model (Pavan et al., 2014), four-parameter model (Walker, 2001; Xiao et al.,
2004; Chenni et al., 2007), and five-parameter model (Appelbaum and Peled, 2014;
Kumar and Shiva, 2019; Muttillo et al., 2020). The ideal model regards the entire PV cell
as a basic P-N junction. The four-parameter model assumes an infinite parallel
resistance, thereby neglecting the leakage current of the P-N junction. Compared
with ideal model, four-parameter model is more accurate with a small leakage current in
the P-N junction. However, high temperatures or low irradiance can reduce model
accuracy. Researchers have proposed a more complex double diode model (Cotfas et al.,
2013; Babu and Gurjar, 2014) to better accurately depict the current losses in the PV
module model as well as to better describe the output characteristics under low
irradiance conditions. Although the double-diode model can more accurately
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describe the output characteristics of PV modules under certain
conditions, the additional diode could increase the number of
parameters in the equivalent circuit of PV module, which will
lead to the increased difficulty in parameter extraction due to
complex coupling relationships between parameters. Unlike the
four-parameter model, the five-parameter model achieves higher
modeling accuracy by introducing a parallel resistance to
simulate the leakage current of the P-N junction. Therefore,
the five parameter PV model could effectively balance model
accuracy and difficulty in extracting model parameters, which
has widely implemented.

In recent years, researchers have conducted extensive analyses
on the working mechanisms and output characteristics of PV
modules. Existing methods can be categorized into analytical and
numerical methods. Analytical methods aim to simplify and
equivalize the equivalent circuit of PV module to different
extents and then analyze the output data from key points on the
elementary functions and the I-V curve of PV module to obtain the
unknown model parameters. Xiao et al. (2006) established a
polynomial relationship between the output current and voltage
of a PV module at various load under standard test conditions
(STC). Although this analytical method exhibits high accuracy
under standard test conditions, the model accuracy is low when
weather changes rapidly. Additionally, this method requires
collecting a large amount of I-V curve data to achieve a high
fitting accuracy, making the data collection process over
complicated. Ishaque et al. (2011); Elbaset et al. (2014); Villalva
et al. (2009), and other researchers implemented standard product
data sheets of PV module to extract model parameters such as open-
circuit voltage, short-circuit current, maximum power point voltage,
and maximum power point current. Based on open-circuit voltage,
short-circuit current, maximum power point voltage, maximum
power point current, voltage temperature coefficient, and current
temperature coefficient, these methods established a system of
equations to solve for unknown model parameters, including the
series resistance (Rs) and expressing the photocurrent (Iph), diode
reverse saturation current (ID), and shunt resistance (Rsh). However,
these kinds of methods cannot take the decay of PV modules into
considerations. The models established using this approach can only
describe the output characteristics of the modules at the time of
manufacturing and do not meet the requirements of practical
applications.

Compared to analytical methods, numerical methods require
analyzing the entire I-V curve of PV modules. Due to the
multimodal nature of the fitness function in parameter
extraction problems, intelligent optimization algorithms are
widely applied, including Particle Swarm Optimization (PSO)
(Soon and Low, 2012), Artificial Bee Swarm Optimization
(ABSO) (Askarzadeh and Rezazadeh, 2013; Oliva et al., 2014;
Garoudja et al., 2015), Cuckoo Search (CS) (Chakrabarti et al.,
2016), Bacterial Foraging Algorithm (BFA) (Asif and Li, 2008;
Krishnakumar et al., 2013; Rajasekar et al., 2013; Subudhi and
Pradhan, 2018), Genetic Algorithm (GA) (Harrag and Messalti,
2015; Kumar and Shiva, 2019), Differential Evolution (DE)
(Ishaque and Salam, 2011; Jiang et al., 2013), and Flower
Pollination Algorithm (FPA) (Benkercha et al., 2018;
Khursheed et al., 2021). In Ref (Soon and Low, 2012), the
particle swarm optimization algorithm was employed, and the

concept of inverse barrier constraints was introduced to restrict
the parameter search space and thereby enhance the accuracy of
parameter identification. Ref (Askarzadeh and Rezazadeh, 2013)
proposed an ABSO-based technique for identifying parameters in
both single and double diode models. The comparisons between
the ABSO-based algorithms and the other algorithms for the
single diode model parameter identification indicates that ABSO-
based algorithms could achieve a higher parameter extraction
accuracy. Ref (Subudhi and Pradhan, 2018) presented a novel
approach to extract parameters for PV modules using the
Bacterial Foraging Optimization (BFO) technique for optimal
determination of parameters (Rs, Rsh and n) at both variable
temperatures and irradiance level, which is applicable for
extracting parameters of various types of PV modules. Ref
(Jiang et al., 2013) presented an improved adaptive
Differential Evolution (IADE)-based optimization technique to
achieve parameter extraction of PV module. By using a simple
structure based on the feedback of fitness value in the
evolutionary process, it achieves a better extraction accuracy
than other popular optimization methods such as particle
swarm optimization, genetic algorithm, conventional DE, and
simulated annealing (SA). In Khursheed et al. (2021), the
improved Firefly Particle Algorithm (Modified FPA) is
employed, introducing dynamic switch probability and step
size function to enhance the accuracy of parameter estimation
for photovoltaic (PV) models. This method utilizes the improved
Firefly Particle Algorithm, dynamically adjusting switch
probability and step size function to more effectively explore
the parameter space, thereby optimizing the parameter
estimation of PV models. In summary, the intelligent
optimization algorithms can achieve high accuracy in
parameter extraction. However, the computational cost is
significantly increased due to the updating of particle
positions and velocities at each step, leading to slow
convergence rates. Some researchers have proposed PV
module parameter extraction methods based on artificial
intelligence algorithms (Gastli et al., 2015). However, the
accuracy of parameter extraction in this algorithm is relatively
low. In summary, existing methods for extracting parameters in
photovoltaic module models still struggle to balance convergence
speed and modeling accuracy.

Since the decay of photovoltaic module has a time-dependent
nature, this paper introduces a MIC-LSTM based method for
extracting parameters in the single-diode five-parameter PV
model. This method enables parameter extraction using
experimentally measured current-voltage (I-V) curves of PV
modules, which could achieve the parameter extractions under
any practical condition. Initially, a dataset with numerous I-V
characteristic curves is created by assigning random values to the
five parameters of the photovoltaic module model and extracting
feature values from the I-V curves. Using these feature values as
known input parameters and the five unknown parameters of the
photovoltaic module model as output parameters, an LSTM training
set is constructed to establish the mapping relationship between I-V
curve feature values and the five unknown parameters. To enhance
the prediction accuracy and reduce computational complexity, the
Maximal Information Coefficient (MIC) is calculated for each of the
five parameters with the I-V curve features. Feature values exhibiting
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high correlation with unknown parameters will be selected as input
parameters for the LSTMmodel, facilitating the precise extraction of
the five parameters in the photovoltaic module model.

2 Principle of LSTM-based parameter
extraction method for single-diode
PV model

2.1 Analysis of photovoltaic model output
characteristics based on Newton-
Raphson method

Figure 1 shows the one-diode model of a PV module. Due to its
effective balance between modeling accuracy and the difficulty of
parameter extraction, the single-diode five-parameter model has
gained broader application. Its output characteristics are derived
based on solid-state physics principles, Ohm’s Law, and the
equivalent circuit of the physical model of PV modules. Its I-V
characteristic equation can be expressed as:

I � Iph − ID exp
q

nkTc
V + IRs( )( ) − 1( ) − V + IRs

Rsh
(1)

Where Iph represents the photocurrent of the photovoltaic module, ID is
the reverse saturation current of the diode, Rs is the series resistance, Rsh
is the parallel resistance, n is the ideality factor of the diode, q is the
elementary charge constant (1.602 × 10−19 C), k is the Boltzmann
constant (1.3807 × 10−23 J/K), Tc is the temperature of the
photovoltaic cell, I is the output current of the photovoltaic module,
and V is the output voltage of the photovoltaic module.

In Eq. 1, the photocurrent (Iph), reverse saturation current (ID),
series resistance (Rs), parallel resistance (Rsh), and ideality factor of
the Shockley diode (n) are five parameters determining the output
characteristics of the PV module model. These parameters establish
an effective correlation between the output voltage (V) and output
current (I) of the PV module and the working temperature,

irradiance, device structure, and material characteristics. This
correlation provides each component in the equivalent circuit
with a clear physical meaning, enabling an intuitive description
of the impact of various environmental factors on the output
characteristics of the PV module.

In Eq. 1, the complex nonlinearity of the I-V characteristics of
the PV module makes it difficult to be solved using traditional
algorithms. The Newton-Raphson method, also known as Newton’s
method, emerges as a crucial approach for finding roots of complex
equations. Its fundamental concept involves using the first-order
Taylor series expansion of the function to estimate the root
iteratively, refining this estimate to converge accurately to the
function’s root. The computational steps are outlined as follows:

Firstly, expand the function f(x) at the point x0 using a first-
order Taylor series which is expressed by Eq. 2:

f x( ) � f x0( ) + f ′ x0( ) x − x0( ) (2)
The root of the equation f(x) can be expressed as:

f x0( ) + f ′ x0( ) x − x0( ) � 0 (3)

Transforming Eq. 3:

x � x0 − f x0( )
f ′ x0( ) (4)

Since only a first-order expansion of the function f(x) has been
performed, the current value of x is an approximate value of the
equation’s root. To enhance the accuracy of the solution, further
iterative steps are required:

xn+1 � xn − f xn( )
f ′ xn( ) (5)

When solving Eq. 1, it is necessary to construct the function for
the photovoltaic cell model. By taking the output voltage of the
photovoltaic model as a known quantity and the output current as
an unknown which is expressed by Eq. 6:

FIGURE 1
Equivalent circuit of single-diode model of PV cell.
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f I( ) � I − Iph − ID exp
q

nkTc
V + IRs( )( ) − 1( ) − V + IRs

Rsh
(6)

Taking the derivative of the equation f(I) Eq. 7 can be obtained:

f ’ I( ) � 1 + qIRs

nkTc
exp

q
nkTc

V + IRs( )( ) + Rs

Rsh
(7)

Based on Eqs 4, 5, the current value for the (N+1)-th iteration
can be expressed by Eq. 8:

In+1 � In − f In( )
f ′ In( ) (8)

Where In+1 represents the output current value of the photovoltaic
cell model at a specific output voltage. The entire I-V curve of the
photovoltaic cell model can be obtained by slowly increasing the
voltage from zero to the open-circuit voltage.

2.2 Data processing

Due to the extensive numerical variation in the parameters of
photovoltaic components, it is essential to normalize these parameters
initially to enhance the training accuracy and convergence speed of
LSTM. Common normalization methods include min-max
normalization, Z-Score normalization. Due to the widespread
utilization of the min-max normalization method in neural network
systems, this paper applies it to linearly transform themodel parameters
of PV modules to the range of (0, 1) which is shown in Eq. 9:

x � x − xmin

xmax
(9)

Where x representing the normalized model parameters for
photovoltaic module, xmax representing the maximum value within
the dataset, and xmin indicating the minimum value within the
dataset. By randomly assigning values to the five unknown
parameters to the PV model and collecting multiple sets of I-V
curves for photovoltaic modules, the feature values of each I-V curve
can be captured. Then the data set containing various I-V curves
under different decay rate can be constructed.

Sorting the data from numerous I-V curves of PVmodules in the
dataset based on the magnitude of Iph allows for the characterization
of decay RATE, which could arrange the dataset into a time series
and be further processed by LSTM. Due to the large number of
elements in dataset, the whole dataset is segmented into multiple
subsets, where the data segmentation process is shown in Figure 2.
For each subset, it contains n I-V curves with similar decay level. The
blocks of each I-V curves represent the feature value drawn from
each I-V curve. From subset 1 to subset n, the degree of decay
increases progressively. Doing so, the degree of decay in each subset
will be gradually increased, which can be easier processed by LSTM.

2.3 Data dimensionality reduction based on
maximal information coefficient

The I-V curve of a PV module is shown in Figure 3. The short-
circuit current and open-circuit voltage are critical characteristics that

describe the module’s output performance. These parameters are
instrumental in deriving unknown values within the PV module.
Furthermore, the voltage and current at the maximum power point,
along with the slopes of the I-V curve at the short-circuit current,
maximum power point and open-circuit voltage, are highly correlated
with the module’s output characteristics. As a result, they can also be
utilized to deduce unknown parameters of the PVmodule. In summary,
each I-V curve encompasses seven feature values, considered as known
quantities. Therefore, this paper employs the derivation and
computation of five unknown parameters based on seven feature
values extracted from experimentally measured I-V curves to achieve
precise modeling of photovoltaic modules.

Due to the substantial number of feature values and unknown
parameters, along with their interdependence, this paper employs the
Maximal Information Coefficient (MIC) to analyze correlations among

FIGURE 2
Decay-based data segmentation.

FIGURE 3
I-V characteristic curve of PV module.
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these parameters. MIC is a statistical measure utilized in data analysis to
capture nonlinear dependencies between variables, with the goal of
identifying and quantifying associations that may not be adequately
described by traditional linear correlation measures. Given the highly
nonlinear nature of the five unknown parameters among seven feature
values, MIC is particularly suitable for evaluating the correlation level.
Only those feature values exhibiting a high correlation with the
unknown parameters will be selected as input parameters for the
LSTM, facilitating data dimensionality reduction.

The procedure for computing MIC values involves the
following steps:

1. Compute mutual information: Apply a specified grid scale to
grid the scatter plot formed by two variables. Tally the points
within each grid, calculate the joint probability of the two
variables, and determine the mutual information (MI) for each
grid. Select the maximum mutual information value as the
MIC value for the given grid scale.

2. Standardize MIC values: Ensure a consistent range between
0 and 1 by normalizing the MIC values obtained in step 1.

3. Compute the MIC value: Adjust the grid scale from step 1 and
repeat the above two steps, the largest MIC value will be
the result.

The MI mentioned in step 1 can be expressed by Eq. 10:

FIGURE 4
MIC analysis results between PV model parameters and
feature values.

FIGURE 5
LSTM model training.
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I x.y( ) � ∫ p x, y( )log2
p x, y( )
p x( )p y( )

dxdy (10)

Where x and y represent two variables, p (x, y) represents the
joint probability density distribution function of variable x and y,
p(x) and p(y) represent the marginal probability density
functions of x and y, respectively. The value of MIC can be
expressed by Eq. 11:

MIC x, y( ) � max
a * b<B

I x, y( )
log2 min a, b( ) (11)

where a and b represent the number of grid divisions in the x and y
directions, respectively. B represents a constant, which is normally set to
be 0.6 times of the dataset size. TheMIC value ranges from 0 to 1.When
MIC = 0, it indicates that the two variables are independent of each
other. When MIC = 1, it indicates that the two variables are highly
dependent of each other. Therefore, the feature values with higher MIC
should be chosen as input parameters during LSTM training process.

2.4 Long-short term memory

Long-short term memory (LSTM) networks is a subtype of
recurrent neural networks (RNNs). It has become widely recognized

for their adeptness in capturing extensive dependencies within
sequential data. The basic structure of LSTM is composed by:

Input gate which can be expressed by Eq. 12:

it � σ Wiixt + bii +Whiht−1 + bhi( ) (12)

This equation calculates the input gate activation, where xt is
the input at time t, ht−1 is the hidden state from the previous time
step, Wii and Whi are input and hidden weight matrices, and bii
and bhi are the corresponding biases. σ represents the sigmoid
activation function.

Forget Gate (f_t) which can be expressed by Eq. 13:

f t � σ Wif xt + bif +Whf ht−1 + bhf( ) (13)

The forget gate activation is computed to determine
what information from the previous cell state should
be discarded.

Cell State Update (Ct) which can be expressed by Eq. 14:

~Ct � tanh Wigxt + big +Whght−1 + bhg( ) (14)

The cell state is updated by combining the previous cell state
(Ct−1) and the candidate cell state (Ct), with the forget and input
gates serving as control mechanisms.

Output Gate (Ot) which can be expressed by Eq. 15:

ot � σ Wioxt + bio +Whoht−1 + bho( ) (15)
The output gate activation is computed to determine what part

of the cell state should be output as the hidden state.
Hidden State (ht) which can be expressed by Eq. 16:

ht � ot ⊙ tanh Ct( ) (16)

The final hidden state is generated by applying the output gate to
the cell state.

TABLE 1 MAPE of model parameter extraction by MIC-LSTM, LSTM,
and ANN.

Algorithm Iph (%) ID (%) Rs (%) Rsh (%) n (%)

MIC-LSTM 0.07 1.61 1.15 2.09 1.64

LSTM 0.17 2.68 1.54 3.80 3.13

ANN 0.15 1.73 1.28 3.97 3.72

FIGURE 6
IV characteristic curve using MIC-LSTM under different irradiance.
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The above equations regulate the information flow within an
LSTM unit, which enables the network to selectively retain or
discard information across multiple time steps and rendering it
highly effective in managing sequential data characterized by long-
range dependencies.

3 Simulation verifications

3.1 Dataset preprocessing

In this section, a dataset consisting of 10,000 I-V curves has been
created. Each subset comprises 5 I-V curves, resulting in a total of
2,000 subsets. Among these, 1,800 subsets serve as the training set, while
the remaining 200 subsets are designated as the validation set. Before
carrying out LSTM model training, MIC is applied to achieve data
dimensionality reduction. Figure 4 illustrates MIC analysis results.

As shown in Figure 4, the ideality factor n is highly correlated
with VOC, Slope 3 and VMPP while the MIC value between n and ISC,
Slope 1, Slope 2 and IMPP is low. In this paper, the threshold of MIC
value is set to be 0.3. Therefore, the input parameters for extracting n
should be VOC, Slope 3 and VMPP, which could effectively reduce the
data dimensionality.

3.2 LSTM model training

As shown in Figure 4, the ideality factor n is highly correlated

with VOC, Slope 3 and VMPP while the MIC value between n and ISC,

Slope 1, Slope 2 and IMPP is low. In this paper, the threshold of MIC

value is set to be 0.3. Therefore, the input parameters for extracting n

should be VOC, Slope 3 and VMPP, which could effectively reduce the

data dimensionality.
Figure 5 illustrates the training process of LSTM. Five LSTM

models are constructed, where each LSTM model is applied to

extract one unknown model parameter. The input data for each

LSTM is those feature values whose MIC are larger than 0.3. The

I-V Curve feature values in the subsets are extracted using 1-

dimensional convolution (1D Conv). The dataset is segmented

during data preprocessing, and each segment represents the output

characteristics of PV modules for a specific decay level. Consequently,

these feature values are classified as Short-term Information. To

mitigate the risk of extracting inaccurate model parameter values

due to poor data quality, the information from adjacent segments is

incorporated as supplementary data. This helps ensure the accuracy and

reliability of the extracted model parameters.
The entire dataset is divided into smaller subsets, and the data in

adjacent subsets capture the characteristics of the continuous decay of

PV modules. To extract the decay characteristics of adjacent data, The

long-short term memory (LSTM) algorithm is employed, which is a

typical recurrent neural network. LSTM could selectively remember the

characteristics of the current moment and transmit them to the next

moment through two transmission states: the hidden state (h) and the

cell state (c). Consequently, the feature values obtained through LSTM

can reflect the characteristics of a more extended period in the past,

termed Long-term Information.
In order to verify the parameter extraction accuracy of the

proposed algorithm, the parameter extraction accuracy of

TABLE 2 MAPE of model parameter extraction by MIC-LSTM, LSTM,
and ANN.

Parameter Value

Pmax 100 W

VOC 21.5 V

ISC 6.27 A

VMPP 18 V

IMPP 5.55 A

FIGURE 7
Experimental testbed.

Frontiers in Energy Research frontiersin.org07

Hao et al. 10.3389/fenrg.2023.1349887

134

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1349887


traditional LSTM and ANN is also evaluated, which is shown in
Table 1. The comparisons indicates that the proposed could achieve
a higher model parameter extraction accuracy than other
algorithms. The obtained I-V curve based on extracted model
parameters under different irradiance is shown in Figure 6.

4 Experimental verifications

For experimental verification of the proposed MIC-LSTM
algorithm, the PV module ZY-6M-100 is applied, whose
parameters is shown in Table 2.

The experimental testbed is illustrated in Figure 7. The main
circuit includes boost converter and inverter, which aims to
better simulate the real grid-connected conditions of
photovoltaic modules. Two radiation meters are applied to
measure the irradiance of PV, module. Firstly, by adjusting
the duty ratio of boost converter, the I-V curve of PV, module
can be obtained. The feature values of I-V curves, including VOC,
ISC, VMPP, IMPP, and di/dt at OC, SC, and MPP., by continuously
collecting output data from photovoltaic modules, the feature
values at various irradiance levels can be obtained.

Figure 8 shows measured and estimated I-V curve of PVmodule
ZY-6M-100 by applying the proposed MIC-LSTM algorithm under
different working conditions. It can be verified that output
characteristics of PV model by implementing the proposed MIC-
LSTM algorithm could accurately describe the actual I-V
characteristics of the PV module under various conditions.

5 Conclusion

In this paper, a novel MIC-LSTM based parameter extraction
method for single-diode PV model. With the application of MIC,

the dimensionality of the input parameter is reduced, which
could effectively exclude the impact of low-correlation inputs
on parameter extraction accuracy. With the proposed MIC-
LSTM algorithm, the model parameters of PV module can be
extracted based on the feature value of its I-V curves, which
achieves to construct the accurate PV model at any decay level
without large amount of computation. Simulations and
experimental verifications were carried out, which validated
the feasibility and correctness of proposed MIC-
LSTM algorithm.
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Research on renewable energy
power demand forecasting
method based on
IWOA-SA-BILSTM modeling

Minghu Wang*, Yushuo Xia and Xinsheng Zhang

School of Management, Xi’an University of Architecture and Technology, Xi’an, China

This paper introduces a novel coupling method to enhance the precision of
short- and medium-term renewable energy power load demand forecasting.
Firstly, the Tent chaotic mapping incorporates the standard WOA andmodifies its
internal convergence factor to a nonlinear convergence mode, resulting in an
improved IWOA. It is used for the weight optimization part of BILSTM. Then, the
SA is introduced to optimize the learning rate, the number of nodes in hidden
layers 1 and 2, and the number of iterations of BILSTM, constructing an IWOA-SA-
BILSTM prediction model. Finally, through case analysis, the prediction model
proposed in this paper has the highest improvement of 76.7%, 74.5%, and 45.9% in
terms of Mean Absolute Error, Root Mean Square Error, and R2, respectively,
compared to other optimal benchmark models, proving the effectiveness of
the model.

KEYWORDS

bi-directional long and short-term memory neural networks, whale optimization
algorithm, multidimensional feature analysis, simulated annealing algorithm, load
demand forecasting

1 Introduction

In order to accelerate the transformation of the industrial structure of the power system,
China has vigorously promoted the development of renewable energy power, and in recent
years more and more renewable energy power has been incorporated into the power grid
system. With the increase in installed capacity of renewable energy power generation, the
planning and deployment of power has gradually become the focus of the grid work system.
The power sector’s production deployment and optimal planning depends on the accuracy
of power demand forecasting, therefore, improve the accuracy of renewable energy power
demand forecasting is the focus of the current power workers research.

The process of forecasting electricity can be divided into three stages: ultra-short-term
forecasting, short-term forecasting, and medium-and long-term forecasting. Ultra-short-
term forecasting is to forecast the future power load demand in terms of hours; short-term
forecasting is to forecast the power load demand in the future period in terms of days, weeks,
and quarters; and medium- and long-term forecasting is to forecast the power load demand
in the future time in terms of years. Currently, short-term forecasting has become the focus
of renewable energy power demand research.

Researchers worldwide are conducting studies to enhance the accuracy of forecasting
electricity demand. Forecasting methods are primarily divided into three categories:
statistical, artificial intelligence, and hybrid. Statistical methods mainly include time
series forecasting models (Dong, 2019; Ma et al., 2022; Gao, 2023) and exponential
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smoothing models (Trull et al., 2021). For example, Shang Fangyi
et al. (Shang et al., 2015) utilized the gray Verhulst model to enhance
the precision of electricity demand analysis and forecasting; Zhang
Tao et al. (Zhang and Gu, 2018) introduced Markov chains into the
study of renewable energy load forecasting, and achieved effective
results; Luo Yi-wang (Luo, 2018) applied the ARMR model to the
study of electricity demand forecasting methods, and claimed that
the forecasting errors were less than 1% in all of their studies; Zhang
Yunfei et al. (Zhang Yunfei et al., 2021) developed a grid peaking
demand forecasting model using ridge regression, demonstrating its
effectiveness through a case study; Wu et al. (He et al., 2021)
combined the Seasonal Exponential Adjustment Method (SEAM)
with the time series regression method for the study of load demand
forecasting and confirmed the superiority of the model. Artificial
intelligence forecasting methods include Extreme Learning Machine
(ELM) (He et al., 2021), Support Vector Machine (SVM) (Shi et al.,
2019; MuSAA et al., 2021), and various neural network forecasting
models (Machado et al., 2021; Rajbhandari et al., 2021; Hu et al.,
2023). For example, Shi et al. (Shi et al., 2012) utilized SVM to
forecast the amount of photovoltaic (PV) load generation and
claimed that the results were good; Zare-Noghabi et al. (Zare-
Noghabi et al., 2019) demonstrated the effectiveness of Support
Vector Regression (SVR) in forecasting power system load demand
using actual data; Guo et al. (Guo et al., 2021) developed a load
forecasting model using LSTM, considering demand response, and
demonstrated its practicality through experiments; Wen et al. (Wen
et al., 2022) proposed a short-term load demand forecasting model
based on Bi-directional Long Short-Term Memory(BILSTM)
considering the uncertainty of short-term load demand and
claimed that the model was superior to the traditional forecasting
methods; Su Chang et al. (Su et al., 2023) utilized LSTM and
combined it with multi-feature fusion coding to forecast the
power load demand, which improved the accuracy of the power
load forecasting; Zhang Suning et al. (Zhang et al., 2022) proposed a
cross-region power demand forecasting model based on XGBoost
for different forms of power demand in multiple regions and
claimed that the method can provide fast and accurate
forecasting of power demand; Shu Zhang et al. (Zhang Shu et al.,
2021) proposed a neural network forecasting model based on feature
analysis of the LSTM, which improves the prediction accuracy of
short-term power demand. Hybrid forecasting methods (Qinghe
et al., 2022; He et al., 2023; Sekhar and Dahiya, 2023) combine
various effective forecasting methods to enhance the accuracy of
electricity demand forecasting. For example, Moalem et al. (Moalem
et al., 2022) successfully combined the ELATLBO method with
LSTM neural network for power demand forecasting through
experiments; Hu et al. (Hu et al., 2019) proposed a
decomposition-based combined forecasting model, which will
have the advantage of being able to dynamically combine various
models based on data.

At present, more and more scholars have started using ensemble
models to improve the accuracy and effectiveness of renewable
energy demand prediction research. Various optimization
algorithms have also been used by many scholars to optimize the
parameters of basic prediction models, thereby further improving
the prediction performance of the models. Simulated Annealing
Algorithm (SAA) and Whale Optimization Algorithm (WOA) are
two optimization algorithms with good performance. SAA has the

following advantages: 1. The algorithm boasts a superior global
optimization ability, enabling it to find the global optimal solution,
thereby avoiding local optimal solutions; 2. SAA is suitable for
dealing with large-scale complex problems; 3. Compared with other
algorithms, SAA has simpler description, more flexible use, higher
operating efficiency, and is less affected by initial conditions; 4. SA
does not depend on the specific form and attributes of the problem,
only needs to define the objective function and neighbor structure.
WOA has the following advantages: 1. Simulating natural behavior
makes it have stronger optimization ability; 2. The three population
update mechanisms of WOA are independent of each other, and the
global search and local development processes can be separately run
and controlled, which is beneficial to find the optimal solution; 3.
WOA does not require manual setting of various parameters,
reducing the difficulty of use and improving the operation
efficiency; 4. WOA has shown good optimization performance in
solving many numerical optimization and engineering problems.
Therefore, this article chooses two optimization algorithms to
enhance the prediction accuracy and effectiveness of the
basic algorithm.

Therefore, this article adopts a bidirectional long short-term
memory network (BILSTM) as the benchmark prediction model.
Firstly, the benchmark whale optimization algorithm (WOA) has
been improved by incorporating Tent chaos mapping and nonlinear
convergence factor to create an evolutionary whale optimization
algorithm (IWOA); then the weight matrix of BILSTM is optimized
using the evolutionary whale optimization algorithm (IWOA); at the
same time, the simulated annealing algorithm (SA) is utilized
simultaneously to optimize crucial parameters of BILSTM.
Finally, the effectiveness and feasibility of the proposed model
are verified using real-world data from a region in China.

The contributions of this article can be summarized as follows: 1.
A new coupling algorithm is proposed to predict the demand for
renewable energy power, which enhances the accuracy and
efficiency of prediction. 2. The standard WOA algorithm has
been enhanced to improve its global search and local
optimization capabilities, potentially paving the way for future
research. 3. The BILSTM model’s prediction performance is
enhanced by introducing a heuristic algorithm to optimize its
weights and key parameters.

2 Factor analysis and data processing

2.1 Renewable electricity demand analysis

There are many factors that affect the demand for renewable
electricity, which can be categorized into significant and non-
significant factors. Significant factors, i.e., factors that can cause
large fluctuations in the demand for renewable electricity within a
short period of time, are mainly meteorological factors, such as
temperature, humidity, atmospheric pressure, and so on. Secondly,
the power generation of fossil energy will also have an impact on the
demand for renewable electricity, because if fossil energy cannot
support the general demand for electricity by residents within a
short period of time, then the social electricity consumption needs to
be supported by renewable electricity, so the power generation of
fossil energy is taken as a significance factor. Fossil power generation
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is also considered as a significant factor, as the fluctuation in
electricity demand during legal holidays can also be caused by
short periods of time. Non-significant factors, i.e., factors that
require a long period of sustained influence to cause fluctuations
in renewable energy power demand, generally include economic
factors, policy factors, etc. As this paper aims to improve the
accuracy of short-term demand forecasting of renewable
electricity, the non-significant factors are considered to be stable
in this study, and the significant factors are emphasized for in-
depth study.

2.2 Factor data analysis

Meteorological data includes three types of factors, namely,
temperature, relative humidity and atmospheric pressure, with
the temperature factor divided into maximum, minimum and
average temperatures. According to the existing data statistics,
when the daily relative humidity is higher than 80%, the demand
for electricity will rise, while when the daily relative humidity is
lower than 51%, the demand for electricity will be relatively low, so
this paper takes the relative humidity as one of the influencing
factors. Secondly, according to the existing data, holidays and legal
holidays also cause large fluctuations in peak electricity
consumption, so holidays are also an influential factor that
cannot be ignored in the study of renewable electricity demand.
In this study, the sum of the number of days of holidays and legal
holidays is used as the value of the holiday indicator.

Since the scope of this paper is the renewable energy power
demand within the province, the temperature indicator takes the
average temperature as the temperature state of the province. The
provincial average temperature is weighted and averaged with the
temperature values of the municipalities in the province to obtain
the final provincial average temperature. Let the average
temperature of the province as Ta, its expression is as follows:

Ta � ∑n
i�1Ti

n
(1)

Among them, Ti(i � 1, 2, . . . , n) is the temperature value of each
prefecture-level city, and the total number of prefecture-level cities
within a province is denoted by n.

This paper uses Pearson correlation coefficient to verify the
correlation between temperature data and renewable energy power
load demand data in historical data to enhance experimental data
validity and scientificity:

Rs � ∑n
i�1 Xi − �X( ) Yi − �Y( )������������

∑n
i�1 Xi − �X( )2

√ �����������
∑n

i�1 Yi − �Y( )2
√ (2)

Rs is the correlation coefficient between X and Y, Xi is the value of
the independent variable, �X is the average value of the independent
variable, Yi is the value of the dependent variable, �Y is the average
value of the dependent variable, Rs is in the range of 0–1, and the
closer the value is to 1, the stronger the correlation is, and when Rs

is < 0.3, it means that the two indicators are weakly correlated.
The test results are shown in Table 1, the correlation coefficients

between all three types of temperature indicators and renewable
energy power load demand are greater than 0.3, indicating that all

three types of temperature indicators have a non-negligible impact
on renewable energy power load demand, and therefore all three
types of temperatures will be used as research factors.

In addition, there may be linear correlation between various
types of factors, which leads to the emergence of multicollinearity
problem and affects the prediction accuracy of the model. Therefore,
this paper does the covariance test using variance inflation factor
(VIF) on the collected data, and eliminates the covariance between
the influencing factors through LASSO regression, and finally
utilizes the filtered data for renewable energy power load demand
prediction. The formula for variance inflation factor (VIF) is
as follows:

VIFi � 1
1 − R2

(3)

Where R2 indicates the correlation between a variable in the
independent variables and the rest of the variables; the larger the
VIF, the more serious the covariance the independent variables with
other variables; in this paper, when we take 0<VIF< 10, there is no
multicollinearity, 10≤VIF≤ 100, there is a strong multicollinearity,
and VIF≥ 100, there is a serious multicollinearity.

3 Multidimensional feature analysis and
prediction model based on IWOA-
SAA-BILSTM

This part constructs the IWOA-SAA-BILSTM prediction
model. There are three steps in the construction process: 1.
Building and improving the standard Whale Optimization
Algorithm (WOA), introducing the Tent chaotic mapping
algorithm to enhance WOA’s global solution-seeking ability in
the solution process and avoid it easily falling into local optimal
solutions. At the same time, the convergence factor in WOA is
improved to be nonlinear, which can better simulate the predation
mechanism of whale populations and improve the algorithm’s global
search ability. 2. The BILSTM model’s prediction effect is enhanced
by optimizing the weights using the improved Whale Optimization
Algorithm (IWOA). 3. Introducing simulated annealing algorithm
(SAA) to optimize four hyperparameters of BILSTM’s hidden layer
1 and hidden layer 2, including the number of neurons, iteration
rate, and learning rate. After the above three steps, the IWOA-SAA-
BILSTM prediction model is constructed.

3.1 Whale optimization algorithm and its
improvement

3.1.1 Whale optimization algorithm
The Whale optimization algorithm, introduced by Australian

scholars Mirjalili et al., in 2016, is an intelligent optimization
method. The idea of this algorithm originates from the hunting
behavior of humpback whales, which have two main hunting
behaviors, the first one is encircling hunting and the other one is
bubble net hunting. In this algorithm, the position of each individual
whale during the hunting process is considered as a potential
solution to the problem to be optimized (Yin et al., 2023). The
algorithm uses a random search agent and a spiral structure to
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simulate the humpback whale bubble net attack mechanism,
offering a simple optimization search mechanism and local
optimum jump capability.

3.1.1.1 Surrounding the prey
The WOA algorithm is a method used to optimize the global

solution space of a problem when a group of whales hunt for prey.
The target prey is considered the optimal solution, and the current
location searched by a whale is considered the best candidate
solution. When the best candidate solution is defined, other
whales flock to it, and Equation 4 represents the distance
between other whales and the best candidate solution:

�D � �C·X*
��→

t( ) − �X t( )
∣∣∣∣∣

∣∣∣∣∣ (4)

where �D represents the distance between other whale individuals
and the best candidate solution; �C is the oscillation factor with the
expression �C � 2 · rand, rand denotes a random number with the
value range of [0,1];X*

�→(t) is the position of the best whale individual
during the tth update iteration; �X(t) the position of the whale
individual during the tth update iteration.

Equation 5 is the formula for updating the position of an
individual whale during the t+first search:

�X t + 1( ) � X*
�→

t( ) − �A · �D (5)

Where �A is the distance adjustment factor, the expression is
�A � 2a · rand − a, rand denotes a random number with the value
range of [0,1], and a is the convergence factor, whose value is linearly
decreasing from 2 to 0 following the increase of the number of
iterations; the meanings of the remaining variables are the same as
that of Equation 4.

3.1.1.2 Bubble net hunting
Humpback whales use contraction encirclement and spiral

renewal predation methods in bubble nets, choosing based on the
probability of the mechanism, p, within the [0,1] range. When p <
0.5, humpback whales choose the contraction encirclement method;
when p ≥ 0.5, humpback whales use the spiral renewal mechanism.

When contraction envelopment is used, the distance between
individual whales is reduced by a convergence factor a. When 当

|A|< 1 时, the position of individual whales after updating will be
close to the target prey, thus realizing contraction envelopment.

When the spiral update mechanism is used, the position update
between it and the target prey uses the spiral update mechanism with
the following expression:

�X t + 1( ) � Db
�→

· ebl · cos 2πl( ) + X*
�→

t( ) (6)
Db
�→

� X*
�→

t( ) − �X t( )
∣∣∣∣∣

∣∣∣∣∣ (7)

Style:

Db
�→

denotes the distance of the current individual whale from the
optimal solution;

b A constant representing the shape of a logarithmic spiral;
l denotes a random number whose value range is [-1,1]

3.1.1.3 Random search for prey
When |A|≥ 1, the individual whale no longer updates its

position according to the position of the best individual whale in
the population, but randomly selects an individual whale and
approaches it with the following position update formula:

�D � �C · �Xrand t( ) − �X t( )
∣∣∣∣∣

∣∣∣∣∣ (8)
�X t + 1( ) � �Xrand t( ) − �A · �D (9)

Style:
�Xrand(t) denotes the position of a randomly selected individual

whale, and the rest of the variables have the same meaning as in the
above equation.

3.1.2 Improved whale optimization algorithm
The optimization ability of a swarm intelligence algorithm is

influenced by the diversity and uniformity of its initialization
population. The traditional whale optimization algorithm adopts
random number to generate the initial population, which leads to the
uneven distribution of the initial population and too much simplicity. In
the process of population optimization, it cannot optimize in the whole
solution space, which leads to some solution sets cannot be found, and
ultimately leads to the algorithm falling into the local optimal state. At the
same time, it will also affect the convergence speed of the algorithm. Tent
chaoticmapping can generate chaotic sequenceswith strong randomness,
universality and uniformity, which can improve the problem that WOA
falls into local optimal in the process of population iteration. At the same
time, the standard WOA algorithm’s convergence factor decreases
linearly with population iterations until it reaches 0, adjusting global
search and local development abilities of the population. However, the
article introduces a nonlinear convergence factor to the standard WOA
algorithm, which enhances its capacity to simulate population predation
and optimize population optimization, as the linear decrease of
convergence factor a cannot effectively adjust global search ability and
local development ability.

3.1.2.1 Tent chaos mapping initialization population
Tent chaotic mapping maps the optimization variables to the

value intervals of the entire solution space through the chaotic
mapping rules, so as to make use of the universality, uniformity and
regularity of the chaotic variables for optimization, and ultimately
transform the optimization solution set into the optimization space.
Tent chaotic mapping is characterized by a uniform distribution of

TABLE 1 Pearson’s coefficients for renewable energy load demand and various types of temperatures.

Renewable electricity demand
(billion kWh)

Maximum
temperature

Minimum
temperature

Average
temperatures

Renewable electricity demand
(billion kWh)

1 0.621 0.521 0.601
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the functions and good correlation between the functions, and its
expression is as follows:

Hi+1 �
Hi

α
, Hi ∈ 0, α( ]

1 −Hi( )
1 − α( ) , Hi ∈ α, 1( )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(10)

where Hi is the chaotic mapping value at the ith moment; α is the
chaotic mapping coefficient.

The WOA after adding chaotic mapping is able to produce a
uniformly distributed initial population during the process of
population initialization, thus avoiding the defect of the algorithm
falling into local optimum. Figures 1, 2 show the distribution of the
initial population before and after the addition of the Tent
chaotic mapping.

3.1.2.2 Nonlinear convergence factor
The improved convergence factor is used to vary the factor size

in a nonlinear way with the following update formula:

a � ainitial − afinal( ) − sin
t

Tmax
( )* cos λ( )μ (11)

where ainitial is the starting value of the convergence factor and afinal
is the final value; The maximum number of iterations of the
algorithm is denoted by Tmax, while the current number of
iterations is represented by t; λ and μ are the coefficient numbers.

The flowchart of the improved whale optimization algorithm is
shown in Figure 3.

The specific steps are:

1. Introduce Tent chaotic mapping, use Tent chaotic mapping to
initialize the population, set the maximum number of
iterations of the population tMax;

2. Calculate the fitness of individual whales in the population,
confirm the optimal whale individual in the current population
and keep its position information;

3. Add a nonlinear convergence factor a, calculate the probability
of predation mechanism p, distance adjustment vector �A and

�D. Judge p. If p < 0.5, further judge the value of | �A|; otherwise,
use the spiral update mechanism to update the position;

4. Make a judgment on the mode | �A| of the distance adjustment
vector, if | �A| < 1, then adopt the way of encircling the prey, and use
Eq. 5 to carry out the position updating; otherwise, adopt theway of
random search, and use Eq. 8 to carry out the position updating;

5. After the position update of the population, calculate the fitness
of each whale individual in the population again, compare it
with the fitness of the previous optimal whale individual, and if
it is better than that, replace the previous optimal whale
individual with the current whale individual;

6. Determine whether the population reaches the maximum
number of iterations, if so, output the optimal solution,
otherwise return to step 3 for the next iteration.

3.2 Simulated annealing algorithm

The Simulated Annealing Algorithm (SAA) is a stochastic
optimization technique developed in the early 1980s, employing
the Monte Carlo iterative solution strategy. The algorithm simulates
the physical process in thermodynamics in which an object
gradually cools down from some higher temperature and is
called annealing. The advantage of the simulated annealing
algorithm is its ability to select the worse of the solutions in the
current solution neighborhood with a certain probability, which
avoids the problem of local optimality and thus achieves the
advantage of finding the optimal solution globally.

The main step of the Simulated Annealing Algorithm consists
of two inner and outer loops. The outer loop defines the algorithm
loop’s termination condition, while the inner loop focuses on
finding a new optimal solution within the current
hyperparameters of the bi-directional neural network. When the
loop ends, the algorithm converges to the optimal solution. The
specific steps are as follows:

1. Initialization parameters, set the cooling table temperature T0,
the end of iteration temperature Tend, the temperature decay

FIGURE 1
Population distribution after adding Tent chaotic mapping.

FIGURE 2
Population distribution before adding Tent chaotic mapping.
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frequency q, the number of inner loop iterations K, the number
of outer loop iterations W, the initial solution x0;

2. Start the kth iteration at the current temperature, k = 1,2,
. . . , K;

3. Randomly generate a new solution x1;
4. Compute the function E(x) � E(x1) − E(x0) to obtain ΔE;
5. Determine the excellence of the solution. If ΔE≤ 0, the new

solution x1 can be used as the current optimal solution, in this
case, let x0 � x1; if ΔE> 0, calculate the probability that the
new solution x1 is accepted, P, P � exp (−ΔET ), and T is the
current temperature; if x1 is accepted, then x0 � x1;

6. Slowly cool down the temperature, so that T � T*q, when
T<Tend, output the optimal solution, the algorithm ends.
Otherwise repeat steps (3) (4) (5).

3.3 Bidirectional long and short-term
memory networks

The creation of BILSTM goes back to RNNs (Recurrent Neural
Networks). RNNs are commonly utilized in time series prediction,
but they often face issues like gradient vanishing or explosion when
dealing with long time series, which leads to the algorithms failing
to capture the long term dependencies. To solve this problem,

researchers proposed LSTM (Long Short-Term Memory Neural
Network). When the data is input to the LSTM, it selects the input
value by adjusting the input gate parameter; the role of the
forgetting gate when the extracted invalid information is
eliminated, and at the same time, the extracted valid
information will be input to the next mitigation, and finally, its
structure is shown in Figure 4.

However, with the widespread application of LSTM, researchers
have found that LSTM has a problem of unidirectional prediction,
which can only predict based on the forward information input to
the neural network. To solve the unidirectional prediction problem
of LSTM, BILSTM was born. BILSTM is composed of a forward
LSTM and a backward LSTM under the same time series. Its gate
unit is the same as that of standard LSTM, and its advantage is that it
can combine forward and backward information to process input
data bi-directionally, thus mining hidden features in the data
sequence and improving the prediction effect. Its structure is
shown in Figure 5.

3.4 IWOA-SAA-BILSTM

In this paper, in order to improve the prediction effect of the
benchmark BILSTM, the standard BILSTM algorithm is improved,

FIGURE 3
Flowchart of IWOA algorithm.
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which is mainly optimized for the weights and hyperparameters.
Specifically, the improved whale optimization algorithm (IWOA)
and simulated annealing algorithm (SAA) are introduced to
optimize the weights and hyperparameters of BILSTM,
respectively. The specific improvement ideas of the model are
as follows: Firstly, tent chaos mapping is introduced as a new
feature in the standard whale optimization algorithm (WOA)., so
that the WOA can produce uniformly distributed populations to
avoid falling into local optimum; then, the WOA’s convergence
factor is modified to a nonlinear factor during iteration to enhance
the optimality-seeking capacity of whale populations, and the
improved IWOA is obtained; and the weights and
hyperparameters of the standard BILSTM are optimized by

using the IWOA. weights for optimization. At the SAA me
time, the simulated annealing algorithm (SAA) is introduced to
optimize the hyperparameters of the standard BILSTM, specifically
including the number of nodes in the hidden layer 1, the number of
nodes in the hidden layer 2, the number of neural network
iterations, and the neural network learning rate. Finally, the
IWOA-SAA-BILSTM prediction model is obtained. The
flowchart of the algorithm is shown in Figure 6.

The specific steps of IWOA-SAA-BILSTM include:

1. Input data. Test the data for missing values and outliers and
normalize the data. Divide the data, divide the training set and
test set according to 4:1.

FIGURE 4
Structure of LSTM neural network.

FIGURE 5
Structure of BILSTM neural network.

Frontiers in Energy Research frontiersin.org07

Wang et al. 10.3389/fenrg.2023.1331076

143

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1331076


2. Construct the BILSTM network, initialize the parameters, set
the number of hidden layer 1, the number of hidden layer 2, the
learning rate, and the number of iterations.

3. Build the IWOA weight optimization model. Set the important
parameters such as whale population size, number of
population iterations, and spatial dimension; meanwhile,
introduce Tent chaotic mapping to generate the initial
whale population, and the other population converges and
iterates according to the nonlinear way, and the objective
function is to determine the value of the population. The
optimal whale population position information is mapped
into the weights of BILSTM.

4. Build the SAA optimization algorithm. Initialize the SAA
parameters, set the cooling table temperature T0, the
iteration end temperature Tend, the temperature decay
frequency q, the number of inner loop iterations K, the
number of outer loop iterations W, and set the initial
temperature. The input variables of the algorithm are set as
important parameters of BILSTM, and the parameters
optimized in this paper are the number of nodes in hidden
layer 1, the number of nodes in hidden layer 2, the number of
iterations in a neural network and its learning rate are crucial
factors to consider. Perform the algorithm iteration and take
the prediction error as the return value of the
objective function.

5. Run the algorithm and judge whether IWOA and SAA reach
the maximum number of iterations and whether it meets the
termination conditions, respectively; if the weak algorithm
meets the termination conditions, the optimal parameters
are encoded and outputted to the BILSTM network,
otherwise, repeat step 3.

6. After many iterations, the objective function with the
minimum error as well as the optimal parameters and
weights can finally be obtained, and finally the IWOA-SAA-
BILSTM prediction model is obtained.

This article presents a model with several advantages:

a. The IWOA-SAA-BILSTM model improves the initial
population distribution of the standard WOA by making it
more uniform, the goal is to enhance the diversity of the
population and enhance their global search ability. The
introduction of a dynamic step factor enhances the
optimization performance of the whale algorithm by
regulating its local development and global search abilities.

b. The BILSTM network in the IWOA-SAA-BILSTM model has its
own dual memory units and gating mechanism, which can
effectively capture and store long-term dependencies in
bidirectional sequences, and learn models and features from the
data, which enables the model to better predict. In addition, the

FIGURE 6
Flowchart of IWOA-SAA-BILSTM algorithm.
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IWOA-SAA-BILSTMmodel optimizes the weights and important
parameters of the BILSTMmodel to better leverage the predictive
performance of BILSTM and improve prediction efficiency.

3.5 Pseudo code of main functions of
the algorithm

1.Improve the whale optimization algorithm
def tent_map(x):

return 1–2 * abs(x)
#dynamic step factor

def dynamic_step_size(iter_num, max_iter, step_size)
return step_size/(iter_num/max_iter)
# Initialize whale optimization algorithm

whale_optimizer = initialize_whale_optimizer()

2.Simulated annealing algorithm initialization
simulated_annealing = initialize_simulated_annealing()
3.Initialize BILSTM neural network
bilstm_model = initialize_bilstm_model()
4.Constructing IWOA-SA-BILSTM
for iter_num in range(max_iter):

# Improving whale optimization algorithm using Tent
chaotic mapping
whale_optimizer.improve(tent_map(whale_
optimizer.position))
# Optimizing BILSTM weights using an improved whale
optimization algorithm
bilstm_model.optimize(whale_optimizer.position)
# Optimizing BILSTM hyperparameters using simulated
annealing algorithm
simulated_annealing.optimize(bilstm_model.hyperparameters)
# Dynamically adjust the step factor
whale_optimizer.step_size = dynamic_step_size(iter_num,

max_iter, whale_optimizer.step_size)

4 Arithmetic analysis

4.1 Description of the arithmetic example

In this part, the renewable energy power load demand forecasting
model IWOA-SAA-BILSTM proposed in this paper is used, for
example, prediction to verify its reliability and superiority in

TABLE 2 Optimal parameter combination of BILSTM model.

Parameters R2

Learning rate 0.0045

The number of neurons in hidden layer 1 49

The number of neurons in hidden layer 2 52

Number of iterations 200

Time step 5

FIGURE 7
Renewable electricity load demand, January 2017 to December 2022.
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practical application. The experimental data are taken from the official
website of the National Bureau of Statistics of China, the China Price
Information Network, and the Xihe Energy Big Data Platform, and the
preliminary data are firstly extracted, and then the data are precisely
analyzed according to the data processing method in the second part of
this paper, and the data are collated to obtain a total of 72 monthly
renewable energy power load demand and various types of data in
Shaanxi Province of China, including the data of the renewable energy
power load demand for the period from January 2017 to December
2022, including thermal power generation and the data of the renewable
energy power load demand in China. The data reveals six influencing
factors, including thermal power generation, maximum temperature,
minimum temperature, average temperature, relative humidity, and the
number of legal holidays, the dependent variable is the renewable
energy power load demand, Figure 7 shows the change curve graph of
load demand between January 2017 and December 2022.

4.2 Experimental environment and
parameter settings

This article conducted experiments in a virtual
Python3.9 environment on Anaconda2.0.3, using a
Windows11 system laptop with an Intel Core i7-9750H CPU,
NVIDIA GTX 1660ti GPU, and 16G RAM.

In existing research, it is known that among the hyperparameters of
BILSTM neural networks, The number of hidden layer neurons (m)
and learning rate (l) significantly influence the prediction performance
of neural networks. The number of hidden layer neurons m in neural
networks is usually determined by empirical formulas, as shown in
formula (12). Using this formula, an approximate range of values for the
number of hidden layer neurons in a neural network can be obtained.
Within this range, specific parameter settings can be obtained through
repeated experiments.

m �
�����
α + β

√
+ n (12)

The formula involves α representing the number of output layer
nodes, β representing the number of input layer nodes, and n being
a constant.

The study employs the Adam optimizer with an initial
learning rate of [0.0001, 0.01], a maximum of 500 iterations,
and an initial population generated by Tent chaos; SA’s initial
temperature is set to 100°C, and temperature decay frequency is
set to 0.95; both IWOA and SAA optimization algorithms aim to
achieve a target error of 0. BILSTM neural network’s initial input
layer node range is [1, 50], hidden layer node range is [1, 100],
and time step is set to 5; forget gate and input gate activation
functions choose Sigmoid function, and output gate activation
function chooses tanh function. In the iterative process, after
each iteration, validation is performed, and the model parameters
with the smallest error obtained in the latest iteration are used to
replace the previous optimal parameters for the next
loop. Finally, the model with the smallest error throughout the
entire iterative process is retained as the final prediction model.
The experiment employs the Mean Squared Error (MSE Loss)
loss function, which is expressed as follows:

MSE � 1
n
∑
n

i�1
yi − yi( )2 (13)

After multiple iterations of the IWOA and SA algorithms, the
optimal parameters of the BiLSTM model were finally output,
resulting in the optimal parameter combination shown in Table 2.

4.3 Evaluation indicators

The model’s prediction accuracy is tested using three indicators:
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
R_squared. The formulas for the three indicators are respectively:

RMSE �
������������
1
n
∑
n

i�1
ŷi − yi( )2

√
(14)

MAE � 1
n
∑
n

i�1
ŷi − yi

∣∣∣∣
∣∣∣∣ (15)

R2 � 1 − ∑n
i�1

yi−ŷi( )2
n

∑n
i�1

yi−yi( )2
n

(16)

FIGURE 8
Model stability before and after IWOA optimization.
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4.4 Ablation experiments

This paper uses a mode of ablation experiment to assess the
effectiveness of model improvement. Specifically, the example
prediction is carried out with BILSTM, IWOA-BILSTM and the
proposed model IWOA-SAA-BILSTM in this paper, respectively. In
order to make the prediction results more scientific and reliable, the
initial parameters of the BILSTM part of the three groups of models
are kept consistent with part 7.1 during the experiment. In addition,
the IWOA parameter settings of the IWOA-BILSTM model and the
IWOA-SAA-BILSTM model were kept consistent. The model
parameters were set, and the data was divided into training and
test sets in an 8:2 ratio. After testing, the model stability before and
after adding the IWOA optimization model is shown in Figure 8,
and the IWOA model adaptation curve is shown in Figure 9:

The model’s accuracy improved by IWOA has remained stable,
with 90% of points now better than before, indicating a significant
impact of IWOA on model prediction accuracy. Figure 9 and
Figure 10 reveal that IWOA has a significantly faster convergence
speed than WOA. IWOA has approached the optimal solution
around the 140th iteration, while WOA needs to iterate
200 times to reach the optimal solution. The paper demonstrates
the effectiveness of the proposed optimization method by
highlighting the significant improvement in prediction efficiency
and accuracy through the enhancement of WOA.

TABLE 3 Evaluation index values for BILSTM, IWOA-BILSTM, IWOA-SAA-
BILSTM.

Model MAE(BKWh) RMSE(BKWh) R2

BILSTM 2.75 3.47 0.62

IWOA-BILSTM 1.98 2.27 0.75

IWOA-SAA-BILSTM 1.39 1.67 0.89

FIGURE 12
Loss function change curve diagram of five groups of models.

FIGURE 11
Plot of IWOA-SAA-BILSTM predicted values vs actual values.

FIGURE 9
IWOA adaptation curve.

FIGURE 10
WOA adaptation curve.
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Figure 11 displays the predicted and actual values of the IWOA-
SAA-BILSTM model after three different model runs. By doing the
ablation experiment with the other two groups of models, all the
evaluation indexes of the models proposed in this paper are better
than the other two groups of models. The ablation experiment
demonstrates that the proposed model improvement can enhance
the performance of the original model, thereby improving prediction
efficiency and accuracy. Table 3 displays the evaluation indexes of the
prediction results of the three model groups:

4.5 Comparative experiments

In addition to ablation experiments on the proposed model, this
article also built several other commonly used models in existing
research to demonstrate that the proposed model is not only superior
to the pre-improved basic model, but also superior to common
models in current research. This article selected four models with
good performance in existing research, includingWOA-SVM,WOA-
LSTM, WOA-RBF, and WOA-ELM, as comparison models. The
parameters of the IWOA-SAA-BILSTM model in this part of the
experiment were kept consistent with the ablation experiment.

First, five groups of models were used to train the set, and the test
set was used for fitting. The learning ability and fitting of the five
groups of models for the data variation rule were compared. After
the experiment, the loss function changes of the five groups of
models are shown in the following figure.

Figure 12 provides a clear representation of the situation, the loss
function of IWOA-SA-BILSTM is the smallest at the later stage of the
iterative process, indicating that the model fitting effect of IWOA-
SAA-BILSTM is superior to other models; and the loss function
variation curve of IWOA-SAA-BILSTM decreases continuously with
the increase of fitting times, until it reaches a stable state in the final
stage of fitting, indicating that the IWOA-SAA-BILSTM model can
correctly capture the data variation rules in the training data, has
strong learning ability, and thus performs better prediction.

At the same time, using actual data for testing, we used
evaluation indicators to measure the prediction accuracy and
prediction accuracy of the five models. Table 4 displays the
rating indicators of the four comparative models and the
proposed model based on comparative experiments.

From the table, it can be seen that the prediction effects of
IWOA-SAA-BILSTM are all better than the other four comparison
models, with the optimal MAE value of 1.39 BKWh and the optimal
RMSE value of 1.67 BKWh, this paper presents results that

demonstrate the effectiveness of enhancing the standard whale
optimization algorithm. And the R2 value shows that the effect
of IWO-SAA-BILSTM prediction model is more stable. Therefore,
the model proposed in this paper can be used as a favorable tool for
renewable energy power load demand forecasting research.

4.6 Parameter sensitivity analysis

Themodel’s encoding dimension directly impacts the number of
parameters and prediction performance. Therefore, analyzing the
encoding dimension on the prediction performance of the model
can help to find the optimal encoding dimension position, the
model’s prediction performance has been enhanced.

Set the encoding dimensions to {32, 64, 128, 256, 512} and perform
model operations separately. Use RMSE andMAE as evaluation metrics
formodel performance. The experimental results are shown in Figure 13.

