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Editorial on the Research Topic
Biomechanics, sensing and bio-inspired control in rehabilitation and
wearable robotics

Introduction

The integration of biomechanics, sensing technology, and bio-inspired control is
transforming rehabilitation and wearable robotics by enhancing human mobility and
recovery. Biomechanics informs the design of systems that replicate or support natural
movement, while advanced sensors monitor physiological and biomechanical data in real
time, enabling personalized assistance. Wearable robotics, such as exoskeletons and
prosthetics, benefit from technologies like electromyography (EMG) and inertial
measurement units (IMUs), which provide feedback for dynamic control adjustments.
Bio-inspired control strategies further enhance these systems by mimicking the adaptability
of biological systems, ensuring natural and efficient movement. This Research Topic
documents recent advancements in these areas, emphasizing their role in improving
mobility and rehabilitation outcomes for individuals with physical impairments. The
25 contributions can be organised into 6 main focus areas: (1) development and
evaluation of wearable robotics; (2) control strategy studies; (3) signal and feature
recognition; (4) biomechanical analysis; (5) literature review and statistical analysis; (6)
rehabilitation training evaluation.

Development and evaluation of wearable robotics

Xiang et al. conducted a study on back-support exoskeletons during manual material
handling tasks, focusing on their biomechanical impact using Functional Data Analysis
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(FDA) and Functional ANOVA (FANOVA). The goal was to
optimize exoskeleton design for safer reduction of lower back
load. Participants performed tasks with and without the
exoskeleton, while researchers collected data on lumbar load and
trunk angle. FANOVA revealed that the exoskeleton significantly
reduced lumbar load, particularly in lifting tasks, highlighting its
effectiveness. The study also demonstrated FANOVA’s advantage in
handling time-series data, providing valuable insights for designing
better exoskeletal devices. Wang et al. developed a bedside cable-
driven lower-limb rehabilitation robot for bedridden patients with
neurological or limb disorders. This robot, based on sling exercise
therapy, uses flexible cables to drive hip and knee motions at the
bedside. A human-cable coupling controller dynamically adjusts the
cable’s impedance in response to the patient’s joint impedance,
stabilizing movement during rehabilitation. Experiments showed
significant improvements in joint flexibility and stability, proving
the robot’s effectiveness. Meng et al. designed a multi-degree-of-
freedom, reconfigurable ankle rehabilitation robot with an
adjustable workspace for post-stroke rehabilitation. The robot can
be customized to meet individual needs, providing personalized and
effective rehabilitation exercises. The study included finite element
simulations to ensure structural integrity and safety, along with
practical tests to validate its performance. Zha et al. developed a
robot-assisted system for the reduction and rehabilitation of distal
radius fractures, equipped with a robotic arm and integrated biplane
radiographic imaging. This system enhances the accuracy and
efficacy of closed reduction treatments by overcoming manual
traction limitations and offering real-time radiographic
assessment. Experiments confirmed that the system effectively
achieves required traction forces and maintains wrist alignment,
improving treatment protocols by making them less invasive,
reducing recovery time, and minimizing radiation exposure. Liu
et al. explored a knee exoskeleton driven by a series elastic actuator
(SEA) for gait rehabilitation in stroke patients. They introduced a
synergetic gait prediction model using an attention-based CNN-
LSTM network to generate personalized gait trajectories, improving
prediction accuracy and rehabilitation outcomes. Additionally, they
proposed a compliant control scheme using an artificial potential
field (APF) method to tune impedance parameters, ensuring safe
and effective interaction between the robot and the patient. Jiao et al.
developed a Reconfigurable Multi-Terrain Adaptive Casualty
(RMTACTA) for
enhancing pre-hospital casualty transport. The device uses a

Transport Aid industrial ~ environments,
Watt II 6-bar linkage mechanism to transition between multiple
modes, facilitating navigation across various terrains. A single
remote rope controls the system, ensuring adaptability and ease
of operation. A prototype verified the design’s functionality,
demonstrating significant improvements in casualty transport
efficiency and safety. Liu et al. presented a novel non-back-
drivable clutch-based self-locking mechanism to improve stability
in prosthetic joints. This mechanism allows precise positioning
without changing the transmission ratio, which is critical for
prosthetic wrists requiring reliable performance. The design
minimizes friction during operation and ensures that the
prosthetic limb remains fixed even during power failures,
enhancing safety and comfort. The study included detailed
mechanical design, kinematic analysis, and extensive testing,
proving the mechanism’s effectiveness and durability.
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Control strategy study

Zhang et al. studied adaptive impedance control for an upper
limb rehabilitation robot, focusing on dynamically adjusting
training parameters based on patient status. Using a two-degree-
of-freedom flexible drive joint and a forgetting factor recursive least
squares method, they successfully estimated and optimized
impedance parameters, significantly improving rehabilitation
effectiveness by tailoring assistance to real-time patient needs.
Tian et al. proposed a force/position-based velocity control
(FPVC) strategy for a lower limb rehabilitation robot, enhancing
trajectory tracking and patient participation. Their extensive
demonstrated that this
interaction and rehabilitation outcomes. Li et al. introduced an

experiments approach  improves
“Orbit Energy” (OE) metric to enhance lower limb exoskeleton
stability during standing. This metric helps select balance recovery
strategies, such as adjusting ankle and hip torque, significantly
improving balance and reducing muscle activation during
disturbances. Liang et al. developed a multi-mode adaptive
control strategy for lower limb rehabilitation robots, including
robot-dominant, patient-dominant, and safety-stop modes. This
strategy dynamically adjusts assistance based on patient abilities,
improving rehabilitation outcomes and ensuring safety, as validated
through simulations.

Signal and feature recognition

Gong et al. explored multimodal fusion and human-robot
interaction control in an intelligent robotic walker for gait
rehabilitation, aiming to improve support and guidance for
stroke patients. By integrating sensors like force sensors,
joysticks, and depth-sensing cameras, the walker dynamically
adjusts to the user’s motion intentions, enhancing walking
assistance and potentially improving rehabilitation outcomes.
Sarasola-Sanz et al. studied a hybrid brain-muscle-machine
interface (hBMI) for stroke rehabilitation, involving six severely
paralyzed patients. The hBMI, which combines EMG with brain
signals to control an upper limb exoskeleton, showed significant
improvements in arm function and neural engagement,
demonstrating its potential for effective motor recovery. Feng
et al. developed a method using surface electromyography
(sEMG) signals to identify coordinated movement intentions in a
multi-posture rehabilitation robot. By optimizing features with
genetic algorithms, their model accurately recognized movement
intentions, enhancing interactive rehabilitation training. Zhou et al.
addressed the Sim2Real challenge in soft robotics by introducing the
ImbalSim2Real scheme, which optimizes model transition from
simulation to real-world data using techniques like discriminator-
enhanced samples. Their approach improved bio-signal estimation
in medical applications, particularly in soft robot-assisted
rehabilitation. Yi et al. developed TGANet, a deep learning
model that integrates an attention mechanism into VGG16 to
improve the classification of tongue features in Traditional
Chinese Medicine. TGANet outperformed traditional models in
accuracy, precision, F1 score, and AUC, demonstrating its
effectiveness in enhancing diagnostic accuracy and rehabilitation

outcomes in TCM.
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Biomechanical analysis

Kang et al. studied the biomechanical impact of material
anisotropy in 3D printed vertebral body implants for spinal
reconstruction. They compared linear elastic isotropy and
nonlinear anisotropy models using finite element analysis under
various load conditions. Their findings show that the anisotropic
model better represents the spinal system’s mechanical behavior,
with lower stress levels and displacement, suggesting higher safety
and stability in spinal reconstructions when anisotropic properties
are considered. This research offers valuable insights for improving
spinal implant design and clinical outcomes. Shakourisalim et al.
conducted a comparative study on the biomechanical impact of
manual material handling tasks using back support exoskeletons and
assistive tools in both laboratory and real-world settings. They found
significant differences in muscle activation between the two
highlighting  the
assessments for accurately evaluating the ergonomic benefits of

environments, importance of real-world
exoskeletons. Despite these differences, ergonomic risk, measured
by REBA scores, remained consistent across settings. This study
underscores the need for field assessments to fully understand the

impact of ergonomic interventions.

Literature review and statistical analysis

Li et al. reviewed the use of extended reality (XR) technologies,
including virtual reality (VR), augmented reality (AR), and mixed
reality (MR), in training for myoelectric prostheses. They found that
XR enhances training by providing immersive, interactive
environments that increase user motivation and skill acquisition.
However, challenges remain in translating virtual skills to real-world
prosthesis control and improving training protocols. The authors
suggest that XR holds promise for advancing prosthetic training and
improving clinical outcomes. Zheng et al. examined the challenges
in anthropomorphic motion planning for multi-degree-of-freedom
robotic arms, focusing on creating humanoid robots with natural,
human-like movements. They identified three key areas—motion
redundancy, Research Topic, and coordination—as essential for
improving robot interactions in various environments, including
service, industrial, and healthcare settings. The research emphasizes
neurophysiology, and
computational models to mimic human movement effectively.

integrating  biomechanics, advanced
Wen et al. conducted a bibliometric and visual analysis of

research trends in robotic exoskeleton-assisted walking
rehabilitation for stroke patients. Using data from the Web of
Science Core Research Topic, they identified a rise in publication
volume over the past decade, highlighting key research areas such as
exoskeleton  technology  development, machine learning
applications, and the impact on patient quality of life. This
analysis offers insights into the current state and future

directions of robotic exoskeleton research in stroke rehabilitation.

Rehabilitation training evaluation

Hu et al. studied how walking speed affects gait stability using
multi-scale entropy analysis and plantar pressure measurements.
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They found that slower walking speeds offer greater stability,
particularly in elderly populations, providing insights for designing
safer walking practices and rehabilitation strategies. Liu et al.
evaluated motion compensation in post-stroke rehabilitation using
muscle synergy indicators and surface electromyography. Their study,
involving stroke patients and healthy subjects performing hand-
cycling tasks, showed that synergy symmetry and fusion effectively
measure motion compensation, suggesting ways to optimize
rehabilitation strategies. Wang et al. developed a finite element
model to assess the impact of various rehabilitation methods on
urinary and defecation control in elderly men. Their study found that
targeted exercises for the levator ani, external anal sphincter, and
pelvic floor muscles were particularly effective, emphasizing the
importance of personalized rehabilitation programs. Another study
by Wang et al. examined the -effectiveness of combining
diaphragmatic breathing with limb coordination training for
treating lower limb lymphedema after gynecologic cancer surgery.
They found that combining these exercises with complex decongestive
symptoms, limb
circumference, and alleviated anxiety and depression, suggesting

therapy  significantly improved reduced

enhanced rehabilitation outcomes for these patients.

Summary

This Research Topic integrates the latest advancements in
biomechanics, sensing technology, and bio-inspired control in the
fields of rehabilitation and wearable robotics, demonstrating how
these technologies can enhance human mobility and rehabilitation
outcomes. The research findings are categorized into six main areas:
development and evaluation of wearable robotics, control strategy
studies, signal and feature recognition, biomechanical analysis,
literature review and statistical analysis, and rehabilitation training
evaluation. These studies not only expand our understanding of
rehabilitation technologies but also provide new approaches for
personalized rehabilitation interventions. Future research could
delve deeper into several key questions: How can bio-inspired
control be combined with real-time sensing data to achieve more
precise personalized rehabilitation? How can signal recognition
“ability

improving human-machine
g

enhance devices
thereby

Additionally, with the application of virtual reality and mixed

technology to perceive patients”

intentions, interaction?
reality technologies in rehabilitation, exploring their potential to
boost motivation and effectiveness in rehabilitation training is of
great importance. These directions could not only deepen the
understanding of current research findings but also provide strong
support for the development of future rehabilitation devices and
control strategies, paving the way for future research topics.
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Dynamic assessment for low
back-support exoskeletons during
manual handling tasks

Xiaohan Xiang*, Masahiro Tanaka, Satoru Umeno, Yutaka Kikuchi
and Yoshihiko Kobayashi

Institute of Agricultural Machinery, National Agriculture and Food Research Organization (NARO),
Saitama, Japan

Exoskeletons can protect users’ lumbar spine and reduce the risk of low back
injury during manual lifting tasks. Although many exoskeletons have been
developed, their adoptability is limited by their task- and movement-specific
effects on reducing burden. Many studies have evaluated the safety and
effectiveness of an exoskeleton using the peak/mean values of biomechanical
variables, whereas the performance of the exoskeleton at other time points of the
movement has not been investigated in detail. A functional analysis, which
presents discrete time-series data as continuous functions, makes it possible
to highlight the features of the movement waveform and determine the difference
in each variable at each time point. This study investigated an assessment method
for exoskeletons based on functional ANOVA, which made it possible to quantify
the differences in the biomechanical variables throughout the movement when
using an exoskeleton. Additionally, we developed a method based on the
interpolation technique to estimate the assistive torque of an exoskeleton. Ten
men lifted a 10-kg box under symmetric and asymmetric conditions five times
each. Lumbar load was significantly reduced during all phases (flexion, lifting, and
laying) under both conditions. Additionally, reductions in kinematic variables were
observed, indicating the exoskeleton’s impact on motion restrictions. Moreover,
the overlap F-ratio curves of the lumbar load and kinematic variables imply that
exoskeletons reduce the lumbar load by restricting the kinematic variables. The
results suggested that at smaller trunk angles (<25°), an exoskeleton neither
significantly reduces the lumbar load nor restricts trunk movement. Our
findings will help increasing exoskeleton safety and designing effective
products for reducing lumbar injury risks.

KEYWORDS

ergonomics assessment, lumbar load, manual handling task, dynamic simulation, low
back pain

1 Introduction

Back-support exoskeletons help farmers, nurses, and industrial workers reduce lumbar
burden and improve working efficiency (Kobayashi et al., 2009; Hasegawa and Muramatsu,
2013; Upasani et al., 2019). As one of the specific human-robot collaboration solutions for
manual handling tasks, back-support exoskeleton should satisfy the safety requirement for
both robot and humans (De Looze et al., 2016; Ajodani et al., 2018). Thus, developing safe
and effective exoskeletons will enable a broad range of applications that could benefit users.
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ISO 13482 states that the purpose of exoskeletons is to reduce
physical workload (ISO, 2014). The safe limit for human lumbar
workload averages 3.4kN (Water et al, 1993). However,
accurately evaluating exoskeleton safety is difficult owing to
the the
unpredictability in user movements. Moreover, exoskeletons

complexity of human-robot interactions and
can constrain human movement, leading to discomfort
(Baltrusch et al., 2018). Performance variations at actual
rehabilitation, industrial, and agriculture work sites highlight
the need for a standardized and dynamic assessment method for
exoskeletons (De looze et al., 2016; Omoniyi et al., 2020; Zheng
et al., 2022).

Exoskeleton assessment requires obtaining lumbar load and
human movement data. Human movement can be measured by
optical or inertial measurement unit (IMU) motion capture
methods
exoskeletons’ lumbar load, including directly recording the

systems. Several have been used to measure

assistive force by inserting additional load cells into the
(Abdoli-Eramaki et al., 2007; Abdoli-Eramaki
et al., 2008); assuming a relationship between the magnitude

exoskeleton

of electromyographic signals and assistive forces, and then
estimating the assistive forces by recording trunk muscles’
activities (Marras et al.,, 2000; Lamers et al., 2018; Weston
et al, 2018; Koopman et al., 2019b); and establishing an
exoskeleton by testing its characteristic performance
beforehand (Koopman et al., 2019a). Nabeshima et al. (2018)
developed a non-human testing framework to obtain lumbar
torque. These methods, which estimate assistive forces, can be
used with an inverse dynamic human model to calculate the
actual lumbar load when using exoskeletons.

Further, several statistical methods have been employed to
examine lumbar load and other key variables. These methods
can be flexibly employed to scrutinize data across various
temporal frames—individually, collectively, or even utilizing
time-weighted averages—based on the specific demands of their
research objectives. For instance, the effect of using exoskeleton
on a biomechanical variable can be easily examined using the
t-test (Abdoli-Eramaki et al., 2007; Whitfield et al., 2014; Lamer
et al., 2018). Analysis of variance (ANOVA) would be suitable
for evaluating the mixed effect between the testing conditions
and exoskeleton modes on users (Marras et al., 2000; Abdoli-
Eramaki et al., 2008; Ulrey and Fathallah, 2013; Weston et al,,
2018; Koopman et al., 2019a; Koopman et al., 2019b; Poliero
etal., 2020). Principle component analysis was used to select the
important features and identify the differences of using
exoskeletons (Sadler et al., 2011).

Except peak burden, when it is effective to use exoskeletons, and
when motion is restricted are also concerned and can contribute to
the risk of lumbar injury (Upasani et al., 2019; Omoniyi et al., 2020).
Thus it is necessary to consider the effect of the exoskeletons not
only on the timing when peak lumbar burden occurs but on the
lumbar burden across the whole task. In addition it is also found the
phase shift.

To the author’s knowledge, the effect of exoskeleton at the time
other than the peak value in manual handling tasks has not been
well-investigated. Therefore, we employed a time-series analysis
method Functional data analysis (FDA), specifically functional
ANOVA (FANOVA), which is designed to handle functional
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data such as biomechanical data, accounting for their continuous
nature and temporal dependencies (Ramsey and Silverman, 2005).
The FANOVA could be separated into a few steps. First, time-series
biomechanical data such as the lumbar load and flexion angle were
collected (Section 2.3 and Section 2.4). Second, functions were used
to present the waveforms of the biomechanical variables, with
B-spline the most commonly used (Ramsey and Siverman, 2005)
(Section 2.5.1). Third, the obtained functions were aligned at
identical timing points to obtain a representative comparison
using a data registration (or data alignment) technique (Godwin
etal, 2010) (Section 2.5.1). Finally, the FANOVA model was used to
calculate the F-ratio between using and not using the exoskeleton
(Section 2.5.2). In agriculture, FANOVA has been used to accurately
estimate continuous growth trends (Xu et al., 2018) and demonstrate
significant differences in various biomechanical contexts, such as lip
kinematics and fatigue-induced kinematics changes (Ramsay et al.,
1996; Godwin et al., 2010).

Compared to the traditional t-test, ANOVA, and PCA methods,
FDA is better at dealing with the time-series dataset. The traditional
methods usually identify vital features related to the performance of
motions and injury mechanisms from the waveforms of the
biomechanical data by referring to some individual points and
reducing the dimensionality of the waveforms (Moudy et al,
2018). These methods are limited in that the important features
are identified before the data have been analyzed. In contrast, FDA
can be applied to multidimensional signals and eliminates the need
for the prior identification of the relevant features (Donoghue et al.,
2008). In addition, the traditional methods have difficulty finding
the differences between groups, and individual differences may
produce conditions that will cause timing/phase variability in the
waveform (Moudy et al., 2018). For example, in different trials, the
subject may not be able to reach the maximal flexions at the same
time, while the FDA can help us to minimize the time difference
(data alignment) among the maximal flexions, and to maintain the
shape and amplitude of each curve. Using this technique, FDA can
highlight the features of waveforms to reduce the timing/phase
variability so that we can analyze the effect of exoskeletons on
the magnitude at all timings, and it is not necessary to identify the
peak value or mean value (Moudy et al., 2018). Thus, using FDA to
assess the performance of an exoskeleton makes it possible to
determine when the exoskeleton can significantly reduce the
lumbar load or restrict human motion during a task.

Industrial exoskeleton usage requires safety considerations in
high-risk scenarios, such as dynamic symmetrical and asymmetrical
lifting tasks (De Looze et al, 2016; Huysamen et al, 2018).
FANVOA can be a suitable method for revealing exoskeletons’
effect on key variables in each phase of these tasks, thus
promoting their standardization.

Although important discrete peak and mean values of the
lumbar load and kinematics factors have been studied in
exoskeleton evaluations, no method is available to evaluate the
effectiveness of various postures during lifting-flexion movement
of the exoskeleton. Thus, this study was novel because it not only
evaluated the performance of the exoskeleton when variables
reached their peak values but also at all other times. This made it
possible to identify the variability when using the exoskeleton
throughout the entire lifting-flexion motion and assess its
applicability to the entire manual handling movement.
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FIGURE 1
Manual handling task of a 10 kg box with an exoskeleton under (A) symmetrical and (B) asymmetrical conditions.

Subjects: 10 subjects x 5 repeat
Conditions: (with, without) x
(symmetry, asymmetry)

Data
collection

Measuring the
assistive torque under
dynamic conditions.

Exoskeleton
Testing

|

Exoskeleton

1. External forces

2. Body movement Estimating the assistive

model and velocity.
Human 3D
model

Estimated biomechanical variables
(F., 6, w, a, H) for all subjects.

torque using trunk angle

v

Time-series data smoothing

(B-spline) and registration for
(F., 6,w, a, H)

1. Obtaining the data of five variables as
the function of the time points (B-spline).

2. Aligning the data of each variable for all
subjects with time (registration).

FANOVA

Estimating the F-ratio
of the time points

Assessing the effect of the
exoskeleton on each variable for
symmetrical and asymmetrical
conditions

FIGURE 2

The procedure for assessing the effectiveness of the exoskeleton using FANOVA; the movement data are imported into an exoskeleton-human
model to estimate the biomechanical variables, which are defined in Section 2.3; then smoothing and registration ensures the data can be presented as
functions and aligned with each other; finally, conducting FANOVA and estimate F-ratio to assess the exoskeleton’s effect at the time points.

In this study, we mainly focus on developing a FANOVA-based
method to evaluate the effects of an exoskeleton on the
biomechanical variables at every time point during the manual
handling tasks. This analysis allows us to examine when
exoskeletons can significantly reduce lumbar load and restrict
motions during the task. In addition, we also proposed an
exoskeleton-human model to estimate the dynamic lumbar load
with the exoskeleton’s assistance. It was hypothesized that the
FANOVA would demonstrate the exoskeleton, and significantly
affect not only the peak biomechanical variables but also that at the
other period.
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2 Materials and methods

In this study, we used the FANOVA to investigate the effect of
the exoskeleton. In this section, 2.1 and 2.2 show the tasks (Figure 1),
and instrumentation of this experiment. In the assessment of the
exoskeleton, the details are developed as two steps: estimation of
biomechanical variables (Section 2.3 and Section 2.4) and FANOVA
assessment (Section 2.5 and Section 2.6). As shown in Figure 2, in
the first step, using a 3D human model and exoskeleton model to
estimate the biomechanical variables, which will be analyzed in the
second step using FANOVA after data smoothing and registration,
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and finally, the effect of the exoskeleton on each variable can be
assessed using F-ratio of time points.

2.1 Participants and tasks

Ten male participants (height: 1.72 + 0.08 m, body mass: 68.1 +
8.8kg, age: 30.9 * 7.7years) were recruited and all of them
consented to join this experiment. This study was approved by
the institutional review board of the Institute of Agricultural
Agriculture and Food  Research
Kakushin-ken_Rinri_R03-02).

Participants aged 20-40 years were selected because manual

Machinery,  National

Organization  (approval  no.
handling tasks pose a high risk of low back pain, and young
individuals can tolerate relatively high lumbar loads (Kudo et al.,
2019).

The manual handling tasks comprised three phases: free-flexion,
box-lifting, and box-laying. Figures 1A, B show the beginning of
symmetrical and asymmetrical lifting, respectively. The participants
performed 2 x 2 non-repetitive tasks (asymmetrical/symmetrical
condition with/without the exoskeleton) five times each, the time
interval between two trials was around 30 s to reduce the effect of
muscle fatigue. The participants’ feet were always pointing forward.
Prior to the experiment, participants were instructed to perform
manual handling tasks at their preferred speed to test their strength.

2.2 Instrumentation

A motion capture system (Xsens MVN Analyze, Xsens, Inc.,
Enschede, Netherlands) was used to reconstruct motion using
IMUs. As shown in Figure 1, 15 IMUs were attached to the
participants’ heads, shoulders, L5/S1, upper arms, forearms,
thighs, shanks, and feet. Two identical force-measuring devices
recorded external forces on the hands, each consisting of two
three-axis force sensors (USL08-H6, Tec Gihan Co., Ltd., Kyoto,
Japan). The box size was 57 cm x 28 cm X 10 cm, with a total mass of
10 kg, which is the limit mass for a normal adult in a one-time lift
(ISO 11228-1, 2021). Data recorded at 60 Hz were filtered using a
low-pass filter with a 4 Hz cut-off frequency.

2.3 Exoskeleton's effect on biomechanical
variables

Lumbar load reduction is the biomechanical criterion for
relieving the lumbar burden (Waters et al., 1993). The kinematics
variables such as trunk angle, trunk angular velocity, trunk angular
acceleration, and the horizontal displacement between the wrist and
the lumbar represent the effect of the exoskeleton on the motion
restrictions (Potvin, 1997; Marras et al., 2000).

The five representative biomechanical variables are presented as
lumbar load (F.), trunk angle (), trunk angular velocity (w), trunk
angular acceleration («), and horizontal displacement between the
wrist and lumbar (H). The trunk angle 6 = £C7-L5-C is shown in
Figure 1A, and the trunk angular velocity and acceleration are the
derivatives of the trunk angle and angular velocity, respectively. In
Figure 1A, the C7 and L5 positions are determined by virtual
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markers generated by the motion reconstructed using Xsens
MVN Analyze. The wrist (D) and knee (C) positions were
determined on the basis of the center of the virtual markers of
the left and right wrist (D1, D2), as well as the left and right knee (C1,
C2), respectively. During the asymmetrical task, the angle (y)
between the box and the table (65 cm height) in the horizontal
plane was 90°, as shown in Figure 1B.

2.4 Lumbar load estimation

2.4.1 Exoskeleton model

The “Muscle Suit Every” (Innophys, Inc., Tokyo, Japan)
exoskeleton was used in this study. This exoskeleton uses
artificial muscle to provide assistive torque at different trunk
angles. In addition, angular velocity influences assistive torque by
altering artificial muscle extension speed, which affects the friction
force of the artificial muscle and assistive torque generation
(Sugimoto et al, 2011; Tondu, 2012). Thus, we used the thin-
plate spline (TPS) model for estimating assistive torque based on
trunk angle and angular velocity. TPS can provide a robust
estimation for spatial data interpolation and surface fitting
(Bookstein, 1989; Donato Belongie, 2002).

To establish the TPS model, we used a testing machine to record
the assistive torque of the exoskeleton when the trunk angle rotated
from 0° to 90° at five speeds (10, 30, 45, 60, and 90°/s) at a sampling
rate of 1 kHz (Tanaka et al., 2020). In every test, air pressure of the
exoskeleton was set to 0.1 MPa. The tests were repeated at each
speed 10 times. Subsequently, the recorded data were processed with
a low-pass filter of 10 Hz. The results, shown in Figure 3A, are the
relationships between the extension angle and average assistive
torque in the 10 trials under each speed condition. Finally,
utilizing the TPS method, which was established using MATLAB
(version 2022a), the estimated assistive torque could be presented in
terms of trunk angle and angular velocity, as shown in Figure 3B.
The TPS model’s R2 was 0.955 with a root mean square error of
3.70 for all testing data.

2.4.2 Actual lumbar load estimation

As shown in Figure 4, A link-chain human three-dimensional
(3D) model was established. The coordinate, movement and center
of mass for each segment, and motion reconstruction were recorded
using the IMU motion capture system attached to the subject body
(data collection). The dynamic link-chain model had nine segments,
involving the forearms, upper arms, head, shoulder, thoracic spine,
lumbar spine, and pelvis (the lower limbs are not included in the
dynamic calculation). The mass of each segment was a proportion of
the total body mass, as estimated by a previous study (Winter et al.,
2009; Hof, 1992). In addition, the mass of the exoskeleton was added
to the center mass at the lumbar segment.

To calculate the lumbar torque, we initially estimated the non-
assisted lumbar torque using the top—down inverse dynamic method
based on the link-chain human model. Given that the assistive
torque only acts in the flexion plane (plane C7L5C in Figure 1A), we
subtracted the assistive torque in this plane from the non-assisted
torque to obtain the actual torque at the lumbar joint. The geometric
model of the trunk muscles was determined using previously
reported data (Schultz et al, 1982; Granata and Marras, 1993;
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force data are imported into the human 3D model, and then the biomechanical variables are estimated.

Gagnon et al.,, 2001), and the muscular forces were estimated by
minimizing the sum of the trunk muscles’ stress square (Anderson
and Pandy, 2001). Finally, the lumbar load was obtained by the force
resulting from the muscular forces and the upper body load in the
direction perpendicular to the lumbar vertebra. The inverse dynamic
computation was completed in MATLAB (version 2022a), and the
optimization procedure was completed by the
programming algorithm (Stellato et al., 2020).

quadratic

Frontiers in Bioengineering and Biotechnology 14

In order to investigate the accuracy of the 3D human model, we
compared the estimated lumbar load from this 3D human model
with the in vivo data reported by Wilke (Wilke et al., 1999; Wilke
et al., 2001) under several body conditions. The estimated lumbar
load for each posture was obtained from the average estimation
among eight volunteers with a mean body height of 1.72 m and
mean body mass of 69 kg, similar to the participant (1.68 m, 70 kg)
in Wilke’s study.
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FIGURE 5

Comparison between reported the in vivo data and the estimated lumbar load using the 3D human model. The mass of the box is simulated as 20 kg.

The accuracy estimation procedure was presented in Figure 5,
where the lumbar loads estimated by the human model at
12 postures including standing, 36° flexion, maximal flexion,
extension, lateral flexion, twisting, stoop lifting, squat lifting, one-
hand carrying, and close-to-chest handling were compared with
these obtained from the reported in vivo experiments. The in vivo
lumbar intradiscal pressure (MPa) estimated by Wilke was
converted to lumbar load (N) using the correction factor
proposed by Dreischarf et al. (2013). Finally, calculating the R of
Intraclass Correlation Coefficient (ICC) between the estimated
lumbar loads of the human model and the invasive data for the
postures [type of ICC (1,1), and on the 95% confidence interval].
The estimated R is 0.93, which can be explained as excellent
reliability (>0.9) (Koo and Li, 2016). The result indicates that the
lumbar load estimated by the human model has a high consistency
with the in vivo data.

2.5 Functional data analysis

2.5.1 Smoothing and processing

This study’s biomechanical time-series discrete data, including
tracks, angles, and lumbar moment, were converted to functional
data in the FDA. In this step, we use a series of the basis functions to
fit the recorded biomechanical data and one advantage of this step is
to reduce the influence of noise. Since non-repetitive tasks were
conducted in this experiment, B-spline is used as the basis function
system. Each obtained function can be presented as follows (Ramsay
and Silverman, 2005):

K
xi(t) = Y cupy (t) (1)
k=1

where x;(t) represents the function converted from the i-th
observed data series; t represents the number of time points; cix
represents the coefficients; and ¢, () are B-spline basis functions
with the number, K.
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The B-spline fitting functions for the recorded data can be
determined using the least square method. The residual sum of
squares and a penalty term based on the second derivative of the
fitted curve were minimized. The following equation expresses the
minimized penalized least squares problem (Ramsay and Siverman,
2005):

N
G=Y[X x(t)]’dt

i=1

—x ()] +AJ [D?

a

)

where X (t;) represents the observed data points at the i-th time
N); x (t;) represents the estimated data at the i-th
time point using the function obtained with Eq. 1; A is the smoothing

point(i=1,2,...,

variable, which is a non-negative constant that controls the
smoothness of the function, with a larger value leading to a
smoother function; and D?x (t) represents the second derivative
of the fitted function in time-series. The first part measures goodness
of fit between the data points and the fitted function, and its
objective is to minimize the residuals. The second part is the
penalty term that encourages smoothness in the fitted function
by penalizing abrupt changes in curvature; the penalty term is
proportional to the integral of the squared second derivative of
the function x(t) over the domain (a, b). Thus, this objective
function allows us to control the trade-off between the goodness
of fit and the smoothness of the function.

Data registration is a technique that aligns generated
functional data that might be misaligned. This can improve
the ANOVA before the effects
interactions. We applied data registration to all observed data

estimating main and
for each condition and variable using continuous registration

(Ramsay and Silverman, 2005).

2.5.2 FANOVA

After obtaining the functional data, we performed FANOVA to
investigate the effect of exoskeletons on each variable under
symmetrical and asymmetrical conditions. The model for each
variable, f (t), with time history can be presented as follows:
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S (@) = p(t)+ 0 (t) + () ®3)

where 4 () is the mean function indicating the average value of all
trials under the symmetrical or asymmetrical condition; «; ()
represents the effect of using (i = 1) and not (i = 2) exoskeletons
on the variable; and &(¢) is the unexplained variation. We identified
the specific effects of using exoskeletons; the constraint added for all
t, as ap () + oy (£)= 0.

Then, the model for each variable for each t can be rewritten as a
matrix form f (t) as follows:

F() =2ZB(t) + (1)

where f(t) is the 20 x 1 function vector and Z is the 20 x 3 design
matrix, with the 20 rows corresponding to the 10 participants, each

(4)

contributing with two curves: one when using exoskeletons, and the
other when not using them. The first column has ones; the second
column has zeros in the first 10 rows, followed by ones; and the final
column has ones in the first 10 rows, followed by zeros. B(t) is the

3 X 1 vector of parameter functions, with
B(t) = [u(t),a; (), az ()]s €(t) is the 20 x 1 vector of residual
functions.

The vector B(t) can be estimated by minimizing the linear
minimum mean square error (LMSSE):

LMSSE (B)= J[f(t) -ZBW]'[f (1) - ZB(t))dt (5)

LMSSE () should be minimized under the condition ay (t) +
a (1)= 0.

As with traditional ANOVA, the error sum of squares for the
residual function and the mean curve were evaluated as a function
for each time point in (¢) with the following. SSE (sum of squared
errors) and SSY (sum of squared in a total) of the model at time t can
be calculated as:

(6)
(7)

SSE(H) = Y [f () - zp0)]’
sSY(t) = Y [f (1) - i)’

where [3 (t) is the 20 x 1 vector of the predicted parameters function;
fi(t) is the 20 x 1 vector of the predicted mean function of all trials.

The F-ratio determines whether the variance between two data
sets is equal, and the FANOV A can evaluate the F-ratio across time f.
The F-ratio can be presented as follows:

_ [SSY(#) - SSE ()]/df (error)

Foratio(r) = SSE(t)/df (regression)

(8)

where df(error) is the degree of freedom for error [df(error) = 1], and
the df(regression) is the difference in degrees of freedom
[df(regression) = 18]. Based on the F-criterion is 4.41. Any time
the functional curve F-ratio > F-criterion, the effect of time had
reached significance at the chosen « level of 0.05.

2.6 Statistical analysis

For all tasks, the paired t-test (at an « level of 0.05) was used to
compare the peak values of the lumbar load, trunk angle, angular
velocity, angular acceleration, and horizontal distance between the
wrist and lumbar spine under symmetrical and asymmetrical
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conditions. Subsequently, the result of t-test was compared to
that of FANOVA, which was utilized to examine the continuous
effect of the exoskeletons on these variables throughout the
normalized manual handling tasks. The F-ratio, obtained as time
history, was compared to the F-criterion at an « level of 0.05.

The functional analysis for time-series data was performed using
the package developed by Ramsey and Silverman, available at
All
the statistical analyses were conducted using MATLAB (version
2022a).

https://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/.

3 Results

3.1 T-test analysis: effect on peak values of
each variable

The estimated peak variables of lumbar load, trunk angle,

angular  velocity, angular  acceleration, and horizontal
displacement between the wrist and lumbar are shown in
Figure 6, which shows the average peak variables and standard
deviations for all participants. Peak lumbar load and angular velocity
were significantly lower (p < 0.05) when using the exoskeleton
during both tasks; however, peak horizontal displacement was
significantly lower only during asymmetrical tasks (p < 0.01).
Compared with not using exoskeletons, using them reduced peak
lumbar load by 388 N (14%) and 427 N (17%) during both tasks,
respectively. Similarly, the peak trunk angular velocity reduction was
23%/s (24%) and 25°/s (24%) under both conditions. During
asymmetrical tasks, the peak horizontal displacement was
reduced by 0.02m (5%). No significant difference was observed
in peak trunk angles and angular acceleration variables for both

tasks.

3.2 FANOVA: effect on time-series values of
each variable

The results of the functional analysis, as presented in Figures
7-9, demonstrate the effect of using exoskeletons on different
variables during asymmetrical and symmetrical tasks.

During asymmetrical tasks (Figure 7), the exoskeleton reduced
lumbar load by 412, 393, and 383 N with the greatest significant
differences during the flexion, lifting, and laying phases, respectively.
In addition, the most significant lumbar load reduction (412N,
F-ratio = 33.8) for all phases occurred during the flexion phase
(31.7%), as shown in Figure 9. Reductions in the kinematic variables
of trunk angle, angular velocity, and angular acceleration were
observed in all phases (Figure 7), indicating the exoskeletons’
impact on posture and movement restrictions during
asymmetrical tasks. As shown in Figure 9, the most significant
reduction (5.5°, F-ratio = 18.6) in trunk angle occurred during the
laying phase (86.1%); for trunk angular velocity, the reduction
(20.0”/s, F-ratio
(14.1%); and for trunk angular acceleration, the reduction (61.5°/
18.6) occurred during the flexion phase (20.0%).
Horizontal displacement was only significantly reduced during

the lifting phase (61.9%), by 0.02 m (F-ratio = 11.1).

18.1) occurred during the flexion phase

s?, F-ratio
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The t-test result: exoskeletons' influence on the peak value of representative variables during manual handling tasks. Abbreviations: acc.,
acceleration; disp., displacement; vel., velocity; w, with; w/o, without (*p < 0.05; **p < 0.01; ***p < 0.005).

During symmetrical tasks (Figure 8), the exoskeleton reduced lumbar
load by 300, 672, and 280 N with the greatest significant differences
during the flexion, lifting, and laying phases, respectively. The most
significant lumbar load reduction (300 N, F-ratio = 35.9) for all phases
occurred during the flexion phase (26.7%) (Figure 9). Similarly, in
asymmetrical tasks, reductions in the kinematic variables such as
trunk angle, angular velocity, and angular acceleration were observed
in all phases (Figure 8). As shown in Figure 9, the most significant
reduction in trunk angle (5.9°, F-ratio = 20.6) occurred during the laying
phase (83.2%) and that in trunk angular velocity (22.5°/s, F-ratio = 24.1)
during the flexion phase (13.4%). For trunk angular acceleration, the
reduction (79.4°/s>, F-ratio = 16.8) occurred during the flexion phase
(10.6%). The patterns of the above kinematic variables were also similar to
those in asymmetrical tasks. Horizontal displacement was significantly
reduced during the lifting (15.8%) and flexion (42.6%) phases by 0.02 m
with similar F-ratios (5.3 vs. 4.8).

Except for providing assistive torque, exoskeletons can reduce the
lumbar load by restricting movements. As shown in Figures 7, 8, some
significant overlaps were observed between the F-ratio of the lumbar
load and the kinematic variables in each phase. During the flexion
phase, these overlaps of the significant F-ratios were as follows: lumbar
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load: 13%-31%; trunk angle: 13%-24%; angular velocity: 13%-18%,
25%-31% (in the flexion phase, both periods were where F-ratios of
angular velocity were significant); angular acceleration: 15%-30%; and
horizontal displacement: 14%-17%. During the lifting phase, lumbar
load: 35%-45%; trunk angle: 39%-49%; angular velocity: 41%-45%;
and horizontal displacement: 41%-43%. During the laying phase,
lumbar load: 56%-100%; trunk angle: 73%-100%; angular velocity:
56%-58%; and angular acceleration: 79%-82%. These overlaps show
the consistency between the reduction of lumbar load and that of
kinematic variables, which indicate that the lumbar load reduction is
not only affected by lumbar moment reduction but also by restricting
the kinematic variables when using the exoskeletons.

4 Discussion

4.1 T-test analysis: effect on peak values of
each variable

The findings presented in Figure 6 show that exoskeletons
significantly affect the representative biomechanical variables
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Effect of using exoskeletons on the variables during asymmetrical tasks. (A) Absolute values of the variables when using (solid line) and not using
(dash line) exoskeletons, where positive (+) and negative (-) for angular velocity and acceleration represent flexion and lifting, respectively. (B) The
corresponding F-ratio generated by FANOVA (solid line) and Fcri = 4.41 with statistical significance at an « level of 0.05 (red dash line). The whole
normalized time is separated into flexion (0%—33%), lifting (33%—-67%), and laying (67%—-100%) phases. Abbreviations: FANOVA, functional analysis of
variance; Fcri, F-criterion; acc., acceleration; disp., displacement; vel., velocity; w, with; w/o, without.

during symmetrical and asymmetrical tasks. Exoskeleton use
substantially reduced peak lumbar load and motion speed,
consistent with previous findings (Koopman et al, 2019b).
Increasing trunk angular velocity requires greater trunk muscle
activation (Dolan and Adams, 1993). This result aligns with
those of previous studies, suggesting that exoskeletons help
reduce lumbar load and muscle activation (Huysamen et al,
2018; 2018), thus, the risk of
musculoskeletal disorders and enhancing worker comfort.

Lamer et al, lowering

No significant differences were detected in peak trunk angles
and angular accelerations, in contrast to angular velocity, for both
tasks. Thus, it results difficult to infer from peak values whether
exoskeletons limit the range of motion or hinder human movement
while providing support and reducing lumbar load. Previous studies
have yielded mixed results on the exoskeletons’ influence on trunk
angle: reduction was observed on the nylon elastic support, while no
reduction was shown for another passive exoskeleton (Laevo
V2.4 Delft, Netherlands) (Marras et al., 2000; Koopman et al.,
2019a). The differing results from our experiment and previous
studies regarding the influence of exoskeleton on trunk angle can be
attributed to variations in design.

The lumbar reduction of the current exoskeleton can meet the
3.4 kN average lumbar load criterion recommended by the National
Institute of Occupational Safety and Health (Waters et al., 1993), as
shown in Figure 6. However, the lumbar load limit will vary across
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age groups and sexes (Genaidy et al., 1993). Aging societies have a
growing population of older workers, whose lumbar load limit is
1.69 kN lower than that of younger workers (Kudo et al.,, 2019).
Women have lower lumbar load limits than men (Genaidy et al.,
1993; Kudo et al., 2019). Thus, deterministic assistive forces should
consider lumbar load limits for different age groups and sexes.

4.2 FANOVA: effect on time-series values of
each variable

FANOVA enables a more comprehensive examination of the
effects of exoskeletons on variables throughout an entire task rather
than focusing solely on peak values. The FANOVA results suggested
that exoskeletons can alleviate lumbar burden at peak load timings
and throughout all task phases (Figure 9). The lumbar load
reduction in Figures 7, 8 implies that exoskeletons are probably
effective in reducing the lumbar load in all phases during
asymmetrical tasks while being much more effective in the lifting
phase during symmetrical tasks. Asymmetrical lifting reportedly
results in a higher lumbar load than symmetrical lifting, implying
that workers are more easily prone to getting lumbar injuries during
asymmetrical lifting (Kim and Zhang, 2017). Therefore, improving
exoskeletons’ performance during asymmetrical lifting can reduce
users’ lumbar injury risks.
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The reduced trunk angle, angular velocity, and acceleration
during both manual handling tasks suggest a similar tendency
when exoskeletons assist participants. The results indicated that
using the exoskeleton imposes significant restrictions on body
movement at larger flexion postures (>25°), in the vicinity of
peak lumbar load occurrence, and throughout most of the box-
laying movements in both tasks. The most significant reduction in
angular velocity and acceleration occurred in the middle of flexion,
implying that the human body may experience greater kinematic
restrictions from exoskeleton use when not under loading
conditions. This could be a reason for exoskeletons not
supporting the lumbar load in a small trunk angle, which will be
discussed subsequently. However, the restrictions on horizontal
displacement differ between symmetrical and asymmetrical
Under
reduction occurred at the end of lifting. In contrast, in

conditions. asymmetrical conditions, a significant
symmetrical tasks, restrictions occurred in the middle of flexion
and the vicinity of peak lumbar load occurrence. Determining the
relationship between these changes using other variables in this
study was challenging. This discrepancy in horizontal displacement
restrictions may originate from the interaction between the trunk
and upper limbs.

Comparing lumbar load and trunk angle in Figures 7, 8,
significant reductions when using the exoskeletons were difficult
to observe when the trunk angle was less than 25°. The only

exception was during the asymmetrical lifting phase, when a
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significant lumbar load reduction occurred even with a trunk
angle smaller than 25°. This lumbar load reduction was likely the
result of reduced horizontal displacement rather than trunk angle
changes. These results suggest that exoskeletons at smaller trunk
angles (<25°) neither significantly reduce lumbar load nor restrict
trunk movement. Since the greatest lumbar load typically occurs at
larger trunk angles, this design approach may prioritize allowing
users a greater range of motion and, consequently, sacrifice
effectiveness at smaller trunk angles. This trade-off between
range of motion and lumbar load reduction at smaller trunk
angles may be a deliberate design choice to improve user comfort
and task efficiency while offering lumbar support when needed.
Although lead
inconvenience, adopting a low-speed or small-inclination posture

restricting body movement may to
will lead to lower lumbar injury risk (Marras et al., 1993; Waters
et al,, 1993). In addition, the lumbar load can also be reduced by
decreasing the kinematic variables. The overlap of F-ratios with
significance (F-ratio > 4.41) suggests that the reduction in lumbar
load is affected by the kinematic variables in all phases. Significant
trunk angle and horizontal displacement reductions were observed
near peak lumbar load during symmetrical tasks. During
asymmetrical tasks, only trunk angle reduction was noted.
Quantitatively evaluating the impact of each kinematic factor on
lumbar load reduction using FANOVA in conjunction with
established ergonomic equations is possible (Potvin, 1997;
Merryweather et al., 2009; Arjmand et al., 2011; Arjmand et al.,
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FANOVA result: The reduced variables at the peak F-ratio timing for each phase during the manual handling task between w, and w/o assistance; The
bar values, representing the reduction of each variable (blue: asymmetrical task; red: symmetrical task), and are obtained at the peak F-ratio of flexion,
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Abbreviations: acc., acceleration; disp., displacement; vel., velocity.

2012). the
inconvenience of exoskeletons are lacking, the discomfort in
kinematic restrictions probably results from contact pressure and
friction (Baltrusch et al, 2018; Huysamen et al., 2018). Further
investigation into the complex interplay between the various

Although quantitative assessment methods for

different conditions could
improve the understanding of the effects of exoskeleton use on

biomechanical variables and the

human kinematics.

4.3 Exoskeleton simulation method

Direct measurement methods, such as electromyography or
extension force, may introduce errors due to individual
differences (Marras et al., 2000; Abdoli-Eramaki et al., 2007;
Lamers et al., 2018). To address this, we employed a 3D
interpolation method, the TPS, to represent the relationship
between extension angle, angular velocity, and assistive torque.
Comparing to torque-angle relationship (Koopman et al., 2019a),
our approach accounts for certain dynamic factors affecting assistive
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torque. The advantages of TPS include efficient overfitting reduction
through regularization, reduced computational complexity once the
analytical form of the TPS model can be obtained, and adaptability
to multidimensional datasets (Bookstein, 1989; Donato and
Belongie, 2002), making it suitable for modeling various
exoskeletons whose assistive torques may be influenced by
different factors. Consequently, TPS is expected to contribute to
exoskeleton standardization. By incorporating TPS in exoskeleton
testing and refining FANOVA assessment methods, researchers can
develop more effective, comfortable, and efficient exoskeletons that
cater to workers’ diverse needs in various industries.

4.4 Comparison between FANOVA and
other methods

Compared to the traditional methods such as a t-test or ANOVA,
FANOVA includes a smoothing and data registration procedure that
reduces the noise and variability of the timing/phases. Therefore, the
biomechanical variables can be analyzed at each time point.
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In this study, we conducted a -test and determined how the peak
value was affected by the dynamic movement of an exoskeleton.
However, it was difficult to investigate the significant differences in
the variables at the other time points because of the variability of the
timing/phases of subjects. To reduce this variability, previous studies
usually had subjects maintain specific postures before applying a t-test or
ANOVA (Lamers et al., 2018; Koopman et al., 2019a). For example,
Lamers et al. (2018) found that using an exoskeleton could significantly
reduce a user’s lumbar load under flexion angles of 30°, 60°, and 90°.
However, the static assumption may cause the lumbar load to be
underestimated compared with those of actual tasks, which are usually
dynamic (van Dieén et al, 2010). Moreover, it is a significant task to
evaluate the effectiveness of an exoskeleton at all flexion angles, users are
normally concerned about how to best use it (Upasani et al., 2019). In
contrast, FANOVA makes it possible to evaluate the reduction in the
dynamic lumbar load resulting from the use of an exoskeleton, and we
found that the lumbar load was reduced at the majority of the flexion
angles, with the exception of small angles (<25°) or during a flexion-lifting
shift. Thus, compared to the traditional t-test and ANOVA, FANOVA
can find the most effective conditions for using an exoskeleton.

FANOVA can also find the difference in the flexion angle at
times other than under peak or specific conditions. Using a t-test, no
significant difference can be found in the peak flexion angle under
either a dynamic movement (Figure 6) or in static postures (Lamers
etal, 2018). However, FANOVA shows that a significant restriction
of the trunk angle can be found in all phases when an exoskeleton is
used (Figures 7, 8). This could be because the exoskeleton mainly
affects the flexion angle not at the beginning or end of lifting or
flexion, but during the middle of the task.

The results of this study are expected to contribute to safety
standards for exoskeletons. The safety requirements set forth in the
international standard for wearable robots, ISO 13482, are limited
only to conceptual design guidelines. This study investigated a
method that is expected to assist manufacturers in quantitatively
evaluating their products throughout the entire movement process
and guide users in the appropriate use of an exoskeleton in lifting-
flexion tasks.

4.5 Limitations

This study had a few limitations. First, this study relied on a
single type of exoskeleton, although design can significantly
influence an exoskeleton’s effectiveness in reducing lumbar load
and modifying kinematic variables (Baltrusch et al., 2018; Kozinc
et al., 2020; Luger et al, 2021). Second, the complex and time-
intensive computations involved in FDA, such as the data
registration procedure, may present challenges as the curves
involve a considerable amount of data from lengthy experiments.

Furthermore, multiple comparisons may pose limitations. As
the number of exoskeleton modes increases and significant
differences are assessed at each time point, methods such as the
Bonferroni adjustment, which may reduce the statistical power of
the analysis, can be used (Khalaf et al, 1999). An alternative
approach is establishing a critical number of simultaneous
F-ratios that must exceed the F-crit to be considered significant
for that period. However, the optimal number of F-ratios for this
method remains unestablished (Godwin et al., 2010).
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Other than the criteria mentioned, cumulative load can also
contribute to low back pain. However, the lack of a safety criterion
for cumulative load makes evaluating the safety of exoskeletons’
assistance on this variable difficult, and the value of the safety
criterion will affect the evaluation of the exoskeletons’ assistance.

This experiment took an interval of around 30 s between two
tasks. However, considering individual differences, taking a maximal
voluntary contraction (MVC) test after resting would be a better way
to confirm whether the rest time was sufficient to reduce muscle
fatigue, which was a limitation of our work.

Despite these limitations, the study demonstrates the potential
of using FANOVA to assess the effectiveness of exoskeletons in
various manual handling tasks. Future research could focus on
refining measurement techniques, developing more accessible
FANOVA,
approaches for handling multiple comparisons.

tools  for and exploring alternative statistical

5 Conclusion

A dynamic assessment method based on FANOVA was used to
investigate the effect of utilizing exoskeletons on five representative
biomechanical variables. The result implied that exoskeletons could
reduce the lumbar load during manual handling tasks, particularly
under symmetrical lifting conditions. The significant reductions in
lumbar load and kinematic variables indicate that exoskeletons are
crucial in protecting users’ lumbar spine and reducing the risk of low
back injury. Furthermore, the exoskeletons achieve this reduction by
restricting movement, which helps to maintain proper posture
during handling tasks. The results also showed how exoskeletons
indirectly affect the lumbar load, influencing other kinematic
variables in time history. These findings contribute to developing
safer and more effective exoskeleton designs, ultimately enhancing
the practical adoption of exoskeletons in various scenarios involving
manual handling tasks such as in agriculture, industry, and physical
rehabilitation.
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Individuals with acute neurological or limb-related disorders may be temporarily
bedridden and unable to go to the physical therapy departments. The
rehabilitation training of these patients in the ward can only be performed
manually by therapists because the space in inpatient wards is limited. This
paper proposes a bedside cable-driven lower-limb rehabilitation robot based
on the sling exercise therapy theory. The robot can actively drive the hip and knee
motions at the bedside using flexible cables linking the knee and ankle joints. A
human-cable coupling controller was designed to improve the stability of the
human-machine coupling system. The controller dynamically adjusts the
impedance coefficient of the cable driving force based on the impedance
identification of the human lower-limb joints, thus realizing the stable motion
of the human body. The experiments with five participants showed that the cable-
driven rehabilitation robot effectively improved the maximum flexion of the hip
and knee joints, reaching 85° and 907, respectively. The mean annulus width of the
knee joint trajectory was reduced by 63.84%, and the mean oscillation of the ankle
joint was decreased by 56.47%, which demonstrated that human joint impedance
identification for cable-driven control can effectively stabilize the motion of the
human-cable coupling system.

KEYWORDS

cable-driven, lower-limb rehabilitation, human—-machine coupling, impedance
identification, sling exercise therapy

1 Introduction

Flaccidity after a stroke is the first stage in the Brunnstrom stages of stroke recovery, also
known as flaccid paralysis (Cruz-Almeida et al., 2005; Baer et al., 2014). In flaccid paralysis
after cerebral hemorrhage for 2-3 weeks, the patients are conscious or have mildly impaired
consciousness, and the vital signs are stable (Dunkerley et al., 2000; Hendricks et al., 2002;
Kvorning et al., 2006). However, the muscle strength and tone of the affected limbs and the
tendon reflexes are low (Meythaler et al., 2001; Cao et al., 2023). Rehabilitation nursing
measures should be undertaken early so as not to interfere with clinical resuscitation and not
cause deterioration of the condition. The objective is to prevent complications and secondary
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injury while preparing for the next step of functional rehabilitation
training (Singer and Mochizuki, 2015; Yang et al., 2023). Sling
training effectively improves joint movement and reduces muscle
tissue damage in the post-stroke period of flaccid paralysis (Lee and
Lee, 2014). Sling exercise therapy (SET) is an unstable chain
movement performed with a suspension aid to improve the
stability of the core muscles (Oh and Kwon, 2017). Some
SET to
proprioception, balance, neuromuscular control, and walking
ability of individuals with flaccidity (Coote et al., 2008; Jung and
Choi, 2019). There are two kinds of kinetic chain exercises: open-

rehabilitation treatments use the enhance the

chain and closed-chain (Jung and Choi, 2019). In open-chain
training, the segment furthest from the body is free and not fixed
to an object. In closed-chain training, the segment furthest away
from the body is fixed. SET emphasizes the active participation of
the patient in training and has both diagnostic and therapeutic
functions (Charles et al., 2006). It is useful for detecting the weakest
muscles in the human kinetic chain and strengthening them by
performing closed-chain and open-chain exercises.

