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Editorial on the Research Topic

Bio-inspired Audio Processing, Models and Systems

INTRODUCTION

Bio-inspired systems look at biology to inspire engineering solutions that help explain, emulate and
complement the intricate processes that take place in a biological system. As such, they operate at
the intersection of biology and engineering and leverage advantages from both disciplines. When
applied to brain sciences, bio-inspired systems often use non-conventional approaches to solve
complex sensory and cognitive tasks.

Recent developments in sensor design, algorithmic configurations, and network-level processing
show the promise and efficacy of brain-like systems in solving complex tasks. While vision systems
are widely explored in neuromorphic engineering design, audio systems offer unique challenges.
These include careful handling of the time and space dimensions, issues related to temporal
sampling and signal representation in both time and frequency, leveraging the redundancy in audio
signals for complex detection and recognition tasks, as well as robust processing against noise and
other interferers and maskers.

Our auditory systems have evolved highly efficient solutions to audio scene analysis, spatial
understanding, and sound recognition. We wish to better understand the biological solutions that
allow the brain to process sounds in unknown and highly distorted conditions; in order to help
advance state-of-art audio systems that often operate well under well-controlled environments
but fail to generalize, adapt and efficiently process unknown conditions. Furthermore, we want to
apply engineering methods to better understand biological processes, using non-invasive methods.
By leveraging both our knowledge of the biology in building better systems, as well as new
technological advantages to unravel secrets of the brain, we hope to enrich the conversation across
both disciplines in order to advance our understanding of the brain function and help improve
technologies that impact our lives in a wide range of domains.

OVERVIEW

This special topic issue describes the latest advances in research on sensors, models, networks, and
hardware for audio processing, hearing systems, and speech technologies. Broadly speaking, the
papers in this special issue fall into four broad classes:
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1. Bio-inspired implementations
2. Models based on spikes
3. Sound recognition
4. Attention decoding.

Bio-inspired systems often start with hardware designed to
mimic and/or capitalize on the advantages of biological systems.
With regards to processing acoustic cues, a paper by Xu et al.
describes a digital hardware FPGA implementation of a well-
known CAR-FAC cochlear model that mimics the auditory
physiology seen in the biological cochlea. Similarly, our auditory
system is exquisitely sensitive to the differences in signals
received between the two ears. The paper by Isbell and Horiuchi
explores how the auditory system might change the timing of
pulses in an echo-location system. Finally a paper by Encke and
Hemmert introduces a spiking neuron model based on recent
physiological findings in mammals for the detection of interaural
time differences for sound localization.

The most obvious difference between conventional solutions
to auditory processing and biological systems is the way
that our biology depends on discrete spikes to represent the
sensory signal. Toward this end, papers by Anumula et al.
and Acharya et al. investigate different ways to represent
the spiking information in ways amenable to conventional
machine-learning methods. The paper by Wu et al. takes these
approaches to feature discovery a step further by using a self-
organizing network to design the best feature representation.
Then, the paper by Li and Príncipe looks at ways to extend the
temporal information using kernel methods that can choose the
optimal representation.

An important task for the auditory system is to understand
and identify the sounds around us. The paper by McWalter
and Dau considers high-level features that combine information
across time and frequency for synthesizing and perceiving

auditory textures. A paper by Zuk et al. looks at how we
perceive musical beats, comparing the information from bottom-
up (sensory) processes vs. top-down (cognitive) expectations.
Finally a paper by Huang et al. looks at ways to build models of
what makes a sound salient in its environment.

To conclude this special issue, much effort recently has gone
toward finding methods that allow us to monitor the attention of
a user. In the visual world, the eyes provide an important clue,
but no such obvious signal exists for the auditory world. The
paper by Alickovic et al. summarizes several approaches based
on regression and correlation analysis that allow us to match the
audio signal and brain’s response.Wong et al.’s paper adds further
details on regularization methods for regression-based methods,
which are needed to make the computations stable. To put it all
together, a paper by Miran et al. builds an end-to-end solution
that considers the statistics of the input signal and the output
decision to build an optimal decoder of a user’s attentional state.

We hope you find these 13 papers illuminating. They represent
the state of the art in bio-inspired audio-processing models
and systems.
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A FPGA Implementation of the
CAR-FAC Cochlear Model
Ying Xu, Chetan S. Thakur †, Ram K. Singh, Tara Julia Hamilton, Runchun M. Wang and

André van Schaik*

MARCS Institute, Western Sydney University, Sydney, NSW, Australia

This paper presents a digital implementation of the Cascade of Asymmetric Resonators

with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the

basilar membrane’s (BM) response to sound. The FAC part models the outer hair cell

(OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions.

The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators

automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC

system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM

utilization by using time-multiplexing and pipeline parallelizing techniques and present

measurement results here. The fully digital reconfigurable CAR-FAC system is stable,

scalable, easy to use, and provides an excellent input stage to more complex machine

hearing tasks such as sound localization, sound segregation, speech recognition, and

so on.

Keywords: neuromorphic engineering, electronic cochlea, basilar membrane, inner hair cell, outer hair cell,

automatic gain control, medial olivocochlear efferent, FPGAs

INTRODUCTION

The human auditory system is superior to any machine-hearing system in efficiency of perceiving
sound. As the input structure for the auditory pathway, the tonotopically-organized cochlea
decomposes, converts and amplifies sound waves nonlinearly into electrical signals, and delivers
the results to the nervous system. The cochlea is characterized by a remarkably wide dynamic
range (0-120 dB SPL) (Fettiplace and Hackney, 2006), and a high frequency selectivity (∼3Hz at
the characteristic frequency of 1 kHz; Glasberg and Moore, 1990). Over the past decades, efforts
have been made to engineer a hearing machine that is able to emulate the function and efficiency of
the human auditory system. As a first step toward this target, cochlear models have been proposed,
developed, and implemented in a number of ways with a varying degree of complexities.

Auditory Filter Models
Cochlear models can be divided into two classes: transmission-lines (TL) and auditory filterbanks
(Duifhuis, 2004). The TL models represent the cochlea partition as a coupled mass-spring-damper
system to model wave propagation on the Basilar Membrane (BM) (Zweig et al., 1976). TL models
are faithful to the physiology and are accurate in simulating wave propagation on the BM. However,
they are more computationally challenging as they have complicated differential equations in the
time domain (Altoè and Pulkki, 2014).

Auditory filterbank models use either parallel or cascade filters to model wave propagation on
the BM. Parallel filterbank models use independent filters, such as rounded-exponential (roex)

7
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filters (Glasberg et al., 1984), the gammatone filter family
(including gammachirp; Patterson et al., 2003), or pole-zero
filters (Lyon et al., 2010), that connect to a single input signal in
parallel. Cascade filterbank models, for example the CAR-FAC
model (Lyon, 2017) or biophysical models of (Liu and Neely,
2010; Saremi and Stenfelt, 2013), use a cascade of filters instead.

Parallel filterbank models are mostly concerned with
reproducing the observed mechanical and pay little attention
to the biological structure of the cochlea. For example, Wang
et al. implemented a parallel ultra-steep roll-off filter model
on a 0.35µm CMOS chip (Wang et al., 2015), and Yang
et al. implemented a parallel source-follower-based bandpass
filterbank on a 0.18µm CMOS analog IC (Yang et al., 2016).
Some parallel filterbank models include an automatic gain
control (AGC) mechanism to model some couplings between
channels. For example, Yang et al. implemented a parallel
filter bank of 4th-order one-zero gammatone filters (OZGF)
with across channels AGC on a 0.35µm CMOS chip (Yang
et al., 2015). Another parallel form, the 2-D parallel filterbank,
models the fluid within the cochlear duct as well as the BM
taking both the longitudinal and vertical wave propagation into
account. Examples of silicon cochleae of 2-D models include
(van Schaik and Fragniere, 2001; Hamilton et al., 2008; Nouri
et al., 2015).

Cascade filterbank models take advantage of the way sound
propagates in the forward direction as traveling waves in the
cochlea. In the cascade of filters, each filter stage models
a segment of the nonuniform distributed wave system and
its output becomes the input of the next section (Lyon,
1998). The cascade form thus provides a natural model of
coupling in the forward direction. For example, Chan et al.
implemented a 2nd-order low pass filter with address event
interface (Chan et al., 2007), Liu et al. implemented a cascade
64-stage model on a 0.35µm CMOS chip (Liu et al., 2014),
Thakur et al. implemented a CAR model on a FPGA (Thakur
et al., 2014), and Jimenez-Fernandez et al. implemented a cascade
spike band pass filer model on a FPGA (Jimenez-Fernandez
et al., 2016). For some cascade filterbank models, such as
Lyon’s pole-zero filter cascade (PZFC) model and CAR-FAC
model, an AGC feedback loop is included to model some
couplings between channels in both directions. We describe
the hardware implementation of the CAR-FAC model in this
paper.

Cochlea Nonlinearity
The biological cochlea is a causal, active, and nonlinear system.
Figure 1 shows the nonlinearity and frequency tuning measured
from a biological cochlea for various sound pressure levels
measured in dB SPL adapted from (Ruggero, 1992). The gain
is measured by the BM displacement (or velocity) relative
to the stapes motion. In the biological cochlea, responses at
frequencies near the characteristic frequency (CF) (9 kHz) vary
nonlinearly with input level. Additionally, the responses show
steeper high-frequency roll-off slope at lower SPLs, and the peak
gain shifts toward lower frequencies with increasing input level.

In auditory filterbank models, the nonlinearities can be
described as linear filters with parameters depending on signal

FIGURE 1 | The frequency response measured from a chinchilla cochlea for

various levels input strength measured in dB of sound pressure level (SPL)

adapted from (Ruggero, 1992). The gain is measured by the BM displacement

(or velocity) relative to the stapes motion.

level. For example, the parallel and cascade gammachirp filter
models (PrlGC and CasGC) (Irino and Patterson, 2001; Unoki
et al., 2006), the all-pole gammatone filter (APGF) models and
PZFCmodels (Lyon, 1997; Katsiamis et al., 2007) show a forward
compressive nonlinear response via the movement of the poles
and/or zeros. For AGC-based models, the output level is fed
back to modify filter parameters, to result in a compressive
input-output function (Lyon, 2011). Such a feedback nonlinearity
mechanism is inspired by the OHCs function of the mammalian
cochlea (Kim, 1986). The PZFC analog cochlear model (Lyon
and Mead, 1988) and the CAR-FAC model (Lyon, 2017) are such
examples.

Motivations
The CAR-FAC model is a digital cascade auditory filter
model proposed by Richard Lyon and described in detail
in (Lyon, 2017). It closely approximates the physiological
elements that consist of the human cochlea and mimics its
qualitative behavior. The CAR part models the BM function
that translates the cochlear fluid pressure wave (converted from
the sound wave by the middle ear) into positions of maximal
displacement along its length. Its pole-zero cascade form uses
fewer parameters in the z domain than other filters, such as
the gammatone and the gammachrip filters (impulse response)
to provide an excellent fit to data on human detection tones
in masking noise (Lyon, 2011). The FAC part models the
OHC, the IHC and the medial olivocochlear efferent system
functions that transduce the cochlear mechanic vibrations into
electronic signals and exert a nonlinear gain control feedback
on the BM through the OHC. The FAC nonlinear effects
include a fast wide-dynamic-range compression and frequency
distortions such as cubic difference tones (CDTs) and quadratic
difference tones (QDTs) and are realized by moving the
positions of the poles and zeros of the CAR resonators in the
z plane.
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Saremi et al. compared seven computational cochlear
models including one cascade filterbank model (CAR-FAC),
one transmission-line model, one biophysical model, and four
parallel filterbank models (Saremi et al., 2016) in response
to a set of common stimuli, which are used in the clinical
assessment of human hearing to study their performance.
The results show that the CAR-FAC exhibits an outstanding
agreement with the biological data recordings at a reasonably low
computational cost. These factors formed our basis of developing
the CAR-FAC model and investigating its characteristics and
possible applications.

We target a digital ASIC implementation of the CAR-FAC
model for machine hearing applications since it is small, more
energy efficient and more stable than analog implementations
(Sarpeshkar, 2006). For the validation and prototype stage, we
choose to implement it on a small FPGA board, the Altera
Cyclone V starter kit. We previously introduced the CAR-FAC
system on FPGA in (Xu et al., 2016), and here we present the
complete system and measurement results.

MATERIALS AND METHODS

The CAR-FAC Model
The CAR-FAC model consists of a cascade of asymmetric
resonators, a digital OHC (DOHC) model, a digital IHC (DIHC)
model and an AGC loop, as shown in Figure 2. At each stage, the
resonator Hi is connected to its next stage and the DIHC. It also

gives an intermediate variable, velocity, to the DOHC. The DIHC
feeds back to the DOHC through the AGC loop. The DOHC
combines the AGC loop output and the velocity and feeds back
to the resonator. The CAR-FAC output includes a multi-channel
BM out yi and a DIHC out, which can be transformed into the
neural activity patterns ri. The details of eachmodel are described
hereafter:

CAR

In the CAR, the asymmetric resonator is a coupled form
two-pole-two-zero filter, as shown in Figure 3. The transfer
function of the filter in the z domain is:
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The two-pole coupled form has a pair of conjugate poles
(zpole and z∗

pole
):
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2
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2
(2)
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a0 = cos (θR) (3)

FIGURE 2 | Structure of the CAR-FAC model. x is the input sound, H1 to HN are the transfer functions of the CAR part, and y1 to yN represent the CAR-FAC output.

The CFs of the CAR resonators decrease from left to right. The DOHC, the DIHC and the AGC loop comprise the FAC part. The neural activity pattern (NAP) rate

outputs, r1 to rN, are estimations of average instantaneous nerve firing rates.
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FIGURE 3 | Structure of the two-pole-two-zero resonator. a0, c0, and h are

the resonator coefficients, r is the pole/zero radius in the z plane, g is the DC

gain factor, W0 and W1 are the intermediate variables, x is the input, and y is

the output.

where θR is the pole angle in the z plane. The conjugate zeros
(zzero and z∗zero) are:

zzero, z
∗
zero =

−
(

−2a0 + hc0
)

r ±

√

(
(

−2a0 + hc0
)

r)
2
− 4r2

2
(4)

= rcos (θz) ± irsin (θz)

a0 − hc0/2 = cos (θZ) (5)

where θZ is the zero angle in the z plane. The zero radius
is the same as the pole radius, r. The condition for complex
zeros becomes relevant for high-frequency channels, where
cos (θR) < 0:

a0 −
hc0

2
> −1 (6)

h <
2+ 2a0

c0
(7)

Coefficient g controls the stage DC gain. Here, g is set to maintain
a unit DC gain for each stage of the filterbank:

g =
1

H(1)
=

1− 2a0r + r2

1− 2
(

a0 − hc0
)

r + r2
(8)

In this structure, the zeros can be moved together with the poles
by changing r while keeping h constant. The two zeros are placed
slightly above the poles in frequency, and the distance between
the zeros and the poles are set by the coefficient h. For lower
h, the zeros are close to the poles, forming a steeper roll-off
(asymmetric). For higher h, the zeros are further away from the

poles, which results in a gradual roll-off at the higher frequency
end. The steeper roll-off fits the auditory filtering characteristic
and provides better frequency selectivity. Here, h is set to c0
to keep the zero frequency at half an octave above the pole
frequency.

Additionally, changing the poles and the zeros of the filter,
via r leaves the zero-crossing times of the filter’s impulse
response nearly unchanged in time. The unchanged zero crossing
characteristic satisfies the physiologically observed condition that
the impulse response zero crossings are very nearly unchanged
with variation in stimulus level (Lyon, 2017).

The zeros and poles are set initially for each cascade stage. The
poles of the two-pole-two-zero resonator are chosen to be equally
spaced along the normalized length of the cochlea according to
the Greenwood map function (Greenwood, 1990):

f = 165.4(102.1x − 1) (9)

Here, coefficient x is the normalized position along the cochlea,
varying from 0 at the apex of the BM, to 1 at the basal end, and
coefficient f is the pole frequency.

In the CAR-FAC model, the FAC effects are achieved by
moving the initial CAR poles and zeros positions by varying their
radius r. The details of each element in the FAC part are presented
in the next three sections.

DOHC

The DOHC models the OHCs function, actively and nonlinearly
amplifying the wave propagation in the cochlea. In the CAR-FAC
model, the DOHC gain control mechanism integrates a local
instantaneous nonlinearity and a multi-time-scale nonlinearity,
as shown in Figure 4. The instantaneous nonlinearity is based
on the BM velocity, taken as the rate of change of W1. The
multi-time-scale nonlinearity comes from the DIHC feedback
through the AGC loop filter. Both combine to change the pole
(zero) radius r:

r = r1 + drz × (1− b)× NLF(v) (10)

where coefficient r1 is the minimum radius, corresponding to the
maximum damping of the resonator. In a digital implementation,
r1 is given by:

r1 = 1− damping ×

(

2π f

fs

)

(11)

where the coefficient damping controls the damping factor, f is
the CF from Equation (9), and fs is the sampling frequency. r1
keeps the damping away from zero, thereby keeping the system
away from the Hopf bifurcation of the resonators. r1 also makes
the damping bounded. The increment of r above r1 is the relative
undamping. It is the product of the nonlinear function (NLF)
of the CAR velocity, and the AGC loop, b. The coefficient d_rz
controls the rate at which the velocity and the AGC loop affects
the damping. Here, d_rz is set to 0.7×(1-r1) (Lyon, 2017).

The NLF function in the DOHC is given by:

NLF(ν) =
1

1+ (ν × scale+ offset)2
(12)
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where ν is the CAR velocity, scale is 0.1, and offset is 0.04 (Lyon,
2017). At high velocities, the velocity-squared function grows
very rapidly and saturates the NLF toward zero, thus making the
damping saturate toward a high-level limit.

The level dependence of the damping mechanism introduces
frequency distortions. The velocity-squared function includes a
double-frequency term that interacts with the CAR coefficients
(a0r and c0r) to generate a CDT. For example, if there are two
tones, f1 and f2 (where f1< f2), then a third tone, at the frequency
(2f1–f2) will appear and propagate through the cascade of filters.
The offset in the NLF function introduces a first order damping
factor, which will interact with the CAR coefficients to generate a
QDT, (f2–f1) (Lyon, 2017).

DIHC

The DIHC models the IHC function. It comprises a high-pass
filter (HPF), a transduction nonlinearity unit, a transducer unit
and two LPFs. The IHCs are mechano-electrical transducers that

sense the BM vibration, convert the mechanical motion into
electrical signals, and deliver the results to the nervous system.
The DIHC model is shown in Figure 5. The HPF suppresses
the CAR output frequencies below 20Hz. The transduction
nonlinearity includes a half wave rectifier (HWR), and a rational
sigmoid function:

u = HWR
(

BMhpf + 0.175
)

(13)

n =
u3

u3 + u2 + 0.1
(14)

where BMhpf is the high pass filtered CAR output, u is the
intermediate variable, and n is the transduction nonlinearity
output. The HWR mimics directional sensitivity of the IHC
transduction which response mainly in one direction. The
constant 0.175 (Lyon, 2017) keeps the nonlinearity at a fixed
value at zero response. The rational sigmoid function (14)

FIGURE 4 | Structure of the DOHC model. The instantaneous nonlinearity performs a nonlinear gain control (NLF) on the CAR velocity, which is calculated from the

BM coefficient W1. The multi-time-multi-scale dynamic gain-control factor, b, is obtained from the AGC loop. Both gain control factors are combined to change r

through Equation (10).

FIGURE 5 | Structure of the DIHC model. It comprises a HPF, a transduction nonlinearity unit, a transducer unit and two LPFs.
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provides a nearly linear response at low amplitudes and a
saturating response at higher amplitudes.

The transducer unit detects and amplifies the signal onset,
then compresses and reduces its response gain quickly after the
signal onset. It is implemented by:

m = 1− q (15)

y = nm (16)

qnew = (1− a) q+ a(cy) (17)

where m is the adaptive gain of its input, n, c is set
to 20, and q is the LPF state. The time constant of
the first order FIR LPF is set to 10ms. The final two
FIR LPFs smooth the output using a time constant of
80 µs each.

AGC Loop

The AGC loop consists of a four-stage cascade FIR LPF, with
each stage coupled with its left and right neighbors to form
a three-stage spatial LPF. It feeds the DIHC signal back to
the DOHC at a much lower update rate than other parts
of the CAR-FAC model. The AGC loop models the medial
olivocochlear system’s efferent feedback that exerts an AGC
on the BM vibration through the OHCs. The AGC loop filter
is shown in Figure 6. Each AGC smoothing filter (SF) stage
includes a temporal linear LPF with a defined coefficient c_t and
a three-tap spatial LPF. The three-tap spatial LPF coefficients [s1,
1-s1-s2, s2] apply weight s1 to the left neighbor value, s2 to the
right neighbor value, and 1-s1-s2 to the current channel value to
keep the total mixing gain equal to 1. For a 44.1 kHz signal, in the
fastest and most local stage, AGC-SF4, c_t is set to 0.09, s1 is 0.14
and s2 is 0.2 (Lyon, 2017). The input of each AGC-SF comes from
a respective accumulation of the DIHC and its lower stage. The
AGC-SF4 output b feeds back to the DOHC.

FIGURE 6 | Structure of the AGC loop. Four stages of the temporal smoothing filters (SF) (Upper). Each stage consists of a temporal LPF with a defined time constant

(0.002, 0.008, 0.032, and 0.128 s) and a three-tap spatial smoothing filter. The internal structure of an AGC-SF (Lower), the input of the AGC-SF comes from the

lower filter stage with the smaller time constant as well as the accumulation of the DIHC. The output goes to the next stage of the temporal filter. The spatial

smoothing filter is a three-tap smoothing filter coupled with lateral channels. s1, s2, and 1-s1-s2 are the spatial filter coefficients. c_t is the temporal LPF coefficient

calculated from the time constant.
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FPGA Implementation
The CAR-FAC system can be efficiently implemented on FPGA,
and the system is configurable in filter parameters and channel
numbers Figure 7 shows the architecture of the system. It
comprises an audio codec, a CAR-FAC module, a controller
module and an interface module. The system provides two ways
of sound input. One way is through the SSM2603 audio codec on
the FPGA board. It also supports recorded audio file input from
the PC host through a USB 3.0 interface.

The CAR-FACmodule implements the components described
in section The CAR-FAC Model. Additionally, the CAR module
can operate independently: when the FAC function is turned off,
the DOHC and AGC loop function will be switched off, and all
the CAR coefficients (a0, c0, g, h, and r) remain fixed at their
initial values. The system then operates as a linear CAR system.

The controller module controls the system data flow,
including writing the initial coefficients, and/or the audio file
input to the CAR-FAC module, as well as the CAR-FAC module
output to the interface module. Additionally, the output of the
system is selectable: we can choose either the BM output or the
DIHC output as the system output.

The interface module consists of a data synchronization
module, an external memory, and a USB interface. The data
synchronization circuit synchronizes data between different
clock domains. There exist two clock domains in the system: a
system clock domain (250 MHz) and an interface clock domain
(100 MHz). The system clock domain includes the controller
module and the CAR-FAC module. The interface clock domain
is unique to the interface module. The external memory is a
1GB DDR3 SDRAM on the FPGA board: it stores the CAR-FAC
output data. The USB interface communicates between the
FPGA board and the PC, and transmits the system’s initial
coefficients (a0, c0, g, h, r, r1, b, and d_rz), and, if required,
the input audio file from the PC to the FPGA board. It also
transmits the system’s output from the external memory to
the PC.

We first simulated the CAR-FAC model in Python with
floating-point numbers. Next, we verified the model using the
fixed-point numbers to determine the required word length
for the FPGA implementation. We use 20-bit BM variables,
20-bit DOHC variables, 14-bit DIHC variables and 14-bit
AGC variables to approximate the floating-point CAR-FAC
performance and to meet the input, output and internal variables
range to achieve a 70 dB input dynamic range. We use the
pipeline technique to parallel the CAR module, the DOHC
module, and the DIHC_AGCmodule, and the time-multiplexing
approach to reuse single CAR, DOHC, and DIHC_AGC
hardware module to implement a compact reconfigurable
CAR-FAC system. The system design diagram is shown in
Figure 8.

In digital audio, 44.1 kHz is a common sampling
frequency, and the digital hardware of the CAR module
(the two-zero-two-pole resonator) and the FAC module (the
DOHC module and the DIHC-AGC module) can operate much
faster than the audio sample interval (22.68 µs). Hence, in this
system, a single CAR-FAC hardware module is reused multiple
times to implement the multiple-channel multi-level pipeline
CAR-FAC system. At 44.1 kHz sampling frequency, with a single
CAR-FAC module, we were able to implement up to 70 filter
channels real-time CAR-FAC system.

For each CAR-FAC module, there exist four state machines in
the system. The controller state machine determines the cochlear
channel to be processed at a particular time and controls the
CAR-FAC coefficients and data for that channel. The CAR state
machine calculates the transfer function of Equation (1). The
DOHC state machine calculates Equation (10–12), and feeds
back an updated r to the CAR. The DIHC-AGC state machine
calculates Equation (13–17), as well as the AGC_loop function
shown in Figure 6. The AGC output b feeds back to the DOHC
module via Equation (10).

The BM_start signal controls the start of the system through
the controller and is triggered by the Audio_in_ready signal. If

FIGURE 7 | Architecture of the CAR-FAC FPGA system. The system consists of an audio codec, a CAR-FAC module, a controller module and an interface module.

The FPGA board is hosted by a PC through a USB interface.
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FIGURE 8 | CAR-FAC system design diagram. The CAR-FAC system is implemented with 20-bit word length for the design coefficients, BM output, and DOHC

output, and 14-bit for the DIHC output and the AGC output. The controller state machine determines the cochlear channel to be processed at any particular time and

controls the CAR-FAC coefficients and data for that channel. The BM_start signal controls the start of the system through the controller, and it is triggered by the

Audio_in_ready signal. The ohc_sel is a selector switch for the CAR/CAR-FAC function. The agc_sel is a switch for the AGC loop function. The CAR state machine

calculates the transfer function of Equation (1) and controls the DOHC and DIHC_AGC start in the system. The DOHC state machine calculates Equation (10–12) and

feeds back an updated r to the CAR. The DIHC-AGC calculates Equation (13–17), as well as the AGC_loop function shown in Figure 6. The AGC output b feeds

back to the DOHC module via Equation (10). The pipelined CAR-FAC timing diagram is shown in lower right.

there exists an audio input (Audio_in) from either the PC or the
audio codec, the BM_start signal will be sent to the CAR through
the controller, and the CAR will start to run. The ohc_sel is a
selector switch for the CAR/CAR-FAC function, and the agc_sel
is a switch for the AGC loop function. When the ohc_sel is low,
the DOHC function is switched off, and the CAR-FAC operates
as a linear CAR system, and we can choose either the CAR or
the DIHC as the output. When both the ohc_sel and the agc_sel
are high, the whole CAR-FAC function is switched on. When the
ohc_sel is high and the agc_sel is low, the AGC loop function is
switched off, leaving only the instantaneous nonlinearity in the
CAR-FAC system.

The CAR state machine controls the DOHC and DIHC_AGC
start in the system. It will send a start signal to the DOHC
and the DIHC-AGC module separately at a particular time
to start the DOHC and the DIHC-AGC function if both the
ohc_sel and the agc_sel are high. The DOHC state machine starts
when the CAR module finishes updating the internal variables
W0/W1. The DIHC-AGC state machine starts when the BM
output calculation is finished. The pipelined CAR, DOHC, and
DIHC_AGC structure is shown in Figure 8 bottom right. Each
filter channel output, BM_out or DIHC_out, is moved to the
external memory in the interface module and sent to the PC
through the USB interface.

The device utilization for a single CAR-FAC module is shown
in Table 1. Given the size of a Cyclone V FPGA and the low
hardware resource utilization of a single CAR-FAC hardware
module, this FPGA board can accommodate up to a total of 210
cochlear channels (using three CAR-FAC hardware modules).

RESULTS

CAR-FAC Transfer Function
We have implemented a real-time digital CAR-FAC system at a
44.1 kHz sampling rate on a Cyclone V FPGA board covering an
input frequency range up to 22.05 kHz. The number of channels
in the system is reconfigurable, and more channels will result
in more overlap among filters if the frequency range is kept the
same. For machine hearing applications, about 50% overlap in

TABLE 1 | Device utilization summary.

Used Available Utilization (%)

ALM 5,235 29,080 18

Memory (bits) 1,082,812 4,567,040 24

DSPs 49 150 33
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items of equivalent rectangular bandwidth (ERB) is considered
to provide a well-behaved representation of a sound (Lyon, 2011).
Psychophysical experiments (Glasberg and Moore, 1990; Moore,
1995) show that each ERB at moderate sound level corresponds
to about 0.89mm on the BM. Therefore, for the total length of the
human BM (about 35mm), this would correspond to 78 channels
with 50% overlap, or 11 channels per octave according to the
Greenwood function map in Equation (9). Machine hearing
models typically use 60 to 100 channels in total (Lyon, 2011), here
we implemented a 70-channel CAR-FAC system and investigated
the system characteristics.

The measured system transfer function in response to a -40 dB
full scale (FS), 1 s sine tone sweep from 20Hz to 22.05 kHz
(squared-cosine rise and decay time of 0.1 s to minimize the
influence of the spectral splatter) is shown in Figure 9. Note that
we express the intensity of input signals in dB FS relative to a
maximum amplitude of FFFFF (20-bit unsigned number), and
the input amplitude is normalized to 1.0 in the figures in this
paper. The upper set of curves shows the linear CAR response
of all the 70 channels when the FAC function is switched off.
The lower set shows the CAR-FAC response. Both the CAR
and the CAR-FAC show an increased gain in the lower and
moderate frequency range and a reduced gain in the higher
frequency range. Additionally, the FAC function shows a global
gain compression effect on the system response.

Figure 10 shows the CAR and the CAR-FAC output in
the time domain in response to 0.5, 1, 2, and 4 kHz tones
(squared-cosine rise and decay time of 10ms) at channels of
CFs corresponding to the input tones. The CAR amplifies the
amplitude of the input tones linearly, whereas the CAR-FAC
responses exhibit a gradually compressed gain control.

CAR-FAC Excitation Patterns and
Nonlinear Growth
Excitation patterns show the vibration amplitude across the BM
to a single sound. Here, the excitation patterns were calculated
as the root-mean-square (RMS) signal at the output of all the
CAR-FAC channels (Ren, 2002). The Greenwood function in
Equation (9) was used as the position-frequency map.

Figures 11A–E show excitation patterns in response to 100ms
tones at 0.5, 1, 2, 4, and 8 kHz (squared-cosine rise and decay
time of 10ms) with intensities ranging from -65 dB FS to
-15 dB FS in steps of 10 dB FS. The peak locations of all
excitation patterns correspond to the input tones through the
position-frequency map, demonstrating that the system captures
the human frequency-position map well.

Additionally, we calculated the BM input/output (I/O)
function to evaluate the nonlinear and compression effects of the
system. The I/O function is the ratio between the RMS output at
the CF channel corresponding to the stimulus frequency and the
RMS of the stimulus (Saremi et al., 2016). Figure 11F shows the
I/O function curves of the system to 100ms pure tones of 0.5, 1,
2, 4 and 8 kHz (squared-cosine rise and decay time of 10ms) with
intensities between -65 dB FS to -15 dB FS in steps of 10 dB FS.
The I/O curves were normalized with respect to the -65 dB FS
I/O point. The output shows a compressed intensity range (15 dB

FS) comparing to the input (50 dB FS), and the I/O curves were
generally more compressive at moderate CFs, such as 1, 2, and
4 kHz, than the lower and higher CFs (0.5 and 8 kHz).

CAR-FAC Frequency Selectivity and Q

Tuning
The CAR-FAC frequency selectivity was evaluated from the
system frequency responses. The frequency response was
calculated using the FFT from the system impulse responses at
the channels of CFs corresponding to 0.5, 1, 2, 4, and 8 kHz.

Furthermore, in the CAR-FAC system, quality factor (Q
factor) tuning is achieved by tuning of the damping factor
[damping in Equation (11)]. Here, to investigate the system’s Q
tuning effects, we used different damping factors and calculated
the corresponding Q factors associated with the ERB, QERB (de
Boer and Nuttall, 2000):

QERB =
CF

ERB
(18)

The ERB was evaluated from the system’s impulse response
power spectral density (PSD).

Figures 12A–E shows the system’s frequency responses at
output channels of CFs corresponding to 0.5, 1, 2, 4, and 8 kHz
to -20 dB FS, 40 µs condensation clicks. The damping in the
system was set as 0.4, 0.5, and 0.7, respectively. The smaller
damping corresponds to higher gain at all CFs. Figure 12F shows
the calculatedQERB under different damping factors. The smaller
QERB corresponds to higher damping, and at higher damping (0.5
and 0.7), QERB is higher at moderate CFs than lower and higher
CFs.

The relation between dB FS and Sound Pressure Level,
expressed in dB SPL, depends on the damping set-point used in
the CAR-FAC model [r1 in Equation (10)]. Comparing the peak
gain at moderate frequencies (1, 2, and 4 kHz) with the measured
biological cochlea frequency response in Figure 1, we can see that
using a damping factor of 0.4, the -20 dB FS input has ∼60 dB
peak gain, which fits the 30 dB SPL input intensity curve in
Figure 1.Accordingly, at 0.5 damping, the -20 dB FS corresponds
to 60 dB SPL, and at 0.7 damping, the -20 dB FS corresponds to
70 dB SPL.

We also investigated the system’s impulse response
characteristics in the time domain and the intensity dependence
of theQERB factors. Figure 13 (Left) shows the CAR-FAC impulse
responses at CFs corresponding to 1 kHz to a condensation click
with -50 dB FS, -30 dB FS, and -10 dB FS intensity respectively.
It shows the CAR-FAC filter characteristic that the shape
and the amplitude of the impulse responses varied while the
zero-crossing timing remains the same across the stimulus levels.
Figure 13 (Right) shows the calculated QERB factor for clicks
with intensities between -60 dB FS and -10 dB FS in steps of
10 dB FS at the CF corresponding to 1 kHz. The QERB factor
decreases as the stimulus intensity increases. The sharpness of
the frequency response thus decreases as the stimulus intensity
increases.
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FIGURE 9 | Transfer function of the 70-channel CAR-FAC system to a -40 dB FS, 1 s sine tone sweep from 20Hz to 22.05 kHz (squared-cosine rise and decay time

of 0.1 s to minimize the influence of the spectral splatter). The CAR response (Upper) when the FAC function is switched off; The CAR-FAC response (Lower).

FIGURE 10 | CAR and CAR-FAC output in response to 0.5, 1, 2, and 4 kHz tones with an amplitude of -40 dB FS at the channels of CFs corresponding to the input

frequencies.
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FIGURE 11 | Excitation patterns calculated as the RMS output signal of the 70 CAR-FAC channels in response to tones at (A) 0.5 kHz, (B) 1 kHz, (C) 2 kHz, (D)

4 kHz, and (E) 8 kHz with intensities ranging from -65 dB FS to -15 dB FS in steps of 10 dB FS. The x-axis shows both the frequency and the position-frequency

location calculated from Equation (9). (F) The normalized nonlinear response growth of the system to the tones of 0.5, 1, 2, 4, and 8 kHz (squared-cosine rise and

decay time of 10ms) with intensities between -65 dB FS and -15 dB FS in steps of 10 dB FS.

DIHC Model Output
To investigate the DIHC characteristics, we measured the DIHC
response to tones. In order to present stimuli with same
amplitude to the DIHC, we made use of the linearity of the CAR:
we switched off the FAC function, leaving the CAR amplifying the
input tones linearly. Firstly, we presented 0.5, 1, and 4 kHz tones
to the system, and measured the CAR output at channels with
CFs corresponding to each of those tones.We adjusted each tone’s
amplitude to make sure the CAR output at the corresponding
channel had the same amplitude of 2.28 dB FS. Next, we used
the adjusted tones as the input to the system and measured
the DIHC output in response to those tones with the same
CAR output amplitude at the corresponding CFs (Gmel et al.,
2011).

Figure 14 shows the DIHC output in response to 100ms tones
of 0.5, 1, and 4 kHz (squared-cosine rise and decay time of 10ms).
The DIHC detects and amplifies input signal onset well. For
lower frequencies, e.g., 0.5 kHz, the DIHC output shows little
DC offset and follows the sinusoidal curve of the input. As the
input frequency is increased, the DIHC shows higher offset and
reduced gain.

DISCUSSIONS

This paper presents a fully digital implementation of the
CAR-FAC cochlear model. We use time-multiplexing and
pipeline parallelizing techniques to implement a 70-channel real
time CAR-FAC system at 44.1 kHz on a Cyclone V FPGA board.
We measured the system responses to a set of stimuli such as
pure tones and condensation clicks and analyzed the CAR-FAC
nonlinear growth characteristics, excitation patterns, frequency
selectivity and impulse response. We investigated the CAR-FAC
Q tuning effects thought the damping factor tuning in Equation
(10). Additionally, we measured the DIHC model responses to
tones.

Here, we compare the system with prior silicon cochleae
with respect to architecture, channel number, frequency range,
input range, Q tuning, and power consumption, as shown in
Table 2 (Fragniere, 2005; Sarpeshkar et al., 2005; Wen and
Boahen, 2006; Yang et al., 2015, 2016). We use a power
analysis tool, PowerPlay, provided by Altera to estimate the
power consumption of the system on FPGA, since a direct
measurement of the power consumption on the FPGA board
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FIGURE 12 | (A–E) The CAR-FAC system response calculated at the CFs corresponding to 0.5, 1, 2, 4, and 8 kHz with three damping factors (0.4, 0.5, and 0.7) in

Equation (11). The x-axis shows both the frequency and the BM location calculated from Equation (9). (F) The corresponding QERB at CFs corresponding to 1, 0.5, 2,

4, and 8 kHz estimated from the BM impulse response PSD at CFs.

FIGURE 13 | System impulse responses at the 1 kHz CF channel to -50 dB FS, -30 dB FS, -10 dB FS clicks. The arrows mark the amplitude of clicks. The red

dashed lines mark two consecutive impulse response zero-crossings (Left). 1 kHz QERB factors derived from impulse responses at relative intensities from -60 dB FS

and -10 dB FS in steps of 10 dB FS (Right).

is not possible for this development kit. Table 2 reports the
estimated FPGA chip power consumption by PowerPlay based
on its default settings. The CAR-FAC system shows a wide
input frequency range and dynamic range, and a small Q tuning
range. The power consumption of the whole FPGA board is high

compared to other analog silicon cochleae. However, this fully
digital system is stable, scalable, and easy to use. Additionally,
it shows an outstanding agreement with the biological data
recordings and an improved signal to noise ratio (SNR) (Saremi
et al., 2016). It is thus able to provide an excellent input
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FIGURE 14 | DIHC output and CAR output in response to 100ms tones of 0.5, 1, and 4 kHz at the channels of CFs corresponding to those tones.

TABLE 2 | Comparison with prior silicon cochleae.

This work Yang et al. (2016) Yang et al. (2015) Wen and Boahen (2006) Sarpeshkar et al.

(2005)

Fragniere (2005)

Architecture Cascade Parallel Parallel Active coupling Parallel Passive coupling

Channel number 70 × 3a 64 × 2 16 360 16 100

Frequency range up to 22.05 k Hz 8–20 k Hz N/A 210–14 k Hz 100–5 k Hz 200–20 k Hz

Input range (dB) 70 73(including 18dB

of the attenuator)

92 52 75(with AGC) 55(without

AGC)

50

Power supply (V) 1.1 0.5 1.8 2.5 2.8 3.3

Power (mW) 1,260b 0.055 0.028 35.9 0.06 1.7

Q tuning <10 (through

damping tuning)

1.3-39 from

channel 18

0.83-7 1.16 ± 0.92 <10 0.25–12

a The FPGA ALM utilization is only 18% for one CAR-FAC module, so the system can be rescaled up to a maximum of 210 cochlear channels by implementing three CAR-FAC modules

on the FPGA board.
b The power consumption of the CAR-FAC system is given as the whole FPGA chip power consumption including the PLLs, the DSPs, the RAMs, the IOs and the Logics, and the static

power consumption of the whole chip is 240 mW.

hardware stage to more complex machine hearing tasks such as
sound localization, sound segregation, speech recognition, and
so on.
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The use of echolocation for navigating in dense, cluttered environments is a challenge

due to the need for rapid sampling of nearby objects in the face of delayed echoes

from distant objects. In the wild, echolocating bats frequently encounter this situation

when leaving the roost or while hunting. If long-delay echoes from a distant object are

received after the next pulse is sent out, these “aliased” echoes appear as close-range

phantom objects. Little is known about how bats cope with these situations. In this work,

we demonstrate a novel strategy to manage aliasing in cases where a single target is

actively being tracked at close range. This paper presents three reactive strategies for

a high pulse-rate sonar system to combat aliased echoes: (1) changing the interpulse

interval to move the aliased echoes away in time from the tracked target, (2) changing

positions to create a geometry without aliasing, and (3) a phase-based, transmission

beam-shaping strategy to illuminate the target and not the aliasing object.

Keywords: echolocation, sonar, bats, clutter, interpulse interval, pulse-echo ambiguity

INTRODUCTION

Bat echolocation is the unusual ability by bats to emit an ultrasonic sound pulse and measure the
time until echoes begin to arrive (for estimating range) combined with the more general ability of
mammals to determine the direction of sound. The ultrasonic frequencies used by bats are difficult
to detect by most animals and have short wavelengths (∼ 3–17mm) that produce detectable echoes
from small insects. To localize the direction of echoes, bats (e.g., the big brown bat) have been
shown to rely primarily on the use of interaural level differences produced by the head and pinnae,
a common strategy for small mammals (Grothe et al., 2010). The use of ultrasonic frequencies and a
small head size, strongly limit the use of phase-locking, and interaural-timing cues for localization.
To estimate range, the bat measures the time-of-flight of the echo from an emitted sound. From
an auditory processing point of view, echolocation is unique in that the sound being analyzed is
generated by the bat and is therefore both known and under the control of the bat. It is well known
that bats change both the properties of the echolocation pulse and the timing of pulses in response
to their environment (Petrites et al., 2009; Hiryu et al., 2010; Bates et al., 2011), but seldom has this
dynamic behavior been adopted in artificial sonar systems.

A typical operational assumption in echolocation is that all of the sounds following an emitted
pulse are echoes from themost recent outgoing pulse. The duration of perceptible echoes resulting
from a given pulse depends on the properties of the outgoing pulse (such as the amplitude,
spectrum, and duration) as well as the properties of the environment (such as the distance, size,
shape, orientation, and overall configuration of objects). A common-sense rule is that the next
pulse should not be emitted until all perceptible echoes from the previous pulse have died out. In
the majority of situations, bats appear to avoid this pulse-echo ambiguity, or “aliasing.” Studies of

21
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big brown bats navigating in extremely cluttered environments,
however, show cases where bats appear to tolerate such aliasing
to sample the environment at a high-rate (Petrites et al., 2009;
Schmidt et al., 2011).

In close-quarters maneuvering, a high sampling rate is
desirable when the angle to nearby objects is changing rapidly.
Little is known about what bats do when a high pulse rate
is needed to maneuver near objects in an environment that
produces long-delay echoes, a situation that produces echo
aliasing. Big brown bats have been shown to alternate between
pulsing rapidly and pulsing slowly. Pulsing rapidly gives a
clearer picture for close ranges while pulsing slowly gives a
clearer picture for long ranges (Petrites et al., 2009). Another
possible strategy might be to reduce the intensity of the call or
reduce the low-frequency components of the chirp to reduce
the distance over which the perceptible acoustic pulse travels.
Bats have also been observed to change the spectral content of
consecutive pulses, largely by shifting the entire pulse up or down
in frequency. The spectral signature of the returned echoes can
then be used to assign them to a specific pulse (Hiryu et al.,
2010). This technique has also been used in radar (Gokturk
et al., 2004; Skolnik, 2008) to increase the effective sampling
rate. Another technique utilized by radar systems is to transmit
multiple pulses in a short temporal pattern (or “code”). Different
codes can then be used to identify different pulses (Skolnik,
2008; Matsuta et al., 2013). When the task is to track a specific
target object (e.g., an obstacle the bat is maneuvering around),
an attentional mechanism can be used to ignore the background
and any aliasing that may be occurring. This approach works
well until an “aliased” echo arrives at or near the time of the
tracked echo. Three strategies for avoiding aliased echoes are
presented: (1) a dynamic pulse-timing strategy that would allow
a bat to “push” aliased echoes away from the attended window
in time (adaptive delay), (2) changing the sonar “viewing angle”
to the target to change the background (movement), and (3)
using temporal phasing of two transducers during transmission
to create an interference pattern in the sonar beam (with peaks
and valleys) that can be used to isolate the target object (beam
shaping).

MATERIALS AND METHODS

Hardware
The sonar system used in the work presented here consists of
two custom modified MaxBotix R© sonar transducers (shown in
Figure 1), a custom PIC R© 18F26201 (Microchip Technologies
Inc.) (MaxBotix Inc., 2016) microcontroller-based sonar
controller board, a Futaba S148 hobby servo, and a computer
interface to both record and display echo signals and control the
servo to orient the sonar. The transducers act as both a speaker
and a microphone. They resonate specifically at 40 kHz and will
only detect signals near this frequency. The custom sonar boards
report a logarithmically-compressed envelope signal as an analog
voltage. This allows the output to report the very wide dynamic

1PIC18F2620. (n.d.). Retrieved March 21, 2016, Available online http://www.

microchip.com/wwwproducts/en/PIC18F2620.

FIGURE 1 | The A two transducer sonar head mounted on a hobby

servomechanism that was used for the experiments in this paper. The sonar

modules are a custom 40 kHz system modified from a high-power Maxbotix

sonar.

range of amplitudes that occurs with sonar without saturating.
The transducers are placed in a 3-D printed mount on the servo
motor. In this demonstration system, the transducers transmit
and receive over a cone of about ±30◦, so the transducers are
held facing 30◦ apart to ensure sufficient overlap and coverage
of the area in front of the transducers for binaural localization.
The ultrasonic pulse trigger-timing and analog-to-digital (A/D)
conversion is done by the microcontroller. The majority of the
data processing is performed on the microcontroller to ensure
a quick response. Echo data is transferred via serial interface to
a PC and the PC controls the servo motor via a USB-interfaced
servo control board (Pololu, 2017).

The Tracking Cycle
The sonar system executes four repeated steps: pulsing, sampling,
processing, and communicating. As part of the cycle, there is
an added delay interval that is used to reject aliased echoes
(discussed in section Adaptive Delay). A few of these steps are
shown in Figure 2 for two cycles. In these examples, a short
duration ultrasonic command pulse (∼0.25ms) is used, however,
due to the resonant quality of the transducer, the duration of the
acoustic pulse is extended. Following the pulse, the transducer
continues to ring for several milliseconds. Although echoes
can be detected during this ringing period, their amplitudes
are difficult to estimate, so a short 2ms delay (i.e., dead-zone)
is incorporated before sampling begins. The log-compressed
envelope voltage is sampled every eighth of a millisecond. Object
detection begins when the temporal derivative of the envelope
exceeds a threshold of approximately 3.4 dB over an eighth of
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FIGURE 2 | An oscilloscope readout of two pulse-echo cycles (without aliasing) showing the transducer envelope voltage (bottom), serial data transfer (top), and

added delay (middle). The added delay flag is set high when the delay is occurring. Objects can be seen as distinct peaks in the transducer voltage trace. Pulsing and

sampling the transducer takes 5ms, then there is a 1.5ms delay and 1.5ms of serial data transfer. The whole cycle takes about 9ms.

a millisecond. Once the peak of the envelope has been reached,
the object range is determined by the time since emission and
the direction is estimated using the amplitudes on the two
transducers.

At low pulse rates, the echoes are monitored for a period of
time associated with the maximum range of the sonar and an
extra delay would be added after transmitting the recorded data.
In the case of fast pulsing where a target is being tracked, once
the target echo is received, a short data burst is transmitted and
the next cycle is initiated. After detecting the target echo, the
tracking window (in time) is updated and the intensities of both
transducers are compared to rotate the servo motor to center the
target echo. At this time, temporal windows before and after the
target echo are monitored to detect if other echoes are about to
overlap with the target echo. This information is used to initiate
the various reactive strategies to avoid interference with target
tracking (described in sections Adaptive Delay, Movement, and
Beam Shaping).

Target Tracking
There are occasions when the echo from the target disappears
completely due to interference or occlusion by an object in the
foreground. The tracker continues to search for the target at the
same range for up to three cycles after the object disappears. If
the object does not reappear, it will begin looking for a new target
at a pre-specified acquisition range.

For the purposes of this study, the tracker is programmed
to initially find the target at a single, pre-specified range (about
33 cm) and then follow it in range and in the horizontal plane

by turning the sensor head to center the object. Centering is
accomplished by rotating the sensor head until the detected
amplitudes of the target in the two transducers are approximately
equal. Only horizontal angles are considered. Since the echo
amplitude is logarithmically compressed, the difference between
left and right outputs corresponds to a ratio of the two received
amplitudes. This ratio (invariant to echo amplitude) can be
mapped to a specific angle. This mapping is defined by the spatial
sensitivity and placement angles of the receivers and is found
empirically. The ratio is monotonic and allows for reasonable
angle measurements over a range of±30◦. Outside of this region,
only one transducer will produce a significant response, allowing
only a coarse approximation of direction. The response of our
system at various angles is discussed in the Beam Shaping section.

The range of objects is determined by the time when the
echo is received (i.e., time-of-flight). In practice, this is a very
stable measurement that is minimally affected by noise. The echo
amplitude, however, is very sensitive to factors such as the shape
and orientation of the target, interfering reflections and echoes,
and positioning of the transducers. At high repetition rates, a
reverberant room can become filled with sound, introducing
significant background interference. To avoid wild oscillations in
the servo motor pointing, the system is restricted to moving a
maximum step of 5◦ between echoes.

Once an object is found at the pre-specified acquisition
range, it is labeled as the target and tracked. In the next pulse
cycle, the sonar will expect to receive an echo within 6.3 cm
of the previous target range. By restricting the temporal size of
the tracking box, all echoes other than the target are ignored

Frontiers in Neuroscience | www.frontiersin.org 3 March 2018 | Volume 12 | Article 17723

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Isbell and Horiuchi Managing Clutter in Rapid Echolocation

allowing the system to track a single object in the midst of other
objects. Analog-to-digital sampling is performed with a period
of an eighth of a millisecond and thus the range resolution is
2.1 cm/sample.

Aliasing and Clutter
In the rapid pulse mode, the maximum detection range for the
sonar system is limited by the interpulse interval. If an object has
an echo time that is greater than one pulse period, it is detected by
the system in the next pulse cycle. It is then perceived as having
an echo time that is one pulse period less than it actually is. Since
this distortion is caused by sampling related to each pulse, we
call it aliasing. This is demonstrated in Figures 3, 4. While the
perceived direction of this “phantom” object is unchanged, the
range is wildly incorrect and may even overlap the echo from the
tracked target. The techniques presented in this paper aim to keep
the range and angle measurements of the target clean. This can
be done by keeping other echoes far enough away (in time) to
not overlap the target echo (∼ 0.5ms). If that is not possible, the
goal is to reduce the amplitude of the obstructing echo as much
as possible.

Two strategies specific to problem of aliased echoes
overlapping the target echo are presented: First, by using
an adaptive delay, the interpulse interval can be manipulated
to change the relative time of the aliased echo. This changes
the perceived range of the alias to prevent it from overlapping
with the target. Second, the sonar system can use movement to
prevent objects in the background from falling in the main path
of the sonar beam. This reduces the magnitude of clutter echoes.

These strategies may not always work, particularly if the
aliased object is close in range to the target and the sonar beam

FIGURE 3 | Aliasing visualized. In this cartoon example, each timeline has

pulses (represented by tall lines) and received echoes (represented by shorter

lines). Each pulse and its echoes are given a unique color. From top to bottom,

the interpulse interval decreases until a new pulse occurs before all echoes

from the previous pulse are received, shown in the bottom timeline. The echo

is misinterpreted as a closer object associated with the latest pulse. This is the

aliased echo, and is labeled with an asterisk.

is too wide for the movement strategy to avoid illuminating the
aliasing object. In this case, beam forming of the transmitted
pulse by firing both transducers in a phased manner can be used
to increase the amplitude of the target echo and decrease the
amplitude of the aliased object echo. This can also be effective

FIGURE 4 | Transducer envelope of pulses and echoes at different repetition

rates demonstrating aliasing in the bottom graph. The outgoing pulse peaks at

0.4 V, overlapping echoes from two closely-spaced PVC pipes are seen

peaking at 0.2 V, and a single loud echo made by a square poster board is

seen peaking at 0.25 V. The interpulse interval is decreased in each graph until

a new pulse occurs before all echoes from the previous pulse are received,

causing an aliasing condition where the poster board incorrectly appears at

short range.
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in non-aliasing situations where a distractor object at the same
range (but different angle) is causing interference.

Adaptive Delay
The range at which the aliased echo appears is dependent on the
time between sending pulses. To control this, a variable delay
period is inserted before sending the next pulse. Increasing this
delay shortens the aliased echo time, making it appear to move
closer to the sonar. Decreasing the delay increases the aliased
echo time, making it appear to move away from the sonar (an
example is shown in Figure 5).

The alias rejection system introduces a delay interval with
a maximum of 3ms into the timeline. The interval length is
changed in eighth millisecond increments based on where the
aliased echo appears relative to the tracked target. If an aliased
echo is within 5 range samples, or 10.7 cm, of the target echo,
the delay interval will be changed to repel the aliased echo. For
an aliased echo that appears closer than the target echo (i.e., in
between the target and the sonar system), we increase the delay
to move the aliased echo away from the target echo; an aliased
echo further away than the target echo decreases the delay. If
the delay reaches its maximum amount or if it is decreased to
zero, the delay value is reset to 1.5ms (half of its maximum
value). This will cause an aliased echo to jump to the other side
of the target echo, being shifted by 12 range samples. If there is
an aliased echo detected on both sides of the target, the delay is
shifted by a large amount, equivalent to 11 range samples, in an
attempt to clear both aliased echoes away from the target echo.
This process is summarized below.

If alias in front
Increase delay

If alias in back
Decrease delay

If alias in front and alias in back
Large delay shift

FIGURE 5 | Manipulating the received time of an aliased echo. The tall line

represents the pulse and the short lines represent the echoes. The echoes

associated with a given pulse are the same color. The top timeline shows an

alias (white) that is close to interfering with the first dark echo, the target. The

introduced delay is increased (in the bottom timeline) to shift this aliased echo

away from the target in time. Similarly, an alias on the other side of the target

can also be shifted away by decreasing the delay (not shown).

If delay is minimum or delay is maximum
Reset delay

Checking for Real Objects
While we have assumed a relatively isolated target object to track,
a real second object in close proximity to the target cannot
be “rejected.” In this case, the alias rejection system would
continuously shift the delay, resulting in oscillations of the delay
shifting and resetting when the delay interval reaches its limits.
To prevent these oscillations, additional code is used to recognize
authentic (i.e., non-aliased) echoes.

The most notable difference between an authentic echo and
an aliased echo is their reaction to a large shift in the interpulse
interval, a delay jump. An alias will be moved a significant
amount, while an authentic echo will not be moved at all.
Although a real object can still move noticeably, at low speeds
(<3 m/s) it will not jump more the one range sample at a time.

The alias rejection system makes large delay shifts in three
different scenarios: when the delay interval reaches its maximum,
its minimum, and when two aliases sandwich the target (one
on either side). The system uses these events as triggers to look
for an authentic echo that remains in the same location. This
is especially appropriate since an authentic echo triggers an
oscillation that causes the delay to jumpwhen the interval reaches
a maximum or minimum. If an object doesn’t move after a delay
jump, it is recognized as an authentic echo and will not activate
the alias rejection system. This is similar to a technique used
in radar where a map of stationary clutter is memorized and
removed (Skolnik, 2008).

Movement
An alternative method to avoid sonar aliasing is to reposition
the sonar beam such that objects in the background do not
generate echoes. The effectiveness of this technique will depend
on using a relatively narrow transmission beam. Depending on
the species of bat, transmission beam widths can range from 22
to 90◦ (Jakobsen and Surlykke, 2010; Nachtigall andMoore, 2012;
Matsuta et al., 2013). The sonar beam width used in this study is
approximately 30◦.

When the sonar moves around, different sides of objects are
exposed to the sonar. In general, this will complicate a decision
to change the sensing angle, since the acoustic properties of
an object can change greatly from different perspectives. To
demonstrate this, two different objects were used as the aliasing
object in two different trials: a large 46 cm (1.5 ft) diameter
cardboard tube and a 30 cm wide, open cardboard box. The
sonar was moved around a target object to continue aiming the
beam at the target at the same range, but resulting in different
backgrounds (Figure 9). As the sonar moves, the transmission
beam is moved away from the aliasing object and the magnitude
of its echo decreases. Theta is the angle of rotation the sonar
system hasmade around the target relative to its starting location.
For this study, only one transducer was used.

Beam Shaping
A third strategy for reducing the effect of aliasing and clutter
objects is to shape the acoustic beam so that only the target object
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FIGURE 6 | Oscilloscope showing transducer voltage, delay, and tracking for an approaching target. The added delay bit is high when the delay is occurring. The

tracking bit is high when receiving the echo of the object being tracked. These graphs are a sequence of events in real time (A–D). Only two significant objects are

present, the target marked by the tracking bit, and the aliased echo. The only object moved was the target; the apparent movement of the alias is due to the delay

change. The arrows show movement change for next frame. (A,B) The target moves forward, toward the alias. (B,C) The target continues forward, the alias is pushed

forward by the increasing delay. The delay buffer becomes maximized. (C,D) The delay buffer jumps down after reaching its maximum. This causes the alias to “jump”

behind the target.
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FIGURE 7 | Continuation of Figure 6 for a retreating target. (A,B) The target moves back; the alias is pushed back by the decreasing delay. (B,C) Both echoes

continue backwards, the delay buffer reaches its minimum value. (C,D) The delay buffer jumps upwards, causing the alias to jump forwards in front of the target.
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is ensonified. With the two-transducer system used in the study,
this is performed by transmitting with both transducers to create
an interference pattern that has peaks and nulls that can be used
to reduce interference. Plots of the beam shape are shown for
a single transducer, the two transducers firing synchronously,
and the two transducers firing out-of-phase (Figure 11). The
synchronous in-phase firing pattern has a loud frontal lobe that
is relatively narrow with weaker lobes on either side. The −6
db width of the front lobe is 19◦ (compared to 62◦ of a single
transducer alone). The stronger, narrower central lobe would
allow more precise ensonification of a target while reducing
echoes from other directions. It is important to note that the
patterns presented here represent the transmitted beam only. The
sonar hardware presented here does not allow phased detection;
although that is an additional capability in other systems that
would further improve selectivity.

Figure 12 shows an example of how using this firing pattern
can affect an echo trace. There are two objects in the field of view,
both PVC pipes of equal diameter. Using only a single transducer
without phasing, the clutter echo impinges on the target echo and
disrupts the information conveyed. Using two transducers fired
synchronously, the cluttered object has a significantly reduced
magnitude and the target will not be as affected by the clutter.
This example, however, represents a best-case scenario where the
clutter object falls in the low trough of the firing pattern. Utilizing
this system in arbitrary object configurations is not trivial. Since
angle estimation is very noisy in this sonar system, predicting the
effects of beam shaping can be error-prone and not guaranteed to
be beneficial.

The experimental configuration used is shown in Figure 13.
With the target centered in the sonar view, the clutter object is
moved to different angles relative to the center. Both objects are
5 cm diameter PVC pipes at a range of 122 cm (4 ft).

RESULTS

Adaptive Delay
Figures 6–8 show the system in action, presenting consecutive
graphs in time that demonstrate system functionality. The three
figures represent the three different cases of aliases: aliases
moving toward the target from the front, aliases moving toward
the target from the back, and two aliases sandwiching the
target. In each case it is assumed that the target starts clear
and unobscured. The adaptive delay prevents the target from
becoming obscured in all the cases.

Movement
Figure 10 shows the results of the movement study with the
aliasing object at 4, 5, and 6 ft (labeled x) away from the target.
At the same angle, larger x values push the aliasing object farther
away from the center of the beam and cause a larger reduction
in magnitude. For the column, at a 60◦ angle of rotation, the
aliased echo amplitude had been reduced to below 19% of the
target echo amplitude for all distances of x. For the box at the
same angle, the amplitude was only reduced to 57% of the target
echo amplitude in the worst case (x = 4 ft). This highlights
the role of the object geometry. It should be noted that the

FIGURE 8 | A target being sandwiched by aliased echoes. (A) Here the alias

in front of the stationary target approaches the target and triggers a delay

jump. (B) This clears both aliases away from the target, drawing them both

forward of the target.

FIGURE 9 | Alias rejection via movement. The sonar system (speaker) is kept

a constant distance from the target. The alias is located at a distance x from

the target. The sonar is rotated around the target by angle θ to shift the view of

the system.

measured amplitudes are logarithmically-compressed acoustic
amplitudes and the actual percentage change seen will vary with
signal level.
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FIGURE 10 | Traces showing the echo response of the target and the alias at

different angles. The target trace (blue) gives a baseline for comparison. The

“Alias” traces reduce in amplitude as the angle increases. For larger distances

x the amplitude decreases even more.

Beam Shaping
For the beam shaping study, the results are shown in Figure 14.
The target to clutter (amplitude) ratio is used to normalize the
data, which accounts for the difference in magnitude of the
different firing patterns. The simulated data was created using the
echoes from one real PVC pole recorded across all of the angles.
The center measurement is used as the target amplitude; all other
angles are treated as clutter amplitudes. The target to clutter ratio
is calculated between the center and all other angles.

The synchronous firing pattern has a higher target to clutter
ratio than the left or right transducers alone. This only occurs
for angles less than 18◦. This is due to the side lobes of the
interference pattern; once the clutter starts to enter these lobes
it is no longer sufficiently rejected and a single transducer will
yield a better target to clutter ratio. In between 6 and 18◦, where
the most benefit is seen, there is a 3.39 dB average increase in
the signal to clutter ratio with the synchronous firing pattern
compared to the next best single transducer.

FIGURE 11 | Polar plots of the different firing patterns. Top shows single

transducer pulses from the left and right transducers. Middle shows the

synchronous in-phase firing pattern. Bottom shows the synchronous

out-of-phase firing pattern.

DISCUSSION

Adaptive Delay
The adaptive delay system for alias rejection tackles a problem
that most engineered sonar systems avoid at the cost of a lower
sampling frequency. When overlapping echolocation cycles are
unavoidable, some form of pulse labeling is most commonly
used (Uppala and Sahr, 1996; Gokturk et al., 2004; Skolnik,
2008; Hiryu et al., 2010; Matsuta et al., 2013). These techniques
remove the issue of pulse-echo ambiguity since every pulse has
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FIGURE 12 | A best-case example of clutter reduction using beam shaping.

Shown are two echo traces from the same scene with different beam shapes.

Two objects are present, the first echo is the target object (∼3.2ms); the

second echo is from the clutter object (∼3.5ms) which is circled. When

in-phase firing is used, the clutter echo is greatly reduced in amplitude.

FIGURE 13 | Clutter rejection using beam shaping. The sonar system faces a

target that is 4 ft away. The clutter object is also 4 ft from the sonar but is

rotated around the sonar system, changing its angle in the view of the sonar.

its own unique characteristic. The approaches presented here are
unique in that the pulse-echo ambiguity remains and tracking
is maintained in spite of it. This allows a much simpler, single
frequency system to be more useful.

The biggest limitation of the adaptive delay system is that it
can only deal with a small number of aliased echoes. The case
when two aliases sandwich the target is dealt with, but if three or
more aliases occur in the right spots, there may be no delay time
that prevents the target from being obscured.

Movement
The movement strategy is much different from the other
strategies since it cannot be done on a pulse to pulse basis.
Moving the sonar to improve sensing also impacts the decisions
of navigation that the sensing is intended to facilitate. These
results provide more information to consider by the navigation
system that must balance sensing and overall task goals. The basic

FIGURE 14 | These graphs show how a clutter object appears at different

angles. The target and clutter objects are at the same range. Only the angle to

the clutter object is changed. The top graph shows the ratio of the target and

clutter amplitude. The bottom shows simulated data, where only one object

was scanned across all of the angles. The ratio was computed using the echo

at angle 0 (i.e., the target) and the other angles (i.e., the clutter object). The

circled area shows that for angles less than 18◦ the synchronous firing has

better clutter rejection.

geometry and the angular response of the sonar system suggest
that lateral movement with respect to orientation of the sonar
is most effective. Another consideration is that any change in
sensing angle may, in fact, generate new aliasing problems as it
turns to include new background objects. Note that this approach
(like the pulse timing method presented in section Adaptive
Delay) will have little to no effect for clutter objects that appear
at the same range as the target.

Beam Shaping
This technique is a useful way to reduce the effect of aliasing and
is the only strategy presented here that is also potentially effective
for objects at ranges similar to the target. It is most effective for
small angles off-center. Synchronous firing creates a loud central
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lobe down the central axis of the sonar head. This allows for
objects at longer ranges to be detected. This study did not utilize
the out of phase firing primarily because the target is assumed
to be held in the center of view. The out-of-phase transmission
pattern has its minimum in the center of view. If a different
tracking algorithm was used that kept the offending clutter in the
center, this firing pattern could also be useful in rejecting clutter.

This kind of interference pattern has also been observed to
be used by certain bats (Hartley and Suthers, 1987). Carollia
perspicillata emits sound from two nostril holes. These two nostril
holes appear to interact in the same way as depicted in the sonar
system above.

Combining the Strategies
While these three strategies have been presented and considered
separately, they can be combined into an integrated approach.
Adaptive delay and beam shaping can be used simultaneously;
the delay can be changed independently of the beam shape.
Movements to specifically reduce aliasing can also be made,
although other factors will likely affect what actions are taken.

If an alias is detected, the adaptive delay approach can be used
to prevent the target from being obscured. At the same time,
a movement direction can be suggested based on the apparent
angle of the alias. If the obstructing echo is determined to be a
real object and not an alias (part of the adaptive delay code), then
different beam shapes can be used depending on the apparent
angle of the obstructing echo. If the angle is less than 18◦,
synchronous firing will be used. If the angle is greater than 18◦,
only one transducer will be used. This approach is summarized
in Figure 15.

These strategies complement each other well. Together,
they present a multi-pronged approach for dealing with the
interference produced while using high pulse repetition rates.

Each strategy is suited to a different situation and need not be
used simultaneously.

CONCLUSION

Three different active strategies for dealing with echo aliasing are
described that can allow the use of sonar at high sampling rates
in cluttered environments. Although a time-domain attentional
system is assumed to be able to focus on a specific range to
track objects, echoes from clutter objects can overlap in time,
obscuring or confusing such an attentional system. At very short
interpulse intervals, echoes from the background arriving after
the next pulse appear to be at a shorter range then they actually
are. These “aliases” can overlap the target and interfere, causing a
failure of the tracking system. A dynamic pulse-timing strategy is
proposed that can effectively “push” or “pull” the aliased echoes
away from the tracked target echo by decreasing or increasing
the interpulse interval. This prevents aliases from interfering
with tracking. We have also presented a method of avoiding or
reducing aliases based on positioning, as well as a method of
shaping the echolocation beam to reduce the effect of aliasing or
clutter.

Bats have been shown to use several different strategies when
encountering cluttered situations that require fast sampling.
They have been observed to change the frequency content of
consecutive pulses (Hiryu et al., 2010), alternating between short
and long pulses (Petrites et al., 2009), and using the directionality
of certain harmonics to focus in a given direction (Bates et al.,
2011). The system presented here operates on a single carrier
frequency, so frequency-based techniques for clutter rejection
were not explored, however, we have shown that other techniques
are possible (pulse timing, flight steering, and beam shaping) and
are possibly also in use by echolocating bats.

FIGURE 15 | Flowchart for integrating the three strategies. Once clutter is detected, beam shaping, and the adaptive delay can be used simultaneously. If the

adaptive delay determines that the object is an alias, a movement direction will be suggested.
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The mammalian auditory system is able to extract temporal and spectral features from

sound signals at the two ears. One important cue for localization of low-frequency

sound sources in the horizontal plane are inter-aural time differences (ITDs) which are

first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of

ITD tuning curves at various stages along the auditory pathway suggest that ITDs in

the mammalian brainstem are not represented in form of a Jeffress-type place code.

An alternative is the hemispheric opponent-channel code, according to which ITDs are

encoded as the difference in the responses of the MSO nuclei in the two hemispheres.

In this study, we present a physiologically-plausible, spiking neuron network model of

the mammalian MSO circuit and apply two different methods of extracting ITDs from

arbitrary sound signals. The network model is driven by a functional model of the auditory

periphery and physiological models of the cochlear nucleus and the MSO. Using a linear

opponent-channel decoder, we show that the network is able to detect changes in

ITD with a precision down to 10 µs and that the sensitivity of the decoder depends

on the slope of the ITD-rate functions. A second approach uses an artificial neuronal

network to predict ITDs directly from the spiking output of the MSO and ANF model.

Using this predictor, we show that the MSO-network is able to reliably encode static and

time-dependent ITDs over a large frequency range, also for complex signals like speech.

Keywords: spatial hearing, medial superior olive, computational model, artificial neural network, binaural model

1. INTRODUCTION

Our remarkable sound localization acuity relies on the ability of the auditory system to decode
the arrival time and intensity difference between the ear canal signals into information about the
direction of sound sources. In mammals, the primary nucleus to extract fine structure interaural
time differences (ITDs) is the medial superior olive (MSO), while the interaural level differences
(ILDs) are extracted primarily at the lateral superior olive (LSO) (Grothe et al., 2010). The MSO
neurons detect fine-structure ITDs by acting as coincidence detectors receiving excitatory inputs
from both hemispheres. The existence of such neurons was already hypothesized by Jeffress (1948),
who proposed an array of coincident detectors to be arranged along a neural delay line. In this
hypothesis, each neuron would respond maximally to a specific ITD (best-ITD)—generating a
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topographical mapping of time differences within the nucleus.
Later, such a circuit was found in the nucleus laminaris of
birds like the barn owl (Carr and Konishi, 1988). However,
more recent measurements of mammalian inferior colliculus
(IC) and MSO neurons in gerbils (Brand et al., 2002) or guinea
pigs (McAlpine et al., 2001) revealed broadly-tuned neurons, of
which the majority had their best-ITDs at the border or even
outside of the animals physiological range. This observation
is inconsistent with place-code theory, which would require a
vast amount of narrowly-tuned neurons with their best-ITDs
distributed within the physiological range. One alternative ITD-
coding mechanism is based on the comparison of firing rates
between the nuclei in the two hemispheres. This mechanism
has consequently been called the opponent-channel (Magezi and
Krumbholz, 2010), count-comparison (Colburn and Durlach,
1978), or hemifield (Stecker et al., 2005) model. The opponent-
coding model is in agreement with both observations, the wide
tuning curves and the large best-ITDs (McAlpine and Grothe,
2003). There is also evidence that overall sound localization
(Stecker et al., 2005; Briley et al., 2012) as well as specifically
ITD-coding in the human auditory cortex is based on an
opponent coding mechanism (Salminen et al., 2010). Lesion
studies in cats showed that unilateral lesions at the level of the
central auditory system (Jenkins and Masterton, 1982) as well
as in cortical regions (Malhotra et al., 2004) mainly resulted
in deficits localizing sounds from locations contralateral of the
lesion. These results lead Jenkins and Masterton (1982) to
conclude that each auditory-hemifield is represented solely in
the respective contralateral hemisphere, which would contradict
the opponent coding mechanism. One problem with applying
this interpretation to ITD processing is that both studies used
broad-band stimuli so that ITDs and ILDs, as well as spectral and
monaural cues were available to localize the sound source this
makes it difficult to draw conclusions about the representation
of the individual cue. An alternative to the opponent-channel
code, which uses the summed response of the neurons within
each of the two hemispheres, is the population decoder that
instead uses the individual response of each neuron for decoding.
Based neuronal recordings of neurons in the IC, Goodman et al.
(2013) and Day and Delgutte (2013) both proposed population
decoders and showed that these decoders could outperform a
two-channel decoder. On the other hand, Harper et al. (2014)
used an optimal coding approach to show that ITDs in low-
frequency signals would be best represented by a two-channel
code. Additionally, results from psychoacoustic lateralization
experiments using pure-tone adapter stimuli with fixed ITDs
showed, that adaptation influences lateralization at ITDs not only
close to that of the adapter but within the whole hemisphere
(Phillips et al., 2006), which is more in line with an opponent-
channel code.