As can be seen from the figure, when the model encoding
dimension is 32 dimensions, the model is too simple and cannot
learn enough effective data, resulting in poor model performance.
Therefore, the model’s predictive performance can be enhanced by
increasing its embedding dimension. When the encoding dimension
is 128 dimensions, as can be seen from the figure, the prediction
performance of the model is the best. This is because a higher model
dimension can store more data information, allowing the model to
better learn and simulate the regularities and changing characteristics

TABLE 4 Evaluation index value of each prediction model.

Model MAE(BKWh) Increase in
percentage

RMSE(BKWh) Increase in
percentage

R2 Increase in
percentage

WOA-SVR 5.97 76.7% 6.54 74.5% 0.61 45.9%

WOA-RBF 5.63 75.3% 6.31 73.5% 0.65 36.9%

WOA-LSTM 4.93 71.8% 5.85 71.5% 0.69 29%

WOA-ELM 3.36 58.6% 4.53 63.1% 0.76 17.1%

IWOA-SAA-
BILSTM

1.39 —— 1.67 —— 0.89 ——

FIGURE 13
The influence of encoding dimensions on model performance.
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of the data. However, an excessive encoding dimension is also not
conducive to improvingmodel performance. For example, when set to
256 dimensions and 512 dimensions, the prediction performance of
the model decreases, which is due to the learning of excessive data
noise and redundant information during data learning and feature
simulation, affecting the prediction performance of the model.

Therefore, when the encoding dimension of the model is set to
128 dimensions, the IWOA-SAA-BILSTM model achieves the best
prediction performance.

5 Conclusion

The objective is to enhance the precision of medium and short-
term renewable energy power load demand forecasting, this article
proposes an IWOA-SAA-BILSTM prediction model based on multi-
dimensional feature analysis. Firstly, the factors that affect the
renewable energy power load demand are screened, the study
identifies the significant factors that significantly influence medium
and short-term load demand. Then, the benchmark Whale
Optimization Algorithm (WOA) is improved by adding Tent chaos
mapping, and its internal convergence method is improved to be
nonlinear, the improved Whale Optimization Algorithm (IWOA) has
been obtained. Then, IWOA is used to optimize the weights of
BILSTM, and Simulated Annealing Algorithm (SAA) is introduced
to optimize the learning rate of BILSTM, the number of nodes in
hidden layers 1 and 2 and the number of iterations are crucial factors to
consider. The IWOA-SAA-BILSTM prediction model is obtained. At
the end of the article, through case analysis, the prediction accuracy
indicators of themodel proposed in this article are: MAE is 1.39, RMSE
is 1.67, and R_squared index is 0.89, which are all better than other
comparison models. It shows that the prediction results of this model
are reliable, and can provide corresponding theoretical basis for the
research on renewable energy power load demand forecasting, as well
as more theoretical guidance for power planning departments.
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Fixed and mobile energy storage
coordination optimization
method for enhancing
photovoltaic integration capacity
considering voltage offset

Liang Feng1, Ni Jianfu1, Yu Zhuofei1, Zhang Kun2,3*,
Zhao Qianyu2,3 and Wang Shouxiang2,3

1Grid Electric Power Research Institute Corporation, Nari Group Corporation State, Nanjing, Jiangsu,
China, 2Tianjin Key Laboratory of Power System Simulation Control, Tianjin, China, 3Key Laboratory of
Smart Grid of Ministry of Education (Tianjin University), Tianjin, China

Mobile energy storage has the characteristics of strong flexibility, wide
application, etc., with fixed energy storage can effectively deal with the future
large-scale photovoltaic as well as electric vehicles and other fluctuating load
access to the grid resulting in the imbalance of supply and demand. To this end,
this paper proposes a coordinated two-layer optimization strategy for fixed and
mobile energy storage that takes into account voltage offsets, in the context of
improving the demand for local PV consumption. Among them, the upper layer
optimization model takes into account the minimum operating cost of fixed and
mobile energy storage, and the lower layer optimization model minimizes the
voltage offset through the 24-h optimal scheduling of fixed and mobile energy
storage in order to improve the in-situ PV consumption capacity. In addition,
considering the multidimensional nonlinear characteristics of the model, the
interaction force of particles in the Universe is introduced, and the hybrid particle
swarm-gravitational search algorithm (PSO-GSA) is proposed to solve themodel,
which is a combination of the individual optimization of the particle swarm
algorithm and the local search capability of the gravitational search algorithm,
which improves the algorithm’s optimization accuracy. Finally, the feasibility and
effectiveness of the proposed model and method are verified by simulation
analysis with IEEE 33 nodes.

KEYWORDS

distribution grids, photovoltaic local consumption, fixed energy storage systems,mobile
energy storage systems, energy storage scheduling strategies, hybrid particle
swarmgravitational search algorithms

1 Introduction

With the large-scale integration and increasing penetration rate of distributed energy
sources, the stochastic, intermittent, and fluctuating nature of their outputs constrains the
absorptive capacity of the distribution network. Energy storage systems, leveraging their
flexible energy management capabilities and rapid power regulation capabilities, can
address issues such as wind and solar power curtailment, voltage violations, and
insufficient peak shaving capacity in the distribution network. Properly configuring
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energy storage systems is of paramount importance for the efficient
operation of the distribution network (Wang et al., 2014; Wang
et al., 2021).

In recent years, scholars both domestically and internationally
have conducted research on grid energy storage optimization
strategies to facilitate the integration of renewable energy. In the
realm of fixed energy storage systems, Fixed Energy Storage Systems
(FESS), literature (Shi et al., 2021) establishes a joint configuration
model for solar and storage with the objective of optimizing
photovoltaic integration and system economy. Literature (Zhou
et al., 2016), considering the impact of solar and storage as well
as demand response, develops a microgrid investment profit model
with the goals of optimizing photovoltaic utilization and operational
economy. Literature (Pasetti et al., 2021) indicates that as the
capacity and quantity of energy storage systems increase, they
become susceptible to network attacks. Application of Man-in-
the-Middle (MitM) attacks on BESS can decrease the lifespan of
storage, lead to economic losses, and affect the security and stability
of the power grid. Collaboration with Distribution System
Operators (DSOs) through increased cross-checks is proposed as
a preventive measure. Literature (Morstyn et al., 2018) reviews the
progress of microgrid energy storage coordination control strategies
and proposes a distributed intelligent microgrid control framework
based on intelligent agent networks. The framework aims to provide
a universally applicable control strategy for the development of
intelligent decentralized power grids, offering insights into the
future development of distribution networks. Literature (Lu et al.,
2023) presents a dual-layer optimization model for the rapid
recovery of EMS distribution systems. The upper layer minimizes
system load shedding rate from a scheduling perspective, while the
lower layer addresses post-disaster economic dispatch issues
through Karush-Kuhn-Tucker (KKT) simplification into a single-
layer mixed-integer linear programming problem. Focusing on
flexible switchgear in AC/DC distribution networks, literature
(Ma et al., 2023) considers equipment constraints, peak shaving,
and voltage deviation constraints to build a real and reactive power
dispatch model with the minimum operating cost as the primary
objective. Through the construction of a two-stage stochastic-
distributionally robust optimization model, solar output
variability is simulated. Literature (Wei et al., 2023) proposes a
flexible interconnection distribution network optimization and
control strategy considering transformer and SOP loss
characteristics. A dual-layer model is established with the upper
layer aiming for the lowest annual comprehensive cost and the lower
layer seeking the lowest comprehensive loss. Considering intelligent
topology changes, literature (Pan et al., 2023) introduces a
consistency algorithm and establishes a SOP cluster control
model for distribution networks. Through an SOP cluster
strategy based on the consistency algorithm, global SOP
collaborative optimization is achieved, enhancing the balance of
distribution network feeders. Literature (Liu et al., 2023) presents a
dual-layer planning method for distributed power sources and
generalized energy storage. The upper layer addresses location
and capacity decisions considering system planning costs and
response incentives, while the lower layer uses an adaptive
parameter particle swarm optimization algorithm to solve the
optimization problem based on the continuity and reliability of
the distribution network. Literature (Yang et al., 2022) introduces a

multi-objective dual-layer structure for energy storage systems. The
inner layer aims to maximize operational revenue using the peafowl
optimization algorithm, while the outer layer targets minimum
operation and maintenance costs, minimum voltage fluctuation,
and minimum load fluctuation using the multi-objective peafowl
optimization algorithm. Literature (Mao et al., 2019) introduces a
dual-layer optimization for generalized energy storage
configuration, with the upper layer utilizing a genetic algorithm
for energy storage configuration and the lower layer obtaining
optimal energy storage operation using dynamic programming.
In the aforementioned studies, joint planning of energy storage
primarily focuses on the reliability and economic viability on the
grid side, yet there is a lack of research on the impact of the
uncertainty of distributed energy source outputs on energy
storage planning and the optimization of distribution
network operation.

Mobile Energy Storage Systems (MESS) are primarily composed
of energy storage devices and mobile equipment. Compared to fixed
energy storage, MESS can flexibly select access points and capacities
based on load characteristics, reducing daily maintenance costs,
peak shaving, and enhancing the flexibility of the distribution
network. Literature (Astero et al., 2017) indirectly controls
photovoltaic integration through electricity prices for electric
vehicles. Literature (Kwon et al., 2020) establishes two-stage
mobile energy storage optimization models. Literature
(Abdeltawab and Mohamed, 2017) considers the fuel costs of
mobile energy storage vehicles and the full lifecycle of energy
storage. Literature (Yao et al., 2020) utilizes mobile energy
storage as a backup power source for natural disasters or
emergency situations. In summary, MESS possesses both mobility
and energy storage functions, allowing flexible selection of access
points and capacities based on grid operating conditions. This
capability can effectively avoid redundant waste, reduce daily
maintenance costs, and significantly improve the economic
viability of peak shaving. However, its drawback lies in its
smaller capacity. MESS can complement fixed energy storage,
jointly participating in grid regulation. Through real-time
monitoring of power system operations, rational control of both
BESS and MESS is crucial for improving load characteristics (Chen
et al., 2016).

This paper integrates FESS and MESS collaborative
optimization methods, proposing energy storage configuration
and operation strategies to enhance photovoltaic absorption
capacity in extreme scenarios. Both upper and lower layers
adopt an improved Particle Swarm Optimization-
Gravitational Search Algorithm (PSO-GSA) method,
combining the individual optimization capability of the
particle swarm algorithm with the local search capability of
the gravitational search algorithm to enhance global search
capability. In the upper layer, decision variables include fixed
energy storage site selection, capacity, and mobile energy storage
access nodes and capacity, comprehensively considering the
economic operation of FESS and MESS. The lower layer
dynamically optimizes energy storage charging and
discharging strategies with the objective of minimizing grid
voltage deviation. In extreme photovoltaic scenarios, the goal
is to enhance on-site photovoltaic absorption capacity and
improve grid operation conditions.
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2 Distribution network
component model

2.1 Photovoltaic penetration rate definition

Photovoltaic penetration rate is defined as the ratio of the
maximum photovoltaic output power to the maximum load
output power:

DPV � FMAX

FL,MAX
× 100% (1)

In the formula 1:DPV represents the photovoltaic penetration
rate; FMAX represents the maximum photovoltaic output power;
FL,MAX represents the maximum load output power.

People have different criteria for judging the level of
photovoltaic penetration. Generally, when it is below 20%, it
is considered a low-penetration stage, where the scale of
photovoltaic integration into the grid is small, and its impact
on the power grid is minimal. As the penetration of photovoltaics
increases, when the photovoltaic penetration rate reaches 20%–

80%, it becomes necessary to address the issue of enhancing the
carrying capacity of photovoltaics in concentrated areas. At this
stage, the significant integration of photovoltaics may lead to
power reverse flow in the power system. When the photovoltaic
penetration rate exceeds 100%, it can be considered a high-
penetration stage. At this point, there is a substantial reverse
flow of photovoltaic power into the power system, and the role of
photovoltaic energy shifts to the supply side. The difficulty of on-
site absorption of photovoltaics increases, requiring
interventions such as energy storage to enhance the capacity
for photovoltaic integration.

2.2 Photovoltaic on-site absorption
rate definition

The on-site absorption of photovoltaic power is
primarily influenced by the load and energy storage. In this
paper, we define the on-site absorption rate of photovoltaic
power as:

φ � ∑
19

t�6

PPV,fact,t − PLOAD,t − PESS,t

PPV,fact,t
( ) × 100% (2)

In the formula 2: Where φ represents the on-site
absorption rate of photovoltaic power; PPV,fact,t represents
the actual generation of photovoltaics at time t. PLOAD,T

represents the distribution network load during the
photovoltaic generation period at time t, and PESS,t represents
the load for energy storage charging during the photovoltaic
generation period at time t.

2.3 Distributed power generation model

2.3.1 Photovoltaic output model
The photovoltaic generation intensity is controlled by the

regional solar irradiance. Solar irradiance is commonly

considered to follow a Beta distribution, where the Beta
probability density function is given by:

f r( ) � Γ α + β( )
Γ α( )Γ β( )

r

rmax
( )

α−1
1 − r

rmax
( )

β−1
(3)

In the formula 3:Whereα and β are the shape parameters of the Beta
distribution; r is the actual solar irradiance during a specific time period,
and rmax is the maximum solar irradiance during that time period.
Research indicates that the output power of photovoltaic generation is
influenced by solar irradiance, photovoltaic panel area, and photovoltaic
conversion efficiency. Therefore, the relationship between the output
power of photovoltaic generation and solar irradiance is given by:

Ps � rMAη (4)

f r( ) � Γ α + β( )
Γ α( )Γ β( )

PS

rmaxAη
( )

α−1
1 − PS

rmaxAη
( )

β−1
(5)

In the formulas 4, 5: Where Ps represents the photovoltaic output
power; A is the photovoltaic panel area; η is the photovoltaic
conversion efficiency.

2.3.2 Fixed energy storage model
The charging and discharging model for fixed energy storage is

as follows:

PES,j t( )≤ 0, ESj t( ) � ESj t − 1( ) 1 − δ( ) + PES,j t( )ηcΔt

PES,j t( )> 0, ESj t( ) � ESj t − 1( ) 1 − δ( ) − PES,j t( )Δt
ηd

∑
T

t�1
PES,j t( )a1ηc + PES,j t( ) a2

ηd
[ ]Δt � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

In the formula 6: Where PES,j(t)≤ 0 represents energy storage
charging, ηc represents the charging efficiency of energy storage, and
in this case a1 � 1, a2 � 0; PES,j(t)> 0 represents energy storage
discharging, ηd represents the discharging efficiency of energy
storage, and in this case a1 � 0, a2 � 1.

2.3.3 Mobile energy storage model
The charging and discharging model for mobile energy storage is

as follows:

−PN ≤PMES
i,t ≤PN (7)

EMES
t+1 � EMES

t − PMES
i,t Δt (8)

EMES
min ≤EMES

t ≤EMES
max (9)

EMES
0 � EMES

T (10)

In the formulas 7–10: Where PN represents the rated power of
mobile energy storage; PMES

i,t represents the injected power at node i by
mobile energy storage at time t; EMES

t represents the state of charge of
mobile energy storage at time t; EMES

min and EMES
max are the maximum and

minimum values of the state of charge of mobile energy storage,
respectively; EMES

0 and EMES
T are the state of charge of mobile energy

storage at the beginning and end of the operating cycle, respectively.

2.4 Electric vehicle charging model

Monte Carlo sampling is used to analyze the electric vehicle
charging model.
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(1)Probability Distribution of Daily Driving Distance

Processing behavioral data on electric vehicle usage, it is
determined that the daily driving distance follows a log-normal
distribution, i.e.,:

fs x( ) � 1
x

1
2π

√ exp − ln x − μs( )2

2σ2s
( ) (11)

In the formula 11: Where μs taking the mean as 3.2 and σs the
variance as 0.88.

(2)Probability Distribution of Initial Charging Time

The charging time of electric vehicles ft(x) follows a normal
distribution, i.e.,:

ft x( ) �
1
σs

1
2π

√ exp − x − μs( )2

2σ2
s

( ), μs − 12< x< 24( )

1
σs

1
2π

√ exp − x + 24 − μs( )2

2σ2
s

( ), 0<x< μs − 12( )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(12)

In the formula 12: Where μs taking the mean as 17.6 and σs the
variance as 3.4.

3 Construction of dual-layer
optimization model in electrical
engineering terminology

The dual-layer optimization model as shown in Figure 1.
The upper-layer optimization model has decision variables for

fixed energy storage location, capacity, and mobile energy storage
access nodes and capacity. The optimization objectives include
minimizing investment costs, operating costs, power purchase

costs, and mobile energy storage migration costs. The constraints
involve energy storage output constraints and grid power purchase
constraints.

The lower-layer optimization model has decision variables for the
charging and discharging power of fixed and mobile energy storage
during different time periods. The optimization objective is tominimize
voltage offset. Constraints include voltage amplitude constraints,
distributed renewable energy output constraints, and power balance
constraints.

The dispatch center inputs photovoltaic data, daily load data,
and electric vehicle charging station data. The upper layer solves the
model to minimize operating costs, and the location and capacity of
energy storage are passed as parameters to the lower layer. The lower
layer controls the charging and discharging power of energy storage
at each moment to minimize voltage offset. Iterations are performed
until the optimal control strategy is obtained.

3.1 Upper-layer objective function

The upper layer involves multi-energy storage optimization
configuration, with the objective function being the minimization
of equipment investment costs, equipment operating costs, and grid
power purchase costs.

fup � w1 × f1 + w2 × f2 + w3 × f3 + w4 × f4 (13)

In the formula 13: Where f1 represents equipment investment
costs; f2 represents equipment operating costs; f3 is the grid power
purchase cost; f4 represents the cost of mobile energy storage
migration; w1、w2、w3、w4 is a random number between 0 and
1, and w1 + w2 + w3 + w4 � 1 .

(1) Minimize equipment investment costs

The equipment investment cost includes one-time investment
costs for both energy storage devices and photovoltaic equipment.

FIGURE 1
Dual layer optimization model.
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f1 � Q∑
Z

z�1
NzCz

Q � q 1 + q( )y

1 + q( )y − 1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(14)

In the formula 14: Q represents the capital recovery factor; q
represents the annual interest rate; Z represents equipment type; Cz

represents the investment cost of equipment type Z; Nz represents
the number of equipment type Z.

(2) Minimize equipment operating costs

The operating cost of equipment refers to the costs associated
with regular maintenance and repair of equipment damage.

f2 � ∑
T

t�1
∑
Z

z�1
Closs

z t + A (15)

In the formula 15: Closs
z represents the daily operational

maintenance cost of equipment z; A represents the cost of
repairing equipment damage, where t is the operating time.

(3) Minimize grid power purchase costs

f3 � ∑
24

t�1
Pline
t wline

t (16)

In the formula 16: Pline
t represents the power purchased from the

grid at time t, and wline
t represents the electricity price at time t.

(4) Minimize the cost of relocating mobile energy storage

f4 � ∑
24

t�1
CFUELODISTANCE (17)

In the formula 17: Where f4 represents the cost of relocating
mobile energy storage; CFUEL represents the unit distance cost, and
ODISTANCE represents the distance traveled by the energy
storage vehicle.

3.2 Upper-layer objective constraints

(1) Energy Storage Output Constraint.

PES,j
min ≤PES,j t( )≤PES,j

max

0.2≤ SOCj t( )≤ 0.9
SOCj 0( ) � 0.5

⎧⎪⎨
⎪⎩ (18)

In the formula 18: Where PES,j
min represents the lower limit of the

charging or discharging power for the jth energy storage unit, PES,j(t)
represents the charging or discharging power of the jth energy storage
unit at time t, PES,j

max represents the upper limit of the charging or
discharging power for the jth energy storage unit, and SOCj(t)
represents the state of charge of the energy storage at time t, with a
range from 0.2 to 0.9. When t is zero, the initial state of charge SOCj(0)
is set to 0.5.

(2) Electricity Purchasing Power Constraint

Pt,buy ≥ 0 (19)

In the formula 19: Where Pt,buy represents the electricity
purchasing power.

3.3 Lower-level objective function

The lower level involves 24-h economic dispatch of the
distribution network, with the minimization of voltage deviation
as the objective function.

In power systems, voltage difference reflects the operational safety
of the distribution network, as excessive voltage deviation can impact
the operation of electrical equipment and the quality of electrical energy.

flow � ∑
24

t�1
∑
N

i�1

ΔUi,t

Ui,max − Ui,min
( )

2

⎛⎝ ⎞⎠ (20)

ΔUi,t �
Ui,min − Ui,t, Ui,t <Ui,min

0, Ui,min ≤Ui,t ≤Ui,max

Ui,t − Ui,max, Ui,t ≥Ui,max

⎧⎪⎨
⎪⎩ (21)

In the formulas 20, 21: Where ΔUi,t represents the voltage
deviation at time t, Ui,t represents the voltage at node i at time t,
and Ui,min, Ui,max represent the upper and lower limits of node i,
respectively. In medium and low voltage distribution networks, the
permissible range for voltage deviation is −5% to +5%.

3.4 Lower-level objective constraints

(1) Voltage magnitude constraints

Ui,min ≤Ui,t ≤Ui,max (22)
In the formula 22: Where Ui,min represents the voltage lower

limit at node i, Ui represents the voltage at node i, and Ui,max

represents the voltage upper limit at node i.

(2) Distributed New Energy Output Constraint

Ppv,min ≤Pt
pv ≤Ppv,max (23)

In the formula 23: Where Ppv,min represents the minimum
output of photovoltaic power, Pt

pv represents the photovoltaic
power output at time t, and Ppv,max represents the maximum
output of photovoltaic or wind power.

(3) Power Balance Constraint

Ps,i − PL,i � Ui∑
n

j�1
Uj Gij cos θij + Bij sin θij( )

Qs,i − QL,i � Ui∑
n

j�1
Uj Gij sin θij − Bij cos θij( )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(24)

In the equation 24: Ps,i represents the active power output at
node i due to the power source; PL,i represents the active power
output of the load at node i; Ui represents the voltage at node i; Uj

represents the voltage at node j; Qs,i represents the reactive power
output at node i due to the power source;QL,i represents the reactive
power output of the load at node i.
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4 Optimization solving algorithm based
on PSO-GSA

The ultimate goal of heuristic algorithms is global optimization.
To achieve this goal, the exploratory and exploitative capabilities of
heuristic algorithms are particularly crucial.

4.1 Particle swarm algorithm

The particle swarm algorithm (Anantathanavit and Munlin, 2013)
models each particle considering the current velocity, current position,
and a distance-modifying function to pbest and gbest as follows.

vt+1i � wvti + c1 × rand × pbestti − xt
i( ) + c2 × rand × gbest − xt

i( )
(25)

In the equation 25: w represents the weighted function; vti
represents the velocity of the i th particle at generation t; c1
represents the weighting factor; rand is a random number between
0 and 1;pbestti represents the best position of the particle at generation t;
xti represents the position of the particle at generation t; c2 represents
the weighting factor; gbest represents the best solution. wvti represents
the exploration ability of the particle; c1 × rand × (pbestti − xt

i )
represents the personal ability of the particle; c2 × rand × (gbest −
xt
i ) represents the cooperative ability of the particle

xt+1
i � xt

i + vt+1i (26)

In the formula 26: Where xt+1i represents the position of particle
i at generation t+1.

4.2 Gravity search algorithm

GSA (Doraghinejad et al., 2012) originates from Newton’s
fundamental theory: the interaction force among particles in
the Universe, a force proportional to the particle mass and inversely
proportional to the distance between them, is modeled as follows.

Fd
ij t( ) � G t( )Mpi t( ) × Maj t( )

Rij t( ) + ξ
xd
j t( ) − xd

i t( )( ) (27)

In the formula 27: Where Fd
ij(t) represents the gravitational

force of particle i on particle j in the d-dimensional space at the
tth iteration; G(t) represents the value of universal gravitational
force at the tth iteration; Mpi(t) is the active gravitational mass;
Maj(t) is the passive gravitational mass; Rij(t) represents the
Euclidean distance between i and j; ξ is a constant; xdj(t)
represents the position of particle j in the d-dimensional
space at the tth generation; xd

i (t) represents the position of
particle i in the d-dimensional space at the tth generation.

G t( ) � G0 × e
−∂×iter
max iter (28)

In the formula 28:Where ∂ represents the descent coefficient;G0

represents the initial value; iter is the current iteration number;
max iter is the maximum iteration number.

Fd
i t( ) � ∑

N

j ≠ i,j ∈ kbest

randjF
d
ij t( ) (29)

In the formula 29: Where Fd
i (t) represents the total force

experienced by individual i in the d-dimensional space at the
tth iteration.

adi t( ) � Fd
i t( )

Mi t( ) (30)

In the formula 30: Where represents adi (t) the equation for
the acceleration of individual i in the d-dimensional space;Mi(t)
represents the mass of individual i at generation t.

vdi t + 1( ) � rand × vdi t( ) + adi t( ) (31)

In the formula 31: Where vdi (t + 1) represents the velocity of
particle i in the d-dimensional space at generation t+1.

xd
i t + 1( ) � xd

i t( ) + vdi t + 1( ) (32)

In the formula 32: Where xd
i (t + 1) represents the position of

particle i in the d-dimensional space at generation t+1.

4.3 PSO-GSA hybrid algorithm

The PSO-GSA hybrid algorithm combines the individual
optimization capability of PSO with the local search ability of
GSA such as the formulas 33, 34. The improved convergence of
PSO-GSA surpasses that of standalone PSO and GSA.

vt+1i � wvti + c1 × rand × ati + c2 × rand × gbest − xt
i( ) (33)

xt+1
i � xt

i + vt+1i (34)

Initially, each particle is considered to have a candidate
solution. After initialization, the gravitational force,
gravitational constant, and resultant force between particles
are calculated. During the iteration process, the algorithm
updates to the current best solution, computes the velocity of

FIGURE 2
Comparison of convergence speed of different functions.
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particles for the (n+1)-th generation, and finally updates the
positions of the particles.

The improved convergence of PSO-GSA is superior to that of
PSO and GSA, as shown in Figure 2.

4.4 The Flowchart of the
PSO-GSA Algorithm.

The flow chart of the PSO-GSA algorithm is shown
in Figure 3.

5 Case analysis

5.1 Case parameters

Simulations were conducted on the IEEE 33-node distribution
network using Matlab 2021a software. The system’s base voltage is
12.66 kV, and the maximum load is 3.715 MW. To provide reserve
capacity for photovoltaic integration at system nodes, the upper limit
of node voltage is set to 1.05, and the lower limit is set to 0.95.
Photovoltaic panels are integrated at nodes 9 and 28, while an electric
vehicle charging station is added at node 20, as illustrated in Figure 4.

Monte Carlo simulations were employed to model the starting
density and charging power of electric vehicles, with a total of
2000 vehicles. The simulation results are presented in Appendix
Figure A1 and Figure A2.

This study focuses primarily on the impact of the fixed and
mobile energy storage access points and capacities on the integration
of photovoltaics. The basic information for both fixed and mobile
energy storage is as follows: the energy storage maintenance
coefficient is 0.02; the unit capacity investment cost is
1000 CNY/KW; the discount rate is 0.08; the service life is
20 years. For mobile energy storage, the cost per kilometer varies
based on the distance traveled each time, and here it is calculated at a
monthly cost of 3,000 Yuan. The energy storage electricity prices are
0.31 CNY/kWh from 0:00 to 8:00, 0.84 CNY/kWh from 9:00 to 11:
00, 0.31 CNY/kWh from 12:00 to 13:00, 0.84 CNY/kWh from 14:
00 to 21:00, and 0.31 CNY/kWh from 22:00 to 24:00.

To achieve coordinated optimization of fixed and mobile energy
storage for enhancing the distribution network’s consumption capacity,
a PSO-GSA hybrid algorithm is applied to both the upper-layer multi-
energy storage optimization configuration and the lower-layer energy
storage optimization scheduling. The fixed energy storage locations
range from node 2 to 33, with capacities from 0.5MW to 1MW. The
access nodes for mobile energy storage range from node 2 to 33
(assuming node 1 is the reference node), with capacities from
0.4 MW to 0.9 MW. Fixed energy storage charges during off-peak
hours or when photovoltaic energy cannot be accommodated and
discharges during peak electricity demand. In contrast, mobile energy
storage offersmore flexible charge and discharge regulation, responding
dynamically to real-time situations in case of emergencies or when fixed
energy storage cannot effectively regulate. The PSO-GSA hybrid
algorithm is applied to both upper and lower layers with
50 particles each, 50 iterations, an individual learning factor of 0.5,
and a global learning factor of 1.5.

FIGURE 3
Algorithm flowchart.

FIGURE 4
IEEE 33 node distribution network.
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5.2 Optimization result analysis

Firstly, without the addition of any energy storage, gradually
increasing photovoltaics until the voltage exceeds the limit at nodes
9 or 28, marks themaximum photovoltaic capacity that the distribution
network can bear. The maximum capacity is determined to be 2.9 MW.

Considering the future large-scale integration of photovoltaics and
the transition of photovoltaic energy from the demand side to the
supply side, there may be reverse power flows. In such scenarios, energy
storage can be flexibly adjusted to enhance photovoltaic energy
integration, reduce the risk of voltage exceeding limits, and improve
the stability of the power system. When there is a sudden increase in
photovoltaics and fixed energy storage devices cannot regulate
effectively, flexible adjustments can be made using mobile energy
storage. The following case considers an extreme photovoltaic
output scenario of 2.9 MW and a charging station output of 0.6 MW.

To validate the effectiveness of the proposed model and method, a
comparison is made across four different scenarios. Scenario One:
integration of photovoltaics without energy storage; Scenario Two:
integration of photovoltaics with optimized configuration of fixed
energy storage; Scenario Three: integration of photovoltaics with
coordinated optimization of fixed and mobile energy storage; Scenario
Four: integration of photovoltaics, electric vehicle charging station, and
coordinated optimization of fixed and mobile energy storage. The
analysis includes voltage offset, multi-energy storage operating costs,
and on-site photovoltaic integration rate, as shown in Table 4-1.

According to Table 1, compared to Scenario One, Scenario Two,
which adds fixed energy storage, reduces the voltage offset by
0.0010 and increases the on-site photovoltaic integration rate by
3.01%. Scenario Three, with the addition of both fixed and mobile
energy storage, reduces the voltage offset by 0.0018 and increases the
on-site photovoltaic integration rate by 5.77% compared to Scenario
One. In Scenario Four, with the addition of an electric vehicle charging
station load, the voltage offset is 0.0033, the on-site photovoltaic
integration rate is 71.39%. Compared to Scenario One, the voltage
offset increases by 0.1638, and the curtailment rate decreases by
0.8081%. These results indicate that fixed energy storage adjustment
has limitations, and through coordinated optimization of fixed and
mobile energy storage, the on-site photovoltaic integration can be
increased, and voltage offset can be reduced.

To further illustrate the improvement in power grid stability
through the coordinated optimization of fixed and mobile energy
storage, a comparative analysis is conducted among Scenario One,
Scenario Two, and Scenario Three.

As shown in Figure 5, Figure 6, and Figure 7, in extreme
photovoltaic Scenario One, voltage exceeds the limit at nodes
9 and 28 when photovoltaics are added. From the node voltage
diagram in Scenario Two, it is evident that by adding fixed energy
storage, only node 9 experiences a voltage limit exceedance, and the
degree of voltage offset is smaller compared to Scenario One. The
node voltage diagram in Scenario Three indicates that through the
coordinated action of fixed and mobile energy storage, all nodes are
within the range of 0.95 p. u. to 1.05 p. u., demonstrating the efficient
synergy between fixed and mobile energy storage. This synergy can
significantly enhance the capacity for photovoltaic integration.

As shown in Figure 8, for the charge and discharge strategy of
fixed energy storage, during 3:00–7:00 when the grid load is relatively
low, the energy storage system remains in the charging state. During
10:00–14:00 when the load is high and there is sufficient photovoltaic
output, fixed energy storage discharges at a lower power. From 19:
00 to 22:00, when the load is high, fixed energy storage discharges, and

TABLE 1 Energy storage parameters.

Scenes Fixed energy storage,
mobile energy
storage access

location

Fixed energy storage,
mobile energy storage
access capacity/MW

Total cost of energy
storage operation/ten

thousand yuan

Voltage
offset

Photovoltaic local
consumption

rate (%)

Scene 1 - - 0 0.0082 64.39

- -

Scene 2 27 0.9849 317.07 0.0072 67.40

- -

Scene 3 29 0.7339 421.94 0.0064 70.16

22 0.6096

Scene 4 27 0.7070 419.76 0.0033 71.39

31 0.6265

FIGURE 5
Scene 1 target node voltage.
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when fixed energy storage cannot meet the load requirements,
coordinated operation with mobile energy storage is employed to
jointly provide power support to the grid.

As illustrated in Figure 9, due to the uncertainty of photovoltaic
output, there are two charging methods for the charge and discharge
strategy of mobile energy storage: one is during 3:00–7:00 when the
electricity price is lower, mobile energy storage utilizes grid
electricity for charging; the other is during 14:00–16:00 when the
load is low and photovoltaics cannot fully integrate, mobile energy
storage is charged at the access node. During peak electricity
demand periods at 10:00–14:00 and 19:00–22:00, if fixed energy
storage cannot effectively regulate the grid voltage, coordinated
discharge of mobile and fixed energy storage is implemented to
maintain the stable operation of the power system.

6 Conclusion

Energy storage, due to its flexible output and dynamic
adjustment characteristics, can provide rich elastic support for
the grid, facilitating the efficient integration of large-scale
distributed new energy sources and ensuring the stable operation
of the grid. This paper proposes a multi-energy storage coordinated
optimization strategy that takes into account voltage offset. Initially,
a two-layer model is established around the optimal operation cost
of Mobile Energy Storage System and Fixed Energy Storage System,
as well as minimizing the grid voltage offset. The model is solved and
validated using the PSO-GSA algorithm in the IEEE 33-node
distribution system, leading to the following conclusions.

(1) In extreme photovoltaic scenarios, based on predicted load
data, using the objectives of minimizing operating costs and

FIGURE 6
Scene 2 target node voltage.

FIGURE 7
Scene 3 target node voltage.

FIGURE 8
Charging and discharging strategy for stationary energy storage
in Scenario 3.

FIGURE 9
Mobile energy storage charging and discharging strategy in
scenario 3.
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minimizing voltage offset, BESS and FESS are optimized in
terms of configuration and dispatch. Suitable parameters for
energy storage are selected, and mobile energy storage is
dispatched to different nodes to provide charging and
discharging services. By comparing fixed energy storage
with the coordinated operation of fixed and mobile energy
storage, and optimizing the configuration and operational
strategies of energy storage, the results show that coordinated
operation of fixed and mobile energy storage can improve on-
site photovoltaic integration while reducing grid
voltage offset.

(2) Guiding energy storage systems to participate in the optimal
operation of distribution networks through time-of-use
electricity prices and time-of-use loads. The strategy
involves charging during low demand and discharging
during high demand, balancing the demands of both the
grid side and the load side. This approach reduces
curtailment, minimizes the impact of distributed energy
source output instability on the grid, and equips the
distribution network with sufficient flexibility to adapt to
peak-valley differences, fluctuations, and the growing
normality of daily loads.

(3) The mathematical model presented in this paper exhibits
multi-dimensional non-linear characteristics. The PSO-GSA
hybrid algorithm is employed for model solving, combining
the individual optimization of particle swarm algorithm with
the local search ability of gravitational search algorithm. This
hybrid approach offers better convergence for solving multi-
dimensional non-linear problems.

The optimization strategies mentioned in this paper do not
consider the impact of different seasons on photovoltaic output, the
influence of mobile energy storage routes, and traffic congestion. In
future work, these factors, along with the consideration of the impact
of different seasons on photovoltaic output, traffic congestion, and
the use of smart switches, could be incorporated into the analysis.
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Nomenclature

Indices

NI Equipment type I

CI Investment cost of equipment type I

Closs
I

Daily operational maintenance cost of equipment I

G0 Initial value

Pline
t

Power purchased from the grid at time t

wline
t Electricity price at time t

CFUEL Unit distance cost

Parameters

DPV Photovoltaic penetration rate

FMAX Maximum photovoltaic output power

FL,MAX Maximum load output power

PPV ,fact ,t Actual generation of photovoltaics at time t

PLOAD,T Distribution network load during the photovoltaic generation
period at time t

PESS,t Load for energy storage charging during the photovoltaic
generation period at time t

PMES
i,t Injected power at node i by mobile energy storage at time t

EMES
t State of charge of mobile energy storage at time t

E MES
min , E

MES
max Maximum and minimum values of the state of charge of mobile

energy storage

EMES
0 , EMES

T State of charge of mobile energy storage

f 1 Equipment investment costs

f 2 Equipment operating costs

f 3 Grid power purchase cost

f 4 Cost of mobile energy storage migration

Ps Photovoltaic output power

PN Rated power of mobile energy storage

Qs,i Reactive power output at node i due to the power source

QL,i Reactive power output of the load at node i

Cf irst Equipment investment cost

Q Capital recovery factor

Variables

φ On-site absorption rate of photovoltaic power

α, β Shape parameters of the Beta distribution

r Actual solar irradiance during a specific time period

rmax Maximum solar irradiance during that time period

A Photovoltaic panel area

η Photovoltaic conversion efficiency

ηc Charging efficiency of energy storage

ηd Discharging efficiency of energy storage

w1、w2、w3、w4 Random number between 0 and 1

q Annual interest rate

Z Cost of repairing equipment damage

ODISTANCE Distance traveled by the energy storage vehicle

PES,j
min Lower limit of the charging or discharging power for the jth

energy storage unit

PES,j(t) Charging or discharging power of the jth energy storage unit at
time t

PES,j
max Upper limit of the charging or discharging power for the jth

energy storage unit

SOCj(t) State of charge of the energy storage at time t

Pt,buy Electricity purchasing power

ΔUi,t Voltage deviation at time t

Ui,t Voltage at node i at time t

Ui,min , Ui,max Upper and lower limits of node i

Ppv,min Minimum output of photovoltaic power

Pt
pv Photovoltaic power output at time t

Ppv,max Maximum output of photovoltaic or wind power

Ps,i Active power output at node i due to the power source

PL,i Active power output of the load at node i

Ui Voltage at node i

Uj Voltage at node j

vti Velocity of the i th particle at generation t

pbestti The best position of the particle at generation t

xti The position of the particle at generation t

gbest The best solution

w Weighted function

c1 Weighting factor

c2 Weighting factor

ξ A constant

∂ Descent coefficient

wvti Exploration ability of the particle

xt+1i Position of particle i at generation t+1

Fd
ij(t) Gravitational force of particle i on particle j in the d-dimensional

space at the tth iteration

G(t) Value of universal gravitational force at the tth iteration

Mpi(t) Active gravitational mass

Maj(t) Passive gravitational mass

Rij(t) Euclidean distance between i and j

xdj (t) Position of particle j in the d-dimensional space at the tth
generation

xdi (t) Position of particle i in the d-dimensional space at the tth
generation
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Fd
i (t) Total force experienced by individual i in the d-dimensional

space at the tth iteration

adi (t) Equation for the acceleration of individual i in the
d-dimensional space

Mi(t) Mass of individual i at generation t

vdi (t + 1) Velocity of particle i in the d-dimensional space at
generation t+1

xdi (t + 1) Position of particle i in the d-dimensional space at
generation t+1
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PV output estimation method of
power distribution station area
based on federated learning
framework and improved
transformer neural network

Bo Chen1, Rui Liu1, Mengdi Wei2*, Xian Wang1, Yi Sun1 and
Donglei Sun1

1Economic and Technological Research Institute, State Grid Shandong Electric Power Company, Jinan,
China, 2School of Electrical Automation and Information Engineering of Tianjin University, Tianjin, China

In contemporary distribution networks (DNs), characterized by extensive
integration of distributed energy, the photovoltaic (PV) power output data
from the distribution station areas become crucial for system planning and
operational optimization. Since many PVs are installed behind-the-meter
(BTM), it is difficult to directly obtain PV power data through measurement
devices. Therefore, it is important to estimate the BTM PV power from the
aggregating data that can be directly obtained. However, the existing
estimation methods usually require centralized large-scale data training, which
brings certain privacy leakage risks. In order to solve these problems, we propose
a federated learning-based improved Transformer Neural Network strategy to
estimate BTM PV generation at the community level with data privacy protection.
Initially, enhanced Transformer neural networks, employing a fused-attention
mechanism, are deployed to precisely delineate the solar power generation
pattern. Subsequently, federated learning principles facilitate the sharing of
specific parameters among multiple edge endpoints and a central server. This
model bifurcates into two layers: an individual layer, where parameters are
retained locally, and an exchange layer, where parameters are collectively
shared and conveyed through momentum aggregation. This dual-layer
structure effectively synchronizes the capture of both unique and common
characteristics. The test on the Australian residential load dataset verifies the
effectiveness of the proposed method.

KEYWORDS

PV Estimation, BTM, improved Transformer, federated Learning, momentum
aggregation

1 Introduction

As the energy landscape evolves, the adoption of distributed photovoltaics, particularly
on residential and commercial building rooftops, has surged. By the end of 2020,
approximately 2.66 million Australian homes were equipped with rooftop solar systems
(Australian Government, 2020). However, due to budgetary limitations, most of these
installations lack dedicated metering devices, making direct power measurement
challenging. The growing prevalence of such unmonitored distributed PV systems poses
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significant risks to the economic and safe operation of distribution
station areas. These include issues like voltage instability (Rosado
and Khadem, 2019), inaccurate load forecasting (Wang et al., 2017),
and suboptimal fault recovery (Chen et al., 2018). Consequently,
accurately estimating behind-the-meter (BTM) PV power
generation using robust methodologies has become
increasingly crucial.

The methodological core of estimating BTM PV is to establish a
link between other data available and unknown PV data. It can be
divided into two main categories: physical model-based and data-
driven methods.

The physical model-based approaches employ PV array
performance models to represent physical PV arrays. In (Chen
and Irwin, 2017), PV arrays are integrated with a clear-sky
model to estimate customer-level solar power generation.
Reference (Wang et al., 2017) employs a virtual equivalent PV
plant model to represent the collective power generation of
regional behind-the-meter (BTM) PV systems. Reference
(Cheung et al., 2018) introduces an unsupervised consumer
mixture model for PV estimation. In (Kabir et al., 2019; Kabir
et al., 2023), physical PV models and statistical models are
respectively utilized to estimate BTM solar power generation and
local demand. A major drawback of these physical model-based
approaches is the need for detailed PV array parameters or accurate
meteorological data. However, in practice, these parameters are
usually not available to the utility. In addition, obtaining
meteorological data may impose additional costs on utilities. In
(Li et al., 2019a), the net demand under heterogeneous weather
conditions is used to estimate the BTM PV capacity, which is
multiplied with the standard solar power time series to infer the
BTM PV generation. Reference (Sossan et al., 2018) proposed an
estimation method on transformer level PV generation based on the
variation difference of load and solar power.

Data-driven methodologies predominantly utilize artificial
intelligence techniques for deep learning model training. As
detailed in reference (Lin et al., 2022), a method for real-time
energy decomposition is proposed, enabling the segregation of
behind-the-meter (BTM) solar energy from a substation’s total
energy consumption, employing partially labeled aggregated data
for model training. Reference (Shaker et al., 2016) introduces a data-
driven strategy for estimating BTM solar power generation,
encompassing data dimensionality reduction and mapping
functions, and involves selecting a limited number of
representative sites for model training. Since support vector
machine has the ability to learn the complex hidden relationships
in the energy decomposition problem, reference (Li et al., 2019b)
proposed a supervised machine learning model based on multiple
Support Vector Regression (SVR) to regression the solar power
generation on the extracted feature input. However, these methods
fail to make full use of historical data to comprehensively reflect the
features of different resources and mine the intrinsic relationship of
historical data. At the same time, many time-series regression
models with excellent performance are not considered.

In addition, traditional data-driven methods are centralized, and
their performance largely depends on the quality and quantity of
training data. However, this centralized approach may raise a series
of concerns about data privacy, especially in a competitive electricity
market (Li et al., 2023). Reference (Yang et al., 2023) solves the

potential privacy problem by introducing the framework of
federated learning. In literature (Lin et al., 2022), the problem of
privacy protection and the uncertainty of various types of data are
considered, and the Bayesian neural network is used for PV
estimation.

Building on the aforementioned analysis, this study introduces
an enhanced Transformer neural network approach, underpinned
by federated learning, designed to estimate community-level BTM
PV generation. Federated learning mechanism can share training
parameters and private training data, which can not only improve
data quality but also protect user privacy. Considering the successful
application of the self-attention mechanism in the electric power
field in recent years (Azam and Younis, 2021; Wang et al., 2023;
Zhou et al., 2023), a decentralized improved Transformer model is
designed, and the model is further divided into two parts: individual
and center, so as to adapt to the specific needs of each community
(Tzeng et al., 2014; Chen et al., 2020). Furthermore, the study
implements a hierarchical parameter strategy for model updating.
Experimental evaluations demonstrate the efficacy of this method
on real-world datasets.

In summary, this paper makes the following contributions.

1. The refined Transformer model, applied to BTM PV estimation,
incorporates a fused attention mechanism to thoroughly extract
PV-related information from net load data.

2. The federated learning mechanism is used to realize parameter
sharing between different communities while considering
privacy protection, so the receptive field and generalization
ability of the model are improved.

3. A novel hierarchical parameter updatemechanism is introduced
in the enhanced Transformer model, consisting of an exchange
layer and an individual layer. This configuration facilitates the
sharing of exchange layer parameters through momentum
aggregation while retaining individual layer parameters,
thereby augmenting the model’s capacity to address both
individual and common feature challenges.

The remaining structure of the paper is as follows: Section II
introduces the main models involved in this paper; Section III
introduces the data set used and the numerical example
verification. Section IV provides a summary and outlook.

2 Main models

2.1 Community PV estimation model

Since most of the user-level distributed PVs are deployed behind
the meters, only the net load data can be directly observed for most
user. A small number of users can directly obtain the photovoltaic
output information. The net load power value is equal to the
difference between the load and the PV power, as shown in the
following equation:

PNi,t � PLi,t − PGi,t (1)

Where PNi,t is the observed net load of the corresponding user of
the ith community at time t; PLi,t, PGi,t is the corresponding actual
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load value and the BTM PV power generation value. Since there is
no illumination intensity at night, 7–17 h are selected as the
reference in this paper.

Through the above analysis, the data-driven based BTM PV
estimation strategy can be abstracted and modeled as:

PG � h q, PN, S( ) (2)

Where PG is the PV estimated value, h is the transfer function of
the network, q is the network parameter, PN is the available net load
data, S is relevant weather information.

2.2 Federated learning framework

Data-driven BTM PV decomposition strategies rely on large
amounts of data for model training. It is difficult for a community to
collect a large amount of labeled data. On the one hand, only a small
number of users can measure the PV behind the meter. On the other
hand, collecting data from neighboring communities has the risk of
privacy leakage. Centralized data collection and optimization
models are not advantageous in dealing with the BTM PV
estimation problem.

This paper addresses the challenge by employing a federated
learning framework. Federated learning offers a mechanism
enabling multiple entities to collaboratively train and refine a
model, without the need for direct raw data sharing. This
approach not only safeguards data privacy and security but also
facilitates the distributed training of the BTM solar power
generation estimation model across multiple data sources,
thereby enhancing the model’s generalization capability. A
supervised model for photovoltaic estimation is constructed
under the federated learning framework, in the form of Formula 3:

PG,1, PG,2, . . . , PG,n[ ] � H qp1 PN,1, S1( ), qp2 PN,2, S2( ), . . . ,(
qpn PN,n, Sn( )) (3)

Where i is the index of the community, PG,i is the estimated PV
output, H is the global shared parameters, qi

p is the individual
parameter, PN,i is the net load data as input, and Si is the
meteorological information.

It is worth noting that there are differences in the relationship
between net load and solar power generation in different local
communities due to geographical location and weather
conditions. In order to capture this difference, refer to the idea of
reference (Azam and Younis, 2021), the model layer is divided into
individual layer and exchange layer, where:

qi � qpi ; q
c
i[ ] (4)

Where qi is the learnable parameters of the ith community, qi
p is

the individual parameter, qi
c is the exchange parameter.

In the implementation of the federated learning framework, a
momentum aggregation strategy is selectively employed,
particularly suitable for the complex nonlinear dynamics and
potential non-convex optimization challenges inherent in
photovoltaic (PV) estimation. This strategy expedites model
convergence towards an optimal solution by integrating
gradient information from preceding iterations, a critical factor
in handling large-scale, intricate datasets. Additionally, when

processing data from diverse buildings and regions, the model
often faces oscillatory challenges. Momentum aggregation
addresses this by smoothing the model’s update process,
thereby enhancing the stability and reliability of the training
procedure. The parameter update process based on momentum
aggregation is formulated as follows:

Ht+1 � βHt + 1 − β( )
1
N
∑N

i�1q
c,t+1
i( ) (5)

Where t is the number of iterations index, β is the parameter of
momentum, N is the number of communities.

The specific structure of BTM PV estimation based on the
federated learning framework is shown in Figure 1.

2.3 Improved transformer network

Transformer is a network architecture based on self-attention
mechanism, which inherits the advantages of self-attention
mechanism in dealing with long distance sequences with
volatility. At the same time, it integrates residual network and
other structures to solve the problems of gradient disappearance
caused by depth deepening, so that the model has higher plasticity.
All these advantages enable it to achieve better results in dealing with
long-distance serial regression problems.

The complexity of PV power data, characterized by its time-
series attributes, poses challenges for traditional attention
mechanisms, especially in capturing short-term (e.g., intraday)
and long-term (e.g., seasonal) variations. The integration of local
and global attention mechanisms offers a solution. The local
mechanism concentrates on accurately predicting critical periods,
while the global mechanism discerns long-term trends and impacts,
thereby enriching the overall comprehension of factors influencing
PV output. This dual approach not only bolsters the model’s
capacity to navigate data nonlinearity and variability, thereby
enhancing prediction accuracy and robustness, but also augments
model interpretability by delineating distinct temporal
dependencies. Crucially, this method also elevates computational
efficiency, a vital aspect for processing large-scale PV data. The
expression is as follows:

Ac Q,K,V( ) � λ ·M softmax
QK		
dk

√( )V( )

+ γ · softmax
QK		
dk

√( )V
(6)

Where AC is the output of fused self-attention,M is the window
selection function, λ, γ is the weight parameters, respectively. Q, K
and V is the query, key and value, respectively. dk is the
dimension of K.

When training the model, the inputs of the encoder and decoder
are timing data and training labels respectively. Both are mapped to
the high-dimensional space through a linear network, and the high-
dimensional data are endowed with location characteristics by the
location coding function. Then, the input data passes through N
cyclic units composed of multi-head fusion attention structure and
feedforward neural network respectively, and the output is
finally obtained.
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The feedforward neural network is composed of fully connected
layers with the transfer function as follows:

FFN x( ) � max 0, xW1 + b1( )W2 + b2 (7)

Where, FFN(x) is the output of the fully connected layer, W1,b1
andW2, b2 are the parameters of the two fully connected layers, and
non-linear transformation is performed by retaining non-negative
data to improve the network expression ability.

Due to the existence of the residual network structure, the actual
output of each layer in the network is the sum of the theoretical
output and the residual:

Oi � Norm ini + oidea( ) (8)

Where ini is the input of the ith layer structure in the model; oidea
is the theoretical output of this layer. Norm is the layer
normalization operation. oi is the actual output of layer i.

The attention mechanism, by applying attention operations
uniformly across all data, results in an output matrix devoid of
original positional information. This leads to the model’s inability to
learn the data’s order information, necessitating the infusion of
positional features into the input sequence.

The sine and cosine functions with different frequencies are used
to encode the position, so as to give the absolute and relative position
information to the time series data. The position-encoding function
is as follows:

Px,2i � sin
x

100002i/dm
( ) (9)

Px,2i+1 � cos
x

100002i/dm
( ) (10)

FIGURE 1
Federal learning framework for BMT PV estimation.

FIGURE 2
Improved transformer structure.
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Where dm is the dimension of time series data, i is the dimension
index, x is the absolute position, Px is the position encoding.

In the decoder structure, the initial output reaches the same
dimension as the training label through a normalization layer and a
linear layer, and the final output is the estimated result.

The improved Transformer structure is shown in Figure 2:
The enhanced Transformer network serves as both the sub-

network and global network for each community. It undergoes
hierarchical processing and parameter updates in the individual and
exchange layers, aligned with the federated learning architecture.
This culminates in the creation of a cloud-edge collaborative
supervised regression model, where a central server facilitates
interaction, and multiple communities function as distinct
training units. The overall process is shown in Figure 3.

3 Results analysis

3.1 Introduction of the dataset and
description of the experimental platform

The performance of the proposed model is evaluated using the
Ausgrid Solar Home Electric (ASHE) dataset (Ratnam et al., 2017).
Comprising actual smart meter data from households in and around
Sydney, Australia, this publicly accessible dataset encompasses
controlled load consumption for each household, general
consumption over the entire period, and solar power generation
data at 30-min intervals.

After data preprocessing, the data of 300 users in 4 communities
from 1 July 2010 to 30 June 2011 were selected for analysis. The
actual load of a user can be directly determined by the sum of
controlled and general consumption. The corresponding net
demand is calculated by subtracting the solar generation from
the actual load. Subsequently, by aggregating the measurements
from the consumer communities, we can obtain the net load and
BTM solar generation at the community level.

Experimental platform setup: Intel i5-13600k and NVIDIA
GeForce RTX 3070 are used as the core processors, Python 3.7 is
used as the programming language for the algorithm model, and the
network model is built based on the open source machine learning
framework Pytorch.

The hyperparameter Settings of the proposed model are shown
in Table 1.

3.2 Evaluation function

Root Mean Square Error (RMSE), Standardized Root Mean
Square Error (NRMSE), Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) are used as indicators to
measure the prediction results of the model, and the expressions
are as follows:

RMSE �
														
1
n
∑
n

i�1
yi tru − yi( )2

√
(11)

NRMSE � RMSE

yi tru max − yi tru min
(12)

MAE � 1
n
∑
n

i�1
yi tru − yi

∣∣∣∣
∣∣∣∣ (13)

MAPE � 1
n
∑
n

i�1

yi tru − yi

yi tru

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ (14)

Where, yi_tru is the real value of photovoltaic power generation
at time i; yi is the predicted value of photovoltaic power generation at
time i; n is the total number of sampled data.

3.3 Error comparison

To assess the decomposition performance of the proposed
model, it is compared with different learning frameworks and
state-of-the-art methods. These include Local Learning (LL),
where communities independently train and evaluate the model
without interaction; Centralized Learning (CL), which involves
aggregating data from all communities for unified model training
by a central server; and Federated Learning (FL), where each
community trains the model individually, exchanges layer
parameters with a central server for updating global model
parameters, and then conducts gradient descent training. We call
the attention-integrated Transformer model FTransformer.

Specifically, FL-FTransformer, FL-BNN, FL-LSTM, FL-
Transformer, LL-FTransformer, and CL-FTransformer are compared.

The historical net load data of the current moment and the same
time of the previous week and the corresponding meteorological

FIGURE 3
PV estimation process.

TABLE 1 Hyperparameter setting.

Hyperparameter description Value

Number of parameter exchanges 20

Number of sub-model training rounds 100

Learning rate 1e-3
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data are selected as the input features of the model. Figure 4
illustrates the correlation between the net load value and solar
radiation at the historical time and the PV power at the current time.

According to the heat map, it can be found that the closer to the
current time, both the net load data and the solar radiation intensity
have a greater impact on the PV power at the current time, which
proves the effectiveness of feature selection.

Figure 5 selects part of community 1 to visually compare the
estimated PVpower output of FL-FTransformer networkwith the real
value. It can be found that even in the case of large data fluctuations,
the proposed model can still achieve accurate estimation of PV power.
Since the visual difference between many models in the comparison
diagram is not large, and it is easy to stack together, it is impossible to
intuitively compare the used model with the real value. Therefore, the
power curve of other models is not added in the comparison diagram,
and the effectiveness of the proposed model is proved through the
comparison of error indicators.

Table 2 shows the error index situation of the proposed FL-
FTransformer model and the comparisonmodel. Under the same FL
framework, the improved FTransformer improves RMSE and
MAPE respectively compared with BNN, LSTM and Transformer
0.87kW, 0.63kW, 0.69kW, 1.65%, 0.86%, and 0.71%. Under the
same improved FTransformer network, FL, compared with LL and
CL, improves 2.1kW, 0.27kW, 4.16% and 0.42%.

In a horizontal analysis, the augmented FTransformer model,
integrated within the federated learning (FL) framework, outperforms
across four key metrics. This superiority is attributed to its combined
attention and parallel processing capabilities, which provide robust
and versatile model for temporal regression tasks like BTM PV
estimation. In a vertical comparison, the FL architecture, also
employing the enhanced FTransformer as its core network,
demonstrates superior performance. This is due to FL’s ability to
expand data scope and enhance model generalization compared to
local learning. Additionally, unlike centralized learning, FL’s two-layer
training mechanism not only emphasizes the unique characteristics of
each community but also safeguards user data privacy while
broadening the data pool.

Table 3 compares the performance of different models in
different seasons, and the FL-FTransformer model achieves the

FIGURE 4
Feature correlation heat map.

FIGURE 5
FL-FTransformer output comparison.

TABLE 2 Error comparison of different models.