Previously, sling therapists assisted inpatients in moving the
upper and lower extremities using elastic cables in a suspension
frame (Park and Hwangbo, 2014). A clinical experiment with
50 stroke inpatients showed that upper limb motor dysfunction
and shoulder pain are more effectively relieved with SET than with
routine training within 2 months after stroke (Liu et al., 2020). Oh
and Kwon (2017) applied the methods of sling exercises under the
provision of vibrations for people with myelopathy and verified the
effectiveness of a muscle function improvement program by sling
exercise training (Oh and Kwon, 2017). Traditional sling exercise
training has two major deficiencies, lack of feedback on
human-machine interaction and non-intelligent training data
feedback. Lower-limb
depended on the assistance of therapists due to the loss of joint

rehabilitation sling training mainly
control function in patients in the early stage of stroke (Park and
Hwangbo, 2014). Moving such patients from wards to treatment
zones added to the trainers’ workload (Burtin et al., 2009). A bedside
lower-limb rehabilitation training robot can reduce the work
intensity of the therapists if it can easily move in the limited
space of the ward (Barrett et al., 2006; Jackson et al, 1998).
Several industrial and medical robotic manufacturers developed
rehabilitation robots for bedridden patients, although there is no
SET implemented by bedside rehabilitation robots for flaccid
patients. Focusing on mobilizing bedridden patients to a new
level, KUKA helps bedridden patients with early and efficient
mobilization and relieves the healthcare professionals from heavy
lifting and inconvenient working postures with a seven-axis
(LBR Med) (KUKA, 2008).
Corporation proposed a bedside therapeutic device for the lower

manipulator Yaskawa Electric
extremity therapy in cerebrovascular patients, which made it
possible to repeat lower-limb joint training at varying speed
(Tsuda, 2006). Bedside
rehabilitation robots are characterized by three main features:

settings and range of motion
compact size, ease of mobility, and clear functionality. During
passive rehabilitation training, the two bedside robots perform
with high position accuracy in the workspace. However, both rely
on a rigid human-machine coupling, with safety risks, while SET is

based on a flexible human-cable coupling system.
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FIGURE 1

Caption system overview of the bedside cable-driven lower-limb
rehabilitation robot, SmartSling. It consists of nine parts: knee
horizontal movement module, knee vertical movement module, ankle
horizontal movement module, knee socket, ankle socket, hip
abduction and abduction module, height adjustment module, position
adjustment module, and control panel. The knee vertical and
horizontal movements are active (red), and the ankle horizontal
movement is passive (passive). In addition, with the predefined
modules, i.e., hip position and height adjustment modules (green), the
rehabilitation robot can assist patients with bedside rehabilitation in
most space-limited wards.

Sling exercise training is an interactive process between the
cables and the patient’s extremities. Research on substituting
therapists with robots in sling exercise training is a helpful
direction. Cable-driven robots are mechanisms in which the end-
effector is moved by controlling the length of the cables connected to
it (Zanotto et al., 2014; Li et al., 2021; Vashista et al., 2016; Xie et al.,
2021). Cable-driven robots are appealing due to their structural
simplicity, high torque-to-weight ratio, and flexibility (Liu et al.,
2022; Rosati et al., 2007; Zarebidoki et al., 2021). Sophia-3 is a planar
cable-driven device with a tilting working plane featuring a moving
pulley block that allows the robot to achieve excellent force
capabilities, despite the low number of cables (Zanotto et al,
2014). Tts implemented force field could significantly improve
users’ performance in terms of movement accuracy and
execution time. NeReBot is a device used for the treatment of
post-stroke upper-limb impairments based on cable transmission
and direct-drive actuation (Masiero and Boschetti, 2017; Cao et al.,
2022). These cable-driven rehabilitation robots can provide many
benefits compared with devices characterized by a rigid structure,
such as lower costs, reduced complexity, compliance by design, and
a higher degree of reliability and safety. They can effectively move
the patient’s upper and lower extremities within the training space
(Lambert et al., 2020; Li and Zanotto, 2019). However, these robots
take up a lot of space, which is unsuitable for application in patient
wards. In addition, cable-driven robots are continuously unstable.

Currently, there is no research on open- and closed-chain
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FIGURE 2

Modeling of the leg—machine coupling system in the sagittal plane. (A) General view of the human—machine coupling system. (B) Kinematic model
of the leg—machine coupling system in the sagittal plane. gs and g represent active actuation in the horizontal and vertical modules, respectively, which
connect with the knee socket by a non-elastic cable. (C) Kinetic model of the leg—machine coupling system in the thigh lifting period. (D) Kinetic model of

the leg—machine coupling system in the shank following period.

techniques to improve patients’ joint motion stability and
neuromuscular control.

In this paper, we proposed a cable-driven lower-limb
rehabilitation robot (SmartSling) for sling exercise therapy,
especially aimed at inpatients in the phase of flaccid paralysis
after stroke. As described previously, the contribution seems to
be the design, and then it is described as the modeling and control.
The contribution of this work is twofold: first, we modeled closed-
chain kinematics and kinetics for the human-machine coupled
system, and second, we proposed a human-cable impedance
controller to minimize the hysteresis of knee movement and
stabilize the interaction force for active sling training.

2 Modeling and control of SmartSling
2.1 Mechatronic system of SmartSling

The design of the SmartSling lower-limb rehabilitation training
system is shown in Figure 1. SmartSling comprises five components:
a height adjustment module, a module for hip adduction-abduction,
a module for horizontal-vertical movement in the sagittal plane with
suspension cables, a knee-ankle socket, and a control panel for
therapists. The modules for hip adduction-abduction and for
horizontal-vertical movement are actuated by two DC servo
motors (PD4-CB59M024035-E, Nanotec Electronic GmbH & Co.
KG) via ball screw mechanisms. The cable connected to the knee
joint has two active degrees of freedom in the sagittal plane. The
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cable connected to the ankle joint has only one passive degree of
freedom, and its robotic side is constrained in a linear chute. The two
cables are connected with six-axis force/torque sensors (M3715A,
Sunrise Instruments). SmartSling can train the bedside inpatients in
most space-limited wards, and its position can be adjusted thanks to
a wheeled chassis and the height adjustment module.

2.2 Equilibrium state of basic kinematics

Synchronous flexion of the hip and knee in the sagittal plane
(Figure 2A) is basic training for individuals with flaccidity after
stroke. Thigh and shank lengths (L,, and Lg,) of the subjects can be
set as predefined parameters in SmartSling. As shown in Figure 2B,
at equilibrium, the human hip joint angle 0, is

(1)

h
-

6, = sin L
where the height of the knee joint h = z — g, h is the height of the
knee, z is the distance between the hip and vertical movement
module, gy is the sling movement of the vertical movement module,
and Ly, is the length of the thigh. The knee joint angle 6y is divided
into two parts by the drive cable as

9k = le + sz (2)

where 6y, is the complementary angle of the hip joint angle, 8, and
Ly, is the length of the shank. Therefore, 0, can be calculated by the
height of the knee joint as

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1321905

Wang et al.

10.3389/fbioe.2023.1321905

Human-machine 9a
Kinematics
eh_der A Joint Impedance Th | Human-machine Fq Impedance qi qz SmartSling
Evaluation Kinetics Controller Position Controller

Motion Capture
System

eh_real

FIGURE 3

Impedance control diagram of the human-machine coupling system for SmartSling.

O = sin‘lL%h (3
Therefore, according to the active motion parameters (g; and gy) of
SmartSling, we can directly calculate the ideal kinematic state of the
lower limb joints in real-time.

However, the cables can only be controlled under tension, and the
inertia in the human body and the limb of the cable coupling system
need to be taken into account. We found that the motion of the trained
limb and machine is not completely synchronized when analyzing the
position control. This phenomenon can be understood as follows: when
starting, the cables are not fully tensioned and move, while the human
body has not yet been stressed to move, and when braking, the cables
are slack due to the inertia of human body movement. We need to
consider the inertill motion of human extremities in the
human-machine coupling system and establish dynamic equations
to analyze the starting motion and braking motion process. The single-
direction training cycle is divided into two states; in the first state, the
machine actively slings the hip joint by lifting the thigh, while in the
second state, the knee joint passively flexes, as shown in Figure 2D.

2.3 State 1: hip joint active slings

For the inpatients who cannot exert active hip joint torque, the
thigh-related torque to the hip joint, 7, in the equilibrium state can
be expressed as

Thip = Jin@h + FiLyy cos Oy + myygly, cos O, (4)

where Ly, is the length of the thigh, I, is the length from the hip joint
to the center of mass of the thigh, m,, is the mass of the thigh, Jy, is
the moments of inertia of the thigh, and Fy is the tension force of the
cable connected to the knee joint. The shank-related torque of the
knee joint, Ty, in the equilibrium state can be expressed as

Tknee = Fa (Lth cos Qh + Lsh sin ekZ)
+mg,g (L €08 Oy + Iy, sin Oky) + Jgnoii

(5)

where [, is the length from the knee joint to the center of mass of the
shank and foot and Ly, is the overall length of the shank and foot.
Since the ankle socket binds to the shank and foot as a rigid
connection, mg, is the mass of the shank and foot, g, is the
moment of inertia of the thigh and foot, and F, is the tension
force of the cable connected to the ankle joint.
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From the equilibrium, the hip joint acceleration, aj, can be
expressed as a function of the joint angle 6y,

_ 40

= (6) ©)

ap

By solving differential equations of f (6),), we can get the
relationship between the hip joint angle, 6}, and time, f, as

0, (t) = Fu (t) (7)
and the duration of hip rotation, At;, can be written as
Aty = F;' (61) = F;,' (Om) (8)

where F;l is the inverse function of F,(t) and 6, and 6, are the
initial and terminal positions of the hip joint, respectively.

2.4 State 2: knee joint flex accompanies
movement

In the second state, the knee joint flexes passively, which leads to
its movement that is not as synchronous as that of the hip joint. The
knee joint angle 6, has a hysteretic movement due to the fact that
the cable connected to the ankle has a passive degree of freedom in a
horizontal slide joint. The equilibrium condition at low speed during
0, movement can be written as

Jsnt + FaLg, cos (O, + 63) + mgglg, sin 6, = 0 )

where 03 can be defined as

0; = cos™’ <7¢Zk * L cos 9k2> (10)
qa

From the equilibrium, the knee joint acceleration, &y, can be
expressed as a function of the joint angle 6y,,

d*o
a =2 =1 (6) (1)

By solving differential equations of r (6y,), we can obtain the
relationship between the second part of the knee joint angle, 6y,, and
time, t, as

Okz (1) = Ry (1) (12)

and the duration of the knee rotation, At;,, can be written as
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TABLE 1 Anthropometric data.

10.3389/fbioe.2023.1321905

Segment Segment length, / (%BH) Mass, m (%BM) Icom (from the distal joint) Radius of gyration kcom
Thigh 254 9.9 56.7 03
Shank 233 46 57 03
Foot 117 1.4 50 0.48

BH, body height; BM, body mass; moment of Inertia, I = m (kconr + lcom)*

TABLE 2 Subject information.

Subject Gender Thigh Shank
number moment of moment of
inertia (kgm?)  inertia (kgm?)
1 M 27 1.783 739 452882 41.5439 7.3161 3.3994 253.2025 97.6329
2 F 25 1611 584 40.9194 37.5363 57816 2.6864 163.3522 62.9827
3 M 25 1.855 902 47.117 432215 8.9298 4.1492 334.5148 128.9863
4 F 26 1649 613 41.8846 38.4217 6.0687 2.8198 179.6481 69.2709
5 M 30 1712 627 43.4848 39.8896 6.2073 2.8842 198.0596 76.3702

777777

FIGURE 4
Bionic impedance model: the active sling force characterized by
the human hip joint.

Atio = Ry (0) = Ry (Bra2) (13)

where R,;zl is the inverse function of Ry,(¢) and 0}, and 0;,, are the
initial and terminal positions of the second part of the knee joint in
the shank following period, respectively.

The analysis of thigh lifting and shank following with position
control of cables can illustrate the kinematic and kinetic aspects of the
human-cable interaction during a single-sling process. The initialization
hysteresis of the shank following the active sling procedure demonstrates
that the human-cable interaction is unstable without force control.

2.5 Human-cable impedance controller

Here, we design a human-cable impedance controller (HCIC) to
minimize the hysteresis of the shank following movement. The
diagram of impedance control in the human-machine coupling

Frontiers in Bioengineering and Biotechnology

system for SmartSling is shown in Figure 3. In the first state of active
sling force, the kinetic equation can be established as

M (6)8+C(6,0)0+G(6) = Fi + fa (14)

where 0 is the vector containing hip and knee joint angles, M(6) is
the inertia matrix, C (6, 0)@ is the Coriolis matrix and centrifugal
terms, G(6) represents the gravity terms, F; denotes the two cable
tension forces, and f; represents the lateral disturbances.

The active sling force is influenced by the human hip joint
estimated impedance, as shown in Figure 4. During the impedance
estimation process, the knee joint is kept in the state of maximum
and the hip impedance in the sagittal plane can be identified from

Thip = J10y + B0y + K0, (15)

where ], By, and Kj, are the lower-limb intrinsic impedance
parameters to be identified, while the joint angle ), and torque
Tip are measurable or computable during the whole moving process.
With the identified lower-limb impedance parameters, the

interaction force can be defined as
Fy = Mg, + Big, + Kiqe (16)

and the impedance parameters are defined as follows

M; I
[Bi ] =6|:Bh]/L,;,cosGh 17)

K; Ky

where § is the impedance gain and gy can be traced back to 6, as
expressed in Eq. 1.
The hip joint error, 6,, can be defined as

Ge = Ghider - GhJeul (18)

where 6, 4., is the desired and 6}, ,., is the real-time hip angle
measured from a wearable motion capture system (MTI-1, Xsens,
Netherlands). The error can be used to calculate the hip joint
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FIGURE 5
Training cycle schematics for SmartSling with the trained subject. The arrows indicate the directions of limb movement in the sagittal plane.
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FIGURE 6

Mean and standard deviation of hip and knee motion for different training speed levels under position control without active force. (A—C) are the hip
range of motion. The hip and knee motion data of the subjects revealed no significant differences in the joint range of motion. However, the RMSE of the
hip and knee range of motion angles differed significantly with the increasing speed in motion. The distinct instability of the angular velocities can be
observed with the increasing training velocity. (D—F) are the RMSE of the angular velocities of hip and knee motion varied with increasing training
speed. Hip RMSE and the error bands increased significantly with increasing training speed. Knee RMSE and the error band increased with increasing

training speed.

residential impedance parameters, as shown by Eq. 18. The
impedance gain, ¢q;, can be calculated with the impedance
controller, as shown in Eq. 19. Finally, the output of the HCIC
for the active cable length is the superposition of the desired length
from human-machine kinematics, ¢4, and the impedance gain, g;, as

Gk =9qa + qi (19)

3 Experiments

The experiments had two objectives: first, observing the
kinematics and kinetic performance of the subjects using
SmartSling under the position control mode, and second,
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validating the impedance controller designed in this study to
adjust and minimize the hysteresis of the shank following
movement. Healthy patients were recruited and asked to be
passive during the motion validation experiments to emulate
bedridden patients with joint weakness. Overall, five healthy
subjects (three males and two females, with mean age 26.6 years
with a standard deviation (SD) of 2.07, height 1.72 m with SD 0.09,
and weight 69.3 kg with SD 13.07) with no history of neurological
impairments were tested. The segment value calculation referred to
an anthropometric data distribution rule proposed by Kirtley (2004),
as shown in Table 1. The subjects” detailed information is given in
Table 2. The Ethics Committee of the Changhai Hospital (Shanghai)
approved this study. Written informed consent was obtained from
all subjects.
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Movement duration of the five subjects’ hip and knee joints over

10 training cycles under the position control mode for the three
training speed levels. The knee joint moved at an average speed of
4.2s,3.2s, and 2.6 s, respectively, slower than the hip joint. The
knee hysteresis decreased with increasing training speed with no
significant association (p >0.1) between the training level and knee
hysteresis. As the training speed level increased, the hip and knee
movement time remained consistent. The hip movement time
decreased by 8.8 s and 16.5 s, respectively, and the knee movement
time decreased by 7.8 s and 15.6 s, respectively.

The experiments are divided into two main processes. 1) Under
the position control mode, the robotic system is operated using three
velocity levels for the vertical movement of the drive cable at the
knee joint, corresponding to 0.05m/s, 0.1 m/s, and 0.15m/s,
respectively. The time required for a complete set of hip and
knee different
synchronized with the position control mode. The average

suspension training at speeds was not
interval time was 5% training cycle time for the three training
speeds. 2) In the HCIC mode, the active motion of SmartSling is
adjusted in real-time according to the subject’s force because of the
presence of human-robot interaction. The hip joint torque can be
estimated by the HCIC as shown in Eq. 18, which can be a reference
parameter for the functional movement evaluation. The speed of
motion at a certain position is not determined for different subjects
due to the differences in limb characteristics. We fixed only the
lowest and highest positions of the drive cable. The obtained
results verify  the
synchronization enhancement of the HCIC for hip and knee

experimental were mainly used to
joint linkage. The five subjects were asked to perform suspension
training with and without active force, respectively, and each

training session was carried out three times for each velocity level.
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All experimental data exported from the SmartSling system were
collected at a sampling rate of 100 Hz. The root mean square error
(RMSE) of the experimental results was calculated for analysis. We
calculated the active moments of the subjects in real-time through
the human-machine coupled kinetic model. The kinetic data could
not be temporarily compared and tested using third-party human
motion analysis instruments. The normalized comparative analysis
of the calculated active motion in humans was performed using
SmartSling without making specific numerical comparisons due to
the human moment calibration and reference data during sling
training. The data of five stable sling training cycles are processed to
verify the relationship between the calculation results of the
locomotion identification system and the reference values. The
RMSE E(q) is obtained as E(g) = \/%Zf':l (g- mean(q))2 where ¢q
are the joint angles calculated by the locomotion identification

system and mean(q) are the mean values of g. One-way analysis
of variance (ANOVA) was conducted to compare the differences in
the kinematic performance and estimated joint kinetics, with
significance set at p < 0.05.

4 Results
4.1 Kinematics under position control

The entire training cycle was divided into joint flexion and
extension movements, and each part was time-normalized into cycle
percentage, as shown in Figure 5. The mean and standard deviation
curves of hip and knee motion for different training levels under
position control without active force are shown in Figures 6A-F. The
hip range of motion was 5.3°-40.7°, 5.1°-42.9°, and 7.3°-40.0°,
respectively, and no significant differences were found in the
joint range of motion at different training speeds (p = 0.23). The
knee range of motion was 4.3°-83.6", 6.1°-81.2°, and 5.5°-82.5’,
respectively, and no significant differences were found in the
joint range of motion at different training speeds (p = 0.15). The
hip and knee motion data of the subjects revealed no significant
differences in the joint range of motion. However, the RMSE of hip
and knee angles differed significantly with the increasing speed of
training. The hip RMSE at the three training speeds was 2.7°, 3.5°,
and 5.4°, respectively, significantly increasing by 29.63% (p = 0.029)
and 44.35% (p = 0.013) with increasing training speed, respectively.
The knee RMSE was 3.3°, 6.9°, and 12.4°, respectively, significantly
increasing with increasing training speed by 52.17% (p = 0.015) and
44.35% (p = 0.008), respectively. The speed of motion in a defined
human-machine motion chain is negligible for the joint range of
motion, but the distinct instability of the angular velocities can be
observed with the increase in training speed.

The angular velocities were obtained by the joint position
differences. The sampling time interval was 0.01s. The hip and
knee joint angle results showed that the joint angle error bands
caused by the increased training speed are amplified in the velocity
calculation. A 5% training cycle time was reserved for the joint
flexion and extension limits of each training cycle to mitigate the
knee joint hysteresis problem before initiating the motion direction
switch. The RMSE of the angular velocities of hip and knee motion
varied significantly with increasing training speed, with a hip RMSE
of 1.2 deg/s, 1.6 deg/s, and 1.7 deg/s for the three training speeds,
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FIGURE 8

Human hip jointimpedance estimation. (A) The mean joint torques of the three subjects were 22.35Nm, 31.99Nm, and 27.64Nm, respectively, which
were positively correlated with their body weight. The range of motion of the hip joint was controlled from 0 to 45° during the estimation progress to
facilitate experimental data comparison between different subjects. (E-G) The human kinematic performances of the three subjects are relatively stable.
However, intrinsic differences existed in body weight and lower-limb proportions among the three subjects. (B—D) The lower-limb rotational inertia
showed significant differences due to the consequential differences in weight and lower limb dimensions among the three subjects, while the trend and
range of hip damping and stiffness coefficients were similar for the three subjects, with an average joint damping of 37+2.3 kgm/s, and the average

stiffness was 40+1.6 kgm/s?.

respectively, and the error bands increasing significantly by 33.49%
(p = 0.013) and 6.25% (p = 0.028) with increasing training speed,
respectively. The knee RMSE was 1.3 deg/s, 1.8 deg/s, and 2.1 deg/s,
respectively, and the error band significantly expanded with
increasing training speed by 38.46% (p = 0.021) and 14.28% (p =
0.017), respectively. At the beginning of the draft training, we
noticed some oscillations in the joint motion speed, with
maximum oscillation of 0.72 deg/s, 1.13 deg/s, and 0.37 deg/s in
the hip joint and 0.21 deg/s, 0.26 deg/s, and 0.41 deg/s in the knee
joint, respectively. The source of these oscillations was mainly due to
the unstable motion caused by the human-driven cable interaction
force, which was not considered in the human-machine coupling
system.

Figure 7 demonstrates the mean movement duration of the
five subjects’ hip and knee joints over 10 training cycles under the
position control mode for the three training speed levels. The
knee joint lagged with an average of 4.2 s, 3.2 s, and 2.6 s,
respectively, after the hip joint completed the movement, which
means that the hip and knee joints steadily experienced
asynchrony problems during the suspension training. This
knee hysteresis decreased with increasing training speed, but
we did not find a significant association between the training level
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and knee hysteresis in the one-way ANOVA. However, as the
training speed level increased, the hip movement time decreased
by 8.8 s and 16.5 s, respectively (Figure 7A), and the knee
movement time decreased by 7.8 s and 15.6 s, respectively
(Figure 7B), while the hip and knee movement time remained
consistent. This trend was consistent with the change time of the
human-machine coupled hip motion by calculating the vertical
motion time of the active cable at different speed levels.
Therefore, the motion trajectory control and time planning
under the position control mode are stable.

4.2 Human hip joint impedance estimation

The hip joint impedance coefficients of the subjects are
estimated for the human-machine coupling system controller
with Eq. 14. The mean values of the relevant parameters were
estimated in real-time for 10 sets of hip tests on three male
subjects, as shown in Figure 8. The subjects were asked not to
exert moment on the hip joint during the test but to rely only on the
driven force of SmartSling to measure the passive impedance
coefficients of the hip joints. The mean joint torques of the three
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The motion trajectories of the knee and ankle joints within the Cartesian space can be utilized for movement assessment. The knee and ankle joint
trajectories of subject 1in the sagittal plane under position control and HCIC training modes are denoted by blue and orange curves. The knee motion has
radial oscillation in addition to the circular arc motion around the hip joint due to the instability of the human—machine coupled motion. We use the two
circles shown by dashed lines to envelop the knee trajectory under two training modes. The width of the knee oscillation annulus under position
control is 53.1 mm, and the width of the oscillation annulus under HCIC control is 19.2 mm. The whole trajectory profile is closer to a circular arc with a
decrease of 63.84% in the knee radial oscillation. The ankle range of motion in the vertical direction was 167.7 mm under position control and 73.0 mm
under HCIC control, and the ankle jump range was reduced by 56.47% under the same horizontal motion start point condition.

subjects were 22.35Nm, 31.99Nm, and 27.64Nm, respectively, which
were positively correlated with their body weight (Figure 8A). The
range of motion of the hip joint was controlled from 0 to 45° during
the estimation progress to facilitate experimental data comparison
between different subjects. Thus, the kinematic performances of the
three subjects are relatively stable, as shown in Figures 8E-G.
However, due to the intrinsic differences in body weight and
lower-limb proportions among the three subjects, the lower-limb
rotational inertia shown in Figures 8B-D exhibited consequential
differences. The lower-limb rotational inertia of subject 3 was
0.21Nms*/kg larger than that of subject 1 when the body weight
is the reference index. The trend and range of hip damping and
stiffness coefficients were similar for the three subjects, with an
average joint damping of 37 + 2.3 kgm/s, and the average stiffness
was 40 + 1.6 kgm/s’.

4.3 Knee and ankle trajectory optimization

The motion trajectories of the knee and ankle joints within the
Cartesian space can be utilized for movement assessment in
addition to

parameters of the lower limb joints. The hip joint was used as

the aforementioned kinematic and dynamic
the origin in the sagittal plane, with the horizontal direction as the
horizontal coordinate and vertical direction as the vertical
coordinate, as shown in Figure 9. We set the impedance gain
& = 0.8 for the HCIC of subject 1. The knee and ankle joint
trajectories of subject 1 in the sagittal plane under position control
and HCIC training modes are denoted by blue and orange curves,
respectively. The knee joint is theoretically an arc of a circle. Still,
the knee motion has radial oscillation in addition to the circular arc
motion around the hip joint due to the instability of the
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human-machine coupled motion. We use the two circles shown
by dashed lines to envelop the knee trajectory under two training
modes. The width of the knee oscillation annulus under position
control is 53.1 mm, and the width of the oscillation annulus under
HCIC control is 19.2 mm. The whole trajectory profile is closer to a
circular arc with a decrease of 63.84% in the knee radial oscillation.
The ankle joint cannot continuously extend the horizontal
movement since the ankle joint-connected cable of SmartSling
is a follower joint and moves only in the horizontal direction. As
the follower joint of the knee joint, the oscillation effect of the knee
joint is amplified at the ankle joint. The horizontal start and end
positions are determined and are, therefore, not affected by the
control strategy. However, the ankle joint trajectory during the
motion shows different effects in the vertical direction of cable
traction due to the limb oscillation in the continuous motion
because of the different sling control strategies. The ankle range of
motion was 167.7 mm under position control and 73.0 mm under
HCIC control, and the ankle jump range was reduced by 56.47%
under the same horizontal motion start point condition. The ankle
and knee joint trajectory results demonstrated that the lower-limb
rehabilitation training of bedridden individuals could be
performed using SmartSling stably and smoothly.

4.4 Kinematics optimization with HCIC

One of the objectives of the experiments is to observe the
of the subjects to compare the
effectiveness of SmartSling under the position control mode and

kinematic performance

HCIC. Healthy patients with no active joint movement can perform

the same function at this experimental stage as bedridden patients
with joint weakness. The kinematic performance of subject 1
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Hip and knee joints’ kinematic performance in four training

cycles (subject 1) under position controland HCIC. The target range of
motion of the hip joint was from 0 to 45.0°, and the corresponding
motion calculation could yield a knee range of motion from 0 to
84.3". The ultimate range of motion of the hip and knee joints under
position control was close to 95.3% and 92.7% of the reference
trajectories, respectively. Under position control, the hip extension
was incomplete (the average ultimate extension was 3.5°+0.7°), and
the knee extension was incomplete (the average ultimate extension
was 10.9°+1.3%). The HCIC effectively restored the hip and knee range
of motion to 98.4% and 96.5% of the reference range, respectively.
The HCIC reduced knee hysteresis by an average of 2.1 s per training
cycle compared to position control.

(Figure 10) was analyzed to demonstrate the superiority of the HCIC
compared to direct positional control. The hip and knee joints of the
five subjects were analogous. The target range of motion of the hip
joint was from 0 to 45.0°, and the corresponding calculation of
motion could yield a knee range of motion from 0 to 84.3". In
addition, the theoretical motion states of the two joints were
synchronized during the sling training. The ultimate range of
motion of the hip and knee joints under position control was
close to 953% and 92.7% of the
respectively. However, the hip extension was incomplete (the
0.7°), and the knee
extension was incomplete (the average ultimate extension was
10.9° + 1.3°). The HCIC effectively restored the hip and knee
range of motion to 98.4% and 96.5% of the reference range,

reference trajectories,

average ultimate extension was 3.5° +

respectively. In addition, in terms of correcting hip and knee
synchronization, as shown in Figure 10B, the HCIC reduced
motor knee hysteresis by an average of 2.1s per training cycle
compared to position control, which accounts for 10.3% of a single
training cycle.
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5 Discussion

We designed, built, and tested a cable-driven bedside lower-
limb rehabilitation robot to assist patients in patient wards who
cannot be transferred over a wide range but are in urgent need of
lower-extremity rehabilitation training. The kinematics of the
proposed bedside rehabilitation robot under position control
was verified with healthy subjects. The lower-limb multi-joint
motion has the problem of motion asynchrony due to the
limitation of the cable drive itself. Although cable driving is a
flexible human-machine interaction method, the human-machine
coupled system tended to be unstable under position control in the
actual operation process without considering the human joint
impedance. Therefore, we added force sensors at one end of the
driven cables and proposed a human-machine coupling kinetic
model to dynamically identify the impedance coefficients of
human lower limbs in the joint space. We designed a
human-cable impedance controller based on the identified
human joint impedance  coefficients.  Subject-training
tests  demonstrated that the proposed
human-computer coupled impedance controller improved the
synchronization of the lower limbs over the joints and the

experimental

stability of the human-cable coupled system and restored the
range of motion of lower limb joints.

Compared with previous cable-driven rehabilitation robots, the
force interaction of the human-cable coupled system proposed in
this study can improve the system stability. Cable-driven
rehabilitation  is  inherently  flexible as a  particular
human-machine interaction. Still, the application of force-open
loop makes it challenging to avoid inertial movement because of
the mismatch between human and robot system impedance
characteristics. SET is an unstable, open-chain, and closed-chain
movement performed using a suspension aid to improve the stability
of the body’s core muscles (Oh and Kwon, 2017). The stability of
human motion with SmartSling was analyzed in two aspects: end-
joint trajectory and joint angle. Analysis of the knee and ankle joint
trajectories of the tested subject in the sagittal plane under position
control and HCIC training modes showed that the knee motion has
radial oscillation in addition to the circular arc motion around the
hip joint due to the instability of the human-machine coupled
motion. The trajectory profile is closer to a circular arc with a
decrease of 63.84% of the knee radial oscillation. The ankle joint
cannot continuously extend the horizontal movement since the
ankle joint-connected cable of SmartSling is a follower joint and
moves only in the horizontal direction. The oscillation effect of the
knee joint is amplified at the ankle joint as the knee joint follows the
hip joint. The horizontal start and end positions are determined and
are, therefore, not affected by the control strategy. However, the
ankle joint trajectory during the motion shows different effects in the
vertical direction of cable traction due to the limb oscillation in the
continuous motion because of the different sling control strategies.

For a bedside rehabilitation robot, rigid driving is not safe
enough for a patient in the bedside stage. The existing direct
drive of distal joints, such as the ankle joint through the end of
the robot arm, is dangerous for the patient without real-time
feedback on the torque and angle of the intermediate joints for
rehabilitation training (Tsuda, 2006; KUKA, 2008). In contrast, our
proposed robot’s coordinated drive for each joint is based on flexible
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force interaction. The closed-loop human-machine dynamic model
calculates the human joint torque in real-time. The experimental
results show that this rehabilitation training strategy is safe and
effective.

The coupled modeling method of the robotic system proposed
in this study provides technical references for other cable-driven
robotic designs in human-machine interaction force perception,
human static characteristic measurement, and joint motion
capability assessment. Currently, SmartSling has limitations for
multi-posture lower-extremity training (lying and lateral postures)
and standing balance training, according to SET. SmartSling
mainly targets lower-extremity limb movement training in the
flaccid paralysis phase but is considered from the perspective of
flexible easily
replaceable wearable accessories. It is expandable to upper-

human-machine interaction features and
extremity training and even to whole-body training through
which

rehabilitation training in narrow patient wards. In addition, the

multi-robot formation, shows great potential for
stability of the human-machine coupling system through the
dynamic identification of human-machine interaction force is a
potential theoretical research and application scenario in the
cable-driven robots, neural

direction of especially  for

rehabilitation robots.

6 Conclusion

This cable-driven lower-limb rehabilitation robot is designed
with closed-chain kinematics and kinetics for the human-machine
coupled system. It can provide professional and efficient lower-limb
rehabilitation training at the bedside for stroke patients. The
recognized human joint active parameters from the kinematic
and kinetic models will be the clinical references for the next
stage of rehabilitation training. We are currently planning on
using the rehabilitation robot to investigate the clinical research
with cooperated rehabilitation departments, especially for bedside
SET training research. In the next research stage, the proposed
impedance matching algorithm will be extended to upper-limb
rehabilitation training. The flexible human-machine interaction
method in this paper is being investigated for application to
training scenarios in physical therapy and occupational therapy,
more than just the bedside.
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Introduction: A multi-degree-of-freedom ankle rehabilitation robot with an
adjustable workspace has been designed to facilitate ankle joint rehabilitation
training. It features a rotation center adapted to the human body, making it suitable
for patients with ankle dysfunction following a stroke.

Method: In this study, a multi-degree-of-freedom reconfigurable ankle
rehabilitation robot (RARR) with adaptable features, based on the principles of
ergonomics, has been proposed to cater to the varying needs of patients. This
robot offers an adjustable workspace, allowing for different types of ankle joint
rehabilitation exercises to be performed. By adjusting the assembly of the RARR,
personalized and targeted training can be provided to patients, circumventing
issues of redundancy in degrees of freedom during its use. A kinematic model of
the robot has been established, and finite element simulation has been employed
to analyze the strength of critical components, ensuring the safety of the robot. An
experimental platform has been set up to assess the smoothness of the
rehabilitation process with RARR, with angle measurements conducted using
an Inertial Measurement Unit (IMU).

Results and discussion: In conclusion, both simulation and experimental results
demonstrate that the robot offers an adjustable workspace and exhibits relatively
smooth motion, thereby confirming the safety and effectiveness of the robot.
These outcomes align with the intended design goals, facilitating ankle joint
rehabilitation and advancing the field of reconfigurable robotics. The RARR
boasts a compact structure and portability, making it suitable for various usage
scenarios. It is easily deployable for at-home use by patients and holds practical
application value for wider adoption in rehabilitation settings.

KEYWORDS

rehabilitation robot, rehabilitation training, reconfigurable mechanism, ankle
rehabilitation, variable workspace
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1 Introduction

Stroke is an acute cerebrovascular disorder characterized by a
high incidence rate, elevated mortality, and a range of complications
(Feigin et al., 2021; Markus, 2022). In recent years, the issue of post-
stroke motor dysfunction has become increasingly pressing due to
the growing number of stroke patients, with data indicating that
approximately 65% of survivors require rehabilitation (Miao et al.,
2023). Traditional rehabilitation is labor-intensive, and associated
with limitations such as the inability to quantify rehabilitation data,
strained medical resources, inconsistent training, and high costs
(Gittler and Davis, 2018; Gao et al., 2023). Robot-assisted therapy
has emerged as a solution to address these challenges. As the fields of
rehabilitation medicine and robotics continue to integrate, various
models of ankle rehabilitation robots have been designed to address
ankle joint dysfunction resulting from strokes (Dao et al., 2022;
Meng et al., 2023a). These diverse rehabilitation robots possess
unique potential, offering the promise of more effective and
consistent rehabilitation solutions for these patients, thereby
positively impacting their quality of life and rehabilitation outcomes.

Ankle rehabilitation robots have extensive applications in the
field of rehabilitation medicine, including but not limited to ankle
injury rehabilitation, athlete rehabilitation, and elderly population
rehabilitation, among other application contexts. Traditionally,
ankle rehabilitation robots can be categorized into two main
types: wearable and platform-based systems (Jiang et al., 2019; Li
et al., 2020). Platform-based ankle rehabilitation robots are fixed
devices consisting of a base and a footplate. The base incorporates
control and power systems, while the patient places their foot on the
footplate. The robot then moves the footplate within predefined
parameters, assisting patients in recovering ankle joint strength and
flexibility. Zou et al. (2022) proposed a 3-RRS (where R and S denote
revolute and spherical joints, respectively) parallel ankle
(PARR)  with
mechanisms. Tsoi et al. (2009) presented an approach that aligns

rehabilitation  robot low mobility parallel
the rotation center by using the patient’s ankle as a part of the robot’s
kinematic constraints, including the selection of four linear
actuators to control platform tilt. However, this approach may
inadvertently impose unexpected loads, leading to discomfort and
safety concerns. Zhang et al. (2019) developed a parallel ankle
rehabilitation robot (PARR) with three rotational degrees of
freedom around the virtual stationary center of the ankle joint.
They also established a comprehensive information acquisition
system to enhance human-machine interaction among the robots,
patients, and healthcare providers. These studies emphasize the
importance of considering compatibility, convenience, and safety
in the design process. Nonetheless, the mentioned rehabilitation
devices are often unable to provide targeted treatment solutions to
users, leading to unnecessary movements during the rehabilitation
process, resulting in redundancy of degrees of freedom.
Additionally, their complex structures increase the cost of robot
design. To address these issues, Zhang et al. (2017) introduced a
redundant-driven reconfigurable robot structure called the
Compliance Ankle Rehabilitation Robot (CARR). This robot is
powered by four Festo pneumatic muscles, offering an adjustable
workspace and actuator torque to meet the range of motion and
muscle strengthening requirements for training. However, this

rehabilitation equipment is relatively large in size, involves
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complex setup and adjustments, and has limited applicability in

various environments. Furthermore, rehabilitation devices
developed using flexible actuators and materials are still in the
experimental stage and are primarily found in laboratories (Meng
et al, 2023b). Wang et al. (2022) designed a novel reconfigurable
ankle rehabilitation exoskeleton capable of static and dynamic
rehabilitation exercises and real-time adaptation to the rotation
center of the human ankle-foot complex. Yoon and Ryu (2005)
developed a reconfigurable ankle rehabilitation robot with multiple
rehabilitation modes. This robot can be reconfigured from a range of
motion (ROM) or strengthening exercise device by simply adding
extra boards to a balance or proprioceptive exercise device.
When developing ankle rehabilitation devices, it is essential to
prioritize user needs, such as device adjustability and adaptability,
the capability for personalized rehabilitation plans, a comfortable
user experience, and low usage costs, among other aspects. However,
this presents several challenges: 1. Precision and Safety: Precision
and safety are fundamental prerequisites for designing such devices.
The robot must ensure the effectiveness and safety of the equipment.
2. Cost and Accessibility: The manufacturing cost of the robot and
the accessibility of the equipment pose a challenge. Rehabilitation
robots need to be produced within a reasonable price range to ensure
widespread availability to medical institutions and patients. 3.
Software Development and Algorithm Design: Complex control
algorithms need to be developed to enable the robot to provide
personalized rehabilitation plans. The causes of ankle injuries in
patients are diverse, and each patient may require different
rehabilitation approaches. Therefore, the development of a
personalized and reconfigurable ankle rehabilitation robot
tailored to individual patient needs holds significant importance.
This study presents a multi-degree-of-freedom ankle
rehabilitation robot with an adjustable workspace for post-stroke
lower limb ankle rehabilitation. The key feature of this robot is its
ability to be personalized and assembled according to the specific
rehabilitation needs of different users, involving the selection of
varying numbers of actuators and assembly modes to achieve
different workspaces for the robot. This customization aims to
provide personalized treatment, avoid redundancy of degrees of
The

organization of the remainder of this study is as follows: Section

freedom, and alleviate the financial burden on users.

2 provides an overview of the robot’s design, including different
assembly modes. Section 3 conducts a theoretical analysis of the
robot, including the establishment of the robot’s kinematic model,
the construction of the robot’s workspaces in various modes, and
finite element simulation analysis to verify the strength of critical
robot components, ensuring the robot’s safety and effectiveness.
Section 4 establishes an experimental platform and conducts passive
control rehabilitation motion experiments with the robot prototype,
analyzing the experimental results to validate the feasibility of the
robot. Finally, in Section 5, a summary and outlook for this study are
provided.

2 RARR system design

This section provides a detailed account of the design process for
the RARR system, comprising two main aspects: the mechanical
structure of RARR and the control system. The mechanical structure
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FIGURE 1

RARR model diagram. (A) Installation schematic. (B) Front view. (C) Top view. (D) left view.

can be further subdivided into three key components: reconfigurable
design, adjustable design, and rotation center matching design. The
RARR’s mechanical structure encompasses three degrees of
freedom, and its adaptability is achieved by selecting different
numbers of actuators and diverse assembly configurations to
accommodate adjustable robot workspaces. These configurations
can be set to enable three single-axis motion modes: dorsiflexion/
plantarflexion, inversion/eversion, and internal/external rotation;
three dual-axis motion modes: dorsiflexion/plantarflexion with
with
external rotation, and inversion/eversion with internal/external

inversion/eversion,  dorsiflexion/plantarflexion internal/
rotation; and one three-axis motion mode. The adjustable design
allows for user-specific adaptability, facilitating both left and right
foot interchangeability and catering to users of varying heights. The
rotation center matching design is implemented to prevent patients
from incurring secondary injuries while using the system. The
control architecture of RARR is composed of four main modules:
the central control module, sensing module, selection module, and

actuation module.

2.1 Mechanical design
The RARR model is illustrated in Figure 1. The structure of

RARR comprises several components, including a mobile guide
rail platform, adjustable sliders, a shin rod, a shin support plate,
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a foot support platform, elastic bands, a control integration box,
transmission mechanisms, and three non-powered rollers. The
three rollers are situated beneath the mobile guide rail platform
and facilitate the robot’s movement. These rollers can also be
locked to prevent unintended movements during use. During
rehabilitation training, the user’s lower leg is secured with
elastic bands, isolating the ankle from other lower limb joints
to prevent compensatory movements and reduce the load on the
robot. The functional sections of RARR are fixed to the mobile
guide rail platform using sliders and are driven by motors to
facilitate user foot movement during rehabilitation. Mechanical
limit structures are designed at each rotational joint to ensure
user safety. The control integration box houses the necessary
components for the control system. Table 1 provides the
mechanical specifications of RARR, detailing the range of
motion for each joint (Sun et al.,, 2019).

2.1.1 Reconfigurable design

In the process of rehabilitation training, multifunctional or
reconfigurable robots are more appealing to patients as they can
reduce healthcare costs and improve the effectiveness of
rehabilitation training (Wang et al., 2022). To cater to the
diverse rehabilitation needs of different users, RARR has been
designed with reconfigurability, offering an adjustable
workspace. By choosing varying numbers of actuators and

different configurations for the functional sections, RARR can
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TABLE 1 Range of motion for RARR.

Motion Angle range ()
Internal 0-20
External 0-30

Dorsiflexion 0-30
Plantarflexion 0-50

Inversion 0-40

Eversion 0-30

be reconfigured into 7 different modes, corresponding to 3 single-
degree-of-freedom motions, 3 dual-degree-of-freedom motions,
and 1 three-degree-of-freedom motion, as depicted in Figure 2.

2.1.2 Adjustable design

To accommodate users with varying lower leg lengths, the
robot can be adjusted. By changing the position of the sliders, the
functional sections of the robot can be adjusted forward and
backwards along the guide rail to suit users of different heights. In
RARR, adjustable limit structures are employed at the internal/
external rotation and inversion/eversion rotational joints,
allowing patients to switch between left and right foot
rehabilitation training, as depicted in Figure 3. During left
foot rehabilitation training, the user depresses Rod A, pushing
its lower end into the limit slot. Simultaneously, Rod C is pushed
to the left, securing Rod A. When right foot rehabilitation
training is required, Rod B is depressed, pushing its lower end
into the limit slot. Rod Cis also pushed to the left, securing Rod B.
This action simultaneously releases Rod A, which, under the
force of a spring, pops out of the limit slot. This adjustment
allows for different robot workspaces, facilitating the transition
between left and right foot rehabilitation training.

2.1.3 Rotation center matching design

An important consideration in the design of rehabilitation
robots is ensuring that the robot’s rotation center aligns with the
ankle joint’s rotation center. Mismatched rotation centers can
lead to patient discomfort or even secondary injuries, it is
significant to figure out the issue of axis alignment of
human-robot coupling (Wang et al., 2022; Cao et al., 2023).
that the of the
rehabilitation robot coincides with the ankle joint’s rotation

Ensuring mechanical rotation center
center is a crucial issue in the design process. We achieve this
objective through the following methods: 1. Anatomical
Research: Anatomical studies and measurements of the
human ankle joint are conducted to determine the ankle
joint’s axis of rotation and the location of its rotation center,
as depicted in Figure 4. This data serves as a reference for robot
design to ensure that the robot’s rotation center closely matches
or coincides with the ankle joint’s rotation center. 2. Software
Simulation: Using relevant software, a human body model is
imported, and simulations are conducted to represent the
robot’s operation. By comparing the position of the robot’s
rotation center with that of the human ankle joint’s rotation

center, adjustments are made to optimize the robot’s design
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FIGURE 2

Different modes of RARR. (A) Dorsiflexion/plantarflexion. (B)
Inversion/eversion. (C) Internal/external rotation. (D) dorsiflexion/
plantarflexion with inversion/eversion. (E) dorsiflexion/plantarflexion
with internal/external rotation. (F) Inversion/eversion with
internal/external rotation. (G) 3-degree-of-Freedom.

parameters to achieve a matching rotation center, as illustrated
in Figure 5.

2.2 Control design

The RARR control system consists of four main modules: the
central control module, sensing module, selection module, and
actuation module, as depicted in Figure 6. The central control
module utilizes an STM32 controller as the control core,
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Mechanical limitation at rotational joints. (A) Limitation device for
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FIGURE 4
Different directions of ankle joint movement.

receiving commands and translating them into corresponding
signals. The sensing module comprises a nine-axis IMU sensor
(N100, WHEELTEC, Dongguan, China, with an angular accuracy
of 0.1RMS) and thin-film pressure sensors. This module collects
user foot angle information and pressure data, forming the basis
for force feedback and position feedback. The selection module is

Frontiers in Bioengineering and Biotechnology

FIGURE 5
Matching rotation centers.

primarily implemented through USART HMI, model
TJC4827T043_011, which provides users with a graphical
interface. It uses different key values to set motion parameters,
achieve the desired goals and complete various training tasks.
The actuation module is composed of four brushless DC gear
motors and encoders. The controller controls the motion of these
four brushless DC motors via the CAN bus, enabling
rehabilitation training actions. Simultaneously, the encoders
and the sensing module continuously monitor the user’s
condition to observe the user’s current information, as shown
in Figure 7.

In the course of a patient’s rehabilitation exercise, the controller
governs the motion based on received signals and control
algorithms. Subsequently, the actual joint angles of the robot are
fed back to the central control module through motor encoders and
posture sensors, forming a closed-loop control system. This system
enables real-time and continuous monitoring and adjustment of the
patient’s rehabilitation status.

3 Theoretical analysis
3.1 Kinematic model

The kinematic analysis of rehabilitation robots is of significant
importance for workspace analysis, motion trajectory planning,
and the determination of the robot’s feasibility. Therefore, it is
necessary to establish a kinematic model for the analysis of
relevant kinematics (Meng et al., 2023a). In the robot’s motion,
a Cartesian coordinate system is established using RPY angles.
Initially, a stationary coordinate system {A} is set at the robot’s
virtual rest center as a reference frame. Its Z-axis is parallel to the
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Overall control design of the RARR system.

FIGURE 7
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Hardware installation model of RARR.
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FIGURE 8

Coordinate diagram of RARR motion structure. (A) Dorsiflexion/
plantarflexion. (B) Inversion/eversion. (C) Internal/external rotation.
(D) dorsiflexion/plantarflexion with inversion/eversion. (E)
dorsiflexion/plantarflexion with internal/external rotation. (F)
Inversion/eversion with internal/external rotation. (G) 3-degree-of-
Freedom.

footplate plane, pointing toward the far end of the footplate, the
X-axis is perpendicular to the footplate plane, pointing upward,
and the Y-axis is parallel to the footplate plane, pointing to the
right of the footplate. Simultaneously, a moving coordinate
system {B} is established at the same origin, moving with the
platform, with its axes oriented similarly to coordinate system
{A}, representing the post-motion footplate plane, as shown in
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FIGURE 9
Simplified coordinate diagram of RARR.

Figure 8 and simplified in Figure 9. The relationship between
coordinate system B relative to coordinate system A can describe
the state of an object.

3.1.1 Forward kinematic analysis

Here, y, B and & represent the rotation angles of coordinate
system B around X4, Y4 and Z,, respectively. The rotation matrix
represented using RPY angles is as follows:

ngyz (3B, &) = Rz (@)Ry (B)Rx ()

ca —sa 0 ¢f 0 sB[1 O O
sa ca 0 0 10 Ocy—sy:|
0 0 1fL-sB O cBlLO sy cy
cacP casfsy — sacy casPcy + sasy

= [sacﬁ sasfsy + cacy saspcy — casy] (1)
—sp cBsy cBey

performing

When motion,
coordinate system {B} rotates around X, and Z, angles are 0,

dorsiflexion/plantarflexion

which means & = 0 and y = 0. Therefore, its kinematic equation is as
follows:

5Rxyz (y, B, &) = Rz (@)Ry (B)Rx (y)

1007 c¢f 0sp7[100 cf 0 sp
=|:010:||:0 1 0:||:010:|=|:0 1 0]
001]l-sp0cpllOO1 -sB 0 cf

)

Similarly, we can derive the kinematic models for the other
modes as follows:
Inversion/Eversion Motion Mode:

ca —sa 0
“Ryyz(p,p@) = | sa ca O 3)
0 0 1
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TABLE 2 Material properties of 6,061 aluminum alloy.

Yield Strength

Tensile Strength Young’s Modulus

(N/m?) (N/m?) (N/m?)
5.51485¢+007 1.24084e+008 6.9¢+010
A

A:Static Structural
Equivalent(Von-Mises)Stress
Type: Equivalent(Von-Mises)Stress

A:Static Structural
Total Deformation
Type: Total Deformation

0.045

10.3389/fbioe.2023.1323645

Poisson’s
ratio

Mass density
(kg/m3)

2,700

2.6e+010

A:Static Structural

Equivalent Elastic Strain

Type: Equivalent Elastic Strain

Unit: m/m

Time: Is
7.2267e-5 Max
6.4237e-5
5.6207e-5
4.8178e-5
4.0148e-5
3.2119e-5
2.408%-5
1.6059e-5
8.0297e-6
5.452e-11 Min

0.090 (m)

Unit: m Unit: Pa

Time: 1s Time: 1s
1.762¢-6 Max 4.975¢6 Max
1.5663¢-6 4.4223¢6
1.3705e-6 3.8695¢6
1.1747e-6 3.3167¢6
9.7891e-7 2.7639¢6
7.8313e-7 22111e6
5.8735e-7 1.6583e6
3.9157e-7 1.1056e6
1.9578e-7 5.5278e5
0 Min 2.1659 Min

0.000
0.022
B

A:Static Structural
Total Deformation
Type: Total Deformation

A:Static Structural
Equivalent(Von-Mises)Stress

Type: Equivalent(Von-Mises)Stress

0.068

A:Static Structural

Equivalent Elastic Strain

Type: Equivalent Elastic Strain

Unit: m/m

Time: 1s
5.7207e-4 Max
5.0856e-4
4.4505e-4
3.8155¢e-4
3.1804e-4
2.5453e-4
1.9102¢-4
1.2757e-4
6.4010e-5
5.0255¢-7 Min

0.02 (m)

0.01

Unit: m Unit: Pa

Time: 1s Time: 1s
3.9592e-6 Max 3.8147¢7 Max
3.5193e-6 3.3912¢7
3.0793e-6 2.9676e7
2.6394e-6 2.544e7
2.1995e-6 2.1205¢7
1.7596e-6 1.6969¢7
1.3197¢-6 1.2734¢7
8.7981e-7 8.4979¢6
4.3991e-7 4.2623¢6
0 Min 26671 Min

0
0.005
FIGURE 11
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Finite element analysis results of selected key components. (A) Part 1: Total deformation, equivalent stress, and equivalent elastic strain results. (B)
Part 2: Total deformation, equivalent stress, and equivalent elastic strain results.

Internal/External Rotation Motion Mode:

10 0
3Rxvz (y.B.@) = | 0 cy —sy (4)
0 sy cy

Dorsiflexion/Plantarflexion and Inversion/Eversion Motion
Mode:

cacf —sa casfp
sacf ca sasf

- 0 B

Dorsiflexion/Plantarflexion and Internal/External Rotation
Motion Mode:

sRxvz (v, B, &) = (5)

B sPsy sPey
0 ¢y -sy

—sf cfsy cPcy

Inversion/Eversion and Internal/External Rotation Motion
Mode:

sRxvz(y, B, &) = (6)
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ca —sacy sasy

sRxvz(y,B,a) = | sa cacy —casy (7)
0 sy cy
Three Degrees of Freedom Motion Mode:
cacB casPsy —sacy casfcy + sasy
#Rxyz (1, B &) = | sacP sasPsy + cacy sasPcy — casy (8)

—sp cBsy cBey

3.1.2 Inverse kinematic analysis
Given the rotation matrix, we can deduce the XYZ fixed-angle
representation in RPY. Let:

fiu " s

ﬁnyz (}’,ﬁ,“) =|Tta T I3

31 13 133
cacf casPsy — sacy casfcy + sasy
sacf sasPsy + cacy sasPcy — casy

-sp cPsy cfcy

)
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FIGURE 12

Robot prototype in various assembly modes. (A) Dorsiflexion/plantarflexion. (B) Inversion/eversion. (C) Internal/external rotation. (D) dorsiflexion/
plantarflexion with inversion/eversion. (E) dorsiflexion/plantarflexion with internal/external rotation. (F) Inversion/eversion with internal/external rotation.
(G) 3-degree-of-Freedom.

Through derivation, we can obtain: By dividing —r3; by ¢, we obtain tan f, and finally, taking the
arctan will give us:

Pt [,.%l w1 (10) B =Atan 2(—r31, NN > (11
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Based on the normal range of motion of the human ankle joint
and the mechanical limit design of the robot, we can determine that
—50° <P <30° and cf+ 0, thus:

a=Atan2(ry, 1), = Atan2(—r31, \13 + 13, ),y

= Atan2(rs, 133) (12)

Where A tan2(y,x) is the two-argument arctangent function,
with a range of values in [-7,7].

3.2 Workspace analysis

The workspace of the robot is a crucial metric for evaluating its
feasibility, as it reflects the robot’s performance and directly impacts
its practical application value (Meng et al., 2023b). To visually
represent the variability of RARR’s workspace, based on the
kinematic model of the ankle rehabilitation robot, a Monte Carlo
random sampling method was used to plot a large number of end-
effector positions to achieve visualization of the robot’s workspace,
as shown in Figure 10.