The aforementioned remarkable sound localization ability
has inspired numerous researchers to create computational
binaural models. Most of the existing binaural models
are phenomenological implementations of the delay-line
principle proposed by Jeffress (1948), which have been tuned
to successfully predict data from human psychoacoustics
(Lindemann, 1986). Some more recent models were

implemented following the opponent-coding mechanism
(Pulkki and Hirvonen, 2009; Dietz et al., 2011; Takanen et al.,
2014). Even though these models closely follow the functionality
of the neuronal sound localization pathway, they provide only
a phenomenological description of the processing stages. On
the other hand, several biophysical models of MSO neurons
have been published as well (Brughera et al., 1996, 2013; Zhou
et al., 2005; Lehnert et al., 2014), but there are only a few
biophysical models covering the complete neuronal circuit.
Wang et al. (2013) used a circuit containing a model of the
auditory periphery as well as spiking models of the MSO and
LSO and a simplified IC model to investigate the sensitivity of
IC neurons to envelope ITDs in high-frequency sounds. Due to
the focus on high-frequency sounds where ITDs are extracted
from the envelope of the sound signal instead of its fine structure
(Nuetzel and Hafter, 1976), Wang et al. (2013) did not include
any source for a shift in best-ITD and also neglected inhibitory
inputs to the MSO. Glackin et al. (2010) presented a spiking
neural network (SNN) constructed from leaky integrate-and-fire
models of the CN and MSO nuclei. In disagreement with newer
physiological studies, the SNN was constructed as a Jeffress-type
delay-line decoder. Glackin et al. (2010) trained the network
to localize the sounds using spike-timing-dependent plasticity
learning rules.

To our knowledge, none of the previous models combined
an SNN approach with the concept of opponent-coding to
investigate ITD sensitivity. Brughera et al. (2013) presented a
single spiking neuron model of the MSO to investigated ITD
sensitivity, but used a periodic Poisson-like process as an input
to the MSO. This limits the model to simple pure-tone-like
scenarios while also neglecting any non-linear processing of
the auditory periphery. To that end, we present here a new
binaural model based on biophysical spiking neuron models
of the mammalian MSO circuit. We show that a simple linear
hemisphere decoder applied to the output of the model is
sufficient to encode ITDs in tones with a precision that matches
human performance. Furthermore, we show how the model in
conjunction with a simple artificial neural network can decode
ITDs from broadband signals, including complex signals like
speech.

2. RESULTS

2.1. Model Structure
The primary mammalian MSO neurons receive excitatory inputs
from spherical bushy cells (SBCs) as well as inhibitory inputs
from the globular bushy cells (GBCs) of the cochlear nuclei in
both hemispheres. Inhibitory inputs are being relayed via the
trapezoid body (TB) (see Grothe et al., 2010 for an overview).
Both SBCs and GBCs are directly excited by auditory nerve fibers
(ANFs). GBCs in particular, but also SBCs have been found to
enhance phase locking of the neuronal inputs (Joris et al., 1994;
Dehmel et al., 2010). Our model consists of three stages, a model
of the auditory periphery, a population of globular bushy cells
and a population of MSO neurons (see Figure 1). For simplicity,
SBC as well as the TB nuclei, were reflected as direct relays of the
ANF signals so that our MSO model receives direct excitatory
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FIGURE 1 | (A,C) Poststimulus time histograms (750 µs bin size) of the responses of the three model stages to a 100ms long pure tone. (B) The model network

contains three stages. A model of the auditory periphery (ANF), A model of the globular bushy cells in the cochlear nucleus (GBC), and the model of the medial

superior olive (MSO).

input from the ANF and inhibitory inputs from GBCs of both
hemispheres (see section 4 for details on the implementation).
In practice, our model takes digitized binaural signals as input
and processes them first through the peripheral hearing models
of the left and right ears. The peripheral model consists of a
middle-ear compensation filter, a non-linear model of the basilar
membrane and a functional model of the neural transduction of
the inner hair cell and auditory nerve fibers (Zilany et al., 2014).
All ANFs weremodeled as high spontaneous rate units. The spike
timings of the peripheral hearing models were then used as input
to the biophysical neuron models. As a consequence of the direct
excitation by ANF fibers, the frequency responses of both MSO
and GBCs resemble that of the ANFs from the peripheral hearing
model (see Figure S1).

As an example of the output from the different model stages,
Figures 1A,C illustrate the outputs of ANFs, GBCs, and the
MSO of the two hemispheres for a left-leading (150 µs ITD)
125Hz pure-tone input. The ANFs of both hemispheres show a
phase-locked response to the input stimulus. This phase-locked
response is sharpened by the population of GBC neurons. The
MSO neurons of the two hemispheres respond with different
firing rates depending on the delay between the signals delivered
to the left and right ear.

Most MSO neurons of gerbils show bell-shaped ITD-rate
functions with their maximum (best-ITD) located outside of
the animals physiological range (Brand et al., 2002). There
has been much debate about the origin of this shift ranging
from intra-cochlear delays (Joris et al., 2006) over asymmetric
synaptic currents (Jercog et al., 2010) to effects of the recent
stimulus history (Franken et al., 2015). Our model is based on
the effect described by Brand et al. (2002) and Pecka et al. (2008),
who showed that blocking of the inhibitory inputs results in
a shift of the best-ITD toward zero. Measurements in gerbil
brain slices have also shown that inhibitory inputs to the MSO

precede the excitatory inputs in time (Roberts et al., 2013). Using
conduction clamp measurements, Myoga et al. (2014) showed
that the relative timing of inhibitory to excitatory inputs to the
MSO can delay or advance the peak of the excitatory post-
synaptic potential (EPSP) and consequently, affect the best ITD
of the neurons. Our model is consistent with these findings.
In agreement with Brand et al. (2002) and Pecka et al. (2008),
the best-ITD shifted toward zero when simulating the effect of
blocked inhibition by reducing the inhibitory synaptic strength
(see Figures 2A,B). Similarly, and in accordance with Myoga
et al. (2014), we could shift the best-ITD of the MSO model by
adjusting the delay of contra- and ipsilateral inhibitory inputs.
For themodel used in later evaluations, we optimized both arrival
times to obtain a maximal shift of the best-ITD toward contra-
leading ITDs. This optimization resulted in a delay of 0.6ms
for the contralateral inhibitory input and 0ms for the ipsilateral
input (both values relative to the timing of the excitatory input
from the corresponding side). These values are in agreement
with the timescales observed by both Myoga et al. (2014) and
Roberts et al. (2013). The study by Pecka et al. (2008) showed
a residual shift of the best-ITD even when the inhibitory inputs
were blocked. This could be explained by fundamental physics as
the axons connecting inputs from the contralateral hemisphere
to the MSO have to span over a larger distance than the ones
for ipsilateral inputs. We considered this observation by adding
a constant delay of 100 µs to the contralateral excitatory and
inhibitory inputs, which resulted in an additional shift of the
best-ITD toward negative values (see Figure 2B).

2.2. Decoding ITD Information From the
Neuronal Responses
The opponent-coding theory is based on two populations of
neurons, both firing maximally when the sound source is on
the opposite side of the midline (Stecker et al., 2005). Figure 3A
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FIGURE 2 | (A) MSO ITD-rate functions (calculated for 15 ITDs in the range

±1ms) for the right hemisphere of the model at different inhibitory

conductivities ĝsyn,i (B) Increased inhibition, reduces the overall firing rate and

shifts the best-ITD toward more contra-lateral leading ITDs. Without inhibition

the best-ITD equals the predefined shift of 100 µs.

shows firing rates of the MSO model in both hemispheres
to a stimulation with varying ITDs. The left MSO responds
strongest when the stimulus was right-leading (positive ITD),
while the right hemisphere responds strongest to a left-leading
ITD (negative value). Consequently, a change in ITD from zero
results in an increased firing of one MSO and a reduced firing
of the other. A very basic decoder for the opponent-channel
code can be constructed by subtracting the firing rates of the
left MSO (RL) from the right MSO (RR). Around zero ITD,
the calculated firing rate difference 1R = RR − RL shows an
almost linear response to ITD changes (see Figure 3B). Due to
the subtraction, this approach increases the slope around zero
by a factor of two and consequently maximizes the sensitivity
in this region. However, this approach is applicable only for
ITDs for which the linear approximation is valid. The linear ITD
region depends primarily on the location of the best-ITD (see
Figure 3C) in the two hemispheres. When calculating ITD-rate
functions for neurons with different best-frequency, the best ITD
decreases with increasing sound frequency (see Figure 3C). The
best-ITD is maximally 470 µs at 125Hz and decreases to 110 µs at
1.4 kHz. The same trend of decreasing best-ITDs with increasing
frequency has been found in in-vivo recordings of MSO neurons
(Brand et al., 2002; Pecka et al., 2008) as well as in the IC
(McAlpine et al., 2001). As aforementioned, this model mainly
uses phase-locked inhibition to shift the best-ITD. This method
relies on the slopes of the inhibitory post-synaptic potentials
(IPSPs) of each phase (Myoga et al., 2014). At higher frequencies,
the summation of individual IPSPs reduces the effectiveness in
shifting the best-ITD (Roberts et al., 2013; Myoga et al., 2014),
which is also seen in the model results. Experimental studies have
shown that MSO and IC neurons exhibit a variety of different
best-ITDs (McAlpine et al., 2001; Bremen and Joris, 2013), while
in this model, all neurons with the same best frequency also
show the same best-ITD. As this study does not use a population
decoder but relies on the mean activity within each hemisphere,
the single ITD-rate function can also be interpreted as the mean
ITD-rate function of a single hemisphere.

The sensitivity of the linear-decoder to ITD changes is
proportional to the slope of the 1R function around zero ITD—
a steeper slope results in larger changes. As the slope of the 1R

FIGURE 3 | (A) The model demonstrates ITD-rate functions for the left and

right MSO that are effectively mirrored around zero so that a shift in ITD from

the center line leads to an inverse response of the two channels forming the

basis for the opponent-channel code (Stecker et al., 2005). (B) A simple

difference computation between the ITD-rate functions of the two

hemispheres resulted in a nearly linear relationship around zero ITD (dashed

line). (C) The shift in the best-ITD decreases with increasing best-frequency of

the MSO neuron, reaching the predefined shift of 100 µs at about 1.4 kHz.

(D) The slope of the rate difference curve around midline can be seen as a

sensitivity to changes in ITD. This value changes with the best frequency. The

sensitivity peaks at 300Hz from where it decreases again toward higher

frequencies. (E) The single hemisphere responses showed the largest change

at or close to the midline and therefore maximizes the sensitivity of the

linear-decoder. (F) Frequency-dependent normalized firing rates of the three

neuron populations in the model in response to a 100ms pure tone at 50 dB.

function around zero is twice the slope of a single hemisphere
response, maximizing the slope of the single hemisphere will
also result in a maximal slope of 1R . Pecka et al. (2008) and
McAlpine et al. (2001) both reported the maximal slope of single
neuron responses to be located at or close to mid-line. In this
model, responses to frequencies up to 700Hz followed these
findings (see Figure 3E). At higher frequencies, the location of
the largest slope started to shifted away from midline as the
best-ITD decreased faster than the width of the ITD-tuning
function, which shifted the location of the largest slope toward
positive ITDs. A second influencing factor on the sensitivity
is the maximum firing rate of the MSO response—a higher
rate of the single hemisphere responses will also result in a
larger slope at midline. Figure 3F shows the frequency dependent
normalized firing rates of all three neuron populations in the
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FIGURE 4 | (A) Frequency-dependent just-noticeable differences (JNDs) calculated for subsets of 5, 10, 50, and 100 randomly chosen neurons among a population

of 500 neurons. (B) When normalized to a region between 0 and 1, all JND curves overlap. (C) The JND values were calculated by fitting weibull-functions to the

fraction correct values (see section 4).

model. The firing rate of the MSO model is of course strongly
influenced by the balance between the excitatory inputs from
the ANFs and the inhibitory inputs from the GBCs but it is
additionally modulated by changes of the spiking thresholds.
MSO neurons have been found to exhibit subthreshold resonance
(Remme et al., 2014; Mikiel-Hunter et al., 2016) which introduces
frequency dependent thresholds. The MSO model used in this
study exhibited a resonance frequency at about 260Hz (see
Figure S2) which is in agreement with the resonance frequencies
found in electrophysiological studies (Remme et al., 2014;Mikiel-
Hunter et al., 2016). The reduced spiking threshold around
260Hz in combination with the dynamics of the synaptic inputs
results in a peak in MSO response seen in Figure 3F, which also
corresponds to the peak in sensitivity shown in Figure 3D.

While applying the linear-decoder does not directly result
in an ITD estimate, it can be used to predict ITDs. The link
between ITD and 1R also allows for a direct comparison of
the laterality of two signals with different ITDs without the
necessity to map the MSO model response to the absolute ITD
estimates. This highlights the difference between an absolute
localization task, which requires the mapping of the auditory
perception to a spatial measure and a relative comparison task
where the relative location of one perception in comparison to a
second perception is reported. In psychoacoustical experiments,
the sensitivity to ITDs is often assessed by determining the just
noticeable differences (JNDs) which describe the smallest change
in ITD a subject can use to detect a change in lateralization
between the two otherwise identical stimuli (Klumpp, 1956).
Using the same method, we calculated JNDs for our network
model using the linear-decoder (see section 4). In our model,
the performance depends critically on the number of neurons
composing the population, as the intrinsic stochasticity of the
neuronal system loses its impact on the average firing rate
when the population increases. To determine the influence of
the population size on the performance of our model, JNDs
were calculated separately for subsets of 5, 10, 50, and 100
randomly chosen neurons among a population of 500 neurons.
Figure 4C shows exemplary psychometric curves derived for a
population of 10 and 100 neurons. Figure 4A shows the result of
the JND experiment for different pure tone stimuli. As expected,

the predicted JND decreases when increasing the size of the
population. The decrease in JND can be described by a 1/

√
N

dependency, where N is the population size. The dependence is
in line with the reduced effect of noise due to a larger population
of neurons. If the JND thresholds are determined mainly by the
noise of the system, they should also be reflected in the sensitivity
described by the slope of the 1R function. Figure 4B shows the
JND curve as well as the inverse of the slope of 1R with all values
normalized to lie between 0 and 1. As expected, there is a good
agreement between the normalized JND curves and the inverse
of the slope, which confirms the aforementioned assumption that
the detection threshold of the linear-decoder depends mainly on
the slope of the rate-difference function around zero ITD.

One problem of such a linear-decoder is that the firing rates
of the two MSO models depends not solely on the ITD, but
also on other characteristics of the inputs to the MSO model.
As the firing rate of the peripheral hearing model depend
strongly on the sound pressure level, so will the output of the
MSOmodel. To demonstrate such dependency, Figure 5C shows
how the predicted sensitivity of our model varies with both
frequency and level of the pure tone input. The ANFs also exhibit
strong spike-rate adaptation (Smith, 1977) which, consequently
affects the MSO response (Figure 5A). These variations could
be compensated by normalizing the ITD-1R functions (overlay
in Figure 5B) but this is not possible in practice as it would
require a priori knowledge about the maximum firing rate of the
ITD-1R function at each point in time. A much more practical
approach is to compensate such non-linear dependencies using
the information that is already encoded in the ANF firing rates.

The MSO exhibits a distinct tonotopic organization along its
dorsoventral axis. As the neuronal populations along the axis
differ in their characteristic frequency (Guinan et al., 1972),
consequently, a given ITD decoder can specialize on decoding
of ITDs within a specific frequency range. In addition, the non-
linear and time-dependent output of the peripheral hearing
process can be compensated by using direct knowledge about the
firing rates of the ANF. However, implementing such corrections
would require designing a complexmulti-dimensional correction
function. Artificial neuronal networks (ANN) have been proven
to be quite successful in learning the behavior of highly nonlinear
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FIGURE 5 | (A) The 1R function (calculated for 100ms bins) of 500 MSO

neurons in response to a two second long 250Hz pure tone with ITDs ranging

from 0 to ±0.3ms show a strong influence of the peripheral hearing model’s

adaptation on the MSO model output. (B) The same data as in (A) but shown

in form of ITD-1R functions. Every function corresponds to one point in time

evaluated for 20 ITDs in the range from −1 to 1 ms. The difference in the slope

of these functions illustrates that adaptation influences the sensitivity of the

linear-decoder . Normalization with respect to the maximal rate of each

function could compensate for this influence (overlay) (C) The model displays

strong variations in sensitivity with sound frequency and sound level.

systems (Almeida, 2002), hence, they provide an appealing
alternative to tedious manual construction of a correction
function.

2.3. Artificial Neuronal Network Predictor
We used a small multi-layer perceptron (MLP) to predict ITD
values from the output of the SNN model by means of non-
linear regression analysis. The regression is based on the average
firing rates across the neuronal populations and predictions are
calculated separately for each frequency band and time frame.
The MLP was implemented using seven input nodes, one hidden
layer with twenty nodes and two output nodes (for details see
section 4). One of the MLP output nodes was used for the
prediction task, while the second output was used to classify
the reliability of the prediction based on the firing rates. This
was deemed necessary to omit predictions for parts of the
input signal, which did not contain enough energy in the given
frequency band to enable robust predictions based on sufficient
spiking activity.

The inputs to the MLP were designed to consist of the firing
rates from the MSO of the left and right hemisphere and the
characteristic frequency of the neuron population (see Figure 6
for a schematic of the networks in- and outputs). As one of the
main tasks of the predictor was to compensate for the influence

FIGURE 6 | The ANN predictor was implemented using seven input nodes,

one hidden layer with twenty nodes and two output nodes. Inputs denoted

with (t) are firing rates within a given time period (typically 30ms) for which the

ITD should be predicted, while the ones denoted with (t-30ms) are firing rates

of the preceding time frame.

of variations in the peripheral hearing model output, the MLP
was also provided with a monolateral input of the ANF firing
rate. All firing rates were provided as an average value computed
over a predefined time period of 30ms. This duration was chosen
as it offered reasonably high temporal resolution and ensured
that several periods of the phase locked input were included.
In addition to the rates within the given time frame, we also
provided firing rates of the previous time frame which reduced
the noise in the predictions by effectively doubling of the time
span that the network can employ in its predictions. The MLP
was trained on 300ms long pure tones (see section 4) covering
the frequency range from 125 to 1,000 Hz so that predictions can
be obtained for any stimuli within that range. For the following
experiments we calculated predictions for 13 logarithmically
spaced frequencies between 125 and 1,000 Hz.

Figures 7A–C compares the results of the ANN-predictor
with those of the linear-decoder for an amplitude-modulated
tone with 400Hz carrier frequency and a modulation rate of
2Hz. Since amplitude modulation is encoded in the firing rate of
the ANF, it is also exhibited in the output of the linear-decoder
(Figures 7A,C). On the other hand, the predictions from the
ANN (Figure 7B) showed only minor deviations at the on-
and offsets of each modulation cycle while largely compensating
the strong onset response introduced by ANF’s adaptation.
Figure 7B shows only such predictions that the ANN classified
to be reliable. In case of the amplitude-modulated signal, the
frequency bands for which the ANN could predict ITDs are
dependent on the phase of the modulation.

Omitting unreliable predictions enables the calculation of
a general prediction across frequency bands. In case of the
linear-decoder, zero output can correspond to two conditions—
zero ITD and no signal. The employed method of omitting
unreliable estimates is especially important for applying the ANN
predictor to more complex signals that have several frequency
components because the omission enables the ANN to predict
ITDs without prior knowledge about the signal’s frequency
content. Figures 7D–F show examples of the ANN-predictor
applied to a linear chirp. To demonstrate the ability of the
predictor to follow changes both in frequency as well as in
ITD, an additional phase shift was applied to the left ear
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FIGURE 7 | (A) Results of the linear-decoder for an amplitude-modulated tone with 400Hz carrier frequency and a modulation rate of 2Hz presented with an ITD of

200ms. 1R showed strong modulation with the modulation frequency of the sound as well as an influence of ANF adaptation (B) Results of the ANN-predictor

predictor for the same signal as in (A). The ANN was able to correct for the variations conveyed by the ANF inputs and to provide a stable prediction within the

frequency bands from 250Hz to 595Hz. (C) The output of both, the ANN-predictor and the linear decoder for the amplitude modulated signal over time. Red: ANN

predictions for the 420Hz channel which was the closest to the stimulation frequency. Black: Mean over all predictions that were classified to contain a useful signal.

Gray: Result of the linear-decoder in the 420Hz frequency band. (D,E) Same plots as in (A,B) but for a linear, one-second long chirp ranging from 125 to 1 kHz where

the ITD changed from −0.4 to 0.4ms. (F) The ANN-predictor was able to follow the change in frequency as well as in ITD, deviating from the true value only at the end

of the signal. (G–I) The ANN-predictor applied to a speech signal (German sentence “Britta gewann drei schwere Steine”) taken from the OLSA sentence test

(Wagener et al., 1999).

signal. This phase shift was chosen to be proportional to an
ITD-value that varied linearly from +300 to −300 µs. By
calculating a cross-frequency prediction for every time frame,
the ANN-predictor was able to follow the change in frequency
as well in ITD (Figure 7C) deviating from the true value only
in the last two time frames. As a final example, we show the
ANN-predictor applied to a speech signal with a static ITD of
200 µs (Figures 7G–I). Again, the across-frequency estimation,
combined with the omission of unreliable predictions allows the
ANN-predictor to offer an accurate estimate of the ITD for the
whole signal.

3. DISCUSSION AND CONCLUSION

In this study, we presented a novel binaural model and
used it to detect ITDs in arbitrary sound signals. In contrast
to previous binaural models that used a phenomenological
modeling approach (Pulkki and Hirvonen, 2009; Dietz et al.,
2011), this study used biophysical neuron models based on
the current knowledge about the function of the mammalian
MSO. Some previous studies implemented similar SNN but
either used a simplified auditory periphery and thus limited
the application of the model to pure tones (Brughera et al.,
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2013), based their model on topologies that disagree with newer
physiological studies (Glackin et al., 2010) or focused on ITDs in
the stimulus envelope (Wang et al., 2013). Using two different
extraction methods, we found that applying the opponent-
coding mechanism to the output of the model enabled a robust
extraction of ITDs even in complex signals.

3.1. Sensitivity of the Linear-Decoder
We have shown that a simple linear-decoder can detect ITDs
from the outputs of the left and right MSO models with a
sensitivity that reflects human performance in a discrimination
task and depended on sound frequency. The sensitivity was
mainly determined by the maximum firing rate of the MSO
at a given frequency. Our MSO neurons showed a peak at
approximately 300Hz. To our knowledge, no such systematic
variation of firing rate with frequency has been described,
but Yin and Chan (1990) noted a similar characteristic in
the response of high-frequency MSO neurons. They recorded
the response of neurons that phase-locked to the envelopes
of amplitude-modulated tones and also showed a peak in
the response at a modulation rate of 300Hz. In the model,
the responses were influenced by the subthreshold resonance
of MSO neurons, which is due to the dynamics of the
low threshold potassium current (Mikiel-Hunter et al., 2016).
This resonance would also explain the results by Yin and
Chan (1990). An explanation why no similar result in the
response of low-frequency MSO neurons has been described
is that these measurements are limited to responses derived
at the neurons’ best-frequency so that any systematic variation
between neurons with different best-frequencies could be
masked by variations in the overall response rate between
neurons.

It should be noted that the sensitivity of the linear-decoder
cannot be directly compared to results from psychoacoustical
experiments, as the model only accounts for the lowest stages of
the neuronal ITD-detection circuit in gerbils. In other words, it
was not the goal of this study to replicate any psychophysical data
per se, but rather to investigate the performance of the model
on its own. Nevertheless, the model could be easily tuned to
replicate psychoacoustic threshold data by adjusting the size of
the neuronal population to fit human or animal data.

3.2. Influence of Missing SBCs on the
Output of the Model
In the presented model network, MSO neurons received direct
excitatory input from ANFs, while in the physiological case, they
receive excitatory inputs from SBCs. SBCs have been found to
increase the precision of phase-locking in comparison to ANFs
(Dehmel et al., 2010; Künzel et al., 2011). The improvement
shown in this study is rather small when compared to the
large improvement that has been shown for GBCs (Joris et al.,
1994). In spite of this Improvement, the precision is not much
higher than that of the ANF model used in this study, and thus
no further improvement in phase locking seemed necessary. A
second function of SBCs could arise from non-monotonic rate-
level functions due to an inhibitory sideband (Künzel et al.,
2011; Keine and Rübsamen, 2015). Including a model that

would reproduce the non-monotonic rate-level functions may
also change the output of the MSO model, specifically, the
behavior shown in Figure 5C. This change in the MSOs rate-
level function may also be compensated by the ANN, so that
the additional feature would not change the message of this
paper, leading to the decision to neglect the influence of SBCs.
It was also suggested that the slow GABA-ergic inhibition on
the level of the SBC may support sound localization of complex
sounds by acting as a gain control mechanism (Keine et al.,
2016, 2017), this would be interesting to investigate in the
context of the presented model but is outside of the scope of
this paper.

3.3. Performance of the ANN-predictor
The model output showed a strong dependence on both
frequency and level of the input signals. Previous models that
employed the opponent-coding principle constructed the output
of their models to be self normalizing (Pulkki and Hirvonen,
2009; Takanen et al., 2014) or directly extracted the phase
from the left and the right input signals using gammatone
filters (Dietz et al., 2011). While both methods are valid in
view of a phenomenological modeling approach, they can not
be easily applied to a neuronal network as presented in this
study. We instead showed that a multilayer perceptron could
be trained to compensate for frequency and level dependencies
and to predict ITD values from the firing rate outputs of the
spiking neuron network. By using an ANN to compensate for
variability of the MSO output, this study neither makes any
assumption about the exact location in the ascending auditory
pathway, at which this compensation takes place, nor speculates
about the exact mechanism underlying this compensation. We
rather show that a very basic ANN containing only twenty
hidden nodes in one layer is able to perform the compensation.
The ANN-predictor was also shown to provide accurate ITD
predictions for complex signals and for time-variant ITDs,
even though it was trained on pure tones only. This suggests
that the necessary compensation is independent of context.
Psychoacoustic studies have shown that sound localization
performance depends on the duration (Tobias, 1959) and
bandwidth (Trahiotis and Stern, 1989) of the stimulus indicating
an integration of information across frequency and time. In
this study, the ANN predicted ITDs independently for each
frequency and time frame. While integration over the frequency
bands was implemented by calculating the mean prediction
across all frequencies, no integration over time apart from
the calculation of 30ms averages was performed. Hence, the
prediction capability is expected to further improve if the output
of the model would also be integrated over time.

While the goal of this study was to evaluate the models’
performance on the detection of ITDs, the prime interest of
our binaural hearing lies in estimating the direction of a sound
source instead of the ITD value. Since low-frequency ITDs
between the ear canal signals provide a salient cue about sound
source direction, reliable prediction of the ITDs indicates that
the azimuthal sound direction may also be accurately predicted.
To that end, the ANN could also be trained to directly predict
azimuthal angles instead of ITDs.
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4. METHODS

4.1. Topology of the Model
Both MSO and GBC neurons were modeled using single-
compartment, Hodgkin-Huxley-type models simulated in
python using the package Brian (Goodman, 2009). MSO as
well as GBCs received direct excitatory input from ANF fibers,
which were modeled using the model of Zilany et al. (2014),
implemented in the python library cochlea (Rudnicki et al.,
2015). Each population of neurons (ANF, GBC, MSO) always
consisted of 500 independent neurons in each hemisphere. The
frequency channel of the neuron population was set by selecting
the appropriate critical frequency of the peripheral hearing
model.

4.2. Spiking Models
While this study does not discuss the effect of single ionic
currents, it makes use of Hodgkin-Huxley-type models, as
simpler neuron models like the leaky integrate-and-fire neurons
neglect the influence of ion channel dynamics. Especially the shift
of best-ITD toward contralateral-leading ITDs has been shown
to be influenced by both low-threshold potassium (Myoga et al.,
2014) and hyperpolarizing ionic currents (Baumann et al., 2013),
both of which are included in this model.

MSO neurons were simulated using single-compartment,
Hodgkin-Huxley-type models. The dynamic of their membrane
potential Vm is given by the following equation:

dVm

dt
= −

1

Cm
(Ileak + INa + IK (1)

+ Ih + Isyn,e + Isyn,i),

where Cm is the membrane capacitance, Ileak is the
leakage current, INa, IK , Ih are the sodium, potassium and
hyperpolarizing ionic currents and Isyn,e, Isyn,i are the excitatory
and inhibitory synaptic currents respectively. All ionic currents
were defined as follows:

Ix = ĝxa
mbn(Vm − Ex), (2)

where ĝx and Ex are the maximal conductivity and Nernst
potential for the respective ion species x. The gating variables
am and bn determine the channel kinetics. Equations for these
variables can be found in the original publication: The sodium
dynamics were implemented according to Rothman and Manis
(2003) and were corrected for a body temperature of 37 ◦C
(k = 3(T−22)/10). To gain realistic spike shapes as well as a
spiking threshold, the activation kinetics had to be sped up by
a factor of four. Potassium currents were modeled with the
equations for the low threshold channels given by Khurana et al.
(2011) with the steady-state inactivation z∞ set to 0.4. The
hyperpolarizing currents were modeled using the equations for
dorsal MSO neurons from Baumann et al. (2013). We used a
membrane capacity of 70 pF (Couchman et al., 2010) and the
ionic conductivities were adjusted to fit the steady state and peak
membrane resistances to values measured by Scott et al. (2005).
Use of these values resulted in spiking thresholds close to the
data published by Couchman et al. (2010). All parameters are

TABLE 1 | Parameters for the MSO model.

Symbol Value Symbol Value

Cm 70pF Ei −70mV

Erest −55.8mV ĝNa 3.9 µS

ENa 56.2mV ĝK 650 nS

EK −90mV ĝh 520 nS

Eh −35mV ĝleak 13 nS

Ee 0mV

summarized in Table 1. GBCs and their synaptic inputs were
modeled using the neuron model with 40 non-depressing ANF
inputs as proposed by Rudniki and Hemmert (2017).

4.3. Synaptic MSO Inputs
Each MSO neuron received six excitatory inputs from ANFs of
each hemisphere. The excitatory post-synaptic currents (EPSCs)
were modeled as an alpha function:

Isyn,e =
t · e1−t/τ

τe
(Vm − Ee). (3)

Inhibition was provided via three GBC inputs per hemisphere.
The inhibitory post-synaptic currents (IPSCs) were modeled
using a bi-exponential function:

gi = ĝi
τ2 · (e

−t/τi,1 − e−t/τi,2 )

τi,2 − τi,1
· (Vm − Ei). (4)

Both, excitatory and inhibitory timeconstants were fitted to
recordings by Couchman et al. (2010) yielding values of τe =

0.17ms and τi,1 = 0.14ms, τi,2 = 1.6ms.

4.4. Sound Signals and Data Analysis
All sound signals were generated in Python at a sampling rate
of 100 kHz as this sampling rate is required by the peripheral
hearing model (Zilany et al., 2014). In the case of the speech
signal, the sound was up-sampled from 44.2 to 100 kHz. Each
sound signal was gated using a 20ms long raised-cosine function
and 20ms of silence was attached to the beginning and the end
of the signal. The stimuli were presented at a sound pressure
level of 50 dBSPL if not stated otherwise. ITDs were defined as the
difference in the arrival times between the left and the right ears,
with positive values corresponding to right leading sounds. To
archive sub-sample ITDs, we generated the corresponding delays
between the two signals by applying a fast Fourier-transform
(FFT), adding the equivalent phase angles, which resulted from
the delays, and reverse FFT back to time domain signal.

ITD-rate functions were fitted using a modified Gaussian
function as shown in (5) were τ is the ITD value, Rmax the
maximum firing rate,W defines the width of the curve and B the
location of the maximum (best-ITD).

R(τ ) = Rmax · e
−(τ−B)2

W2 + Roffset (5)

Spiking data were analyzed using the Thorns toolbox for python.
Firing rates were always given as the average response of the
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whole population. To compensate for the intracochlear delay of
the inner earmodel, we only considered action potentials arriving
25ms after signal onset and up to 25ms after the end of the signal.

4.5. Calculation of Just Noticeable
Differences
JNDs for our model were calculated by presenting two stimuli
with ITDs located symmetrically around zero—i.e., −τ/2 and
τ/2. The difference between the two ITD was denoted 1ITD .
We calculated independently, the difference in firing rate at both
hemispheres (1R ) for each of the presented signals. The two
values were then compared to each other. If the 1R value for
the negative ITD signal was larger than the one for the positive
ITD signal, the trial was considered as a correct prediction. Each
1ITD was presented 100 times and the fraction of correct trials
was calculated. To calculate the JND, we presented 20 logarithmic
arranged 1ITD in the range from 2 to 800 µs. The resulting
fraction correct values were then fitted with a weibull function.
The JNDwas defined as the ITD at which 75% correct predictions
were achieved.

4.6. The Artificial Neural Network Predictor
The ANN network was implemented using the Theano package
for Python. The ANN layout was that of a classic multilayer
perceptron containing an input layer with seven nodes, one
hidden layers with twenty nodes and an output layer with two
nodes (see Figure 6). Both the hidden and the output layer
consisted of non-linear nodes with a tanh(x) activation function.

The predictor was designed to make predictions for every
30ms section of the signal. For this, average firing rates for
both MSO hemispheres and for the ANF of one hemisphere
were calculated in bins of 30ms. The model firing rates of MSO
and ANF as well as the best frequency of these neurons were
given as the ANN inputs. To provide some history which can be
used to compensate for on- and off-sets, the predictor was also
provided with the firing rate in the previous 30ms bin. Using this
information, the ANN gave a prediction of the ITD value in the
current bin and a classification whether the presented bin actually
contained a signal (signal exists).

The network was trained on the MSO model output from
2,000 different 300ms long sine tones which were padded by

60ms of quiet. For each tone the level, frequency as well as
ITD were randomly chosen to lie between 30 and 70 dBSPL, 125
and 1,000 Hz, and ±500 µs, respectively. The target data for the
training set consisted of the ITD value of the corresponding input
signal, as well as the classification whether the current time frame
contained a signal or not. The target for the classification was
set to −1 for the two time bins at the start and at the end of
each signal as those contained silence. It was set to 1 for all
other bins. The set of training signals was then split into three
subsets, a training set containing 80% of the data, a validation
and test set both containing 10% of the signals. The ANN was
trained on the training set, until the improvement on the mean
squared error function for the validation set stayed consistently
below 0.01%.

5. DATA SHARING

The neuronal model presented in this paper will be made
available on request as well as through the GitHub Repository
https://github.com/timtammittee/mso_model_frontiers2017.
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Neuromorphic Audio Spike Streams
Jithendar Anumula*, Daniel Neil †, Tobi Delbruck and Shih-Chii Liu

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

Event-driven neuromorphic spiking sensors such as the silicon retina and the silicon

cochlea encode the external sensory stimuli as asynchronous streams of spikes across

different channels or pixels. Combining state-of-art deep neural networks with the

asynchronous outputs of these sensors has produced encouraging results on some

datasets but remains challenging. While the lack of effective spiking networks to process

the spike streams is one reason, the other reason is that the pre-processing methods

required to convert the spike streams to frame-based features needed for the deep

networks still require further investigation. This work investigates the effectiveness of

synchronous and asynchronous frame-based features generated using spike count

and constant event binning in combination with the use of a recurrent neural network

for solving a classification task using N-TIDIGITS18 dataset. This spike-based dataset

consists of recordings from the Dynamic Audio Sensor, a spiking silicon cochlea sensor, in

response to the TIDIGITS audio dataset. We also propose a new pre-processing method

which applies an exponential kernel on the output cochlea spikes so that the interspike

timing information is better preserved. The results from the N-TIDIGITS18 dataset show

that the exponential features perform better than the spike count features, with over 91%

accuracy on the digit classification task. This accuracy corresponds to an improvement

of at least 2.5% over the use of spike count features, establishing a new state of the art

for this dataset.

Keywords: dynamic audio sensor, spike feature generation, exponential kernels, recurrent neural network, audio

word classification

1. INTRODUCTION

The event processing methods for the asynchronous spikes of event-based sensors such as the
Dynamic Vision Sensor (DVS) (Lichtsteiner et al., 2008; Berner et al., 2013; Posch et al., 2014;
Yang et al., 2015) and the Dynamic Audio Sensor (DAS) (Liu et al., 2014; Yang et al., 2016) fall
roughly into two categories: either by the use of neural network methods or machine learning
algorithms. These methods have been primarily developed for event-based vision sensors and with
the availability of DVS datasets (Orchard et al., 2015; Serrano-Gotarredona and Linares-Barranco,
2015; Barranco et al., 2016), performances of these methods can be compared.

In recent years, the field of deep learning has seen major developments leading to networks that
achieve state-of-art performance on complex tasks such as speech recognition and visual object
recognition (Schmidhuber, 2014; LeCun et al., 2015). With event-based sensors finding increasing
relevance in event-driven artificial sensory or cognitive systems, there has been a new effort in
interfacing these sensors with these powerful machine learning networks. However, deep learning
frameworks typically use frame-based data. To interface the output of the event-based sensors to the
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deep network, there are two alternative methods. The first
method is to present the spikes to spiking deep networks as
has been reported (Farabet et al., 2012; Pérez-Carrasco et al.,
2013; Zhao et al., 2015; Esser et al., 2016; Amir et al., 2017).
By using conversion methods that convert pre-trained standard
deep networks into equivalent-accurate spiking networks (Diehl
et al., 2015; Rueckauer et al., 2017) or by using the training
methods from deep learning on networks that capture the
underlying parameters of the spiking neuron (O’Connor et al.,
2013; Stromatias et al., 2015), we are starting to see spiking
deep networks that can be competitive with the standard deep
networks.

Another method is to create either synchronous or
asynchronous feature frames from the spikes before presentation
to the time-stepped deep networks. This method has seen success
in the field of neuromorphic vision primarily, as pre-processing
methods produce frames from event-driven sensor data to
use as inputs to deep networks for classification tasks (Moeys
et al., 2016; Neil and Liu, 2016; Lungu et al., 2017). Although
these pre-processing methods are outperformed on standard
classification tasks by the methods using the traditional frame
based sensors, they can help reduce computation by using the
data driven nature of the sensors and processing the networks
only when the sensor produces events.

This work aims to methodically examine existing and novel
spike pre-processing methods for processing the output of
the DAS for use with deep networks and machine learning
algorithms, in particular for real-time applications. We consider
two existing feature extraction methods that generate feature
frames using spike counts within a fixed time bin and constant
spike count (event) bins respectively. We also propose a
new pre-processing method that generates feature frames by
applying an exponential kernel to each event. We compare
the performances of the different pre-processing methods by
combining them with deep learning recurrent neural networks
which include gated units (Chung et al., 2014; Neil et al.,
2016) and testing the networks on two audio classification tasks
(isolated recordings and connected streams) using a recorded
audio spike dataset called N-TIDIGITS18. This dataset consists
of spike recordings from a Dynamic Audio Sensor in response to
the TIDIGITS (Leonard and Doddington, 1993) audio dataset.

2. METHODS

This section presents a description of the hardware cochlea
sensors, details the feature generation methods, including the
proposed exponential feature generation method and briefly
describes the deep network architectures used in this study.

2.1. Dynamic Audio Sensor
The Dynamic Audio Sensor is a binaural silicon cochlea
system, with each ear connected to a set of 64 bandpass
filters whose center frequencies are logarithmically distributed
from approximately 50 Hz to 20 kHz. The events are then
asynchronously generated from each of the filters. A silicon
cochlea sensor using half wave rectification for the generation
of events is the CochleaAMS1b (Chan et al., 2007) and the

CochleaAMS1c (Liu et al., 2014), while a cochlea sensor using
asynchronous delta modulation for the generation of events
is the CochLP (Yang et al., 2016). The CochleaAMS1c sensor
is an improved design of the CochleaAMS1b. Each channel
of the CochleaAMS1b and CochleaAMS1c has four neurons
and each neuron implements a different threshold level for
spike generation. In many of the experiments, only the events
from a single neuron of one ear are used. An example output
for the CochleaAMS1c is shown in Figure 1. The methods
evaluated in this work were carried out on recordings from the
CochleaAMS1b and CochleaAMS1c, while they will be evaluated
on CochLP in the future.

2.2. Feature Extraction Methods
The event data from the cochlea sensors can be converted to
frame-based features through multiple methods. One commonly
used feature type is the Spike Count (SC) feature (Zai et al.,
2015; Anumula et al., 2017), that is generated by the creation of
a histogram across the frequency channels of the events within
a time window. In the case of the DAS, the feature vector for
each time frame is, at maximum, a 64-length vector where each
element consists of the number of events in that frequency
channel. The two main variants of SC features are time-binned
and event-binned features. Their formulation is described below.

2.2.1. Raw Spikes
An audio event stream can be mathematically represented as

ei =
[

ti, fi
]

, i ∈ N (1)

where ei is the ith event from the frequency channel fi in the event
stream at time ti. The fi can range between 1 and Nc where Nc is
the number of frequency channels in the sensor. Also note that
the events are time ordered, i.e., for i < j, ti ≤ tj. These raw
spike information can be processed directly as a sequence by the

FIGURE 1 | CochleaAMS1c spike output example. The y-axis indicates the 64

frequency channels of the sensor with lower frequency channels at the top.

The spikes are in response to the spoken digit sequence “5-8-9-9-2” from the

speaker “IM” in the TIDIGITS dataset. The five digits in the sequence can be

clearly seen to be apart with significant gaps between them in the encoded

sample above. This example also demonstrates the data driven nature of the

sensor where it outputs events only when there’s a stimulus in the environment.
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recurrent networks. Such a method is not usually feasible though
because of the inability of the standard recurrent networks to
process longer sequences, but they can be efficiently processed
through the Phased LSTM, a recently introduced gated recurrent
network architecture (Neil et al., 2016).

2.2.2. Time-Binned Spike Count Features
For the generation of time binned Spike Count features, the
frame duration for generating the feature is of fixed time
length. Time-binned SC features have been used for the speaker
identification task using spike recordings generated from the
TIMIT dataset (Liu et al., 2010; Li et al., 2012), the YOHO
dataset (Chakrabartty and Liu, 2010), and real-world DAS
recordings (Anumula et al., 2017).

The time-binned SC features Ftb for a time window length of
Tl are defined as follows:

Ftbj
(

f
)

= card({ei | Tl · (j− 1) ≤ ti < Tl · j, fi = f }) (2)

where Ftbj is the jth frame of the features, card() is the cardinality

of a set, · is the standard multiplication operator, and f is the
position of the frequency channel.

Figure 2 shows how the time-binned SC features are
generated from the spikes.

2.2.3. Event-Binned Spike Count Features
Event-binned SC features consist of frames in which there are a
fixed number of events. Unlike time-binned spike count features,
event binning is a data driven approach and eliminates the
need for input normalization. These features have been used for
both the DVS and the DAS. In the robot predator-prey scenario
in Moeys et al. (2016), the DVS retina data is integrated into 36×

FIGURE 2 | Generation of time-binned Spike Count features. Three channels

are shown in this example. The fixed length time windows used for binning the

events are non overlapping and of unit time length. In frame 2 , there is 1 event

in channel 1, 1 event in channel 2 and 3 events in channel 3, and hence the

corresponding feature is (1, 1, 3).

36 frames as 2D histograms obtained by integrating 5,000 events
in 200 possible gray level values. Since the DVS frames are sparse,
active DVS frame pixels accumulate about 50 events. Constant-
event frames from the spiking TIMIT dataset have also been used
together with a Support Vector Machine Classifier in a speaker
identification task (Li et al., 2012).

The event-binned spike count features Feb are defined as
follows. The jth frame is given by

Febj
(

f
)

= card({ei | E · (j− 1) ≤ i < E · j, fi = f }) (3)

where card() is the cardinality of a set, · is the standard
multiplication operation, f is the position of the frequency
channel and E is the number of events binned into a single frame.

Figure 3 shows how the event-binned spike count features are
generated from the spikes.

2.2.4. Comparison of Time Binning and Event Binning
Although both methods capture the distribution of the events
across the frequency channels, there is a difference between the
features generated from these methods. The main difference
is that the time window used for time binning is of constant
length, while the time window of the event-binned features are
of varying lengths. The lengths depend on the input event rate
over time. This can be seen in the examples of time-binned and
event-binned SC features for a single word as shown in Figure 4

and for a sentence as shown in Figure 5. In Figure 5, it can
be seen that the information about silences in the sentence is
temporally smeared in the event-binned features. This property
is not desirable as it could be a disadvantage when trying to
extract information that depend on the silence periods within the

FIGURE 3 | Generation of event-binned Spike Count features. Three channels

are shown in this example. Every time window frame used for binning the

events has 6 events and there is no overlap of events between consecutive

time window frames. In the second time frame, the 6 events are distributed as

1, 1, and 4 across channels 1, 2, and 3, respectively, hence the corresponding

feature is (1, 1, 4).
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FIGURE 4 | Spike Count features for a digit sample “2”. The time window length for time binning in (A) is 5 ms and the number of events in a single frame for event

binning in (B) is 25. There does not seem to be a clear advantage of choosing event binning over time binning when it comes to individual digits. Note that event

binning for this example produces fewer frames compared to the time binning.

FIGURE 5 | Spike Count features for a digit sequence “5-8-9-9-2”. The time window length for time binning in (A) is 5 ms and the number of events in a single frame

for event binning in (B) is 25. The event binning method does not completely encode the timing information in the sample. Also, the silence periods between the digits

is absent in the event-binned features.

sentences, unless silence segmentation is done before generating
the features.

2.2.5. Data-Driven Time-Binned Spike Count Features
Further, a data-driven time-binning method is introduced and
employed in this work. In contrast to the previous time-binned
SC features described in section 2.2.2, a feature frame is not
processed if no spikes occurred within the corresponding time
bin. In addition, this method specifically uses a brief time-bin
length. This allows fewer inputs compared to time-binned spike
counts (as a fixed-size vector is either presented or skipped), and
far fewer inputs to be presented to the network compared to
sequentially presenting raw events while maintaining much of
the time resolution. Here, using a short time-bin length allows a
high degree of spike time accuracy to bemaintained, as individual
spikes have correct timestamps discretized to the bin length.
These data-driven time-binned SC features Fd can be defined as

Fdj = Ftbi , where i is such thatmax
(

Ftbi

)

> 0 and

card
(

{k | k ≤ i,max
(

Ftbk

)

> 0}
)

= j (4)

2.2.6. Exponential Features
Finally, we introduce a real-valued feature representation that is
more amenable to training deep neural networks. This feature is
created by convolving each spike with an exponential kernel, that
captures the timing information carried by the spikes and has
been used in various models, for e.g., Abdollahi and Liu (2011)
and Lagorce et al. (2015, 2016). Exponentials are frequently used
in neuronal models such as the exponential integrate-and-fire
model (Brette and Gerstner, 2005). Although other kernels such
as the Gaussian kernels used in the analysis of neuronal firing
patterns (Szűcs, 1998) can also be used, we restrict our study here
to exponential kernels because they can be applied easier to create
real-time features. The resulting output after the convolution
is sometimes treated as a real-valued time surface as described
in Lagorce et al. (2016). These exponential features have also been
used in classification tasks such as image classification (Tapson
et al., 2013; Cohen et al., 2016). We first describe the creation of
the exponential features and then the binning methods used on
these features.
For an audio event stream defined as in Equation (1), the
exponential feature Fei for an event ei is constructed by first
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defining a time context Ti for the event. The time context is
an Nc dimensional vector where Nc is the number of frequency
channels in the audio sensor and is defined as

Ti

(

f
)

= max
j≤i

{

tj | fj = f
}

(5)

where f is the position of a frequency channel. The exponential
feature for an event is then defined as

Fei
(

f
)

= e−(ti−Ti(f ))/τ (6)

An illustration describing the generation of the exponential
features for the events is shown in Figure 6.
Once these exponential features are created, the events are binned
into time window frames either through time binning or event
binning like in the SC features, and the average of the exponential
features for the events in the time window frame is used as the
exponential feature for the frame. For the rest of the paper, we use
the term “exponential features" to mean exponential features for
a frame. Examples of time binning and event binning exponential

FIGURE 6 | Generation of exponential features for events. Three channels are

shown in this example. The time constant parameter t used for generating the

features is 1 time unit. The events streams are shown in (A), the zoomed-in

picture of the events in the second frame are shown in (B), and the

exponential features for this frame is shown in (C). Consider the event at time

t = 2.2, labeled S1. In channel 1, the closest event in time to the current event

occurred 0.3 time units before, and thus the corresponding feature value for

the channel 1 in the exponential feature vector for event S1 is e−(0.3/1).

Similarly for channel 3, the closest event in time to the current event occurred

0.7 time units before, and thus the corresponding entry for channel 3 in the

exponential feature for S1 is e−(0.7/1). For channel 2, since the current event is

at channel 2, the exponential feature value at channel 2 is e−(0/1)=1.

features for a single word are shown in Figure 7 and for a
sentence are shown in Figure 8.

For a real-time implementation, the exponential features are
computed recursively as follows.

Fei
(

f
)

=

{

e−(ti−ti−1)/τFei−1

(

f
)

, if f 6= fi

1, if f = fi
(7)

With Fe0 initialized to a zero vector, it can easily be seen
that the above implementation corresponds to the definition in
Equation (6).

2.3. Recurrent Neural Networks
Convolutional Neural Networks are typically used in vision
classification tasks and have been successfully used together
with the Dynamic Vision Sensor (Moeys et al., 2016). These
networks have a feedforward architecture where the neurons in
one layer only drive the neurons in the upper layers. However,
recurrent neural networks (RNNs) in which neurons in one
layer recurrently receive input from neurons in the same layer,
are more generally used when the inputs consist of temporal
sequences.
Given a sequence x = (x1, x2, . . . , xT), the RNN layer updates its
hidden state ht with t ∈ {0, 1, 2, . . . ,T}, with h0 being the initial
state and ht = φ

(

ht−1, xt
)

, where φ is a non-linear function.
Generally, the update function for the hidden state is of the form
ht = ϕ

(

Uht−1 +Wxt
)

, where U andW are connection matrices
of appropriate sizes and ϕ is an activation function such as a
logistic sigmoid or the hyperbolic tangent (Chung et al., 2014).
Training RNNs using gradient descent to learn long term
time dependencies in the input is difficult because of the
vanishing/exploding gradient problem (Bengio et al., 1994). In
order to counter this problem, the Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) neuron model was
proposed. This model has an activation function that is managed
by different gates acting like a memory control for the neuron.
The subsequently proposed Gated Recurrent Unit (GRU) (Cho
et al., 2014) model performs well on similar tasks and has the
advantage of using fewer parameters. In our experiments, we use
both GRU and LSTM RNNs and the following sections introduce
these models.

2.3.1. Long-Short Term Memory
The form of LSTM used in this work derives from Graves (2013):

it = σi(Wxixt +Whiht−1 + wci ⊙ ct−1 + bi) (8)

ft = σf (Wxf xt +Whf ht−1 + wcf ⊙ ct−1 + bf ) (9)

ct = ft ⊙ ct−1 + it ⊙ σc(Wxcxt +Whcht−1 + bc) (10)

ot = σo(Wxoxt +Whoht−1 + wco ⊙ ct + bo) (11)

ht = ot ⊙ σh(ct) (12)

The introduction of gating functions in Hochreiter and
Schmidhuber (1997) differed from traditional RNNs, and allowed
substantially easier training for recurrent networks. The gate
activation vectors, it , ft , ot , represent the input, forget, and output
gates respectively. Each neuron stores an internal cell activation
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FIGURE 7 | Exponential feature examples for the same word as in Figure 4. The time window length for time binning in (A) is 5 ms and the number of events in a

single frame for event binning in (B) is 25. One main difference between the spike count features and the exponential features is that the exponential feature values are

in the range between 0 and 1, while the spike count feature values depend on the volume of the spikes in the time window.

FIGURE 8 | Exponential feature examples for the same sequence as in Figure 5. The window length for time binning in (A) is 5 ms and the number of events in a

single frame for event binning in (B) is 25.

vector ct , while the input and hidden state vectors are xt and ht ,
respectively. A sigmoidal nonlinearity, y = 1/(1+e−x), is applied
to constrain the gates to lie between 0 and 1, and applied to the
gates with σi, σf , and σo for the input, forget, and output gates.
For these gates, each gate has a weight parameter for the input
x and the hidden state h, resulting Wxi and Whi, Wxf and Whf ,
Wxo andWho for the input, forget, and hidden gates, respectively.
Additionally, each gate has a bias bi, bf , and bo for the input,
forget, and output gates. The⊙ notation signifies an elementwise
(Hadamard) product, implying that each cell state ct is a linear
interpolation between the previous cell state (controlled by ft)
and the new cell state (controlled by it). Finally, the cell state is
transformed by the output gate ot to produce a new hidden state
ht . Optionally, peephole connections, Gers and Schmidhuber
(2000)wci,wcf , andwco, are commonly employed for the cell state
ct to further influence the input, forget, and output gates.

2.3.2. Gated Recurrent Units
Another commonly used gated architecture is the GRU
architecture. The primary difference compared to LSTM is the
removal of one gate, which results in faster training and execution
time while achieving approximately the same accuracy in most

tasks. The form employed in this work is the most common
implementation from Chung et al. (2014):

rt = σr(Wxrxt +Whrht−1 + br) (13)

ut = σu(Wxuxt +Whuht−1 + bu) (14)

ct = σc(Wxcxt + rt ⊙ (Whcht−1)+ bc) (15)

ht = (1− ut)⊙ ht−1 + ut ⊙ ct (16)

Similar to the above, there are the gate states rt and ut , referred
to as the reset and update gates, as well as a combination gate
and state ct called the candidate state. As above, each consists
of the application of a matrix multiplication of a weight vector
(Wxr , Wxu, Wxc) to the input (xt), as well as another matrix
multiplication of a weight vector (Whr ,Whu,Wxc) to the previous
hidden state (ht−1), for the reset, update, and candidate gates
respectively. For the two pure gates, these two terms are summed
with a bias (br and bu) and the logistic sigmoid nonlinearity
y = 1/(1+ e−x) is applied to constrain each gate to lie between
0 and 1. For the candidate state, the reset gate is applied
elementwise to the previous hidden state, and the bias bc is added
before the candidate state is transformed nonlinearly using the
same logistic sigmoid. Finally, the new hidden state ht is the result
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of a linear mixture of the update gate elementwise applied to the
candidate state, and the previous hidden state controlled by the
complement of the update gate.

2.3.3. Phased LSTM
The Phased LSTM model, which was introduced in Neil et al.
(2016), equips the LSTM model with the ability to process
irregularly-sampled continuous-time sequences through the
application of a novel time gate kt . This time gate, similar to
other gates, produces a continuous value between 0 and 1 but is
instead controlled by an external timing input. Each neuron has
independent, learnable timing parameters that allow the neuron’s
time gate to execute a rhythmic wake-sleep cycle over time.When
the time gate is open (close to 1), the neuron performs as a normal
LSTM neuron does; when the time gate closes (close to 0), the
neuron performs no updates until its next wake period. Other
neurons, however, can still inspect a sleeping neuron’s state.
When continuous time sequences are applied, the timestamp of
the event controls which subset of neurons are updated, and
permits calculations based on the rhythmic wake-sleep cycle of
the neurons in response timestamp itself.

Rigorously, the opening and closing of the gate is a periodic
oscillation controlled by three parameters: a period τ that
controls the duration, a shift s that applies a phase shift offset, and
an on ratio ron that determines the duration of the open period.
The time (khronos) gate kt can be calculated as:

φi,t =
(t − si) mod τi

τi
, ki,t =



























2φi,t

ron,i
, if φi,t <

1

2
ron,i

2−
2φi,t

ron,i
, if

1

2
ron,i < φi,t < ron,i

αφi,t , otherwise

(17)

The neuron index i indicates which parameters are neuron-
specific (φi,t , ki,t , si, τi, ron,i) and which are global (t, α). Here, φi,t

is introduced as an auxiliary variable to represent the percentage
of the phase within the rhythmic cycle, ranging from 0 to 100%.
There are three piecewise phases of the operation of the gate
functionally represented in Equation (17): an open and rising
phase (during the first half of ron), an open and falling phase
(during the second half of ron) and an off phase. The linear
slopes of the rising and falling phase have a constant gradient to
preserve strong gradient information, in the same manner that
allows ReLUs to train so well (LeCun et al., 2015). Further, note
a leak is applied during the off phase with analogy to the leaky
rectified linear unit (He et al., 2015) to permit the flow of gradient
information even when the neuron is off. However, after training,
the leak can be set to zero (i.e., α = 0) and thus truly off, so
no updates need be performed when the neuron is in the closed
or sleep phase of the cycle. This continuous-time equation is
defined at all time points t but requires no computation between
sampled data points, allowing irregularly-spaced points in time to
be effectively used within this framework as the neurons have an
explicit model of time. The LSTM equations from above can then
be rewritten to permit arbitrary time points j rather than timestep

indices, using a proposed cell state c̃j and proposed hidden state
˜hj controlled by the time gate kj:

ij = σi(Wxixj +Whihj−1 + wci ⊙ cj−1 + bi) (18)

fj = σf (Wxf xj +Whf hj−1 + wcf ⊙ cj−1 + bf ) (19)

c̃j = fj ⊙ cj−1 + ij ⊙ σc(Wxcxj +Whchj−1 + bc),

cj = kj ⊙ c̃j + (1− kj)⊙ cj−1 (20)

oj = σo(Wxoxt +Who + wco ⊙ c̃j + bo) (21)

˜hj = oj ⊙ σh(c̃j),

hj = kj ⊙ ˜hj + (1− kj)⊙ hj−1 (22)

The sparseness in time of computation (typically, with ron
set to 5%) allows this implementation to be far sparser
than traditional gated implementations in computation while
maintaining high performance. Furthermore, as timesteps are
no longer required and the neuron has an explicit model of
time, even raw spike events can be directly used with Phased
LSTM. For further information, refer to the formulation of
Phased LSTM in Neil et al. (2016) or one of its publicly-available
implementations1,2.

2.4. Datasets
This paper introduces the N-TIDIGITS18 dataset by playing the
audio files from the TIDIGITS dataset to the CochleaAMS1b
sensor. The dataset is publicly accessible at http://sensors.ini.uzh.
ch/databases.html. The dataset includes both single digits and
connected digit sequences, with a vocabulary consisting of 11
digits (“oh,” “zero” and the digits “1” to “9”). Each digit sequence
is of length 1–7 spoken digits. There is a total of 55 male and 56
female speakers in the training set with a total of 8,623 training
samples, while the testing set has a total of 56 male and 53 female
speakers with a total of 8,700 testing samples.

The entire dataset is used or a reduced version of the dataset
is used where only the single digit samples are used for training
and testing. In the single digits dataset, there are two samples
for each of the 11 single digits from every speaker, with a total
of 2,464 training samples and 2,486 testing samples. The N-
TIDIGITS18 dataset with all the samples was used to train a
sequence classification task while the digit samples were used to
train a digit recognition task. For most of our training, unless
specified, we only use events from one ear and one neuron.

2.5. Network Architectures and Training
Criterion
2.5.1. GRU/LSTM Architectures
Two network models were trained separately for the digit
recognition task and the sequence classification task. For the
digit recognition task, the network consists of 2 GRU layers
with 100 units each, followed by a fully connected layer of
100 units with a ReLU activation followed by a Softmax
classification layer. For the sequence classification task, each

1https://github.com/dannyneil/public_plstm
2https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/PhasedLSTMCell
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network consists of a fully connected layer of 100 units with SELU
activation (Klambauer et al., 2017) followed by 2 LSTM layers
of 100 units each followed by the final classification layer. The
recently introduced SELU activation helps with regularization
of the network by pushing the neuronal activations of the
corresponding layer to zero mean and unit variance without the
need for batch normalization. The SELU activation function was
used over other activation functions mainly because the overall
accuracy was significantly improved by using it.

The network for the digit recognition task was trained using
a categorical cross entropy objective, while the network for the
sequence classification task was trained using the Connectionist
Temporal Classification (CTC) objective (Graves et al., 2006).
For the CTC objective on sequence classification, the accuracy
metrics used were the label error rate and the phrase error rate.
For the label error rate, we first calculate the average edit distance
(Levenshtein, 1966) between the correct label sequences and
the corresponding predicted label sequences. The edit distance
between two sequences is the minimum number of insertions,
deletions and substitutions required to transform one into the
other. The label error is then given by the ratio of the calculated
average edit distance and the total number of labels in the correct
label sequences. This metric is not a strict proper fraction for its

value can go above 1. The phrase error rate is given by the ratio
of the correctly predicted label sequences and the total number of
label sequences.

All networks were trained on the Tensorflow framework
(Abadi et al., 2015) using Adam optimizer with a learning rate
of 0.001 over 200 epochs. All the presented accuracy numbers
are based on at least three experimental runs. The network and
simulation parameters are summarized in Table 1.

2.5.2. Phased LSTM Architecture
The single-event architecture was used on the raw input spikes.
Because of the volume of input spikes and the difficulty in
training extremely long sequences, only one neuron (out of four
possible neurons) from one ear was used, resulting in sequences
of approximately 4,000 spikes. Because a raw spike address and
the corresponding spike time was used, an embedding layer of
size 40 was used. As in Neil et al. (2016), a multi-resolution
embedding layer downsamples the address by 1, 2, 4, and 16,
and concatenates the 10-dimensional embedded feature from
each result together. This allows learning features across multiple
pitches (neuron addresses) as well as learning features particular
to each pitch. After the embedding layer, two layers of 250 Phased
LSTM neurons are included, with period τ ∼ exp(U(0, 3))

TABLE 1 | Summary of the different training parameters used in this study.

Network Model architecture Batch size No.of epochs

GRU RNN 2x 100 GRU - 100 Dense (ReLU) - 10 Softmax 128 200

LSTM RNN 100 Dense (SELU) - 2x 100 LSTM - 10 Dense 128 200

Phased LSTM 2x 250 Phased LSTM - 10 Dense 16 50

Tha Adam optimizer with a learning of 0.001 was used for all the networks.

TABLE 2 | Summary of investigated models on N-TIDIGITS18 dataset.

Feature type Sensor Task Classifier Accuracy (%)

MFCC Digit GRU RNN 97.90

Binned frames (fixed bins/sample)* AMS1b Digit SVM 95.08

Constant time bins** AMS1b Digit CNN 87.65

Constant time bins** AMS1b Digit GRU RNN 82.82

Single events (raw data) AMS1b Digit Phased LSTM 87.75

Data-driven time-binned features AMS1b Digit Phased LSTM 91.25a

Constant time bins AMS1b Digit GRU RNN 86.4

Exponential features AMS1b Digit GRU RNN 90.9

Constant time bins AMS1c Digit GRU RNN 88.6

Exponential features AMS1c Digit GRU RNN 91.1

Constant time bins AMS1b Sequence LSTM RNN 86.1b

Exponential features AMS1b Sequence LSTM RNN 87.3b

The MFCC features are extracted from the original TIDIGITS dataset.
aEvents from all neurons and both ears used in training.
bLabel accuracy on sequences.

*Abdollahi and Liu (2011).

**Neil and Liu (2016).

Frontiers in Neuroscience | www.frontiersin.org 8 February 2018 | Volume 12 | Article 2352

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Anumula et al. Feature Representations for Audio Spikes

milliseconds (with x ∼ U(a, b) implying a random draw of x
from the uniform distribution between limits a and b), shifts
s ∼ U(0, 100) milliseconds, and the on ratio ron = 0.05 resulting
in 5% activity. The output of the second Phased LSTM layer is
fully connected via a dense layer to the ten output classes.

For the N-TIDIGITS18 dataset, only 40% of 0.5 ms time bins
(also timesteps) have data (with an average of 3.6 spikes per
time bin), running at a 2.5× increase in speed over calculating
every timestep. Furthermore, the number of bins are far fewer
in number than the number of input spikes as would be the
case with processing the raw input data. Compared to processing
every spike sequentially in the full dataset (all neurons, all ears),
there are now 30 times fewer timesteps, resulting in a dramatic
decrease in training time when training on data-driven bins.

All Phased LSTM networks were trained on the Lasagne
framework (Dieleman et al., 2015) using the Adam optimizer and
a learning rate of 0.001 over 50 epochs.

3. RESULTS

We present the network accuracy results of the different pre–
processing methods on the audio classification tasks based on the
N-TIDIGITS18 dataset when these features are presented to the
different recurrent models.

3.1. Comparison of Feature
Representations
The performance of the pre–processed features are tested
through two classification tasks. The first is a word recognition
task on the single digit samples in the dataset, and the second
is a sentence prediction task on the connected digit samples.
The classifiers used for different tasks and their performances
on the different feature types are shown in Table 2. The results
in the table show that the networks using the exponential
features consistently perform better than the spike count features
across both the tasks. The Phased LSTM networks which were
used to process either the raw event data or the data-driven
bins outperform the spike count features, and produce similar
accuracies as GRU RNNs with exponential features.

Although the Phased LSTM network takes a longer time to
train because the input sequences of single spikes are longer, one
advantage of this method over the other pre-processing methods
is that there are no hyper parameters that need fine tuning such
as the time window length parameter Tl used for binning or the
tau parameter τ used in the exponential features.

The performance of the method using the binned frames on a
Support Vector Machine (SVM) classifier is better than all the
other methods but this method relies on access to the whole
sample which is then converted into a fixed number of bins
per sample and unfortunately cannot be used on a real-time
recognition system.

3.2. Optimizing Parameters
As discussed in section 3.1, both spike count features and
exponential features have a few hyperparameters that need fine
tuning for optimal performance. The network hyperparameters
were optimized once using a small validation split on the training
data from the N-TIDIGITS18 dataset. The small validation
dataset was created by using 10% of the training samples while
the model was trained on the other 90% of the samples.

The variation of the error rates on the τ parameter and
the Tl parameter for the exponential features in the sequence
classification task are shown in Figures 9A,B, respectively. In
Figure 9A, we can see that the error rate is very high for τ less
than 2 ms, and then remains fairly steady for values of τ till 5
ms and then rises slowly as τ increases. The optimal value of τ is
related to themean inter-spike interval in the frequency channels.
While for low values of τ the features do not properly encode
the history of the events and thus do not perform well, while for
increasing τ the exponential feature values saturate toward 1 and
thus do not provide enough contrast among the features for the
classification tasks to decode properly.

In Figure 9B, we can see that the error rates increase with
larger Tl, because with a bigger Tl, the exponential features get
smeared because of averaging over more events. But it should be
considered that with increasing Tl, the sequences to be processed
become shorter which makes the recurrent network training
easier and efficient.

FIGURE 9 | The effect of τ and time window length parameters on the error rates in the sequence classification task in the case of exponential features. The window

length for time binning in (A) is 5 ms and the value of τ used in (B) is 5.5 ms. Although using the optimal values gives lower error rates, using a larger time window

length than the optimal value of 5 ms would help in having shorter sequences to process.
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These plots suggest that the optimal τ is 5.5 ms and the
optimal Tl is 5 ms, which were also the values used in the
experiments for Table 2. Although the optimal value of Tl was
5 ms, using a parameter value of 40 ms would help save training
time and number of computes required to process the network
per unit time since there are fewer frames to process per unit
time. This advantage comes though at the expense of a reduced
accuracy of about 1.6% (88.1% for 5 ms and 86.5% for 40 ms) on
the validation set.

3.3. Comparison of Processing Times for
Feature Generation
To compare the processing times of conventional MFCC with
the SC and exponential filters, we used a Raspberry Pi 3 Model
B, with ARM Cortex A-53 processor. We used a feature frame
rate of 100Hz. We created random data for both the raw audio
and the event data. For raw audio we used a sampling rate of
16 kHz with uniformly sampled data between [−1, 1] at every
sampling point. Since the observed average spike rate was about
3,400Hz for the N-TIDIGITS18 dataset, for the computational
test with event data, we generated Poisson spike trains with a
total spike rate of 4,000Hz. Across 100,000 runs, the average
processing times per frame on the hardware were 5.79ms for the
MFCC features, 0.72ms for the SC features and 2.2 ms for the
exponential features. Thus the event-driven features are faster to
generate by a factor of 2.2X for exponential features and 8X for
SC features. This result is not surprising given the computational
simplicity of the cochlea features afforded by the sensor
preprocessing.

4. DISCUSSION

In this work, we performed a comparative study of the
performance accuracy of a gated recurrent neural network that
processes either the raw audio spikes or framed features extracted
by different spike processing methods. We demonstrate the
use of a recent LSTM model called the Phased LSTM which
operates on raw audio spikes. We compared the performance
accuracy of this model to that of the standard gated recurrent
neural networks, the LSTM and the GRU networks, that
processed framed features extracted by different spike processing
methods.

The results show that it is possible to achieve a good
performance through processing the raw events using the Phased
LSTM model. This model, designed for use on long sequences,
makes use of the inherent timing information present in the
spikes. Although the training time is long because the model has
to learn to process more timesteps, there are no meta-parameters
to tune in the feature generation.

Alternatively, pre-processing the spikes to produce framed
features is appealing because the input sequences to the recurrent
networks will be shorter than the sequence of raw events. For
both the single digit and digit sequence datasets, the network
classification accuracy is higher by approximately 2.5% when
using exponential features over spike count features. It should be

noted that the results are obtained on the N-TIDIGITS18 dataset,
a relatively small dataset. We will investigate in the future if the
higher accuracy from using exponential features extend to larger
datasets.

We hypothesize that the increased accuracy from exponential
features is due to two reasons. First, interspike intervals in the
spike streams carry information useful for the classification task
and therefore exponential features are more desirable. Second,
the encoded exponential feature values are real-valued and
range between 0 and 1 while the spike count feature values
are quantized in discrete quantities of 1. Having real-valued
input features might help during training of the recurrent
networks.

Even though the accuracy results from using the pre-processed
audio spike frames were lower than the results obtained from
using MFCC features, the focus of this work is to present
improved methods for processing the outputs of event driven
sensors in real-time applications. Our evaluation of the average
processing time per frame on a Raspberry Pi shows that
generation of the event-driven features is faster than that of
MFCCs by a factor of 2–8 depending on the cochlea features
used. We also aim towards an event-driven system where
processing would be activated only if there are sufficient spikes
from the sensor, e.g., the processing is inactivated during silent
periods.

The results presented here serve as a baseline for future studies
on algorithms that process spikes from spiking audio sensors. The
pre-processing methods and the LSTM/GRU networks used in
the work above are already implemented in real time (Anumula
et al., 2017) using the jAER framework (Delbruck, 2008). The
N-TIDIGITS18 dataset used in our experiments is publicly
accessible at http://sensors.ini.uzh.ch/databases.html.
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Farabet, C., Paz, R., Pėrez-Carrasco, J., Zamarreño-Ramos, C., Linares-Barranco,

A., LeCun, Y., et al. (2012). Comparison between frame-constrained fix-pixel-

value and frame-free spiking-dynamic-pixel convnets for visual processing.

Front. Neurosci. 6:32. doi: 10.3389/fnins.2012.00032

Gers, F. A., and Schmidhuber, J. (2000). “Recurrent nets that time and count,” in

Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural

Networks (IJCNN), Vol. 3 (Como: IEEE), 189–194. doi: 10.1109/IJCNN.2000.8

61302

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). “Connectionist

temporal classification: labelling unsegmented sequence data with recurrent

neural networks,” in Proceedings of the 23rd International Conference on

Machine Learning, ICML ’06 (Pittsburg, CA; New York, NY: ACM), 369–376.

doi: 10.1145/1143844.1143891

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in The IEEE

International Conference on Computer Vision (ICCV) (Santiago), 1026–1034.

doi: 10.1109/ICCV.2015.123

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). “Self-

normalizing neural networks,” in Advances in Neural Information Processing

Systems 30, eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett (Long Beach, CA: Curran Associates, Inc.),

972–981.

Lagorce, X., Ieng, S.-H., Clady, X., Pfeiffer, M., and Benosman, R. B. (2015).

Spatiotemporal features for asynchronous event-based data. Front. Neurosci.

9:46. doi: 10.3389/fnins.2015.00046

Lagorce, X., Orchard, G., Gallupi, F., Shi, B. E., and Benosman, R. (2016). Hots:

a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans.

Patt. Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Leonard, R. G., and Doddington, G. (1993). Tidigits ldc93s10. Philadelphia, PA:

Linguistic Data Consortium.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions

and reversals. Sov. Phys. Doklady 10:707.

Li, C.-H., Delbrück, T., and Liu, S.-C. (2012). “Real-time speaker identification

using the AEREAR2 event-based silicon cochlea,” in Proceedings of IEEE

International Symposium on Circuits and Systems (Seoul), 1159–1162.

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 db 15

µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid State

Circuits 43, 566–576. doi: 10.1109/JSSC.2007.914337

Liu, S.-C., Mesgarani, N., Harris, J., and Hermansky, H. (2010). “The use of spike-

based representations for hardware audition systems,” in Proceedings of IEEE

International Symposium on Circuits and Systems (ISCAS) (Paris), 505–508.

Liu, S. C., van Schaik, A., Minch, B. A., and Delbruck, T. (2014). Asynchronous

binaural spatial audition sensor with 2 × 64 × 4 channel output. IEEE Trans.

Biomed. Circ. Syst. 8, 453–464. doi: 10.1109/TBCAS.2013.2281834

Lungu, I., Corradi, F., and Delbruck, T. (2017). “Live demonstration: convolutional

neural network driven by dynamic vision sensor playing RoShamBo,” in

Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS)

(Baltimore, MD). doi: 10.1109/ISCAS.2017.8050403

Moeys, D. P., Corradi, F., Kerr, E., Vance, P., Das, G., Neil, D., et al. (2016).