RMSE
(kW)

NRMSE
(%)

MAE
(kW)

MAPE
(%)

FL-FTrans 1.52 2.43 4.56 11.72

FL-BNN 2.39 3.37 5.22 13.47

FL-LSTM 2.15 2.88 4.93 12.58

FL-Trans 2.21 2.75 5.04 12.43

LL- FTrans 3.62 5.47 6.52 15.88

CL- FTrans 1.79 2.74 4.88 12.14
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best performance in different seasons. Due to the fluctuation
difference of illumination radiation in different seasons, the
specific error indicators are also different. The incorporation of
the fused attention mechanism enables the enhanced FTransformer
network to adeptly manage varying degrees of PV fluctuations
across different seasons.

The estimated value of PV generation in each community is
compared with the true value from 12:00 to 13:00 when the solar
radiation is sufficient. Since the PV power does not fluctuate much
in the time scale of 1 hour, the PV power at 12:30 is selected as the
average power in this period for the calculation of power generation,
and the summary results are shown in Table 4.

As can be seen from Table 4, the error of PV generation of each
community in the selected period is about 5%, which has a high
accuracy, indicating that the proposed model has the ability to
accurately estimate the regional PV power generation.

Figure 6 illustrates the error comparison for different number of
individual layers. In summary, when the number of individual layers
is 3, the model evaluation effect is the best, and it is used as the final
output model. It shows that the model has a compromise between
focusing on community characteristics and global commonality.

4 Conclusion

This study addresses regional photovoltaic (PV) power estimation
by proposing a deep learning model that leverages an improved
Transformer within a federated learning framework. The model’s
efficacy is validated through experiments, yielding notable findings:

1) The FL-Transformer model effectively utilizes community-
level data in a distributed manner for behind-the-meter (BTM)
PV estimation, enhancing the model’s generalizability,
estimation accuracy, and user privacy protection.

2) The proposed two-layer training mechanism not only pays
attention to the characteristics of a single community data, but
also pays attention to the commonality between multiple
communities, which significantly improves the performance
of the model. The method of updating global parameters by
momentum aggregation improves the robustness and solution
efficiency of the model.

3) Enhancements to the traditional Transformer model,
incorporating both global and local attention mechanisms,
markedly improve the model’s capacity to discern long and
short cycle features, thereby refining decomposition accuracy.
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TABLE 3 Error comparison of different seasons.

Spring Summer Autumn Winter

FL-FTrans 1.55 1.61 1.58 1.65

FL-BNN 2.37 2.44 2.35 2.40

FL-LSTM 2.13 2.32 2.21 2.18

FL-Trans 2.25 2.28 2.64 2.21

LL- FTrans 3.60 3.85 3.69 3.71

CL- FTrans 1.82 1.85 1.71 1.77

TABLE 4 Error Comparison of Different communities.

com1 com2 com3 com4

Estimated value (kW·h) 62.55 70.42 65.84 72.49

True value (kW·h) 65.72 67.49 71.34 70.06

Deviation (kW·h) 3.17 2.93 5.50 2.43

Proportion of deviation (%) 4.82 4.34 7.71 3.47

FIGURE 6
Error comparison of different individual layers.

Frontiers in Energy Research frontiersin.org07

Chen et al. 10.3389/fenrg.2024.1349995

170

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1349995


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Australian Government (2020). Solar PV installation information in Australia.
[Online].Available: https://www.energy.gov.au/households/solar-pv-and-batteries.

Azam, M. F., and Younis, M. S. (2021). Multi-horizon electricity load and price
forecasting using an interpretable multi-head self-attention and EEMD-based
framework. IEEE Access 9, 85918–85932. doi:10.1109/access.2021.3086039

Chen, B., Chen, C., Wang, J., and Butler-Purry, K. L. (2018). Sequential service
restoration for unbalanced distribution systems andmicrogrids. IEEE Trans. Power Syst.
33 (2), 1507–1520. doi:10.1109/tpwrs.2017.2720122

Chen, D., and Irwin, D. (2017). “SunDance: black-box behind-the-meter solar
disaggregation,” in Proc. 8th Int. Conf. Future Energy Syst, Shatin Hong Kong,
May, 2017, 16–19.

Chen, Y., Sun, X., and Jin, Y. (2020). Communication-efficient federated deep learning
with layerwise asynchronous model update and temporally weighted aggregation. IEEE
Trans. Neural Netw. Learn. Syst. 31 (10), 4229–4238. doi:10.1109/tnnls.2019.2953131

Cheung, C. M., Zhong, W., Xiong, C., Srivastava, A., Kannan, R., and Prasanna, V. K.
(2018). “Behind-the-meter solar generation disaggregation using consumer mixture
models,” in Proc. IEEE Int. Conf. Commun., Control, Comput. Technol. Smart Grids,
Aalborg, Denmark, October, 2018, 1–6.

Kabir, F., Yu, N., Yao,W., Yang, R., and Zhang, Y. (2019). “Estimation of behind-the-meter
solar generation by integrating physical with statistical models,” in IEEE Int. Conf. Commun.
Control Comput. Technol. Smart Grids, Beijing, China, October, 2019, 1–6.

Kabir, F., Yu, N., Yao, W., Yang, R., and Zhang, Y. (2023). Joint estimation of behind-
the-meter solar generation in a community. IEEE Trans. Sustain. Energy 12 (1),
682–694. doi:10.1109/tste.2020.3016896

Li, D., Guo, Q., and Feng, J. (2023). Private settlement model of distributed power
transactions based on blockchains. Power Syst. Technol., 1–19.

Li, K., Wang, F., Mi, Z., Fotuhi-Firuzabad, M., Duić, N., and Wang, T. (2019a).
Capacity and output power estimation approach of individual behind-the-meter
distributed photovoltaic system for demand response baseline estimation. Appl.
Energy 253, 113595. doi:10.1016/j.apenergy.2019.113595

Li, K., Wang, F., Mi, Z., Fotuhi-Firuzabad, M., Duić, N., and Wang, T. (2019b).
Capacity and output power estimation approach of individual behind-the-meter

distributed photovoltaic system for demand response baseline estimation. Appl.
Energy 253, 113595. doi:10.1016/j.apenergy.2019.113595

Lin, J., Ma, J., and Zhu, J. (2022). A privacy-preserving federated learning method for
probabilistic community-level behind-the-meter solar generation disaggregation. IEEE
Trans. Smart Grid 13 (1), 268–279. doi:10.1109/tsg.2021.3115904

Ratnam, E. L., Weller, S. R., Kellett, C. M., and Murray, A. T. (2017). Residential load
and rooftop PV generation: an Australian distribution network dataset. Int. J. Sustain.
Energy 36 (8), 787–806. doi:10.1080/14786451.2015.1100196

Rosado, S. P., and Khadem, S. K. (2019). Development of community grid: review of
technical issues and challenges. IEEE Trans. Industry Appl. 55 (2), 1171–1179. doi:10.
1109/tia.2018.2883010

Shaker, H., Zareipour, H., and Wood, D. (2016). A data-driven approach for
estimating the power generation of invisible solar sites. IEEE Trans. Smart Grid 7
(5), 2466–2476. doi:10.1109/tsg.2015.2502140

Sossan, F., Nespoli, L., Medici, V., and Paolone, M. (2018). Unsupervised
disaggregation of photovoltaic production from composite power flow
measurements of heterogeneous prosumers. IEEE Trans. Industrial Inf. 14 (9),
3904–3913. doi:10.1109/tii.2018.2791932

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep domain
confusion: maximizing for domain invariance. [Online]. Available: https://arxiv.org/
abs/1412.3474.

Wang, W., Feng, B., Huang, G., Liu, Z., and Ji, W. (2023). Short-term net load
forecasting based on self-attention encoder and deep neural network. Proc. CSEE, 1–13.

Wang, Y., Zhang, N., Chen, Q., Kirschen, D. S., Li, P., and Xia, Q. (2017). Data-driven
probabilistic net load forecasting with high penetration of behind-the-meter PV. IEEE
Trans. Power Syst. 33 (3), 3255–3264. doi:10.1109/tpwrs.2017.2762599

Yang, T., Qin, X., Xiangwei, F., and Xu, Z. (2023). Federated learning electric vehicle
short-term charging load prediction accounting for user charging behavior and privacy
protection. High. Volt. Eng., 1–8.

Zhou, S., Li, Y., Guo, Y., Qiao, X., and Liu, Y. (2023). Ultra-short-term load
forecasting based on temporal convolutional network considering temporal feature
extraction and dual attention fusion. Automation Electr. Power Syst., 1–21.

Frontiers in Energy Research frontiersin.org08

Chen et al. 10.3389/fenrg.2024.1349995

171

https://www.energy.gov.au/households/solar-pv-and-batteries
https://doi.org/10.1109/access.2021.3086039
https://doi.org/10.1109/tpwrs.2017.2720122
https://doi.org/10.1109/tnnls.2019.2953131
https://doi.org/10.1109/tste.2020.3016896
https://doi.org/10.1016/j.apenergy.2019.113595
https://doi.org/10.1016/j.apenergy.2019.113595
https://doi.org/10.1109/tsg.2021.3115904
https://doi.org/10.1080/14786451.2015.1100196
https://doi.org/10.1109/tia.2018.2883010
https://doi.org/10.1109/tia.2018.2883010
https://doi.org/10.1109/tsg.2015.2502140
https://doi.org/10.1109/tii.2018.2791932
https://arxiv.org/abs/1412.3474
https://arxiv.org/abs/1412.3474
https://doi.org/10.1109/tpwrs.2017.2762599
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1349995


Joint optimization of operational
cost and carbon emission in
multiple data center micro-grids

Xiaobo Hao*, Pengcheng Liu and Yanhui Deng

Ningxia Hongdunzi Coal Ind, Ningxia, China

As the internet data centers are mushrooming, the energy consumption and
carbon emission of data centers are increasing rapidly. To cut down the electricity
cost and carbon emission of the data centers, we proposed an optimization
method to reduce the electricity cost and carbon emission in geo-distributed
multiple data centers. In the proposed method, the carbon tax is considered in
the overall operation cost to optimize the carbon emission. The spatial and
temporal flexibility of computational workload is fully utilized by considering the
difference in renewable energy power output, local electricity and carbon
emission of multiple geo-distributed data centers to achieve a better
performance. Furthermore, the nonlinear characteristics of the power loss of
uninterruptible power supply (UPS) are considered in the optimization. To verify
the proposed optimization method, simulation of six cases is carried out with
realistic data, and results have proved the proposed method can reduce the
operational costs by 4.93%–12.7% and decrease carbon emissions by up to 10%.

KEYWORDS

data center, multiple micro-grids, optimal scheduling, carbon emission,
demand response

1 Introduction

Carbon emissions, being an important cause of phenomena such as global warming,
have garnered escalating attention worldwide (Carbon Tax Center, 2021). In response, an
increasing number of countries have implemented carbon taxes to incentivize factories and
enterprises to reduce their carbon emission. (World Bank Group, 2020). As a significant
consumer of electricity, energy consumption and carbon emission of data centers have
become increasingly prominent as the number of data centers increases, which pose a
serious carbon emissions issue. As reported by the NRDC, U.S. data centers are forecasted to
consume 140 billion kW hours of power by 2020, resulting in an electricity cost of nearly
13 billion dollars and emission of carbon dioxide 150 million tons (Delforge, 2014). The
energy consumption and carbon emission have led to negative impacts on the environment,
as well as great operational cost under the carbon tax policy (Liu et al., 2020). Therefore,
reducing the electricity cost and carbon emission can meet the expectations of government
and data center operators alike, which have drawn increasing attention from both academia
and industry all over the world (Ni and Bai, 2017).

Most existing research on the aforementioned issue focuses on reducing the power
consumption rather than carbon emission of data centers (Yu et al., 2014), which tried three
main ways to reduce the energy consumption in the data centers. The first is to boost the
power conversion efficiency of data center power supply system by improving the efficiency
of power converters, such as power supply unit (PSU) or uninterruptible power supply

OPEN ACCESS

EDITED BY

Rufeng Zhang,
Northeast Electric Power University, China

REVIEWED BY

Weiqi Wang,
Shandong University of Science and
Technology, China
Zhan Ma,
RWTH Aachen University, Germany
Tao Xu,
Shandong University, China

*CORRESPONDENCE

Xiaobo Hao,
37496900@qq.com

RECEIVED 26 November 2023
ACCEPTED 18 January 2024
PUBLISHED 20 February 2024

CITATION

Hao X, Liu P and Deng Y (2024), Joint
optimization of operational cost and carbon
emission in multiple data center micro-grids.
Front. Energy Res. 12:1344837.
doi: 10.3389/fenrg.2024.1344837

COPYRIGHT

© 2024 Hao, Liu and Deng. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 20 February 2024
DOI 10.3389/fenrg.2024.1344837

172

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1344837/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1344837/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1344837/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1344837&domain=pdf&date_stamp=2024-02-20
mailto:37496900@qq.com
mailto:37496900@qq.com
https://doi.org/10.3389/fenrg.2024.1344837
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1344837


(UPS) (Ahmed et al., 2017; Zhao et al., 2019). The second is to jointly
optimize the computational workload scheduling with the micro
grid operations in data centers, or optimize the planning of data
center micro grid (Li et al., 2018). The third method is to optimize
the workload distribution in multiple distributed data centers in
different city and cut down operational cost by utilizing the local
electricity cost and renewable energy output (Liu et al., 2012; Qi
et al., 2019). Microsoft and Equinix have also introduced micro grid
into data center (Peter, 2017). Yang et al. have built the prototype of
waste heat recovery system, which has also been verified by
commercial application (Luo et al., 2019). And the related data
center testbed has been built at RISE ICE Datacenter in northern
Sweden in order to perform experiments on load balancing, micro-
grid interactions and the use of renewable energy sources (Brannvall,

2020). The aforementioned methods can effectively reduce energy
consumption while simultaneously decreasing the accompanying
carbon emissions. However, according to literature (Li et al., 2011;
Na et al., 2022), there is a certain deviation between the optimal
points of energy consumption and carbon emissions, therefore the
research focused on energy consumption cannot guarantee the
optimization of carbon emissions. Hence, in the optimization
process, it is necessary to consider reducing carbon emissions as
an optimization objective concurrently.

The reduction of carbon emissions in data centers can be
achieved through two main methods: cutting down energy
consumption in data centers and maximizing the utilization of
renewable energy. Li et. al. proposed a data center micro grid
planning method, which introduces the renewable energy devices

FIGURE 1
Multiple data center micro grid system.

FIGURE 2
Relationship between computational workload and data center real-time power.

FIGURE 3
Computational workload; (A) Batch workload, (B) interactive workload.
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into data center (Cui et al., 2016). However, carbon emission is
not considered in the planning method. Ding proposed a multi
objective method to reduce the carbon emission and electricity
consumption, but research did not considered the scheduling of
computational workload in multiple data centers, and the
nonlinear characteristics of the power supply system inside of
the data center (Ding et al., 2018). Ting et al. proposed a carbon
reduction method in four data centers in different city, but the
electricity consumption is not taken into account (Ting et al.,
2022). Zhou et al. proposed an electricity consumption reducing
method in geo-distributed data center micro grids with
renewable energy, but the carbon emission are not directly
taken into consideration (Zhou et al., 2016; Liu and Xu, 2023;
Zhang et al., 2023 proposed several optimal planning methods of
data centers considering carbon emission, however it achieves the
optimal planning of single data center and ignores the spatial
scheduling flexibility of workloads in data centers; Wu et al.,

2023; Yang et al., 2023 proposed carbon emission aware
scheduling method in multiple data center, while the UPS
characteristics are ignored. Furthermore; Misaghian et al.,
2023 proposed a carbon aware flexibility assessment method
to estimate the operational flexibility of data centers, however
it has not proposed the relevant scheduling method. In brief, the
characteristics of power supply devices, such as uninterruptible
power supply (UPS) are not considered in the exiting methods,
which may lead to extra energy consumption and
carbon emission.

In view of this, we proposed a hybrid operation optimization
method to reduce the electricity cost and carbon emission in geo-
distributed data center by jointly considering computational
workload scheduling, carbon emission, micro grid operation
and characteristics of UPSs. The proposed method reduced the
operational cost and carbon emission by utilizing the degree of
freedom in computational workload scheduling to limit the
nonlinear growth of UPS power losses. To balance the
electricity reduction and carbon emission reduction, the
carbon tax is introduced as a parameter in the optimization
object, which describes the carbon emission of both micro
grid devices and the marginal carbon emission caused by
electricity purchasing from the utility grid. Six cases are
simulated on the Gurobi platform, and results have verified
the effectiveness of the proposed method.

2 The influence of workload scheduling
and UPS power on optimization
objectives

The system architecture of a typical geo-distributed data
centers is given in Figure 1. The proposed method can reduce
the energy consumption and carbon emission simultaneously by
jointly considering the scheduling flexibility of the computational
workloads the data centers and the nonlinear characteristics of
UPS power losses. Therefore, the relationship between workload

FIGURE 4
Relationship between computational workload and data center
real-time power.

FIGURE 5
UPS power loss curve.

FIGURE 6
UPS load rate and carbon emission.
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scheduling and carbon emission is firstly analyzed, and then the
relation between UPS characteristics and carbon emission is
given. Furthermore, the necessity of incorporating both carbon
emissions and operating costs as optimization objectives is
discussed below:

2.1 The influence of computational
workload scheduling on carbon emission

As shown in Figure 2, the real-time power of data center is decided
by computational workload, which can be scheduled through the
internet. Therefore, the most prominent feature of a data center
micro grid, as opposed to a traditional micro grid, is its exceptional
scheduling flexibility. On the one hand, computational workloads exhibit
a high degree of flexibility, as they can be scheduled in both time and
space dimensions, which can coordinate with renewable energy sources
and electricity prices to minimize carbon emissions resulting from data
center energy consumption. On the other hand, the devices within a data
center micro grid, such as energy storage systems and conventional
generator units, possess flexible regulation characteristics. The operation
of these devices also affects the carbon emissions of the data centermicro
grid. In the following sections, we will analyze the flexibility of load
scheduling and the data center carbon emissions separately.

2.1.1 Scheduling flexibility of
computational workload

The computational workload can be briefly divided into batch
workload and interactive workload (Cao et al., 2019). The interactive
workload, such as online shopping and game service, should be dealt
in a short time delay, which is usually no more than minutes or
seconds, as shown in Figure 3A. The service delay of this kind of
workload will lead to high economic losses. So the interactive
workload cannot be scheduled through different time period.
Since the computational workloads are mainly data blocks, it can
be scheduled between data centers in different cities with a small
delay through the data network.

The batch workload, such as processing of scientific research data
and training of neural network, can endure an hourly responds delay, as
shown in Figure 3B. Therefore, the batch workload can be scheduled
spatially and temporally, which means the potentiality of participating
in optimizing scheduling or demand response. Furthermore, the batch
workload can also be scheduled through long distance with a small
delay, which is negligible in the hourly scheduling, and the scheduling
delay is mainly decided by network bandwidth.

Therefore, the computational workloads can be scheduled
spatially and temporally in coordinated with renewable energy
and conventional generators, whose output power can influence
the carbon emission.

2.1.2 Composition and influencing factors of
carbon emission

The carbon emissions resulting from the operation of a data
center micro grid consist of two aspects: the carbon emissions
caused by the operation of the conventional generators in the
micro grid and the carbon emissions resulting from the
electricity provided by the utility grid, which is generated by

thermal power plants. In this paper, both aspects are considered
and optimized.

The carbon emissions caused by the operation of the
conventional generators in the data center micro grid are
primarily determined by the fuel type and real-time power
output (Ye and Gao, 2022), and the operation of coal-based
generator units and oil-based generator units cause different
levels of carbon emissions per unit of electricity produced.

The carbon emissions resulting from the electricity provided
by the grid are mainly determined by the proportion of
electricity generated by thermal power plants. As shown in
Figure 4, the proportion of electricity generated by thermal
power plants and renewable energy varies at different times
within a day, resulting in difference of carbon emissions in each
unit of the consumed electricity. Additionally, the differences in
energy structure among different cities also lead to differences
in carbon emissions when the same unit of electricity
is consumed.

2.2 The influence of UPS power losses on
carbon emission

In the exiting researches, few work is focused on the
influence of the energy consumption characteristics of data
center power supply equipment, such as UPS, in the data
center scheduling optimization. However, the efficiency and
power losses of UPSs do influence the energy consumption
and carbon emission of data center micro grids. In
implementation, the energy consumption of UPS varies
depending on the model and load rate. On the one hand, the
power supply efficiency and losses of different UPS equipment
vary, which may lead to differences in power supply efficiency
among different data centers. On the other hand, UPS energy
consumption increases non-linearly with load rate, resulting in
corresponding increases in power supply energy consumption
and carbon emissions. To further optimize the data center
consumption, the characteristics of UPS power losses and its
influence on carbon emission are considered in the optimization
and illustrated below.

2.2.1 Characteristics of UPS power losses
Uninterruptible Power Supplies (UPSs) play a critical role in

ensuring the reliability of data center power supply. Essentially,
UPSs consist of multi-stage converters. According to current
research, UPS power losses contribute to around 5%–10% of total
data center electricity consumption.

UPS power losses exhibit variability based on the load rate, as
illustrated in Figure 4, featuring nonlinear curves. In practice, UPS
power losses encompass three distinct components (Pratt
et al., 2007):

Power losses independent of output power, such as those
attributed to generating housekeeping power. These losses
predominate during light loads.

Power losses linearly proportional to output power, including
switching losses of power semiconductors, gate driver losses, and
core losses in magnetics.
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Power losses varying with the square of output power, arising
from circuit resistance, encompassing conduction losses of power
semiconductors and winding losses in magnetics. These losses are
prominent under heavy loads.

2.2.2 Relationship between UPS power losses with
data center carbon emission

The impact of uninterruptible power supply (UPS) on carbon
emissions in data centers is mainly due to increased energy
consumption. As illustrated in Figure 5, the efficiency of different
UPS devices varies, resulting in differences in the additional energy
consumption generated during the power supply process, and UPS
energy consumption changes non-linearly with the load rate.
Therefore, the distribution of loads on different UPS devices will
affect the energy consumption generated by UPS devices, as shown
in Figure 6, which thereby causes extra carbon emissions.

However, it should be noted that energy consumption is not the
sole factor affecting carbon emissions in data centers. Due to the
existence of new energy generation, energy storage, generator
equipment, and real-time electricity purchase in micro grids, the
optimization of carbon emissions should comprehensively consider
factors such as micro grid operation and local energy structure.

3 System model and mathematical
formulation

This section presents the system and mathematical models for
the optimization problem. The depicted typical system architecture
of geo-distributed data centers is outlined in Figure 1, wherein each
data center operates within a micro-grid featuring renewable power
sources, conventional generator units, and energy storage devices.
Within each data center, multiple UPS nodes are deployed,
corresponding to sets of UPS devices and a substantial number
of servers. The system is discretely modeled in time, with equal-
length time slots, each spanning 1 h.

The system is delineated into the power demand side and power
supply side. On the power demand side, we construct models for
workloads and UPS, elucidating the relationship between
computational workloads and data center power consumption.
On the power supply side, models for energy storage and
conventional generator units are formulated, with power balance
considerations. Ultimately, the optimization problem is formulated
in this section, with the objective of minimizing operational costs
and electricity bills across the entire system.

3.1 Power demand side

The energy consumption of power supply equipment is
primarily composed of the energy consumption of servers and
UPS devices. The energy consumption of servers is linearly
determined by the computational load rate, which can be
expressed as follows:

λi,j,t � ζ interi,j,t +∑A

a
μbatcha,i,j,t ∀i, j, t( ) (1)

0≤ λi,j,t ≤Capi,j ∀i, j, t( ) (2)

∑Dbatch
a

tbatcha
μbatcha,i,j,t � ∑A

a
μbatchtotal,a ∀a ∈ A( ) (3)

Pservers
i,j,t ≤PUPS

rated,i,j ∀i, j, t( ) (4)

Furthermore, for each time slot i, the aggregate real-time power
of node j in the data center is:

Pservers
i,j,t � Mij × φserver

i,j × λi,j,t + Pidle

i,j
( ) ∀i, j, t( ) (5)

where φserver
i,j � Ppeak

i,j − P
idle

i,j
(6)

The power losses of UPS exhibit non-linear variations
contingent upon the load rate, which is decided by server power
and can be expressed as follows:

PLoss UPS
i,j,t � PLoss UPS

rated,i,j × a0 + a1 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

+ a2 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

⎛⎝ ⎞⎠
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∀i, j, t( )

(7)

where a0, a1 and a2 are constants decided by UPS type.
So the UPS input power is as follows:

PUPS
i,j,t � PLoss UPS

rated,i,j + Pservers
i,j,t ∀i, j, t( ) (8)

3.2 Power supply side

In each micro grid, servers and UPS units derive power from a
mix of solar and wind energy, conventional generators, and the
utility grid. Energy storage devices are deployed to stabilize
renewable energy variability and leverage daily electricity price
fluctuations, reducing overall costs.

Conventional generator unit commitment decision model can
be described as follows (Wang et al., 2012):

Punit
min ,i,l · ouniti,l,t ≤Punit

i,l,t ≤P
unit
max ,i,l · ouniti,l,t ∀i, j, t( ) (9)

−ouniti,l,t−1 + ouniti,l,t − ouniti,l,k ≤ 0

2≤ k − t − 1( )≤MUunit
i,l ∀i, j, t( ) (10)

ouniti,l,t−1 − ouniti,l,t + ouniti,l,k ≤ 1

2≤ k − t − 1( )≤MDunit
i,l ∀i, j, t( ) (11)

−ouniti,l,t−1 + ouniti,l,t + uunit
i,l,t ≤ 0 ∀i, j, t( ) (12)

ouniti,l,t−1 − ouniti,l,t + vuniti,l,t ≤ 0 ∀i, j, t( ) (13)
Punit
i,l,t − Punit

i,l,t−1 ≤ 2 − ouniti,l,t−1 − ouniti,l,t( ) · Punit
min ,i,l + 1 + ouniti,l,t−1 − ouniti,l,t( )

· URunit
i,l ∀i, j, t( )

(14)
Punit
i,l,t−1 − Punit

i,l,t ≤ 2 − ouniti,l,t−1 − ouniti,l,t( ) · Punit
min ,i,l + 1 − ouniti,l,t−1 + ouniti,l,t( )

· DRunit
i,l ∀i, j, t( )

(15)
ouniti,l,t , v

unit
i,l,t , u

unit
i,l,t ∈ 0, 1{ } ∀i, j, t( ) (16)

In the aforementioned equations, Eq. 9 outlines the generator
capacity constraint, Eqs 10 and 11 outlines the unit minimum-up/
down time constraints, Eqs 12 and 13 delineate the unit start-up and
shut-down constraints, while (14)–(15) specify unit ramping
up/down.
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The ESS can be described by the following equations:

ESi,t+1 � ESi,t + ηchari ·Pchar
i,t − ηdischari ·Pdischar

i,t ∀i, t( ) (17)
ESmin ,i ≤ESi,t ≤ ESmax ,t ∀i, t( ) (18)
Zchar
i,t ,Zdischar

i,t ∈ 0, 1{ } ∀i, t( ) (19)
Zchar
i,t + Zdischar

i,t ≤ 1 ∀i, t( ) (20)
0≤Pchar

i,t ≤Pchar
max ,i · Zchar

i,t ∀i, t( ) (21)

0≤Pdischar
i,t ≤Pdischar

max ,i · Zdischar
i,t ∀i, t( ) (22)

In the given equations, Eq. 17 characterizes the energy storage
condition for each time slot, determined by the charging and
discharging operations. Considering the conversion loss during
power charging and discharging, energy conversion efficiency is
incorporated in (17). Furthermore, the state of charge must fall
within the specified maximum and minimum energy storage
bounds, ensuring satisfaction of Eq. 18. Eqs 19 and 20
articulate the charge/discharge constraints, while (21)–(22)
describe the constraints on maximum charging/
discharging power.

Integrating the supply side and demand side, the power balance
constraints can be derived as follows:

Pgrid
i,t � ∑J

j
PUPS
i,j,t + ηchari ·Pchar

i,t − ηdischari ·Pdischar
i,t −∑L

l
Punit
i,l,t − PPV

i,t

− Pwind
i,t ∀i, t( )

(23)
Given the spatial and temporal variability of electricity, the

electricity bill within each micro grid can be formulated as:

Cgrid
i,t � Pgrid

i,t ·πgrid
i,t ∀i, t( ) (24)

The operational cost of conventional units is delineated in Eq.
25. As depicted in the equation, the operational cost of conventional
units comprises no-load cost, marginal cost, as well as start-up and
shut-down costs.

Cunit
i,t � ∑J

j
CUunit

i,l ·uunit
i,l,t + CDunit

i,l ·vuniti,l,t + COunit
i,l ·ouniti,l,t + CMunit

i,l ·Punit
i,l,t( ) ∀i, t( )

(25)

Also, since the proportion of renewable energy and thermal
power is different in different geographical location, the carbon
emission rate per kilo W hours is different. Furthermore, the
operation of conventional generators in each data center micro
grid also generate carbon dioxide. Therefore, the carbon emission in
each micro grid can be expressed by:

EMgrid
i,t � Pgrid

i,t ·egridi,t ∀i, t( ) (26)
EMunit

i,t � Punit
i,t ·euniti,t ∀i, t( ) (27)

Ccarbon
i,t � EMgrid

i,t +∑L

l
EMunit

i,l,t( ) · ρi,t ∀i, t( ) (28)

In the above equations, (26) describes the carbon emission
brought about by the electricity bought from the utility grid, (27)
describe the carbon of conventional generator, and (28) describe the
overall carbon tax in each data center micro grid.

3.3 Optimization problem

In order to address both the economic and environmental
impact of energy consumption in data centers, we consider the
operational cost and carbon emissions as optimization objectives
and use a carbon tax as a proportionality factor to transform the
bi-objective optimization problem into a single-objective
optimization problem. Hence, the optimization problem can be
formulated as follows:

min∑I

i�1∑
T

t�1 Cgrid
i,t + Cunit

i,t + Ccarbon
i,t( )

s.t.
(29)

λi,j,t � ζ interi,j,t +∑A

a
μbatcha,i,j,t ∀i, j, t( ) (30)

0≤ λi,j,t ≤Capi,j ∀i, j, t( ) (31)
∑Dbatch

a

tbatcha
μbatcha,i,j,t � ∑A

a
μbatchtotal,a ∀a ∈ A( ) (32)

Pservers
i,j,t ≤PUPS

rated,i,j ∀i, j, t( ) (33)
Pservers
i,j,t � Mij × φserver

i,j × λi,j,t + Pidle

i,j
( ) ∀i, j, t( ) (34)

φserver
i,j � Ppeak

i,j − P
idle

i,j
∀i, j( ) (35)

PLoss UPS
i,j,t � PLoss UPS

rated,i,j × a0 + a1 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

+ a2 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

⎛⎝ ⎞⎠
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∀i, j, t( )

(36)
PUPS
i,j,t � PLoss UPS

rated,i,j + Pservers
i,j,t ∀i, j, t( ) (37)

Punit
min ,i,l · ouniti,l,t ≤Punit

i,l,t ≤P
unit
max ,i,l · ouniti,l,t ∀i, j, t( ) (38)

−ouniti,l,t−1 + ouniti,l,t − ouniti,l,k ≤ 0, 2≤ k − t − 1( )≤MUunit
i,l ∀i, j, t( ) (39)

ouniti,l,t−1 − ouniti,l,t + ouniti,l,k ≤ 1, 2≤ k − t − 1( )≤MDunit
i,l ∀i, j, t( ) (40)

−ouniti,l,t−1 + ouniti,l,t + uunit
i,l,t ≤ 0 ∀i, j, t( ) (41)

ouniti,l,t−1 − ouniti,l,t + vuniti,l,t ≤ 0 ∀i, j, t( ) (42)
Punit
i,l,t − Punit

i,l,t−1 ≤ 2 − ouniti,l,t−1 − ouniti,l,t( ) · Punit
min ,i,l + 1 + ouniti,l,t−1 − ouniti,l,t( )

· URunit
i,l ∀i, j, t( )

(43)
Punit
i,l,t−1 − Punit

i,l,t ≤ 2 − ouniti,l,t−1 − ouniti,l,t( ) · Punit
min ,i,l + 1 + ouniti,l,t−1 − ouniti,l,t( )

· DRunit
i,l ∀i, j, t( )

(44)
ouniti,l,t , v

unit
i,l,t , u

unit
i,l,t ∈ 0, 1{ } ∀i, j, t( ) (45)

ESi,t+1 � ESi,t + ηchari ·Pchar
i,t − ηdischari ·Pdischar

i,t ∀i, t( ) (46)
ESmin ,i ≤ESi,t ≤ ESmax ,t ∀i, t( ) (47)
Zchar
i,t ,Zdischar

i,t ∈ 0, 1{ } ∀i, t( ) (48)
Zchar
i,t + Zdischar

i,t ≤ 1 ∀i, t( ) (49)
0≤Pchar

i,t ≤Pchar
max ,i · Zchar

i,t ∀i, t( ) (50)
0≤Pdischar

i,t ≤Pdischar
max ,i · Zdischar

i,t ∀i, t( ) (51)

Pgrid
i,t � ∑J

j
PUPS
i,j,t + ηchari ·Pchar

i,t − ηdischari ·Pdischar
i,t −∑L

l
Punit
i,l,t − PPV

i,t

− Pwind
i,t ∀i, t( )

(52)
Cgrid

i,t � Pgrid
i,t ·πgrid

i,t ∀i, t( ) (53)
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Cunit
i,t � ∑J

j
CUunit

i,l ·uunit
i,l,t + CDunit

i,l ·vuniti,l,t + COunit
i,l ·ouniti,l,t + CMunit

i,l ·Punit
i,l,t( ) ∀i, t( )

(54)
EMgrid

i,t � Pgrid
i,t ·egridi,t ∀i, t( ) (55)

EMunit
i,t � Punit

i,t ·euniti,t ∀i, t( ) (56)

Ccarbon
i,t � EMgrid

i,t +∑L

l
EMunit

i,l,t( ) · ρi,t ∀i, t( ) (57)

As indicated above, the optimization objective is to minimize
the system’s operational cost, comprising electricity costs,
operational costs of conventional units, and carbon taxes.
Constraints (30)–(37) pertain to the power demand side, while
constraints (38)–(52) ensure the functionality of the power
supply side. Eqs 53–57 detail the operational cost and carbon
emissions. The decision variables for the optimization problem
encompass the allocation of interactive and batch workloads, as
well as the operational schedule of energy storage systems (ESS)
and conventional generator units. The proposed resource
planning model is formulated as a mixed-integer linear
programming (MILP) problem.

4 Case study

In this section, a geo-distributed data center micro grid system
sample is created to assess the proposed methodology outlined in this
paper. All system modeling and solving algorithms are implemented in
the Gurobi platform (CPLEX, 2009), a widely employed tool for solving
binary programming or mixed-integer programming problems. The
simulations are executed on a desktop computer equipped with an Intel
Core i5-8400 CPU @ 2.80GHz and 8 GB memory.

4.1 Simulation setup

To separately verify the impact of UPS characteristics and multiple
data center scheduling on the optimization objectives, this study sets up
two simulation scenarios: one with a single data center to verify the effect
of UPS characteristics, and the other with multiple data centers to verify
the effectiveness of multiple data center scheduling and the proposed
approach. Within each micro grid, two conventional generators (one
coal-based and another gas-based), alongwith distributed solar andwind
generation units, are employed. Additionally, an energy storage system is
integrated. Thesemicro grids are interconnectedwith the utility grid, and
each micro grid serves as the power source for a designated data center.
In each data center, three UPS nodes supply power to servers. The
simulation encompasses three types of UPSs, and tomaintain simplicity,
the deployment of these UPS types is identical across the data centers,
meaning each data center features one of each UPS type. For ease of

representation, the type and number of servers powered by the UPS
nodes are also uniform. The system parameters are detailed in Tables
1–4. In the experiment, the time horizon T is set to be 24 h, which is the
maximum time to get a relatively accurate electricity price and
load status.

The attributes of conventional generation units and the energy

storage system are calibrated using data from ERCOT scheduling data

(Cao et al., 2019). Workload data is derived from Hu’s (Hu et al., 2021)

and Guo’s (Guo et al., 2019) research papers. For the simulation

scenario, it is assumed that the three data centers are located in

Texas, New York, and California. Real-time electricity price data,

solar and wind power output data are sourced from ERCOT

(ERCOT, 2023), CAISO (CAISO, 2023), and NYISO (NYISO,

2023), respectively. Furthermore, the proportion of coal and gas in

local electricity generation is collected from the website of U.S. energy

and information administration and listed in Table 5 (EIA, 2023).

4.2 Case study in single data center

To avoid potential interaction effects between the two proposed
improvements, we adopt the single-variable principle and conduct
simulations separately. Specifically, we first set up a simulation with
a single data center to verify the effectiveness of considering UPS
characteristics in the process of reducing the operational cost and
carbon emission. The simulation settings are as follows:

Case I. In a single data center, there are three groups of UPS with
different supply efficiency and energy consumption characteristics.
However, in the process of objective function calculating and
scheduling optimization, the impact of UPS characteristics is not
taken into account, and the computational workload is evenly
distributed among the three UPS.

Case II. In a single data center, there are three groups of UPS with
different supply efficiency and energy consumption characteristics. In
the process of objective function calculating and scheduling
optimization, the impact of UPS characteristics is taken into
account, and the computational workload is optimally distributed
among the three UPS.

4.3 Case study of multiple data center

To validate the effectiveness of the improvement that extending
the optimization from single data center to multiple data center and
takes the carbon tax and operational cost as dual-objective, we
conducted simulation of three data centers system and established
four scenarios as follows:

TABLE 1 Parameters of data centers.

UPS node Maximum capacity (MW) Number of servers UPS type

Node 1 15 6*104 1

Node 2 15 6*104 2

Node 3 15 6*104 3
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Case III. Three data centers are simulated, and the computational
workload is evenly distributed among them, and the optimization
objective is set to be the dual-objective of reducing the carbon tax
and operational cost. Furthermore, the UPS characteristics are not
considered in the process of objective function calculating and
scheduling optimization.

Case IV. Three data centers are simulated, and the computational
workload distribution among them is optimized, and the
optimization objective is set to be the single-objective of reducing
the carbon tax. Furthermore, the UPS characteristics are not
considered in the process of objective function calculating and
scheduling optimization.

Case V. Three data centers are simulated, and the computational
workload distribution among them is optimized, and the
optimization objective is set to be the dual-objective of reducing
the carbon tax and operational cost. Furthermore, the UPS
characteristics are not considered in the process of objective
function calculating and scheduling optimization.

Case VI. Three data centers are simulated, and the computational
workload distribution among them is optimized, and the
optimization objective is set to be the dual-objective of reducing
the carbon tax and operational cost. Furthermore, the UPS
characteristics are considered in the optimization.

By comparing Case III and Case V, it can be shown that multiple
data center scheduling has advantages over single IDC scheduling in
terms of energy saving and carbon emission reduction. By comparing
Case IV and Case V, it can be demonstrated that multi-objective

optimization is superior to its counterpart which takes the carbon
emission as the single optimization objective. By comparing Case V and
Case VI, it can be shown that the combination of the proposed
optimization methods can further improve the optimization results.

4.4 Result analysis

4.4.1 Result in single data center
The simulation results of Case I and Case II has been listed in

Table 6. As can be seen in the table, the total operational cost has
been reduced by 3.11%, and the carbon emission has been reduced
by 3.48%. The total cost which includes the operational cost and
carbon tax has been reduced by 3.24%.

To further demonstrate the impact of computation and UPS
characteristics on optimization results, we compared the distribution
of computing loads on UPS nodes between Case I and Case II, which
has been plotted in Figure 7. It can be observed that in Case I, the
computing load is evenly distributed, while in Case II, the computing
load is mostly distributed onUPS1 andUPS2, which have higher power

TABLE 2 UPS paramenters.

UPS
Types

Power loss equation parameters

a0 a1 a2

1 0.0086 0.0241 −0.0027

2 0.0241 0.0353 0.0617

3 0.0518 0.1787 0.0947

TABLE 3 Paramenters of conventional generator units.

Unit Fuel
type

High/Low
sustainable
limit (MW)

Ramp Up/
Down rate
(MW/h)

Minimum
Up/Down
time (h)

Initial
state

Initial
power
(MW)

Start-up/
Shut-
down

Cost ($)

No
load
Cost
($)

Marginal
Cost

($/MWh)

Unit 1 Gas 15/5 4/4 4/4 On 10 50 40 18

Unit 2 Coal 20/9 6/6 3/3 On 14 40 30 16

TABLE 4 Paramenters of energy storage system.

Maximum/Minimum
state (MWh)

Initial/Final
state (MWh)

Maximum charge/Discharge rate
(MW/h)

Charge/Discharge
efficiency

30/5 5 5 0.8

TABLE 5 Energy structure and carbon emission rate.

City Proportion of coal (%) Proportion of gas (%) Carbon emission Rate(kg/MWh)

Texas 16.75 52.05 381.55

New York 0.11 40.92 170.09

California 0.15 47.67 198.34
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supply efficiency and lower operating energy consumption. This
confirms that computation and UPS characteristics have an effect
on computing load distribution.

In order to further compare the carbon emissions, the hourly
carbon emissions of Case I and Case II were plotted in Figure 8.
It can be seen that after optimization (Case II), carbon emissions are
significantly reduced.

4.4.2 Result in multiple data center
The simulation results of Case III to Case VI has been listed

in Table. 7.
By comparing Case III and Case V, it can be shown that the

operational cost, carbon emission and total cost in Case V decreased
by approximately 12.7%, 10.5%, and 11.9% respectively, which has
proved that the workload scheduling among multiple data center
micro grids can bring about significant improvement in energy
consumption and carbon emission reduction compared to single
data center scheduling.

By comparing Case IV and Case V, it can be shown that the
carbon emission has decreased by 10.76% compared to Case V,
while the operational cost and total cost in increase 16.38% and
7.61% respectively, which has illustrated that the multi-objective
optimization can perform better than the single-objective
optimization.

Furthermore, by comparing Case V and Case VI, it can be
concluded that Case VI resulted in a decrease of approximately
4.93%, 0.32%, and 3.17% for the operational cost, carbon
emission, and total cost, respectively, compared to Case V.
This has proved that considering UPS characteristics in
the multiple data center scheduling can still reduce the
total costs and carbon emission, and the Case VI which has
adopted the proposed method performs better than any
other cases.

4.4.3 Application and shortcomings
The proposed method can be easily implemented in the existing

infrastructure without the need to add new hardware or change the
platform since the self-contained network devices can sufficiently
support the application of the proposed scheduling method.

Another difficulty that may hinder the application of our
method is the control of the micro grid devices and the
cooperative operation with data centers. However, the
development of communication technology and automatic
controllers makes such interaction conveniently (Cui, 2016).
Therefore, this difficulty can be easily overcome in implementation.

The servers in this paper are modeled to be of the same type.
However, in implementation, there are also data centers where the
servers are heterogeneous. This method may not be applicable to
heterogeneous data centers. The joint workload scheduling in
heterogeneous data centers can be further explored in the
future research.

5 Conclusion

This article proposes a dual-objective optimization method for the
operational cost and carbon emission of a multi-data centermicro grid
that considers the characteristics of Uninterruptible Power SuppliesT
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FIGURE 7
Computational workload distribution in (A) Case I, (B) Case II.

FIGURE 8
Hourly carbon emission in Case I and Case II.

TABLE 7 Comparision of simulation results in single data center.

Case I Case II

Operational Cost ($) Carbon Emission (kg) Total Cost ($) Operational Cost ($) Carbon Emission (kg) Total Cost ($)

6150.4 183300 9816.4 5959.8 176930 9498.53
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(UPS) and load flexibility. The article improves the energy
consumption model of UPS and fully utilizes the scheduling
flexibility of computing loads in time and space dimensions.
Carbon tax is used as a balancing criterion to compromise the
optimization objectives of carbon emission and operational cost,
achieving further optimization of both cost and carbon emission.
Simulation results indicate that the proposed method effectively
reduces operational costs by 4.93%–12.7%, decrease carbon
emissions by up to 10%, and lower total costs by 3.17%–11.9%.
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Robust fault recovery strategy for
multi-source flexibly
interconnected distribution
networks in extreme
disaster scenarios

Tang Baofeng*, He Lei, Zhou Lidong, Zhao Hongtao, Wang Kang
and Zhang Pengliang

State Grid XiongAn New Area Electric Power Supply Company, Xiong’an New Area, Hebei, China

To enhance the resilience of power distribution networks against extreme natural
disasters, this article introduces a robust fault recovery strategy for multi-source,
flexible interconnected power distribution networks, particularly under scenarios
of extreme disasters. Initially, the comprehensive risk of system failure due to ice
load on distribution lines and poles is fully considered, and a model for the overall
failure rate of lines is constructed. This model addresses the diverse failure
scenarios triggered by various meteorological conditions. Through the use of
information entropy, typical extreme disaster failure scenarios are identified, and
lineswith high failure rates under these scenarios are determined. Subsequently, a
box-type intervalmodel is developed to represent the uncertainty in the output of
distributed generation (DG), and on this basis, a robust fault recovery model for
multi-source power distribution networks interconnected through soft open
points (SOPs) is established, and use the Column and Constraint Generation
(C&CG) algorithm to solve the problem. Finally, the fault recovery model and
strategy proposed are validated through an illustrative example based on a
modified IEEE 33-node interconnected system.

KEYWORDS

extreme disasters, fault recovery, robust, soft open point, Column and constraint
generation

1 Introduction

In recent years, the frequency and intensity of extreme weather events, such as severe ice
and snow storms, hurricanes, and floods, have significantly increased (Nasri et al., 2022).
The complexity of their operating environments and the vulnerability of numerous
components to external conditions make distribution networks particularly susceptible
to these extreme weather phenomena, often resulting in widespread power outages (Jufri
et al., 2019). While existing research on power distribution network fault recovery has
predominantly focused on the electrical characteristics of the networks, it has largely
overlooked the comprehensive impact of meteorological conditions and natural disasters.
This includes a notable gap in integrating collected weather data with early warning systems
for accidents, which is crucial for enhancing response strategies and reducing the
vulnerability of these networks to such catastrophic events.
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To mitigate the impacts of extreme natural disasters on
distribution networks, scholars from around the world have
developed specific disturbance event models tailored to extreme
weather conditions (Dehghani et al., 2021). For example, Ref. (Zhou
et al., 2018). explored the influence of typhoon conditions on the
fault rates of distribution network lines, establishing a model that
correlates typhoon wind speed and direction with line fault rates.
Similarly, other research has formulated models to assess the fault
rates of distribution networks during severe ice, snow, and
earthquake conditions (Yang et al., 2020; Yan et al., 2021). In an
effort to bolster the resilience of distribution networks, researchers
have proposed a variety of response strategies, focusing on network
planning and operational scheduling. These strategies encompass
both preventive measures before disasters strike and recovery
actions post-disaster (Gazijahani et al., 2022). However, existing
research mainly focuses on post-disaster recovery measures aimed at
prioritizing the restoration of power supply to users. Although
traditional distribution networks can restore power supply to
outaged areas through network reconfiguration, their capabilities
are limited in cases of main network disconnection or multiple faults
caused by extreme disasters. According to the IEEE 1547-
2003 standard (Standards Coordinating Committee, 2003),
improving the reliability of power supply requires users to
implement local DG islanding operation under technical
compliance, to maximize the recovery of lost loads. Within this
framework, researchers are delving into post-disaster fault recovery
strategies for active distribution networks through various
innovative approaches. These include heuristic algorithms (Gao
et al., 2016), multi-agent systems (Li et al., 2020b), artificial
intelligence algorithms (Wang et al., 2018), and mathematical
programming methods (Li et al., 2019).

Regarding recovery strategies, Ref. (Yin et al., 2023). introduced
a novel approach for fault recovery in active distribution networks,
focusing on networks with reducible loads. Ref. (Liu et al., 2020).
developed a two-step fault recovery methodology that initially
reconfigures the main network before segmenting the remaining
unrecovered sections into isolated islands. Ref. (Li et al., 2020b).
further integrated the concepts of island partitioning and network
reconfiguration, presenting a comprehensive fault recovery strategy
for active distribution networks. Due to the uncertainty of DG
output that can affect the effectiveness of fault recovery, it is
necessary to consider this uncertainty in the active distribution
network fault recovery model. Common methods to handle this
uncertainty include interval optimization (Wang et al., 2020),
stochastic optimization (Lu et al., 2020), and robust optimization
(Chen et al., 2016). Robust optimization has been widely applied due
to its ability to operate without describing probability distributions,
with main solution methods including the Benders decomposition
method (Han Gao and Zhengshuo Li, 2021) and the C&CG
algorithm (Chuan He et al., 2017). Considering the uncertainty
of load and DG output, a two-stage robust fault recovery strategy
was proposed in (Zhao et al., 2020). Another study considered the
uncertainty of wind and photovoltaic unit output and proposed a
robust island recovery strategy for distribution networks using
electric vehicles as emergency dispatch resources (Chen et al., 2018).

However, the above fault recovery strategies have not effectively
modeled the fault rate of distribution networks under extreme
natural disasters, and thus cannot fully address the impact of

extreme natural disasters on distribution networks (Li et al.,
2023). Particularly, as a flexible power electronic device, the SOP
can provide necessary voltage support in the event of a fault,
effectively expanding the possibilities for fault recovery and
significantly enhancing the self-healing capability of the
distribution network (Ali Arefifar et al., 2023). This role was
verified in a study where the SOP was shown to play a key role
in the recovery of distribution system faults, significantly enhancing
the supply range and overall resilience of the system (Li et al., 2020a).
In light of this, the primary objective of this study is to bolster the
resilience of power distribution networks against extreme natural
disasters and to expedite the restoration of power to areas impacted
by outages. This research endeavors to investigate fault recovery
strategies for distribution networks under extreme weather
conditions. Through the lens of case study analysis, the efficacy
of the proposed model and strategies in quickly reinstating critical
loads within distribution networks under severe disaster scenarios
has been corroborated. The principal contributions of this paper are
delineated as follows:

(1) A model to predict fault rates in lines and poles under severe
weather conditions has been developed, employing the
information entropy method to pinpoint scenarios with an
increased likelihood of failure. This method effectively tackles
the myriad of fault scenarios arising in complex
meteorological conditions, thereby enhancing the reliability
of the distribution network.

(2) A comprehensive fault recovery model for a multi-sourced
distribution network, interconnected through the use of
SOPs, has been established. Tailored recovery strategies for
lines prone to frequent faults were devised, aiming for swift
restoration of service following power outages by
implementing pre-designed recovery plans in the event of
actual faults.

(3) A box-type interval model has been formulated to encapsulate
the uncertainty inherent in DG outputs. The advanced robust
fault recovery strategy, which prepares for the most adverse
DG output scenarios, outperforms traditional deterministic
approaches by offering enhanced recovery effectiveness and
greater resilience to the unpredictability in DG outputs.

The remainder of the paper is organized as follows: Section 2
involves the construction of a fault model and the filtration of fault
scenarios. Section 3 develops a robust fault recovery model for a
multi-sourced distribution network interconnected with SOPs.
Section 4 provides a detailed description of the solution
methodology. Section 5 conducts a case study analysis, and
Section 6 concludes the paper with a summary of its findings.

2 Fault model construction and
scenario filtering

2.1 Fault rate model

During extreme natural disasters, the ice load on power lines is
considered to gradually increase over time. When the ice layer
becomes overloaded, significant bending occurs in the line.

Frontiers in Energy Research frontiersin.org02

Baofeng et al. 10.3389/fenrg.2024.1345839

185

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1345839


Excessive bending deformation can lead to line breakage. The ice
overload or breakage of lines results in an increase in unbalanced
loads on the poles. If the acting load exceeds the pole’s maximum
load-bearing capacity, the crossarms may be damaged, leading to
bending and twisting of the pole itself, eventually causing breakage
and collapse.

2.1.1 Ice load on distribution lines
Many factors influence the ice load on distribution lines,

including the intensity and duration of the disaster, as well as the
distance from the center of the storm. By establishing a
mathematical model using a coordinate system with the root
node of the distribution feeder as the origin, the variation in ice
thickness over time for a particular segment of the line j can be
deduced and represented as Eqs 1, 2:

Lice xj, yj, t( ) � ∫
t

0
Arate exp −1

2

xj − μx t( )
σx

( )
2

+ yj − μy t( )
σy

( )
2

( )( )dt

(1)
μx t( ) � μx 0( ) + Vice cos θ( )t
μy t( ) � μy 0( ) + Vice sin θ( )t (2)

where Arate indicates the ice growth rate on the line, i.e., the change in
ice coverage per unit length of line per unit time, expressed as Eq. 3:

Arate �
−0.0277Dline +

���������������������
0.0277Dline( )2 + 1.088arate

√

0.0554
(3)

where arate is the ice growth rate factor, affected by disaster factors
such as temperature, wind speed, and precipitation rate, expressed as
Eq. 4:

arate � a0 + a1Ttemp + a2Vwind + a3Ppreci (4)

2.1.2 Ice load on tower
When considering the ice load on poles, several factors need to

be taken into account: the impact of wind on ice accumulation on
poles, the effect of the swaying of power lines hung on the poles, and
the calibration of more straightforward design equations. In the ice-
loading model for the tower-line system, the ice loads on insulator
strings and poles are relatively minor compared to their own
structural loads and can be neglected. Therefore, the focus is on
calculating the ice loads on the conductors and ground wires. The
unit ice load on power lines is as Eq. 5:

Gice t( ) � 0.0277Lice t( ) × Lice t( ) +Dline( ) (5)

The ice load exerted on the poles by the power lines hanging at
both ends primarily arises from the tension in the lines. In the case of
uniform, windless conditions, it’s necessary to calculate the vertical
load borne by the pole, as Eq. 6:

Gpole t( ) � Gice t( ) l1 + l2
2

+ Fl1h1
Gice t( )l1 +

Fl2h2
Gice t( )l2( )( ) (6)

where Fl1 and Fl2 represent the horizontal tension in the lines on
either side of the pole. l1 and l2 are the span lengths on both sides of
the pole. h1 and h2 denote the difference in height between the
suspension points on either side of the pole, with a positive value
indicating the neighboring pole is higher, and negative if it is lower.

2.1.3 Overall line fault rate
The aim of the component damage assessment method is to

evaluate how weather conditions affect various components of the
distribution network. The damage probability to the distribution
network from extreme natural disasters is represented by fault rate
curves, with the existing fault probability of distribution support
structures approximated as an exponential function using historical
data. The ice load ratio, described as the ratio of ice load to the design
load of the distribution network, is used in conjunction with the
relationships between line ice thickness, pole load, and line fault rate
to establish a mathematical model for line fault rate, as Eq. 7:

Pline
ice t( ) � alinee

ηline t( )
bline

Ppole
ice t( ) � apolee

ηpole t( )
bpole

⎧⎪⎪⎨
⎪⎪⎩

(7)

In severe weather conditions like ice and snow, multiple faults
can occur along most lines, and the fault rate of a distribution line
can be considered as the sum of the fault rates of each line and pole
along that line. To facilitate the simulation of multiple faults along a
line under extreme weather conditions, the lines can be divided into
multiple segments based on span length and then connected in
series. The overall fault rate of the line is given as Eq. 8:

Pfault.j t( ) � 1 − ∏
m

1 − Ppole
ice.j.m t( )( )∏

n

1 − Pline
ice.j.n t( )( ) (8)

2.2 Selection of typical fault scenarios

The primary impact of extreme weather on distribution
networks is manifested in the significant increase in line fault
rates and the occurrence of multiple line faults. Given the
multitude of distribution network lines and the vast number of
fault scenarios corresponding to different meteorological conditions,
each with varying line fault rates, it is feasible to select typical fault
scenarios based on their randomness. These scenarios can then
provide the line fault rates necessary for research on distribution
network fault recovery. Information entropy is a method used to
quantify the disorder in a system (Shannon, 1948). The selection of
typical fault scenarios based on the fault rates of distribution
network lines involves choosing scenarios with a high probability
of occurrence. The information entropy is represented as Eq. 9:

W � ∑
i∈Ωl

− log2 Pfault
j,t( )τj,t t ∈ Tice (9)

Each fault scenario corresponds to an τj,t vector, representing
the entropy value of the system under that scenario. The occurrence
probability of a typical fault scenario is relatively high, so its
information entropy W should not be too large or too small and
must satisfy the Eq. 10:

Wmin ≤ ∑
j∈Ωl

− log2 Pfault
j,t( )τj,t ≤Wmax

∑
t

τj,t ≤ 1

⎧⎪⎪⎨
⎪⎪⎩

t ∈ Tice (10)

By calculating the entropy values of the distribution network
under different scenarios and selecting typical fault scenarios based
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on reasonable entropy value limits, the fault lines corresponding to
these entropy values can be identified. These identified fault lines are
then used for the next step in the study of distribution network fault
recovery measures.

2.3 Fault recovery process for distribution
networks under extreme weather scenarios

The fault recovery process for distribution networks under
extreme weather scenarios is illustrated in Figure 1.

Step 1: Input meteorological parameters for the extreme weather
scenario and relevant data about the distribution network structure.

Step 2: Calculate the distribution of fault rates for each line
under the current meteorological parameters using the ice load-
based line fault rate model.

Step 3: Generate multiple fault scenarios by changing
meteorological parameters, and calculate the corresponding
entropy values using the information entropy formula.

Step 4: Determine whether the selected scenario is a typical fault
scenario. If it is, select the high fault rate lines in that scenario and
formulate a fault recovery strategy for them. if not, return to Step 2.