Figure 10 displays the variation in the robot’s workspace
under different modes. From the figure, it is evident that the
robot’s workspace varies with different configurations, and
adjustments within the same mode can also lead to different
workspaces. Additionally, the robot’s workspace aligns with the
physiological parameters of the human ankle joint, making
RARR suitable for assisting ankle joint rehabilitation training.
The blue area in the figure represents the workspace when using
the right foot, while the red area represents the workspace when
using the left foot.

3.3 Finite element strength verification of
key components

One of the primary objectives of this study is to reduce the
volume and overall weight of the ankle rehabilitation robot by
simplifying the mechanical structure and optimizing materials.
This approach aims to minimize psychological stress on patients
during the training process and reduce energy consumption.
Considering factors such as material yield strength and mass
density, 6,061 aluminum alloy was chosen as the primary
material for key components of the RARR. The main material
properties of 6,061 aluminum alloy are outlined in Table 2. The
remaining components are manufactured using 3D printing with
photosensitive resin as the material.

To validate the reliability and rationality of the mechanical
design and material selection in this study, finite element analysis
was conducted on selected key components of the designed
mechanism, as illustrated in Figure 11.

From the information presented in the figures, it is evident
that the maximum stresses locally experienced by Part 1 and Part
2 are 4.975e+006N/m’ and 3.8147e+007N/m? respectively.
These values are significantly below the material’s yield
strength of 5.51485e+007N/m* The maximum strains are
7.2267e-005 m/m and 5.7207e-004 m/m for Part 1 and Part 2,
respectively. Additionally, the maximum displacement values are

Frontiers in Bioengineering and Biotechnology

10.3389/fbioe.2023.1323645

|

y (i
e Control
; If-{ Integration Box

FIGURE 13
Passive control rehabilitation training experiment.

1.762e-006 and 3.9592e-006 m for Part 1 and Part 2, respectively,
indicating minimal deformation. These results suggest that the
chosen materials for Key Components 1 and 2 are appropriate,
and the dimensional design of the components meets the design
requirements.

4 Experimental findings

4.1 Manufacturing of the prototype and
verification of reconfigurability

In accordance with the design plan, the prototype was
successfully manufactured, and seven different assembly modes
were realized through various assembly methods, as illustrated in
Figure 12. Importantly, there were no interferences during the robot
assembly process. The successful manufacturing of the experimental
prototype validates the rationality and reconfigurability of the robot
design.

4.2 Passive control rehabilitation training
experiment

One healthy subject (male, 26 years old, height 178 cm, weight
60 kg) was recruited to undergo passive rehabilitation training. This
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Joint angle variations in passive control experiments. (A)
Dorsiflexion/plantarflexion. (B) Inversion/eversion. (C) Internal
rotation/external rotation.

study was conducted with the approval of the Ethics Review Committee
of Shanghai University of Medicine and Health Sciences (Approval
Number: 2022-zyxm?2-04--420300197109053525), and all procedures
adhered to the standards outlined in the Helsinki Declaration.
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Passive rehabilitation training is suitable for early
rehabilitation of ankle joint dysfunction patients who may
exhibit symptoms of muscle weakness, low muscle strength, or
high muscle tone. Hence, the experimental setup involved lower
joint operating speeds to ensure system safety. After donning the
experimental prototype, the subject underwent passive control
rehabilitation training to verify the effectiveness and stability of
joint motion during the testing, as shown in Figure 13.

During the training process, first, zeroing the IMU device was
performed to address errors caused by the installation of the IMU
by the experimenter (Yang et al., 2023). Subsequently, a nine-axis
IMU sensor was utilized to monitor the patient’s posture and
acquire the robot’s motion performance. Three experiments were
conducted with the same motion, as depicted in Figure 14. The
experimental results indicate that the training trajectory during
passive rehabilitation is smooth, without abrupt angle changes.
However, due to interference errors during operation, some
angles exhibit fluctuations. In summary, the RARR, driven by
direct motor control, moves the footplate to enable ankle
rehabilitation training, thereby meeting the user’s needs for
strengthening ankle muscle, restoring joint mobility, and
enhancing ankle joint stability. This robot fulfills its design

purpose for assisting in rehabilitation training.

5 Conclusion and future prospects

This study has successfully developed and evaluated a multi-
degree-of-freedom, reconfigurable ankle rehabilitation robot with a
variable working space to assist in the rehabilitation training of
patients with ankle dysfunction following a stroke. The robot’s
variable working space and reconfigurable characteristics allow it
to adapt to seven different modes, catering to the diverse
rehabilitation needs of users. The mechanism incorporates three
rotational degrees of freedom around the human ankle’s rotation
center, reducing discomfort for users during operation. Theoretical
analysis was conducted to determine the relevant parameters of the
robot and validate its performance. Subsequent experiments
demonstrated the robot’s reconfigurability and the smoothness of
training trajectories, aligning with the design objectives. Designed
with principles of human factors engineering, the robot features a
compact structure, portability, and cost-effectiveness, making it
suitable for home use by patients. The modular design helps
reduce equipment usage and maintenance costs, depending on
the robot’s assembly mode, its manufacturing cost ranges from
$800 to $1200. As a result, the developed Reconfigurable Ankle
Rehabilitation Robot (RARR) holds practical application value in
ankle rehabilitation and is primed for widespread use. Furthermore,
we believe that the design methods/principles of this device can
provide valuable insights for the design of devices for other body
parts. For example, in the design of upper limb exoskeleton robots,
the interchangeable and adjustable design can facilitate patients in
performing rehabilitation exercises for different limbs. Additionally,
the adjustability of robot mechanism lengths can accommodate
various patients. The application of a simple, compact, and portable
design concept not only reduces the production cost of the robot but
also allows patients to use it in different settings. In the future, we
will continue to enhance the device’s practicality and aesthetics,
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integrating various human-machine interaction modes such as voice
control and a plantar electrostimulation system to increase its utility.
Clinical trials will also be conducted to further enhance the
rehabilitation effectiveness in clinical practice.
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Introduction: With the aggravation of aging and the growing number of stroke
patients suffering from hemiplegia in China, rehabilitation robots have become an
integral part of rehabilitation training. However, traditional rehabilitation robots
cannot modify the training parameters adaptively to match the upper limbs’
rehabilitation status automatically and apply them in rehabilitation training
effectively, which will improve the efficacy of rehabilitation training.

Methods: In this study, a two-degree-of-freedom flexible drive joint rehabilitation
robot platform was built. The forgetting factor recursive least squares method
(FFRLS) was utilized to estimate the impedance parameters of human upper limb
end. A reward function was established to select the optimal stiffness parameters
of the rehabilitation robot.

Results: The results confirmed the effectiveness of the adaptive impedance control
strategy. The findings of the adaptive impedance control studies showed that the
adaptive impedance control had a significantly greater reward than the constant
impedance control, which was in line with the simulation results of the variable
impedance control. Moreover, it was observed that the levels of robot assistance
could be suitably modified based on the subject’s different participation.

Discussion: The results facilitated stroke patients’ upper limb rehabilitation by
enabling the rehabilitation robot to adaptively change the impedance parameters
according to the functional status of the affected limb. In clinic therapy, the
proposed control strategy may help to adjust the reward function for different
patients to improve the rehabilitation efficacy eventually.

KEYWORDS

rehabilitation robot, upper limb, impedance identification, adaptive impedance control,
optimal stiffness

1 Introduction

Stroke is globally recognized as the second leading cause of both disability and mortality (Sun
et al., 2022). The incidence of stroke worldwide reached 13.7 million new cases, with China alone
accounting for 3.94 million new cases (Ma et al., 2021; Vasu et al,, 2021). The severity of stroke
affects the probability of hemiplegia, as well as the changes in gait speed, balance, spasticity, and
range of motion (Hong et al., 2018). With the aggravation of aging and the growing number of
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stroke patients suffering from hemiplegia in China, the impact of stroke
is becoming increasingly noticeable (Honghai et al., 2022). The current
number of rehabilitation physicians and therapists is hard to meet the
needs of rehabilitation training for the numerous hemiplegic patients.
The rehabilitation robot is the outcome of the fusion between robot
technology and rehabilitation engineering, which may assist patients
with rehabilitation training to a great extent by replacing rehabilitation
physicians. Fabio et al. proved the feasibility and effectiveness of hand
rehabilitation assisted by rehabilitation robot (Vanoglio et al., 2016).
Rehabilitation robot offers several advantages over traditional therapy
performed by therapists, including consistent delivery of therapy,
objective and quantitative assessment, and virtual reality interfaces to
enhance the rehabilitation experience (Wang et al, 2019). The
traditional upper limb rehabilitation robot can only perform the
programmed rehabilitation movements repeatedly, lacking the ability
to adaptively adjust the training parameters based on the affected limb’s
participation during active rehabilitation training. Therefore, robot-
assisted rehabilitation can more effectively motivate patients to
complete their rehabilitation training (Islam et al., 2021).

The impedance parameter of the upper limb is a useful method to
evaluate the extent of the affected limb’s engagement in rehabilitation
exercises, and impedance control is a widely-used technique for
regulating the levels of assistance provided by robotic systems during
rehabilitation training (Perez-Ibarra et al, 2015). In order to provide
appropriate assistant force in training, different control strategies have
been proposed by relevant studies. Perez Ibarra et al. conducted two
adaptive impedance control strategies and indicated that incorporating
the damping parameters of patients into the patient impedance model
could enhance the velocity correlation (Perez-Ibarra et al., 2019). Krebs
et al. developed an impedance control algorithm based on performance
metrics such as speed, time, or EMG signals to adaptively adjust the
duration and levels of assistance provided by the robot during movement
(Krebs et al., 2003). In order to adjust the interaction change between the
human-machine system, Wolbrecht combined the model-based adaptive
impedance control with real-time torque calculation as feed-forward for
the affected limb (Wolbrecht et al, 2008). Losey et al proposed a
sensorless force estimation component to evaluate the patient’s ability
state and subsequently modified the training mode of the rehabilitation
platform (Pehlivan et al, 2016). Although the resistance training for
stroke patients has become a popular method to facilitate rehabilitation,
most rehabilitation robots resistance training offers constant resistance,
which lacks adaptability to the patients’ variable status.

Some studies considered the adaptation of resistance in robot-
assisted rehabilitation. Guozheng Xu used the biological damping and
stiffness parameters identified online to monitor the changes of muscle
strength of the subjects automatically and modified the required
resistance to be aligned with the changes in the muscle strength of
the subjects (Xu et al,, 2017). OttC proposed a control framework for
passive flexible joint rehabilitation robot and designed the impedance
controller which was verified on the DLR lightweight robots and was
only suitable for the cases of constant impedance parameters (Albu-
Schaffer et al,, 2007). Researchers from the Chinese University of Hong
Kong suggested an iterative learning impedance controller for
rehabilitation robots, providing a theoretical basis to ensure dynamic
stability in variable impedance control driven by compliance-driven
rehabilitation robots (Li et al., 2018). A nonlinear model relating to an
adaptive bilateral impedance controller was proposed by Mojtaba
Sharifi’s group, which was suitable for various collaborative tele-
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FIGURE 1
The flexible upper limb rehabilitation robot.

rehabilitation of patient-rehabilitation physician interaction in a
multi-degree of freedom tele-robotics system (Sharifi et al, 2017).
Adaptive impedance control also played a role in exoskeleton
rehabilitation robots, using a nonlinear time-delay disturbance
observer (Brahmi et al., 2021). In the current rehabilitation robotics
studies, the existing human impedance parameter identification
methods can hardly identify the impedance parameters of human
upper limb in real time and apply them in rehabilitation training
dynamically and effectively.

In the process of rehabilitation training, more and more people
consider the importance of variable impedance for rehabilitation
training, and the interaction force between human-machine system
to make accurate evaluation of the patient’s state. However, the
present training model still cannot mobilize the participation of
patients. If the rehabilitation robot can identify the impedance
parameters of the upper limb end and modify the rehabilitation
strategy by adjusting the impedance parameters of the rehabilitation
robot adaptively according to the patient’s status, the rehabilitation
efficiency can be improved significantly, which is more conducive to
the rehabilitation of the affected limb.

In this study, aiming to increase the effectiveness of upper limb
rehabilitation robot, a robot rehabilitation platform was established
and an adaptive impedance control strategy was proposed, which
could adaptively change the impedance parameters according to the
subject’s participation. The paper is organized as follows: Section IT
describes a mechanical platform of rehabilitation robot built for the
following study and the adaptive impedance control strategy.
Section III demonstrates the simulation verification and the
experiment results. Section IV conducts the discussion about the
results, and Section V draws the conclusion of the study.

2 Materials and methods
2.1 Rehabilitation robot system
2.1.1 Mechanical platform and control system

As shown in Figure 1, the flexible joint rehabilitation robot
platform was constructed. Based on the two-degree-of-freedom
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TABLE 1 XGA key joint parameters.

Configuration XGA

Maximum torque 19Nm

Maximum speed 28.5RPM

weight 550g

Transmission ratio 766.222:1

communication Ethernet

sensor Detect torque, acceleration, temperature and current
FIGURE 2

The training diagram of the two-degree-of-freedom flexible
joint upper limb rehabilitation robot.

flexible joint upper limb rehabilitation robot, two connecting rods
were coupled in series using a flexible driver. Tube A and B were
made of carbon fiber tubes, which had the advantages of lightweight
and strong material. The end force sensor adopted the SRI’s six-axis
M3714A, which could
simultaneously measure the force and moment in the end of

(force and moment) force sensor
Cartesian coordinate system. The robotic joint was one of
Seenpin’s XGA series. The joint integrated the motor, reducer,
elastomer, controller, and a variety of sensors. The joint was
characterized by high power density, high speed, and a high
torque output.

The external bus control was applied on the platform. The host
and the joint were connected by a network cable. The signal
transmission between the two joints and the host was achieved
by Ethernet communication. The control system supported
MATLAB one-stop development environment, which reduced the
time cost of debugging the underlying hardware and network
construction for the experiment. Key joint parameters were
shown in the following Table 1. The stiffness of the joint adopted
in the experiment was 170 Nm/rad.

2.1.2 Robot kinematics model

The training diagram of the two-degree-of-freedom flexible joint
upper limb rehabilitation robot could be simplified as Figure 2. The
upper limb rehabilitation robot was composed of two rods (rod A
and rod B), m; = 1 kg, my = 0.7kg, I; =1, =0.4, Iy = 1= 0.2. I,
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and I, were the centroids of the two rods respectively. [; and I, were
the lengths of the two rods respectively. Assuming the two rods had
the same mass, the midpoints of rods A and B served as the mass
centers of the two rods respectively, and gq;, g, represented the joint
angles of rod A and rod B. With point O as the center, the forward
kinematics formula of the upper limb rehabilitation robot with two
degrees of freedom was established as follows.

(1)
)

x, =11 cosqy + 1, cos(qi + q2)
yp =lising; + 1, sin(q, +q2)
xp and y, were the horizontal and vertical coordinates of the

Cartesian space of the robot end.
The inverse kinematics formula was derived from the forward

kinematics:
q1 = atan 2 (Lsyx, + (I + 1L6) ye, (L + 1heo)xe + 1Sy ye) 3)
Xy +PB-1
P p TR
= tacos| 22 1 2 4
7D +acos< TN ) (4)

2.2 Adaptive impedance control strategy

The adaptive impedance control diagram based on human
impedance parameter identification was shown in Figure 3,
which mainly included impedance parameter estimation of the
affected limb,
trajectory planning, inverse kinematics, and robot controller, etc.
The robot first determined the rehabilitation task, chose the task
node, carried out trajectory planning for the rehabilitation robot
through quintic polynomial interpolation to get the expected end

stiffness optimization, impedance controller,

trajectory X, and then calculated the joint expected trajectory
through inverse kinematics ¢, as the controller input. The
position of the joint controller was regulated by PD control.
Next, the impedance parameters K of the affected limb were
identified online using the FFRLS. The impedance parameters of
the upper limb end were also acquired. The optimal impedance K,
was calculated by equations (14) and (15), and the terminal position
correction Ax was obtained by inputting K, into the impedance
controller, correcting the expected trajectory X, to the reference
trajectory X,. The above process was the adaptive impedance control
procedure.

2.2.1 Identification of upper limb impedance
parameters

Some studies have considered mechanical impedance control as
an important method of human motion control. The complex
human arm model was simplified as a Cartesian impedance
model. The internal model of the arm was transferred to the end
of the human arm in the horizontal plane. Therefore, stiffness,
damping, and mass became the three components of the mechanical
impedance at the end of the human upper limb, relating to force,
position, speed, and acceleration respectively. In order to use this
model to assume human-computer interaction in the rehabilitation
system, it was necessary to estimate the impedance at the end of the
human arm. In this section, a model of human upper limb was
established and the impedance at the end of human upper limb was
estimated by FFRLS.
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Since the musculoskeletal system was assumed to be a mass-
spring-damping system, the dynamic motion equation of the mass-
spring-damper system was used as a mathematical model to
measure the dynamic impedance of the upper limb. The
impedance model of the upper limb was depicted in Figure 4,
which could be used to measure the dynamic impedance of the
upper limb under during movement. When the upper limb was in
the stable state, the impedance model of the human upper limb end
in the Cartesian coordinate system could be displayed as follows:

MX+BX+KX=F (5)

M, B, K € R¥? respectively represented the inertial parameters,
damping parameters and stiffness parameters of the human upper
limb end, X € R? and F € R? respectively represented the position
and force of the upper limb end in the Cartesian coordinate system.
The position of the upper limb end was measured by the joint encoder.
The joint position was calculated by the kinematic equation, and the
end force was measured by the six-dimensional force sensor.

In the process of rehabilitation training, the impedance
parameters of human upper limb were variable. With the
changes in the rehabilitation cycle, the impedance parameters of
human upper limb modified slowly. For the slow time-varying
system, the recursive least square (RLS) method had its
limitations. As k increased, the values /pf P(k) and K(k) decreased,
resulting in declining corrections for f ,, the smaller and smaller
correction effect of 6 from new input and output data pairs.
Additionally, the estimation

accuracy of parameter error
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decreased and the RLS method was unable to track the changes
in system parameters online constantly. To overcome this
shortcoming, FFRLS was carried out (Long et al., 2023).

Take the cost function:

L
7= YNy (k) - ¢" (0)8] )
k=1

A was the forgetting factor (0 <A< 1), which meant that the input
and output data were added with a time-varying weight coefficient.
The weight of the latest input and output data of the k group was 1,
and the weight coefficient of all the previous n groups was A". The
smaller the weight coefficient of the original data was, the greater the
degree of forgetting was. The values of P(k) and K(k) would not lose
their ability to correct 6 with the increase of k, that is, the influence

on the system parameter identification would not decrease.
The RLS derivation formula of forgetting factor was as follows:

0(k) = 6(k-1) + K (i) [y (k) = ¢" (k)8 (k-1)]

_ P(k-1)¢ (k)
A+ ¢" (k)P (k-1)¢ (k) )

K (k)
P(k) = % [I-K(k)¢" (K)]P(k-1)

The method of selecting initial values P (0),@ (0) was the same as
RLS. The value of forgetting factor A was generally a positive real
number which was close to 1, usually greater than 0.9. In the linear
system, the forgetting factor was generally 0.95 <A< 1. When A= 1,
the FFRLS degraded into the ordinary RLS.

2.2.2 Optimal stiffness selection

At different stages of their rehabilitation, patients need different
training modalities, requiring a specific stiffness from the
rehabilitation robot (Zou et al., 2022). In order to increase the
effectiveness of rehabilitation therapy assisted by rehabilitation
robot, patients’ active participation must be encouraged by the
robot controller (Luo et al.,, 2017; Guo et al., 2022a). At the same
time, if the patient’s movement deviated from the expected
movement, it should be restrained. Therefore, the reward
function was set to balance patients’ participation and trajectory

shift error. The reward function was defined as:
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r=aF,V - |a el (8)
= (aiFV, - aiel) + (arF,V, - ale?)

F,V was the output power of the patient, which was used to measure
the effort of the patient; e, and e, were the trajectory error at the end
of Cartesian space; a; and a, were the parameters which struck a
balance between the patient’s effort and the trajectory deviation.
When the reward value was higher, the higher the patient’s
participation in rehabilitation training was higher and the
deviation of the expected trajectory was less.

Fx = Khx (xd - x) - thVx

9
Fy =Ky (ya=-y) - BwV, ©)

Eq. 9 was substituted into Eq. 8,
r = (KncerVy — a1By V2 —ale’) + (Kh},eyVy ~a; B,V ~ aiei)

(10)

The reward function r took the partial derivative with respect to
ex and e, respectively.

or )
~— = a1 KV —2a5e,
de,
(11)
or )
Tey = alKhyVy—zazey
In order to maximize the reward function, (;37’: 0,5‘%’ =0,
x y
A alKthx
¥ 2a2
(12)
~ alKhyVy
&y =———
2a3

During rehabilitation training, the inertia, motion acceleration,
and speed of the rehabilitation robot were very small. The inertia
force and Coriolis force could be safely disregarded. In addition,
compared with the joint torque of the rehabilitation robot, friction
was also found to be negligible. Assuming that the affected limb end
achieved a stable state within a short time, the force of the
rehabilitation robot was equal to that exerted by the patient:

F.,+F=0
F,,+F,=0

(er + Khx)ex - (Brx + th)vx: 0
(Kiy + Ky )ey = (Byy + Byy )V, =0

(13)
(14)

Eq. 12 was substituted into Eq. 14 to obtain the optimal stiffness
of impedance control of rehabilitation robot:

> — 2a§ (Brx + th)

er - Khx
alKhx (15)
_ 2d}(B,, + By,)
ry — alKhy — Rhy

IA<rx and IA<ry were the optimal stiffness of the impedance control of
the rehabilitation robot, which maximized the reward function
affected limb. As
demonstrated by Eq. 15, the optimal stiffness of the robot’s

during rehabilitation training of the
impedance control was inversely proportional to the stiffness of
the affected limb, which was conducive to providing corresponding

feedback and parameter changes according to the different needs
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FIGURE 5
The impedance identification experiment platform.

and actual state of patients during rehabilitation training. When the
capacity of the affected limb decreased, the assisting force of the
rehabilitation robot increased. The larger the value of the parameter
a; was, the smaller the optimal stiffness value of the rehabilitation
robot was. In other words, more attention should be paid to the
effort of the affected limb during rehabilitation training to satisfy the
definition of the reward function. The size of the stiffness parameter
was definitely associated with the level of assistance of the
rehabilitation robot (Honghai et al., 2022).

When the affected limb had minimal participation
(Kpx= 0,Kp,= 0), the stiffness of the rehabilitation robot tended
to be infinity. The following limits were set for the stiffness of the
impedance control to avoid this situation. K 1, and K 1. were the
minimum and maximum stiffness that the rehabilitation robot
controller could provide.

Kr = max {Kmim min {K max» Kr}} (16)

3 Experiment results

In order to verify the impedance identification algorithm and the
adaptive impedance control technology proposed in this study, three
sets of experiments were carried out in this section: impedance
parameter identification verification and variable impedance control
simulation experiment, as well as the adaptive impedance control
verification.

3.1 Impedance parameter identification
verification

As shown in Figure 5, the platform for impedance identification
experiment was set up. The end handle of the rehabilitation robot
was connected to the elastic body (rubber band). The other end of
the elastic body was fixed, and the elastic body was fixed stiffness
within a certain range. The six-dimensional force sensor with the
end connected to the grip could measure the force and the torque in
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(A) X-direction trajectory planning in Cartesian space. (B) Joint 1 and joint 2 expected trajectory.

three directions in Cartesian space. The Cartesian coordinate system
was installed at the rotation center of the first joint. Since the
experiment platform belonged to the tabletop upper limb
rehabilitation robot, only coordinate systems in the x and y
directions were established.

Since the peak moment of the joint was 19 Nm, a spring with
excessive stiffness could not be used for the impedance parameter
identification experiment. Therefore, a rubber band chosen for the
experiment had an elastic stiffness of 25 N/m. The end stiffness
parameters were varied by changing the number of strands, stiffness,
and position of the rubber bands. Firstly, two strands of rubber
bands were selected for the impedance parameter identification
experiment. The initial point of the end was (0.4 m, 0), and the
movement was planned to (0.3 m, 0). The trajectory planning
adopted the quintic polynomial interpolation method. Under the
initial condition of the experiment, the elastic band was just taut, and
the force sensor could detect the tension of the elastomer at the end,
which was in the same plane as the elastomer at the other fixed end.
It was planned to move from point A (0.4 m, 0) to point B (0.3 m, 0).
The trajectory planning results in the x direction were shown in the
following figure using quintic polynomials. The position, speed, and
acceleration of the end from top to bottom were illustrated in
Figure 6A. It could be observed that the speed and acceleration
in the initial and terminal states were 0. This method could
successfully avoid the impact of the rehabilitation robot on the
motor during the process of starting and stopping. Meanwhile, the
smooth trajectory also made the rehabilitation process more steady,
which was beneficial to the rehabilitation of the affected limb. The
expected trajectories of the two joints were obtained by inverse
kinematics, as shown in Figure 6B, g4 and g4, were input to the
joint servo controller of the robot as the position control of the two
joints controller.

The interaction force F between the end of the elastomer and the
rehabilitation robot was detected by the force sensor. The real-time
joint angle g was obtained by the encoder of the rehabilitation robot.
The real-time angles of two joints q acquired terminal position
through the forward kinematics. The terminal speed was obtained
by the differential. Inputting the terminal position, terminal speed,
and terminal interaction force, the terminal impedance parameters
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are estimated by the least square method (LS), RLS, and FFRLS. The
input parameters of the impedance identification experiment were
displayed in Figure 7A. The terminal impedance parameters
estimated by LS, RLS, and FFRLS were shown in Figure 7B The
blue, red, and yellow lines represented the estimated end stiffness of
the LS, RLS, and FFRLS, respectively, while the purple line
represented the actual stiffness value. It illustrated that RLS and
LS began to converge after 3s, much slower than FFRLS.

Impedance parameter identification errors were shown in
Table 2. Since the stiffness estimation of the first few seconds by
RLS and LS was divergent, it did not have statistical significance. All
data in Table 2 were calculated after the stiffness identification
curves of FFRLS, RLS, and LS. The root-mean-square errors of
stiffness identification by FFRLS (A = 0.95), RLS, and LS were
1.5900 N/m, 1.6075N/m and 2.0703 N/m, respectively. The
maximum stiffness identification errors were 1.5900 N/m,
1.6859 N/m, and 2.6888 N/m, respectively. The results showed
that the root-mean-square error and maximum error of the
FFRLS (A = 0.95) stiffness estimation were smaller than those of
RLS and LS. Therefore, the stiffness estimation from FFRLS had the
best result.

3.2 Variable impedance control simulation
verification

The feasibility of the above impedance control was verified by
simulation in Matlab 2023a. To verify the system’s ability of control
stiffness under the external disturbances, we simulated the stiffness
of the upper limb end of the healthy participants by modifying
impedance parameters, thereby altering the system’s stiffness
behavior. This
impedance characteristics. The simulation platform was set up

demonstrated its control capability over

based on actual platform parameters. The parameters of
kinematic model were set as follows: m; = 1 kg, m, = 0.7 kg, I; =
0.25,1,=0.1,1,=1,=0.4,1.; =, =0.2; m; and m, were the masses of
rods A and B respectively. [; and I, were the lengths of rods A and B
respectively. [.; and [, were the distances from the center of mass of
rods A and B to the rotation center, respectively. I; and I, were the
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(A) The input parameters of impedance identification experiment (B) Impedance parameter identification results.

TABLE 2 Impedance parameter identification errors.

Identification stiffness RMS(N/m) MAX (N/m)
FERLS (A = 0.95) 1.5900 1.5900
RLS ‘ 1.6075 1.6859
LS ‘ 2.0703 2.6888

moments of inertia of rods A and B, respectively. Parameter g
represented the gravitational acceleration and was taken as 9.8 m/s.
The control stiffness parameter was established as follows:

K, (t) = diag{10 + 10sin (2t), 10 + 10 cos (2¢)} (17)

The end load of Cartesian coordinate system was established as
follows:

fe=2sin(2t), feo= 2 cos(2t) (18)

That is, the stiffness changed at a fixed frequency within a certain
range, which was reflected in the varying stiffness of the
manipulator’s end in different directions on the plane. As shown
in Figure 8, the solid and dashed lines were the curves of the stiffness
of the two different joints of the robot over time.

Under the above external conditions, the corresponding load
force was applied to it. And it was expected that the resulting torque
output and error performance could reflect the stiffness control
performance. Figures 9A,B were the position tracking error and the
derivative change curve caused by the impedance control of the two
joints of the robot, respectively. As observed in Figure 9A, in the face
of the load imposed by the external environment, the tracking error
e; of the reference position converged in a small neighborhood
where the equilibrium point was 0 and the steady-state error did not
exceed 0.06. This result indicated the effectiveness of the adaptive
impedance control strategy when the platform faced the variable
impedance. As shown in Figure 9B, the first derivative of the
reference position tracking error ¢é; gradually converged to 0,
which indicated that the position error of the platform gradually
stabilized under the variable load force.

Figure 10 was the graph of the output torque of the two joints
changing over time, and it displayed that the joint itself output the
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FIGURE 8
The stiffness of two different joints of the robot.

corresponding output torque to counteract the external input
torque.

3.3 Adaptive impedance control verification

To verify the adaptive impedance control system in this study, a
healthy male participant (24 years old, 1.88 m in height, 84 kg in
weight) was recruited in the experiments, as shown in Figure 1, The
study was reviewed by Shanghai University of Medicine and Health
Sciences ethics, batch number 2022-ZYXM4-04-
420300197109053525. The experiment was designed as follows:
the rehabilitation task required the subject to move the end of
the upper limb from A (0.5 m, 0) to C (0.2 m, 0), and each training
time was 10s. Under the condition of constant impedance control
and adaptive impedance control, the experiments were carried out
with varying participation of the affected limb (i.e., different
impedance parameters). The trajectory planning results of x
direction using quintic polynomials were reported in Figure 11A,
including the position, speed, and acceleration of the end from top to
bottom. At the starting point A and the end point C, there was no
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FIGURE 10
The output torque of the two joints.

speed or acceleration. This approach effectively reduced the impact
of the rehabilitation robot on the motor during the phases of starting
and stopping. Furthermore, the well-executed trajectory enhanced
the overall stability of the rehabilitation process, thereby promoting
the recovery of the affected limb. The expected trajectories of both
joints were determined by inverse kinematics, as illustrated in
Figure 11B. g4 and g4 were input to the joint servo controller
of the rehabilitation robot as the position control of the two joints
controller.

The parameters a;= 10,a,= 2 were set to make the weight of the
work performed by the human upper limb higher in the
rehabilitation strategy. The upper limit of the optimal stiffness
was K na = 400 N/m, while the lower limit was K ;, = 10 N/m.
The impedance limit could protect the affected limb and improve
the safety of the rehabilitation training better. The experiment
results under different participation conditions were illustrated in
Figure 12, including the end-trajectory, human-computer
interaction force, the identified end-damping, end-stiffness of the
upper limb, and the robot’s optimal stiffness. Figures 12A,B was the
result of the subject’s high and low participation. When there is a
high level of the subject’s participation in upper limb rehabilitation
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training, the stiffness at the upper limb’s end is high, and the optimal
robot stiffness is low, indicating a lower degree of robot assistance.
As a result, a larger degree of robot assistance was indicated when
there was a low participation level in upper limb rehabilitation
training, low stiffness at the upper limb’s end, and high optimal
robot stiffness.

The terminal trajectories and interaction forces for both the
constant impedance control (Kd = 100 N/m) and the adaptive
13A. In both
experiments, the interactive forces of adaptive impedance and

impedance control were shown in Figure

constant impedance consistently showed high participation levels
for the affected limb. Demonstrating that The reward obtained from
the adaptive impedance control during the rehabilitation training
was significantly higher than that of the constant impedance control
with Kd = 100 N/m, as illustrated by the reward functionsin
Figure 13B. This confirmed the effectiveness and robustness of
the adaptive impedance control strategy proposed in this study.
The analysis of the reward function was shown in Table 3. The
average rewards of constant impedance control (Kd = 100 N/m) and
adaptive impedance control were 0.0152 and 0.8514, and the
maximum rewards were 0.0471 and 13.3437, respectively.

4 Discussion

In this study, we constructed a mechanical platform and
developed a novel adaptive impedance control strategy for the
upper limb rehabilitation robot. We utilized a mass-spring-
damping system to simulate the musculoskeletal system. With
the changes in rehabilitation cycle, we used FFRLS to improve
the accuracy of parameter estimation error. This method, in
contrast to earlier LS or RLS, could constantly track changes in
the impedance parameters online and did not decrease system
parameter identification due to increased stiffness. We employed
the reward function to strike a balance between the subject’s
participation and the trajectory deviation error, further achieving
the optimal stiffness of impedance control of the rehabilitation
robot.

Various techniques were employed in some studies to estimate
and adjust participants’ optimal stiffness. An algorithm that could
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results.

adaptively change the impedance control’s stiffness parameters in
response to the observed values of the interaction force between
patients and robots was proposed by Riener et al. Through the linear
adaptive law, when the workload of the patient was detected to
increase, the stiffness value was reduced (Riener et al., 2005).
Ground on the evaluation of human active torque, Shahid et al.
employed a similar method to control the stiffness of the
manipulator (Hussain et al., 2013). Although their methods
achieved control results, this study fully considered the levels of
the subject’s participation and enthusiasm in rehabilitation training
in the form of a reward function. Patients’ active participation
awareness played a significant role in promoting the effect of
rehabilitation training (Pawlak et al., 2022).
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Moreover, this study designed the experiments under different
participation to get the different parameters from the robot. When
patients showed the signs of fatigue or reduced movement ability, the
robot could increase the assistance level to maintain training continuity
and efficacy, avoiding potential secondary injuries or training
outcomes (Yang et al.,, 2023). Conversely, when patients exhibited a
high level of participation, the robot might reduce its assistance to
encourage patients to make more use of their own muscle, which
supported neural plasticity and the rehabilitation of motor functions
(Kawahira et al., 2010). Further studies via this approach enables more
personalized rehabilitation training, satisfying the specific needs of
different patients, thereby improving the efficiency of rehabilitation
and accelerating the patient’s return to normal life and work.
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TABLE 3 The analysis of reward function.

Control strategy

Constant impedance control (K; = 100 N/m)

The average reward

B ]5 T - T T
—— Kd=100|
~— Adaptive
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'E
<
5
7
5 H
5 4 MM
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The maximum reward

0.0152 0.0471

Adaptive impedance control

In the simulation experiment, it was observed that the
corresponding torque output at the end of the robotic arm could
resist the corresponding load force when the platform was facing
variable external load force and the error was controlled within a
narrow range, proving the effectiveness of the adaptive impedance
control strategy. The limit of the simulation was that the stiffness
change law was set by ourselves to simulate the actual situation.
However, the output stiffness value of the assist-as-needed strategy
was optimized according to the stiffness of the affected limb. We will
optimize the experimental settings by taking assist-as-needed
rehabilitation procedures into account in subsequent studies.

Since impedance control achieved regulation and
stabilization of robot motion by establishing a mathematical
relationship between the interaction forces and the reference
trajectories (Al-Shuka et al, 2018), we compared adaptive
impedance control and constant impedance control for
experimental verification. By setting different parameters to
simulate varying levels of participant engagement, the results
obtained were consistent with the experiment in which a healthy
subject was involved. We also obtained that the average and
maximum rewards of adaptive impedance control were higher
than those of constant impedance control at K; = 100 N/m. Luo,
Duan, comparative
experiments on constant impedance control and variable
impedance control (Luo et al., 2017; Maldonado et al., 2015;

Duan et al., 2018). In these researches, Luo used different levels of

and Berenice conducted simulation

simulated stiffness values, Duan compared the two methods in
different environments, and Berenice simulated the situations of
subjects under different task modes. Their research findings
indicated that adaptive impedance control had better force
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0.8514 13.3437

tracking performance and potential for facilitating rewards
compared to constant impedance control. Adaptive impedance
control technology can be utilized in robot-assisted rehabilitation
systems under various conditions which further prove the
effectiveness of adaptive impedance control in rehabilitation
training. Ibarra and Wang also suggested adaptive impedance
control strategies, considering the influence of patients on the
ankle rehabilitation robot and adjusting the robot aids in real
time (Perez-Ibarra et al., 2015; Wang et al, 2019). The
intervention of the exoskeleton was considered in the process
of training (Guo et al., 2022b).

This control strategy offered significant potential for achieving
the best active training effect and creating a controllable impedance
environment for the patient. The adaptive control strategy can
improve the performance of the human-robot interaction and the
effectiveness of the control system for upper limb rehabilitation
robot. In addition, the proposed strategy could also be applied to the
different rehabilitation robots. In our follow-up studies, we will test
the proposed method with more healthy subjects and patients to
accurately identify the differences based on the different
participation, and we will also apply this control system for the
wearing assistive devices to test its effectiveness, improving the
rehabilitation efficacy eventually.

5 Conclusion

In this study, an novel adaptive impedance strategy for upper-
limb rehabilitation robots was proposed. The efficacy of optimal
stiffness control was confirmed through a comparison of
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performance across various levels of upper limb participation during
the rehabilitation process. A comparison of rehabilitation
performance between adaptive impedance control and consant
impedance control was also conducted. The simulation and the
experiments fully verified the effectiveness of this adaptive

impedance control strategy.
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Introduction: Small-scaled robotic walkers play an increasingly important role in
Activity of Daily Living (ADL) assistance in the face of ever-increasing rehab
requirements and existing equipment drawbacks. This paper proposes a
Rehabilitation Robotic Walker (RRW) for walking assistance and body weight
support (BWS) during gait rehabilitation.

Methods: The walker provides the patients with weight offloading and guiding
force to mimic a series of the physiotherapist's (PT's) movements, and creates a
natural, comfortable, and safe environment. This system consists of an
omnidirectional mobile platform, a BWS mechanism, and a pelvic brace to
smooth the motions of the pelvis. To recognize the human intentions, four
force sensors, two joysticks, and one depth-sensing camera were used to
monitor the human-machine information, and a multimodal fusion algorithm
for intention recognition was proposed to improve the accuracy. Then the system
obtained the heading angle E, the pelvic pose F, and the motion vector H via the
camera, the force sensors, and the joysticks respectively, classified the intentions
with feature extraction and information fusion, and finally outputted the motor
speed control through the robot’s kinematics.

Results: To validate the validity of the algorithm above, a preliminary test with
three volunteers was conducted to study the motion control. The results showed
that the average error of the integral square error (ISE) was 2.90 and the minimum
error was 1.96.

Discussion: The results demonstrated the efficiency of the proposed method, and
that the system is capable of providing walking assistance.

KEYWORDS

kinematic modeling, robotic walker, multimodal fusion, human-robot interaction
control, stroke

1 Introduction

In 2019, there were an estimated 12.2 million cases of apoplexy (95% uncertainty interval
(UI) 11-13.6 million) in the world, with an estimated 101 million sufferers according to the
Global Burden of Disease Study (GBD et al., 2021). The increase in stroke patients has resulted in
143 million cases of disability-adjusted life-years (DALYs), and there are currently around
1.3 billion people with disabilities according to data from the World Health Organization (Feigin
et al,, 2022). Under this tough situation, the present healthcare system, lack of bridle-wise
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physiotherapists (PT), assistive technology, and effective rehabilitation
equipment cannot meet the increasing demand for rehab training, and
disability of the lower extremities limits functional independence in
activities of daily living and significantly deteriorates the quality of life of
the affected individual (Chen et al., 2020; Jarva et al., 2021; Lesaine et al.,
2022). Studies have shown that robot-assisted rehabilitation training is
more effective than traditional gait training in improving walking ability
and balance functions in stroke patients (Nam et al., 2017; Capecci et al.,,
2019; Calabro et al, 2021). Furthermore, rehab training using gait
assistance could help in providing intensive therapeutic exercises while
also allowing for a quantitative assessment of the recovery (Mirelman
et al,, 2019). However, the trial-and-error learning hypothesis in motor
control research suggests that position-control-based movement might
decrease motor learning for some tasks, and the human-robot
interaction control is the main pain point of training aiding
(Reisman et al., 2010; Mojadidi et al., 2017).

During normal walking with the robotic walker, the control
system usually recognizes the human intentions via the
interactive sensors, then outputs the actuating speed of the
wheels based on the classification and interactions. In the
literature focused on human-robot interaction (HRI) strategy
for human mobility assistance, the cognitive Human-Robot
Interaction (cHRI) and the physical Human-Robot Interaction
(pHRI) with humans applied in wearable robotics are explained
by Pons et al. (2008). The cHRI is explicitly developed to obtain
the data acquired by a set of sensors to measure bioelectrical and
biomechanical variables. Takanori O. et al. developed an assist
robotic walker (JARoW-II) for elderly people, and proposed a
pelvic-based walking-support control technique without the use
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of specific manual controls or additional equipment, via two laser
range finders (LRFs) to obtain coordinate data for the surface of
the user’s lower limbs (Ohnuma et al., 2017). The pHRI is based
on a set of actuators and a rigid structure that is used to transmit
forces to the human musculoskeletal system. For example,
Sierra M. et al. developed Smart Walkers to improve physical
stability and sensory support for people with lower limb
weakness via a haptic joystick with three operational modes
(Sierra M. et al.,, 2019), after that they proposed the AGoRA
Smart Walker with a human detection system and a user
and the
intentions via thehuman-robot-environment interface (Sierra

interaction system, walker can estimate the
et al., 2019). However, the integration of classic Human-
Computer interfaces (HCi) with newer types of interfaces
facilitates effective interaction (Sharma et al., 1998), such as
speech or visual interfaces, tactile sensors, the LRF, the IMU,
and force/torque sensors. The ASBGO system proposed by the
University of Minho is a typical example, the walker was
equipped with load cells, an infrared sensor, the Inertial
Measurement Unit (IMU), and a real sense camera to detect
the postural and gait parameters of the user (Moreira et al.,
2019). To improve the accuracy of the task, a new multimodal
interface for walker-assisted gait is proposed, which involves
the integration of different modalities (Frizera et al., 2011). The
UFES’s smart walker combined force sensing and lower limbs
monitoring to detect the user’s legs and showed accurate
performance in all experiments (Valadio et al., 2016).
However, multi-modality information fusion facilitates better
use of the relationships between multiple types of data, which
can improve the model matching accuracy and effectiveness
(Cifuentes and Anselmo, 2016; Horii and Nagai, 2021; Su et al.,
2023). Therefore, this paper proposed a method for the
multimodal fusion and the HRI control, the video image
from the real sense camera, the interaction forces from the
load sensors, and the motion vector from the joysticks were
employed to detect the interaction information, based on the
multimodal fusion method, a new interactive controller was
designed to assist the patients.

The remainder of this brief is organized as follows. Section
2 contains a description of the RRW system. Section 3 describes the
modeling of the system, and formulation of the control problem as
well as the design and implementation of the desired controller.
Section 4 presents the setup and results of the preliminary test with
three volunteers. Finally, Section 5 concludes the brief.

2 System description

Generally, a human-robot interaction system works in
conjunction with a mobile platform to achieve gait assistance, the
robotic walker provides the user with a safe environment via balance
maintenance, meanwhile, sensors and encoders are employed to
detect the motion intention of the user and calculate the control
output (Zhao et al., 2020; Wang et al., 2023). Therefore, as shown in
Figure 1, we designed a robotic walker consisting of three main parts:
i) an omnidirectional mobile platform (OMP); ii) a body weight
support system (BWS), and iii) a pelvic assist mechanism (PAM),
the design details will be described.

frontiersin.org
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FIGURE 2
The CAD model of the walker and coordinate system.

2.1 Hardware description

In this paper, we present a walking assist system facilitating
pelvic movements for several reasons. First, based on the walking
characteristics of the patients and the problem definition, pelvic
movement abnormalities lead to an increase in the double support
phase and abnormal gait. Second, pelvic obliquity and pelvic
rotation are the key parameters for lower extremity motor
function. And third, the pelvic motions are associated with the
gait. Therefore, we proposed the PAM to smooth the pelvic motions
and install the force/torque sensors, as shown in Figure 2, so we can
detect the middle-lateral and vertical displacement of the pelvis, as
well as pelvic obliquity and pelvic rotation. Based on the range of
pelvic motions during normal gait, the user can achieve normal gait
with the help of the PAM. The T corresponds to the middle-lateral
displacement, which consists of a set of ball splines and two springs,
and the displacement is monitored by the force sensors at the end of
the spring. Similarly, T and T are coupled and correspond to the
forward-back displacement and pelvic rotation, as the pelvis is
connected to the walker by the sliders of the two ball splines.
The pose information of the pelvis is given through calculating
sensor data. Then there is a revolute pair to achieve pelvic obliquity
and tilt, labeled as Rg and Ry respectively. Furthermore, one torque
sensor is installed on the joint pontes between the BWS and the
PAM to detect the vertical motion.

For weight offloading and reduction of the cardiopulmonary
burden, a servo motor is designed to realize the approximately
0.5 m vertical displacement of the pelvis and provide subjects with
appropriate body weight support via a guide screw and a set of linear
guideways. The error between the offloading value and sensor signal is
used to trace the pelvic motion, and the system control is
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implemented in TwinCAT2 using a controller (Beckhoff PLC
CX5130). On the top of the BWS, the control platform is installed
to support the upper body weight and implement the interaction
control. Two joysticks and one depth-sensing camera (Surface Go 2)
were used to monitor the human-machine information, the user
manipulated the walker via the left or right joystick according to the
actual condition. The depth-sensing camera is used to obtain the facial
features, as the heading angle can reveal the motion intention.

The primary aim of the OMP is to provide over-ground
mobility, and thus achieve gait assistance. The OMP consists of
three active wheels to provide power, two passive castors to maintain
balance, and a U-shaped rigid steel frame to provide an installation
base. According to the motions of lower limbs, a U-shaped rigid steel
frame is designed to satisfy approximately 0.5 m of free space in the
medio/lateral direction, and 0.8 m of free space in the anterior/
posterior direction. For the active omnidirectional wheels, the
walker is capable of rotation with arbitrary radius.

As described above, the multimodal Human-Robot Interaction
(mHRI) is used to estimate the motion intention: the video image
from the real sense camera, which belongs to the ¢HRI the
interaction forces from the load sensors and the motion vector
from the joysticks were employed to detect the interaction
information, which belongs to the pHRI.

2.2 Problem statement

In the interactive control process of lower limb rehabilitation
robot, it is easy to produce more interference signals for the
abnormal walking characteristics of the hemiplegic patients,
which leads to the indisposed control performance, and then the
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FIGURE 3
The physical prototype of the robotic walker.

robotic walkers cannot assist the users to finish the Activity of Daily
Living (ADL) tasks. For the problem at hand, mobile rehab robots
need to perceive the motion intentions via the cHRI or the pHRI. For
passive walkers, the problem is to detect the safety of the user and
brake at the right moment. For the active walkers, the HRI is more
important for that the system needs to identify the gait pattern
accurately and output appropriate velocity to trace the user.
According to the above analysis, the two major issues are: 1)
estimating the motion intentions; and 2) calculating output velocity.

For estimating the motion intentions, the JARoW-II active
robotic walker obtained the coordinate data for the surface of the
user’s lower limbs via the two LRFs (Hokuyo Automatic Co. Ltd.
model URG-04LX), the advantage of the scheme is capable of the
gait information acquisition, but the drawback is large amounts of
computation; the KineAssist rehab robot estimated the interaction
forces via two ATI force/torque sensors at both side of the pelvis, the
advantage of the scheme is capable of the pelvic information
acquisition, but the drawback is exorbitant price (Hurt et al,
2015). To sum up, there exist some problems with the current
solution, such as high cost, poor intelligence, and inaccurate
intention recognition.

For calculating output velocity, the mobile robots following
behind a user is a common approach in walker-assisted
locomotion (Seo and Lee, 2009), and it is more natural and
comfortable for the person to control the walker if the robot is
placed in front of the user (Haoyong et al., 2003). But the control
problem is the position error between the mobile robots and
humans, for the signal delay from the ¢HRI or the pHRI. The
potential solution is to control the system to minimize the
between humans and the mobile robot

tracking error
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locomotion. A virtual spring model is used to absorb the gap
between the human and the mobile robot motion via the input
velocity generated on the basis of an elastic force (Morioka et al.,
2004). But for pHRI, this solution can lead to a radical change in
the interaction force.

Therefore, we present a method to obtain the heading angle E,
the pelvic pose F, and the motion vector H via the camera, the force
sensors, and the joysticks respectively, as shown in Figure 3, and go
through several steps to get the classification of gait pattern, then
output the velocity to minimize the tracking error, the methods are
detailed in the next chapter.

3 Modeling and control

In order to improve the movement performance and the
controllability of the robotic walker, the robot movement control
model was produced in this chapter based on the robot kinematics,
the active and passive joints were involved. The relation between the
tacking velocity and the output of the servo motors was derived. On
this basis, the control method was presented, which is two stages of
control: the first step performed the mHRI detection via the camera,
the force sensors, and the joysticks; while the second step
corresponded to an inverse kinematic controller.

3.1 Kinematic model

The human-robot interaction model is shown in Figure 2, The
variables and parameters used in this paper are defined as follows:
the OXY Z is a global coordinate system, point oy is the center of the
circle of the OMP, 0y x¢ ¥z is a local coordinate system attached to
the robotic walker, three omnidirectional wheels are uniformly
distributed along the circumference frame, with the center
0;(i=1,2,3), and ¢,(i = 1,2,3) represents the position angle of
the three wheels. The BWS system is located at point D, through the
pelvic assistance mechanism connecting to the pelvic center oy, point
C is the mass center of the robotic walker. Using the position,
orientation, and velocity of point o0y to indicate the position,
orientation, and velocity of the robotic walker, 6 is the heading
angle of the mobile platform relative to the X-axis. r is the radius of
the driving wheel, s is the screw lead of the BWS’s precision ball
screw, @, (i = 1,2, 3) is the distance from the mass center C to the
three omnidirectional wheels.

Defining the velocity matrix of the OMP relative to the global
coordinate system as § = [ x ¥ G]T, the angular velocity of the
three driving wheels as @ = [, 6, 6; |, and the velocity matrix
relative to the local coordinate system as 4z = [ xg ¥, 0z 17. Under
the circumstances that the kinestate of driving wheels is pure rolling
without slide, and the mobile platform is able to do instantaneous
motion along the heading direction of the driving wheels. Defining
the velocity of the PAM, i.e.,, T, relative to the global coordinate
system as 2. The angular velocity of the screw as .

According to robot kinematics and the earlier paper (Ji et al.,
2021), deducing the mapping relation H (g) between the tracking
velocity and angular velocity of the joints:

H(q): R" > R (1)
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Ball spline

FIGURE 4
Mechanical construction of the PAM.

where R” represents the set of the joint angle g, velocity ¢ and

accelerated velocity ¢, and R' represents the set of the generalized

position and posture vector x in the local coordinate system as
defined in Egs 2, 3:

xeR (2)

9.9 4 R” ©)

Then, the velocity vector % in the local coordinate system can be

obtained by the partial derivative about the mapping relation
H(q), as:

x=(0H(q)/99)9 =T (9)q (4)

where J(q) of Eq. 5 is the Jacobian matrix, which belongs to the
set RP",

J(q) € R™ )
According to the derivation of the earlier paper, for the active
joints, the inverse Jacobian matrix can be obtained as Eq. 6,

dy cos(m/2-¢))

d,cos(m/6—9,)

dscos(m/6 + ;)
0

-1 0 0

_1]05 -0.866 0

“r|05 0866 0
0 0 2nr/s

J! (6)

Through the matrix inverse in the MATLAB, the explicit
expression of the Jacobian matrix can be written as Eq. 7:

-2/3 1/3 1/3 0
0 -V3/3 V3 /3 0
J(q)=r 0 0 0 3s/2nr
1 1 1

3d, cos(m/2 - ¢,) 3d,cos(n/6—¢,) 3d;cos(n/6+ ¢,)
@

For the passive part of the robotic walker, as shown in Figure 4,
the pelvic motions can lead to a change of position, so the D-H
method is used to calculate the relation between the current pelvic
pose and the passive joints, then we can obtain the current pelvic
pose through the inverse kinematics and sensor data.
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For the passive joint i, the rotation matrix 'R, and
displacement vector b; contain the static joint structure ("R
and by;) and dynamic rigid motion (R,,; and b,,.:), which can be
expressed as Eqs 8, 9:

i-lRi — i_leiRmi (8)
b,,- = b+ by, 9)

According to Eq. 1, the position vector and rotation matrix of
the joint can be obtained as Eqs 10, 11:

=Y RE, (10)
‘R = n FIR (11)

i=1

Via Eq. 4, a velocity vector in the local coordinate system can be
obtained. To translate into the velocity vector in the global
coordinate system, taking point oy as a reference point, Eq. 4
premultiplies rotation matrix and fg = [vg wr]" translates to
robot velocity in the global coordinate system #y:

ty = Jgtr (12)

where ty = [vm wm 1%, Jg is the rotation matrix. Then we can
obtain the velocity and angular velocity of the robotic walker in the
global coordinate system, which is used for error tracking.

3.2 Intention prediction

The multimodal human-robot interaction model is shown in
Figure 5, the facial recognition is the cHRI, which is used to detect
the Yaw, Roll, and Pitch angle of the head via a real sense camera,
then we can predict the direction the user wants to go and extract the
angle feature E. The force sensors and control levers are the pHRI,
which are used to interact with users. The force sensors installed on
the PAM can not only able to obtain the interaction force and torque
but also detect the current pelvic pose. By the signal combination of
the sensors and the principles of human motion, the motion
intentions of the lower limbs can be obtained as F. Secondly, the
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FIGURE 5

The multimodal human-robot interaction model of the robotic walker.

control levers are used to interact with the hands, and we can obtain
the motion intentions by the information vector, defined as H. After
the feature extraction, we combine the feature via multimodal
fusion, which classifies the motion intention into seven types:
forward, backward, turn left, turn right, front-left, front-
right, and stop.

For the control levers, we can control the walker with two
levers as described in the previous paper (Ji et al., 2021). This
paper addressed the prediction pattern with a single control lever,
defining the lever vector as H, the magnitude of the vector as [H|,
the direction of the vector as @, and the method to obtain the
motion intentions is as follows:

1) Classify the workspace of the lever into five regions OABCD,
defined as Eqs 12a-16:

O € |H|<t,—nt<DP<Tn (12a)
Act<|H|<m,-n/12<D<n/12 (13)
Bet<[H|<m,-177/18< P < — /12 (14)
Cet<|H<m, 171/18<d< - 1771/18 (15)
Det<[Hl<mmn/12<D<177/18 (16)

where t is the threshold value, m1 is the maximum value.