“Steering a predator robot using a mixed frame/event-driven convolutional

neural network,” in 2016 Second International Conference on Event-based

Control, Communication, and Signal Processing (EBCCSP) (Krakow), 1–8.

doi: 10.1109/EBCCSP.2016.7605233

Neil, D., and Liu, S. C. (2016). “Effective sensor fusion with event-based sensors

and deep network architectures,” in 2016 IEEE International Symposium on

Circuits and Systems (ISCAS), 2282–2285.

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Phased LSTM: accelerating recurrent

network training for long or event-based sequences,” in Advances in Neural

Information Processing Systems (Barcelona), 3882–3890.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-time

classification and sensor fusion with a spiking Deep Belief Network. Front.

Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Orchard, G., Jayawant, A., Cohen, G., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven

vision systems by low-rate rate coding and coincidence processing–application

to feedforward convnets. IEEE Trans. Patt. Anal. Mach. Intell. 35, 2706–2719.

doi: 10.1109/TPAMI.2013.71

Frontiers in Neuroscience | www.frontiersin.org 11 February 2018 | Volume 12 | Article 2355

http://www.tensorflow.org/
https://doi.org/10.1109/BioCAS.2011.6107779
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/ISCAS.2017.8050394
https://doi.org/10.3389/fnins.2016.00049
https://doi.org/10.1109/72.279181
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1109/ISCAS.2010.5537578
https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/10.3389/fnins.2016.00184
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.5281/zenodo.27878
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.3389/fnins.2012.00032
https://doi.org/10.1109/IJCNN.2000.861302
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1109/ISCAS.2017.8050403
https://doi.org/10.1109/EBCCSP.2016.7605233
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2013.71
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Anumula et al. Feature Representations for Audio Spikes

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014).

Retinomorphic event-based vision sensors: bioinspired cameras with spiking

output. Proc. IEEE 102, 1470–1484. doi: 10.1109/JPROC.2014.2346153

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Schmidhuber, J. (2014). Deep learning in neural networks: an overview. CoRR

abs/1404.7828.

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-

DVS and MNIST-DVS. Their history, how they were made,

and other details. Front. Neurosci. 9:481. doi: 10.3389/fnins.2015.

00481

Stromatias, E., Neil, D., Pfeiffer, M., Galluppi, F., Furber, S. B., and Liu, S.-C.

(2015). Robustness of spiking Deep Belief Networks to noise and reduced

bit precision of neuro-inspired hardware platforms. Front. Neurosci. 9:222.

doi: 10.3389/fnins.2015.00222
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This paper presents a real-time, low-complexity neuromorphic speech recognition

system using a spiking silicon cochlea, a feature extraction module and a population

encoding method based Neural Engineering Framework (NEF)/Extreme Learning

Machine (ELM) classifier IC. Several feature extraction methods with varying memory

and computational complexity are presented along with their corresponding classification

accuracies. On the N-TIDIGITS18 dataset, we show that a fixed bin size based feature

extraction method that votes across both time and spike count features can achieve an

accuracy of 95% in software similar to previously report methods that use fixed number

of bins per sample while using ∼3× less energy and ∼25× less memory for feature

extraction (∼1.5× less overall). Hardware measurements for the same topology show

a slightly reduced accuracy of 94% that can be attributed to the extra correlations

in hardware random weights. The hardware accuracy can be increased by further

increasing the number of hidden nodes in ELM at the cost of memory and energy.

Keywords: silicon cochlea, neural engineering framework, extreme learning machine, neuromorphic, real-time

1. INTRODUCTION

Considerable progress has been made recently in machine learning for speech recognition tasks
with the developments in traditional Gaussian Mixture Models and Hidden Markov Models to
the more recent deep neural networks (Hinton et al., 2012). However, these models require very
complicated processing of the input speech and are not suited for simple sensor nodes with limited
power; nor do they performwell in the presence of large background noise (cocktail party problem).
In contrast, the human auditory system is able to perform sound stream segregation easily. This
has led to an interest in studying the biological auditory system and developing silicon models
of cochleas that operate in an event-driven asynchronous fashion (Liu et al., 2014) much like the
neurons in the auditory pathway. These event-based asynchronous cochlea sensors implement
a bio-mimetic filtering circuit that produces spikes at the output in response to input sounds
(Chan et al., 2007; Liu and Delbruck, 2010; Liu et al., 2014). The AEREAR2 sensor has been used
previously for typical speech recognition problems such as speaker identification (Chakrabartty
and Liu, 2010; Li et al., 2012) and digit recognition (Abdollahi and Liu, 2011; Anumula et al., 2018).
The inter-spike intervals and channel specific spike counts are used as features for these tasks.
High classification accuracy (95%) was reported using these features for a speaker independent
digit recognition task using a software implementation of support vector machine (SVM) based
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implementation (Abdollahi and Liu, 2011). However, this
method required the storage of the entire spike response of the
cochlea channels to one spoken digit so that the spikes can be
pre-processed prior to classification resulting in huge memory
requirements.

In parallel, there has been considerable progress in developing
neural models of cognition and a particularly popular one based
on population coding is the Neural Engineering Framework
(NEF) (Eliasmith and Anderson, 2004; Eliasmith et al., 2012).
proposes a framework for neural simulations where the input
is non-linearly encoded using random projections and linearly
decoded to model the required function. The typical NEF
architecture consists of three layers, the input layer, a hidden
layer consisting of a large number of non-linear neurons and
an output layer consisting of linear neurons. In the encoding
phase, the inputs are multiplied with random weights and passed
to the non-linear neurons. The non-linear function can be any
neural model from the spiking Leaky-Integrate-and-Fire model
to more complex biological models (Stewart, 2012). With the use
of recurrent connections, NEF can also be used formodeling even
dynamic functions. NEF has been proved to be an efficient tool
for implementing large scale brain models like SPAUN (Stewart
et al., 2012) and therefore, is being widely used in neuromorphic
research community.

A similar model has been separately developed in the machine
learning community. Termed as the Extreme Learning Machine
(ELM) (Huang et al., 2006), it also uses a three layered
architecture with random projection of the input and linear
decoding. It is essentially a feedforward network and does not
have feedback connections allowed in NEF—hence, it may be
considered as a sub-category of NEF architectures. It has been
used in a variety of applications ranging from neural decoding
(Chen et al., 2016) and epileptic seizure detection (Song et al.,
2012) to speech recognition (Deng et al., 2017) and big data
applications (Akusok et al., 2015) in the past. Low power
hardware implementations of this algorithm have also been
reported recently (Yao and Basu, 2017). Since we also use a
feedforward network in this work, we will refer to our algorithm
as ELM in the rest of the paper acknowledging that it can be
referred to as NEF as well.

In this work, we bring together these two developments of
neuromorphic spiking cochlea sensors and population encoding
based ELM hardware to lay the groundwork for a low power bio-
inspired real-time sound recognition system. Several different
low-complexity feature extraction methods that do not require
storage of entire spike trains are explored in this paper
and tradeoffs between memory/computation requirements and
recognition accuracy are presented. Measured accuracy results
using the silicon cochlea in Liu et al. (2014) and ELM chip in
Yao and Basu (2017) are presented for the TIDIGITS dataset
with 11 spoken digit classes. Though the entire processing of the
signal does not use spike times, our method still uses “physical”
computation in the cochlea and NEF/ELM blocks which is
the essence of neuromorphic engineering as described in Mead
(1990).

The remainder of this paper is organized as follows: section 2
details the hardware and the proposed methods. section 3
computes the hardware complexity for the proposed methods.

section 4 reports the results for both software simulation
and hardware measurements and finally, section 5 presents a
discussion on the obtained results.

2. MATERIALS AND METHODS

The basic architecture of our proposed speech recognition
system is shown in Figure 1. The speech input is acquired by
the Dynamic Audio Sensor and the spikes produced are then
passed to the feature extraction block. The extracted features
are then sent to an Extreme Learning Machine for classification.
For the experiments in this paper, we have simulated the
feature extraction block in software only, but the feature
extraction techniques described here can easily be implemented
in hardware using standard microcontrollers. Measured results
from hardware are presented for the cochlea and the ELM chip.

2.1. Silicon Cochlea and Recordings
The N-TIDIGITS18 dataset (Anumula et al., 2018) used in this
work, consists of recorded spike responses of a binaural 64-
channel silicon cochlea (Chan et al., 2007) in response to audio
waveforms from the original TIDIGITS dataset (Leonard, 1984).
The silicon cochlea and later generations of this design, model
the basilar membrane, inner hair cells and spiral ganglion cells
of the biological cochlea. The basilar membrane is implemented
by a cascaded set of 64 second-order band-pass filters, each
with its own characteristic frequency. The output of each filter
goes to an inner hair cell block which performs a half-wave
rectification of its input. The output of the inner hair cell
goes to a ganglion cell block implemented by a spiking neuron
circuit. The spike output is transmitted off-chip using the
asynchronous address-event representation (AER). The binaural
chip is connected to microphones emulating left and right ears.
The circuit architecture of one ear is shown in Figure 2A. Circuit
details are described in Chan et al. (2007) and Liu et al. (2014).

In the recordings, impulses are added at the beginning and
end of the audio digit files so that the start and end points of the
spike recordings are visible. The impulses lead to spike responses
from all channels. Figures 2B,C show two sample spikes of digit
“2”. Dots correspond to spike outputs from the 64 channels of
one ear of the cochlea.

2.2. Preprocessing Methods
To obtain the feature vectors from the spike recordings of the
silicon cochlea, we used the spike count per window or bin for
two modes of binning with two binning strategies which resulted
in four preprocessing techniques as shown in Table 1. In the
methods described, we used bins of widthW and used counters to
count the number of spikes across different channels within that
bin. The output of the ith bin can be represented as XW(i) where
XW is a [1×C] vector containing spike counts across C channels.
Next, we cascaded the bin outputs to produce the feature vectors.
The 4 modes differ in the choice ofW and the number of vectors
to be cascaded.

2.2.1. Binning Modes
We used two modes for binning the cochlea images to extract
features. The first one is time based binning (1A, 1B) where the
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FIGURE 1 | Block diagram of the proposed speech recognition system. The shaded block for feature extraction is implemented in software in this work while the

other two blocks are implemented in hardware.

FIGURE 2 | (A) Circuit architecture of one ear of the Dynamic Audio Sensor (adapted from Liu et al., 2014). The input goes through a cascaded set of 64 bandpass

filters. The output of each of the filters is rectified. This rectified signal then drives an integrate-and-fire neuron model. (B,C) Two sample spikes of digit “2.” Dots

correspond to spike outputs from the 64 channels of one ear of the cochlea.

TABLE 1 | Preprocessing methods.

X
X
X
X
X
X
X
X

Binning

Mode
Time Spike count

Fixed Bin Size 1A 2A

Fixed No. of Bins 1B 2B

whole spike sample is divided into several bins based on time or
duration of the sample (Tsample). The second one is spike count
based binning (2A, 2B) where we binned the spike trains based on
the total number of spikes in the sample (Nsample). While the time
based strategy captures the spike density variation in cochlear
images quite well, it completely ignores the temporal variation
(longer vs. shorter samples). On the other hand, the spike count

based strategy captures the temporal variation but ignores the
spike density variation (dense vs. sparse samples).

2.2.2. Binning Strategies
For all modes, we used two binning methods, (A) fixed bin
size and (B) fixed number of bins. These methods are described
below for the time based binning mode only to avoid repetition.
A similar philosophy applies to the case of spike count based
binning.

2.2.2.1. Fixed number of bins
In this method, the total number of bins per sample is fixed
or static. As a result, in the time mode of binning, the longer
samples produce longer bins than shorter samples (as shown in
Figure 3). If the number of bins per sample is fixed at Bsta, and the
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FIGURE 3 | Fixed number of bins: Both the short (A) and long (B) samples have the same number of bins but the bin width (W) is shorter for short samples and

longer for long samples.

corresponding bin width iswsta for a sample, the total duration of
the sample, Tsample is given by:

Tsample = wsta × Bsta (2.2.1)

In this method, we explicitly set the value of Bsta and wsta is
determined by:

wsta = Tsample/Bsta. (2.2.2)

If the total number of spikes per sample is denoted asNsample and
the average number of spikes/bin/channel is denoted by nspikes,
we can write:

Nsample = Bsta × C × nspikes (2.2.3)

The output of each bin (Xw(i)) is cascaded to produce the feature
vector F = [Xw(1) Xw(2). . . Xw(B)]. So the dimension of the
feature vector is C × Bsta. Thus, there is a clear trade-off between
the feature vector size and temporal resolution of the bins. Higher
temporal resolution leads to a larger feature vector size and
therefore higher classification complexity and vice-versa. The
primary disadvantage of this method is that it requires a priori
information about the duration of total spike count of the sample
before the binning. So, the entire sample needs to be stored first
and afterwards binning is done on the sample. Thus, the memory
requirement of this method is quite high and the latency is equal
to the sample duration. Finally, use of a dynamic bin size removes
inter-sample variability of temporal resolution by performing an
intrinsic normalization. The longer samples are compressed as
a result of longer bin sizes while shorter samples expanded as a
result of shorter bin sizes. This is the feature extraction method
used in previous work such as Abdollahi and Liu (2011).

In the spike count mode, the total number of spikes Nsample

summed across all channels and time is divided into a fixed
number of bins (Bsta) leading to a limit (Nsample/Bsta) on total
number of spikes per bin. Whenever this limit is reached, it
defines the formation of a bin. Spike counts in all channels are
frozen to create a feature vector and this process repeats.

2.2.2.2. Fixed bin size
In the fixed bin size method, the size of bins is predetermined
in terms of time duration or spike count based on the mode of

binning. As a result, the longer samples produce larger number
of bins while shorter samples produce smaller number of bins (as
shown in Figure 4).

Denoting the number of bins per sample using this strategy as
Bfix, setting the bin width to wfix and using the same notations as
the previous method, we can write:

Tsample = wfix × Bfix (2.2.4)

In this method, we explicitly set the value of wfix and the
corresponding value of Bfix is determined by:

Bfix = Tsample/wfix (2.2.5)

The total number of spikes per sample is given by:

Nsample = Bfix × C × nspikes (2.2.6)

As the number of bins produced by the samples (Bfix) is different
for different samples and the ELM classification algorithm
requires a fixed feature vector size, we needed to find an optimum
number of bins that produce overall high accuracy irrespective
of sample duration. Larger number of bins results in increased
feature vector size which in turn makes the classification task
more difficult and computationally expensive while smaller
number of bins result in feature vectors that sample the spike
recordings coarsely and thus, miss the finer variations over the
sample durations. Our initial experiments suggested that, for
number of bins 8-12 the classification accuracy is optimum.
Therefore, we decided to fix the number of bins to 10. So, The
dimension of the feature vector is 10 × C. Based on the bin size
and total sample duration, one of two cases can occur:

Case I: Bfix ≥ 10

If the sample producedmore than 10 bins, we will keep the output
of only first 10 bins to produce the feature vectors while ignoring
the rest. These bins are then cascaded to produce the feature
vector F = [Xw(1)Xw(2)...Xw(10)]. In this case,

Tsample ≥ wfix × 10 (2.2.7)

For this case, we only use a fraction of total spikes to produce the
feature vector. If the number of spikes used is given by Nused, we
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FIGURE 4 | Fixed Bin Size: Both the short (A) and long (B) samples have the same bin width (W). A short sample produces smaller number of bins and a long sample

produces larger number of bins.

can write:

Nused = 10× C × nspikes ≤ Bfix × C × nspikes = Nsample

(2.2.8)

Case II: Bfix < 10
For the samples that produce less than 10 bins for a given bin size,
zero padding is used to produce the feature vectors. In this case,

Tsample < wfix × 10

For this case, we use all the spikes in the sample to produce the
feature vector. So,

Nused = Bfix × C × nspikes = Nsample (2.2.9)

So, generalizing the two cases, we can express Nused as:

Nused = min{10× C × nspikes,Bfix × C × nspikes} (2.2.10)

There is no need to store the sample in memory for this method
since the feature vectors are directly produced from the samples
with predetermined bin sizes. Thus, memory required for this
method is quite low. As we require only 10 bin outputs to
form a feature vector, the latency is independent of the sample
duration unlike the previous strategy. The primary drawback of
this strategy is that to obtain fixed feature vector sizes, we have
to use a fixed number of bins (10 in our case) to produce the
feature vectors and therefore, for larger samples, the rest of the
bin outputs are discarded. So, there is a loss of information in
this strategy. Moreover, as the bin size is fixed, this method does
not provide any input duration normalization like the earlier
strategy. A similar fixed spike count based frame size strategy has
been used by Moeys et al. (2016) for feature extraction.

2.3. Classification Methods
2.3.1. Extreme Learning Machine: Algorithm
The ELM is a three layer feedforward neural network introduced
in Huang et al. (2006) shown in Figure 5A. The output of the
ELM network with L hidden neurons is given by:

o =

L
∑

i

βiHi =

L
∑

i

βig(w
T
i x+ bi) (2.3.1)

where x is a d-dimensional input vector, bi is the bias of individual
neurons, wi and βi are input and output weights respectively.
g(.) is the non-linear activation function (sigmoid function is
commonly used) and hi is the output of the ith hidden neuron.
While the weights wi and bi are chosen from any random
distribution and need not be tuned, the output weights βi need
to be tuned during training. So the basic task in this architecture
is to find the least square solution of β given targets of training
data:

Minimizeβ : ||Hβ − T||2, (2.3.2)

where T is the target of training data. The optimal solution of β

is given by

β̃ = H†T , (2.3.3)

where H† is the Moore-Penrose pseudoinverse of H (Penrose,
1955). The simplest method to find H† is using orthogonal
projection:

H†
= (HTH)−1HT if HTH is non− singular

H†
= HT(HHT)−1 if HHT is non− singular.

(2.3.4)

Moreover, taking advantage of the concepts from ridge regression
(Hoerl and Kennard, 1970), a constant is added to the diagonal
of HTH or HHT which results in a solution that is more
stable and has better generalization performance. C is a tunable
hyperparameter. Several regularization techniques have been
explored for determining the optimal value of H to reduce
training time and number of hidden neurons (Huang et al., 2012).
The simple architecture of the ELM network makes it a suitable
candidate for hardware implementation.

2.3.2. Extreme Learning Machine: Hardware
For the classification task, we have used software ELM as well
as hardware measurements on the neuromorphic ELM chip
described in Yao and Basu (2017).

The digital implementations of ELM can benefit from the
software simulations of the ELM shown in this paper. The
architecture of the ELM chip is shown in Figure 5B. The 128
input digital values are converted to analog currents using
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FIGURE 5 | (A) ELM network architecture: The weights wij in the first layer are random and fixed while only the second layer weights need to be trained.

(B) Architecture of the neuromorphic ELM IC (adapted from Patil et al., 2015).

current mode DACs which are multiplied by random weights in
a 128 × 128 current mirror array (CMA). The random weights
are generated by the physical mismatch of transistors in the
CMA. The 128 output currents are converted to spikes using
an array of 128 integrate and fire neurons. The corresponding
firing rates are obtained by an array of digital counters while
the second stage of ELM is performed in digital on a FPGA.
While the software ELM uses random weights with a uniform
random distribution, the chip generates random weights wij with
lognormal distribution. This is due to the exponential relation of
current and threshold voltage (VT) in the sub-threshold regime
which leads to mismatch induced weights of the form

w = e1VT/UT (2.3.5)

where 1VT denotes mismatch between threshold voltages of a
pair transistors forming a current mirror. However, lognormal
distributions have positive mean and software simulations show
that zero mean weights result in higher classification accuracy.

Hence, a simple digital post-processing is used on the outputs to
obtain zero mean random numbers. Instead of directly feeding
the chip output hi to the second stage, the difference h′i of
neighboring neurons were used. So, the modified output of the
hidden layer is given by:

h′i = hi − h(i+1)mod(128), i = 1, 2, .., 128 (2.3.6)

As shown in Patil et al. (2015), any weight distribution wij can
become a zero mean distribution w′

ij using this technique. We

will refer to this as log difference weight for the rest of this paper.
Finally, instead of using typical non-linearities like sigmoid or
tanh as g(.), we have used an absolute value (abs) function as the
preferred non-linearity. While software simulations show similar
or slightly better classification accuracy for an absolute value non-
linearity compared to typical non-linearities, it has several other
advantages over them. Absolute value is a non-saturating non-
linearity and so feature vectors need not be normalized before
being passed to the ELM unlike saturating non-linearities.This
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reduces the computational burden. Moreover, the hardware
implementation of abs non-linearity is much simpler than
sigmoid or similar non-linearities.

3. HARDWARE COMPLEXITY

In this section we will discuss the hardware complexity
comprising computations and memory requirements for the
classifier and the two feature extraction methods described
earlier. For our calculation, we assume that the time stamp of
a spike is encoded using 32 bits and the channel address of
the spike is 6 bits. The average number of spikes per sample is
assumed to be Nsample and the spike counter size is bcounter bits.
The number of computations (Ncomp) can be written as the sum
of two components:

Ncomp = Nfeature + NELM (3.0.1)

where Nfeature is the number of computations for feature
extraction while NELM is the number of computations required
for classification by ELM.

The total memory required (Mtotal) can be written as sum of
two components:

Mtotal = Mfeature +MELM (3.0.2)

where Mfeature is the memory required for feature extraction
while MELM is the memory required for classification by ELM.

3.1. Feature Extraction
3.1.1. Fixed Number of Bins
For the fixed number of bins method, the entire sample needs
to be stored first and bin sizes are to be determined later. So,
the memory required to store the spike information of an entire
sample (time stamp and channel count) is

Msamples = 38× Nsample bits (3.1.1)

Now, if the number of bins is Bsta, a total of Bsta × C counters
are required to count the spikes and produce the feature vector.
Therefore, the memory required to store a feature vector is given
by:

Mfeature_vector = Bsta × C × bcount bits (3.1.2)

So, from Equations 3.1.1 and 3.1.2 the total memory requirement
for fixed number of bins method is

Mfeature = 38× Nsample + Bsta × C × bcount bits

= 38× Bsta × C × nspikes + Bsta × C × bcount bits

(3.1.3)

In terms of computations, there will be a counter increment for
each spike resulting in Nsample operations per sample. Also, for

each spike, the time stamp needs to be compared with the bin
boundary to determine when to reset counters. Hence the total
number of operations per sample is given by:

Nfeature = Nsample + Nsample = 2Nsample (3.1.4)

3.1.2. Fixed Bin Size
For the fixed bin size method, the feature vectors are produced
directly from the sample as the bin sizes are pre-determined.
Thus, there is no need for storing the sample in memory. The
only memory required in fixed bin size method is for storing the
feature vectors. Since we cascade 10 bin outputs to produce a
feature vector in this method, using calculations similar to above,
we get:

Mfeature = Mfeature_vector = 10× C × bcount bits (3.1.5)

Finally, the total number of operations per sample is the total
number of counter increments which is equal to the number of
spikes used to produce the feature vector. So,

Nfeature = Nused = min{10× C × nspikes,Bfix × C × nspikes},

(3.1.6)

For the fixed bin size method, the memory requirement is
significantly less than the fixed number of bins method as there is
no need for storing the entire sample before feature extraction.
Furthermore, pre-determined bin sizes enable this method to
be compatible with real-time speech recognition systems. The
significant advantage of this method over the fixed number of
bins method in terms of memory and energy requirements is
further quantified in section 4.3.

3.2. Classification
NELM again has two parts due to multiply and accumulate (MAC)
in the first and second layers of the network. Hence,NELM is given
by the following:

NELM = D× L+ L× Co (3.2.1)

where Co is the number of output classes, D is the dimension
of the feature vector and L is the number of hidden nodes.
For our classification problem, number of output classes Co =

11. Moreover, calculating log difference weights requires some
additional subtractions (= L). Hence, the final value of NELM is
given by:

NELM = D× L+ L× Co + L (3.2.2)

Finally, the amount of memory (MELM) needed by the
classifier is given by:

MELM = D× L× bW + L× Co × bβ (3.2.3)
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where bW and bβ denote the number of bits to represent the first
and second layer weights.

The energy requirement for the ELM in the custom
implementation will depend on the energy required for each
of these operations. Since multiplications are dominant, EMAC

is the prime concern. Since it has been shown that EanaMAC <

E
dig
MAC for the first stage with maximum number of multiplies

(Chen et al., 2016), we have used an analog neuromorphic ELM
hardware in this work. However, the findings of this work are
applicable to a digital implementation of ELM on ASIC or on a
microprocessor.

4. RESULTS

4.1. Software Simulations
In this section, we show the classification accuracies for different
pre-processing strategies described in section 2.2 using a software
ELM with uniform random weights and log difference weights.
Though there are 64 (max. channel count) channels available
in AEREAR2, only the first 54 channels were active for all
the samples, therefore C = 54. All the results were obtained
by averaging the classification accuracies over five randomized
90–10% train-test splits .

4.1.1. Fixed Number of Bins (1B, 2B)
For the fixed number of bins method, we have used
Bsta = 5, 10, 20, and 30 bins per sample for both time based
and spike count based modes with number of hidden nodes
in the classifier varying from L = 500 to 3, 000. The results

for this experiment are plotted for both uniform random
and log difference weights in Figures 6A,B for time based
and in Figures 6C,D for spike based binning respectively. It
can be seen that, for both modes, Bsta = 10 bins per sample
produced maximum overall classification accuracy of around
96% for uniform random and 93.5% for log difference weights
respectively. Also, the accuracies tend to initially increase with
increasing values of L but eventually saturate and start decreasing
due to over-fitting.

4.1.2. Fixed Bin Size (1A, 2A)
For the fixed bin size method (1A, 2A in Table 1), we have used
10–40ms bin sizes for time based binning and 300 spikes/bin
to 600 spikes/bin bin sizes for spike count based binning with
number of hidden nodes varying from 500 to 3, 000.The results
for this experiment are plotted for both uniform random and
log difference weights in Figures 7A,B for time based and in
Figures 7C,D for spike based binning respectively. It can be seen
that, for time based mode, the maximum overall classification
accuracy was obtained for 40 ms. We tried a bin size of up to 80
ms and found that the accuracy decreases beyond 40 ms. This
is probably due to the fact that, while larger bin sizes ensure
less loss of information at the end of a digit, it produces very
small number of bins for shorter samples which results in their
misclassification. For spike count based mode the maximum
overall classification accuracy was obtained for 400 spikes/bin.
Interestingly, even with fixed bin size features, we can obtain
classification accuracies ∼ 95% for time based binning in both
cases of uniform and log difference weights. Hence, this points

FIGURE 6 | Fixed number of bins: Accuracy vs. number of hidden nodes for different number of bins. (A,B): Time based binning (1B):10 bins per sample shows

highest overall accuracy. (C,D): Spike count based binning (2B): 10 bins per sample shows highest overall accuracy.
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FIGURE 7 | Fixed bin size: accuracy vs. number of hidden nodes for different bin sizes. (A,B): Time based binning (1A): 40 ms bin size shows highest overall

accuracy. (C,D): Spike count based binning (2A): 400 spikes/bin shows highest overall accuracy.

to a method for low hardware complexity feature extraction that
also allows usage of analog sub-threshold ELM circuits with log
difference weights. Second, the trend of increasing accuracies
with increasing temporal bin size is due to the ELM being able
to access larger parts of the speech sample. Lastly, the difference
between spike count based binning and time based binning is
very large in this case indicating that spike count alone is not a
good distinguishing feature for fixed bin size.

4.1.3. Combined Binning
Out of the two binning strategies described in this paper, the
fixed bin size method is more convenient to implement from
a hardware perspective. Moreover, the memory and energy
requirements of the fixed bin size method are much less than its
counterpart as discussed in section 4.3. But as we have shown
in section 4.1.2, the best case accuracy of the fixed bin size
method is typically 2–3% less than that of fixed number of
bins method. This is due to two factors: lack of input temporal
normalization and loss of information due to discarded bins.
To increase the accuracy of the fixed bin size method, we
adopted a combined binning approach as shown in Figure 8A.
In this fixed bin size strategy, the input data is processed in
parallel using both time based and spike count based binning.The
feature vectors produced are applied to their respective ELMs
and the ELM outputs are combined (added) in the decision
layer. The final output class is defined as the strongest class
based on both strategies. Figures 8B,C compares the best case
accuracies of time based binning (40 ms bin size), spike count
based binning (400 spikes/bin bin size) and combined binning
mode (combination of both). The combined binning mode not

only outperforms both the time and spike count based modes,
but also shows accuracies similar to the best case accuracies
of fixed number of bins method for both type of weights.The
reasons for this increased accuracy is further discussed in
section 5.

4.2. Hardware Measurements
Finally, the proposed feature extraction methods were tested
on a neuromorphic ELM IC described in Yao and Basu
(2017) by feeding the chip with feature vectors produced by
the methods described above. Due to the long testing times
needed, we only tested the best accuracy cases of time based
binning (40 ms bin size), spike count based binning (400
spikes/bin bin size) and combined binning (combination of
the two). The accuracies obtained are shown in Figure 9. The
optimum accuracy obtained by time based binning is slightly
higher than that of spike count based binning while combined
binning approach outperforms both of the methods. However,
comparing this result with the earlier software simulations, we
notice two differences. First, the accuracies obtained are slightly
less than software and second, the accuracy increases with
increasing L.

Possible reasons for this reduction in accuracy and its
subsequent increase with increasing L are discussed in section 5.

4.3. Memory and Energy Requirement
(Highest Accuracy Case Is Marked Red)
In this section, we will determine the memory and energy
requirements of different post processing methods described.
We have used the formulae derived in section 3 to determine
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the memory requirement and the computational complexity
of different strategies. Moreover, we used the specifications
of Apollo2 Ultra-Low Power Microcontroller for calculating
pre-processing energy requirement (10µA/MHz at 3.3V1) and
specifications of the neuromorphic ELM chip for calculating the
classification energy requirement (0.47pJ/MAC, Yao and Basu,
2017). Tables 2, 3 show the memory requirement, computational
complexity and average energy per sample of fixed number of
bins and fixed bin size strategies assuming 1500 hidden nodes
for the ELM. If we compare the best accuracy cases of both
fixed bin size and fixed number of bins methods, these results
show that fixed binning requires ∼50× less memory for feature

1http://ambiqmicro.com/apollo-ultra-low-power-mcu/apollo2-mcu/

extraction (∼ 3× overall) and ∼ 30% less energy compared
to that of fixed number of bins method. Furthermore, as the
combined binning requires approximately twice the memory
and computational complexity than that of the simple time
or spike count based binning methods, we can conclude that
the combined binning strategy is able to produce accuracies
similar to fixed number of bins method using ∼ 25× less
memory for feature extraction (∼ 1.5× overall). Moreover, since
the neuromorphic ELM chip uses mismatch induced random
weights for the first layer of the ELM, no memory is required
to store the first layer weights. Only, the second layer trained
weights need to be stored in memory. The minimum resolution
of the second layer weights (bβ ) required for no loss of accuracy
is found to be 8 bits.

FIGURE 8 | (A) Combined Binning architecture for fixed bin size case by fusing the decisions of two ELMs operating in time based and spike count based modes

respectively. (B,C) Comparison of binning modes, fixed bin size: Accuracy vs. Number of Hidden Nodes using different binning modes for fixed bin size, Combined

Mode shows highest overall accuracy, comparable to fixed number of bins.

FIGURE 9 | Hardware classification accuracies for different binning strategies, Combined Binning strategy shows highest classification accuracy.
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5. DISCUSSION

5.1. Hardware vs. Software ELM
One key observation from the results obtained is that the
hardware ELM requires larger number of hidden nodes to
obtain accuracies similar to the software simulations (compare
Figure 8 and Figure 9). While software simulations required
around 2,000 hidden nodes to obtain optimum accuracy, the
hardware required more than 5,000 hidden nodes to obtain
comparable accuracies.This discrepancy can be ascribed to the
higher correlation between input weights in the ELM IC. In
an ideal ELM, the input weights of are assumed to be random
and so, the correlation between successive columns of weights
should be low. But in the ELM IC, the correlation between
successive columns of weights are relatively higher due to
chip architecture. Since the DACs converting the input digital
number to a current is shared for each row, mismatch between
the DACs introduce a systematic mismatch between rows.
This systematic variation of the input weight matrix results
in increased correlation between columns of input weights.
Figure 10 shows the histogram of inter column correlation
coefficients for hardware weights and software simulated log
normal weights. Greater correlation between hardware weights
can alternatively thought of as a reduction in effective number

TABLE 2 | Memory and energy requirements for fixed number of bins method

(1B,2B).

Bins/ Sample 5 10 20 30

Memory Required

(Feature Extraction)

(Kbits)

213 215 219 223

Memory Required

(ELM Layer 2)

(Kbits)

132 132 132 132

No.of Ops/sample

(Feature Extraction)

(Kops)

11 11 11 11

No. of MACs/sample (ELM Layer 1)

(KMACs)

405 810 1,620 2,430

No. of MACs/sample

(ELM Layer 2)

(KMACs)

18 18 18 18

Energy Required

(nJ/sample)

3,061 3,251 3,632 4,013

of uncorrelated weights and thereby, a reduction in number of
uncorrelated hidden nodes compared to software simulations.
Therefore, the “effective” number of hidden nodes in hardware
case is in fact smaller than the number of hidden nodes used
in the IC. This explains the requirement of higher number of
hidden nodes in hardware to match the performance of software
simulations.

Another significant observation about the experimental
results is that the combined strategy consistently outperforms
both time based binning and spike count based binning methods
for software as well as hardware simulations. This can be
attributed to the synergy produced by combining two disparate
representations of the input data (time based features and
spike count based features) using a decision layer. To prove
the importance of using two different representations, we have
obtained the average confusion matrices for both time based

TABLE 3 | Memory and energy requirements for fixed bin size method (1A, 2A).

Highest accuracy cases are marked red.

Time based

binning

Spike count

based binning

Bin Size 10 ms 20 ms 30 ms 40 ms 300

spikes

/bin

400

spikes

/bin

500

spikes

/bin

600

spikes

/bin

Memory Required

(Feature Extraction)

(Kbits)

4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3

Memory Required

(ELM Layer 2)

(Kbits)

132 132 132 132 132 132 132 132

No.of Ops/sample

(Feature Extraction)

(Kops)

0.7 1.4 1.8 2 2 3 4 5

No. of

MACs/sample

(ELM Layer 1)

(KMACs)

810 810 810 810 810 810 810 810

No. of

MACs/sample

(ELM Layer 2)

(KMACs)

18 18 18 18 18 18 18 18

Energy Required

(nJ/sample)

2,232 2,301 2,340 2,360 2,360 2,459 2,558 2,657

FIGURE 10 | Histogram of correlation coefficients of input weights.
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FIGURE 11 | Confusion matrices for different binning strategies exhibit peaks at different locations for time based and spike count based binning. Hence, a

combination of these two methods can eliminate some of these errors.

binning and spike count based binning using several randomized
training and testing sets. The resulting confusion matrices are
plotted alongside the confusion matrix for the combined strategy
in Figure 11. It can be clearly seen from the confusion matrices
that while some of the peaks of the confusion matrices are
at the same locations for both time based and spike count
based methods, a significant number of minor peaks are at
different locations. Therefore, a significant number of those
misclassifications occurring for only one of the two binning
methods are correctly classified in the combined strategy. This
claim has been further quantitatively analyzed in Appendix.

5.2. Comparison With Other Methods
Next, we compare our results with reported accuracies in existing
literature using the N-TIDIGITS18 dataset. For fixed bin size
strategy, Neil and Liu (2016) obtained an accuracy of 87.65%
using CNN and an accuracy of 82.82% using GRU RNN.
Anumula et al. (2018) also obtained 88.6% accuracy using GRU
RNN and 86.1% accuracy using LSTM RNN for the same
feature extraction technique. For fixed number of bins strategy,
Abdollahi and Liu (2011) obtained an accuracy of 95.08% using
SVM. Thus, we can see that the accuracies reported in this
paper outperform those obtained using fixed bin size or fixed
number of bins techniques in existing literature. The best case
accuracies obtained in this paper are comparable to that ofMFCC
based features in previous works [using MFCC based features,
(Abdollahi and Liu, 2011) obtained an accuracy of 96.83% using
SVM while (Anumula et al., 2018) obtained an accuracy of
97.90% using GRU RNN]. However, this comparison is imperfect
since we need to account for the power needed in generating
mode complex features like MFCC. Tsai et al. (2017) has shown
that the power required for MFCC feature extraction is 122
mW on FPGA based implementation and 62.3 mW on ARM
based implementation for TIDIGITS dataset using a 32 ms frame
size. This is significantly higher than that of feature extraction
techniques described in this paper (Tables 2, 3). Also, it is difficult
to compare power dissipation of RNN approaches since very few
hardware implementations of these networks are reported. As
one example, Gao et al. (2018) reports a Delta RNN network
that uses ≈453K operations per frame of 25 ms (excluding FFT
operations to generate features) which is quite comparable to the
number of operations needed by the ELM first stage. However, it
should be noted that the ELM first stage operations were simple
random multiplications which could be easily implemented in

low pwoer using analog techniques while the same cannot be said
for the RNN.

5.3. Real-Time Detection of Word
Occurrence
For the classification of the dataset so far we have assumed that
the start and end of a digit is clearly marked for both training
and testing data. But for real time applications, this assumption
will not hold. So, we have decided to employ a sliding window
technique for automatic detection of start and end of a digit.
For the spike N-TIDIGITS18 dataset we have used, no noise was
added to the waveforms of the original TIDIGITS dataset. So, the
detection of start and end of the digit will become a relatively
trivial task. However, the more challenging task is to detect the
start and end of the signal in presence of noise. Therefore, we have
implemented a threshold-based start and end detection using
a sliding window assuming presence of noise. The algorithm
detects the start of a digit if the total spike count within the
window is higher than the given threshold and rejects the frame
as noise if the total spike count is less than the threshold. Once
the start of a digit is detected, the upcoming spikes are assumed
to be part of the digit until the total spike count within a window
is less than the threshold for a certain number of consecutive
windows. At this point, the last window where the spike count
was higher than the threshold is assumed to be the end of the
digit. This ensures that the false end detection is avoided in case
there are low spike count windows within the digit. We have set
the threshold as a certain % of average spike count per window
over all samples and the number of consecutive low spike count
windows required to determine the end of a digit is a parameter
dependent on the sliding window size.

We have tested this algorithm on best accuracy cases of
both fixed number of bins strategy (time based binning, 10
bins/sample) and fixed bin size strategy (time based binning, bin
size = 40 ms). We used a non-overlapping sliding window size
of 40 ms and 2 consecutive windows with sub-threshold spike
count for end detection. For fixed bin size strategy, the accuracy
remained same for 10% threshold level and decreased by 0.8%
for 20% threshold level. For fixed number of bins strategy, the
reductions in accuracy were 2.5% and 3.6% respectively for 10%
and 20% threshold level respectively. The diminished effect of
start and end detection on the classification accuracy for fixed
bin size strategy can be attributed to its indifference toward
digit duration and thereby exact start and end time unlike its
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counterpart. Thus, the fixed bin size strategy seems relatively
more noise robust.

In this proposed algorithm, the loss of accuracy stems from
three sources, (a) loss of bins at the beginning, (b) loss of bins at
the end and (c) loss of part of the digits due to false detection.
For the fixed bin size case, only (c) is the major contributor to
loss in accuracy while for fixed bin size case, all three factors
contribute to the accuracy loss. Moreover, this sliding window
technique introduces some additional latency depending upon
the number of sub-threshold spike count windows used for end
detection.

6. CONCLUSION

In this paper, we have presented several low-complexity
feature extraction techniques to construct an end-to-end speech
recognition system using a neuromorphic spiking cochlea
and neuromorphic ELM IC. Moreover, the computational
complexity, power requirement and memory requirement of the
proposed techniques were calculated. Furthermore, we have used
both software and hardware simulations of the neuromorphic
ELM IC to obtain high classification accuracies (∼96%) for the
N-TIDIGITS18 dataset.

The proposed fixed number of bins and fixed bin size methods
presented a clear trade-off between classification accuracy and
hardware overhead where using fixed number of bins gives

∼2-3 % higher accuracy with ∼ 3× more hardware overhead
compared to the fixed bin sizemethod. Our strategy of combining
two different feature space representations of the input data
gives high classification accuracy while using ∼ 25× less
memory compared to the fixed number of bins method. So
far, the feature extraction block of our proposed architecture is
simulated in software only. In future, we plan to implement the
feature extraction block using a microcontroller to produce a
fully hardware based neuromorphic speech recognition system
based on the low-power component prototypes Yang et al.
(2016). Moreover, we plan to use our proposed architecture for
other speech and audio recognition problems including speaker
identification.
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APPENDIX

Further Discussion on Confusion Matrices
To quantitatively analyze our hypothesis in section 5 that
the correlation matrices produced by time based binning
and spike count based binning have peaks at different
locations, we have used correlation coefficients. We have
calculated the correlation coefficients between confusion
matrices produced by time (and spike count) based binning
for different randomizedtraining and testing sets. We have

also obtained the cross-correlation coefficients between
confusion matrices produced by time and spike count based
binning for same training and testing sets. The spread of the
correlation coefficients obtained is shown using the box-plots
in Figure A1. It is quite evident from the box-plots that
confusion matrices produced by the same feature extraction
method for different training and testing sets are highly
correlated while confusion matrices produced by different
feature extraction methods for same training and testing set have
lower correlation.

FIGURE A1 | Correlation between confusion matrices.
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Environmental sounds form part of our daily life. With the advancement of deep learning

models and the abundance of training data, the performance of automatic sound

classification (ASC) systems has improved significantly in recent years. However, the

high computational cost, hence high power consumption, remains a major hurdle

for large-scale implementation of ASC systems on mobile and wearable devices.

Motivated by the observations that humans are highly effective and consume little

power whilst analyzing complex audio scenes, we propose a biologically plausible ASC

framework, namely SOM-SNN. This framework uses the unsupervised self-organizing

map (SOM) for representing frequency contents embedded within the acoustic signals,

followed by an event-based spiking neural network (SNN) for spatiotemporal spiking

pattern classification. We report experimental results on the RWCP environmental sound

and TIDIGITS spoken digits datasets, which demonstrate competitive classification

accuracies over other deep learning and SNN-based models. The SOM-SNN framework

is also shown to be highly robust to corrupting noise after multi-condition training,

whereby the model is trained with noise-corrupted sound samples. Moreover, we

discover the early decision making capability of the proposed framework: an accurate

classification can be made with an only partial presentation of the input.

Keywords: spiking neural network, self-organizing map, automatic sound classification, maximum-margin

Tempotron classifier, noise robust multi-condition training

1. INTRODUCTION

Automatic sound classification generally refers to the automatic identification of ambient sounds
in the environment. Environmental sounds, complementary to visual cues, informs us of our
surrounding environment and is an essential part of our daily life. ASC technologies enable a wide
range of applications including, but not limited to content-based sound classification and retrieval
(Guo and Li, 2003), audio surveillance (Rabaoui et al., 2008), sound event classification (Dennis
et al., 2011) and disease diagnosis (Kwak and Kwon, 2012).

The conventional ASC systems are inspired by automatic speech recognition systems, which
typically comprise of acoustic signal pre-processing, feature extraction and classification (Sharan
and Moir, 2016). As shown in Figure 1, signal pre-processing can be further sub-categorized
into pre-emphasis (high-frequency components are amplified), segmenting (continuous acoustic
signals are segmented into overlapping short frames), andwindowing (a window function is applied
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FIGURE 1 | Overview of the proposed SOM-SNN ASC framework, which uses the SOM as a mid-level feature representation of frequency contents in the sound

frames, and classifies the spatiotemporal spike patterns using SNNs.

to reduce the effect of spectral leakage). Several feature
representations for acoustic signals have been proposed over the
years for capturing frequency contents and temporal structures of
acoustic signals (Mitrović et al., 2010). The most frequently used
features are the Mel-Frequency Cepstral Coefficients (MFCC)
(Chu et al., 2009) and Gammatone Cepstral Coefficients (GTCC)
(Leng et al., 2012). Both these features mimic the human auditory
system, as they aremore sensitive to changes in the low-frequency
components. These frame-based features are then used to train a
GMM-HMM or deep learning models in a classification task.

Despite the significant performance improvement in recent
years driven by deep learning models and the abundance of
training data, two major challenges remain to prevent the large-
scale adoption of such frame-based ASC systems on mobile
and wearable devices. First of all, high-performance computing,
which typically entails high power consumption, is commonly
unavailable on such devices. Secondly, the performance of state-
of-the-art GMM-HMM and deep learning models, with MFCC
or GTCC feature as input, degrades significantly with increased
background noise.

We note that in comparison to existing machine learning
techniques, human performs much more efficiently and robustly
in various auditory perception tasks, whereby different frequency
components of the acoustic signal are asynchronously encoded
using sparse and highly parallel spiking impulses. Remarkably,
even though spiking impulses in biological neural systems are
transmitted at rates of several orders of magnitude slower than
signals in modern transistors, humans perceive complex audio
scenes with much lower energy consumption (Merolla et al.,
2014). Moreover, human learn to distinguish sounds with only
sparse supervision, currently formulated as zero-shot or one-shot
learning (Fei-Fei et al., 2006; Palatucci et al., 2009) in machine
learning. These observations of human auditory perception
motivate us to explore and design a biologically plausible event-
based ASC system.

Event-based computation, as observed in the human brain
and nervous systems, relies on asynchronous and highly parallel
spiking events to efficiently encode and transmit information.

In contrast to traditional frame-based machine vision and
auditory systems, event-based biological systems represent and
process information in a much more energy efficient manner
whereby energy is only consumed during spike generation and
transmission. Spiking neural network (SNN) is one such class
of neural networks motivated by event-based computation. For
training the SNN on a temporal pattern classification task, many
temporal learning rules have been proposed. Depending on
how the error function is formulated, they can be categorized
into either spike-time based (Ponulak and Kasiński, 2010;
Yu et al., 2013a) or membrane-potential based (Gütig and
Sompolinsky, 2006; Gütig, 2016; Zhang et al., 2017). For spike-
time based learning rules, the main objective is to minimize
the time difference between the actual and desired output spike
patterns by updating the synaptic weights. In contrast, membrane
potential based learning rules use the voltage difference between
the actual membrane potential and the firing threshold to guide
synaptic weight updates.

Recently, there are growing interests in integrating event-
based sensors, such as the DVS (Delbrück et al., 2010), DAVIS
(Brandli et al., 2014) and DAS (Liu et al., 2014), with event-
based neuromorphic processors such as TrueNorth (Merolla
et al., 2014) and SpiNNaker (Furber et al., 2013) for more energy
efficient applications (Serrano-Gotarredona et al., 2015; Amir
et al., 2017).

In this work, we propose a novel SNN framework for
automatic sound classification. We adopt a biologically plausible
auditory front-end (using logarithmicmel-scaled filter banks that
resemble the functionality of the human cochlea) to first extract
low-level spectral features. After which, the unsupervised self-
organizing map (SOM) (Kohonen, 1998) is used to generate
an effective and sparse mid-level feature representation. The
best-matching units (BMUs) of the SOM are activated over
time and the corresponding spatiotemporal spike patterns are
generated, which represent the characteristics of each sound
event. Finally, a newly developed Maximum-Margin Tempotron
temporal learning rule (membrane-potential based) is used to
classify the spike patterns into different sound categories.
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This paper furthers our recent research, which focused on
speech recognition (Wu et al., 2018a). In this work, we look into
the SOM-SNN properties, system architecture and its robustness
against noise in a sound event classification task.We also perform
a comparative study with the state-of-the-art deep learning
techniques. The main contributions of this work are threefold:

• We propose a biologically plausible event-based ASC
framework, namely the SOM-SNN. In this framework, the
unsupervised SOM is utilized to represent the frequency contents
of environmental sounds, while the SNN learns to distinguish
these sounds. This framework achieves competitive classification
accuracies compared with deep learning and other SNN-based
models on the RWCP and TIDIGITS datasets. Additionally, the
proposed framework is shown to be highly robust to corrupting
noise after multi-condition training (McLoughlin et al., 2015),
whereby the model is trained with noise-corrupted sound
samples.

•We propose a new Maximum-Margin Tempotron temporal
learning rule, which incorporates the Tempotron (Gütig and
Sompolinsky, 2006) with the maximum-margin classifier (Cortes
and Vapnik, 1995). This newly introduced hard margin ensures
a better separation between positive and negative classes, thereby
improving the classification accuracy of the SNN classifier.

• We discover the early decision making capability of the
proposed SNN-based classifier, which arises naturally from
the Maximum-Margin Tempotron learning rule. The earliest
possible discriminative spatiotemporal feature is identified
automatically in the SNN classifier, and an output spike
is immediately triggered by the correct output neuron.
Consequently, an input pattern could be classified with high
accuracy when only part of it is presented. Under the same test
conditions, the SNN-based classifier consistently outperforms
other traditional artificial neural networks (ANNs), [i.e., the
Recurrent Neural Network (RNN) (Graves et al., 2013) and Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997)] in a temporal pattern classification task. It, therefore,
shows great potential for real-world applications, whereby
acoustic signals maybe intermittently distorted by noise: the
classification decision can be robustly made based on the input
portion with less distortion.

2. METHODS

In this section, we first describe the components of the proposed
SOM-SNN framework. Next, we present the experiments
designed to evaluate the classification performance and noise
robustness of the proposed framework. Finally, we compare it
with other state-of-the-art ANN- and SNN-based models.

2.1. Auditory Front-end
Human auditory front-end consists of the outer, middle and
inner ear. In the outer ear, sound waves travel through air and
arrive at the pinna, which also embeds the location information
of the sound source. From the pinna, the sound signals are then
transmitted via the ear canal, which functions as a resonator, to
the middle ear. In the middle ear, vibrations (induced by the
sound signals) are converted into mechanical movements of the

ossicles (i.e., malleus, incus, and stapes) through the tympanic
membrane. The tensor tympani and stapedius muscles, which
are connected to the ossicles, act as an automatic gain controller
to moderate mechanical movements under the high-intensity
scenario. At the end of the middle ear, the ossicles join with the
cochlea via the oval window, where mechanical movements of
the ossicles are transformed into fluid pressure oscillations which
move along the basilar membrane in the cochlea (Bear et al.,
2016).

The cochlea is a wonderful anatomical work of art.
It functions as a spectrum analyzer which displaces the
basilar membrane at specific locations that correspond to
different frequency components in the sound wave. Finally,
displacements of the basilar membrane activate inner hair
cells via nearby mechanically gated ion channels, converting
mechanical displacements into electrical impulse trains. The
spike trains generated at the hair cells are transmitted to the
cochlear nuclei through dedicated auditory nerves. Functionally,
the cochlear nuclei act as filter banks, which also normalize
activities of saturated auditory nerve fibers over different
frequency bands. Most of the auditory nerves terminate at the
cochlear nuclei where sound information is still identifiable.
Beyond the cochlear nuclei, in the auditory cortex, it remains
unclear how information is being represented and processed
(Møller, 2012).

The understanding of the human auditory front-end has a
significant impact on machine hearing research and inspires
many biologically plausible feature representations of acoustic
signals, such as the MFCC and GTCC. In this paper, we adopt the
MFCC representation. As shown in Figure 2, we pre-processed
the sound signals by first applying pre-emphasis to amplify
high-frequency contents, then segmenting the continuous sound
signals into overlapped frames of suitable length so as to better
capture the temporal variations of the sound signal, and finally
applying the Hamming window on these frames to reduce the
effect of spectral leakage. To extract the spectral contents in
the acoustic stimuli, we perform Short-Time Fourier-Transform
(STFT) on the sound frames and compute the power spectrum.
After that, we apply 20 logarithmic mel-scaled filters on the
resulting power spectrum, generating a compressed feature
representation for each sound frame. The mel-scaled filter
banks emulate the human perception of sound that is more
discriminative toward the low frequency as compared to the high
frequency components.

2.2. Feature Representation Using SOM
Feature representation is critical in all ASC systems; state-of-
the-art ASC systems input low-level MFCC or GTCC features
into the GMM-HMM or deep learning models so as to
extract higher-level representations. In our initial experiments,
we observe that existing SNN temporal learning rules cannot
discriminate latency (Yu et al., 2013b) or population (Bohte
et al., 2002) encoded mel-scaled filter bank outputs effectively.
Therefore, we propose to use the biologically inspired SOM
to form a mid-level feature representation of the sound
frames. The neurons in the SOM form distinctive synaptic
filters that organize themselves tonotopically and compete to

Frontiers in Neuroscience | www.frontiersin.org 3 November 2018 | Volume 12 | Article 83674

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wu et al. SOM-SNN Framework for Sound Classification

FIGURE 2 | The details of the proposed SOM-SNN ASC framework. The sound frames are pre-processed and analyzed using mel-scaled filter banks. Then, the SOM

generates discrete BMU activation sequences which are further converted into spike trains. All such spike trains form a spatiotemporal spike pattern to be classified

by the SNN.

represent the filter bank output vectors. Such tonotopically
organized feature maps have been found in the human
auditory cortex in many physiological experiments (Pantev et al.,
1995).

As shown in Figure 2, all neurons in the SOM are fully
connected to the filter bank and receive mel-scaled filter outputs
(real-valued vectors). The SOM learns acoustic features in an
unsupervised manner, whereby two mechanisms: competition
and cooperation, guide the formation of a tonotopically
organized neural map. During training, the neurons in the SOM
compete with each other to best represent the input frame.
The best-matching unit (BMU), with its synaptic weight vector
closest to the input vector in the feature space, will update its
weight vector to become closer to the input vector. Additionally,
the neurons surrounding the BMU will cooperate with it by
updating their weight vectors to move closer to the input vector.
The magnitude of the weight update of neighboring neurons
is inversely proportional to its distance to the BMU, effectively
facilitating the formation of neural clusters. Eventually, the
synaptic weight vectors of neurons in the SOM follow the
distribution of input feature vectors and organize tonotopically,
such that adjacent neurons in the SOM will have similar weight
vectors.

During the evaluation, as shown in Figure 2, the SOM
(through the BMU neuron) emits a single spike at each
sound frame sampling interval. The sparsely activated BMUs
encourage pattern separation and enhance power efficiency. The
spikes triggered over the duration of a sound event form a
spatiotemporal spike pattern, which is then classified by the

SNN into one of the sound classes. The mechanisms of SOM
training and testing are provided in Algorithm 1 (see more
details Kohonen, 1998). This classical work (Kohonen, 1998)
trained the SOM for a phoneme recognition task, which then
used a set of hand-crafted rules to link sound clusters of the
SOM to actual phoneme classes. In this work, we use an SNN-
based classifier to automatically categorize the spatiotemporal
spike patterns into different sound events.

2.3. Supervised Temporal Classification
2.3.1. Neuron Model
For the SNN-based temporal classifier, we adopt the leaky
integrate-and-fire neuron model (Gütig and Sompolinsky, 2006),
which utilizes the kernel function to describe the effect of pre-
synaptic spikes on the membrane potential of post-synaptic
neurons. When there is no incoming spike, the post-synaptic
neuron i remains at its resting potential Vrest . Each incoming
spike from the pre-synaptic neuron j at tj will induce a post-
synaptic potential (PSP) on the post-synaptic neuron as described
by the following kernel function:

K(t − tj) = K0

(

exp(−
t − tj

τm
)− exp(−

t − tj

τs
)

)

θ(t − tj) (7)

where K0 is a normalization factor that ensures the maximum
value of the kernel K(t − tj) is 1. τm and τs correspond to the
membrane and synaptic time constants, which jointly determine
the shape of the kernel function. In addition, θ(t − tj) represents
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Algorithm 1: The Self-Organizing Map Algorithm

Input:
The randomly initialized weight vector wi(0) for neuron i =
1, ...,M · N, whereM and N are the length and width of the
SOM
The training set that is formed by framewise filter bank
output vectors
The initial width of the neighborhood function σ (0) =√
M2 + N2/2

The number of training epochs E, initial learning rate η0 and
time constant of the time-varying width τ1 = E/log[σ (0)]

Output:
The final weight vectors wi(E) for neuron i = 1, ...,M · N

Train:

for e ∈ [0, 1, 2, ...,E− 1] do
1. Randomly choose an input vector xtrain =
[x1, x2, x3, . . . , xn] from the training set, where n is the
total number of mel-scaled filters
2. Determine the winner neuron k that has a weight
vector closest to the current input vector xtrain:

k = argmin
i

||wi(e)− xtrain|| (1)

3. Update the learning rate η(e), the time-varying width
σ (e) and the Gaussian neighborhood function hi,k(e) for
all neurons i = 1, ...,m:

η(e) = η0 · exp(−e/E) (2)

σ (e) = σ (0) · exp(−e/τ1) (3)

hi,k(e) = exp{−||wi(e)− wk(e)||
2/[2 · σ (e)2]} (4)

4. Update wi(e+ 1) for all neurons i = 1, ...,M · N:

wi(e+ 1) = wi(e)+ η(e) · hi,k(e) · [xtrain − wi(e)] (5)

Test:

Given any input vector xtest from the testing set, label it with
the winner neuron k that has weight vector closest to xtest :

k = argmin
i

||wi(E)− xtest|| (6)

the Heaviside function to ensure that only pre-synaptic spikes
emitted before time t are considered.

θ(x) =

{

1, if x ≥ 0

0, otherwise
(8)

At time t, the membrane potential of the post-synaptic neuron
i is determined by the weighted sum of all PSPs triggered by
incoming spikes before time t:

Vi(t) =
∑

j

wji

∑

tj<t

K(t − tj)+ Vrest ∀t ∈ [0,T] (9)

where wji is the synaptic weight between the pre-synaptic neuron
j and post-synaptic neuron i, and T is the duration of the
simulation. Whenever the membrane potential Vi(t) of the post-
synaptic neuron i reaches the firing threshold, it emits a spike. For
the single-spike based classifier used in this work, the membrane
potential of the post-synaptic neuron then smoothly relaxes back
to Vrest after spiking by shunting all subsequent input spikes
(i.e., input spikes arriving after the post-synaptic spike, have no
effect on the membrane potential of the post-synaptic neuron).
Since these input spikes would not contribute to any learning
in the single-spike based classifier, the unnecessary post-spike
computations can be safely ignored.

2.3.2. Maximum-Margin Tempotron Learning Rule
For the classification of spatiotemporal patterns as illustrated by
the SNN in Figure 2, we use a modified version of the biologically
plausible Tempotron (Gütig and Sompolinsky, 2006) learning
rule to train the classifier, which has been successfully used in
several ASC tasks (Dennis et al., 2013; Xiao et al., 2017). The
original Tempotron rule is designed for a binary classification
task, such that a neuron emits a spike when it observes a spike
pattern from its desired class, and remains quiescent otherwise.
For a multi-class classification task, we adopt the one-against-
all strategy to train one output neuron to respond to each
class.

During training, for neuron i that represents the ith class, we
treat all training samples with class label i as positive samples, and
all others as negative. During testing, we monitor the membrane
potential of all output neurons and classify the test sample as
follows: (1) If no output neuron fires over the sample duration,
we select the output neuron with the highest membrane potential
as the correct class. (2) If only a single output neuron fires, the
class label corresponding to this neuron is selected. (3) Otherwise,
if two or more neurons fire, we label the test sample with the
earliest firing neuron, which signals the detection of the earliest
local discriminative feature (a property of the Tempotron).

The Tempotron learning rule follows a stochastic gradient
descent method for synaptic weight updates: the desired output
neuron triggers a weight update whenever it fails to fire on
samples with matching class label or when the wrong output
neurons fire erroneously on samples from other classes. When
the desired output neuron i fails to fire, long-term potentiation
(LTP) update with cost function Vthr - Vtmax

i
is triggered.

Similarly, long-term depression (LTD) update with cost function
Vtmax

i
- Vthr is triggered when the wrong output neuron fires
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erroneously. The Tempotron update rule is defined as follows:

1wij =































λ
∑

t
(f )
j <tmax

i

K(tmax
i − t

(f )
j ), if LTP

−λ
∑

t
(f )
j <tmax

i

K(tmax
i − t

(f )
j ), if LTD

0, otherwise

(10)

where λ denotes a constant learning rate and tmax
i refers to

the time instant when the postsynaptic neuron i reaches its
maximum membrane potential over the pattern duration. The

t
(f )
j are spike times of spike emitted by the pre-synaptic neuron

j. The synaptic weights are only updated at the time instant of
tmax
i . For LTD weight update, the tmax

i is also the spike time since
the post-spike computations are ignored.

Inspired by the maximum-margin classifier (Cortes and
Vapnik, 1995), we introduce a hard margin 1 to the Vthr

and denote the new learning rule as the Maximum-Margin
Tempotron. During the training phase, the1 term is either added
to or deducted from the Vthr of the desired or wrong output
neurons, respectively. Consequently, for the desired neuron i, a
spike is generated at t if

Vi(t) = Vthr + 1 and
d

dt
Vi(t) > 0 (11)

For the other (wrong) neurons, a spike is generated if

Vi(t) = Vthr − 1 and
d

dt
Vi(t) > 0 (12)

The desired output neuron will fire only when it has observed
strong evidence that causes its Vtmax to rise above Vthr by a
margin of 1. Similarly, the other neurons will be discouraged
to fire and maintain its membrane potential by a margin 1

belowVthr . This additional margin1 imposes a harder constraint
during training and encourages the SNN classifier to find more
discriminative features in the input spike patterns. Therefore,
during testing, when the hard margin 1 is removed from Vi(t) as
described in Equation (9), the neurons are encouraged to respond
with the desired spiking activities. This strategy helps to prevent
overfitting and improves classification accuracy.

2.4. Multi-condition Training
Although state-of-the-art deep learning based ASC models
perform reasonably well under the noise-free condition, it
remains a challenging task for these models to recognize sound
robustly in noisy real-world environments. To address this
challenge, we investigated training the proposed SOM-SNN
model with both clean and noisy sound data, as per the multi-
condition training strategy.

The motivation for such an approach is that with training
samples collected from different noisy backgrounds, the trained
model will be encouraged to identify the most discriminative
features and becomemore robust to noise. This methodology has
been proven to be effective for Deep Neural Network (DNN) and

SVMmodels under the high noise condition, with some trade-off
in performance for clean sound data (McLoughlin et al., 2015).
Here, we investigate its generalizability to SNN-based temporal
classifiers under noisy environments.

2.5. Training and Evaluation
Here, we first introduce two standard benchmark datasets used
to evaluate the classification accuracies of the proposed SOM-
SNN framework, which are made up of environmental sounds
and human speech. After which, we describe the experiments
conducted on the RWCP dataset to evaluate model performance
pertaining to the effectiveness of feature representation using the
SOM, early decision making capability and noise robustness of
the classifier.

2.5.1. Evaluation Datasets
The Real World Computing Partnership (RWCP) (Nishiura and
Nakamura, 2002) sound scene dataset was recorded in a real
acoustic environment at a sampling rate of 16 kHz. For a fair
comparison with other SNN-based systems (Dennis et al., 2013;
Xiao et al., 2017), we used the same 10 sound event classes
from the dataset: “cymbals,” “horn,” “phone4,” “bells5,” “kara,”
“bottle1,” “buzzer,” “metal15,” “whistle1,” “ring.” The sound clips
were recorded as isolated samples with duration of 0.5s to 3s
at high SNR. There are also short lead-in and lead-out silent
intervals in the sound clips. We randomly selected 40 sound
clips from each class, of which 20 are used for training and the
remaining 20 for testing, giving a total of 200 training and 200
testing samples.

The TIDIGITS (Leonard and Doddington, 1993) dataset
consists of reading digit strings of varying lengths, and the speech
signals are sampled at 20 kHz. The TIDIGITS dataset is a publicly
available dataset from the Linguistic Data Consortium, which
is one of the most commonly available speech datasets used
for benchmarking speech recognition algorithms. This dataset
consists of spoken digit utterances from 111 male and 114
female speakers. We used all of the 12,373 continuous spoken
digit utterances for the SOM training and the rest of the 4,950
isolated spoken digit utterances for the SNN training and testing.
Each speaker contributes two isolated spoken digit utterances
for all 11 classes (i.e., “zeros” to “nine” and “oh”). We split the
isolated spoken digit utterances randomly with 3,950 utterances
for training and the remaining 1,000 utterances for testing.

2.5.2. SOM-SNN Framework
The SOM-SNN framework, as shown in Figure 2, consists of
three processing stages organized in a pipeline. These stages are
trained separately and then evaluated in a single, continuous
process. For the auditory front-end, we segment the continuous
sound samples into frames of 100 ms length with 50 ms
overlap between neighboring frames for the RWCP dataset.
In contrast, we use a frame length of 25 ms with 10 ms
overlap for the TIDIGITS dataset. These values are determined
empirically to sufficiently discriminate the signals without
excessive computational load. We utilize 20 mel-scaled filters for
the spectral analysis, ranging from 200 to 8,000 Hz and 200 to
10,000 Hz respectively for the RWCP and TIDIGITS datasets.
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The number of filters is again empirically determined, such that
more filters do not improve classification accuracy.

For feature representation learning in the SOM, we utilize the
SOM available in the MATLAB Neural Network Toolbox. The
Euclidean distance is used to determine the BMUs, which are
subsequently converted into spatiotemporal spike patterns. The
output spikes from the SOM are generated per sound frame, with
an interval as determined by the frame shift (i.e., 50ms for RWCP
dataset and 15 ms for TIDIGITS dataset). We study the effect of
different hyperparameters including SOM map size, number of
training epochs and number of activated neurons per incoming
frame. Their effects on classification accuracy are presented in
section 3.3.

We initialize the SNN by setting the threshold Vthr , the hard
margin 1 and learning rate λ to 1.0, 0.5 and 0.005 respectively.
The time constants of the SNN have determined empirically such
that the PSP duration is optimal for the particular dataset, and
we set τm to 750, 225 ms and τs to 187.5, 56.25 ms for the RWCP
and TIDIGITS datasets, respectively.We train all the SNNs for 10
epochs by when convergence is observed. The initial weights for
the neurons in the SNN classifier are drawn randomly from the
Gaussian distribution with a mean of 0 and standard deviation of
10−3. Parameters used in all our experiments are as above unless
otherwise stated.

2.5.3. Traditional Artificial Neural Networks
To facilitate comparison with other traditional ANN models
trained on the RWCP dataset, we implement four common
neural network architectures, namely theMulti-Layer Perceptron
(MLP) (Morgan and Bourlard, 1990), the Convolutional Neural
Network (CNN) (Krizhevsky et al., 2012), the Recurrent Neural
Network (RNN) (Graves et al., 2013) and the Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) using the
Pytorch library. For a fair comparison, we implement the MLP
with 1 hidden layer of 500 ReLU units, and the CNN with two
convolution layers of 128 feature maps each followed by 2 fully-
connected layers of 500 and 10 ReLU units. The input frames to
theMLP andCNN are concatenated over time into a spectrogram
image. Since the number of frames for each sound clip varies
from 20 to 100 and cannot be processed directly by the MLP
or CNN, we bilinearly rescale these spectrogram images into a
consistent dimension of 20× 64.

We implement both the RNN and LSTM with two hidden
layers containing 100 hidden units each, and a dropout layer
with a probability of 0.5 is applied after the first hidden layer
to prevent overfitting. The input to the RNN and LSTM are the
20-dimensional filter bank output vectors. The weights for all
networks are initialized with orthogonal conditions as suggested
in (Saxe et al., 2013). The deep learning networks are trained
with the cross-entropy criterion and optimized using the Adam
(Kingma and Ba, 2014) optimizer. The learning rate is decayed to
99% of the original value after every epoch, and all networks are
trained for 100 epochs, except for the CNN (50 epochs), by when
convergence is observed. Simulations are repeated 10 times for
each model, with random weight initialization.

To study the synergy between SOM and deep learning models
(i.e., RNN and LSTM), we use the mid-level features of the SOM

as inputs to train the RNN and LSTM, respectively denoted
as SOM-RNN and SOM-LSTM. These features are obtained by
converting the BMU that corresponds to each sound frame into
a one-hot vector and concatenating them over time to form a
sparse representation of each sound clip. We trained the SOM-
RNN and SOM-LSTM models with the same set-up as the RNN
and LSTMmentioned above.

2.5.4. Noise Robustness Evaluation

2.5.4.1. Environmental noise
We generate noise-corrupted sound samples by adding “Speech
Babble" background noise from the NOISEX-92 dataset (Varga
and Steeneken, 1993) to the clean RWCP sound samples. This
selected background noise represents a non-stationary noisy
environment with predominantly low-frequency contents, hence
making a fair comparison with the noise robustness tests
performed in LSF-SNN (Dennis et al., 2013) and LTF-SNN
models (Xiao et al., 2017). For each training or testing sound
sample, a random noise segment of the same duration is selected
from the noise file and added at 4 different SNR levels of 20,
10, 0 and -5 dB separately, giving a total of 1,000 training and
1,000 testing samples. The SNR ratio is calculated based on the
energy level of each sound sample and the corresponding noise
segment in our experiments. Training is performed over the
whole training set, while the testing set is evaluated separately at
different SNR levels.

We perform multi-condition training on all the MLP, CNN,
RNN, LSTM and SOM-SNN models. Additionally, we also
conduct experiments whereby the models are trained with clean
sound samples but tested with noise-corrupted samples (the
mismatched condition).

2.5.4.2. Neuronal Noise
We also consider the effect of neuronal noise which is known
to exist in the human brain, emulated by spike jittering and
deletion. Given that the human auditory system is highly robust
to these noises, it motivates us to investigate the performance of
the proposed framework under such noisy conditions.

For spike jittering, we add Gaussian noise with zero mean and
standard deviation σ to the spike timing t of all input spikes
entering the SNN classifier. The amount of jitter is determined
by σ which we sweep from 0.1 T to 0.8 T, where T is the spike
generation period. In addition, we also consider spike deletion,
where a certain fraction of spikes are corrupted by noise and
not delivered to the SNN. For both types of neuronal noise,
we trained the model without any noise and then tested it with
jittered (of varying standard deviation σ ) or deleted (of varying
ratio) input spike trains.

3. RESULTS

In this section, we first present the classification results of
the proposed SOM-SNN framework for the two benchmark
datasets and then compare them with other baseline models.
Next, we discuss its early decision-making capability, the
effectiveness of using the SOM for feature representation and
its underlying hyperparameters, as well as the key differences
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TABLE 1 | Comparison of the classification accuracy of the proposed SOM-SNN

framework against other ANNs and SNN-based frameworks on the RWCP

dataset.

Model Accuracy (%)

MLP 99.45

CNN 99.85

RNN 95.35

LSTM 98.40

SOM-RNN 97.20

SOM-LSTM 98.15

LSF-SNN (Dennis et al., 2013) 98.50

LTF-SNN (Xiao et al., 2017) 97.50

SOM-SNN (ReSuMe) 97.00

SOM-SNN (Maximum-Margin Tempotron) 99.60

The average results over 10 experimental runs with random weight initialization are

reported.

between the feedforward SNN-based and RNN-based systems
for a temporal classification task. Finally, we demonstrate the
improved classification capability of the modified Maximum-
Margin Tempotron learning rule and the robustness of the
framework against environmental and neuronal noises.

3.1. Classification Results
3.1.1. RWCP Dataset
As shown in Table 1, the SOM-SNN model achieved a test
accuracy of 99.60%, which is competitive compared with other
deep learning and SNN-based models. As described in the
experimental set-up, the MLP and CNNmodels are trained using
spectrogram images of fixed dimensions, instead of explicitly
modeling the temporal transition of frames. Despite their high
accuracy on this dataset, it may be challenging to use them
for classifying sound samples of long duration; the temporal
structures will be affected inconsistently due to the necessary
rescaling of the spectrogram images (Gütig and Sompolinsky,
2009). On the other hand, the RNN and LSTM models capture
the temporal transition explicitly. These models are however
hard to train for long sound samples due to the vanishing and
exploding gradient problem (Greff et al., 2017).

LSF-SNN (Dennis et al., 2013) and LTF-SNN (Xiao et al.,
2017) classify the sound samples by first detecting the spectral
features in the power spectrogram, and then encoding these
features into a spatiotemporal spike pattern for classification by
a SNN classifier. In our framework, the SOM is used to learn the
key features embedded in the acoustic signals in an unsupervised
manner, which is more biologically plausible. Neurons in the
SOM become selective to specific spectral features after training,
and these features learned by the SOM are more discriminative
as shown by the superior SOM-SNN classification accuracy
compared with the LSF-SNN and LTF-SNN models.

3.1.2. TIDIGITS Dataset
As shown in Table 2, it is encouraging to note that the SOM-
SNN framework achieves an accuracy of 97.40%, outperforming
all other bio-inspired systems on the TIDIGITS dataset.

TABLE 2 | Comparison of the classification accuracy of the proposed SOM-SNN

framework against other baseline frameworks on the TIDIGITS dataset.

Model Accuracy (%)

Single-layer SNN and SVM (Tavanaei and Maida, 2017a)a 91.00

Spiking CNN and HMM (Tavanaei and Maida, 2017b)a 96.00

AER Silicon Cochlea and SVM (Abdollahi and Liu, 2011)b 95.58

AER Silicon Cochlea and Deep RNN (Neil and Liu, 2016)b 96.10

AER Silicon Cochlea and Phased LSTM (Anumula et al., 2018)b 91.25

Liquid State Machine (Zhang et al., 2015)c 92.30

MFCC and GRU RNN (Anumula et al., 2018)c 97.90

SOM and SNN (this work)c 97.40

aEvaluate on the Aurora dataset which was developed from the TIDIGITS dataset.
bThe data was collected by playing the audio files from the TIDIGITS dataset to the AER

Silicon Cochlea Sensor.
cEvaluate on the TIDIGITS dataset.