3 Robust fault recovery strategy for
multi-source distribution networks
interconnected with SOPs

3.1 Objective function

The objective is to minimize the sum of the load shedding amount,
network loss cost, and DG operating cost, which is represented as:

f � min
x

max
u∈U

min
h

⎡⎢⎢⎣λ1 ∑
i∈Ωn

1 − yi( )wlPi,load

+ λ2 ∑
ij∈Ωb

Isqrij Rij + ∑
i∈Ωn

aPi,DG
2 + bPi,DG + c( )⎛⎝ ⎞⎠⎤⎥⎥⎦ (11)

Analyzing Eq. 11, it’s evident that the objective function of the
proposed robust fault recovery strategy is a min-max-min problem: The
first layermin problemuses x as the decision variable, aiming to generate
a network topology with the least load shedding. The second layer max
problem uses u as the decision variable to find the worst-case fluctuation
scenario for DG injection power within the given uncertainty setU. The
third layer min problem uses h as the decision variable.

3.2 Constraints

The constraints of the robust fault recovery strategy include
power flow equations, system operational safety constraints, SOP
operation constraints, and radial network configuration constraints.
This paper constructs the distribution network branch power flow
equations based on the second-order cone programming model
proposed in literature (Farivar and Low, 2013), which include node
injected power balance Eq. 12 and branch voltage drop Eq. 13. The
specific forms are as follows:

(1) Node Injected Power Balance Equation

∑
ij∈Ωb

Pij − ∑
ki∈Ωb

Pki − RkiI
sqr
ki( ) � Pi

∑
ij∈Ωb

Qij − ∑
ki∈Ωb

Qki −XkiI
sqr
ki( ) � Qi

Pi � ~Pi,DG + Pi,SOP − yiPi,load

Qi � ~Qi,DG + Qi,SOP − yiQi,load
~Pi,DG � Pref

i,DG + ΔPi,DGεi, εi ∈ −1,+1[ ]
~Qi,DG � ~Pi,DG tan θ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀i ∈ Ωn (12)

(2) Branch Voltage Drop Equation

Usqr
i − Usqr

j � 2 PijRij + QijXij( ) − R2
ij +X2

ij( )Isqrij ,∀ij ∈ Ωb

Isqrij Usqr
i ≥P2

ij + Q2
ij,∀ij ∈ Ωb

{ (13)

During the fault recovery process, changes in the distribution
network topology necessitate the relaxation of the branch flow voltage
equation using the big-Mmethod.When a branch ij is open, i.e., xij = 0,

FIGURE 1
Fault recovery process of distribution network under extreme
weather scenarios.
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the branch flow voltage equation need not be satisfied. Conversely, when
a branch ij is closed, i.e., xij = 1, the branch voltage drop equation must
be strictly adhered to. The revised Eq. 13 is as follows:

Usqr
i − Usqr

j ≤M 1 − xij( ) + 2 PijRij + QijXij( ) − R2
ij +X2

ij( )Isqrij ,∀ij ∈ Ωb

Usqr
i − Usqr

j ≥ −M 1 − xij( ) + 2 PijRij + QijXij( ) − R2
ij +X2

ij( )Isqrij ,∀ij ∈ Ωb

Isqrij Usqr
i ≥P2

ij + Q2
ij,∀ij ∈ Ωb

⎧⎪⎪⎨
⎪⎪⎩

(14)

(3) System Operational Safety Constraints

System operational safety constraints include node voltage Eq. 15 and
branch capacity Eq. 16.Node voltage constraints ensure that the voltage at
each node remains within a safe operating range during the fault recovery
period. The constraint is represented as Eq. 15:

yi Umin
i( )2 ≤Usqr

i ≤yi Umax
i( )2 (15)

Branch capacity constraints ensure that the power in each branch
does not exceed limits. The constraint is represented as Eq. 16:

−�Pijxij ≤Pij ≤ �Pijxij∀ij ∈ Ωb

− �Qijxij ≤Qij ≤ �Qijxij∀ij ∈ Ωb

Isqrij ≤xij
�I
sqr
ij

⎧⎪⎨
⎪⎩ (16)

(4) SOP Operating Constraints

Pi,SOP + Pj,SOP + PL
i,SOP + PL

j,SOP � 0 (17)
����������������
Pi,SOP( )2 + Qi,SOP( )2

√
≤ Si,SOP (18)

�����������������
Pj,SOP( )

2 + Qj,SOP( )
2

√
≤ Sj,SOP (19)

PL
i,SOP � Ai,SOP

����������������
Pi,SOP( )2 + Qi,SOP( )2

√
(20)

PL
j,SOP � Aj,SOP

�����������������
Pj,SOP( )

2 + Qj,SOP( )
2

√
(21)

(5) Description of DG Output Uncertainty

Instead of representing DG output with a single deterministic
forecast value, a box-type interval model is constructed as Eq. 22:

U �
Pi,DG ∈ Pref

i,DG − ΔPi,DG, Pref
i,DG + ΔPi,DG[ ]

∑
i∈Ωn

Pi,DG − Pref
i,DG

∣∣∣∣
∣∣∣∣

ΔPi,DG
≤ ΓDG

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(22)

where ΓDG is the “uncertainty parameter” for the possible values of
the uncertain quantity, which can be chosen from the set {0, −1, 1}.

To contrast with the robust fault recovery model proposed in
this paper, a deterministic fault recovery model is established as
follows. The objective function of the deterministic model is to
minimize the load shedding amount, network loss, and DG
operating costs, specifically formulated as Eq. 23:

f � min⎡⎢⎢⎣λ1 ∑
i∈Ωn

1 − yi( )wloadPi,load + λ2⎛⎝ ∑
ij∈Ωb

Isqrij Rij

+ ∑
i∈Ωn

aPi,DG
2 + bPi,DG + c( )⎞⎠⎤⎥⎥⎦ (23)

The constraint conditions, aside from the node injected power
balance constraint, are the same as those in the robust fault recovery
model. In the deterministic recovery model, the uncertainty of DG
output is not considered, and the node injected power balance Eq. 12
is modified to Eq. 24:

∑
ij∈Ωb

Pij − ∑
ki∈Ωb

Pki − RkiI
sqr
ki( ) � Pi

∑
ij∈Ωb

Qij − ∑
ki∈Ωb

Qki −XkiI
sqr
ki( ) � Qi

Pi � Pi,SOP + Pi,DG − yiPi,load

Qi � Qi,SOP + Qi,DG − yiQi,load

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

,∀i ∈ Ωn (24)

In summary, the objective function of the robust fault
recovery model proposed in this paper is represented by
Formula 11, with constraints including node injected power
balance Eq. 12, branch voltage drop Eq. 14, node voltage Eq. 15,
branch capacity Eq. 16, SOP operating Eqs 17–21, and DG
uncertainty set (22). This model is a two-stage robust
optimization form of a min-max-min problem with certain
constraints and belongs to a large-scale combinatorial
optimization problem, which is challenging to solve directly.
The robust fault recovery model Eqs 11–22 and the
deterministic model Eqs 13–21, 23, 24 provide a
comprehensive framework for addressing fault recovery in
power distribution networks under uncertain conditions.

4 Model transformation and solution

4.1 Compact form of the model

To better illustrate the algorithm’s process, the two-stage robust
optimization model Eqs 11–22 are integrated into the following
compact form:

min
x
max
u∈U

min
h∈F x,u( )

bTh (25)
s.t. Ax ≤ b (26)
Bx � d (27)

F x, u( ) � h ∈ Sh: Ch≥ Ex,Dh � u
Glh‖ ‖≤ gTl h,∀l � 1, . . . , m

{ (28)

Model Eqs 25–28 present a two-stage optimization problem that
is challenging to solve directly. To address this, the C&CG algorithm
is employed to decompose the two-stage robust optimization model
into a master problem and sub-problems, which are then solved
iteratively.

4.2 Master problem

The master problem decides the network topology under the
condition that the output power of each DG unit, u*l , is already
determined. The expression for the master problem is:

MP: min
x,η

η (29)
s.t. Ax ≤ b (30)

η≥ bThl,∀l≤ k (31)
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Ex ≤Cl,∀l≤ k (32)
Dyl � u*

l ,∀l≤ k (33)
Gih

l ≤ gTi h
l, i � 1, . . . , m,∀l≤ k (34)

A real variable η is introduced to replace the max-min problem
in Eq. 25, and Eq. 31 is added to obtain a relaxed problem as shown
in Eqs 29–34.

4.3 Subproblem

The subproblem, solved after determining the network topology
in the first phase, finds the worst-case fluctuation scenario of
distributed generation u*l . The subproblem is described as
Eqs 35–37:

SP: Q x*( ) � max
u∈U

min
h∈F x*,u( )

bTh (35)
s.t.Ch≥Ex* (36)
Dh � u (37)

Glx‖ ‖≤ gTl x,∀i � 1, . . . , m (38)

The subproblem is a max-min, two-layer optimization problem,
which is difficult to solve directly. To address this, dual theory is applied
to transform the innermin problem into its correspondingmax problem,
which is then combined with the outer max problem to form a single-
layer max problem. The transformed subproblem expression is:

Q x*( ) � max
u,πl ,π2 ,wi ,λi

Ex*( )Tπ1 + uTπ2 (39)

s.t.CTπ1 + DTπ2 +∑
i

Giwi + g iλi( ) � b (40)

wi‖ ‖2 ≤ λi, i � 1, . . . , n (41)
where π1, π2 are the dual variables for Eqs 36, 37. (wi, λi) is the dual
variable for Eq. 38.

The objective function of the subproblem (39) contains the
nonlinear, bilinear term uTπ2, which needs to be processed for
easier solving of the model. The big-M method can be used to
linearize uTπ2 as follows:

uTπ2 � ∑
s

usπ2,s � ∑
s

gs

gs ≤ π2,s

gs ≤Mus

gs ≥ π2,s − 1 − us( )M
gs ≥ 0
us ∈ 0, 1{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

where gs is a new variable introduced, which represents the dot
product of the corresponding elements of the variables u and π2.

4.4 C&CG algorithm

The basic principle of robust optimization is to transform the
original robust optimization model into a two-stage optimization
problem, which is then solved using the C&CG algorithm. The
algorithm iteratively solves the master and subproblems, adding the
columns generated by the subproblem to the constraints of the

master problem. The optimal result is output when both the upper
and lower bounds meet the convergence precision. The model-
solving process of the C&CG algorithm is illustrated in Figure 2.

The specific iterative process is as follows:
Step 1: Initialize data, set the upper and lower bounds of the

objective, let LB � −∞, UB � +∞, k = 0, and set O as an empty set.
Step 2: Solve the master problem Eqs 29–34, obtaining the

optimal solution (xk+1* , ηk+1* , h1*, ..., hk*), and update the lower
bound LB � ηk+1* of the original problem.

Step 3: Substitute the given x � xk+1* from the master problem
into the subproblem Eqs 39–42, solve the worst-case scenario uk+1* and
the optimal objective function value Q(xk+1* ), and update the upper
bound UB � min UB,Q(xk+1* ){ } of the original problem.

Step 4: Check if the convergence condition UB − LB≤ ε is met. If
yes, the iteration is complete, and the current optimal solution is
output. If not, proceed as follows:

(1) If Q(xk+1* )< +∞, create a new decision variable hk+1, add the
Eq. 43 to the master problem Eqs 29–34:

η≥ bhk+1

Ex ≥Chk+1

Dhk+1 � uk+1*

Gih
k+1""""

""""≤ gTi h
k+1

(43)

where uk+1* is the optimal value from Step 4). Set k � k + 1,
O � O ∪ k + 1{ }, and return to Step 2.

(2) If Q(xk+1* ) � +∞, create a new decision variable yk+1, add the
Eq. 44 to the master problem:

Ex ≥Chk+1

Dhk+1 � uk+1*

Gih
k+1""""

""""≤ gTi h
k+1

(44)

Update the constraint set accordingly. Set k � k + 1 and return
to Step 2.

5 Case analysis

To analyze the fault recovery of distribution networks under extreme
weather scenarios, a test was conducted using an interconnected
distribution system based on SOPs. This system consists of three
IEEE 33-node systems interconnected with SOPs (Yuduo Zhao et al.,
2022). The initial topology, as shown in Figure 3, illustrates that the tie
switches, represented by dashed lines, are initially open. A coordinate
system is established with node 1 of Distribution Network A as the
origin. The load data and line impedance for each IEEE 33-node system
are referenced from (Shaheen et al., 2021).

Following the method proposed in (Lu Zhang et al., 2018), the
positions for integrating DG and SOPs were determined. Four DG
units were integrated into Distribution Network 1 at nodes 9, 14, 17,
and 27, each with a predicted active power output of 150 kW and a
power factor set at 0.9 (Zhu et al., 2017). The loads were classified
according to their importance levels, with each load level and its
corresponding weight settings presented in Table 1. SOP1 was
connected between nodes a12 and a22 of Distribution Network 1,
SOP2 between node a18 of Distribution Network 1 and node b18 of
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Distribution Network 2, and SOP3 between node a28 of Distribution
Network 1 and node c28 of Distribution Network 3. All SOPs were
set with a capacity of 200 kVA and a loss coefficient of 0.02. The
permissible voltage fluctuation range at the nodes was set between
0.95 and 1.05 p.u. In the objective function, λ1 and λ2 were set to
100 and 1, respectively.

The effectiveness of fault recovery was assessed using the load
recovery rate, defined as the ratio of the restored load to the total
load lost before restoration. The recovery rates for primary,
secondary, and tertiary loads were denoted as σ1, σ2, σ3 with the
total load recovery rate also represented by σs. This case study aims
to evaluate the performance of the proposed fault recovery strategies

FIGURE 2
Model solving process of C&CG algorithm.

FIGURE 3
Modified IEEE 33-node distribution system based on SOP interconnection.

Frontiers in Energy Research frontiersin.org07

Baofeng et al. 10.3389/fenrg.2024.1345839

190

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1345839


in restoring different levels of loads in the interconnected
distribution network under adverse weather conditions.

5.1 Line fault rate analysis in typical
fault scenarios

In the simulated scenario, the distribution network is under
snowstorm conditions with an ambient temperature of −5°C, wind
speed of 10 km/h, and precipitation rate of 40 mm/h. The center of the
snowstorm, located at coordinates (−150 km, −150 km),moves towards
the distribution network at a speed of 4.2 km/h in the 45° direction
along the x-axis. The climate impact radius R is set at 130 km, with R
values of 0.4 for line ice coverage fault rate, 0.18 for line fault rate, and
0.1 for pole ice coverage fault rate, increasing to 0.46 and 0.43,
respectively, as conditions worsen. Over time, both the ice thickness
and the line-pole fault rates change. Figure 4 illustrates the ice thickness
and line-pole fault rates for this fault scenario.

Figure 4A shows that as the snowstorm center moves closer to
the distribution network, the ice layer thickness on the lines rapidly
increases. Figure 4B indicates that with the increase in ice layer
thickness, the fault rates of lines and poles first experience a slow
growth, then the line fault rate exhibits an exponential increase after
20 h, and the pole fault rate rises rapidly after 30 h. Line breakage
may occur if the ice thickness exceeds the line’s load-
bearing capacity.

By varying environmental temperature, precipitation rate,
snowstorm center location, and movement speed, various
extreme ice and snow disaster scenarios can be simulated. The
entropy value corresponding to each scenario can be calculated

using Eq. 9, with the probability distribution of the system’s
information entropy shown in Figure 5. The higher the
probability of occurrence of an entropy value, the more likely the
scenario is considered a typical fault scenario.

For this simulation, the fault rates of each line in Distribution
Network 1 are shown in Figure 6. The entropy value calculated for
this scenario using Eq. 9 is 14.71. According to Figure 5, this entropy
value has a high probability of occurrence, marking it as a typical
extreme ice and snow fault scenario. Figure 6 reveals that Lines 1
(a1-a2) and 18 (a2-a19) in Distribution Network 1 have higher fault
rates than other lines, indicating that these lines are relatively
vulnerable within the system and more prone to faults due to ice
and snow disasters. Consequently, the fault recovery strategies
proposed in this paper will be applied specifically to these two
high-fault-rate lines to formulate fault recovery plans.

TABLE 1 Grade and weight of load.

Load level Node number Total load/kW Load weight

Primary load 1–3, 9–11, 14, 32, 33 745 100

Secondary load 4, 5, 12, 15, 18–21, 25, 26, 29 1260 10

Tertiary load 6–8, 13, 16, 17, 22–24, 27, 28, 30, 31 1710 1

FIGURE 4
Icing thickness curve and line-tower failure rate. (A) Icing thickness curve; (B) Line-tower failure rate.

FIGURE 5
Entropy probability distribution.
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5.2 Impact of SOP integration on fault
recovery effectiveness

For Distribution Network 1, Lines 1 and 18 were selected as fault
lines, leading to the cessation of all loads from nodes a2 to a33,
resulting in a substantial active power loss of up to 3715 kW. To
analyze the impact of SOP integration on fault recovery, three SOP
integration scenarios were tested:

Scenario 1: Fault recovery through internal SOP1 and network
reconfiguration in Distribution Network 1. Scenario 2: Based on
Scenario 1, connecting Distribution Network 2 through SOP2.
Scenario 3: Based on Scenario 1, connecting Distribution
Networks 2 and 3 through SOP2 and SOP3, respectively.

The fault recovery effects for these three scenarios are shown
in Table 2.

Table 2 reveals that Scenario 1 has the lowest total load recovery
rate at 31.89%. This is due to the disconnection of Distribution
Network 1 from the main power source, with the required active
power for loads being supplied only by internal DG and transmitted
through internal SOP1, which also provides reactive power
compensation. The fault recovery capacity in this scenario is
limited. Comparing Scenarios 1 and 2, the total load recovery
rate in Scenario 2 increases to 45.09%, indicating that connecting
Distribution Network 1 with Network 2 through SOP2 allows
flexible power transmission control, restoring more lost loads.
Scenario 3 has the highest total load recovery rate at 55.31%, as
the faulted distribution network is interconnected with Networks B
and C through two SOPs, allowing two power sources to support
power restoration in the outage area. However, not all loads are

restored under this SOP capacity, as the capacity of SOP influences
its power flow transfer ability and consequently affects the fault
recovery outcome.

To analyze the impact of SOP capacity, Scenario 3 was tested
under four different SOP capacities: 200, 400, 600, and 800 kVA, and
the fault recovery conditions and SOP output powers were assessed.
The influence of SOP capacity on fault recovery effectiveness is
shown in Table 3.

As indicated in Table 3, as the integrated SOP capacity in the
system increases, the fault recovery capability of the distribution
network continuously strengthens. With a single SOP capacity of
200 kVA, the total load recovery rate is relatively low at 55.31%, with
a primary load recovery rate of only 63.75%, indicating poor
recovery effectiveness. At 400 kVA, the total load recovery rate
improves to 72.01%, with primary loads fully restored, and a slight
increase in the tertiary load recovery rate. At 600 kVA, nodes a7 and
a25 are restored, with a high total load recovery rate of 88.69%,
including 100% recovery for primary and secondary critical loads.
With 800 kVA, the total SOP capacity accounts for 64.60% of the
load power, with strong power flow transfer capability, resulting in
the restoration of all lost loads.

The active power outputs of SOPs under four different capacities
are shown in Figure 7.

Figure 7 shows that for all four SOP capacities, the active power
of VSC a12 in Distribution Network 1 is negative, while VSC a22’s
is positive, indicating that the active power flow on the SOP is from
node a12 to node a22. After Distribution Network 1 is
disconnected from the main power source, VSC a12 obtains
electrical energy from nearby DGs at nodes a9 and a14. VSC
a22, lacking nearby DG resources, receives active power
transmitted through SOP1 from node a12 to restore the lost
loads 19–22. For SOP2 connecting Distribution Networks 1 and
2, the active power of VSC a18 is positive, and that of VSC b18 is
negative, indicating active power flow from Network 2’s node
b18 to Network 1’s node a18. Similarly, SOP3 injects active power
fromDistribution Network 3 into Network A’s node a28 to provide
electricity for the lost loads.

5.3 Impact of DG injection power on fault
recovery effectiveness

Considering that the integration of DG changes the system’s
power flow distribution and affects the fault recovery outcome, this
section analyzes the impact of DG integration on fault recovery.
Based on the integration of three 200 kVA SOPs, a comparative
analysis was conducted with different levels of DG injection power.

FIGURE 6
Failure rate of each line.

TABLE 2 Fault recovery effect of distribution network under three schemes.

Scheme Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

Before recovery 2–33 3715 0 0 0 0

1 2–4, 7, 8, 14, 19, 23–25,29–32 2530 30.20 40.47 26.31 31.89

2 7, 8, 14, 24, 25, 29–32 2040 55.70 57.14 31.58 45.09

3 7, 8, 24, 25, 31–33 1660 63.75 66.67 43.27 55.31
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The fault recovery effects under varying DG injection power levels
are presented in Table 4.

Table 4 shows that with the increase in DG injection power,
the total load recovery rate correspondingly rises from 55.31% to
100.0%. When the DG injection power is 150 kW, only 63.75% of
primary load can be restored, indicating low power supply
reliability. At a DG injection power of 225 kW, the recovery
rate of primary load increases from 63.75% to 100%, and the
recovery rates of secondary and tertiary loads also rise. With
300 kW of DG injection power, primary and secondary critical
loads are fully restored, and the tertiary load recovery rate
increases to 73.10%. At 375 kW, DG within the Distribution
Network 1 accounts for 40.38% of the total load power, enabling
the recovery of all loads. Thus, it is evident that DG injection
power plays a positive role in fault recovery. DG injection power
can locally meet the demands of nearby loads, enabling more
loads to be restored.

5.4 Comparison of recovery effects between
two fault recovery strategies

Todemonstrate the effectiveness of the robust fault recovery strategy
for distribution networks proposed in this paper, a comparison of fault
recovery effects between deterministic and robust strategies was
conducted. In the deterministic recovery strategy, DG power remains
at the forecasted value, while in the robust strategy, DG output fluctuates
within the range of an uncertainty set. With a single SOP capacity of
200 kVA and the same parameter settings, the fault recovery effects of
the two strategies are shown in Table 5.

As evident from Table 5, the recovery effect of the robust strategy is
superior to that of the deterministic strategy. The deterministic strategy,
which bases the network topology on the predicted values of DG, has
weaker adaptability to uncertainties, resulting in a lower total load
recovery rate of only 55.31%. In contrast, the robust strategy,
considering the worst-case DG output samples, achieves an improved

TABLE 3 Effect of SOP capacity on fault recovery.

SOP capacity/kVA Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

200 7, 8, 24, 25, 31–33 1660 63.75 66.67 43.27 55.31

400 7, 24, 25 1040 100 66.67 63.74 72.01

600 24 420 100 100 75.44 88.69

800 -- 0 100 100 100 100

FIGURE 7
Active power output of SOP.

TABLE 4 Fault recovery effect under different DG injection Power.

Injected power of DG/kW Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

150 7, 8, 24, 25, 31–33 1660 63.75 66.67 43.27 55.31

225 7, 8, 20–22, 24 1090 100 85.71 46.78 70.66

300 7, 8, 16 460 100 100 73.10 87.62

375 -- 0 100 100 100 100
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total load recovery rate of 61.78%. Furthermore, it ensures 100% recovery
of primary loads, though the recovery rate of secondary loads is slightly
reduced. It is apparent that the proposed robust strategy yields better
recovery results than the deterministic strategy and possesses a superior
ability to adapt to the uncertainties in DG output.

To verify the scalability of the proposed method in large-scale actual
systems, an analysis was conducted using a 234-node system
interconnected by SOPs. This system consists of three 78-node
systems interconnected through SOPs (Ji et al., 2023). In Distribution
Network A, 7 DGs were connected at nodes 5, 24, 29, 47, 52, 60, and 78,
with each having a forecasted active power of 150 kW and a power factor
set to 0.9. SOP1 connects to Distribution Network A at nodes a22 and
a59, SOP2 connectsDistributionNetworkA at node a18 andDistribution
Network B at node b18, and SOP3 connects Distribution Network A at
node a28 and Distribution Network C at node c28, with each having a
capacity set to 1000kVA and a loss coefficient of 0.02. Two fault recovery
strategies, deterministic recovery strategy and robust recovery strategy,
were compared. Table 6 presents the recovery effects of the two fault
recovery strategies under the same fault location and parameter settings.

From Table 6, it is evident that the robust strategy still outperforms
the deterministic strategy in terms of load recovery effectiveness. The
deterministic strategy exhibits a weaker adaptability to the uncertainty
of DGs, with a total load recovery rate of 76.08%. In contrast, the robust
strategy achieves an improved total load recovery rate of 81.38%, with
critical loads being fully restored to 100%. Thus, in large-scale actual
systems, the proposed robust strategy can achieve better recovery
outcomes than the deterministic strategy.

6 Conclusion

To enhance the distribution network’s capability to copewith extreme
ice and snow disasters, this paper proposes a robust fault recovery strategy
formulti-source distribution networks under extremeweather conditions.
Simulation analyses were conducted on systems with modified IEEE 33-
node interconnected by SOPs, leading to the following conclusions:

(1) For lines with a high fault rate under typical extreme ice and
snow disaster scenarios, pre-established fault recovery
strategies enable the rapid restoration of lost loads after
actual faults occur, thus improving the distribution
network’s ability to handle extreme ice and snow disasters.

(2) The proposed fault recovery strategy makes full use of the flow
control capabilities of SOPs and the power support of DGs.

The coordination of SOPs with network reconstruction
effectively restores power supply to lost loads, enhancing
the fault recovery capability of the distribution network.

(3) The proposed strategy accounts for the uncertainty of DG
output, demonstrating superior adaptability to the
uncertainties of DG output compared to deterministic strategies.

Future research focuses only on fault scenarios related to ice and
snow weather disasters. It will be more practically significant to
consider a wider range of fault scenarios in future studies.
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TABLE 5 Fault recovery effect of two fault recovery strategies.

Strategy Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

Deterministic strategy 7, 8, 24, 25, 31–33 1660 63.75 66.67 43.27 55.31

Robust strategy 7, 8, 21, 22, 24, 25 1420 100 59.52 46.78 61.78

TABLE 6 Fault recovery effect of two fault recovery strategies.

Strategy Loss of electric power node Load shedding/kW σ1/% σ2/% σ3/% σs/%

Deterministic strategy 34, 35, 53, 57, 58, 69, 70, 76 1850.6 91.33 53.69 91.17 76.08

Robust strategy 34, 35, 50, 53, 57, 58 1440.4 100 59.96 91.17 81.38
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Nomenclature

Indices

Ωl Set of distribution network lines

Ωn Set of all load nodes

Ωb Set of all branches

U Set of uncertainties for dg output

k Number of iterations

Parameters

Lice(xj , yj , t) Ice load on the line j

(xj , yj) Coordinate of line j

Vice Movement speed of the snowy weather

Arate Ice growth rate on the line

Dline Outer diameter of the line

arate Ice growth rate factor

Ttemp Ambient temperature

Vwind Wind speed

Ppreci Precipitation rate

a0 , a1 , a2 , a3 Constant

Lice(t) Thickness of ice covering the line

Dline Outer diameter of the line

Mline Design ice load of the line

aline , bline Constants used to calibrate the line ice fault rate and ice load ratio

wl Weight coefficient of loads to distinguish between primary,
secondary, and tertiary loads

Pi,load Active load demand at node i

Rij Resistance of branch ij

a, b, c Cost coefficients of DG operation

Rki ,Xki Resistance and reactance of branch ki

Rij ,Xij Resistance and reactance of branch ij

�Pij Maximum active power limit of branch ij

�Qij Maximum reactive power limit of branch ij

�Isqrij Square of the maximum allowable current in branch ij

λ1 , λ2 Weighting coefficients of the objective function

Variables

(μx(t), μy(t)) Coordinates of the blizzard center changing over time t

σx , σy Load parameters corresponding to the x and y axes of the line,
respectively

Pline
ice (t) Line ice fault rate

ηline(t) Line ice load ratio

Pf ault.j(t) Fault rate of line j

Ppole
ice.j.m(t) Fault rate of the m-th pole of line j

Pline
ice.j.n(t) Fault rate of the n-th span of line j

W Information entropy

Tice Time taken for the disaster to pass through the distribution network
area

Pfault
j,t

Fault rate of line j at moment t

τj,t Whether a fault occurs on line j at moment t, with 1 for a fault and
0 otherwise

x Binary variables

xij On-off status of branch ij and yi indicating the load status of node i

u Uncertain variable of DG output

h A vector of continuous variables related to distribution network flow
optimization

Isqrij Square of the current magnitude in branch ij

Pi,DG Active output of DG at node i

Pij ,Qij Active and reactive power flowing through branch ij, respectively

Pki,Qki Active and reactive power flowing through branch ki, respectively

Isqrki Square of the current magnitude in branch ki

Pi,Qi Active and reactive power injections at node i

~Pi,DG , ~Qi,DG Actual active and reactive power outputs of the DG at node i

Pi,SOP ,Qi,SOP Active and reactive power outputs of the SOP at node i

PDG,ref
i

Predicted DG output

ΔPi,DG Variation in output due to uncertainties

tan θ Tangent of the power factor angle

Usqr
i Square of the voltage magnitude at node i

Usqr
j Square of the voltage magnitude at node j

PL
i,SOP ,P

L
j,SOP Active power losses at nodes i and j for the SOP.

Pi,DG ,Qi,DG Active and reactive power outputs of the DG at node i

x First-layer optimization variables

u Second-layer optimization variables

h Third-layer optimization variables

η Auxiliary variable of the C&CG algorithm
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1 Introduction

With the widespread utilization of distributed renewable energy and flexible power
electronics devices in power distribution networks, the paradigm and characteristics of
active distribution networks (ADNs) have undergone profound changes as the traditional
radial electricity network will be transformed into multi-layer, multi-ring, AC-DC hybrid
networks (Wang et al., 2019). Meanwhile, the unpredictable and intermittent nature of
distributed wind and photovoltaic generation poses formidable challenges, hindering the
efficient utilization of distributed energy resources (DERs). Furthermore, the renewable-
dominated ADNs are usually vulnerable to extreme climate events, such as rainstorm,
floods, blizzards and forest fires (Shi et al., 2022; Hua et al., 2023; Cao et al., 2024). Such
events generally cause sustained faults of distribution system and renewable energy
components, and various renewable energy units with power electronic converters will
increase fault currents of distribution networks, resulting in voltage drop, network isolation,
or even electricity outages (Khodayar et al., 2014; Ma et al., 2018; Yang et al., 2022).With the
increasing penetration level of distributed energy storage (Fang et al., 2023) and electric
vehicles (Khatami et al., 2020), the support capability of these flexibility resources can be
used for improving the power supply quality and system resilience of active distribution
networks. Hence, this investigation aims to offer insightful perspectives and discussions on
the resilient operations of ADNs with diversified flexibility resources under extreme events.

The main contributions of this work can be twofold as listed: (1) A cellular architecture
of ADNs is presented for renewable energy accommodation and interactive emergency
support to enhance multi-microgrid resilience with diversified flexibility resources, and a
two-stage resilient model including pre-event preparation and post-disaster restoration is
formulated to decrease the load curtailment cost; (2) A multi-level distributed control
strategy based on alternating direction method of multipliers (ADMM) is presented to solve
the proposed two-stage model of cellular ADNs, thereby autonomous resilient operations
and privacy preservation of multi-microgrids can be achieved.

2Cellular architecture of active distribution networks
with high renewables

With the growing grid-integration of distributed renewable energies and plug-and-play
loads in traditional distribution networks, a series of operational issued are emerged, such as
unbalanced three-phase power, voltage sag, transformer overload (Awad et al., 2021; Vijay
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et al., 2021). The morphology of “cellular architecture” would be an
efficient way to solve these electrical issues of future distribution
networks. Cellular architecture of active distribution networks is a
set of adjustable hexagonal feeder grids for fine-grained point-to-
point power transport control of the ADN system with soft open
points (SOPs), and then the economy and reliability of ADN
operation can be improved. The unit in the cellular architecture
of ADNs is actually an autonomous microgrid system, with high
reliability of power supply and integration of flexible renewable
energy (Wang et al., 2022).

In the cellular architecture of ADNs, heterogeneous microgrids
are interconnected with each other with SOPs and smart
information exchange stations (SIESs) (Zhou B. et al., 2021a) to
improve the operational flexibility and efficient accommodation of
DERs, as shown in Figure 1A. In each microgrid, DERs can be
converted and regulated by various converters (Xiao et al., 2023) and
storages to mitigate fluctuating renewable generations. The
microgrid with surplus renewable energy can directly share with
other microgrids, while the microgrid can be injected with energy
support from others. Besides, communication techniques among
microgrids can be performed by SIESs through the advanced
measuring instruments and optical fiber deployed at the engaged
sites (Cao et al., 2021). SIESs are designed as interfaces to coordinate
the operation of multiple autonomous microgrids with DERs in
cellular ADNs, and only informs the dispatch center on the total
amount of surplus/deficit energy (Zhou B. et al., 2021a). Though the
decentralized structure and coordinated operation, the
intermittency and volatility of DERs within cellular ADNs can
then be accommodated by diversified flexibility resources such as
distributed energy storages and electric vehicles, and then power
transmission losses and renewable energy curtailments can be
alleviated.

The resilience of ADNs is generally used to assess the system
capability for withstanding and recovering from significant energy
outages under extreme weather events (Chen et al., 2017a). The
resilient operation of cellular ADNs can rapidly disconnect
microgrids from the main grid so as to protect power
components from upstream disturbances, or to shield voltage
sensitive loads from sudden voltage drops (Shi et al., 2022).
Under the coordinated control of SIES, SOPs have the potential
to island the microgrid from interferences such as failures or power
quality incidents. After islanding, the reconnection of microgrids
can be performed autonomously during fault recovery phase (Llaria
et al., 2011). If the microgrid is partly damaged after a major outage,
the SIES will restore energy supply services to emergency and
nonemergency loads sequentially using dispatchable DERs such
as mobile power sources (MPS) (Li C. et al., 2022a) and energy
storages. Cellular ADNs can also be resynchronized with the main
grid and shift from island mode to grid-connected mode after
extreme events. Therefore, the cellular ADN structure can offer
an effective and efficient way to utilize diversified flexibility
resources to accommodate renewable energy and enhance system
resilience.

3 Autonomous resilient operations of
distribution networks under
extreme climates

Generally, cellular ADNs are vulnerable to extreme climates and
then lead to serious power outages and huge economic losses. A
conceptual resilience curve related to an extreme weather is shown
in Figure 1B to represent pre-disturbance, post-disaster degraded
and post-disaster restorative stages for distribution networks (Shi

FIGURE 1
The proposed architecture, model and distributed control strategy for cellular ADNs. (A) Typical architecture of cellular ADNs (B) Two-stage
resilience enhancement model (C) Multi-level distributed control strategy for cellular ADNs.
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et al., 2022). In this paper, a two-stage resilience dispatch model is
proposed to facilitate the pre-disaster prevention and post-disaster
recovery of cellular ADNs. In the first stage, MPSs, SIES and SOPs
are optimally scheduled to decrease the risk of damage to fault-prone
power devices. In the second stage, optimal dispatch of network
reconfiguration and flexibility resources is implemented to maintain
sufficient and reliable power supplies to critical loads, as shown
in Figure 1B.

In the pre-disaster prevention stage, the proposed model aims to
dispatch various flexibility resources, including DERs, energy
storage systems, MPSs, etc., for minimizing the scheduling cost
of diversified flexibility resources and the interaction cost with the
main grid. The fault-prone sites are identified based on the fragility
model, and MPSs should be proactively pre-located to optimum
sites with high potential of failures for survivability enhancement
(Wang et al., 2021). DERs should also keep sufficient reserved
capacity to cope with voltage fluctuations in the event of power
imbalance (Wu et al., 2023). The objective function of pre-disaster
preparation model is formulated as Eq. 1 follows,

F1 � min ∑
t∈T1

∑
i∈ΩDG

CDGPDG
i.t( ) + ∑

i∈ΩESS

CESS
Pdc
i,t

ηdci
+ ηci P

c
i,t( )⎡⎢⎣

+ ∑
i∈ΩMPS

CMηMPM
i,t( ) + CbuyPbuy

t − CsellPsell
t ]Δt1 (1)

where T1 refers to the set of pre-disaster scheduling periods; Δt1 is
the duration of each pre-disaster scheduling period; CDG, CESS, CM

represents the cost coefficient of distributed power generation,
energy storage operation and MPSs, respectively; Cbuy denotes
the electricity purchasing cost coefficient of the main grid; Csell

denotes the revenue coefficient from the sale of electricity; ηci , η
dc
i is

the charging and discharging efficiency of energy storage system,
respectively; ηM denotes the conversion efficiency between fuel
consumption and power output of MPSs; PDG

i.t represents the
active power output of distributed energy resources at time
period t; Pc

i,t, P
dc
i,t denotes the charging and discharging power of

energy storage system at time period t, respectively; PM
i,t denotes the

active power output of fuel-based generator; Pbuy
t , Psell

t refers to the
purchased active power from the main grid and the sold active
power to the main grid at time period t, respectively.

In the post-disaster restoration stage, the proposed model is to
coordinate network reconfiguration, DERs and repair crew for
minimizing the cost of load shedding. The network topology is
reconstructed for critical load restoration by dynamically controlling
status of sectionalizing and tie switches (Chen et al., 2017b; Shi et al.,
2021). Diversified DERs are served as reserved generators to support
the power supply within islands for reducing load curtailment (Chen
et al., 2023). Moreover, the route and sequence of repair crew is
optimized to facilitate the recovery of fault power devices (Arif et al.,
2020). The objective function of post-disaster restoration model is
presented as Eq. 2,

F2 � min ∑
s∈S

ρs ∑
t∈T2

∑
l∈ΩL

ClosswlP
loss
l.t.s( )⎛⎝ ⎞⎠Δt2⎡⎢⎢⎣ ⎤⎥⎥⎦ (2)

where T2 refers to the set of post-disaster scheduling periods; Δt2 is
the duration of each post-disaster scheduling period; ρs denotes the
occurring probability of for scenario s; Closs denotes the penalty
coefficient of load shedding and the concrete value is determined on

how critical the load is; wl represents the weight of different loads;
Ploss
l.t.s denotes the amount of load curtailment at time period t.
In order to verify the resilient operation capability of cellular

ADNs with the two-stage model, the comparison of per unit of
average voltage is shown in Figure 2A. It can be found that per unit
of average voltage in cellular ADNs is more stable compared to
conventional ADNs.

4Multi-level distributed control strategy
for diversified flexibility resources

Considering the individual autonomy and privacy preservation
requirements of multi-microgrids in the cellular ADNs, a multi-
level distributed control strategy is proposed for solving the two-
stage resilient operation model to minimize overall load
curtailment cost. At the upper level, SIESs serve as decision-
makers to coordinate the energy exchange among multi-
microgrids for maintaining power balance. At the lower level,
each microgrid achieves autonomous operation through the
coordinated scheduling of diversified flexibility resources (Wang
et al., 2022). The proposed distributed control problem can be
solved by ADMM algorithm, which combines the advantage of
decomposability of dual ascent and excellent convergence
properties of multiplier method (Rui et al., 2020; Liu et al.,
2018). Taking the pre-event preparation model as an example,
the resilient optimization problem of cellular ADNs can be
decomposed into subproblems for microgrids and SIESs as Eq.
3. The respective optimization objectives are as Eqs 4, 5,

minF1 � ∑
i∈ΩS

FS
i + ∑

i∈ΩMG

FMG
i (3)

FS
i � ∑

T1

t�1
CbuyPbuy

i,t − CsellPsell
i,t( )Δt1 (4)

FMG
i � ∑

T1

t�1
CDGPDG

i,t + CESS
Pdc
i,t

ηdci
+ ηci P

c
i,t( ) + CMPSηMPM

i,t( )Δt1 (5)

whereΩMG,ΩS denotes the set of microgrids and SIESs; FS
i and F

MG
i

denotes the optimization objective for microgrids and SIESs,
respectively.

The optimization variables of hierarchical distributed
scheduling strategy for cellular ADNs include diversified
flexibility resources regulation power comprised of distributed
generation, energy storage and MPSs for microgrids, and the
power purchased from or sold to the main grid for SIESs. In
addition, the power interaction between interconnected
microgrids and SIESs needs to be optimized as coupling
variables. Hence, the expected interaction power for microgrid i
and SIES j are proposed as coupling variables xdi,j,t and decoupling
variables ydi,j,t, respectively, to establish the consistency coupling
constraints as Eq. 6 (Zhou X. et al., 2021b).

xdi,j,t � Pi,j,t, Qi,j,t

∣∣∣∣i ∈ ΩMG, j ∈ ΩS{ }
ydi,j,t � P̂i,j,t, Q̂i,j,t

∣∣∣∣i ∈ ΩMG, j ∈ ΩS{ }
xdi,j,t − ydi,j,t � 0

⎧⎪⎪⎨
⎪⎪⎩

(6)

A Lagrange penalty function is added to the objective functions
for microgrids and SIESs, as follows,
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xk+1i � argmin FMG
i + ∑

j∈ΩS

ρk

2
∑
T

t�1
xdi,j,t − yd,ki,j,t + uk

i,j,t( )
���������

���������

2

2

⎛⎝ ⎞⎠ (7)

yk+1j � argmin FS
j + ∑

i∈ΩMG

ρk

2
∑
T

t�1
xd,k+1i,j,t − ydi,j,t + uk

i,j,t( )
���������

���������

2

2

⎛⎝ ⎞⎠ (8)

where ρk is the iteration step size; uki,j,t is Lagrange multiplier; k is
the number of iterations. The original optimization model
is solved iteratively by the above two equations. On the one
hand, each microgrid develops a scheduling plan independently
with information of internal controllable flexibility resources
and uploads the data of expected interaction power xk+1i to
SIESs. On the other hand, each SIES determines the data of
yk+1j and sends it to interconnected microgrids taking
into account the needs of power balance and energy
interaction. After each iteration, the primal residual rk and
dual residual sk are calculated as convergence criterion
according to Eqs 9, 10.

rk � ∑
i∈ΩMG

∑
j∈ΩS

∑
T

t�1
xd,ki,j,t − yd,ki,j,t( )

���������

���������2
≤ εr (9)

sk � ∑
i∈ΩMG

ρ ∑
T

t�1
xd,ki,t − xd,k−1i,t( )

���������

���������2
≤ εs (10)

where εr, εs denotes the convergence threshold for primal residual
and dual residual, respectively. If the convergence condition is not
satisfied, Lagrange multipliers will be updated according to Eq. 11
and then a next iteration will be proceeded. Otherwise, the
iteration is completed to obtain the final scheduling
determination of diversified flexibility resources for cellular
ADNs, as follows,

uk+1
i,j,t � uk

i,j,t + xd,k+1i,j,t − yd,k+1i,j,t (11)

It can be shown from Eqs 7, 8 that both the Lagrange
multipliers and iteration step have a dominated influence on
convergence properties of the algorithm. The existing
conventional method always keeps the iteration step size as a

fixed parameter, which restricts the convergence properties owing
to the imbalance of primal and dual residuals (Li Z. et al., 2022b;
Mhanna et al., 2019). In order to accelerate the convergence speed,
an adaptive step-size mechanism can be used to update the
iteration step and promote the synchronous convergence of
primal and dual residuals as shown in Eq. 12 (Gao et al., 2020;
Ghadimi et al., 2015),

ρk+1 �
ρk/ 1 + lg sk/rk( )( ), rk < 0.1sk

ρk/ 1 + lg rk/sk( )( ), sk > 0.1rk

ρk, others

⎧⎪⎪⎨
⎪⎪⎩

(12)

when sk is larger, the iteration step size ρk+1 increases, accelerating
the convergence of sk. Contrarily, when rk is larger, ρk+1 decreases,
preventing the oscillation of objective function and further
promoting the local convergence of rk.

The iterative process and acceleration principle of multi-level
distributed control strategy for cellular ADNs based on adaptive
ADMM algorithm are shown in Figure 1C. Comparisons of
primal residuals and dual residuals between different ADMM
algorithms are shown in Figure 2B. It can be found that the model
convergence speed can be enhanced by 18.7% compared to
conventional ADMM algorithms through the adaptive
correction of step sizes.

5 Discussion and conclusion

A survey on resilient operations of cellular ADNs with
flexibility resources under extreme events is presented in this
paper. The following are the key findings of this study: 1) The
proposed two-stage model utilizes the cellular ADN architecture
and diversified flexibility resources to alleviate the damage caused
by extreme climate events. 2) A multi-level distributed control
strategy based on adaptive ADMM is proposed to solve the two-
stage resilient model for the purpose of reducing overall load
curtailment cost, and the convergence speed can enhance by
18.7% with the adaptive step-size mechanism. 3) The further

FIGURE 2
Comparison between different ADNs and comparisons different ADMM algorithms. (A)Comparison of per unit of average voltage between different
ADNs (B) Comparisons of primal residual and dual residual between different ADMM algorithms.
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research will focus on diversified flexibility resources integration
into active distribution networks.
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Complex affine arithmetic based
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voltage fluctuations in active
distribution networks
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The uncertainties of distribution generations (DGs) and loads lead to severe
voltage fluctuations in active distribution networks (ADNs). Meanwhile, energy
storage systems (ESSs) and static var compensators (SVCs) can mitigate the
uncertainties of power injections by regulating the active and reactive power.
Considering the variations of multiple uncertain factors, this paper proposes a
complex affine arithmetic (CAA) based uncertain sensitivity analysis method of
voltage fluctuations in ADNs. First, affine models of active and reactive power
injections are established. The correlations of noisy symbols are used to reflect
the mitigation effects of ESSs and SVCs on the uncertainties introduced by DGs
and loads. Next, sensitivity indicators of voltage fluctuations are defined based on
the transitivity of noisy symbols. Then, a calculation method for sensitivity
indicators based on the micro-increments of coefficients is proposed.
Combined with the obtained indicators, a fast sensitivity method for
calculating interval values of voltages is further proposed. The modified IEEE
33-bus system is tested to validate the accuracy and efficiency of the proposed
method by comparison with the continuous utilization of power flow method.
Moreover, the 292-bus system is tested to validate its applicability in a large
distribution system. Facts have proved that this method improves the efficiency
and reliability of calculations, and in different scenarios, it can achieve fast
calculation of nodes and online analysis of the voltage fluctuation range in
uncertain environments, provides an effective tool for voltage quality
management in active distribution networks.

KEYWORDS

active distribution network, complex affine arithmetic, sensitivity analysis, uncertainty,
voltage fluctuation

1 Introduction

The stochastic and intermittent characteristics of renewable energy resources cause the
uncertainties of distributed generations (DGs) in active distribution networks (ADNs) (Alonso-
Travesset et al., 2022). Meanwhile, the fluctuations of load demands have increased the
uncertainties to some extent (Zhang et al., 2023). The uncertainties will induce severe
voltage fluctuations in ADNs. The integration of energy storage systems (ESSs) and static
var compensators (SVCs) can mitigate the uncertainties of power injections by regulating the
active and reactive power, which will reduce the levels of voltage fluctuations. Considering the
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variations of multiple uncertain factors, an uncertain sensitivity analysis
method can help to control critical nodes and uncertain factors in such
an uncertain environment.

The sensitivity analysis method generally uses the differential
relationship of variables to indicate the sensitivity of output variables
to the variations of input variables (Shang et al., 2021). According to
different physical interpretations of variables, multiple sensitivity
indicators are defined (Chang et al., 2022). For instance, the indicators
dUi/dPj and dUi/dQj represent the sensitivity of the voltage at node i to
the variations of active and reactive power injections at node j. Voltage
sensitivity indicators have been widely used in many research fields,
including voltage stability analysis, voltage control, and DG allocation. In
(Li et al., 2018), a fast sensitivity based preventive control selectionmethod
was proposed for online voltage stability assessment. Reference (Su et al.,
2019) proposed a measurement based voltage control method for
distribution networks combined with the sensitivity estimation. In
(Gupta and Kumar, 2022), the optimal location and sizing of each
DG were obtained by sensitivity based techniques.

Traditionally, there are three typical methods for calculating
sensitivity indicators of voltages.

The first type is the Jacobian matrix method. In the process of
Calculating the power flow of the Newtonian method, the Jacobian
matrix J contains the partial derivatives of the node’s net injection of
active and reactive power with respect to the voltage. Through the
inversion operation of the matrix, the sensitivity of the voltage to the
change of the node’s net injection of active and reactive power can be
obtained. Indicators (Alzaareer et al., 2020; Song et al., 2020; Munikoti
et al., 2021). When the Newtonian power flow calculation reaches the
convergence state, the obtained Jacobianmatrix and inversion operation
can be used to obtain the voltage sensitivity index. Literature (Mlilo et al.,
2021) considers the random output characteristics of wind power, uses
the Jacobianmatrixmethod to calculate the voltage sensitivity index, and
combines the K-means clustering method and joint sensitivity to
establish a voltage sensitivity analysis scenario.

The second type is the incremental method. The incremental
method can also be called the perturb-and-observe approach. By
giving a small change in the input variable, the change in the output
variable is observed to calculate the voltage sensitivity index (Shuai et al.,
2021; Gupta and Paolone, 2023). The incremental method is simple and
easy to implement, and obtains high-precision voltage sensitivity
indicators by making the changes in the net injected active and
reactive power of the node tend to zero. From a simulation
perspective, the incremental method is easy to implement. Literature
(Alvarado-Barrios et al., 2020) developed a voltage sensitivity analysis
software for the distribution network based on the incremental method,
and set the increment of the node’s net injected power to 0.5% of the
average load level. To 2%, a high-precision voltage sensitivity index that
meets the requirements is obtained. The incremental method has high
adaptability to various functions or power flow algorithms, but when the
input variables change, it is necessary to calculate and observe the changes
in the output variables, which increases the overall calculation amount.

The third category is topological analysis method. The
topological analysis method is based on the network topology,
applies Tellegen’s theorem, and combines the adjoint network
theory to calculate the voltage sensitivity index (Bandler and El-
Kady, 1980; Bai et al., 2020). Literature (Wang et al., 2018) elaborates
on the adjoint network theory and the sensitivity calculation method
based on the generalized Tellegen theorem, and applies the voltage

sensitivity index to the vulnerability assessment of the power grid.
Literature (Ye et al., 2021) proposed a new calculation method for
voltage sensitivity index based on changes in the net injected active
and reactive power of nodes in a three-phase unbalanced
distribution network. This method calculates ABCD parameters
based on network topology and realizes fast online calculation of
voltage sensitivity indicators. The topological analysis method
usually requires a power flow solution of a reference state in
order to establish a specific adjoint network, and then use the
network topology parameters to obtain the voltage sensitivity index.

The method based on the Jacobian matrix provides accurate
results and is suitable for stability analysis, but requires recalculation
when system conditions change, which is computationally intensive.
The perturbation and observation method is easy to operate and
suitable for rapid sensitivity assessment, but may not be as accurate
as the Jacobian method. The method based on circuit theory has a
solid theoretical foundation and is suitable for education and in-
depth research, but the preparation work is more complicated.

However, considering voltage fluctuations caused by the
uncertainties in ADNs, voltages become uncertain values with the
lower and upper bounds, instead of deterministic point values. Each
change in node voltage covers all point values in the range of change. But
in previous sensitivity analysis, the variation only reflects the deviation
between point values. Thus, new methods need to be studied to handle
uncertain variables in the sensitivity analysis of voltage fluctuations.

Faced with the uncertainty problem, affine arithmetic (AA) can
effectively deal with uncertain variables with the lower and upper
bounds (Ruiz-Rodriguez et al., 2020). Compared with interval
arithmetic, AA performs better in terms of more compact solution
region and lower conservativeness. Further, AA is extended into the
complex plane and complex affine arithmetic (CAA) is developed
(Manson, 2005; Wang et al., 2019). Since AA and CAA have been
used to handle the uncertainty problem in power systems, existing
researches mainly focus on the uncertain power flow calculation
(Guerrero et al., 2020; Meinecke et al., 2020; Tang et al., 2020;
Zeynali et al., 2020; Wang et al., 2021). In addition, reference
(Zhang et al., 2022) proposed a reactive power optimization method
while using AA to handle interval uncertainties. CAA can keep track of
correlations among uncertain variables, which helps to carry out
sensitivity analysis in uncertain environments.

Therefore, a CAA based uncertain sensitivity analysis method of
voltage fluctuations in ADNs is proposed. The main contributions
are highlighted as follows.

1) CAA is used to quantify the uncertainties introduced by DGs
and loads, as well as the mitigation effects of ESSs and SVCs.
Affine models of active and reactive power injections are
established based on the correlations of noisy symbols.
Further, considering the variations of multiple factors,
sensitivity indicators of voltage fluctuations are defined
based on the transitivity of noisy symbols.

2) A calculation method for sensitivity indicators based on the
micro-increments of coefficients is proposed. In the
calculation process, an improved forward-backward sweep
power flow based on CAA is used to calculate the voltages
in affine form. The obtained indicators can quantitatively
reflect the sensitivity of voltage fluctuations to the variations
of uncertain factors.
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3) A fast sensitivity method for calculating interval values of
voltages is proposed. The proposed method avoids the
continuous utilization of power flow algorithm while
guaranteeing the accuracy and efficiency of calculation.

The rest of the paper is organized as follows. Section 2 describes the
complex affine arithmetic. Section 3 establishes the affine models of
active and reactive power injections considering correlations. Section 4
proposes a CAA based uncertain sensitivity analysis method of voltage
fluctuations in ADNs. Section 5 conducts the case study and discusses
the results. Finally, Section 6 draws the main conclusions.

2 Complex affine arithmetic

2.1 Mathematical theory

The complex affine variable is represented by a linear
combination of the center value and a series of noise terms [19].
A complex affine variable is defined as in (1).

x̂ � x0 + x1ε1 + · · · + xnεn � x0 +∑
n

i�1
xiεi (1)

Each noisy symbol represents an uncertain factor and the
corresponding coefficient reflects the magnitude of fluctuation
around the center value.

Given two complex affine variables x̂ and ŷ, operations can be
expressed as follows:

x̂±ŷ � x0 ± y0( ) +∑
n

i�1
xi ± yi( )εi (2)

x̂ · ŷ � x0 +∑
n

i�1
xiεi⎛⎝ ⎞⎠ × y0 +∑

n

i�1
yiεi⎛⎝ ⎞⎠

� x0y0 +∑
n

i�1
x0yi + y0xi( )εi +∑

n

i�1
xiεi × ∑

n

i�1
yiεi

(3)

x̂/ŷ � x̂ · 1
ŷ
� x0 +∑

n

i�1
xiεi⎛⎝ ⎞⎠/ y0 +∑

n

i�1
yiεi⎛⎝ ⎞⎠ (4)

In the above formula (2) and formula (3), x0 is a complex number,
representing the central value; εi is the noise element, takes a value
within [−1, 1], representing the uncertainty factor; xi is the noise
coefficient, both are complex numbers, representing the offset
relative to the central value, that is, the noise element causes
uncertainty The size of the influence; n is the number of noise elements.

The main challenge is to find the optimal approximation for non-
affine terms as in (Shang et al., 2021)-(4). The derivation and proof of basic
operations can be referred to [20]. In the calculation process, the number
of error terms will increase with the existence of non-affine terms.

2.2 Correlation and transitivity properties of
noisy symbols

In this paper, uncertain sensitivity analysis of voltage
fluctuations mainly relies on the correlation and transitivity
properties of noisy symbols. In CAA, correlations among
complex affine variables can be reflected by coexisting noisy

symbols. Meanwhile, the coefficients of noisy symbols can reflect
the uncertainty level of each complex affine variable.

For a multivariate function f with n input variables in affine
form, the transitivity of noisy symbols is shown as in (5–7).

ŷ � f x̂1, x̂2, · · ·, x̂n( ) (5)
x̂i � xi0 + xiεi i � 1, 2, · · ·, n( ) (6)

ŷ � f x10 + x1ε1, x20 + x2ε2, · · ·, xn0 + xnεn( )
� y0 + y1ε1 + · · · + ynεn + yk1εk1 + · · · + ykmεkm

(7)

In the formula, x̂1, x̂2, · · ·, x̂n represents n uncertain input
variables, all of which are complex affine variables; x10, x20, · ·
·, xn0 is the central value of n complex affine variables, all of
which are complex numbers; ε1, ε2, · · ·, εn represents the main
noise element introduced by the uncertainty input variables;
x1, x2, · · ·, xn is the main noise Coefficients are all complex
numbers; ŷ is complex affine output variables.

Assuming that there are m non-affine operations in the function,
noise terms of ŷ can be divided into two parts, including
y1ε1, y2ε2, · · ·, ynεn{ } and yk1εk1, yk2εk2, · · ·, ykmεkm{ }. We call the
first part themain noise terms, which contain themain noisy symbol set
ε1, ε2, · · ·, εn{ } and the corresponding coefficient set y1, y2, · · ·, yn{ }.
Meanwhile, we call the second part the error noise terms, which contain
the error noisy symbol set εk1, εk2, · · ·, εkm{ } and the corresponding
coefficient set yk1, yk2, · · ·, ykm{ }. The main noisy symbols are
transmitted from input variables with uncertainties. The error noisy
symbols are derived from the approximation for non-affine operations

For each uncertain variable x̂i, the variation of the uncertainty
level is quantitatively represented by the variation of the
corresponding coefficient xi. In the complex plane, this variation
reflects the change in the area of fluctuation around the central value.