2) signal collection of the lever vector, as shown in Figure 6, obtain
the direction and magnitude of the vector, save the data in time order;

3) predict the motion intention via the current region and
change of the region, the relation between the change rule and
the motion intention is shown in Table 1.

The basic movement pattern of the robotic walker is shown in
Table 1, forward, backward, turn left, turn right, front-left, front-right,
and stop respectively. When the change rule is of the O-A, B-A, or D-A,
the system predicts the human intends to move forward; when the
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FIGURE 6
Definition of the five regions OABCD.

change rule is of the O-C, the system predicts the human intends to
move backward; when the change rule is of the O-B, the system predicts
the human intends to turn left; when the change rule is of the O-D, the
system predicts the human intends to turn right; when the change rule
is of the A-B, the system predicts the human intends to move to front-
left; when the change rule is of the A-D, the system predicts the human
intend to move to front-right; and the walker will stop with other
conditions. Besides, when the interaction forces show abnormal values
or rapid change, or the real sense camera detects a dangerous
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TABLE 1 Basic movement pattern of the robotic walker.

m
=———-1,€ (0,+ 20
* = [Hsin @] (0, +00) (20)
Region (6} A B C D
where k, and k4 are the PD gain coefficient, and kr is the gain
O — Forward Turn left Backward Turn right

coefficient of the interaction force.
A Stop | — Front-left = — Front-right Then by Eq. 12 to calculate the robot velocity in the global
coordinate system fy;, which is used to obtain the motion trail in the

B Stop Forward — Stop —

plane OXY, so we can compare the reference path and the actual
C Stop - Stop - Stop path, and evaluate the effectiveness of the control method.
D Stop Forward — Stop —

4 Experiment and verification

expression, or the emergency stop button is pressed, the walker
performs the Stop action.
The decision rule by the interaction forces has been discussed in the

To prove the effectiveness of the proposed control method, a
preliminary experiment with three healthy volunteers was carried

out in this study. In the preliminary experiment, three healthy
previous paper (Ji et al., 2020). For facial recognition, we use a real sense

camera to detect the Yaw, Roll, and Pitch angle of the head, the angle
feature E is used to assist the prediction. When the angle feature

volunteers were asked to finish a task within the required time.
Three kinds of trajectories were chosen to simulate the ADL task
which were printed on the ground, and then the actual path data was

E € [-n/12 n/12], the system predicts the human intends to move recorded by the Programmable Logic Controller (PLC).

forward, and we define that E=1; when the angle feature
E € [-n/2 —n/12], the system predicts the human intends to turn
left, and we define that E = 2; when the angle feature E € [7/12 7/2], 4.1 Experimental setup
the system predicts the human intends to turn right, and we define that

E = 3; we define that E = 0 with other conditions. In practice, apply the The robotic walker was tested with the proposed control method

and three health volunteers. The “co” path, “O” path, and “0” path were
used to test if the robotic walker could allow the volunteers to walk

comprehensive methods to improve the recognition precision, and
classify the move patterns via the multimodal fusion.

Then the controller calculates the output based on the naturally. The experiment was carried out to evaluate the control

performance by asking the three healthy volunteers to walk along
the three given paths respectively. Three healthy adults were selected for

classification results and interaction single, the function
relationship can be expressed as Eq. 17:

f (vg, wy, 11) = g (H, F, E) (17)  the experiment study, and three men with an average age of 30.7, height

of 1733 cm, and weight of 71.7kg were involved. Before the

After the signal has been processed, we define the dead zone to  experiment, the volunteer wore a harness to connect with the
improve stability, then the robot velocity in the local coordinate  robotic walker and adjusted the pelvic width. Inclusion criteria are
system can be expressed as Eqs 18, 19: no abnormalities in the nervous system, muscle-bone system, or found
R during physical examination, and having had no special balance

k,H + kH + kFZ F,E>0 training previously. A commonly used “co” curve was firstly painted

(18)

VR = i=1 in black on the ground as the target path that the volunteers were asked

0, E<0 to follow, and then the “co” curve was replaced with a “O” and “0”

wn = k,Hsin @ + k Hsin @ + kpAF;, E>0 (19) curve, respectively. Each person had one chance to try the three paths
K 0, E<0 and the experiment results were recorded by the encoders of the three
PATH . i : ; PA'TH . . : PATH

1 ‘m— Roference path 1+ m— Reference path 1k m— Reference path | |
= = Actual path = = -Actual path = = =Actual path

05 05f 05

§ 0 .§ 0 _E; 0 4
-0.5 05F 05 4
1 At i
2 1.5 1 0.5 0 0.5 1 15 2 2 15 1 0.5 0 015 1 15 2 2 15 -1 0.5 0 05 4 15 2
x(m) x(m) x(m)
FIGURE 7
Verification experiment to finish the "co” curve with three healthy adults. The heavy line is the reference path and the dashed line represents the
actual path.
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Verification experiment to finish the "0" curve with three healthy adults. The heavy line is the reference path and the dashed line represents the

actual path.

omni wheels. In the experiment, the volunteers were asked to familiarize
the operation of the robotic walker for 5 min and then finish the task
within 60 s.

4.2 Data processing

For the tracking error analysis, the three target paths were
mathematized in MATLAB to ensure the consistency between
the painted curve and the mathematized curve. The actual
position and orientation of the robotic walker were calculated by
the three encoders of the driving wheel, which were calculated by the
previously derived formulas. Then calculating the error between the
actual path and reference pose samples, for comparison, the amount
of the discrete point was processed into consistent. The normalized
integral square error (ISE) cost function was used to evaluate the
path-tracking error.

Frontiers in Bioengineering and Biotechnology

Descriptive and analytical statistics were performed by the SPSS
22.0 and MATLAB 2016b. The actual paths were time normalized to
100% reference path. The error mean and standard deviation of
position and orientation is defined by the difference between the
target path and the reference path. The experimental results are
shown in Figures 7-9.

5 Discussion

The three experimental results are shown in Figures 7-9, the
volunteers finished the task within the prescribed time, it can be seen
that the volunteers can follow the three given paths within an
acceptable error range, and the “co” curve is the most difficult
task, indicating that the robotic walker allows the person to walk
naturally under the mHRI and control with very minimal effort. As
shown in Figure 7, the initial point and the endpoint are in the center
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of the curve, and volunteer 1 and volunteer 2 showed relatively big
errors, and the ISE results are 2.69, 3.84, and 3.43 respectively,
compared with the previous experimental results, the proposed
method has a significant improvement. For the verification
experiment to finish the “O” curve, the volunteers easily finished
the task within the prescribed time, and the ISE results are 2.85, 2.15,
and 3.76 respectively. For the “0” curve experiment, the volunteers
easily finished the task within the prescribed time, and the ISE
results are 2.44, 2.96, and 1.98 respectively. The results show that
subjects can operate the walker to follow the prescribed curve, and it
is evident that the walker can recognize the motion intent accurately
and the volunteers can control the walker to fulfill the given task.
This tracking experiment paves the way for the clinical application.

6 Conclusion

The present work demonstrates that the robotic walker is capable of
intent recognition with the proposed mHRI system, in the ADL
assistance, the robotic walker has the potential to reduce the stress
on relatives of the patient. The proposed control algorithm for the
motion control is derived via the robot kinematics and multimodal
fusion human-robot interaction and proved to be effective in the pursuit
movement by the preliminary experiment with three health volunteers.
The experiment result shows that the robotic walker can effectively
predict the user’s movement intention and provide appropriate output
velocity to track. The RRW system may be used to improve the gait
function of stroke survivors which is crucial to their quality of life.
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Aiming at the shortcomings of most existing control strategies for lower limb
rehabilitation robots that are difficult to guarantee trajectory tracking effect and
active participation of the patient, this paper proposes a force/position-based
velocity control (FPVC) strategy for the hybrid end-effector lower limb
rehabilitation robot (HE-LRR) during active training. The configuration of HE-
LRR is described and the inverse Jacobian analysis is carried out. Then, the FPVC
strategy design is introduced in detail, including normal velocity planning and
tangential velocity planning. The experimental platform for the HE-LRR system is
presented. A series of experiments are conducted to validate the FPVC strategy’s
performance, including trajectory measurement experiments, force and velocity
measurement experiments, and active participation experiments. Experimental
studies show that the end effector possesses good following performance with
the reference trajectory and the desired velocity, and the active participation of
subjects can be adjusted by the control strategy parameters. The experiments
have verified the rationality of the FPVC strategy, which can meet the
requirements of trajectory tracking effect and active participation, indicating
its good application prospects in the patient’s robot-assisted active training.

KEYWORDS

active training, rehabilitation robot, trajectory tracking, velocity control, active
participation

1 Introduction

Stroke is a cerebrovascular disease that seriously endangers human health (Langhorne
etal., 2011; Singh et al., 2018). Its high incidence rate and high disability rate have brought
heavy burdens to individuals, families and society (Feigin et al., 2009). Epidemiological
investigation shows that motor dysfunction is the leading cause of disability after stroke
(Zhangetal., 2016; Dulyan et al., 2022). In recent years, many studies have been dedicated to
developing rehabilitation robot systems to assist stroke patients in limb rehabilitation
training, and a series of research achievements have been made (Krebs et al., 2007; Zhou
et al,, 2021; Cao et al., 2023).

According to patients’ degree of active participation, training methods are mainly divided
into two types: passive training and active training (Shi et al, 2019). The robot guides the
patient’s limbs along the required reference trajectory in passive training. It aims to prevent
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muscle atrophy through repetitive movement (Wu et al., 2022). Passive
training is suitable for improving proprioceptive sensitivity around limb
joints in the early rehabilitation stage (Chiyohara et al., 2020). In active
training, patients are required to complete corresponding tasks within a
certain period based on verbal or visual instructions (Sun et al., 2023).
Clinical research shows that the patient’s active participation is
cortical limb
rehabilitation (Zheng et al., 2021). The control strategies involved in

conducive to  motor-related activation  and
active training are primarily based on bioelectrical signals and force/
torque signals (Zhang et al., 2017).

Two active control strategies utilizing sSEMG signals are available for
rehabilitation robots: continuous control and triggered control (Meng
etal, 2015; Cao et al,, 2022). With the continuous control, SEMG signals
are used to recognize the limb motion intention, and torque assistance
based on this intention is provided for generating the desired motion (Lu
etal, 2019). Xie et al. have combined sEMG signals with interaction force
to optimize trajectory planning for the rehabilitation robot and planned
different periodic trajectories (Xie et al,, 2016). Khoshdel et al. developed
a neural impedance control strategy to estimate the exerted force using
SEMG signals for a single-DOF rehabilitation robot (Khoshdel et al.,
2018). Shi et al. proposed a model for predicting the continuous motion
of lower limbs for rehabilitation robots (Shi et al., 2020). Their study
examined the influence of different muscle types on joint angles as well
as the robustness of their prediction model. With the triggered control,
the robot begins to provide the assistance when the sSEMG signals reach a
certain threshold (Artz, 2015). Using the support vector machine
classification model, Meng et al. developed a control strategy capable
of predicting limb motion intention and triggering robot assistance based
on sEMG signals (Meng et al., 2014). Ma et al. used sSEMG signals to
predict the angles of the hip and knee joints. When the predicted angle
values reached the set thresholds, the lower limb rehabilitation robot was
triggered to complete the corresponding gait (Ma et al, 2019). An
SEMG-based trigger was proposed by Kawamoto et al. for the HAL
rehabilitation robot. By providing the patient with motion support, HAL
could move the joints in accordance with the movement intention and
improve the lower limb’s joint mobility (Kawamoto et al, 2010).
Nevertheless, bioelectrical signals used for active control are
susceptible to interference and consume considerable time.
Implementation and interpretation of this approach are highly
dependent on the individual (Taffese, 2017).

Compared with bioelectrical signals, force/torque signals have
the advantages of stable performance (Lotti et al., 2022). The active
training control strategies based on force/torque information mainly
include the impedance control and the hybrid force/position control
strategies (Tsoi et al, 2009). The impedance control aims to
synchronously adjust motion and force by establishing an
appropriate interaction relationship (Zhou et al., 2021). Huo
et al. developed an impedance modulation method for the
exoskeleton robot, which can provide balance assistance during
the switch between sitting and standing (Huo et al, 2022).
Mokhtari et al. proposed a hybrid optimal sliding mode
impedance control method and compared the performance with
that of the traditional sliding mode controller in the lower limb
exoskeleton system (Mokhtari et al., 2021). Tran et al. designed a
fuzzy rule-based impedance control strategy that can adjust the
impedance coefficients between the robot and the lower limb under
various walking speeds (Tran et al., 2016). The hybrid position/force
controller is intended for both position and force trajectory tracking
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FIGURE 1

Configuration of HE-LRR. (A) Overall structure of the robot. (B)
Detailed structure of the pedal unit. (C) Schematic diagram of robot
configuration.

(Navvabi and Markazi, 2019). Bernhardt et al. proposed a hybrid
control strategy for the rehabilitation robot Lokomat. In the swing
phase, the rehabilitation robot was controlled by force so the patient
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TABLE 1 Parameter symbols and descriptions of the robot configuration.

Symbol Description

A Length of OD
L Length of DF
Ioy Length of A;B,
los Length of A,B,
los Length of C,Cs
a, Length of OA,;
a, Length of OA,
b, Length of BB,
b, Length of BB,
as Length of CC;
bs Length of C,C,
log Length of OB
m Length of CD
m, Length of C,D
a The angle of {D-XpYpZp} relative to {O-XYZ} around the X-axis
B The angle of {D-XpYpZp} relative to {O-XYZ} around the Y-axis
y The angle of {F-XpYgZg} relative to {D-XpYpZp} around the Xp, axis

could walk independently. In the stance phase, the control software
switched to position control to guide the limb to move (Bernhardt
etal, 2005). Ju et al. developed a hybrid position/force controller for
the rehabilitation robot combined with fuzzy logic to track the
desired force along the preset motion direction (Ju et al., 2005).
Valera et al. developed a hybrid control scheme based on the
position/force information, which makes it possible to perform
different lower limb rehabilitation exercises (Valera et al., 2017).
However, due to the position/force dynamic relationship being
adjusted to increase robot compliance in impedance control, it
increases the difficulty of guaranteeing the trajectory tracking effect
of the robot in lower limb rehabilitation training (Lv et al., 2017). The
common position/force hybrid control strategy allows patients to bear
a certain amount of resistance close to the preset trajectory, which
limits the active participation of patients (Rivas-Blanco et al., 2013).

Aiming at the shortcomings of most existing control strategies for
lower limb rehabilitation robots that are difficult to guarantee trajectory
tracking effect and active participation of the patient, a force/position-
based velocity control (FPVC) strategy is proposed for the hybrid end-
effector lower limb rehabilitation robot (HE-LRR) in this paper. On one
hand, HE-LRR has the advantages of a large workspace and strong
bearing capacity and is also suitable for experimental verification on
subjects with different body dimensions. On the other hand, HE-LRR
can guide the lower limbs to perform three-dimensional spatial
movements, achieving various typical lower limb rehabilitation
exercises such as MOTOmed therapy and continuous passive
motion (CPM) therapy. Experimental studies have been conducted
to verify the rationality of the FPVC strategy under MOTOmed and
CPM modes. This paper is organized as follows. In the Materials and
Methods section, the configuration of HE-LRR is introduced and the
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FPVC strategy design is proposed. Then the experimental platform is
described. In the Results section, the validation experiments are
conducted, including trajectory measurement experiments, force and
velocity measurement experiments, and active participation
experiments. In the Conclusions and Discussion section, the

summary and prospect of the FPVC strategy are presented.

2 Materials and methods

2.1 Configuration of HE-LRR

HE-LRR consists of a base frame, connecting rods, linear actuators,
robot joints, and pedal units, as shown in Figure 1A. The pedal unit is
the end effector of HE-LRR, consisting of a foot pedal, a force sensor,
connecting plates, and a pedal shaft, as shown in Figure 1B.

Figure 1C shows the robot configuration diagram. The origin of
the fixed coordinate system {O-XYZ} lies at the intersection of the two
rotational auxiliary axes of the universal joint. The X-axis coincides
with one axis of the universal joint and along the OA, direction. The
Y-axis coincides with another axis of the universal joint and along the
OA, direction. The direction of the Z-axis is determined by the right-
hand screw rule. Moving coordinate system {B-XpYpZp} has its origin
at the OD rod, Xy axis along the BB, direction, and Y} axis along the
BB; direction. The moving coordinate system {D-XpYpZp} is
established with the X, axis along the axis of the revolute joint D
and the Zp axis along the OD direction. Point F represents the
midpoint of the robot end effectors (pedal units). The Xp axis of
the moving coordinate system {F-XpYpZg} is parallel to the Xp
direction, and the Z axis is along the DF direction.

2.2 Inverse Jacobian analysis

In this subsection, the parameter symbols and descriptions of
the robot configuration are shown in Table 1. According to the
geometric relationships in Figure 1C, the coordinates of point F can
be expressed as follows:

F. =1 sinBcos(a+7y)+1 cosasinf
F,=-Lsin(a+y) -1 sina (1)
F, =1, cos fcos(a +y) +1, cosacosfB

According to Eq. 1, the rotation angles «,  and y can be
expressed as:

112+F2+F§+Fi—122

20,,|F2 + F +F.

o = —arccos

) F,
= arctan| ==
f = arctan ( F. >

F2+F +F’ -1, -1
21112

z

F
— t 2
arc an(F cos,B)

y = arccos

)

Taking the derivative of time on both sides of Eq. 2, the mapping
relationship between the angular velocities and the velocity
components of the robot end effector can be expressed in the
following matrix form:
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where J; is the velocity Jacobian matrix between the angular
velocities and velocity components of the robot end effector.

Establish the following closed-loop vector equation in the fixed
coordinate system {O-XYZ}

log + 9Rn; = m; + A;B; (i = 1,2) (4)

where 9R is the rotation matrix from {B-X3YpZs} to {O-XYZ}, n;
is the position vector of B; in the coordinate system {B-XzY3Zg},
m; is the position vector of A; in the coordinate system {O-XYZ},
lop and A;B; are the vectors of OB and A;B; in the fixed
coordinate system.

4 and
simplifying to get expressions of the linear actuator lengths Iy,
and /o,

Substituting mechanical parameters into Eq.

loy = \/a% + b + 13y — layb; cosa + 2lopa, sina

(5)
lp, = \/ag + b2 + 3y — 1ayb, cos f + 2lppay sin 8
According to the Cosine Theorem, we can get Eq. 6
2+m2+m?+a2-12
cos£CDCy = 221320 (6)

y angle can be solved as Eq. 7

V+m+a+m? -1
arccos — z_3 103 (7)

Hence, the linear actuator length [y; can be expressed as

y=m-

bs
y + arctan—

my
ls = a§+b§+m%+m§+2ﬂm{+u§ﬂm§+b§cos 4

3
+arctan—
my

(8)

The relationship between linear actuator velocities and angular
velocities can be obtained by taking the derivative of time on both
sides of Eqgs 5, 8:

alopcosa +a b, sina .
= a

loy =
lOl
. alopsinasin
102 = l—a
02
axb, sin § — a,lop cos a cos [33
t f
J Iy )
bs
y + arctan—
my
. 7
sin \/1132 + mlz \/b3 + mZZ
as
+ arctan —
i m; .
03 = ] Y
03

Frontiers in Bioengineering and Biotechnology

74

10.3389/fbioe.2023.1335071

|
|
|
|
Via! Vie
Inver.se 1d I PID || Robot —F :
1, | Jacobian | controller X, |
| a
|
L _____ L L
Inverse
kinematics
v, Nornfal
velocity [«
lannin
Velocity E &
combination -
v Tangential
: velocity [«
planning

FIGURE 2
FPVC strategy diagram for HE-LRR

J> is used to represent the Jacobian matrix between the linear
actuator velocities and angular velocities. Eq. 9 can be written in the
following matrix form:

1:01 a Ju 0 017[«a
lp | =72 Bl=|Ja Jz O [|B (10)
los y 0 0 Jslly
where
alop cosa + a; by sin
Ju = I
01
aylop sinasin 8
Jar = I
02
ayb, sin f — a,lop cos a cos ff
Jn = ]
3 02
bs
y+ arctan;
7
sin \/a32 + mlz \/b32 + m22
+ arctan%
J3 = ! i
03

The inverse Jacobian matrix J; can be used to represent the
mapping relationship between the linear actuator velocities and the
velocity components of the robot end effector. Combined with Eqs 3,
10, we can obtain Eq. 11:

l:Ol I:?x
loy |=Ti| Ey | Ji= T2
F

lO3

(11)

z

2.3 FPVC strategy design

Figure 2 shows the FPVC strategy diagram for HE-LRR. The end
effector’s actual three-dimensional position coordinate information
X, is used to plan the normal velocity (NV) V,, of HE-LRR, and
man-machine contact force (MCF) F is used to plan the tangential
velocity (TV) V, of HE-LRR. The NV and TV are combined as the

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1335071

Tian et al.

A

Sensing unit Controlling unit

Cay N

— ) lﬁiﬁ ':E‘!__ ii | Ethernet

Controller

y

Force sensor

Upper computer

|
L | Y

Power unit

12V DC voltage
r
24V DC voltage
B

|

=

Linear actuator
Actuating unit

DC motor driver|

Driving unit

Robot
prototype

Upper
computer

FIGURE 3

Experimental platform. (A) Block diagram of the robot control
system. (B) Physical picture of the robot prototype and the
control system

end effector’s desired velocity V,;. The actual position of each linear
actuator [, is calculated by inverse kinematics. Combined with the
desired velocity V; and the actual linear actuator position [,, the
desired velocity of each linear actuator Vj, is calculated by inverse
Jacobian and is sent to the velocity controller of the FPVC strategy.
The calculation process of inverse kinematics is shown in the
literature (Wang et al., 2022). NV planning and TV planning are
introduced in this subsection in detail.

HE-LRR assists the patient’s lower limbs in performing
rehabilitation exercises under the constraint trajectory through end
traction, so it is essential that the end effector can move along the
reference trajectory in space. When the end effector deviates from the
reference trajectory, the desired NV is planned to reduce the deviation.
P is the actual end point of the end effector of HE-LRR, and P, is the
closest point on the reference trajectory to point P;. The desired NV
direction is along the direction of P;P, and points towards P,.

The end effector’s desired NV can be calculated by Eq. 12:

V,=k.d (12)

where k,, is the NV coefficient, and d is the shortest distance from
point P; to the reference trajectory.

The mapping function between TV and MCF is planned as a
piecewise function, including the initial segment sub-function, linear
segment sub-function and parabolic segment sub-function. When
MCEF is less than the initial threshold F; it is considered that MCF
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is caused by random factors such as mechanical jitter, and cannot
represent the patient’s active intention, and the desired TV is equal to
zero. When the MCF exceeds the initial threshold F; and falls below the
linear threshold F, it is considered that MCF can reflect the patient’s
movement intention. The mapping function is planned as a linear
correlation between the desired TV and MCF. When MCF exceeds the
linear threshold Fj, the slope of the mapping function needs to decrease
based on safety consideration, and the mapping relationship between
TV and MCEF is planned as a parabolic sub-function.

According to the above parameters and settings, the initial
segment sub-function is:

V,=0(F<F,) (13)

The linear segment sub-function is:

Vi :le—lei(Fi<FSFl) (14)

where k; represents the linear segment slope.
The linear threshold F; can be expressed as follows:

_ Vim + lei

F
I ki

(15)
where V), represents the maximum linear velocity.

The parabolic equation whose focus is on the F-axis is chosen for
the planning of the third segment sub-function. The parabolic sub-
function can be written as:

Vi=12p(F-9q) (16)

where g is the F-axis translation distance, and p represents the
distance from the focus to the directrix of the parabola.

To meet the piecewise function’s continuity requirement, the
point (Fj, V},,) is the intersection point of the linear segment and the
parabolic segment, thus:

Vim = 2p(F,—q) (17)

The parabolic slope at the point (Fj, V},) is set to half the linear
slope, thus:

2 \2p(Fi-q)

Combined with Eqs 15-18, the parabolic segment sub-function

Mo P (18)

can be expressed as:
Vi = VkiVi (F - F;) (F> F) (19)

Combined with Eqs 13, 14, 19, the piecewise function can be
expressed as:

0 F<F,
Vim + lei
— . . <7
Vv, = k[F lel F,<F< kl (20)
V]m +lei
> _—

KV (F — F;) F o

It can be seen from Eq. 20 that the mapping function between
TV and MCF can be determined by three parameters, including the
initial threshold F;, the linear segment slope k;, and the maximum
linear velocity Vi,
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TABLE 2 Basic information on healthy subjects.

10.3389/fbioe.2023.1335071

Height (mm) Weight (kg) Thigh length (mm) Calf length (mm)
1 1720 75 430 400
2 1670 78 405 385
3 1690 72 415 400

2.4 Experimental platform

Figure 3A illustrates the block diagram of the lower limb
system, which
controlling, sensing, driving, actuating, and power units. A

rehabilitation  robot’s  control includes the
personal computer (Advantech, IPC610, CN) serves as the
controller. In addition to receiving commands from the upper
computer (Dell, Vostro 5370, USA), the IPC can also receive
signals  from  force  sensors (HUILIZHI, LZ-SWF40,
0-300 N, +0.3%F.S., CN) and encoders. The motor drivers
(Magicon Intelligent, MC-FBLD-6600, 9-36 V, 12 A, CN) receive
commands from the controller to accomplish the telescopic
movement of the linear actuators (YCMC, LEC606, 210 mm,
0-450 N, CN). An incremental encoder records the DC motor’s
actual position as it moves to facilitate the linear actuator’s velocity
closed-loop control. The angle sensors, encoders, and motor drivers
are powered by the power unit that supplies 12V or 24V
DC voltage.

As shown in Figure 3B, the prototype of HE-LRR has been
manufactured, and the control system has been built. The robot’s
base frame is equipped with casters with brakes to facilitate robot
movement and improve stability. Rehabilitation training is
performed with the patient’s feet on the pedal units. According
to the procedure (CRRC-IEC-RF-SC-005-01) approved by the
China Rehabilitation Research Center, three healthy subjects were
recruited to participate in the experiments. Basic information about
the subjects is presented in Table 2. During the experiments, none of
the subjects reported discomfort.

3 Results

To validate the feasibility of the FPVC strategy, trajectory
measurement experiments, force and velocity measurement
experiments, and active participation experiments are carried out
in this section.

3.1 Trajectory measurement experiments

The active training based on the FPVC strategy is carried out
under the constraint trajectory, which makes it possible for
patients to obtain a large range of joint activities. The trajectory
measurement experiments of HE-LRR are carried out under
MOTOmed mode (Figure 4A) and CPM mode (Figure 4B). The
constraint trajectories for the above two modes are a circular
trajectory and a linear trajectory, respectively. The subject’s feet
are connected with the end effector through Velcro tapes. During
the experiment, the actual positions of the linear actuators are
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recorded, and the actual end position of HE-LRR can be calculated
through the forward kinematics of the robot. Each group of
experiments was conducted for 10 min. In subsections 3.1 and
3.2, 10s of data were displayed to more clearly represent
the results.

The trajectory measurement experimental results of HE-LRR in
MOTOmed mode are shown in Figure 5. The reference trajectory
parameters are set as shown in Figure 5A: the center coordinates (xo,
Yo» 20)=(0, =670, 470), the radius is 100.00 mm. When the initial
position is outside the circular trajectory, the initial point is set to (xo,
Yo» 20)=(0, =670, 620). When the initial position is inside the circular
trajectory, the initial point is set to (xo, Yo, 2o)=(0, =670, 520). It can
be seen that during the experiment, the end position of the robot
quickly approaches the reference trajectory first, and then the
approaching velocity slows down. Finally, the end effector’s
actual trajectory has a good coincidence degree with the
reference trajectory. The minimum distance between the end
effector’s actual position and the reference trajectory is defined as
the actual position error of the robot. Figure 5B shows the robot’s
actual position errors under MOTOmed mode. The position errors
of the robot are different due to the difference in the starting point.
The initial position errors of experimental Group A and Group B are
50 mm and —50 mm, respectively. The positive error value indicates
that the initial point is outside the circular trajectory, and the
negative value indicates that the initial point is inside the circular
trajectory. At about 2.91 s, the position error of experimental Group
A decreases to 5.00 mm. At about 1.70s, the position error of
experimental Group B becomes —5.00 mm. After about 4s, the
end error of the robot decreases to a small range, which suggests
that the trajectory tracking effect of the end effector shows good
accuracy and stability under different initial position errors.

The trajectory measurement experimental results of HE-LRR in
CPM mode are shown in Figure 6. The reference trajectory
parameters are set as shown in Figure 6A: the linear trajectory
passes through (xo, ¥o, 29)=(0, =810, 290), and the inclination angle is
10°. When the starting point is above the linear trajectory, the initial
point is set as (xo, ¥o, 20)=(0, =725, 400). When the starting point is
below the linear trajectory, the initial point is set as (xo, yo, 2o)
=(0, =720, 215). It can be seen that the end position of the robot
approaches the reference trajectory quickly initially. After the switch
from forward motion to backward motion, the end position of the
robot still gets close to the reference trajectory. Finally, the actual
trajectory has a good coincidence with the reference trajectory.
According to Figure 6B, when the starting point is above the
linear trajectory, the initial position error is —93.57 mm, and after
2.35 s, the position error becomes —9.36 mm (approximately 10% of
the initial position error), and the final position error is in a small
range. When the starting point is below the linear trajectory, the
initial position error is 89.48 mm. After 2.31s, the position error
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FIGURE 4

Field diagram of trajectory measurement experiments of HE-LRR. (A) MOTOmed mode. (B) CPM mode.
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decreases to 8.95 mm (approximately 10% of the initial position
error), and the final position error is in a small range. In conclusion,
the robot based on the FPVC strategy can realize the rehabilitation
training of the predetermined trajectory with good accuracy and
stability under the MOTOmed and CPM modes.

3.2 Force and velocity measurement
experiments

In active training, the robot system recognizes the motion intention

of the patient by detecting the force applied at the end effector, and
assists the lower limb in realizing the rehabilitation training through the
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actuating unit. The parameter settings of the circular trajectory and the
linear trajectory are consistent with those in Section 5.1. The control
strategy parameters are set as follows: the initial threshold F; = 10 N, the
maximum linear velocity V},, = 7 mm/s, and the linear segment slope
k; = 0.75 mm/(N-s). Based on the forward kinematics of the robot, the
end effector’s actual position can be calculated from the actual positions
of linear actuators. After the differential calculation, the end effector’s
actual velocity can be obtained.

Figure 7 shows the experimental results of the force and velocity
of the robot in MOTOmed mode. In MOTOmed mode, clockwise
and counterclockwise motions are studied, respectively. In the
clockwise motion (Figure 7A), when the MCF value is positive,
the desired velocity is also non-negative and the fluctuation trend of
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the desired velocity is consistent with MCF. When the MCF value is
negative, the desired velocity is non-negative and the fluctuation
trend of the desired velocity is opposite to that of MCF. After 5.01 s,
the MCF rapidly changes from compression force (73.9N) to
tension force. At this time, the desired velocity rapidly decreases
to 0 mm/s and then rapidly increases. In the counterclockwise
motion (Figure 7B), when the MCF value is negative, the desired
velocity is non-negative and the fluctuation trend of the desired
velocity is opposite to that of the MCF. When the MCF value is
positive, the desired velocity is non-negative and the desired velocity
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and MCF have the same fluctuation trend. From 5.94 s, the MCF
quickly changes from tension force (—-74.8 N) to compression force,
and the desired velocity shows a changing law of rapid decrease and
rapid increase. When the desired velocity change rate is low, the end
effector’s actual velocity can better follow the desired velocity. When
the desired velocity curve has a significant mutation, the changing
trend of the actual velocity is quite different and the velocity change
is relatively slow. Since it is expected to avoid the velocity mutation
during the rehabilitation training, it is beneficial that the actual
velocity of the robot can keep relatively stable.
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Figure 8 shows the experimental results of the force and
velocity of the robot in CPM mode. In CPM mode, it is
divided
research. As shown in Figure 8A, in the forward motion, the

into forward motion and backward motion for

value of MCF is positive, and the desired velocity is non-negative.
The desired velocity and the MCF show similar fluctuation trends.
As shown in Figure 8B, in the backward motion, the MCF value is
negative, and the desired velocity is non-negative. The desired
velocity and the MCF show opposite fluctuation trends. It can be
seen that the end effector’s actual velocity has good following
ability to the desired velocity in both forward and backward
motions, which indicates that the robot motion is very sensitive to
the change of the MCF, and can adapt to the active movement
intention of the subject.

3.3 Active participation experiments

In order to study the FPVC strategy parameters’ effects on the
active participation of subjects, this section conducts experimental
research on active participation. We recruited three healthy subjects
to participate in the MOTOmed and CPM modes. All subjects
agreed to include personal data in the study before the experiments.
Each subject participated in 30 active training tasks under different
control strategy parameters.

During active participation experiments, subjects were required
to complete a certain number of tasks in 10 minutes. For the
MOTOmed mode, eight cycles of training needed to be
completed per minute; For the CPM mode, it was required to
complete ten cycles of training per minute, and each subject
could have a rest and physical recovery after completing each
task. After completing the training task, the subject was asked to
take a questionnaire on the subjective feeling and the participation
score. When the subject’s subjective feeling was boredom, relaxation,
excitement, stress, or frustration, the corresponding participation
score was 1, 2, 3, 4, or 5, respectively.
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During the experiment, the MCF signal collected by the force
sensor was filtered by the Kalman filter, and the objective feature
values of root mean square (RMS), mean absolute value (MAV),
variance (VAR), and zero crossing (ZC) were extracted from the
processed MCF signal. RMS and MAV are statistics which can
reflect the MCF signal’s effective value and average strength. VAR
can provide information regarding the signal’s power. ZC
represents the number of times the signal crosses the zero line,
reflecting the number of times the MCF signal switches between
tension force and compression force and can be used to calculate
the number of training cycles. The additional threshold judgment
is introduced to reduce the impact of signal noise on the ZC. The
feature values can be calculated according to Eq. 21:

1 N
MAV = N;m

) 1 x;x;;1 <0,and |x; — x;,| > threshold
f@= o

where x; represents the ith value of the MCF signal, and N represents

otherwise

the number of the data values.

Figure 9 shows the MCF’s feature values and the participation
score of Subject No. 1 in the MOTOmed mode under different
FPVC strategy parameters. When F; and V},, are constant: F; =
10N and V, = 7mm/s (Figure 9A), ZC values are 160,
indicating that the subject has completed 80 cycles of
MOTOmed training. MAV, RMS and VAR increase with the
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MCF's feature values and the participation score of Subject No. FIGURE 10
1in the MOTOmed mode under different FPVC strategy parameters. MCF's feature values and the participation score of Subject No.
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decrease of k;; When k; = 0.5 mm/(N-s), MAV, RMS and VAR  and V},, are constant: k; = 0.75 mm/(N-s) and V;,, = 7 mm/s
achieve maximum values, and the participation score is 5,  (Figure 9B), MAV, RMS, VAR increase with the increase of F;,
indicating that the subjective feeling is frustration. When k;  and ZC value remains unchanged. When F; = 18 N, the objective
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TABLE 3 PSO-BP algorithm parameter setting.

Parameter Parameter value

Training number 1000
Learning rate 0.01
Minimum error 1x 107
Momentum factor 0.01
Minimum gradient 1x10°
Swarm size 30
Space dimension 82
Maximal number of iterations 100
Inertia weight 0.9
Acceleration coefficients (cy, ¢;) (2,2)

indicators achieve the maximum values, and the participation
score is 4. When k; and F; are constant: k; = 0.75 mm/(N-s) and
F; = 10N (Figure 9C), MAV, RMS and VAR increase with the
decrease of Vj,,,. When V;,,, =3 m/s, MAV, RMS and VAR achieve
maximum values, and the participation score is 4. When V},, =
11 m/s, MAV, RMS and VAR achieve minimum values, and the
participation score is 2.

the MCPF’s feature values and the

participation score of Subject No. 1 in the CPM mode under

Figure 10 shows
different FPVC strategy parameters. When F; and V,, are fixed:
F; =10N and V},,, = 7 mm/s (Figure 10A), the ZC value is 200,
indicating that the subject has completed 100 cycles of CPM
training. MAV, RMS and VAR have similar change laws as in the
MOTOmed mode. When k; and V,, are constant: k; = 0.75 mm/
(N-s) and V},,, = 7 mm/s (Figure 10B), the ZC value is 200. When
F; = 18 N, MAV, RMS and VAR achieve maximum values, and
the participation score is 4. When k; and F; are constant: k; =
0.75 mm/(N-s) and F; = 10 N (Figure 10C), the ZC value is also
200. When V;,, = 3 mm/s, the objective indicators achieve
maximum values, and the participation score is 4.

Based on the above experimental results, the mapping
relationship between the objective indicators (the feature
values of the MCF signal) and the subjective indicators
(participation scores given by the subjects) was studied to
realize the prediction from the objective indicators to the
subjective The particle
backpropagation (PSO-BP) algorithm was

indicators. swarm  optimization-
selected for the
regression prediction of active participation. The algorithm
parameter setting is shown in Table 3. Three subjects participated
in the active training of the MOTOmed and CPM modes under
different control strategy parameters. The feature values of MCF were
taken as the training set’s input parameters X,, and the questionnaire
scores of subjects for different training tasks were taken as the output
parameters Y of the training set.

Each subject participated in 10 groups of training under
different control strategy parameters. After the experiments, they
took the questionnaire survey. The feature values of MCF were taken
as input parameters X; of the testing set, and the active participation
scores of the questionnaire were taken as the actual output
parameters Y; of the testing set. Using the trained prediction
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model of active participation, the predicted values Y, were
predicted from the input parameters X;. The comparison between
the actual value and the predicted value of the testing sets for
different subjects is shown in Figure 11.

The participation score of the subject in the testing set is an
integer score of “1, 2, 3, 4, 5”. Because the subjects have different
evaluation criteria for participation, the dynamic trends of
training data are also different. The experimental results show
that the active participation scores predicted by the PSO-BO
algorithm are close to the actual values. If the absolute error
value between the actual value and the predicted value is less
than 0.25, it is regarded as accurate; Otherwise, it is regarded as
inaccurate. Then the prediction accuracy rate for Subject No. 1 is
60% (Figure 11A), that for Subject No. 2 is 80% (Figure 11B), and
that for Subject No. 3 is 70% (Figure 11C). If the absolute error
value between the actual value and the predicted value is less than
0.5, it is regarded as accurate; Otherwise, it is regarded as
inaccurate. Then the prediction accuracy for three subjects can
reach 100%. The above results show that subjects’ active
participation in training tasks can be predicted from the MCF’s
feature values, and the prediction accuracy can meet the prediction
requirements from objective feature values to subjective
indicators.

4 Conclusion and discussion

In this paper, a force/position-based velocity control strategy
was proposed for HE-LRR to meet the demands of trajectory
tracking effect participation  of limb
rehabilitation robots. The end effector’s velocity planning was

and active lower
introduced in detail. Experimental studies were carried out on

the control strategy with the following conclusions:

(1) The trajectory measurement experiments of HE-LRR were
carried out under two training modes. The results showed
that the end effector could approach the reference
trajectory in a short time when the starting points of
the end effector were different (inside the circular
trajectory, outside the circular trajectory, above the
linear trajectory, below the linear trajectory), which
proved that the FPVC strategy is beneficial for subjects
to achieve active rehabilitation training under accurate
trajectories.

The force and velocity measurement experiments of HE-LRR
were carried out in two training modes. The results showed
that the actual velocity of the end effector possessed good
following performance compared with the desired velocity,
which reflected that the robot could adapt to the changes of
MCEF, and proved the rationality of velocity planning in the
FPVC strategy.

(3) Active participation experiments were conducted under
different control strategy parameters, and the prediction of
the active participation was performed using the PSO-BP
algorithm. The results showed that the active participation of
subjects could be adjusted by the control strategy parameters,
and the active participation score could be predicted
accurately from the MCF’s feature values.
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Comparison between the actual value and the predicted value of active participation score. (A) Subject No. 1. (B) Subject No. 2. (C) Subject No. 3.

Although the rationality and feasibility of the FPVC strategy
have been experimentally verified on the HE-LRR system, there are
still some things that could be improved in the research work. For
example, the FPVC strategy was mainly validated on the end-
effector lower limb rehabilitation robot under MOTOmed and
CPM modes, which are training modes in the sagittal plane, and
the experimental validation of the FPVC strategy was conducted by
recruiting a series of healthy subjects. Our future research work will
mainly focus on carrying out three-dimensional spatial trajectory
verification and on the exoskeleton-type lower limb rehabilitation
robot to improve the robot’s functionality and practicality, and
conducting clinical experiments to study patients’ experience and
active participation under the FPVC strategy.
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Training with "Extended Reality” or X-Reality (XR) systems can undoubtedly
enhance the control of the myoelectric prostheses. However, there is no
consensus on which factors improve the efficiency of skill transfer from virtual
training to actual prosthesis abilities. This review examines the current status and
clinical applications of XR in the field of myoelectric prosthesis training and
analyses possible influences on skill migration. We have conducted a thorough
search on databases in the field of prostheses using keywords such as extended
reality, virtual reality and serious gaming. Our scoping review encompassed
relevant applications, control methods, performance evaluation and
assessment metrics. Our findings indicate that the implementation of XR
technology for myoelectric rehabilitative training on prostheses provides
considerable benefits. Additionally, there are numerous standardised methods
available for evaluating training effectiveness. Recently, there has been a surge in
the number of XR-based training tools for myoelectric prostheses, with an
emphasis on user engagement and virtual training evaluation. Insufficient
attention has been paid to significant limitations in the behaviour, functionality,
and usage patterns of XR and myoelectric prostheses, potentially obstructing the
transfer of skills and prospects for clinical application. Improvements are
recommended in four critical areas: activities of daily living, training strategies,
feedback, and the alignment of the virtual environment with the physical devices.

KEYWORDS

myoelectric prostheses, extended reality prosthetic systems, virtual reality, augmented
reality, mixed reality, serious games

1 Introduction

The loss of the upper extremity is one of the most significant and destructive injuries
after central nervous system damage, including spinal cord injury, stroke, and traumatic
brain injury, which would cause a drastic sensory-motor deficiency, serious physical
disorders, and limited daily life. Myoelectric prostheses are valuable tools for meeting
the demand for functional recovery improvement of amputees, and the establishment of
advanced rehabilitation techniques for upper extremity loss holds great promise for
improving the quality of life of patients (Pasquina et al, 2015). However, using
myoelectric prostheses in daily activities necessitates the user’s ability to produce precise
and synchronized electromyography (EMG) signals, which requires extensive training and
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prolonged practice to achieve even minimum levels of dexterity
(Resnik et al., 2012; Johnson and Mansfield, 2014). Although these
prostheses have begun to implement sophisticated artificial
the lack of
appropriate training and limited integration into the activities of
daily living (ADL) has contributed to high rejection rates (19%-
61%) (Biddiss and Chau, 2007a; Biddiss and Chau, 2007¢; Ostlie
et al,, 2012; Salminger et al., 2022). Consequently, the efficiency of

intelligence algorithms and control schemes,

myoelectric prostheses remains a challenging problem (Biddiss and
Chau, 2007b). The average waiting period from amputation to the
initial prosthesis fitting is around 6 months, with no associated
training provided during this time (Pezzin et al., 2004; Ostlie et al.,
2012; Salminger et al., 2022). Research has shown that fitting the
prosthesis earlier improves compliance (Roeschlein and Domholdt,
1989). Delaying fitting would only exacerbate the user’s feelings of
discomfort and hassle, highlighting the necessity for advanced pre-
prosthetic training tools (McFarland et al., 2010).

Neural plasticity plays a crucial role in the utilization of
myoelectric prostheses, facilitating a novel mode of coordination,
which reduces phantom limb pain caused by amputation, whilst
supporting long-term skill retention and transfer (Rogers et al.,
2016; Preifiler et al., 2017; Snow et al., 2017; Akbulut et al., 2019;
Kulkarni et al., 2020). Nonetheless, it necessitates intensive muscle
training to achieve control. Conventional physical therapy (CPT) is
a highly repetitive exercise rehabilitation training under the
supervision of doctors or therapists, which stimulates the motor
nerve paths through mobilization, stretching and strengthening to
enhances the control ability of the muscles of the stump (O'Keeffe,
2011; Cerritelli et al., 2021; Cao et al.,, 2023). This training method
lacks accurate quantitative evaluation criteria for amputees. And the
whole process is very arduous and monotonous. Many participants
become fatigued and lose motivation, and some even completely
abandon myoelectric prostheses (Resnik et al., 2012). Consequently,
traditional rehabilitation training methods are difficult to help
amputees to complete the target task (Stucki, 2021). There is an
urgent need for a personalized, high-quality and attractive prosthetic
rehabilitation training program to constantly improve equipment
control, both prior to use and during the operation of the prostheses.
Better training results will stem from more comprehensive, more
clinical, more rewarding and entertaining myoelectric training for
amputees, making rehabilitation feel less like rehabilitation. Previous
studies indicate that “Extended Reality” or X-Reality (XR) systems,
utilizing gamification and edutainment, can provide superior
outcomes in comparison to CPT exercises. XR is a virtual
environment capable of generating precise control over numerous
physical factors and has been widely used in education, brain-
computer interfaces and human-computer collaboration and
other fields. For the training of myoelectric prostheses, XR
systems have become popular tools for physical rehabilitation
and motor learning, as XR helps to increase amputees’
willingness and motivation to participate in training, while also
allowing for improved assessment and evaluation of progress
(Radianti et al., 2020). It is a valuable resource for those seeking
prostheses training, and its impact on the field is significant.

In this paper, the term XR in prostheses training refers to a very
broad which
environments and generated virtual digital environments by

concept, encompasses all reproduced real

computer technology and wearable devices, along with novel
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methods of human-computer interaction, which includes virtual
reality (VR), augmented reality (AR), and mixed reality system (MR)
(Figure 1). The major feature of this technology is immersion, which
refers to any solution capable of delivering more immersive and
captivating training experiences to patients. Apart from visual
stimulus conveyed by images or videos, it may also entail other
sensory stimuli, such as touch and sound. Among these
technologies, VR system utilizes computer simulation to create a
three-dimensional space and create a sense illusion for users,
increasing the user’s sense of presence, allowing for greater
interactivity within the virtual world. However, the VR system
necessitates users to wear a head-mounted display with a
binocular omni-orientation monitor to completely occlude the
natural physical space of the surroundings, which may induce a
series of problems, such as dizziness, motion sickness and other
health issues. The AR system uses computer simulation to create
virtual information based on physical data that is challenging to
experience in real-world conditions. This virtual information is then
superimposed onto the real space to generate a new picture or space
that enhances the user’s visual experience and provides a sense of
interaction that extends beyond reality (Hugues et al.,, 2011). The
MR can mix virtual object information in the real space, and realize
the interaction between users and virtual objects. It establishes an
interactive feedback information loop between the real world, virtual
space and users, enhancing realism and creating a richer experience
(Flavian et al, 2019). The distinction between AR and MR is
opaquer; both mix real and virtual elements and augment reality
with virtual elements. The only essential difference between VR and
AR (MR) is that while the former confronts the user solely in the
digitally created world, the latter mixes digital with the real world
(where the real world can be given either directly through
transparent lenses (e.g., Microsoft HoloLens) or indirectly,
through displays that stream the camera feed (e.g., Apple XR)).
The XR prosthesis system refers to a virtual version of a prosthesis,
built in XR environment, which does not necessarily have a control
object as the prosthesis, but rather is programmed and calibrated in
a manner similar to a physical prosthesis and uses simulated objects
to map control commands of the EMG, allowing amputees to
practice the control scheme in a well-practiced environment. XR-
based rehabilitation has been proved to have some positive effects on
behavior and physiology, and is very popular with elderly, Stroke,
and Parkinson’s disease patients (Murray et al., 2007; Saposnik and
Levin, 2011; Cao et al., 2022; Wu et al.,, 2022). This technology has
gradually become a popular tool for clinical prostheses training,
rehabilitation, and motor learning.

Compared to CPT, the XR prosthesis training have precise
control over various physical factors in the environment and
positively impacts the user’s physiological, psychological, and
rehabilitation outcomes, thereby increasing patient motivation
during therapy. Systematic data analysis can effectively record the
training process and effect, provide more accurate performance
evaluation methods and reduce human interpretation errors. This
training approach will decrease expenses and enhance the patient’s
innate drive, thus augmenting their commitment towards
neuromuscular rehabilitation training. (Garske et al, 2021).
shows that there are a large number of prosthetic training
software based on serious games, which focus more on
improving engagement and muscle training, without paying
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The user is immersed in a virtual Virtual elements are projected into fsl e e W ithithe
: : : real world and users can interact

environment for interaction. the real world to form a new space. .

with both.
FIGURE 1

Illustrations showing the relationships and definitions between the most common realities (extended reality, virtual reality, augmented reality and

mixed reality).

attention to the importance of skill transfer. (Gaballa et al., 2022).
introduces the existing virtual prosthetic training technology and the
user evaluation procedure to ensure the practicability in the clinical
environment, and identify obstacles in technology, human factors,
clinical and management levels, economy, and suggest possible
pathways to deployment for successful clinical adoption in the
future. (Toledo-Peral et al, 2022). analyzed the application of
VR/AR in motor neurorehabilitation after stroke/amputation,
the
anatomical region, how to use, signal processing methods and

including scope of application, characteristics, target
hardware. Prosthesis training using XR techniques for upper limb
amputees has the potential to enhance competency or speed up the
learning process for acquiring the skill; however, there is no
consensus on which factors are crucial in the transfer of skills
from virtual training to actual prosthetic competence. In light of

the above, the current review focus on four critical areas:

o Components and available cases of the XR prosthetic system,

o Training methods and evaluation metrics of the XR Prosthetic
System compared to other rehabilitation protocols,

o What are the technical limitations and barriers in the process
of skills transfer?

o Possible deployment pathways for future successful clinical
applications.

We surveyed papers dealing with upper limb prosthesis training
or assessment with the assistance of the XR environment and using
EMG signals as input. Relevant papers were identified during the
literature survey and enhanced by systematic searches using
PubMed, Web of Science, Science Direct, IEEE Xplore, Google
Scholar and SCOPUS databases. Based on a summary of existing
XR prosthetic systems, with associated control methods, assessment
methods and evaluation metrics, and comparing the application of
prosthetic hands, this review analyses the characteristics and
shortcomings of the existing systems in the process of skill

Frontiers in Bioengineering and Biotechnology

transfer from virtual training to actual prosthetic ability in four
aspects: ADL, training methods, feedback, the relationship between
the virtual environment and the physical device.

2 The existing XR systems for upper
extremity prostheses

The two most important aspects of XR for myoelectric
prosthetic hand are the user interface and myoelectric control.

2.1 User interface

The XR prosthesis system offers an interactive environment that
enables users to repeat various actions. Most of the time, this type of
interface works to immerse users in a virtual environment and
perform virtual actions using electromyography control, which gives
users the sensation of experiencing a similar movement in reality
(Woodward et al., 2017). According to the immersion level applied
to XR, it can be categorized as nonimmersive XR and immersive XR
(Sveistrup, 2004). Nonimmersive XR involves interactions between
an environment and players via a computer monitor or non-HMD
display, maintaining a safe distance between participants and the
game (Bevilacqua et al., 2019). Immersive refers to the utilization of
various head-mounted displays (such as Occulus Rift Headset, HTC
VIVE Pro, Google Glass, Meta Glass, and Microsoft Hololens),
which are connected to the human body to interact with the game
(Narayanasamy et al, 2006; Lu et al.,, 2012) clarify that the user
interface of XR systems can be categorized into two types: serious
games and simulation tasks. Serious games replace prostheses with
gamification elements in fictional scenarios, maps EMG control
commands with specific game goals, which is able to provide a
variety of challenges, increase the enjoyment of training, and
optimize the learning process. Conversely, simulation tasks

87 frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1334771

Li et al.

TABLE 1 Detailed categorization of the serious game.

10.3389/fbioce.2023.1334771

Program (Genre) Feedback Control Performance metrics Skill
mechanism strategy transfer

Myoboy Abstact task Traditional Media DC No
Air-Guitar Hero (rhythm game) = Abstact task Traditional Media ML score No
WiiEMG (sports game) Abstact task Traditional Media ML Time, accuracy No
Sonic Racing (racing game) Abstact task Traditional Media DC Time No
MyoBox (dexterity game) Abstact task Traditional Media ML Separability, consistency, variability | Yes
MyoBeatz (rthythm game) Abstact task Traditional Media DC SUS, proportional muscle activation | No
Falling of Momo (vertical Abstact task Traditional Media DC UES, IMI, SUS No
scroller)
Volcanic Crush (reaction game) Abstact task Traditional Media DC UES, IMI, SUS No
Dino Sprint (endless runner) Abstact task Traditional Media DC UES, IMI, SUS No
ino Feast (dexterity game) Abstact task Traditional Media DC UES, IMI, SUS No
Breakout-EMG (arcade game) Abstact task Traditional Media DC Accuracy Yes
Crossbow Game Posture VR ML Postures completed score No

reproduction
UpBeat (rthythm game) Posture AR ML Gesture completion, muscle No

reproduction activation
MyoTrain Posture Traditional Media ML Accuracy No

reproduction

SCORE 100
i\ Chorus 3
FIGURE 2

Serious game: (A) MyoBoy; (B) Sushi Slap; (C) Air Guitar Hero; and (D) Dino-Feast.

generally involve recreating a prosthetic-like control object and
duplicate the controls in real-world scenarios, requiring standard
operating procedures and lacking in entertainment.