In Anumula et al. (2018), Abdollahi and Liu (2011), and Neil
and Liu (2016), novel systems are designed to work with spike
streams generated directly from the AER silicon cochlea sensor.
This event-driven auditory front-end generates spike streams
asynchronously from 64 bandpass filters spanning over the
audible range of the human cochlea. Anumula et al. (Abdollahi
and Liu, 2011) provide a comprehensive overview of the
asynchronous and synchronous features generated from these
raw spike streams, once again highlighting the significant role of
discriminative feature representation in speech recognition tasks.

Tavanaei et al. (Tavanaei and Maida, 2017a,b) proposes two
biologically plausible feature extractors constructed from SNNs
trained using the unsupervised spike-timing-dependent plasticity
(STDP) learning rule. The neuronal activations in the feature
extraction layer are then transformed into a real-valued feature
vector and used to train a traditional classifier, such as the HMM
or SVM models. In our work, the features are extracted using
the SOM and then used to train a biologically plausible SNN
classifier. These different biologically inspired systems represent
an important step toward an end-to-end SNN-based automatic
speech recognition system.

We note that the traditional RNN based system offers a
competitive accuracy of 97.90% (Anumula et al., 2018); our
proposed framework, however, is fundamentally different from
traditional deep learning approaches. It is worth noting that the
network capacity and classification accuracy of our framework
can be further improved using multi-layer SNNs.

3.2. Early Decision Making Capability
We note that the SNN-based classifier can identify temporal
features within the spatiotemporal spike pattern and generate
an output spike as soon as enough discriminative evidence is
accumulated. This cumulative decision-making process is more
biologically plausible, as it mimics how human makes decisions.
A key benefit of such a decision-making process is low latency. As
shown in Figure 3A, the SNN classifier makes a decision before
the whole pattern has been presented. On average, the decision is
made when only 50% of the input is presented.
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FIGURE 3 | The demonstration of the early decision making capability of the SNN-based classifier. (A) The distribution of the number of samples as a function of the

ratio of decision time (spike timing) to sample duration on the RWCP test dataset. On average, the SNN-based classifier makes the classification decision when only

50% of the pattern is presented. (B) Test accuracy as a function of the percentage of test pattern input to different classifiers (classifiers are trained with full training

patterns).

Additionally, we conduct experiments on the SOM-SNN,
RNN, and LSTM models, whereby they are trained on the
full input patterns but tested with only a partial presentation
of the input. The training label is provided to the RNN and
LSTM models at the end of each training sequence by default
as it is not clear beforehand when enough discriminative
features have been accumulated. Likewise, the training labels are
provided at the end of input patterns for the SNN classifier.
For testing, we increase the duration of the test input pattern
presented from 10 to 100% of the actual duration, starting
from the beginning of each pattern. As shown in Figure 3B,
the classification accuracy as a function of the input pattern
percentage increases more rapidly for the SNNmodel. It achieves
a satisfactory accuracy of 95.1% when only 50% of the input
pattern is presented, much higher than the 25.7 and 69.2%
accuracy achieved by the RNN and LSTM models respectively.
For the RNN and LSTMmodels to achieve early decision-making
capability, onemay require that themodels be trainedwith partial
inputs or output labels provided at every time-step. Therefore,
SNN-based classifiers demonstrate great potential for real-time
temporal pattern classification, compared with state-of-the-art
deep learning models such as the RNN and LSTM.

3.3. Feature Representation of the SOM
To visualize the features extracted by the SOM, we plot the
BMU activation sequences and their corresponding trajectories
on the SOM for a set of randomly selected samples from class
“bell5,” “bottle1,” and “buzzer” in Figure 4. We observe low
intra-class variability and high inter-class variability in both the
BMU activation trajectories and sequences, which are highly
desirable for pattern classification. Furthermore, we perform
tSNE clustering on the concatenated input vectors entering
the SOM and the BMU trajectories generated by the SOM. In
Figure 5A (input vectors entering the SOM), it can be seen that
samples from the same class are distributed over several clusters

in 2D space (e.g., class 7, 10). The corresponding BMU vectors,
however, merge into a single cluster as shown in Figure 5B,
suggesting lower intra-class variability achieved by the SOM. The
class boundaries for the BMU trajectories may now be drawn
as shown in Figure 5B, suggesting high inter-class variability.
The outliers in Figure 5B maybe an artifact due to the uniform
rescaling performed on BMU trajectories, a necessary step for
tSNE clustering.

We note that the time-warping problem exists in the BMU
activation sequences, whereby the duration of sensory stimuli
fluctuates from sample to sample within the same class. However,
the SNN-based classifier is robust to such fluctuations as
shown in the classification results. The decision to fire for a
classifying neuron is made based on a time snippet of the
spiking pattern; such is the nature of the single spike-based
temporal classifier. As long as the BMU activation sequence
stays similar, duration fluctuations of input sample will not
affect the general trajectory of the membrane potential in each
output neuron; the right classification decision, therefore, can
be guaranteed. Hence, those outliers in Figure 5B underlying
the time-warping problem may not necessarily lead to poor
classification.

To investigate whether the feature dimension reduction of
the SOM is necessary for the SNN classifier to learn different
sound categories, we performed experiments that directly input
the spike trains of the latency-encoded (20 neurons) (Yu et al.,
2013b) or population-encoded (144 neurons) (Bohte et al., 2002)
mel-scaled filter bank outputs into the SNN for classification.
We find that the SNN classifier is unable to classify such
low-level spatiotemporal spike patterns, and only achieve 10.2
and 46.5% classification accuracy for latency- and population-
encoded spike patterns, respectively. For both latency- and
population-encoded spike patterns, as all encoding neurons spike
in every sound frame, albeit with different timing, the synaptic
weights therefore either all strengthen or all weaken in the event
of misclassification as defined in the Tempotron learning rule.
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FIGURE 4 | BMU activation trajectories of the SOM (A,C) and BMU activation sequences (B,D) for randomly selected sound samples from classes “bell5” (Row 1),

“bottle1” (Row 2) and “buzzer” (Row 3) of a trained 12 × 12 SOM on the RWCP dataset. For BMU activation trajectories, the lines connect activated BMUs from

frame to frame. The activated BMUs are highlighted from light to dark over time. For BMU activation sequences, the neurons of the SOM are enumerated along the

y-axis and color matched with neurons in the BMU activation trajectories. The low intra-class variability and high inter-class variability for the BMU activation

trajectories and sequences are observed.

Such synchronized weight updates make it challenging for the
SNN classifier to find discriminative features embedded within
the spike pattern.

As summarized in the section 1, the learning rules for the
SNN can be categorized into either membrane-potential based
or spike-time based; the Maximum-Margin Tempotron learning
rule belongs to the former. To study the synergy between the
SOM-based feature representation and spike-time based learning
rule, we conducted an experiment using the ReSuMe (Ponulak
and Kasiński, 2010) learning rule to train the SNN classifier.
For a fair comparison with the Maximum-Margin Tempotron
learning rule, we use one output neuron to represent each sound
class and each neuron has a single desired output spike. To
determine the desired spike timing for each output neuron, we
first present all training spiking patterns from the corresponding
sound class to the randomly initialized SNN; and monitor the
membrane potential trace of the desired output neuron during
the simulation. We note the time instant when the membrane
potential trace reaches its maximum (denoted as Tmax) for each
sound sample, revealing the most discriminative local temporal
feature. We then use the mean of Tmax across all 20 training
samples as the desired output spike time. As shown inTable 1, the
SNN trained with ReSuMe rule achieves a classification accuracy
of 97.0%, which is competitive with other models. This, therefore,
demonstrates the compatibility of features extracted by the SOM
and spike-time based learning rules, whereby the intra-class
variability of sound samples is circumvented by SOM feature
extraction such that a single desired spike time for each class
suffices.

We note that the SOM functions as an unsupervised sparse
feature extractor that provides useful, discriminative input
to downstream ANN classifiers. As shown in Table 1, the
classification accuracy of the SOM-RNN model is better than
that of the RNN model alone, and the accuracy of the SOM-
LSTM model is also comparable to that of the LSTM model.
Additionally, we also notice faster training convergence for both
the SOM-RNN and SOM-LSTM models compared to those
without the SOM, requiring approximately 25% less number
of epochs. This observation may be best explained by the
observationsmade in Figure 4, whereby only a subset of the SOM
neurons are involved in the spiking patterns of any sound sample
(with low intra-class variability and high inter-class variability)
which in itself is highly discriminative.

To analyze the effect of different hyperparameters in the SOM
on classification accuracy, we perform the following experiments:

Neural Map Size.We sweep the SOM neural map size from 2
× 2 to 16 × 16. As shown in Figure 6, we notice improved SNN
classification accuracy with larger neural map, which suggests
that a larger SOM captures more discriminative features and
therefore generates more discriminative spiking patterns for
different sound classes. However, the accuracy plateaus once
the number of neurons exceeds 120. We suspect that with
more neurons the effect of the time-warping problem starts to
dominate, leading tomoremisclassification. Hence, the optimum
neural map size has to be empirically determined.

Number of Training Epochs. We sweep the number of
training epochs used for the SOM from 100 to 1,000 with
an interval of 100. We observe improvements in classification
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FIGURE 5 | (A) tSNE clustering for concatenated input vectors entering the SOM. (B) tSNE clustering for BMU trajectories output from the SOM. Each dot on the

figure corresponds to one test sample in the TIDIGITS dataset, the numbers in the figure correspond to class centroids. The samples (e.g., Class 7 and 10) within the

same class get closer after being processed by the SOM as shown in this 2D visualization.

FIGURE 6 | The effect of the SOM neural map size and number of BMUs per

frame on classification accuracy. A larger neural map can capture more feature

variations and generate more discriminative spiking patterns for different

sound events. However, the accuracy plateaus once the number of neurons

exceeds 121. As shown in the inset, for neural maps of size above 121,

increasing the number K of BMUs for each frame enhances system

robustness with redundancy and improves classification accuracy.

accuracy of the SNN classifier, with more training epochs of the
SOM, which plateaus at 400 for the RWCP dataset.

Number of Activated Neurons. We perform experiments
with different number of activated output neurons K = [1, 2, 3]
for each sound frame. Specifically, the distances between the
SOM output neurons’ synaptic weight vectors and the input
vector are computed, and the top K neurons with the closest
weight vectors will emit a spike. The neural map sizes are swept
from 2 × 2 to 16 × 16, with number of training epochs fixed at
400. As shown in Figure 6, with more activated output neurons

in the SOM, the SNN achieves lower classification accuracy for
neural map size below 100, while achieving higher accuracy for
neural map size larger than that. It can be explained by the
fact that for smaller neural maps, given the same number of
feature clusters, fewer neurons are allocated to each cluster. Now,
with more activated neurons per frame, either fewer clusters
can be represented, or the clusters are now less distinguishable
from each other. Either way, inter-class variability is reduced,
and classification accuracy is adversely affected. This capacity
constraint is alleviated with a larger neural map, whereby
neighboring neurons are usually grouped into a single feature
cluster. As shown in the inset of Figure 6, for neural map size
larger than 100, more activated neurons per frame improves the
feature representation with some redundancy and lead to better
classification accuracy. However, it should be noted that with
more activated neurons per frame, there are more output spikes
generated in the SOM, hence increasing energy consumption.
Therefore, a trade-off between classification accuracy and energy
consumption has to be made for practical applications.

3.4. Tempotron Learning Rule With Hard
Maximum-Margin
As described in section 2, we modify the original Tempotron
learning rule by adding a hard margin 1 to the firing threshold
Vthr . With this modification, we note that the classification
accuracy of the SNN increases by 2% consistently with the same
SOM dimensions.

To demonstrate how the hard margin 1 improves
classification, we show two samples which have been
misclassified by the SNN classifier trained with the original
Tempotron rule (Figures 7A,B), but correctly classified by
the Maximum-Margin Tempotron rule (Figures 7C,D).
In Figure 7A, both output neurons (i.e., “ring” and
“bottle1”) are selective to the discriminative local feature
occurring between 2 and 10 ms. While in Figure 7B, the
discriminative local feature is overlooked by the desired
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FIGURE 7 | Selected samples misclassified by the Tempotron learning rule, while classified correctly by the modified Maximum-Margin Tempotron learning rule.

Sample from the “ring” class misclassified as “bottle1” (A), while correctly classified with Maximum-Margin Tempotron learning rule (C). Sample from the “kara” class

misclassified as “metal15” (B), while correctly classified with Maximum-Margin Tempotron learning rule (D).

output neuron, possibly due to the time-warping, and the
output neuron representing another class fires erroneously
afterward.

When trained with the additional hard margin 1, the
negative output neuron representing the “bottle1” class is
suppressed and prevented from firing (Figure 7C). Similarly,
the negative output neuron representing the “metal15” class
is also slightly suppressed, while the positive output neuron
representing the “kara” class undergoes LTP and correctly
crosses the Vthr (Figure 7D). Therefore, the additional
hard margin 1 ensures a better separation between the
positive and negative classes and improves classification
accuracy.

Since the relative ratio between the hard margin 1 and
the firing threshold Vthr is an important hyper-parameter, we
investigate its effect on the classification accuracy using the
RWCP dataset by sweeping it from 0 to 1.2 with an interval
of 0.1. The experiments are repeated 20 times for each ratio
value with random weight initialization. For simplicity, we only
study the symmetric cases whereby the hard margin has the same
absolute value for both positive and negative neurons. For the
case when the ratio is 0, the learning rule is reduced to the
standard Tempotron rule. As shown in Figure 8, the hard margin
1 improves the classification accuracy consistently for ratios
below 1.0, and the best accuracy is achieved with a ratio of 0.5.

The accuracy drops significantly for ratio above 0.9, suggesting
a high level of margin may interfere with learning and lead to
brittle models.

3.5. Robustness to Noise
3.5.1. Environmental Noise
We report the classification accuracies over 10 runs with random
weight initialization in Tables 3, 4 for mismatched and multi-
condition training respectively.

We note that under the mismatched condition, the
classification accuracy for all models degrades dramatically
with an increasing amount of noise and falls below 50% with
SNR at 10 dB. The LSF-SNN and LTF-SNN models use local key
points on the spectrogram as features to represent the sound
sample, and are therefore robust to noise under such conditions.
However, the biological evidence for such spectrogram features
is currently lacking.

As shown in Table 4, multi-condition training effectively
addresses the problem of performance degradation under noisy
conditions, whereby MLP, CNN, LSTM, and SOM-SNN models
have achieved classification accuracies above 95% even at
the challenging 0 dB SNR. Similar to observations made in
McLoughlin et al. (2015), we note that the improved robustness
to noise comes with a trade-off in terms of accuracy for clean
sounds, as demonstrated in the results for the ANN models.
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FIGURE 8 | The effect of the ratio between the hard margin 1 and the firing

threshold Vthr on classification accuracy. For 1/Vthr = 0, the learning rule is

reduced to the standard Tempotron rule. The hard margin 1 improves the

classification accuracy for ratios below 1.0, while the accuracy drops

significantly afterward. The best accuracy is achieved with a ratio of 0.5 on the

RWCP dataset.

However, the classification accuracies improve across the board
for the SOM-SNN model under all acoustic conditions using the
multi-condition training, achieving an accuracy of 98.7% even for
the challenging case of -5 dB SNR. The SOM-SNN model hence
offers an attractive alternative to other models especially when a
single trained model has to operate under varying noise levels.

3.5.2. Spike Jittering
As shown in Figure 9A, the SOM-SNN model is shown to be
highly robust to spike jittering and maintains a high accuracy
independent of the number of neurons activated per sound frame
in the SOM.We suspect that given only a small subset of neurons
in the SOM are involved for each sound class, the requirement of
the SNN for precise spike timing is relaxed.

3.5.3. Spike Deletion
As shown in Figure 9B, the SOM-SNN model maintains a high
classification accuracy when spike deletion is performed on the
input to the SNN. As only a small subset of pre-synaptic neurons
in the SOM deliver input spikes to the SNN for each sound class,
with high inter-class variability, the SNN classifier is still able to
classify correctly even with some input spike deletion. The peak
membrane potential value is used in some cases to make the
correct classification.

4. DISCUSSION

In this paper, we propose a biologically plausible SOM-SNN
framework for automatic sound classification. This framework
integrates the auditory front-end, feature representation learning
and temporal classification in a unified framework. Biological
plausibility is a key consideration in the design of our framework,

which distinguishes it from many other machine learning
frameworks.

The SOM-SNN framework is organized in a modular manner,
whereby acoustic signals are pre-processed using a biologically
plausible auditory front-end, the mel-scaled filter bank, for
frequency content analysis. This framework emulates the
functionality of the human cochlea and the non-linearity of
human perception of sound (Bear et al., 2016). Although it is
still not clear how information is represented and processed
in the auditory cortex, it has been shown that certain neural
populations in the cochlear nuclei and primary auditory cortex
are organized in a tonotopic fashion (Pantev et al., 1995;
Bilecen et al., 1998). Motivated by this, the biologically plausible
SOM is used for the feature extraction and representation of
mel-scaled filter bank outputs. The selectivity of neurons
in the SOM emerges from unsupervised training and
organizes in a tonotopic fashion, whereby adjacent neurons
share similar weight vectors. The SOM effectively improves
pattern separation, whereby each sound frame originally
represented by a 20-dimensional vector (mel-scaled filter
bank output coefficients) is translated into a single output
spike. The resulting BMU activation sequences are shown
to have the property of low intra-class variability and high
inter-class variability. Consequently, the SOM provides an
effective and sparse representation of acoustic signals as
observed in the auditory cortex (Hromádka et al., 2008).
Additionally, the feature representation of the SOM was shown
to be useful inputs for RNN and LSTM classifiers in our
experiments.

Although the SOM is biologically inspired by cortical maps
in the human brain, it lacks certain characteristics of the
biological neuron, such as spiking output and access to only
local information. Other studies (Rumbell et al., 2014; Hazan
et al., 2018) have shed light on the feasibility of using spiking
neurons and spike-timing dependent plasticity (STDP) learning
rule (Song et al., 2000) to model the SOM. We would investigate
how we may integrate the spiking-SOM and the SNN classifier
for classification tasks in the future.

Acoustic signals exhibit large variations not only in their
frequency contents but also in temporal structures. State-of-the-
art machine learning based ASC systems model the temporal
transition explicitly, using the HMM, RNN or LSTM, while
our work focuses on building a biologically plausible temporal
classifier based on the SNN. For efficient training, we use
supervised temporal learning rules, namely the membrane-
potential based Maximum-Margin Tempotron and spike-timing
based ReSuMe. The Maximum-Margin Tempotron (combining
the Tempotron rule with the maximum-margin classifier)
ensures a better separation between the positive and negative
classes, improving classification accuracy in our experiments.
As demonstrated in our experiments, the SOM-SNN framework
achieves comparable classification results on both the RWCP and
TIDIGITS datasets against other deep learning and SNN-based
models.

We further discover that the SNN-based classifier has
an early decision making capability: making a classification
decision when only part of the input is presented. In our
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TABLE 3 | Average classification accuracy of different models under the mismatched-condition.

SNR MLP CNN RNN LSTM SOM-SNN

Clean 99.45 ± 0.35% 99.85 ± 0.23% 95.35 ± 1.06% 98.40 ± 0.86% 99.60 ± 0.15%

20 dB 55.05 ± 4.30% 61.5 ± 4.71% 25.15 ± 8.86% 47.20 ± 5.36% 79.15±3.70%

10 dB 32.10 ± 8.38% 42.70 ± 5.84% 11.85 ± 2.06% 34.50 ± 10.61% 36.25±1.25%

0 dB 24.60 ± 4.94% 28.40 ± 6.60% 10.10 ± 1.64% 22.35 ± 6.63% 26.50 ± 1.29%

-5 dB 18.40 ± 4.58% 22.65 ± 5.08% 9.20 ± 1.98% 16.60 ± 7.00% 19.55 ± 0.16%

Average 45.92% 51.02% 30.33% 43.81% 52.21%

Experiments are conducted over 10 runs with random weight initialization.

The bold values indicate the best classification accuracies under different SNR.

TABLE 4 | Average classification accuracy of different models with multi-condition training.

SNR MLP CNN RNN LSTM SOM-SNN

Clean 96.10 ± 1.18% 97.60 ± 0.89% 94.30 ± 3.04% 98.15 ± 0.71% 99.80 ± 0.22%

20 dB 98.45 ± 0.61% 99.50 ± 0.22% 94.30 ± 2.70% 99.10 ± 0.89% 100.00 ± 0.00%

10 dB 99.35 ± 0.45% 99.70 ± 0.33% 95.25 ± 2.49% 99.05 ± 1.25% 100.00 ± 0.00%

0 dB 98.20 ± 1.45% 99.45 ± 0.75% 93.65 ± 2.82% 95.80 ± 3.93% 99.45 ± 0.55%

-5 dB 92.50 ± 1.53% 98.35 ± 0.78% 86.85 ± 5.20% 91.35 ± 4.82% 98.70 ± 0.48%

Average 96.92% 98.92% 92.87% 96.69% 99.59%

Experiments are conducted over 10 runs with random weight initialization.

The bold values indicate the best classification accuracies under different SNR.

FIGURE 9 | The effect of spike jittering and spike deletion on the classification accuracy. (A) Classification accuracy as a result of spike jitter added at the input to the

SNN classifier. The amount of jitter is added as a fraction of the spike generation period T (i.e., 50 ms used for the RWCP dataset). The classifier is robust to spike

jitter, maintaining a high accuracy with different amount of jitter. (B) Classification accuracy as a result of spike deletion at the input to the SNN classifier. The accuracy

of the classifier remains stable for spike deletion ratio below 60% and decays with increased spike deletion.

experiments, the SNN-based classifier achieves an accuracy
of 95.1%, significantly higher than those of the RNN and
LSTM (25.7% and 69.2% respectively) when only 50% of
the input pattern is presented. This early decision making
capability can be further exploited in noisy environments,
as exemplified by the cocktail party problem (Haykin and
Chen, 2005). The SNN-based classifier can potentially identify
discriminative temporal features and classify accordingly
from a time snippet of the acoustic signals that are less

distorted, which is desirable for an environment with fluctuating
noise.

Environmental noise poses a significant challenge to the
robustness of any sound classification systems: the accuracy
of many such systems degrade rapidly with an increasing
amount of noise as shown in our experiments. Multi-condition
training, whereby the model is trained with noise-corrupted
sound samples, is shown to overcome this challenge effectively.
In contrast to the DNN and SVM classifiers (McLoughlin et al.,
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2015), there is no trade-off in performance for clean sounds in the
SOM-SNN framework with multi-condition training; probably
because the classification decision is made based on local
temporal patterns. Additionally, noise is also known to exist in
the central nervous system (Schneidman, 2001; van Rossum et al.,
2003) which can be simulated by spike jittering and deletion.
Notably, the SOM-SNN framework is shown to be highly robust
to such noises introduced to spike inputs arriving at the SNN
classifier.

The SNN classifier makes a decision based on a single local
discriminative feature which often only lasts for a fraction of
the pattern duration, as a direct consequence of the Maximum-
Margin Tempotron learning rule. We expect improved accuracy
when more such local features within a single spike pattern
are utilized for classification, which may be learned using the
multi-spike Tempotron (Gütig, 2016; Yu et al., 2018). The
accuracy of the SOM-SNN model trained with the ReSuMe
learning rule may also be improved by using multiple spike
times. However, defining these desired spike times is a challenge
exacerbated by increasing intra-class variability. Although the
existing single-layer SNN classifier has achieved promising
results on both benchmark datasets, it is not clear how the
proposed framework may scale for more challenging datasets.
Recently, there is progress made in training multi-layer SNNs
(Lee et al., 2016; Neftci et al., 2017; Wu et al., 2018b), which
could significantly increase model capacity and classification
accuracy. For future work, we would investigate how to
incorporate these multi-spike and multi-layer SNN classifiers
into our framework for more challenging large-vocabulary
speech recognition tasks.

For real-life applications such as audio surveillance, we may
add inhibitory connections between output neurons to reset all
neurons once the decision has been made (i.e., a winner-takes-
all mechanism). This allows output neurons to compete once
again and spike upon receipt of a new local discriminative spike
pattern. The firing history of all output neurons can then be
analyzed so as to understand the audio scene.

The computational cost and memory bandwidth
requirements of our framework would be the key concerns
in a neuromorphic hardware implementation. As the proposed
framework is organized in a pipelinedmanner, the computational
cost could be analyzed independently for the auditory front-
end, SOM and SNN classifier. For the auditory front-end, our
implementation is similar to that of the MFCC. As evaluated
in Anumula et al. (2018), the MFCC implementation is

computationally more costly compared to the spike trains
generated directly from the neuromorphic cochlea sensor. Our

recent work (Pan et al., 2018) proposes a novel time-domain
frequency filtering scheme which addresses the cost issue in
MFCC implementation. We expect the SOM to be the main
computational bottleneck of the proposed framework. For
each sound frame, the calculation of the Euclidean distance
of synaptic weights from the input vector is done for each
SOM neuron. Additionally, the distances are required to be
sorted so as to determine the best-matching units. However, this
computational bottleneck can be addressed with the spiking-
SOM implementation (Rumbell et al., 2014; Hazan et al., 2018),
whereby the winner neuron spikes the earliest and inhibits all
other neurons from firing (i.e., a winner-takes-all mechanism)
and hence by construction, the BMU. The spiking-SOM also
facilitates the implementation of the whole framework on a
neuromorphic hardware. In tandem with the SNN classifier, a
fully SNN-based framework when implemented would translate
to significant power saving.

As for memory bandwidth requirements, the synaptic weight
matrices connecting the auditory front-end with the SOM
and the SOM with the SNN classifier are the two major
components for memory storage and retrieval. For the synaptic
connections between the auditory front-end and the SOM, the
memory bandwidth increases quadratically with the product of
the number of neurons in the SOM and the dimensionality
of the filter banks. Since the number of output neurons is
equal to the total number of classes and hence fixed, the
memory bandwidth only increases linearly with the number of
neurons in the SOM. Therefore, the number of neurons in the
SOM should be carefully designed for a particular application
considering the trade-off between classification accuracy and
hardware efficiency.
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This paper presents a novel real-time dynamic framework for quantifying time-series

structure in spoken words using spikes. Audio signals are converted into multi-channel

spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator.

These spike trains are mapped into a function space of infinite dimension, i.e.,

a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a

state-space model learns the dynamics of the multidimensional spike input using

gradient descent learning. This kernelized recurrent system is very parsimonious and

achieves the necessary memory depth via feedback of its internal states when trained

discriminatively, utilizing the full context of the phoneme sequence. A main advantage

of modeling nonlinear dynamics using state-space trajectories in the RKHS is that

it imposes no restriction on the relationship between the exogenous input and its

internal state. We are free to choose the input representation with an appropriate

kernel, and changing the kernel does not impact the system nor the learning algorithm.

Moreover, we show that this novel framework can outperform both traditional hidden

Markov model (HMM) speech processing as well as neuromorphic implementations

based on spiking neural network (SNN), yielding accurate and ultra-low power word

spotters. As a proof of concept, we demonstrate its capabilities using the benchmark

TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword

spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end

without time-derivatives, our MFCC-KAARMA offered improved performance. For

spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions.

Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in

certain low signal-to-noise ratio (SNR) regime.

Keywords: spike-based learning, noise-robust automatic speech recognition (ASR), keyword spotting, kernel

adaptive filtering (KAF), reproducing kernel Hilbert space (RKHS), kernel method, neuromorphic computation

1. INTRODUCTION

Automatic speech recognition (ASR) or the task of translating audio signal into text is an especially
challenging problem due to both the non-stationarity of speech signal and the large variations
in its spatiotemporal representation. Particularly, the variability in the temporal dimension of
speech signal prevents state-of-the-art pattern classifiers such as support vector machines (SVMs)
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(Scholkopf and Smola, 2001), which are limited to static
patterns or fixed (constant) dimension inputs, from being
implemented in a straightforward manner. Compounding the
issue is that performance often degrades significantly under noisy
environments.

Figure 1 illustrates a typical ASR system. Following pre-
processing, which includes speech/non-speech detection and
filtering, feature extraction is performed on the post-processed
speech signal to form a compact representation. Desirable speech
features should emphasize linguistic information over extraneous
content such as the speaker’s age, emotion, gender, etc. The most
commonly used features in speech recognition systems are Mel-
frequency cepstral coefficients (MFCCs) (Davis andMermelstein,
1980). The extraction process involves segmenting the speech
signal into quasi-stationary short-time frames of 20–40ms,
overlapped every 10ms (i.e., frame-rate of 100 fps). For each
frame, a Mel-scale filter bank is applied to its power spectrum
estimate. TheMFCCs are defined as the discrete cosine transform
(DCT) of the log energies in the corresponding frequency bands.
Theymeasure the power spectrum envelope in each frame, which
correlates to the shape of the vocal tract, providing an appropriate
representation of the sound or phone being produced.

At the heart of an ASR system is the decoder. Feature
vectors are decoded into linguistic units that make up
speech, using acoustic models learned from recordings and
their corresponding transcripts. Linguistic and pronunciation
knowledge are often used to improve the decoding performance
(Kuhn and Mori, 1990; Bengio et al., 2003; Mikolov et al.,
2010). The standard approach to tackle ASR is to impose a
statistical framework by scoring each speech signal with words
in a vocabulary on a probability scale, with the most likely
word selected as the ASR output. The hidden Markov model
(HMM) was the most widely used acoustic model for speech
recognition (Rabiner, 1989) until recent years and is still used
for many practical applications. Under this statistical framework,
the observations or speech feature vectors are modeled as
acoustic signals generated by a stationary process, while the
transition probabilities in the hidden states account for the time-
varying nature of speech. Current advances in accuracy achieved
with deep learning (DL) (Hinton et al., 2012) are mismatched
with mobile devices and resource-constrained systems, due
to difficulty of training, power, and footprint requirements.
Conventionally, these applications utilize cloud-based solutions,
where processing is performed on large remote servers. However,
this imposes additional demands on quality of service. There are
many mobile applications where the on-device acoustic model
output accuracy is insufficient.

Figure 2 shows a typical discrete HMM, parametrized by an
initial state distributionπ = {πi = Pr(S1 = si)}, a state transition
probability matrix A = {ai,j = Pr(St = sj|St−1 = si)}, an
observation distribution B = {bi(ut) = Pr(ut|St = si)}, where
U = {u1, u2, · · · , uf } is an f -frame observation sequence, and
S = {s1, s2, · · · , sL} is the underlying state sequence of length L,
which forms a first-order Markov chain. The Gaussian mixture
model (GMM) is typically used to approximate the observation
distribution B. An HMM (π,A,B) can be estimated using the
Baum-Welch (BW) algorithm (Baum et al., 1970), a special

case of the expectation-maximization (EM) algorithm (Dempster
et al., 1977). In ASR, one HMM is trained for each speech
unit (e.g., phone, syllable, word, etc.,) in the vocabulary. A test
utterance is compared to all trainedHMMs, in order to determine
the likelihood that it was generated by a particular HMM. This
framework represents an unsupervised learning paradigm. As
a maximum-likelihood estimation (MLE) method, it relies on
strong assumptions on the statistical properties of the observed
phenomenon, but lacks discriminative power among different
models.

Since humans naturally and very efficiently decode speech
and perform better than most ASR systems, especially in noisy
environments, it is only logical for researchers to turn to
biological inspiration in the design of ASR systems. As amatter of
fact, MFCC already makes use of the psychoacoustic properties
of the auditory system (the Mel scale imitates the cochlea by
employing linearly and logarithmically distributed filters along
the frequency axis, with the cutoff at 1 kHz), a fine tuned
preprocessing step in the human auditory system. The pressure
waves originating from the cochlea are translated into spike
trains by the peripheral auditory neurons, which travel through
nerve fibers to the auditory cortex. The computation in this
complex and hierarchical structure is carried out via action
potential timing information. Computing with spikes is therefore
an important aspect to bio-inspired ASR.

There has been limited research in spike train representation
for spoken word recognition (Hopfield and Brody, 2001;
Verstraeten et al., 2005;Wade et al., 2010; Zhang et al., 2015). The
state-of-the-art spike-based ASR systems are based on spiking
neural network (SNN) such as liquid state machines (LSMs)
(Maass et al., 2002). LSM utilizes a large randomly initialized
network with recurrent connections, also referred to as a dynamic
reservoir or liquid. The parameters of the liquid remain fixed,
and only a readout layer is adapted through training to optimally
project the network or liquid states onto the desired output.
The LSM falls under a general framework called reservoir
computing (RC), which is further identified as an echo state
network (ESN) (Jaeger, 2001) for continuous valued inputs and
LSM for spike train inputs. The primary advantage of the LSM
approach is that it does not require consideration for time
dependency of the learning task, since all temporal processing
is performed implicitly in the recurrent neural circuit. RC is
free from the problems associated with gradient-based recurrent
neural networks training such as local optima, slow convergence,
and high computational complexity. However, performance
depends largely on the reservoir hyperparameters that need to
be cross-validated appropriately to find an optimal solution,
without which RC is a less reliable convex universal learning
machine (CULM) than conventional adaptive networks using
kernel adaptive filtering (Príncipe and Chen, 2015). Furthermore,
producing a constant output for time-varying liquid state is a
major challenge for LSM, since its memory-less readout has to
transform the transient and non-stationary states of the liquid
into a stable output without the assistance of stable states or
attractors (Maass et al., 2002).

In our previous work (Li and Príncipe, 2016), we introduced
a novel online kernel adaptive filtering algorithm: the kernel
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FIGURE 1 | Automatic speech recognition system diagram.

FIGURE 2 | Example of an L-state left-to-right discrete HMM used for ASR, with two non-emitting states: s1 and sL. For each emitting state, the HMM can only

remain in the same state or move to the next state on its right.

adaptive autoregressive-moving-average (ARMA) or KAARMA.
We demonstrated this kernelized recurrent network’s ability to
model dynamical systems and as a bit-stream classifier using
the benchmark Tomita grammars. Specifically, we showed that
KAARMA-based solutions can outperform LSMs on spike data,
which opened the door for many novel neuroscience applications
(Dura-Bernal et al., 2016). Furthermore, we have successfully
applied the methods to model flight dynamics of insects and
plant growth patterns (Li and Príncipe, 2017a,b; Li et al., 2017).
Since speech production is both nonlinear and non-stationary in
nature, KAARMA can deliver computationally efficient solutions
for ASR as we demonstrate below.

In this paper, we propose a novel paradigm to work with
spike timing information. Instead of projecting the input spike
train nonlinearly into a much higher dimensional space using
a recurrent interconnection of spiking neurons as is done
with LSM, we project the input spike trains into an infinite
dimensional function space (RKHS) using positive definite

functions, where we train a linear state-space model with a very
small order using backpropagation and the kernel trick. The
theory of adaptive signal processing is greatly enhanced through
the integration with the theory of RKHS. By performing classical
linear methods in an infinite-dimensional feature space, online
kernel learning (Kivinen et al., 2004), such as kernel-Adaline
(Frieß andHarrison, 1999), kernel recursive least-squares (KRLS)
(Engel et al., 2004), kernel least mean square (Liu et al., 2008),
and extended-KRLS (Liu et al., 2009) algorithms provide general
nonlinear solutions in the original input space. It also gives rise
to kernel Kalman implementations, such as using subspace kernel
principal component analysis (Ralaivola and d’Alche Buc, 2005)
and statistical embedding (Zhu et al., 2014) to model nonlinear
dynamics.

A major advantage of the KAARMA algorithm is that it
works with functions in the RKHS and changing the kernel
function does not impact the underlying learning algorithm.
Therefore, KAARMA is agnostic to the type of input and can
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be applied to static data using Gaussian kernels, or directly to
spike trains, by designing an appropriate spike kernel (Park et al.,
2012, 2013). In this paper we use a biologically-inspired auditory
filterbank and a LIF neuron model to convert the continuous-
amplitude signal output from each channel of the filterbank into
a sparse spike train representation, to create a multichannel spike
train, encoding the signal-structure changes in each frequency
band. The spike trains are then segmented using a sliding
window into frames of fixed duration and frame rate or stride,
similar to conventional speech processing. A special designed
temporal kernel then maps the spike-train frames to an RKHS
by estimating the distance between successive frames of the spike
trains, using their precise spike timings. Inference is performed
not on individual frames, but on sequences of spike-train frames
without assumption on the sequence length. Nonlinear ARMA
networks have theoretical capability to model dynamics of
arbitrary complexity. This methodology suggests a novel way to
apply spike-based computation using a recurrent neural coding
algorithm in RKHS as an alternative for a biologically-inspired
robust ASR system. Without any feature engineering step, we
evaluate how well this spike-based KAARMA ASR performs
compared to conventional amplitude-based MFCC-KAARMA
and other SNN solutions. We also evaluate the inherent noise-
robustness of the spike-train sparse representation, due to the
smoothing effect of the integration operation in the LIF neuronal
model.

The rest of this paper is organized as follows. In section 2,
we briefly introduce the KAARMA methodology. We present
its application for bio-inspired spike-based ASR in section 3.
Performances of the proposed KAARMA classifiers are evaluated
in section 4. Section 5 concludes this paper.

2. METHODS

We would like to model and learn the temporal evolution
of speech time-series acoustical features’ structure encoded in
spike trains. The goal, here, is a bio-inspired ASR system
where as much of the traditional speech pipeline as possible is
replaced by a recurrent network architecture. Specifically, we
wish to evaluate an end-to-end spike-based keyword spotting
system, without hand-designed feature extraction algorithm,
past the spike-generation stage. Furthermore, we wish to use a
unifying framework that does not depend on input signal type.
For example, conventional artificial neural network and SNN
have completely different output and learning mechanisms due
to the non-differentiable activation functions associated with
discrete spikes. To accomplish this, we apply the theory of
RKHS to map the inputs into a function space and construct
a recurrent network in this space. This way, the learning
algorithm is defined not in terms of the input representation
(continuous-valued attributes vs. discrete spikes), but in terms
of dot products between respective infinite-dimensional features,
where they can be computed in closed form using the kernel
trick. Thus, we are free to choose the input representation
independently with an appropriate reproducing kernel, and
changing the input-kernel pair does not impact the learning

algorithm itself. An additional drawback of conventional speech
pipeline is alignment, specifically frame-level training targets.
We can resolve all the issues mentioned by modeling speech as
a dynamical system and treating isolated word recognition as
a grammatical inference task trained on sequences and not on
individual frames, using the kernel adaptive ARMA algorithm.

2.1. Kernel Adaptive ARMA Algorithm
Here, we briefly introduce the KAARMA algorithm for isolated-
word speech recognition or keyword spotting, while the
adaptation of parameters is presented in the Appendix (see
Supplementary Material) for completeness. For a more in-depth
derivation, please refer to Li and Príncipe (2016).

A dynamical system approach studies the evolution of
observables over time according to specific rules. We can trace
it to a classical Newtonian root: the forces are much simpler
to describe than planetary motions. Under this framework,
even seemingly-chaotic time series actually follow an easy to
explain hidden order, and a dynamical model allows us to find
such attracting behavior. Rule discovery provides a compact
and convenient way to analyze and model a class of equivalent
trajectories but with large variations in realization.

First, let us define a dynamical system using a state-
space representation with a general continuous nonlinear state-
transition function g(·, ·) and an observation function h(·) :

xi = g(si−1, ui), (1)

yi = h(xi)
1
= h ◦ g(si−1, ui), (2)

with input vector ui ∈ R
nu , hidden state vector xi ∈ R

nx , output

vector yi ∈ R
ny , the augmented state vector si

1
= [xi, yi]

T , and
the function composition operator ◦. For our application, the
state-transition function g(·, ·) describes the dynamics driven by
the input speech ui and the previous state (for isolated word,
all speech sequences are assumed to have the same initial state).
The sequence output yi is related to the states and inputs by
observation function h(·).

Using a grammatical-inference formulation, the only thing
we know during training are labels for the full sequences or
speech utterances, i.e., the final sequence output yf = {±1}
for positive or negative examples of a target class or word
model. The state and transition functions can be parametrized
with weight values of a fully connected recurrent network and
learned using backpropagation of the label error at the end
of each speech sequence. This task is an inference problem as
opposed to a prediction one, i.e., a sequence-based approach
vs. the conventional frame-based approach of an HMM. There
is no prediction of the next frame of speech in the utterance
sequence. The network either accept or reject an entire utterance
at the end of each sequence. This is a more difficult problem
than prediction, since we do not have complete classification
knowledge of every subsequence (i.e., when prediction and
inference are equivalent). On the other hand, it does not require
a frame-level target or alignment, i.e., a desired signal di is not
required at each time/frame index of output yi, only for the
final index yf ; the internal state trajectories si are also learned
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directly from the training sequences (given a fixed initialized
state) without any observables except at the end of the sequence
when yf = {±1} for sf = [xf , yf ]

T ; and, this dynamical
model makes no assumption on the speech utterance duration
or sequence length f , i.e., it can operate on sequences of arbitrary
length.

Adaptation of parameters in the linear state model is very
well understood, and the famed Kalman filter (Kalman, 1960)
presents a very efficient recursive update algorithm that can be
computed in real time. The problem of the linear state model is
that it is not universal, i.e., it only can solve problems with small
error when the desired response exists in the span of the input
space (Haykin, 1998). Past work with dynamical modeling of
speech shows that the linear dynamical model is not competitive
with the HMM statistical model. The theory of RKHS allows
classical linear method to produce general nonlinear solutions,
and by operating in a new, function space, we are freed from the
limitations of the original input representation/space.

To emphasize the input-agnostic property of a function-space
formulation for applications using either continuous-valued
input or discrete-time events, we first describe the KAARMA
algorithm using a generic input sequence ui, then specify it
for spikes in section 2.2, which basically amounts to a simple
substitution on the kernel choice. Using the representer theorem,
we can express the state-space model Equation (1-2) as a set of

weights (functions in the input space) in the joint RKHS Hsu
1
=

Hs ⊗Hu

�
1
= �Hsu

1
=

[

g(·, ·)

h ◦ g(·, ·)

]

, (3)

where ⊗ is the tensor-product operator. Finally, the kernelized
state-space model becomes

si = �
Tψ(si−1, ui), (4)

yi = Isi, (5)

where ψ(si−1, ui)
1
= ϕ(si−1) ⊗ φ(ui) is a feature in the joint

RKHS and I
1
=

[

0 Iny

]

is a fixed selector matrix with Iny is an

ny × ny identity matrix, used to extract the output components y
from the augmented state vector s. This is analogous to a second-
order recurrent neural network defined in a function space in our
previous work (Li and Príncipe, 2016).

It follows that the tensor-product kernel is defined as

〈ψ(s, u),ψ(s′, u′)〉Hsu = Ksu(s, u, s
′, u′) = (Ks ⊗Ku)(s, u, s

′, u′)

= Ks(s, s
′) ·Ku(u, u

′). (6)

This construction has several advantages over the simple
concatenation of the input u and the state s. First, the product
of two positive-definite (PD) kernels is also a PD kernel. Second,
since learning is performed in an RKHS using features, there
is no constraint on the original input signal representation
or the number of signals, as long as we use an appropriate
reproducing kernel for each signal. Additionally, the sum or

average of two PD kernels is also a PD kernel for multi-channel
input. More importantly, this formulation imposes no restriction
on the relationship between the signals in the original input
space. This is especially useful for input signals having different
representations and spatiotemporal scales. Specifically, under
this framework, we can model a neurobiological system, taking
continuous-amplitude local field potentials, discrete-events-in-
continuous-time spike trains, and vectorized state variables as
inputs.

Figure 3 shows a graphical interpretation of a dynamical
system defined in a joint RKHS using a product kernel. Data
instances are processed using inner products or similarity
measures. The tensor-product kernel is analogous to a soft-
valued logical AND operator on the joint similarity measure. To
output a desired next state requires both an appropriate current
input AND the right previous state. In general, the states si are
assumed hidden, and during training, the desired signal does not
need to be available at every time step, e.g., a deferred desired
output value (±1 sequence label vector) for yi may only be
observed at the final indexed step i = f .

The KAARMA preserves the simplicity of linear dynamical
models with the universality of functional spaces, so it is an
attractive candidate to substitute linear dynamical systems in
computational neuroscience applications using either local field
potentials or spike trains. In computational neuroscience there
is a chasm between the methodologies for spike trains and
continuous amplitude signals that can be easily bridged with
RKHS methodologies. Indeed the same machine learning code
can be utilized for both types of signals, once specific kernel
are designed for each signal modality. The application for
speech recognition exemplifies a statistical learning approach
to work with spike trains, which improves the biorealism of
the processing and lets us take advantage of the spike timing
information.

The fundamental building block for designing the KAAMA
for spike trains is therefore the kernel, which will be explained
next.

2.2. Reproducing Kernel Hilbert Space
(RKHS) for Spike Trains
We want to study how information is represented and processed
as spike trains using the theory of RKHS. Since spike trains are
devoided of a natural algebra, they impose many challenges to
signal processing methods. We must first establish a space for
computation or transformation to a space with the necessary
properties. The approach explained here is to define a proper
kernel function on spike trains to capture non-parametrically
the instantaneous temporal structure and the variability of the
spike trains of interest. Once a positive-definite kernel is defined,
it maps the spike trains into a Hilbert space of functions which
allows signal processing tools to be applied directly through the
kernel trick, as shown in Figure 4.

We use the Schoenberg kernel (Park et al., 2012), a universal
binless nonlinear spike train kernel, to define the joint tensor-
product RKHS. This kernel is bio-inspired using conditional
intensity function of a temporal point process. Among spike train
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FIGURE 3 | Block diagram of the kernel adaptive ARMA (KAARMA) algorithm. The values of the adaptive weights � in the feature space are learned using

backpropagation and the kernel trick. In general, the states si are assumed hidden, and during training, the desired value for label yi is only observed at the end of the

sequence, i.e., at the final indexed time step i = f .

FIGURE 4 | Graphical interpretation of a reproducing kernel Hilbert space

defined on spike trains. Spike trains with precise spike timings are mapped

into an infinite-dimensional feature space (Hilbert space). Applying the kernel

trick allows inner products in this space to be computed without explicit

reference to the feature representation.

kernels [count and binned kernels, spikernel (Shpigelman et al.,
2005), linear functional kernels (Paiva et al., 2009), and nonlinear
functional kernels (Park et al., 2012)], the Schoenberg kernel
has three distinct advantages: (1) provides injective mapping, (2)
embeds arbitrary stochasticity of neural responses as the sample
mean in the RKHS, and (3) approximates arbitrary function on
spike trains as a universal kernel (Park et al., 2013).

A spike train or sequence ofM ordered spike times, i.e., S(i) =

{tm ∈ T :m = 1, · · · ,M} in the interval T = [0,T], can be
viewed as a realization of an underlying stochastic point process

with conditional intensity function λ(t|H
(i)
t ), where t ∈ T =

[0,T] denotes the time coordinate, and H
(i)
t is the history of the

process up to time t. The point process is approximated as a
zero-baseline-rate Hawkes process (Hawkes, 1971). Schoenberg
kernel between the conditional intensity functions of two point
processes (Paiva et al., 2009; Park et al., 2012; Dura-Bernal et al.,
2016) is defined as

Kaλ (λ(t|H
(i)
t ), λ(t|H

(j)
t ))

1
= exp

(

−aλ

∫

τ

(λ(t|H
(i)
t )− λ(t|H

(j)
t ))2dt

)

,

(7)
where aλ > 0 is the spike-train kernel parameter. The conditional
intensity function of the self-exciting point process with zero
background rate is approximated by convolving the precise spike
times with a smoothing kernel g(t), yielding

λ̂(t) =

M
∑

m=1

g(t − tm), {tm ∈ T :m = 1, · · · ,M}. (8)

It computes the similarity between a pair of spike trains in
T , either from a single neuron at different times or from
a pair of neurons. In this application, instead of two spike
trains from different frequency bands, we are interested in
quantifying the time-series structure or difference in conditional
intensity functions across time of the same spike channel. For
computational simplicity, we use the rectangular function g(t) =
1
T

(

U(t)− U(t − T )
)

, where U(t) is a Heaviside function and
T is chosen to be much greater than the average inter-spike
interval. Since we are interested in time-binned or frame-based
raw spike events, T is effectively set to the frame duration.
Figure 5 illustrates this squared distance between the conditional
intensity function estimates of two spike-train frames S(i) and
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FIGURE 5 | The Schoenberg spike kernel computes the similarity between a pair of spike trains. In this application, we compare the conditional intensity function

estimates for spike-train frames S (i) and S (j) at different times in a given frequency band or channel. Using Heaviside step function for smoothing greatly simplifies the

computation. We can visualize it as a sum of squared pair-wise spike-timing differences between two unit-step staircase functions (squared areas in blue) or as

squared Euclidean distance on ordered sets of spike timings, with the fewer-spike set padded with frame duration time T. For multichannel spike input, the sum or

average distance is used.

S(j) at different times for a given frequency band or channel,
i.e., the integral in Equation (7) using Equation (8). In this
formulation, the spike-train distance only depends on the precise
spike timings in ordered sets. When two spike trains are “close,”
more of their spike timings are synchronized, yielding a smaller
pair-wise distance.

For multichannel spike input, we sum or average the spike-
train distances over all channels in each time frame. Specifically,
the multichannel spike trains are segmented into frames or
smaller spike trains the same way as the MFCCs, with a frame
duration of 25 ms and rate of 100 fps. Figure 6 illustrates a
KAARMA network working directly on spike trains.

2.3. Comparisons Between Spike-Based
Kernel Approach vs. LSM
The LSM and the KAARMA are both adaptive recurrent models
that operate with spike trains, but the similarity ends here.

The LSM uses a recurrent layer of spiking neurons, designed
by a user, to project the input spike data into a high dimensional
space, where it will be easier to find a learned projection that
fulfills the data processing goal. Clearly, not all projections to
high dimensional spaces will preserve the information contained
in the input spike train, therefore, the designer must select a
hyperparameter that achieves the prescribed separation property
or SP (Maass et al., 2002). SP is quantified by a kernel-quality
measure proposed in Maass et al. (2005) that is based on the rank
of amatrix formed by the system states corresponding to different
input signals (Bertschinger and Natschläger, 2004). Therefore, SP
is signal and application dependent, which means that creating
the optimal liquid is still today more of an art than a science. The
advantage of the LSM is that it uses directly the instantaneous
intensity function of the spike trains because it is a dynamical
system.

The KAARMA handles the processing of spike trains in a very
different way. First, the spike trains are projected to an infinite
dimensional space of functions (RKHS) with the Schoenberg
kernel using the instantaneous conditional intensity function
estimated on an interval. Linear models in RKHS are universal

mappers, i.e., they can approximate any input-output map. In
this space, one can train a linear state model directly from data to
learn the spike train structure and deliver a high quality mapping
with very small model orders, using directly the input data (the
representer theorem). So instead of a high dimensional and
usually randomly created and fixed reservoir that an LSM uses,
the KAARMA uses the functions in the Hilbert space centered
by the projected input spike trains. This RKHS is based entirely
on the available data samples with optimized adaptive weights.
The spike kernel still operates with instantaneous information
but now in the conditional intensity function of learned data,
which is a suitable approximation to the intensity function, but
requires the selection of a hyperparameter.

3. AUTOMATIC SPEECH RECOGNITION
SYSTEM USING KAARMA

We can treat certain speech recognition tasks as grammatical
inference problems and apply the KAARMA algorithm to learn
temporal structures of speech features with arbitrary length,
analogous to syntactic pattern recognition involving the Tomita
grammars (Li and Príncipe, 2016). As a recurrent network, the
KAARMA algorithm exploits the full contextual information of
the entire feature sequence to create a discriminative model. It
makes no assumption on the model topology of the data, and the
states are learned completely from the observations.

Many spoken words share similar or identical acoustic
features. Given the large variations in speech production,
common trailing phoneme can be difficult for recurrent
systems learning long-term dependencies, where long-drawn-
out overlapping ending sequences can cause two different word
models to converge. One simple way to circumvent this problem,
without significant change to the experiment, is to simply reverse
the temporal order of the acoustic features, such that the trailing
sequences no longer overlap, and train a KAARMA classifier that
recognizes this new input ordering. Digits that used to share the
same trailing phoneme may end up in different ones (of course
the opposite can also happen). To maximize recognition rate for
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FIGURE 6 | Spike-input KAARMA network unfolded in time for f frames. The multichannel spike-train input frames are mapped into a joint RKHS with the current

hidden state vector using a tensor-product kernel to generate the next state vector. The final state vector at frame f contains the prediction label for the entire

sequence.

each digit, we can combine the results of two networks trained
on sequences in the natural left-to-right temporal direction and
the reversed right-to-left ordering, by simply multiplying their
softmax scores. Flipping the sequence ordering generates a new
complementary grammar that can be combined to enhance
classification results. This is a feature that is entirely missing in
HMMs, due to theMarkov property that states are formed locally
and only operate on adjacent observation vectors. States in a
recurrent network, on the other hand, are memory units which
encode the entire past history, starting from an initial state, and
indicate a global status. To further reduce the need to learn long-
term dependencies and to simplify computation, we can partition
a speech feature sequence into smaller segments, without the
need for complicated alignment, which we discuss in detail
next.

3.1. KAARMA Chain
Here we formulate the KAARMA chain approach for isolated
word recognition under a simple statistical framework. First, let
us revisit the conventional HMM in Figure 2. In the hidden
Markov model, speech signal, specifically, the sequence of
acoustic feature vectors U = {u1, u2, · · · , uf } is generated by a
finite state automaton consists of L states S = {s1, s2, · · · , sL}
under a probabilistic framework. An HMM is equivalent to a
stochastic regular grammar (Lari and Young, 1990). Each speech
unit is associated with a specific Markov model Mi comprised
of states from S according to a predefined topology. The left-
to-right (Bakis) model is the most commonly used topology for
speech recognition (Bakis, 1976). States are aligned from left
to right to form a single Markov chain, indexed incrementally
and with only self- or right-transitions allowed, i.e., ai,j =

0, for j < i. Furthermore, the initial state is fixed at state s1. Left-
to-right HMMs are able to model the temporal properties of
speech.

The training and recognition criteria for HMMs are based
on maximizing the a posteriori probability Pr(Mi|U ) that the
observation U has been produced by the HMMMi. Using Bayes’
rule, we can rewrite the expression as

Pr(Mi|U ) =
Pr(U |Mi)Pr(Mi)

Pr(U )
, (9)

where Pr(U |Mi) is the maximum likelihood estimate (MLE)
criterion, Pr(U ) is constant during recognition, and the a priori
probability Pr(Mi) is an appropriate language model.

The BW algorithm can be used to maximize the likelihood
estimate of the parameters of a HMM, given the set of observed
feature vectors. Alternatively, the MLE can be replaced by the
Viterbi criterion, where only the most probable state sequence of
producing U is considered

P̂r(U |Mi) = max
S

Pr(S ,U |Mi), (10)

and the optimal S∗ is given by

S
∗
= argmax

S

L
∏

ℓ=1

Pr(sℓ|sℓ−1)Pr(uℓ|sℓ), (11)

which can be solved using the Viterbi algorithm (Viterbi, 1967).
This frame-based approach is fundamentally different from our
novel sequence-based approach which requires no alignment or
frame-level target for isolated word recognition.

Under a hybrid ANN-HMM paradigm, connectionist
statistical methods (Franzini et al., 1990; Levin, 1990; Morgan
and Bourland, 1990; Niles and Silverman, 1990; Robinson, 1994)
were proposed as improvements to the standard HMM. It is
well-established that the outputs of a multilayer perceptron
(MLP) operating in classification mode can be interpreted as
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FIGURE 7 | Example of a KAARMA chain of three equal-partition grammar states.

estimates of the local a posteriori probabilities of output classes
conditioned on the input (Bourlard and Wellekens, 1990)

y∗j (ui) = p(sj|ui), (12)

where y∗j is the optimal (MLP with sufficient parameters and

no local minimum) classification output value for state sj. In
the hybrid approach the a posteriori probabilities are converted
into the HMM emission probabilities p(ui|sj) by dividing the
MLP output by the prior class probabilities. To provide context
information, 2c+ 1 frames were used at the input (where c is the
context window parameter, with the current input frame centered
in the middle) of the MLPs in Boulard and Morgan (1993), and
RNNs were used in Robinson (1994).

A mixture-of-experts ESN architecture with a winner-take-all
update strategy exhibited superior noise-robustness than HMM
(Skowronski and Harris, 2007) for continuous-valued human
factor cepstral coefficients (HFCC) (Skowronski and Harris,
2004). Multiple readout filters are grouped together to form a
state (paralleling the Gaussian mixture of a Bakis HMM state),
and test utterances were classified as the word model with the
lowest mean-squared prediction error (MSE) along the Viterbi
path for each model. Context features were used (first- and
second-order temporal derivatives over ±4 frames), along with
the log energy of each frame. Our approach, on the other hand,
learns the contextual information directly from the input stream,
without being hard-coded at each time step (a 12-dimension
vector vs. the 39-dimension speech feature of the ESN), and
the internal states are integrated under a unifying framework.
The KAARMA recognition results are also directly obtained,
without the need for Viterbi computation. Furthermore, while
the ESN matched the baseline HMM performance for noise-
free conditions, we will show that automatically learned
recurrency can outperform HMM using the same inputs, for a
computationally simpler implementation.

3.1.1. Grammar States

Instead of using universal approximators as local state emission
probability estimators in the HMM framework, we can solve
the statistical recognition criterion directly using the KAARMA
algorithm. Recall that the MAP is defined as

M∗
= argmax

M
Pr(M|U ), (13)

where M is the inference model, which is equivalent to
maximizing the a posterior state sequence or most probable state
sequence for each model.

Let us define the states in a KAARMA chain as context-free
grammars, denoted by Q = {q1, q2, · · · , qL}. This distinction
is made to not confuse a grammar state qi with the KAARMA
internal hidden-state variables si (grammar state q is a discrete
set and network hidden state s is a vector). Each grammar state qi
has its own set of unique internal hidden-states s(i) that transition
according to the rules learned directly from data, i.e., qi =

{s
(i)
0 , s

(i)
1 , · · · , s

(i)
ni−1}. Under this formulation, a single KAARMA

network (global grammar with Q = {q1}) trained on the entire
observation trajectory U = {u1, u2, · · · , uf } can be viewed as an
HMMwith only a single state, e.g.,

ỹ
(i)
f

=

exp(y
(i)
f
)

∑9
j=0 exp(y

(j)

f
)
= Pr(Q = q = i|U ), (14)

where y
(i)
f

is the final output of a KAARMA network trained

to recognize the grammar q = i or classify the word “i.” A
softmax function is used to ensure that the posterior estimates
are non-negative and sum to one. To improve the classification
results, we can train several KAARMA networks that specialize
in different ordered regions of a word in cascade, as in Figure 7.
Since the utterances in the TI-46 digit corpus are not labeled
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by phoneme, without any frame-to-state alignment computation,
we can simply fix the number of grammar states at L and partition
naively the MFCC sequence for each isolated word into L equal
segments. When necessary (e.g., total number of frames is less
than L), the last MFCC vector is replicated to pad the partition.
Each ordered segment is treated as a different grammar state, but
given the same class label, and trained using a separate KAARMA
network to learn its classification grammar, as shown in Figure 7

(where L = 3).
Next, we fix the transition probability for grammar states qi

to qj in a KAARMA chain at ai,j = 1, for j = i + 1, and 0
otherwise. This is a major difference between a standard HMM
and a KAARMA chain. The states in an HMM do not cope
well with non-stationarity, thus during each Viterbi pass, frame-
to-state alignment is performed such that each frame falls into
the most likely quasi-stationary region or state in the temporal
sequence, and the state transition probabilities are re-estimated.
KAARMA and similar recurrent networks, on the other hand,
are able to handle non-stationarities by leveraging their internal
hidden states si. One way to visualize these internal hidden states
si in a grammar state qi is to view the KAARMA chain as a nested
HMM. But unlike the restricted structure of a traditional left-to-
right model, the hidden state si in each grammar state are free to
form transitions that best fit the available data, i.e., an ergodic
model, as shown in Figure 7. Finally, in the KAARMA chain
formulation, the recognized word is given by the following MAP
criterion

M∗
= argmax

M

L
∏

i=1

Pr(qi = M|u
f ·i/L

(f ·(i−1)/L)+1
). (15)

As discussed earlier, we can further improve the recognition rate
by training a second KAARMA network for each grammar state,
using the reversed-order feature sequences and multiplying the
two softmax scores to derive a bi-directional probability score.
By working on smaller segments of a speech signal, not only
do we improve the training speed and reduce the need for the
KAARMA algorithm to learn long-term dependencies, but also
the latency needed for processing sequences of reversed order is
shortened.

For real-valued speech features such as MFCCs, we can
simply use a Gaussian kernel to apply the KAARMA algorithm
for ASR. Next, we describe the appropriate steps for applying
the KAARMA chain paradigm to a biologically-inspired ASR
system. For each speech signal, biologically-plausible features are
generated in the form of spike trains to mimic the front-end
filtering performed by the human auditory system.

3.2. Spike-Based Speech Representation
Performing adaptive filtering in the RKHS has many advantages.
One main merit being that the KAARMA model works with
functions in the RKHS transformed by kernels and changing
the kernel does not impact the KAARMA algorithm. Therefore,
it is agnostic to the type of input and can be applied to
any spatiotemporal signal, such as speech, by designing an
appropriate kernel. By having separate formulations of the
exogenous input vectors u and the internal state vectors s, the

KAARMA algorithm imposes no restriction on the relationship
between the two signals in the original input space. We are free
to choose the input representations independently as long as
the appropriate reproducing kernels are selected. This enables
us to work directly with non-numeric bio-inspired data such
as spike trains, without modification of the underlying learning
algorithm. The theory of RKHS allows signals of heterogeneous
types to be operated under a unifying framework in a joint feature
space, constructed using either direct sum or tensor-product
reproducing kernels.

For our experiments, we combined a gammatone filterbank
with a bank of spiking neuron models. First, a gammatone
filterbank (Patterson et al., 1987) is applied to each acoustic
signal. This formulation is motivated by the mechanical to
electrical transduction in the cochlea (Meddis, 1986). Different
regions of the basilar membrane vibrate to particular sound
frequencies, in response to fluid flow in the cochlea. Sensory hair
cells in the organ of Corti then convert the mechanical response
to electrical signals which travel along the auditory nerve to the
brain for processing. The gammatone filterbank simulates the
mechanical response of the cochlea in which the output of each
filter models the frequency response of the basilar membrane at a
particular location, as shown in Figure 8. Its impulse response is
defined in the time domain as

g(t) = ag t
n−1e−2πbt cos(2πfct + φ), (16)

where fc is the center frequency (in Hz), φ is the phase of the
carrier (in radians), ag is the amplitude, n is the filter order,
b is the filter bandwidth (in Hz), and t indicates time (in s).
The output of each gammatone filter is converted into spike
trains using LIF neurons with spike-rate adaptation (SRA) and
refractory current (Gerstner and Kistler, 2002), as shown in
Figure 9.

The LIF neuron captures the basic spiking mechanism of
nerve cells and is one of the simplest and most widely used
model for spike processing in computational neuroscience. In
this biological neuron model, the membrane capacitor Cm is
charged by incoming current I until its potential V exceeds a
certain threshold Vth, at which time it fires an action potential
or spike, discharges, and resets the potential to a level Vreset .
There are many variants of the model, based on various levels
of realism, the one that we will use for this paper is determined
by the following resistor-capacitor (RC) equation of the leaky
integrator:

τm
dV

dt
= (Erest − V)+ RmI − Esra, (17)

where τm = RmCm is the membrane time constant, Erest is the
resting potential, Rm is the membrane resistance, I is the total
current flowing into the cell, and instead of a fixed absolute
refractory period, a reversal potential for SRA is used and defined
as

Esra
1
= (V − Ek)Rm(gsra + gref ), (18)

where Ek is the potassium reversal potential, gsra and gref are
the SRA and refractory conductances with time derivatives of
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FIGURE 8 | A gammatone filterbank mimics the mechanical response of the cochlea in which the output of each filter models the frequency response of the basilar

membrane at a particular location.

FIGURE 9 | Spike-based front-end for keyword spotting system. Speech signal first passes through a 12-channel output gammatone filterback, with center

frequencies equally spaced between 50 Hz and 8 kHz on the ERB-rate scale, then converted into spike trains using leaky integrate-and-fire neurons. The mean spike

count per frame (25 ms) ranged from 0.42 to 25.49 and varied across digits and channels.

ġsra = −gsra/τsra and ġref = −gref /τref , respectively. When
membrane potential exceeds the spiking threshold or V > Vth,
SRA and refractory conductances increment by 1sra and 1ref

respectively, i.e., the two conductances increase at each spike and
decrease exponentially between spikes. Initially, at t = 0, we set
V = Erest .

4. RESULTS

As a proof of concept, we used the TI-46 corpus of isolated digits
to benchmark the KAARMA-based decoders in this paper. This
corpus of speech consists of utterances from 16 English speakers
(eight males and eight females) each speaking the digits “zero"
through “nine" 26 times. Specifically, 25 out of the 26 utterances
were used in the subsequent multispeaker experiments (i.e., our
dataset comprises 4,000 of the 4,160 possible utterances). These
utterances were further partitioned randomly into a training

set (2,700 utterances with an equal number of male/female
utterances and digits: 135 utterances per gender, per digit)
and a testing set (1,300 utterances with an equal number of
male/female utterances and digits: 65 utterances per gender,
per digit). Furthermore, to reduce the number of non-speech
data points used in the computation and to help align each
utterance, speech signals were normalized with respect to their
maximum absolute amplitudes, then automatically truncated
into the smallest contiguous windows containing all non-silent
regions, using a simple threshold-based endpoints detection
algorithm.

Next, each truncated utterance was analyzed on 25 ms
speech frames at 100 fps. For MFCC front-end, each frame
was Hamming windowed, filtered by a first-order pre-emphasis
filter (α = 0.95). The magnitude spectrum from the discrete
Fourier transform (DFT) was computed and scaled by a Mel-
scale triangular filter bank. The output energy was then log-
compressed and transformed via the DCT to cepstral coefficients.
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Thirteen MFCCs were computed per frame, with only the last
12 used as features. In order to highlight the performance
difference between context/grammar-based solution delivered by
the KAARMA algorithm and results derived from a conventional
Markov model, neither the log Parseval energy of each frame
nor the time derivatives, i.e., delta and delta-delta coefficients
(Furui, 1986), were used as a feature. HMM will benefit from
these dynamic spectral features (Skowronski and Harris, 2007).
However, our primary goal is to evaluate the performance using
a bio-inspired end-to-end spike-based keyword spotting system,
without hand-designed feature extraction algorithm past spike
generation. The MFCC-HMM design parameters were selected
to establish a more comparable baseline without significant
increase to complexity.

The performances are summarized in Table 1. The KAARMA
solution outperformed the HMM in both the training and testing
sets. A big advantage of the KAARMA framework is that it
can operate on a single frame at a time, but exploits the full
context of an entire input sequence. As a recurrent network, it
has an inherent deep structure in time. Furthermore, partitioning
each sequence into smaller grammar states improves KAARMA
performance and computational efficiency. On the other hand, in
general, the amount of data needed to learn an HMM increases
quadratically with the number of states.

For a comparable processing with the 12 MFCC coefficients
used above, to generate the spike trains, a 12-filter gammatone
filterbank with center frequencies equally spaced between 50 Hz
and 8 kHz on the equivalent rectangular bandwidth (ERB)-rate
scale was applied to each acoustic signal. Then, the maximum
absolute amplitudes of the 12-channel output were normalized to
4 µA and converted into spike trains using LIF neurons defined
by Equation (17). A single neuron is used per channel, for a total
of 12 input neurons in this experimental setup. The parameters
were membrane resistance Rm = 10 M�, time constant τm =

10 ms, spike threshold Vth = −55 mV, spike delta Vspike =

500 mV, reversal potential for SRA EK = −200 mV, reset
potential Vreset = −80 mV, SRA time constant τsra = 200 ms,
increase in SRA per spike 1sra = 5 nS, time for refractory
conductance to decay τref = 2 ms, and increase in refractory
conductance per spike1ref = 200 nS. Again, the motivation here
is that for a human-engineered speech feature such as MFCC,
we can expect reliable performance with only 12 coefficients or
inputs. Difference here is that instead of working with waveforms,
we encode the information in a sequence of events over time,
and not in the amplitude of the signal as is common in ASR.
Increasing the number of input channels should improve the
recognition accuracy, but as a proof-of-concept, we wanted to
evaluate the baseline performance using only 12 channels of spike
input.

We directly applied the spike trains in each time frame
(temporal coding) as features in our isolated word recognition
task. To reduce the bias from data imbalance using the one-
vs.-all approach, the positive class (10% of the data for each
word model) was replicated three times in the training set with
random placement. A five-network KAARMA chain was used
to model each word and trained for a single epoch only. To
reduce over-fitting, the parameters were not fully optimized over
their respective ranges. The results are presented in Table 1.

TABLE 1 | Comparisons of KAARMA chain classification accuracies with those of

HMMs using an equivalent number of states and a mixture of eight Gaussians per

state.

Input type Training Testing

5-State HMM

MFCC 98.74% 98.00 %

Spike train Rate 93.74% 93.23 %

5-Network KAARMA Chain

MFCC Sequence ordering: Left-to-Right 99.33% 98.62

Bi-Directional 99.78% 99.08%

Spike train Rate Left-to-Right 99.04% 91.85 %

Bi-Directional 99.56% 94.54 %

Temporal Left-to-Right 96.70% 93.54 %

(Spike kernel) Bi-Directional 98.56% 95.23 %

Only 12 MFCC coefficients were used, without log energy and time derivatives. Similarly,

only 12 channels of spike trains were used. Bold values indicate the best performance.

Since HMM does not provide native support for spike trains,
the spike count in each frame was used to compute the firing
rate and formed a continuous-valued 12-D feature vector across
all channels. We also show the five-network KAARMA chain
recognition performances using spike-count or rate coding
(hidden states s ∈ R

3, kernel parameters as = au = 5, learning
rate η = 0.1, quantization threshold ε = 0.55) and temporal
coding (hidden states s ∈ R

3, spike-train kernel parameter aλ =

1, hidden-state kernel parameter as = 4, learning rate η = 0.1,
quantization threshold ε = 0.25) in Table 1.

For rate vectors, a five grammar state KAARMA classifier
outperformed similar HMM architecture (five-state with a
mixture of eight Gaussians) significantly in the training set, but
suffered from overfitting to a greater degree in the testing set.
Using temporal coding yields worse performance on the training
set, but is better on the test set. This suggests that KAARMA
generalizes better using temporal coding of spike trains than
rate coding. The information capacity of temporal coding is
significantly greater than that of the spike-count rate and is
limited only by the temporal resolution of the code. Therefore,
the mismatch between model complexity and the task is reduced
(spike timing provides additional temporal information over
spike count), and the network is less prone to overfitting. On
the other hand, spike-count rate is less sensitive to session
variability and akin to the spectral power. This is evident from
the performances shown in Table 1: left-to-right KAARMA
networks can be easily trained to recognize the training set using
rate coding (99.04%) vs. temporal coding (96.70%), but the better
performance on the test set is given by temporal coding (93.54 vs.
91.85%).

Compared to the left-to-right KAARMA chain test-set
performance using MFCCs (98.62%) and that of the HMM
(98.00%), in Table 1, we see a drop in accuracies using
spike-based front-ends. This is a testament to the popularity of
MFCC as the de facto speech feature, but also to the fact that the
focus of this paper is not to optimize the feature representation,
i.e., feature engineering, but rather to demonstrate, as a proof
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TABLE 2 | Comparisons of spike-input KAARMA chain with state-of-the-art SNN and sparse representation on TI46 multispeaker spoken digits.

Speakers Samples Spike train Train Accuracy (%)

(Train/Test) input channels epochs

Spike-train KAARMA 16 4,000
(

2
3 /

1
3

)

12 1 95.23†

Digital LSM (Zhang et al., 2015) 16 1,590
(

4
5 /

1
5

)

77 500 92.30

SWAT SNN (Wade et al., 2010) 8 400
(

4
5 /

1
5

)

180 input neurons 250 95.25

LSM (Verstraeten et al., 2005) 5 500
(

3
5 /

2
5

)

39 – 95.5

†
Spike-KAARMA achieved over 95% recognition accuracy using the largest subset with the fewest number of input channels and training epochs.

of concept, that a simple spike-based coding scheme achieves
competitive result over other ASR systems using spikes.

Furthermore, reversing the input sequence ordering yields a
complementary grammar that can be learned using a new set
of KAARMA chains, and the two classification outputs can be
combined (as discussed in section 3) to enhance recognition
accuracy. The results from this formulation are labeled bi-
directional in contrast to the natural left-to-right convention.
The bi-directional KAARMA spike-based performances are also
summarized in Table 1. The best spike test-set performance was
given by bi-directional KAARMA chains operating directly on
the spike trains (temporal coding) with a recognition accuracy of
95.23% with only one epoch of training.