When the uncertainty levels of input variables changes, the new
complex affine variables are denoted as:

x̂′i � x̂i + Δx̂i � xi0 + xi + Δxi( )εi
Δx̂i � Δxiεi

{ i � 1, 2, · · ·, n( ) (8)

In the formula (8), Δxi is the change amount of the main noise
coefficient, which is a complex number, quantitatively expressing
the change in the uncertainty level of the input variable x̂i; Δx̂i is the
complex affine change amount.

Then, the output variable is updated by (9).

ŷ′ � f x̂1 + Δx̂1, x̂2 + Δx̂2, · · ·, x̂n + Δx̂n( )
� y0

′ + y1
′ε1 + · · · + y′

nεn + yk1
′ εk1′ + · · · + ykm

′ εkm′
(9)

The main effects of the variations on the output variable can be
quantified by the corresponding coefficients of noisy symbols
(ε1, ε2, · · ·εn), which are transmitted from input variables. This
property contributes to uncertain sensitivity analysis of voltage
fluctuations in ADNs.

3 Affine models of active and reactive
power injections considering
correlations

Considering the uncertainties of DGs and loads, as well as the
mitigation effects of ESSs and SVCs, affine models of active and
reactive power injections are built. The correlations of noisy symbols
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are used to reflect the mitigation effects of ESSs and SVCs on
uncertainties introduced by DGs and loads.

3.1 Affine model of active power injection

The affine model of active power injection of phase φ at node i is
shown as in (10).

P̂
φ

inj,i � αiP̂
φ

L,i − βiP̂
φ

DG,i − γiP̂
φ

ESS,i (10)

The model considers the active power of loads, DGs, and ESSs.
The load power is regarded as the positive direction, and the positive
value of P̂

φ
ESS,i indicates that the ESS is being discharged. The values

of symbols are shown as in (11).

αi, βi, γi � 0 or 1 (11)

Then, the affine model of each part in (10) is built, separately.
Firstly, considering the uncertainties of loads, the interval model of
load active power is shown as in (12), in which Pφ

L,i and �Pφ
L,i are the

lower and upper bounds. The affine model is obtained by the
conversion operation as shown in (13).

~P
φ

L,i � P φ
L,i
, �P

φ
L,i][ (12)

P̂
φ

L,i � �P
φ
L,i + P

φ

L,i
( )/2 + �P

φ
L,i − P

φ

L,i
( ) · ε+L,i/2 (13)

Secondly, considering the uncertainties of DGs, affine models of
wind turbine generator and photovoltaic system are built based on
meteorological conditions and power equations (23). The interval
model of DG active power is shown as in (14), in which Pφ

DG,i and
�Pφ
DG,i are the lower and upper bounds. The affine model is further

obtained by (15).
~P
φ

DG,i � P φ
DG,i

, �P
φ
DG,i][ (14)

P̂
φ

DG,i � �P
φ
DG,i + P

φ

DG,i
( )/2 + �P

φ
DG,i − P

φ

DG,i
( ) · ε+DG,i/2 (15)

Thirdly, for the ESS connected at node i, the interval model of
active power is shown as in (16), in which Pφ

ESS,i and �Pφ
ESS,i are the

lower and upper bounds. Then, the affine model is obtained by (17).

~P
φ

ESS,i � Pφ
ESS,i

, �P
φ
ESS,i][ (16)

P̂
φ

ESS,i � �P
φ
ESS,i + P

φ

ESS,i
( )/2 + �P

φ
ESS,i − P

φ

ESS,i
( ) · ε−ESS,i/2 (17)

On the one hand, noisy symbols of DGs and loads are marked
with “+“, which reflects the uncertainty sources. On the other hand,
noisy symbols of ESSs are marked with “-“, which reflects the
mitigation effects on uncertainties. Since the coefficients of P̂

φ
DG,i

and P̂
φ
ESS,i in (10) have the same sign, Eq. 18 shows the correlation of

noisy symbols. Collocated with the DG at node i, the ESS can
mitigate the uncertain fluctuations of active power injection.

ε+DG,i � −ε−ESS,i (18)

3.2 Affine model of reactive power injection

Considering the reactive power of loads, DGs, and SVCs, the
affine model of reactive power injection of phase φ at node i is shown
as in (19). The value of δi is 0 or 1.

Q̂
φ

inj,i � αiQ̂
φ

L,i − βiQ̂
φ

DG,i − δiQ̂
φ

SVC,i (19)

The affine model of each part in (19) is built, separately. Firstly,
Eq. 20 shows the interval model of load reactive power with the
lower and upper bounds. Then, the affine model is obtained by (21).

~Q
φ

L,i � Qφ
L,i
, �Q

φ
L,i[ ] (20)

Q̂
φ

L,i � �Q
φ
L,i + Q

φ

L,i
( )/2 + �Q

φ
L,i − Q

φ

L,i
( ) · ε+L,i/2 (21)

Secondly, assuming that DGs are operating at a constant power
factor, the affine model of DG reactive power is obtained by (22).

Q̂
φ

DG,i � P̂
φ

DG,i · tan θDG,i (22)

Thirdly, the interval model of SVC reactive power is shown as in
(23), in which Qφ

SVC,i
and �Q

φ
SVC,i are the lower and upper bounds.

Then, the affine model is obtained by (24).

~Q
φ

SVC,i � Q φ
SVC,i

, �Q
φ
SVC,i[ ] (23)

Q̂
φ

SVC,i � �Q
φ
SVC,i + Q

φ

SVC,i
( )/2 + �Q

φ
SVC,i − Q

φ

SVC,i
( ) · ε−SVC,i/2 (24)

Noisy symbols of SVCs are marked with “-“, which reflects the
mitigation effects on uncertainties. SVCs can provide reactive power
for loads and mitigate the uncertainties introduced by loads. Since the
coefficients of Q̂

φ

L,i and Q̂
φ

SVC,i in (19) have the opposite sign, Eq. 25
shows the correlation of noisy symbols of the load and SVC at node i.

ε+L,i � ε−SVC,i (25)

4 Uncertain sensitivity analysis of
voltage fluctuations based on CAA

4.1 Sensitivity indicators of voltage
fluctuations to active and reactive power
injections

Based on the transitivity of noisy symbols, sensitivity equations
of voltage fluctuations with complex affine variables are established.
The equations take into account not only the variations of
uncertainty levels of DGs and loads, but also the variations of
mitigation levels of ESSs and SVCs.

Assuming that there are q noise symbols introduced by the
uncertainties of power injections, the calculation process from
power injections to voltages is shown as in (26). The number of
buses is n. Considering the variations of multiple factors, affine
valued voltages at the initial and current states are obtained.

Û
φ

i � g P̂
φ

inj,1 + j · Q̂φ

inj,1, · · ·, P̂
φ

inj,n + j · Q̂φ

inj,n( )
� Uφ

i,0 + Uφ
i,1ε1 + · · · + Uφ

i,qεq + Uφ
i,rε

U
i,r + j · Uφ

i,imε
U
i,im

Û′φi � g[ P̂
φ

inj,1 + ΔP̂φ

inj,1( ) + j · Q̂
φ

inj,1 + ΔQ̂φ

inj,1( ), · · ·,
P̂
φ

inj,n + ΔP̂φ

inj,n( ) + j · Q̂
φ

inj,n + ΔQ̂φ

inj,n( )]
� U′φi,0 + U′φi,1ε1 + · · · + U′φi,qεq + U′φi,rεUi,r + j · U′φi,imεUi,im

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(26)

In the formula, φ is the A, B or C phase; P̂
φ
inj,1, P̂

φ
inj,2, · · ·, P̂φ

inj,n and
Q̂

φ

inj,1, Q̂
φ

inj,2, · · ·, Q̂
φ

inj,n are the affine values of the net injected active and
reactive power of the node in the starting state respectively; ε1, ε2, · · ·, εq
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are the main noise elements introduced by the uncertainty of the input
variables; Uφ

i,0 and Uφ
i,1,U

φ
i,2, · · ·,Uφ

i,q are the starting The central value
and the main noise coefficient of Û

φ
i in the state;U

φ
i,rε

U
i,r and j · Uφ

i,imε
U
i,im

are the error noise terms of Û
φ
i in the starting state; ΔP̂φ

inj,1,ΔP̂
φ
inj,2, · ·

·, P̂φ
inj,n and ΔQ̂φ

inj,1,ΔQ̂
φ

inj,2, · · ·,ΔQ̂
φ

inj,n are the affine values of the
changes in the net injected active and reactive power of the node,
respectively, indicating the changes in the uncertainty level of the input
variables; U ′φi,0 and U ′φi,1,U ′φi,2, · · ·,U ′φi,q are the central value and main
noise coefficient of Û ′φi after the change; U′φi,rεUi,r and j · U′φi,imεUi,im are
the error noise terms of Û ′φi after the change.

Specifically, the variations of active and reactive power injections
are obtained by (27).

ΔP̂φ

inj,i � αiΔP̂
φ

L,i − βiΔP̂
φ

DG,i − γiΔP̂
φ

ESS,i

ΔQ̂φ

inj,i � αiΔQ̂
φ

L,i − βiΔQ̂
φ

DG,i − δiΔQ̂
φ

SVC,i

ΔP̂φ

L,i � ΔPφ
L,iε

+
L,i ; ΔQ̂φ

L,i � ΔQφ
L,iε

+
L,i

ΔP̂φ

DG,i � ΔPφ
DG,iε

+
DG,i ; ΔQ̂φ

DG,i � ΔQφ
DG,iε

+
DG,i

ΔP̂φ

ESS,i � ΔPφ
ESS,iε

−
ESS,i

ΔQ̂φ

SVC,i � ΔQφ
SVC,iε

−
SVC,i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

In the formula, αi、 βi、 γi and δi are respectively the flags of
whether there is load, DG, ESS and SVC at node i, taking 0 or 1; ε+L,i,
ε+DG,i, ε

−
ESS,i and ε−SVC,i are respectively the main noise elements of

load, DG, ESS and SVC at node i.
The main noise terms of Û

φ
i and Û′φi in (26) represent the

voltage fluctuations derived from uncertainties of power injections.
Since the coefficients of error noisy symbols are extremely smaller
than those of main noisy symbols, the levels of voltage fluctuations
are mainly determined by main noisy terms. The main noise terms
are denoted as Û

φ
i,main and Û′φi,main, which are shown as in (28).

Û
φ

i,main � Uφ
i,1ε1 + · · · + Uφ

i,qεq
Û′φi,main � U′φi,1ε1 + · · · + U′φi,qεq

⎧⎨
⎩ (28)

Further, the formula is represented by the real and imaginary
parts. For instance, the expression of Û

φ
i,main is shown as in (29).

Û
φ

i,main,real

Û
φ

i,main,imag

⎛⎝ ⎞⎠ � Uφ
i,1,real Uφ

i,2,real · · · Uφ
i,q,real

Uφ
i,1,imag Uφ

i,2,imag · · · Uφ
i,q,imag

( )

ε1
ε2
· · ·
εq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (29)

The level of voltage fluctuation at node i is denoted as λ( ), which
is obtained by summing the absolute values of coefficients of the
main noisy symbols. The calculation of λ( ) is shown as in (30).

λ Û
φ

i,main,real( ) � ∑
q

k�1
Uφ

i,k,real

∣∣∣∣
∣∣∣∣

λ Û
φ

i,main,imag( ) � ∑
q

k�1
Uφ

i,k,imag

∣∣∣∣∣
∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(30)

Then, indicators are defined for evaluating the sensitivity of
voltage fluctuations to the above variations in power injections.

4.1.1 Sensitivity indicator towards
individual variation

The voltage fluctuation at node i is affected by the variations of
multiple factors in power injections as shown in (27). Considering
the variations of uncertainty levels of DGs and loads, as well as
mitigation levels of ESSs and SVCs, the variations of corresponding

coefficients can be expressed as
ΔPφ

L,i,ΔQ
φ
L,i,ΔP

φ
DG,i,ΔQ

φ
DG,i,ΔP

φ
ESS,i,ΔQ

φ
SVC,i{ }. The general form

ΔSφm is used to represent the variation of the mth coefficient.
The effect of individual variation on the voltage fluctuation at

node i can be evaluated by the transitivity of corresponding noisy
symbol. Assuming that ΔSφm corresponds to the kth noisy symbol,
the variation of the level of voltage fluctuation at node i is
represented by the variation of the absolute value of
corresponding coefficient, which is shown as in (31).

Δ Uφ
i,k,real

∣∣∣∣
∣∣∣∣ � U′φi,k,real

∣∣∣∣
∣∣∣∣ − Uφ

i,k,real

∣∣∣∣
∣∣∣∣

Δ Uφ
i,k,imag

∣∣∣∣∣
∣∣∣∣∣ � U′φi,k,imag

∣∣∣∣∣
∣∣∣∣∣ − Uφ

i,k,imag

∣∣∣∣∣
∣∣∣∣∣

⎧⎨
⎩ k � 1, 2, · · ·, q( ) (31)

Then, sensitivity indicator of the voltage fluctuation at node i to
individual variation is defined as in (32).

Kφ
i,k,m,real �

∂ Uφ
i,k,real

∣∣∣∣
∣∣∣∣

∂Sφm
� Δ Uφ

i,k,real

∣∣∣∣
∣∣∣∣

ΔSφm

∣∣∣∣∣∣∣∣ ΔSφm→0

Kφ
i,k,m,imag � ∂ Uφ

i,k,imag

∣∣∣∣∣
∣∣∣∣∣

∂Sφm
� Δ Uφ

i,k,imag

∣∣∣∣∣
∣∣∣∣∣

ΔSφm

∣∣∣∣∣∣∣∣∣∣ ΔSφm→0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(32)

In the formula,Kφ
i,k,m,real andK

φ
i,k,m,imag are respectively the single-

factor uncertainty sensitivity index of the fluctuation range of the real
and imaginary parts of the voltage of node i; the closer ΔSφm to 0, the
more accurate the single-factor sensitivity index value obtained.

4.1.2 Sensitivity indicator towards total variations
Considering total variations of multiple factors, the variation of

the level of voltage fluctuation at node i is calculated by (33).

Δλ Û
φ

i,main,real( ) � ∑
q

k�1
U′φi,k,real
∣∣∣∣

∣∣∣∣ − Uφ
i,k,real

∣∣∣∣
∣∣∣∣( )

Δλ Û
φ

i,main,imag( ) � ∑
q

k�1
U′φi,k,imag

∣∣∣∣∣
∣∣∣∣∣ − Uφ

i,k,imag

∣∣∣∣∣
∣∣∣∣∣( )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(33)

Then, sensitivity indicator of the voltage fluctuation at node i to
total variations is defined as in (34).

Kφ
i,real � Δλ Û

φ
i,main,real( )

∑
m ∈ M

ΔSφm

∣∣∣∣∣∣∣∣∣∣ ΔSφm→0

Kφ
i,imag � Δλ Û

φ
i,main,real( )

∑
m ∈ M

ΔSφm

∣∣∣∣∣∣∣∣∣∣ ΔSφm→0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(34)

In the formula, Kφ
i,real and Kφ

i,imag are the multi-factor uncertainty
sensitivity indicators of the voltage real part and imaginary part
fluctuation intervals respectively; M is the set of uncertainty factors
in the net injected active and reactive power; the closer ΔSφm to 0, the
obtained multi-factor The sensitivity index value is more accurate.

4.2 Calculation method for sensitivity
indicators based on themicro-increments of
coefficients

4.2.1 Micro-increments of coefficients of
noisy symbols

Eqs 32, 34 use the general form ΔSφm to represent the variation of
the mth coefficient, which quantitatively reflects the variation of
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uncertainty level or mitigation level of corresponding factor. When
ΔSφm is closer to 0, sensitivity indicators become more accurate.
Thus, a calculation method for sensitivity indicators based on the
micro-increments of coefficients is proposed.

In [12], the sensitivity analysis of voltages with point values is
studied and a sensible strategy is to set each micro-increment as a
percentage of load power. It is demonstrated that when each micro-
increment is set as 0.5%–2% of load power, the obtained results have
high accuracy. In this paper, the micro-increment is set as 1% of the
uncertainty level or mitigation level of each factor. That is, each
micro-increment is 1% of the coefficient of corresponding noisy
symbol in the affine model of each factor.

4.2.2 CAA-based improved forward-backward
sweep power flow

In the calculation process of sensitivity indicators, an improved
forward-backward sweep power flow based on CAA is used to
calculate voltages in affine form. Sensitivity indicators are further
calculated based on the obtained coefficients of noisy symbols.

In previous CAA based forward-backward sweep power flow
[23], a brand new noisy symbol is generated after approximation for
each non-affine operation. Meanwhile, voltages and currents are
updated repeatedly in the iterative process. As a result, numerous
error noise terms are continually generated. The redundancy of
error noise terms affects the clarity of sensitivity-related coefficients.

Therefore, a cutting method for error noise terms of voltages and
currents is proposed. The coefficients of error noisy symbols are
merged by summing the absolute values of their real and imaginary
parts, respectively. Since the coefficients of error noisy symbols are
extremely smaller than those of main noisy symbols, it guarantees
the completeness of true solutions and has little effect on the
conservativeness.

In the process of forward and backward sweep, the improvement
mainly lies in de-redundancy of error noise terms of voltages and
currents. Figure 1 shows the topology of an ADN with DGs, loads,
ESSs, and SVCs.

For instance, in the process of forward sweep, the downstream
voltage Û

φ
j is calculated by (35), in which [c] and [d] are matrices

determined by the topology of a distribution network (Kersting,
2001). Eqs (36, 37) show the process of cutting error noise terms of
the voltage Û

φ
j .

Û
A

j

Û
B

j

Û
C

j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � c[ ]
Û

A

i

Û
B

i

Û
C

i
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4.2.3 Calculation process of sensitivity indicators
Combined with the improved forward-backward sweep power

flow based on CAA, sensitivity indicators are calculated based on the
micro-increments of coefficients of noisy symbols. The detailed
process of calculation is as follows:

i) Initialize the network parameters such as node number and
line impedance. Based on the affinemodels of DGs, loads, ESSs,
and SVCs, active and reactive power injections at the initial
state are obtained by (Song et al., 2020) and (19). Then, the
initial voltages in affine form are calculated by the improved
forward-backward sweep power flow based on CAA.

ii) For the variations of factors in active power injections, the
micro-increments of coefficients of corresponding noisy
symbols are set. Combined with the improved forward-
backward sweep power flow based on CAA, sensitivity
indicator of the voltage fluctuation at node i to individual
variation in active power injections is calculated by (32).

iii) Similarly, for the variations of factors in reactive power
injections, sensitivity indicator of the voltage fluctuation at
node i to individual variation in reactive power injections is
calculated by (32).

iv) Considering total variations of factors in power injections, the
micro-increments of coefficients of corresponding noisy
symbols are set. Then, combined with the improved
forward-backward sweep power flow based on CAA,
sensitivity indicator of the voltage fluctuation at node i to
total variations is calculated by (34).

FIGURE 1
Topology of an ADN with DGs, loads, ESSs, and SVC.
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4.3 A fast sensitivity method for calculating
voltage intervals

Based on the obtained sensitivity indicators, a fast sensitivity
method for calculating interval values of voltages is further
proposed. The proposed method takes into account actual
variations of uncertainty levels of DGs and loads, as well as
mitigation levels of ESSs and SVCs. According to sensitivity
indicators and actual variations of factors, the variations of
voltage fluctuations are obtained by a linear calculation model.
The proposed method avoids the continuous utilization of the
power flow algorithm to calculate interval values of voltages.

Considering actual variations of multiple factors in power
injections, the variation of the absolute value of the kth
coefficient of the voltage at node i is calculated by (38).

Δ Uφ
i,k,real

∣∣∣∣
∣∣∣∣ � ∑

m∈M

∂ Uφ
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m∈M
Kφ

i,k,m,real · ΔSφm
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∂Sφm
· ΔSφm � ∑

m∈M
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(38)

Then, the variation of the level of voltage fluctuation at node i is
calculating by summing the variations of the absolute values of all
coefficients, which is shown as in (39). Combined with the initial
voltages in affine form, the voltages at current state are
further obtained.

Δλ Û
φ

i,main,real( ) � ∑
k∈Q

∑
m∈M

Kφ
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Δλ Û
φ
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k∈Q

∑
m∈M

Kφ
i,k,m,imag · ΔSφm

⎧⎪⎪⎪⎨
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(39)

5 Case study

5.1 System parameters and initial state

Considering the uncertainties of DGs and loads, as well as the
mitigation effects of ESSs and SVCs, the proposed method is verified
by the modified IEEE 33-bus distribution system. Figure 2 shows the
topology of the system with DGs, loads, ESSs, and SVCs.

At the initial state, uncertainty levels of DGs and loads, as well as
mitigation levels of ESSs and SVCs are set as follows:

1) DG1 and DG2 are integrated to buses 5 and 15, respectively.
The interval of DG active power is [200,300] kW and the
power factor is cos θ � 0.95.

2) L1 and L2 are the fluctuating loads at buses 20 and 30. The
uncertainty level is ± 10%.

3) Bus 15 is connected with an ESS and the interval of ESS active
power is [-60,-20] kW.

4) Bus 30 is connected with a SVC and the interval of SVC
reactive power is [45,50] kvar.

Then, based on affine models of active and reactive power
injections, the affine valued power of each DG, load, ESS, and
SVC can be obtained as shown in Table 1.

5.2 Discussion of the results of uncertain
sensitivity analysis

5.2.1 Sensitivity indicators of voltage fluctuations to
DGs/loads

Firstly, considering the variation of uncertainty level of
individual DG or load, sensitivity indicator of the voltage
fluctuation at each bus is calculated. As for the real parts of
voltages of phase A, Figure 3 shows sensitivity indicators of
voltage fluctuations to active power of DG1 and L1. Secondly,
considering total variations of DGs and loads, sensitivity
indicator of the voltage fluctuation at each bus is calculated.
Figure 4 shows sensitivity indicators of voltage fluctuations to all
DGs and loads.

It can be seen from Figures 3, 4 that the obtained indicators can
quantitatively reflect the sensitivity of voltage fluctuations to the
variations of uncertainty levels of DGs and loads. The results show
that buses close to the locations of DGs and loads have larger values
of sensitivity indicators, which means that these buses are more
sensitive to the variations of uncertain factors. Meanwhile, buses
located at the end of the branch are more sensitive than those close
to the source bus.

Taking into account the changes in uncertainty fluctuation levels
of DG1, DG2, L1 and L2, the multi-factor uncertainty sensitivity
index shown in Figure 4 represents the overall sensitivity of the
voltage fluctuation range of each node to changes in all uncertainty
fluctuation factors. For all uncertainty fluctuation factors in the
distribution network shown in Figure 2, that is, DG1 and DG2 at
nodes 5 and 15 and L1 and L2 at nodes 20 and 30, the results show
that the uncertainty fluctuation factors are close to the location
where the uncertainty fluctuation factors are connected and located
on the branch. Nodes at the end of the road have larger multi-factor
sensitivity index values and are more sensitive to changes in
uncertainty fluctuation factors in the network; nodes far away
from the access location of uncertainty fluctuation factors and
close to the source node have smaller multi-factor sensitivity
index values. The overall sensitivity to changes in uncertainty
fluctuation factors in the network is low.

5.2.2 Sensitivity indicators of voltage fluctuations
to ESSs/SVCs

The integration of ESSs and SVCs can mitigate the uncertainties
of power injections. Considering the variation of the mitigation level
of individual ESS or SVC, sensitivity indicator of the voltage
fluctuation at each bus is calculated. Figure 5 shows sensitivity
indicators of voltage fluctuations to individual ESS and SVC.
Then, considering total variations of ESSs and SVCs, sensitivity
indicator of the voltage fluctuation at each bus is calculated. Figure 6
shows sensitivity indicators of voltage fluctuations to all
ESSs and SVCs.

As for the variations of mitigation levels of ESSs and SVCs, the
values of sensitivity indicators are negative. As the mitigation levels
increase, the levels of voltage fluctuations decrease. The results show
that buses close to the locations of ESSs and SVCs have larger
absolute values of sensitivity indicators. Similarly, buses located at
the end of the branch are more sensitive than those close to
the source bus.
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The multi-factor uncertainty sensitivity index shown in Figure 6
represents the overall sensitivity of the voltage fluctuation range of
each node to changes in all uncertainty reduction factors. For all

uncertainty reduction factors in the distribution network shown in
Figure 2, the results further show that nodes close to the access
location of the uncertainty reduction factors and located at the end of
the branch have a larger absolute value of the sensitivity index, which
has a greater impact on the uncertainty in the network. Changes in
reduction factors are more sensitive; nodes that are far away from the
access location of uncertainty reduction factors and close to the source
node have a smaller absolute value of the sensitivity index and are less
affected by changes in uncertainty reduction factors in the network.

5.2.3 Comparative analysis
Based on the initial state, 6 scenarios are set considering actual

variations of uncertainty levels of DGs and loads, as well as
mitigation levels of ESSs and SVCs. The interval values of
voltages are calculated and the results are compared between the
proposed sensitivity method (Method 1) and the continuous
utilization of the power flow method (Method 2).

FIGURE 2
Topology of the modified IEEE 33-bus distribution system.

TABLE 1 Power of DGs, loads, ESSs and SVCs in The Initial State.

No. Bus Power in affine form

DG1 5 P̂DG,5 � 250 + 50 · ε+DG,5, Q̂DG,5 � P̂DG,5 · tan θDG

DG2 15 P̂DG,15 � 250 + 50 · ε+DG,15, Q̂DG,15 � P̂DG,15 · tan θDG

L1 20 Ŝ20 � (90 + j · 40) + (90 + j · 40) × 10% · ε+L,20
L2 30 Ŝ30 � (150 + j · 70) + (150 + j · 70) × 10% · ε+L,30
ESS 15 P̂ESS,15 � −40 + 20 · ε−ESS,15
SVC 30 Q̂SVC,30 � 47.5 + 2.5 · ε−SVC,30

FIGURE 3
Sensitivity indicators of voltage fluctuations to active power of DG1/L1.
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In scenarios 1-3, uncertainty levels of DG1, DG2, L1, and
L2 gradually increase based on the initial state. Specifically, the
fluctuation levels around central values increased by 2%, 4%, and 6%,
respectively. In scenarios 4-6, uncertainty levels of DGs and loads are the
same as in scenario 3. The intervals of ESS active power are [-65,-15] kW

[-70,-10] kW, and [-75,-5] kW, respectively. The intervals of SVC reactive
power are [43,52] kvar [41,54] kvar, and [39,56] kvar, respectively.

Considering the variations of multiple factors, the variation of
the level of voltage fluctuation at node i can be quantified by (33). As
for the real parts of voltages of phase A, Figure 7 shows the variations

FIGURE 4
Sensitivity indicators of voltage fluctuations to all DGs and loads.

FIGURE 5
Sensitivity indicators of voltage fluctuations to individual ESS/SVC.
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of the levels of voltage fluctuations at buses 17 and 27. Figure 8
shows the interval values of voltages calculated by the two methods.

Then, based on the complex affine voltage of each node in the
starting state and the change in voltage fluctuation level in each
scene, the proposed method is used to obtain the voltage fluctuation
interval after the scene change. Taking nodes 17 and 27 as an
example, Figure 8 shows the fluctuation range of the real part of
phase A voltage obtained by the two methods in each scenario,
including its lower and upper bounds. Figure 9 shows the deviation
values of voltage fluctuation level changes in various scenarios.

As can be seen from Figures 7, 8, the change in voltage fluctuation
level under each scenario and the voltage fluctuation interval after the
scenario change are obtained through the proposed method. The
results show that with the gradual increase in the uncertainty level of
DG and load in scenarios 1-3, the voltage fluctuation level of each
node gradually increases, and the voltage fluctuation range gradually
expands; as the ESS and SVC active power in scenarios 4-6 And the
gradual increase of the reactive power adjustment range has a certain
effect on reducing the voltage fluctuation level, and the voltage
fluctuation range gradually decreases.

The results show that with the increase of uncertainty levels of
DGs and loads in scenarios 1-3, the levels of voltage fluctuations
gradually increase. Meanwhile, with the increase ofmitigation levels of
ESSs and SVCs in scenarios 4-6, the levels of voltage fluctuations
gradually decrease. By comparison, the results obtained by the two
methods are very close. The difference can be found after sufficient
amplification, which validates the accuracy of the proposed method.

Further, compared with method 2, Figure 9A shows deviations
of the variations of the levels of voltage fluctuations obtained by
method 1. Figure 9B shows deviations of the lower and upper
bounds of voltages obtained by method 1.

It can be seen that as for deviations of voltage fluctuations at
buses 17 and 27, the maximum value is within 0.02%. As for
deviations of the upper and lower bounds of voltages, the
maximum value is within 0.01%. The results further validate the
accuracy of the proposed method. Meanwhile, the proposed method
avoids the continuous utilization of the power flow algorithm, which
guarantees the efficiency of calculation.

5.2.4 Applicability in a large distribution network
To validate the applicability in a large distribution network, the

proposed method is tested on the 292-bus distribution system. The
topology and technical data can be referred to (Wang andWang, 2014).

At the initial state, uncertainty levels of DGs and loads, as well as
mitigation levels of ESSs and SVCs are set as follows: 1) DG1-DG6
are integrated to buses 15, 50, 93, 110, 216, and 270. The interval of
DG active power is [200,300] kW. 2) L1-L4 are the fluctuating loads
at buses 13, 208, 230, and 268. The uncertainty level is ± 10%. 3) The
interval of ESS active power at bus 15, 50, or 216 is [-60,-20] kW. The
interval of ESS active power at bus 93, 110, or 270 is [-60,-20] kW. 4)
SVC1-SVC2 are integrated to buses 13 and 208. The intervals of
reactive power are [50,90] kvar and [40,50] kvar, respectively.

Considering the variations of multiple factors, sensitivity
indicator of the voltage fluctuation at each bus to individual
variation is calculated. Figure 10 shows sensitivity indicators of
voltage fluctuations to active and reactive power of DG3 and L4.
Figure 11 shows sensitivity indicators of voltage fluctuations to
power of ESS2, ESS4, SVC1, and SVC2.

From the analysis in Figure 10, it can be seen that considering
the changes in DG and load uncertainty fluctuation levels, the
single-factor uncertainty sensitivity index curve of the node
voltage fluctuation interval shows certain regular

FIGURE 6
Sensitivity indicators of voltage fluctuations to all ESSs and SVCs.

Frontiers in Energy Research frontiersin.org10

Quanjun et al. 10.3389/fenrg.2024.1374986

212

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1374986


characteristics. First, nodes close to the access location of each
uncertainty fluctuation factor have larger sensitivity index values,
indicating that they are more sensitive to changes in the
uncertainty fluctuation level of this factor; second, the
transformers in the network are sensitive to uncertainty
fluctuation factors. The impact of change has a certain
blocking effect. For example, affected by changes in the
uncertainty fluctuation level of load L4 at node 268, the
sensitivity index values of nodes 228–292 are larger, and the
closer to the node L4, the larger the sensitivity index value,
indicating changes in the uncertainty fluctuation level of L4.
The more sensitive the reaction. Secondly, the branch where

nodes 103–147 are located is directly connected to the branch
where L4 is located through node 7. Due to the distance, the
sensitivity index value is lower than the index value of nodes
228–292. However, for the nodes on other branches, which are
connected to the branch where L4 is located through the
transformer at the head end of the branch, the sensitivity
index is close to 0, indicating that it is basically not affected
by changes in the uncertainty fluctuation level of L4.

From the analysis of Figure 11, it can be seen that in response to
changes in the uncertainty reduction levels of ESS and SVC, the single-
factor sensitivity indicators of each node’s voltage fluctuation range
are all negative, indicating that as the uncertainty reduction level

FIGURE 7
Variations of the levels of voltage fluctuations in different scenarios.

FIGURE 8
Interval values of voltages in different scenarios.
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increases, the voltage fluctuation level increases. reduced. At the same
time, the single-factor sensitivity index curve in the node voltage
fluctuation range also shows certain regular characteristics. First,
nodes close to the access location of each uncertainty reduction
factor have a larger absolute value of the sensitivity index,
indicating that they are more sensitive to changes in the
uncertainty reduction level of this factor; second, the transformers
in the network are sensitive to uncertainty reduction factors. The
influence of changes also has a certain blocking effect. For nodes that

are far away from the access point of the uncertainty reduction factor
and separated by the transformer, the absolute value of the sensitivity
index is close to 0, indicating that it is basically not affected by changes
in the uncertainty reduction factor. For instance, considering the
variation of the uncertainty level of L4 at bus 268, buses 228–292 are
more sensitive. However, for buses on other branches, sensitivity
indicators are close to 0 due to the blockage of transformers.

In order to better prove the effectiveness and reliability of the
method proposed in this article, this paper compares the deviation

FIGURE 9
Deviations of the proposedmethod. (A) shows the deviation value of the voltage fluctuation level change of nodes 17 and 27 in various scenarios. (B)
shows the deviation values of the upper and lower bounds of the voltage fluctuation range of nodes 17 and 27 in various scenarios.

FIGURE 10
Sensitivity indicators of voltage fluctuations to individual DG/load.
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values of the voltage fluctuation level change of the proposed method
(Model 1) with the Jacobian matrix method (Model 2), perturb-and-
observe, approach (Model 3) and topological analysis method I (Model
4) in six scenarios, and the statistical results are shown in Table 2.

As can be seen from Table 2, the deviation values of the voltage
fluctuation level changes of the method proposed in this article are
within 0.02% in six scenarios. The deviation value of the results
obtained by this method is extremely small, and the deviation
value of the results in each scenario is lower than that of other
scenarios. The model proposed in this article performs best
among the four models, indicating that the model proposed in
this article can quantitatively describe the sensitivity of the voltage
fluctuation range to the uncertainty fluctuations of various
factors, and helps to focus on controlling key nodes and key
uncertainty factors.

6 Conclusion

This paper proposes a CAA-based sensitivity analysis method
for ADN voltage fluctuation uncertainty. By analyzing the
correlation and transitivity of noise symbols, it shows that ESS
and SVC can reduce the voltage caused by distributed generation
(DG) and load changes. Effectiveness in Fluctuations. This
method introduces a new technology to calculate the voltage
fluctuation sensitivity index through the micro-increment of
coefficients, and an analysis technology to quickly estimate the
voltage sensitivity interval value, which can quickly and
accurately quantitatively describe the voltage in an uncertain
environment. The sensitivity of fluctuations to various factors.
Through case analysis in an actual 292-node power distribution
system, it is proved that this method not only improves the
efficiency and reliability of calculation, but also, in different
scenarios, through improved complex affine forward and
backward power flow algorithms Compared with the
continuous calls, this method avoids repeated calculation of
the power flow every time the uncertain factors change, and
helps to achieve rapid calculation and online analysis of the node
voltage fluctuation range in an uncertain environment.
Nonetheless, this method still needs to be in-depth in
analyzing the dynamic behavior and long-term stability of the
power system. Future research needs to be expanded to dynamic
and long-term stability analysis to comprehensively evaluate the
long-term benefits of equipment such as ESS and SVC and
provide solutions for uncertain environments. The voltage
optimization provides a basis for further research.

FIGURE 11
Sensitivity indicators of voltage fluctuations to individual ESS/SVC.

TABLE 2 Deviation value of voltage fluctuation level change of node 27 in
various scenarios.

Model 1 (%) Model 2 (%) Model 3 (%) Model 4 (%)

1 0.007 0.019 0.025 0.027

2 0.012 0.022 0.019 0.025

3 0.016 0.024 0.022 0.026

4 0.011 0.022 0.026 0.018

5 0.014 0.018 0.025 0.024

6 0.014 0.022 0.024 0.026
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Multi-feature based extreme
learning machine identification
model of incipient cable faults

Feng Wang1, Pengping Zhang1, Jianxiu Li2, Zhiqi Li3*,
Mingzhe Zhao1, Yongliang Liang3, Guoqiang Su1 and
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In the operation of medium-voltage distribution cables, the local insulation
performance may degrade due to inherent defects, environmental influences,
and external forces, leading to consecutive self-recovering latent faults in the
cables. If not addressed promptly, these faults may escalate into permanent
failures. To address this issue, this paper analyzes the development mechanism
and characteristics of latent cable faults. A 10kV low-resistance cable latent fault
model based on the Kizilcay arc model is built in the PSCAD/EMTDC platform.
Furthermore, the paper analyzes and extracts the time-domain, frequency-
domain, and time-frequency domain features of fault current samples.
Effective fault feature vectors are constructed using multivariate analysis of
variance (MANOVA) and Principal Component Analysis (PCA). Based on the
fault feature vectors and Extreme Learning Machine (ELM), an intelligent fault
identification model for cable latent faults is developed. The initial parameters of
the ELM model are optimized using the Particle Swarm Optimization (PSO)
algorithm. Finally, the superiority of the proposed model is validated in terms
of classification accuracy, training time, and robustness compared to other
machine learning algorithms.

KEYWORDS

cable incipient fault, feature extraction, data-driven, extreme learning machine, particle
swarm optimization

1 Introduction

Power cables are commonly buried underground, and with the passage of time, factors
such as electrical, thermal, and mechanical stress gradually reduce their insulation strength,
eventually leading to permanent faults that jeopardize the safe and reliable power supply of
urban distribution networks. Operational experience with medium-voltage cables indicates
that, prior to the occurrence of permanent faults, transient and self-recovering arc
grounding faults may occur at the same location. Due to their short duration (1/4 to
four cycles) and small fault currents, traditional overcurrent protection devices with inverse
time characteristics fail to activate. In this paper, such faults are referred to as latent cable
faults. Timely detection of latent faults in medium-voltage distribution cables and
conducting targeted maintenance can effectively prevent their development into
permanent faults, thus ensuring the safe and reliable operation of the power system.

The current research approaches for identifying latent cable faults both domestically
and internationally primarily involve extracting fault features, constructing threshold
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criteria for identification, and utilizing data-driven algorithms for
recognition. Ref (Sidhu and Xu) proposed two detection algorithms,
namely, cable latent fault detection and classification rules based on
wavelet analysis, as well as the integration of fault currents and
negative sequence currents in the time domain, with the latter being
more suitable for single-phase cable latent faults. Ref (Zhou et al.)
and (Zhang et al., 2017a) analyzed the characteristics of cable
overcurrent caused by various disturbance sources, including
short circuit faults, capacitor switching and transformer reclosing,
load switching, and motor starting. They utilized feature quantities
obtained through wavelet transform decom-position to develop
overcurrent detection criteria. Furthermore, based on this
foundation, feature extraction and grey relational analysis were
employed to calculate the correlation between measured samples
and reference samples for identifying latent cable faults. Ref
(Fothergill et al., 2011) applied wavelet singularity detection and
Bayesian change point analysis to detect the current signals of cable
latent faults, extract frequency do-main feature vectors, and achieve
classification and recognition of cable latent faults using
probabilistic neural networks and support vector machines,
respectively. In ref (Mousavi and Butler-Purry), the empirical
mode decomposition (EMD) method was utilized to extract
transient features, and the ant colony algorithm and fuzzy neural
network were applied for fault classification in distribution network
cables. Ref (Faisal et al., 2012) introduced a latent fault identification
method that relies on time-domain characteristics. This method
involved obtaining the time-frequency characteristics of fault
currents and voltages through S-transform analysis and
subsequently detecting latent faults. Ref (Mousavi and Butler-
Purry, 2009) proposed a latent fault detection and classification
method based on a rule-oriented support vector ma-chine.
Addressing the challenge of distinguishing load transients from
latent faults, Ref (Mousavi et al., 2003) presented a methodology
that employed wavelet packet analysis for extracting waveform
features. This approach integrated three signal processing
techniques, namely, principal component analysis, linear
discriminant analysis, and feature subset classification, in
conjunction with the k-nearest neighbor algorithm for fault type
identification. Ref (Sidhu and Xu, 2010) introduced two detection
algorithms rooted in wavelet analysis and time-domain fault current
characteristics. These algorithms established latent fault detection
rules and thresholds, enabling the identification and classification of
latent faults. Notably, only a limited number of studies have
ventured into modeling latent faults. Ref (Mousavi and Butler-
Purry, 2010) harnessed self-organizing mapping (SOM)
technology for numerical modeling of latent faults. During the
modeling process, specific energy features in the wavelet domain
were obtained and employed. Ref (Zhang et al., 2017b) adopted the
Kizilcay arc model to simulate cable latent faults but did not account
for the influence of latent faults on the model.

However, whether it is machine learning algorithms or the more
widely used deep learning approaches in recent years, they are
fundamentally data-driven algorithms. Data-driven algorithms,
especially deep learning algorithms, have higher requirements for
the scale and quality of samples. They excessively rely on samples,
and when the sample size is insufficient or the quality is poor, they
often struggle to achieve desirable results.

In summary, this paper establishes a cable latent fault model
based on the Kizilcay arc model in the PSCAD/EMTDC platform,
which effectively characterizes the features of cable latent faults. By
conducting batch simulations to obtain fault phase current samples,
various analyses including time-frequency, frequency-domain, and
time-frequency domain are performed to extract multi-dimensional
and multi-domain fault features, constructing initial feature vectors.
Multivariate analysis of variance is utilized to select features,
retaining effective features and constructing feature vectors.
Principal Component Analysis is employed to process the feature
vectors, significantly reducing the dimensionality while retaining the
maximum amount of effective information from the original
features. An intelligent diagnosis model based on Extreme
Learning Machine (ELM) is established, and the Particle Swarm
Optimization (PSO) algorithm is introduced to optimize its
generalization capability. Case study results demonstrate that the
cable latent fault identification model based on Extreme Learning
Machine outperforms other machine learning algorithms in terms of
fault recognition performance.

2 Modeling of latent faults in cables
based on arc models

2.1 Modeling of latent faults based on the
Kizilcay arc model

Latent faults in cables are often characterized by low energy and
short duration intermittent arc faults. Therefore, this paper employs
the Kizilcay arc model (Kizilcay and Pniok, 2007), (Idarraga et al.) to
represent latent faults in cables. The Kizilcay arc model, based on the
energy balance theory and control theory, provides a concise and
accurate representation of arc fault characteristics, and it has been
widely applied in recent research (Wang et al., 2021). This model
con-siders the arc ignition process and assumes a constant length for
the main arc while the length of the secondary arc linearly
increases over time.

The mathematical expression of the Kizilcay arc model is
as follows:

dg t( )
dt

� 1
τ

G − g t( )( ) (1)

where τ is the time constant, G is the arc static equivalent
conductance, which can be understood as the arc conductance
value when the current remains stable for a long time under
external conditions. It is a function of the arc forward current if
and the static arc voltage ust(t), as shown in Eq. 2. g is the arc
instantaneous conductance and is related to the arc instantaneous
resistance according to the quantity relationship de-scribed in Eq. 3.

G t( ) � if t( )
ust t( ) (2)

Rarc t( ) � 1
g t( ) (3)

The static arc voltage ust(t) satisfies:

ust t( ) � u0 + r0 if t( )∣∣∣∣
∣∣∣∣ (4)
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where u0 is the characteristic voltage of the arc, and r0 is the
characteristic resistance of the arc.

Substituting Eqs 2–4 into Eq. 1, the complete formulation of the
Kizilcay dynamic arc model can be obtained.

dg t( )
dt

� 1
τ

if t( )∣∣∣∣
∣∣∣∣

u0 + r0 if t( )∣∣∣∣
∣∣∣∣
− g t( )( ) (5)

As mentioned earlier, cable latent faults are often developed
from water trees and electrical trees. Using only the arc model is
insufficient to accurately characterize the characteristics of
latent faults. Therefore, the unburned portions of the water
tree and electrical tree channels are equivalently represented as
constant resistances, which are connected in series with the arc
model to provide a better description of latent faults. The
equivalent model of cable latent faults is illustrated in the
following figure.

As shown in Figure 1, the latent fault of medium-voltage
distribution cables is considered as a series connection of the arc
resistance Rarc and the equivalent resistance R0 of the defect channel.

Therefore, the model of cable latent faults can be expressed
as follows:

uf t( ) � if t( ) R0 + Rarc t( )( ) (6)

Where uf is the voltage of the latent fault in the cable, and if is the
current of the latent fault.

2.2 Modeling of latent cable faults based
on PSCAD

This paper establishes a typical low-resistance grounded
medium-voltage cable distribution system, as shown in Figure 2,
using the Bergeron cable model in the PSCAD platform. The power
supply voltage is 110 kV, which is stepped down to 10 kV through a
distribution transformer, and connected to three cable feeders. The
specific cable parameters are provided in Table 1.

3 Multi-dimensional feature analysis of
faults in medium-voltage cables

3.1 Time-domain feature extraction

Time-domain feature statistics include dimensional and
dimensionless features, which describe fault characteristics from
different perspectives and enable fault classification. In this study, a
total of nine time-domain feature statistics were extracted, including
five dimensional features and four dimensionless features, as listed
in Table 2.

The aforementioned nine statistical features form the time-
domain feature vector:

Ct � Ct1, Ct2, Ct3, Ct4, Ct5, Ct6, Ct7, Ct8, Ct9[ ] (7)

3.2 Frequency -domain feature extraction

The fault phase current signal is subjected to spectral analysis to
obtain the frequency components of the signal, thereby extracting
the frequency-domain features. In this paper, a total of four
frequency-domain features are extracted, including centroid
frequency, average frequency, root mean square frequency, and
frequency standard deviation. The specific meanings of each
feature are listed in Table 3.

The aforementioned nine statistical features form the time-
domain feature vector:

CF � CF1, CF2, CF3, CF4[ ] (8)

3.3 Time-frequency domain feature
extraction based on stationary
wavelet transform

The stationary wavelet transform, employing the “zero-
padding” method during signal decomposition and

FIGURE 1
Schematic diagram of equivalent model of cable latent fault.

FIGURE 2
Schematic diagram of 10 kV cable distribution system.
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reconstruction, exhibits translation invariance, ensuring that the
decomposed approximation and detail coefficients at each level
have the same length as the original signal. (Wang et al., 2021).
This preserves the transient features of the original signal to the
maximum extent. Based on this, in this paper, time-frequency
domain feature extraction of cable latent faults and other

transient disturbances is achieved by calculating the energy
and performing statistical analysis on the wavelet coefficients
obtained through the stationary wavelet transform (Li, 2021; Wu
and Wang, 2022).

The formulas for obtaining the low-frequency approximation
coefficients aj,n and high-frequency detail coefficients dj,n at
each level through the stationary wavelet transform are as follows:

dj,n � ∑
i

g i − 2n( )aj−1,i
aj,n � ∑

i

h i − 2n( )aj−1,i
⎧⎪⎪⎨
⎪⎪⎩

(9)

TABLE 1 Cable parameters.

Conductor
radius R0/m

Insulation
radius R1/m

Armour
radius R2/m

Shell
radius
R3/m

Conductor
resistivity ρ/Ω

Relative
permeability μ

Relative
permittivity ε

0.020 0.040 0.044 0.048 1.724e-8 1.2 2.7

TABLE 2 Time-domain feature.

Characteristics Meaning Calculation

Ct1 Peak-to-peak value Ct1 � max(xi) − min(xi)

Ct2 Rectified Average
Ct2 � 1

N∑
N

i�1
|xi |

Ct3 Variance
Ct3 � 1

N∑
N

i�1
(xi − x

−)2

Ct4 Standard deviation
Ct4 �


1
N∑

N

i�1
(xi − x

−)2
√

Ct5 Root mean square (RMS) value

Ct5 �


1
N∑

N

i�1
x2i

√√

Ct6 Skewness

Ct6 �
∑
N

i�1
[(xi−x−)3]

(N−1)(T4)3

Ct7 Kurtosis

Ct7 �
∑
N

i�1
[(xi−x−)4]

(N−1)(T4)4

Ct8 Peak factor Ct8 � max |xi |
Ct5

Ct9 Form factor Ct9 � Ct5/Ct2

TABLE 3 Frequency-domain feature.

Characteristics Meaning Calculation

CF1 Centroid frequency

CF1 �
∑
K

k�1
s(k)f(k)

∑
K

k�1
s(k)

CF2 Average frequency
CF2 � 1

n∑
K

k�1
f(k)

CF3 Root mean square
frequency

CF3 �


∑
K

k�1
f2(k)s(k)

∑
K

k�1
s(k)

√√√

CF4 Frequency standard
deviation

CF4 �


∑
K

k�1
(f(k)−Fc )2s(k)

∑
K

k�1
s(k)

√√√

TABLE 4 Frequency -domain feature.

Characteristics Meaning Calculation

Cw1 Energy
Cw1 � ∑

N

i�1
s2ij

Cw2 Energy entropy
Cw2 � −∑

N

i�1

s2ij
Ej
log2(

s2ij
Ej
)

Cw3 Information entropy
Cw3 � −∑

N

i�1
s2ij log2 s

2
ij
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In the equations, i is the sample point index within the window, j
denotes the level of wavelet coefficients, and n represents the
discretization level of the wavelet function.

For the jth level wavelet coefficients sj = [s1j, s2j, . . . sNj] obtained
from the stationary wavelet transform, three feature statistics are
constructed: energy, energy entropy, and information entropy. The
specific meanings of each feature are listed in Table 4.

The above three features constitute the time-frequency domain
feature vector.

Cw � Cw1, Cw2, Cw3[ ] (10)

Taking the A-phase current of each fault type as an example, the
9-dimensional time-domain feature vector Cti is calculated as
described earlier. The 4-dimensional frequency-domain feature
vector CFi is obtained by performing spectral analysis on Cti. The
A-phase current is then subjected to 3-level stationary wavelet
transform using the dB4 mother wavelet. Each level’s subbands
are divided into five equal intervals of 0.02s, corresponding to the
power frequency period. Within each interval, three feature values
are computed, resulting in a total of 60-dimensional time-frequency
feature vector Cwi By combining the feature vectors from the three
domains, a 73-dimensional feature vector [Cti, CFi, Cwi] is

constructed for each fault sample. This process is repeated for
each fault type, resulting in a fault feature matrix of size (number
of fault samples) × 73 for each class of faults.

4 Validation and optimization of
fault features

4.1 Feature statistical analysis based on
multivariate analysis of variance

Multivariate analysis of variance (MANOVA) is a statistical
theory and method for studying the relationships between multiple
independent variables and multiple de-pendent variables. It is
applicable when the independent variables simultaneously in-
fluence two or more dependent variables. MANOVA is used to
analyze whether there are significant differences in the means of
these dependent variables when the independent variables are at
different levels (Wu and Wang, 2022). Furthermore, to specifically
analyze the significance levels of each dependent variable, univariate
analysis of variance (ANOVA) needs to be conducted for each
dependent variable. In univariate ANOVA, the significance of the
differences between independent variables and a specific dependent

TABLE 5 Parameter table of 21-dimensional effective features.

Characteristics F-statistics p

Ct1 200.79 4.44343e-5

Ct2 175.18 1.27355e-4

Ct3 57.07 5.61522e-3

Ct4 174.92 1.45584e-6

Ct5 176.45 6.59797e-7

Ct6 155.3 1.48556e-3

Ct7 215.43 1.80453e-4

Ct8 219.14 2.86655e-4

Ct9 224.37 2.15367e-5

CF1 218.15 4.69379e--5

CF2 190.39 4.37507e-4

CF3 220.43 1.51552e-5

CF4 219.49 2.41903e-5

Cw1(12) 157.73 4.47376e-3

Cw3(12) 182.54 2.12152e-4

Cw1(13) 108.76 4.91673e-4

Cw1(15) 83.25 1.55562e-4

Cw1(22) 158.76 2.69755e-3

Cw2(31) 76.82 3.95527e-4

Cw3(32) 191.97 1.99504e-5

Cw1(34) 51.18 2.75793e-3

Cw1(12) represents the energy feature of the second time segment in the first-level subband, and similarly, Cw2(31) represents the energy entropy feature of the first time segment in the third-level

subband.
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variable is evaluated using the output parameters p and the test
statistic F. Typically, if the F value is large and p < the significance
level (usually set at 0.05), the significance level of that dependent
variable is considered significant (Liu et al., 2022).

The 73-dimensional features were subjected to individual one-
way analysis of variance (ANOVA), resulting in the identification of
21 significant features. The corresponding p-values and F-values for
each feature are presented in Table 5.

4.2 Feature vector dimensionality reduction
optimization based on principal
component analysis

Principal Component Analysis (PCA) aims to minimize
information loss by per-forming an orthogonal transformation
on a set of potentially correlated variables, resulting in a new set
of linearly independent variables called principal components. The
fundamental idea behind PCA is to represent the amount of
information contained in each principal component using their
respective variances. A higher variance indicates a greater amount of
information contained in the corresponding principal component.
The basic steps of PCA involve standardizing the original data,
computing the correlation matrix, calculating the eigenvalues and
eigenvectors, and determining the variance contribution. Finally, the
selection of principal components is made based on these
considerations (Huckemann et al., 2010).

The variance of the principal components is an important
criterion for selecting the principal components (Huang et al.,
2021). The variance contribution rate and cumulative variance
contribution rate of the ith principal component are defined by
Eqs 11, 12 respectively. The variance contribution rate represents the
extent to which the principal component reflects the original sample
information, with a higher contribution rate indicating a greater
reflection of sample information.

λi/∑
M

k�1
λk (11)

∑
i

k�1
λk/∑

M

k�1
λk (12)

The 21-dimensional features selected through multivariate
analysis of variance were subjected to principal component
analysis (PCA) for dimensionality reduction. By considering
eigenvalues greater than one and achieving a cumulative

TABLE 6 Weight results of each component.

Name Variance contribution rate Cumulative variance contribution rate Weight (%)

Principal component 1 0.496 0.496 49.59

Principal component 2 0.269 0.764 26.85

Principal component 3 0.108 0.873 10.84

Principal component 4 0.07 0.943 7

Principal component 5 0.015 0.958 1.51

FIGURE 3
The number of eigenvalues and cumulative variance contribution
rate of PCA.

FIGURE 4
Network structure of ELM.
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contribution rate of 95%, PCA reduced the feature vectors to five
dimensions. The original 21-dimensional feature vectors were
replaced by the feature vectors composed of the first five
principal components, significantly reducing the dimensionality
while retaining the effective information from the original
features to the maximum extent. The weights of each principal
component and the cumulative variance contribution rate are shown
in Table 6 and Figure 3, respectively.

5 A cable latent fault identification
model based on extreme
learning machine

5.1 Extreme learning machine algorithm

Extreme Learning Machine (ELM) is a machine learning
algorithm used for training Single Hidden Layer Feedforward
Neural Networks (SLFNs) (Qian et al., 2023). Its basic principles
are as follows:

Given input samples {(xi,ti),i = 1,2, . . . ,N}, where N represents
the number of samples, xi = { xi1, xi2, . . . , xim}

T and ti = { ti1, ti2, . . . ,
tim}

T denote the input vector and corresponding sample label of the
ith sample, respectively (Liu et al., 2023). For a single hidden layer
feedforward neural network with L hidden nodes, its network
structure is shown in the Figure 4.

5.2 Particle Swarm Optimization-based
model for identification of latent cable faults

Particle Swarm Optimization (PSO) algorithm is a population-
based intelligent evolutionary computation method that simulates
the foraging behavior of birds (Wang P. et al., 2023). It utilizes the
collaborative behavior of a bird swarm to achieve optimal
population search. In this study, the PSO algorithm is employed
to optimize the random initial parameters of the ELMmodel (Wang
D. et al., 2023; Gao, 2023).

The basic steps of the PSO algorithm are as follows:

1. Initialization of particle population: A set of particles is
randomly generated, and the initial velocities v0 and
positions x0 of each particle are randomized

2. Computation of fitness values for each particle: The fitness
value of each particle is calculated. Additionally, the individual
best (Pbest) and global best (Gbest) values are computed and
recorded along with the corresponding particle positions.

3. Iterative updates: The velocities and positions of each particle
are updated ac-cording to Eqs 13, 14. After each update,
the fitness value is recalculated, and the updated particle
fitness value is compared with the fitness value at
the historical best position to determine the optimal
fitness value.

Vid
k+1 � wVid

k + C1rand1 Pid
k −Xid

k( ) + C2rand2 Pgd
k −Xid

k( )
(13)

Xid
k+1 � Xid

k + Vid
k+1 (14)

Thus, this paper presents a data-driven latent fault identification
model based on ELM (Extreme Learning Machine). The overall
training process of the model is illustrated in Figure 5.

6 Case study

6.1 Classification results of cable latent faults
based on optimized ELM algorithm

The five types of faults described earlier correspond to their
respective fault labels, which need to be converted into vector labels
when training the ELM model, as shown in Table 7.

After applying principal component analysis (PCA) to the
extracted multi-dimensional fault features, the dimension was
reduced to 5. Consequently, the ELM model was configured with
five input layer nodes and five output layer nodes. The hidden layer
activation function was set to the Sigmoid function, and the number
of hidden layer nodes was determined as 11. For the output vector,
the softmax function was used as the activation function to
normalize it, ensuring that each output element in the vector is
between 0 and 1. The values represent the probability of the input
data be-longing to each fault type. In the PSO optimization
algorithm, the learning factors c1 and c2 were both set to 1.5,
and the number of iterations was set to 1,000. The optimization
results are shown in Figure 6. Themodel training reached its optimal
state when the number of iterations reached 815. Initially, due to the
random initialization of weights and thresholds in the ELM model,
the error was large. However, as the training progressed, the fitness
function rapidly decreased.