Since the early 1990s, serious games have been researched for
prostheses control training (Lovely et al., 1990), which is a video
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game with an explicit and carefully thought-out educational purpose
and intended to impart certain knowledge or skills to users
(Graafland et al., 2012; Laamarti et al, 2014). As a virtual
training system, serious games can increase patients’ motivation,
improve muscle coordination, and

ultimately — augment
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electromyography control ability (see Table 1) (Clingman and
Pidcoe, 2014). MyoBoy (Figure 2A) and PAULA or Virtu Limb™
are mature computer-based electromyography training systems.
These systems use the subject’s flexor and extensor muscles to
electromyography feedback has
indicated that the current commercial method, which depends on

improve control.  Patient
basic graphic representations of EMG, is less motivating and
satisfying than the training system that is reliant on serious
games (Prahm et al, 2017a). Several serious games based on
traditional game design, such as Pong (de la Rosa et al.,, 2008),
Flappy Bird (Radhakrishnan et al, 2019), Space Invaders
(Radhakrishnan et al., 2019), SuperTuxKart (Prahm et al,
2017b), Sushi Slap (Smith et al., 2018b; Smith et al., 2018a)
(Figure 2B), Crazy Meteor (Smith et al, 2018b; Smith et al,
2018a), Dog Jump/Beeline Border Collie (Smith et al., 2018b;
Smith et al., 2018a), Crate Whacke (Hashim et al., 2021a), Race
the Sun (Hashim et al.,, 2021a), Fruit Ninja (Hashim et al., 2021a),
and Kaiju Carnag (Hashim et al., 2021a), employ a method similar to
the user’s control of a physical prosthetic hand, which not only
repeatedly activates the flexor and extensor muscles, but also
instigates the random training of joint or continuous muscle
contraction. This approach provides an ideal training method for
direct control (DC), while also enhancing the motivation and
adherence of the amputation rehabilitation plan. Rhythm games
and car racing games, such as Air Guitar Hero (Armiger and
Vogelstein, 2008) (Figure 2C), MyoBeatz (Prahm et al., 2019a,8),
UpBeat(Melero et al., 2019), and Sonic Racing (Martinez-Luna et al.,
2020), incorporate sound feedback into traditional gameplay, which
are valuable for early-stage rehabilitation and provide solid starting
points for the inclusion of feedback (Prahm et al., 2018). Mobile
phone games, such as such as Volcanic Crush incorporate based
dual-site muscle activation, Dino Spirit and Dino Feast (Figure 2D)
involving sequential and proportional movement control, and Dino
Claw with 3-D movement control, create more opportunities for
myoelectric training outside the clinical environment, which
overcome logistical, financial and geographical barriers to users,
and increase training motivation (Winslow et al, 2018). For
improving the training performance, serious games have the
following characteristics: 1) The subjects focus on the screen and
can find the best training scheme to the challenge through implicit
learning without clear prompts (Kristoffersen et al., 2021); 2) Tasks
of varying difficulty levels can be provided to enhance the interest
and motivation of the subjects as well as extend their training time
(Rahmani and Boren, 2012); 3) Remote personalized guidance can
be provided by therapists or doctors (Holden, 2005); 4) Real-time
feedback can be incorporated to optimize the training effect (van
Diest et al., 2013). Serious games offer a simplified myoelectric
control interface displayed on a computer screen. While unable to
display quantitative results, it provides direct control of a limited set
of muscles with intuitive functionality. Its usefulness is limited to
early-stage rehabilitation and does not induce changes in muscle
performance.

Simulation tasks are typically presented in either the third-
person perspective or the first-person perspective. The former
aids the user’s spatial perception, while the latter can enhance the
user’s sense of interaction with the virtual object. Both perspectives
offer distinct benefits, and align with the desired functionality of
myoelectric rehabilitation systems. Generally, simulation tasks
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involve posture reproduction tasks, which necessitate following
typical operating procedures and assessment indicators but lack
entertainment value (see Table 2). XR systems based on simple
simulation tasks, such as UVa-NTS platform (de la Rosa et al., 2009),
Virtual training environment (Cavalcante et al., 2021), VRd testing
environment (Blana et al., 2016) (Figure 3A), Training environment
(Al-Jumaily and Olivares, 2009), and Virtual model (Muri et al.,
2013), provide a solid research foundation for making virtual
prosthetic systems and training amputees. Simulation tasks
combined with standard training schemes, such as Virtual box
and beans test (Prahm et al., 2019b), Virtual box and blocks test
(Hashim et al., 2021b), Virtual rehabilitation training tool (Dhawan
etal, 2019,8), Virtual Therapy Arm (VITA) (Nissler et al., 2019), AR
prostheses simulator (Kenedy Lopes, 2012), Virtual training system
(Nakamura et al., 2017), Performance assessment (Hargrove et al,
2007), Prostheses simulator (Lambrecht et al.,, 2011) (Figure 3B),
and Virtual reality environment System (Resnik et al., 2011), have
shown promise as a tool for developing and evaluating control
methods by enhancing and refining particular skills. XR systems
based on complex environment, such as Exploration (Phelan et al.,
2015) (Figure 3C), Virtual simulation (Soares et al., 2003), and
HoloPHAM 2019),
environments that are more suitable for daily life, which can

(Sharma et al, have created virtual
satisfy users’ sense of immersiveness. These systems are being
studied how to best assess the impact and accuracy of such
environment. Open source systems, such as VIE (Perry et al,
2018) (Figure 3D) and Musculoskeletal Modelling Software
(MSMS) (Davoodi and Loeb, 2012), prove that amputees can
effectively learn the EMG contraction mode, provide effective
training platforms based on machine learning (ML) control, and
make it possible for different research groups to develop effective
and unified training methods. Systems based on virtual prosthetics,
including Catching simulator (van Dijk et al., 2016b), Catching
simulator Prostheses Gripper (Kristoffersen et al., 2021) (Figure 3E),
and MSMS, have demonstrated the transfer effect and existing
deficiencies from virtual prosthetics to physical prosthetics.
Imitation-oriented XR exercises can produce lower practice
variability, and assist with movement learning by promoting
consistent movements through accurate repetition. ADL-oriented
XR could elicite stronger muscle activity and movement variations.
The combined design appears to yield superior training outcomes.
Several XR prosthetic systems, such as ARlimb (Boschmann et al.,
2016; Boschmann et al., 2021), AR prostheses simulator, and Mixed
reality training (Sharma et al, 2018) (Figure 3F), illustrate the
differences between AR/MR and VR. However, the systems are
not compared to one another.

2.2 Myoelectric control

Currently, the mainstream myoelectric control methods ARE
DC and ML. The DC primarily employs EMG signals from two
muscle groups to control all possible grasping modes, including on/
off control, sequence control, and mode switching control. This
control requires users to actively switch among multiple degrees of
freedom (DoFs). Due to its ease and implementation, DC is the most
cfrequently utilized control approach in commercial prostheses and
XR systems. Unlike DC, ML uses electrodes with more than two to

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1334771

Li et al. 10.3389/fbioce.2023.1334771

TABLE 2 Detailed categorization of the simulation tasks.

Program (Genre) Feedback Control Evaluation Performance metrics Skill
mechanism strategy procedure transfer

UVa-NTS platform Abstact task Traditional Media DC Success rate, time No

PAULA Abstact task Traditional Media DC Velocity, error No

Virtual training ADL VR ML BBT Score No

environment

Mixed reality training ADL MR ML PHAM time No

Virtual box and blocks = ADL VR DC BBT Score Yes

test

Virtual box and beans = ADL Traditional Media ML BBT IMI No

test

Virtual Therapy Arm ADL VR ML BBT Score No

Exploration ADL VR ML Score No

Catching simulator ADL Traditional Media DC, ML Score Yes

Performance ADL Traditional Media ML CRT Accuracy, pin time, No

assessment Classification errors

VR evaluation Posture VR ML Accuracy No

environment reproduction

ARlimb Posture AR ML CRT Accuracy Yes
reproduction

Training platform Posture Traditional Media ML Accuracy Yes
reproduction

HoloPHAM ADL MR CRT, PHAM No

A

FIGURE 3
Simulation tasks: (A) VRd testing environment; (B) Prostheses simulator; (C) Exploration; (D) VIE; (E) Catching simulator Prostheses Gripper; and (F)
Mixed reality training.

measure EMG on multiple muscles in the stump, and calculates ML can realize simultaneous control of multiple DoFs by using
EMG features that can be mapped to the input of the learning  muscle contraction mode, which aligns more closely with the neural
algorithm for prosthetic control commands. This in turn enables  pathway of natural human control and can also minimize
users to generate a potentially larger range of control commands.  compensatory movements of the trunk and shoulder. ML control
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can reveal the full potential of prostheses, potentially improving

prosthesis function and reducing the burden on upper
extremity amputees.

Unlike the DC based XR system, games using ML control, like
Crossbow Game, are not designed specifically for training users. In
these systems, users cannot distinguish which type of muscle
contraction corresponds to which type of motion. Thus, they can
explore every possible muscle contraction that can be performed
throughout training, resulting in both muscle contraction and
algorithm adapting to one another to achieve better myoelectric
control (Kristoffersen et al., 2021; P, 2016). The Rehabilitation
Institute of Chicago proposed that the XR system based on ML
entails a sophisticated training process comprising of four distinct
stages: Conceptual Training (teaching the principle of system and
determining which movements would be used to achieve better
control), Control training (providing guidance when learning to use
the system), Function use training (testing prostheses used in daily
life activities), Prostheses recalibration training (teaching how to
maintain system performance in daily use) (Simon et al.,, 2012).
Systems based on adaptive algorithms, such as VR evaluation
environment and Virtual box and blocks test, can successfully
prevent XR system performance decline during extended training
session (Lambrecht et al., 2011). Most papers surprisingly lack
detailed descriptions of processing algorithms. Presently, the
utilization and processing of EMG signals in the realm of upper
extremity prostheses remain scattered and heterogeneous, lacking
consensus on the selection methods of signal processing,
classification algorithms, and performance evaluation. We suggest
it is crucial to elucidate these concepts as one of the technical

guidelines for fostering consistency within the proposed protocols.

3 Clinical outcome assessments and
performance metrics

Effective evaluation methods can enhance the assessment of
muscle control ability and the efficacy of the XR prosthetic system,
thereby facilitating amputee rehabilitation training. The clinical
assessment of prosthetic user outcomes are typically assessed
through
objective performance-based outcome tests (Wang et al, 2018).

subjective  patient-report outcome measures and
The use of subjective patient-report outcome measures allows for
the disclosure of subjective details regarding improvements in daily
activities, an assessment of user satisfaction with the device, and the
evaluation of impacts on life quality. This measurement is preferred
because it provides insight into the subjective information regarding
the training effect’s improvement and the evaluation of the user’s
satisfaction with the system. Meanwhile, the objective performance
based measurement utilizing standardized procedures is able to
evaluate system performance, provide quantitative results that are
objective, unbiased, and repeatable, and effectively aid both the
therapist and user in improving training. While the subjective
patient-report test offers a detailed understanding of the patient’s
experience with the device, it may be biased and influenced by their
memory of past events and perspectives. An objective, performance-
based measure accounts for these issues but does not address the
user’s attitude towards the device. In other words, a testing

methodology that relies solely on performance-based measures
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disregards the patient experience, potentially overlooking long-
term concerns. Therefore, to ensure effectiveness and suitability
upon deployment, clinical rehabilitation tools must undergo
comprehensive testing using both objective performance-based
measures and subjective patient reports.

3.1 Subjective patient-report
outcome measures

Intrinsic Motivation Inventory (IMI), System Usability Scale
(SUS), User Evaluation Survey (UES), and NASA Task Load Index
are four prominent measures in subjective patient-report outcome
measures. IMI is composed of several subscales, which mainly rate
the enjoyment, perceived choice, perceived competence and
immersion of XR system to evaluate the experience of playing
video games (Anderson and Bischof, 2014; Hashim et al.,, 2021a).
SUS is a questionnaire with 10 items, involving the stations, overall
game experience, virtual reality experience and all session
experience, which is used for quick usability evaluation across
multiple domains (Bangor et al., 2008; Dawson et al., 2012). UES
mainly scores the game input, control, motivation and fun,
including 1) rating the game, 2) rating the input 3) rating the
control methods, 4) rating the EMG assessment, and 5) determining
the attractive elements (Prahm et al., 2017b; Prahm et al., 2017c¢).
The NASA Task Load Index has been utilized multiple times with
upper extremity prostheses, which contains various questions to
evaluate mental and physical demand, temporal demand, task
performance, effort, and frustration (Osborn et al, 2021;
Chappell et al., 2022; Parr et al., 2023).

3.2 Objective performance-based
outcome measures

In the designing of XR prostheses training system, therapists
utilize various training tools to restore control of the residual limb
during daily activities. Some of these tools have undergone clinical
verification while others are mentioned in literature (Lindner et al.,
2010). Clinical outcome assessments (COAs) are employed to assess
the progress of individual rehabilitation or training through XR
system. Research has demonstrated that motor control learning is
highly specific. Effective evaluation methods can provide more
ability and the
effectiveness of XR system, and can promote the rehabilitation

accurate assessments of muscle control
training for amputees (Giboin et al., 2015; van Dijk et al., 2016b).
Consequently, selecting appropriate training activities to assist
prosthetic users in returning to their regular routines is critical.
While physical prosthetic devices form the basis of most of these
methods, training in virtual environments has emerged as an
effective means of assessing patients’ performance during daily
living tasks. After reviewing the available literature, this paper
outlines 14 frequently utilized clinical outcome measures for the
performance-based assessment of residual limb training (Table 3).

For Motion Test (Figure 4A), participants received instructions
to follow the motion prompts while observing the virtual prostheses
that decoded their movements. This test aimed to investigate

changes in EMG levels, but it oversimplified the study by not
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TABLE 3 Commonly used clinical outcome indicators.

10.3389/fbioce.2023.1334771

Performance Procedure Properties Deficiencies
metrics
Motion test Execute the appropriate movement following | Investigated changes in EMG levels Oversimplified
the virtual prostheses
TAC test Control the virtual prostheses to move to the | Adjust the speed of the virtual prostheses Interaction space is a virtual environment
target posture according to the muscle contraction rather than a physical environment
BBT Move the block from one side of the box to | Allows continuous estimation of single-finger Focus on a limited number of DoFs only
the other activation and incremental learning
NHPT Pick up the pegs, put them into the hole on | Ability to perform flexibility testing Relatively simple and short
the board, and remove it
CRT Move the clothespins from the horizontal bar | Perform repetitive coordinated stretching and Results scoring without corresponding
to the vertical bar grasping movements compensatory movement
Task tests Simulation of prosthetic gripping tasks Improved performance of transfer from virtual | Differences between virtual space and actual
space to prostheses tasks lead to errors
JHFT 7 ADL tasks Simulate ADL corresponding to prostheses use in | Training differences between the virtual and
daily life real environment
AM-ULA 18 ADL tasks that can be divided into Assessment of awkwardness and compensatory | Training differences between the virtual and
subtasks exercise real environment
CAPPFUL 11 ADL tasks Assesses the ability, time and quality to complete = Training differences between the virtual and
activities real environment
ACMC 30 functional hand movements that can be | Measuring the ability to operate prostheses while = Influenced by a relatively large subjective
categorized into 4 hand use performing ordinary life activities component
ARAT 19 arm function assessment tasks Objects to be moved to shelves of different heights = Influenced by subjective components
SHAP 14 ADLs and 12 additional object transfer Assesses ability to execute specific grips lengthy and tiring
tasks
AHAP 26 grasping tasks Replicability using publicly available Yale-CMU- = Converts complex tasks into simple grasping
Berkeley objects tasks
PHAM Manipulate a group of objects by grasping Ability to monitor gesture completion rates and = Lack of comprehensive quantitative

them and changing their position

consider compensatory movements

assessment methods

examining changes in muscle function levels (Kuiken, 2009;
Kristoffersen et al., 2020; Portnova-Fahreeva et al., 2023).

Unlike the Motion Test, the Target Achievement Control (TAC)
(Figure 4B) test enables subjects to move the virtual prostheses at a
slow or fast pace based on their muscle contraction intensity (Simon
et al, 2011). Assessment criteria consist of Test Complexity,
Movement Distance, Target Width, Dwell Time and Trial
Timeout. Misclassification may aid in completing the motion
gradually. One limitation of TAC testing is the absence of
interaction between the subjects and the virtual environment
(Boschmann et al., 2016; Hargrove et al., 2018; Woodward and
Hargrove, 2019).

The Box And Block Test (BBT) (Figure 4C) instructs subjects
to move blocks from one compartment of the box to another as
much as possible within 60 s (Mathiowetz et al., 1985a). This
evaluates the capability to
fundamental actions using a prosthetic device. However, there

assessment user’s perform
is not an evaluation test for proportional force control (Hebert
and Lewicke, 2012; Kontson et al., 2017). To enhance the system’s
modular features, the BBT incorporates everyday virtual daily-
living activities scenes, such as the living room and kitchen

(Nissler et al., 2019). In this setting, it can cause alterations in
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other areas of the participant’s body and handle items of varying
elevations.

Similar to BBT, the Nine-Hole Peg Test (NHPT) (Figure 4E)
requires subjects to insert and remove wooden pegs into and out of
holes on a board, with scoring based on the time and speed required
to complete the task (Mathiowetz et al., 1985b; Oxford Grice et al.,
2003; Kristoffersen et al., 2021).

The Clothespin-Relocation Test (CRT) (Figure 4D) is an
established tool for testing upper limb flexibility, by assessing
the time required to reposition the three pins of the Rolyan
Graded Pinch Exerciser system from the horizontal bar to the
vertical bar (Hussaini and Kyberd, 2017; Kyberd et al., 2018;
Hussaini et al., 2019). It realizes precise myoelectric control and
coordinated movement of the upper limb joint through repeated
coordinated reaching and grasping movements, and
repositioning the clothespin in space.

Task Tests refers to task-specific tests such as grasping,
interception, tracking, matching, and object recognition
(Bouwsema et al., 2014; van Dijk et al., 2016b; Manero et al.,
2019). This test can enhance the information related to ADL in a
game-relevant way, and improve the performance of XR transfer
to the prostheses. The limitation of this test lies in the design of
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Objective performance-based outcome tests: (A) Motion Test; (B) TAC; (C) BBT; (D) CRT; (E) NHPT; (F) SHAP; and (G) PHAM.

virtual tasks, and it is impossible to calculate the error amount
and solution space related to each goal.

The Jebsen-Taylor Test of Hand Function (JHFT) (Davis Sears
and Chung, 2010; Wang et al., 2018), the Activities Measure for
Upper Limb Amputees (AM-ULA) (Resnik et al.,, 2013) and the
Capacity Assessment of Prosthetic Performance for the Upper Limb
(CAPPFUL) (Kearns et al., 2018) are designed to train or assess
various unimanual hand functions required for ADLs with
corresponding objects. These three COAs consist of 7, 18, and
11 ADLs, respectively, which are used to assess the ability to
perform activities, completion time and movement quality. JHFT
is a series of standardized activities, including writing a sentence,
page turning, stacking checkers, simulated feeding, picking up/
lifting large objects, picking up/lifting heavy objects and picking
up/lifting small objects. During training, the completion of these
activities is graded by time, with a maximum time limit of 120s.
AM-ULA tasks include combing hair, putting on and taking off
clothes, buttoning a shirt, zipping a jacket, tying socks, tying shoes,
pouring soda, turning a doorknob, hammering, folding a towel,
using a cup, fork, spoon, scissors, and telephone, writing a word,
reaching overhead, etc. Each task is further divided into subtasks
according to the steps required to complete the task. Task scoring is
based on the extent of subtask completion, speed of completion,
quality of movement, grip control and prosthetic skills, and
independence.

The Assessment for Capacity of Myoelectric Control (ACMC) is
an observational assessment designed to measure prosthetic control

Frontiers in Bioengineering and Biotechnology

of ADLs (Hermansson et al., 2004). It consists of 32 functional hand
movements, which are divided into 4 categories of hand use:
gripping, holding, releasing, and coordinating. In addition, it uses
a 4-category scale to identify and evaluate hand movements and
judge the ability of subjects to perform spontaneous movements. In
all evaluations, only ACMC has been clinically shown to have good
test-retest reliability for upper extremity prostheses (Hermansson
et al., 2006).

The Action Research Arm Test (ARAT) consists of 19 tasks,
which are divided into 4 categories: grasp, grip, pinch, and gross
movement (Fitts, 1954). Meanwhile, the test requires the subjects to
move objects to different heights of shelves, manipulate common
objects, such as washers and blocks, and perform ADLs, such as
pouring water into a glass. Some tasks also assess the arm
range of motion.

Southampton Hand Assessment Protocol (SHAP) (Figure 4F)
is one of the most detailed hand function assessment tools
available. It consists of 26 separate tasks, including six grip
types (spherical, tripod, tip, power, lateral, and extension),
which can be divided into abstract object processing (light/
heavy sphere, tripod, power, lateral, tip and extension) and
ADLs (pick up coins, undo buttons, food cutting, page
turning, remove jar lid, pour water from jug and carton, move
a full jar, an empty tin, and a tray, rotate a key, screw, and door
handle, open/close a zip) (Bouwsema et al., 2012; Burgerhof et al.,
2017). It mainly quantifies the time required to perform the task,
regardless of how the task is performed. It is tedious and
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exhausting for amputees with limited abilities (Vasluian et al.,
2014; Kyberd, 2017; Kristoffersen et al., 2021).

The Anthropomorphic Hand Assessment Protocol (AHAP) is a
digital standard to quantify the ability of prostheses to perform daily
grasping, which is divided into 26 tasks (Llop-Harillo et al.,, 2019).
According to the kinematic structure of the hand and grasp
frequency of ADLs, these tasks are divided into eight grasp types
[pulp pinch (PP), lateral pinch (LP), diagonal volar grip (DVG),
cylindrical grip (CG), extension grip (EG), tripod pinch (TP),
spherical grip (SG) and hook grip (H)] and two non-grasping
postures [platform (P) and index pointing/pressing (IP)]. To
account for changes in object size, shape, weight, texture, and
stiffness during human-environment interaction, each grip type
selects three different objects from the YCB suite to achieve
reproducibility (Llop-Harillo et al., 2022).

Prosthetic Hand Assessment Measure (PHAM) (Figure 4G) is a
standard for upper limb amputees to quantitatively evaluate a series
of operational tasks related to object manipulation (e.g., water,
pencil, coin, and power), focusing on monitoring gesture
completion rates and compensatory movements (Hunt et al,
2017; Sharma et al, 2019). In PHAM protocol, users need to
grasp objects with specific gestures and change their position in
the frame to manipulate a group of objects within the physical frame
(Melero et al., 2019).

3.3 Performance metrics

For DC, the training focuses on two muscles that are
independent of each other in terms of contraction function, as
well as execution of the mode switching command. For ML, the key
point is to adapt several muscle groups to produce EMG patterns
that can separate different actions and repeat the same action.
Myoelectric control depends on each muscle playing its role
during training, so using XR system for EMG training should
enable subjects to produce consistent and distinguishable muscle
patterns. It is not possible to design a long-term ML algorithm for
each subject because it requires a lot of time and resources.
Therefore, if users do not perform tests in the laboratory, they
may encounter limitations in control flexibility or incorrect
movements, which is also considered a common reason for
abandoning the use of prostheses (Biddiss and Chau, 2007¢;
Scheme and Englehart, 2011; Chadwell et al., 2016). If users can
understand that their training program may lead to poor actual use,
they can immediately adjust the training system to reduce
unnecessary help better
electromyographic control. Some studies have established more

frustration and achieve

comprehensive  offline training metrics before real-time

experiments, including classification measures, variability

measures, separability measures, complexity measures, and
neighborhood measures (Ortiz-Catalan et al., 2014; Franzke et al.,
2021; Nawfel et al., 2021). The classification index is a measure that
describes the correctly computed prediction score of the system. The
variability metrics is a measure of the reproducibility of EMG
patterns between repetitions, which quantifies intra-class
characteristics and feedback on the consistency of EMG patterns.
The separability metrics is a measure of the reproducibility of EMG

patterns between classes, which assesses inter-class characteristics.
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To more comprehensively measure training effect and task
difficulty in real-time testing, previous research has proposed
many online performance metrics. Most clinical assessments test
the ability to perform specific movements using time-related
parameters (Joyner et al., 2021), as illustrated in Figure 5. Motion
completion time is defined as the time from movement initiation to
task completion, which includes the full range of motion of each
movement. Motion selection time is the time required to correctly
select the target motion, which is used to quantitatively measure the
speed at which the motion command is converted into a correct
motion prediction. Motion completion rate is the percentage of the
total motion attempts that are successfully completed within the
time limit. Task attempt is defined as the number of times the subject
initiates interaction with the object and moves toward task
completion (Bangor et al., 2008). Motion quality is defined as the
number of awkward and compensatory movements used by the
subject in the process of completing the task.

Based on the fact that users must respond to and correct the
system’s misclassifications to successfully complete the task, Fitts’
law, which can be used to demonstrate that any movement task
exhibits a trade-off between speed and accuracy, has also been
widely used to evaluate online myoelectric control (Fitts, 1954).
Fitts’ Law typically uses completion rate, path efficiency, overshoot
or throughput, and other parameters to evaluate the online
performance of XR systems (Park et al, 2008; Scheme and
Englehart, 2013; Gusman et al., 2017; Nawfel et al., 2021). The
completion rate was mentioned above. Throughput (TP) is the most
important metric in Fitts’ law, which is defined as the transfer of
information in the results of repeated tests over different target
distances and widths. Path efficiency is defined as the ratio of the
shortest path to the actual path to the target. Overshoot is used to
count the number of times the target is lost before reaching the stop
position during each movement, and to measure the stability of the
users’ task performance. The TAC test is very similar to a test based
on Fitts” law, which uses the virtual prostheses on the screen to
evaluate the control and positioning ability of the prostheses.

4 Existing challenges and future
development

The positive results of the XR prosthetic system involve many
aspects of the virtual environment. In this section, we will analyze
the current status and possible trends of the system in terms of ADL,
training modalities, feedback and the relationship between the
virtual environment and the physical device to support the
implementation of future systems with more effective training
capabilities.

4.1 ADL

XR prostheses training should focus on two core themes: user
engagement and skill transfer from virtual prosthetics to physical
prosthetics. A critical element in using XR as a training and
rehabilitation tool is the authenticity of the virtual space created.
Obviously, XR system can effectively enhance user participation, but
for skill transfer, most studies only verify the performance
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Definition of the real-time performance metrics. The mean absolute values of the SEMG signals used to generate control commands are shown at
the (B). The (A) present the control decisions generated in response to the SEMG signal classifier and corresponding performance metrics. The blue boxes
indicate the target motion. The control decisions are represented by three circles, with black circles indicating decisions with no motion, blue circles
indicating decisions with correct classification, and red circles indicating decisions with incorrect classification. The performance metrics shown

include motion selection time and motion completion time.

improvement or abstract control in XR system. It seems to be tacitly
assumed that the XR system, which uses the same muscle tissue and
corresponding EMG signal as the prosthetic task, which can easily be
translated into the improvement of prosthetic control. However,
previous studies have shown that the emergence of migration
phenomenon requires virtual space to be as close as possible to
the target of physical prosthetic tasks, that is, more ADL training
(Belter et al.,, 2013; Woodward and Hargrove, 2019).

Virtual space has many potential benefits, including task
exercise  gamification,

automation, movement

environmental security and performance tracking. XR prosthesis

scalability,
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system is a powerful tool that can generate or present the properties
of all virtual models in interactive tasks, including shape, texture,
compliance, and interactive features. Using virtual space to simulate
ADL-oriented training is a natural extension of the “real world.”
(van Dijk et al., 2016b; van Dijk et al., 2016a). have developed a game
to simulate grasping tasks, which augments ADL-relevant
information and incorporates the proportional relationship
between EMG amplitude and end-effector. This study proved for
the first time the transfer effect of using ADL-related information on
tasks from XR to myoelectric prostheses, but only when the game
was designed to encourage behaviors specific to controlling
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prostheses. The design of XR prostheses system should pay attention
to the balance between game motivation and task functionality
(Kristoffersen et al., 2021).

The research on ADL-oriented virtual prosthetic training to
improve the daily life performance of amputees has begun to appear.
Next, ADL-oriented interventions in virtual space should be close to
the real world, including a home-like scenario. Specifically, when
designing a virtual system, it is necessary to establish the relationship
between ADL tasks and virtual tasks, to specify the information
about the relationship between ADL goals and user actions that
allows adaptive coordination of these actions, because virtual tasks
cannot completely simulate ADL in daily life. It seems that the
transfer effect is best evaluated by measuring the performance of
ADL tasks, such as the timing of closing or opening the hand, which
is also a direction to be improved. The ADL-related training based
on actual activities raises an interesting point. In this case, the user
would be naturally induced to move and manipulate objects at
different heights. This exercise and training performed/exerted by
muscles other than the missing ones could form a new physical
therapy, which is more conducive to the rehabilitation of users.

4.2 Train modalities

The feature of EMG signal are easily affected by external factors,
such as muscle fatigue, electrode displacement, limb position
change, contraction force change and individual differences. This
type of influence cannot be suppressed, and it is also unpredictable.
However, it is impractical to account for all the confounding factors
in a single training session. Therefore, when myoelectric control is
introduced into clinical practice, it is very necessary to have an
effective, unified and easy-to-implement training protocol. Putting
users’ daily life in the center of research and formulating research
objectives, and improving the clinical application performance of
the system with clinically relevant results as the goal. The existing
research shows that the XR prostheses training system is far behind
the new dexterous prosthetic hand and the advanced functional
evaluation model. The XR prosthetic training system should be
designed by integrating the prosthetic hand control mechanism,
such as switch, threshold, proportion, pattern switch and pattern
recognition. At the same time, it can integrate multiple functional
elements, including training intensity, training times and training
level, and even the training level and program required by users
(Winslow et al., 2018; Prahm et al., 2019a,8; Prahm et al., 2017¢).

Due to technical limitations, XR prostheses system usually only
describes the virtual hand on the screen or in a two-dimensional
environment, excluding multi-DOF depth of field control and the
joint environment with joint drive as the goal, and has no
connection with the user’s body. We believe that the future XR
prosthetic system should adopt the AR/MR technology combined
with IMU, where virtual reconstruction is carried out with the help
of IMU tags attached to the user’s body, so the virtual hand or virtual
prosthetic will cover the user’s residual limb. The system predicts or
tracks the trajectory of the virtual hand through IMU, and controls
the virtual hand through the user’s muscle contraction. More
realistic virtual hand models, interactive objects and rich scenes
would not only provide a unique personalized training interface, but
also create a more attractive, more immersive and realistic user
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experience. Adding game function design, task type, scoring
mechanism, type of control scheme used by the program, and
feedback can effectively attract users to focus on the results of
the game (external focus of attention) rather than on muscle
changes (internal focus of attention) during training, which can
improve cognitive effort and lead to faster, more accurate, and more
effective virtual hand movements.

The game elements are alternated to adapt to the specific needs
and development of users at different times or training stages. The
virtual system should have a built-in logging capabilities to record
the movement status of each component in the virtual space during
training and to evaluate the overall rehabilitation performance. The
XR prostheses system with rich elements can be used by users to
create or select more specific training scenarios. In addition, when
combined with accurate rehabilitation methods, it can also provide a
higher level of personalized training programs. A better training
effect for users would result from a more comprehensive, more
clinical and more entertaining virtual prosthesis training.

4.3 Feedback

To improve user participation, the existing XR prosthetic system
tends to pay more attention to aesthetic design, but ignores
functionality. The virtual hand is usually represented by a game
element or visualisation. Interacting with objects in the XR
environment typically involves attaching them to the hand
through programming, rather than controlling the virtual hand
using a myoelectric controller that mimics the functionality of
the prosthetic hand (Hargrove et al.,, 2018; Nissler et al., 2019;
Phelan et al., 2021) compared the virtual TAC test with a set of
outcome measures for physical prostheses, including SHAP, JTHF,
BBT, and CRT. Their findings showed a correlation between virtual
test measurement and physical performance, but no causal
relationship was found. (Boschmann et al,, 2021). proposed an
AR system that enables users to practice pattern classification
control, modulate grasping force with feedback, and adjust wrist
rotation via a tilted bar. Through testing, the system can transfer the
skills needed to control actual prosthetics. Judging the effectiveness
of the training is primarily based on the subjective feedback from the
therapist and user, which poses challenges to the objective
assessment of the outcomes. The study indicates that the
provision of force feedback can enhance the level of realism in
the virtual environment and the user’s sensation of embodiment
with the virtual hand. Additionally, it can augment the performance
of the virtual system and effectively enhance the user’s training
outcome (Dosen et al., 2015).

In the straightforward task of grasping, the objective is to lift a
cylindrical object with uncertain measurements of diameter,
hardness, and friction. The prosthetic hand user must regulate
the aperture of the prosthetic hand to correspond with the size
of the object, which is essential for skillful utilization of the
prosthetic hand. To prevent any breakage of the object, the user
must also have the capability to adjust the virtual hand’s force in
response to the object’s hardness. Force feedback is essential in
virtual environments because users are unable to sense grip force
directly. To assist users, a virtual strength can be applied to the
object, enabling them to proficiently regulate the force the virtual
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hand exerts after numerous training sessions. Additionally, friction
feedback can be incorporated to simulate objects slipping, providing
users with an opportunity to practice all feasible object manipulation
strategies.

The development of XR systems would not eradicate work, but
rather redistribute and reshape existing activities. Although XR has
several advantages over CPT, physiotherapists still play an
important role (Almeida and Nunes, 2020). We consider the
suggestions of physiotherapists to be a special kind of feedback.
The XR prosthetic system and CPT have a mutually advantageous
relationship and the program promotes patient engagement while
ensuring scientifically-sound training methods. The physical
therapist creates a training plan that encompasses a preliminary
diagnosis and follow-up assessments. The therapist informs the
patient about their condition, adjusts the system, recommends
exercises, and assesses the outcomes to attain the anticipated
Additionally,
physical therapists can aid individuals in choosing suitable

advantages of participation and intervention.
training methods, difficulty and intensity levels, and tools based
on individual traits and interests, creating a personalized training
experience. Even when training at home, physical therapists can
monitor an individual’s progress through the Internet of Things and
take part in their training. Furthermore, it is crucial for physical
therapists to be part of the design process of XR systems to ensure

their optimization.

4.4 Virtual environment and physical devices

The XR prostheses system serves two primary purposes:
neuromotor rehabilitation and prosthetic control training.

However, the system currently prioritizes neuromotor
rehabilitation and virtual prostheses training, disregarding the
crucial process of amputees adapting to new prostheses devices
(P, 2016). It is necessary to consider these variances when
implementing and interpreting results. During clinical practice,
XR is mainly used for EMG signal control training to restore
muscle function and encourage voluntary muscle contraction.
During this time frame, participants practiced grasping objects of
different shapes and sizes and performing daily tasks. Subsequently,
they received training on how to perform these tasks using a
myoelectric prosthetic hand. However, amputees who have
achieved voluntary control of EMG signals could potentially face
challenges while performing tasks as intended. The impact of
prosthetic weight and arm posture on EMG signals, the
inconsistencies between XR tasks and actual grasping tasks, and
differences in virtual versus real prosthetic hand models contribute
to these findings. While some studies suggest that training with
virtual prostheses is equivalent to training with physical ones, the
extent to which skills acquired in the simulated environment are
transferable to the actual task remains unclear.

The virtual prostheses can be programmed and calibrated to
replicate the physical prosthetic system, allowing users to practice
controlling the system using virtual objects (Lambrecht et al., 2011;
Kluger et al., 2019; Elor and Kurniawan, 2020; Chappell et al., 2022)
proposed a pre-prosthetic hand training system that integrates
virtual reality with a robot arm. This system employs the robot
arm to simulate the actions and forces of the virtual arm through
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precise physical simulation. The study reveals that implementation
of robot arms can significantly improve training outcomes.
However, a gap between the real and virtual environment
increases user frustration. Migrating XR prosthetic systems
effectively requires consistency and similarity in their function
and training with physical prosthetic systems. While relevant
guidelines have been proposed for training, scoring, and clinical
interpretation, differences still exist in the selection and completion
time of movements, task attempts, task quality, and tolerance
required to achieve the target posture.

The use of the XR prostheses system in neuromotor
could lead
distinguishable EMG patterns compared to movements typically

rehabilitation  training to more complex and
used in activating a prosthetic hand. To optimize training
effectiveness, it may be beneficial to limit movements that mimic
prosthetic control (Na et al., 2017; Kristoffersen et al., 2020). The
virtual reality programming engines, such as Unity and Unreal
Engine, have precise physics calculation engines that simulate
prosthetic hand movements, mechatronic models, delays, and
limitations. This enables the implementation of the same model
for virtual space control and physical prosthetics. Thus, virtual
prosthetics training can lead to direct transfer for physical
prosthetics control. During training, advanced prosthetic
technology is utilized to create an intuitive and easily manageable
system that combines both virtual and real simulations of prosthetic
hands. Furthermore, the XR prostheses system and desktop
prosthetic hand or prostheses simulators are combined in order
to optimize the training process. The user has the ability to adjust the
level of control required for training, thereby facilitating gradual
improvement in rehabilitation progress. The system design would
provide users with a realistic simulation of a future prostheses,
enabling them to perform rehabilitation tasks quickly, similar to
their experience with physical prosthetics during the early stages of
amputation. Additionally, this feature would empower developers to
test and assess the structural design and control performance of the
prosthetic hand based on personalized user problems, thereby

improving the hands’ adaptability.

5 Conclusion

This review presents recent advances in XR systems applied to
myoelectric prostheses, including existing XR prosthetic systems, virtual
control methods, performance evaluation methods, and performance
metrics. Our analysis of XR prosthetic systems indicates that serious
games can increase user engagement, while simulated tasks improve
training outcomes. Existing systems have achieved satisfactory training
outcomes, while performance evaluation methods and metrics are
continually undergoing refinement. In addition to enhancing user
engagement, the XR prosthetic system can serve as a pre-training
tool during the wait for a new prosthesis. There are limited direct
strategies for transferring performance from virtual environments to
physical devices in current systems. However, the emergence of AR/MR
technology seems to address this issue. To achieve this objective, this
paper compares prosthetic applications, identifies gaps in virtual control
methods, performance assessment methods, and physical prosthetic
systems, and analyzes the limitations of existing systems while
examining proposed development prospects in four areas: ADL,

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1334771

Li et al.

training modalities, feedback, and the relationship between the virtual
environment and the physical device. The application of XR technology
for myoelectric prosthetic hand training and rehabilitation undoubtedly
holds great promise. Establishing a patient-centered XR prosthetic
system that is aimed at and inspired by real-world use cases is
essential for surmounting hurdles to adoption.
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Rehabilitation robots have gained considerable focus in recent years, aiming to
assistimmobilized patients in regaining motor capabilities in their limbs. However,
most current rehabilitation robots are designed specifically for either upper or
lower limbs. This limits their ability to facilitate coordinated movement between
upper and lower limbs and poses challenges in accurately identifying patients’
intentions for multi-limbs coordinated movement. This research presents a
multi-postures upper and lower limb cooperative rehabilitation robot
(U-LLCRR) to address this gap. Additionally, the study proposes a method that
can be adjusted to accommodate multi-channel surface electromyographic
(SEMQ) signals. This method aims to accurately identify upper and lower limb
coordinated movement intentions during rehabilitation training. By using genetic
algorithms and dissimilarity evaluation, various features are optimized. The Sine-
BWOA-LSSVM (SBL) classification model is developed using the improved Black
Widow Optimization Algorithm (BWOA) to enhance the performance of the Least
Squares Support Vector Machine (LSSVM) classifier. Discrete movement
recognition studies are conducted to validate the exceptional precision of the
SBL classification model in limb movement recognition, achieving an average
accuracy of 92.87%. Ultimately, the U-LLCRR undergoes online testing to
evaluate continuous motion, specifically the movements of “Marching in place
with arm swinging”. The results show that the SBL classification model maintains
high accuracy in recognizing continuous motion intentions, with an average
identification rate of 89.25%. This indicates its potential usefulness in future
rehabilitation robot-active training methods, which will be a promising tool for
a wide range of applications in the fields of healthcare, sports, and beyond.

KEYWORDS

upper and lower limb coordinated movement, rehabilitation robot, motion intention
recognition, SEMG signal, pattern classification
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1 Introduction

According to statistics from the World Health Organization,
approximately 15 million individuals worldwide suffer strokes
annually, with over 80% of survivors experiencing motor function
disorders (World Health Organization, 2023). Leveraging the human
brain’s plasticity, precise and timely rehabilitation training facilitates
patients in neural reorganization or compensation. This process
stimulates the creation of new neural cells related to motor function,
thus significantly enhancing the chances of survival and recovery of
motor abilities (Rossini et al, 2003). Traditional hemiplegia
rehabilitation, mainly conducted by physicians providing manual
training assistance, presents challenges such as increased workload,
reduced efficiency, and an unbalanced physician-to-patient ratio
(Rossini et al,, 2003). The incorporation of rehabilitation robots in
limb motor function rehabilitation training emerges as a newfound
prospect for individuals afflicted with paralysis (Zhang et al., 2017).

In the past decade, there has been continuous development of
intelligent robots for limb rehabilitation, attracting extensive attention
from scholars (Pérez-Bahena et al., 2023). However, the current focus of
rehabilitation robots primarily centers on the limbs most affected in
patients, with relatively less research dedicated to rehabilitation robots
that address multi-limbs coordination and balance training systems (Mu
et al, 2019). Recent research on upper limb rehabilitation robots has
concentrated on the joint rehabilitation of upper limbs but lacks
attention to lower limb rehabilitation needs (Durand et al., 2019; Xie
et al, 2022; Wu et al, 2023). Similarly, recently developed lower Limb
rehabilitation robots can only provide training for the patients’ lower
limbs (Han et al,, 2019; Gao et al., 2022; Tian et al., 2022). However,
relevant studies have shown that the movements of the upper and lower
limbs are coupled and mutually influential during normal walking, with
the normal swing of the upper limbs playing a crucial role in an
individual's walking (Dietz et al, 2002; Arya et al, 2019).
Rehabilitation robots that can coordinate upper and lower limb
training consider the comprehensive recovery of limb function. By
applying theories of motor neuron coupling, these robots enhance
the strength and coordination of both upper and lower limbs
through specific task training (Fang et al, 2017; Huo et al, 2019)
integrated coordinated upper limb swing functions into the Rowas
rehabilitation robot, ensuring synchronous movement between the
lower limbs and the upper limb shoulder joint, thereby achieving
coordinated rehabilitation of both upper and lower limbs in patients
(Huang et al, 2023). designed an exoskeleton-based upper and lower
limb rehabilitation robot system, planning training trajectories for the
hip, knee, and shoulder joints. Therefore, it is necessary to design a robot
that coordinates upper and lower limb rehabilitation. This approach
aims to induce and reorganize abnormal coupling symptoms in the
motor nerves of stroke patients, thereby enhancing rehabilitation
treatment for the balance and coordination of the patient’s limbs.

Clinical rehabilitation research suggests that tailoring rehabilitation
training to the patient’s limb movement patterns enhances rehabilitation
efficiency (Pichiorri et al., 2015; Song et al., 2023). sSEMG signals, known
for their non-invasiveness and operational simplicity, serve as a common
tool to reflect human muscle activity, facilitating research in human
motion classification (Wu et al, 2016). employed a LLE model to
streamline algorithm complexity and utilized the ELM for the swift
classification of upper limb movements involving the shoulder, elbow,
and wrist (Shao et al., 2020). accurately identified movements of the
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shoulder, elbow, and wrist joints using a combined SVD-WDBN
classification model (Hu et al, 2021). used a sSEMG array sensor to
collect electrical signals from the muscles of the wrist and successfully
recognized discrete gestures and continuous movements. However, the
current stage of SEMG signal pattern recognition primarily focuses on
single areas such as the upper limbs or hands, lacking research on the
recognition of coordinated movement intentions between upper and
lower limbs. Therefore, there is a need to develop an algorithm for multi-
limbs movement intention recognition based on multi-channel sSEMG
signals. This algorithm would adapt to training movements of U-LLCRR,
to achieve the goal of human-machine interaction.

In this study, the research mainly focuses on developing a human
upper and lower limb coordinated movement intention recognition
method based on the developed U-LLCRR and sEMG signals. The
meachnical structure and hardware control system of the U-LLCRR are
designed. Based on the robot’s training mode, the study designs a
recognition scheme for continuous motion, specifically the movements
of ‘Marching in place with arm swinging’. The SBL classification model
is developed, integrating various classification models to enhance the
classification of the extracted features. This study establishes a
subsequent human-machine

foundation  for research  in

interaction control.

2 Materials and methods

2.1 Mechanical structure design of U-LLCRR

Figure 1A depicts the structure and key components of the
proposed U-LLCRR, including lower limb rehabilitation module,
upper limb rehabilitation module, multi-postures support module. As
depicted in Figure 1B, the upper limb rehabilitation module, comprising
of the shoulder joint servo motor, linear motor, and handle, transmits the
driving force from the shoulder joint motor to the patient’s whole upper
limbs. The screw slider in the upper limb rehabilitation module adjusts
the position of the shoulder joint servor motor to accommodate patients
of varying heights. The linear motor induces linear motion at the wrist
joint, enabling flexion and extension of bilateral shoulder-elbow-wrist
joints in the human sagittal plane. In Figure 1C, the lower limb
rehabilitation module adjusts the position of the ankle’s foot pedal by
modifying the linear motor, accommodating patients of varying heights.
The lower limb rehabilitation module connects to the patient’s thigh
using velcro. The hip joint servo motor, leg drive rod, and foot pedal
collaborate to transmit power from the servo motor to the patient’s thigh,
This enables flexion and extension of bilateral hip-knee-ankle joints in
the human sagittal plane. In Figure 1D, the multi-postures support
module enables rehabilitation training for bedridden patients in different
posture, including lying posture, inclined lying posture, and standing
posture. The omni-directional wheels offer mobility and stability to the
multi-postures U-LLCRR. The extension and retraction of the electric
push rod could raise and lower the movable support frame, thereby
altering the robot’s training postures™ height.

Based on the mechanism design of the proposed U-LLCRR, it can
achieve 8 types of inter-limb coordinated movements, including bilateral
upper limbs symmetry/asymmetry movement, bilateral lower limbs
symmetry/asymmetry movement, limbs symmetry/asymmetry in the
same direction movement, and limbs symmetry/asymmetry in the
opposite direction movement (Figure 2). Among these, the same
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Structural diagram of the U-LLCRR. (A) Virtual overall prototype model. (B) Upper limb rehabilitation module. (C) Lower limb rehabilitation module.
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FIGURE 2
Eight types of inter-limb coordinated movements.

direction denotes that the upper and lower limbs on the same side move
in the same direction, while symmetry implies that the left and right
limbs move in the same direction. The proposed U-LLCRR overcomes
the challenge of not being able to give patients synchronous upper and
lower limb movements with current rehabilitation robots.

2.2 Hardware control system design
of U-LLCRR

The hardware control system of U-LLCRR utilises a distributed
control structure, as seen in Figure 3. This hardware control system
features a high-level medical serial screen coupled with a low-level
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direction direction

S

Symmetry/asymmetry

STM32. The whole hardware control system comprises a serial screen,
an embedded microcontroller, drivers, servo motors, and
supplementary components. The STM32 development board
establishes communication with the upper-level medical serial screen
using a serial port operating at a baud rate of 115,200 bits per second.
Additionally, it communicates with the motor driver using CAN
protocol at a frequency of 1,000 Hz. Upon receiving inputs from the
higher echelons, the STM32 employs motion decoding to produce
control signals for the servo motors. This approach streamlines periodic
rehabilitation training by guiding the patient’s limbs in continuous
movements to predefined positions and velocities.

The study employs the BClIduino amplifier, developed by the
Navigation Biology Company, for collecting sEMG data from
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FIGURE 3

Electrical control and sEMG signal acquisition diagram for U-LLCRR.

specific muscle groups in the patient’s upper and lower limbs. The
hardware of BCIduino amplifier is composed of 16-channel wireless
sensors designed for the capture of SEMG signals. The system uses
OpenBCI software to carry out real-time filtering and visualisation of
the sSEMG data. During rehabilitation robot training, electromyographic
information is consistently collected from the patient and transmitted to
the PC (ISK, Lenovo Inc.) for real-time analysis.

2.3 Selection of classification movements

This study defines a six particular limb movements which includes
upper and lower limb movements of marching in place with arm
swinging. And the defined movements could be realized through the
proposed U-LLCRR. The activities mentioned relate to movements in the
sagittal plane, specifically including the shoulder and elbow for the upper
limbs, and the hip, knee and ankle for the lower limbs. The six types of
limb movements consist of left arm shoulder joint flexion/extension (LS-
FLX), left arm elbow joint flexion/extension (LE-FLX), right arm shoulder
joint flexion/extension (RS-FLX), right arm elbow joint flexion/extension
(RE-FLX), left leg hip joint flexion/extension (LH-FLX), and right leg hip
joint flexion/extension (RH-FLX). Different limb motions are associated
with different muscle groups, necessitating precise sensor positioning to

Frontiers in Bioengineering and Biotechnology

capture signals. The process of associating various types of limb
movements with specific muscle groups, while considering factors like
ease of measurement, signals diversity, and accurate differentiation (Feng
et al,, 2021), led to decision to specifically target certain muscles in the
upper and lower limbs as shown in Figure 4. The muscle groups
highlighted in red font represent the specific muscles targeted for
SEMG signal acquisition. For the upper limbs, the selected muscles
are the deltoid, biceps brachii, triceps brachii, and brachioradialis. For
the lower limbs, the chosen muscles are the biceps femoris,
semitendinosus, adductor magnus, and tensor fasciae latae.

2.4 Evaluation of feature separability

Feature extraction is necessary for the 16-channel SEMG signals
once they have been collected and preprocessed. The chosen features
consist of four time-domain measures, like mean absolute value (MAV),
root mean square (RMS), variance (VAR), and integrated EMG
(iIEMG), as well as two frequency-domain measures, like mean
frequency (MF) and median power frequency (MPF). The
prolonged and detrimental use of SEMG characteristics, which
includes extraneous noise and interference from sensor cables, can
result in reduced in computational speed and accuracy (Hu et al., 2021).
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FIGURE 4

Six types of movements and the selected muscles. (A) Shoulder joint flexion/extension. (B) Elbow joint flexion/extension. (C) Hip joint

flexion/extension.

This diminishes the system’s ability to recognise intentions in real-time.
This study introduces a novel approach to selecting features in SEMG
differing from existing methods. It presents a method for evaluating
feature discriminability based on dispersion calculation.

For various limb movement classes, the separability of intra-class
and inter-class distances is evaluated using the Fisher function as a
discriminant criterion (Zhang et al., 2012). This method calculates the
average separations between different feature vectors across various
combinations. Initially, samples from various categories are projected
onto a single dimension. Subsequently, the average separations between
samples inside and between classes are computed. Following this, the
ideal projection direction of the function is determined. The underlying
concept is to maximize the average distance between classes while
minimizing the average distance within them. This serves as the
separability discriminant for different limb movement categories. In
this study, the approach is further expanded to provide average
distances between multiple classes.

Ja(x) = iP,« [l i(x,ii) —my) () = my) + (my = m)" (m; — m)
i=1 i k=1
L&
i1 m; = Ek:lxlit)
Cc
m= ZPim;
L i=1
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In Eq 1, Ja(x) the distance between the

D-dimensional sample of class i and samples from other classes.

represents

A larger value indicates better separability of the feature (Liu et al.,
2013). m; is the mean vector of the i — th class sample set, m is the
overall mean vector of all class sample sets, xi @ is the
D-dimensional feature vector within class i, and P; is the prior
probability of class i.

The Fisher fitness function, used in conjunction with the genetic
algorithm, identifies the optimal combination of feature values. The
algorithm iteratively determines the feature with the greatest
dispersion among all features. The selected features form the
input feature vector for the classification model.

2.5 Movement intention classification model

2.5.1 Least Squares Support Vector
Machine (LSSVM)

The LSSVM classification model is employed to classify the
features that were extracted. LSSVM, an enhanced SVM algorithm
(Mellit et al., 2012), is known for its rapid convergence, accuracy,
and solution speed. To prevent the classifier from getting trapped in
a local optimum and to enhance the predicted performance of the
classification model, adjusting the parameters ‘gam’ and ‘sig2’ in
LSSVM is crucial. Traditional methods for determining LSSVM
settings often depend on historical performance data (Ahmad et al.,
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FIGURE 5
The SBL classification algorithm flow.

TABLE 1 Details of experimental protocol.

Experiment Movement Subject Assistance Data
L. Discrete test Six types of limb movements 9 No Online collection
II. Continuous decoding ‘Marching in place with arm swinging’ task 2 U-LLCRR Online collection

2014). This study enhances the classification performance of LSSVM
by fine-tuning the parameters ‘gam’ and ‘sig2’ within predefined
ranges using intelligent optimization algorithms (Xue and

Shen, 2020).

2.5.2 Improved BWOA based on sine
chaotic mapping

Inspired by the hunting behavior of black widow spiders,
characterized by both linear and spiral movements within their
webs, the BWOA offers advantages in both local exploitation and
global exploration (Hayyolalam and Pourhaji Kazem, 2019; Pefa-
Delgado et al, 2020). Population initialization, reproduction,
intraspecific predation, mutation, and population update are its five
stages. The remaining four stages, apart from the initial population
stage, involve iteration until the termination criteria are met. This
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method employs LSSVM for classifying limb movements and
determines the most fit “black widow” in the process.
The mathematical model is represented by Eq. 2:

(4 1) = { R (2) — mZ,, (b), if rand () <0.3
! %x(t) — cos(27f)%; (¢), in other case
In Eq. 2, X; (t + 1) denotes the updated individual position, X ()
represents the current optimal individual position, m is a random
floating-point number generated between [0.4, 0.9], f3 is a random
floating-point number within the range [-1, 1], r; is a random
integer 1~npop, X, (t) signifies the randomly selected position at
index ry, where i # r, and X; (¢) is the current individual’s position.
The pheromone has a significant impact on the courtship behavior of
black widow spiders. The pheromone deposition rate is defined as follows:
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TABLE 2 Movement sequences in the ‘Marching in place with arm swinging’ task.

Order Order

Phase 1 Phase 3
1 LS-FLX 1-3 12 LE-FLX 34-36
2 LE-FLX 4-6 13 RS-FLX 37-39
3 RS-FLX 7-9 14 RE-FLX 40-42
4 RE-FLX 10-12 15 LH-FLX 43-45
5 LH-FLX 13-15 16 RH-FLX 46-48
6 RH-FLX 16-18 Phase 4

Phase 2 17 LH-FLX 49-51
7 LH-FLX 19-21 18 RE-FLX 52-54
8 RE-FLX 22-24 19 RS-FLX 55-57
9 RS-FLX 25-27
10 LE-FLX 28-30
11 LS-FLX 31-33

FIGURE 6
Actual upper and lower limbs coordinated movement process for subjects.

_ fitnessyay — fitness (i)
- fitnessmax — fitnessyn

pheromone (i) (3)
where, fitnessmax and fitnessyin denote the worst and best fitness
values in the current population, respectively. fitness (i) represents
the fitness value of the i — th individual. And the pheromone vector
contains fitness values normalized within [0,1].

Black widow spiders with low pheromone levels often resort to
cannibalizing the female spiders of the same species. These
individuals face collective rejection by the population and may be

Frontiers in Bioengineering and Biotechnology

abandoned by the group (Houssein et al., 2020). During the iterative
process, when an individual with low pheromone is abandoned, it
becomes imperative to promptly replenish the population count.
When pheromone is less than or equal to 0.3, the individual’s
position is updated using Eq. 4:

(1) = 5 (0) + 3 [ (0 - (-1)%a (0] (@

where, X;(t) represents the position of the black widow with low
pheromone levels within the female’s body. r; and r, are random
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FIGURE 7

Frequency and time domain features for 16 channels.

integers between l~npop, with ry # r, X, and X,, denote the
positions of the black widow spiders at indices r; and r,, and
o € {0,1} is a random binary number.