As noted in a recent publication on LSM-based ASR (Zhang
et al., 2015), a systematic comparison with other spike-based
methods is difficult. There has been limited research in spike train
representations for keyword spotting and speech recognition
performances depend largely on specific experimental setups,
which often vary greatly and are not fully reported. Most of the
recent spike-based ASR systems in the literature utilize a variant
of the liquid state machine (Maass et al., 2002). It is interesting
to mention that speech was used in this landmark paper as an
example of application of LSM, but unfortunately no validation
of the method was reported. For a very small subset of the TI-
46 corpus of ten different utterances of digits “zero" to “nine”
(60% for training and 40% for testing), spoken by five different
female speakers, the best LSM achieved a recognition accuracy of
95.5% (Verstraeten et al., 2005). Expanding on the five-speaker
result, the state-of-the-art bioinspired performance on a larger
subset of the TI-46 digit corpus is reported using a digital LSM
(Zhang et al., 2015). For this multispeaker spoken digit task
with 1590 speech samples (using five-fold cross validation: 80%
used for training and remaining 20% for testing) and training
epoch of 500, the final classification rate for the 77-channel spike-
input digital LSM is 92.3%. For a smaller subset using a synaptic
weight association training (SWAT) SNN, an accuracy of 95.25%
was reported (Wade et al., 2010). Our proposed spike-based
word spotting system achieved an accuracy of 95.23% for the
largest subset with 4,000 samples (67% for training and 33% for
testing) and all 16 speakers (eight male, eighht female), using
a single training epoch (where only the desired class or 10%
of the training data is replicated three times). The results are
summarized in Table 2. Again, since the experimental setups
are different, the performance comparisons are indicative and
not directly quantitative. Nonetheless, spike-input KAARMA
achieved over 95% recognition accuracy using the largest subset

of the TI46 corpus with the fewest number of spike-train input
channels (12) and training epochs (1).

Furthermore, we note that producing a constant output for
time-varying liquid state is a major challenge for LSM, since the
memory-less readout has to transform the transient and non-
stationary states of the liquid filter into the output without any
stable states or attractors to rely on Maass et al. (2002). For the
KAARMA formulation using spike-based signals, once the stable
dynamics are learned, we can even extract a finite state machine
or deterministic finite automata (DFA) from the binary time
sequences, where all the information of the input is contained in
its temporal evolution, i.e., the inter-spike intervals of individual
spike trains, as illustrated in our previous work (Li and Príncipe,
2016).

To further improve the classification accuracies in the current
work under clean conditions, we can expand the original feature
space by increasing the number of filtered outputs with a
larger Gammatone filterbank and corresponding number of
LIF neurons. For optimal application-specific results, feature
engineering is required to design a set of novel spike-domain
attributes.

4.1. Computational Complexity Analysis
For sequence learning (training) of length n using KAARMA,
where the weight update frequency is only once per sequence,
the memory and computation complexities are O(n) and O(n2),
respectively, the same as the simplest online kernel adaptive
filter, i.e., the KLMS (Li, 2015). For testing, the memory
and computation complexities are O(n), which can be easily
implemented using parallel processing in hardware. To further
reduce the computational complexity, we use the quantization
technique to curb the linear growth of the network by discarding
redundant data points and merging the updating coefficients
with their nearest neighbors’, resulting in a significantly more
compact network with size m ≪ n. The model complexity of
KAARMA and other kernel or SVM methods are automatically
set by the support vectors, in contrast to neural network based
solutions like the SNN. The average number of support or
centers of a KAARMA network is 1880.5, compared to the
5,040 neurons in the hidden layer of the SWAT SNN (Wade
et al., 2010) and the 135 reservoir neurons in a multilayer 3D
grid with thousands of synaptic connections randomly allocated
(83 input neurons and 26 readout neurons) of the digital LSM
(Zhang et al., 2015). Similarly, we only need to tune a few
parameters, compared to the neuron modeling and learning,
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FIGURE 10 | Recognition accuracies for five-network KAARMA chain classifier using spike-train front-end compared with five-network KAARMA chain classifier and

HMM using MFCC as a function of SNR. Results (mean ± 1 standard deviation) are averaged over 10 trials with different additive noise. Three types of noise sources

are evaluated: (A) White noise degrades the performance of Mel-cepstra-based recognition systems most significantly; (B) Pink noise is a stationary noise having

equal energy per octave; (C) Babble noise shares statistical properties of the reference speech and corrupts the entire information bearing spectra. For each noise

type, spike-KAARMA classifiers outperformed MFCC-KAARMA and HMM baseline in certain low-SNR regime.

e.g., spike timing dependent plasticity and Bienenstock-Cooper-
Munro learning in Wade et al. (2010). Furthermore, the data
requirement to train KAARMA is greatly reduced compared to
alternative methods. As shown in Table 2, KAARMA uses orders
of magnitude fewer training epochs to converge to a suitable
solution.

4.2. Noise Robustness Analysis
We have shown that for clean data, the KAARMA chain
solution outperformed the state-of-the-art spike-based
ASR system. However, we also see that KAARMA chain
operating on spike trains performed worse (for bi-directional
sequencing: 95.23 vs. 99.08%) than its MFCC front-end

counterpart, for reasons discussed in the above section.
A major drawback of MFCC features is their sensitivity
to additive noise. Low energy perturbations in the power
spectrum are known to cause significant variations after
the log compression in their computation (Paliwal,
1998). Spike trains encoded from analogy/digital speech
signals using LIF neurons have inherent noise robustness
due to the integration or smoothing operation in spike
generation.

Here we demonstrate that despite this initial performance
degradation, KAARMA chain using spike-train front-end shows
superior noise robustness in certain low-SNR regime than the
MFCC front-end, with three types of noise. Additive white,
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pink, and multi-speaker babble noise (Hirsch and Pearce,
2000) were introduced to the test utterances, then decoded
using the same KAARMA chains trained on noise-free or
clean data. Figure 10 shows the classification accuracies of
the five-network left-to-right KAARMA chains train using
spike-train front-end (green dotted line) as a function of
SNR, from −20 to 25 dB in increments of 5 dBs. Again,
although the clean-data performance on spike trains is below
those of the MFCC-based solutions, the noise robustness is
increased with an extended flat region from peak performance,
and the drop-off SNR is pushed to the left. In certain low
SNR regime, spike-based KAARMA classifiers outperformed
five-network KAARMA chains and five-state HMMs using
MFCCs. For additive pink noise, we see that KAARMA chain
using spike-train front-end outperforms HMM with MFCC
for all SNRs below 20 dB. This increased noise robustness
demonstrates that neural computation is not merely an artifact
of biology, but rather a key to the performance robustness
of the auditory system. KAARMA classifiers are able to
leverage high-dimensional nonlinear representation of speech
in the RKHS, which increases the likelihood of linear class
separability in the infinite-dimensional space, and the contextual
information provided by the recurrency of the dynamical
model.

5. CONCLUSION

We present a biologically-inspired spike-based isolated-word
speech recognition or keyword spotting system with superior
noise robustness using the KAARMA algorithm. By leveraging
the contextual information of the input spike sequence using
stable states, KAARMA networks outperform state-of-the-
art spike-based processing on the benchmark TI-46 digit
corpus. The grammar-based deterministic KAARMA classifier
models complex nonlinear dynamical systems using spike train
representation and provides a viable alternative to LSMs in small-
vocabulary ASR systems and similar applications. By operating in
a continuous state space, it has a parsimonious architecture, using
hidden states of only three dimensions. Furthermore, spike-
based KAARMA classifier outperforms its MFCC counterpart
and HMMs in certain low SNR regions.

So far, in this paper, we have only provided a simple spike
generation mechanism without any feature engineering
step. Speech signals are encoded into spike trains and
applied directly to the kernelized recurrent network. In

the future, we will investigate ways to optimize the spike-
based feature extraction for improved ASR performance,
particularly for noisy-data. Specifically, we will address
issues such as the number of filters in the gammatone
filter-bank and spike-based coding that provides a suitable
representation of the local spectral properties in the speech
signal.

In earlier works, we represented spike trains as binned
binary sequences and trained KAARMA networks to learn
the dynamics directly from data, and later extracted the
dynamics in the forms of deterministic finite automata
(DFA). Computing using DFA is much faster than traditional
methods involving analog integration or kernel functions,
since state transitions are done automatically based on spike
arrival, i.e., a lookup table. We will encode speech spike-
train dynamics into DFA in the future. Furthermore, this
methodology can be applied to other analog time series,
not just limited to speech, using an appropriate analog-
to-spike converter. This opens the door to countless novel
applications that benefit from improved noise-robustness,
ultra-low power, and ultra-fast computation, especially in
hardware.
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Sound textures, such as crackling fire or chirping crickets, represent a broad class of

sounds defined by their homogeneous temporal structure. It has been suggested that

the perception of texture is mediated by time-averaged summary statistics measured

from early auditory representations. In this study, we investigated the perception of sound

textures that contain rhythmic structure, specifically second-order amplitudemodulations

that arise from the interaction of different modulation rates, previously described as

“beating” in the envelope-frequency domain. We developed an auditory texture model

that utilizes a cascade of modulation filterbanks that capture the structure of simple

rhythmic patterns. The model was examined in a series of psychophysical listening

experiments using synthetic sound textures—stimuli generated using time-averaged

statistics measured from real-world textures. In a texture identification task, our results

indicated that second-order amplitude modulation sensitivity enhanced recognition.

Next, we examined the contribution of the second-order modulation analysis in a

preference task, where the proposed auditory texture model was preferred over a

range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the

discriminability of textures that included second-order amplitude modulations appeared

to be perceived using a time-averaging process. Overall, our results demonstrate that the

inclusion of second-order modulation analysis generates improvements in the perceived

quality of synthetic textures compared to the first-order modulation analysis considered

in previous approaches.

Keywords: sound texture, amplitude modulation, auditory model, natural sound, auditory perception

INTRODUCTION

Sound textures are characterized by their temporal homogeneity and may be represented with
a relatively compact set of time-averaged summary statistics measured from early auditory
representations (Saint-Arnaud and Popat, 1995; McDermott et al., 2013). Although, textures can
be expressed in a relatively compact form, they are ubiquitous in the natural world and span a
broad perceptual range (e.g., rain, fire, ocean waves, insect swarms etc.). The perceptual range has
been defined by a set of texture statistics outlined by McDermott and Simoncelli (2011). However,
it remains unclear what sound features might also be represented in the auditory system via a
time-averaging mechanism. In the present study, we investigated and expanded the perceptual
space of texture, particularly in the domain of amplitude modulations.

The texture synthesis system of McDermott and Simoncelli (2011) described spectral and
temporal tuning properties of the early auditory system that are crucial for texture perception.
Synthetic textures were generated by measuring time-averaged texture statistics at the output of
several processing stages of a biologically plausible auditory model, which were subsequently used
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to shape a Gaussian noise seed to have matching statistics. The
auditory texture model included frequency-selective auditory
filters and amplitude-modulation selective filters derived from
both psychophysical and physiological data (Dau et al., 1997).
The authors demonstrated that when the auditory model
deviated in its biological plausibility, such as applying linearly
spaced auditory filters, the perceptual quality of the texture
exemplars was reduced. In addition, McDermott and Simoncelli
(2011) identified which texture statistics were necessary for
correct identification, revealing subsets of statistics that were
requisite for different sound textures. Collectively, the results
suggested that textures synthesized with the complete set of
texture statistics and a biologically plausible auditory model
were preferred over all other identified synthesis system
configurations.

The sound synthesis system proposed by McDermott and
Simoncelli (2011) generated compelling exemplars for a broad
range of sounds, but there were also sounds for which the
auditory texture model failed to capture some of the perceptually
significant features. The failures were identified by means of a
realism rating performed by human listeners, who compared
synthetic textures to corresponding original real-world texture
recordings. The shortcomings were attributed to either the
processing structure or the statistics measured from the auditory
texture model. One such texture group were sounds that
contained rhythmic structure (McDermott and Simoncelli,
2011).

In the present study, the auditory texturemodel ofMcDermott
and Simoncelli (2011) was extended to include sensitivity to
second-order amplitude modulations. Second-order amplitude
modulations arise from beating in the envelope-frequency
domain. Intuitively, this can be described as the interaction
between two modulators acting on a carrier. At slow modulation
rates, second-order amplitude modulations have the perceptual
quality of simple rhythms (Lorenzi et al., 2001a). This type of
amplitude modulation has been shown to be salient in numerous
behavioral experiments (Lorenzi et al., 2001a,b; Ewert et al.,
2002; Verhey et al., 2003; Füllgrabe et al., 2005). The perception
of second-order amplitude modulation has also been modeled
by applying non-linear processing and modulation-selective
filtering to a signal’s envelope (Ewert et al., 2002). While the
role of second-order amplitude modulation in sound perception
has been investigated using artificial stimuli, their significance in
natural sound perception has yet to be examined.

We undertook an analysis-via-synthesis approach to examine
the role of second-order amplitude modulations in sound
texture perception (Portilla and Simoncelli, 2000; McDermott
and Simoncelli, 2011). This entailed generating synthetic sounds
from time-averaged statistics measured at different stages of our
auditory texture model (Figure 1A). The synthetic sounds were
controlled by two main factors: the structure of the auditory
texture model and the statistics passed to the texture synthesis
system. We first ensured that the sound texture synthesis
system was able to capture the temporal structure of a second-
order amplitude modulated signal (Figure 1B). Subsequently, we
examined the significance of the auditory texture model in a
series of behavioral texture identification and preference tasks.

Lastly, we attempted to quantify the role of time-averaging in the
perception of second-order amplitude modulation stimuli.

METHODS

Auditory Texture Model
The auditory texture model is based on a cascaded filterbank
structure that separates the signal into frequency subbands
(Figure 1A). The first stage of the model uses 34 gammatone
filters, equally spaced on the equivalent rectangular bandwidth
(ERB)N scale from 50 Hz to∼8 kHz (Glasberg andMoore, 1990):

g (t) = ct3e2π i·f c·te−2π ·β·t ,

where fc is the gammatone center frequency, β is a bandwidth
tuning parameter and c is a scale coefficient. Although
gammatone filters only capture the basic frequency selectivity
of the auditory system, more advanced and dynamic filterbank
architectures, such as dynamic compressive gammachirp filters
(Irino and Patterson, 2006), did not yield any improvement in
texture synthesis as observed in pilot experiments. To allow for
the reconstruction of the subbands, a paraconjugate filter, G̃(z),
was created for each gammatone filter,G(z) (Bolcskei et al., 1998):

G̃ (z) =

(

1

G (z)

)

·

(

G (z)G (z)T + G∗ (z)G∗ (z)T
)

,

where G (z) is the Fourier transform of g(t), and G∗(z) is the
complex conjugate of G(z). Perfect reconstruction is achieved as
long as:

G̃ (z)G (z) = 1.

To model fundamental properties of the peripheral auditory
system, we applied compression and envelope extraction to the
subband signals. The compression was used to model the non-
linear behavior of the cochlea (e.g., Ruggero, 1992) and was
implemented as a power-law compression with an exponent
value of 0.3. As all textures were presented at a sound pressure
level (SPL) of 70 dB, it was deemed not necessary to include level-
dependent compression. To functionally model the transduction
from the cochlear to the auditory nerve, the envelopes of the
compressed subbands were extracted using the Hilbert transform
and down-sampled to 400Hz (McDermott and Simoncelli, 2011).
The compressed, down-sampled envelopes roughly estimate the
transduction from basilar-membrane vibrations to inner hair-cell
receptor potentials.

The model then processed each cochlear channel signal
by a modulation filterbank, accounting for the first-order
modulation sensitivity and selectivity of the auditory system.
The filterbank applied to each cochlear channel comprised of
19 filters, half-octave spaced from 0.5 to 200 Hz. This type
of functional modeling is consistent with previous perceptual
models of modulation sensitivity (Dau et al., 1997) and shares
similarities with neurophysiological findings (Miller et al., 2002;
Joris et al., 2004; Malone et al., 2015). The broadly tuned
modulation filters have a constant Q = 2 and a shape defined
by a Kaiser–Bessel window. Reconstruction of the modulation
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FIGURE 1 | Texture analysis model. (A) The functional auditory model captures the tuning properties of the peripheral and subcortical auditory system: (1) An auditory

filterbank simulates the resonance frequencies of the cochlea, (2) a non-linearity captures the compression of the cochlea followed by a computation of the Hilbert

envelope, functionally modeling the transduction from the mechanical vibrations on the basilar membrane to the receptor potentials in the hair cells, (3) a first-order

modulation filterbank captures the selectivity of the auditory system to different envelope fluctuation rates, and (4) a second-order modulation filterbank captures the

sensitivity of the auditory system to beating in the envelope frequency domain. Texture statistics include marginal moments of cochlear envelopes (M), 1st-order

modulation power (M1P), pair-wise correlations between cochlear envelopes (C), pairwise correlations between modulation subbands (MC1), phase correlations

between octave-spaced modulation bands (MC2), and 2nd-order modulation power (M2P). (B) Example second-order modulation stimulus. The far-left panel shows

the input stimulus that consists of two short 62.5 ms pulses repeated every 500ms. The example outputs are shown at each stage of the model. The output of the

1st-order modulation band is shown for the 8 Hz subband which captures the period of the short pulses. The 2nd-order modulation band is shown for the 2 Hz

subband which captures the period of the repetition.

filterbank was achieved with the same method as the frequency
selective gammatone filterbank.

The output of each modulation filter was subsequently
processed by a second modulation filterbank, accounting
for the sensitivity of the auditory system to second-order
amplitude modulations. Each second-order modulation
filterbank contained 17, half-octave spaced bands in the range
from 0.25 to 64 Hz. The model was inspired by behavioral
experiments and simulations revealing an auditory sensitivity
to second-order modulations that is similar in nature to the
sensitivity to first-order amplitude modulations (Lorenzi et al.,
2001a,b; Ewert et al., 2002; Füllgrabe et al., 2005). The model
processing layer proposed here has some shared attributes to the
model presented in Ewert et al. (2002), but has the added benefit
of being easily invertible. The second-order modulation filters
have a constant Q = 2 and a Kaiser–Bessel window.

Texture Statistics
The goal of statistics selection is to find a description of
sound textures that is consistent with human sensory perception
(Portilla and Simoncelli, 2000). The selected statistics should
be based on relatively simple operations that could plausibly
occur in the neural domain. The values of the measured statistics
should also vary across textures, facilitating the recognition of
sound textures by the difference in the statistical representation.
Lastly, there should be a perceptual salience to the textures, such
that the use of their statistics contributes to the realism of the
corresponding synthetic texture.

The statistics measured from the auditory model include
marginal moments and pair-wise correlations (Portilla and

Simoncelli, 2000; McDermott and Simoncelli, 2011). The
included texture statistics are similar to those described in
McDermott and Simoncelli (2011). They were computed from
the envelope of the cochlea channels, including the first- and
second-order modulation filters, and were measured over texture
excerpts of several seconds. Examples of the statistics for three
textures (insect swarm, campfire, and small stream) measured
from the auditory texture model (Figure 1A) are shown in
Figure 2.

The envelope statistics include the mean (µ), coefficient of

variance ( σ 2

µ2 ), skewness (η), and kurtosis (κ), and represent the

first four marginal moments, defined as:

µn =
−→x n,

σ 2
n

µ2
n

=

(−→x n − µn

)2

µ2
n

,

ηn =

(−→x n − µn

)3

σ 3
n

,

κn =

(−→x n − µn

)4

σ 4
n

,

where n is the cochlear channel of x. Pair-wise correlations were
computed as a cross-covariance with the form:

cmn =

(−→x m − µm

) (−→x n − µn

)

σmσn
,
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where m and n are the cochlear channel pairs. The final statistic
captures envelope phase:

cjk =

−→
d

∗

k
−→a j

σkσj
, dk =

a2k
‖ak‖

, −→a k =
−→
b k + iH

(

−→
b k

)

,

where j and k are the modulation channel pairs of b, H is the
Hilbert transform, and ∗ is the complex conjugate.

First Level Statistics
The first level of statistics were measured on the cochlear
envelopes of the auditory texture model (Figure 1). The marginal
moments (M) describe the distribution of the individual
subbands (Figure 2A) and capture the overall level as well as
the sparsity of the signal (Field, 1987). The correlation statistics
(C) capture how neighboring signals co-vary. The correlation
statistics are measured between the eight neighboring cochlear
channels (Figure 2B). There are 372 statistics measured at the
cochlear stage of the auditory model (M = 128, and C = 236).

Second Level Statistics
The second level statistics were measured on the first-order
modulation bands (Figure 1) and include the coefficient of
variance (M1P, Figure 2C), the correlation measured across
cochlear channels and first-order modulation channels (MC1,
Figure 2D), and the correlation measured across modulation
channels for the first-order modulations (MC2, Figure 2E).
Because the outputs of the modulation filters have zero mean,

the variance effectively reflects a measure of the modulation
channel power. The variance was measured for cochlear
channels that have a center frequency at least four times
that of the modulation frequency (Dau et al., 1997). The
modulation correlations measured across cochlear channels
(MC1) reflect a cross-covariance measure. The correlation
was measured for two neighboring cochlear channels. The
modulation correlationmeasured acrossmodulation rates (MC2)
included phase information and was computed for octave-spaced
modulation frequencies. The number of statistics considered in
the modulation domain was 1,258 (M1P= 646, MC1= 408, and
MC2= 204).

Third Level Statistics
The last analysis stage was conducted on the second-order
modulation envelope bands (Figure 1), where the modulation
power was measured for each band (M2P, Figure 2F). This
analysis stage extends beyond the model of McDermott
and Simoncelli (2011) to capture second-order modulations
(Lorenzi et al., 2001b). The power was measured for first-order
modulation rates that are at least twice that of the second-order
modulation rate. The 2nd-order modulation power required the
largest overall number of statistics (M2P= 3,400).

Synthesis System
The synthesis of sound textures was accomplished bymodifying a
Gaussian noise seed to have statistics that match those measured
from a real-world texture recording (Portilla and Simoncelli,

FIGURE 2 | Texture Statistics. (A) Cochlear envelope marginal moments (mean, coefficient of variance, skewness, kurtosis) measured from three real-world texture

recordings (Swamp insects, campfire, small stream). (B) Cochlear envelope pair-wise correlations measured between different cochlear channels. The label of the

texture analyzed is located above the subfigure (and for all subsequent subfigures). Lightened regions here and elsewhere denote texture statistics that are not

imposed during the synthesis process. (C) Modulation band power (variance). The figure is normalized by the modulation power of Gaussian noise and shown on a log

(dB) scale. (D) Modulation correlation measured for a particular rate across cochlear channels. The modulation rate is indicated above the subfigure. (E) Modulation

phase correlation measured between octave-spaced modulation bands. (F) Second-order modulation band power (variance). The second-order modulation

frequency is indicated above the individual subfigures for a selection of rates (0.5, 1, and 2Hz). The statistics are plotted relative to Gaussian noise on a log (dB) scale.

Frontiers in Neuroscience | www.frontiersin.org 4 September 2017 | Volume 11 | Article 485109

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


McWalter and Dau Amplitude Modulations in Texture Perception

2000; McDermott and Simoncelli, 2011). The original texture
recording was decomposed using our biologically motivated
auditory model where the texture statistics were measured. The
statistics were then passed to the synthesis algorithm which
imposed the measured statistics on the decomposed Gaussian
noise signal. The modified signals were reconstructed back to a
single-channel waveform. A schematic of the synthesis system
can be seen in Figure 3A.

The imposition of texture statistics on the noise input
was achieved using the LM-BFGS variant of gradient descent
(limited-memory Broyden–Fletcher–Goldfarb–Shanno). The
noise signal was decomposed to the second-order modulation
bands, where the power statistics were imposed. The bands
were then reconstructed to the first-order modulation bands,
and the modulation power and correlation statistics were
imposed. The modulation bands were then reconstructed to
the cochlear envelopes, where the marginal moments and pair-
wise correlations statistics were imposed. Lastly, the cochlear
envelopes were combined with the fine-structure of the noise
seed and the cochlear channels were resynthesized to the single
channel waveform.

The synthesis process requires many iterations in order to
attain convergence for each of the texture statistics due to the
reconstruction of the subbands and tiered imposition of statistics.
The reconstruction of the filterbanks modified the statistics of
each subband due to the overlap in frequency of neighboring
filters. The reconstruction from the cochlear envelopes to
the cochlear channels was also affected by the combination
of the envelope and fine structure. In addition, the texture

statistics were modified at 3 layers (cochlear envelopes, 1st-order
modulations, and 2nd-order modulations) of the auditory model,
and themodification at each level had an impact on the other two.
Due to these two factors, an iterative process for imposing texture
statistics was required.

The synthesis was deemed successful if the synthetic texture
statistics approached those measured from the original real-
world texture recoding. The convergence was evaluated based
on the signal-to-noise ratio (SNR) between the synthetic and
original texture statistics (Portilla and Simoncelli, 2000). When
the synthesis process reached an SNR of 30 dB or higher across
the texture statistics, the process ended, generating a synthetic
texture. The system also had a maximum synthesis iteration limit
of 60. However, the convergence criterion was often met within
60 iterations. The cochleograms of the original and synthetic
textures are shown in Figure 3B.

Texture Synthesis System Validation
The proposed auditory texture model and adjoining synthesis
system were validated with a second-order amplitude modulated
signal identified by McDermott and Simoncelli (2011). The
signal was generated by applying a binary mask to a
Gaussian noise carrier. The mask contained a long noise
burst (t = 0.1875 s or 3

16 s), followed by two short noise bursts
(

t = 0.0625 s or 1
16 s

)

that were repeated every 500 ms (see
Figure 4A, upper panel). The stimulus has a second-order
modulation of 2 Hz, generated by the interaction between two
first-order modulations at 6 and 8Hz.

FIGURE 3 | Texture synthesis system and synthetic examples. (A) Texture synthesis is accomplished by measuring statistics from a real-world texture recording at

different stages of the auditory texture model. The statistics are then passed to the synthesis system that adjusts the statistics of a Gaussian noise seed to match the

input statistics. The iterative process outputs a synthetic texture with the same time-averaged statistics as the real-world texture recording. (B) Original real-world

texture recordings and their synthetic counterparts. The synthetic textures were generated with a complete set of texture statistics. Example audio files corresponding

to the original and synthetic spectrograms can be found in the Supplementary Material (Swamp Insects: Audio files 1, 2; Campfire: Audio files 3, 4; Small Stream:

Audio files 5, 6).
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FIGURE 4 | Verification of second-order texture synthesis. (A) Spectrogram of example rhythmic (second-order modulated) noise bursts with 500 ms repetition

pattern. The upper panel shows the original sound, the middle panel shows the synthetic version with second-order modulation texture statistics (w/ 2nd-order mods.)

and the bottom panel shows the synthetic version without second-order modulation texture statistics (w/o 2nd-order mods.). (B) Second-order modulation power

statistics. The 500 ms period is reflected in the majority of power held within the 2Hz 2nd-order modulation band (lower-left panel). Example audio files corresponding

to the spectrograms can be found in the Supplementary Material (Original: Audio file 7; w/ 2nd-order mods.: Audio file 8; w/o 2nd-order mods.: Audio file 9).

Psychophysical Experiments
The listeners were recruited from a university specific job posting
site. The listeners completed the required consent form and were
compensated with an hourly wage for their time. All experiments
were approved by the Science Ethics Committee for the Capital
Region of Denmark.

The listeners performed the experiment in a single-walled
IAC sound isolating booth. The sounds were presented at
70 dB SPL via Sennheiser HD 650 headphones. The playback
system included an RME Fireface UCX soundcard and the
experiments were all created using Mathworks MATLAB and the
PsychToolBox (psychtoolbox.org) software.

The synthetic textures used in experiments 1 and 2 were
generated in 5-s long samples.Multiple exemplars were generated
for each texture. Each exemplar was created using a different
Gaussian noise seed such that no sample was identical in terms of
the waveform, but had the same time-averaged texture statistics.
Four-second long excerpts were taken from themiddle portion of
the texture samples with a tapered cosine (Tukey) window with
20-ms ramps at the onset and offset.

Experiment 1—Texture Identification
Each trial consisted of a 4-s texture synthesized from subsets
of texture statistics that were cumulatively included from the
cochlear envelopemean to the 2nd-order modulation power. The
listeners were required to identify the sound from a list of 5
label descriptors. The experiment consisted of 59 sound textures.
The textures were divided into 5 texture groups, defined by the
authors: animals, environment, mechanical, human, and water
sounds. The list of 4 incorrect labels for each texture was selected
from different texture groups. There were 7 conditions per

texture (6 synthetic and 1 original) and 413 trials per experiment.
Eleven self-reported normal-hearing listeners participated in the
experiment (6 female, 23.3 mean age).

Experiment 2—Modulation Processing Model

Comparison
Each trial consisted of three intervals; the original real-world
texture recording, a synthetic texture generated from the above-
mentioned texture synthesis system (reference), and a synthetic
texture generated from a modified version of the auditory model.
The real-world texture was presented first. Textures generated
from the reference system and a modified auditory model were
then presented in intervals 2 and 3, where by the order of
presentation was randomized. Each interval was 4 s long with
an inter-stimulus-interval of 400ms. The listeners were asked to
select the interval that was most similar to the real-world texture
recording. The same 59 textures were used in the experiment,
presented in 236 trails. Eleven self-reported-normal hearing
listeners participated in the experiment (7 female, 24.2mean age).

Synthetic textures generated from a reference auditory model
and four alternate auditory models were included in the
experiment. The reference model is described in Figure 1,
including texture statistics measured from the cochlear envelope,
1st- and 2nd-order modulation bands. The first alternate
model removed the 2nd-order modulation bands, and was
in principle similar to that of McDermott and Simoncelli
(2011). The second alternate model removed the 2nd-order
modulation bands and replaced the half-octave spaced 1st-
order modulation filterbank by an octave-spaced variant. Octave-
spaced modulation selectivity has been suggested in several
models of auditory perception (Dau et al., 1997; Jorgensen
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and Dau, 2011). The third alternate model removed the 2nd-
order modulation bands and substituted the half-octave spaced
modulation filterbank with a low-pass filter of 150 Hz. The low-
pass characteristic of amplitude modulation perception has been
proposed, and here we used a model that preserves the sensitivity
to modulation rates but lacks the selectivity of the filterbank
model (Kohlrausch et al., 2000; Joris et al., 2004). The fourth
alternate model also removed the 2nd-order modulation bands
and substituted the half-octave spaced modulation filterbank
with a low-pass filter with a cutoff frequency of 5 Hz. The
sluggishness of the auditory system to amplitude modulation
perception is reflected in the heightened sensitivity to slow
modulation rates (Viemeister, 1979; Dau et al., 1996).

Experiment 3—Second-Order Modulation

Discrimination
Each trial consisted of three 2-s intervals. The listeners performed
an odd-one-out experiment, where they were instructed to
identify the interval (first or last) that was different from the
other two. The stimulus sets described below were evaluated in
separate experiment blocks. Twelve self-reported-normal hearing
listeners participated in the experiment (3 female, 23.0mean age).

The first stimulus set was generated from second-order
amplitude modulated white noise using the following equation:

s (t) =
(

1+
(

0.5+ sin
(

2π fm1t + φ
))

∗ sin
(

2π fm2t
))

∗ n (t) ,

where fm1 is the first modulator, t is time, φ is the phase of
the first modulator, fm2 is the second modulator, and n (t) is
the Gaussian noise carrier. fm1 had a modulation frequency
of 2, 4, 8, 16, 32, or 64. fm2 had a modulation rate of
fm1[0.1, 0.13, 0.17, 0.22, 0.28, 0.36, 0.46, 0.60, 0.77, or 1.00].
φ was randomized for each trial. The exemplars were 5 s in
duration. Two intervals were sampled from the first 2 s, and the
“odd” interval was sampled from the last 2 s. Each condition was
repeated 4 times, for a total of 240 trials.

The next stimulus set used second-order amplitude
modulated white noise generated from a combination of
fm1 and fm2 pairs, creating a complex amplitude modulated
signal. Each stimulus was created using the six fm1 frequencies,
each paired with a corresponding fm2 frequency that was
randomly selected from the list of 10, modulating the same
white noise seed. The six second-order modulated signals were
then summed to create one stimulus. The exemplars were 5 s
in duration. Two intervals were sampled from the first 2 s, and
the “odd” interval was sampled from the last 2 s. There were 48
stimuli presented, one per trial.

The final stimulus set was composed of sound textures
generated with the complete set of texture statistics, including
second-order amplitude modulation power. The 59 textures used
in experiments 1 and 2 were used in this experiment. The
exemplars were 5 s in duration. Two intervals were sampled from
the first 2 s, and the “odd” interval was sampled from the last 2 s.
There were 59 trials in total.

RESULTS

The auditory texture model proposed in the present study
includes frequency-selective filtering (in the audio-frequency
domain) as well as a cascade of amplitude modulation filterbanks
to capture time-averaged amplitude modulations and simple
rhythmic structure. The model was combined with a sound
synthesis system to generate synthetic textures that were then
examined in several behavioral listening experiments. The
results show three main findings: (1) the model captures
simple rhythmic structure by way of second-order amplitude
modulation analysis, (2) the inclusion of second-order amplitude
modulation analysis contributes to the recognition of the
synthetic textures, and (3) second-order amplitude modulations
in textures may be perceived using time-averaged summary
statistics.

Synthesis Verification for Second-Order

Modulations
Although, the second-order texture statistics varied across
textures, it was unclear how the synthesis process would perform
in creating new sound examples. To test this, we used a second-
order amplitude modulation signal identified by McDermott
and Simoncelli (2011) that has a salient rhythmic structure.
Figure 4A shows the original sound (top), a synthetic version
with second-order modulation analysis (middle) and a synthetic
version without second-order analysis (bottom). The synthetic
sound generated from texture statistics that included second-
order amplitude modulation analysis captured the rhythmic
pattern of the original sound, whereas the version without
second-order analysis failed to capture the rhythmic structure
even though the duration of the noise bursts is comparable to that
in the original sound. The successful synthesis of the rhythmic
sound suggests that the cascaded modulation filterbank analysis
can capture rhythmic structure.

The second-order amplitude modulation statistics for the
example rhythmic sound are shown in Figure 4B. The majority
of the modulation power can be found in the 2 Hz second-
order modulation channel (bottom left panel) across several first-
order modulation rates. For a relatively simple rhythmic sound,
there is considerable modulation power across frequencies. This
is primarily due to amplitude modulation interactions between
the modulation frequencies and the broadband (Gaussian)
noise carrier. If a second-order amplitude modulated tone was
used instead of the noise with its intrinsic modulations, the
modulation power would be relegated entirely to the 2-Hz band.

Texture Perception: Identification and

Preference
Our first behavioral experiment investigated the ability of
listeners to identify sound textures generated from subsets
of statistics. Listeners were presented with a 4 s texture
and asked to identify the sound from a list of 5 text label
descriptors. The textures synthesized with the cochlear envelope
power resulted in low performance, but the performance
increased with the inclusion of higher-order texture statistics
and approached that of the original real-world texture recording
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when second-order amplitude modulation statistics were used
[Figure 5A; F(6, 49) = 123.51, p < 0.0001]. The results suggest
that listeners benefited from the addition of second-order
amplitude modulation analysis to the auditory texture model.

Next, we were interested in how synthetic textures generated
with alternate amplitude modulation processing models
compared to our auditory texture models. To investigate this,
we generated textures from four models that included only the
first-order amplitude modulation analysis (Figure 5B). The
results show that our auditory texture model, with second-order
amplitude modulation analysis, was preferred over all other
model variants (Figure 5C; p < 0.01 relative to chance). Notably,
the inclusion of second-order modulation analysis yielded a
modest yet significant improvement over the half-octave spaced
first-order modulation, which is comparable to that developed
by McDermott and Simoncelli (2011). The results from the
preference experiment revealed which textures benefited most
from second-order amplitude modulation analysis. Figure 5D
shows a list of the top 8 most preferred and least preferred
textures measured between the half-octave spaced filterbank
and our auditory texture model. The list includes a broad range
of sounds, from mechanical/machine noises to animal/insect
sounds. The least preferred textures reveal sounds which may
not depend greatly on amplitude modulation texture statistics
(i.e., cochlear envelope marginal moments and pair-wise
correlations).

Two example textures, helicopter and frogs-crickets, are shown
in Figure 6. For each texture, the left panel shows the 2nd-order
modulation texture statistics for selected bands and the right
panel shows the original and synthetic texture cochleograms.
Notably, the second-order amplitude modulation power differs
between the two textures, suggesting that the additional analysis
contributes to sound texture recognition.

Second-Order Modulation Discrimination
To examine if second-order amplitude modulations are
processed by the auditory system similarly to textures, i.e.,
integrated over modest time windows of a few seconds, or if
the auditory system has the temporal acuity to identify and
discriminate second-order modulations with higher precision,
a set of discrimination experiments was performed where
synthetic sound textures were compared to artificial control
stimuli generated from amplitude modulated Gaussian noise.
Listeners performed a three-interval odd-one-out experiment,
where they were asked to identify whether the first or last interval
was different from the other two. The experiments covered
three stimulus groups: rate-specific second-order amplitude
modulations, complex second-order amplitude modulation
noise from a set of modulation rates, and synthetic sound
textures generated using second-order amplitude modulation
statistics.

The first experiment included second-order amplitude
modulations of increasing rate from 2 to 64 Hz. The results
showed that, at low rates, the listeners have the ability to
discriminate modulated noise exemplars (Figure 7—left panel).
The performance decreased with increasing modulation rate and
approached chance level for modulation rates above 16Hz. For

FIGURE 5 | Synthetic texture identification and preference tasks. (A)

Identification of sound textures improves with the inclusion of more statistics.

Asterisks denote significant differences between conditions, p < 0.01 (paired

t-tests, corrected for multiple comparisons). Error bars here and elsewhere

show the standard error. Dashed lines here and elsewhere show chance

performance. (B) Modulation filter(bank) structure used in the listening

experiments. For low-pass (LP) conditions, only the statistics of the signal in

the passband were modified. (C) Sounds synthesized with the 2nd-order

modulation statistics were preferred over all other auditory texture models.

Asterisk denotes significance from chance (p < 0.01). (D) Eight most preferred

(left) and least preferred (right) textures from experiment 2, relative to first-order

modulation filterbank model (half-octave spacing).

these control stimuli, the results suggest that the auditory system
may have access the modulation phase for rates 16 Hz and below.

The discriminability of the complex modulated Gaussian
noise and the synthetic texture was poor (Figure 7—right panel)
compared to the lowmodulation rates considered in the previous
experiment. This suggests that, for texture sounds, access to the
modulation phase is limited in the auditory system. Isolating the
top eight most preferred textures from Experiment 2 revealed
comparable performance to the complete set of textures. The
performance observed for sound textures in a similar odd-one-
out discrimination task was comparable to that reported in
McDermott et al. (2013) for an interval duration of about 2 s.
Collectively, the results suggest that textures, including those
that benefit from second-order modulation analysis, may be
perceived using time-average statistics, whereas the auditory
system appears to retain more temporal detail for our second-
order modulation control stimuli for rates below 16Hz.
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FIGURE 6 | Textures that benefit from second-order modulation statistics. Two example textures from the preferred list: Helicopter (left) and frogs-crickets (right). The

left panel shows the second-order modulation statistics for six selected bands. The right panel shows the spectrogram of the original texture (top) and the synthetic

texture with second-order modulation statistics (middle) and without second-order modulation statistics (bottom). Example audio files corresponding to the

spectrograms of the original, synthetic with 2nd-order modulations, and without 2nd-order modulations can be found in the Supplementary Material (helicopter:

Audio files 10–12; frogs-crickets: Audio files 13–15).

FIGURE 7 | Second-order amplitude modulation and texture exemplar

discrimination. The black symbols show the response to second-order

amplitude modulated Gaussian noise exemplar discrimination as a function of

modulation rate. Error bars indicate the standard error. The blue symbol

indicates exemplar discrimination performance for complex second-order

amplitude modulated Gaussian noise. The green symbol indicates exemplar

discrimination performance for synthetic sound textures that include all

indicated texture statistics (including second-order amplitude modulation

statistics). The red symbol indicates exemplar discrimination performance for

top-8 synthetic (Experiment 2) sound textures that include all indicated texture

statistics.

DISCUSSION

The perception of sound texture can be characterized by a
set of time-averaged statistics measured from early auditory
representations. We extended the auditory texture model of
McDermott and Simoncelli (2011) to account for simple
rhythmic structures in sound textures via a cascade of amplitude

modulation filterbanks. The auditory texture model was coupled
with a sound synthesis system to generate texture exemplars
from the statistics measured at different stages of the model.
The synthetic stimuli were first used in a texture identification
experiment, where the listeners’ ability to recognize a texture
improved with the inclusion of the subgroups of statistics.
We found that the performance obtained using the second-
order amplitude modulation analysis approached that of the
original real-world texture recordings and was higher than
the performance obtained using only a first-order amplitude
modulation analysis (Experiment 1). We also generated synthetic
textures from alternate auditorymodels of amplitudemodulation
sensitivity. The synthetic textures were used in a preference
task, where listeners’ preferred sounds synthesized using
second-order amplitude modulation over all other model
variants (Experiment 2). Lastly, we performed an experiment
focusing on second-order amplitude modulation perception in a
discrimination task. The listeners’ ability to discriminate second-
order modulation sound exemplars decreased with increasing
modulation rate, and complex second-order modulated Gaussian
noise and synthetic textures appear to be perceived using a
time-averaging mechanism (Experiment 3).

Amplitude Modulations in Texture

Perception
The auditory texture model described by McDermott and
Simoncelli (2011) included a biologically plausible first-order
modulation filterbank operating on individual cochlear channel
envelopes. The textures synthesized with this model produced
many compelling textures, including sounds generated from
machinery (e.g., helicopter, printing press) with relatively
uniform short-time repetitions as well as environmental sounds
(e.g., wind, ocean waves) with variable slow modulations. Our
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texture model built upon this work and provided further
evidence for the importance of modulation selectivity in sound
texture perception. For first-order modulation analysis, the
results from the preference task (Experiment 2) demonstrated
that using half-octave spaced modulation filterbank yields the
best performance out of the model variants. The model has
a slightly higher selectivity than has that reported in earlier
models (Dau et al., 1997). One reason may be that the selectivity
of the auditory system for natural sounds, such as textures,
may be slightly different than that for artificial stimuli used to
identify the auditory systems’ modulation tuning curves and
selectivity. Another possible explanation is that natural sounds
do not conform to octave spaced modulation frequencies, and
if the modulation power in a natural sound has a maximum
between two modulation bands with fixed center frequencies,
the synthetic sounds vary to a greater degree from the original
real-world recording.

The results from the preference experiment also identified
which textures were most improved (preferred) by the inclusion
of the second-order modulation analysis. These textures tended
to have higher first-order modulation power, but did not appear
to possess obvious common feature. Some sounds, such as the
helicopter, had low second-ordermodulation power while others,
such as the frogs-crickets, had high second-order modulation
power. Also, the second-order modulation power error between
the first-order model and the second-order model did not tend
to be higher for these textures. Intuitively, there may be aspects
of first-order modulations that are captured by our model,
such as mediating the modulation depth in our time-averaged
measurements. However, this was difficult to reveal with our
natural texture stimuli.

Model Architecture and Statistics
There might be several auditory model architectures that can
successfully capture rhythmic structure in sound textures. Our
proposed model, using a cascade of modulation filterbanks,
seems to provide a compelling approach, as it is relatively
intuitive and straight forward to implement in the already
established texture analysis-synthesis framework. Another
option, however, would be the “venelope” model proposed by
Ewert et al. (2002) which used a side-chain analysis to measure
the second-order amplitude modulations. In this model, the
second-order modulations are extracted from the cochlear
envelope and analyzed using a single modulation filterbank. The
“venelope” model is more efficient than our cascaded model and
there is some evidence to suggest that second-order modulations
are processed in the auditory system using the same mechanism
as the first-order modulation (Verhey et al., 2003). However,
the cascaded modulation filterbank model considered in this
study can capture simple rhythmic structure and provided
an easier means to reconstruct the filters and thus synthesize
textures.

Our approach to modeling of the auditory system, based
on audio-frequency and amplitude- modulation-frequency
selective filtering, is consistent with biological evidence from
the mammalian auditory system (Ruggero, 1992; Joris et al.,

2004; Rodríguez et al., 2010). This is found in the auditory-
inspired filter structure for both cochlear channels and
modulation-selective channels, which culminated in a cascade
of filterbanks with intermediate envelope extraction using the
Hilbert transform. A similar hierarchical processing architecture
has also been well-defined by Mallat and colleagues as scattering
moments (Mallat, 2012; Bruna and Mallat, 2013). The scattering
moments have been shown to capture a wide range of structure in
natural stimuli (Andén andMallat, 2011, 2012, 2014), in addition
to being used for sound texture synthesis (Bruna and Mallat,
2013).

A consequence of the cascaded filterbank model proposed
here is that the number of statistics required to capture the
auditory feature increases with each layer. This is predominantly
the case for the second-order modulation analysis, where we
measure 3,400 parameters, which increases the number of texture
statistics by a factor of ∼3 as compared to the model of
McDermott and Simoncelli (2011). It may be possible to optimize
the number of parameters by identifying which modulation rates
are most significant for texture perception. Alternate models,
such as the “venelope” model of Ewert et al. (2002), could
reduce the number of parameters needed to capture the second-
order amplitude modulation. Although the additional model
layer increased the number of statistics, the representation is
moderately compact as the statistics are computed as time-
averages of the signal.

An alternate approach to representing textures via statistics,
is to learn efficient representations from the stimuli themselves.
This approach has been shown to be useful for identifying sparse
representations of natural stimuli from hierarchical models
(Karklin and Lewicki, 2005; Cadieu and Olshausen, 2009). The
higher-order structure of natural sounds, such as environmental
textures, has also been explored to uncover their possible
neural representation (Młynarski and McDermott, 2017). These
methods come with their own complications and limitations,
however may be a useful avenue for identifying more efficient
representations than the texture model of McDermott and
Simoncelli (2011) or the one outlined in the present study.

Temporal Regularity in Texture Perception
Sounds textures have been defined as the superposition of
many similar acoustic events, therefore it was not obvious
a priori that sounds with temporal regularities would be
perceived in the same way—as time-averages of sensory
measurements. Temporal patterns are important for sound
perception, and their contribution has been investigated in
terms of auditory streaming (Bendixen et al., 2010; Andreou
et al., 2011). In addition, sensitivity to temporal regularities in
the auditory system has also been shown in complex listening
environments (Barascud et al., 2016). Our results show that
second-order modulation statistics vary across textures, and
the inclusion of this second modulation analysis generated
modest improvements in the perceived quality of the synthetic
textures. Textures generated with second-order amplitude
modulation analysis seemed to result in similar discriminability,
suggesting that the features captured by the cascaded modulation
filterbank model may be perceived via a similar time-averaging
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mechanism that has been proposed for more noise-like
textures.

Relationship to Visual Texture Perception
One of the interesting ideas about texture perception is that
of a unified representation across sensory modalities. Textures
have been investigated in the visual system (Julesz, 1962;
Portilla and Simoncelli, 2000; Freeman and Simoncelli, 2011),
the somatosensory system (Connor and Johnson, 1992) and the
auditory system (Saint-Arnaud and Popat, 1995; McDermott
and Simoncelli, 2011). Of particular relevance to our work is
how the sound texture synthesis system proposed by McDermott
and Simoncelli (2011) is comparable in processing structure and
analysis to that presented by Portilla and Simoncelli (2000) for
visual textures. In both models, the input signal is processed
by layers of linear filtering and envelope extraction, while the
texture analysis statistics, which are primarily composed of
marginal moments and pair-wise correlations, are also similar
between the two models. Our model of cascaded filterbanks
also overlaps with other models of the image texture perception
(Wang et al., 2012). It therefore seems valuable to look across
sensory modalities for shared perceptual spaces (Zaidi et al.,
2013).

Our investigation of second-order modulation analysis in
sound texture perception may also be relatable to spatial texture
patterns, or maximally regular textures, in the visual system.
Kohler et al. (2016) showed a neural sensitivity to image texture
patterns that repeat in space. Our work is also indicative of sound
texture pattern sensitivity in time. Previous work in both sound
and image texture perception has also made the comparison of
perceptual pooling over time and space, respectively (Balas et al.,
2009; Freeman and Simoncelli, 2011; McDermott et al., 2013).
Conceptually, the apparent texture time-averaging in audition
draws compelling parallels to the spatial averaging observed in
visual texture perception.

Implications and Perspectives
In this study, we investigated the significance of second-order
amplitude modulations in natural sound texture perception.
The generation of synthetic sound textures using a cascade
of modulation filterbanks appears to contribute positively to
the perception of texture. We also observed that the auditory
system is sensitive to specific rates of second-order modulations,
showing heightened acuity to isolated modulations for rates
below 16 Hz. Future experiments would be useful to understand
the role of temporal regularity in texture at different modulations
rates and spectral frequencies. In addition, such stimuli could
be useful to understand the perception of texture in complex
auditory scenes, such as the perceptual segregation of speech in
the presence of different types of background textures.
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Beat
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Dublin, Dublin, Ireland

Prior research has shown that musical beats are salient at the level of the cortex in

humans. Yet below the cortex there is considerable sub-cortical processing that could

influence beat perception. Some biases, such as a tempo preference and an audio

frequency bias for beat timing, could result from sub-cortical processing. Here, we used

models of the auditory-nerve andmidbrain-level amplitudemodulation filtering to simulate

sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated

activity to determine the tempo or beat frequency of the music. First, irrespective of

the stimulus being presented, the preferred tempo was around 100 beats per minute,

which is within the range of tempi where tempo discrimination and tapping accuracy are

optimal. Second, sub-cortical processing predicted a stronger influence of lower audio

frequencies on beat perception. However, the tempo identification algorithm that was

optimized for simple stimuli often failed for recordings of music. For music, the most

highly synchronized model activity occurred at a multiple of the beat frequency. Using

bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a

learned and possibly top-down mechanism that scales the synchronization frequency

to derive the beat frequency greatly improves the performance of tempo identification.

Keywords: auditory, rhythm, tempo induction, musical beat, biomimetic model

INTRODUCTION

When we spontaneously tap our feet to music, we are “feeling the beat.” A musical beat is
frequently defined by the effect it has on motor entrainment (Patel, 2010; London, 2012), and it
is often identified as the fundamental level in the metrical hierarchy for keeping time (Lerdahl and
Jackendoff, 1983). Many cultures have music with a beat, and the presence of beat-based music is
highly related to communal dance (Savage et al., 2015). Clearly, perceiving the beat is key to the
perception of music.

In many genres of music, musical beats often, but not always, occur at isochronous intervals
(London, 2012). Previous models have simulated the perception of isochronous beats using an
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internal clock (Povel and Essens, 1985), pattern matching
(Rosenthal, 1992; Parncutt, 1994), an internal resonator (van
Noorden and Moelants, 1999), or a bank of neural oscillators
(Large et al., 2015). These models often compute the beat
frequency of discrete pulses, although a few have used
annotated performances as input (ex. Rosenthal, 1992) or “onset
signals” computed from cochlear-like filtering of audio signals
(Scheirer, 1998; Large, 2000). Using electroencephalography and
magnetoencephalography, it has been shown that cortical activity
time-locks to the perceived beat for simplistic stimuli (Snyder and
Large, 2005; Iversen et al., 2009; Nozaradan et al., 2011, 2012;
Fujioka et al., 2012, 2015; Tierney and Kraus, 2015; Tal et al.,
2017; but see Henry et al., 2017). Yet multiple stages of processing
occur prior to cortical processing, each of which could affect the
placement of musical beats.

Even for basic acoustic events, human subjects are biased
to tapping to beats at inter-onset intervals of 500 to 700ms
(Parncutt, 1994), equivalent to a tempo range of 85 to 120 BPM.
This range encompasses the “indifference interval” (Fraisse,
1963; London, 2012) for which subjects tap naturally at a
regular rhythm (Semjen et al., 1998), discriminate tempi best
(Drake and Botte, 1993), and can best replicate the duration
of the interval (Stevens, 1886; Woodrow, 1934) (for review
see Fraisse, 1963; Patel, 2010; London, 2012). This range also
overlaps the range of tempi for a large proportion of dance
music, which centers on 450 to 600ms for intervals between
beats, or equivalently 100 to 133 BPM (van Noorden and
Moelants, 1999). However, an explanation for this optimal
range of tempi is unclear. Motor entrainment plays a role in
this bias since subjects tap naturally within this range, but
it does not completely explain the optimization observed in
studies that do not involve motor entrainment. Modulation
tuning in the sub-cortical central nervous system would affect
the synchronization strength of neural activity to isochronous
acoustic events, which in turn could influence the preferred
tempo.

Additionally, there is some evidence that our perception of
musical beats is biased to certain ranges of audio frequencies.
Listeners’ ratings of “groove” in music, a subjective quality related
to howmuch people want tomove to themusic, is correlated with
the fluctuation in energy in low frequency (<200Hz) and mid-
frequency (400–1600Hz) bands (Stupacher et al., 2016). Subjects
also identify beats in piano ragtime music better when the left
hand (lower frequency) is played alone than when the right hand
(higher frequency) is played alone, although this could be due
to the regularity of the left hand for this type of music (Snyder
and Krumhansl, 2001). A low-frequency bias for beat timing
could result from cochlear processing, where low frequencies
cause a greater spread of excitation than higher frequencies
(Hove et al., 2014), but these effects need to be disambiguated
from cochlear delays that can produce similar biasing effects
for simultaneous events (Wojtczak et al., 2017). For repeating
“frozen” noise, where the noise signal was identical on each
repetition, subjects focus on mid-frequency perturbations in the
signal, between 300 and 2,000Hz, when tapping along with the
repetition (Kaernbach, 1993). Overall, while there does appear to
be a frequency bias for time locking beats in music and repeating

sounds, the exact frequency range of the bias, and the influence
of subcortical processing on the bias, is still unclear.

Separately, several groups have developed “tempo-induction”
algorithms that identify the tempo of musical recordings (for
review see Gouyon et al., 2006; McKinney et al., 2007). These
algorithms typically consist of three stages: identify onsets in
the music, determine the pattern and speed of those onsets, and
determine the tempo based on several representations of these
factors (ex. Elowsson and Friberg, 2015). While some of these
algorithms use processes that are similar to the auditory system
(ex. Scheirer, 1998), none have been built on biomimetic models
of auditory processing that simulate the neural activity produced
by stages of auditory processing below the cortex. This processing
is important because beat perception is based on the neural
activity projected to the cortex. Both physiological modulation
tuning and the inherent randomness of neural signals present in
realistic auditory processing could affect beat perception in real
music.

Here, we developed a model that determines the tempo of
recordings of music based on the simulated neural activity of
the auditory nerve and amplitude modulation tuning in the
brainstem and midbrain. We hypothesized that physiologically
plausible synaptic processing, which results in amplitude
modulation tuning in the midbrain, can impose a preferred
tempo near 100 BPM (London, 2012). We also hypothesized that
innate processing in the auditory nerve can explain our low-
audio-frequency bias for timingmusical beats. Lastly, we quantify
the strength of neural synchronization tomusical beats inmusical
recordings and assess different ways in which the beat frequency
may be inferred based on sub-cortical processing.

MATERIALS AND METHODS

Modeling
Sub-cortical neural activity was simulated using a cascade of two
biomimetic models for different stages of auditory processing.
The sound input was converted to time-varying firing rates
using a model of auditory-nerve (AN) fibers (Zilany et al., 2014)
(Figure 1). Each AN fiber was tuned to a particular characteristic
frequency (CF). The bandwidths of the model AN fibers matched
human cochlear tuning (Shera et al., 2002). High-spontaneous-
rate AN fibers were simulated with CFs from 125 to 8 kHz
spaced every 0.05 octaves (121 fibers total). This model includes
cochlear compression and firing rate adaptation (Zhang et al.,
2001; Zilany et al., 2009). Our focus was on high-spontaneous-
rate AN fibers because of their predominance in the auditory
nerve (Liberman, 1978). Additionally, high-spontaneous-rate
fibers alone can encode speech across a wide range of sound levels
and in noisy environments (Carney et al., 2015), suggesting that
they might also be especially important for encoding acoustic
events relevant for musical beat perception.

The time-varying AN fiber firing rate was filtered using a
model of synaptic processing in the ventral cochlear nucleus
(VCN) and the inferior colliculus (IC) (Nelson and Carney,
2004; Carney et al., 2015). The model produces bandpass
modulation sensitivity via two-stage same-frequency inhibition
and excitation (SFIE), where the time constants, delays, and
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FIGURE 1 | The model used to simulate sub-cortical neural activity consisted of three stages. First, the sound was filtered through 121 model AN fibers, each of

which include bandpass filtering from the basilar membrane, compression due to the outer hair cells, and firing rate adaptation. Second, the output firing rates of

these AN fibers were filtered using an SFIE model that simulated processing in the VCN and IC. Lastly, neural activity was simulated for each CF using the output time

varying firing rate of the second stage. The simulated activity was then summed across CFs to get the summed PSTH.

strengths of the inputs affect the neuron’s best modulation
frequency (Figure 2). The SFIE model also accentuates onset
responses in the firing rate function that are akin to neural
responses in the inferior colliculus or the medial geniculate body
of the thalamus (Rouiller et al., 1981; Krishna and Semple, 2000;
Bartlett and Wang, 2007; Nelson and Carney, 2007). We varied
the SFIE model parameters (Table 1) to examine their effects on
the strength of synchronization to a range of tempi.

For each of the 121 CFs, we randomly generated spike trains
in response to each stimulus, assuming that the spike times obey
an inhomogeneous Poisson process (Brown et al., 2002) with
a time-varying rate parameter determined by the output of the
SFIE stage. The spike trains across CF were then summed to form
a post-stimulus time histogram (PSTH) for each response to a
stimulus.

We hypothesized that the beat frequency of the stimulus could
be determined based on the phase-locking of the PSTH to the
beat frequency. The PSTH was first filtered using a Gaussian-
shaped temporal smoothing window. The shape of the window
was based on prior results showing a Gaussian-like variation in
performance for detecting events that deviate from isochronous
intervals (Repp and Penel, 2002). Periodicities in the PSTH
were then identified by taking the Fourier transform of the
PSTH and normalizing by the average value of the PSTH (or
the magnitude of the Fourier component at 0Hz) (Figure 3A).
This value is computationally identical to the “vector strength”
which quantifies the synchronization strength of neural activity
to a particular frequency (Goldberg and Brown, 1969). The
model’s “synchronization tempo” was the tempowhere the vector
strength was maximal.

In the Fourier domain the temporal smoothing window
imposed a low-pass filter on the vector strength and thus
suppressed the vector strength of fast tempi (Figure 3B). Several
studies have demonstrated that the upper limit of the human

FIGURE 2 | The rate modulation transfer functions for the three SFIE models

we examined. The functions were computed by averaging the firing rate of the

output of the SFIE model using a single input AN fiber (CF = 800Hz) for 4 s of

sinusoidally amplitude modulated broadband noise repeated 20 times. The

parameters for each of the SFIE models can be found in Table 1.

perception of isochrony occurs at inter-onset intervals around
100ms (for review see Repp, 2005; London, 2012). To enforce this
upper limit, the standard deviation (σ ) of the temporal window
was empirically set to 40ms because it was the minimum σ such
that the vector strength for isochronous clicks at 600 BPM (inter-
onset interval of 100ms) was no larger than the vector strength
for 100% jittered clicks at the same average rate (Supplementary
Figure 1). The temporal window width of 40ms was used for all
SFIE models examined.

Throughout, all stimuli were set to 70 dB SPL and were up-
sampled to a 100 kHz sampling rate, which was required for the

Frontiers in Neuroscience | www.frontiersin.org 3 May 2018 | Volume 12 | Article 349120

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zuk et al. Sub-cortical Coding of Musical Beats

AN fiber model. For stimuli that started or ended with a non-zero
signal (for example, amplitude modulated noise), 15ms raised-
sine ramps were applied to the start and end of the stimulus.

Stimuli and Hypotheses for Preferred

Tempo Analyses
Stimuli were 10 s long and consisted of either 1ms clicks
(0.5 condensation followed by 0.5ms rarefaction), sinusoidally
amplitude modulated (SAM) broadband noise (0–50 kHz),
square wave (SW) modulated broadband noise with a duty cycle
of 50%, and raised-sine 100-ms-long tone pips with carrier
frequencies of 250Hz, 1 kHz, or 4 kHz. The tempo was varied
from 30 BPM to 600 BPM in 30 BPM steps, and each stimulus

TABLE 1 | Parameters used for each two-stage SFIE model (see Nelson and

Carney, 2004; Carney et al., 2015).

SFIE model parameters

τexc (ms) τinh (ms) Sinh dinh (ms) A

VCN stage 0.5 2 0.6 1 1.5

IC A 5 10 1.1 2 6

IC B 2 6 1.1 2 2

IC C 1 3 1.5 2 2

The parameters in the ventral cochlear nucleus (VCN) stage, the first stage of the model,

were always used. The parameters for the second stage of the model, inferior colliculus

(IC) model, was varied.

was presented 10 times. The phase of the stimulus modulation
was randomized for each presentation. The preferred tempo
was determined for each type of stimulus using quadratic
interpolation. To evaluate the effects of the SFIE model on this
result, the analysis was repeated for each type of SFIE unit and
also for the summed activity of the AN fibers alone.

Several studies have demonstrated that humans’ ability to
perceive and reproduce regular events is optimized for inter-
onset intervals around 600ms, corresponding to a tempo of
100 BPM (London, 2012). We hypothesized that the modulation
filtering of the SFIE model and the temporal smoothing window
could produce a vector strength maximum around 100 BPM.
Additionally, Henry et al. (2017) showed that the strength of
perceived musical beats is independent of the envelope of the
stimulus. Based on this, we expected the tempo exhibiting the
maximum vector strength (the “preferred tempo”) to remain the
same irrespective of the stimulus being used.

Assessing a Frequency Bias for Tempo

Induction
To identify a frequency bias in tempo induction that could
result from subcortical processing, we presented the model
with stimuli consisting of two stimulus trains of 100ms raised-
sine tone pips presented at two different tempi (from the
range 60 to 180 BPM) and two different frequencies (from the
range 125 to 8,000Hz) (an example stimulus can be found in
Figure 6A). The tempi, frequencies, and phases of the two tones
were randomly selected to generate 1000 different stimuli, and
each stimulus was presented once. The frequencies of the two

FIGURE 3 | (A) The summed PSTH was convolved (represented by an asterisk) with a Gaussian-shaped temporal smoothing window with a standard deviation of

40ms (see Materials and Methods). Then the Fourier transform of the smoothed PSTH was used to compute the vector strength of the neural activity, which quantifies

the strength of synchronization, at each tempo. The “synchronization tempo” using this method was equal to the tempo with the peak vector strength between 30

and 600 BPM. (B) The Fourier transform of the temporal smoothing window. The temporal smoothing window smooths the PSTH and suppresses the vector

strengths at high tempi.
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tone pips were spaced at least one octave apart to reduce AN
adaptation effects (Zilany et al., 2009) that could produce cross-
frequency forward masking. For each stimulus, we computed the
normalized synchronization tempo (NST):

NST =
Tsync − TL

TH − TL

where TL and TH are the tempi for the low carrier frequency and
high carrier frequency pulse trains, respectively, and Tsync is the
synchronization tempo.

We expected the synchronization tempo to be close to the
tempo of either the tone pips with the low-frequency carrier or
the high-frequency carrier for most of the stimuli, resulting in an
NST near either zero or one, respectively. Of those stimuli, we
next examined how the other factors, the tempi of the two tone
pips and their carrier frequencies, affected the NST. A logistic
generalized linear model was fit to the NST values that were
within ±0.08 of either zero or one (807/1000 trials) using fitglm
in Matlab:

P (NST = 0|µ) =
eµ

eµ + 1

where:

µ = β0 + βfL (
fL

125
)+ βfH log2 (

fH

125
)+ βTLTL + βTHTH

where fL and fH are the carrier frequencies of the low and high
frequency tone pips respectively, and the beta values quantify the
linear dependence between each parameter and the probability
that the NST equals one. If the NST was independent of the
stimulus parameters, then the model should not do significantly
better than a constant model (µ = β0). The significance of
this difference was assessed using a likelihood ratio test. The
significance of the individual coefficients in the model was also
assessed using a likelihood ratio test comparing the full model to
a reduced model with each component removed individually.

Tempo Induction of Real Music
Lastly, we examined how well this model could correctly identify
tempi for two datasets of music: a “Ballroom” dataset of 685 clips
of ballroom dance music (after removing exact and recording
replicates, see Sturm, 2014), and a “Songs” dataset of 465 clips of
music from a wide variety of genres and cultures, including some
dance music (Gouyon et al., 2006). These datasets are standards
for assessing the performance of tempo-induction and beat-
detection algorithms (Gouyon et al., 2006;McKinney et al., 2007).
We determined the synchronization tempo based on the tempo
between 30 and 600 BPM with the maximum vector strength.
Throughout, the synchronization tempo was identified as correct
if it fell within ±8% of the ground truth tempo (standard for the
MIREX tempo induction competition, seeMcKinney et al., 2007).

Computing the Tempo Using a Classifier
Often, the peak vector strength occurred at a multiple of the
ground truth tempo rather than at the actual ground truth
tempo. One possibility is that we “feel the beat” for every 2–4

events depending upon the speed of the music (Parncutt, 1994;
London, 2012). Additionally, we may be using the pattern of
events in the music, or the “rhythm”, to determine the beat
frequency, since beat perception is affected by rhythm (Povel
and Essens, 1985; Parncutt, 1994). To understand the importance
of speed and rhythm on tempo induction, we used regularized
multi-class linear discriminant analysis (mcLDA) (fitcdiscr.m in
Matlab, other classification algorithms did not perform as well) to
develop two different classifiers that identify the “scaling factor”
equal to the ratio of the synchronization tempo to the ground
truth tempo, either 1, 2, 3, or 4. The first classifier used the
synchronization tempo alone to classify the scaling factor; faster
synchronization tempi were more likely to have higher scaling
factors. For the second classifier, we reasoned that, if the model
neurons were synchronizing to events in the music, then the
rhythm of the music could be quantified by the number of times
certain intervals appear between simulated spikes. The within-
and across-CF interspike interval (ISI) histogram for the summed
neural activity was computed using the autocorrelation of the
summed PSTH, and the “ISI ratio” for a particular interval
was computed by summing the ISIs within a 20ms rectangular
window surrounding the interval and dividing by the total
number of ISIs between 0.1 and 30 s. The ISI ratio was computed
for ISIs at the following multiples of the event period: 1/16,
1/12, 1/9, 1/6, 1/4, 1/3, 1/2, 2/3, 3/4, and 1. All stimuli from
both datasets were included in this analysis, and the ratios were
rounded to closest integer between 1 and 4. This classification
procedure was repeated for 1000 random re-samplings of the
stimuli, selecting 75% of the stimuli for training and 25% for
testing. We determined whether the second classifier performed
significantly better than the first by testing the null hypothesis
that the distribution of differences in performance between the
two classifiers for the 1000 re-samplings was no greater than 0.

RESULTS

Dependence of Model Vector Strength on

Stimulus Tempo
Firstly, we examined if the vector strength of the model PSTH
wasmaximal over a specific range of tempi.We hypothesized that
sub-cortical processing could contribute to this biasing, which
has been observed around 100 BPM. The vector strength as a
function of tempo was computed using three different midbrain
models (Table 1) that were tuned to different best modulation
frequencies (Figure 2). For comparison, the vector strength was
also computed based on the unfiltered summed AN fiber output.

While the temporal smoothing window suppressed vector
strengths at high tempi (Figure 3B), there was also a reduction
in vector strengths at low tempi due to an intrinsic property
of the auditory nerve model. Figure 4 shows examples of the
summed firing rate across CF for different SFIE models, which
was the input to the Poisson spike generator (Figure 1). For click
trains at 30 BPM (Figure 4A), SFIEmodel A generated the largest
firing rates in response to a click, but it also produced the highest
spontaneous rate, resulting in the lowest vector strength of the
three midbrain models. For SAM noise (Figure 4B), the firing
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FIGURE 4 | Firing rates for the different SFIE models in response to 1ms

clicks (A), SAM broadband noise (B), and SW noise (C) at 30 BPM (SFIE A:

blue, SFIE B: green, SFIE C: red). The corresponding stimulus is shown above

each plot of the firing rate. All stimuli were presented at 70 dB SPL. The firing

rates were summed across CF and averaged across 10 repetitions of each

stimulus with different noise tokens. Spontaneous firing during silences (A,C)

and saturating firing rates during continuous noises (A,B) contributed to a

falloff in vector strength at lower tempi (see Figure 5).

rates of high-spontaneous rate AN fibers saturated at moderate
sound levels, resulting in saturating SAM responses for moderate
to high SPLs which reduced their synchronization strength (see
also Joris et al., 2004). The saturating responses were maintained
for the models with high peak modulation frequencies, SFIE B
and C. In contrast, SFIE A showed a stronger onset response
during the rising phase of the stimulus modulation followed by a
reduction in firing during the rest of the cycle of the modulation.
As a result, SFIE A had a larger vector strength than the other two
models. For SW noise (Figure 4C), the response for model SFIE
A showed both a suppression of sustained firing as well as high
spontaneous firing.

Across a wide variety of stimuli (clicks, SAM noise, SW
noise, tone pips), SFIE A consistently produced preferred tempi
between 86 and 150 BPM (Figure 5, peak values summarized in
Table 2). In contrast, peak vector strengths occurred at a much
wider range of tempi for the other two SFIE models and for the
AN fiber activity. Since human perception of musical beats is
invariant to the envelope of the stimulus (Henry et al., 2017),
these results strongly suggest that neurons with long excitatory

FIGURE 5 | Vector strength as a function of tempo in response to 1ms clicks

(A), SAM broadband noise (B), SW broadband noise (C), and tone pips with

carrier frequencies of 250Hz (D), 1 kHz (E), and 4 kHz (F). The vector

strengths for the different SFIE models are color coded identically to Figure 4.

Error bars designate interquartile ranges for 10 repetitions of each stimulus.

The vector strength using the AN fiber activity alone, without an SFIE stage, is

also shown in black. SFIE model A consistently produced peak vector

strengths within the range of tempi typically associated with the “indifference

interval” (around 100 BPM) and overlapping the range of tempi for dance

music (van Noorden and Moelants, 1999). The preferred tempos were

determined by quadratic interpolation. The black dashed line in the inset in (A)

shows the quadratic fit to the points surrounding the maximum vector strength

for SFIE A. The preferred tempo is equal to the peak of the quadratic fit.

Preferred tempos and peak vector strengths are quantified in Table 2.

and inhibitory synaptic time constants are important for musical
beat perception and responsible for biasing the preferred tempo
around 100 BPM. Such neurons would produce strong onset
firing and reduced sustained firing necessary for creating salient
beats. We also found empirically that vector strengths were larger
for musical recordings using SFIE A than the other two models
(Supplementary Figure 2). For these reasons, SFIE A was used
when simulating sub-cortical neural activity in the following
experiments.

Dependence of the Synchronization Tempo

on Stimulus Audio Frequency
There is some evidence that human perception of musical
beats may be biased to particular frequency ranges, but the
strength of this effect and the underlying mechanism are unclear.
We hypothesized that subcortical processing may produce a
frequency bias for tempo induction. Specifically, when multiple
carrier frequencies are present with temporal modulations at
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TABLE 2 | Preferred tempi (upper) and peak vector strengths (lower) are shown

for each stimulus and SFIE model, including the summed AN fiber output without

the SFIE model applied (see Figure 5).

Preferred tempo (BPM)

Peak vector strength

Clicks SAM

noise

SW

noise

Tone pips

250Hz 1kHz 4kHz Average ± st dev

SFIE A 111 146 142 112 86 106 117 ± 23

0.68 0.50 0.61 0.60 0.64 0.57 0.60 ± 0.06

SFIE B 94 223 30 87 76 98 101 ± 64

0.77 0.16 0.52 0.68 0.72 0.65 0.58 ± 0.23

SFIE C 51 299 30 56 30 52 86 ± 105

0.94 0.07 0.58 0.87 0.91 0.88 0.71 ± 0.34

AN fibers 267 117 120 204 201 206 186 ± 58

0.09 0.13 0.31 0.12 0.17 0.13 0.16 ± 0.08

Maxima were computed using quadratic interpolation.

distinct tempi, we expected the synchronization tempo to equal
the tempo of the lowest carrier frequency.

1000 stimuli were generated, consisting of two tone pips
with carrier frequencies, tempi, and phases that were selected
randomly (see Figure 6A for example). For each stimulus, the
synchronization tempo was normalized relative to the tempos of
the two tone pips to get the NST (Figure 6B). An NST of zero
means that the synchronization tempo was closer to the tempo
of the tone pip with the low-frequency carrier, and an NST of
one means that it was closer to the tempo for the high-frequency
carrier. 80.7% of the stimuli produced NSTs that were within
±0.08 of zero or one (Figure 7A). There were significantly more
stimuli that producedNSTs near zero than near one (Chi-squared
test: χ

2 = 149, p < 0.001). On average, synchronization tempi
were biased to lower audio frequencies.