Figure 7 presents the confusion matrix of the ELM model for
fault classification on the training and testing sets, with classification
accuracies of 91.02% and 88.87%, respectively. These results
demonstrate that the proposed data-driven ELM-based cable
latent fault identification model exhibits good classification
performance. Although the overall classification accuracy is
satisfactory, it can be observed from the classification results that
the data-driven model for medium-voltage cable latent fault
identification tends to misclassify serious faults such as constant
impedance grounding faults as cable latent faults or transient
disturbances. This limitation implies that the safety of the
model’s output results cannot be fully guaranteed, which is an
inherent drawback of data-driven algorithms.

6.2 Comparison of machine learning
algorithm performance

To validate the effectiveness of the proposed cable incipient fault
identification method based on the ELM model, it was compared
with the SVM classification model optimized by ten-fold cross-
validation and the KNN model.

Similarly, for each type of fault mentioned earlier, 1,200 sets of
samples were randomly selected, with 80% of samples used for
training and the remaining 20% used for testing. The fault
classification based on SVM was implemented using the libSVM
software package, while the KNN algorithm was implemented using
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the MATLAB KNN function. The classification accuracies of the
three models are shown in Table 8.

From the accuracy values in Table 8, it can be observed that all
three classification models achieve classification accuracies above
85% on the test set, validating the effectiveness of the extracted and
optimized feature vectors proposed in this study. Furthermore, the
ELM model demonstrates higher overall classification accuracy on

FIGURE 5
Construction process of fault identification model based on data-driven.

TABLE 7 Fault type and its corresponding vector label.

Types of faults Vector label

Semi-periodic latent cable faults (1,0,0,0,0)

Multi-periodic latent cable faults (0,1,0,0,0)

Constant impedance grounding faults (0,0,1,0,0)

Capacitor switching disturbances (0,0,0,1,0)

Load transient disturbances (0,0,0,0,1)

FIGURE 6
Fitness curve of ELM model.
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the test set compared to the SVM and KNN-based classification
models. Additionally, due to the absence of hidden layer parameter
updates, the ELM model exhibits significantly lower training time
compared to the SVM and KNN models.

6.3 Noise resistance analysis

To simulate real-world field data, Gaussian white noise with
signal-to-noise ratios (SNRs) of 40dB, 30dB, and 20dB was added to

the raw data of each fault type to evaluate the model’s noise
resistance. Figure 8 shows the current signal of the half-wave
cable incipient fault with 30dB Gaussian white noise added.

Table 9 presents the accuracy of the three classification models
after adding Gaussian white noise with three different signal-to-
noise ratios. As observed from the table, the accuracy of all three
classification models decreases with decreasing signal-to-noise ratio.
This can be attributed to two main factors. Firstly, a lower signal-to-
noise ratio indicates a higher level of noise contamination, resulting
in more severe distortion of the original signal waveform and

FIGURE 7
Confusion matrix of classification results on training set and test set.

TABLE 8 Comparison of fault classification models based on ELM, SVM and KNN.

Model name Training set accuracy (%) Testing set accuracy (%)

ELM model 91.02 88.87

SVM model 83.33 86.67

KNN model 80.62 87.5

FIGURE 8
Cable latent fault current waveform after adding white noise.
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subsequently masking the under-lying features. Secondly, the
transient processes of the five fault types already exhibit relatively
small differences, and the introduction of noise further reduces the
distinguishability among them, leading to a decrease in the
discriminative power of the extracted features.

As shown in Table 9, among the three classification models,
KNN exhibits the largest decrease in accuracy, with its accuracy
dropping below 75% at a signal-to-noise ratio of 20dB. SVM shows a
relatively slower decline in classification accuracy, with its accuracy
only falling below 80% under the influence of 20dB signal-to-noise
ratio. Although ELM also experiences a decrease in accuracy, its
classification performance re-mains superior to the other two neural
network models under the same level of noise interference,
consistently maintaining an accuracy above 80%.

Considering this evaluation metric, the PSO-optimized ELM
model demonstrates good identification performance for cable
latent faults even in the presence of signal noise interference.

7 Conclusion

This paper utilizes arc simulation to investigate latent faults in
medium-voltage distribution cables. Based on the Kizilcay arc model
and utilizing fault samples obtained through batch simulations in
PSCAD, the study conducts time-frequency, frequency-domain, and
time-frequency domain analyses to extract multi-dimensional and
multi-domain fault features. Subsequently, multivariate analysis of
variance and Principal Component Analysis are employed to optimize
the features. Finally, an intelligent diagnosis model for latent faults in
medium-voltage distribution cable networks is established based on
Extreme Learning Machine (ELM). The following conclusions are
drawn from the analysis and simulation experiments.

(1) The series connection of constant resistors using the Kizilcay arc
model effectively simulates the characteristics of latent faults in
medium-voltage distribution networks, providing favorable
sample conditions for model training.

(2) The optimization and selection of initial feature vectors using
multivariate analysis of variance and Principal Component
Analysis improve the correlation between features, eliminate
redundant information, and reduce the workload of model
training and learning.

(3) Particle Swarm Optimization is utilized to optimize the
random initial parameters of the ELM model, reducing the
number of iterations required for model solution and
improving the fitting capability of the model.

(4) Experimental results demonstrate that the Extreme Learning
Machine model established in this paper outperforms SVM and
KNNmodels in terms of classification accuracy. Additionally, to
simulate actual field data, Gaussian white noise with signal-to-
noise ratios of 40dB, 30dB, and 20dB is added to original fault
samples to compare the robustness of the three models. The
results show that the classification accuracy of the ELMmodel is
consistently higher than that of the SVM and KNN models,
confirming the robustness of the fault identification model
based on Extreme Learning Machine established in this paper.

Next steps will involve researching fault location on the basis of
latent fault identification in cables, aiming to reduce fault repair time
and enhance the safety and stability of distribution
network operation.
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Ultra-short-term multi-energy
load forecasting for integrated
energy systems based on
multi-dimensional coupling
characteristic mining and
multi-task learning

Nantian Huang*, Xinran Wang, Hao Wang and Hefei Wang

School of Electrical Engineering, Northeast Electric Power University, Jilin, China

To address the challenges posed by the randomness and volatility of multi-
energy loads in integrated energy systems for ultra-short-term accurate load
forecasting, this paper proposes an ultra-short-term multi-energy load
forecasting method based on multi-dimensional coupling feature mining and
multi-task learning. Firstly, a method for mining multi-dimensional coupling
characteristics of multi-energy loads is proposed, integrating multiple
correlation analysis methods. By constructing coupling features of multi-
energy loads and using them as input features of the model, the complex
coupling relationships between multi-energy loads are effectively quantified.
Secondly, an ultra-short-term multi-energy load forecasting model based on
multi-task learning and a temporal convolutional network is constructed. In the
prediction model construction phase, the potential complex coupling
characteristics between multiple loads can be fully explored, and the potential
temporal associations and long-term dependencies within data can be extracted.
Then, the multi-task learning loss function weight optimization method based on
homoscedastic uncertainty is used to optimize the forecasting model, realizing
automatic tuning of the loss function weight parameters and further improving
the prediction performance of the model. Finally, an experimental analysis is
conducted using the integrated energy system of Arizona State University in the
United States as an example. The results show that the proposed forecasting
method has higher prediction accuracy than other prediction methods.

KEYWORDS

multi-dimensional coupling characteristic mining, multi-task learning, integrated
energy systems, ultra-short-term multi-energy load forecasting, homoscedastic
uncertainty

1 Introduction

The Integrated Energy System (IES) is a multi-energy supply system that connects
multiple independent energy systems through a variety of energy coupling devices to
achieve tight coupling, coordination, and complementarity between different energy forms
(Alabi et al., 2022). IES can improve the flexibility of various energy systems and achieve full
consumption of renewable energy and a reliable supply of multiple energy sources (Zhu
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et al., 2022). Therefore, the development and construction of IES is
an inevitable choice to solve the energy crisis, improve
environmental pollution, improve energy utilization efficiency,
and promote the large-scale utilization of renewable energy (Liu
et al., 2023). With the development of IES, the potential factors
affecting the energy demand of IES users have gradually become
more complicated, which brings huge challenges to the ultra-short-
term accurate prediction of multi-load, thus affecting the optimal
dispatch and demand response strategy formulation of IES (Yan
et al., 2024). Therefore, it is necessary to research a more accurate
ultra-short-term forecasting method for IES multi-energy loads.

In the construction phase of the input feature set for multi-energy
load forecasting in IES, existing research has considered various
potential factors that influence IES users’ energy consumption
habits, and uses correlation analysis methods to screen the strongly
correlated features for multi-energy load forecasting. Literature (Wang
et al., 2022) considers the impact of meteorological information,
holiday information, and temporal features on the multi-energy
load when constructing the input feature set. It employs Pearson
correlation analysis and Grey Relational Analysis (GRA) to select
strongly correlated meteorological features for multi-energy load
forecasting, thereby enhancing the forecasting model’s accuracy.
Similarly, Literature (Zhuang et al., 2023) considers factors such as
meteorological information and holiday information in relation to the
potential association with the multi-energy load when constructing the
input feature set. It utilizes Pearson correlation analysis and correlation
analysis methods based on Copula theory to select strongly correlated
meteorological features fromboth linear and nonlinear perspectives for
multi-energy load forecasting. In addition, some researchers have
constructed strongly correlated features that reflect the latent
characteristics of multi-energy loads, achieving high prediction
accuracy. For instance, Literature (Tan et al., 2023) introduces a
feature selection method based on Synthesis Correlation Analysis
(SCA), and constructs a Load Participation Factor (LPF) as an
input feature for the prediction model, illustrating the degree of
participation of each load in the total load. However, existing
multi-energy load forecasting methods for IES have not fully
explored the potential complex coupling characteristics between
multi-energy loads of the integrated energy system in different
dimensions during the input feature set construction phase, thereby
leaving room for improvement in the model’s prediction accuracy.

In the construction phase of forecasting models for multi-energy
loads in IES, some existing studies build separate forecasting models
for different types of loads. Literature (Zheng et al., 2023) proposes a
multi-energy load forecasting method based on Temporal
Convolutional Networks (TCN) and global attention mechanism,
forecasting electric, cooling, and heating loads separately. Literature
(Ge et al., 2021) introduces a Wavelet Neural Networks (WNN)
multi-energy load forecasting model based on Improved Particle
Swarm Optimization (IPSO) and Chaos Optimization Algorithm
(COA), which forecasts electric, cooling, and heating loads
individually. Literature (Liu et al., 2022) presents a multi-energy
load forecasting method combining Multivariate Phase Space
Reconstruction (MPSR) with Support Vector Regression (SVR),
achieving good forecasting results by separately constructing
forecasting models for each load. However, there is a complex
coupling relationship among the multi-energy loads in IES. The
mentioned research method uses historical data of various types of

loads, which are strongly correlated with the load to be predicted, as
input features for the forecasting model during the construction of
the input feature set. This approach only considers the coupling
relationship among the multi-energy loads at the construction phase
of input feature set construction and fails to fully explore the
potential coupling characteristics among the multi-energy loads
during the construction phase of the forecasting model. As a
result, this leads to the need for improvement in the accuracy of
multi-energy load forecasting.

To address this issue, some studies have employed multi-energy
load forecasting models based on Multi-Task Learning (MTL),
achieving high prediction accuracy. For instance, Literature (Guo
et al., 2022) developed a multi-energy load forecasting model based
on MTL and Bi-directional Long Short-Term Memory Networks
(BiLSTM), effectively extracting potential coupling information
between loads. Literature (Wang et al., 2021) used a forecasting
model combining MTL with Long Short-Term Memory Networks
(LSTM) to forecast the trend curves of decomposed and
reconstructed multi-energy loads. Additionally, it employed the
Least Squares Support Vector Regression (LSSVR) method to
forecast fluctuation curves. The final multi-energy load forecast
results were obtained by superimposing the predictions of the
two models. However, existing studies on multi-energy load
forecasting based on MTL often employ LSTM and their variants
to construct the sharing layers in MTL. Although these structures
contain temporal memory units, they still face issues with forgetting
historical information. Furthermore, their capability to mine
potential temporal associations and long-term dependencies
within data is relatively weak, limiting the improvement in the
accuracy of multi-energy load forecasting.

Selecting appropriate weights for the loss functions of each sub-
task in the construction and training process of MTL models is a
crucial means of enhancing the overall performance of the model.
Current research methods on multi-energy load forecasting in IES
using MTL models typically set the weights of each forecasting task’s
loss function manually without adjustment. For example, Literature
(Zhang et al., 2023) manually set the loss function weights for the
model when utilizing MTL to construct an electric load forecasting
model. Literature (Wu et al., 2022) developed a multi-energy load
forecasting model for IES based on MTL and LSTM, where the loss
function weights for the MTL model were manually set based on the
peak ratio of different types of loads within the IES. However,
manually setting the weights of the MTL loss functions during the
training process will consume a considerable amount of time for
parameter tuning. Additionally, setting model parameters manually
may lead to one or more tasks dominating the model training process.
This method of parameter configuration fails to balance the losses of
the sub-tasks reasonably, lacks scientific rigor, and limits further
enhancements in the prediction performance of MTL models.

To address the aforementioned issues, this paper proposes an
ultra-short-term multi-energy load forecasting method based on
multi-dimensional coupling characteristic mining and multi-task
learning. The specific contributions of this paper are as follows:

(1) A multi-dimensional coupling characteristic mining method
for multi-energy loads is employed, integrating multiple
correlation analysis methods. By utilizing Pearson
correlation coefficients, Spearman rank correlation

Frontiers in Energy Research frontiersin.org02

Huang et al. 10.3389/fenrg.2024.1373345

230

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373345


coefficients, and theMaximum Information Coefficient (MIC),
load features that describe the coupling relationships between
multi-energy loads are constructed. This effectively quantifies
the complex coupling relationships among the historical
sequences of IES multi-energy loads, thoroughly mining the
potential coupling characteristics from different dimensions in
the construction of the input feature set.

(2) An ultra-short-term multi-energy load forecasting model
based on MTL and TCN is constructed. During the model
construction phase, the sharing layer of MTL is used to fully
exploit the potential complex coupling characteristics among
multi-energy loads. The use of dilated causal convolutions
and residual connections in TCN extracts the latent temporal
information of input features, capturing the long-term
dependencies of the input time series.

(3) An optimization method for the forecasting model based on
homoscedastic uncertainty (HU) for MTL loss function
weight optimization is employed. By learning the
homoscedastic uncertainty of multiple forecasting tasks,
the method automatically tunes the weight parameters of
the loss function, saving time on parameter tuning while
further enhancing the model’s prediction performance.

(4) An experimental analysis is conducted using the IES of
Arizona State University as a case study. The results
demonstrate that the proposed forecasting method achieves
higher prediction accuracy compared to other methods.

2 Multi-energy load
characteristic analysis

The various energy subsystems in IES coordinate and
complement each other through energy conversion devices,
leading to complex coupling relationships among different forms
of energy within IES. Simultaneously, changes in external factors
such as meteorological conditions can influence the energy
consumption habits of IES users, implying that the variation
trends of IES multi-energy loads follow certain latent patterns.
To fully explore the latent characteristics of IES multi-energy
loads, this study analyzes the multi-energy load characteristics
using historical data of loads from March 2018 to February
2019 from the IES of the Tempe campus of Arizona State University.

2.1 Analysis of the annual variation trends of
multi-energy loads

Figure 1 displays the annual data curves of electric, cooling, and
heating loads in IES from March 2018 to February 2019. To facilitate
the analysis of the variation trends of multi-energy load sequences in
different seasons, the load data fromMarch to May are categorized as
Spring data, June to August as Summer data, September to November
as Autumn data, and December to the following February as Winter
data. As indicated in Figure 1, both electric and cooling loads
gradually increase to higher levels in Spring and Summer, with
significant fluctuations in these two seasons. The electric load
exhibits stronger fluctuations in autumn, while the fluctuations are
more subdued in winter. The cooling load remains relatively stable in

both autumn and winter. Conversely, the heating load shows an
opposite annual trend, gradually decreasing in Spring and Summer
with less variability. InAutumn andWinter, the heating load increases
to higher levels with more pronounced fluctuations. This
demonstrates that for the same load, the variation trends in
different seasons are significantly influenced by varying
meteorological and other external factors. The differences in load
variation trends across different seasons imply that IES users have
varying energy consumption habits in different seasons. Ignoring
these differences can lead to a failure to fully explore the potential
characteristics of multi-energy loads. Therefore, in conducting ultra-
short-term forecasting of multi-energy loads, it is crucial to mitigate
the negative impact of the differences in load variation trends between
seasons on prediction accuracy.

2.2 Coupling analysis between multi-
energy load

Figure 1 also reveals that within the same season, the variation
trends of different loads in IES are either similar or complementary,
which preliminarily indicates a tight coupling relationship among
IES multi-energy loads. To analyze the coupling among multi-
energy loads more intuitively, Figure 2 employs the Pearson
correlation analysis method to quantify the correlation of the
annual variation trends among different loads. The Pearson
correlation coefficient is a statistical metric that measures the
degree of linear correlation between two continuous variables,
and its specific expression is as follows:

ρ � ∑n
i�1 ai − �a( ) bi − �b( )������������������������

∑n
i�1 ai − �a( )2

�����������
∑n

i�1 bi − �b( )2
√√ (1)

In the formula, ai and bi respectively represent the i-th sample of
the multi-energy load sequences A and B, while �a and �b represent the
mean values of the multi-energy load sequences A and B,

FIGURE 1
The annual historical data curves of multi-energy loads.
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respectively. The symbol “n” denotes the total number of samples in
the load sequences. The value of ρ ranges from [-1, 1], and a larger
value of |ρ| indicates a stronger correlation.

According to Figure 2, there is a positive correlation between the
IES electric load and the cooling load, while there is a negative
correlation between the heating load and both the cooling and
electric load. The absolute values of the Pearson correlation
coefficients between the annual electric load, cooling load, and
heating load in the IES are all greater than 0.7. This indicates a
strong coupling relationship between the various loads in the IES.
Therefore, in conducting ultra-short-term forecasts of multiple
loads, it is crucial to thoroughly explore the complex coupling
characteristics between these loads, as this can significantly
enhance the accuracy of the forecasts.

2.3 Multi-energy loads temporal
correlation analysis

The Autocorrelation Coefficients Function (ACF) is used to
analyze the temporal correlation of multi-energy loads, with the

results presented in Figure 3. The calculation formula for ACF is
as follows:

R k( ) � E Xt − μ( ) Xt+k − μ( )[ ]
σ2

(2)

In the formula, k represents the time lag, where Xt denotes the
load value at time t; μ represents the mean of the historical load
sequence, and σ2 represents the variance of the historical load
sequence. The autocorrelation coefficient takes values within the
range [-1, 1], where a higher autocorrelation coefficient indicates a
stronger correlation.

Figure 3 shows the autocorrelation coefficients of IES multi-
energy loads with a 96-h lag, where the shaded area represents the
95% confidence interval. The figure reveals that within each 24-h lag
period, the autocorrelation coefficients of the various loads first
decrease and then increase, exhibiting a strong daily periodicity.
Additionally, the peak values of the autocorrelation coefficients
within each 24-h lag period gradually decrease. This indicates
that the load values of the IES at a given moment are not only
strongly correlated with the load values of adjacent times but also
with the load values at the same time on adjacent days. Therefore,
when conducting ultra-short-term forecasts of multi-energy loads, it
is essential to fully consider the temporal correlation of the loads to
achieve accurate ultra-short-term predictions.

3 Multi-dimensional multi-energy load
coupling characteristics mining and
input feature set construction

Section 2.2 quantifies the coupling relationships between multi-
energy loads in the IES using the Pearson correlation analysis
method, indicating a strong coupling among the IES multi-
energy loads. However, the Pearson correlation analysis method
can only describe the linear relationships between two types of load
sequences and fails to capture the nonlinear relationships between
loads. Therefore, this chapter employs Pearson, Spearman, and MIC
correlation analysis methods to construct multi-energy load
coupling features. By utilizing multiple correlation analysis
methods to quantify various types of linear and nonlinear
relationships between multi-energy loads, it is possible to fully

FIGURE 2
Pearson correlation analysis results between multi-energy loads.

FIGURE 3
Annual multi-energy load autocorrelation coefficient.
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explore the complex coupling characteristics among multi-energy
loads from multiple dimensions. Based on this, considering various
potential characteristics of multi-energy loads, an input feature set
for the ultra-short-term forecasting model is constructed.

3.1 Multi-dimensional multi-energy load
coupling characteristics mining based on
the integration of multiple correlation
analysis methods

The Spearman’s rank correlation coefficient is a non-parametric
rank statistic used to measure the strength of the monotonic
relationship between two continuous variables. For the multi-
energy load sequences A and B, its specific expression is as follows:

r � 1 − 6∑n
i�1 d

2
i

n n2 − 1( ) (3)

In the formula, di represents the difference in ranks between the
i-th sample ai and bi in the multi-energy load sequences A and B.
The value of r ranges from [-1,1], and a larger value of |r| indicates a
stronger correlation.

MICmeasures the linear and nonlinear relationships between two
continuous variables by calculating the maximum normalized mutual
information under different grid divisions. MIC exhibits robustness to
samples containing noise. The mutual information calculation
formula between multi-energy load sequences A and B is as follows:

I a; b( ) � ∫ p a, b( )log2
p a, b( )
p a( )p b( ) dadb (4)

In the formula, P(a, b) represents the joint probability density of
multi-energy load sequences A and B, while P(a) and P(b)
respectively denote the marginal probability densities of multi-
energy load sequences A and B.

A grid is partitioned on the two-dimensional variable (A, B)
formed by the multi-energy load sequences A and B, and the mutual
information size between each grid is calculated. MIC is the
maximum value of the normalized mutual information under
different grid partitioning methods. Its calculation formula is
as follows:

δ � max
mpn<D

I a; b( )
log2 min m, n( ) (5)

In the formula, m and n respectively represent the number of
intervals partitioned in the direction of multi-energy load sequences
A and B, D is the total number of grids, typically taken as D = n0.6.
The value of δ ranges from [0, 1], and a larger value of δ indicates a
stronger correlation.

For a multi-energy load sequence of length n, the Pearson
correlation coefficient quantifies the linear relationship between
multi-energy loads by calculating covariance and standard
deviation. The Spearman rank correlation coefficient quantifies
simple monotonic nonlinear relationships between multi-energy
loads by calculating the correlation coefficients between the ranks
of variables. Meanwhile, MIC effectively measures the strength of
both linear and nonlinear relationships between multi-energy
loads by calculating the maximum normalized mutual
information under different grid partitioning methods.
Pearson, Spearman, and MIC correlation analysis methods can
quantify different types of linear and nonlinear relationships
between multi-energy loads. Therefore, combining these three
correlation analysis methods to construct multi-energy load
coupling features can measure the potential coupling
relationships between loads from different dimensions, thereby
fully exploring the multi-dimensional coupling characteristics
between multi-energy loads.

Therefore, for the forecast moment t, the historical multi-energy
load sequences from t-1 to t-s are analyzed using Pearson, Spearman,

FIGURE 4
Correlation analysis results between coupling features and multi-energy loads.
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and MIC correlation methods. The obtained correlation coefficients
are then averaged in a weighted manner according to formula (6),
thus obtaining the IES multi-energy load coupling features at time t.
These features reflect the coupling characteristics of the historical
multi-energy load sequences from t-1 to t-s across different
dimensions, effectively quantifying the potential complex
coupling relationships between historical IES multi-energy
load sequences.

S � ρ +| |r +| δ
∣∣∣∣

3
(6)

To analyze the feasibility of the proposed method for mining
multi-dimensional multi-energy load coupling characteristics
based on the integration of multiple correlation analysis
methods, let’s consider constructing multi-energy load

coupling features using historical multi-energy load data from
the month preceding the forecast moment as an example. The
constructed multi-energy load coupling features and the load
sequences are then analyzed using Pearson, Spearman, and MIC
correlation methods, with the results shown in Figure 4. In the
figure, SEC, SEH, and SCH represent the coupling features of the
electric load with the cooling load, the electric load with the
heating load, and the cooling load with the heating load,
respectively.

To avoid the one-sidedness of strong correlation features
obtained by using a single correlation analysis method, when the
constructed coupling feature and a certain type of load in the
multi-energy loads simultaneously satisfy formula (7) (Guo et al.,
2022; Li et al., 2022; Chen et al., 2023), then that coupling feature
is considered a strong correlation feature for the multi-
energy loads.

ρ
∣∣∣∣
∣∣∣∣> 0.4
r| |> 0.3
δ > 0.3

⎧⎪⎨
⎪⎩ (7)

As can be seen from Figure 4, when constructing multi-energy
load coupling features using the historical load data from the month
preceding the forecast moment, SEC, SEH, and SCH can all be
considered strong correlation features for multi-energy load
prediction. This fully demonstrates the effectiveness of the
proposed method for constructing multi-energy load coupling
features. Furthermore, analyzing the correlation between multi-
energy loads using different correlation analysis methods further
indicates the strong coupling relationships within IES multi-energy
loads. Using the constructed coupling features as input features for
the multi-energy load forecasting model can achieve multi-
dimensional mining of potential complex coupling characteristics
in the construction phase of input feature set, improving the
prediction accuracy of ultra-short-term multi-energy load
forecasting.

FIGURE 5
Correlation analysis results between meteorological features and multi-energy loads.

TABLE 1 Input feature set for each seasonal forecasting model.

Feature types Features

Coupling features SEC , SEH , SCH at time t

Meteorological
features

Dew Point, Precipitable Water, Temperature, Pressure at
time t

Holiday features Use 0 to represent weekdays, use 1 to represent weekends,
and use 2 to represent important holidays

Time features Month, Day, Week, Hour

Historical load
features

The multi-energy load at time t-1

The multi-energy load at time t-2

The multi-energy load at time t-3

The multi-energy load at time t-24

The multi-energy load at time t-48

The multi-energy load at time t-72

Frontiers in Energy Research frontiersin.org06

Huang et al. 10.3389/fenrg.2024.1373345

234

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373345


3.2 Construction of multi-energy load input
feature set

To avoid the negative impact of seasonal differences in load
variation trends on the accuracy of multi-energy load forecasting,the
historical data of loads for the entire year are divided according to
different seasons. This seasonal historical data, along with other
features, are collectively used as inputs for the model to build ultra-
short-term forecasting models for multi-energy loads in different
seasons. To fully explore the potential complex coupling
relationships between multi-energy loads from multiple
dimensions, the constructed coupling features SEC, SEH, and SCH
are subjected to correlation analysis with the multi-energy loads. If
the correlation analysis results with a certain type of load satisfy Eq.
7, they are considered as input features for the multi-energy load
forecasting model. Simultaneously, as meteorological factors can
influence users’ energy consumption habits, meteorological features
whose correlation analysis results with a certain type of load in the
multi-energy loads satisfy Eq. 7 are selected as strongly correlated
meteorological features for the multi-energy load. The correlation
analysis results between atmospheric pressure, temperature, relative
humidity, wind direction, precipitable water, dew point, and multi-
energy loads are presented in Figure 5.

From Figure 5, it is evident that atmospheric pressure,
temperature, precipitable water, and dew point can be considered
as strongly correlated meteorological features for multi-energy load
forecasting. Additionally holidays information reflecting users’
energy usage behaviors, along with time features, are also
included as input features for the forecasting model. Since this
study uses the IES of Arizona State University in the United States
for forecasting research, it adopts the U.S. federal holidays
(including New Year’s Day, Christmas, Thanksgiving, etc.) as the
selection rule for holidays in the dataset. To fully consider the
temporal correlation of multi-energy loads, historical load data from
moments t-1 to t-3, as well as t-24, t-48, and t-72, are used as
historical load features in the forecasting model, thus ensuring
thorough mining of the temporal correlations of multi-energy loads.

In summary, for the multi-energy loads at the predicted time t,
the input feature set for the ultra-short-term forecasting model of
multi-energy loads, considering the potential characteristics of
multi-energy loads, is presented as shown in Table 1.

4 Construction of multi-energy load
forecasting

This paper develops an ultra-short-term multi-energy load
forecasting model based on MTL-TCN-HU. Firstly, an MTL
model based on a hard parameter sharing mechanism is
employed in the model construction phase to fully mine the
coupling characteristics of multi-energy loads. Secondly, the
sharing layer based on TCN effectively extracts potential
temporal association information from the input features and
captures long-term dependencies in the input sequence. Lastly,
the use of a homoscedastic uncertainty-based MTL loss function
weight optimization method enables the automatic tuning of loss
function weight parameters. This approach not only reduces the
time cost of model parameter tuning but also further enhances the
prediction accuracy of the MTL forecasting model.

4.1 MTL forecasting model based on hard
parameter sharing mechanism

For the prediction of IES multi-energy loads, the approach of
constructing separate load forecasting models for different types of
loads does not deeply explore the potential complex coupling
characteristics among various energy loads in the model
construction phase. MTL enhances the predictive performance of
the model by extracting coupling information from different
forecasting tasks. This approach not only facilitates parallel
learning of multiple forecasting tasks but also aims to improve
the accuracy of the forecasting model and enhance its generalization
ability (Zhang and Yang, 2022).

FIGURE 6
The structure of (A) hard parameter sharing mechanism and (B) soft parameter sharing mechanism.
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MTL is primarily divided into hard parameter sharing and soft
parameter sharing mechanisms based on the type of sharing
mechanism. Figure 6 presents the structural diagrams for both
soft and hard parameter sharing mechanisms. In the soft
parameter sharing mechanism, the models and parameters for
each forecasting task are distinct and regularization is required
before sharing potential coupling information for each sub-task.
The hard parameter sharing mechanism involves different
forecasting tasks learning the potential coupling information
between sub-tasks directly through the same sharing layer,
thereby facilitating joint training of multiple tasks. Given that
the soft parameter sharing mechanism has more relaxed
constraints compared to the hard parameter sharing
mechanism, it is more suitable for multi-energy load forecasting
tasks where the sub-tasks have weaker interrelations. In contrast,
the hard parameter sharing mechanism, with its common sharing
layer for each sub-task, is apt for multi-energy load forecasting
tasks where sub-tasks are closely related. Since the IES multi-
energy loads under study exhibit strong coupling, this paper opts
for a hard parameter sharing mechanism-based MTL method to
construct an ultra-short-term multi-energy load
forecasting model.

4.2 Construction of MTL sharing layer based
on TCN

TCN is a convolutional neural network that integrates Dilated
Causal Convolution (DCC) and Residual Connection (RC). DCC
includes dilated convolution and causal convolution. In TCN, causal
convolution ensures that the forecasting results at earlier time steps
do not involve future data information, preventing future
information leakage, and making the convolutional network
suitable for multi-energy load forecasting models. The dilated
convolution in TCN addresses the issue of the limited receptive
field in traditional convolution. Introducing a dilation coefficient d,
increases the model’s receptive field while reducing the
computational load, thus enabling the learning of global
information. Assuming the model’s input sequence is X �

x1, x2,/, xn{ } and the filter is F � f1, f2,/, fk−1{ }, the
calculation formula for the dilated convolution is as follows:

F t( ) � ∑k−1
i�0 f i · xt−d·i (8)

In the formula, k represents the filter size, d is the dilation factor,
and F(t) is the result of the dilated convolution for the t-th element
in the input sequence.

The residual block of TCN consists of a DCC layer,
WeightNorm layer, ReLu activation function, and Dropout layer.
The residual block effectively addresses the issue of gradient
vanishing in deep network structures and enhances the model’s
generalization ability. Its core idea is to form an RC by combining
the direct mapping of the input with the output of the last layer of
the residual module, thereby improving the model’s stability and
facilitating the construction of deep networks. An example of a DCC
structure with d = 1, 2, 4, and k = 3 is shown in Figure 7. In the figure,
Ŷ � ŷ1, ŷ2,/, ŷn{ } represents the output of the DCC.

From Figure 7, it is evident that TCN can capture long-term
dependencies in the input time series while avoiding the problem of
gradient vanishing. It possesses a strong capability to mine the
potential temporal association information in the input data.
Therefore, this paper opts to use TCN to construct the sharing
layer of the MTL model.

4.3Method for optimizing theweight of MTL
loss functions based on homoscedastic
uncertainty

MTL models achieve parallel learning of multiple sub-tasks
through the sharing mechanisms of the model. The loss function
of MTL is as shown in Eq. 9:

L � λ1L1 + λ2L2 +/λrLr (9)

In the formula, L represents the loss function of MTL, r is the
number of sub-tasks in MTL, L1, L2,/, Lr{ } denotes the loss
functions of each sub-task in the MTL model and λ1, λ2,/, λr{ }
represents the weights of the loss functions for each sub-task.

FIGURE 7
The structure of TCN model.
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According to formula (9), the weights of the loss functions for
sub-tasks can affect the training effectiveness of the MTL model.
Scientific and rational allocation of weights to the sub-task loss
functions can further enhance the performance of the multi-task
learning model. Therefore, this paper adopts a homoscedastic
uncertainty-based optimization method for the multi-task
learning loss function.

Homoscedastic uncertainty refers to the type of uncertainty that
is independent of input data. This uncertainty remains constant
across all inputs and varies between different tasks, reflecting the
inherent learning difficulties of each sub-task in MTL. The
optimization method for MTL loss functions based on
homoscedastic uncertainty is achieved by learning the
homoscedastic uncertainty among different sub-tasks, thereby
enabling the automatic tuning of loss function weights. Assuming
anMTLmodel with three sub-tasks has parametersW, and the noise
parameters for different tasks are σ1, σ2, and σ3, the total loss
function L(W, σ1, σ2, σ3) of MTL can be represented as follows:

L W , σ1, σ2, σ3( ) � 1
2σ2

1

L1 W( ) + 1
2σ2

2

L2 W( ) + 1
2σ2

3

L3 W( )
+ ln σ1σ2σ3( )

(10)

In the formula, σ2i (i � 1/3) represents the observation noise,
which is used to measure the homoscedastic uncertainty of each
forecasting task, and ln(σ1σ2σ3) is the regularization term that
restricts the model from learning in the direction of unbounded
increase of σ2i .

4.4 The overall framework of the
forecasting model

The framework of the ultra-short-term multi-energy load
forecasting model is shown in Figure 8. It mainly comprises the
following three parts:

(1) Multi-dimensional multi-energy load coupling characteristics
mining: Selecting the length s of the historical load sequence

for correlation analysis, calculating the Pearson correlation
coefficient, Spearman correlation coefficient, and MIC
between the multi-energy load historical sequences from t-
1 to t-s, and using formula (6) to integrate various correlation
analysis methods to construct the multi-energy load coupling
features at time t. This approach quantifies the complex
coupling relationships between multi-energy loads and
enables in-depth multi-dimensional mining of potential
couplings in the construction phase of the multi-energy
load input feature set.

(2) Construction of multi-energy load input feature set: Dividing
the annual historical data of multi-energy loads by different
seasons, to construct ultra-short-term forecasting models for
multi-energy loads in various seasons. Various correlation
analysis methods are used to select strongly correlated
features from coupling and meteorological features, which
are then combined with holiday features, time features, and
historical load features to form the multi-energy load input
feature set. This method comprehensively considers various
factors affecting the energy usage habits of IES users and
deeply mines the potential characteristics of multi-
energy loads.

(3) Construction of multi-energy load forecasting model: An
ultra-short-term multi-energy load forecasting model based
on MTL-TCN-HU for IES is constructed. The MTL model
based on a hard parameter sharing mechanism extracts
coupling information between sub-tasks through the
sharing layer, enabling in-depth mining of potential
complex coupling characteristics among multi-energy
loads during the model construction phase. TCN, using
DCC and RC, extracts potential temporal association
information from input features and captures long-term
dependencies in the input time series. The HU multi-task
learning loss function weight optimization method, by
learning the homoscedastic uncertainty of different tasks,
achieves automatic tuning of loss function weight
parameters, thereby saving time in model tuning and
further enhancing the accuracy of multi-energy load
forecasting.

FIGURE 8
The structure of ultra-short-term multi-energy load forecasting model.
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5 Case study

5.1 Data source and evaluation index

This paper selects historical data on electric, cooling, and heating
loads from the comprehensive energy system of Arizona State
University’s Tempe campus, spanning from 1 March 2018, to
28 February 2019, for training the ultra-short-term forecasting
model. The multi-energy load data are divided according to
different seasons, and then each season’s load data are split into
training, validation, and test sets in the ratio of 8:1:1. The
meteorological data are sourced from the National Solar
Radiation Database of the United States.

This paper selects Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), and
Weighted Mean Absolute Percentage Error (WMAPE) as the
forecasting error evaluation metrics, and their calculation
formulas are as follows:

MAE � 1
n
∑n

i�1 yi − ŷi
∣∣∣∣

∣∣∣∣ (11)

MAPE � 1
n
∑n

i�1
yi − ŷi
yi

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ × 100% (12)

RMSE �
�������������
1
n
∑n

i�1 yi − ŷi( )2
√

(13)
WMAPE � θEMAPEE + θCMAPEC + θHMAPEH (14)

TABLE 2 Experimental input features and model parameters for selecting load sequence length used in constructing coupling features.

Sequence length 1 week 2 weeks 3 weeks 1 month 2 months 3 months

Type of input feature According to Table 1, the feature set of multi-energy load input was constructed

Coupling features SCH SEH, SCH SEC, SEH, SCH SEC, SEH, SCH SEH, SCH SEH, SCH

Model MTL-TCN-HU

Hyper-parameter of the model Batch size 128

Number of filters 32

Size of the filter 3

Dropout 0.1

Dilation factor 1,2,4,8,16

Number of iterations 200

Learning rate 0.001

Number of residual blocks 1

Number of fully-connected units 16

Number of fully-connected layers 1

FIGURE 9
Comparative MAPE chart for the experiment on selecting load sequence length used in constructing coupling features.
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In the formula, yi represents the actual load value, ŷi denotes the
forecasting load value, and n indicates the number of samples. θE,
θC, and θH represent the prediction error weights for electric,
cooling, and heating loads, respectively. They are set to 0.4, 0.4,
and 0.2 (Wu et al., 2022), respectively. MAPEE, MAPEC, and
MAPEH represent the MAPE for electric, cooling, and heating
loads. Lower values of MAE, MAPE, and RMSE imply higher
accuracy of the model’s predictions.

5.2 Experimental platform and data
preprocessing

The construction and training of the forecasting model are based
on the Pytorch deep learning framework. The hardware
configuration of the experimental platform includes an Intel(R)
Core (TM) i7-12700H CPU, with acceleration provided by an
NVIDIA GeForce RTX3060 Laptop GPU.

The 3 σ rule is used to filter out anomalies in the historical multi-
energy load data, treating these anomalies as missing data, which are
then filled using cubic spline interpolation. To eliminate the impact
of input feature dimensions on the forecasting model, max-min
normalization is applied to ensure that the input data range
is between [0,1].

5.3 Comparative analysis of
forecasting methods

5.3.1 Selection of load sequence length for
constructing coupling features

The method of mining multi-dimensional multi-energy load
coupling characteristics based on the integration of multiple
correlation analysis methods involves analyzing the correlation of
the historical multi-energy load sequences from t-1 to t-s to
construct the coupling features of multi-energy loads at time t.
Therefore, it is crucial to appropriately select the length of the multi-
energy load historical sequence used for constructing coupling
features. If a shorter load sequence is chosen to construct
coupling features, the randomness and volatility of the multi-
energy loads may result in significant changes in coupling

features between adjacent time steps. The strong fluctuations in
the sequence prevent the coupling feature sequence from fully
reflecting the potential coupling relationships among multi-
energy loads. On the other hand, if a longer load sequence is
chosen to construct coupling features, the changes in coupling
features between adjacent time steps are relatively small.
Consequently, the sequence of coupling features for multi-energy
loads exhibits a more gradual change trend, also failing to capture
the potential coupling relationships. To select an appropriate length
for the multi-energy load sequence to construct coupling features,
experiments are conducted using historical load data from
29 November 2017, to 28 February 2019.

Different lengths of multi-energy load sequences, specifically
1 week, 2 weeks, 3 weeks, 1 month (31 days), 2 months (61 days),

TABLE 3 Ablation experiment input features and model parameters.

Model
number

Model0 Model1 Model2 Model3 Model4

Type of input
feature

According to the results of correlation
analysis, the strong correlation features of
each load were selected. The coupling
features of multiple loads are not

considered.

According to the results of
correlation analysis, the

strong correlation features
of each load were selected.
The feature types are the

same as Table 1.

Same as Table 2

Forecasting
model

LSTM TCN MTL-TCN MTL-TCN-HU

Hyper-parameter
of the model

Number of hidden layers 2 Same as
Table 2

The loss function weight of the multitask
learning model is 0.4, 0.4, 0.2. The other model
hyperparameters are the same as Table 2

Same as Table 2. use HU to
adjust loss function weight

automaticallyNumber of hidden layer units 32

The other model hyperparameters are the same as Table 2

TABLE 4Comparison of prediction errors in electric load forecasting results
of different models.

Season
model

Spring Summer Autumn Winter

Model0 MAPE 4.014% 3.952% 5.140% 4.570%

RMSE 1142.542 1449.89 1190.07 945.592

MAE 950.643 1202.68 1030.03 820.507

Model1 MAPE 3.490% 3.435% 4.506% 3.872%

RMSE 1035.59 1331.17 1072.03 818.780

MAE 857.682 1042.37 896.725 694.082

Model2 MAPE 3.272% 3.094% 4.152% 3.434%

RMSE 1013.40 1199.50 1007.00 759.829

MAE 778.181 947.146 867.486 620.585

Model3 MAPE 2.890% 2.751% 3.760% 2.998%

RMSE 882.260 1069.68 926.778 696.124

MAE 687.800 877.501 746.664 533.179

Model4 MAPE 2.543% 2.475% 3.521% 2.749%

RMSE 787.7014 963.5569 877.0918 650.5965

MAE 607.003 782.2664 714.5630 494.145

Frontiers in Energy Research frontiersin.org11

Huang et al. 10.3389/fenrg.2024.1373345

239

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373345


and 3 months (92 days), are selected to construct coupling features
as input features for the forecasting model. The ultra-short-term
prediction accuracy of multi-energy loads is compared and analyzed
using the MAPE. To facilitate the construction of multi-energy load

coupling features and to ensure that the selected sequence lengths
effectively reflect the potential coupling relationships of multi-
energy loads 1 month, 2 months, and 3 months prior to the
predicted moment, the load sequence lengths for 1 month,
2 months, and 3 months were defined as the number of days
with the highest occurrence frequency for 1 month, 2 months,
and 3 months, respectively, in the dataset from March 2018 to
February 2019, which are 31 days, 61 days, and 92 days,
respectively. The related parameters of the experiment are
presented in Table 2. To comprehensively assess the prediction
effects of different sequence lengths, data from 1 week in different
seasonal test sets are used for ultra-short-term multi-energy load
forecasting, with specific experimental results shown in Figure 9.

As Figure 9 indicates, when multi-energy load coupling features
are constructed using historical sequence lengths of 1 week, 2 weeks,
3 weeks, and 1 month, the prediction error of the models for each
season decreases with the increase in the length of the load sequence
used for constructing coupling features. However, when using
1 month, 2 months, and 3 months as the historical sequence
lengths, the prediction error increases with the length of the load
sequence. The MAPE, RMSE, and MAE of the forecasting models
are the lowest when a 1-month multi-energy historical load
sequence is used for constructing coupling features. This suggests
that coupling features constructed with a 1-month load sequence
effectively quantify the complex coupling relationships between
multi-energy loads. Therefore, the historical multi-energy load
sequence length of 1 month prior to the forecast moment is
chosen for constructing the coupling features at the forecast
moment, making it the input feature of the model, thereby better
achieving in-depth multi-dimensional mining of the potential
coupling characteristics of multi-energy loads.

5.3.2 Ablation experiment
To validate the effectiveness of each component of the proposed

forecasting method, comparative experiments are designed as
shown in Table 3. Models 0, 1, and 2 all use the approach of
constructing separate forecasting models for different types of loads
and select strongly correlated features as input features for each load
forecasting model. Among these, Model 0 does not include coupling
features as input for the forecasting model, andModel 1 does not use
the TCN model for multi-energy load prediction. Models 3 and
4 both employ MTLmodels for prediction. Model 3 does not use the
homoscedastic uncertainty-based MTL loss function weight
optimization method, and its loss function weights are manually
set (Wu et al., 2022). Model 4 represents the multi-energy load
forecasting method proposed in this paper. Data from 1 week in
different seasonal test sets are used for ultra-short-term multi-
energy load forecasting, and the forecasting results of each model
for different seasons are evaluated using MAPE, RMSE, and MAE.
The forecasting results of each model are presented in Tables 4–6.

From Tables 4–6, it is evident that Model 4 achieves the highest
ultra-short-term prediction accuracy for multi-energy loads across
different seasons. Additionally, there is a gradual increase in the
ultra-short-term prediction accuracy of multi-energy loads from
Model 0 to Model 4. Compared to Model 0, Model 1 shows a
decrease in the MAPE of electric load by 12.330%–15.273%, cooling
load by 10.740%–36.257%, and heating load by 11.106%–28.566%
across different seasons. This demonstrates that the proposed

TABLE 5 Comparison of prediction errors in cooling load forecasting results
of different models.

Season
model

Spring Summer Autumn Winter

Model0 MAPE 5.963% 6.087% 13.278% 7.970%

RMSE 689.712 1106.31 553.570 283.108

MAE 576.056 939.455 485.663 236.215

Model1 MAPE 3.801% 4.224% 11.337% 7.114%

RMSE 449.771 669.713 506.408 261.672

MAE 347.180 568.314 434.940 213.595

Model2 MAPE 3.378% 3.716% 9.942% 6.585%

RMSE 388.592 634.589 488.733 223.868

MAE 304.066 515.800 417.852 187.785

Model3 MAPE 2.895% 3.068% 8.001% 5.621%

RMSE 333.329 519.307 413.671 217.304

MAE 252.306 422.211 340.658 170.274

Model4 MAPE 2.637% 2.583% 6.843% 4.987%

RMSE 287.6244 448.215 360.527 184.807

MAE 226.131 359.368 294.187 146.175

TABLE 6 Comparison of prediction errors in heating load forecasting results
of different models.

Season
model

Spring Summer Autumn Winter

Model0 MAPE 6.854% 4.403% 8.587% 7.461%

RMSE 0.442 0.266 0.907 0.878

MAE 0.388 0.220 0.812 0.766

Model1 MAPE 5.446% 3.917% 6.134% 5.969%

RMSE 0.363 0.239 0.699 0.726

MAE 0.306 0.197 0.589 0.620

Model2 MAPE 4.428% 3.339% 5.263% 5.206%

RMSE 0.307 0.214 0.596 0.654

MAE 0.250 0.169 0.490 0.545

Model3 MAPE 3.703% 2.904% 4.419% 4.216%

RMSE 0.276 0.196 0.532 0.544

MAE 0.209 0.146 0.414 0.442

Model4 MAPE 3.387% 2.480% 3.629% 3.536%

RMSE 0.248 0.178 0.446 0.520

MAE 0.190 0.127 0.342 0.402
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method for mining multi-dimensional multi-energy load coupling
characteristics based on the integration of multiple correlation
analyses can effectively quantify the complex coupling
relationships between multi-energy loads. It achieves in-depth
mining of potential coupling characteristics from various
dimensions in the construction phase of the input feature set,
significantly enhancing the prediction accuracy of multi-energy
loads. Compared to Model 1, Model 2 shows a reduction in the
MAPE of electric load by 6.246%–11.313%, cooling load by 7.436%–

12.305%, and heating load by 12.783%–18.693%. This indicates that
the TCN model effectively extracts potential temporal association
information from input features and captures long-term
dependencies in the input time series, thereby improving the
accuracy of multi-energy load prediction. Compared to Model 2,
Model 3 shows a reduction in the MAPE of electric load by 9.44%–
12.696%, cooling load by 14.298%–19.523%, and heating load by
13.028%–19.016%. This suggests that the MTL model based on a
hard shared parameter mechanism can fully mine the potential
complex coupling characteristics between multi-energy loads during
the model construction phase, further reducing the prediction error
of the model. Compared toModel 3, Model 4 shows a decrease in the
MAPE of electric load by 6.356%–12.007%, cooling load by 8.912%–

15.808%, and heating load by 8.533%–17.877%. This indicates that
the homoscedastic uncertainty-based MTL loss function weight
optimization method can automatically tune the loss function
weights by learning the homoscedastic uncertainty of different
tasks, further enhancing the model’s prediction performance.
Overall, each component of the proposed multi-energy load
forecasting method significantly improves the prediction accuracy
of multi-energy loads.

5.3.3 Comparative analysis of different
prediction models

To further evaluate the prediction accuracy of the proposed
model, this study compares its performance with commonly used
models in existing research, including Random Forest (RF), Support
Vector Regression (SVR), CNN-BiGRU, and MTL-BiGRU
forecasting models. The input features and related parameters for
the experiment are shown in Table 7.

Data from 1 week in different seasonal test sets are used for
ultra-short-term multi-energy load forecasting. The MAPE
prediction errors of each forecasting model in different seasons
are shown in Figure 10, and the prediction result curves for each
model in different seasons are presented in Figure 11. The WMAPE
prediction errors of each forecasting model in different seasons are
shown in Table 8. Tables 8; Figures 10, 11 reveal that in different
seasons, the prediction curves of the SVR and RFmodels have a poor
fit with the actual values. The CNN-BiGRUmodel can extract latent
feature information and temporal associations reflecting load
changes (Niu et al., 2022), but it fails to fully extract the long-
term dependencies of input features and does not adequately mine
the potential complex coupling characteristics between multi-energy
loads, resulting in lower prediction accuracy. The MTL-BiGRU
model also cannot learn long-term dependencies of input features
and does not employ a scientific MTL loss function weight
optimization method, leading to poor prediction performance. In
contrast, the proposed forecasting model not only uses TCN to
thoroughly mine potential temporal associations and long-termT
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dependencies in the input data but also explores the potential
coupling characteristics between multi-energy loads through an
MTL model based on a hard parameter sharing mechanism.
Additionally, it achieves scientific parameter optimization

through a homoscedastic uncertainty-based MTL loss function
weight optimization method. Therefore, the proposed forecasting
model exhibits the highest prediction accuracy across
different seasons.

FIGURE 10
MAPE comparison chart of different forecasting models.

FIGURE 11
Forecast results of each model in different seasons.
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6 Conclusion

This paper proposes an ultra-short-term multi-energy load
forecasting method based on multi-dimensional coupling
characteristic mining and multi-task learning. Firstly, a multi-
dimensional multi-energy load coupling characteristics mining
method, integrating multiple correlation analysis methods, is
employed to construct load coupling features. This effectively
quantifies the complex coupling relationships between IES
multi-energy loads and thoroughly mines potential coupling
characteristics from various dimensions in the input feature set
construction phase. Case studies show that using this method in
different seasons results in a decrease in theMAPE of electric load by
12.330%–15.273%, cooling load by 10.740%–36.257%, and heating
load by 11.106%–28.566%.

Then, an ultra-short-term multi-energy load forecasting model
based on MTL and TCN is constructed, which mines the potential
complex coupling characteristics between multi-energy loads during
the model construction phase. The TCN is used to mine potential
temporal association information from input features and capture
long-term dependencies in the input time series. Case studies
indicate that employing MTL reduces the MAPE of electric load
by 9.44%–12.696%, cooling load by 14.298%–19.523%, and heating
load by 13.028%–19.016% in different seasons. Using TCN results in
a decrease in the MAPE of electric load by 6.246%–11.313%, cooling
load by 7.436%–12.305%, and heating load by 12.783%–18.693%.

Moreover, a homoscedastic uncertainty-based MTL loss
function weight optimization method is adopted to automatically
tune the loss function weight parameters, saving time in model
tuning while further enhancing the model’s prediction performance.
Case studies show that employing this method results in a decrease
in the MAPE of electric load by 6.356%–12.007%, cooling load by
8.912%–15.808%, and heating load by 8.533%–17.877% in
different seasons.

Finally, a comparative analysis of different forecasting models is
conducted using the comprehensive energy system of Arizona State
University in the United States as a case study. The results indicate
that the proposed forecasting method has higher prediction
accuracy compared to other methods.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://nsrdb.nrel.gov/data-viewer, http://cm.
asu.edu/.

Author contributions

NH: Conceptualization, Data curation, Formal Analysis,
Supervision, Writing–original draft. XW: Data curation,
Investigation, Methodology, Validation, Writing–original draft.
HaW: Methodology, Project administration, Software,
Writing–review and editing. HeW: Resources, Software,
Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by China’s National Key Development Plan, grant
number 2022YFB2404002.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Alabi, T. M., Aghimien, E. I., Agbajor, F. D., Yang, Z., Lu, L., Adeoye, A. R., et al.
(2022). A review on the integrated optimization techniques and machine learning
approaches for modeling, prediction, and decision making on integrated energy
systems. Renew. Energy 194, 822–849. doi:10.1016/j.renene.2022.05.123

Chen, H., Zhu, M., Hu, X., Wang, J., Sun, Y., and Yang, J. (2023). Research on short-
term load forecasting of new-type power system based on GCN-LSTM considering
multiple influencing factors. Energy Rep. 9, 1022–1031. doi:10.1016/j.egyr.2023.
05.048

TABLE 8 Comparison of WMAPE for different forecasting models.

Season model Spring (%) Summer (%) Autumn (%) Winter (%)

MTL-BiGRU WMAPE 4.107 3.051 5.982 4.614

CNN-BiGRU WMAPE 4.353 4.103 7.278 5.208

RF WMAPE 7.121 5.480 12.410 8.500

SVR WMAPE 9.944 7.928 10.037 11.816

MTL-TCN-HU WMAPE 2.749 2.519 4.871 3.802

Frontiers in Energy Research frontiersin.org15

Huang et al. 10.3389/fenrg.2024.1373345

243

https://nsrdb.nrel.gov/data-viewer
http://cm.asu.edu/
http://cm.asu.edu/
https://doi.org/10.1016/j.renene.2022.05.123
https://doi.org/10.1016/j.egyr.2023.05.048
https://doi.org/10.1016/j.egyr.2023.05.048
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373345


Ge, L., Li, Y., Yan, J., Wang, Y., and Zhang, N. (2021). Short-term load
prediction of integrated energy system with wavelet neural network model
based on improved Particle Swarm optimization and Chaos optimization
Algorithm. J. Mod. Power Syst. Clean. Energy 9 (6), 1490–1499. doi:10.35833/
mpce.2020.000647

Guo, Y., Li, Y., Qiao, X., Zhang, Z., Zhou, W., Mei, Y., et al. (2022). BiLSTMmultitask
learning-based combined load forecasting considering the loads coupling relationship
for multienergy system. IEEE Trans. Smart Grid 13 (5), 3481–3492. doi:10.1109/tsg.
2022.3173964

Li, C., Li, G., Wang, K., and Han, B. (2022). A multi-energy load forecasting
method based on parallel architecture CNN-GRU and transfer learning for data
deficient integrated energy systems. Energy 259, 124967. doi:10.1016/j.energy.2022.
124967

Liu, H., Tang, Y., Pu, Y., Mei, F., and Sidorov, D. (2022). Short-term load forecasting
of multi-energy in integrated energy system based on multivariate phase Space
reconstruction and support vector regression mode. Elect. Power Syst. Res. 210,
108066. doi:10.1016/j.epsr.2022.108066

Liu, Y., Li, Y., Li, G., Lin, Y., Wang, R., and Fan, Y. (2023). Review of multiple load
forecasting method for integrated energy system. Front.Energy Res. 11. doi:10.3389/
fenrg.2023.1296800

Niu, D., Yu, M., Sun, L., Gao, T., and Wang, K. (2022). Short-term multi-energy
load forecasting for integrated energy systems based on CNN-BiGRU optimized by
attention mechanism. Appl. Energy 313, 118801. doi:10.1016/j.apenergy.2022.
118801

Tan, M., Liao, C., Chen, J., Cao, Y., Wang, R., and Su, Y. (2023). A multi-task
learning method for multi-energy load forecasting based on synthesis correlation
analysis and load participation factor. Appl. Energy 343, 121177. doi:10.1016/j.
apenergy.2023.121177

Wang, C., Wang, Y., Ding, Z., Zheng, T., Hu, J., and Zhang, K. (2022). A transformer-
based method of multienergy load forecasting in integrated energy system. IEEE Trans.
Smart Grid 13 (4), 2703–2714. doi:10.1109/tsg.2022.3166600

Wang, S., Wu, K., Zhao, Q., Wang, S., Feng, L., Zheng, Z., et al. (2021). Multienergy load
forecasting for regional integrated energy systems considering multienergy coupling of
variation characteristic curves. Front.Energy Res. 9. doi:10.3389/fenrg.2021.635234

Wu, K., Gu, J., Meng, L., Wen, H., andMa, J. (2022). An explainable framework for load
forecasting of a regional integrated energy system based on coupled features andmulti-task
learning. Prot. Control Mod. Power Syst. 7 (1), 24. doi:10.1186/s41601-022-00245-y

Yan, Q., Lu, Z., Liu, H., He, X., Zhang, X., and Guo, J. (2024). Short-term prediction of
integrated energy load aggregation using a bi-directional simple recurrent unit network
with feature-temporal attentionmechanism ensemble learningmodel.Appl. Energy 355,
122159. doi:10.1016/j.apenergy.2023.122159

Zhang, S., Chen, R., Cao, J., and Tan, J. (2023). A CNN and LSTM-based multi-task
learning architecture for short and medium-term electricity load forecasting. Elect.
Power Syst. Res. 222, 109507. doi:10.1016/j.epsr.2023.109507

Zhang, Y., and Yang, Q. (2022). A survey on multi-task learning. IEEE Trans. Know.
Data Eng. 34 (12), 5586–5609. doi:10.1109/tkde.2021.3070203

Zheng, Q., Zheng, J., Mei, F., Gao, A., Zhang, X., and Xie, Y. (2023). TCN-GAT
multivariate load forecasting model based on SHAP value selection strategy in
integrated energy system. Front. Energy Res. 11. doi:10.3389/fenrg.2023.1208502

Zhu, J., Dong, H., Zheng, W., Li, S., Huang, Y., and Xi, L. (2022). Review and prospect
of data-driven techniques for load forecasting in integrated energy systems.Appl. Energy
321, 119269. doi:10.1016/j.apenergy.2022.119269

Zhuang, W., Fan, J., Xia, M., and Zhu, K. (2023). A multi-scale spatial-temporal graph
neural network-based method of multienergy load forecasting in integrated energy
system. IEEE Trans. Smart Grid, 1. doi:10.1109/tsg.2023.3315750

Frontiers in Energy Research frontiersin.org16

Huang et al. 10.3389/fenrg.2024.1373345

244

https://doi.org/10.35833/mpce.2020.000647
https://doi.org/10.35833/mpce.2020.000647
https://doi.org/10.1109/tsg.2022.3173964
https://doi.org/10.1109/tsg.2022.3173964
https://doi.org/10.1016/j.energy.2022.124967
https://doi.org/10.1016/j.energy.2022.124967
https://doi.org/10.1016/j.epsr.2022.108066
https://doi.org/10.3389/fenrg.2023.1296800
https://doi.org/10.3389/fenrg.2023.1296800
https://doi.org/10.1016/j.apenergy.2022.118801
https://doi.org/10.1016/j.apenergy.2022.118801
https://doi.org/10.1016/j.apenergy.2023.121177
https://doi.org/10.1016/j.apenergy.2023.121177
https://doi.org/10.1109/tsg.2022.3166600
https://doi.org/10.3389/fenrg.2021.635234
https://doi.org/10.1186/s41601-022-00245-y
https://doi.org/10.1016/j.apenergy.2023.122159
https://doi.org/10.1016/j.epsr.2023.109507
https://doi.org/10.1109/tkde.2021.3070203
https://doi.org/10.3389/fenrg.2023.1208502
https://doi.org/10.1016/j.apenergy.2022.119269
https://doi.org/10.1109/tsg.2023.3315750
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373345


Online modeling method for
composite load model including
EVs and battery storage based on
measurement data
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Load models have a significant influence on power system simulation. However,
current load modeling approaches can hardly satisfy the diversity and time-
varying characteristics of loads [including electric vehicles (EVs) and battery
storage] in terms of model accuracy and computing efficiency. An online
modeling method for composite load models based on measurement
information is proposed in this paper. Firstly, the dominant factors in load
model output are analyzed based on the active subspace of parameter space.
Then the clustering algorithm is applied to cluster the large number of underlying
loads based on the characteristics of load daily output curves. Finally, the
underlying loads are equivalently aggregated from the low voltage levels to
the high voltage levels to construct the composite load model. Simulation
results obtained based on PSCAD/EMTDC demonstrate that the load model
constructed by the proposed approach can accurately reflect the actual load
characteristics of a power system.