Given that the initial positions of the black widow population are
randomly generated, the study employs chaotic initialization using the
Sine function from the chaos mapping strategy (Wu et al,, 2021). This
improves the quality of initial solutions, ensuring a more uniform
distribution of the population within the search space. The expression is
as follows:

a .
Xie1 = ;sm(nxk),a € (0,n (5)

Where k is the iteration count, xj is the k — th chaotic number,
and a is a random number.

2.5.3 Sine-BWOA-LSSVM classification model

Each prediction model has its own set of advantages and
disadvantages. By logically combining multiple single models, the
shortcomings of each individual prediction model can be
significantly mitigated, thereby enhancing forecast accuracy. To
optimize the LSSVM classification method in Figure 5, this
research presents a hybrid classification recognition model based

Frontiers in Bioengineering and Biotechnology

B VAR
e LS-FLX ====LE-FLX ===RS-FLX RE-FLX ==L H-FLX ===RH-FLX
8000
6000
4000 l
2000 /\
, AZ\A P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ch
D iEMG
e« §-FLX e===LE-FLX «==RS-FLX RE-FLX e==]1H-FLX «===RH-FLX
1000

800
600
400 i j ::
200 —_—
0
1 2 3 4 5 6 7 8

109

=
9 10 11 12 13 14 15 16
ch

MPF

——LS-FLX =——LE-FLX —RS-FLX

\_"\//\“\

RE-FLX =——LH-FLX =—RH-FLX

on the improved BWOA with chaotic mapping, namely, the SBL
classification model. The following are the precise steps:

Step 1, Initialize basic parameters for BWOA, including the
maximum number of iterations, procreating rate (PP),
cannibalism rate (CR), and mutation rate (PM).

Step 2, Initialize the positions of the black widow population
using Sine chaotic mapping. The initial population is selected
from fitness-sorted black widow individuals.

Step 3, Use Sine-BWOA to optimize ‘gam’ and ‘sig2 in
LSSVM. Optimal parameters ‘gam’ and ‘sig2 for LSSVM
are obtained by iteratively updating the positions of black
widow spiders.

Step 4, Update LSSVM model, and conduct training and
testing to obtain recognition results for feature output.

3 Experiments and results

Discrete limb combination without robot

assistance, and online decoding experiments based on the
U-LLCRR are conducted as detailed in Table 1.

experiments
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Optimal feature vector combinations. (A) Dissimilarity iteration curves across various dimensions and features. (B) The selection of optimal

feature vectors.

3.1 Training and discrete testing of the
SBL classifier

In this experiment, discrete data on six types of limb movements
were collected from 9 healthy participants using a 16-channel SEMG
signal capture device. Preprocessing procedures, such as noise
reduction and bias removal, were applied to the collected sSEMG
signals. A D (96) feature vector, comprising six different types of
features, was created from the extracted sSEMG signal. In the feature
selection process, a genetic algorithm and a discreteness
computation were employed, resulting in d (48) feature vector.
The data was split into a 30% test set and a 70% training set.
Subsequently, the SBL classification model was trained offline using
the training set. The trained model was subsequently applied for the
recognition of online movements. To validate the robustness of the
proposed categorization model, its experimental findings were
compared with those from other models.

The subjects executed the aforementioned six types of limb
movement combinations, performing each in 3 experimental sets.
Each set consisted of 10 repetitions, with completion of each
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combination movement lasting approximately 4-5s. The time
interval between successive collections of the same combination
movement was 6-8 s, and there was a 1-5 min interval between
each set of experiments. Before each subsequent sEMG data
collection session, it was confirmed that each subject was free
from muscle fatigue. During the data collection process, the
sensors continuously transmitted the acquired SEMG signals in
real-time to a computer. This process yielded 180 data points for
each type of limb movement per subject, resulting in a total of
2,880 data samples.

3.2 Continuous motion decoding

In order to verify the classification model’s ability to make

accurate generalizations, a continuous motion recognition
experiment is conducted, with the “Marching in place with arm
swinging” assignment from the ADL training (Kwalkel et al., 2004).
The experiment consists of four phases and fully includes the six

types of selected limb movements mentioned above. The movement
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sequence is outlined in Table 2. Using the U-LLCRR, 2 subjects are ~ U-LLCRR, ensuring consistent and uninterrupted movement.
selected to participate in the experiment. They perform the  Figure 6 illustrates the real-time identification of
“Marching in place with arm swinging” continuously on the  subjects’ sSEMG data.

Frontiers in Bioengineering and Biotechnology 112 frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1349372

Feng et al.

TABLE 3 Confusion matrix of recognition results.

10.3389/fbioe.2023.1349372

movements to be recognized Movements Recognition Results Accuracy
‘ LS-FLX LE-FLX ‘ RS-FLX RE-FLX LH-FLX RH-FLX NM
LS-FLX 2 - 80.7%
LE-FLX 20 95.2%
RS-FLX ‘ 25 ‘ 90.6%
RE-FLX -- 17 89.47%

LH-FLX ‘ 95.45%
RH-FLX ‘ 95.29%
Accuracy ‘ 87.5% 80% ‘ 94.6% 100% 87.5% 95.3% 90.9% 89.25%

Each limb movement lasts for 3 s. Every subject performs four
sets of continuous movements, following a specific motion sequence.
Each set consists of 5 repetitions, totaling 20 repetitions per subject.
The sEMG signals collected from subjects undergo the previously
mentioned feature selection and SBL classification model method
training. The training data is then input into the optimization
algorithm for continuous limbs movement intention recognition,
maintaining a 3:1 ratio for training and testing datasets, respectively.
This process aims to validate the model’s accuracy in recognizing
continuous movements and establishes a foundation for future
robots in

research into the application of rehabilitation

active training.

3.3 Result of discrete test of the sine-BWOA-
LSSVM classifier

3.3.1 Feature processing

After preprocessing the sSEMG data obtained from 16 channels
across 9 subjects, feature analysis was conducted in both the time
and frequency domains. Figure 7 depicts the mean values of the six
types of limb movements. The four time-domain features (MAV,
RMS, VAR, iEMG) are somewhat effective in distinguishing
between the movements. Some aspects demonstrated noticeable
overlap, especially in movements involving the shoulder joint.
Frequency-domain signals (MPF, MF) showed reduced variability
and greater stability compared to the time-domain signals.

Constructing larger-dimensional feature vectors by utilizing
disparities among features enables more effective information
The
calculated features were combined to form a 16 x 6 dimensional

extraction and improves movements differentiation.
feature matrix encompassing various categories. To select a suitable
multi-dimensional feature dimension, designated as d (n),
dissimilarity was estimated using inter-class evaluation metrics
Figure 8A

dissimilarity across different dimensions and features after

from the above. illustrates the variations in
100 cycles. Dissimilarity peaked at a feature dimension of 48,
reaching a value of 0.75. Consequently, a total of 48 dimensions
were selected. The 96-dimensional feature values were consolidated
into d (48) composite feature vectors, and GA were repeatedly

employed to assess dissimilarity using the Fisher function. Figure 8B
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displays the most favorable feature combinations of for the
9 subjects following iterative combination. The blue marks in
Figure 8B represent the topic numbers, while the yellow on the
right side indicates the layout. The red squares indicate a value of 1,
representing the selected feature vectors, while the blue squares with
a value of 0, represent the non-selected feature vectors.

3.3.2 SBL classification model validation

In applying the classification model for recognizing limb movement
intentions, the BWOA parameters were initialized with a population
size (Pop = 20), the iteration index (i = [0:100]), PP = 0.8, PM = 0.4, and
an infinitesimally small constant (¢ = 10E — 8).

The first 15 instances of each movement, collected from the
9 subjects and totaling 1,440 instances, were used as the training
dataset. The SBL classifier was trained using the optimal feature
vectors obtained from the feature vector selection process (Figure 9),
denoted as d (48) for each subject. Figure 9A shows the Sine-BWOA
fitness variation curve, indicating that the population fitness
gradually stabilizes after 35 iterations. The iterative results
indicated that the optimal parameters for the LSSVM are gam =
616.9974 and sig2 = 5.5353. Figure 9B presents the ROC (receiver
operating characteristic) curve for the model, with an AUC (area
under curve) of 0.8927. Given that 1 > AUC > 0.5, it indicates that
the SBL exhibits good classification
performance.

classification model

The SBL classification model was tested using the most recent
15 instances of each activity from 9 subjects, yielding a total of
1,440 instances. The outcomes of this test are illustrated in
10A. The graph
identification rates across the participants, but the overall

Figure shows minor fluctuations in
results are quite consistent, with an average recognition rate
of 91.413%. Subject No.8 has the lowest percentage of limb
movement intention recognition rate at 90.21%, while the
highest rate is 92.33% in Subject No.2. Figure 10B shows the
results of the categorization test for the six types of limb
movements, with an average recognition rate of 92.87%.
Among the movements, LH-FLX has the highest recognition
rate at 95.33%, while RS-FLX has the lowest recognition rate
at 90.22%. The primary factor contributing to this variance is the
susceptibility of SEMG signals from various muscle groups to

interference during these specific actions.
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To confirm the reliability of the developed the SBL classifier, the
data were tested using five widely utilized classification algorithms,
namely, SVM, BPNN (backpropagation neural network), KNN
(k-nearest neighbor), RF (random forest), and DT (decision tree).
Figure 11 provides a comparative analysis of the categorization
performance. This figure clearly shows that the SBL classifier
outperforms other classifiers in motion intention recognition,
using the same sample data.

3.4 Result of continuous movement
intentions decoding

During a specific instance of continuous movement, raw sEMG
signals, normalized sEMG data, and an overlaid graph displaying
characteristic values were gathered from subject No. I, as depicted in
Figure 12A. The figure shows preprocessed data graphs derived from
16 channels of SEMG data, collected from both the upper and lower
limbs. The data underwent denoising and normalization procedures.
The overlaid graphs illustrate the extent of six characteristics measured
from the processed data. The feature combination vectors were then
inputted into the SBL classification model, and the resulting classification
outcome is depicted in Figure 12B. In this depiction, ‘NM’ denotes the
condition of no movement, grayscale squares represent accurate
classifications, and red squares represent incorrect classifications.

Following the test findings, the confusion matrix for
continuous limb movement recognition was derived, which
was displayed in Table 3. In the table, the blue area indicates
the count of accurate classifications, while the orange section
indicates the count of incorrect classifications. This matrix
presents the results of 240 consecutive movements performed
by a single individual, detected using the SBL classifier. Subject
No. I’s continuous movements achieved an average recognition
rate of 89.25%. The recognition rates for the six types of limb
movements RS-FLX, RE-FLX, and RH-FLX actions, are the
highest, at 94.6%, 100%, and 95.29% respectively, all exceeding
90%. LS-FLX, LE-FLX, and LH-FLX have
recognition rates of 87.5%, 80%, and 87.5%, respectively.

Conversely,

These rates fall within the 80%-90% range. The primary
challenge contributing to this issue is the overlapping of
movement processes, causing significant interference across
muscle groups in different channels. Although continuous
movement recognition may show reduced accuracy compared
to individual movement intention recognition, the overall
reliable and suitable for

findings are still sufficiently

subsequent active rehabilitation training using the U-LLCRR.

4 Conclusion

A novel multi-postures upper and lower limb cooperative
rehabilitation robot has been proposed, enabling the realization of
eight distinct coordinated limb movements. This innovation establishes
a physical platform for the identification of upper and lower limb
coordinated movement intentions based on sSEMG signals. Multi-
dimensional sSEMG signal classification and continuous movement
recognition methods have been explored, leading to the proposal of
a SBL classification model. It has been demonstrated through
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experimental results that the model excels in recognizing limb
motion intentions, especially in differentiating between various limb
movements, with some movement achieving recognition rates above
90%. Although a slight reduction in accuracy for continuous movement
recognition has been observed, the overall results have been found to be
reliable, rendering the model suitable for active rehabilitation training
using the U-LLCRR. This outcome is significant for the development of
more effective and personalized rehabilitation training programs. The
effectiveness of the SBL model in continuous movement recognition has
been validated, providing valuable insights for future advancements in
rehabilitation technology. Future research will be directed towards
enhancing the model’s robustness and exploring a broader range of
movement patterns, with the aim of expanding the application scope of
rehabilitation robot technology.
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University of Chinese Medicine, Suzhou, China

Background: Closed reduction is the preferred treatment for distal radius
fractures. However, it requires a multiple experienced medical staff and
manually maintaining stable traction is difficult. Additionally, doctors cannot
assess the reduction status of a fracture in real-time through radiographic
images, which may lead to improper reduction. Furthermore, post-fracture
complications such as joint adhesion, stiffness, and impaired mobility pose a
challenge for the doctors. So it is necessary to optimize the treatment process of
the distal radius fracture through technological means.

Methods: A robot-assisted closed reduction and rehabilitation system, which
could assist doctors throughout the entire process of reduction, fixation, and
rehabilitation of distal radius fractures, was developed. A mechanical system,
composed of two grippers and a cooperative robotic arm, was used to grasp and
tract the affected limb. A doctor controlled the robot through a joystick console
and Windows application program. A biplane radiographic device was integrated
into the system, which is not only convenient for doctors to view radiographic
images of the fracture at any time but also for them to select the rotation axis of
the wrist on the images before reduction and rehabilitation. Important
information including the anteroposterior and lateral radiographic data and
force and position parameters during the reduction and rehabilitation process
were displayed on a graphic user interface.

Results: Experimental results showed that the proposed robotic system can meet
the technical requirements for the reduction and rehabilitation of distal radius
fractures, all the rotation angles could be achieved, a maximum force of more
than 50 N could be achieved in all traction directions, and the error in selecting
the wrist joint rotation axis line using radiographic images was less than 5 mm.

Conclusion: The developed robot-assisted system was shown to be suitable for
closed reduction and rehabilitation of distal radius fractures, contributing a
potential improvement in the quality of the procedures.
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distal radius fractures, robot-assisted, reduction, rehabilitation, biplane radiographic
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1 Introduction

Reduction, fixation, and rehabilitation are the three basic processes
of fracture treatment. Reduction and fixation are the core treatments,
and rehabilitation guarantees satisfactory functioning and efficacy of the
limb after fracture surgery (Lichtman et al., 2011). Distal radius fracture
is common in clinical settings. Displaced fractures are usually reduced
using closed reduction methods, which are non-surgical and generally
comprise traction and manipulation. The resulting position is then
stabilized, typically by plaster cast immobilization (Handoll et al., 1996).
The plaster cast immobilizes the wrist in a flexed, pronated, and ulnar
deviated position for up to 6 weeks, often resulting in wrist pain and
stiffness, especially during supination and extension (Charnley, 2003).
Exercise is prescribed for at least 90% of patients after a distal radius
fracture (Handoll et al., 2003). Physical therapy of joints, following
surgery, focuses on both passive motion to restore mobility and active
exercises to restore strength. Although a therapist perform passive
motion for patients, continuous passive motion (CPM) devices have
also been used. CPM improves recovery by stimulating the healing of
articular tissues and circulation of synovial fluid, reducing local edema,
and preventing adhesions, joint stiffness or contractures, or cartilage
degeneration (Shirzadi et al, 2020). Adding mobilization with
movement (MWM) to exercise and advice gives a faster and greater
improvement in motion impairments for non-operative management of
distal radius fracture (Reid et al., 2020). Thus Multiple experienced
medical professionals are involved in the reduction, fixation, and
rehabilitation of distal radius fractures. To overcome the drawbacks
of traditional fracture reduction surgery, robot-assisted fracture
reduction (RAFR) aimed to bring benefits, such as improved
accuracy, less invasiveness, less radiation, a short hospital stay and
accelerated postoperative rehabilitation (Zhao et al, 2020; Westphal
et al, 2008). Therefore, various types of assistive robots have been
developed. These robots are structured according to the following: (a)
fixed external frame structure, (b) serial structure (such as that of an
industrial robot), (c) parallel structure, and (d) serial-parallel hybrid
structure (Bai et al,, 2019). Machinery has surpassed human hands in
terms of accuracy, stability, and repeatability. In fracture management, it
can measure the angles, displacement, and force necessary for fracture
reduction with precision and achieve perfect alignment of the fracture
ends. Utilizing programmed fracture reduction treatment processes
results in stable and consistent outcomes, reducing variations in
results among doctors with different experience levels and years of
service. In orthopedic surgery, robots have been developing rapidly in
the past decades and are significantly beneficial to patients and
healthcare providers (Zhao et al., 2020).

Regarding fracture reduction robots, research has primarily focused
on the long bones of the limbs. Li et al. conducted a preliminarily study of
a master and slave remote-controlled robotic system, and the
experimental results showed high accuracy for fracture reduction and
excellent performance (Li et al.,, 2016). Alruwaili et al. proposed a Wide-
Open 3-armed parallel robot, Robossis, which can reach the boundary
points of the workspace with a submillimeter accuracy and provide the
required traction forces of up to 432 N to align femur fractures (Alruwaili
et al, 2022). Zhu et al. designed and kinematically analyzed a femoral
fracture reduction robot, which comprises a six-degree-of-freedom
serial-link robot with three prismatic and three rotational joints. The
proposed system has the potential for practical application in orthopedic
clinical surgery (Zhu et al., 2022). Dagnino et al. designed a six-degree-of-
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freedom parallel robotic system for fracture manipulation, which allows
for remote control in automatic mode and intra-operative adaptation for
better reduction accuracy (root mean square error of 1.18 + 1.14 mm
[translations] and 1.85° + 1.54° [rotations]) (Dagnino et al., 2015). Seide
et al. developed a six-degree-of-freedom external fixator based on a
hexapod robot, which had high-precision three-dimensional bone
movement and could be expanded into a “smart fixator” in the
future to automate controlled fracture and deformity treatment (Seide
et al., 2004). Westphal et al. developed a robotic system for the reduction
of femoral shaft fractures by utilizing modern techniques such as three-
dimensional (3D) imaging, navigation, and robotics to overcome the
disadvantages of the minimally invasive technique of intramedullary
nailing, including malaligned fracture reductions and high radiographic
exposure. The authors showed that high reduction accuracies could be
achieved with the robotic system and that robot-assisted drill guidance
achieves superior results compared with that achieved with the
conventional procedure (Westphal et al., 2009). Priya et al. developed
a novel method for reducing distal radius fractures using a mechanical
device, which decreases the number of surgeons and time required to
reduce the distal radius fracture and seeks to improve the accuracy of
reduction (Priya et al, 2019). Xie et al. developed a novel fracture
reduction device which enables only one doctor to complete the
traditional manual reduction easily with precise measurements of all
the necessary biomechanics and related parameters (Xie et al,, 2016).
Regarding fracture rehabilitation robots, Picelli et al. supported the
hypothesis that robot-assisted arm training might be a feasible tool for
treating upper limb impairment in adult patients with distal radius
fracture treated conservatively or surgically. The treatment of arm
impairment consequent to distal radius fractures by means of robot-
assisted arm training may allow therapists to focus on functional
rehabilitation during occupational (individual) therapy and supervise
(more than one) patients simultaneously during robotic training
sessions (Picelli et al., 2020). César et al. designed and analyzed a
horizontal rehabilitation robot based on a parallel mechanism for the
treatment of femoral shaft fractures. Their designed robot helped
patients to perform passive exercises of the hip. The system consists
of three degrees of freedom actuated with linear actuators (Valdivia
et al, 2013). Viriyasaranon designed and built a robot for elbow
rehabilitation after elbow fractures, which could measure the limited
range of motion of passive and active movements, measure stiffness of
the human arm for passive movement, and provide assistive and
resistive rehabilitation (Viriyasaranon, 2017). Wang et al. designed
and implemented a soft parallel robot for automated wrist
rehabilitation, which can assist the wrist to achieve all the required
training motions, including abduction-adduction, flexion-extension,
(Wang and Xu, 2021).
Noviyanto et al. designed a Continuous Passive Motion (CPM)

and supination-pronation motions

machine for wrist joint therapy to reduce joint stiffness and
improve joint mobility after surgery. The machine allows flexion,
extension, ulnar, and radial movements of the wrist joint, with
adjustable angles and speeds. The testing of the device showed a
maximum difference of movement of 2°and a difference in speed of
rotation of 0.5 s. The results indicate that the machine can be controlled
according to the desired movement settings (Noviyanto et al., 2021).
Kleber et al. integrated robotics and electronic games with the objective
of producing more motivating and attractive therapeutic activities in
distal radius fracture rehabilitation (wrist region) (Andrade et al., 2010).
Cao et al. proposed innovative methods for circuit improvement,
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damping settings, and energy harvesting for rehabilitation training
robots (Cao et al,, 2022; Cao et al., 2023).

Closed reduction is the preferred treatment for distal radius
fractures, but it requires the participation of multiple healthcare
personnel, and maintaining stable traction manually through closed
reduction is difficult. Additionally, doctors cannot assess the
reduction status of the fracture on radiographic images in real-
time, which may lead to improper reduction. Furthermore, post-
fracture complications such as joint adhesion, stiffness, and
impaired mobility are challenging for doctors. To address these
issues, a robot-assisted closed reduction and rehabilitation system,
which could assist doctors in completing the entire reduction,
fixation, and rehabilitation process for distal radius fractures, was
developed. The main contributions of this paper are as follows:

1) A mechanical system composed of two grippers and a
cooperative robotic arm is used to grasp and provide
traction to the affected limb. The doctor controls the robot
through a joystick console and Windows application program.

2) A biplane radiographic device was integrated into the system,
which is not only convenient for doctors to view the fracture
on radiographic images at any time but also for selecting the
rotation axis of the wrist based on the images obtained before
reduction and rehabilitation.

3) Important information including the anteroposterior and
lateral radiographic images and force and position

parameters during the reduction and rehabilitation process

were displayed on a graphic user interface (GUI).

2 Materials and methods
2.1 Clinical analysis

To achieve an effective design, it is essential to involve the inputs of
primary and secondary stakeholders at the outset of the development
process. Their knowledge and input aid in understanding present
practices and identifying specific obstacles with current procedures
and equipment (Georgilas et al, 2018). It is also important to
develop a surgeon- and patient-friendly orthopedic surgical robot by
imitating surgeons’ manual conduct of fracture reduction surgery and by
maintaining surgeons” way of thinking and planning surgeries (Zhu et al,,
2021). The fracture reduction assistant robot is a novel medical
equipment aimed to assist doctors to complete fracture reduction
and rehabilitation more efficiently and accurately. To ensure the
robot’s effectiveness and safety, it is crucial to design it based on
clinical needs that meet the requirements of doctors. Therefore, we
conducted a survey of 30 experienced doctors in the Bone and Joint
Department of the Suzhou Hospital of Traditional Chinese Medicine
who had more than 5 years of experience in distal radius fracture
reduction. We gathered feedback and recommendations from
different perspectives, and based on the survey results, we
summarized the following required technical parameters:

1) Position of the patient’s body: Sitting or lying position.

2) Position of the affected limb: Shoulder abduction, 60°-90°
elbow flexion, 90° or 180" and forearm and wrist in pronation
or the neutral position.
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3) Position for holding: The distal end is the palm or fingers, and
the proximal end is the part of the forearm closer to the
elbow joint.

4

~

Parameters of traction: Along the longitudinal axis of the limb,
the traction force is controlled at 40-50 N depending on the
specific situation. The traction time is preferably 1-3 min, and
the traction displacement is about 5-10 mm. The range of
wrist flexion and deflection angles is +60° and %307,
respectively

5) Continuous passive motion (CPM): The vertical bending wrist

~

movement known as extension and flexion is shown in
Figure 1A. The side-to-side horizontal tilting movement of
the wrist, known as radial and ulnar deviation, is shown in
Figure 1B. The wrist and forearm rotation movement, known
as pronation and supination, is shown in Figure 1C.

6

=

Mobilization with movement (MWM): Anterior and posterior
gliding, clockwise and counterclockwise rotation, longitudinal
separation traction, and compression along the palmar axis of
the wrist joint. Each action is performed in the functional
position, which is palm flexion, ulnar deviation, wrist
extension, and end-range radial deviation.

2.2 System configuration

The robot-assisted closed reduction and rehabilitation system
for distal radius fractures developed in this article is composed of the
following elements: the robot body, lead protective curtain, mobile
lead screen (Suzhou Kangshidun Protective Technology Co., Ltd.,
China), computer host (Advantech Co. Ltd., China), control
console, and mobile cart as shown in Figure 2. The robot body
consists of a movable base, a collaborative robotic arm (Aubo
Intelligent Technology Co., Ltd., China), two sets of radiographic
devices (Shanghai Anzhu Optoelectronic Technology Co., Ltd.,
China), and two gripping jaws (Shenzhen Dahuan Robot
Technology Co., Ltd., China) and their parameters are shown in
Table 1. The interaction between the doctor, robot, and patient
forms a human-machine system, emphasizing the safety of medical
personnel and patients in the design. Consequently, emergency stop
buttons are present on both the robot body and control console. To
ensure protection against radiations from radiography, a specially
designed low-dose radiography machine is used for the forearm,
effectively minimizing radiation exposure. The doctor is protected
by a glass lead screen while the patient is shielded by a movable lead
curtain, exposing only the affected limb to the radiation field. The
collaborative robotic arm features collision detection and
automatically stops when obstacles are encountered. It is
equipped with a six-axis force sensor at its end, and the arm and
palm clamps offer adjustable gripping force on the limb within an
acceptable range. The control system monitors force in real time,
and the robotic arm pauses automatically if the force exceeds the
limit. The host serves as a relay station for all data and control
transmission. The mobile lead curtain and lead screen provide
protection for the patient and doctor, respectively. The upper
part of the lead screen is a lift-up glass lead screen, enabling the
doctor to easily observe the status of the robot and patient. The
mobile cart facilitates close-range and long-range operations for
the doctor.
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FIGURE 1
The angles of wrist movement. (A) Bending. (B) Tilting. (C) Rotating.
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The robot-assisted reduction and rehabilitation system for distal radius fractures.

2.3 Joystick console

The console’s main functions are to control the opening and
closing of arm and palm grippers, adjust the movement speed of the
robotic arm, select traction mode (drawing, palmar flexion, dorsal
extension, ulnar deviation, and rotation), and implement movement.
It controls the arm and palm grippers and adjusts the robotic arm’s
movement through the host. As shown in Figure 3A, the console has
four independent buttons including a four-speed switch, a four-
direction joystick switch, and one knob. These components are
abstracted into four independent modules that are connected to
the main control module. The main control module, shown in
Figure 3B, communicates with the upper computer and is based
on STM32, the only microcontroller. As shown in Figure 4, the
control module exchanges data with the upper computer through the
USART serial port. After the upper computer sends specific
instructions, the microcontroller returns a byte stream that

Frontiers in Bioengineering and Biotechnology

includes status information of the four console components, such
as whether all buttons are pressed, which gear position the switch is in,
whether the joystick is being operated, and the position of the knob.

2.4 Biplane radiographic image
acquisition system

The large G-arm radiography machines employed in hospitals are
costly and unwieldy, which are excessive for distal radius fractures. As
shown in Figures 5A, B, by integrating radiography machines into robots,
the positional relationship between the limbs in the image and the actual
physical space can be determined. As shown in Figures 5C, D, the biplane
radiographic image acquisition system comprises three main components
including radiography source control, reception panel network layer
control, and primary image processing. The base coordinate origin of
the robotic system is set at the center of the flange at the base of the
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TABLE 1 The parameters of robot-assisted reduction and rehabilitation
system.

Parameter Value

Collaborative robotic arm(AUBO i5) dl = 140.5 mm
a2 = 408 mm
a3 = 376 mm

Joint dimensions d4 = 102.5 mm
d5 = 102.5 mm
d6 = 94 mm

Repeatability +0.02 mm

Workspace (spherical) 886.5 mm (radius)

Load capacity 50 N
Clamping jaw for palm(DAHUAN AG95)

Travel distance 0-95 mm
Clamping force 45-160N
Clamping jaw for palm(DAHUAN

PGI-140)

Travel distance 0-95 mm
Clamping force 40-140N

Six-axis force sensor(KUNWEI KWR75D)

Force Fx (500N), Fy (700N), Fz (700N)

Moment Mx (18Nm), My (18Nm), Mz

(18Nm)

collaborating robotic arm. The detection area of the receiving plate is
160 mm x 128 mm, and the pixels of the radiographic images are 640 x
512. As shown in Figure 4, the computer host connects to the
microcontroller and two radiography receiving panels through a USB
serial port and two RJ45 network interfaces, respectively. The system

10.3389/fbioe.2023.1342229

controls two sets of radiographic emission-reception devices separately in
the vertical and horizontal directions based on the set exposure
parameters. After image processing, the acquired radiographic images
are displayed. A doctor can activate the acquisition of anteroposterior and
lateral radiographic images using a foot pedal.

2.5 Graphic user interface

The GUT is used to display the images and parameter data the doctor
needs to view during fracture reduction. Meanwhile, in rehabilitation
training mode, the doctor can set rehabilitation training parameters and
start or stop the training through the GUL As shown in Figure 6, the
anteroposterior and lateral images can be displayed simultaneously,
enabling doctors to check the fracture situation in real time. The
doctor can set the rotation axis of the end of the robotic arm based
on the anteroposterior and lateral radiographic images. The velocity of
the robotic arm and the gripping force of the jaws can also be adjusted.
The gripping force can be adjusted to 40-50 N for individuals with less
muscles and can reach up to 140 N for those with more muscles. The
maximum pressure a human body can withstand is 140 N, so the gripper
will not cause harm to the body. Furthermore, the six-dimensional force
sensor collects data parameters of force and moment, which are
displayed on the interface. After the rotation axis is set, the traction
force and position parameters are reset to zero. During reduction,
parameters of force and position for pulling, bending, tilting, and
rotating in real time are displayed on the software interface and
parameters such as traction force, speed, range, time, and axis of
rotation can be set. The connection status of the robot and
radiography machine is displayed on the interface.

2.6 Force and torque compensation

To obtain the force and torque of the robot on the affected limb in
real time, a six-dimensional force sensor was installed under the clamp
claw. Due to the low-speed robotic movements, the influence of inertial

FIGURE 3
The joystick console. (A) Operation interface. (B) Circuit board.
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force can be neglected. Force sensor data fluctuations are ignored and the ~ gravity action should be eliminated. By selecting the six-dimensional
end tooling is not replaced. Therefore, the load is subject to external  force sensor at different poses, the gravity size and the center of gravity
contact force and only needs influence of a sensor system error, andload  position of the load end can be calculated (Kim et al., 2013).
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FIGURE 6
The Graphic User Interface (GUI) of the system.

As shown in Figure 7A, the coordinate systems are established, and
the mechanical arm base coordinate system is Og —XoYoZo
coordinate system {O}. The measurement coordinate system of the
six-dimensional force sensor is Os — XsYsZs, as coordinate system {S}.
The coordinates of the center of mass (p,s, Pys> p,s)> the zero value of
the force components (Fy, Fyo, F,9), and the zero value of the torque
components (Myg, Myg, My) in the six-dimensional force sensor
coordinate system can be calculated from multiple sets of data using
the least-squares method by the following equation.

M, 0 Fs —Fs 100
My |=|-Es 0 Es 010
“Fs 0 001

My F
kl = M,y + Fy() X P,s — F,o % pyS
kz = My() + FZ() X pxS — FXO X pZS
k3 = MZ() + FxO X pyS - FyO X pXS

yS

where

Then load-end gravity Gr = \[Fys + Fyg + F2g

After the load-related parameters are determined, as shown in
Figure 7B, the coordinate system {T} at the center of gravity point,
which is O — X1 YrZr, is established. The direction of {T}is the
same as that at the base coordinate system {O}. The coordinate
system is established at the action point of the mechanical arm and
the external force, O — XgYgZg, as {E}. The direction of {E} is the
same as that of the coordinate system {S}. Map the gravity and
torque of the load end under the coordinate system {?} to the
coordinate system {?}, and the calculation formula of the gravity
and torque value that can represent the load end compensation of
the sensor is
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Parameters

Continuous Passive Motion

i~ Lecmopn 2l [

MSC f(sPT)gR gR MT

where load-end gravity and torque is

0 —pzs Ppys

[Fr Mr]" =100 —|Gr1000]", Z(Pr)=| pzs O —pxs
10 0 —Pys Pxs 0

is operator matrix, gR = [ 0 -1 0:| is the rotation
0 01

transformation matrix of the coordinate system {T} relative to
the coordinate system {S}.

Finally the external force on the end of the robotic arm can be
calculated by the following equation.

Fr SR 0 |([ Fs Fs F,
Mg | | 2(°P5)3R SR Mg | | My | | M,
_sz pyE
In which f(sPE) =| pe 0 —pyp | is operator matrix, }SSR =
100 - P yE PxE 0
[0 1 0 |is the rotation transformation matrix of the coordinate system
001

{S} relative to the coordinate system {E}.

3 Results
3.1 Axis alignment error
The biplane radiograph system is mounted and calibrated

according to the parameters of the robotic system, and we use a
metric ruler with a square-handled ball and an embedded lead scale to
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FIGURE 7

The force and torque calibration of six-dimensional force sensor. (A) Gravity and center of mass. (B) The coordinate systems.

mount, calibrate, and measure error. Sources of error include the
aluminum alloy profile material dimensions, mounting, center
emission point of the radiographic emitter, and the receiving plate.
The flat plate received rays that are similar to the radiograph emission
angle of £19” and greater than the detector receiving angle of 16.3°.
The arm could be completely imaged on the receiving plate.
According to the principle of radiography, the magnification factor
(Magnification Factor) can be calculated by Mf = d/D where d is the
distance between object and emission source, D is the distance
between emission source and receiving plate. We conducted a
positioning accuracy experiment using a 3D printed spherical ball
with a handle and the transfer plate on the robotic arm. Three
different positions were selected in both the anterior and lateral
directions for X-ray imaging, then center points were selected on
the acquired images to test positioning accuracy. Table 2 presents the
test results, indicating that the coordinate error of the spherical center
remains within a 5 mm range.

3.2 Traction parameters

According to Section 2.1, during the fracture reduction and
rehabilitation, the robotic arm needs to exert the maximum traction
force between 40 and 50 N in each required position. We measured
the angle at the end of the robotic arm through the digital display
inclinometer (TLL-90S, Dongguan Jingyan Instrument Technology
Co., LTD., China) and assessed whether the traction force with the
pull pressure gauge (SSMCL-YL-1kN, Shenzhen You Zhongli
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Technology Co., LTD., China) meets the requirements. The
traction force of the robotic arm along the axis of the arm can
reach more than 50 N at different angles.

3.3 Simulated reduction

Using the fracture reduction-assisted robot developed in this
study, we requested chief physicians from the Suzhou Hospital of
Traditional Chinese Medicine to test the auxiliary reduction and
rehabilitation training function with a Colles’ Fracture
Reduction Trainer. The reduction steps are as follows: (1)
connect the power supply, open the collaboration mechanical
arm control cabinet, start the master control computer, and
initialize; (2) place the hand model in the appropriate
position on the machine and hold it with the clip claw; (3)
step on the radiography machine pedal to obtain the forward side
image, observe the fracture situation and select the wrist joint
axis on the image; (3) the doctor operates the robotic arm along
the axis of the arm through the rocker arm console and positions
the robot in the palm flexion deviation; (4) the doctor adjusts the
traction and angle during the manual reduction, and (5) adjusts
the traction force and angle after the reduction; and (6) the clip
claw is released after fixation, and the arm model is removed. The
experimental results show that the robot can effectively hold the
affected limb and implement the required traction when the
doctor implements the manual reduction and external fixation of
the fracture model.
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TABLE 2 Positioning accuracy from image to space.

Vertical (x,y)

10.3389/fbioe.2023.1342229

Error (mm)

Horizontal (y,z)

P2 P2
Sphere (0.65,2.13) (0.86,2.87) (1.06,3.34) (0.94,2.69) (1.35,3.47) (1.91,4.28)
Disk (0.74,1,85) (0.93,1.80) (1.42,3.74) (0.36,0.50) (0.64,0.44) (1.52,0.40)

3.4 Simulated rehabilitation

In the rehabilitation mode, the rehabilitation therapist should
first control the mechanical arm through the joystick console to
drive the movement of the affected limb to obtain the compression
and traction forces a patient’s wrist joint can withstand and to obtain
achievable training angles. The automatic movement of the
mechanical arm is then observed through the software interface.
First, the rehabilitation mode, CPM or MWM, is selected.
Subsequently, the rotational axis of the wrist is selected on the
lateral radiographic image; the traction force, direction, angle, speed,
and frequency of joint movements are set, and the start button is
pressed. When choosing CPM mode, the arm is held so it can only be
achieved bending and tilting. Their axes of rotation were selected on
the AP (Rz) and LT (Rx) X-ray images. When choosing MWM
mode, the arm is in a semi-restricted position and the wrist motion
are faster linear reciprocating motion in the 30 mm range of the XZ
directions. Table 3 illustrates the results of experimental tests,
indicating that both the robot-assisted CPM and MWM are
capable of fulfilling the usage requirements of rehabilitation
therapists.

4 Discussion

The development of the robot-assisted system for fracture
reduction and rehabilitation is an innovative and potentially
game-changing advancement in orthopedic surgery. This
technology, which can be challenging and complex, aims to
improve the accuracy, precision, and safety of the reduction
and rehabilitation procedure. Therefore, all aspects of the
robot including the form of the robotic arm (Lin et al., 2013;
Wang et al., 2013; Zhu et al., 2017; Georgilas et al., 2019), the
connection technology between the bone and the robot (Yang
etal., 2021), the force and moment in the reduction process (Zhu
etal., 2016; Lei et al., 2020), functional evaluation (Hung and Lee,
2010), accuracy evaluation (Li et al., 2014), and interaction mode
(Suero et al., 2018), have been studied. By utilizing a robot,
surgeons can enhance their surgical techniques by obtaining
real-time imaging guidance, improving their visualization of
the fracture site. The robot can assist with the precise
manipulation and repositioning of the fractured bone
fragments, ensuring optimal alignment and stability during the
reduction process. One of the key benefits of using a robot for
closed reduction is the potential for decreased tissue trauma and
reduced surgical time. By relying on robot-assisted techniques,

surgeons can minimize soft tissue damage and achieve more
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efficient surgeries, which may lead to the quicker recovery of
patients. Additionally, the use of robotics in closed reduction
procedures can potentially decrease the risk of complications,
such as improper alignment or unstable fixation, which are
of
techniques. The robot’s ability to perform repetitive and

common  challenges traditional ~manual reduction

precise movements may improve overall outcomes and
enhance the quality of care provided to patients. However, it is
important to note that the development of a robot for closed
reduction and rehabilitation of distal radius fractures is still an
ongoing area of research and development. The technology is not
yet widely available or fully optimized for clinical use. Further
studies and trials are necessary to assess its safety, efficacy, and
widespread

Nevertheless, the potential benefits of a robot-assisted closed

cost-effectiveness ~ before implementation.
reduction and rehabilitation system for distal radius fractures
hold promise for the future of orthopedic surgery, paving the way
for advancements in surgical techniques and ultimately
improving patient outcomes.

In this study, empirical parameters such as the position of the
patient and affected limb, clamping position, direction of traction and
reduction, angle, and force required for fracture reduction were
obtained through clinical research, guiding the development of the
distal radius fracture reduction and rehabilitation robot. The
structure, software of the

rehabilitation robot were developed, and parameter indexes were

hardware, and reduction and
tested. Experiments were conducted using a distal radius fracture
model. The tests and results demonstrate that the developed closed
reduction auxiliary robot for distal radius fractures can effectively
assist doctors in completing the reduction, fixation, and rehabilitation
process by enabling the binding of the affected limb, multi-degree-of-
freedom traction, and real-time display of radiographic images.
The robot-assisted system for distal radius fractures can assist
doctors in performing closed manual reduction and assist in
rehabilitation. Lead screens and lead curtains are used to protect
doctors and patients from radiation. The radiation emitted by small
radiography machines is significantly smaller than that of large
C-arm or G-arm radiography machines. The mechanical arm is
operated using a joystick console to achieve fracture reduction, while
the radiography machine only needs to be turned on during fracture
analysis and viewing. Mostly, the machine remains in a non-
radiation state, allowing doctors to view the images up close.
With the help of the radiography device, doctors can monitor a
patient’s fracture status in real time through the display screen, while
maintaining the position of the patient’s arm using the robotic arm
and gripper system, thereby achieving precise reduction. This
eliminates the need for the patient to visit the radiology
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TABLE 3 Parameters for reduction and rehabilitation of the robot.

10.3389/fbioe.2023.1342229

Traction force Reduction Rehabilitation
CPM(0~2tps) MWM(0~4tps)
Bending Tilting Rx Rz X (mm)
ON ~ 50N -5°~5° -30°~30° -5°~5° -30°-30° +30 +30
No load -60°-70° -30°~30° ~30°~20° -60°-70° +30 +30
department multiple times before and after the operation, ultimately =~ acquisition, Resources, Writing-review and editing. GZ:

reducing medical costs.

The developed closed reduction and rehabilitation auxiliary robot
system for distal radius fractures is suitable for outpatient orthopedics
and traumatology clinics. It has low radiation dose and includes
movable lead curtains and screens. The system is compact in size and
easy to install. Patients can directly obtain radiographic images in the
clinic using the system. After diagnosis by a doctor, if the patient
meets the applicable fracture range of the system, the doctor proceeds
with the reduction procedure after obtaining the patient’s consent.
However, it can only achieve auxiliary traction and rehabilitation
functions, cannot directly apply forces to the fractured bones for
reduction purposes, such as the technique of manipulating the
fracture site. It also lacks intelligent functions such as guidance
based on X-ray images and force feedback control. The next step
involves adding a top-folding mechanism to directly apply force to the
broken bone to better simulate manual reduction, as well as
incorporating functions such as artificial intelligence fracture
classification and reduction guidance. Further experiments are
necessary to verify the influence of muscle strength on various
animal bones and cadavers, analyze the performance of the control
system, and optimize the mechanism of the robotic system for patient
safety and convenience before applying it to clinical environments in
the future. Currently, there are no mature commercialized products
for a robotic system for distal radius fractures worldwide, and many
research institutes and hospitals are still in the exploratory stage of
research about this system. Building an auxiliary fracture reduction
robotic system based on medical image guidance to assist doctors in
completing distal radius fracture reduction and achieving precise
minimally invasive surgery hold great medical potential.
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compliant control of SEA-driven
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Quan Liu
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In recent years, lower limb exoskeletons have achieved satisfactory clinical
curative effects in rehabilitating stroke patients. Furthermore, generating
individualized trajectories for each patient and avoiding secondary injury in
rehabilitation training are important issues. This paper explores the utilization
of series elastic actuator (SEA) to deliver compliant force and enhance impact
resistance in human-robot interaction, and we present the design of novel knee
exoskeleton driven by SEA. Subsequently, the novel gait trajectory prediction
method and compliant control method are proposed. The attention-based CNN-
LSTM model is established to generate personalized gait trajectories for affected
limbs, in which the spatial-temporal attention mechanism is adopted to improve
the prediction accuracy. The compliant control strategy is proposed to
nonlinearly and adaptively tune impedance parameters based on artificial
potential field (APF) method, and active rehabilitation training is carried out in
the coordination space to guarantee patient safety. The experimental results
based on four healthy subjects demonstrated that synergetic gait prediction
model could satisfactorily characterize the coordination movement with higher
accuracy. The compliant control could limit the patient’s movement in the safe
coordination tunnel while considering personalization and flexibility.

knee exoskeleton, series elastic actuator, gait prediction, compliant control,
personalized trajectory

1 Introduction

According to the Global Burden of Disease Study, stroke remains the primary cause of
the second-highest mortality rate and the third-highest disability rate in the world (Feigin
et al,, 2022). Patients with lower extremity motor dysfunction after stroke usually show
weakened lower extremity muscle strength, limited range of motion, and unstable shift of
center of gravity, often accompanied by foot drop and varus deformity (Wang et al., 2017).
Knee joint is the most complex joint of human body in structure, which can not only
support basic locomotion such as walking, running, and standing, but also effectively
dampen the impact force generated during walking. Knee dysfunction caused by
neurological diseases is the most common factor leading to gait abnormalities, which
severely affects patients’ activities of daily living. Therefore, it is necessary to carry out
rehabilitation training and develop the knee exoskeleton to improve mobility (Yan et al.,
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2022). Research shows that rehabilitation training for patients at the
early stage of the stroke has a significantly positive effect (Ballester
et al.,, 2022).

The traditional rehabilitation therapy is time-consuming and
laborious, and rehabilitation outcome is limited (Zhang et al., 2021).
The lower limb rehabilitation robots can not only reduce the burden
of rehabilitation therapists, but also customize the gait trajectory and
training intensity (Kim et al., 2019; Cao et al,, 2023; Yang et al,,
2023). However, traditional knee exoskeletons mostly adopt rigid
actuators, which can achieve accurate position control, but lack
compliance (Chen et al., 2017). Exoskeletons driven by pneumatic
muscles possess high compliance, but how to provide power
conveniently is a challenge (Sridar et al, 2018). Series elastic
(SEA) intentionally introduces an elastic element
between the actuator and output, which has many advantages,

actuator

including lower reflection coefficient, impact resistance, and more
accurate stability control in unconstrained environment (Yu and
Lan, 2019). Recently, knee exoskeletons driven by SEA have received
increasing attention (Kong et al., 2012; Song et al., 2023). Kong et al.
designed the knee exoskeleton with compact rotary series elastic
actuator (cRSEA), in which worm gears made no noise and were
used to amplify the torque produced by the motor (Kong et al,
2012). Song et al. studied a crank-slider series elastic actuator (CS-
SEA), in which crank-slider mechanism could improve the torque
effect and the level of transparency, and the experimental results
showed the precise force control performance of CS-SEA (Song
etal,, 2023). However, the weight of the knee exoskeleton can be the
burden for patients, and patients vary in body shapes, so the knee
exoskeleton should be adjustable to accommodate patients with
different physical parameters to improve the adaptability of device
and limit the range of motion of the knee exoskeleton to prevent
secondary injury.

The predefined gait trajectory is suitable for patients who lack
the ability to walk independently in the early stage of rehabilitation.
However, in the middle and late stages of rehabilitation, the
predefined trajectory may conflict with the patient’s active
intention (Zhu et al, 2022; Na et al, 2023). The continuous
estimation of human motion intention through gait prediction
method exhibits potential for compliant human-robot interaction
(Xiong et al., 2021). Gait prediction is mainly based on motion
information and physiological information. Motion information
mainly includes joint angle, angular acceleration, and plantar
pressure (Liu et al., 2017; Mounir Boudali et al., 2019; Sivakumar
et al, 2019), and physiological information includes surface
electromyography (sEMG) and electroencephalogram (EEG)
(Gautam et al.,, 2020; Morbidoni et al., 2021; Liu et al., 2022).
Meanwhile, multi-sensor fusion and multi-feature fusion can
realize better prediction accuracy in gait prediction (Mazumder
etal., 2016; Arami et al., 2019). Zou et al. proposed a gait prediction
model to generate personalized gait trajectory for different subjects,
which took the current joint angle of healthy lower limb and the
observed historical joint angle of both lower limbs as input, and
predicted the future joint angle of the paralyzed leg (Zou et al., 2021).

Human-robot interaction has requirements for control accuracy
and safety, but the two criteria are conflict. Compliant control can
provide a compromise between control accuracy and safety
(Schumacher et al, 2019). Compliant control can control the
position and force simultaneously and purposefully, including
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impedance/admittance control (Kim et al, 2021), hybrid force/
position control (Yang et al., 2020), and parallel force/position
control (Wang et al, 2011). Compared to hybrid and parallel
force/position control, impedance control focuses more on
achieving the target relationship between force and position, but
does not necessarily track the expected trajectories (Perez-Ibarra
et al., 2019; Chen et al., 2020; Sun et al., 2020). Admittance control,
also known as position-based impedance control, adjusts the desired
trajectory according to force deviation (Almaghout et al., 2022;
Huang et al., 2022). Impedance control with adjustable parameters
can respond to changes in the external environment (Liu et al., 2020;
Wang et al.,, 2021). Li et al. proposed an iterative learning impedance
control method, in which the control objective was the impedance
model. This method achieved the desired control accuracy through
iteration, which was suitable for the rehabilitation tasks with
repeatability (Li et al., 2018). Spyrakos et al. introduced a variable
impedance control scheme performing stable trajectory tracking,
which ensured the stability of impedance control for flexible-joint
robots (Spyrakos-Papastavridis and Dai, 2021).

Currently, AAN algorithm modifies the intervention of the robot
according to the patient’s behavior, while adopting virtual walls to
guarantee patient safety (Banala et al., 2009; Perez-Ibarra et al., 2019; Asl
et al, 2020). Banala et al. developed the force-field controller which
applied tangential and normal forces to the ankle, in which the
tangential forces moved the ankle along the trajectory, and the
normal forces produced virtual tunnel around the desired ankle
trajectory (Banala et al, 2009). Asl et al. adopted the force field
control term in the velocity field controllers, which acted as the
virtual tunnel around the desired trajectory. The forces were applied
to the desired trajectory whenever the position of the device deviated
more than the safety threshold (Asl et al., 2020). However, the desired
trajectory is not individualized for each patient, and the actual trajectory
should be modified according to the patient’s motion intentions.

In this paper, the flexible knee exoskeleton driven by SEA is
designed, and compliant control scheme is proposed for the
rehabilitation of stroke patients. The main contributions of this
article can be listed as follows.

1) The ball screw drive system, adjustable design, safety
mechanism, dual-purpose interface, and support module are
adopted in the knee exoskeleton driven by SEA to improve the
safety, compatibility, and utilization rate of the device.

2) The attention-based CNN-LSTM network combined with
inter-limb synergy is proposed to generate individualized
gait trajectory, in which the spatial-temporal attention
mechanism is adopted to improve the prediction accuracy.

3) The compliant control scheme based on artificial potential
field (APF) method is proposed to nonlinearly and adaptively
modify the impedance parameters according to actual
conditions,

improving the safety and compliance of

individualized gait rehabilitation.

The rest of this paper is organized as follows: Section II
demonstrates the detailed information of the knee exoskeleton
driven by SEA. Section III introduces the proposed individualized
gait trajectory prediction model. Section IV shows the compliant
control scheme. Experiments and results are conducted in Section V.
Section VI is discussion. Conclusion are presented in Section VIL
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FIGURE 1

Detailed display of knee exoskeleton driven by SEA (Dong et al,, 2022).

2 Mechanical design

To enable normal walking, the output torque and angle of the
knee exoskeleton in the flexion/extension direction should meet the
standards of the human body. The knee angle ranges from —-4-66°,
and the knee torque ranges from —5-66 N - m (Chen et al., 2019).
Meanwhile, the exoskeleton should be designed with an adjustable
mechanism to adapt to patients with varying physical parameters.

The knee exoskeleton driven by SEA designed in this paper is
used for unilateral lower limb. The main structure of the knee
exoskeleton driven by SEA is shown in Figure 1, which mainly
includes six modules, namely, thigh module, calf module, knee
module, actuator module, support module, and protection
module. The length of the thigh module and the calf module can
be adjusted to accommodate patients with different physical
parameters, which improves the utilization and adaptability of
equipment. The inner calf rod and the drive support can also be
adjusted, allowing different force arms to be realized to satisfy
different rehabilitation needs.

There is a dual-purpose interface at the end of the actuator
module, which can realize the normal rotation of the knee joint or
calibrate the spring coefficient. The knee module is equipped with
safety mechanism to ensure the safety of rehabilitation training. The
safety latch can be inserted into the limit hole, and the range of
motion of the knee angle can be adjusted by changing the position of
the safety latch. The protection module is manufactured through 3D
printing technology, and the flexible material enables the protection
module to adapt perfectly to the human body. The support module
can alleviate the burden on patient, and the patients can wear the
knee exoskeleton to achieve gait rehabilitation on the treadmill, as
shown in Figure 2A. The support module can also adjust the
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position of the exoskeleton in three directions. The end of the
support module is connected with a bearing, thus promoting
unrestricted movement of the hip joint.

The knee exoskeleton adopts SEA as the actuator, as shown in
Figure 2B. The SEA is isolated from the load through flexible
elements. When the system is impacted, the spring can provide a
buffer and absorb energy, which plays a protective role and improve
the flexibility of SEA. The angle and displacement sensors are
installed at the bottom of the knee module, which can monitor
the patient’s motion in real time, providing a hardware basis for
compliant and intelligent control. When SEA works, the motor
drives the ball screw to rotate, and the nut of the ball screw moves
linearly, which compresses or stretches the spring. The force of
spring makes the push rod of SEA generate thrust or tension, which
can realize the flexion or extension movement of the knee joint. At
the same time, the actuator module rotates relatively with the thigh
and calf driver support module in a small range. The displacement
sensor records the deformation of the spring, and the angle sensor
records the flexion and extension angle of the knee joint, and the two
signal feeds it back to the control system.

3 Individualized gait prediction model
3.1 TASK design and data acquisition

Human motor coordination refers to the ability of the
neurobiological motor system to generate complex movements
involving multiple limbs or joints. Various types of coordinated
movements can be executed by the lower limb, including sitting/
standing, squatting/jumping. The most common coordinated
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FIGURE 2

The mechanism of knee exoskeleton. (A) Knee exoskeleton with support module. (B) Knee exoskeleton in rehabilitation training.

FIGURE 3
Position of the SEMG and angle sensor.
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movement is walking, which is a fundamental athletic skill for other
activities.

In this paper, a variety of lower limb coordinated movement
tasks using the knee joint are designed. The subjects walked on
treadmills at different speeds and slopes. The speeds included
0.5 km/h, 1.5 km/h, and 3.0 km/h, and the slopes included 0°, 4°,
and 8°. The slope 0° represent that the human walks on flat ground.
The subjects initiated a gait cycle with the right heel touching the
ground and end the gait cycle with the next right heel touching the
ground. The gait trajectory is the knee joint position trajectory
during walking in this paper (Tanghe et al., 2020; Challa et al., 2022;
Song et al.,, 2023).

The coordinated movement data of the subjects are collected
and recorded by the Delsys SEMG signal acquisition system. The
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position of the sSEMG and angle sensors is displayed in Figure 3. The
sEMG sensors are attached with special double-sided adhesive tape
to the three muscles closely associated with the movement of knee
joint, namely, rectus femoris, vastus lateralis, and biceps femoris.
Two angle sensors are attached to the knee joints with ordinary
double-sided tape.