The distribution of NSTs, however, also varied with the carrier
frequencies (Figure 7B) as well as the tempi of the tone pips
(Figure 7C). Each showed a monotonic relationship with the
proportion of NSTs equal to zero. To quantify these dependences
and assess their significance, we fit a logistic generalized linear
model to the individual NSTs with the low-frequency carrier (fL),
high-frequency carrier (fH), and the tempi of those tone pips
(TL and TH respectively) as dependent variables (see Materials
and Methods). We found that the generalized linear model fit
significantly better than a constant model (Likelihood ratio test:
χ
2 = 530, p < 0.001), meaning that the carrier frequencies and

tempi had a significant effect on the NST relative to the average
bias observed initially (Figure 7A). Specifically, the NST was
significantly dependent on fH (βfH = 1.39, χ2 = 78, p < 0.001)
and both tempi (TL: βTL = 0.043,χ2 = 253, p< 0.001; TH: βTH =

−0.034, χ2 = 193, p < 0.001). The effect of fL was not significant
(βfL =−0.033, χ2 = 0.08, p= 0.77).

Overall, synchronization tempi were biased to the tempo
for the tone pips with the lower carrier frequency, but the
biasing was weakest when the interfering modulations from
the higher carrier frequency was close to the lower carrier

FIGURE 6 | (A) To test for a frequency bias in tempo induction, stimuli

consisted of two sets of tone pips at two different carrier frequencies and

different tempi. An example stimulus power spectrogram is shown (tone 1: fL
= 500Hz, TL = 140 BPM; tone 2: fH = 3 kHz, TH = 100 BPM; phase = 0 for

both). (B) The vector strength as a function of tempo for the stimulus in (A) is

shown. Dashed lines mark the tempi for the tone pips with the low-frequency

carrier (blue) and the high-frequency carrier (red). The synchronization tempo

was 138 BPM and the NST was 0.05, indicating that it is close to TL.

frequency. Both low-CF and high-CF responses resulted in
similar vector strengths for broadband stimuli with tone-pip-
like modulations, suggesting that the biasing observed here was
due to the spread of excitation in the basilar membrane and
not due to differences in the response properties of different
CFs (Supplementary Figure 3). However, the tempi of the tone
pips had a stronger influence on the synchronization tempo
than the carrier frequency, and the synchronization tempo was
more likely to equal the fastest tempo. This was contrary to
our earlier finding that the vector strength was maximized
around 100 BPM for salient, isochronous stimuli. When multiple
competing modulations are present in complex stimuli, the faster
modulations dominate in the summed synchronized activity,
primarily because faster modulations produce more events and
are more likely to mask slower modulations (Supplementary
Figure 4).

Tempo Induction of Real Music
We lastly evaluated tempo-induction performance using two
datasets widely used for testing tempo-induction algorithms
(Gouyon et al., 2006): a “Ballroom” dataset of 685 ballroom dance
music clips, and a “Songs” dataset of 465 songs from a wide
variety of genres. For each stimulus the synchronization tempo
was computed and compared to the ground-truth tempo for the
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FIGURE 7 | (A) Distribution of the NSTs for all 1000 randomly generated

stimuli consisting of two tone pips. An NST of 0 means that the

synchronization tempo is equal to TL. An NST of 1 means that the

synchronization tempo is equal to TH. On average, the synchronization tempi

were closer to TL. (B) Proportion of trials with NST = 0 with respect to the

carrier frequencies of the stimulus. Each bin shows the marginal probability

given fL and fH. (C) Proportion of trials with NST = 0 with respect to the tempi

TL and TH, plotted similarly to (B).

recording. The synchronization tempo was equal to the ground-
truth tempo for only 19.9% of the stimuli (25.0% for ballroom,
12.4% for songs) (Figure 8). More often, the synchronization
tempo was twice the ground-truth tempo (31.7% for ballroom,
28.8% for songs, 30.5% overall).

When the PSTH was not smoothed with the temporal
smoothing window, fewer synchronization tempi were equal to

FIGURE 8 | The histogram of the ratio between the synchronization tempo

and the ground truth tempo is plotted for the Ballroom dataset (A) and the

Songs dataset (B) without the temporal Gaussian window applied (black) and

with the temporal Gaussian window (red). Colored dashed lines mark the

scaling factors of 1x (black), 2x (blue), 3x (green), and 4x (red).

the ground-truth tempo (18.0% for ballroom, 3.9% for songs,
12.2% overall) (Figure 8). However, most of the synchronization
tempi occurred at a multiple of the ground-truth tempo: 75.5% of
the stimuli produced synchronization tempi at 1-4x the ground
truth (81.8% for ballroom, 66.2% for songs) (Figure 9). This
accounted for 25.1% more of the stimuli than the number
that had synchronization tempi at 1-2x the ground truth after
smoothing the PSTH.

Thus, while the temporal smoothing window suppresses faster
synchronous activity by low-pass filtering the PSTH, it does not
unearth a subharmonic peak in vector strength at the true beat
frequency of themusic. Instead, themodel’s synchronized activity
at a multiple of the ground truth tempo may serve as a reference
for determining the actual tempo of the music.

Scaling the Synchronization Tempo
Why is the most synchronous activity at a multiple of the ground
truth tempo? One possibility is that the synchronous activity
occurs at the “event frequency” of the music, a higher tempo
than the beat frequency, such as the frequency of notes played
by an instrument or the frequency of drum hits (London, 2012,
see also Ding et al., 2017 for a similar result using the modulation
spectrum). Indeed, we found that the ratio of the synchronization
tempo to the actual tempo, the “scaling factor,” depended upon
the genre of the ballroom dance music, suggesting that the
relationship between the synchronization tempo and the actual
tempo may depend upon the rhythm of the music (Figure 10A).
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FIGURE 9 | Synchronization tempo using the vector strength of the summed

PSTH without the temporal smoothing window is plotted as a function of the

ground truth tempo for the Ballroom dataset (A) and the Songs dataset (B).

Dotted lines mark the slopes corresponding to scaling factors 1–4, as in

Figure 8. For the combined datasets (1163 stimuli total), 75.5% of the

synchronization tempi fell within ±8% of these four slopes.

Alternatively, the relationship between the event frequency and
the tempo could depend upon the speed of events. As the speed
of the events increases, the event frequency would need to be
divided by a larger scaling factor in order to get the correct tempo.
Because different ballroom dance genres can be qualitatively
characterized by different speeds (for example: tango is slower
than samba), the event frequencies may also be dependent
upon genre. Indeed, we found that the synchronization tempo
was dependent upon the genre of the music (Figure 10B).
Whether the scaling factor is dependent upon the speed or the
rhythm of the events, it should be possible to simply divide the
synchronization tempo by a scaling factor in order to get the
actual beat frequency of the music.

To determine the scaling factor for each stimulus we
used mcLDA to design two classifiers (see Materials and

FIGURE 10 | (A) The ratios of the synchronization tempo to the ground truth

tempo (the “scaling factors”) and (B) the synchronization tempi for the 685

Ballroom stimuli are plotted as a function of the ballroom dance genre. Colored

dashed lines mark the ratios 1–4, as in Figures 8, 9. Synchronization tempo

and the scaling factor both depend upon the genre of the ballroom dance

music.

Methods). The first classifier used only the synchronization
tempo, which captures the speed of the music (Figure 11A).
The second classifier also contained ISI ratios at fractions of
the synchronization tempo to capture information about the
rhythm of the music that was present in the synchronized activity
(Figure 11B).We combined the Ballroom and Songs datasets and
randomly selected 75% of the stimuli for training the classifiers
and 25% for testing, with 1000 re-samplings of training and
testing trials.

Using the synchronization tempo alone, the scaling factor
was classified correctly 72.3 ± 2.3% (mean ± standard deviation
averaged across all re-samplings) of the time during testing.
By dividing the synchronization tempo by the classified scaling
factor, tempo-induction performance improved to 55.6 ± 2.5%.
The classes were centered on synchronization tempos of 114 ±

2 BPM, 223 ± 2 BPM, 359 ± 13 BPM, and 397 ± 2 BPM for
scaling factors 1–4, respectively. As expected, the class for the 1x
scaling factor was centered on the 450–600ms interonset interval
range described for other music corpora from a previous study
(van Noorden and Moelants, 1999) and the centers for the 2x
and 4x scaling factor distributions were roughly twice and four
times this range of intervals. The 3x scaling factor was never
classified correctly and was often confused with the 2x and 4x
classes (Figure 12A).

When rhythm information was included, the scaling factor
was classified correctly for 76.4 ± 2.2% of the testing stimuli,
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FIGURE 11 | In order to determine the scaling factor, we created two

classifiers that used speed and rhythm information in the summed PSTH. (A)

The first classifier used the speed alone, quantified by the synchronization

tempo. A distribution of synchronization tempi for each scaling factor is

shown. (B) The second classifier used both speed and rhythm. Rhythm was

quantified by the ISI ratios (the number of ISIs at a particular interval divided by

the total number of ISIs) at intervals corresponding to fractions of the

synchronization tempo. The median and interquartile range of the ISI ratios for

each fraction is shown for each scaling factor.

and tempo-induction performance improved to 60.3 ± 2.6%
(61.9 ± 3.3% for ballroom, 58.0 ± 4.1% for songs). The
difference in performance between the two classifiers was only
moderately significant (p = 0.016 for classification, p = 0.002
for tempo induction). The primary reason for the improvement
in performance was due to an improvement in classification
accuracy for the 3x scaling factor (Figure 12B). Thus, the
perceived beat frequency may depend primarily on the speed of
events, with a smaller contribution of rhythm.

DISCUSSION

In this study, we used models of the AN (Zilany et al., 2014),
brainstem, andmidbrain (Nelson and Carney, 2004; Carney et al.,
2015) to simulate neural activity in response to isochronous
sound sequences and real music. Our goal was to quantify tempo
induction performance based on the simulated sub-cortical
neural activity to directly identify the mechanisms necessary to
“feel the beat” in music. Furthermore, by using a biomimetic
model of acoustic processing in the brainstem and midbrain,
we could identify specific additional stages of processing that
are necessary to find the beat frequency of music. We found
that midbrain-level processing, inherent randomness in neural
activity, and a smoothing temporal window together limit the
strength of neural synchronization to regular acoustic events

FIGURE 12 | Confusion matrices for classifying each scaling factor with a

classifier that just used the synchronization tempo (A) or a classifier that

included the ISI ratios (B). By including rhythm, there was an improvement in

the classification of the 3x scaling factor but little improvement for classifying

the other scaling factors.

and produce a preferred tempo around 100 BPM, in agreement
with prior literature. Additionally, cochlear processing generates
a low-audio-frequency bias for beat perception, but the tempi
of the modulations themselves have a stronger effect on the
synchronization tempo than the carrier frequencies. Lastly,
despite these successes with simplistic acoustic stimuli, we found
that the simulated neural activity often did not synchronize to
the beat frequency, but instead synchronized to a multiple of
the beat frequency. By using a classifier to appropriately scale
the synchronization tempo to the actual beat frequency, tempo-
induction performance improved considerably.

We found that midbrain model neurons with strong onset
responses produced consistent preferred tempi around 100 BPM

Frontiers in Neuroscience | www.frontiersin.org 10 May 2018 | Volume 12 | Article 349127

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zuk et al. Sub-cortical Coding of Musical Beats

for clicks, SAM noise, SW noise, and tone pips. The SFIE
model simulates synaptic mechanisms that could give rise to
amplitude modulation tuning in the midbrain (Nelson and
Carney, 2004). Alternatively, onset responses can also occur from
adaptation mechanisms. Rajendran et al. (2017) showed that
adaptation mechanisms in the midbrain of gerbils accentuate
onsets in complex rhythms that could give rise to beat perception.
However, the authors did not look at various envelope shapes.
The responses of our model to these rhythmic stimuli for various
event durations produced consistent vector strengths at the event
frequency and variable vector strengths at all other possible
tempi, and often the synchronization was strongest at the event
frequency (Supplementary Figure 5), in agreement with our
findings for musical recordings. If the events are short enough,
we expect that adaptation mechanisms will accentuate the onsets
of all events and could produce an equivalent result. Additionally,
subjects vary regarding when they choose to tap to these stimuli
(Nozaradan et al., 2012; Rajendran et al., 2017), which also
suggests that the relationship between subcortical activity and
the beat frequency is not one-to-one and may involve a learned
mechanism that varies across subjects.

On average, cochlear processing in the AN fiber model
appeared to produce a bias to low audio frequencies because
the synchronization tempo was more often equal to the tempo
for the tone pips with the low-frequency carrier. This bias
provides a potential neurobiological reason for why low-
frequency instruments carry the beat in some music (for example
see Snyder and Krumhansl, 2001). However, it is tricky to test this
perceptually; multiple instruments often play simultaneously on
the beat, and cochlear delays can explain biases for simultaneous
events (Wojtczak et al., 2017). Our stimuli used amplitude
modulations at distinct tempi and phases to reduce the effects
of simultaneous events, and we quantified the bias using the
synchronization strength of neural activity rather than timing to
specific events. The presence of a bias may be tested perceptually
using these stimuli by having subjects either subjectively identify
the beat of the stimulus or tap along with the stimulus at the
beat frequency that they perceive. A crowdsourcing design may
be most appropriate to properly sample the parameter space of
these stimuli.

We used a temporal smoothing window to limit the upper
range of tempi to 600 BPM based on previous work (Repp, 2005).
This limit does not necessarily correspond to a peripheral motor
limit because at this event rate musically trained participants
are unable to accurately tap to every fourth event in a fast,
isochronous sequence of acoustic events (Repp, 2003). For
isochronous, simplistic stimuli, the temporal window was critical
in producing the preferred tempo around 100 BPM in our
model. However, we found that sub-cortical synchronization
often occurred at a multiple of the tempo in musical recordings,
and ultimately, by including a classification stage, tempo-
induction performance was better without the temporal window.
Then when is this temporal window applied? The temporal
window defines a constant tolerance for detecting irregular
events, but subjects can discriminate click rates around 10Hz
with an accuracy of about 3% (Ungan and Yagcioglu, 2014)
implying that it cannot correspond to a limit in acoustic

processing. Additionally, it is well known that cortical neurons
can synchronize to acoustic periodicities at much faster rates
(Joris et al., 2004). The window more likely corresponds to
predictive tolerance rather than acoustic tolerance. The exact
mechanism is unclear, but it could result from motor planning
mechanisms that are used for tapping to regular events (Mendoza
and Merchant, 2014; Patel and Iversen, 2014; Merchant et al.,
2015; Merchant and Yarrow, 2016; Nozaradan et al., 2017).
Motor synchronization may also affect the processing of regular
acoustic events in the brainstem and midbrain (Nozaradan
et al., 2016), and the accuracy of motor synchronization appears
to be correlated with the temporal consistency of brainstem-
level encoding of the speech syllable /da/ (Tierney and Kraus,
2013). However, in these studies, sub-cortical activity clearly
synchronizes to the acoustics at frequencies higher than 10Hz, so
it is unlikely that the temporal window is applied in the brainstem
or midbrain. To explain our findings for musical recordings in
particular, it is more likely that temporal limitations are applied
cortically and only after the beat frequency has been determined.

Our results suggest that the beat frequency cannot be
determined based on the sub-cortical neural activity alone, and
a second higher-level mechanism is necessary to perceive the
beat. The importance of the relationship between the heard event
frequency and the perceived beat frequency has been proposed
in the past (London, 2012; Ding et al., 2017). It is unclear
from our work what this mechanism might be; internal neural
oscillators (Large et al., 2015), motor planningmechanisms (Patel
and Iversen, 2014; Merchant et al., 2015; Merchant and Yarrow,
2016), or temporal coding of sequences in the hippocampus
(Geiser et al., 2014) could produce patterns of neural activity
at subharmonics of the synchronization tempo. However, the
process of going from the neural synchronization tempo to the
actual tempo is likely to involve a dynamic, high-level system.
Listeners can change where they perceive the beat for stimuli with
identical rhythms (Iversen et al., 2009). One’s preference for the
location of the beat is based on experience, since beat perception
varies with culture (Drake and El Heni, 2003) and infants prefer
different beat frequencies for identical stimuli depending upon
the frequency of vestibular sensation during training (Phillips-
Silver and Trainor, 2005). Lastly, whereas people often agree on a
particular beat for a piece ofmusic, peoplemay tap individually to
music at different frequencies and phases relative to the expected
tempo (McKinney and Moelants, 2006; Patel and Iversen, 2014).
Thus, the relationship between the event frequency and the beat
frequency is likely learned through experience and is not due to
an innate mechanism.

The techniques used in ourmodeling work are similar to those
used in other algorithms for tempo induction, but our model
is unique in predicting the tempo of music using biomimetic
models of sub-cortical auditory processing. Several tempo-
induction algorithms introduce a template-matching stage that
determines the proximity of the computed onset histogram for a
single clip of music to a database of onset histogram templates
for different rhythms (Seyerlehner et al., 2007; Holzapfel and
Stylianou, 2009). Elowsson and Friberg (2015) also included
the “speed” of the music, which was determined by a weighted
average of the two most probable tempi for the song. In
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their implementation, both the rhythm information and the
speed were used as inputs to a logistic classifier that ultimately
determined the tempo (see also Levy, 2011 for the importance
of speed judgments in tempo induction algorithms). Our
classification scheme is similar. We show that a classifier based
on the “speed” alone (the synchronization tempo) does well at
identifying the appropriate scaling factor for determining the
tempo. We also found that the pattern of interspike intervals,
which was used to quantify rhythm, provides a small, albeit
significant, amount of information for tempo induction. Also,
in our implementation, we assumed that beats are determined
based on the summed activity across CF. Similar algorithms
detect onsets when the energies in multiple audio frequency
bands peak simultaneously (Scheirer, 1998; Klapuri et al., 2006;
Ellis, 2007). In contrast, other algorithms have used the frequency
content to categorize onset events (Elowsson and Friberg, 2015;
Krebs et al., 2016). It is clear that the auditory system combines
frequency content into discrete events (Bregman, 1990; Darwin,
1997; Shamma et al., 2011), but where this combination occurs
relative to beat processing is unclear. Nevertheless, our model
might improve in performance if we introduce a stage that
isolates cross-CF neural activity into discrete temporal objects
and identifies the tempo based on the pattern of objects rather
than on the summed neural activity alone.

Our technique inherently assumes that events equally divide
beats and the rhythm that results is based on small integer ratios,
which is true for the songs in the datasets we used. However,
there are some songs in which the beat of the music is not
isochronous, particularly when the music has a complex meter
(London, 1995). Our model will identify the regular intervals of
events in this case, but a more complex learning mechanism that
can identify the explicit timing of non-isochronous beats would
be necessary for these particular applications. More strikingly, in
Malian jembe drumming, events do not occur at integer ratio
subdivisions of the beat (Polak et al., 2016). Music with more
complex subdivisions of the beat is particularly problematic for
our model because it relies on the initial identification of an event
frequency. The issue can be resolved, however, by recognizing
that humans have a fairly high tolerance for deviations from
synchrony when listening to regular events (Repp and Penel,
2002). The drumming is produced with consistent offsets from
the isochronous subdivisions of the beat but they may still
be within our perceptual tolerance to asynchrony. A similar
effect is observed in classical music; performers slightly vary

the timing of notes relative to the strict note durations of
the piece for expressive purposes (for review see Patel, 2010).
If perceptual processes and motor processes can distinctly
subdivide beats, then non-musicians in Mali might subdivide
isochronous intervals more evenly than jembe musicians who
have experience reproducing the non-isochronous events in the
music (see Jacoby and McDermott, 2017).

Our results demonstrate the importance of using real music
to study beat perception. Previous studies have primarily used
acoustically salient events with complex rhythms. We have
shown that the speed of events is relatively more important for
tempo induction than the rhythm of those events in musical
recordings. We encourage other groups to study the perception
of rhythm with biomimetic models of the auditory system. We
also encourage others to use real music as stimuli, since musical
recordings provide more realistic conditions by which we can
better understand how the human brain processes music in
general.
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Deep neural networks have been recently shown to capture intricate information
transformation of signals from the sensory profiles to semantic representations that
facilitate recognition or discrimination of complex stimuli. In this vein, convolutional neural
networks (CNNs) have been used very successfully in image and audio classification.
Designed to imitate the hierarchical structure of the nervous system, CNNs reflect
activation with increasing degrees of complexity that transform the incoming signal
onto object-level representations. In this work, we employ a CNN trained for large-
scale audio object classification to gain insights about the contribution of various
audio representations that guide sound perception. The analysis contrasts activation
of different layers of a CNN with acoustic features extracted directly from the scenes,
perceptual salience obtained from behavioral responses of human listeners, as well as
neural oscillations recorded by electroencephalography (EEG) in response to the same
natural scenes. All three measures are tightly linked quantities believed to guide percepts
of salience and object formation when listening to complex scenes. The results paint a
picture of the intricate interplay between low-level and object-level representations in
guiding auditory salience that is very much dependent on context and sound category.

Keywords: convolutional neural network, auditory salience, natural scenes, audio classification,
electroencephalography, deep learning

INTRODUCTION

Over the past few years, convolutional neural networks (CNNs) have revolutionized machine
perception, particularly in the domains of image understanding, speech and audio recognition, and
multimedia analytics (Krizhevsky et al., 2012; Karpathy et al., 2014; Cai and Xia, 2015; Simonyan
and Zisserman, 2015; He et al., 2016; Hershey et al., 2017; Poria et al., 2017). A CNN is a form
of a deep neural network (DNN) where most of the computation are done with trainable kernel
that are slid over the entire input. These networks implement hierarchical architectures that mimic
the biological structure of the human sensory system. They are organized in a series of processing
layers that perform different transformations of the incoming signal, hence “learning” information
in a distributed topology. CNNs specifically include convolutional layers which contain units that
are connected only to a small region of the previous layer. By constraining the selectivity of units
in these layers, nodes in the network have emergent “receptive fields,” allowing them to learn
from local information in the input and structure processing in a distributed way; much like
neurons in the brain have receptive fields with localized connectivity organized in topographic
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maps that afford powerful scalability and flexibility in computing.
This localized processing is often complemented with fully
connected layers which integrate transformations learned across
earlier layers, hence incorporating information about content
and context and completing the mapping from the signal
domain (e.g., pixels, acoustic waveforms) to a more semantic
representation.

As with all DNNs, CNNs rely on vast amounts of data to
train the large number of parameters and complex architecture
of these networks. CNNs have been more widely used in a
variety of computer vision tasks for which large datasets have
been compiled (Goodfellow et al., 2016). In contrast, due to
limited data, audio classification has only recently been able to
take advantage of the remarkable learning capability of CNNs.
Recent interests in audio data curation have made available a
large collection of millions of YouTube videos which were used to
train CNNs for audio classification with remarkable performance
(Hershey et al., 2017; Jansen et al., 2017). These networks offer
a powerful platform to gain better insights on the characteristics
of natural soundscapes. The current study aims to use this CNN
platform to elucidate the characteristics of everyday sound events
that influence their acoustic properties, their salience (i.e., how
well they “stand-out” for a listener), and the neural oscillation
signatures that they elicit. All three measures are very closely
tied together and play a crucial role in guiding our perception of
sounds.

Given the parallels between the architecture of a CNN and the
brain structures from lower or higher cortical areas, the current
work uses the CNN as a springboard to examine the granularity
of representations of acoustic scenes as reflected in their acoustic
profiles, evoked neural oscillations, and crucially their underlying
salience; this latter being a more abstract attribute that is largely
ill-defined in terms of its neural underpinnings and perceptual
correlates. Salience is a characteristic of a sensory stimulus that
makes it attract our attention regardless of where our intentions
are. It is what allows a phone ringing to distract us while we are
intently in the midst of a conversation. As such, it is a critical
component of the attentional system that draws our attention
toward potentially relevant stimuli.

Studies of salience have mostly flourished in the visual
literature, which benefited from a wealth of image and
video datasets as well as powerful behavioral, neural, and
computational tools to explore characteristics of visual salience.
The study of salience in audition has been limited both by
lack of data as well as limitations in existing tools that afford
exploring auditory salience in a more natural and unconstrained
way. A large body of work has explored aspects of auditory
salience by employing artificially constructed stimuli, such as
tone and noise tokens (Elhilali et al., 2009; Duangudom and
Anderson, 2013). When natural sounds are used, they are often
only short snippets that are either played alone or pieced
together (Kayser et al., 2005; Duangudom and Anderson, 2007;
Kaya and Elhilali, 2014; Tordini et al., 2015; Petsas et al.,
2016). Such manipulations limit the understanding of effects
of salience in a more natural setting, which must take into
account contextual cues as well as complexities of listening in
everyday environments.

Despite the use of constrained or artificial settings, studies
of auditory salience have shed light on the role of the acoustic
profile of a sound event in determining its salience. Loudness
is a natural predominant feature, but is complemented by other
acoustic attributes, most notably sound roughness and changes
in pitch (Nostl et al., 2012; Arnal et al., 2015). Still, the relative
contribution of these various cues and their linear or non-linear
interactions have been reported to be very important (Kaya
and Elhilali, 2014; Tordini et al., 2015) or sometimes provide
little benefit (Kim et al., 2014) to determining the salience of a
sound event depending on the stimulus structure, its context, and
the task at hand. Unfortunately, a complete model of auditory
salience that can account for these various facets of auditory
salience has not yet been developed. Importantly, studies of
auditory salience using very busy and unconstrained soundscapes
highlight the limitations of explaining behavioral reports of
salience using only basic acoustic features (Huang and Elhilali,
2017). By all accounts, auditory salience is likely a multifaceted
process that not only encompasses the acoustic characteristics of
the event itself, but is shaped by the preceding acoustic context,
the semantic profile of the scene as well as built-in expectation
both from short-term and long-term memory, much in line with
processes that guide visual salience especially in natural scenes
(Treue, 2003; Wolfe and Horowitz, 2004; Veale et al., 2017).

Convolutional neural networks offer a powerful platform to
shed light on these various aspects of a natural soundscape and
hence can provide insight into the various factors at play in
auditory salience in everyday soundscapes. In the present work,
we leverage access to a recently published database of natural
sounds for which behavioral and neural salience measures are
available (Huang and Elhilali, 2017, 2018) to ask the question:
how well does activity in a large-scale DNN at various points
in the network correlate with these measures? Owing to the
complexity of these convolutional models, we do not expect
an explicit account of exact factors or processes that determine
salience. Rather, we examine the contribution of peripheral vs.
deeper layers in the network to explore contributions of different
factors along the continuum from simple acoustic features to
more complex representations, and ultimately to semantic-level
embeddings that reflect sound classes. A number of studies have
argued for a direct correspondence between the hierarchy in the
primate visual system and layers of deep CNNs (Kriegeskorte,
2015; Yamins and DiCarlo, 2016; Kuzovkin et al., 2017). A recent
fMRI study has also shown evidence that a hierarchical structure
arises in a sound classification CNN, revealing an organization
analogous to that of human auditory cortex (Kell et al., 2018).
In the same vein, we explore how well activations at different
layers in an audio CNN explain acoustic features, behaviorally
measured salience, and neural responses corresponding to a set
of complex natural scenes. These signals are all related (but not
limited) to salience, and as such this comparison reveals the
likely contribution of early vs. higher cortical areas in guiding
judgments of auditory salience.

This paper is organized as follows. First, the material and
methods employed are presented. This next section describes
the database used, the acoustic analysis of audio features in the
dataset, and the behavioral and neural responses for this same
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set obtained from human subjects. The architecture of the neural
network is also described as the platform that guides the analysis
of other metrics. The results present the information gleaned
from the CNN about its representation of acoustic, behavioral,
and neural correlates of salience. Finally, the discussion section
summarizes the insights gained from these results and its impact
for future work to better understand auditory salience and its role
in our perception of sounds.

MATERIALS AND METHODS

This next section describes the acoustic data, three types of
auditory descriptors [acoustic features, a behavioral measure, and
electroencephalography (EEG)], as well as three types of analyses
employed in this study (CNN, surprisal, and correlation).

Stimuli
The stimuli used in the present study consist of 20 natural
scenes taken from the JHU DNSS (Dichotic Natural Salience
Soundscapes) Database (Huang and Elhilali, 2017). Scenes are
approximately 2 min in length each and sampled at 22,050 Hz.
These scenes originate from several sources, including YouTube,
FreeSound, and the BBC Sound Effects Library. The scenes
encompass a wide variety of settings and sound objects, as well
as a range of sound densities. Stimuli are manually divided into
two groups for further analysis; a “sparse” group, which includes
scenes with relatively few but clearly isolated acoustic events.
An example of a sparse scene includes a recording of a bowling
alley in which a relatively silent background is punctuated by
the sound of a bowling ball first striking the floor and then the
pins. The remaining scenes are categorized as “dense” scenes.
Examples of these scenes include a maternity ward, a protest on
the streets, and a dog park with continuously ongoing sounds
and raucous backgrounds. This comparison between sparse and
dense scenes is important because salience in dense scenes is
particularly difficult to explain using only acoustic features, and
thus more complex information such as sound category may
provide a benefit.

Acoustic Features
Each of the scenes in the JHU DNSS database is analyzed
to extract an array of acoustic features, including loudness,
brightness, bandwidth, spectral flatness, spectral irregularity,
pitch, harmonicity, modulations in the temporal domain (rate),
and modulations in the frequency domain (scale). Details of these
feature calculations can be found elsewhere (Huang and Elhilali,
2017). In addition, the current study also includes an explicit
measure of roughness as one of the acoustic features of interest.
It is defined as the average magnitude of temporal modulations
between 30 and 150 Hz, normalized by the root-mean-squared
energy of the acoustic signal, following the method proposed by
Arnal et al. (2015).

Behavioral Salience
The Huang and Elhilali (2017) study collected a behavioral
estimate of salience in each of the scenes in the JHU

DNSS dataset. Briefly, subjects listen to two scenes presented
simultaneously in a dichotic fashion (one presented to each ear).
Subjects are instructed to use a computer mouse to indicate which
scene they are focusing on at any given time. Salience is defined as
the percentage of subjects that attend to a scene when compared
to all other scenes, as a function of time.

Peaks in the derivative of the salience curve for each scene
define onsets of salient events. These are moments in which
a percentage of subjects concurrently begin listening to the
associated scene, regardless of the content of the opposing scene
playing in their other ear. The strength of an event is defined
as a linear combination of the height of the slope at that point
in time and the maximum percentage of subjects simultaneously
attending to the scene within a 4-s window following the event.
The strongest 50% of these events are used in the event-related
analysis in the current study. These events are further manually
categorized into one of seven sound classes (speech, music,
other vocalization, animal, device/vehicle, tapping/striking, and
other). The speech, music, other vocalization, vehicle/device, and
tapping/striking classes contained the most number of events and
are included in the current study for further analysis. By this
definition of salience, the scenes contained 47 events in the speech
class, 57 events in music, 39 events in other vocalization, 44 events
in vehicle/device, and 28 events in tapping. The two remaining
classes consisted of too few instances, with only 11 events in the
animal category and eight in a miscellaneous category.

Electroencephalography
Cortical activity while listening to the JHU DNSS stimuli is
also measured using EEG, following procedures described in
the study by Huang and Elhilali (2018). Briefly, EEG recordings
are obtained using a Biosemi Active Two 128-electrode array,
initially sampled at 2048 Hz. Each of the 20 scenes is presented to
each subject one time in a random order, and listeners are asked
to ignore these scenes playing in the background. Concurrently,
subjects are presented with a sequence of tones and perform an
amplitude modulation detection task. The neural data relevant to
the modulation task is not relevant to the current study and is not
presented here. It is discussed in the study by Huang and Elhilali
(2018).

Electroencephalography signals are analyzed using FieldTrip
(Oostenveld et al., 2011) and EEGLab (Delorme and Makeig,
2004) analysis tools. Data are demeaned and detrended, and then
resampled at 256 Hz. Power line energy is removed using the
Cleanline MATLAB plugin (Mullen, 2012). EEG data are then
re-referenced using a common average reference, and eyeblink
artifacts are removed using independent component analysis
(ICA).

Following these preprocessing steps, energy at various
frequency bands is isolated using a Fourier transform over sliding
windows (length 1 s, step size 100 ms), and then averaged
across the frequencies in a specific band. Six such frequency
bands are used in the analysis to follow: Delta (1–4 Hz), Theta
(4–7 Hz), Alpha (8–15 Hz), Beta (15–30 Hz), Gamma (30–50 Hz),
and High Gamma (70–110 Hz). Next, band energy is z-score
normalized within each channel. Band activity is analyzed both
on a per-electrode basis and also by averaging activity across
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groups of electrodes. In addition to a grand average across all
128 electrodes, analysis is also performed by averaging activity in
frontal electrodes (21 electrodes near Fz) and central electrodes
(23 electrodes near Cz) as defined in Shuai and Elhilali (2014).

Deep Neural Network
A neural network is used in the current study to explore its
relationship with salience judgments based on acoustic analysis,
behavioral measures, and neural EEG responses (Figure 1).
The network structure like VGG follows network E presented
by Simonyan and Zisserman (2015), with modifications made
by Hershey et al. (2017) and Jansen et al. (2017). Briefly, the
network staggers convolutional and pooling layers. It contains
four convolutional layers, each with relatively small 3 × 3
receptive fields. After each convolutional layer, a spatial pooling
layer reduces the number of units by taking maximums over non-
overlapping 2 × 2 windows. Next, two fully connected layers
then reduce the dimensionality further before the final prediction
layer. Table 1 lists the layers of the network along with their
respective dimensionalities. Due to dimensionality constraints,
only the layers shown in bold are used in this analysis and
reported here, without any expected loss of generality about the
results.

Our CNN was trained on the audio from a 4923 class video-
classification problem that eventually became the YouTube-8M
challenge (Abu-El-Haija et al., 2016). This dataset includes 8
million videos totaling around 500,000 h of audio, and is available
online (Abu-El-Haija, 2017). As in the study by Hershey et al.
(2017), the audio from each video was divided into 960 ms
frames, each mapped onto a time–frequency spectrogram (25 ms
window, 10 ms step size, 64 mel-spaced frequency bins). This
spectrogram served as the input to the neural network. For
training purposes, ground truth labels from each video were
automatically generated and every frame within that video was
assigned the same set of labels. Each video could have any number
of labels, with an average of around five per video, and 4923
distinct labels in total. The labels ranged from very general to
very specific. The most general category labels (such as arts and
entertainment, games, autos/vehicles, and sports) were applied
to roughly 10–20% of the training videos. The most specific
labels (such as classical ballet, rain gutter, injury, and FIFA Street)
applied only to 0.0001–0.001% of the videos. The network was
trained to optimize classification performance over the ground
truth labels. The network’s classification performance nearly
matches that of the Inception DNN model, which was found to
show the best results in Hershey et al. (2017), in terms of equal
error rate and average precision. Details about the evaluation
process can be found in Jansen et al. (2017).

Network Surprisal
We defined change in the activation patterns within a layer of the
CNN as “network surprisal” (this definition is unrelated to other
surprisal analyses that employ information theory or principles
of thermodynamics to characterize system dynamics, often used
in physics, chemistry, and other disciplines). It represents an
estimate of variability in the response pattern across all nodes of a
given layer in the network and as such quantifies how congruent

or surprising activity at a given moment is relative to preceding
activity (Figure 1B). In this study, it is computed by taking the
Euclidean distance between the activity in a layer at a given
time bin (labeled “Current” in red in Figure 1B) vs. the average
activation in that layer across the previous four seconds (labeled
“History” in gray in Figure 1B). Thus, a constant pattern of
activity would result in a low level of surprisal, while a fluctuation
in that pattern over multiple seconds would result in a higher
level of surprisal. This measure corresponds structurally to the
definition of semantic dissimilarity by Broderick et al. (2018),
although it utilizes Euclidean distance as a common metric for
evaluating dissimilarity in neural network activity (Krizhevsky
et al., 2012; Parkhi et al., 2015). This surprisal feature tracks
changes in the scene as it evolves over time by incorporating
elements of the acoustic history into its calculation.

Correlation Analyses
The audio, EEG, and CNN data have all been reduced to low-
dimensional features. The audio is represented by 10 different
acoustic measures, while the 128 channel EEG measurements
are summarized by the energy in six different frequency bands,
and the multi-channel outputs from the six different layers
of the CNN are summarized by the surprisal measure. We
next examine correlation between these metrics and the neural
network activations.

Each layer of the neural network is compared to behavioral
salience, basic acoustic features, and energy in EEG frequency
bands using normalized cross correlation. All signals are
resampled to the same sampling rate of 10 Hz, and the first
2 s of each scene are removed to avoid the effects of the trial
onset. Scenes that are longer than 120 s are shortened to that
length. All signals are high-pass filtered with a cutoff frequency
of 1/30 Hz to remove overall trends, and then low-pass filtered
at 1/6 Hz to remove noise at higher frequencies. Both filters are
fourth-order Butterworth filters. The low-pass cutoff frequency is
chosen empirically to match the slow movements in the salience
signal. Despite the low cutoff frequency, no observable ringing
artifacts are noted. Adjusting signal duration to examine any
filtering artifacts at the onset of the signal yields quantitively
similar results as reported in this paper.

After these pre-processing steps, we compute the normalized
cross-correlation between network surprisal and the other
continuous (acoustic and neural) signals with a maximum delay
time of −3 to +3 s. The normalized correlation is defined as
a sliding dot-product of these two signals normalized by the
product of their standard deviation (Rao Yarlagadda, 2010). The
highest correlation coefficient within a ± 3 s window is selected
as the correlation between network surprisal and each of the
corresponding signals.

The behavioral responses reflect onsets of salient events (peaks
in the slope of the salience curve) and are discrete in time.
CNN surprisal activity is compared to behavioral salience in
windows surrounding salient events, extending from 3 s before
to 3 s after each event. These windows are used to compare
correlations for subsets of events, such as for a single category of
events. Quantitatively similar results are obtained when using the
whole salience curve instead of windows surrounding all salient
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A

B

FIGURE 1 | Structure of the convolutional neural network and signals analyzed. (A) The convolutional neural network receives the time–frequency spectrogram of an
audio signal as input. It is composed of convolutional and pooling layers in an alternating fashion, followed by fully connected layers. (B) An example section of an
acoustic stimulus (labeled Audio); along with corresponding neural network activity from five example units within one layer of the CNN. A network surprisal measure
is then computed as the Euclidian distance between the current activity of the network nodes at that layer (shown in red) against the activity in a previous window
(shown in gray with label “History”). Measures of behavioral salience by human listeners (in green) and cortical activity recorded by EEG (in brown) are also analyzed.
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TABLE 1 | Dimensions of the input and each layer of the neural network.

Layer type Abbreviation Dimensions Total number
of outputs

Input spectrogram 96 × 64 16,384

Convolutional layer Conv1 96 × 64 × 64 393,216

Pooling layer Pool1 48 × 32 × 64 98,304

Convolutional layer Conv2 48 × 32 × 128 196,608

Pooling layer Pool2 24 × 16 × 128 49,152

Convolutional layer Conv3 24 × 16 × 256 98,304

Pooling layer Pool3 12 × 8 × 256 24,576

Convolutional layer Conv4 12 × 8 × 512 49,152

Pooling layer Pool4 6 × 4 × 512 12,288

Fully connected layer FC1 4096 4096

Fully connected layer Embed 128 128

Output layer/predictions Predic 4923 4923

Bold text indicates which layers are used in the analysis.

events. The correlation coefficient between behavioral salience
and neural surprisal vectors is taken in these windows. For this
analysis, the behavioral salience signal is delayed by a fixed time
of 1.4 s. A shift is necessary to reflect the delay in motor response
required from the behavioral task to report salience. Here, a shift
of 1.4 s is empirically determined to correspond to the maximum
cross correlation for a majority of the network layers. A fixed
delay is used for this case for greater consistency when comparing
across different conditions.

To complement the correlation analysis described above, we
also examine the cumulative contribution of different CNN layers
by assessing the cumulative variance explained by combining
activation of consecutive layers. This variance is quantified
using a linear regression that uses behavioral salience as the
dependent variable and network surprisal from individual layers
as independent variables (Weisberg, 2005). Consecutive linear
regressions with each layer individually are performed starting
with lower layers and continuing to higher layers of the network.
After each linear regression, the cumulative variance explained
is defined as 1 minus the variance of the residual divided by the
variance of the original salience curve (i.e., 1 minus the fraction of
variance explained). Then, the residual is used as the independent
variable for regression with the next layer. To generate a baseline
level of improvement by increasing the number of layers, this
linear regression procedure is repeated after replacing all values
in layers after the first with numbers generated randomly from a
normal distribution (mean 0, variance 1).

Event Prediction
Prediction of salient events is performed by dividing the scene
into overlapping time bins (2 s bin size, 0.5 s step size) and then
using linear discriminant analysis (LDA; Duda et al., 2000). Each
time bin is assigned a label of +1 if a salient event occurred
within its respective time frame and a label of 0 otherwise.
Network surprisal and the slopes of acoustic features are used
to predict salient event using an LDA classifier. The slope of
an acoustic feature is calculated by first taking the derivative
of the signal, and then smoothing it with three iterations of an
equally weighted moving average (Huang and Elhilali, 2017). This

smoothing process is selected empirically to balance removal of
higher frequency without discarding potential events. As with
the previous event-based analysis, these signals are time-aligned
by maximizing their correlation with behavioral salience. Each
feature is averaged within each time bin, and LDA classification
is performed using fivefold cross validation to avoid overfitting
(Izenman, 2013). Finally, a threshold is applied to the LDA scores
at varying levels to obtain a receiver operating characteristic
(ROC) curve (Fawcett, 2006).

RESULTS

This section describes the correlation between the six different
layers of the CNN vs. the 10 acoustic features, salience as
measured by a behavioral task, and energy in six different
frequency bands from the EEG data.

Comparison to Basic Acoustic Features
First, we examine the correspondence between activity in
different neural network layers and the acoustic features extracted
from each of the scenes. Figure 2A shows the correlation
coefficient between each acoustic feature and the activity of
individual CNN layers. Overall, the correlation pattern reveals
stronger values in the four earliest layers (convolutional and
pooling) compared the deep layers in the network (fully
connected and embedding). This difference is more pronounced
in features of a more spectral nature such as spectral irregularity,
frequency modulation, harmonicity, and loudness, suggesting
that such features may play an important role in informing
the network about sound classification during the training of
the network. Clearly, not all acoustic features show this strong
correlation or any notable correlation. In fact, roughness and rate
are basic acoustic measures that show slightly higher correlation
in deeper layers relative to earlier layers. Figure 2B summarizes
the average correlation across all basic acoustic features used in
this study as a function of network layer. The trend reveals a
clear drop in correlation, indicating that the activity in deeper
layers is more removed from the acoustic profile of the scenes.
Figure 2B inset depicts a statistical analysis of this drop, with
slope =−0.026, t(1198) =−5.8, p = 7.6× 10−9.

Next, we examine the correspondence between activations
in the CNN layers and the behavioral judgments of salience as
reported by human listeners. Figure 3A shows the correlation
between behavioral salience and network surprisal across
individual layers of the network, taken in windows around
salient events (events being local maxima in the derivative of
salience, see section “Materials and Methods”). As noted with
the basic acoustic features (Figure 2), correlation is higher
for the earlier layers of the CNN and lower for the later
layers. A statistical analysis of the change in correlation across
layers reveals a significant slope of −0.041, t(1360) = −6.8,
p = 2.1 × 10−11 (Figure 3A, inset). However, although the
correlation for individual deeper network layers is relatively
poor, an analysis of their complementary information suggests
additional independent contributions of each layer. In fact,
the cumulative variance explained as one goes deeper into
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BA

FIGURE 2 | Correlation between neural network activity and acoustic features. (A) Correlation coefficients between individual acoustic features and layers of the
neural network. Loudness, harmonicity, irregularity, scale, and pitch are the most strongly correlated features overall. (B) Average correlation across acoustic features
and layers of the neural network. Shaded area depicts ±1 standard error of the mean (SEM). Inset shows the slope of the trend line fitted with a linear regression.
The shaded area depicts 99% confidence intervals of the slope.

A B

FIGURE 3 | CNN surprisal and behavioral salience. (A) Correlation between CNN activity and behavioral salience. (B) Cumulative variance explained after including
successive layers of the CNN. The gray line shows a baseline level of improvement estimated by using values drawn randomly from a normal distribution for all layers
beyond Pool2. For both panels, shaded areas depict ±1 SEM. Insets show the slope of the trend line fitted with a linear regression, with shaded areas depicting
99% confidence intervals of the slope.
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D
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C

FIGURE 4 | Cumulative variance explained after including successive layers of the CNN for specific categories of events (A) speech events, (B) music events, (C)
vehicle events, and (D) tapping/striking events. The gray line shows a baseline level of improvement estimated by using values drawn randomly from a normal
distribution for all layers beyond Pool2. For all panels, shaded areas depict ±1 SEM. Insets show the slope of the trend line fitted with linear regression, with shaded
areas depicting 99% confidence intervals of the slope.

the network shows significantly improved correlation between
superficial and deep layers (Figure 3B), with a correlation slope
of 0.029, t(1360) = 6.6, p = 5× 10−11.

While Figure 3 looks at complementary information of
different network layers in explaining behavioral judgments of

salience on average, one can look explicitly at specific categories
of events and examine changes in information across CNN layers.
Figure 4 contrasts the cumulative variance explained for four
classes of events that were identified manually in the database
(see section “Materials and Methods”). The figure compares
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cumulative variance of behavioral salience explained by the
network for speech, music, vehicle, and tapping events. The figure
shows that speech and music-related events are better explained
with the inclusion of deeper later layers [speech: t(280) = 5.2,
p = 3.2× 10−7; music: t(340) = 5.7, p = 3.3× 10−08]. In contrast,
events from the devices/vehicles and tapping categories are well
explained by only the first few peripheral layers of the network,
with little benefit provided by deeper layers [device: t(262) = 1.8,
p = 0.069; tapping: t(166) = 2.2, p = 0.028]. Results for other
vocalizations closely match those of the vehicle category (data
not shown), t(196) = 2.2, p = 0.033. Overall, the figure highlights
that contribution of different CNN layers to perceived salience
of different scenes does vary drastically depending on semantic
meaning and show varying degrees of complementarity between
the acoustic front-end representation and the semantic deeper
representations.

The ability to predict where salient events occur is shown
in Figure 5. Each scene is separated into overlapping time bins
which are labeled based on whether or not an event occurred
during that time frame. LDA is then performed using either a
combination of acoustics and network surprisal, or the acoustic
features alone. The prediction is improved through the inclusion
of information from the neural network, with an area under
the ROC curve of 0.734 when using only the acoustic features
compared to an area of 0.775 after incorporating network
surprisal. This increase in performance indicates that changes in
network activity make a contribution to the salience prediction
that is not fully captured by the acoustic representation.

FIGURE 5 | Event prediction performance. Predictions are made using LDA
on overlapping time bins across scenes. The area under the ROC curve is
0.775 with a combination of acoustic features and surprisal, while it reaches
only 0.734 with acoustic features alone.

One of the key distinctions between the different event
categories analyzed in Figure 4 is not only the characteristics
of the events themselves but also the context in which these
events are typically present. On the one hand, speech scenes

tend to have ongoing activity and dynamic backgrounds against
which salient events stand out; while vehicle scenes tend to be
rather sparse with few notable events standing out as salient.
An analysis contrasting sparse vs. dense scenes in our entire
dataset (see section “Materials and Methods”) shows a compelling
difference between the correlations of acoustic salience for dense
scenes and for sparse scenes especially in the convolutional
layers (Figure 6A). This difference is statistically significant
when comparing the mean correlation for early vs. deep layers,
t(4) = −5.4, p = 0.0057. On the other hand, the network’s
activation in response to acoustic profiles in the scenes do not
show any distinction between sparse and dense scenes and across
early and deep layers (Figure 6B), t(4) =−0.24, p = 0.82.

Finally, we examine the contrast between neural responses
recorded using EEG and CNN activations. As shown in Figure 7,
energy in many frequency bands of the neural signal shows
stronger correlation with activity in higher levels of the CNN
rather than lower layers and follows an opposite trend to that
of acoustic features. Figure 7A shows the correlation between
network activity and individual EEG frequency bands and shows
a notable increase in correlation for higher frequency bands
(Delta, Beta, Gamma, and High Gamma). The Theta and Alpha
bands appear to follow a somewhat opposite trend, though their
overall correlation values are rather small. Figure 7B summarizes
the average correlation trend across all frequency bands, with
slope = 0.015, t(718) = 3.6, p = 3.2 × 10−4). It is worth
noting the average correlation between CNN activity and EEG
responses is rather small overall (between 0 and 0.1) but still
significantly higher than 0, t(719) = 7.4, p = 4.5 × 10−13.
The increasing trend provides further support to the notion
that higher frequency neural oscillations are mostly aligned
with increasingly complex feature and semantic representations
crucial for object recognition in higher cortical areas, and
correspondingly in deeper layers of the CNN (Kuzovkin et al.,
2017).

To explore the brain regions that are most closely related to the
CNN activity, individual electrode activities are also correlated
with surprisal. Figure 8A shows a small difference between
neural activity in Central and Frontal areas, with the former
having relatively higher correlation with early layers and the latter
having higher correlation with deep layers. This trend is not
statistically significant, however. Figure 8B shows the pattern
across electrodes of these correlations values for the beta and
gamma bands. Activity in the Beta band is most correlated to the
convolutional layers of the CNN for central electrodes near C3
and C4, while it is most correlated to the deep layers for frontal
electrodes near Fz. In contrast, Gamma band activity shows little
correlation with the early layers of the CNN, but more closely
matches activation in deep layers for electrodes near Cz.

DISCUSSION

Recent work on deep learning models provides evidence of
strong parallels between the increasing complexity of signal
representation in these artificial networks and the intricate
sensory transformations in sensory biological systems that map
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A B

FIGURE 6 | Analysis of dense vs. sparse scenes. (A) Difference in correlation between salience and CNN activity for dense and sparse scenes. Negative values
indicate that salience in sparse scenes was more highly correlated with CNN activity. (B) Difference in correlation between acoustic features and CNN activity for
dense and sparse scenes.

BA

FIGURE 7 | Correlation between neural network activity and energy in EEG frequency bands. (A) Correlation coefficients between individual EEG frequency bands
and layers of the neural network. Gamma, Beta, and High-Gamma frequency bands are the most strongly correlated bands overall. (B) Average correlation across
EEG activity and layers of the neural network. Shaded area depicts ±1 SEM. Inset shows the slope of the trend line fitted with linear regression, with a shaded area
depicting the 99% confidence interval of the slope.

incoming stimuli onto object-level representations (Yamins
et al., 2014; Guclu and van Gerven, 2015; Cichy et al., 2016).
The current study leverages the complex hierarchy afforded
by CNNs trained on audio classification to explore parallels
between network activation and auditory salience in natural

sounds measured through a variety of modalities. The analysis
examines the complementary contribution of various layers in
a CNN architecture and draws a number of key observations
from three types of signals: acoustic, behavioral, and neural
profiles.
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FIGURE 8 | Correlation between neural network activity and energy in EEG frequency bands for specific electrodes. (A) Average correlation between electrode
activity across frequency bands for electrodes in central (near Cz) and frontal (near Fz) regions. (B) Correlation between beta/gamma band activity for individual
electrodes and convolutional/deep layers of the neural network.

First, as expected, the earlier layers in the CNN network
mostly reflect the acoustic characteristics of a complex
soundscape. The association of acoustic features with CNN
activation decreases in correlation as the signal propagates
deeper into the network. The acoustic features that are most
clearly reflected with higher fidelity are mostly spectral,
and include harmonicity, frequency modulation, and spectral
irregularity, along with loudness which directly modulates overall
signal levels. It is important to remember that the CNN network
used in the current work is trained for audio classification
and employs a rather fine-resolution spectrogram at its input
computed with 25 ms bins over frames of about 1 s. As such, it
is not surprising to expect a strong correlation between spectral
features in the input and early representations of the peripheral
layers of the CNN network (Dai et al., 2017; Lee et al., 2017;
Wang et al., 2017). Interestingly, two features that are temporal
in nature, namely, rate and most prominently roughness, show
a somewhat opposite trend with a mildly increased correlation
with deeper CNN layers. Both these acoustic measures quantify
the degree of amplitude modulations in the signal over longer
time scales of tens to hundreds of milliseconds, and we can
speculate that such measures would involve longer integration
levels that are more emblematic of deeper layers in the network
that pool across various localized receptive fields. The distributed
activation of CNN layers reflecting various acoustic features
supports previous accounts of hierarchical neural structures
in auditory cortex that combine low-level and object-level
representations extending beyond the direct physical attributes
of the scenes (Formisano et al., 2008; Staeren et al., 2009). This
distributed network suggests an intricate, multi-region circuitry
underlying the computation of sound salience in the auditory

system, much in line with reported underpinnings of visual
salience circuits in the brain (Veale et al., 2017).

Second, the results show a strong correlation between
peripheral layers of the CNN and behavioral reports of salience.
This trend is not surprising given the important role acoustic
characteristics of the signal play in determining the salience of
its events (Kaya and Elhilali, 2014; Kim et al., 2014; Huang and
Elhilali, 2017). This view is then complemented by the analysis
of cumulative variance explained by gradually incorporating
activation of deeper layers in the neural network. Figure 3 clearly
shows that information extracted in later layers of the network
supplements activation in earlier layers and offers an improved
account of auditory salience. This increase is maintained even at
the level of the fully connected layers suggesting a complementary
contribution of low-level and category-level cues in guiding
auditory salience. This observation is further reinforced by
focusing on salience of specific sound categories. In certain
cases that are more typical of sparse settings with prominent
events such as tapping or vehicle sounds, it appears that
the low-level acoustic features are the main determinants of
auditory salience with little contribution from semantic-level
information. In contrast, events in the midst of a speech
utterance or a musical performance appear to have a significant
increase in variance explained by incorporating all CNN layers
(Figure 4). The complementary nature of peripheral and object-
level cues is clearly more prominent when taking into account
the scene context, by contrasting denser, busy scenes with quieter
environments with occasional, prominent events. Dense settings
typically do not have as many conspicuous clear changes in
acoustic information across time, and as a result, they seem
to require more semantic-level information to complement
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information from acoustic features for a complete account of
auditory salience.

Third, the CNN layer activation shows an opposite correlation
trend with neural oscillation measured by EEG. In particular,
the deeper layers of the neural network have higher correlation
with activity in the higher frequency bands (beta, gamma, and
high gamma bands). Synchronous activity in the Gamma band
has been shown to be associated with object representation
(Rodriguez et al., 1999; Bertrand and Tallon-Baudry, 2000), which
would be directly related to the audio classification task. Activity
in both the Gamma and Beta bands has also been linked to
hearing novel stimuli (Haenschel et al., 2000). Moreover, Gamma
band activity is known to be strongly modulated by attention
(Tiitinen et al., 1993; Müller et al., 2000; Doesburg et al., 2008),
which further reinforces the relationship between object category
and salience.

In particular, the CNN activation patterns of the deep layers
correlate most strongly with neural oscillations in frontal areas of
the brain. This finding expands on the recent work by Kell et al.
(2018), which found that activation patterns within intermediate
layers of their CNN were the best at predicting activity in the
auditory cortex. It stands to reason that later layers of the network
would correspond more to higher level brain regions, which may
play a role in attention and object recognition.

Overall, all three metrics used in the current study offer
different accounts of conspicuity of sound events in natural
soundscapes. By contrasting these signals against activations in a
convolutional DNN trained for audio recognition, we are able to
assess the intricate granularity of information that drives auditory
salience in everyday soundscapes. The complexity stems from the
complementary role of cues along the continuum from low-level
acoustic representation to coherent object-level embeddings.
Interestingly, the contribution of these different transformations
does not uniformly impact auditory salience for all scenes. The
results reveal that the context of the scene plays a crucial role in
determining the influence of acoustics or semantics or possibly
transformations in between. It is worth noting that the measure
of surprisal used here is but one way to characterize surprise.
Looking at changes in a representation compared to the average
of the last few seconds is simple and proves to be effective.
However, different ways to capture the context, perhaps including
fitting the data to a multimodal Gaussian mixture model, as well
as different time scales should be investigated.

Further complicating the interaction with context effects is
the fact that certain acoustic features should not be construed as
simple transformation of the acoustic waveform or the auditory
spectrogram. For instance, a measure such as roughness appears
to be less correlated with lower layers of the CNN. This difference
suggests that acoustic roughness may not be as readily extracted
from the signal as the other acoustic measures by the neural
network, but it is nonetheless important for audio classification
and correlates strongly with perception of auditory salience
(Arnal et al., 2015).

One limitation of the CNN structure is that it only transmits
information between layers in the forward direction, while
biological neural systems incorporate both feedforward and
feedback connections. Feedback connections are particularly

important in studies of attention because salience (bottom-
up attention) can be modified by top-down attention. This
study uses behavioral and physiological data that were collected
in such a way that the influence of top-down activity was
limited; however, a complete description of auditory attention
would need to incorporate such factors. An example of a
feedback CNN that seeks to account for top-down attention
can be found in Cao et al. (2015).

It is not surprising that our limited understanding of
the complex interplay between acoustic profiles and semantic
representations has impeded development of efficient models
of auditory salience that can explain behavioral judgments,
especially in natural, unconstrained soundscapes. So far, most
accounts have focused on incorporating relevant acoustic
cues that range in complexity from simple spectrographic
representation to explicit representation of pitch, timbre, or
spectro-temporal modulation (Duangudom and Anderson, 2007;
Kalinli and Narayanan, 2007; Tsuchida and Cottrell, 2012; Kaya
and Elhilali, 2014). However, as highlighted by the present
study, it appears that a complementary role of intricate acoustic
analysis (akin to that achieved from the complex architecture
of convolutional layers in the current CNN) as well as auditory
object representations will be necessary to not only account for
contextual information about the scene but may determine the
salience of a sound event depending on its category, sometimes
regardless of its acoustic attributes.
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Auditory attention identification methods attempt to identify the sound source of a

listener’s interest by analyzing measurements of electrophysiological data. We present

a tutorial on the numerous techniques that have been developed in recent decades,

and we present an overview of current trends in multivariate correlation-based and

model-based learning frameworks. The focus is on the use of linear relations between

electrophysiological and audio data. The way in which these relations are computed

differs. For example, canonical correlation analysis (CCA) finds a linear subset of

electrophysiological data that best correlates to audio data and a similar subset of

audio data that best correlates to electrophysiological data. Model-based (encoding

and decoding) approaches focus on either of these two sets. We investigate the

similarities and differences between these linear model philosophies. We focus on (1)

correlation-based approaches (CCA), (2) encoding/decoding models based on dense

estimation, and (3) (adaptive) encoding/decoding models based on sparse estimation.

The specific focus is on sparsity-driven adaptive encoding models and comparing the

methodology in state-of-the-art models found in the auditory literature. Furthermore,

we outline the main signal processing pipeline for how to identify the attended sound

source in a cocktail party environment from the raw electrophysiological data with all

the necessary steps, complemented with the necessary MATLAB code and the relevant

references for each step. Our main aim is to compare the methodology of the available

methods, and provide numerical illustrations to some of them to get a feeling for their

potential. A thorough performance comparison is outside the scope of this tutorial.

Keywords: cocktail-party problem, auditory attention, linear models, stimulus reconstruction, canonical

correlation anaysis (CCA), decoding, encoding, sparse representation

1. INTRODUCTION

The first use of the term cocktail party in the context of auditory scene analysis appeared in Cherry
(1953), where it was used to refer to the challenge of focusing on a single sound source, often a
speech stream, while suppressing other unwanted sounds in a noisy and complex background. The
ability to segregate and follow a sound source of interest in a cocktail party environment is one
of the hallmarks of brain functions. Although this is a highly ill-posed problem in a mathematical
sense, the human brain instantly solves this problem, with a compelling ease and accuracy that
is difficult to be matched by any currently available algorithm. However, recent studies have
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shown the potential of model-based algorithms to assist
intelligent hearing aids, and the purpose of this tutorial
is to provide a rather broad coverage of the mathematical
tools available for solving the cocktail party problem. The
algorithms are illustrated on examples from datasets previously
used in several studies. The algorithms in this tutorial are
relatively simple and computationally inexpensive, although
further research on algorithm optimization is needed to achieve
real-time performance.

Neural networks and cognitive processes assist the brain in
parsing information from the environment (Bregman, 1994).
These processes allow us to perform everyday tasks with
remarkable ease and accuracy, for example, enjoying our time
with friends in crowded places such as restaurants and cafes
while being alert to salient sound events such as someone calling
our name. The intrinsic complexity of the background is hidden
by the brain’s process of perceiving and selectively attending to
any sound source: (a) competing acoustic sources (stimuli) emit
acoustic signals and (b) are subsequently mixed, (c) the mixture
of incoming sound streams enters the ear(s), (d) this mixture is
resolved such that (e) the attended sound is perceived, and (f) the
remaining, unwanted streams of sound are effectively attenuated
within the human auditory cortex.

There are many studies on deciphering human auditory
attention. The majority of these studies have generally focused
on brain oscillations (Obleser and Weisz, 2011; Weisz et al.,
2011; Henry et al., 2014) and speech entrainment (Ding and
Simon, 2012a,b; Mesgarani and Chang, 2012; Pasley et al., 2012;
Mirkovic et al., 2015; O’Sullivan et al., 2015, 2017; Ekin et al.,
2016; Biesmans et al., 2017; Fuglsang et al., 2017; Kaya and
Elhilali, 2017; Van Eyndhoven et al., 2017; Haghighi et al.,
2018) in electroencephalography. Broadly speaking, the twomost
common approaches in the development of speech (envelope)
entrainment are (1) encoding, i.e., estimating the neural responses
from the sound features, and (2) decoding, i.e., estimating the
sound from the neural response features. In most of these
studies, the linear filters are computed using “dense” least-
squares (LS) optimization tools. However, it is also possible
to exploit an alternative approach based on sparse estimation.
Sparse estimation has shown great potential in diverse signal
processing applications (Sepulcre et al., 2013; Akram et al., 2016,
2017; Rao et al., 2016; Miran et al., 2018).

As a further alternative to encoding and decoding,
bidirectional hybrid approaches (Dmochowski et al., 2017;
de Cheveigné et al., 2018), such as canonical correlation analysis
(CCA), aim to combine the strengths (and weaknesses) of

Abbreviations: AAD, auditory attention deciphering; ADMM, alternating

direction method of multipliers; AIC, Akaike–s information criterion; BIC,

Bayesian information criterion; CASA, computational auditory scene analysis;

CCA, canonical correlation analysis; CCV, correlation coefficient value; CV, cross-

validation; EEG, electroencephalography; FBS, forward-backward splitting; FIR,

finite impulse response; IIR, infinite impulse response; LASSO, least absolute

shrinkage and selection operator; LOOCV, leave-one-out cross-validation; LS,

least squares; MEG, magnetoencephalography; MFCC, Mel-frequency cepstral

coefficients; ML, machine learning; MSE, mean squared error; SIMO, single input

multiple output; SISO, single input single output; SPARLS, sparse recursive least

squares; SR, stimulus reconstruction; SVD, singular value decomposition; SVM,

support vector machine; TLS, total least squares; TRF, temporal response function.

encoding and decoding methods. A recent work (de Cheveigné
et al., 2018) supports the view that CCA-based classifier schemes
may provide higher classification performance compared to
encoding and decoding methods.

The applications of attention deciphering are diverse,
including robotics, brain-computer interface (BCI), and hearing
applications (see e.g., Li and Wu, 2009; Lunner and Gustafsson,
2013; Gao et al., 2014; Khong et al., 2014; Lunner, 2015;
Tsiami et al., 2016). In fact, there is currently increased
interest in auditory attention identification in, for instance,
the hearing aid industry. The reason for this interest is
that for a hearing-impaired listener, the ability to selectively
attend to a desired speaker in a cocktail party situation
is highly challenging. With an aging population with an
increasing number of hearing-impaired individuals, increased
understanding of the underlying mechanisms of the cocktail
party problem is highly needed. Along the same lines,
the hearing aid companies are also interested in applying
auditory attention deciphering (AAD) techniques for cognitive
control of a hearing aid and its noise-reduction algorithms
(Das et al., 2017; Van Eyndhoven et al., 2017).

However, despite the increasing interest in this problem from
the audiology and neuroscience research communities (Fritz
et al., 2007; Mesgarani and Chang, 2012; Jääskeläinen and
Ahveninen, 2014; Kaya and Elhilali, 2017), the basis for the
computational models of the brain’s ability to selectively attend
to different sound sources remains unclear.

The primary objective of this study is to explain how to
use linear models and identify a model with sufficiently high
performance in terms of attention deciphering accuracy rates and
computational time. Our ultimate goal is to provide an overview
of the state-of-the-art for how linear models are used in the
literature to decipher human auditory attention by exploiting the
brain activity elicited during attentive listening to a single sound
source in an acoustically complex background.

This contribution focuses on the classification of auditory
attention by using multivariate linear models. Consequently,
we do not cover other aspects of auditory attention and scene
analysis, and to limit the scope, we do not cover (computational)
auditory scene analysis (CASA) (Wang and Brown, 2006; Wang
et al., 2009; Snyder et al., 2012; Gutschalk and Dykstra, 2014;
Alain and Bernstein, 2015; Simon, 2017), auditory attention
modeling (Kaya and Elhilali, 2017), speech masking (Scott and
McGettigan, 2013; Evans et al., 2016), and sound segregation and
localization (Ahveninen et al., 2014; Middlebrooks, 2017).

An important note regarding the current auditory attention
identification methods is that these methods require access to
the clean speech signals, which are usually not available in
practice. CASA methods are then necessary to provide these.
Recent attempts to perform attention deciphering without access
to the individual speakers (but noisy speech mixtures instead)
may provide a useful way to approach solving this problem. The
study of S. Van Eyndhoven (Van Eyndhoven et al., 2017), later
improved by Das Das et al. (2017), was the first that tackled this
problem, based on beamforming methods. O’Sullivan later also
did a similar study, using deep learning (O’Sullivan et al., 2017).
After separating the individual speakers in the mixture, these
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studies used the linearmodels discussed in this tutorial to identify
the sound source of a listener’s interest.

The outline of this contribution is as follows.
To obtain accurate attention deciphering using EEG
(electroencephalography) / MEG (magnetoencephalography)
sensors, several important factors need to be considered. First,
the algorithms that are currently used to identify the attended
sound source need to be accurately described, which is the topic
of section 2. Note that we must always first preprocess the data
to avoid problems in the later encoding/decoding procedures,
which is also a topic of section 2. Based on the analysis of
the models in section 2, we can construct different models. In
section 3, we discuss the datasets used in this contribution to
study different auditory attention identification methods. The
practical implementation of the discussed algorithms is the topic
of section 4, where we provide experimental results for some
different examples and datasets. We end this contribution with
some concluding remarks and (potential) future improvements
in section 5.

2. LINEAR MODELS FOR AUDITORY
ATTENTION DECIPHERING

In this section, we explain the basics of linear modeling.
Furthermore, we introduce some of the concepts from machine
learning (ML) that are frequently used in the auditory attention
identification literature. The last decade has witnessed a large
number of impressive ML applications that involve large
amounts of data, and our application of audio-EEG data is one
area that has thus far remained rather unexplored. The subject of
designing the linear models is introduced in section 2.1. How to
select the model is a crucial part of any estimation problem. Thus,
we discuss different modeling approaches in sections 2.3–2.4.

2.1. The Sound and EEG Signals
We assume that at any given point in space, a time-varying
sound pressure exists that originates from nu sound streams
pi(t), i = 1, 2, . . . , nu, emitted by one or more sound sources
(e.g., individual talkers and loudspeakers). The resulting sound
pressure can be conceptually written as a sum

p(t) =

nu
∑

i=1

pi(t). (1)

This mixture is what the ear decodes and what can be sampled
by a microphone. The latter results in a discrete time signal
p[k] = p(kTs), where Ts is the sampling interval, which typically
corresponds to a sampling frequency of f

p
s = 1/Ts = 44100 Hz.

The EEG signals are sampled by ny EEG electrodes denoted

yj[k], j = 1, 2, . . . , ny. The EEG sampling frequency f
y
s is

considerably smaller than the sampling frequency of the sound
f
p
s . Typical values in experiments in this field are nu = 2, ny =

{64, 128} and f
y
s = 512 Hz. To synchronize the data streams to

the same sampling frequency, the ratio f
p
s /f

y
s defines a decimation

factor that is needed to reduce the sampling rate of the sound.
This downsampling needs to be done only after the envelope

extraction of the individual sound sources pi(t). In the following
paragraphs we will describe each of these steps in more detail.

Next, we present the basic steps that are commonly used in
practice in this application:

• Extract the envelope of the audio signal, which can be
performed in several ways. A complete overview of the
envelope extraction methods for AAD is presented in
Biesmans et al. (2017). The resulting sound signal will be
denoted u[k], which in the literature is supposed to be the sum
u[k] =

∑nu
i=1 ui[k] of nu envelopes ui[k], but it should be

noted that u[k] will never be used in practice as the access to
the individual sound streams ui[k] is needed when applying
AAD techniques. Speech envelopes are spectrotemporally
sparse, and therefore the equation is approximately true
enough for the purposes used here.

• Downsample the EEG signal and the audio signals to the
same sampling rate (e.g., to 64 Hz), which can be performed
using the nt_dsample function from the NoiseTools toolbox
(http://audition.ens.fr/adc/NoiseTools/) (Yang et al., 1992; Ru,
2001) or MATLAB built-in downsampling methods, such as
decimate or resample functions.

• Bandpass filter both the EEG and the sound signals using a
bandpass filter between 1 and 8 Hz, which is the frequency
interval where the brain processes auditory information (Zion
Golumbic et al., 2013).

The following code performs this operation, as was proposed in
O’Sullivan et al. (2015):

p = resample(p,44096,44100);

% Resample to a multiple of 64 Hz

pc = hilbert(p);

% Transform from real to analytic signal

u = decimate(abs(pc),44096/64);

% Downsampling to 64 Hz, including an

anti-alias

[b,a] = butter(3,[2 8]/64*2);

% Bandpass filter with passband [2,8] Hz

uf = filter(b,a,u);

% Causal filtering to keep causality

Without loss of generality, we will assume that the attended
sound source is u1[k], while the other sources, ui[k] for i > 1,
represent nuisance sound sources.

2.2. Data Notation
We denote all scalars by lowercase letters, e.g., w, and all
vectors and matrices by uppercase letters, e.g., W, unless stated
otherwise. The (p, q) entry, p− th row and q− th column in
W are expressed as [W]p,q, Wp,: and W:,q, respectively, and the
p − th entry in vector U is expressed as Up. The transpose of

the matrixW is denoted asWT . The functions ‖W‖F (Frobenius
norm) and ‖U‖2 (Euclidean or l2 norm) return thematrix-valued
norm and vector-valued norms, respectively, and ‖W‖2F =

trace(WTW) and ‖U‖22 = UTU. The l1 penalty term is defined
as ‖W‖1 =

∑

p,q |[W]p,q|. The letter n with an index will

denote the dimension of a vector, for instance, ny and nu, as
previously introduced.
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To have a compact notation avoiding one or more indices, we
will summarize the data in the data vectors Ui and Yj, the data
matrices U and Y , which are defined as follows:

[

Yj

]

k
= yj[k], k = 1, . . . ,N, j = 1, 2, . . . , ny, (2)

[

Y
]

kj
= yj[k], k = 1, . . . ,N, j = 1, 2, . . . , ny, (3)

and similarly for U and Ui.
For a model that takes the latest na data points into account,

we define the Hankel matrix

[

H(Yj)
]

kn
= yj[na + k− n], k = 1, . . . ,N − na + 1,

n = 1, 2, . . . , na, (4)

and similarly forH(Ui). We will refer to the data as Yj,Ui,Y ,U.

2.3. Correlation-Based Learning
Correlation-based learning aims to find the pattern in the EEG
signal that best correlates to the target sound u1(t) with less
correlation to the distracting sounds ui(t), i 6= 1. Typical
correlation-based learning approaches are:

(1) Cross-correlation:

(a) Zero-lag cross-correlation: The normalized covariance
between each speech signal Ui and each EEG signal Yj,

i.e., cij =
Cov(Ui ,Yj)

√
Var(Ui)Var(Yj)

. The drawback with zero-lag

cross-correlation is that it assumes that both Ui and Yj

are synchronized in time, which is hardly the case.
(b) Time-lag cross-correlation: Here one of the sequences

is delayed (time-lagged) before the correlation is
computed. There is here one extra degree of freedom,
so one has to maximize cross-correlation with respect to
this lag.

(2) Canonical Correlation Analysis (CCA).

The disadvantage of correlation-based approaches is that they
compare sample by sample for the entire batch and are thus
less effective if there is a dynamical relationship between U
and Y , in which case only a few samples around the current
time would exhibit a significant correlation. CCA corresponds
to a linear model of the whole segment of speech, and the
model is by construction non-causal. The segment length is an
important design parameter corresponding to the model order in
FIR models.

2.4. Linear Models
The linear filter formalism we use is based on the shift operator q
defined by q−nx[k] = x[k− n] and qnx[k] = x[k+ n] for all n. A
causal FIR filter can then be written as

yj[k] = Bi(q)ui[k] = (bi0 + bi1q
−1

+ · · · + binbq
−nb )ui[k]

= bi0ui[k]+ bi1ui[k− 1]+ · · · + binbui[k− nb].
(5)

Similarly, an IIR filter can be written as

Aj(q) yj[k] = Bi(q)ui[k],

(1+ aj1q
−1

+ · · · + ajnaq
−na )yj[k] = yj[k]+ aj1 (6)

yj[k− 1]+ · · · + ajnayj[k− na] = Bi(q)ui[k],

yj[k] = −aj1yj[k− 1]− · · · − ajnayj[k− na]+ Bi(q)ui[k].