KEYWORDS

load modeling, measurement data, composite load model, equivalent aggregation,
electric vehicles (EVs), battery storage

1 Introduction

Simulation analysis is an important means to study the steady state and transient
characteristics of the power system, which is carried out through the establishment of the
power system source, network, and load simulation model, taking the initial trend results as
a starting point, and using numerical methods to iteratively solve for each state response
quantity of the system so as to carry out the inversion of accidents or fault preview (Zhang
et al., 2022). Therefore, the accuracy of the simulation model is an important guarantee for
the reliability of the simulation analysis results (Zhang et al., 2021; Qian et al., 2023).

However, the models used in the current simulation analysis have not been able to
accurately reflect the real characteristics of complex power systems, and it is difficult to
accurately invert and reproduce the real faults occurring in some actual power grids by
means of simulation (Zhang et al., 2017). Among them, the accuracy of the load model is
doubtful, which is an important reason affecting the simulation results, and the diversity
of the power system network structure and the expansion of the scale of new load access
further increase the difficulty of load modeling (Xu et al., 2023). Compared with
traditional vehicles, new energy vehicles have the advantages of low pollution, high
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energy efficiency, and low operating costs. The operation benefit of
order charging is verified by constructing order charging on the
power grid side.

Currently, a large number of studies have been carried out for
load modeling. The comprehensive load model composed of static
constant impedance, constant current, constant power
components, and dynamic induction motor components is
widely used in power system simulation due to its good
generalization ability (Overbye, 1994; Zalok and Eduful, 2013;
Camille et al., 2021). On this basis, related studies have proposed
model construction and parameter identification methods, which
can be mainly categorized into two types based on constituent
components (Chen et al., 1997; Zhang et al., 2023) and
measurement information (Ma et al., 2008; Zhang et al.,
2020a). Component-based methods divide the loads according
to types and then characterize different types of loads with typical
static loads or motor loads, but the statistical work efficiency is
low and the dynamic changes of loads are ignored. The method
based on measurement information regards all kinds of loads as a
black box model and makes the simulation response output
consistent with the measured response by identifying its
parameters so as to reflect the real dynamic characteristics of
the system and be used for power system simulation analysis, but
the complex structure of the load model and its high-dimensional
nonlinear parameter space lead to computational speed and
efficiency that are still low. The vigorous development of
electric vehicles is of the utmost significance to adjust the
optimal design of industrial structures and promote the
sustainable development of industry. In view of the problems
existing in the development of electric vehicles at the present
stage, the state focuses on the research and development of
charging problems for electric vehicles and carries out research
on the safety and power supply of charging equipment at the
present stage so as to form a safe and effective charging
safety system.

In order to reduce the complexity of load modeling, literature
(Zhang et al., 2021b) proposes a comprehensive load
simplification model based on the dominant parameter
selection, which transforms the induction motor model into a
second-order equation of state; literature (Han et al., 2022)
proposes a fast calculation method for the parameters of the
comprehensive load model based on the sensitivity analysis; and
some researchers use intelligent optimization algorithms (Wang
et al., 2018; Hu et al., 2022) or machine learning algorithms (Cui
et al., 2019; Bu et al., 2020; Hu et al., 2023) for the overall
identification of the model parameters. These studies aim to
reduce the parameter space of the load model or increase the
parameter calculation rate to simplify the complexity of load
modeling. However, the electrical quantity measurement is
usually targeted at nodes of higher voltage levels, and it is
difficult to obtain all the underlying load information of the
lower voltage levels of the distribution network, and its iterative
or training process often requires sample labels, i.e., the exact
values of the parameters to be measured corresponding to the
observed quantities, which are usually difficult to know in
advance in practical applications especially in the transmission
system (Tsekouras et al., 2007; Zhang et al., 2020b; Zhang et al.,
2020c; Zhang et al., 2021c).

Aiming at the above problems, this paper proposes an online
modeling method for integrated load models based onmeasurement
information. On the basis of analyzing and identifying the dominant
factors of the external characteristics of the comprehensive load
model, the bottom load is clustered according to the load curve, and
the comprehensive load equivalent aggregation model is constructed
by aggregating equivalently from the low voltage level to the high
voltage level step by step. The proposed method is simulated,
analyzed, and validated based on the PSCAD/EMPDC platform.

2 Identification of dominant factors for
external characterization of integrated
load models

2.1 Activation subspace of the
parameter space

The integrated load model generally refers to a load model
composed of induction motors and static loads in a certain
proportion. Obviously, the external characteristics of the
integrated load model are related to the composition ratio of
each type of load and the parameters of its internal model, and it
is necessary to analyze and identify the dominant factors affecting
the external characteristics of the integrated load model before
carrying out the integrated load equivalent modeling. This
section identifies the dominant factors in the characteristics of
the integrated load model based on the activation subspace
approach. The activation subspace is a low-dimensional linear
subspace of the parameter space that allows for a global
assessment of the sensitivity of the output variables with respect
to the parameters.

Consider a parameterization function that maps the parameters
of the system to the scalar output of interest, where C denotes the
canonical set of parameter values:

C � ∫
χ
∇�θg �θ( )) ∇�θg �θ( ))Tρ �θ( )d�θ(( (1)

�θ∈ χ � x ∈ im | −1≤ xi ≤ 1, i � 1, K,m{ } (2)

In Eq. 3, the joint probability function of the parameters satisfies:

∫
χ
ρ �θ( )d�θ � 1 (3)

For any smooth function, in the reduced-dimensional case, the
matrix C is called the average generalized derivative, which weights
the input values according to the density. A single normalization
parameter is a random variable with values in the range [−1, 1] that
represents a parameter in the original model. The matrix C is the
average of the gradient and its own outer product.

From Eq. 1, the elements of C are the average of the product of
partial derivatives, which can be regarded as the parameter
sensitivity:

Cij � ∫
χ

∂g
∂�θi

( )
∂g
∂�θj

( )ρd�θ, i, j � 1, K,m (4)

In (4), Cij is the (i,j) element of C and m denotes the number of
parameters. Since the matrix C is symmetric, the spectral eigen-
decomposition can be performed, as shown in Eq. 5.
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C � WΛWT (5)
where W is a column of the orthogonal matrix, is the standard
orthogonal eigenvector of C, Λ � diag([λ1, K, λm]) and λ1 ≥K≥ λm.
λ1, λm are the largest and smallest eigenvalues of the matrix C.

It can be seen that the eigenvalue of matrix C is the mean square
directional derivative in the direction of the corresponding
eigenvector. If the eigenvalue is very small, it indicates
insensitivity in the direction of the corresponding eigenvector.
On the contrary, the larger the eigenvalue, the more significant
the change in the direction of the corresponding eigenvector.

The eigenvalues can be separated from the eigenvectors based on
the magnitude of the eigenvalues, shown in Eq. 6:

Λ � Λ1 0
0 Λ2

[ ],W � W1 0
0 W2

[ ] (6)

where Λ1 and W1 contains the first n larger eigenvalues and
corresponding eigenvectors, Λ2 and W2 contains the other m-n
smaller eigenvalues. To determine this separation, the spectral gap
between the nth and (n + 1)th eigenvalues can be found on the log-
log plot in order of magnitude. It is worth noting that the presence of
a spectral gap directly indicates the presence of an
activation subspace.

The integrated load model in our study includes parameters like
Distributed Network Reactance, Inductive Motor Active Power
Proportion, Load Ratio, Stator Reactance, Constant Reactance
Load Proportion, Direct Current Side Capacitor, and
Photovoltaic Output Equivalent Reactance. These parameters
significantly shape the external characteristics of the load model
and should be compared with the model discussed in this paper.

SinceW is orthogonal, any parameter vector can be expressed as:

θ � WWTθ � W1W
T
1 θ +W2W

T
2 θ (7)

In Eq. 7, θ represents the parameter vector in the model.
Then any parameter vector-sensitive output is shown in Eq. 8:

g θ( ) � W1θ1 +W2θ2 (8)

From the definitions of W1 and W2, it can be seen that a small
perturbation has little effect on the value of On the contrary, small
perturbations can significantly change Based on this property, the
range of W1 is defined as the activation subspace, and the range of
W2 is defined as the corresponding inactivation subspace of the
model. The above subspaces describe the sensitivity of the model
outputs to parameter changes.

Distributed Network Reactance affects the load’s impedance, while
Inductive Motor Active Power Proportion and Load Ratio determine
the proportion of induction motors and static loads, influencing
dynamic behavior. Stator Reactance and Constant Reactance Load
Proportion impact impedance and power consumption, and the
Direct Current Side Capacitor and Photovoltaic Output Equivalent
Reactance represent auxiliary component influences. By analyzing these
parameters alongside our model, the sensitivity can be extended to
understand their impact on external behavior. This comparative
approach enhances our understanding and informs system design.
Incorporating these parameters allows for a comprehensive
comparison, identifying key factors influencing the load
model’s behavior.

2.2 Key parameters identification

The integrated load model is accessed in the WSCC-9 node
system and tested based on the Python-PSASP simulation platform.
The test parameters are the internal parameters of the static load or
the induction motor load and their composition ratios, and all
parameters are uniformly distributed by default. The voltage, active
power, and reactive power of the observation point are used as the
response output trajectory, and the change of the internal
parameters of the integrated load model under the observation
point will cause the change of the response trajectory. The degree
of change of the dynamic trajectory after the parameter change is
used as the sensitivity index, and a sample contains the numerical
sensitivity of all the parameters at a randomized point in the
parameter space (which is a composite index after the average of
the voltage and the power), and the set of the sample set is 2,000.

Among the 2,000 samples generated at the end of the simulation,
noisy samples due to transient instability (the model is prone to
instability under certain parameter compositions) are sifted out by
analysis, and for the column vectors of sensitivity in the samples the
corresponding variational generalized function matrices are
computed and the mean value C is found in Eq. 9:

C � 1
2000

∑
2000

i

∇�θg �θ( )) ∇�θg �θ( ))T(( (9)

In this paper, the method for separating eigenvalues from
eigenvectors is called the “Variational Generalized Function
Matrices Approach.”

The eigendecomposition of C is performed to calculate the
eigenvalues and eigenvectors of C. If C can be understood as a
variational generalized function matrix with the parameter space as
the independent variable, the parameter’s own sensitivity, and the
correlation between the parameters as the dependent variable, then
there must be a parameter space that has a high sensitivity distribution
under a certain subspace after some kind of linear transformation. The
diagonal array of eigenvalues generated by the eigendecomposition of C
is understood as a new function space transformed by the coordinates of
these eigenvectors. These eigenvectors after the coordinate
transformation of the new function space, these eigenvectors for the
function space of the coordinate axes, the function space of the function
value, are also the correlation coefficient and the parameter’s own
sensitivity to the size of the numerical value, except that the
corresponding independent variable is no longer a parameter value
of physical significance but the parameter space after the coordinate
transformation of some kind of independent variable. Obviously, the 1st
eigenvalue of C is much larger than the other eigenvalues, i.e., in the
transformed function space, the change of the function value in the
direction represented by the first eigenvector is much larger than that in
the direction pointed by the other eigenvectors; therefore, the activation
subspace of C is a 1-dimensional space, and the value of eigenvectors
corresponding to the 1st eigenvaluemultiplied by the parameter vectors
is the coordinate of the parameter vectors on this space. The distribution
of eigenvectors corresponding to the first eigenvalue is shown in
Figure 1. The analysis reveals that the composition ratios of static
load and inductionmotor exhibit larger sensitivity weights compared to
the internal parameters of the model. Thus, the primary factors
influencing the external characteristics of the integrated composite
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model are identified as the composition ratios of static load and
induction motor load. Diagram of converting load model to
highvoltage side considering the EVs and fuel betteries is shown in
Figure 2 and structure of the simulation system is depicted in Figure 3.

2.3 Exploration of advanced modeling
techniques

In this section, we delve into the integration of advanced
modeling techniques to augment the accuracy and robustness of
integrated load models. Specifically, we adopt deep learning

architectures, including deep neural networks (DNNs),
recurrent neural networks (RNNs), and convolutional neural
networks (CNNs), alongside data-driven parameter estimation
techniques. Our choice of these methodologies is driven by
their capacity to capture intricate nonlinear relationships within
load dynamics and to accurately estimate model parameters based
on historical operational data. By leveraging the capabilities of
these advanced techniques, we aim to refine load modeling
accuracy and contribute to the advancement of computational
methodologies in this domain.

With the rapid advancement in computational methodologies,
exploring advanced modeling techniques becomes imperative for

FIGURE 1
Sensitivity weights corresponding to different parameters.

FIGURE 2
Diagram of converting load model to high-voltage side considering the EVs and fuel betteries.
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refining the accuracy and robustness of integrated load models.
One promising avenue is the incorporation of machine learning
algorithms, particularly deep learning architectures, to capture
intricate nonlinear relationships within the load dynamics. Deep
neural networks (DNNs) offer unparalleled capabilities in
handling complex data structures and learning high-
dimensional mappings, which could significantly enhance the
fidelity of load modeling.

2.3.1 Integration of deep learning models
To leverage the potential of deep learning, integrating DNNs

within the integrated load modeling framework presents an
intriguing prospect. By training DNNs on extensive datasets
comprising diverse operational scenarios and load profiles,
these models can learn intricate patterns and correlations,
thus enabling more accurate predictions of load behavior.
Moreover, recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) can capture temporal
dependencies and spatial features, respectively, further
enriching the modeling capabilities.

2.3.2 Data-driven parameter estimation
Another avenue for enhancing integrated load modeling is

through data-driven parameter estimation techniques. By
leveraging historical operational data and advanced optimization
algorithms such as genetic algorithms or Bayesian inference
methods, accurate estimation of model parameters can be
achieved. These data-driven approaches offer a pragmatic means
to calibrate model parameters in real-time, thereby ensuring
adaptability to evolving system dynamics and load characteristics.

3 Online modeling method of
integrated load based on measurement
information

3.1 Load clustering based on output curves

Since the dominant factor affecting the external characteristics
of the integrated load model is the load composition ratio, it can be
assumed that users with similar daily load profiles have similar load

FIGURE 3
Structure of the simulation system.
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composition ratios. After clustering the loads using the clustering
algorithm, the typical load composition ratio at the center of the
clusters is used to characterize the composition of the loads in the
class. The specific steps are as follows: 1) The load clustering process
involves the following steps:

1) Processing the load data into daily load profiles and normalizing
them based on Eq. 9 to create a library of daily load profiles:

x′
i �

xi − min X( )
max X( ) − min X( ) (10)

In Eq. 10 xi denotes the ith daily load profile sampling point data and
X denotes all sampling point data of the daily load profile There are
two common Copula families, the Archimedes Copula and the
Elliptic Copula. The three most common types of Archimedes
Copula functions are Gumbel Copula, Clayton Copula and Frank
Copula, and elliptic Copula functions mainly include normal Copula
and t-Copula. Because t-Copula is extremely time-consuming to fit
multidimensional random variables and the Gumbel-Copula form is
complex, only the remaining three Copula functions are considered
in this paper.

2) Clustering the daily load profiles of a large number of users
using the k-means algorithm (Zhang et al., 2020b), for a given
N daily load profile data, k cluster centers are randomly
generated, the Euclidean distances of all the load profiles to
the k cluster centers are calculated, respectively, and the cluster
centers with the closest distances are selected as the groups to
which they belong.

3) Recalculate the center of clustering for each cluster,
i.e., average all load profiles in the load cluster and use it as
the center of clustering for the next iteration;

4) Repeat the above steps until the center of clustering does not
change anymore or the clustering reaches the convergence
condition, which here corresponds to the mathematical
problem of minimizing the number of 2-parameters:

minE � ∑
k

i�1
∑
x∈Ci

x − μi
����

����2 (11)

In Eq. 11, Ci denotes the ith user group, μi is the clustering center of
user group Ci.

3.2 Load model equivalent aggregation

For loads within the same cluster, they are aggregated
equivalently to characterize the underlying large number of user
loads in terms of a typical load model.

3.2.1 Induction motor load aggregation
In the actual power system, not all induction motors under the

same bus may be in a working state, and one motor may
correspond to multiple working states. Therefore, there are
uncertainties and time-varying characteristics of load
aggregation, and the model established based on the traditional
capacity weighting method is single and fixed, which cannot reflect
the real-time state and time-varying characteristics of load. In this

paper, the real-time measured power of nodes is used instead of
capacity for weighted aggregation, and the weighting coefficients
are calculated according to Eq. 11:

σ i � Pi

∑
n

i�1
Pi

(12)

In Eq. 12, Pi denotes the real-time measured power of the ith single
motor load node. Following the calculation of weight coefficients
using real-time measured power, Eqs 13, 14 are utilized to compute
the inertia time constant of the aggregation model and the
conductance of each branch of the equivalent circuit:

T′ � ∑
n

i�1
σ iTi (13)

1
Z′ � ∑

n

i�1
σ i
1
Zi

(14)

where Ti and Zi are the inertia time constant and branch impedance
of the ith individual motor load, respectively, and the specific form
of resistance and reactance of Zi varies depending on whether it is a
stator branch, rotor branch, or excitation branch that is
being expressed.

3.2.2 Static load aggregation
The static load is usually described by a polynomial consisting of

constant impedance, constant current, and constant power as shown
in Eq. 15:

P � P0 ap U/U0( )2 + bp U/U0( ) + cp[ ]
Q � Q0 aq U/U0( )2 + bq U/U0( ) + cq[ ]

⎧⎨
⎩ (15)

where P0 and Q0 denote the rated active and reactive power
consumed by the load, U and U0 denote the actual and rated
voltage of the load bus, respectively, and ap, bp, cp, and aq, bq, cq
denote the active and reactive power coefficients of each part of the
model, respectively.

a′p � ap1P01 + ap2P02 +/ + apnP0n( )/P0

b′p � bp1P01 + bp2P02 +/ + bpnP0n( )/P0

c′p � 1 − a′p − b′p

⎧⎪⎪⎨
⎪⎪⎩

(16)

In Eq. 16, P0 denotes the rated active power consumed by the single
static load, ap, bp, cp denote the active power coefficients of each part
of the model, and the subscripts 1-n denote the serial number of the
single static load.

3.3 Loadmodeling step-by-step equivalence

When simulating and analyzing the power system, the load
model is difficult to cover the lower voltage levels of the distribution
network and is often connected to the higher voltage level buses,
such as 110 kV or even 220 kV for simulation. Taking EVs and
batteries into consideration, from the point of view of vehicle
charging, to provide more electricity in the shortest time, the
equipment needs to be optimized. The safety problems of
charging on the side of the charging vehicle are mainly the
adverse effects of the charging behavior of the electric vehicle on
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the battery or battery management system, including BMS (Battery
Management System) safety protection measures out of control,
poor consistency of the BMS communication protocol, poor
collision coefficient, and leakage. Therefore, reasonable planning
and selection of charging facilities increase battery safety and the
anti-collision safety factor. From the point of view of an electric
vehicle power collision, not only the voltage will change, but also the
shape will deform and lead to the battery. The electrolyte of the part
is splashed. Therefore, after the load model is aggregated, it is
necessary to equate it step by step from the low voltage level to
the high voltage level, as shown in the figure below:

In the figure, and denote the bus voltage of HV side and LV
side, respectively, PH and PL denote the active power flowing
into HV side and LV side, respectively, QH and QL denote the
reactive power flowing into HV side and LV side, respectively,
and denote the current of HV side, the current flowing into the
motor load and the static load, respectively, and ZD is the
equivalent impedance. The increasing charging load and the
discordance in structure design increase the operating pressure
of the power grid, but compared with fuel vehicles, electric
vehicles have energy savings and emission reductions to
maximize the benefits.

3.3.1 Induction motor load equivalence
The following mathematical relationships of electrical quantities

can be written as below:

_UH � ZD
_IML + _ISL( ) + _UL

_ISL � _ULYS � _UL YZ + YI + YP( )
_I � _IML + _ISL

⎧⎪⎪⎨
⎪⎪⎩

(17)

Where: YZ, YI and YP denote the conductance of the constant
impedance, constant current and constant power parts of the static
load, respectively.

_UL � 1
ZD YZ + YI + YP( ) + 1

_UH − ZD
_IML( ) (18)

According to the third order model of induction motor, it can be
expressed as:

_UL � _E′ + Rs + jX′( ) _IML (19)
where: Rs is the stator resistance, and is the short circuit reactance
when the slew rate is zero.

The joint solution of Eqs 17, 18 can be obtained:

_UH � ZD

ZDYS + 1
+ Rs + jX′( )[ ] ZDYS + 1( ) _IML + ZDYS + 1( ) _E′

(20)
Order is shown in Eq. 21:

ZD/ ZDYS + 1( ) � λ1 + jλ2
ZDYS + 1 � _λ3
_E
′
H � _λ3 _E′
_IMH � _λ3 _IML

RsH + jX′
H � Rs + λ1( ) + j X′ + λ2( )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(21)

Substituting Eq. 20 into Eq. 19 yields the high voltage side bus
voltage shown in Eq. 22:

_UH � _E′H + RsH + jX′
H( ) _IMH (22)

Substituting Eq. 20 into the low voltage side motor transient
electromotive force equation Eq. 23:

d _E′H
dt

� jω0 ω − 1( ) _E′H − 1
T0H
′

_E′H − j XH −X′
H( ) _IMH[ ] (23)

This gives the equivalent to the high voltage side induction
motor excitation reactance, stator reactance, and rotor resistance
and rotor reactance, as shown in Eq. 24:

XmH � Xm

XsH � Xs + λ2
RrH + jXrH � Rr + jXr

⎧⎪⎨
⎪⎩ (24)

Substituting Eq. 20 into the low voltage side induction motor
electromagnetic moment equation yields the equivalent motor
electromagnetic moment on the high voltage side as shown in
Eq. 25:

TEH � Real _E′HI*H( ) � λ23TE (25)

Then the time constant of inertia of the induction motor load
equaled to the high-voltage side is shown in Eq. 26:

HH � λ23H (26)

3.3.2 Static load equivalence
From the circuit relationship, it can be obtained Eq. 27:

_I � _IML + _ULYS � 1
ZDYS + 1

_IMH + _UH − ZD
_I( )YS (27)

Simplification leads to Eq. 28:

_IMH � ZDYS + 1( ) _I − _UH − ZD
_I( )YS[ ] (28)

Therefore, the static load conductance equated to the high-voltage
side can be calculated by Eq. 29, where the proportion of constant
impedance, constant current, and constant power components is
determined according to the typical load composition in the clustering.

YH � YS ZDYS + 1( ) − ZDYS ZDYS + 2( )P − jQ

U2
H

(29)

4 Case study

Based on the WSCC-9 node system in PSCAD/EMTDC, the
example system is built, and a distribution network containing
integrated load models of low voltage levels is accessed at node 6,
and each integrated load model characterizes a class of customer
loads. The specific parameters of the load model and the example
system are shown in the Tables 1-4.

Themethod of this paper and the traditional overall measurement
and discrimination method are used to construct the integrated load
model of the high-voltage side, in which the method of this paper
aggregates the loads of each voltage level of the low-voltage side and
equates them step by step to the nodes of the 110 kV buses, and the
overall measurement and discrimination method is based on the
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measurement information of the 110 kV nodes, and the optimization
algorithm is used for the overall optimization of the load parameters
under the nodes. Some of the parameters of the high-voltage side
equivalent aggregated load model obtained by the method of this
paper and the overall measurement and discrimination method
(control) are shown in the Tables 5-7.

From the above table, it can be seen that there is not much
difference in the parameters of the equivalent integrated load model
obtained by the two methods. However, the overall measurement
method cannot track and reflect the real-time changes in the system
state and load. If the load model 1 of the load model of the system is
cut off, the model parameters obtained by the overall measurement
method remain fixed, while the model parameters obtained by the
method of this paper will be changed accordingly, as shown in the
table below:

These tables reflect the proportion of the induction motor before
and after the load change. When the load composition changes, the
identification result of this paper’s method for the induction motor
is adjusted from 43.0% to 41.4%, while the identification result of the
control method remains unchanged at 41.0%. It can be seen that the
method of this paper can track the real load changes compared with
the overall measurement and identification method, and the error of
the identification results of the load proportion of the induction
motor is relatively small. When the battery is overcharged, the
electrode materials with different chemical properties will have
different effects. At the beginning of charging, most of the
electric energy is stored by a reversible reaction, and the heating
power is small. But in the later stage of charging, because of the
irreversible chemical reaction, the electric energy becomes heat
energy. Causing the battery temperature to rise rapidly, resulting
in a series of chemical reactions. The following reactions occur when
the battery is out of control: the battery cathode material loses
lithium and releases oxygen to oxidize the electrolyte, and the

battery negative electrode cannot be embedded with lithium due
to the decomposition of the diaphragm, which is deposited into
lithium metal. These processes release heat accumulation beyond
heat dissipation. Therefore, electric vehicles and the power grid are
in a state of balance in order to protect the charging safety of
electric vehicles.

Setting a short-time ground fault based on the load model
obtained by different modeling methods, the simulation response
curve of the relevant electrical quantities at the 110 kV node is shown
in Figure 4. From the response curves of node voltage and active
power, it can be seen that the simulation curves obtained from the
loadmodel established based on the method of this paper are closer to
the actual real response and can more accurately reflect the real-time
operation status and dynamic changes of the system load. The average
errors of nodal voltage and active power are 1.88% and 2.17%,
respectively, and the average errors of the simulation curves
obtained from the load model based on the overall measurement
and discrimination method are larger, 3.16% and 3.54%, respectively.
The random charging of electric vehicles on a large scale is bound to
cause the conventional load of the power grid to be “peak plus peak.”
If electric vehicle charging is introduced and an effective charging
control strategy is formulated to charge the electric vehicle at a
relatively low power grid load, this will play a positive role in
cutting the peak and filling the valley. To reduce the variance of
the load curve and reduce the peak load as the charging target of the
power grid side to manage the charging load of electric vehicles. A
safety assessment model is established to analyze the charge-discharge
process of electric vehicles and study the interaction characteristics of
power batteries, charge and discharge equipment, and power supply
equipment. At present, the mainstream charging modules on the
market usually use a Vienna rectifier circuit because of the advantages
of low cost, high power density, and a simple control strategy.

5 Conclusion

This paper proposes an online modeling method for a
comprehensive load model (including electric vehicles (EVs) and
battery storage) based on measurement information, based on the

TABLE 1 Parameters of the generalized SLM.

Parameter name Parameter symbols

Distributed Network Reactance XD

Inductive Motor Active Power Proportion PMP

Load Ratio KL

Stator Reactance Xs

Constant Reactance Load Proportion KZ

Direct Current Side Capacitor C

Photovoltaic Output Equivalent Reactance XPV

TABLE 2 Model parameters of the induction motor load.

Rs Xs Xm Rr Xr H

IM1 0.023 0.126 3.39 0.0136 0.126 1.07

IM2 0.032 0.096 2.69 0.032 0.096 0.50

IM3 0.083 0.095 2.10 0.046 0.095 0.47

IM4 0.018 0.117 3.60 0.009 0.117 1.40

TABLE 3 Parameters of static load and impedance.

Z% I% P% RD XD M%

load1 0.33 0.32 0.35 0.002 0.042 0.35

load2 0.20 0.50 0.30 0.001 0.04 0.20

load3 0.20 0.55 0.25 0.001 0.04 0.45

load4 0.10 0.85 0.05 0.003 0.04 0.60

TABLE 4 Parameters of static load and impedance.

Rs Xs Xm Rr Xr H

Article 0.034 0.152 3.166 0.020 0.113 1.05

Contrast 0.027 0.116 3.302 0.019 0.116 1.25
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analysis and identification of the dominant factors of the external
characteristics of the comprehensive load model, clustering the
bottom load according to the load curve, and constructing the
comprehensive load isoaggregation model by stepwise
isoaggregation from the low voltage level to the high voltage
level. The load model based on the proposed method can track
and reflect the real-time changes of the system load and can reflect
the real characteristics of the load more accurately than the
traditional overall measurement and classification methods. The
charging of electric vehicles affects the power quality of the power
network and produces about 6 k harmonics, which lead to the loss of
the power network, affect the life of the equipment, interfere with the
circuit, and then affect the normal operation of the equipment.
Therefore, only by avoiding these effects can the impact of electric
vehicles on the power grid be minimized. However, the proposed
method is only oriented toward the integrated load model composed
of static loads and induction motor loads and does not consider the
characteristics of new types of loads, such as distributed new energy.

This study elucidated the critical factors influencing the external
characteristics of integrated loadmodels, emphasizing the significance
of load composition ratios and parameter sensitivities. Through the
activation subspace approach and spectral analysis, we identified the

TABLE 5 Parameters of static load and impedance.

Rs Xs Xm Rr Xr H

Article 0.034 0.152 3.166 0.020 0.113 1.05

Contrast 0.027 0.116 3.302 0.019 0.116 1.25

TABLE 6 Model parameters after load changes.

Rs Xs Xm Rr Xr H

0.034 0.150 3.174 0.021 0.116 1.09

22.1 3 5 2 8 2

24.72 0.24 0.50 0.26 16.21 0.414

TABLE 7 Ratio of induction motors before and after load changes.

Rs (%) Xs before (%) Xm after (%)

Real load 43.6 41.9 43.6

Article 43.0 41.4 43.0

Contrast 41.0 41.0 41.0

FIGURE 4
Comparison of simulation curves of electrical variables.
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dominant factors shaping integrated load behavior, laying the
groundwork for more comprehensive modeling techniques.

With a large number of new types of loads connected to the
power system, the load characteristics are more complex and
variable. The electric vehicle is connected to the distribution side
of the power grid, which has the characteristics of random and
extensive access. The performance and charging mode of each
vehicle are different, and there will be different characteristics in
the management of the dispatching center. Considering the future,
electric vehicle ownership will be considerable. In order to access any
electric vehicle randomly on a large scale, a hierarchical architecture
is adopted to construct the integrated structure of intelligent
charging, charging, and power monitoring.

The grid voltage is divided into several grades in the stratified
area, and the power supply capacity is divided into several power
supply areas at different structural levels. The supply is carried out in
each area according to the different power loads. The high-
dimensional nonlinear characteristics of the model parameters
are more prominent, so how to consider this factor to construct
a more accurate integrated load model is the focus of the next
research work.

Looking ahead, future research directions encompass the
exploration of advanced modeling techniques, including deep
learning and data-driven parameter estimation, to further refine
the accuracy and adaptability of integrated load models.
Additionally, efforts should be directed towards integrating these
advanced models into practical power system applications,
facilitating enhanced load forecasting, grid optimization, and
resilience analysis in the face of evolving energy landscapes and
demand patterns.
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A multi-time-scale optimization
dispatching strategy for the
regional DN–MG systems
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The optimization dispatching problem of the regional distribution network (DN)
interconnection with the microgrid (MG) is studied in this paper. By installing
flexible interconnection devices based on the soft open point (SOP) at the
boundaries of DNs, the flexible interconnection can be achieved between
distribution networks, and the distribution zoning model is established. A
multiobjective DN–MG system optimization dispatching model for multi-area
DNs considering distributed resources is established based on the distribution
zoning model. By introducing intermediate coupling variables, the optimization
dispatching problem of the DN–MG system is decomposed into MG sub-area
optimization problems and DN sub-area optimization problems. On the basis of
the above, a method based on the alternating direction method of multipliers
(ADMM) is proposed to solve the optimization dispatching model. Finally,
simulation verification shows that by application of the proposed method, the
economic efficiency of the DN–MG system is improved effectively.

KEYWORDS

distribution network, microgrid, soft open point, flexible load, alternating direction
method of multipliers

1 Introduction

With the development of power systems, cooperation between different distribution
networks (DNs) will be applied to achieve complementary power support between DNs.
The power supply reliability will be improved, and it will promote local consumption of
distributed power sources (Tabandeh A, 2022; Li T, 2023a; Xu J, 2024). The collaboration
between microgrids (MGs) and DNs can not only alleviate the operational pressure of DNs
but also reduce the operating costs of MGs (Li Z, 2023b; Chen X, 2023). In this background,
realizing reasonable control of power generation and flexible interconnection devices within
a flexible interconnected AC/DC distribution system between different regions is an urgent
problem that needs to be solved in the economic operation of DN–MG. Domestic and
foreign experts and scholars have also conducted relevant research on such
optimization problems.

However, currently, soft open points (SOPs) are mostly applied for flexible connection
of distributed generation (DG), flexible loads, energy storage (ES), electric vehicles (EVs),
and other equipment (Aithal A, 2018; Yao C, 2018; Zhang J, 2021). In order to enhance
network performance and flexibility, the rapid development of flexible interconnection
technology based on SOPs realized flexible interconnection between feeders. Ebrahimi H
(2024a) proposed that SOPs can be installed in the end feeders of the distribution network
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to improve network performance. Harmonic distortion, voltage
imbalance, and active power loss can be minimized through
active and reactive power control and selective harmonic current
injection. The optimal active and reactive power control of the
location and hourly control of SOPs in a distribution network can
achieve minimum harmonic distortion and voltage unbalance. The
regional interconnection between DNs has not been realized. In
order to improve the flexibility of the power grid, Ehsanbakhsh M
(2023) used SOPs to change the topology structure of the
distribution network to improve the flexibility of the distribution
network. The penetration capability range of renewable energy
sources (RESs) is defined as an indicator for evaluating the
flexibility of active distribution networks (ADNs). The optimal
site and size of SOPs, the final network topology, and the
penetration capability range of the RES are determined by
solving a multiobjective robust optimization model and adopting
flexibility improvement methods. Kamel T (2022) proposed a
strategy to interconnect the railway electrification system with
the local DN through SOPs, which achieved energy transmission
at different power levels between the two systems. The flexibility and
reliability of the two systems were improved. However, the direction
of energy flow was not changed. Saboori H (2023) proposed a
segmentation model based on SOPs to improve the resilience of
DNs. This method effectively solved the internal topology
reconstruction problem of DNs. However, the issue of improving
resilience through collaboration between DNs has been ignored.

In order to address the negative impact of renewable energy on
the power system, flexible operation of DN was realized to control
the active power, reactive compensation, and voltage regulation by
the application of SOPs (Rezaeian-Marjani S, 2022). However, the
local consumption level of DG will be limited. The distribution
network can flexibly exchange power through multi-terminal
intelligent soft switches, provide local reactive power, and
alleviate voltage exceeding limits. By the application of SOPs, the
distribution network has gradually evolved into a highly controllable
flexible interconnection architecture (Li P, 2022).

The DN can flexibly exchange power throughmultiple SOPs and
provide local reactive power. The distribution network gradually
evolved into a highly controllable flexible interconnection
architecture through the connection of multiple SOPs. In order
to alleviate the fluctuation of feeder power flow and load imbalance
in DNs, an SOP was applied to provide accurate control of active and
reactive power to realize flexible connection of feeders (Ji H, 2017).
In order to determine the installation location of an SOP, a classic
scenario was constructed based on Wasserstein distance metric to
optimize the configuration method for SOPs (Wang C, 2016).
However, this configuration method is only applicable to the
optimized configuration of SOPs within a single DN.

At the same time, the uncertainty of renewable energy output
and the uncertainty of multi-load demand significantly will increase
the complexity of regional energy system optimization scheduling
(Ma X, 2023). Ma X (2023) proposed a rolling mechanism based on
the flexible loads to reduce the impact of DG on the power system. In
addition, a two-stage multiobjective framework is proposed to
manage the energy of MG (Karimi H, 2023). However, this
article only studied from the perspective of MG and did not
consider the operational status of the distribution network. (Li Z
(2023c) proposed a multi-time-scale coordinated control strategy

where EVs were modeled as the flexible loads to participate in multi-
region dispatching tasks in the DN in the day-ahead stage. In the
real-time stage, the charging load was defined as a controllable load
to compensate for power errors caused by DG. Han C (2023)
proposed a new SOP management strategy based on the model
predictive control (MPC) framework. The proposed method
corresponds to the factory modeling of voltage and network
losses as a linear time-varying system, which provides better
performance than traditional MPC methods in reducing network
losses and improving voltage distribution based on the data
clustering technology; Ebrahimi H (2024b) proposed a method to
handle uncertain factors. By optimizing the installation position of
SOPs, the expected values of active power loss and voltage deviation
were reduced.

In the above research, the application of SOPs and the
optimization dispatching problem of multiple time scales were
studied, but the collaboration between DNs and MGs was not
considered. In response to the current research shortcomings, the
main contributions of this article are as follows:

(1) A regional optimization model is constructed based on the
zoning of the distribution system. The interconnection
between DNs is realized through SOPs. Based on the TOU,
the power flow between DNs can be coordinated by the
application of SOPs. Under the background of ensuring
the safe and stable operation of a DN, collaborative
support between DNs is realized. In addition, the operating
cost of the DN is reduced.

(2) An optimized dispatching model for the DN–MG
collaboration is proposed. While the MG ensures its own
economic operation, the MG responds to TOU and the
operating status of the DN. The flexible load within the
microgrid can be adjusted according to TOU. By reducing
the operating cost of MG through flexible load shifting, the
purchase of electricity during various periods of MG is
adjusted. Thereby, the operational pressure during peak
load periods of the DN is alleviated.

(3) Amulti-time-scale optimization method based on the alternating
direction method of multipliers (ADMM) is proposed. On the
basis of adopting multi-time-scale rolling optimization, the
optimization problem is decomposed into several sub-
problems. These sub-problems are solved by the ADMM. The
simulation results show that the strategy proposed in this paper
can effectively reduce the operating costs of the DN and MG.

2 Regional optimization model

2.1 Distribution network zoning

The active distribution network (ADN) structure with the MG is
shown in Figure 1. In addition to fixed topology parameters, the DN
also includes local loads and DG. The distribution network is
connected to the microgrid through a point of common coupling
(PCC). The MG directly combines the DG with local user loads in a
certain area. The DG will prioritize supplying power to the local load
within the MG. When the DG in the MG is excessive or insufficient,
the MG will interact with the DN for power. The MG can include
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diesel generators (DEG), photovoltaics (PV), wind power generation
(WG), energy storage (ES), and local load. In addition, the local load
can be flexibly adjusted to participate in demand response.

At the same time, DNs are interconnected through SOPs.
Power interaction between the DNs is realized by controlling
the flexible interconnection devices. The interconnection

FIGURE 1
Distribution network structure with microgrids.

FIGURE 2
Interconnection architecture of the distribution network.

FIGURE 3
Multi-time-scale dispatching architecture.
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architecture of the distribution network is shown in Figure 2.
DNs can be divided into several sub-DNs. Flexible
interconnection between sub-DNs can be achieved
through SOPs.

2.2 DN operation constraints

In this paper, the DistFlow model is applied to constrain the
power flow of the DN:

U 2
min ≤Vi,t ≤U 2

max , i ∈ R. (1)
0≤ lij,t ≤ lij,max. (2)

Pij,t + ∑
NDEG

iDEG�1
κjPt,iDEG � rijlij,t + pj,t + ∑

j: j �����→k

Pjk,t + ∑
NSOP

iSOP�1
υjPt,iSOP. (3)

Qij,t + ∑
NDEG

iDEG�1
κjQt,iDEG � xijlij,t + qj,t + ∑

j: j �����→k

Qjk,t. (4)

Vi,t + lij,t r2ij + x2
ij( ) � 2 rijPij,t + xijQij,t( ) + Vj,t. (5)

2Pij,t

2Qij,t

Vi,t − lij,t

�����������

�����������
2

≤Vi,t + lij,t. (6)

Here, R is the node set of the DN; i and j are the node ID of the
DN; t is the time interval; Pij,t is the active power of branch ij in t;Qij,t

is the reactive power of branch ij in t; Vi,t is the square of voltage
amplitude; Umax and Umin are maximum and minimum values of
voltage amplitude, respectively; lij,t is the square of the current
amplitude; lij,max is the maximum values of lij,t; rij is the resistance
value of the branch ij; xij is the reactance value of the branch ij;NDEG

is the number of DEGs; Pt,iDEG is the active power of DEGs;Qt,iDEG is the
reactive power of DEGs; κj is a binary variable that indicates whether
the DEG is installed at node j; pj,t is the active load at node j; qj,t is the
reactive load at node j; υj is a binary variable that indicates whether the
SOP is installed at node j; Pt,iSOP is the active power of the SOP.

At the same time, the DEG needs to meet the constraints of
power upper and lower limits and the constraints of ramp rate:

PiDEG,min≤Pt,iDEG ≤PiDEG,max. (7)
QiDEG,min≤Qt,iDEG ≤QiDEG,max. (8)
Pt,iDEG − Pt−1,iDEG

∣∣∣∣
∣∣∣∣≤ εDEG. (9)

Here, PiDEG,max and PiDEG,min are the maximum and minimum
values of DEG active power output, respectively; QiDEG,max and
QiDEG,min are the maximum and minimum values of DEG reactive
power output, respectively; εDEG is the ramp rate of the DEG.

2.3 MG operation constraints

The MG can include DEG, PV, WG, ES, and local electricity
loads. Among them, the local electricity load can be adjusted flexibly,
which can be powered by time-series translation. Therefore, the
operational constraints of the MG are as follows:

PDEG
t + PPV

t + PWG
t + Pgrid

t � PES
t + Pload

t , (10)

where PDEG
t is the active power of DEG in the MG; PPV

t is the
active power of PV in the MG; PWG

t is the active power of WG in the
MG; Pgrid

t is the electricity purchased from the DN; PES
t is the active

power of ES in the MG; Pload
t is the load of the MG.

Pload � ∑
T

t�1
Pload
t . (11)

Pload
t,min ≤Pload

t ≤Pload
t,max. (12)

Here, Pload is the total load of the MG within a day; Pload
t,max and

Pload
t,min are the maximum and minimum values of Pload

t , respectively.
The constraints of DEG in MGs are similar to those of DNs and

will not be elaborated here.

FIGURE 4
Topology structure.
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−PES
t,max ≤P

ES
t ≤PES

t,max. (13)
SESmin ≤ S

ES
t ≤ SESmax. (14)

SESt � SESt−1 + PES
t . (15)

Here, PES
t,max is the maximum value of PES

t ; SESt is ES capacity; SESmax

and SESmin are the maximum and minimum values of SESt , respectively.

2.4 SOP model

The DNs are flexibly interconnected through SOPs with DC
charging devices. The upper control center can achieve power

flow direction control through voltage source converters (VSCs)
on both sides of the SOP. In order to realize the regional division,
the DC charging device and DN are the same optimized area. In
addition, information exchange is carried out point-to-point with
the adjacent DN side. The decoupled interaction power
relationship is as follows:

Pvsci
t − Pt,salei � P′t,vsci. (16)
Pvsci+1
t � P′t,vsci+1, (17)

where Pvsci
t is the power on the VSC AC side at the boundary

of the DN; Pt,salei is the power of the DC charging load; P′t,vsci and
P′t,vsci+1 are the amounts of power interaction information

FIGURE 5
Topology structure.
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between adjacent active distribution networks; Pvsci+1
t is the power

on the VSC AC side at the boundary of the DN.
At the same time, the upper limit constraint of interaction power

is as follows:

Pvsci
t − Pt,salei ≤Pmax

t,sop, (18)

where Pmax
t,sop is the maximum value of Pt,vsci′ .

2.5 PCC model

The MG and DN are connected through a PCC. They are
coupled and interconnected. In order to achieve partition
calculation, the DN area in the coupling area between the DN
and MG is defined as region H, and the MG area is defined as region
L. The PCC will be decoupled into two independent regions. The

FIGURE 6
Load data of the distribution network.

FIGURE 7
TOU of the distribution network.
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relationship between the variables decoupled from two independent
regions is as follows:

Pt,DN � Pt,DN,H′ . (19)
Pt,MG � Pt,MG,L′ . (20)

Here, Pt,MG is the power value of the MG area at the PCC;
Pt,DN is the power value of the DN area at the PCC; Pt,DN,H′ is the
replication area variable of the DN; Pt,MG,L′ is the replication area
variable of the DN.

FIGURE 8
Charging price.

FIGURE 9
PV output of MGs.
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3 Optimal dispatching model

Based on the regional optimization model, the optimal
dispatching model is established to realize economic
optimization, and a rolling optimization dispatching model with
multiple time scales is established.

Themulti-time-scale dispatching architecture is shown in Figure 3.
Due to fluctuations of the PV and WG, rolling optimization
dispatching can effectively ensure the accuracy of optimization
dispatching. The participating optimization period includes the
current period and all the remaining unfinished periods to ensure
that the optimization results of the current period are optimal.

FIGURE 10
WG output of MGs.

FIGURE 11
MG load curve.
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It can be seen from Figure 3 that the dispatching strategy is
divided into the completed time period and the period for
participating in optimization. The completed time period is time-
varying. The period for participating in optimization is also time-
varying. The sum of the two time periods is fixed. The size of the
completed time period increases sequentially from 1 to 24. The size

of the period for participating in optimization decreases sequentially
from 1 to 24. Therefore, the dispatching strategy has 24 calculation
time scales.

The optimization dispatching models for each region are
as follows:

min C � CDN + CMG − Csale, (21)

FIGURE 12
MG1 flexible load adjustable range.

FIGURE 13
MG2 flexible load adjustable range.
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where C represents the total operating cost during the
optimization period; CDN represents the operating cost of the
DN during the optimization period; CMG represents the
operating cost of the MG during the optimization period; Csale

represents the revenue from the DC charging devices.
The objective of the DNi regional economic optimization model

is to optimize the economic efficiency of DNi and its regional
boundaries, including the output cost of DEGs, the PCC at the
partition boundary, and the interaction cost at the SOP.

minCDNi � ∑
T

t�1
a PDEG

t,DNi
( )

2 + bPDEG
t,DNi

+ c[ ] − μ∑
T

t�1
PVSCi
t − μ∑

T

t�1
Pt,DNi,

(22)
where CDNi is the total operating cost of the DNi; a, b, and c are

the fuel consumption parameters of DEGs; PDEG
t,DNi

is the active power
of DEG in the DNi; μ is the TOU for purchasing and selling
between regions.

The optimization objective of the regional economic optimization
model for the MG is to minimize the operating costs of microgrids,
including the output cost of the DEGs, the charging and discharging
cost of the ES, and the interaction cost at the PCC of the
partition boundary.

min CMGi � ∑
T

t�1
a PDEG

t,MGi
( )

2 + bPDEG
t,MGi

+ c[ ] − γ∑
T

t�1
PES
t − μ∑

T

t�1
Pt,MGi,

(23)

whereCMGi is the total operating cost ofMGi; γ is the cost coefficient for
charging and discharging of ES; PDEG

t,MGi
is the active power of DEG in MGi.

The economic optimization model of the DC charging device at
the SOP is as follows:

min Csalei � μsale∑
T

t�1
Pt,salei , (24)

where μsale is the charging price of EVs.

4 Optimization dispatching based on
the ADMM

The ADMM is an iterative algorithm used to solve convex
optimization problems. This algorithm is suitable for large-scale
data and distributed computing environments. The ADMM
algorithm has the following advantages:

(1) ADMM can decompose large optimization problems intomultiple
smaller sub-problems to make the problem easier to solve.

(2) This algorithm is suitable for distributed computing
environments. In addition, it allows multiple computing
nodes to participate in the problem-solving process to
improve the computational efficiency.

(3) ADMM usually has good convergence performance and can
find near-optimal solutions within a finite number of
iterations.

(4) During the iteration process, each sub-problem can
independently perform sparse reconstruction and noise
reduction operations to achieve high reconstruction accuracy.

Based on the optimization architecture and model mentioned
above, an optimization dispatching method based on the ADMM is

TABLE 1 WG parameters for MG1.

WG
ID

Maximum value of
active power
output (kW)

Maximum value of
active power
output (kW)

1 1,500 450

2 1,500 450

TABLE 2 ES parameters for MG1.

ES
ID

ES
capacity
(kWh)

Maximum value
of active power
output (kW)

Maximum value
of active power
output (kW)

1 500 60 −60

2 500 60 −60

TABLE 3 WG parameters for MG2.

WG
ID

Maximum value of
active power
output (kW)

Maximum value of
active power
output (kW)

1 1,500 450

2 1,500 450

TABLE 4 ES parameters for MG2.

ES
ID

ES
capacity
(kWh)

Maximum value
of active power
output (kW)

Maximum value
of active power
output (kW)

1 500 60 −60

2 500 60 −60

TABLE 5 Scenario setting.

Scenario ID SOP Flexible load

Scenario 1 √ √

Scenario 2 √ -

Scenario 3 - √

Scenario 4 - -

TABLE 6 SOP parameters.

Maximum value of SOP
transmission power

Minimum value of SOP
transmission power (kW)

1,000 kW −1,000
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FIGURE 14
DN 1 operating cost.

FIGURE 15
DN 2 operating cost.
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FIGURE 16
MG 1 operating cost.

FIGURE 17
MG 2 operating cost.
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FIGURE 18
MG load for scenario 1

FIGURE 19
MG load for scenario 3
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proposed. An augmented Lagrangian function is constructed, and
the sub-problems are divided according to the framework structure
of the optimization model.

L � ∑
I

i�1
CDNi +∑

I

i�1
∑
J

j�1
CMGj,i −∑

I

i�1
Csale,i

+∑
I

i�1
∑
T

t�1
λi PVSCi

t − Pt,salei − PVSCi+1
t( )

+ ρ

2
PVSCi
t − Pt,salei − PVSCi+1

t

����
����22

+∑
I

i�1
∑
T

t�1
λi PVSCi+1

t − PVSCi
t + Pt,salei( )

+ ρ

2
PVSCi+1
t + Pt,salei − PVSCi

t

����
����22 +∑

I

i�1
∑
J

j�1
∑
T

t�1
λj,i Pt,MGj,i − Pt,DNi( )

+ ρ

2
Pt,MGj,i − Pt,DNi

����
����22,

(25)
where I is the number of DNs; J is the number ofMGs; λi and λj,i

are dual variables; ρ is the penalty coefficient; L is the
Lagrangian function.

4.1 Sub-problem 1: solving the DN and SOP
optimization problems

Sub-problem 1 can be decomposed into two local sub-
problems; namely, the optimization of DNi and DNi+1. The
decision variables within the DN can be optimized by solving
local sub-problems using the ADMM. The SOP serves as the
boundary between two DN areas, and its injection power is
optimized as an interaction variable during the
calculation process.

For DNi

LADMM
DNi

� CDNi − Csalei + λi∑
T

t�1
PVSCi
t − Pt,salei − P′t,VSCi+1( )

+ ρ

2
PVSCi
t − Pt,salei − P′t,VSCi+1

����
����22. (26)

For DNi+1:

LADMM
DNi+1 � CDNi+1 + λi∑

T

t�1
PVSCi+1
t − P′t,VSCi( ) + ρ

2
PVSCi+1
t − P′t,VSCi

����
����22.

(27)
Here, LADMM

DNi
and LADMM

DNi+1 are the Lagrangian functions.
The original residual error, dual residual error, and iterative

update mechanism for sub-problem 1 are as follows:

kri � PVSCi,r
t − Pr

t,salei
− P′rt,VSCi+1

����
����2
2

kri+1 � PVSCi+1 ,r
t − P′rt,VSCi

����
����2
2

⎧⎨
⎩ . (28)

dr
i � PVSCi+1 ,r

t − Pr
t,salei

− PVSCi+1 ,r−1
t − Pr−1

t,salei
( )

�����
�����
2

2

dr
i+1 � PVSCi+1 ,r

t − PVSCi+1 ,r−1
t

����
����22

⎧⎪⎨
⎪⎩ . (29)

λr+1i � λri +
ρ

2
PVSCi,r
t − Pr

t,salei
− P′rt,VSCi+1( )

λr+1i+1 � λri+1 +
ρ

2
PVSCi+1 ,r
t − P′rt,VSCi

( )

⎧⎪⎪⎨
⎪⎪⎩

. (30)

Here, r is the number of iterations; k is the original residual; d is
the dual residual.

4.2 Sub-problem 2: solving the MG and PCC
optimization problems

LADMM
MGj,i

� CMGj,i + λj,i∑
T

t�1
Pt,MGj,i − P′t,DNi( ) + ρ

2
Pt,MGj,i − P′t,DNi

����
����22.

(31)
krj,i � Pr

t,MGj,i
− P′rt,DNi

�����
�����
2

2
. (32)

dr
j,i � Pr

t,MGj,i
− Pr−1

t,MGj,i

�����
�����
2

2
. (33)

λr+1j,i � λrj,i +
ρ

2
Pr
t,MGj,i

− P′rt,DNi
( ). (34)

Here, LADMM
MGj,i

is the Lagrangian function.
The selection of the penalty coefficient will affect the

convergence speed of the algorithm. By balancing the original
residual error and the dual residual error, the penalty coefficient
can be adaptively adjusted according to the residual error, which can
accelerate the convergence speed of the algorithm.

ρr+1 �

ρr

1 + lg
dr

kr

kr < 0.1dr

ρr 1 + lg
kr

dr( ) kr > 10dr

ρr others

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (35)

The decision variables are divided into two parts: 1) the
interaction variables within the flexible interconnection devices of
the DN; 2) the interaction variables between the PCC coupling part
of the DN and MG. The optimization process is shown in Figure 4.

The detailed optimization process is as follows:
Step 1: input the initial data. Input the TOU for regional

purchase and sale, DC charging price for EVs, user flexible load,
operating parameters of the DN andMG, and rolling prediction data
for the PV and WG.

Step 2: initialize the number of iterations r � 0 and penalty
coefficient ρ0. Set the convergence values of the original residual and
the dual residual (φori and φdual). The initial settings for dual
variables, original residuals, and dual residuals are all set to 0. Set
the initial value of the global variables (P′t,VSCi, P′t,VSCi+1,
and P′t,DNi).

Step 3: update the number of iterations (r � r + 1).
Step 4: solving sub-problems.

(1) Solve sub-problem 1. At the flexible interconnection device
SOP, the interaction data received by DNi from DNi+1 are
p′r+1t,VSCi+1 � PVSCi+1 ,r

t . The interaction data received by DNi+1

from DNi are p′r+1t,VSCi+1 � PVSCi+1 ,r
t − Pr

t,salei
.
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(2) Solve sub-problem 2. The interaction variables between the
microgrid area and the connected distribution network are
obtained through the PCC (P′r+1t,DNi

� Pr
t,DNi

).

Step 5: Update Lagrange multipliers and penalty coefficients.
Step 6: Residual update and iteration termination determination.

When k≤φori and d≤φdual, the algorithm ends and outputs the
result. Otherwise, return to step 3 to continue iterating until the
convergence condition is met.