Four healthy subjects were invited to participate in the data
collection. This trial has been approved by Human Participants
Ethics Committee from Wuhan University of Technology, and
written informed consent was obtained from each participant.
Participants walked while imitating patients with left lower limb
injuries, with a reduction in force produced by the left lower limb
muscles and an increase in force mainly produced by the right lower
limb muscles. The data collected in the experiment were the sSEMG
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FIGURE 4

Structure of attention-based CNN-LSTM model.

of the three muscles and knee angle signal of the healthy lower limb,
as well as knee angle signal of the affected lower limb.

3.2 Attention-based CNN-LSTM model

Synergy mechanism is adopted in statistical regression to extract
couplings between limbs in healthy synergetic motion. The
synergetic gait prediction model can generate the individualized
gait trajectory of the affected lower limb based on the SEMG signal
and the knee joint angle of the healthy lower limb. Convolutional
neural network (CNN) and long short-term memory (LSTM) neural
network are widely applied in gait prediction. Standard CNN model
is well suited for handling spatially autocorrelated data, which is
unsuitable for dealing with complex and long-term dependencies. In
contrast, LSTM model is more suitable in handling temporal
autocorrelated data. Therefore, the hybrid CNN-LSTM model
can effectively improve forecasting performance. Furthermore,
the attention model can assign weights to important features,
thus enhancing the prediction accuracy (Thakur and Biswas,
2022; Xu et al, 2022). Individualized gait prediction typically
involves the collection and analysis of the data specific to an
individual, such as motion capture data, the ground reaction
forces, and sSEMG data. Machine learning algorithms are adopted
to analyze the data and develop personalized models that can
accurately predict the individual’s gait characteristics.

The structure of attention-based CNN-LSTM model mainly
includes four modules, namely, CNN module, spatial attention
module, temporal attention module, LSTM module, as shown in
Figure 4. The spatial attention module is as shown in Figure 5A,
which refers to the Convolutional Block Attention Module (CBAM)
(Woo et al., 2018). The input features are respectively subjected to
maximum pooling and average pooling to obtain pooled features
F,, € R"" and F;

avg max
Then, the features pass through a 1D convolutional layer with a filter

€ R*H, H represent the number of features.

size of 7, and performs a sigmoid function operation to generate a
spatial attention weight vector. The attention weight is multiplied
element-by-element with the original feature to output the feature
vector Mg € R™", as shown in Eq. 1.
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M, (F) = o(f” ([AvgPool (F); MaxPool (F)]))

= 7 R (1)
= o(f ([P Fous]))
where f indicating that the filter size of the convolutional layer is 7,
Fiyg» Finax represent pooled features after maximum pooling and
average pooling operation, respectively.
C) b
k=y( =290 @
Y Viodd

where the size of the kernel k describes the size of the temporal
neighborhood, and y, b are constants.

The temporal attention module is as shown in Figure 5B, which
refers to Squeeze-and-Excitation Network (SENet) (Wang et al,
2020). Firstly, global average pooling is performed on the input

features F € R“!!

, and the dimensions of the input features are
mapped from C x H to C x 1. C represents the number of time steps.
Then, 1D convolution is performed on the features, and the sigmoid
function operation is performed to generate a temporal attention
weight vector. The attention weight is multiplied element-wise with
the original feature to output the feature vector M; € R k is
adaptive to the number of time steps C, determined by Eq. 2, where
y = 2, b = 1. Longer time steps mean longer distance interactions

through mapping y/(C).

4 Adaptive compliant control strategy

4.1 PATH planning

The coordinated gait trajectory of the affected lower limb can be
generated based on the information of patient’s healthy lower limb,
and the data is collected and inputted into the pre-trained synergetic
gait prediction model in actual rehabilitation training. However, it is
also necessary to consider the safety problems caused by excessive
human-robot interaction force on the affected lower limb. The
impedance control can modify the expected trajectory of the
exoskeleton through the deviation between expected and actual
which can realize that the

human-robot interaction force,

exoskeleton can move under the guidance of the coordinated gait
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Structure of temporal attention module.

Structure of attention module. (A) Structure of spatial attention module. (B) Structure of temporal attention module

angle(°)

boundary

FIGURE 6
Diagram of coordination space.

trajectory as much as possible, while maintaining compliance and
reducing the risk of injury.

As shown in Figure 6, the optimal coordinated gait trajectory is
defined as the individualized gait of the affected lower limb generated
through synergetic gait prediction model in the specific task or scene.
Coordination space is defined as the space that extends outwards with
the optimal coordinated gait trajectory as the center, and the movements
in the coordination space are all in accordance with normal gait pattern.
The robot shows the strong compliance near the optimal coordinated
trajectory, and the patient’s motion intention can correct the expected
trajectory. When deviating from the optimal coordinated trajectory, the
compliance of the robot gradually decreases, but it still follows the
optimal coordinated trajectory and ensures that it always cannot exceed
the boundary of the coordination space. Meanwhile, the stiffness
coefficient needs to be increased. The trajectory is closer to the
boundary of coordination space, the faster the impedance parameter
increases, and the inertia coefficient and damping coefficient also need to
be increased synchronously to ensure the stability of system.

The APF method is widely adopted in obstacle avoidance in path
planning, which can make the robot bypass the obstacle and gradually
approach the target by controlling the gravitational field and the repulsive
field. Similarly, the optimal coordinated gait trajectory is defined as the
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time(s)

target, which is generated by synergetic gait prediction model, and the
upper and lower boundaries of coordinated space are defined as the
obstacles. The gravitational force near the target increases, and the
repulsive force near the obstacle increases. The resultant force at the
current position serves as the impedance control parameter, enabling
small position corrections near the optimal coordinated gait trajectory and
extensive position corrections near the boundary of coordination space.

Define the potential function U(p) of an object at the point p,
which is the sum of the gravitational potential function U;(p) and
the repulsive potential function U,(p), as shown in Eq. 3.

U(p) =Ui(p) +Ux(p) (3)
1
Ui (p) = 55 (> Prsrsr) (4)

where ¢ is the gravitational gain factor, and p(p, popstacie) represents
the Euclidean distance between the object and the target.

1 1 Ly
Uy L1 1 5
2 (P) 2 rl(P (P) Pobstacle) Po) ( )

where 7 is the repulsion gain factor. p(p, pobstacie) represents the
Euclidean distance between the object and the obstacle. p, represents

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1358022

Liu et al.

Synergetic gait
prediction model

10.3389/fbioe.2024.1358022

| [
T
@ [ I vl P 'oll SISO-MFAC position controller
A e LR T Flexible knee exoskeleton
A L ioANe I helsl DO -o8) |
S o T o (K)(6,(k+1)- 6(k))
TR | e, RO 00)
ndividulized | o A+ (%) g
gait trajectory d e ‘k_l‘H’HM(ki-é"}’lk-lﬂfﬂk—l”ﬂ"("-” |
: ' o /1+||Au(k—1)||: |
Tmjectay =~ = — - - - - - - - - - - - —-—-—= !
correction AG
r————"""""""""""M 1 Ty
: <B_ M,=M,+aU(1) Spring rate
F,—kx 3
|[Ag=——1 = | g’| B,=B,+aU(l) k
I M;s“+B;s+K, K 4
| -« K, =K, +aU(t)
Motion
: Impedance model Adaptive Impedance detector
Expect human-

Adaptive Impedance Controller

FIGURE 7
Diagram of the proposed compliant controller.

the maximum distance of the repulsion field generated by the
obstacle, and 0 < p(p, Possiac) < po When p(p, Popuactd) > Pos
U,(p) = 0, and the repulsion field does not work.

When the object is close to the target, the potential function is
small and changes slowly, otherwise the potential function is large
and changes quickly. When approaching the boundary, the repulsive
potential function approaches infinity, which prevents the object
from crossing the boundary of coordination space. The potential
safety concerns can be raised by infinite impedance. The compliant
control gradually increases the impedance as the knee joint
approaches the boundary and stops increasing the impedance
once the safety threshold has been reached. Therefore, the
adaptive impedance control based on the APF is designed as Eq. 6.

|

where Mo, By, and Ky, represent the initial values set by inertia

Md = Md() + wlU(t)
B; =By + wZU(t)
Kd = KdO + (U3U(t)

(6)

coefficient M,, damping coefficient B, and stiffness coefficient K,
respectively. U(t) represents the potential function at the time f. wy,
w, and w3 represent the positive weights on the potential function.

4.2 Compliant control
The paper employs a single-input single-output model-free

adaptive controller (SISO-MFAC) as the position controller to
achieve trajectory tracking. SISO-MFAC only adopts the input
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robot interaction

and output of the controlled system to automatically modify the
control signal, which can overcome uncertainty interference and
obtain strong robustness against disturbances and unknown model
dynamics, as shown in Eq. 7.

pgc (k) (04 (k + 1) — 6(k))
A+ ¢c” (k)

ulk)y=u(k-1)+

~

¢

C

(k)= (k1)
¢ T
q(AG(k) —¢ (k-1DAu(k-1)
| C

Au(k-1
>”( o)

o+ |Au (k- 1))
%(k)l <bor|Au(k - 1) <b
C

)#sign(g?)(l))
C

where u (k) and 6 (k) represent the input and output of the system at
time k, respectively. ¢ (k) € R™ is the pseudo-gradient of the
system. ¢. (k) is an estimate of ¢-(k) A and p are weighting

(k) = ¢ (1),if
C C

~

¢ (k)
(o}

orsi gn(

factors. p and # are step factors. ¢_ (1) is the initial value of ¢_ (k).

O<1—Msdl <1
u+1Au(k - 1)
poc (k)¢ (k) 8)
0<1- AZC <d, <1
A+ ¢ (k)
C

where d; and d, are constants.
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FIGURE 8
Gait prediction results of subject S1.

The diagram of the proposed compliant controller is shown in
Figure 7. The compliant controller of knee exoskeleton consists of
synergetic gait prediction model, adaptive impedance controller,
position controller, and knee exoskeleton. The synergetic gait
prediction model is used to generate individualized gait trajectories,
and the coordinated gait trajectory of the affected lower limb is
generated according to the knee joint angle and sSEMG signals of the
healthy lower limb. The adaptive impedance controller corrects the
expected trajectory in the coordination space according to the
deviation between the expected and actual human-robot interaction
force. The SISO-MFAC controller can realize the actual trajectory of
the exoskeleton to accurately track the expected trajectory. The knee
exoskeleton driven by SEA is used as the control object to assist the patient
to perform rehabilitation training. Furthermore, the human-robot
interaction force between the patient and the exoskeleton is measured
by the spring compression at the end of SEA, and the displacement sensor
with the range of 50 mm is installed on the spring, which avoids
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inaccurate measurement due to the relative displacement between the
sensor and the human body or the robot. When the actual human-robot
interaction force is not equal to the expected human-robot interaction
force, the compliant controller generates the correction of expected
trajectory, and the position controller controls the exoskeleton to
move according to the corrected trajectory. The APF method can
ensure that the gait trajectory does not exceed the boundary of
coordination space, and the actual trajectory can be guaranteed to be
located in the coordination space.

5 Experiments and results
5.1 Individualized gait trajectory prediction

The sampling frequency of the signal acquisition system is
200 Hz, and the time step is 5 ms, and each sample is 50 s. The
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FIGURE 9

Gait prediction results of different subjects.

knee joint data of the affected lower limb at the current moment is  predicted based on the information of the healthy lower limb in the
influenced by the healthy lower limb at the previous moment, and  previous 100 ms. The dimension of dataset under each task is 8980 x
there is the delay in actual application from gait prediction to data 4. The dataset is split into training (60%), validation (20%) and test
transmission. After comprehensive considerations, the time step is ~ (20%) subsets. The input dimension of each dataset is 20 x 4 and the
set to 10, and the knee joint angle of the affected lower limb is  output dimension is 1 x 1. The model is trained based on intra-
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TABLE 1 Performance of gait trajectory prediction using different networks (slope 4.

10.3389/fbioe.2024.1358022

Subject Speed MAE (°) CC(%)
15
s1 Netl 4,081 3.479 2,910 3.490 96.64 94.66 97.08 96.13
Net2 3.685 3.364 2.757 3269 96.10 95.96 97.26 96.44
CNN 4019 3.624 3253 3.632 9236 95.18 9521 9425
LSTM 4617 3.973 3.408 3.999 9101 94.44 9637 93.94
Net 3.574 3172 2,503 3.083 96.22 95.64 97.80 96.55
$2 Netl 7.327 4749 4178 5418 86.75 97.07 9553 93.12
Net2 6.403 5.403 3.679 5.162 88.18 96.97 96.67 93.94
CNN 8.434 5.448 4344 6.075 80.22 96.37 9553 9071
LSTM 9.194 6.005 4124 6.441 7739 95.16 95.94 89.49
Net 5.855 4.429 3395 4.600 90.44 96.92 96.90 94.75
$3 Netl 10.766 9.400 6.006 8.724 67.94 76.65 9351 7937
Net2 10.054 8.070 6.794 8.306 75.42 8152 93.18 83.37
CNN 12.001 11.462 6.549 10.004 65.76 79.01 92.49 79.08
LSTM 12.840 12.485 6.933 10.752 60.80 64.34 92.03 7239
Net 9.508 7.838 5598 7.648 7378 82.52 94.34 83.55
S4 Netl 4272 3.673 2.854 3.600 90.00 96.54 98.20 9491
Net2 4,080 3.571 3.158 3.603 91.66 96.18 9824 9536
CNN 5.960 4,608 3438 4,668 85.62 96.44 97.25 93.10
LSTM 4916 4,040 3452 4136 88.07 95.83 97.17 93.69
Net 3.823 3.489 2.675 3329 92.30 95.74 98.46 95.50

The bold values represent the optimal performance of the model for each subject on the metric.

TABLE 2 Performance of gait trajectory prediction using different input (slope 4.

Subject Speed MAE () CC(%)
)
s Net3 3.861 3.932 3.349 3714 95.72 92.72 96.08 94.84
Net 3.574 3.172 2.503 3.083 96.22 95.64 97.80 96.55
2 Net3 8911 6.518 5.976 7.135 77.18 91.48 92.02 86.89
Net 5.855 4.429 3.395 4.560 90.44 96.92 96.90 94.75
S3 Net3 10.710 9.183 5.347 8.413 69.83 78.41 95.70 8131
Net 9.508 7.838 5.598 7.648 73.78 82.52 94.34 83.55
S4 Net3 5138 4823 3248 4403 85.12 90.82 97.34 91.09
Net 3.823 3.489 2.675 3.329 92.30 95.74 98.46 95.50

The bold values represent the optimal performance of the model for each subject on the metric.

subjects, and the data is obtained from the trained subject with

varying speeds and inclines.

Figure 8 shows gait prediction performance of the subject

S1 when walking at different speeds on different slopes, in

which the red curve represents actual trajectory, and the blue
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curve represents predicted trajectory. The prediction error is

lowest when the speed is 3 km/h, and the prediction
performance is worst at the
prediction error at the speed of 0.5km/h is 42.79% higher
than that at the speed of 3 km/h and 12.67% higher than that

speed of 0.5km/h. The
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FIGURE 10

Results of different methods for different subjects at different speeds (slope 4°).

at the speed of 1.5 km/h. The muscle activity of the subjects is
low when walking at low speed, and the periodicity and
amplitude of EMG signals is weaker, so the performance of
gait prediction at the speed of 0.5 km/h is worst. Similarly, the
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prediction performance is best when the slope is 8°, and the
prediction error is highest on the slope of 0°. Moreover,
although the prediction performance is worst at low speed
and flat slope, the trend of angle can still be reflected.
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Results of compliant control.
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To test the applicability of the synergetic gait prediction model,
the performance of gait prediction of four subjects at different
speeds is analyzed, as shown in Figure 9. The prediction error of
S3 is 123.65% higher than that of S1, 64.89% higher than that of S2,
and 109.27% higher than that of S4. We have selected five metrics
in the time and frequency domains to analyze the SEMG signal,
including root mean square (RMS), mean absolute value (MAV),
median frequency (MF), mean power frequency (MPF), and
signal-to-noise ratio (SNR), and the RMS, MAV, MF, MPF, and
SNR metrics show positive correlation with the prediction
performance. However, the above metrics are not a dependable
basis of prediction performance and can only be adopted as the
preliminary reference.

To further quantitatively evaluate the performance, this paper
adopts the mean absolute error (MAE) and Pearson correlation
coefficient (CC) as the metric. Netl represents the CNN-LSTM
network without attention mechanism, and Net2 refers to the CNN-
LSTM network with attention mechanism used in paper (Zhu et al.,
2021), and Net is the proposed networks in this paper. The attention
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mechanism in the Net2 model is the weighted average sum of the
output vectors of the LSTM layer. Taking the scene with a slope of 4°
as an example, the prediction performance using different model are
shown in Table 1. To evaluate the performance of model adopting
multi-sensors fusion, the results are shown in Table 2. The Net
model adopts the information of the knee joint angle and EMG
signal in healthy lower limb as the network input, while the
Net3 model only employs the information of the knee joint angle
in healthy lower limb.

As shown in Table I, taking the subject S1 as an example,
compared with Netl, the MAE of the model proposed in this paper
decrease by 12.42%, 8.82% and 13.99% at 0.5 km/h, 1.5 km/h and
3 km/h, and the CC increase by —0.42% and 0.99%, and 0.72%.
Compared with Net2, the MAE of the model proposed in this paper
decrease by 3.01%, 5.71% and 9.21%, and the CC increase by
0.12%, —0.32% and 0.18%. The above trend is also reflected in
the prediction results of subjects S2, S3 and S4. In summary, the
prediction performance of proposed model in this paper is better
than Netl and Net2.
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FIGURE 12

Results of human-robot interaction force.

As shown in Table 2, taking the subject S1 as an example,
compared with Net3, the MAE of the model adopting multi-
sensors input decrease by 7.43%, 19.33%, and 25.26% at 0.5 km/h,
1.5 km/h, and 3 km/h, and CC increase by 0.5%, 2.92% and
1.72%. It is worth noting that although the CC of the model
using single input is higher, and the MAE is lower when the
subject S3 is at 3 km/h, the mean of CC and MAE at three speeds
are still better than Net3. Furthermore, the results of the subjects
S1, S2, and S4 are consistent, which shows that multi-sensor
fusion can further improve the accuracy of gait prediction.
Figure 10 visually shows the prediction results of different
methods for different subjects at different speeds on slope 4°.
The model using multi-sensors information has smaller MAE
and higher CC compared with the model adopting single input.
Meanwhile, the mean of MAE at three speeds is smaller than that
of the other network, and the mean of CC is higher than that of
the other network, which shows that the model proposed in this
paper has smaller prediction error and better applicability to
different individuals.
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5.2 Adaptive compliant control

Experiments are carried out on a SEA-driven knee exoskeleton
to assess the effectiveness of the proposed compliant control
method. Considering the site conditions and safety factors, the
experimental scenes are divided into two types, namely, walking
on the slope 0° and 4" at the speed of 0.5 km/h, respectively. The
boundary range of the coordination space is set to a constant value
Ad = 5%, and the distance between the upper and lower boundaries of
the coordination space is 10°. To guarantee participant safety, the
knee exoskeleton’s motion angle has been limited to —5°-65° degrees
via the software.

The results of compliant control of the subjects S1 and S2 in
different scenes are shown in Figure 11, in which the red curve
represents the optimal coordinated trajectory, and the blue curve
represents the corrected trajectory, and the green curve represents
the actual trajectory of the exoskeleton. The original trajectory is
defined as the gait trajectory generated by the prediction model and
filtered to comply with the normal human gait pattern. The
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FIGURE 13
Results of Compliant control with fixed impedance parameters.

corrected trajectory represents the trajectory modified by the
compliant controller when the actual human-robot interaction
force is not equal to the expected human-robot interaction force.
The actual trajectory is defined as the angle signal collected by the
angle sensor on the knee exoskeleton. Furthermore, the optimal
coordinated gait trajectory, the corrected trajectory, and the actual
trajectory are all in the coordination space, which proves that the
compliant control method can adaptively and nonlinearly modify
the impedance parameters according to the actual conditions, and
ensure the safety and coordination of rehabilitation training.

The results of the human-robot interaction force is shown in
Figure 12, in which the blue curve represents the expected human-
robot interaction force, and the red curve represents the actual
human-robot interaction force, and the green curve represents the
deviation between the expected and actual human-robot interaction
force. The expected force is defined as the human-robot interaction
force of healthy subjects collected by the force sensor in advance.
The actual force is defined as the human-robot interaction force of
patients during rehabilitation training. Combining Figures 11, 12, it
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is evident that the trajectory correction is not proportional to the
force deviation. The deviation of force is positive, which indicates
that the motion intention of the subject is consistent with the
direction of the robot.

The experiment with fixed impedance parameters on the
subject S1 are conducted, and the experimental results are
shown in Figure 13. When the actual human-robot interaction
force deviates from the expected human-robot interaction force,
the impedance controller with fixed parameters can also correct
the trajectory. However, if the deviation of force is large, the
corrected trajectory may exceed the boundary of the coordination
space. Consequently, the impedance control system with fixed
impedance parameters cannot completely guarantee the safety
and coordination of rehabilitation training. The adaptive
impedance control proposed in this paper can not only
nonlinearly and adaptively modify the expected trajectory
according to the human-robot interaction force, but also
the be the
coordination space.

restrict actual trajectory to always in
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6 Discussion

As an emerging rehabilitation equipment, exoskeleton can
reduce the burden on physicians while ensuring the efficacy of
rehabilitation, which has gradually become a research hotspot in the
field of rehabilitation. However, the current trajectories for
rehabilitation are mostly predefined trajectories, which cannot
adapt to speed and slope changes during rehabilitation training
in the middle and late stages of rehabilitation. Based on the
CNN-LSTM  model, the
coordinated trajectory of the affected lower limb under different

attention-based individualized
tasks is obtained. The performance of synergetic gait prediction
model of different individuals varied widely. Attention mechanism
has been proven to effectively improve the performance of the neural
network model. Spatial attention and temporal attention modules
can assign attention weights to important features. The combined
attention mechanism is introduced into synergetic gait prediction
further
individualized gait.

model to improve the prediction accuracy of

Compliant controller is designed based on the guidance of
synergetic gait prediction model. The predicted individualized
gait trajectory is inputted into the compliant controller as the
expected trajectory. The compliant controller can adaptively and
nonlinearly modify the impedance parameters according to the
distance from the boundary. The correction of trajectory is larger
near the expected trajectory, which shows strong compliance.
The APF method can ensure that the actual trajectory does not
cross the boundary of coordination space while realizing
compliant control. There is no clear evidence that compliant
control is superior to pure torque/force control or pure position
control for stroke rehabilitation. However, patient-dominated
training can enhance rehabilitation outcomes, and compliant
control can improve patient participation while ensuring patient
safety. In addition, the proposed compliant control is mainly
used in the middle and late stages of rehabilitation when the
patient obtains some motor abilities. Position control is used to
assist patients with repetitive passive training, which is mainly
used in the early stages of rehabilitation. The advantage of
compliant control compared to pure torque/force control lies
in the personalized assistance, including the generation of the
personalized trajectory and the adaptive modification of
impedance parameters in response to actual conditions (Shi
et al., 2022; Cao et al., 2024).

The knee exoskeleton driven by SEA designed in this paper
has the function of limit protection and size adjustment, which
improves the safety and applicability of the equipment. However,
the knee exoskeleton is not lightweight, and it is a little
cumbersome and inconvenient for patients to use. We aim to
decrease the weight and volume of the knee exoskeleton through
optimizing the power transmission mode, selecting lightweight
high-strength materials such as carbon fiber as the main
materials of knee exoskeleton, and combining 3D printing
addition, the
coordination in knee joint rehabilitation is controversial
(Vallery et al, 2009; Liang et al, 2018), because the
abnormalities in knee joint may alter the features of other

technology. In application of inter-limb

joints, ultimately resulting in the deficient desired trajectory of

knee joint. Our proposed method can customize the
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rehabilitation according to the patient’s range of motion and
body parameters. Now, we have been actively collaborating with
Tongji Hospital, Wuhan, China, to identify eligible patients for
the experimental study. Meanwhile, we plan to consider more
sensors for multi-level and multi-spatial information
complementarity to improve the prediction performance of

the subjects with substandard signal quality.

7 Conclusion

In this paper, a synergetic gait prediction model based on
attention-based CNN-LSTM network and compliant control
method based on APF method are proposed. The experimental
results show that the proposed synergetic gait prediction model
can generate the coordinated gait trajectory, which can achieve
lower MAE and higher CC. The subjects move in the
coordination space but never cross the coordination boundary.
Coordination, compliance,
considered in the rehabilitation. In the future, we will design

and safety are simultaneously

knee exoskeletons that are more lightweight and patient-friendly,
test individualized gait prediction model under more scenes, and
further verify the effectiveness of the proposed method
on patients.
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Introduction: Walking speed can affect gait stability and increase the risk
of falling.

Methods: In this study, we design a device to measure the distribution of the
plantar pressure to investigate the impact of the walking speed on the stability of
the human gait and movements of the body. We fused the entropy acquired at
multiple scales with signals of the plantar pressure to evaluate the effects of the
walking speed on the stability of the human gait. We simultaneously collected
data on the motion-induced pressure from eight plantar regions to obtain the
fused regional pressure. To verify their accuracy, we obtained data on the plantar
pressure during walking by using the force table of the Qualisys system. We then
extracted the peak points and intervals of the human stride from pressure signals
fused over three regions, and analyzed the mechanics of their regional fusion by
using the regional amplitude—pressure ratio to obtain the distribution of the
plantar pressure at an asynchronous walking speed. Furthermore, we introduced
multi-scale entropy to quantify the complexity of the gait and evaluate its stability
at different walking speeds.

Results: The results of experiments showed that increasing the speed from 2 to
6 km/h decreased the stability of the gait, with a 26.7% increase in the amplitude
of pressure in the region of the forefoot. The hindfoot and forefoot regions were
subjected to the minimal pressure at a speed of 2 km/h, while the most consistent
stress was observed in regions of the forefoot, midfoot, and hindfoot. Moreover,
the curve of entropy at a speed of 2 km/h exhibited a slow decline at a small scale
and high stability at a large scale.

Discussion: The multi-scale entropy increased the variation in the stability of the
synchronous velocity of walking compared with the sample entropy and the
analysis of regional fusion mechanics. Multi-scale entropy can thus be used to
qualitatively assess the relationship between the speed and stability of the gait,
and to identify the most stable gait speed that can ensure gait stability and
posture control.

regional fusion pressure, multi-scale entropy, walking speed, gait stability, distribution
of the plantar pressure
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1 Introduction

Walking exercise is beneficial to health, and appropriate exercise
intensity can reduce the risk of chronic complications (Piercy et al.,
2018; Liao et al,, 2019). A rapid gait may affect a person’s stability
while they are walking (McAndrew Young and Dingwell, 2012), and
can lead to falls among elderly people (Nascimento et al., 2022). It
can also damage the plantar soft tissue to cause foot ulcers (Wu et al.,
2020). Therefore, it is important to investigate the impact of the
walking speed on the plantar pressure and people’s gait to avoid
injuries among elderly people.

Deep learning algorithms are being used in prevalent research to
investigate the link between the plantar pressure and the human gait.
A complete gait is generated as one walks with one heel on the
ground until the same heel comes into contact with the ground again
(Okawara et al., 2022; Caldas et al., 2017). Jeong et al. (2017) used the
multi-class support vector machine to identify the plantar pressure
of people walking on level ground as well as up and down a flight of
stairs, and were able to classify their gait with an accuracy of 95.2%.
Luo et al. (2019) measured electromyography signals of the thigh
muscle and signals of the plantar pressure, and used a combination
of the Long Short Term Memory (LSTM) network and the Multi-
Layer Perceptron (MLP) to identify the phases of their gait with an
accuracy of 94.10%. Jun et al. (2021) input sequential 3D data on the
human skeleton and data on the average plantar pressure into the
coding layers of the RNN and CNN, respectively, extracted the
relevant features from them, and fed them into the fully connected
layer of the network for classification. The two networks were able to
identify abnormal gait with accuracies of 68.82% and 93.40%,
respectively. Shalin et al. (2021) used data on the plantar
pressure of patients with Parkinson’s disease as they walked,
extracted the relevant features, and used the LSTM to detect the
Parkinsonian freezing of gait with an accuracy of 95%.

Previous studies in the area have identified distinct types of gait
based on clinical diagnoses, but little research has addressed the effects
of the speed of the gait on its stability. Studies have shown that the
complex stability of the human gait can be investigated by analyzing the
time series of the interval of strides (Prakash et al., 2018). Warlop et al.
(2016) found that the variation in the duration of strides affects the
stability of gait in patients with Parkinson’s disease. Chandrasekaran
etal. (2022) used the Lyapunov exponent to analyze the stride intervals,
found that it was correlated with variations in the duration of strides,
and used this to obtain the threshold of gait stability. Aziz and Arif
(2006) claimed that the stride interval of the gait reflects a law of the
human gait, and analyzed the complex stability of gait in patients with
neurodegenerative diseases based on the symbolic entropy of the stride
interval. Yu et al. (2017) proposed that the analysis of the symbolic
entropy of the time series of stride intervals can reflect the complex
stability of the gait. However, the above studies have used single-scale
sign entropy to analyze the complex stability of the gait, where this
cannot explain differences in the complex stability of the gait at the
multiple time scales that are inherent in the corresponding time series.

In this study, we design a device to acquire the distributed
plantar pressure to examine the effects of the speed of walking on the
stability of the human gait. We propose a method for the mechanical
analysis of the complex stability of the human gait based on regional
fusion to this end. This device can simultaneously measure the
distribution of the dynamic pressure at eight plantar locations,
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partition the human gait cycle, and extract the characteristics of
the stride intervals by using fused values of the plantar pressure. It
represents the heel-to-heel movement, full foot on the floor, the
stance of the forefoot, and the toe-off in the support phase as the
peaks and valleys of the waves. Following this, we introduce the ratio
of the regional amplitude of the fused pressure to examine the
difference in the distributions of the plantar pressure under an
asynchronous speed of walking. Multi-scale entropy is used to
analyze the stride interval, explain the difference in entropy at
different speeds of walking at multiple time scales, quantify the
complex stability of the human gait, and distinguish between its
states of stability. This method can be used to evaluate the stability of
the gait and the distribution of the plantar pressure at different
walking speeds, and can provide a theoretical basis for determining
an appropriate walking speed for rehabilitation exercises.

1.1 Overall structure

The framework design to assess the stability of the human gait
based on the distribution of the plantar pressure is shown in Figure 1.
Data on the dynamic plantar pressure of healthy people at different
walking speeds were first collected by using a hardware acquisition
device. The pressure signals from eight plantar regions were then fused
to obtain the pressure distributions of regions of the hindfoot, midfoot,
and forefoot. The plantar pressure was analyzed by using regional
fusion mechanics and complex stability. The distributions of the plantar
pressure and multi-scale entropy were estimated to assess the stability of
the gait at different walking speeds, and the appropriate walking speed
was then chosen to improve gait stability.

2 Methods

2.1 Hardware acquisition device for
plantar pressure

Acquiring data on the plantar pressure required choosing an
appropriate pressure sensor. Obtaining reliable data required that
the normal movement of the human body not be impeded during
the measurements. We designed a pressure insole with eight area
pressure sensors for the measurements. The flexible thin-film
resistive pressure sensor used here was based on the FSR-402
sensor. Its resistance decreased when a large force was applied to
the sensing surface. The sensor had an average service life of over
one million presses, a thickness of 0.46 mm, a working voltage of 5V,
and a range of accurate weight measurements of 100 to 10kg. It
converted the pressure signals on the applied surface into changes in the
electrical resistance to detect the plantar pressure as a person walked.
The circuit for voltage conversion transformed the resistance of the
sensor into a change in the analog voltage. Data conversion was carried
out by using the NI-6001 multi-channel data acquisition card. Its built-
in 14-bit ADC, with a rate of sampling of up to 20 kS/s, could provide
eight channels each for the analog input and the signal output. After
connecting the acquisition card to an upper PC, we set-up the serial
communication protocol and the DAQ driver, adjusted the frequency of
sampling to 100 Hz, and stored and displayed signals of the plantar
pressure as shown in Figure 2.

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1328996

Hu et al. 10.3389/fbioe.2024.1328996
poseececececacaocns et S STTERTTRRIPRRY PORP PPN 2acacanss ascscace aaasasanensasencaacnnanas .
i Hardware acquisition device for i Mechanical analysis of regional fusion :
' plantar pressure i e R e - ;
' [ ' = ’ :
: §: LS o B! m '

. )

: 8" BERS s 2] =218 = ]
' i Vg 8 = B o 2 = |
. I |2 7 o g = (7 | Q '
! ] ' |8 s = @ = i .
: - T BlEE s & g2 g ||
: — @ i al=a= » @ > = = > oo = |
' o UE = EI 1 o a = ) = |
4 ¥ I =l ¢ S ol =. = e
' = =1 Z =3 j=u = => o |
: o Sl gy |z ¥ =l : 2] S |

— o £l @ | 0| 2 =) ] H = = |
: ) =T B == I R =S oL o8 =
: 2[5 | =y =1z g a 2
- s 2| B8 |[3lisl|E| & RN
: s|lg| B[22 ]|%] I 2t 2l 2 |

» = = [¢]
; >l EP e S EPEl] 4 '] & g6 (2l Bl
. ) =t ((°] o~ w |y | E < = | = | o = o |o k? o =4 [

=
i il g |elidel (5| Eq B8 ||| g [®[
SR EAREANCE- R g B (s8] F ] Bl |y
; Z g % alilg g v 3 ] ] =5 & |
R P o = [ e Sl—” 5l— & | = 2N
! s =2 v e @ = . = '
: —— e, S L 2 | = = B e :
L}
a | s | Sl E] g E
: ; : : I ultl'-ucalc cntropyli = ;
| T Analysis of TR algorithm :
: Collection of pressure data : i experimental ":A“-I"'""f """ I""t"b-'I'-t- — :
nalysi mplex ili
E : i data alysis of complex stability i
FIGURE 1

Block diagram of the overall framework to assess gait stability.

r=—=-=° [ —
| e | | |
I oo Resistanc s :Analog voltage,
- [ ;  amounts
e @ variation! :
T — . ——
[} ®e | [} |
R\ 1 !
!
2 —
Thin film Voltage

pressure sensor conversion circuit

FIGURE 2
Structural composition of device used to acquire the plantar pressure.

2.2 Collection of experimental data

We recruited 32 healthy male subjects, with an average foot size
of 40 £ 0.74, average weight of 57.5 + 2.55 kg, average height of 173 +
2.45 cm, and average age of 23.5 + 0.85 years for our experiments.
None of the subjects suffered from any walking dysfunction or foot
deformity. They were asked to strap the hardware device to acquire
plantar pressure signals to their right calves, and wore flat shoes with
sensor insoles.

The subjects were asked to walk on a treadmill at speeds of 2, 4,
and 6 km/h, respectively. Before each set of measurements, we asked
the subjects to walk for 1 min on the treadmill to allow them to
become accustomed to its speed, and this was followed by the
collection of pressure-related data at various speeds for 3 min.
This experimental process was repeated several times to obtain
multiple groups of experimental data. We obtained about
160,000 data points on the subjects in each group for
experimental analysis, for a total of about 6,040 complete gait cycles.
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To validate the accuracy of the data thus obtained, we used the 3D
optical motion capture system Qualisys with eight infrared cameras and
two Kistler force gauges to collect data on the plantar pressure as the
subjects walked on the treadmill. A force table was embedded into the
ground in a longitudinal arrangement. A metronome was used during
the experiment to guide the subjects to walk at the specified speed. The
first step of the standing subject landed on the first force board, followed
by the second step landing on the second force board. Figure 3 shows
the collection of the experimental data.

2.3 Multi-scale entropy algorithm

The entropy is used in signal analysis to describe the complexity
of the signal and represent the degree of chaos in the system. Sample
entropy reflects the complexity of the system on a single scale, and
cannot be used to fully quantify its complexity. The multi-scale
entropy method was proposed by Costa et al. (2002), and offers the
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advantages of the sample entropy while avoiding the loss of

information caused by the use of a single scale. We used

pressure-related data from the sensor for the hindfoot region

based on the data on plantar pressure, and then applied mean

processing to obtain pressure signals for it. The stride interval used

here was based on the interval between adjacent peak points of the

pressure signals in the region of the hindfoot. The stride interval was

used according to the original time series of the model of multi-scale

entropy. Multi-scale entropy (MSE) can be divided into the coarse-

graining of the signals and the calculation of a new sequence of

entropy values (Busa and van Emmerik, 2016).

Coarse graining process:

(1)

)

The time series of the N original signals X = [}, ;5 X3» - Xn]
is coarse-grained to construct a new time series.

When the scale is s =1, the coarse-grained series is the
original time series. When s = 2, let the window of length
two move forward on the original sequence. Calculate the
average of y, and y, to obtain y,.

Move the window forward by two units. y, is obtained by
calculating the average of y, and y,. Shift the window by two
units once again to obtain the average value and use it to form
a new sequence. The new sequence at scale s=2 is Y =

[yl,yz,ys,...ywé].
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(4) Similarly, when the scale s = 3, let the window of length three
move forward on the time series X of the original signals. Start
by averaging x,, x, and y; to y,. Move the window by three
units, and calculate the mean value of the original sequence in
the window to obtain y,, y,, and y,. The new sequence at scale
s=3isthen Y = [y1, y2, ¥3, ..y ]

Calculating the entropy of the new sequence:
(1) Suppose that the length of the time series X of the original

signals is N and the scale factor is s. Then, the coarse-grained
sequence is given by:

1ijs N
(s) _ j ) '
4= Ezi=(j-1)s+1x(l), lsjse 0
(2) Under an m-dimensional vector, the data sequence
is given by:
‘ . N
Z (i) = (2> Zis15 Zixzs o Zizm-1 [, 1 Si<——m + 1 @
s

(3) Find the number of distances d;; shorter than r, d;; <. Then,
the ratio of the number of such distances to the total number
of distances is given by:
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Comparative analysis of signals of plantar pressure measured at the pressure plate and the insole. (A) The fusion of plantar pressures. (B) Total plantar
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dy[Z0Z()) = max [zG+R)-2(+R)] @)
L"(r) = num(d,-j <r)/(N/s -m),i # j,i= 1,...,?— m+1 (4)

where d;; is the maximum distance between vectors Z (i) and Z (),
and r is the range of tolerance for a given time series.

(4) Set the number of dimensions to m + 1 and repeat the above
steps to obtain the following:

L:n+1 (r) = num(dij < r)/(N/s - m),z * ],l =1, g -m (5)

(5) Calculate the average of L (r) and L™ (r):

1 Z{\I/s—m#—lL;n (1‘) (6)

i=1

")z —
i (1) N/s—-m+1

m 1 N/s=m _ .
L™ (r) = mzizl L™ () 7)

(6) The entropy value of the new sequence is that of the
MSE, EMSEZ

Eyse = —In (L™ (r) - L™ (1)) 8)
Some studies have shown that too large a number of dimensions m
significantly increases the amount of required computation and leads to

a decline in computational efficiency. m is generally set to one or two,
while 7 is set to 0.10-0.25SD, where SD is the standard deviation of the
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original time series. When m is two, the length of the sequence N is
minimally dependent on the accuracy of the calculated results (Zheng
et al,, 2023). Therefore, we set m = 2 and r = 0.258D in this study.

3 Results
3.1 Validation of experimental data

A gait cycle is divided into a stance phase and a swinging phase.
The stance phase is the process in which the foot makes contact with
the ground to generate plantar pressure. The swing phase is defined
as the forward movement of the limb without any contact with the
ground (Cicirelli et al., 2022).

A comparative analysis of signals of the plantar pressure measured
by the pressure plate and the insole is shown in Figure 4. We use a speed
of 2km/h as an example. The pressure signals at eight points in the
plantar as the subject walked were obtained and fused. Figure 4A shows
that the force at each point exhibited a peak of the wave as the foot came
into contact with the ground. The pressure-related data from each
sensor in the three regions were averaged and fused. The fused pressure
signals showed the changes in pressure in the hindfoot, midfoot, and
forefoot throughout the stance phase. The total plantar pressure was
obtained by further fusing these three regional signals, and can be used
to illustrate the troughs and peaks of the four states in the stance phase.

To verify the accuracy of the pressure-related data obtained from
the insole, we eliminated the influence of the subject’s weight on the
distribution of the plantar pressure. The fused signals of the total
pressure obtained from the insole and the pressure plate of the same
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TABLE 1 Values of entropy of gaits at three speeds.

Index of complexity 2km/h  4km/h 6 km/h
SampEn 0816 + 0.04 0907 +0.07  1.088 + 0.09
MSE; 0901 +0.03 1216+ 002 1480 + 0.04
MSE; 0732 002 | 0773 +003 089774 + 0.02

Note: The values are expressed as mean + SD. “SampEn” is the overall sample entropy of the
gait. “MSEg” is the mean value of scales 1-3. “MSE,” is the mean value of scales 4-6.

subject were normalized based on their amplitude and the transverse
axis, respectively. Figure 4B shows that the trends of changes in the
pressure signals of both were consistent with each other. The
reaction force from the vertical ground obtained by the pressure
plate and the insole had a prominent “double peak” characteristic.

We used the Bland-Altman plot to evaluate the consistency of
the two methods of measurement. Figure 4C shows that the
difference between the measurements of the pressure plate and
the insole was within the 95% confidence interval. p < 0.05 and r =
0.9513 for these two methods of measurement. These results show
that there was a significant correlation between the data measured
from the insole and the pressure plate, which leads us to conclude
that they were reliable. The second peak point of measurements of
the insole was smaller than that of the force measurement table. This
is because when the sole was in the forefoot stance, it made full
contact with the ground and there were few pressure sensors in the
sole area of the insole. As a result, the pressure distribution in the
sole of the foot could not be entirely monitored, and a smaller
amount of pressure-related data were obtained from it.

3.2 Mechanical analysis of regional fusion

To eliminate the influence of the subject’s weight on the
experimental results, we normalized the amplitudes of pressure of
the three plantar regions, which were fused in the stance phase of
the gait cycle, by weight. We used the ratio of the amplitude of pressure
to the weight of the subjects to examine the differences in distributions
of the plantar pressure at walking speeds of 2, 4, and 6 km/h.

Figure 5 shows the pressures in the three plantar regions at the
three speeds of walking considered here. As the walking speed
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increased, the ratios of the amplitude of pressure in the hindfoot
and forefoot regions of the body increased significantly. When the
subject’s walking speed was increased from 2 to 6 km/h, the ratio of
the amplitude of pressure in the forefoot region increased by 26.7%.
The foot bears the weight of the body during normal walking, while
balance and movement are controlled through contractions of the
plantar muscles. If the plantar pressure is not regularly distributed,
the body requires more control to maintain balance and stability
during normal walking.

Studies have shown that increased plantar pressure can enhance
the risks of soft tissue injury in the plantar and metatarsal stress
fracture (Zhang et al., 2018). The forefoot area is responsible for the
balance and control of the center of gravity of the body.
Nevertheless, the pressure on the forefoot is excessively high such
that the body requires greater control to maintain equilibrium
(Zheng et al, 2020). When the subjects walked at a speed of
2km/h, the pressure in the forefoot and hindfoot regions was
relatively low, and its distribution in the three regions was the
most uniform. When they walked at 4 km/h, the magnitude of force
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in the forefoot and hindfoot areas progressively grew, the load on the
hindfoot and forefoot gradually increased, and the disparity in the
pressure distributions at the three locations became larger. When the
subjects walked at 6 km/h, the magnitude of force in the forefoot and
hindfoot regions continued to increase, the pressure distributions in
the three regions were the largest, and might have led to an increase
in gait oscillation to lead to an unstable gait. Thus, the pressure
distribution in the three plantar zones was reasonably balanced at a
speed of 2 km/h, and the burden on the hindfoot and the forefoot
was the smallest. This helped the balance of the body and the health
of the feet.

3.3 Analysis of complex stability

The differences in the pressure distributions in the three plantar
regions caused by an asynchronous speed of walking cannot directly
reflect the corresponding differences in the stability of the gait.
Studies have shown that the irregularity of distribution of the plantar
pressure can be reflected by the varying degrees of changes in the
length and frequency of the stride, which in turn affect the stability
of the gait (Biswas et al., 2008). We used MSE to examine the time
series of stride intervals of the subjects to measure the complexity of
the rhythm of their gait at different time scales, and thus to evaluate
the differences in its stability at different speeds of walking.

A system with a larger entropy is more complex and less regular
(Kedziorek and Blazkiewicz, 2020). Table 1 shows that walking at
2km/h yielded the lowest overall sample entropy of the gait,
indicating that the sequence of strides had the highest self-
similarity, the least complexity, and led to a highly regular gait in
this case. However, the differences among the three were not
prominent, and the overall difference in entropy was small.

Figure 6 shows curves of the distribution of MSE as the subjects
walked at the three speeds considered here, while Table 1 shows the
scale of the magnitude of entropy of the gait. MSE can be used to
amplify the temporal differences in gait complexity at the three
speeds. Compared with those at 4 km/h and 6 km/h, the MSE at a
speed of walking of 2km/h was smaller by 0.315 and 0.579,
respectively, and this shows that the differences in entropy
among the three speeds was prominent at a small scale but
slight at a large scale. MSE was thus able to more clearly
identify the differences in stability at various walking speeds,
and to amplify the differences in entropy at a small scale in
comparison with sample entropy. This may be because the
stability and regularity of the gait are impaired over short time
scales, but the change in the stride interval is generally smooth and
stable over long time scales as the body gradually adapts to the
change in the frequency of steps.

Therefore, the curve of entropy at a small scale decreased more
slowly at 2 km/h than at 4 km/h and 6 km/h, and was the most stable
at a large scale.

4 Discussion

Some studies have shown that the more stable the gait is, the
lower are the multi-scale entropy of the sequence of stride intervals
and the rate of decline (Hsieh and Abbod, 2021). When one is

Frontiers in Bioengineering and Biotechnology

10.3389/fbioe.2024.1328996

walking slowly, the frequency of strides is low, the stride interval is
relatively long, and the gait is more stable because the difference
between steps is relatively small and body control is thus easier (Wu
etal, 2019). England and Granata quantified the stability of the gait
by using the Lyapunov exponent ), and found that A was smaller at
lower walking speeds. This indicates that slower walking increases
the stability of the gait (England and Granata, 2007). The subjects in
our experiments exhibited a more dynamically stable gait at lower
speeds, and older adults at risk of falling are advised to reduce their
walking speed to improve their stability (Dingwell and Marin, 2006).
Walking quickly may result in a less regular gait and a more complex
time scale owing to the increased frequency of steps and the
shortening of the stride interval, where this reduces the stability
of the gait and increases the difficulty of body control. Therefore,
walking at a speed of 2km/h is more conducive to the postural
balance and health of the body than walking at speeds of 4 and
6 km/h.

5 Conclusion

The results of this study showed that different walking speeds
have significant effects on the distribution of the plantar pressure
and the stability of the human gait. Through an analysis of the
human gait based on the plantar pressure, we combined the
mechanical analysis of regionally fused data with complex
stability analysis based on multi-scale entropy to differentiate
between the stabilities of the gait at different speeds of walking at
multiple time scales. The results of experiments involving
subjects walking at speeds of 2, 4, and 6 km/h showed that the
differences between gait stability were prominent at small scales
but weak at large scales. This shows that the stability of the gait
may be compromised at short time scales. A walking speed of
2 km/h yielded a lower complexity than the other two speeds
considered here, and the curve of entropy decreased more slowly
ata small scale. This curve was the most stable at a large scale, and
this reflected a stable gait. By distinguishing between the
stabilities of the gait at asynchronous speeds of walking, the
proposed method can help clinicians develop training programs
to help patients balance their gait and reduce the risk of falls
among the elderly.
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Introduction: Stroke is the second leading cause of death globally and a primary
factor contributing to disability. Unilateral limb motor impairment caused by
stroke is the most common scenario. The bilateral movement pattern plays a
crucial role in assisting stroke survivors on the affected side to relearn lost skills.
However, motion compensation often lead to decreased coordination between
the limbs on both sides. Furthermore, muscle fatigue resulting from imbalanced
force exertion on both sides of the limbs can also impact the
rehabilitation outcomes.

Method: In this study, an assessment method based on muscle synergy indicators
was proposed to objectively quantify the impact of motion compensation issues
on rehabilitation outcomes. Muscle synergy describes the body’s neuromuscular
control mechanism, representing the coordinated activation of multiple muscles
during movement. 8 post-stroke hemiplegia patients and 8 healthy subjects
participated in this study. During hand-cycling tasks with different resistance
levels, surface electromyography signals were synchronously collected from
these participants before and after fatigue. Additionally, a simulated
compensation experiment was set up for healthy participants to mimic various
hemiparetic states observed in patients.

Results and discussion: Synergy symmetry and synergy fusion were chosen as
potential indicators for assessing motion compensation. The experimental results
indicate significant differences in synergy symmetry and fusion levels between
the healthy control group and the patient group (p < 0.05), as well as between the
healthy control group and the compensation group. Moreover, the analysis
across different resistance levels showed no significant variations in the
assessed indicators (p > 0.05), suggesting the utility of synergy symmetry and
fusion indicators for the quantitative evaluation of compensation behaviors.
Although muscle fatigue did not significantly alter the symmetry and fusion
levels of bilateral synergies (p > 0.05), it did reduce the synergy repeatability
across adjacent movement cycles, compromising movement stability and
hindering patient recovery. Based on synergy symmetry and fusion indicators,
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the degree of bilateral motion compensation in patients can be quantitatively
assessed, providing personalized recommendations for rehabilitation training and
enhancing its effectiveness.

KEYWORDS

rehabilitation training, motion compensation, surface electromyography, muscle synergy,

quantitative assessment

1 Introduction

The Global Burden of Disease (GBD) research data revealed that
in 2019, there were over 100 million stroke cases worldwide (Feigin
and Stark, 2021). The number of patients in China is as high as
17.8 million (Tu and Wang, 2023). Stroke incidents often result in
impairment of the motor cortex and its descending spinal pathways,
causing functional limitations in limb movements. Statistics indicate
that roughly 80% of stroke survivors experience upper limb motor
dysfunction with unilateral limb motor impairment caused by stroke
being the most common (Mazzoleni et al, 2018), making
rehabilitation crucial for restoring lost functionality (Gauthier
et al, 2008; Huang et al., 2022; Xie et al., 2023). Rehabilitation
techniques encompass professional therapeutic interventions, the
use of rehabilitative exoskeleton robots (Kim et al., 2012; Louie et al.,
20205 Singh et al., 2021; Nolan et al., 2023) and active rehabilitation
devices (Sugihra et al., 2018). However, the scarcity of rehabilitation
physicians and the cumbersome nature of rehabilitative exoskeleton
robots hinder their widespread use.

Active rehabilitation devices involve patients utilizing their less
affected limb to assist in rehabilitation exercises, such as using hand-
crank devices (Kraaijenbrink et al, 2021) and Bobath hand
techniques (Pathak et al., 2021). This method promotes the
initiative of patients during the training process. Studies have
suggested that simultaneous training of both limbs provides
additional stimulation to the brain, aiding in rehabilitation
(Woldag et al, 2004; Renner et al, 2005). Nonetheless, this
training method raises concerns about motion compensation.
The affected limb’s reduced function leads to continuous reliance
on the unaffected limb. Additionally, Calabro and Perez (2016)
indicated that simultaneous action on both sides would adversely
affect the movement of the affected side by the healthier side, as
evidenced by comparisons of several movement indicators. The
continuous exertion by the healthier side easily leads to muscle
fatigue, while the affected side, due to its functional deficit, is prone
to fatigue as well. This imbalanced force exertion on both sides of the
limbs caused by compensation can significantly hinder a
patient’s recovery.

Therefore, timely rehabilitation assessment of rehabilitation

training can effectively reduce the impact of motion
compensation and muscle fatigue. Presently, upper limb
rehabilitation  assessment methods, including Brunnstrom

Recovery Stage (Meng et al., 2022), Fugl-Meyer Assessment (D],
2002), and Modified Ashworth Scale (Ansari et al., 2012), possess
comprehensive evaluation criteria. They heavily rely on clinical
expertise and possess subjectivity. Li et al. (2022) integrated
electromyography  (sEMG)
information for the quantitative assessment of hand function.

surface signals and motion

However, these methods face challenges in assessing motion
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compensation. Therefore, timely rehabilitation assessment of
rehabilitation training can effectively reduce the impact of
motion compensation and muscle fatigue on rehabilitation
training. Timely detection of motion compensation remains
challenging in clinical practice, delaying patient recovery and
potentially resulting in permanent functional deficits in the
affected limb.

The muscle synergy theory describes the inherent neuro-
muscular control mechanism in the human body, suggesting that
motor neurons do not solely control individual muscles but recruit
multiple muscles simultaneously to execute coordinated movements
(Aoi and Funato, 2016; Hirashima and Oya, 2016; Zhao et al., 2019).
Tang et al. (2014) applied Pearson correlation analysis on muscle
synergy among different healthy subjects executing similar tasks
revealed a correlation coefficient of up to 0.85. Chen et al. (2023)
identified shared and specific synergies in six upper limb actions,
forming a basis for the muscle synergy theory. Brambilla and Scano
(2022) utilized experimental and simulated data to investigate the
influence of the number of muscles on the structure and quantity of
synergies. Their conclusions suggest that both a low and high
number of muscles can yield relatively high similarity in synergy.
Additionally, a lower number of muscles might potentially
underestimate the dimensionality of motor control, thereby
potentially providing a basis for motor control. Pan et al. (2021)
further analyzed that different combinations of the original muscle
synergies could achieve complex movements in different planes. The
distinct topology of muscle synergy networks among different tasks
demonstrates the significant differences, thus affirming the potential
of the muscle synergy theory in understanding human motor
control mechanisms and their impact on neurorehabilitation.
Due to the interpretability of muscle synergy in human
movement mechanisms, this theory is often employed for
patients’ rehabilitation assessments.

Commonly used approaches for applying muscle synergy to
rehabilitation assessment involve comparing muscle synergies
between healthy individuals and patients to gauge changes in
patient synergy indicators. In experiments conducted by Funato
et al. (2022), both healthy individuals and stroke patients were
tasked with executing the 37-item tasks from the Fugl-Meyer
assessment method. The corresponding muscle synergies were
synergy
characteristics and stroke-related motor impairments. Ultimately,

analyzed to explore the relationship between
it was deduced that muscle synergy serves as an effective method in
stroke assessment. Ma et al. (2021) extracted upper limb muscle
synergies from healthy subjects and stroke patients, analyzing the
inherent consistency of the patients’ multiple experimental
outcomes. This analysis revealed lower inherent consistency in
stroke patients compared to healthy subjects, accompanied by a

higher level of synergy complexity. Sheng et al. (2022) introduced a
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novel assessment method known as the Muscle Synergy Space
(MSS) model, aimed at evaluating post-stroke motor function. By
comparing muscle synergy characteristics between healthy
individuals and stroke patients, the model’s effectiveness was
demonstrated, providing scientific guidance for rehabilitation.