It should also be noted that (6) does not represent the general
form of Aj(q), i.e., the filter Aj(q) can be generalized so that
positive exponents can also be used for q, as explained in the
remainder of this section.

Implementation requires stability. The IIR filter specified by
Aj(q) can be causally stably implemented forward in time only
if all roots to the polynomial Aj(q) are inside the unit circle.

We denote such a filter with Af (q). Conversely, a filter with all
roots outside the unit circle can be anti-causally implemented
in a stable way backward in time, and we denote such a filter
with Ab(q). Any IIR filter can be split into two parts with
one causal and one anti-causal part. For more details on these
issues, see basic text books in signal processing, for instance
(Gustafsson et al., 2010).

Given this brief background, there are two fundamentally
different ways to define a model for listening attention, forward
or backward in time,

yj[k] =

nu
∑

i=1

B
f
i (q)

A
f
j (q)

ui[k]+ e
f
j [ k] (7)

ui[k] =

ny
∑

j=1

Ab
j (q)

Bbi (q)
yj[k]+ ebi [k] (8)

The first model corresponds to the forward model (using

superscript f for forward), where each EEG signal is explained
as a sum of filtered sound signals plus additive noise to account

formeasurement errors andmodel imperfections, while the other
model corresponds to the inverse backward model (denoted with
superscript b). Another note, positive exponents are used for q
in backward models. It is assumed that both filters are causally

stable, implying that A
f
j and Bbi are polynomials with all roots

inside the unit circle. The roots of B
f
j and Ab

i can be both inside

and outside the unit circle generally. This means that inverting
the forward model does not give a causally stable backward

model, and is thus not in general a valid backwardmodel. In other
words, the models are not identical or related in simple terms.

Also the noise realizations e
f
j [ k] and ebi [k] are different and can

have quite different characteristics.

Note, however, that one can mix a forward and backward
model in a non-causal filter. Combining both model structures
gives the linear filter

yj[k] =

nu
∑

i=1





B
f
i (q)

A
f
j (q)

+
Bbi (q)

Ab
j (q)



 ui[k]+ ej[k], (9)

and similarly for the backward model. This can be seen as a non-
causal filter with poles both outside and inside the unit circle.
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Given such a linear filter, one can reproduce an estimate ŷj[k]
of the EEG signal. For instance, the causally stable part can be
implemented with

for j=1:ny

yijhat[:,j]=filter(bf(j,:),af(i,:),U(:,i));

end

yihat=sum(yijhat,2);

Here, af denotes the matrix of polynomial coefficients for the

polynomials A
f
i (q) and so forth. A good model should provide a

small estimation error yj[k] − ŷj[k]. We will return to the issue
of parameter estimation, or system identification (Ljung, 1998),
shortly, but note that there is no good model in the traditional
sense. All linear models share the property that the prediction
errors are of the same order as the signal itself. In other words, the
least squares loss function will be only somewhat smaller than the
sum of squared measurements, which would be the least squares
loss function for the trivial signal predictor ŷj[k] = 0 for all times
k and all channels j.

The use of IIR (infinite impulse response) models is still
unexplored in this area; thus, we will restrict the discussion to FIR

(finite impulse responses) models, having denominators A
f
j (q) =

1 in (7) and Bbi (q) = 1 in (8) equal to unity, in the following.

2.5. FIR Models for Encoding and Decoding
Here, we explain two modeling perspectives that are widely used
in auditory research: forward and inverse (backward) modeling.
Encoding and decoding are two special cases of supervised
learning of forward and backward models, respectively (Haufe
et al., 2014). The encoding and decoding models applied
in cognitive electrophysiology are described in greater detail
in Holdgraf et al. (2017). The traditional encoding approach
attempts to predict neural responses (EEG) given the sound
stimulus

yj[k] = B
f (q)
i ui[k]+ e

f
j [k] (encoding) (10)

Note that there is one filter B
(q)
i for each input and output

combination. Here, ŷj[k] = B
f (q)
i ui[k] will be referred to as a

neural prediction.
In contrast, the decoding approach attempts to extract the sound
from the neural responses (EEG)

ui[k] =

ny
∑

j=1

Ab
j (q)yj[k]+ ebi [k] (decoding) (11)

Similarly, ûi[k] =
∑ny

j=1 A
b
j (q)yj[k] will be referred to as a

reconstructed stimulus. Note that ûi[k] usually captures the
neural responses yj[k] after stimuli presentation at time step k.
The stimulus reconstruction (SR) approach, which has received
the greatest attention in the auditory literature, compares the
reconstructed sound waveformwith the actual waveform tomake
a decision on the attended sound source. Figure 1 illustrates the
difference between the encoding and decoding approaches.

2.6. Parameter Estimation
The encoding and decoding models (10)–(11) can be more
conveniently written in matrix-vector form as

Yj = H(Ui)B
f
i + E

f
j , (12)

Ui =

∑

j

H(Yj)A
b
j + Ebi , (13)

using the Hankel matrices defined in (4), and B
f
i and Ab

j are

the vectors consisting of the coefficients of the polynomials B
f (q)
i

defined in (5) and A
f
j (q) defined in (6), respectively.

The model in (12) defines an estimation error

ǫj = Yj −H(Ui)B
f
i , (14)

from which one can define an LS loss function

W(B
f
i ) = ‖Yj −H(Ui)B

f
i ‖

2
2. (15)

This loss function defines a quadratic function in the parameters
Bi. Minimization provides the LS estimate as

B̂
f
i = argmin

B
f
i

W(B
f
i ) = H(Ui)

†Yj (16)

where H†(Ui) = [H(Ui)
TH(Ui)]

−1H(Ui)
T denotes the Moore-

Penrose pseudoinverse. Similarly,

Âb
j = argmin

Ab
j

W(Ab
j ) = H(Yj)

†Ui (17)

The corresponding operations in MATLAB are given below.

for i=1:nu

for j=1:ny

HUij = hankel(U(1:end-nb,1),

U(end-nb:end,1));

bhat(i,j,:) = HUij\ Y(nb:end,j);

W(i,j) = norm(Y(nb:end,j) -

HUij*squeeze(bhat(i,j,:)));

end

end

The backslash operator solves the LS problem in a numerically
stable way using a QR factorization of the Hankel matrix. For
model structure selection, that is, the problem of selecting the
model order nb, the QR factorization enables all parameter
estimates and cost functions for lower model orders to be
obtained for free.However, model order selection is prone to
overfitting; thus, in practice, one has to be careful when selecting
nb not only based on the LS cost function.

2.7. Regularization
Due to the challenge of avoiding overfitting, encoding
and decoding techniques should be complemented with a
regularization method, which basically adds a penalty for the
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FIGURE 1 | Illustration of the essential difference between encoding and decoding methods.

model complexity to (15). In general terms, regularized LS can
be expressed as

VN(B
f
i ) = WN(B

f
i )+ λg(B

f
i ) (18)

where N is the number of data and g is generally called a
regularizer or regularization function, and it is typically non-
smooth and possibly non-convex and λ ∈ IR+ is a penalty
parameter. The regularization function is most commonly
selected as the lp norm, i.e.,

minimize
B
f
i

1

2
‖Yj −H(Ui)B

f
i ‖

2
2 + λ‖B

f
i ‖p (19)

With l2, the problem given in (19) has the analytic solution

B̂
f
i = (H(Ui)

T
H(Ui)+ λI)−1

H(Ui)
TYj (20)

Similarly,

Âb
j = (H(Yj)

T
H(Yj)+ λI)−1

H(Yj)
TUi (21)

However, l2 regularization does not do a variable subset selection.
Methods that directly aim to limit the number of parameters

nb include Akaike’s information criterion AIC, where UN =

log(WN) + 2nb/N, and his improved suggestion Bayesian
information criterion BIC UN = log(WN) + log(nb)/N. Note

that nb is the l0 norm of B
f
i , a fact that is used in many recent

approaches of sparse modeling based on efficient algorithms for
convex optimization. However, the l0 term is not convex, but
the l1 norm is, and it is in practice a good approximation of

the l0 norm (Ramirez et al., 2013). This trick to obtain a feasible
problem belongs to the class of convex relaxations.

The use of the l1 norm to induce sparsity is frequently referred
to as the least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996). This formulation can be used to identify the
sparse spatial-temporal resolution and reveal information about
the listening attention.

Conceptually, sparse signal estimation depicts a signal as a
sparse linear combination of active elements, where only a few
elements in Bi are non-zero. The sparse estimation can be further
improved with group sparsity, in other words, grouping the

elements in B
f
i (or Ab

j ) and considering the groups of elements

to be singletons, where a relatively small number of these groups
is active at each time point. The group sparse estimation problem
is frequently referred to as group LASSO (Yuan and Lin, 2006).

One way to solve sparse (l1-regularized) optimization
problems is to apply the Expectation Maximization (EM)
algorithm. One such example is the sparse (l1-regularized)
recursive least squares (SPARLS) algorithm introduced in Babadi
et al. (2010). The SPARLS algorithm estimates a sparse forward
model using a dictionary of atoms, which is posed as a linear
estimation problem. It has already been successfully used in
AAD studies to estimate the encoding model (Akram et al.,
2017). The authors concluded that the SPARLS algorithm could
improve performances over the conventional (l2-regularized)
linear estimation methods. Another way to solve sparse (l1-
regularized) optimization problems is based on proximal
splitting algorithms, one of which is a forward-backward splitting
(FBS) algorithm, also referred to as the proximal gradient method
(Combettes and Pesquet, 2011). Recently, Miran et al. (2018)
suggested a Bayesian filtering approach for sparse estimation
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to tackle AAD. In their work, the authors used FBS procedure
for decoding/encoding model estimation in real-time. In our
examples, we use an algorithm called ADMM (alternating
direction method of multipliers) to solve sparse (l1-regularized)
optimization problems in an efficient way that normally requires
very few iterations of simple computations to converge. The
reason is 2-fold: the ADMM is simpler and easier to work
with, since its iterative solution can be implemented via simple
analytical expressions, and it has a proven fast convergence
(Boyd et al., 2011).

2.8. SIMO Formulation
For simplicity, we have thus far considered single-input single-
output SISO models, where the model relates one sound source
to one EEG signal, and conversely for the reverse model. It is,
however, simple to extend the model to a single-input multiple-
output (SIMO) model that aims to explain all EEG data based
on one sound stimulus at a time. The principle is that the sound
stimulus that best explains the observed EEG signals should
correspond to the attended source.

The SIMO FIR model for each sound source is defined as

Y = H(Ui)BBB
f
i + E

f
i , i = 1, 2, · · · , nu, (22)

where BBB
f
i is an nb × ny matrix.

In the literature, the filter BBBi is frequently referred to as a
temporal response function (TRF), and the corresponding case for
the backward approach leads to an na × ny matrix AAAb, where

AAAb
= vec(Ab

j ), referred to as a decoder.

2.8.1. Example 1
If we assume that nb = 10 and ny = 6, then we can estimate
ˆ
BBB
f
i , as shown in Figure 2. The first panel in Figure 2 shows

the “dense” filter BBBi, where all the elements are active (non-
zero). The second panel in the same figure illustrates the sparse
matrix resulting from LASSO. Here, LASSO finds the active

elements in the filter BBB
f
i (elements in white are non-active or

zero-valued elements). The prior knowledge of how the time lags
and electrodes form the groups can be incorporated with group
LASSO to obtain filters similar to those in the last two panels
shown in Figure 2, respectively. If for instance some of the EEG
signals are completely uncorrelated with the sound stimulus, the
reconstruction error will not increase if these EEG signals are left
out. A general rule of thumb for intuition in system identification
is that zero is the best prediction of zero mean white noise. Any
other prediction will increase the cost. That is the rationale with
LASSO, don’t attempt to predict white noise, even if reasons of
over learning may indicate that it is possible.

2.9. CCA vs. Linear FIR Filters
The main difference between the forward and backward models
is how the noise enters the models 7 and 8, respectively. The
general rule in LS estimation is that the noise should be additive
in the model. If this is not the case, then the result will be biased.
However, if there is additive noise to both the input Ui and the
output Yj, then the total least squares (TLS) algorithm can be

used. TLS basically weights both noise sources together in an
optimal way. The standard implementation of TLS is based on a
singular value decomposition (SVD) of the Hankel matrixH(Ui).

CCA combines the encoding and decoding approaches:

B
f
i (q)ui[k] ∼

ny
∑

j=1

Ab
j (q)yj[k]+ e[k] (CCA) (23)

and involves solving a generalized eigenvalue problem.
Table 1 provides a summary of the discussed linear models.
Solving a generalized eigenvalue problem is more costly for

high-dimensional data in a computational sense (Watkins,
2004). In particular, the sample covariance matrices of
high-dimensional data become singular (do not have an
inverse), which leads to more complex associated generalized
eigenvalue problems.

A regularized CCA (rCCA) is often proposed to address this
problem (Hardoon et al., 2004). This particular problem may be
overcome by formulating CCA as an LS problem, as in Sun et al.
(2011), where the classical CCA (and rCCA) is formulated as an
LS problem, and LS optimization methods are used to solve it.
However, this topic is beyond the scope of this paper and is left
for future work.

2.10. Non-linear Models
Linear models should always be examined first in the spirit of
“try simple things first.” An alternative method to estimate the
attended sound source would be to exploit non-linear models.
There are, however, many problems in ML that require non-
linear models. The principle is the same, but the algorithms are
more complex. In short, the linear model Yj = H(Ui)Bi + Ej in
(12) is replaced with

Yj = f (Ui,Bi)+ Ej. (24)

Among the standardmodel structures for the non-linear function
f , we mention the Wiener and Hammerstein models, support
vectormachines and neural networks (Taillez et al., 2017; Deckers
et al., 2018; Akbari et al., 2019). Indeed, non-linear models can be
used to decipher attention, but the focus of this paper is on linear
models because they are simpler to understand and implement.

3. EXAMINED DATASETS

We have used both simulated data and real datasets to evaluate
the aforementioned algorithms. Simulations provide a simple
way to test, understand and analyze complex algorithms in
general, as well as in this case. We use synthetic sound and EEG
signals to illustrate the aforementioned algorithms, but real data
have to be used to evaluate the potential for applications.

In our contribution, we are revisiting two datasets that were
anonymized and publicly available upon request by the previous
authors. The publications from which the data originated (see
references Power et al., 2012; Fuglsang et al., 2017) state that the
data were collected with the approval of the corresponding ethical
bodies and with due process of informed consent.
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FIGURE 2 | Schematic illustration of dense and sparse modeling. The first panel shows the “dense” filter resulting from l2-penalized LR. The second, third, and fourth

panels show the sparse filters resulting from l1-penalized LR generated by LASSO and group LASSO. Non-active (zero-valued) elements are shown in white.

The first real dataset is characterized as follows:

• The subjects were asked to attend to a sound source on either
the left u1 or the right u2 side.

• The subjects maintained their attention on one sound source
throughout the experiment.

• Each subject undertook 30 trials, each 1 min long.
• Each subject was presented with two works of classic fiction

narrated in English in the left and right ears.
• Full-scalp EEG data were collected at a sampling frequency of

512 Hz with ny = 128 number of electrodes.
• Sound data were presented at a sampling frequency of 44.1

kHz.

This dataset was first presented and analyzed in Power et al.
(2012) and O’Sullivan et al. (2015). Henceforth, we refer to this
dataset as the O’Sullivan dataset.

The second dataset can be described as follows:

• The subjects were asked to selectively attend to a sound source
on the left u1 or right u2 side in different simulated acoustic
environments (anechoic, mildly reverberant classroom,
and highly reverberant Hagia Irene Church) throughout
the experiment.

• The subjects switched their attention from one sound source
to another throughout the experiment.

• Each subject was presented with two works of classic fiction
narrated in Danish.

• Each subject undertook 60 trials, each 50 s long accompanied
by multiple choice questions.

• Full-scalp EEG data were collected at a sampling frequency of
512 Hz with ny = 64 number of electrodes.

• Sound data were presented at a sampling frequency of
44.1 kHz.

This dataset was first presented and analyzed in Fuglsang et al.
(2017), and we will refer to this dataset as the DTU dataset.

We randomly selected twelve subjects from each dataset to
assess the potential benefits that might result from the different
linear models considered in this contribution. The reason for this
approach is that our main contribution is to provide a tutorial
of methods and examples of their use, not to obtain a final
recommendation on which method is the best in general.

There are several toolboxes that are useful when working
with real datasets. First, there are at least two toolboxes available
for loading EEG data: (1) the EEGLab toolbox (https://sccn.ucsd.
edu/eeglab/) (Delorme and Makeig, 2004) and (2) the FieldTrip
toolbox (http://www.fieldtriptoolbox.org/) (Oostenveld et al.,
2011). For more details on importing EEG data with EEGLab
and FieldTrip, see Appendix. Then, linear trends can be
removed, and the EEG data can be normalized using functions
in the NoiseTools toolbox (de Cheveigné and Simon, 2008a,b;
de Cheveigné, 2010, 2016).

4. COMPUTATIONAL MODELS IN
PRACTICE

In this section, we apply the presented algorithms to the two
datasets described in Section 3. All experiments were performed
on a personal computer with an Intel Core(TM) i7 2.6 GHz
processor and 16 GB of memory, using MATLAB R2015b. Note

that for notational simplicity we shall take AAAb
= AAA and BBB

f
i = BBBi

in the remainder of this section.
We start by discussing two main alternatives to train the

models and estimate the de/en - coders (AAA or BBB):

1) Treating each trial as a single least-squares LS problem
and estimating one de/en-coder for each training
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TABLE 1 | An overview of linear methods.

Learning

representations

Approaches Mathematical formulations Optimization

problem

Relevant references

Correlation-

based learning

Cross-Correlation

CCA B f
i
(q)ui [k] ∼

∑ny
j=1 A

b
j
(q)yj [k]+ e[k]

Generalized

eigenvalue

problem

Biesmans et al., 2017; Dmochowski et al., 2017;

de Cheveigné et al., 2018; de Cheveigné et al., 2019

Model-based

learning

Forward modeling

Supervised case: Encoding

yj [k] = B f
i
(q)ui [k]+ ef

j
[ k] Least-

squares Ding and Simon, 2012a; Di Liberto et al., 2015; Alickovic

et al., 2016, in rewiev; Fiedler et al., 2017, 2019;

Hjortkjær et al., 2018; Kalashnikova et al., 2018;

Lesenfants et al., 2018; Lunner et al., 2018; Verschueren

et al., 2018; Wong et al., 2018

Inverse/backward modeling

Supervised case: Decoding

ui [k] =
∑ny

j=1 A
b
j
(q)yj [k]+ eb

i
[k]

Mirkovic et al., 2015; O’Sullivan et al., 2015, 2017;

Aroudi et al., 2016; Das et al., 2016, 2018; Presacco

et al., 2016; Biesmans et al., 2017; Fuglsang et al.,

2017; Van Eyndhoven et al., 2017; Zink et al., 2017;

Bednar and Lalor, 2018; Ciccarelli et al., 2018; Etard

et al., 2018; Hausfeld et al., 2018; Narayanan and

Bertrand, 2018; Schäfer et al., 2018; Vanthornhout et al.,

2018; Verschueren et al., 2018; Wong et al., 2018;

Akbari et al., 2019; Somers et al., 2019

trial separately, and averaging over all training
de/en-coders (Crosse et al., 2016).

B
avg
i = 1/K

∑

k

[

(H(Ui,k)
T
H(Ui,k))

−1
H(Ui,k)

TYj,k

]

(25)

2) Concatenating all training trials in a single LS problem
(Biesmans et al., 2017).

Bconci =

[

∑

k

H(Ui,k)
T
H(Ui,k)

]−1 [

∑

k

H(Ui,k)
TYj,k

]

(26)

Here K is a total number of trials. We may point to the following
aspects that are to be considered when discussing the two
alternatives:

• Averaging LS per-trial estimates is not equivalent with the
correct overall LS estimate. It is easy to show that the
two alternatives will result in different estimates, even if the
discontinuities and boundary effects are correctly treated. One
can show algebraically that -under some technical conditions-
the second alternative will yield a better estimator with a lower
(co-)variance on its entries. For a more detailed discussion, see
section 2.2.1 in Gustafsson (2010).

• Efficient cross-validation. Note that the matrix H(Ui)
TH(Ui)

in (20) denotes the information matrix, and can also be
expressed as

∑

k H(Ui,k)
TH(Ui,k), where k is a trial index and

Ui,k contains the data from one trial. This trick of combining
sufficient statistics for the different datasets saves a lot of
computations. For a more detailed discussion, see sections
2.2.3, 2.2.4 in Gustafsson (2010).

• Introducing artifacts from discontinuities between trials. The
issue of introducing artifacts from discontinuities between
trials is due to the boundary effects when the filter shifts out
of the window. One solution is to insert zeros in the Hankel

matrix used for solving the LS problem. A better alternative
is to delete the rows in the Hankel matrix affected by these
boundaries, which yields an LS estimate without boundary
effects. In a similar way, one can remove discontinuities
between trials in the concatenation case. For more details, see
section 6.3 in Gustafsson et al. (2010).

Although both alternatives have been widely used as tools for
studying selective attention and AAD, we shall here consider the
first alternative. A basic reason for this is that the first alternative
has received somewhat more attention in the literature due
primarily to being implemented in the publicly available mTRF
toolbox. It is also important to note that the second alternative is
often less sensitive to the choice of the regularization parameter,
and for which regularization can sometimes even be omitted if
sufficient data is available (Biesmans et al., 2017).

4.1. Canonical Correlation Analysis
We start by evaluating the CCA model. The simple CCA model
consists of the following steps:

• Design a multichannel representation of the input sound
signal, e.g., cochlear or any other auditory model, time-
frequency analysis with spectrogram, or Mel-frequency
cepstral coefficients (MFCC) (Slaney, 1998).

• Demand two linear transformations with CCA. Efficient
CCA-based decoding implementations are available in (1)
COCOHA toolbox (https://cocoha.org/the-cocoha-matlab-
toolbox/), (2) NoiseTools toolbox, (3) http://www.imt.liu.se/~
magnus/cca/ and (4) http://www.yelab.net/software/CCA/. A
particularly simple way of implementing CCA is available
in MATLAB ’s canoncorr.m function. This function takes
Hankel matrices H(Ui) and H(Y) with time lags [defined as
in (4)] as inputs and computes the filtersAAA, BBBi and correlation
coefficients (Krzanowski, 2000).
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• Select the first (few) component(s) for each transformation
such that the highest possible correlation between the datasets
is retrieved.

4.1.1. Example 2 (Attention Deciphering With CCA)
In this example, we consider one (randomly selected) subject
from the first database who attended to the speech on his left side
U1. The task is to determine whether CCA can be used to identify
whether the attended speech is actually U1.

4.1.1.1. Preprocessing
We followed the very simple preprocessing scheme described in
the last sentence of §2.1 and in Alickovic et al. (2016).

4.1.1.2. Modeling
Following the approach to CCA proposed here, see
Equation (23), the encoding and decoding filters covered
time lags ranging from −250 ms to 0 ms prestimulus (see
Alickovic et al., 2016) and 0 ms to 250 ms poststimulus (see
O’Sullivan et al., 2015), respectively.

4.1.1.3. Classification
After projecting data onto a lower-dimensional space, a linear
SVM is applied for binary classification: attended vs. ignored
sound. We select the correlation coefficient values as the
classifier’s inputs. In this example, we selected the first 10
coefficients, thus classifying two times with a 10-D vector, once
for the attended sound and once for the ignored sound. This
corresponds to a 2-fold match-mismatch classification scheme
suggested in de Cheveigné et al. (2018). In the case that
the classifier implies attention on both sounds (attended and
ignored), we consider such classification as incorrect. Next, we
generate 10 randompartitions, i.e., 10-fold cross-validation (CV),
of data into training (27 minutes) and test (3 minutes) sets, and
we report the average performances.

4.1.1.4. Results
The average classification accuracy is ∼ 98%. The total
computational time for training and CV is∼ 20 s.

4.1.1.5. Remarks
Note that this accuracy could be further improved with more
training data or further preprocessing (e.g., removing eye blinks
from EEG data). However, because we aim to establish real-time
systems, we attempt to reduce the preprocessing and thereby
increase the speed of the system at the expense of a lower
accuracy rate.

As for any data-driven model design, the choice of the
classifier’s inputs is left to the user. Our choice is based primarily
on the desire to show that CCA is a promising tool for auditory
attention classification. In the following sections, we further
discuss the significance of CCA by comparing the results of
the methods discussed here applied on the two large datasets
described in section 3.

4.2. Decoding With Dense Estimation
SR is the most prominent decoding technique, see Equation (11),
that aims to reconstruct the stimuli from the measured neural

responses. The standard approach to SR in the literature is to
use l2-regularized (dense) LR techniques. The recent work of
Crosse et al. (2016) provides a comprehensive description of
the Multivariate Temporal Response Function (mTRF) toolbox
(https://sourceforge.net/projects/aespa/)—a MATLAB toolbox
for computing (dense) filters Aj or Bi (depending on a mapping
direction) by using LR techniques.

4.2.1. Example 3 (Attention Deciphering With

Dense SR)
Here, we consider the same subject as in the previous example.
The task is now to determine the efficiency of the dense SR in
classifying the attended speech.

4.2.1.1. Preprocessing
Identical to Example (4.1.1).

4.2.1.2. Modeling
The decoder AAA covers time lags up to 250 ms poststimulus. To
find the decoder AAA, the model presented in Equation (11) is
applied. One decoder is produced for each stream of sound i for
each segment s = 1, . . . , 30, resulting in 30 attended decoders.

4.2.1.3. Classification
Next, 29 of these decoders are combined by simply averaging AAA
matrices to thematrixAAAavg in the training phase - LOOCV (leave-
one-out CV); then, AAAavg is used to produce the estimate of the

stimulus Ûi for the fresh data, i.e., the remaining segment. The
correlation coefficient c is then assessed between the actual nu
test stimuli Ui and the estimate Ûi, and the sound stream with
the greatest c is identified as the attended source. This procedure
is repeated 30 times.

4.2.1.4. Results
The average classification accuracy is ∼ 80%. Note the drop
in accuracy from ∼ 98% (obtained with CCA) to ∼ 80% (with
SR) for this particular subject. The total computational time for
training and CV is∼ 58 s.

4.3. Decoding With Sparse Estimation
In this section, we consider SR, but we use l1 (sparse)
regularization rather than l2 (dense) regularization (which is
widely used in auditory research) to quantify the sparsity effect
on the auditory attention classification.

4.3.1. Example 4 (Attention Deciphering With Sparse

SR)
Using the data from the same subject as in Examples (4.1.1–
4.2.1), the task is to evaluate the performances of l1-regularized
(sparse) SR.

4.3.1.1. Preprocessing
4.3.1.1.1. Preprocessing/Modeling/Classification Identical to
Example (4.1.1).

4.3.1.2. Preprocessing
4.3.1.2.1. Results The average classification accuracy is ∼ 80%.
The total computational time for training and CV is∼ 6 s. Note

Frontiers in Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 153155

https://sourceforge.net/projects/aespa/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Alickovic et al. A Tutorial on Auditory Attention Identification Methods

the drop in computational time from∼ 58 s (obtained with dense
SR) to∼ 6 s (obtained with sparse SR) for this particular subject.

4.3.1.3. Preprocessing
4.3.1.3.1. Remarks Note the substantial reduction in the
computational time when l1 regularization, implemented with
the ADMM, is used rather than conventional l2 regularization in
the SR method.

4.4. Encoding With Dense Estimation
Here, we consider encoding, where we go in the forward direction
from the speech to EEG data. The standard approach to encoding
found in the auditory literature is to solve the optimization
problem (10) for each EEG channel j = 1, . . . , ny separately,
which means that we will have ny neural predictions for each
stimulus. Recall that one single reconstruction for each stimulus
in the decoding approach discussed above makes it easier to
compare the correlation coefficient values (CCVs). One way
to classify the attended sound source by using the encoding
approach is to take the sum of all CCVs, compare these sums,
and classify the attended sound as the one with the highest sum
of the CCVs (similar to the decoding). We refer to this approach
as dense LOOCV encoding.

4.4.1. Example 5 (Attention Deciphering With Dense

LOOCV Encoding)
Here, we consider the same subject as in the previous examples.
The task is now to determine the efficiency of the suggested
approach to dense encoding in classifying the attended speech.

4.4.1.1. Preprocessing
Identical to Example (4.1.1).

4.4.1.2. Modeling
The TRFBBBi covers time lags from -250ms to 0ms prestimulus. To
find the TRF BBBi, the model presented in Equation (10) is applied.
One TRF is produced for each stream of sound i for each segment
s = 1, . . . , 30, resulting in 30 attended TRFs.

4.4.1.3. Classification
Next, 29 of these TRFs are combined by simply averaging BBBi
matrices to the matrix BBBi,avg in the training phase - LOOCV
(leave-one-out CV); then, BBBi,avg is used to predict the neural

response Ŷi for the fresh data, i.e., the remaining segment.
The summed CCV is then assessed between the actual Y and
predicted Ŷi, and the sound stream with the larger CCV is
identified as the attended source, i.e.,

î = argmax
i

CCVi (27)

This procedure is repeated 30 times.

4.4.1.4. Results
The average classification accuracy is ∼ 77%. The total
computational time for training and CV is ∼ 2.5 s. However, the
main limitation of the dense encoding is that it is very sensitive
to the regularization parameter λ, which must be selected very
carefully. We will return to this issue in section 4.7.

4.4.1.5. Remarks
Note the substantial reduction in the computational time with
dense encoding compared to the dense decoding (SR) method.

4.5. Encoding With Sparse Estimation
Here, we consider encoding with ADMM-based sparse
estimation. We report similar performance in terms of both the
classification accuracy rate and computational time as observed
for the encoding with dense estimation for the data taken from
the same subject used in the previous examples. We refer to this
approach as sparse LOOCV encoding.

4.5.1. Example 6 (Attention Deciphering With Sparse

LOOCV Encoding
Here, we consider the same subject as in the previous
examples. The task is now to determine the efficiency of the
suggested approach to sparse LOOCV encoding in classifying the
attended speech.

4.5.1.1. Preprocessing, Modeling & Classification
As in Example (4.4.1).

4.5.1.2. Results
The average classification accuracy is ∼ 80%. The total
computational time for training and CV is ∼ 1.5 s. Note that
LOOCV encoding could be quite sensitive to λ.

4.6. Encoding From the System
Identification Perspective
Here, we take a different approach to the common classification
approaches found in the auditory literature, using tools from the
system identification area (Ljung, 1998). In the present work, we
refer to this approach as adaptive encoding.

4.6.1. Example 7 (Attention Deciphering With the SI

Approach)
We consider the same data used in our previous examples. The
task is now to use our classification model.

4.6.1.1. Preprocessing
Identical to Example (4.1.1).

4.6.1.2. Modeling
The TRF Bi covers time lags from −250 ms to 0 ms prestimulus.
The attended and ignored TRFsBBB1 andBBB2 are computed for each
segment, and the cost for both TRFs is evaluated for each segment
as Lunner et al. (2018)

Vi(Bi) =‖Y − UiBBBi‖
2
F + λ‖B̄BBi‖1 (28)

subject to BBBi = B̄BBi (29)

4.6.1.3. Classification
We compare the costs for each segment and determine which
speech signal provides the smallest cost, i.e.,

î = argmin
i

Vi(BBBi) (30)
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If λ is known a priori, then this model is unsupervised and
requires no training. However, this is rarely the case, and λ must
be computed separately for each subject by using the subject’s
own training data.

4.6.1.4. Results
We use the first 9 min of data to compute the value of the
regularization parameter λ and the remaining time to assess
the performances of the models given in (28)-(30). The average
classification accuracy is∼ 95%.

4.6.1.5. Remarks
Although the classification accuracy of the adaptive encoding
approach is similar to that obtained with CCA, note the
substantial decrease in training time, from 27 to only 9 min.

4.7. Sensitivity of the Regularization
Parameter
The previously discussed models have all been sensitive to a
regularization parameter λ. Therefore, we need to solve the
optimization problem (19) for different λ values to identify the λ

value that optimizes the mapping such that the optimal λ value
minimizes the mean squared error (MSE) and maximizes the
correlation between the predicted (reconstructed) and actual
waveform. One way to perform this optimization is to have
the inner CV loop on the training data to tune λ value. In the
inner CV loop, we can implement either LOOCV or K-fold
CV in a similar way to the outer LOOCV, with the difference
that we repeat the process for different λ values and select the
λ that yields either the lowest MSE or the highest correlation
(Pearson r) value. For the l2 (dense) regularization, a parameter
sweep is generally performed between 10−6 and 108 (Wong
et al., 2018). From our experience, a good choice for this type of
regularization is to set λ to 103. For the l1 (sparse) regularization,
the parameter sweep is typically performed between 10−6λmax

and 0.95λmax, where λmax is a critical value above which the filter
becomes zero-valued (Boyd et al., 2011). From our experience, a
good choice for this type of regularization is to set λ to 10−1λmax.
A similar approach was adapted for the adaptive encoding, with
the only difference that the inner CV loop was implemented on
9 min of data.

4.8. Classification Performance
Comparison
In this section, we verify that the proposed linear models
discussed in the present contribution can identify the sound
source of the listener’s interest. Two different datasets, the
O’Sullivan and DTU datasets, were used to evaluate the
performances of different models. Here the window length over
which the correlation coefficients are estimated for each method
is the same as in the corresponding examples above and the trial
lengths are the same as the trial lengths mentioned in section 3.

4.8.1. O’Sullivan Dataset
Table 2 shows part of the assessed performances when the
subjects were asked to attend to an identical sound source
throughout the experiment. As shown in this table, CCA
and adaptive encoding approaches resulted in the highest

TABLE 2 | Classification rates on the O’Sullivan dataset for the different

classification approaches discussed in this contribution.

Subject
Dense

SR

Sparse

SR

Dense

LOOCV

encoding

Sparse

LOOCV

encoding

Adaptive

encoding
CCA

A
tt
e
n
d
R
ig
h
t

1 86.21 93.10 86.21 89.66 100 97.86

2 86.67 90.00 70.00 70.00 95.45 98.32

3 96.67 100.00 86.67 86.67 100.00 97.93

4 90.00 90.00 80.00 76.67 86.36 98.33

5 90.00 96.67 90.00 93.33 95.45 98.03

6 70.00 86.67 60.00 70.00 100.00 97.83

Avg 86.59 92.74 78.81 81.05 96.21 98.05

A
tt
e
n
d
L
e
ft

7 80.00 86.67 63.33 73.33 100.00 98.33

8 93.33 90.00 76.67 80.00 95.45 97.70

9 80.00 80.00 73.33 73.33 95.45 97.08

10 80.00 90.00 73.33 76.67 81.82 96.90

11 76.67 80.00 66.67 83.33 95.45 98.25

12 100.00 100.00 83.33 86.67 100.00 98.32

Avg 85.00 87.78 72.78 78.89 94.70 97.76

Total avg 85.80 90.26 75.80 79.97 95.45 97.91

classification rates and the lowest computational times (see the
previous examples). Moreover, note that the sparse estimation
outperformed the dense estimation for both SR and LOOCV
encoding. The accuracy rates for sparse SR were ∼ 5% higher,
on average, when sparse (ADMM-based) estimation was used to
determine the (decoder) filter coefficients. This was also the case
when estimating the encoding filter coefficients. Furthermore,
there was a significant reduction in computational time, as shown
in Table 3. Although it might seem natural that l2 regularization
would be faster as l1 regularization is iterative process, what
makes l1 regularization faster is the ADMM algorithm that
converges quickly enough, within few iteration steps and does not
include inverting large matrices.

As shown in Tables 2, 3, the best-performing linear methods
for this dataset in terms of both accuracy and computational time
are adaptive encoding and CCA.

4.8.2. DTU Dataset
Table 4 shows part of the assessed performances when the
subjects were asked to switch their attention throughout the
experiment. As shown, CCA results in the highest classification
rates. Moreover, note that for this dataset, the sparse estimation
also outperformed the dense estimation for both SR and LOOCV
encoding. However, the adaptive encoding did not result in a high
classification accuracy rate for the “switching” data compared
to CCA. One reason for this result might be that CCA, as
a “bidirectional” approach, captures more of the EEG-audio
(stimulus-response) data relationship than when going in only
one (forward) direction. To summarize, all linear methods have
a high potential to be fully utilized in the identification of
the subject’s sound source of interest in “attention-switching
scenarios,” with CCA demonstrating a high potential to also be
used as an efficient AAD tool.

The O’Sullivan dataset is known to be biased in the sense that
subjects either always maintain their attention on the left sound
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TABLE 3 | Computational times on the O’Sullivan dataset for the different

classification approaches discussed in this contribution.

Subject
Dense

SR

Sparse

SR

Dense

LOOCV

encoding

Sparse

LOOCV

encoding

Adaptive

encoding
CCA

A
tt
e
n
d
R
ig
h
t

1 46.69 5.21 2.06 1.99 1.96 23.34

2 47.65 2.20 2.09 86.67 2.05 23.73

3 49.44 2.20 2.38 76.67 2.38 20.75

4 47.98 2.20 2.55 93.33 2.45 19.83

5 47.95 2.20 2.09 70.00 2.00 19.58

6 47.75 2.17 2.56 70.00 2.36 27.83

Avg 47.91 5.43 2.17 2.28 2.20 22.51

A
tt
e
n
d
L
e
ft

7 47.61 5.26 2.16 2.20 2.15 20.32

8 42.34 6.08 2.19 2.16 2.12 21.19

9 43.03 5.28 2.15 2.08 2.06 19.53

10 44.79 6.26 2.18 2.45 2.37 19.82

11 43.30 5.28 2.19 2.14 2.10 19.91

12 49.73 5.29 2.22 2.04 2.01 21.19

Avg 45.13 5.57 2.18 2.18 2.08 20.33

Total avg 46.52 5.50 2.18 2.23 2.13 2.16

TABLE 4 | Classification rates on the DTU dataset for the different classification

approaches discussed in this contribution.

Subject
Dense

SR

Sparse

SR

Dense

LOOCV

encoding

Sparse

LOOCV

encoding

Adaptive

encoding
CCA

1 83.33 83.33 71.67 71.67 80.39 87.23

2 78.33 90.00 78.33 76.67 70.59 81.93

3 86.67 81.67 66.67 73.33 86.27 80.73

4 90.00 96.67 70.00 66.67 78.43 98.75

5 81.67 81.67 75.00 60.00 70.59 82.90

6 70.00 73.33 68.33 71.67 84.31 100.0

7 76.67 80.00 78.33 78.33 80.39 94.63

8 91.67 93.33 71.67 73.33 70.59 81.08

9 81.67 85.00 80.00 75.00 80.39 97.97

10 85.00 88.33 70.00 75.00 84.31 96.18

11 91.67 90.00 60.00 73.33 78.43 82.54

12 88.33 88.33 63.33 66.67 80.72 85.77

Total avg 83.75 85.97 71.11 72.22 78.33 89.14

source or always maintain their attention on the right sound
source. The subject-dependent decoders then tend to perform
much better than when they are trained on both left- and right-
attended trials of the same subject. This effect was shown in Das
et al. (2016). This partially explains why the performance on the
DTU dataset is noticeably lower.

It is, however, important to keep in mind that although
the tables above may indicate different performance among the
methods, no comparative conclusions can be drawn from these
tables, since the parameter settings may not be fully optimized
or comparable. It is not the purpose of the paper to make
that performance comparison, and rather just illustrate the
different working principles. To objectively compare methods,

one should use the same cross-validation, same window lengths
to make a decision, and then properly optimize all parameters for
each method.

5. CONCLUSIONS

In this work, we investigated the similarities and differences
between different linear modeling philosophies: (1) the classical
correlation-based approach (CCA), (2) encoding/decoding
models based on dense estimation, and (3) (adaptive)
encoding/decoding models based on sparse estimation. We
described the complete signal processing chain, from sampled
audio and EEG data, through preprocessing, to model estimation
and evaluation. The necessary mathematical background was
described, as well as MATLAB code for each step, with the
intention that the reader should be able to both understand the
mathematical foundations in the signal and systems areas and
implement the methods. We illustrated the methods on both
simulated data and an extract of patient data from two publicly
available datasets, which have been previously examined in the
literature. We have discussed the advantages and disadvantages
of each method, and we have indicated their performance on the
datasets. These examples are to be considered as inconclusive
illustrations rather than a recommendation of which method is
best in practice.

Furthermore, we presented a complete, step-by-step pipeline
on how to approach identifying the attended sound source in a
cocktail party environment from raw electrophysiological data.
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A. APPENDIX: EEG DATA IMPORT

A.1. Importing EEG Data With EEGLab
The key steps are as follows:

• Downloading the EEGLab toolbox.
• Starting MATLAB and adding the path.
• Loading the EEG data with the pop_biosig function.
• Excluding all non-scalp channels and reference to average all

scalp channels as: EEG = pop_select( EEG,’nochannel’, ’channel
names’); EEG = pop_reref( EEG, []);

• Segmenting data correctly based on the trigger information
with the pop_epoch function.

• Additionally, mean baseline value from each epoch can be
removed with the pop_rmbase function.

• Saving the .mat file

A.2. Importing EEG Data With FieldTrip
The key steps are as follows:

• Downloading the FieldTrip toolbox.
• Starting MATLAB and adding the path.
• Using the ft_defaults function to configure default variable and

path settings.
• Reading the EEG data with a ft_read_data function to

a structure file and adding the needed values to the
fields in the structure from the header with the function
ft_read_header.

• Reading the event information if possible with ft_read_event.
• Segmenting the data correctly based on the relevant

event(s).
• Selecting the scalp channels.
• Removing the mean and normalizing the data.
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The decoding of selective auditory attention from noninvasive electroencephalogram

(EEG) data is of interest in brain computer interface and auditory perception research.

The current state-of-the-art approaches for decoding the attentional selection of listeners

are based on linear mappings between features of sound streams and EEG responses

(forward model), or vice versa (backward model). It has been shown that when the

envelope of attended speech and EEG responses are used to derive such mapping

functions, the model estimates can be used to discriminate between attended and

unattended talkers. However, the predictive/reconstructive performance of the models

is dependent on how the model parameters are estimated. There exist a number of

model estimation methods that have been published, along with a variety of datasets. It

is currently unclear if any of these methods perform better than others, as they have not

yet been compared side by side on a single standardized dataset in a controlled fashion.

Here, we present a comparative study of the ability of different estimation methods

to classify attended speakers from multi-channel EEG data. The performance of the

model estimation methods is evaluated using different performance metrics on a set

of labeled EEG data from 18 subjects listening to mixtures of two speech streams. We

find that when forward models predict the EEG from the attended audio, regularized

models do not improve regression or classification accuracies. When backward models

decode the attended speech from the EEG, regularization provides higher regression and

classification accuracies.

Keywords: temporal response function, speech decoding, electroencephalography, selective auditory attention,

attention decoding

1. INTRODUCTION

A fundamental goal of auditory neuroscience is to understand the mapping between auditory
stimuli and the cortical responses they elicit. In magneto/electro-encephalography (M/EEG)
studies, this mapping has predominantly been measured by examining the average cortical
evoked response potential (ERP) to a succession of repeated short stimuli. More recently, these
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methods have been extended to continuous stimuli such as
speech by using linear system-response models, broadly termed
“temporal response functions” (TRFs), that are estimated using
system-identification methods. The TRF is a stimulus-response
model that characterizes how a unit impulse in an input
feature corresponds to a change in the M/EEG data. TRFs
can be used to generate continuous predictions about M/EEG
responses as opposed to characterizing the response (ERP)
to repetitions of the same stimuli. Importantly, it has been
demonstrated that the stimulus-responsemodels can be extracted
both from EEG responses to artificial sound stimuli (Lalor et al.,
2006, 2009; Power et al., 2011) but also from EEG responses
to naturalistic speech (Lalor and Foxe, 2010). A number of
studies have considered mappings between the slowly varying
temporal envelope of a speech sound signal (<10 Hz) and
the corresponding filtered M/EEG response (Lalor and Foxe,
2010; Ding and Simon, 2012a,b, 2013, 2014). However, TRFs
are not just limited to the broadband envelope, but can also
be obtained with the speech spectrogram (Ding and Simon,
2012a,b), phonemes (Di Liberto et al., 2015), or semantic features
(Broderick et al., 2018). This has opened new avenues of research
into cortical responses to speech, advancing the field beyond
examining responses to repeated isolated segments of speech.

TRF methods have proven particularly apt for studying how
the cortical processing of speech features are modulated by
selective auditory attention. A number of studies have considered
multi-talker “cocktail party” scenarios, where a listener attends to
one speech source and ignores others. It has been demonstrated
that both attended and unattended acoustic features can be
linearly mapped to the cortical response (Ding and Simon,
2012a,b; Power et al., 2012; Zion Golumbic et al., 2013; Puvvada
and Simon, 2017).

Conversely, the same linear model, which maps speech
features to the cortical response (forward direction), can be
adapted to provide a linear mapping from the cortical response
to the speech features (backward direction) (Bialek et al., 1991;
Mesgarani et al., 2009; Ding and Simon, 2012a,b; Mesgarani
and Chang, 2012; Mirkovic et al., 2015; O’Sullivan et al., 2015;
Fuglsang et al., 2017; Van Eyndhoven et al., 2017). The mapping
from acoustic features to cortical responses is typically referred to
as a forward model (or TRF), whereas the mapping from cortical
responses to acoustic features is referred to as a backward model
(Haufe et al., 2014). The quality of model fit reflects the degree to
which cortical activity is driven by stimulation. In a cocktail party
scenario, the quality of fit between each of the speech streams and
the cortical activity can be used to infer which speech stream is
being attended. Differences in the accuracy of forward/backward
model-derived estimates between the attended and unattended
speech signal can be used to predict or “decode” to whom a
listener is attending based on unaveraged M/EEG data. Single-
trial measures of auditory selective attention in turn suggests BCI
applications, for instance, for cognitively-steered hearing aids
(Das et al., 2016; O’Sullivan et al., 2017; Van Eyndhoven et al.,
2017; Zink et al., 2017).

The ability of forward/backward stimulus-response models
to generalize to new data is generally limited by the need
to estimate a relatively large number of parameters based

on noisy single-trial M/EEG responses. Like many aspects of
machine learning, this necessitates regularization techniques that
constrain the model coefficients to prevent overfitting (Crosse
et al., 2016a; Holdgraf et al., 2017). A number of methods
for regularizing the forward/backward stimulus-response models
have been presented in various studies (Goutte et al., 2000;
Theunissen et al., 2000, 2001; Machens et al., 2004; David et al.,
2007; Thorson et al., 2015). Each of these methods attempt
to address the challenge of having sufficient data to compute
a reliable stimulus-response mapping function. To reduce the
data requirement, regularization can be applied in the form of
a smoothness and/or sparsity constraint.

To date, little work has been done to compare these methods
against each other. A meta-analysis would be difficult as
many variables, such as subjects, stimuli and data processing
are different between each study. The present paper uses a
standardized publicly available dataset1 (Fuglsang et al., 2018),
based on the attended-vs.-unattended talker discrimination
task, as well as preprocessing and evaluation procedures to
compare these algorithms. In addition, the present paper
examines the relationship between different evaluation metrics
to highlight their similarities and differences. The methods for
computing forward/backward stimulus-response models have
been implemented in the publicly available Telluride Decoding
Toolbox2.

2. MATERIALS AND METHODS

Temporal response functions can be used to predict the EEG
response to a multi-talker stimulus from the attended speech
envelope or, alternatively, the equation can be adapted to
reconstruct the attended speech envelope from the EEG response.
The first case is denoted as a “forward model” (as it maps from
speech features to neural data) and the second as a “backward
model” (as it maps from neural data back to speech features)
(Haufe et al., 2014).

2.1. Stimulus-Response Models
The linear stimulus-response models below described belowmap
a matrix X (stimulus features for a forward model, EEG for a
backward model) to a matrix Y (EEG channels for a forward
model, stimulus features for a backward model):

Ŷ = XW, (1)

where X = [xt,(f ,c)] is a multichannel data matrix (channels
indexed by c), augmented to include time-lagged versions of the
data (lags indexed by f ), and Ŷ = [yt] is the model estimate in the
form of a vector indexed by time t. Time lags, limited to a range
such as -500 to + 500 ms, allow the model to handle delays and
convolutional mismatch between X and Y. Dimensions c and f
are combined when performing matrix multiplications.

In the following subsections we introduce different
approaches to estimating the linear model parameters, W.

1http://doi.org/10.5281/zenodo.1199011
2http://www.ine-web.org/software/decoding
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Each method uses different regularization techniques to optimize
the generalizability of the mapping functions.

2.1.1. Ordinary Least Squares (OLS)
The cost function that is minimized when solving the regression
model is:

L(W) = (Y− XW)T(Y− XW). (2)

The filter coefficients of this model can be estimated via ordinary
least squares:

W =

(

XTX
)−1

XTY, (3)

where XTX is the estimated autocovariance matrix and XTY

is the estimated cross-covariance matrix. The ordinary least-
squares solution was here estimated using the Cholesky
decomposition method, via the mldivide routine in Matlab. One
advantage of the OLS estimator is that it has no additional
hyperparameters that must be optimized. However, in practice
the OLS estimator is often outperformed by the regularized
solutions described in the following subsections. This is often
the case when the regressor, X, is high-dimensional and has a
poorly estimated covariance matrix given limited amounts of
training data, or contains auto-correlations and/or cross-channel
correlations resulting in a low rank matrix. In other words,
the inverse problem is ill-posed. Such is the case when using
non-stochastic data for X, such as speech or EEG data.

If X were white and standardized, the autocovariance matrix
would be a multiple of the identity matrix, and the OLS
and regularized approaches reduce to a straight-forward cross-
correlation, also known as reverse correlation (Ringach and
Shapley, 2004).

2.1.2. Ridge
Ridge regression minimizes the residual sum of squares, but adds
an L2 constraint on the regression coefficients (Machens et al.,
2003; Crosse et al., 2015; Di Liberto et al., 2015; Crosse et al.,
2016b; Holdgraf et al., 2016; O’Sullivan et al., 2017; Broderick
et al., 2018). An L2 constraint smooths the regression weights by
penalizing the square of the weights in W with a regularization
constant λ for the Ridge regression cost function:

L(W)λ = (Y− XW)T(Y− XW)+ λWTW (4)

(Hastie et al., 2001; Machens et al., 2004). Ridge regression
corresponds to imposing a Gaussian prior on the filter
coefficients (Wu et al., 2006). The Ridge solution is:

W =

(

XTX+ λI
)−1

XTY, (5)

where λ is the regularization parameter that controls the amount
of parameter shrinking.

2.1.3. Low-Rank Approximation (LRA)
The LRA-based regression relies on a low-rank approximation
of the covariance matrix, XTX. This is achieved by employing a
singular value decomposition (SVD) of XTX:

XTX = USVT , (6)

where U and V are orthonormal matrices that contain
respectively the left and right singular vectors, and where S is a
diagonal matrix, S = diag(s1, s2, ..sd) with sorted diagonal entries.
Since XTX is a positive semidefinite matrix we have U = V. LRA
uses a rank-K approximation of XTX by only retaining the first
1 ≤ K ≤ d diagonal elements of S. The cost function is:

L(W)K = (Y− XW)T(Y− XW)

−WTVK+1...dSK+1...d,K+1...dV
T
K+1...dW, (7)

where VK+1...d are the K + 1...d columns of V and
SK+1...d,K+1...d is the square matrix formed by taking
the K + 1...d rows and columns of S. By forming

Ŝ
−1

= diag(1/s1, 1/s2, ..., 1/sK , 0..0, 0, 0), the regression
coefficients can be estimated from:

W =

(

UŜ
−1

VT
)

XTY. (8)

The number of diagonal elements, K, to retain are typically
chosen such that a diagonal element is retained if the sum of the
eigenvalues to be kept cover a fraction λ of the overall sum, or

0 <

∑K
i=1 si

∑d
i=1 si

< λ ≤ 1. Note that the regularization parameter,

λ, here is analogous to λ for Ridge Regression, but that the
values are not comparable between the two. LRA is the term
used in systems identification (Marconato et al., 2014), however,
this type of regression has also been referred to as normalized
reverse correlation (NRC) in auditory neuroscience literature
(Theunissen et al., 2000, 2001; David et al., 2004, 2007; Mesgarani
et al., 2009; Mesgarani and Chang, 2012).

2.1.4. Shrinkage
Shrinkage (Friedman, 1989; Blankertz et al., 2011) is a method
used for biasing the covariance matrix by flattening its eigenvalue
spectrum with some tuning parameter, λ. In the context of
regression, the Shrinkage cost function is:

L(W)λ = (Y− XW)T(Y− XW)+ λWT(νI− XTX)W, (9)

where ν is here defined as the average eigenvalue trace of the
covariance matrix

(

XTX
)

. The solution for the cost function is:

W =

(

(1− λ)XTX+ λνI
)−1

XTY. (10)

When λ = 0, it becomes the standard ordinary least squares
solution. When λ = 1, the covariance estimator becomes
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diagonal (i.e., it becomes spherical), reducing the Shrinkage
equation to a cross-correlation (Blankertz et al., 2011).

These regularization schemes are related. Whereas Ridge
Regression and Shrinkage both penalize extreme eigenvalues in
a smooth way, LRA discards eigenvalues. Ridge and Shrinkage in
other words flatten out the eigenvalue trace. Ridge shifts it up, and
Shrinkage shrinks it toward an average value ν (Blankertz et al.,
2011), whereas LRA cuts if off.

2.1.5. Tikhonov
The scheme that we shall refer to as Tikhonov regularization,
is a first-derivative type of Tikhonov regularization (Tikhonov,
1963) that takes advantage of the fact that there is usually
a strong correlation between adjacent columns of X when X

includes time shifts, because of the strong serial correlation
of the stimulus envelope (for the forward model) or the
filtered EEG (for the backward model). In other words,
Tikhonov regularization imposes temporal smoothness on the
model. Tikhonov regularization achieves temporal smoothness
by putting a constraint in the derivative of the filter coefficients
(Goutte et al., 2000; Lalor et al., 2006; Lalor and Foxe, 2010;
Crosse et al., 2015, 2016a). Here we focus on first order
derivatives of the filter coefficients and assume that the first

derivatives can be approximated by
∂wi

∂i
≈ (wi+1 − wi) for any

neighboring filter pairs wi+1 and wi. This type of regularization is
more generally referred to as 1st order Tikhonov regularization as
it attempts to constrain the first derivative of the filter via central
difference approximations. This gives the cost function:

L(W)λ = (Y− XW)T (Y− XW) + λ
∑

i

(wi − wi+1)
2 . (11)

Tikhonov regularized model filters can, under this
approximation, be implemented as:

W =

(

XTX+ λM
)−1

XTY, (12)

where

M =



















1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

...
...

0 0 0 −1 2 −1
0 0 0 0 −1 1



















.

Note that cross-channel leakage can occur whenever the
regressor, X, reflects data recorded from multiple channels, as
is the case with the backward model. This means that filter
endpoints can be affected by neighboring channels as a result of
the off-diagonal elements in the M matrix. Due to the potential
for cross-channel leakage, Tikhonov has been primarily used
for the forward modeling case (Crosse et al., 2016a). Despite
the potential problems associated with cross-channel leakage, we

also report results obtained with Tikhonov regularization for the
backward model for completeness.

2.1.6. Elastic Net
Whereas the aforementioned regularization techniques often
show improvements over the ordinary least regression in terms
of generalizability, they tend to preserve all regressors in the
models. This can e.g., result in nonzero filter weights assigned
to irrelevant features. Lasso regression attempts to overcome this
issue by putting an L1-constraint on the regression coefficients
(Tibshirani, 1996). This serves to drive unnecessary coefficients
in the model toward zero. Lasso has been found to perform well
in many scenarios, although it was empirically demonstrated that
it is outperformed by Ridge regression in nonsparse scenarios
with highly correlated predictors (Tibshirani, 1996; Zou and
Hastie, 2005). In such scenarios, Elastic Net regression (Zou
and Hastie, 2005) has been found to improve the predictive
power of Lasso by combining Lasso with the grouping effect
of Ridge regression. The Elastic Net has two hyperparameters:
α controlling the balance between L1 (lasso) and L2 (Ridge)
penalties, and λ controlling the overall penalty strength. For
the purpose of this paper, we use a readily available algorithm,
GLMNET (Qian et al., 2013), for efficiently computing the Elastic
Net problem. This is a coordinate descent algorithm for solving
the following problem:

argmin
W

1

2N
‖Y− XW‖

2
+ λ

[

(1− α) ‖W‖
2/2+ α‖W‖

]

. (13)

We used GLMNET for computing the Elastic Net solution for
α = 0.25, α = 0.50, α = 0.75 and α = 1.00. We will
henceforth refer the last case as the Lasso solution. The GLMNET
has previously been used to estimate spectro-temporal receptive
models (e.g., Willmore et al., 2016).

2.2. Evaluating Performance
2.2.1. Characterizing Model Fit
While the objective function of linear models is minimizing
the mean-squared-error, the goodness of fit is typically analyzed
in terms of Pearson’s correlation between estimated and actual
values for interpretability. The term regression accuracy will
henceforth be used to characterize the goodness of fit for
models trained and evaluated on attended audio features
(rattended). For forward models, regression accuracies were
measured by the Pearson’s correlation between the actual EEG
and the EEG predicted by the attended envelope over the
test folds. This was done separately for each EEG channel.
Similarly, for backward models, regression accuracies were
measured by the correlation between the attended envelope
and its EEG-based reconstruction. The regression accuracies
were computed on test folds, using the nested cross-validation
scheme described in section 2.2.3. This procedure ensures that
the test data is not used during any part of the training process,
including hyperparameter tuning. The regression accuracies
were averaged over all test folds. Other metrics for assessing
the predictive/reconstructive performance of the models have
been previously proposed (Schoppe et al., 2016). However, for
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simplicity and to be consistent with previous studies (Ding and
Simon, 2012a,b; O’Sullivan et al., 2015), this paper characterizes
the goodness of the fit using Pearson’s correlation coefficients.

In the forward case, the response at multiple EEG channels
is predicted by the model. Rather than using multiple correlation
coefficients to characterize the regression accuracy in this case, we
chose to take the average of the correlation coefficients between
the predicted channels and the actual EEG data as a validation
score. We used the same metric over the test set to characterize
the fit of the model. In the backward case, characterizing the fit
is straightforward as the model predicts a single audio envelope
that can be correlated with the attended audio envelope.

2.2.2. Decoding Selective Auditory Attention
Performance was also evaluated on a classification task based on
the forward/backward stimulus-response model. The task of the
classifier was to decide, on the basis of the recorded EEG and
the two simultaneous speech streams presented to the listener
(see section 2.4), to which stream the subject was attending. The
classifier had to make this decision on the basis of a segment of
test data, the duration of which was varied as a parameter (1, 3, 5,
7, 10, 15, 20, and 30 s), which will be referred to as the decoding
segment length. This duration includes the kernel length of the
forward/backward model (500 ms). The position of this segment
of data was stepped in 1s increments throughout the evaluated
data.

As described further in section 2.2.3, a nested cross-
validation loop was used to tune the forward/backward stimulus-
response model regularization parameter (where applicable) on
training/validation data and test the trained classifier on unseen
test data.

The classification relied on correlation coefficients between
EEG and the attended speech, and between the EEG and

the unattended speech. These correlation coefficients were
computed over the aforementioned restricted time window.
These coefficients were used to classify whether the subject was
attending to one stream or the other. For a backward model,
classification hinged merely on which correlation coefficient was
largest (stream A or stream B). Performance of this classifier
was evaluated on the test set. For a forward model, the situation
is more complex because there is one model per EEG channel.
For each of the 66 channels a pair of correlation coefficients
was calculated (one each for unattended and attended streams),
and this set of pairs was used to train a support vector machine
(SVM) classifier with a linear kernel and a soft margin constant
of 1. SVM classifiers were trained on the correlation coefficient
features over the validation set that was used for hyperparameter
tuning. The SVM classifier performance was finally evaluated on
data from the held out test fold.

The classifier score was averaged over all test folds. In every
case, the classifier trained over the entire training/validation set
was tested on a short interval of data, the duration of which was
varied as a parameter, as explained above. An illustration of this
classification task is shown in Figure 1.

Classification performance was characterized for different
decoding segment durations using the raw classification score,
receiver operating characteristic (ROC) curve, and information
transfer rate (ITR). The raw classification score measured what
proportion of trials were classified correctly. It should be noted
that in measuring classification performance, the two classes
were balanced. The ROC curve characterizes the true-positive
and false-positive rates for decoding segment trials where the
classifier discrimination function lies above a given threshold,
as the threshold is varied. The classifier decision function is the
distance between the classified point and the decision boundary,
with the sign indicating the class label. In the case of an SVM

FIGURE 1 | Diagram of classification task. For the forward model, 66 EEG channels are predicted from the speech stream A and B envelopes using the same linear

mapping function, W. After correlation with the 66 channel EEG data, this results in 66 correlation coefficients for each speech stream, which are used as features for

the SVM to distinguish the attended talker. For the backward model, a single attended audio envelope channel is estimated from the EEG data using the linear

mapping function, W. After correlation with the speech stream A and B envelopes, a single correlation coefficient for each speech stream is obtained. Classification of

the attended talker is performed by determining the larger coefficient.
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classifier for the forward model, the decision function is a
weighted sum of the input features (correlations), plus a bias
term. In the case of the argmax function for the backward model,
the decision function is the difference of the correlations between
the reconstructed attended audio and the two speech streams.
Thresholding the classifier discrimination function throughout
the range of values it yields in a dataset affects the number of
correctly and incorrectly classified trials (above threshold) out
of the total number of correctly and incorrectly classified trials,
which are the true and false positive rates, respectively.

The ITR metric corresponds to the number of classifications
that can be reliably made by the system in a given amount of time.
The dependency of ITR on decoding segment length is a tradeoff
between two effects. On one hand, longer decoding segments
allow more reliable decisions. On the other, short durations
allow a larger number of independent decisions. There is thus
an optimal decoding segment duration. A number of metrics to
compute the ITR have been proposed. The most common is the
Wolpaw ITR (Wolpaw and Ramoser, 1998), which is calculated
in bits per minute as:

ITRW = V

[

log2 N + P log2 P + (1− P) log2
1− P

N − 1

]

, (14)

where V is the speed in trials per minute, N is the number of
classes, and P is the classifier accuracy.We also report theNykopp
ITR, which assumes that a classification decision does not need
to be made on every trial (Nykopp, 2001). This can be done
by first calculating the confusion matrix p for classifier outputs
where the classifier decision function magnitude exceeds a given
threshold. Typically the larger the classifier decision function
magnitude, the more accurate the classifier prediction. As such,
raising the threshold on the decision function magnitude results
in more accurate classifications at the expense of foregoing a
classification decision on more trials. To obtain the Nykopp
information transfer rate, the threshold on the classifier decision
function magnitude is adjusted to maximize:

ITRN = V

[

max
p(x)

N
∑

i=1

M
∑

j=1

p(wi)p(ŵj|wi) log2 p(ŵj|wi)

−

M
∑

j=1

p(ŵj) log2 p(ŵj)

]

, (15)

where p(wi) is the probability of the actual class being class i,
p(ŵj|wi) is the probability of the predicted class being class j
given the actual class being class i, and p(ŵj) is the probability
of the predicted class being class j. It is p(ŵj|wi) and p(ŵj) that
are affected by decision function magnitude thresholding as this
limits the number of trials on which a classification decision is
made.

2.2.3. Cross-Validation Procedure
The forward/backward stimulus-response models used in
sections 2.2.1 and 2.2.2 were all trained and tested using cross-
validation with a 10-fold testing procedure involving nested

cross-validation loops. This procedure ensures that the test data
used to evaluate the forward/backward model is not used during
any part of the training process. During this cross-validation
procedure the models were characterized under an N-fold testing
framework where the data was divided into 10-folds. In this
outer cross-validation loop, one fold was held out for testing
(i.e., characterizingmodel fit and classifying the attended stream),
while data from the remaining 9-folds were used to compute
the forward/backward models using an inner cross-validation
loop. This inner cross-validation loop was used to tune the
hyperparameters. The stimulus-response models were in all cases
fit to the envelope of the attended sound streams during the
training phase. The regularization parameter was swept through a
range of values to evaluate its effect on the correlation coefficient
between the model prediction/reconstruction and the actual
measured data for each inner cross-validation fold. For Ridge
and Lasso regularization schemes that allowed a regularization
parameter between zero and infinity, a parameter sweep was
performed between 10−6 and 108 in 54 logarithmically-spaced
steps. This was done using the following formula:

λn = λ0 × 1.848n, n ∈ [0, 53], (16)

where λ0 ≡ 10−6. For LRA, Elastic Net, and Shrinkage schemes,
where the regularization parameter range was between 0 and 1, a
parameter sweep was performed between 10−6 and 1 using a log-
sigmoid transfer function that compresses the values between 0
and 1 using the following iterative formula:

λn+1 = logsig(ln(λn)− ln(1− λn)+ 0.475), n ∈ [0, 40]. (17)

The hyperparameter value that yielded the maximum correlation
between the model prediction/reconstruction and actual
measured data, averaged across all inner cross-validation folds,
was used to evaluate the test set. Using this hyperparameter
value, the weights of the models generated for each inner
cross-validation fold were then averaged to generate an overall
cross-validated model that could then be applied to the test set. It
should be noted that for each test fold, the hyperparameter value
was selected independently.

2.3. Implementation
The implementations of the forward/backward stimulus-
response model algorithms used here are distributed as part of
the Telluride Decoding Toolbox2, specifically in the FindTRF.m
function of that toolbox. Data preprocessing, model training,
and evaluation were implemented with the COCOHA Matlab
Toolbox3.

2.4. Stimuli
A previous report gives a detailed description of the stimuli and
data collection procedure (Fuglsang et al., 2017). This dataset
is available online (Fuglsang et al., 2018). In brief, a set of
speech stimuli were recorded by one male and one female

3http://doi.org/10.5281/zenodo.1198430
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professional Danish speakers speaking different fictional stories.
These recordings were performed in an anechoic chamber at
the Technical University of Denmark (DTU). The recording
sampling rate was 48 kHz. Each recording was divided into 50-s
long segments for a total of 65 segments.

2.5. Experimental Procedure
The 50-s long speech segments were used to generate auditory
scenes comprising a male and a female simultaneously speaking
in anechoic or reverberant rooms. The two concurrent speech
streams were normalized to have similar root-mean square
values. The speech stimuli were delivered to the subjects via ER-
2 insert earphones (Etymotic Research). The speech mixtures
were presented binaurally to the listeners, with the two speech
streams lateralized at respectively −60◦ and +60◦ along the
azimuth direction and a source-receiver distance of 2.4 m.
This was achieved using non-individualized head-related impulse
responses that were simulated using the room acoustic modeling
software, Odeon (version 13.02). Each subject undertook sixty
trials in which they were presented the 50 s-long speechmixtures.
Before each trial, the subjects were cued to listen selectively to one
speech stream and ignore the other. After each trial, the subjects
were asked a comprehension question related to the content of
the attended speech stream. The position of the target streams
as well as the gender of the target speaker were randomized
across trials. Moreover, the type of acoustic room condition
(either anechoic, mildly reverberant or highly reverberant) were
pseudo-randomized over trials. In the analysis, data recorded
from all acoustic conditions were pooled together. The reasons
for doing this were twofold. Firstly, it provides sufficient data for
the stimulus-response analysis. This is particularly important as
insufficient data in worst case can lead to poorer model estimates
(Mirkovic et al., 2016). Secondly, by using this approach we get
a better idea of how well the models will generalize to different
experimental conditions. This is an important practical aspect,
as it gives a better estimate of how well a classifier will perform
in different listening conditions (rather than just focusing on
training on anechoic data and evaluating on anechoic data).

2.6. Data Collection
Electroencephalography (EEG) data were recorded from 19
subjects in an electrically shielded room while they were listening
to the stimuli described above. Data from one subject were
excluded from the analysis due to missing data from several
trials. The data were recorded using a Biosemi Active 2 system,
with a sampling rate of 512 Hz. Sixty-four channel EEG data
(10/20-system) were recorded from the scalp. Six additional
electrodes were used for recording the EEG at the mastoids,
and vertical and horizontal electrooculogram (V and H-EOG).
Approximately 1 h of EEG data was recorded per subject. This
study was carried out in accordance with the recommendations
of “Fundamental and applied hearing research in people with
and without hearing difficulties, Videnskabsetiske komitee.” The
protocol was approved by the Science Ethics Committee for the
Capital Region of Denmark. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

2.7. Data Preprocessing
2.7.1. EEG Data
50 Hz line noise and harmonics in the EEG data were filtered
out by convolution with a 512

50 sample square window (the
non-integer window size was implemented by interpolation)
(de Cheveigné and Arzounian, 2017). The EEG data was then
downsampled to 64 Hz using a resampling method based on
the Fast Fourier Transform (FFT). To downsample, this method
reduces the size of the FFT of the signal by truncating high
frequency components. An inverse FFT is then used to restore
the signal to the time domain. A 1st order detrend was performed
on the EEG data to minimize filter startup artifacts. EEG data
were highpassed at 0.1 Hz using a 4th order forward-pass
Butterworth filter. The group delay was less than 2 samples above
1 Hz.

The joint decorrelation framework (de Cheveigné and Parra,
2014) was employed to remove eye artifacts in an automated
fashion. Let X = [xtj] be a matrix that contains EEG data from
each electrode, j, for each time sample t. In this implementation, a
conservative eye artifact time-point detection was first performed
by computing a Z-score on 1–30 Hz bandpassed VEOG and
HEOG bipolar channels and marking time samples where the
absolute Z-score on either channel exceeded 4. This is similar
to the eyeblink detection method implemented in the FieldTrip
EEG processing toolbox (Oostenveld et al., 2011). This resulted
in a subset of time samples, A, indexing the temporal locations
of each EOG artifact. An artifact covariance matrix RA = XT

AXA

was then computed from the EEG (and EOG) data,XA = [xaj], at
the artifact time samples a ∈ A. After using principal component
analysis to whiten RA and R, the generalized eigenvalue problem
was then solved for RAv = λRv, where R = XTX is the
covariance matrix for the entire EEG dataset. The resulting
eigenvectors V, sorted by eigenvalue, explain the maximum
difference in variance between the artifact and data covariance
matrices. Components corresponding to eigenvalues > 80% of
the maximum eigenvalue were regressed out of the data. In
practice, this 80% threshold is a conservative one, typically
resulting in the removal of one or two components. Lastly, the
EOG channels were removed from the data, which was then
referenced to a common average over all channels.

For the forward/backward model analysis, the EEG was
bandpassed between 1–9 Hz using a windowed sync type I linear-
phase finite-impulse response (FIR) filter, shifted by its group
delay to produce a zero-phase (Widmann et al., 2015) with a
conservatively chosen order of 128 in order to minimize ringing
effects. This frequency range was selected as it has been shown
that cortical responses time-lock to speech envelopes in this
range (O’Sullivan et al., 2015). As part of the cross-validation
procedure, individual EEG channels were finally centered and
standardized (Z-normalized) across the time dimension using the
individual channel mean and standard deviation of the training
data. A kernel length of 0.5 s (33 samples) was used when
computing the forward/backward models.

2.7.2. Audio Features
The forward/backward stimulus-response model estimation
methods used for attention decoding attempt to characterize a
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relationship between features of attended speech streams and
EEG activity. We calculated temporal envelope representations
from each of the clean speech streams (i.e., without
reverberation). We did not try to derive them from the
reverberant or mixed audio data, as explored elsewhere (Aroudi
and Doclo, 2017; Fuglsang et al., 2017). In trials with reverberant
speech mixtures, we used envelope representations of the
underlying clean signals to estimate the models. To derive the
envelope representations, we passed monaural versions of both
attended and unattended speech streams through a 31-band
gammatone filterbank with a frequency range of 80–8,000
Hz (Patterson et al., 1987). The envelope of each filterbank
output was calculated via the analytic signal obtained with the
Hilbert transform, raised to the power of 0.3. This rectification
and compression step was intended to partially mimic that
which is seen in the human auditory system (Plack et al.,
2008). The audio envelope was then calculated by summing the
rectified and compressed filterbank outputs across channels.
The audio envelope data was subsequently downsampled to
the same sampling frequency as the EEG (64 Hz) using an
FFT-based resampling method. The EEG and envelopes were
then temporally aligned using start-trigger events recorded in
the EEG. The envelopes were subsequently lowpassed at 9 Hz.
As part of the cross-validation procedure, audio envelopes were
finally centered and standardized (Z-normalized) across the
time dimension using the mean and standard deviation of the
attended speech envelope in the training data.

2.8. Statistical Analysis
All statistical analyses were calculated usingMATLAB. Repeated-
measures analysis of variance (ANOVA) tests were used to assess
differences between the regression accuracies (section 2.2.1)
and classification performances section 2.2.2 obtained with
the different forward/backward model estimation methods.
Regression accuracies and classification performances for
individual subjects were averaged across folds prior to statistical
comparison.