5 Case study

5.1 Case data

In order to verify the effectiveness of the optimization strategy,
this paper selected two IEEE 33 node systems and two MGs as a
study case. The topology structure is shown in Figure 5, and the load
data of the DN are shown in Figure 6.

In this paper, a multiple time-scale rolling optimization strategy
is proposed to achieve a full-day optimization calculation. TOU is
applied for purchasing and selling electricity between the regions,
and the charging price for EVs is set based on TOU. The TOU is
shown in Figure 7, and the charging price is shown in Figure 8.

The PV output is shown in Figure 9.
The WG output is shown in Figure 10.
The MG load curve is shown in Figure 11, and the adjustable

range of the flexible load is shown in Figure 12 and Figure 13. The
WG parameters and ES parameters are shown in Table 1, Table 2,
Table 3, Table 4.

The comparison of the scenario settings is shown in Table 5. For
scenario 1, SOP and flexible load are available. For scenario 2, SOP is
available, but flexible load is not available. For scenario 3, flexible load is
available, but SOP is not available. For scenario 4, flexible load and SOP
are not available. The SOP parameters are shown in Table 6.

5.2 Optimization results of the DN

The operating costs for DN1 and DN2 for different scenarios are
shown in Figure14 and Figure 15. For DN1, when the SOP is
coordinated with flexible loads, the operating cost of DN1 is the
lowest. Compared with scenario 2, the operating cost of DN1 has
significantly decreased. Compared with scenario 3, due to the lack of
an SOP interconnection between DN1 and DN2, there is no power
interaction. These two DNs will operate independently of each other
and lack collaborative assistance, which, to some extent, increases
the operating cost of the DN. Comparison of scenario 2 with
scenario 4 shows that due to the lack of an SOP interconnection
between DN1 and DN2, the two networks are unable to interact with
each other based on their operating status. The operating cost of
DN1 is increased. On comparing scenario 3 with scenario 4, when
the internal load of theMG can be flexibly controlled, the load can be
adjusted based on TOU, and the operating cost of the DN is reduced.

The operating cost of DN2 in scenario 1 is ¥291.894 yuan higher
than that of DN2 in scenario 2. The operating cost of DN2 has
increased, but the operating cost of DN1 has decreased by
¥504.8324. The overall operating cost of the DN has reduced.

5.3 Optimization results of the MG

The comparison of the operating costs between MG1 and MG2 is
shown in Figure 16 and Figure 17, respectively. According to Figure 16,
it can be seen that the overall load of MG2 is greater than the overall
load of MG1. Therefore, the operating costs of MG2 are higher than
those of MG1. In scenario 2, due to the non-flexible regulation of load,
the MG will purchase electricity from the DN according to the original
plan during the peak load period of the DN. When the amount of load
access is adjusted flexibly, MGs can adjust the time shift access of the
load to reduce the operating costs andmeet the demand for load access.
In scenario 4, due to the lack of power interaction with the upper level
DNs, MGs will increase the output power of the DEG to meet the load
demand of themicrogrid.When scenario 3 is adopted, theMG load can
achieve time-shift access to reduce the purchase of electricity from the
DN during weak DN periods and the peak time of TOU. At the same
time, the power generation of DEGs is adjusted to optimize the
operating costs of the MG.

The flexible load regulation curves of MG1 and MG2 are shown
in Figure 18 and Figure 19, respectively. MG1 increases load during
low load periods and reduces the load during peak load periods. The
load fluctuations have been suppressed. The operational pressure
during peak load periods has been alleviated. MG2 has a larger load
access volume than that of MG1. That will be more evident in
flexible load regulation. MG2 will increase load access volume
during periods of low electricity prices in the DN, and MG2 will
reduce load access volume during periods of high electricity prices to
meet the demand for flexible loads.

6 Conclusion

In this paper, the optimization dispatching problem of DN
interconnection and DN–MG systems is studied. The flexible
interconnection between DNs is realized by the application of the
SOP, and the optimization dispatching of the DN–MG system is
realized based on flexible loads. An optimization solution method
based on the ADMM is proposed, which reduces the overall
operating costs of DNs and MGs, and the operational efficiency
of the DN–MG system is improved.
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Electricity market clearing for
multiple stakeholders based on
the Stackelberg game

Xuguang Wu*, Qingquan Ye, Liyuan Chen, Hongtu Liao and
Wanhuan Wang

State Grid Pingyang Power Supply Company, Wenzhou, Zhejiang, China

In order to improve the operating benefits of the distribution network and reduce
the energy consumption costs of small–micro-industrial parks, an electricity
market clearing considering small–micro-industrial parks is proposed based on
the Stackelberg game. First, an optimal operating model of multiple stakeholders
is established for integrated energy suppliers, the electricity market, and
small–micro-industrial parks. In this model, an optimal electricity supply
model for integrated energy suppliers is established with the goal of
maximizing the operating benefits. A market clearing optimization model is
established for the electricity market with the goal of maximizing the social
surplus profit. In addition, an energy utilization optimization model is established
for the small–micro-industrial parks with the goal of minimizing the energy
procurement costs. Second, with the electricity market as the leader, the
integrated energy suppliers and the small–micro-industrial parks as the
followers, a leader–follower game strategy is proposed based on the
Stackelberg game theory to achieve the maximizing benefits for multiple
stakeholders. Finally, the simulation indicates that the proposed strategy can
find the best profit point during the game process and achieve a balance between
supply and demand.

KEYWORDS

electricity market, multiple stakeholders, Stackelberg game, small–micro-industrial
parks, distribution network

1 Introduction

In recent years, small and micro-enterprises have developed rapidly in Zhejiang
Province, China. In order to facilitate the prosperous development of such enterprises,
Zhejiang Province has standardized and renovated the existing small–micro-industrial
parks (SMIPs) based on the actual operation. However, the SMIPs do not dispatch enough
power generation and energy storage (ES) devices, which results in a low capacity to
withstand the operating risks. With the rapid development of SMIPs, the demand for
electricity trading between SMIPs and distribution networks (DNs) is constantly increasing.
On one hand, trading electricity with the DNs can help the SMIPs withstand operating risks.
On the other hand, an optimal trading electricity strategy can help the SMIPs save operating
costs. Then, how to optimize the electricity trading between the DNs and SMIPs is currently
a highly important issue.

As the electricity market (EM) continues to open up, operators and agents in the DNs
gradually participate in the competition within the EM (He et al., 2021). As a user-side
autonomous system, SMIPs can participate in power trading in the EM under the
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management of operators (Davoudi and Moeini-Aghtaie, 2022),
which can deepen the hierarchical structure of the EM trading
framework (Pownall et al., 2021). Meanwhile, agents, as the link
between SMIP operators and the EM, directly affect the energy costs
of these parks. Talaeizadeh et al. (2022) explored the procurement of
flexibility services in the power system by the collaboration between
distribution system operators and transmission system operators.
With the coordination among the operators, the flexibility sources
were exploited to procure flexibility services. Anwar et al. (2022)
introduced an electricity market and investment suite-agent-based
simulation, which modeled the evolution of the electricity
generation mix under various market structures while explicitly
capturing the aforementioned investment factors and imperfect
information. To improve power generation profits, Yuan et al.
(2022) proposed an optimized scheduling model for cascade
hydropower plants, simultaneously participating in both the day-
ahead spot market and the daily contract market. Considering the
characteristic that natural gas can blend with hydrogen, Ding et al.
(2023) proposed a multi-agent electricity–heat–hydrogen trading
model by taking hydrogen produced on the load side. Tan et al.
(2022) treated carbon as a direct trading object and proposed an
internal multi-energy trading mechanism, which adopts an auction
based on the demands for cooling, heating, electricity, and carbon.
To further explore the multi-energy coupling capacity and carbon
reduction potential of the integrated energy systems, Yang et al.
(2023) proposed a cooling–heat–electricity–gas collaborative
optimization model of integrated energy systems given a ladder
carbon trading mechanism and multi-energy demand response. Li
et al. (2023) proposed a medium-term multi-stage distributionally
robust optimization scheduling approach for a price-taking of
hydro–wind–solar complementary systems in the EM. A multi-
agent deep reinforcement learning approach combining the multi-
agent actor–critic algorithm with the twin delayed deep
deterministic policy gradient algorithm was proposed by Chen
et al. (2022), and the proposed approach can handle the high-
dimensional continuous action space and aligns with the nature of
peer-to-peer energy trading. Yang et al. (2022) analyzed the impact
of different bidding decisions on the distribution of wind farm
revenues in a process where the interest of two markets is played
against each other. Khaligh et al. (2022) introduced a stochastic
agent-based model for the coordinated scheduling of multi-vector
microgrids considering interactions between electricity, hydrogen,
and gas agents. Considering the power loss, flexible load demand,
and other operating indicators to maximize the user and supplier
benefits, the real-time transaction electricity price model of the user
side and the power supply side was constructed by Lyu et al. (2022).
In the EM trading that SMIPs participate in, how to coordinate the
benefit relationship between agents and operators (Green and
Newman, 2017), increasing the profit of agents while reducing
the electricity costs for the operators (Zare et al., 2015), has
become a hotspot in the research direction of the EM.

In EM trading, the optimization goals of multiple stakeholders
are different (Yu and Hong, 2016), but there exists a coupling
relationship among the optimization models (Mahdavi et al.,
2018). Finding a point of balanced benefits has become a key
factor for the stability of the alliances in EM trading (Cao et al.,
2021). Stackelberg game theory is frequently employed as an
effective tool in solving optimization problems within the

electricity market (Du et al., 2022). To solve the inherent conflict
among the players, a Stackelberg game-based technique is proposed
by Haghifam et al. (2020). To achieve comprehensive optimal
benefits for different stakeholders, Liu et al. (2018) established a
two-layer optimization model considering the involvement of
different stakeholders, and the stakeholders achieve the
maximization of the overall benefits by aggregating the
generation units within microgrids. However, in this method, the
electricity price during the trading process is a fixed time-of-use
price, which cannot reflect the flexibility of EM trading. Cherukuri
and Cortes (2020) proposed a bidding iterative auction mechanism
in the EM but did not analyze the factors affecting the electricity
price of the agents. Furthermore, the operation of the generation
units can only be optimized after obtaining the market clearing
results, so it has lower flexibility. A trading model based on the
Stackelberg game model is proposed by Wei et al. (2022) to balance
the interests of the supply side and demand side and reduce the
carbon emissions. To solve the problems of environmental pollution
and conflict of interests among multiple stakeholders in the
integrated energy system, Wang et al. (2022) proposed a novel
collaborative optimization strategy for a low-carbon economy in the
integrated energy system based on the carbon trading mechanism
and Stackelberg game theory. Envelope et al. (2022) proposed a
Stackelberg game-based optimal scheduling model for
electro–thermal integrated energy systems, which seeks to
maximize the revenue of the integrated energy operator and
minimize the cost of users. Pu et al. (2023) constructed a two-
stage supply chain consisting of a manufacturer and a retailer based
on a dual-credit policy, considering three different power structure
models, namely, the vertical Nash game model, the manufacturer
Stackelberg game model, and the retailer Stackelberg game model,
and explored the operational strategy issues of new energy vehicle
enterprises under the dual-credit policy. Zhang et al. (2022) took the
integrated energy system operator as the leader and each integrated
energy system as the follower to construct the Stackelberg operation
model, and the proposed model is constructed and solved by the
double mutation differential evolution algorithm. Hua et al. (2023)
proposed a framework of local energy markets to manage this
transactive energy and facilitate the flexibility provision, the
decision-making, and interactions between a DN operator, and
multiple microgrid traders are formulated as the Stackelberg
game-theoretic problem. Fattaheian et al. (2022) applied the
Stackelberg game to model the incentivizing resource scheduling
optimization under post-contingency conditions, and a strong
duality condition is used to re-cast the preliminary bi-level model
into a one-level mathematical problem. The pricing mechanisms in
existing research are mainly day-ahead fixed pricing mechanisms; as
SMIP types participate in market trading in the future, fixed pricing
strategies will not be able to adapt to the increasingly flexible EM. In
this context, it is highly necessary to study the dynamic pricing
strategies for EM trading to enhance the economic operation of the
multiple stakeholders in the power system.

In light of the abovementioned strategies, an EM clearing
considering SMIP is proposed based on the Stackelberg game.
The main contributions of this paper are summarized as follows:

(1) To improve the DN operating benefits, as well as reduce the
energy costs of SMIPs, an optimal operating model for
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multiple stakeholders in the EM clearing is established, which
contains an optimal electricity supply model for integrated
energy suppliers (IESs), a market clearing optimization model
for the EM, and an energy utilization optimization model for
the SMIPs.

(2) To characterize the benefit relationship among multiple
stakeholders, with the EM as the leader and the IESs and
SMIPs as the followers, a leader–follower game model based
on the Stackelberg game is proposed to maximize the benefits
for multiple stakeholders.

(3) To find the balanced benefits, an iterative optimization
method is proposed to solve the leader–follower game
model. In addition, by the iterative optimization among
the multiple stakeholders, the best profit point during the
game process can be found, and a dynamic optimal pricing
strategy for EM trading is obtained.

The remainder of this paper is organized as follows: an EM
clearing framework for multiple stakeholders is proposed in
Section 2; an optimized operating model for multiple
stakeholders in the EM clearing is introduced in Section 3; in
Section 4, a leader–follower game strategy is proposed for
multiple stakeholders; in Section 5, the case study is analyzed;
and the conclusion is given in Section 6.

2 The EM clearing framework for
multiple stakeholders

The EM clearing framework for bilateral bidding between IESs
and SMIPs is shown in Figure 1. The IESs have their own scheduling
strategies and market quotation–bidding strategies. The SMIPs offer
quotations to the market through an agency and engage in
bidding with IESs.

At the beginning of the first quotation, the IESs and SMIPs
declare the prices to the market side, and then the declared prices are
processed according to the quotation clearing mechanism. The price
clearing data are prepared by the evaluation of the market benefits. If
the equilibrium of benefits does not meet the standard, the IESs and
SMIPs will carry on a re-quote based on the latest clearing results.
When the equilibrium of benefits meets the standard, the final
clearing data will be exported and transmitted to the IESs
and SMIPs.

3 The optimal operating model for
multiple stakeholders

The optimal operating model for multiple stakeholders in the
EM clearing contains an optimal electricity supply model for IESs, a
market clearing optimization model for the EM, and an energy
utilization optimization model for the SMIPs.

3.1 The optimal electricity supply model
for IESs

The electricity supply of IESs should consider the income from
selling energy Fsell, trading costs with external electricity grids Futil,
and various energy supply costs. The energy supply costs include the
natural gas fuel cost Ff and the equipment maintenance cost Fom.
The optimal electricity supply model is as follows:

maxF � Fsell − Ff + Futil + Fom( ). (1)
The IESs can earn profits by selling the produced electricity and

heat to SMIPs. The price and power of the sold energy are obtained
based on the electricity market clearing. Then, the income from
selling energy Fsell is given as follows:

FIGURE 1
EM clearing framework.
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Fsell � ∑
T

t�1
Pel t( )Ce t( ) +∑

T

t�1
Qhl t( )Ch t( ), (2)

where Pel(t) and Qhl(t) represent the electricity power and heat
power, respectively, at time t under the response to the demand of
the SMIPs. Ce(t) and Ch(t) represent the electricity prices and heat
prices, respectively, at time t cleared by the EM. T represents the
optimization time.

IESs can arbitrage through trading with external grids. When the
electricity price of the power grid is low, the IESs purchase the
electricity and sell electricity when its price is high, and then the
profits can be obtained. The trading costs with the external
electricity grid Futil is given as follows:

Futil � ∑
T

t�1
Putil t( )Cutil t( ), (3)

where Putil(t) is the interactive power between the IESs and the
external electricity grid at time t. When Putil(t) > 0, it means that the
IESs purchase electricity from the external electricity grid. When
Putil(t) < 0, it means that the IESs sell electricity from the external
electricity grid. Cutil(t) is the interactive electricity price between the
IESs and the external electricity grid at time t.

The energy provided by IESs is divided into two categories. The
first category is wind turbines (WTs) and photovoltaic (PV) power
generation, and this type of energy does not need to be purchased.
The second category is gas turbines and gas boilers, which burn
natural gas to generate electricity and heat, respectively. For this
category, the purchasing cost of natural gas needs to be included in
the cost, which is called fuel cost. The fuel cost Ff is given as follows:

Ff � Cgas

L
·∑

T

t�1

PGT t( )
ηGT

+[
QGB t( )
ηGB

⎤⎦, (4)

where Cgas is the price of natural gas and L is the low calorific
value of natural gas, which represents the heat released by burning a
certain volume of natural gas. PGT(t) and QGB(t) represent the
output powers of the gas turbine and gas boiler at time t,
respectively. ηGT and ηGB represent the efficiencies of the gas
turbine and gas boiler, respectively.

The distributed energy equipment in the system needs
maintenance, and the equipment maintenance cost Fom is given
as follows:

Fom � ∑
I

i�1
∑
T

t�1
ξi

SPDGi t( ), (5)

where I is the number of power generation equipment. ξi
S is the

cost coefficient of the ith power generation equipment. PDGi(t)
represents the supply power of the ith power generation
equipment at time t. In the IES optimization model, the
constraints of various parameters are given as follows:

(1) Constraints on electricity and heat power balance

Pel t( ) � ∑
I

i�1
PDGi t( ) + PGT t( ) + Putil t( ), (6)

Pel t( ) � Le t( ) + PEDR t( ), (7)

Qhl t( ) � Qout
WH t( ) + Qh

GB t( ), (8)
Qhl t( ) � Lh t( ) + QHDR t( ). (9)

Formulas 6, 7 are the constraints on electricity power balance,
and Formulas 8, 9 are the constraints on heat power balance. Le(t)
and Lh(t) represent the original electricity and heat loads of SMIPs at
time t, respectively. Q(t) is the heat power recovered from the gas
boiler at time t. PEDR(t) and QeHDR(t) represent the electricity and
heat load responding to the demand of SMIPs at time t, respectively.

(2) Constraints on the output of distributed energy generation
equipment

PDGi,min ≤PDGi t( )≤PDGimax, (10)

where Pi min(t) and Pi max(t) represent the upper and lower limits
of the power of the ith distributed energy equipment, respectively.

(3) Constraints on the power exchange with the external
electricity grid

P sell
max ≤Putil t( )≤P buy

max , (11)

where P sell
max and P buy

max are the upper limits of the power sold to
and bought from the external electricity grid by the IESs,
respectively.

(4) Constraints on the power of energy equipment participating
in the electricity market clearing

Pk,e
′ t( )≤Pk,e t( ), (12)

Qs,h
′ t( )≤Qs,h t( ), (13)

where P’
k,e(t) andQ

’
s,h(t) represent the powers cleared in the EM

for each electric and thermal unit at time t, respectively. Pk,e(t) and
Qs,h(t) represent the actual power generated by each electric and
thermal unit at time t, respectively.

3.2 The energy utilization optimization
model for the SMIPs

The energy utilization optimization model of SMIPs takes
minimizing the energy purchase cost as the objective function. In
addition to paying the energy purchase fee Fsell to the IESs, SMIPs
can also obtain income compensation FDR by reducing a certain
amount of load through demand response. Therefore, the objective
function is established as follows:

minFuser � Fsell − FDR, (14)

Fsell � ∑
T

t�1
Le t( ) + PEDR t( )[ ] · Ce t( ) +∑

T

t�1
Lh t( ) + QHDR t( )[ ] · Ch t( ),

(15)

FDR � ∑
T

t�1
vePEDR t( )[ ] +∑

T

t�1
vhQHDR t( )[ ], (16)

where ve and vh represent the reduction compensation
coefficients for the electricity and heat demand response of
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SMIPs, respectively. For the demand response to SMIPs, various
constraints need to be considered as follows:

(1) Constraints on the income of SMIPs

The benefits of users after demand response FDR
user should be

greater than the benefits before the response F0. The mathematical
formula is

FDR
user ≥F0. (17)

(2) Constraints on the power of load transfer

During the optimization process, the SMIPs can participate in
price-based demand response. Thus, the power of electricity and
heat load transfer cannot exceed the limit value PEDR

max and
QHDR

max. The mathematical formula is

PEDR t( )≤Pmax
EDR, (18)

QHDR t( )≤Qmax
HDR. (19)

3.3 The market clearing optimization model
for the EM

The EM aims at maximizing the social surplus profit, which
reflects the balance of benefits between the supply and demand. The
maximum social surplus profit in this paper consists of the profit
surplus of IESs and profit surplus of the users. The objective function
of the model is established as follows:

maxH � ∑
T

t�1
Hemo t( ) +Huser t( )[ ], (20)

Hemo t( ) � ∑
K

k�1
Ce t( ) − Ce,min t( )( )Pk,e

′ t( )[ ]

+∑
S

s�1
Ch t( ) − Ch,min t( )( )Qs,h

′ t( )[ ], (21)

where Hemo(t) and Huser(t) represent the surplus profits of the
IESs and the surplus profits of SMIPs at time t, respectively. K
represents the number of electricity power generation equipment. S
represents the number of heat power generation equipment.
Ce,min(t) and Ch,min(t) represent the lower limits of the electricity
and heat bidding prices of the IESs, respectively. Ce,max(t) and
Ch,max(t) represent the upper limits of electricity and heat
bidding prices of SMIPs, respectively.

The price and power of the electricity and heat cleared by the EM
need to be constrained to ensure that the clearing data are within a
reasonable range. The formulas are as follows:

Pe,min
′ t( )≤P′

e t( )≤Pe,max
′ t( ), (22)

Qh,min
′ t( )≤Q′

h t( )≤Qh,max
′ t( ), (23)

Ce,min t( )≤Ce t( )≤Ce,max t( ), (24)
Ch,min t( )≤Ch t( )≤Ch,max t( ), (25)

where P′k.e(t) represents the electricity power cleared by the
EM. Q′s.h(t) represents the heat power cleared by the EM.

P′e,min(t) represents the essential need of electricity load.
Q′s.h(t) represents the essential need of heat load. P′e,max(t)
represents the electricity load after the demand response.
Q′h,max(t) represents the heat load after the demand response.
To solve the proposed optimal electricity supply model for IESs,
the energy utilization optimization model for the SMIPs, and the
market clearing optimization model for the EM, an improved
particle swarm optimization algorithm (Xiao et al., 2017) is
utilized to conduct the optimization.

4 The leader–follower game strategy
for the multiple stakeholders

4.1 The leader–follower game model for the
multiple stakeholders

To characterize the benefit relationship among multiple
stakeholders, a leader–follower game model based on the
Stackelberg game is proposed in this paper to maximize benefits
for multiple stakeholders. In the proposed leader–follower game
mode, there are three stakeholders: the EM, SMIPs, and the IESs.
The EM is the leader in the game, while the SMIPs and IESs are
followers. The SMIPs and the IESs respond to the decisions of the
EM and adjust the strategy according to their objective functions.
The EM aims to maximize social surplus profits, and the strategy
set includes clearing electricity power, heat power, and energy
prices to the SMIPs and the IESs. The IESs aim to maximize
operating benefits, and the strategy set includes energy equipment
output, external grid trading amount, and energy storage
management. The SMIPs aim to minimize energy procurement
costs, and the strategy set includes the electricity loads for the
demand response and heat loads for the demand response. The
interactive framework of the leader–follower game is shown
in Figure 2.

For the Stackelberg equilibrium of a non-cooperative game,
when Eq. 26 is satisfied, it indicates that the game has reached
equilibrium. At this point, the followers make the best response
according to the strategy of the leader. In addition, each stakeholder
cannot obtain more profits by changing their own strategy set.

Emar Imar, Femo
* , Luser

*[ ]≤Emar Imar
* , Femo

* , Luser
*[ ]

Euser Imar
* , Femo, Luser

*[ ]≤Euser Imar
* , Femo

* , Luser
*[ ]

Eemo Imar
* , Femo

* , Femo[ ]≤Eemo Imar
* , Femo

* , Femo
*[ ]

⎧⎪⎨
⎪⎩ , (26)

where Emar represents the profits of the EM. Euser represents the
profits of the SMIPs. Eemo represents the profits of the IESs. Luser,
Femo, and Imar represent the strategy sets for the SMIPs, the IESs, and
the EM, respectively. L*user, F*emo, and I*mar represent the optimal
strategy sets for the SMIPs, the IESs, and the EM, respectively.

4.2 The solution process of the
proposed method

To solve the proposed method, an iteration search method
proposed by Chuang et al. (2001) is employed to find the Nash
equilibrium point. The solution of the proposed scheduling model is
summarized as follows:
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Step 1. The strategies of all the stakeholders are initialized as Dold =
[I0mar, L

0
user, F

0
emo], and the profits of all stakeholders are

calculated as Fold = [E0
mar, E

0
user, E

0
emo].

Step 2. The scheduling model for each stakeholder is solved based
on the exchanged game strategies from other stakeholders.

Step 3. The game strategy of each stakeholder is updated as Dnew =
[I1mar, L

1
user, F

1
emo], and the operating cost of all stakeholders

is calculated as Fnew = [E1
mar, E

1
user, E

1
emo].

Step 4. The operating cost difference of Fnew and Fold is calculated. If
the cost difference is smaller than its threshold, the
procedure is terminated, and the new strategies Dnew is

output. Otherwise, Dold is reset as Dnew, and Step 2 onwards
is repeated.

5 Case study

5.1 Basic data of the case study

This paper conducted a simulation analysis of the day-ahead EM
clearing with SMIPs as an example. TheWT and PV forecast data, as
well as the electricity and heat load power of users, are shown in
Figure 3. Table 1 shows the time-of-use energy prices of the
electricity and gas grids. Table 2 shows the parameters for IESs
and SMIPs.

FIGURE 2
Leader–follower game interaction framework.

FIGURE 3
Loads and renewable energy outputs.
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In order to analyze the advantages of the proposed method,
three scenarios are set up. In scenario 1, the objective function of the
operation is maximizing the profits of IESs, electricity and heat
prices are fixed, and users do not participate in the demand
response. In scenario 2, the objective function of the operation is
still maximizing the profits of IESs, but the user side will actively
respond according to the change in energy prices. In scenario 3, the
EM, IES, and SMIP carry out the operation with the proposed
strategy of this paper, and the power and price of energy are
determined by market clearing through market-side quoting
and bidding.

5.2 Analysis of the case study

Table 3 shows the operation results of the three scenarios. It
shows that under the proposed method, there have been varying
degrees of improvement in social surplus profits, profits of the IESs,
and profits of the SMIPs, with the most notable increase in social
surplus profits.

Compared to scenario 1, in scenario 2, the social surplus increase
in the profits of the IES decrease slightly, and the energy purchase
costs for SMIPs decrease significantly. This is because through price-
based demand response, the user side can peak-shave and valley-fill
to smooth the electricity and heat load curves, thereby obtaining
extra compensation benefits. As the load demand curve becomes

smoother, the arbitrage space obtained by IESs through energy
storage will be correspondingly reduced, leading to a decrease in
profits. As the load demand becomes flat, the marginal cost of the
energy equipment output is reduced, and the social surplus profits
increase. In scenario 3, the profits of all stakeholders increase
significantly, and the energy purchase costs of SMIPs have been
reduced. This is because under the guidance of the EM mechanism,
the energy trading price between IESs and SMIPs is determined
based on the clearing of the supply and demand relationship at each
moment. Thus, the price can better reflect the degree of energy
surplus or scarcity within the SMIPs. The proposed method can also
increase efficiency in energy storage arbitrage and trading with the
external electricity grid, as well as improve the precision of user
demand response.

Figure 4 shows the convergence diagram of profits for each
stakeholder in scenario 3. It well reflects the game process
between various stakeholders throughout the entire iteration
process, and finally, equilibrium is achieved at about
80 iterations, which takes 16.3 min. In the game process, the
declared energy power and prices from other stakeholders are
constantly cleared by the EM. In addition, the EM, as the leader in
the entire game process, shows a gradual upward trend in its
profits. The SMIPs and IESs adjust their own strategy sets
continuously and rationally based on the clearing results of
the EM. The SMIPs and IESs, as followers, also engage in
game interaction at the same time and finally reach

TABLE 1 Time-of-use energy price for electricity and gas grids.

Time Trading price with the electricity grid/¥ Trading price with the heat grid/¥

1:00–7:00 0.38 0.21

8:00–10:00 and 23:00–24:00 0.85 0.33

11:00–22:00 1.32 0.41

TABLE 2 Parameters of the IESs and SMIPs.

Equipment type Parameter Value Equipment type Parameter Value

Gas turbine Maximum output power 1,000 kW Gas boiler Heating efficiency 0.89

Minimum output power 50 kW Maintenance costs 0.023 kW/¥

Electricity generation efficiency 0.3 PV Rated power 500 kW

Heat generation efficiency 0.345 Maintenance costs 0.03 kW/¥

Maintenance costs 0.025 kW/¥ WT Rated power 600 kW

Gas boiler Rated power 200 kW Maintenance costs 0.035 kW/¥

TABLE 3 Comparison of the three scenarios.

Scenario Social surplus
profit/¥

Profit of the
IES/¥

Cost of
SMIP/¥

Operation and maintenance
costs of each unit/¥

Energy storage
scheduling cost/¥

1 5,642 3,631 8,021 1,034 1,615

2 6,354 3,171 7,365 996 1,170

3 8,324 4,886 6,832 728 665
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convergence. When the leader and two followers reach the
Stackelberg equilibrium, their strategy sets no longer change.

The energy clearing prices are shown in Figure 5. The electricity
clearing price in the EM peaks from 18:00 to 22:00. During this
period, the PV output is low, and the demand for electricity load is
high. To meet the demand, the IES will utilize more gas turbines. At
the same time, the gas turbines have the highest marginal cost
among all units, so their prices are the highest. Meanwhile, the
demand response from the SMIPs is low, and the electric load
demand curve is flat. Therefore, the EM will clear the electricity
generated by gas turbines at high prices. The heat clearing price in
the EM shows a significant peak from 00:00 to 04:00. Therefore,
during this period, the output of gas boilers needs to be scheduled to
meet the heat needs of the SMIPs. The cost of gas boilers is higher

than that of other heat sources, so the heat clearing price in the EM
shows a short-term peak.

Figure 6 shows the comparison of the before and after demand
response of the SMIPs under the proposed strategy. It indicates that
the fluctuations in electricity and heat loads have been significantly
reduced, and the effects of peak-shaving and valley-filling are
obvious. SMIPs respond more accurately to the energy price in
the EM clearing, which brings a lot of hidden benefits to the DN.
After the demand response, the electricity and heat load curves are
smoothed within an appropriate range, and the energy purchase
costs on the user side are reduced. At the same time, the energy
supply pressure of the IESs is eased.

The final optimized electricity and heat power of the IESs are
shown in Figures 7, 8. According to the following optimization

FIGURE 4
Convergence diagram of profits for each stakeholder.

FIGURE 5
Energy clearing prices.
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results, several key time periods with obvious characteristics
are analyzed:

1) From 0:00 to 9:00, the electric load demand is low. During this
period, the electricity clearing price of the EM is low, so the
SMIPs follow the price-based demand response and increase
electricity usage when the electricity price is low. The output of
the WT is relatively high, and only a minimal amount of gas
turbine output is needed to supplement the electricity supply
alongside the WT. At the same time, the energy prices of the
upper-layer electricity and gas grids are relatively low.
Therefore, with the complete consumption of the WT, the
IESs can use a small amount of gas turbine power while

purchasing electricity from the external electricity grid.
Then, the electrical energy is stored under the premise of
meeting the electrical load demand.

2) From 10:00 to 13:00, the electricity load demand is at its peak.
During this period, the electricity clearing price in the EM is
relatively high, so the SMIPs follow a price-based demand
response and reduce electricity consumption. The output of
the PV increases, the output of the WT is very low, and the
output of gas turbines needs to be increased to meet the
electrical load. At the same time, the energy prices of the
electricity and gas grids are relatively high. With the complete
consumption of the WT, the IESs need to increase the output
of the gas turbines to meet the load demand. If the load

FIGURE 6
Demand response of SMIPs.

FIGURE 7
Optimized electricity power of the integrated energy supplier.
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demand failed to be met, electricity needs to be purchased from
the external electricity grid, and the battery power is released to
complete the supply.

3) From 17:00 to 22:00, the electricity and heat load demands are
both high. During this period, the electricity and heat clearing
prices in the EM are relatively high, so users follow a price-based
demand response and reduce electricity and heat usage. The
outputs of theWT are very high, the outputs of the PV decreased
significantly, and the output of the gas turbines needs to be
increased to meet the electrical load demand. The heat outputs of
the waste heat boiler are relatively high and can basically meet the
heat load demands of SMIPs. During this period, the energy prices
of the electricity and gas grids are both relatively high. Therefore,
with the complete consumption of the WT, IESs can choose to
increase the output of gas turbines to meet the electrical load
demand. If the load demand is still unable to be met, electricity
needs to be purchased from the external electricity grid, and the
battery power is released to complete the electric load supply.

6 Conclusion

In order to improve the flexibility of SMIPs to participate in
market trading, a Stackelberg game-based EM clearing is proposed for
multiple stakeholders in DNs. First, an optimal operating model for
multiple stakeholders is established, which contains an optimal
electricity supply model for the IES, a market clearing optimization
model for the EM, and an energy utilization optimization model for
the SMIPs. With the EM as the leader, and the IESs and the SMIPs as
the followers, a leader–follower gamemodel is proposed to achieve the
maximizing benefits for multiple stakeholders. Finally, an iterative
optimization method is proposed to find a point of balanced benefits
of multiple stakeholders. The proposed strategy can enhance the
benefits of all participating stakeholders and achieve a balance
between supply and demand. It should be noted that the

uncertainty of WTs, PVs, and loads in the operation is not
considered. In the future, considering the uncertainty, the real-time
quoting and clearing will be conducted in the EM.
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An adaptive power control
method for soft open points
based on virtual impedance

Yan Li1, Yang Li1, Xingjian Zhao2*, Feng Gao2 and Tao Xu2

1State Grid Intelligence Technology Co., Ltd., Jinan, China, 2School of Control Science and Engineering,
Shandong University, Jinan, China

The fluctuations in power output from distributed power sources are rapid and
dramatic, causing voltage fluctuations in the distribution network that threaten
the safety of electricity consumption. Soft open points (SOPs) can replace
traditional contact switches and are expected to suppress voltage fluctuations.
However, traditional power regulation methods based on the reference values
are unable to address rapid and large voltage fluctuations. Therefore, this paper
proposes an adaptive power control method for SOPs based on virtual
impedance. The SOP is modeled as a series link of adjustable impedance and
a voltage source. Then, the voltage difference component is used to calculate the
reference for the DQ domain to regulate the power flow in real time
automatically. By doing so, the proposed method can smooth the voltage
fluctuations in the distribution network. Additionally, the virtual impedance is
also optimized to minimize the power loss. Finally, the method is validated
through simulation and experiments, demonstrating that this method can
automatically regulate power and significantly reduce voltage fluctuations.

KEYWORDS

soft open point, virtual impedance, adaptive power control, voltage fluctuations, PSO

1 Introduction

At present, wind power and solar power are representatives of the rapid development of
distributed generation (DG) and have several points of access to the distribution network to
help realize the effective measures for the carbon peak and neutrality targets. However, the
large and rapid fluctuations in the output of DG lead to rapid and drastic voltage
fluctuations in the distribution network, which seriously threatens the safety of
electricity consumption (Bloemink and Green, 2013; Ren, 2021).

In order to realize effective control of rapid power and voltage fluctuations, a variety of
new power electronic devices represented by soft open points (SOPs) have been rapidly
developed and widely used in the optimized operation and scheduling of active distribution
networks and have achieved good results. An SOP is an emerging piece of power electronic
equipment, and it can replace the tie switch in the traditional distribution network. SOPs
can significantly enhance the traditional distribution network’s connection situation,
expanding its operational capabilities beyond simple on and off states. Moreover, SOPs
can also improve the traditional contact switch work casting process that leads to power
failure and closing impact situation (Yang Huan, 2018). By placing the SOP in the
distribution network, power mutualization between different feeders is realized, while
the disadvantage of the lack of isolation between feeders is eliminated (Bloemink and Green,
2010; Wang, 2017). Its connection in the distribution network is shown in Figure 1.
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DG is the distributed power source connected to the distribution
grid, and Z1 and Z2 are the line impedance of the distribution grid.
The distribution grid above the SOP is defined as the feeder 1 system,
and the distribution grid below the SOP is defined as the feeder
2 system. As shown in Figure 1, the power fluctuations of the load
and the DG cause the voltage on feeder 1 and feeder 2 to fluctuate.

At present, many experts and scholars have paid attention to the
research and application of the SOP, and its topology has been more
mature, but research on its control strategy is still in its infancy. Wang
et al. (2015) provided a detailed introduction to the basic functions and
principles of a SOP and compared three topological models of SOPs,
proving that the topology of the back-to-back voltage source converter
has a greater advantage. Shen et al. (2012) and Xiong et al. (2020)
provided a detailed introduction of the operation principle of the back-
to-back voltage source converter and the PQ-VdcQ control strategy.
Aithal et al. (2016) andDong et al. (2018) provided a detailed analysis of
the operation modes and basic control strategies of a SOP. Li et al.
(2019), Meng et al. (2019), Zhang et al. (2020), and Liu et al. (2022)
optimized distribution networks containing multi-port flexible switches
to achieve the regulation of active and reactive power. Related studies
have shown that an SOP can effectively improve the power quality of
distribution networks and optimize the system current. However, the
traditional control strategy cannot realize the automatic regulation of
the system current.

Based on the above research, this paper proposes an adaptive
power control method to realize the adaptive regulation of SOPs to a
distribution network. The method equates the SOP as a link with
impedance in the series with the voltage source. It takes the voltage
difference at the feeder end as the input to the control loop and
adjusts the value of the equivalent impedance through the feedback
link. The virtual impedance is also optimized to minimize the power
loss. This method enables automatic control of system currents and
node voltages without adding additional controllers. Finally, the
effectiveness of the proposed method is verified by MATLAB/
Simulink simulation and the built experimental platform.

2 Structure and working mode of SOPs

SOPs are mainly composed of fully controlled power electronics,
and their common topology is a back-to-back voltage source
converter, which is characterized by connecting two converters
back-to-back using a capacitor (Li et al., 2013; Chengshan et al.,
2022; Xie et al., 2024), as shown in Figure 2.

Due to its special structure and function, the SOP needs tomaintain
the stability of the DC chain voltage during operation, so the voltage
source converter on one side of it needs towork in the rectifiermode. As
shown in Figure 2, the converter on feeder 1 operates in the rectified
state. This feeder mainly maintains the stability of the DC voltage. First,
the acquiredACvoltage andAC current signals are converted by abc/dq
to the output DC signals u1,2

d,q and i1,2
d,q under the dq axis. Then, u1,2

d,q

and the reference signalsUdcref andQref are input to the PI controller of
the outer loop, and i1,2

d,q are input to the PI controller of the inner
loop. Finally, after the dq/abc conversion and SPWM link, it can realize
the control of DC voltage. The converter on feeder 2 operates in the
inverter state. This feeder is mainly used to realize the regulation of
power flow. The input signals for its control link are the active power
reference value Pref and the reactive power reference value Qref. Its
specific control strategies are adjusted according to the current
operating status of the distribution network, mainly VdcQ-PQ
control for power regulation and VdcQ-Vacf control for maintaining
load voltage stabilization (Wang et al., 2015; Wang et al., 2016).

The control strategy mentioned in the previous section is
capable of realizing the regulation of power flow and
uninterrupted power supply under the fault condition according
to the input signals. However, it has the following shortcomings: (1)
it needs to get the actual power consumed by the load and the power
supplied by the DG in advance. (2) The reference value of active
power Pref cannot be automatically adjusted according to the actual
load power. It needs to be calculated and artificially input to the
control link, resulting in a waste of human resources. Due to the
above shortcomings, the traditional control method cannot achieve

FIGURE 1
Simplified schematic diagram of the distribution network with SOPs.
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real-time, automatic control. In particular, in the case of several new
energy sources with a high proportion of new energy, it is difficult to
realize real-time adaptive regulation, following the rapid and drastic
power and voltage changes.

3 Power adaptive regulation strategy
based on virtual impedance

At the distribution network, the loads and DG connected to
different feeders are not equal, so the voltage at the end of the loads
in different feeders and different locations are not equal, which makes
the operating voltage of the user loads fluctuate with the distribution
network. The distribution system connected through an SOP is able to
regulate the power flow by adjusting the control strategy, which, in turn,
affects the voltage at the load terminals on both sides (Zhang et al., 2021;
Wang et al., 2016). However, as mentioned earlier, the traditional
control strategies do not realize adaptive regulation.

3.1 Operation criteria

When the transformer ratios and capacities accessed on both
sides of the distribution network are the same and SOPs are accessed
on both sides of the distribution network at similar locations, then,
the ideal operation state is the same voltage at the access points on
both sides. Therefore, SOPs can be equipotential virtual impedance

link representations and can be adjusted through the virtual
impedance value to change the voltage difference between the
two sides to realize the power transfer. The 1-side system and
the 2-side system do not change due to the change of impedance;
only the voltage of node 1 and node 2 changes. Therefore, node
1 and node 2 can be considered two AC sources and represented as
phase quantities, as shown in Figure 3. Here, U1 and U2 denote the
RMS values of the AC voltages on both sides, δ denotes the phase
difference between the AC voltages on both sides, and θ denotes the
impedance angle of the equivalent impedance.

uα

uβ
[ ] � 2

3

UA − UB cos
π

3
( ) − UC cos

π

3
( )

UB cos
π

6
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π

6
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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FIGURE 2
Topology diagram of the back-to-back SOP.

FIGURE 3
SOP is equivalent to impedance.
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ud

uq
[ ] � uα cos θ( ) + uβ sin θ( )

−uα sin θ( ) + uβ cos θ( )[ ] � cos θ( ) sin θ( )
− sin θ( ) cos θ( )[ ] uα

uβ
[ ].

(2)
In the PLL link, when the d-axis is used as the directional axis, as

shown in Figures 3, 4, the phase difference is constant Δ when the
dq-axis is rotating with the reference synthesized vector Vδ at a
synchronous rotational speed ω. To achieve Δ = 0, it is necessary to
satisfy that the d-axis is coincident with the reference synthesized
vector Vδ, at which time, there is Vd = Vδ, Vq = 0. When the d-axis is
used as the directional axis, the active power is positively correlated

with the d-axis component and the voltage magnitude. The q-axis is
related to the reactive power and the voltage phase difference.
Similarly, when the q-axis is the directional axis, the q-axis
represents the active power and the d-axis represents the
reactive power.

According to the basic principles of the power system, in the
high-voltage transmission lines, the line reactance value is much
larger than the resistance value, and the resistance value can be
regarded as zero. Then, the voltage amplitude is related to the
reactive power, and the voltage phase is related to the active
power. In the low-voltage distribution network, the line
resistance value is greater than the reactance value, and the
reactance value can be regarded as zero, that is, when the line is
resistive, the voltage amplitude and active power, voltage phase, and
reactive power. Therefore, in the low-voltage distribution network,
when the d-axis is the directional axis, the d-axis component is
related to the voltage magnitude.

In summary, the dq-axis component in the rotating coordinate
system obtained based on the Park transform realizes that the
sinusoidal quantity of AC can be changed into DC signal for

FIGURE 4
Schematic diagram of the dq coordinate system.

FIGURE 5
Control block diagram based on virtual impedance when the SOP is equivalent to impedance.

FIGURE 6
SOP is equivalent to a series connection of impedance and
voltage source.
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comparison, and it can reflect the change in the voltage in real time,
which is very suitable to be used as the input signal of the control
loop. Moreover, because of the DC state, it can be controlled by the
PI controller. Therefore, the AC voltage on both sides can be
changed into DC flow in the DQ domain by the Park
transformation, and then, the difference of DC flow can be
carried out for negative feedback control.

Therefore, the active power is mainly related to the voltage
magnitude, and the reactive power is mainly related to the voltage
phase angle difference. The current flowing through the equivalent
impedance link at this time is expressed as follows:

i � Δu
R

+ 1
L
∫Δudt, (3)

where Δu denotes the voltage difference between feeder 1 and feeder
2, R denotes the resistance value of the virtual impedance, and L
denotes the inductance value of the virtual impedance.

Using PLL and Park transformation, the AC volume is
converted to a direct flow in the dq coordinate system, which
can be obtained as follows:

id t( ) � ud
1 t( ) − ud

2 t( )
R

+ 1
L
∫ ud

1 t( ) − ud
2 t( )( )dt. (4)

Furthermore, it can be expressed in the frequency domain
as follows:

id s( ) � 1
R
+ 1
Ls

( ) · ud
1 s( ) − ud

2 s( )( ). (5)

Since the d-axis component in the DQ domain is positively
correlated with the amplitude of the sinusoidal AC voltage (Kupzog
et al., 2007), the d-axis component is used as the input signal for the
power control. The virtual impedance control link is obtained
according to Equation 5, as shown in the dashed box of Figure 5,
and the overall control strategy of the node virtual impedance-based
power control is shown in Figure 5.

3.2 The control strategy of SOPs based on
virtual impedance and virtual power supply

When the transformer ratios accessed on both sides of the
distribution network are different, or when the positions of node
1 and node 2 of SOPs accessed to the distribution network differ
greatly relative to the loads and DGs, the load terminal voltages on
both sides should be different in the ideal case. In this case, the SOP
in Figure 3 can be represented by a link of impedance series voltage
source, where Z denotes the impedance, as shown in Figure 6.

The voltage difference between the two sides can be expressed
as follows:

U1∠δ − U2∠0 � Δu � I · Z∠θ + Δvref . (6)
The current flowing through the SOP at this time is expressed

as follows:

I � Δu − Δvref
R

+ 1
L
∫ Δu − Δvref( )dt, (7)

Using PLL and Park’s transformation, the AC volume is
converted to a direct flow in the dq coordinate system, which
can be obtained:

id t( ) � ud
1 t( ) − ud

2 t( ) −△vref
R

+ 1
L
∫ ud

1 t( ) − ud
2 t( ) −△vref( )dt, (8)

Further, it can be expressed in the frequency domain as:

id s( ) � 1
R
+ 1
Ls

( ) · ud
1 s( ) − ud

2 s( )( ) − 1
R
+ 1
Ls

( ) ·△vref . (9)

FIGURE 7
Control block diagram when the SOP is equivalent to a series connection of impedance and voltage source.

FIGURE 8
Equivalent model for optimizing the virtual impedance and virtual
voltage source.
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Again, using the d-axis voltage component under the DQ domain
as the input signal, the corresponding control block diagram shown in
Figure 7 can be obtained from Equation 9, as shown below:

4 The general method to optimize the
parameters

The general method to calculate the virtual impedance and the
virtual voltage source.

In the last section, the adaptive control method has been proposed.
The power flow through the SOP is determined by two side-grid
voltages. A simplified diagram of the system of the SOP connected
to the distribution grid is shown in Figure 8, where the AC source
voltages U1 and U2 on both sides denote the voltages intervening in the
distribution grid, Y1 and Y2 denote the line admittance, Zsop denotes the
virtual impedance link of the SOP, and△Vsop denotes the virtual voltage
source link. U3 indicates the voltage of the utility grid. As mentioned
before, the regulation of the system power flow is realized by adjusting
the values of Zsop and△Vsop. Among them, when the value of z is small
enough, the power flow regulation on both sides is more flexible and
flows more frequently, and any small voltage deviation will cause the
power balance, which increases the power flowing through the SOP, and
the loss generated by the SOP itself increases. In addition, when the value
of z is large, the sensitivity to the voltage difference between the two sides
decreases and the power flow regulation threshold rises, decreasing the
losses generated by the SOP. Therefore, how to design the values of Zsop
and△Vsop such that the SOP can automatically regulate the power flow,
balance the voltage difference between the two sides, and also take into
account the loss due to the SOP power regulation is the key to the
realization of the control strategy proposed in this paper.

The goal in this section is to find the virtual impedance and
virtual voltage for a specific purpose; for example, for minimizing
the power loss. The virtual impedance and virtual voltage are given
as follows:

Δ _Vsop � ΔVsope
jθsop

1
Zsop

� Ysop � Gsop + jBsop, (10)

where△Vsop and θsop are the magnitude and phase angle of the virtual
voltage source, respectively. Gsop and Bsop are the conductance and
susceptance, respectively. In this article, the objective function is to
minimize the power loss. For other objective functions, the method can
still be used. The objective function is given as follows:

min Ploss Ysop,Δ _Vsop, P1, Q1, P2, Q2( ) � Ploss1 + Ploss2 + Ploss_sop,
Ploss1 � real U3 − U1( ) Y1 U3 − U1( )[ ]*[ ],
Ploss2 � real U3 − U2( ) Y2 U3 − U2( )[ ]*[ ],
Ploss_sop � Psop_semi Psop, Qsop( ) + Psop_ind Psop, Qsop( ).

(11)
The power loss mainly contains the losses caused by the

transformers and line impedance, which are indicated by Ploss1 and
Ploss2, respectively. Additionally, the power loss of the SOP, which is
indicated by Ploss_sop, is also included. Unlike traditional line losses, SOP
losses require calculating power device losses and inductor losses based

TABLE 1 Power stages and probability.

Power stage P11 Q11

P21 Q21

P12 Q12

P22 Q22

P13 Q13

P23 Q23

. . .. . . P19 Q19

P29 Q29

P110 Q110

P210 Q210

Probability Pro1 Pro2 Pro3 . . .. . . Pro9 Pro10

The power loss for each particle is calculated here.

TABLE 2 Simulation parameters.

Parameter Value Parameter Value

One-side AC voltage/V 220 Inner loop kpi 1.2

Two-side AC voltage/V 220 Inner loop kii 200

DC voltage reference/V 800 Switching frequency/kHz 10

Outer loop kpi 0.2 Sampling frequency/kHz 10

Outer loop kii 50 Filter inductors/mH 2.5

Two-side virtual impedance R 0.2 Filter capacitor/μF 10

Two-side virtual impedance L 50 Loading power/kW 10–100

FIGURE 9
Flowchart of parameter optimization.
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on the power flowing through the SOP. The constraints of the objective
function are the power flow distribution. The complexity of the
constraints and the nonlinearity of the objective function make the
optimization difficult to solve. So, an artificial intelligent optimization
method, such as particle swarm optimization (PSO), can be employed.
The details of the solving processes are given in the following sections.

(1) The particles are initialized as follows:

Parx 0( ) � ΔVsop,x 0( ), θsop,x 0( ), Gsop,x 0( ), Bsop,x 0( )[ ],
ΔVsop,x 0( ) � rand 0, 0.1[ ]( ) θsop,x 0( ) � rand −10°, 10°[ ]( )
Gsop,x 0( ) � rand 0, 0.1[ ]( ) Bsop,x 0( ) � rand 0, 0.1[ ]( ),

, (12)

where the subscript x indicates the number of particles. rand()
denotes the random value. Parx indicates the position of particle x,
where the dimension of Parx is 4.

(2) The main purpose of flexible interconnection equipment is to
facilitate the transfer of power imbalances. Considering the
variability of real-world operating conditions, traversing all
operating conditions would consume a significant amount of
resources. Therefore, different operating conditions are
separated into a finite number of intervals.

Ploss,x � Ploss Parx( ) � ∑
10

n�1
pronPloss Parx, P1n, Q1n, P2n, Q2n( ). (13)

The parameters in Eq 13 can be calculated according to the
power flow. For each combination of P andQ, the power flow can be
calculated according to Equs 14–16.

According to Figure 8, the admittance matrix is given as follows:

_I1
_I2
_I3

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ �
Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
_U1
_U2
_U3

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ + Δ _Vsop

−Ysop

+Ysop

0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ �
Y1 + Ysop −Ysop −Y1

−Ysop Y2 + Ysop −Y2

−Y1 −Y2 Y1 + Y2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

, (14)

where

Yij � Gij + jBij
_Ui � Uie

jθi . (15)

Substituting the power in Table 1 into the formula to obtain the
power flow equation, we obtain:

P1n + jQ1n � _U1I
*

1 � U1e
jθ1∑

n

j�1
Gij − jBij( )Uie

−jθj − Δ _VsopYsop

P2n + jQ2n � _U2I
*

2 � U2e
jθ2∑

n

j�1
Gij − jBij( )Uie

−jθj + Δ _VsopYsop

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

.

(16)
According to the above equation, _U1 and _U2 can be obtained

using the Newton–Raphson method. So far, the power in Eq 13 can
be calculated. All the possible operation conditions can be covered
by repeating the power loss calculation 10 times.

(3) The results are compared to find the historical best and the
global best. The historical best of each particle is Parxb. The
global best is Pargb.

(4) The update of the particles is expressed as follows:

FIGURE 10
SOP experiment platform.
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vx c( ) � vx c − 1( ) + a1 · rand1 0, 1[ ]( ) · Parxb − Parx c − 1( )( )
+a2 · rand2 0, 1[ ]( ) · Pargb − Parx c − 1( )( ){ }

Parx 0( ) c( ) � Parx 0( ) c − 1( ) + vx c( )
.

(17)

(5) Repeat steps (2)–(4) until the into English is “iteration limit.
The flowchart of the above method is given in Figure 9.

5 Simulation and experimental
verification

A simulation model of the distribution network shown in
Figure 1 is built in MATLAB/Simulink, and to simplify the
model without affecting the simulation results, the line
impedance Z on both sides is taken as 1 Ω. The parameters of
the simulation model are shown in Table 2.

TheDG and load connected on both sides are equated as load 1 and
load 2, respectively, and the power absorbed/released by the load from
the distribution network is defined as the net consumed power, inwhich
both are of 10 kW–100 kW level; the reference quantity of DC chain
voltage is 800 VDC, the output voltage of the transformer is 220 V/
50 Hz, the R value of the virtual impedance link is taken as 0.2, the L
value is taken as 50, the parameter of the PI control ring is taken as kp
1.2, and ki is 200, and the simulation verifies the effectiveness of the
virtual impedance-based SOP power adaptive regulation method. In
addition, the experimental platform of the SOP is also built for
verification. Under the laboratory conditions, the output voltage of
the transformer is 35 V/50 Hz, the DC chain voltage reference quantity
is 100 VDC, and the loads on both sides are of kW level; the built
experimental platform is shown in Figure 10.

In the simulation experiment in which the smart soft switch is
connected to the same position on both sides of the distribution
network, the smart soft switch is equated to a virtual impedance link.
The 1-side and 2-side systems have large fluctuations in the total net
consumed power due to the access of the distributed power sources,
as shown in Figure 11A. At this time, the voltage RMS of both sides
accessed to the load terminal fluctuates largely with the power
fluctuation, as shown by the solid line in Figure 11B. After
adding the regulation method proposed in this paper, the
waveform of the RMS voltage at the load terminal on both sides
is shown as the dotted line in Figure 11B, and at this time, the RMS
voltages on both sides are equal, and the fluctuation amplitude is
smaller. The power flow regulated by the SOP is shown in
Figure 11C, where the part greater than 0 indicates that the
power flows from side 1 to side 2, and the part less than
0 indicates that the power flows from side 2 to side 1.

In the simulation experiments where the positions of the two
sides of the SOP access to the distribution network differ greatly,
the SOP is equivalent to an impedance series-connected voltage
source link. The total net power consumption of the 1-side and 2-
side system access is shown in Figure 12A, and the RMS values of
the voltages at the access point of the SOP to the distribution
network are, respectively, shown as the solid lines in Figure 12B,
at which time the voltages fluctuate rapidly and with a large

FIGURE 11
Simulation results diagram when the SOP is equivalent to
impedance. (A) Initial net power consumption trajectory; (B) RMS
voltage trajectory; (C) SOP regulated power trajectory; (D) Voltage and
current waveform on long time scales for feeder1; (E) Voltage
and current waveform on short time scales for feeder1.
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fluctuation amplitude. After adding the regulation method
proposed in this paper, the waveform of the RMS voltage at
the access point of the SOP is shown as the dotted line in
Figure 12B, at which time, the voltage difference between the
two sides follows the change in the control quantity, and the
voltage fluctuation between the two sides becomes smaller. The
power flow regulated by the SOP is shown in Figure 12C, where
the part greater than 0 indicates that the power flows from side
1 to side 2, and the part less than 0 indicates that the power flows
from side 2 to side 1. The simulation experiment can prove that
the power adaptive regulation method of the SOP based on
virtual impedance proposed in this paper can realize the
regulation of power and voltage in a distribution network.

Under the experimental conditions of an AC voltage of 35 V/50Hz,
DC voltage of 100 VDC, and load power of kW class, the waveforms
measured by an oscilloscope are shown in Figure 11, where the upper
side of Figure 13 shows the current waveforms of the long time-scale on
the 2-side of SOP, and the lower side of Figure 13 shows the current
waveforms of the short time-scale after the addition of the regulation
strategy. From the long time-scale currentwaveforms, it can be seen that

the current amplitude of this side of the overall downward trend with
the power changes, which can realize the adaptive regulation; from the
short time-scale current waveforms, it can be seen that after the
regulation of the SOP, the three-phase current frequency, phase
stability in line with the requirements of the grid, and
the experimental platform can realize the proposed regulation method.

6 Conclusion

In this paper, an adaptive regulation method based on virtual
impedance is proposed for the power of SOPs. This method equates
SOPs as virtual impedance and power source links and determines
the equivalent impedance value of SOPs with the voltage component
in the DQ domain. The adaptive control of power flow and voltage is
realized by adding the virtual impedance and the power supply link
in the control loop.

Simulation and experimental results show that the proposed
method can quickly regulate the power flow, effectively reduce the
voltage fluctuation, and improve the operational efficiency and
stability of the distribution network.
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