Another approach considers that patients often exhibit better
functionality in their unaffected (healthy) side. Therefore, by
comparing and analyzing the muscle synergy between the
unaffected and affected sides, it is also feasible to assess the
motor function of the affected side. This primarily involves an
analysis from the perspective of the correlation and integration
level of muscle synergy between both sides of the body (Cheung
et al., 2012; Pan et al.,, 2018). However, while the first method uses
healthy subjects’ synergy as a reference to reflect patient synergy
defects, it fails to assess the balance of bilateral muscle coordination
during coordinated movements. The second method involves
experiments solely focusing on independent movements on both
sides, reflecting only some indicators of changes during independent
movements. Consequently, the results do not adequately indicate
differences in muscle coordination levels due to compensation by
the unaffected side.

The innovation of this study lies in not only analyzing the
patient’s own muscle synergy indicators but also conducting a
significance analysis between the results of patients and healthy
subjects. This evaluation is based on indicators such as the
symmetry and fusion degree of muscle synergy on both sides
of the body, aiming to assess the issue of motion compensation.
Collecting surface electromyography signals from patients and
healthy participants during bilateral movement, will facilitate
analysis of indicators variations. This will quantify patients
motion compensation through comparative analysis based on
muscle synergy indicators. Considering that resistance is often
applied during experimental procedures to enhance
rehabilitation training, and patients tend to experience muscle
fatigue, an analysis of muscle synergy indicators has been
conducted under various resistance levels and fatigue statuses.
The main contributions of this paper can be summarized
as follows.

1. The combined muscle synergy extraction method utilizing
Principal Component Analysis (PCA) and Non-negative
Matrix Factorization (NMF) ensures the stability of muscle
synergy patterns and subsequent analytical results.

2. Designing experimental paradigms sensibly, using synergy
symmetry and synergy fusion indicators, validated the
feasibility of quantifying motion compensation issues
through muscle synergy.

3. By comparing data between the healthy group and the patient
group, as well as between the healthy group and the simulated
group, the impact of resistance level and fatigue status on
motion compensation is analyzed using significance level
indicators.

The rest of paper is organized as follows. Section 2 describes the
recruited subjects, experimental protocols, and muscle synergy
quantification indicators. Section 3 presents the analysis results of
the experiments, while Section 4 delves into the discussion of these
analytical findings. Conclusion are set out in Section 5.
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TABLE 1 Stroke subjects.

Subject Age Affected Stroke Brunnstrom
side type
S1 16 R Ischemic 3
S2 60 R Ischemic 3
S3 58 R Ischemic 4
S4 32 L Ischemic 5
S5 37 R Ischemic 5
S6 58 L Ischemic 3
S7 55 L Ischemic 4
S8 45 L Ischemic 5

2 Materials and methods

This study primarily analyzes the coordination level between the
two sides of the human body from the perspective of muscle synergy.
The muscle synergy extraction algorithm was employed to extract
muscle synergies and activation coefficient matrices from SEMG
signals. Muscle synergy reflects the recruitment pattern of muscles
within a muscle group and can also serve as a measure of muscle
symmetry, while activation coefficients indicate the degree of
involvement of each muscle synergy. The symmetry and fusion
indicators of bilateral muscle synergy reflect the coordination of
muscles, and the effectiveness of applying this method to detect
motion compensation can be determined through a significant
difference analysis between healthy subjects and patients.

2.1 Subjects

Eight stroke patients (S1-S8, mean age 45 * 15 years) and
eight healthy subjects (H1-H8, mean age 24 + 2 years)
participated in this experiment. All patients were capable of
independently completing a minimum of 20 min of hand-
cranked rehabilitation training. All eight healthy subjects were
right-handed. The information of stroke patient is available in
Table 1. The experiment was in accordance with the declaration
of Helsinki and received approval from the Fifth Affiliated
Hospital of Zhengzhou University. All subjects provided
informed consent before participating in the experiment.

2.2 Experiment protocols

2.2.1 Experimental platform

This study utilized a coordinated bilateral hand-cycling as the
experimental apparatus, as shown in Figure 1A, and employed the
multi-channel wireless sEMG signals sensor Delsys for data
acquisition in Figure 1B.The sSEMG sampling rate was 1,926 Hz.
Data collection was performed on eight muscle groups on both the
left and right sides of the human body, with sensor attachment
positions on the right side illustrated in Figure 2, which were
mirrored symmetrically on the left side.
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FIGURE 1

(A) Experimental setup and equipment-hand-cycling. The device allows for adjustable training resistance. (B) Experimental data acquisition
equipment-Delsys. The device can simultaneously collect SEMG signals from up to 16 muscles.

Forward Side Back

FIGURE 2
Electrode positions for sSEMG signals acquisition. The positions of

each muscle were predetermined through referencing
anatomical charts.

The muscles associated with rehabilitation training for hand-
operated carts are the Biceps Brachii (BIC), Brachialis (BRA),
Anterior Deltoid (AD), Brachioradialis (BRAD), Posterior Deltoid
(PD), Triceps Brachii Long Head (TBLD), Triceps Brachii Lateral
Head (TBLH), and Latissimus Dorsi (LD), as determined through
examination of anatomical charts and experimental analysis. After
wiping the skin with alcohol wipes, affixing the sensor to the
designated location, and subsequently securing it more firmly
with medical tape, this approach aims to diminish noise caused
by skin perspiration and artifacts from sensor movement.

2.2.2 Experimental paradigm

The overall experimental paradigm is indicated in Figure 3.
The participants were initially briefed on the experimental
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FIGURE 3
Experimental paradigm. Every 3 complete rotational cycles

constitute a single large cycle, and at least 8 large cycles (32 s) were
collected as one dataset.

procedure, where three rotation cycles were considered a
complete Most
completed three full rotation cycles within a 4s interval,

co-contraction extraction cycle. patients
considering this timeframe as a major cycle for coordinated
data extraction. Healthy subjects followed a similar pace,
leading to a total data collection time of 32s. To prevent any
interference from the initiation and cessation movements at the
start and the end, a minimum data collection duration of 36 s was
ensured for each participant, with intermittent rest periods. Two
distinguishable resistance levels were set, labeled as Resistance
level 1 (R 1) and Resistance level 2 (R 2). Once data collection for
both resistance levels was completed, patients continued with at
least 20 min of rehabilitation training. Subsequently, data were
gathered at the R 1 to capture fatigue data.

All healthy subjects underwent the following simulated
compensation experiment based on the original experiment, with
the resistance set at R 1.

Case 1: Maintain a balanced movement on both sides as much
as possible.

frontiersin.org


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1375277

Liu et al. 10.3389/fbioe.2024.1375277
1 ) 1
Az - ‘ Ff - B g0 T T ¥ ]
<1 < 1
g fE—t f % ) £ 0] e e e
1 1
2 gl],_, e R Ma— e 2 ?‘ - 4 RTINS vl N A 1\
a4 a4
S i —— e T = ; e
@- R
i vt 1
£ of Ll i, £ 0 bttt e —cfpbrofprsivv oy e L e
a4 A1
2 P ™) in a i " ]
0 i 0 ) 0
B3 u i L Al =R il il
el " ¥ T m 3 W 51
E (1% ) W ¥ 1 1 y 2 (1)r BSORY PV VOV | SV YO0 ,-nww,w,,., A —— " -'|| {
B 12
1 | ! 1 ! \ . B )
a_? e B e H—— 5_(1) A ; - \“I'% el y
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 4
Time(s) Time(s)

FIGURE 4
(A) SEMG of H1. (B) SEMG of S1.

Case 2: Sustain stable force exertion on the right side, with
occasional engagement of the left side in movement, simulating a
milder degree of motion compensation.

Case 3: The left side exerts no force and is entirely driven by the
right side, simulating a more severe form of motion compensation.

2.3 The preprocessing of sEMG

The preprocessing of SEMG signals involved several steps. First,
a Butterworth high-pass filter with a cutoff frequency of 40 Hz was
applied to the acquired sEMG signals (Chen et al.,, 2023). Next, a
50 Hz notch filter was used to remove powerline interference. The
signals were mean-centered and rectified. Subsequently, Finite
Impulse Response (FIR) low-pass filter with a cutoff frequency of
20 Hz was applied to extract the signal envelope (Pan et al.,, 2018).
Root mean square smoothing was employed to further refine the
signals, eliminating the aberrant electrical noise and ensuring a
smoother envelope. Finally, a normalization process was carried out
to ensure that the contribution of smaller muscle groups was
adequately represented.

The pre-processing results of SEMG signals from the left side of
H1 in Case 1 and the affected side of S1 are shown in Figure 4. The
result involves the normalization of sSEMG, constraining its range
to —1 to 1, and the envelope signals have not yet been extracted. It is
evident that the periodicity of data from healthy subjects is more
intuitively apparent.

2.4 The extraction of muscle synergies

When controlling limb movements, the human body doesn’t
individually control each muscle, rather it coordinates the entire
muscle group through the spinal cord. Muscle synergy can be
sEMG
extraction algorithms, as described in Eq. 1

extracted from preprocessed signals using feature

men = WWlXTHTXn + E, (1)

where V is the preprocessed surface SEMG signals, with m as the
number of sampling channels and n as the number of sampling
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points, W is the muscle synergy matrix, with r is the number of
muscle synergies, H is the activation coefficient matrix, E is the
obtained residual error. The extraction of muscle synergies involves
two steps.

Step 1: PCA is employed to obtain the feature matrix and principal
component matrix. The selection is made for feature vectors and
their corresponding principal components equal to the number of
muscle synergies.

Step 2: The results obtained in the previous step are taken in
absolute values as the initial values for NMF (Lee and Seung, 1999).

The number of muscle synergies is determined by the error
between the decomposition results and the original signals. This
error is represented by the variance accounted for (VAF) (Cheung
et al., 2012), as shown in Eq. 2

V-V,

VAF=1-
V1

) )
where V is the preprocessed surface sSEMG signals matrix, V' is the
reconstruction matrix. When the VAF is excessively high, it fails to
achieve effective dimensionality reduction, as redundant
information cannot be completely eliminated. Conversely, if the
VAF is too low, it may result in the loss of valuable information.
Therefore, the minimum number of synergies is chosen when
VAF exceeds 80%.

2.5 Synergy symmetry and fusion

In the study, muscle synergies were extracted using the
mentioned method from both sides of both healthy subjects and
patients. The symmetry of muscle synergy refers to the correlation
calculation results of the extracted muscle synergies on both sides of
the human body. This indicator can reflect the balance of movement
on both
compensation. Although the muscle synergy modules were
relatively stable, the order in which muscle synergies were

sides, thereby indicating the degree of motion

extracted exhibited randomness. To establish a more meaningful
order of muscle synergies, the muscle synergy order within the
synergy matrix was rearranged to optimize the overall synergy
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correlation. This was done by calculating synergy correlations
between the extracted muscle synergies on both sides. The
correlation calculation method employed in the study was the
Pearson correlation coefficient (Lalumiere et al., 2022), as shown
in Eq. 3

. S(X-X)(r-Y)
P \2 >\2
VE(X-X) 3 (Y -Y)

3)

where X and Y correspond to two synergy vectors that require
correlation determination, and X and Y represent the respective
means. Synergy vector refers to the results of each column in the
extracted synergy matrix. In this study, the number of channels in
the multi-channel signals is 8, and the number of elements in each
synergy vector is also 8.

In cases where one side displays reduced functionality, resulting
in abnormal muscle synergy, a phenomenon known as synergy
fusion may manifest. The fusion indicator of muscle synergy denotes
that the muscle synergy on one side of the subject is formed by the
fusion of muscle synergies from the other side. This indicator reflects
the variation in the force exerted by individual muscles on both sides
during the coordinated movement process in patients, thereby
indicating the degree of motion compensation. Specifically, when
muscle synergy on the affected side becomes aberrant while that on
the unaffected side remains relatively normal, a fusion of synergies
may occur as in Eq. 4. In this study, the calculation of synergy fusion
on the affected side is carried out utilizing the least squares method
(Cheung et al.,, 2012).

¥
W= mwy, i=1.. N (4)
k=1

where W¢ represents the i — th muscle synergy on the affected side,
N signifies the number of synergies on the affected side, W}, denotes
the k — th muscle synergy on the healthy side, fusion coefficient mj,
denotes the contribution level of the kth healthy side muscle synergy,
and N represents the number of muscle synergies on the healthy
side. When the fusion coefficient exceeds 0.2, it indicates the
involvement of one synergy in composing the synergy on the
other side. If only one fusion coefficient exceeds 0.2, the presence
of fusion is not considered. If more than two fusion coefficients
exceed 0.2, it is considered that another synergy exists in fusion on
the opposite side.

2.6 Significance analysis

This study conducted experiments with two resistance levels
and under fatigue status for both healthy subjects and patients.

The determination of significance levels for computed
indicators relating to muscle synergy under various
conditions  involves  employing  distinct  statistical

methodologies contingent upon the distribution of the data.
Typically, in instances where the data adheres to a normal
distribution, significance analysis is carried out using one-
way analysis of variance (ANOVA). The Lilliefors test was
utilized to assess the normal distribution of characteristics
associated with muscle synergy (Abdi and Molin, 2007). This
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VAF of healthy subjects and stroke patients. The blue bars
represent the VAF across different muscle synergy numbers for
healthy subjects, while the purple bars represent the VAF across
different muscle synergy numbers for patients.
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Correlation analysis of muscle synergy with equidistant offset of
H1. Horizontal axis and vertical axis corresponds to the sequential
numbers used for muscle synergy extraction data sets.

method is deemed appropriate for small sample sizes, and if the
data deviates from a normal distribution (p < 0.05), the
Kruskal-Wallis test is subsequently applied to assess the
significance of differences (Bala et al., 2023).

3 Results
3.1 The number of muscle synergies

Following preprocessing of multi-channel sSEMG from both sides of
all participants, a combination of PCA and NMF algorithms was
employed to determine different counts of co-activation, aiming to
extract muscle synergies. The VAF were computed under various co-
activation counts. As depicted in Figure 5, muscle synergies on the left
side of healthy subjects and the affected side of patients exhibited VAF
values exceeding 0.8 when the synergies count exceeded 4.
Consequently, The number of muscle synergies extracted for both
healthy subjects and patients was determined to be 4. This synergy
number adequately reconstructs the information of the original data
while eliminating some redundant information.
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(A) Symmetry of synergy in healthy subjects. (B) Symmetry of synergy in stroke patients. Each bar consists of four segments, where each segment
represents symmetry between both sides for a synergy. W1-W4 denote four synergies, while R 1 and R 2 represent two resistance levels.

3.2 Symmetry of bilateral synergy

Muscle synergies were extracted from 8 channels of sSEMG
signals on both sides, and the Pearson correlation coefficient was
employed to assess the symmetry between bilateral muscle synergies.
This study involved the extraction and analysis of SEMG signals
during simultaneous movement of the left and right sides.
Considering the potential impact of phase deviations between
both sides, an initial computation involved evaluating the
correlation of muscle synergy extraction results for ten segments
with a phase deviation of 200 sampling points. As depicted in
Figure 6, the majority of data segments exhibited a symmetry
above 0.85, indicating minimal variations in synergy with slight
time deviations. Extract muscle synergy from both sides of healthy
participants and patients, as illustrated in Figure 7.

To minimize the errors introduced by periodic variations, the
average of the symmetry results from eight data segments was
calculated to represent the final data, aiming to reduce the
impact of small temporal deviations on muscle synergy analysis.
The symmetry of muscle synergies for eight patients is shown in
Figure 8. Each column consists of 4 segments, representing the
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symmetry values of each synergy. The overall synergy symmetry for
healthy subjects is mostly above 2.5, while for patients, it is
predominantly below 2.5.

Similar computations performed on muscle synergies in fatigue
status yielded identical outcomes. Under different statuses, the
Pearson correlation coefficient was utilized to compute the
symmetry of muscle synergies across all healthy subjects and
patients, generating mean and standard deviation values. After
conducting the Lilliefors test for normality on the data and
determining that it does not follow a normal distribution, the
Kruskal-Wallis test was applied to determine if there were
significant differences in symmetry between R 1 and R 2 for both
healthy subjects and patients. Similar computations were conducted
for pre-fatigue and post-fatigue conditions, as depicted in Figure 9A.

The symmetry in healthy subjects under R 1 (0.70 + 0.07) and R
2 (0.72 £ 0.06) did not show significant differences (p > 0.05).
Additionally, the symmetry before fatigue under R 1 did not
significantly differ from the symmetry after fatigue (0.69 + 0.04,
p > 0.05). For patients, symmetry under R 1 (0.46 + 0.08) and R
2(0.43 £ 0.04) showed no significant differences (p > 0.05), and the
symmetry before fatigue under R 1 did not significantly differ from
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(A) Synergy fusion in healthy subjects. Each color corresponds to the four points on the x-axis, representing the fusion of the four synergies from the

left side to the right side. The solid line indicates the mean, while the shaded area represents the standard deviation. (B) Synergy fusion in patients. Each
color corresponds to the four points on the x-axis, representing the fusion of the four synergies from the healthy side to the affected side. The solid line
indicates the mean, while the shaded area represents the standard deviation.

the symmetry after fatigue (0.44 + 0.05, p > 0.05). However, healthy
subjects exhibited significantly higher synergy symmetry compared
to patients (p < 0.05). Consequently, it is inferred that resistance
levels and fatigue statuses do not significantly impact bilateral
muscle synergy symmetry in the human body. However,
significant differences exist in the symmetry of muscle synergies
between patients and healthy subjects.

The average and standard deviation of muscle synergy
symmetry across different subjects under the three cases were
computed which is shown in Figure 9B. For most subjects, the
synergy symmetry was highest in Case 1, lowest in Case 3, and the
significance level was determined. The average symmetry for Case 2
was (0.61 + 0.10), and for Case 3, it was (0.54 £ 0.07). The symmetry
in Case 1 was significantly higher than that of Case 3 (p < 0.05).

3.3 Fusion of bilateral synergy
This study computes the fusion of muscle synergies, considering

that all healthy subjects are right-handed. For healthy subjects, the
fusion of left-side muscle synergies was calculated from the right-
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side muscle synergies. For patients, the fusion of affected-side

muscle synergies was derived from the unaffected-side
muscle synergies.

The fusion levels of muscle synergies were calculated for both
healthy subjects and patients under R 1, R 2, and fatigue statuses.
H1 represents healthy subject 1. The computed fusion levels among
healthy subjects is shown in Figure 10A. The solid line represents the
average across all subjects, while the shaded area indicates the
standard deviation. Each curve corresponds to four points,
representing the reconstruction coefficients of that synergy by
four synergies from the other side. A coefficient exceeding
0.2 suggests the involvement of the corresponding synergy in the
reconstruction process. When the number of reconstructed
synergies exceeds 2, fusion of that synergy is considered to be
present. From the graph, it is evident that most curves display a
single prominent peak, with other points mostly below 0.2. The
synergy fusion status among patients under R 1 is shown in
Figure 10B. Each curve not only exhibits a dominant peak but
also contains additional points with values exceeding 0.2. This
suggests the presence of multiple synergies formed through

fusion of synergies from the unaffected side.
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(A) Synergy fusion in healthy subjects. (B) Synergy fusion in patients. Each column represents a healthy subject (A) or a patient (B), and each row
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TABLE 2 Fusion of healthy subjects.

Subject HIL H2 H3 H4 H5 H6 H7 HS8
R1 1 1 1 0 1 2 1 2
R2 1 1 1 1 1 2 1 2
Fatigue 2 1 2 1 1 2 1 2
Case 1 1 1 1 0 1 2 1 2
Case 2 0 1 3 1 3 1 3 2
Case 3 1 2 3 2 3 0 3 3

TABLE 3 Fusion of stroke subjects.

Subject

Fatigue

Each participant’s synergy fusion status was plotted individually.
The calculation of synergy fusion among healthy subjects under R
1 is shown in Figure 11A. Each column represents a participant,
while the values in each row denote the fusion status of that synergy.
Values exceeding 2 indicate the presence of fusion for a given
synergy. Most healthy participants exhibit fusion in only one out
of the four muscle synergies, except for participants 6 and 8. The
calculation of synergy fusion among patients under R 1 is shown in
Figure 11B. Healthy subjects typically show fusion in two or fewer
muscle synergies, while patients often exhibit fusion in more than
two synergies, with some demonstrating fusion in all four synergies.

Both healthy subjects and patients underwent analysis for
synergy fusion levels under R 1, R 2, and fatigue statuses, as
illustrated in Tables 2, 3. The numbers in the table represent the
count of synergistic fusion occurrences among the four muscle
synergies for each subject. The average and standard deviation of
fused synergies were calculated for healthy subjects and patients, as
depicted in Figure 12A. Subsequently, the significance level of
differences statuses determined. The

among var ious ‘was
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outcomes indicate an absence of significant differences in synergy
fusion levels between the two resistance levels and pre-fatigue and
post-fatigue statuses. The number of fusions for healthy participants
under R 1 (1.13 + 0.64) and R 2 (1.25 + 0.46) showed no significant
difference (p > 0.05). Also, there was no significant difference
between the pre-fatigue and post-fatigue fusion counts under R
1 (1.5 £ 0.53) among healthy participants (p > 0.05). For patients,
there was no significant difference in the fusion counts between R
1(2.37+0.74) and R2 (2.75 £ 0.89, p > 0.05). Similarly, there was no
significant difference between pre-fatigue and post-fatigue fusion
numbers under R 1 (2.5 + 0.53) among patients (p > 0.05). However,
the number of fusions in healthy participants was significantly lower
than in patients (p < 0.05).

It is illustrated that the computation of synergy fusion levels
among healthy subjects in simulated compensation scenarios in
Table 2. The average results for multiple healthy subjects are
depicted in Figure 12B. The results indicate a gradual increase in
synergy fusion levels from Case 1 to Case 3. The average fusion
count for Case 2 is (1.75 + 1.17), and for Case 3 is (2.13 + 1.23). The
fusion count in Case 1 is significantly lower than in Case 3 (p < 0.05).

3.4 Influence of muscle fatigue on synergy

The analysis conducted above indicates that muscle fatigue does not
significantly impact the symmetry of coordination and fusion levels
during bilateral coordinated movements in the human body. However,
an assessment was performed on the correlation of muscle synergies pre
and post fatigue. Muscle synergies were extracted from five movement
cycles before and after fatigue for each participant, and the correlation
between these synergies was computed pairwise. It is presented that the
computed results for one of the patients, demonstrating a reduction in
synergy correlation post-fatigue in Figure 13. Moreover, a slight decline
in correlation was observed in the five sets of post-fatigue muscle
synergy data, which was consistent across multiple participants. This
suggests that muscle fatigue leads to an increase in the instability of
muscle synergies, which could impede effective rehabilitation training
and assessment. Therefore, mitigating the occurrence of muscle fatigue
should be a priority to ensure optimal conditions for rehabilitation
training and evaluation.
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Multicycle synergy correlation before and after fatigue of H2. p1-

p5 represent the five consecutive cycle data before fatigue, while al-
a5 represent the five consecutive cycle data after fatigue.

4 Discussion

The present study takes into account the compensation
phenomenon that occurs during bilateral auxiliary movement.
Compensation is the phenomenon of leveraging the function of
muscles on both sides due to functional deficiencies. In the process
of bilateral auxiliary rehabilitation training, patients tend to
excessively rely on the unaffected side due to the functional
the affected
assessment methods often rely heavily on clinical expertise, such
as FMA and Fugl-Meyer scales. However, these methods lack the

impairment  of side. Current rehabilitation

ability to promptly detect the occurrence of compensation behaviors
in patients. Prolonged reliance on the unaffected side may lead to
muscle atrophy and permanent loss of function on the affected side.

To quantify compensation behaviors on both sides, this study
designed experiments using a handcart and incorporated simulated
compensation experiments. Healthy subjects’ right hand was designated
as the unaffected side, while the left side was either completely
restrained or occasionally engaged in the handcart’s rotational
movement. Motion compensation manifests in the coordination of
muscle exertion levels. Given that sSEMG reflect the degree of muscle
exertion in each muscle, bilateral balance handcart experiments were
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conducted to collect SEMG signals from corresponding areas on both
sides of healthy subjects and patients. According to muscle synergy
theory, human body movement is achieved through the linear
combination of multiple synergy modules. Extracting muscle synergy
from multi-channel sSEMG signals is essential. Presently, NMF is
primarily used for muscle synergy extraction, mainly due to the
interpretability of its non-negative results. However, NMF’s
drawback lies in its multiple solutions, indicating instability as it
might yield different outcomes when run multiple times on the
same dataset. This variability significantly impacts the application of
muscle synergy in rehabilitation assessment, leading to substantial
differences between multiple analytical results. Some studies have
employed PCA to extract muscle synergy. PCA’s advantage lies in
its capability to extract stable muscle synergies. However, its results
often contain negative values, limiting its application in rehabilitation
assessment. Nevertheless, there are studies integrating muscle synergies
extracted by PCA into rehabilitation exoskeletons’ dimensionality
reduction control (Alibeji et al., 2015).

This study analyzes the symmetry of muscle synergy on both sides
of the body, demanding high stability in extracted synergies. To obtain
stable muscle synergies, SEMG signals underwent filtering and
smoothing, followed by normalization for each channel to prevent
smaller muscles’ participation from being overshadowed by larger
muscle groups. Considering that NMF algorithm results are
significantly influenced by the initial input matrix, this study
employed PCA for preliminary decomposition of multi-channel
surface electromyographic signals on each side. The absolute value
of the decomposed results was then processed and utilized as the input
matrix for the NMF algorithm, resulting in relatively stable muscle
synergy outcomes. Symmetry and fusion levels of muscle synergy
extracted from both sides of the body were primarily analyzed.
Furthermore, variations in muscle synergy indicators during
compensation simulated experiments were examined to identify
potential indices applicable for quantifying compensation behavior.

4.1 The number of muscle synergy

The determination of the quantity of muscle synergies is not
automatically established through an algorithm but involves
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selecting various synergy numbers, computing the VAF values, and
assessing them through plotting. The computed VAF values for
synergy extraction on the affected side of patients and the left side of
healthy subjects is shown in Figure 5. Typically, a threshold is set to
determine the number of synergies. Considering the redundancy in
SsEMG, this study set the threshold at 0.8, which reflects 80% of the
original data’s information in the obtained synergy results. From the
graph, notable differences in VAF between patients and healthy
subjects are observed when the synergy numbers are small.
However, when the synergy numbers exceed 4, most participants
in both patient and healthy subject groups exhibit a VAF greater
than 0.8. Similar results are obtained when analyzing the other side.
Consequently, the quantity of muscle synergies was established as 4.

4.2 The symmetry of bilateral
muscle synergy

The primary consideration was the phase shift in bilateral
movement during the handcart training, which, reflected in
SEMG signals, represents a time shift. Approximately 1.3 s are
required for a full rotation, resulting in a time offset of roughly
half a rotation between the two sides. With a sampling rate of
1,926 Hz, this offset corresponds to 1,251 data points. Therefore, this
study employed 8,000 as a data window, ensuring the inclusion of at
least three complete rotation cycles, encompassing the initiation,
termination, and transitional phases of the movement in the SEMG
signals. Muscle selection was performed at intervals of 200 from
10 segments of SEMG signals, followed by muscle synergy
extraction.

The assessment of muscle synergy variations across different
signal segments, as shown in Figure 6, indicated that the correlation
of most muscle synergies exceeded 0.85, suggesting minimal phase
shifts and negligible changes in synergy. To minimize errors induced
by shifts, the study computed muscle synergy symmetry for eight
data segments and averaged them to yield the final results. The
extracted results of muscle synergies for healthy subjects and
patients are shown in Figure 7. The right panel displays the
muscle synergies on both sides for patients. Compared to healthy
subjects, there are notable differences in muscle synergies on both
sides for patients.

The initial phase involved the calculation of muscle synergy
symmetry between both sides of the participants, as depicted in
Figure 8. Each bar consists of four segments, representing the
symmetry of individual muscle synergies. The bar chart visually
illustrates a significant difference in overall synergy symmetry
between healthy subjects and patients. The overall synergy
symmetry for healthy subjects is mostly above 2.5, whereas for
patients, it tends to be below 2.5. The analysis revealed an average
synergy symmetry of 0.70 for healthy subjects, contrasting with only
0.46 for patients, as depicted in Figure 9A. Notably, synergy
symmetry in healthy subjects was significantly higher than in
patients. Analyzing the simulated compensation muscle synergy
states of healthy subjects, as illustrated in Figure 9B. The synergy
symmetry demonstrated a declining trend across the three cases,
with Case 1 exhibiting significantly higher symmetry than Case 2
and Case 3 (p < 0.05). This stepped pattern across the three cases
that muscle synergy could quantify

indicates symmetry
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compensation behaviors. A significant analysis of muscle synergy
results under different resistance levels (p > 0.05) suggests no
significant differences in symmetry outcomes under varying
resistance levels. Geng et al. (2020) also suggests high stability in
different
Furthermore, a significant analysis of pre- and post-fatigue

muscle synergy analysis under resistance Level.
muscle synergy results revealed (p > 0.05), indicating that muscle

fatigue does not significantly impact synergy symmetry.

4.3 The fusion of bilateral muscle synergy

The fusion of synergies implies when the muscle synergies on
the affected side are composed of contributions from more than two
healthy-side muscle synergies. The fusion coefficients were
computed using non-negative least squares. Results for healthy
subjects are illustrated in Figure 10A, while those for patients are
depicted in Figure 10B. A comparison reveals that most maximum
fusion coefficients in patients are smaller than those in healthy
subjects, whereas most minimum fusion coefficients are larger in
patients than in healthy subjects. Subsequently, the fusion status of
synergies was computed and plotted in Figure 11, where each
column of four numbers corresponds to the fusion status of four
synergies for a participant. Values above 2 indicate the presence of
fusion in that synergy. The analysis indicates that the synergy fusion
counts in healthy subjects are mostly below 2, whereas patients tend
to have a synergy fusion count significantly above 2. The average
synergy counts among different resistance levels and post-fatigue in
various participants was calculated, followed by significant analysis
depicted in Figure 12A. The synergy fusion counts in patients is
significantly higher than in healthy subjects. After fatigue, there is a
slight increase in fusion counts for healthy subjects, which, however,
is not significant (p > 0.05). Patients show the maximum fusion
synergy count after increased resistance levels, but neither resistance
levels nor fatigue resulted in significant changes. Regarding the
calculation of synergy fusion under simulated compensation cases in
Figure 12B, a stair-like increment is observed across the three cases.
Notably, the fusion count in Case 1 is significantly lower than in
Case 3 (p < 0.05). Furthermore, the fusion count in Case 3 is more
similar to that of the patients, indicating that fusion indicators can
quantify compensation evaluation on both sides. The calculation of
different cycle synergy correlations pre-and post-fatigue among
participants revealed a decrease in synergy correlations for most
subjects after fatigue, indicating increased instability in human
control due to muscle fatigue in Figure 13. This factor might not
favor rehabilitation training and assessment. Thus, efforts should be
made to avoid muscle fatigue during rehabilitation training.

5 Conclusion

This study proposed a muscle synergy-based assessment method
to objectively quantify motion compensation in post-stroke
hemiplegia patients. The results demonstrated that synergy
symmetry and synergy fusion indicators effectively assessed
motion compensation during hand-cycling tasks. Patients with
poorer limb functionality exhibited lower synergy symmetry,
coordination.

indicating decreased Simulated compensation
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experiments of healthy subjects further validated these results.

Moreover, neither resistance levels nor fatigue status
demonstrates a significant impact on these indicators. However,
fatigue led to reduced stability in motor control for both patients and
healthy subjects. The study emphasizes the importance of
minimizing muscle fatigue during rehabilitation training. Overall,
synergy-based indicators provide a quantitative assessment of
bilateral

recommendations for effective rehabilitation.

motion  compensation,  offering  personalized
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Introduction: This paper presents the Reconfigurable Multi-Terrain Adaptive
Casualty Transport Aid (RMTACTA), an innovative solution addressing the
critical need for rapid and safe pre-hospital casualty transport in industrial
environments. The RMTACTA, leveraging the Watt Il six-bar linkage, offers
enhanced adaptability through six modes of motion, overcoming the
limitations of traditional stretchers and stretcher vehicles by facilitating
navigation across narrow and challenging terrains.

Methods: The RMTACTA's design incorporates two branching four-bar
mechanisms to form a compact, reconfigurable Watt Il six-bar linkage
mechanism. This setup is controlled via a single remote rope, allowing for
easy transition between its multiple operational modes, including stretcher,
stretcher vehicle, folding, gangway-passing, obstacle-crossing, and upright
modes. The mechanical design and kinematics of this innovative linkage are
detailed, alongside an analysis of the optimal design and mechanical evaluation of
rope control.

Results: A prototype of the RMTACTA was developed, embodying the proposed
mechanical and kinematic solutions. Preliminary tests were conducted to verify
the prototype’s feasibility and operability across different terrains, demonstrating
its capability to safely and efficiently transport casualties.

Discussion: The development of the proposed Reconfigurable Multi-Terrain
Adaptive Casualty Transport Aid (RMTACTA) introduces a novel perspective on
the design of emergency medical transport robots and the enhancement of
casualty evacuation strategies. Its innovative application of the Watt Il six-bar
linkage mechanism not only showcases the RMTACTA's versatility across varied
terrains but also illuminates its potential utility in critical scenarios such as
earthquake relief, maritime rescue, and battlefield medical support.

casualty transport aid, Watt Il six-bar linkage, reconfigurable robot, kinematics and
statics, parametric study
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Tilt-support gimba N
Reconfiguration frame
FIGURE 1

Mechanical structure of the RMTACTA and the six modes. (A) Mechanical structure of the RMTACTA. (B) Stretcher mode. (C) Stretcher vehicle mode.
(D) Folding mode. (E) Gangway-passing mode. (F) Obstacle-crossing mode. (G) Upright mode.

1 Introduction

Pre-hospital casualty transport is particularly critical for injured
casualties suffering from limb and spinal fractures, brain injuries and
visceral injuries (Wilson et al., 2015). Rapid and safe casualty transfer
will allow the injured to receive care as soon as possible, enhancing
survival and post-operative recovery rates (Bricknell, 2003; Cao et al,
2023; Yang et al., 2023). The complexity of casualty transfer is increased
by the presence of narrow passageways, turns, gangways, and other
obstacles in industrial environments like factories and ships (Butler FK
etal, 2022). A fast and efficient casualty transport aid can help rescuers
overcome these challenges and ensure that the casualty reaches the
medical facility without incident. Stretchers and stretcher trucks are the
most common casualty transport aid. The stretcher is frequently
employed in field ambulances and disaster rescue due to its
lightweight,  portable environmental

structure and  excellent
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compatibility (Lim and Ng, 2021). However, there are safety risks
associated with using the stretcher, including as overturning, a heavy
load on the rescue team, a poor transfer pace, and other issues
(Drobinsky et al,, 2020). Stretcher vehicles, such as the Stryker
Stretcher Vehicle, can provide more protection for the injured while
also increasing transfer efficiency by switching from lifting to pushing.
However, the stretcher vehicles’ larger size and heavier weight make
them more suitable for more spacious areas such as hospitals and
neighborhoods, making it difficult to pass easily through narrow
environments and terrain with a significant difference in height,
such as gangways and high thresholds (Qin and Li, 2023).
Advancements and innovations in casualty transfer aid have
yielded significant results. Several researchers, including Xixi Hong
(Hong et al., 2020), Lingfeng Sang (Sang et al., 2019), Aguilar-Pérez
L A (Aguilar-Pérez et al., 2021) and Jin Rui (Rui and Gao, 2019),
have developed equipment based on a multi-link design. This design
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FIGURE 2

Geometry of the Watt Il six-bar linkage in the reconfigurable frame. (A) Expansion mode. (B) Retracted mode. (C) Remote cable-driven mechanism.

allows for a seamless transition between a stretcher and a wheelchair,
significantly reducing the equipment’s turning radius. As a result, it
simplifies navigation in confined spaces such as elevators and tight
corners. However, changing the stance of the stretcher and
wheelchair will cause the casualty’s stance to alter, which is
undesirable for badly injured people, such as those with spinal
injuries. To tackle the difficulty of moving the victim through the
stairs, transfer equipment with a range of auxiliary modules such as
tracks (Iwano et al., 2011), active gimbals (Verjans et al., 2021a;
Verjans et al., 2021b), passive gimbals (Feng et al., 2022), and so on
has been devised for stairway terrain. The above research, however,
is prone to uncontrolled falls and other problems when utilized on
gangways in factories, ships, and other situations where gangways
have greater slopes of up to 70° (community stairways have slopes of
only 30°).

Inspired by the aforementioned casualty transport aid and the
analysis of industrial environment, this paper proposes a
reconfigurable multi-terrain adaptive casualty transport aid
(RMTACTA) with multiple motion modes as shown in Figure 1.
The proposed RMTACTA possesses six different operating modes
in total, including stretcher mode, stretcher vehicle mode, folding
mode, gangway-passing mode, obstacle-crossing mode, and upright
mode. This multipurpose tool can move across any kind of tight
terrain quickly and safely, ensuring the relative calm of the victim
and lightening the rescuer’s load. The reconfigurable frame of the
proposed RMTACTA is formed by two branching four-bar
mechanisms to form a Watt II six-bar linkage mechanism unit,
which is manually controlled by only one remote rope, as shown in
Figure 2C. The structure of the proposed casualty transfer robot is
much more compact compared to the stretcher truck. Although the
Watt IT six-bar linkage has been widely used in various engineering
applications such as rehabilitation exoskeletons, robotics, etc., this is
the first time that it has been developed due to the reconfigurable
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casualty transport aid. The proposed RMTACTA, which is built on
this reconfigurable frame, has numerous capabilities while still
ensuring a compact structure. Although the Watt II six-bar
linkage has been widely used in various engineering applications
(Erdman et al.,, 2001; Waldorn et al.,, 2016) such as exoskeleton
(Hyun et al., 2019), rehabilitation robot (Gezgin et al., 2016), mobile
robot (Luo et al., 2018), etc., this is the first time that it has been
developed due to the reconfigurable casualty transport aid.

The mechanical design of the RMTACTA is introduced and the
kinematics of the reconfigurable Watt II six-bar linkage is presented.
The kinematic mechanism of the Watt II six-bar linkage is revealed,
and the optimal design of the linkage and the mechanical analysis of
the rope control are performed. A prototype of the proposed
RMTACTA is developed leading to the tests verifying its
feasibility and operability.

2 Mechanical design of a
reconfigurable multi-terrain adaptive
casualty transport aid

The reconfigurable multi-terrain adaptive casualty transport aid
(RMTACTA) proposed in this paper is a modular multi-locomotion
transport aid, as shown in Figure 1A. It consists of two pairs of
reconfigurable frames, two sets of telescopic gangway adaptor
modules, a casualty immobilization module, and a pair of title-
support gimbal.

The aid is designed for portability and can be compactly folded for
storage in a rucksack, facilitating rapid transportation to emergency
scenes (Figure 1D). It can be swiftly deployed into stretcher mode,
facilitating the process of moving a casualty from the ground onto the
stretcher and administering first aid (Figure 1B). For enhanced transfer
speed on flat terrain, the aid transitions to stretcher trolley mode
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(Figure 1C). In the presence of a gangway, the device adapts to gangway
passing mode. This is achieved by extending the pulleys of the telescopic
gangway adaptor module, which engage with the gangway handrail,
allowing smooth maneuvering of the equipment through the gangway
(Figure 1E). Upon encountering obstacles such as high thresholds, the
aid shifts to obstacle-crossing mode. This involves unlocking the
reconfigurable frame, rotating the leg frame upon contact with the
obstacle, and allowing it to automatically unfold and lock due to gravity.
This feature enables the aid to traverse obstacles while ensuring
continuous ground contact with a set of support wheels, thereby
reducing the physical strain on the rescuer and maintaining the aid’s
stability (Figure 1F). In scenarios involving elevators and tight turns, the
aid converts to upright mode through the coordinated action of the
reconfigurable frame and tilt-support gimbals. In this configuration, the
tilt-support gimbals and leg frame wheels form a stable mobile platform,
enabling the rescuer to navigate the aid through confined spaces with a
minimal turning radius (Figure 1G).

The multifunctional motion modes of this aid are achieved
through an innovative reconfigurable system, which includes a
wire drive system and symmetrical reconfigurable frames. Each
frame utilizes a Watt II six-bar linkage with two double-loop, four-
bar configuration. This design employs the dead point states of the
two four-bars to lock the wheel leg in both extended and retracted
position. Torsion springs maintain the stability of the four-bars at the
dead point positions, with the wheel legs serving as the output. The
control system for each reconfigurable frame is wire-driven remote
control system consisting of a Bowden cable and a handbrake located
at the handle, which is used to provide actuation for disengaging the
Watt II six-bar linkage from its two dead point states. This
reconfigurable frame, in conjunction with the wire-driven remote
control system, enables dual-mode switching via a single manual
switch. Apart from the operation of extracting the pulleys to align with
the gangway, all other functions can be controlled by the rescuer using
a single handbrake, and throughout the process, both hands need not
leave the device handle. This significantly reduces the operations
required by the rescuer, which is of great importance in rescue
situations (NAEMT, 2016).

3 Kinematics of Watt Il six-bar linkage
and configurations of the transport aid

Based on the mechanical design previously mentioned, it can be
concluded that the multimodal transformation of the aid is realized
through of the reconfigurable frame which is constructed using a Watt
IT six-bar linkage. In this section, the kinematics of the linkage is
investigated, and the configuration of the structure is characterized, in
order to expose the relationship between the configuration of the
reconfigurable frame and the motion of the transport aid.

3.1 Kinematics of the Watt Il six-bar linkage

The schematic diagram of the Watt II six-bar linkage of the
reconfigurable frame is given in Figure 2. Where, link AEF is a ternary
V-shaped link, and the rest of links are the binary linkages. By using
the V-shaped link as a fixed link that is solidly attached to aid’s body, a
Cartesian coordinate system is established with the origin at point O,
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which the y-axis being isotropic to the vector AO, and x-axis being
isotropic to the vector OE. The geometric parameters are further
defined as: (1) For the branching four-link ABCE, AE is the fixed link,
and I}, b, 5, and I, refer to the lengths of the links of AB, BC, CE, and
AE (2) For the branching four-link ECDF, EF is the fixed link, and I,
Is, ls, and [; refer to the lengths of the linkage of CE, CD, DF, and EF.
(3) The joint angles 6; to 64 are defined as the linkage pinch angles,
where 6, is the angle between the parallel lines of BC and AD, and 65 is
the angle between the parallel lines of CD and EF for the convenience
of kinematic modeling. (4) The input angle of the linkage is 6, varying
from 180-20AE to 90-2OAE. (5) The Degree of Freedom (DoF) of
the mechanism is calculated as F = 3N-2F-Fy; = 3x5-2x7 = 1.

During the mode switching process, the motion and locking of the
wheel legs predominantly rely on the dead center position of the
linkage mechanism, at which point the DoF of the mechanism is F =
3N-2FL-FH = 3x4-2x6 = 0. Consequently, this section investigates
the displacements at points C and D, based on the geometric structure
of the Watt II six-bar linkage. By decomposing the mechanism, the
Watt II six-bar linkage is categorized into two sub-branches of four-
bar linkages, namely, ABCE and ECDF. The displacement of point C
is determined within the linkage ABCE, while the displacement of
point D is deduced within the linkage ECDF.

In four-bar linkage ABCE based on loop equation (Michael
McCarthy, 2010), it has

cosB; cosb, || 1, cosB; cosO,: || 5 )
sinf, sin6, || I, sinf; sinOap || L
where 6, is the input angle, the angle O, of the fixed link AE is
defined as 0° for simplicity of calculation and /5 = lpg-I, in Figure 2A.

Solving Eq. 1 leads to the two variables, i.e., angles 6, and 65 as
defined in Eq. 2.

6, :2xarctan((—[3— \//32—4><6><s)/(2 ><6))
0, =2xarctan((—ﬁ— \/[32—4><oc><y)/(2><¢x))

where the expression for a, y, B, 6, and € are shown as

a=—l;/l+ (1=1/l;) xcos (6) + (L7 + 1" =L, +15) [ (2 x Iy x )
B =-2xsin(6)

y=1i/li= (1+1/1;) x cos (6) + (I” + 1 122+l32)/(2xll><l3)
5_—14/11 (1+14/L) xcos(0y) + (1" =1 = > +15%) [ (2 x Iy x )
e=Lfl - (1-L/L) xcos(fy) + (-L° =17 = 1," +15%) [ (2 x I, x )

Thus, position of point C can be presented as
xc xg cos(6; - Oopa) || 1
P = = . 3
¢ [J’c ] [)/E sin(Boea — 65) || Ls @)

Similarly, in the sub-branch four-bar linkage ECDF, position of
point D can be deduced as

Xp xp  sin(6gre — 0s) 1
Py = = 4
b [}/D] [}’F —COS(QGFE—Qé)][ls] “@
where s = Icig- I5 in Figure 2B, and using loop equation it has

Os=2 xarctan((—[}’ —\B-axaxy )/(2 x oc’)) (5)

where the expression for a, y, 5, §, and € are shown as
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FIGURE 3

Locomotion modes of the transport aid. (A) Stretcher mode. (B) Stretcher vehicle mode. (C) Gangway-passing mode. (D) Obstacle-crossing mode.

(E) Upright mode.

TABLE 1 Structure parameters of the reconfigurable frame in initial design.

Structure [OA lOE lEG lGF

parameter

Length(mm) 150 200 50 0 150 180.3 115

0, = 180 — 05 — Oopa — Ocer

o =1y [l + (1= /Ig) xcos (05) + (17 + 157 = 15> +167) [ (2 x I x Ig)
B = -2 xsin(6,)

X =1 1= (141 /Ig) xcos (02) + (177 + 15 = 15> + 1) [ (2 x s x Ig)

8" =~y [l + (1+ 1 [I5) xcos (6) + (=1, = 13* = I +15%) [ (2 x Iy x 1)
e =1 [l = (1=1/Is) xcos (02) + (=1, = 15> = 15> + 1) [ (2 x s x I5)

In addition, angle 05 can be obtained as
87 —4x 8 x s’)/(Z x 5')) ©)

=2 % arctan((—ﬁ’

To guarantee that the reconfigurable mechanism achieves
two locking positions, the structural parameters of the dual sub-
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branch four-linkages must fulfill the constraints: Iy, 5<|/3-1;| and

lClFS|ZS_l6|~

3.2 Configurations and locomotion modes
of the casualty transport aid

The reconfiguration of the Watt II six-bar linkage permits the
wheel legs to lock in both the extended and retracted positions,
forming the stretcher mode and the stretcher vehicle mode,
respectively (refer to Figures 2A, B). This reconfiguration enables
the aid to operate in five modes: stretcher mode, stretcher vehicle
mode, obstacle-crossing mode, gangway-passing mode, and upright
mode, as depicted in Figure 3.

The stretcher mode is primarily used for transporting casualty
short distances from the ground to the stretcher (Figure 3A). The
stretcher vehicle mode is particularly suited for rapid movement on
flat terrain (Figure 3B). Upon encountering an obstacle, the Watt IT
six-bar linkage is unlocked, allowing the wheel legs to move freely.
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Simulation of the transformation process. (A) Motion trajectories of the mechanism. (B) The change in length of Alc.

TABLE 2 Optimized structure parameters of the reconfigurable frame.

Structure parameter

Length(mm) 137 210 40.1

This transition transforms the stretcher vehicle mode into the
obstacle-crossing mode (Figure 3D). In this mode, the aid
ensures the casualty remains horizontal while crossing obstacles
and maintains at least one set of support wheels on the ground,
significantly reducing the rescuers’ effort and enhancing the
aid’s stability.

Moreover, the stretcher mode, when combined with retractable
pulleys, can be transformed into the gangway-passing mode for
navigating through gangways (Figure 3C). Similarly, integrating tail
casters with the stretcher vehicle mode enables the conversion to
upright mode, facilitating maneuvering through narrow turns,
elevators, and varied terrain, as shown in (Figure 3E).

4 Numerical simulation and
parametric study

4.1 Numerical simulation and position
synchronization

In order to validate the operational principle of the
reconfigurable mechanism, numerical simulations based on the
structural parameters outlined in Table 1 in this section. Here,
loks Ik lge> 11> b, Is, and I are identified as design variables, while the
remaining parameters are determined through equation-based
calculations. For clarity, the output angle of the reconfigurable
mechanism, transitioning from retracted to extended, is defined
as the angular variation when AB shifts from being parallel to the
x-axis to parallel to the y-axis, and is established as ranging from
0 to 90°.

Upon substituting the structural parameters into Eqs 3 to 6, and
setting the input/driving angles 6; from 90-,OAE to 0, = 180-
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195.6 130.1

£OAE, the motion trajectory of the mechanism transitioning from
the retracted to the extended position is depicted in Figure 4A.
Additionally, the variation in the length of C,F is illustrated
in Figure 4B.

Figure 4A reveals that, within the two operational configurations
of the Watt II six-bar linkage mechanism, the positional disparity
between points D and D; amounts to 34.1 mm. However, the
actuation of this six-bar mechanism for positional switching is
facilitated by the application of driving force at point D. The
displacement of point D in these configurations requires the
integration of a position compensation mechanism into the force
application system, consequently elevating the structural complexity
and compromising the stability of the device.

The collinearity of links CD and DG, i.e., Icp + Ipg = Ic16, leads
to the DoF of the Watt II six-bar linkage is 0 (F = 3N-2F; = 3 x
4-2 x 6 = 0), consequently fixing the mechanism in a stationary
state. Figure 4B illustrates the relationship between the angle of the
output bar AB and the length of Ic; when the mechanism is fixed.
The variation in Ic;g per degree is remarkably small, less than
0.1 mm before reaching 15°. The cumulative length change, defined
as the difference in I, s length at an output angle of 0” and at an
angle i (Icg_o- lcg_i )> has a maximum value of 2.97 mm, averaging
0.099 mm per degree. Such minute variations pose challenges in
ensuring that AB remains in the required horizontal position
during practical applications. The existing initial design
demands high precision in the machining and assembly of the
device. However, the operational environment of the device is
often suboptimal, characterized by factors such as collisions and
humidity, which lead to part deformation and rust. Consequently,
precision cannot be guaranteed, preventing the wheel legs from
locking in a horizontal position and causing wobble, which
ultimately reduces the overall reliability of the device.
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The transformation of stretcher vehicle mode to the stretcher mode. (A) Distribution of forces on aid in stretcher vehicle mode when bearing a
casualty. (B) Depicts initial transition step with a 5° wheel leg rotation to increase the ground reaction lever arm. (C) Highlights smoother mode transition
due to increased lever arm. (D) Finalizes the stretcher mode transition. (E) The elastic mechanism. (F) Force-displacement curve.

This paper addresses the identified deficiencies of the
mechanism with its initial dimensions by optimizing the
structural through a
nonlinear optimization method (Scales, 1985). The primary
objective of this optimization is to maintain the consistency of
point D’s position in both the extended and retracted position.
Consequently, the objective function is formulated as follows:

parameters multivariate constrained

f ®min = (xp, = xp)" + (yp, = yp)* 7)

where x = [ Ioa, logs Iecs lors 1> s Is], (xps yp) is the position of
point D in the extended position of the mechanism and (xp;, yp;)
is the position of point D in the retracted position of
the mechanism.

The two positions of the reconfigurable mechanism are realised
by BC-CE and C;D;-D;F covariance respectively, ie., their
constraints can be expressed as follows:
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(8)
)

gl(x)212+l3_lBE:0 lf(AB//y—aXIS)
gz(X) = l5 +l6 —lclp = Olf(AB//X— axis)

where Igp and I are derived by extrapolation from the kinematic
model of the mechanism.

In order to avoid interference in the mechanism during motion,
point C must never be co-linear with OA and OE in the motion of
the mechanism, the expression for which is:

g3 (x) = xo0-x¢, <0 (10)
g4 (X) = x¢,~x <0 (11)
gs(X) = y¢,=y0 <0 (12)
g6 (X) = ya — yc, <0 (13)

Applying the cosine theorem, extending GF’s length
enhances the variation in C,F’s length during motion, thereby
resolving the issue of minimal C;F length change that leads to
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mechanism instability. The design adheres to the criteria if C;F’s
length variation exceeds 0.2 mm per 1° rotation of the AB, as
informed by engineering expertise. This constraint is articulated
as follows:

g7 (X) =0.2- lCFJ + lCFJ—l <0 (0 <i< 90) (14)

Finally, the structural parameter constraints of the linkage
mentioned in Section 3.1 can be expressed as:
gs (x) =lg e~ I3 - L] <0

go(x) =lcp—1ls —Ig| <0

(15)
(16)

Based on the constraints from Eq. 8 to Eq. 16, the objective
function in Eq. 7 was solved, and the optimized structural
parameters were obtained by rounding the results to one decimal
place, as shown in Table 2. When these parameters are incorporated
into the kinematic equations from Section 3; Figure 5A illustrates the
extended and retracted positions of the reconfigurable frame. The
positional deviation of point D is a minimal 2.3 mm, a discrepancy
arising from the rounding to one decimal place. Such a deviation is
deemed entirely acceptable for the design of wire-driven remote
control systems. Figure 5B depicts the post-optimization variation in
the length of C,F. The changes in C,F consistently exceed 0.2 mm/*
and reach 0.5 mm when AB is at 0°, ensuring that the output link AB
remains fixed in the horizontal position. The differential in Icg_o-
lcG_; attains a maximum of 10 mm, with an average variation of
0.3 mm/’. This level of precision allows the mechanism to maintain
its fixed position even under deformation during use, thereby
enhancing the equipment’s stability.

5 Analysis of the driving force of the
reconfigurable frame

During stretcher vehicle operations for casualty transport, there is a
risk of rescuers accidentally engaging the handbrake or other objects
inadvertently triggering it, potentially leading to the unintended
unlocking of the reconfigurable frame. Such occurrences could cause
the wheel legs to fail and the stretcher vehicle to fall. To avert these
situations, the protocol for transferring from the stretcher vehicle to the
stretcher requires rescuers to stabilize the weight of the casualty and aid
before engaging the handbrake to unlock the reconfigurable frame.
Furthermore, an elastic mechanism has been incorporated into the
drive system (Figure 6E) to constrain the maximum tensile force
applied by the handbrake to point D of the reconfigurable frame,
ensuring the frame remains locked even if the handbrake is activated
before lifting the stretcher vehicle.

This section applies the principle of virtual work to determine
the minimum actuation force required to disengage the locking
mechanism at the dead center of the reconfigurable frame (extended
and retracted states), thus determining the lower force threshold of
the elastic mechanism. In addition, the drive force required to
disengage the frame in the extended state during the
transportation of a casualty is calculated, thus determining the
upper force threshold.

The force-displacement properties of the Watt II six-bar linkage are
modeled in 