Given the non-Gaussian distribution of regression accuracies
(range -1 to 1) and classification performance metrics (range 0
to 1), Fisher Z-transforms and arcsine transforms were applied
to these measures, respectively, prior to statistical tests and
correlations.

3. RESULTS

The forward/backward stimulus-response model estimation
methods introduced in section 2 were used to decode
attended speech envelopes from low-frequency EEG activity. The
following sections analyze results with metrics of (1) regression
accuracy, (2) classification accuracy, (3) receiver operating
characteristic (ROC), and (4) information transfer rate (ITR).
Results are shown for each of the regularization schemes, for both
forward and backward models. For each regularization scheme,
the regularization parameter(s) are tuned to maximize regression
accuracy. These parameter values are then used for all regression
and classification comparisons. Regression accuracy compares
different regularization schemes in predicting/reconstructing test

data using the optimal regularization parameter. Classification
accuracy uses the regression accuracy values to classify
the attended/unattended talker and compares the different
regularization schemes in performing this task. The ROC
curve visualizes the relationship between the true and false-
positive rates for different classifier discrimination function
thresholds. Lastly, the ITR describes the impact of decoding
segment length on the bit-rate, for different points on the ROC
curve.

3.1. Regularization Parameter Tuning
The forward/backward model estimation methods, except for the
OLS method, use regularization techniques to prevent overfitting
and therefore require a selection of the appropriate tuning
parameters. Figure A1 in Supplementary Material shows the
correlation coefficient between estimated (validation set) data
and the actual target data (regression accuracy) over a range of
regularization parameters. In general, there is a broad region
where validation regression accuracy is flat, which peaks before
quickly falling off with increasing λ. It is also apparent that the
regression accuracies obtained with backward models generally
are higher than those obtained with forward models.

Figure A2 in Supplementary Material shows regression
accuracies for forward/backward models with Elastic Net
penalties. Unlike the other linear models investigated in the
present study the Elastic Net has two hyperparameters. The
α parameter adjusts the balance between L1 and L2 penalties.
Similar to the other regularization schemes, for each value of
α, there is a broad range of λ values that give good correlation
performance.

3.2. Regression Accuracy
For each regression method (and each value of α for Elastic Net),
the forward/backward stimulus-response model was estimated
and the optimum lambda estimated on the training/validation
set. This optimal model was then applied to the test set, and the
regression accuracy was compared between regression methods.
This is shown in Figure 2. One might expect that the averaging
of prediction-response correlations across channels for the
forward model may have resulted in lower regression accuracies
compared to the backward model. This was demonstrating using
a t-test between the forward and backward models, over all
regularization schemes and subjects [1 = 0.083, T(107) = 17.8,
p = 1.1 × 10−33]. However, when using maximum correlation
across channels, instead of the average, for the forward model,
there was still a significant difference [1 = 0.045, T(107) = 9.8,
p = 9.4× 10−17].

For forward models, a repeated measures ANOVA with
regularization method as the factor found no significant effect of
regularization method on the average of correlation coefficients,
even when using the average of the correlation coefficients of
the 5 channels with the largest correlation coefficients for each
subject. For the backward models, a similar repeated measures
ANOVA, found a significant effect of regularization method on
regression accuracy [F(5, 85) = 78.0, p < 1.0 × 10−16]. Tikhonov
regularization yielded a regression accuracy that was significantly
greater than each of the other schemes, using a Bonferonni
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FIGURE 2 | Test set regression accuracies (rattend ) for each forward/backward model estimation method plotted against runattend. (Left) Results from the forward

modeling approach. Points for each regularization scheme are close to each other, and thus appear to fall on top of each other. (Right) Results from the backward

modeling approach. For each scheme (represented by a color), each point represents average data from one subject. The black line shows rattend = runattend.

correction to account for the family-wise error rate (p < 0.045).
This is contrary to the expectation that Ridge regression would
outperform Tikhonov for the backward model due to the inter-
channel leakage introduced by the Tikhonov kernel. Moreover,
OLS had a regression accuracy that was significantly smaller than
the other schemes (with Bonferonni correction, p < 1.3×10−10).
This highlights the importance of regularization for the backward
models.

For Elastic Net regularization, α values was characterized
at 0.25, 0.5, 0.75, and 1 (Lasso) to sample different degrees
of sparsity/smoothness. The value α = 0 (Ridge) was not
sampled due to sub-optimal solver performance near this point.
A repeated measures ANOVA analysis with factors of α and
subject, using optimal λ values, showed no significant effect of
α for forward models. This means that adjusting the model
sparsity had no significant effect on the regression accuracy.
However, a significant effect of α was found for backward models
[F(3, 51) = 12.4, p = 3.3 × 10−6]. A post-hoc paired t-test with a
Bonferonni correction revealed that the best regression accuracy
was obtained with α = 0.25 (p = 6.2 × 10−4). It was, however,
noted that the average difference between regression accuracies
for α = 0.25 and α = 1 was only 8× 10−4.

To obtain an estimate of the significance of the regression
accuracies presented in Figure 2, we randomized the phase of
the audio data passed to the forward models, and the phase
of the EEG data passed to the backward models. The goal
was to provide an estimate of the correlation noise floor for
the models. The models were those trained on unaltered data
using each of the regularization schemes. Randomizations were
performed 100 times per subject to yield an estimate of the
noise floor regression accuracies. The regression accuracies were
computed the same way as before. A two-sample Kolmogorov-
Smirnov test conducted pairwise showed that, within subjects,
the distribution of noise floor correlations were not significantly
different between regularization schemes, or channels in the
case of the forward model. The within-subject distributions

were thus combined, and a two-sample Kolmogorov-Smirnov
test was performed pairwise between subjects. No significant
difference in distributions was found between subjects. As
such, all distributions were combined. The 95% confidence
interval of the noise floor correlations was [-0.001, 0.001]
for the forward model and [-0.032, 0.032] for the backward
model.

3.3. Classification Accuracy
We further sought to investigate how the different
forward/backward models perform in terms of discriminating
between attended and unattended speech on a limited segment of
data. The duration of the segment was varied as a parameter (1,
3, 5, 7, 10, 15, 20, and 30 s). This was characterized on held-out
test data for each TRF method, using the λ value that yielded the
maximum regression accuracy in the validation data. The results
from this analysis are shown in Figure 3. A 2-way repeated
measures ANOVA with factors of regularization scheme and
model (forward or backward), based on 30 s decoding segment
lengths, found a main significant difference between backward
and forward models [F(1, 17) = 17.3, p = 6.5 × 10−4], with a
significant interaction with the effect of regularization scheme
[F(5, 85) = 208.9, p < 1.0 × 10−16]. A post-hoc paired t-test
showed that backward model performs better than the forward
model for all regularization schemes excluding the case where
ordinary least squares (OLS) was applied [T(17) = 9.35,
p = 4.2 × 10−8]. For OLS, the forward model outperformed the
backward model [T(17) = 7.32, p = 1.2× 10−6].

The interaction of the effect of regularization scheme on
the classification accuracy of forward and backward models
was investigated. A repeated measures ANOVA with factors
of regularization scheme, applied only to the forward TRF
classification accuracy scores, found no significant effect
of regularization scheme on classification accuracy. This
is consistent with the lack of significant differences being
detected in regression accuracies for different forward model
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FIGURE 3 | Using different forward/backward models to decode selective auditory attention from multi-channel EEG data. Classification performance is shown for

different decoding segment lengths (1, 3, 7, 10, 15, 20, 30 s). (Top, left and right) Show the classification performance for forward and backward models respectively.

Performance is shown for the OLS scheme and an average across regularized schemes. Regularized schemes were averaged to concisely illustrate the higher

classification accuracy obtained by these schemes compared to OLS for the backward model, but not the forward model. (Bottom, left and right) Show the

classification performance for 30 s long decoding segments. The different regularization schemes are shown in different colors (see legend). Notched boxplots show

median, and first and third quartiles. Whiskers show 1.5× IQR. Dots indicate outliers. The dashed line shows the above-chance significance threshold at p = 0.05.

regularization schemes, even when limiting the number of
channels to 5 with the highest regression accuracies. In this case,
the SVM classifier can be viewed as a data-driven approach to
select channels that are most relevant to attention classification.
For the backward models, however, a significant effect of
regularization scheme on classification accuracy was found
[F(5, 85) = 229.4, p < 1.0 × 10−16]. A post-hoc paired t-
test analysis with a Bonferonni correction revealed that the
classification accuracy for the OLS scheme was significantly
worse than each of the others (1̄ = −29.1, p < 7.9 × 10−10).
Lasso performed significantly worse than each of the remaining
schemes (1̄ = −1.2, p < 0.040). In short, regularized backward
schemes outperform OLS by a relatively large margin, as seen in
Figure 3.

For Elastic Net regularization, a repeated measures ANOVA
with factors of α and subject did not find any significant effect of
α on classification accuracy for forward or backward models.

In summary, for the forward model there was no difference
between schemes (regularization and OLS), and for the backward
model there was no difference between Ridge, Tikhonov,
Shrinkage and LRA, but all regression methods were better than
OLS.

3.3.1. Relation to Regression Accuracy
The discrimination between attended and unattended speech
streams from EEG data is done in two stages: the computation
of regression accuracies, followed by classification. We sought to

investigate how the classification accuracies obtained with each
model relate to the test set regression accuracies. A plot of this
relationship is shown in Figure 4.

For forward models, the average correlation between
regression accuracy and classification performance across
decoding segments and over all regularization schemes is 0.69
[T(108) = 9.83, p = 2.2 × 10−16]. For backward models, the
correlation between the regression accuracy and classification
performance is 0.89 [T(108) = 22.4, p < 1.0 × 10−16]. This
suggests that classification performance varies with regression
accuracy. However, as was previously described for the backward
models, while Tikhonov regularization achieved a significantly
higher regression accuracy compared to all other methods, it
did not achieve a significantly higher classification performance
compared to Shrinkage, Ridge Regression or LRA. To explain
this, we examined the classification feature in terms of the
difference between class means (r̄attend − r̄unattend) and the

within-class standard deviation (
√

0.5(σ 2
rattend

+ σ 2
runattend

)). Both

of these terms affect the separability between classes.
For backward models, Tikhonov regularization had a

significantly larger difference between class means compared
to Ridge Regression and Shrinkage [Tikhonov>Ridge:
T(17) = 2.62, p = 0.018], [Tikhonov>Shrinkage: T(17) = 2.59,
p = 0.019]. At the same time, the between-class standard
deviation was also significantly larger for Tikhonov
regularization [Tikhonov>F(100,100) = 2.37, p = 1.2 × 10−5],
[Tikhonov>Shrinkage: F(100,100) = 2.37, 1.4 × 10−5]. This
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FIGURE 4 | Relationship between regression accuracy and classification accuracy, using 30 s decoding segment lengths.

suggests that while Tikhonov regularization yields a better
regression accuracy (correlation coefficient), this is offset by
an increased variance in the regression accuracy computed
over short decoding segments, nullifying any potential gains in
classification performance.

3.4. Receiver Operating Characteristic
The receiver operating characteristic (ROC) curve, shown in
Figure 5, shows the relationship between the true-positive rate
and false-positive rate for decoding segment trials where the
classifier discrimination function lies above a given threshold,
as the threshold is varied. The classification accuracy score that
we report corresponds to the point on the ROC that lies along
the line between (0,100) and (100,0). This is also the point at
which the Wolpaw information transfer rate (ITR) is estimated,
whereas the Nykopp ITR estimation finds a point that lies further
left along the ROC curve. The area under the curve is highly
correlated with classification accuracy (over all regularization
schemes and decoding segment lengths, [r = 0.99, T(862) =

219.9, p < 1.0× 10−16]. The Nykopp ITR, on the other hand lies
further left along the ROC curve, demonstrating that by avoiding
the classification of some trials, it is possible to maximize the
ITR.

3.5. Information Transfer Rate
The Wolpaw ITR represents the transfer rate when all decoding
segments are classified, whereas the Nykopp ITR represents the
maximum achievable transfer rate when some classifications are
withheld based on classification discrimination function output.
Figure 6 shows theWolpaw andNykopp ITR values as a function
of decoding segment duration, based on models computed with
Tikhonov regularization. Both the Wolpaw and Nykopp ITR
show an increase followed by a decrease with increasing decoding
segment duration. The plots suggest that for brain computer
interface applications with fixed decoding segment lengths, it
may be advisable to use decoding segments of 3–5 s to maximize

the ITR. While the Nykopp measure is an upper-bound, its
increase over the Wolpaw ITR value [forward model, 5 s: T(17) =

13.1, p = 1.3 × 10−10], [backward model, 5 s: T(17) = 16.7,
p = 2.7 × 10−12] demonstrates that by adjusting the classifier
decision function cutoff, it could be possible to increase the ITR.

4. DISCUSSION

In this study, we systematically investigated the effects of
forward/backward stimulus-response model estimation methods
on the ability to decode and classify attended speech envelopes
from single-trial EEG responses to speech mixtures. The
performance of stimulus/EEG decoders based on forwardmodels
(mapping from attended speech envelopes to multi-channel
EEG responses) and backward models (mapping from EEG
response back to speech envelopes) were compared. It was
found that the backward models outperformed the forward
models in terms of regression and classification accuracies. While
forward models could be expected to have higher regression
accuracies due to the averaging of correlation coefficients
across channels for forward models, the regression accuracy
for the backward model was still higher when compared
to the maximum correlation coefficient across channels for
the forward model. We hypothesize that the models do a
better job of reconstructing audio (the backward model) than
predicting EEG data (the forward model) because the EEG data
contains a lot of information from other brain functions. It
is impossible to predict these signals from the stimulus, hence
the limited success of a forward model, but it is possible to
filter them out, hence the better performance of a backward
model. There are also other fundamental differences between
the models, such as statistical and structural properties of
the regressor variable, and number of parameters estimated.
For instance, the eigenspectrum of the EEG autocovariance
matrix in Figure A3 in Supplementary Material suggests that
the matrix is ill-conditioned, particularly compared to that of
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FIGURE 5 | Average receiver operating characteristic curve, with standard deviation band, for 30 s decoding segments using Tikhonov regularization. Points at which

Wolpaw and Nykopp information transfer rates were evaluated for each subject are shown. Color along curve indicates percentage of decoding segment trials

evaluated to obtain each point. The gray band indicates the standard deviation boundaries of the curve in both x and y directions.

the speech envelope. Different regularization schemes were not
found to significantly affect the forward model classification
accuracies. However, for the backward models, the decoding
schemes that yielded the best classification accuracy were
Ridge Regression, LRA, Shrinkage and Tikhonov. Lasso had a
lower classification accuracy by a small but significant margin.
Classification accuracy increased monotonically as a function
of duration, reflecting the greater amount of discriminative
information available in longer segments. ITR however peaked at
an intermediate segment duration, reflecting the tradeoff between
the accuracy of individual classification judgments (greater at
long durations) and number of judgments (greater at short
durations). The optimum was around 3–5 s.

For the analysis, we used different linear approaches to decode

selective auditory attention from stimulus and EEG data. These

analyses all relied on the explicit assumption that the human
cortical activity selectively tracks attended and unattended speech
envelopes. To fit the models, we made a number of choices based
on common practices in literature, and with the goal of being

able to compare forward/backward models and regularization
schemes. For example, a 500 ms kernel was used as was done
by others (Fuglsang et al., 2017). While shorter kernels have

been explored as well (O’Sullivan et al., 2015), a longer one tests
the ability of the model estimation method to handle a larger
dimensionality and allows for a more flexible stimulus-response
modeling capturing both early and late attentional modulations
of the neural response. Additionally, we chose to focus on 1–
9 Hz EEG activity as the attentional modulation of EEG data
has been found prominent in this range. It is likely that other
neural frequency bands robustly track attended speech (e.g., high
gamma power Pasley et al., 2012) and that the neural decoders
potentially could benefit from having access to other neural
frequency bands. This is, however, outside the scope of this paper.

4.1. Decoding Selective Auditory Attention
With Forward and Backward Models
The forward models performed significantly worse than the
backward models in terms of classification accuracies. Single-
trial scalp EEG signals are inherently noisy, in part because
activity picked up by each electrode reflects a superposition
of activity from signals that are not related to the selective
speech processing (Blankertz et al., 2011). We refer here to any
aspects of the EEG signals that systematically synchronize with
the attended speech streams as target signals and anything that
does not as noise. To improve the signal-to noise ratio one
can efficiently use spatio-temporal filtering techniques. This in
part relates to the fact that stimulus-irrelevant neural activity
tends to be spatially correlated across electrodes. The spatio-
temporal backward models implicitly exploit these redundancies
to effectively filter out noise and improve signal-to-noise-ratio.
This makes them fairly robust to spatially correlated artifact
activity (e.g., electro-ocular and muscle artifacts) when trained
on data from a large number of electrodes. This is also reflected
in the high classification accuracies that were obtained with
the backward models. However, for the relatively high number
of electrodes used in this study, it was found that the spatio-
temporal reconstruction filters were effective only when properly
regularized.

The forward models, on the other hand, attempt to predict
the neural responses of each electrode in a mass-univariate
approach. These models do not, therefore, explicitly use cross-
channel information to regress out stimulus-irrelevant activity.
The relative contribution of the individual channels to the
classification accuracies were instead found via an SVM trained
on correlation coefficients computed per channel, over short time
segments. In short, backward models remove spatial information
prior to classification when regressing out non-stimulus-related
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FIGURE 6 | Wolpaw and Nykopp information transfer rates (ITR) as a function of decoding segment duration for the forward and backward models, using Tikhonov

regularization. Notched boxplots show median, and first and third quartiles. Whiskers show 1.5× IQR. Dots indicate outliers.

activity, whereas forward models preserve this information, but
do not regress out non-stimulus-related activity. It can therefore
be beneficial to apply dimensionality reduction techniques [e.g.,
independent component analysis (Bell and Sejnowski, 1995) or
joint decorrelation (de Cheveigné and Parra, 2014)] to represent
the EEG data as a linear combination of fewer latent components
prior to fitting the forward models. Alternatively, canonical
component analysis can be used to jointly derive spatio-temporal
filters for both audio and EEG such that the correlation between
the filtered data is maximized (de Cheveigné et al., 2018).

4.1.1. Regularization
Each regularization scheme makes certain assumptions and
simplifications that are therefore adopted by studies employing
them. Because these methods have not been previously evaluated
side by side, it is unknown how valid these assumptions are.

While no regularization (OLS) was found to work well for
forward models in producing classification accuracies roughly
in line with regularized models, this method performs relatively
poorly when applied to backward models. This is likely reflective
of the higher dimensional kernel required for the backward
problem. For comparison, a forward model had 33 parameters
(per channel) that needed to be fit, whereas a backward model
had 2,178 parameters.

We generally found that the reconstruction accuracies (rattend)
plateaued over a large range of λ values for linear models
(Figure A1).

Elastic net regularization permits the adjustment of the
balance between L1 and L2 regularization via the α parameter.
For the backward model, it was shown that a smaller α

value improved the correlation between the reconstructed and
attended audio stream by only a narrow margin.

The α value had no significant impact on classification
accuracy for either forward or backward models. As such, the
higher classification performance of Ridge Regression (α = 0),

compared to Lasso (α = 1) may be a result of differences
between the closed form solution used for Ridge Regression
and the coordinate descent solution used for the Elastic Net, as
well as between the solvers themselves (MATLAB’s mldivide vs.
GLMNET, Qian et al., 2013).

Another coordinate descent method, known as boosting, has
been used in several studies (David et al., 2007; Calabrese et al.,
2011; Thorson et al., 2015). It has been shown that boosting
promotes sparse solutions in the context of spectro-temporal
receptive fields with single-unit recordings (David et al., 2007).
This method was not explored in the present study because
boosting tends to be computationally intractable for backward
models due to the high number of parameters, and because it
involves a large set of hyperparameters. This makes a direct
comparison of the regularization methods difficult. Instead we
used the Elastic Net algorithm to investigate how the stimulus-
response models could benefit from sparsity.

For the forward model, all regularization schemes yielded
regression and classification accuracies that were not significantly
different from each other. For the backward model, Tikhonov
regularization yielded the best regression accuracy, despite the
fact that cross-channel leakage may have lead to a suboptimal
solution. However, it was found that the improved regression
accuracy did not lead to a better classification accuracy compared
to other regression schemes with closed-form solutions (i.e.,
Ridge, Shrinkage, and LRA) due to an associated increased
variance in the correlation coefficient computed over short
decoding segment lengths. It has been reported that, in practice,
the Ridge Regression approach appears to perform better than
LRA (Vajargah, 2013); however, no significant difference was
found in the present study. LRA removes lower variance
components after the eigendecomposition of XTX, essentially
performing a hard-threshold. In contrast, Ridge Regression
is a smooth down-weighting of lower-variance components
(Blankertz et al., 2011).
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4.2. Realtime Performance
The information transfer rate results provide insight into how
classification performance can be optimized. It is worth noting
that the ITR measures represent particular points along the ROC
curve, as is illustrated in Figure 5. For a binary classification
problem, with balanced classes, the Wolpaw ITR corresponds
to the point on the ROC curve along the line connecting the
corners of the plot at coordinates (100,0) and (0,100). The
Nykopp ITR, on the other hand corresponds to the point that
maximizes the ITR, essentially trading the number of classified
samples for increased classification accuracy. In practice, other
considerations besides ITR can influence the choice of the point
on the ROC. For instance, if there is a high penalty on incorrect
classifications, then the classifier threshold may be adjusted to
operate at another point on the ROC curve. In short, the ROC
and ITR are useful tools in identifying a suitable balance between
sensitivity and specificity.

The ITR results in the present study suggest a 3–5 s decoding
segment length to achieve the maximum bit-rate. It should be
noted that this assumes that switches in attention can occur
frequently, on the order of the decoding segment length, such as
in a real-world cognitive control setting where system response
latency is an important constraint. In cases, where switches in
attention are known to be sparse a priori, it may instead be more
desirable to increase decoding segment length and sacrifice bit-
rate to put more emphasis on accuracy, since the loss in bit rate
due to long decoding segments is only evident during attention
switches. Such an approach was taken by O’Sullivan et al. (2017),
where the theoretical performance of a realtime backward model
decoding systemwas characterized for switches in attention every
60 s. In that study, a decoding segment length between 15 and
20 s was reported as optimal to achieve the best speed-accuracy
tradeoff.

4.3. Summary
There are many methods that can be used to compute
forward/backward stimulus-response models. The present study
uses a baseline dataset and procedures for the evaluation of
these methods. In consideration of the multiple applications
in which forward/backward models are used, primarily dealing

with reconstruction accuracies or classification performance,
this paper considered multiple metrics of performance. By

characterizing the regularization and performance of the model
estimation methods, and the relationship between performance
metrics, a more complete understanding of the validity of the
assumptions underlying each method is provided, as well as
the impact of the assumptions on the end result. While these
experiments were done with EEG data, we expect that the results
apply equally to magnetoencephalography (MEG) data. The key
findings from this study were (1) the importance of regularization
for the backward model, (2) the superior performance of
Tikhonov regularization in achieving higher regression accuracy
although this does not necessarily entail superior classification
performance, and (3) optimal ITR can be achieved in the 3–5
s range and by adjusting the classifier discrimination function
threshold.
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Humans are able to identify and track a target speaker amid a cacophony of acoustic

interference, an ability which is often referred to as the cocktail party phenomenon.

Results from several decades of studying this phenomenon have culminated in recent

years in various promising attempts to decode the attentional state of a listener in

a competing-speaker environment from non-invasive neuroimaging recordings such

as magnetoencephalography (MEG) and electroencephalography (EEG). To this end,

most existing approaches compute correlation-based measures by either regressing the

features of each speech stream to the M/EEG channels (the decoding approach) or vice

versa (the encoding approach). To produce robust results, these procedures require

multiple trials for training purposes. Also, their decoding accuracy drops significantly

when operating at high temporal resolutions. Thus, they are not well-suited for emerging

real-time applications such as smart hearing aid devices or brain-computer interface

systems, where training data might be limited and high temporal resolutions are desired.

In this paper, we close this gap by developing an algorithmic pipeline for real-time

decoding of the attentional state. Our proposed framework consists of three main

modules: (1) Real-time and robust estimation of encoding or decoding coefficients,

achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional

state, and thereby generalizing the widely-used correlation-based measures thereof, and

(3) Devising a near real-time state-space estimator that translates the noisy and variable

attention markers to robust and statistically interpretable estimates of the attentional

state with minimal delay. Our proposed algorithms integrate various techniques

including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward

splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the

performance of our proposed framework using comprehensive simulations as well as

application to experimentally acquired M/EEG data. Our results reveal that the proposed

real-time algorithms perform nearly as accurately as the existing state-of-the-art offline

techniques, while providing a significant degree of adaptivity, statistical robustness, and

computational savings.
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1. INTRODUCTION

The ability to select a single speaker in an auditory scene,
consisting of multiple competing speakers, and maintain
attention to that speaker is one of the hallmarks of human
brain function. This phenomenon has been referred to as the
cocktail party effect (Brungart, 2001; Haykin and Chen, 2005;
McDermott, 2009). The mechanisms underlying the real-time
process by which the brain segregates multiple sources in a
cocktail party setting, have been the topic of active research for
decades (Cherry, 1953; Middlebrooks et al., 2017). Although the
details of these mechanisms are for the most part unknown,
various studies have pointed to the role of specific neural
processes involved in this function. As the acoustic signals
propagate through the auditory pathway, they are decomposed
into spectrotemporal features at different stages, and a rich
representation of the complex auditory environment reaches the
auditory cortex. It has been hypothesized that the perception
of an auditory object is the result of adaptive binding as well
as discounting of these features (Bregman, 1994; Griffiths and
Warren, 2004; Fishman and Steinschneider, 2010; Shamma et al.,
2011).

From a computational modeling perspective, there have been
several attempts at designing so-called “attention decoders,”
where the goal is to reliably decode the attentional focus of
a listener in a multi-speaker environment using non-invasive
neuroimaging techniques like electroencephalography (EEG)
(Power et al., 2012; Mirkovic et al., 2015; O’Sullivan et al.,
2015; Zink et al., 2017) and magnetoencephalography (MEG)
(Ding and Simon, 2012a,b; Akram et al., 2014, 2016, 2017).
These methods are typically based on reverse correlation
or estimating linear encoding/decoding models using off-line
regression techniques, and thereby detecting specific lags in the
model coefficients that are modulated by the attentional state
(Kaya and Elhilali, 2017). For instance, encoding coefficients
comprise salient peaks at a typical lag of∼100ms forMEG (Ding
and Simon, 2012a), and envelope reconstruction performance is
optimal at a lag of∼200ms for EEG (O’Sullivan et al., 2015).

Although the foregoing approaches have proven successful in
reliable attention decoding, they have two major limitations that
make them less appealing for emerging real-time applications
such as Brain-Computer Interface (BCI) systems and smart
hearing aids. First, the temporal resolution of existing approaches
for reliable attention decoding is on the order of ∼ 10 s, and
their decoding accuracy drops significantly when operating at
temporal resolutions of ∼ 1 s, i.e., the time scale at which
humans are able to switch attention from one speaker to
another (Zink et al., 2016, 2017). Second, approaches based on
linear regression (e.g., reverse correlation) need large training
datasets, often from multiple subjects and trials, to estimate
the decoder/encoder reliably. Access to such training data is
only possible through repeated calibration stages, which may
not always be possible in real-time applications with potential
variations in recording settings. While recent results (Akram
et al., 2014, 2016) address the first shortcoming by employing
state-space models and thereby producing robust estimates of the
attentional state from limited data at high temporal resolutions,

they are not yet suitable for real-time applications as they operate
in the so-called “batch-mode” regime, i.e., they require the entire
data from a trial at once in order to estimate the attentional
state.

In this paper, we close this gap by designing a modular
framework for real-time attention decoding from non-invasive
M/EEG recordings that overcomes the aforementioned
limitations using techniques from Bayesian filtering. Our
proposed framework includes three main modules. The
first module pertains to estimating dynamic models of
decoding/encoding in real-time. To this end, we use the
forgetting factor mechanism of the Recursive Least Squares
(RLS) algorithm together with the ℓ1 regularization penalty
from Lasso to capture the dynamics in the data while preventing
overfitting (Sheikhattar et al., 2015a; Akram et al., 2017).
The real-time inference is then efficiently carried out using
a Forward-Backward Splitting (FBS) procedure (Combettes
and Pesquet, 2011). In the second module, we extract an
attention-modulated feature, which we refer to as “attention
marker,” as a function of the M/EEG recordings, the estimated
encoding/decoding coefficients, and the auditory stimuli. For
instance, the attention marker can be a correlation-based
measure or the magnitude of certain peaks in the model
coefficients. We carefully design the attention marker features
to capture the attention modulation and thereby maximally
separate the contributions of the attended and unattended
speakers in the neural response in both MEG and EEG
applications.

The extracted features are then passed to a novel state-
space estimator in the third module, and thereby are
translated into probabilistic, robust, and dynamic measures
of the attentional state, which can be used for soft-decision
making in real-time applications. The state-space estimator
is based on Bayesian fixed-lag smoothing, and operates
in near real-time with controllable delay. The fixed-lag
design creates a trade-off between real-time operation
and robustness to stochastic fluctuations. In addition, we
modify the Expectation-Maximization algorithm and the
nonlinear filtering and smoothing techniques of Akram et al.
(2016) for real-time implementation. Compared to existing
techniques, our algorithms require minimal supervised data for
initialization and tuning, which makes them more suitable for
the applications of real-time attention decoding with limited
training data. In order to validate our real-time attention
decoding algorithms, we apply them to both simulated and
experimentally recorded EEG and MEG data in dual-speaker
environments. Our results suggest that the performance of
our proposed framework is comparable to the state-of-the-art
results of Mirkovic et al. (2015), O’Sullivan et al. (2015), and
Akram et al. (2016), while operating in near real-time with ∼2 s
delay.

The rest of the paper is organized as follows: In section 2,
we develop the three main modules in our proposed framework
as well as the corresponding estimation algorithms. We present
the application of our framework to both synthetic and
experimentally recorded M/EEG data in section 3, followed by
discussion and concluding remarks in section 4.
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FIGURE 1 | A schematic depiction of our proposed framework for real-time

tracking of selective auditory attention from M/EEG.

2. MATERIAL AND METHODS

Figure 1 summarizes our proposed framework for real-
time tracking of selective auditory attention from M/EEG.
In the Dynamic Encoder/Decoder Estimation module, the
encoding/decoding models are fit to neural data in real-time. The
AttentionMarkermodule uses the estimatedmodel coefficients as
well as the recorded data to compute a feature that is modulated
by the instantaneous attentional state. Finally, in the State-Space
Model module, the foregoing features are refined through a
linear state-space model with nonlinear observations, resulting
in robust and dynamic estimates of the attentional state.

In section 2.1, we formally define the dynamic encoding and
decoding models, and develop low-complexity and real-time
techniques for their estimation. This is followed by section 2.2, in
which we define suitable attention markers for M/EEG inspired
by existing literature. In section 2.3, we propose a state-space
model that processes the extracted attention markers in order
to produce near real-time estimates of the attentional state with
minimal delay.

2.1. Dynamic Encoding and Decoding
Models
The role of a neural encoding model is to map the stimulus to
the neural response. Inspired by existing literature on attention
decoding (Ding and Simon, 2012a; O’Sullivan et al., 2015;
Akram et al., 2016), we take the speech envelopes as covariates
representing the stimuli. The neural response is manifested in
the M/EEG recordings. Encoding models can be used to predict
the neural response from the stimulus. In contrast, in a neural
decoding model, the goal is to express the stimulus as a function
of the neural response. Inspired by previous studies, we consider
linear encoding and decoding models in this work.

The encoding and decoding models can be cast as
mathematically dual formulations. In a dual-speaker

environment, let s
(1)
t and s

(2)
t denote the speech envelopes

(in logarithmic scale), corresponding to speakers 1 and 2,
respectively, for t = 1, 2, . . . ,T. Also, let ect denote the neural
response recorded at time t and channel c, for c = 1, 2, . . . ,C.
Throughout the paper, we assume the same sampling frequency

fs for both the M/EEG channels and the envelopes. Consider
consecutive and non-overlapping windows of length W, and

defineK :=

⌊

T
W

⌋

. We consider piece-wise constant dynamics for

the encoding and decoding coefficients, in which the coefficients
assume to be constant over each window. Note that we define
the temporal resolution in an attention decoding procedure
as the duration of a data segment to which a measure of the
attentional state is attributed. Therefore, W

fs
determines the

temporal resolution in our attention decoding framework.

In the encoding setting, we define the vector s
(i)
t :=

[s
(i)
t , s

(i)
t−1, . . . , s

(i)
t−Le

]⊤ for i = 1, 2, where Le is the total lag
considered in the model. Also, let Et denote a generic linear
combination of e1t , e

2
t , . . . , e

C
t with some fixed set of weights.

These weights can be set to select a single channel, i.e., Et =

ect for some c, or they can be pre-estimated from training
data so that Et represents the dominant auditory component
of the neural response (de Cheveigné and Simon, 2008). The

encoding coefficients then relate s
(i)
t to Et . In the decoding

setting, we define the vector et := [e1t , e
2
t , . . . , e

C
t ]

⊤ and E t :=
[

1, e⊤t , e
⊤
t+1, . . . , e

⊤
t+Ld

]⊤

, where Ld is the total lag in the decoding

model and determines the extent of future neural responses
affected by the current stimuli. The decoding coefficients then

relate E t to s
(i)
t .

Our goal is to recursively estimate the encoding/decoding
coefficients in a real-time fashion as the new data samples become
available. In addtion, we aim to simultaneously induce adaptivity
of the parameter estimates and capture their sparsity. To this end,
we employ the following generic optimization problem:

θ̂k = argmin
θ

k
∑

j=1

λk−j
∥

∥ yj − Xjθ
∥

∥

2

2
+γ ‖ θ ‖1 , k = 1, 2, . . . ,K

(1)
where yj and Xj are respectively the vector of response variables
and the matrix of covariates pertinent to window j, θ is the
parameter vector, λ ∈ (0, 1] is the forgetting factor, and γ is a
regularization parameter. The optimization problem of Equation
1 is a modified version of the LASSO problem (Tibshirani, 1996).

For the encoding problem, we define

yk :=
[

E(k−1)W+1,E(k−1)W+2, . . . ,EkW
]⊤

and X
(i)
k

:=
[

s
(i)
(k−1)W+1

, s
(i)
(k−1)W+2

, . . . , s
(i)
kW

]⊤

, for k = 1, 2, . . . ,K and

i = 1, 2. Therefore, the full encoding covariate matrix at

the kth window is defined as Xk :=

[

1W×1,X
(1)
k
,X

(2)
k

]

,

where the all-ones vector 1W×1 corresponds to the
regression intercept. In the decoding problem, we define

yk = s
(i)
k

:=

[

s
(i)
(k−1)W+1

, s
(i)
(k−1)W+2

, . . . , s
(i)
kW

]⊤

, where i ∈ {1, 2}.

Also, the full decoding covariate matrix at the kth window is

Xk :=
[

E (k−1)W+1,E (k−1)W+1, . . . ,EkW

]⊤
, for k = 1, 2, . . . ,K.

The optimization problem of Equation (1) has a useful
Bayesian interpretation: if the observation noise were i.i.d.
Gaussian, and the parameters were exponentially distributed,
it is akin to the maximum a posteriori (MAP) estimate
of the parameters. The quadratic terms correspond to the
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exponentially-weighted log-likelihood of the observations up to
window k, and the ℓ1-norm corresponds to the log-density of
an independent exponential prior on the elements of θ . The
exponential prior serves as an effective regularization to promote

sparsity of the estimate θ̂k. Note that we have θ ∈ R
1+2(Le+1) for

the encoding model and θ ∈ R
1+C(Ld+1) for the decoding model

in (1).

Remark 1. The hyperparameter λ provides a tradeoff between
the adaptivity and the robustness of estimated coefficients, and
it can be determined based on the inherent dynamics in the data.
The case of λ = 1 corresponds to the natural data log-likelihood,
i.e., the batch-mode parameter estimates. It has been shown that
W
1−λ

can serve as the effective number of recent samples used to

calculate θ̂k in (1) (Sheikhattar et al., 2015b). The parameter W
1−λ

can also be viewed as the dynamic integration time: it needs to
be chosen long enough so that the estimation is stable, but also
short enough to be able to capture the dynamics of neural process
involved in switching attention. The hyperparameter γ controls
the tradeoff between the Maximum Likelihood (ML) fit and the
sparsity of estimated coefficients, and it is usually determined
through cross-validation.

Remark 2. In the decoding problem, Equation (1) is solved
separately at each window for each speech envelope, resulting
in a set of decoding coefficients per speaker. In the encoding
setting, we combine the stimuli as explained and solve Equation
(1) once at each window to obtain both of the encoder estimates.
If the encoding/decoding coefficients are expected to be sparse
in a basis represented by the columns of a matrix G, such as
the Haar or Gabor bases, we can replace Xj in (1) by XjG,

for j = 1, 2, . . . , k, and solve for θ̂k as before. Then, the

final encoding/decoding coefficients are given by Gθ̂k. In the
context of encoding models, the coefficients are referred to as
the Temporal Response Function (TRF) (Ding and Simon, 2012a;
Akram et al., 2017). The TRFs are known to exhibit some degree
of sparsity on a basis consisting of shifted Gaussian kernels (see
Akram et al., 2017 for details).

Remark 3. It is worth discussing the rationale behind the
dynamic updating of the encoding/decoding models, as opposed
to considering fixed canonical encoding/decoding models
common in existing work. First, estimation of the canonical
encoding/decoding models in existing literature requires
large training datasets. In emerging real-time applications of
attention decoding, access to such large supervised training
datasets may not be feasible. In addition, slight changes to
the electrode placement may require recalibration of the
canonical encoders/decoders. Thus, by dynamic updating of the
encoding/decoding models we aim at minimizing the amount of
supervised training data, which can be a bottleneck in emerging
real-time applications.

Second, recent results have shown that dynamics of the
encoding/decoding models indeed carry important information
regarding the underlying attention process (Ding and Simon,
2012a,b; Power et al., 2012; Zion Golumbic et al., 2013; Akram
et al., 2017). Therefore, dynamic estimates of these models can
be beneficial in attention decoding. In order to mitigate the
variability of our dynamic estimates of the encoding/decoding

models, we have employed the ℓ1-regularized least squares
estimation framework with a forgetting factor.

In summary, we argue that the dynamic framework used
here is more preferable for real-time applications with limited
training data and in the presence of attention dynamics. It is
worth noting that our modular framework can still be used if the
encoder/decoder models are pre-estimated and fixed. We refer
the reader to section 2.3 and Remark 6 for more details.

Remark 4. Throughout the paper, we assume that the envelopes
of the clean speech are available. Given that this assumption
does not hold in practical scenarios, recent algorithms on the
extraction of speech envelopes from acoustic mixtures (Biesmans
et al., 2015, 2017; Aroudi et al., 2016; O’Sullivan et al., 2017;
Van Eyndhoven et al., 2017) can be added as a pre-processing
module to our framework.

Among the many existing algorithms for solving the modified
LASSO problem of Equation (1), we choose the Forward-
Backward Splitting (FBS) algorithm (Combettes and Pesquet,
2011), also known as the proximal gradient method. When
coupled with proper step-size adjustment methods, FBS is well-

suited for real-time and low-complexity updates of θ̂k at each
window. In this work, we have used the FASTA software package
(Goldstein et al., 2014) available online (Goldstein et al., 2015),
which has built-in features for all the FBS stepsize adjustment
methods. A detailed overview of the FBS algorithm and its
properties is given in section 1 of the Supplementary Material.

2.2. Attention Markers
We define the attention marker as a mapping function from the
estimated encoding/decoding coefficients for each speaker as well
as the data in each window to positive real numbers. To be more
precise, at window k and for speaker i, in the context of encoding
models, the attention marker takes the speaker’s estimated

encoding coefficients θ̂
(i)

k , the speaker’s covariate matrix X
(i)
k
,

and the M/EEG responses yk as inputs; similarly, in the context
of decoding models, the attention marker takes the speaker’s

estimated decoding coefficients θ̂
(i)

k , the M/EEG covariate matrix

Xk, and the speaker’s speech envelope vector y
(i)
k
as inputs. In both

cases, the attention marker outputs a positive real number, which

we denote by m
(i)
k

henceforth, for i = 1, 2 and k = 1, 2, . . . ,K.
Thus, in the modular design of Figure 1, at each window k, the

two outputsm
(1)
k

andm
(2)
k

are passed from the Attention Marker
module to the State-Space Model module as measures of the
attentional state at window k.

In O’Sullivan et al. (2015), a correlation-based measure has
been adopted in the decoding model to classify the attended
and the unattended speeches in a dual-speaker environment.
The approach in O’Sullivan et al. (2015) is based on estimating
an attended (resp. unattended) decoder from the training
data to reconstruct the attended (resp. unattended) speech
envelope from EEG for each trial. Then, the correlation of this
reconstructed envelope with each of the two speech envelopes is
computed, and the speaker with the larger correlation coefficient
is deemed as the attended (resp. unattended) speaker. This
method cannot be directly applied to the real-time setting, since
the lack of abundant training data hinders reliable estimation
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of these decoders. However, assuming that the auditory M/EEG
response is more influenced by the attended speaker than the
unattended one, we can expect that the decoder corresponding
to the attended speaker exhibits a higher performance in
reconstructing the speech envelope it has been trained on. This
can be inferred from the findings in O’Sullivan et al. (2015),
where a trained attended decoder results in 10% more attention
decoding accuracy than a trained unattended decoder, as well as
the findings in Ding and Simon (2012a). Inspired by these results,
we can define the attention marker in the decoding scenario
as the correlation magnitude between the speech envelope and

its reconstruction by the corresponding decoder, i.e., m
(i)
k

=

f
(

θ̂
(i)

k ,Xk, y
(i)
k

)

: =

∣

∣

∣
corr

(

y
(i)
k
,Xkθ̂

(i)

k

)∣

∣

∣
for i = 1, 2 and k =

1, 2, . . . ,K. As we will demonstrate later in section 3, this
attention marker is suitable for the analysis of EEG recordings.

In the context of cocktail party studies using MEG, it has been
shown that the magnitude of the negative peak in the TRF of the
attended speaker around a lag of 100ms, referred to as the M100
component, is larger than that of the unattended speaker (Ding
and Simon, 2012a; Akram et al., 2016, 2017). Inspired by these
findings, in the encoding scenario applied to MEG data, we can

define the attention marker m
(i)
k

to be the magnitude of the θ̂
(i)

k

coefficients corresponding to the M100 component, for i = 1, 2
and k = 1, 2, . . . ,K.

Due to the inherent uncertainties in the M/EEG recordings,
the limitations of non-invasive neuroimaging in isolating the
relevant neural processes, and the unknown and likely nonlinear
processes involved in auditory attention, the foregoing attention
markers derived from linear models are not readily reliable
indicators of the attentional state. Given ample training data,
nevertheless, these attention markers have been validated using
batch-mode analysis. However, their usage in a real-time setting
at high temporal resolution requires more care, as the limited
data in real-time applications and computation over small
windows addmore sources of uncertainty to the foregoing list. To
address this issue, a state-space model is required in the real-time
setting to correct for the uncertainties and stochastic fluctuations
of the attention markers caused by the limited integration time in
real-time application. We will discuss in detail the formulation
and advantages of such a state-space model in the following
subsection.

2.3. State-Space Model
In order to translate the attention markersm

(1)
k

andm
(2)
k
, for k =

1, 2, . . . ,K, into a robust and statistically interpretable measure
of the attentional state, we employ state-space models. Inspired
by the models used in Akram et al. (2016), we design a new
state-space model and a corresponding estimator that operates
in a fixed-lag smoothing fashion, and thereby admits real-time
processing while maintaining the benefits of batch-mode state-
space models. Recall that the index k corresponds to a window
in time ranging from t = (k−1)W + 1 to t = kW; however,
we refer to each index k as an instance when talking about the
state-space model, so as not to conflate it with the sliding window
in the forthcoming treatment.

Figure 2 displays the fixed-lag smoothing design of the state-
space estimator. Suppose that we are at the instance k = k0. We
consider an active sliding window of length KA := KB + KF + 1
as shown in Figure 2, where KF and KB are respectively called
the forward-lag and the backward-lag. In order to carry out the
computations in real-time, we assume all of the attentional state
estimates to be fixed prior to this window and only update our

estimates for the instances within, based on m
(1)
k
’s and m

(2)
k
’s

inside the window. In a fixed-lag framework, at k = k0, the
goal is to provide an estimate of the attentional state at instance
k = k∗, where k∗ = k0 −KF . Thus, when using a decoding
(resp. encoding) model, the built-in attention decoding delay of
our framework is (Ld + KFW)/fs (resp. KFW/fs) seconds. It is
worth noting that in addition to the built-in delay, our attention
decoding results are affected by another source of delay, which
we refer to as the transition delay. The transition delay is due to
the forgetting factor mechanism as well as the smoothing effect
in the state-space estimation, which we will discuss further in
section 3.1. The parameter KF creates a tradeoff between real-
time and robust estimation of the attentional state. For KF = 0,
the estimation is carried out fully in real-time; however, the
estimates lack robustness to the fluctuations of the outputs of
the attention marker block. The backward-lag KB determines
the attention marker samples prior to k∗ that are used in the
inference procedure, and it controls the computational cost of
the state-space model for fixed values of KF . Throughout the
rest of the paper, we use the expression real-time for referring to
algorithms that operate with a fixed forward-lag of KF . We will
discuss specific choices of KF and KB and their implications in
section 3.

Suppose we have a sliding window of length KA where the
instances are indexed by k = 1, 2, . . . ,KA. Inspired by Akram
et al. (2016), we assume a linear state-space model on the logit-
probability of attending to speaker 1. We define the binary
random variable nk = 1 when speaker 1 is attended and nk = 2
when speaker 2 is attended, at instance k. The goal is to obtain
estimates of pk := P (nk=1) together with its confidence intervals
for 1 ≤ k ≤ KA. The state dynamics are given by:































pk = P (nk=1) = 1− P (nk=2) = 1
1+exp(−zk)

zk = c0zk−1 + wk

wk ∼ N (0, ηk)

ηk ∼ Inverse-Gamma (a0, b0)

(2)

FIGURE 2 | The parameters involved in state-space fixed-lag smoothing.
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The dynamics of the main latent variable zk are controlled by
its transition scale c0 and state variance ηk. The hyperparameter
0 ≤ c0 ≤ 1 ensures the stability of the updates for zk. The
state variance ηk is modeled using an Inverse-Gamma conjugate
prior with hyper-parameters a0 and b0. The log-prior of the
Inverse-Gamma density takes the form ln P (ηk) = −(a0 +

1) ln ηk −
b0
ηk

+ C for ηk > 0, where C is a normalization

constant. By choosing a0 greater than and sufficiently close to
2, the variance of the Inverse-Gamma distribution takes large
values and therefore can serve as a non-informative conjugate
prior. Considering the fact that we do not expect the attentional
state to have high fluctuations within a small window of time,
we can further tune the hyperparameters a0 and b0 for the prior
to promote smaller values of ηk’s. This way, we can avoid large
consecutive fluctuations of the zk’s, and consequently the pk’s.

Next, we develop an observation model relating the state

dynamics of Equation (2) to the observations m
(1)
k

and m
(2)
k

for
k = 1, 2, . . . ,KA. To this end, we use the latent variable nk as the
link between the states and observations:

























































m
(i)
k

∣

∣

∣
nk= i ∼ Log-Normal

(

ρ(a),µ(a)
)

m
(i)
k

∣

∣

∣
nk 6= i ∼ Log-Normal

(

ρ(u),µ(u)
) , i = 1, 2

ρ(a) ∼ Gamma
(

α
(a)
0 ,β

(a)
0

)

, µ(a)
∣

∣

∣
ρ(a) ∼ N

(

µ
(a)
0 , ρ(a)

)

ρ(u) ∼ Gamma
(

α
(u)
0 ,β

(u)
0

)

, µ(u)
∣

∣

∣
ρ(u) ∼ N

(

µ
(u)
0 , ρ(u)

)

(3)
When speaker i = 1, 2 is attended to, we use a

Log-Normal distribution on m
(i)
k
’s, with log-density

given by ln P
(

m
(i)
k

∣

∣ nk= i
)

= − lnm
(i)
k

+
1
2 ln ρ(a) −

ρ(a)

2

(

lnm
(i)
k
−µ(a)

)2
+ C(i), whereµ(a) ∈ R, ρ(a) ∈ R>0, and C

(i)

is a normalization constant, for i = 1, 2, and k = 1, 2, . . . ,KA.
Similarly, when speaker i = 1, 2 is not attended to, we use

a Log-Normal distribution on m
(i)
k

with parameters ρ(u) and

µ(u). As mentioned before, choosing an appropriate attention

marker results in a statistical separation between m
(1)
k

and m
(2)
k
,

if only one speaker is attended. The Log-Normal distribution
is a unimodal distribution on R>0 which lets us capture this

concentration in the values of m
(i)
k
’s. In contrast to Akram et al.

(2016), this distribution also leads to closed form update rules,
which significantly reduces computational costs. We have also
imposed conjugate priors on the joint distribution of (ρ,µ)’s,
which factorizes as ln P(ρ,µ) = ln P(ρ) + ln P(µ | ρ). The
hyperparameters α0, β0, and µ0 serve to tune the attended
and the unattended Log-Normal distributions to create
separation between the attended and unattended cases. These
hyperparameters can be determined based on the mean and

variance information of m
(i)
k
’s in a supervised manner, in which

the attended speaker labels are known, while enforcing large
enough variances for the priors not to be too restrictive in
estimating the Log-Normal distribution parameters. As will be
discussed in our simulation and real-data analysis, this tuning

step can be performed using a minimal amount of labeled
data, which is significantly less than those required for reliable
pre-estimation of encoder/decoder coefficients in existing
approaches.

The parameters of the state-space model are therefore

� =

{

z1 :KA
, η1 :KA

, ρ(a),µ(a), ρ(u),µ(u)
}

, which have to be

inferred from m
(1)
1 :KA

and m
(2)
1 :KA

. As mentioned before, our
goal in the fixed-lag smoothing approach is to estimate pk∗ =

1/
(

1+ exp (−zk∗)
)

as well as its confidence intervals in each
window, where k∗ = KA−KF . However, in order to do so in our
model, we perform the inference step over all the parameters in�

and output the estimate of z
k∗

∈ � and its confidence intervals.
The calculation of confidence intervals is discussed in detail at
the end of section 2 of the Supplementary Material. In short, the
density of each zk given the set of observed attention markers,
estimated variances, and estimated Log-Normal distribution
parameters is recursively approximated by a Gaussian density.
Then, the mean of this Gaussian approximation is reported as
the estimated zk and its confidence intervals are determined
based on the corresponding variance. The estimated � would
then serve as the initialization for parameter estimation in the
next window. The parameters in � can be inferred through two
nested EM algorithms as in Akram et al. (2016). In section 2 of
the Supplementary Material, we have given a detailed derivation
of the EM framework and update rules in the real-time setting,
as well as solutions to further reduce the computational costs
thereof. From here on, we refer to the output of the introduced
framework, which operates with the discussed built-in delay, as
the real-time (state-space) estimator. In section 3.1, we compare
the performance of the real-time estimator against that of the
batch-mode (state-space) estimator. We define the batch-mode
estimator as applying the state-space model in Equations (2)
and (3) on all the computed attention markers in a trial at
once, i.e., KA = K, rather than in a fixed-lag sliding window
fashion. In other words, the batch-mode estimator observes all
the attention marker samples in a trial, i.e., m

(i)
k

for i = 1, 2
and k = 1, . . . ,K, and then infers the attention probabilities.
In this sense, it is similar to the state-space estimator used in
Akram et al. (2016). The batch-mode estimator provides a robust
estimate of the attentional state at any instance by having access
to all the future and past attention markers. Thus, it can serve
as a performance benchmark for tuning the fixed-lag sliding
window hyperparameters in the real-time estimator. We will
further discuss this point in section 3.1.4.

Remark 5. The state-space models given in Equations (2) and
(3) have two major differences with the one used in Akram
et al. (2016). First, in Akram et al. (2016), the distribution over
the correlative measure for the unattended speaker is assumed
to be uniform. However, this assumption may not hold for
other attention markers in general. For instance, the M100
magnitude of the TRF estimated from MEG data is a positive
random variable, which is concentrated on higher values for the
attended speaker compared to the unattended speaker. In order
to address this issue, we consider a parametric distribution in
Equation (3) over the attention marker corresponding to the
unattended speaker and infer its parameters from the data. If
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this distribution is indeed uniform and non-informative, the
variance of the unattended distribution, which is estimated from
the data, would be large enough to capture the flatness of the
distribution. Second, the parametrization of the observations
using Log-Normal densities and their corresponding priors
factorized using Gamma and Gaussian priors, admits fast and
closed-form update equations in the real-time setting. As we
have shown in section 2 of the Supplementary Material, these
models also have the advantage of incorporating low-complexity
updates by simplifying the EM procedure. In addition, the Log-
Normal distribution as a generic unimodal distribution allows us
to model a larger class of attention markers.

Remark 6. As mentioned in section 1, one limitation of existing
approaches based on reverse-correlation is that their decoding
accuracy drops significantly when operating at high temporal
resolutions. The major source for this performance deterioration
is the stochastic fluctuations and uncertainties in correlation
values when computed over small windows of length ∼ 1 s.
Therefore, when enough training data is available for reliable
pre-estimation of decoders/encoders, our real-time state-space
module can be added as a complementary final step to the
foregoing approaches in order to correct for the stochastic
fluctuations in the calculated correlation values.

2.4. EEG Recording and Experiment
Specifications
Sixty four-channel EEG was recorded using the actiCHamp
system (Brain Vision LLC, Morrisville, NC, US) and active EEG
electrodes with Cz channel being the reference. The data was
digitized at a 10 kHz sampling frequency. Insert earphones ER-2
(Etymotic Research Inc., Elk Grove Village, IL, US) were used to
deliver sound to the subjects while sitting in a sound-attenuated
booth. The earphones were driven by the clinical audiometer
Piano (Inventis SRL, Padova, Italy), and the volume was adjusted
for every subject’s right and left ears separately until the loudness
in both ears was matched at a comfortably loud listening level.
Three normal-hearing adults participated in the study. The mean
age of subjects was 49.5 years with the standard deviation of 7.18
years. The study included a constant-attention experiment, where
the subjects were asked to sit in front of a computer screen and
restrict motion while any audio was playing. The data used in this
paper corresponds to 3 subjects, 24 trials each.

The stimulus set contained eight story segments, each
approximately 10min long. Four segments were narrated bymale
speaker 1 (M1) and the other four by male speaker 2 (M2). The
stimuli were presented to the subjects in a dichotic fashion, where
the stories read by M1 were played in the left ear, and stories
read by M2 were played in the right ear for all the subjects. Each
subject listened to 24 trials of the dichotic stimulus. Each trial
had a duration of approximately 1 min, and for each subject,
no storyline was repeated in more than one trial. During each
trial, the participants were instructed to look at an arrow at the
center of the screen, which determined whether to attend to
the right-ear story or to the left one. The arrow remained fixed
for the duration of each trial, making it a constant-attention
experiment. At the end of each trial, twomultiple choice semantic

questions about the attended story were displayed on the screen
to keep the subjects alert. The responses of the subjects as well
as their reaction time were recorded as a behavioral measure
of the subjects’ level of attention, and above eighty percent of
the questions were answered correctly by each subject. Breaks
and snacks were given between stories if requested. All the
audio recordings, corresponding questions, and transcripts were
obtained from a collection of stories recorded at Hafter Auditory
Perception Lab at UC Berkeley.

2.5. MEG Recording and Experiment
Specifications
MEG signals were recorded with a sampling rate of 1 kHz
using a 160-channel whole-head system (Kanazawa Institute
of Technology, Kanazawa, Japan) in a dimly lit magnetically
shielded room (Vacuumschmelze GmbH & Co. KG, Hanau,
Germany). Detection coils were arranged in a uniform array on a
helmet-shaped surface on the bottom of the dewar with 25mm
between the centers of two adjacent 15.5mm diameter coils.
The sensors are first-order axial gradiometers with a baseline of

50mm, resulting in field sensitivities of 5 fT
√
Hz

or better in the

white noise region.
The two speech signals were presented at 65 dB SPL using the

software package Presentation (Neurobehavioral Systems Inc.,
Berkeley, CA, US). The stimuli were delivered to the subjects’ ears
with 50� sound tubing (E-A-RTONE 3A; Etymotic Research),
attached to E-A-RLINK foam plugs inserted into the ear canal.
Also, the whole acoustic delivery system was equalized to give
an approximately flat transfer function from 40 to 3, 000Hz. A
200Hz low-pass filter and a notch filter at 60Hz were applied
to the magnetic signal in an online fashion for noise removal.
Three of the 160 channels are magnetometers separated from the
others and used as reference channels. Finally, to quantify the
head movement, five electromagnetic coils were used to measure
each subject’s head position inside the MEGmachine once before
and once after the experiment.

Nine normal-hearing, right-handed young adults (ages
between 20 and 31) participated in this study. The study includes
two sets of experiments: the constant-attention experiment and
the attention-switch experiment, in each of which six subjects
participated. Three subjects took part in both of the experiments.
The experimental procedure were approved by the University
of Maryland Institutional Review Board (IRB), and written
informed consent was obtained from each subject before the
experiment.

The stimuli included four non-overlapping segments from the
book A Child’s History of England by Charles Dickens. Two of the
segments were narrated by a man and the other two by a woman.
Three different mixtures, each 60 s long, were generated and used
in the experiments to prevent reduction in the attentional focus
of the subjects. Each mixture included a segment narrated by
the male speaker and one narrated the the female speaker. In all
trials, the stimuli were delivered diotically to both ears using tube
phones inserted into the ear canals at a level of approximately
65 dB SPL. The constant-attention experiment consisted of two
conditions: (1) attending to the male speaker in the first mixture,
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(2) attending to the female speaker in the second mixture. In the
attention-switch experiment, subjects were instructed to focus
on the female speaker in the first 28 s of the trial, switch their
attention to the male speaker after hearing a 2 s pause (28th to
30th s), and maintain their focus on the latter speaker through
the end of the trial. Each mixture was repeated three times
in the experiments, resulting in six trials per speaker for the
constant-attention experiment and three trials per speaker for
the attention-switch experiment. After the presentation of each
mixture, subjects answered comprehensive questions related to
the segment they were instructed to focus on, as a way to keep
them motivated to attend to the target speaker. Eighty percent of
the questions were answered correctly on average. Furthermore, a
preliminary experiment for each of the nine participating subjects
was performed prior to the main experiments. In this study, the
subjects listened to a single speech stream, first segment in the
stimuli set narrated by the male speaker, for three trials each
60 s long. The MEG recordings from the preliminary experiment
were used to calculate the subject-specific linear combination
of MEG channels which forms the auditory component of the
response, as will be explained next. Note that for each subject, all
the recordings were performed in a single session resulting in a
minimal change of the subject’s head position with respect to the
MEG sensors.

3. RESULTS

In this section, we apply our real-time attention decoding
framework to synthetic data as well as M/EEG recordings.
Section 3.1 includes the simulation results, and Sections 3.2 and
3.3 demonstrate the results for the analysis of EEG and MEG
recordings, respectively.

3.1. Simulations
In order to validate our proposed framework, we perform two
sets of simulations. The first simulation pertains to our EEG
analysis and employs a decoding model, which we describe below
in full detail. The second simulation, for our MEG analysis using
an encoding model, is deferred to the Supplementary Material
section 4, in the interest of space.

3.1.1. Simulation Settings
In order to simulate EEG data under a dual-speaker condition,
we use the following generative model:

et = w
(1)
t

(

s
(1)
t ∗ ht

)

+ w
(2)
t

(

s
(2)
t ∗ ht

)

+ µ + ut (4)

where s
(1)
t and s

(2)
t are respectively the speech envelopes of

speakers 1 and 2 at time t; the output et is the simulated neural
response, which denotes an auditory component of the EEG or
the EEG response at a given channel at time t for t = 1, 2, . . . ,T.
Motivated by the analysis of LTI systems, ht can be considered as
the impulse response of the neural process resulting in et , and ∗

represents the convolution operator; the scalar µ is an unknown
constant mean, and ut denotes a zero-mean i.i.d Gaussian noise.
The weight functions w

(1)
t and w

(2)
t are signals modulated by the

attentional state which determine the contributions of speakers

1 and 2 to et , respectively. In order to simulate the attention
modulation effect, we assume that when speaker 1 (resp. 2) is

attended to at time t, we have w
(1)
t > w

(2)
t (resp. w

(1)
t < w

(2)
t ).

We have chosen two 60 s-long speech segments from those

used in the MEG experiment (see section 2.5) and calculated s
(1)
t

and s
(2)
t as their envelopes for a sampling rate of fs = 200Hz.

Also, we have set µ = 0.02 and ut
iid
∼ N (0, 2.5 × 10−5) in

Equation (4). Figure 3A shows the location and amplitude of the
lag components in the impulse response, which is then smoothed
using a Gaussian kernel with standard deviation of 10ms to
result in the final impulse response ht , shown in Figure 3B. The
significant components of ht are chosen at 50ms and 100ms
lags, with a few smaller components at higher latencies (Akram
et al., 2016). It is noteworthy that existing results (Ding and
Simon, 2012a; Power et al., 2012; Akram et al., 2017) suggest
that this impulse response (i.e., the TRF) is not the same for
the attended and unattended speakers, as discussed in section
2.2. However, we have considered the same ht for both speakers
in this simulation for simplicity, given that our focus here is to
model the stronger presence of the attended speaker in the neural
response in terms of the extracted attention markers. In section 4
of the SupplementaryMaterial, we indeed use an encoding model
consisting of different and attention-modulated TRFs for the two

speakers. The weight signals w
(1)
t and w

(2)
t in Equation (4) are

chosen to favor speaker 1 in the (0 s, 30 s) interval and speaker
2 in the (30 s, 60 s) interval.

3.1.2. Parameter Selection
We aim at estimating decoders in this simulation, which linearly

map et and its lags to s
(1)
t and s

(2)
t . To estimate the decoders,

we have considered consecutive non-overlapping windows of
length 0.25 s resulting in K = 240 windows of length W =

50 samples. Also, we have chosen γ = 0.001, through cross-
validation, and λ = 0.95 in estimating the decoding coefficients,
which results in an effective data length of 5 s for decoder
estimation. The forward lags of the neural response have been
limited to a 0.4 s window, i.e., Ld = 80 samples. Given that
the decoder corresponds to the inverse of a smooth kernel ht ,
it may not have the same smoothness properties of ht . Hence,
we do not employ a smooth basis for decoder estimation.
We have used the FASTA package (Goldstein et al., 2014)
with Nesterov’s acceleration method to implement the forward-
backward splitting algorithm for encoder/decoder estimation.

FIGURE 3 | Impulse response ht used in Equation (4). (A) sparse lag

components, (B) the smooth impulse response.
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As for the state-space model estimators, we have considered 20
(inner and outer) EM iterations for the batch-mode estimators,
while for the real-time estimators, we use 1 inner EM iteration
and 20 outer EM iterations (see section 2 of the Supplementary
Material for more details).

There are three criteria for choosing the fixed-lag smoothing
parameters: First, how close to the true real-time analysis the
system operates is determined by KF . Second, the computational
cost of the system is determined by KA. Third, how close the
output of the system is to that of the batch-mode estimator is
determined by both KF and KA. These three criteria form a
tradeoff in tuning the parameters KA and KF . Specific choices of
these parameters are given in the next subsection.

For tuning the hyperparameters of the priors on the attended
and unattended distributions, we have used a separate 15 s
sample trial generated from the same simulation model in
Equation (4) for each of the three cases. The parameters
(

α
(a)
0 ,α

(u)
0 ,β

(a)
0 ,β

(u)
0 ,µ

(a)
0 ,µ

(u)
0

)

have been chosen by fitting the

Log-Normal distributions to the attention marker outputs from
the sample trials in a supervised manner (with known attentional

state). The variance of the Gamma priors
α
(a)
0

β
(a)
0

2 and
α
(u)
0

β
(u)
0

2

have been chosen large enough such that the priors are non-
informative. This step can be thought of as the initialization of
the algorithms prior to data analysis. For the Inverse-Gamma
prior on the state-space variances, we have chosen a0 = 2.008
and b0 = 0.2016, resulting in a mean of 0.2 and a variance
of 5. This prior favors small values of ηk’s to ensure that the
state estimates are immune to large fluctuations of the attention
markers, while the large variance (compared to the mean) results
in a non-informative prior for smaller values of ηk’s.

3.1.3. Estimation Results
Figure 4 shows the results of our estimation framework for a
correlation-based attention marker. Row A in Figure 4 shows

three cases considered for modulating the weights w
(1)
t and

w
(2)
t , where the weights are contaminated with Gaussian noise

N (0, 4×10−4) to model extra uncertainties in determining the
contribution of each speech to the neural response, arising from
irrelevant or background neural processes. In order to probe the
transition delay of the state-space estimates due to abrupt changes
in the attentional state, the two weight vectors undergo step-like
transition at 30 s. Cases 1, 2, and 3 exhibit increasing levels of
difficulty in discriminating the contributions of the two speakers
to the neural response. Rows B and C in Figure 4 respectively
show the decoder estimates for speakers 1 and 2. As expected,
the significant components of the decoders around 50, 100, and
150ms lags, are modulated by the attentional state, and the
modulation effect weakens as we move from Case 1 to 3. In Case
1, these components are less significant overall for the decoder
estimates of speaker 2 in the [0 s, 30 s] time interval and become
larger as the attention switches to speaker 2 during the rest of the
trial (red boxes in row C of Case 1). On the other hand, in Case
3, the magnitude of said components does not change notably
across the 30 s mark. The TRF ht in the forward generative model

of Equation (4) is an FIR filter with significant components at
lags which are multiples of 0.05 s (see Figure 3B). Therefore, the
decoder estimates in Figure 4 correspond to truncated IIR filters,
which form approximate inverse filters of the TRF. Therefore, it is
expected that they comprise significant components at lags which
are multiples of 0.05 s as well, but decay exponentially fast.

We have considered two different attention markers for
this simulation. Row D in Figure 4 displays the output of a
correlation-based attention marker for speakers 1 and 2, which

is calculated as m
(i)
k

=

∣

∣

∣
corr

(

y
(i)
k
,Xkθ̂

(i)

k

)∣

∣

∣
for i = 1, 2 and

k = 1, 2, . . . ,K. As discussed in section 2.2, this attention
marker is a measure of how well a decoder can reconstruct its
target envelope. As observed in row D of Figure 4, the attention
marker is a highly variable surrogate of the attentional state at
each instance, i.e., on average the attention marker output for
speaker 1 is higher then that of speaker 2 in the (0 s, 30 s) interval
and vice versa in the (30 s, 60 s) interval. The reliability of the
attention marker significantly degrades going from Case 1 to 3.
This highlights the need for state-space modeling and estimation
in order to optimally exploit the attention marker.

Rows E and F in Figure 4 respectively show the batch-
mode and real-time estimator outputs as the inferred attentional
state probabilities pk = P (nk = 1) for k = 1, . . . ,K, for the
correlation-based attention marker, where colored hulls indicate
90% confidence intervals. Row F in Figure 4 corresponds to
the fixed-lag smoother, using a window of length 15 s (KA =
⌊

15fs/W
⌋

), and a forward-lag of 1.5 s (KF =
⌊

1.5fs/W
⌋

). By
accounting for the lag in the decoder (Ld), the built-in delay
in estimating the attentional state is 1.9 s. Note that all the
relevant figures showing the outputs of the real-time estimator
are calibrated with respect to the built-in delay for the sake
of illustration. Thus, these figures must be interpreted as non-
causal when KF > 0, since the estimated attentional state at
each time depends on the future KF samples of the attention
marker. Recall that in the batch-mode estimator, all of the
attentionmarker outputs across the trial are available to the state-
space estimator, as opposed to the fixed-lag real-time estimator
which has access to a limited number of the attention markers.
Therefore, the output of the batch-mode estimator (Row E) is
a more robust measure of the instantaneous attentional state
as compared to the real-time estimator (Row F), since it is less
sensitive to the stochastic fluctuations of the attention markers
in row D. For example, in the instance marked by the red
arrows in rows E and F of Case 2 in Figure 4, the batch-
mode estimator classifies the instance correctly as attending
to speaker 2, while the real-time estimator cannot make an
informed decision since pk = 0.5 falls within the 90% confidence
interval of the estimate at this instance. However, the real-
time estimator exhibits performance closely matching that of
the batch-mode estimator for most instances, while operating
in real-time with limited data access and significantly lower
computational complexity. Comparing the state-space estimators
with the raw attention markers in Figure 4D, we observe the
smoothing effect of the state-space model which makes its output
robust to the stochastic fluctuations in the attention marker
at high temporal resolution. Section 3 of the Supplementary
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FIGURE 4 | Estimation results of application to simulated EEG data for the correlation-based attention marker: (A) Input weights w
(1)
t and w

(2)
t in Equation (4), which

determine the relative effect of the two speeches on the neural response. Based on our generative model, the attention is on speaker 1 for the first half of each trial

and on speaker 2 for the second half. Case 1 corresponds to a scenario where the effects of the attended and unattended speeches in the neural response are

well-separated. This separation decreases as we move from Case 1 to Case 3. (B) Estimated decoder for speaker 1. (C) Estimated decoder for speaker 2. In Case 1,

the significant components of the estimated decoders near the 50, 100, and 150ms lags are notably modulated by the attentional state as highlighted by the red

boxes. This effect weakens in Case 2 and visually disappears in Case 3. (D) Output of the correlation-based attention marker for each speaker. (E) Output of the

batch-mode state-space estimator for the correlation-based attention marker as the estimated probability of attending to speaker 1. (F) Output of the real-time

state-space estimator, i.e., fixed-lag smoother, for the correlation-based attention marker as the estimated probability of attending to speaker 1. The real-time

estimator is not as robust as the batch-mode estimator to the stochastic fluctuations of the attention marker in row D and is more prone to misclassifications. The red

arrows in rows E and F of Case 2 show that the batch-mode estimator correctly classifies the instance as attending to speaker 2, while the real-time estimator is

unable to determine the attentional state.

Material includes a comparison of this smoothing effect with that
of a typical Gaussian smoothing kernel applied directly to the
attention markers.

Row A in Figure 5 exhibits the output of another attention
marker computed as the ℓ1-norm of the decoder given by

m
(i)
k

: =

∥

∥

∥
θ̂
(i)

k

∥

∥

∥

1
for i = 1, 2 and k = 1, 2, . . . ,K, where

the first element of θ̂
(i)

k ∈ R
Ld+2 (the intercept parameter)

is discarded in computing the ℓ1-norm. This attention marker
captures the effect of the significant peaks in the decoder. The
rationale behind using the ℓ1-norm based attention marker is the
following: in the extreme case that the neural response is solely
driven by the attended speech, we expect the unattended decoder

coefficients to be small in magnitude and randomly distributed
across the time lags. The attended decoder, however, is expected
to have a sparse set of informative and significant components
corresponding to the specific latencies involved in auditory
processing. Thus, the ℓ1-norm serves to distinguish between
these two cases by capturing such significant components. Rows
B and C in Figure 5 show the batch-mode and real-time estimates
of the attentional state probabilities for the ℓ1-based attention
marker, respectively, where colored hulls indicate 90% confidence
intervals. Consistent with the results of the correlation-based
attention marker (Rows E and F in Figure 4), the real-time
estimator exhibits performance close to that of the batch-mode
estimator. Comparing Figures 4, 5 reveals the dependence of
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FIGURE 5 | Estimation results of application to simulated EEG data for the ℓ1-based attention marker: (A) Output of the ℓ1-based attention marker for each speaker,

corresponding to the three cases in Figure 4. (B) Output of the batch-mode state-space estimator for the ℓ1-based attention marker as the estimated probability of

attending to speaker 1. (C) Output of the real-time state-space estimator for the ℓ1-based attention marker as the estimated probability of attending to speaker 1.

Similar to the preceding correlation-based attention marker, the classification performance degrades when moving from Case 1 (strong attention modulation) to Case

3 (weak attention modulation).

the attentional state estimation performance on the choice
of the attention marker: while the correlation-based attention
marker is more widely used, the ℓ1-based attention marker
provides smoother estimates of the attention probabilities, and
can be used as an alternative to the correlation-based attention
marker. Overall, this simulation illustrates that if the attended
stimulus has a stronger presence in the neural response than
the unattended one, both the correlation-based and ℓ1-based
attention markers can be attention modulated and can therefore
potentially be used in real M/EEG analysis.

3.1.4. Discussion and Further Analysis
Going from Case 1 to Case 3 in Figures 4, 5, we observe that
the performance of all estimators degrades, causing a drop in
the classification accuracy and confidence. This performance
degradation is due to the declining power of the attention
markers in separating the contributions of the attended and
unattended speakers. However, comparing the outputs of the
real-time and batch-mode estimators with their corresponding
attention marker outputs in row D of Figure 4 and row A
of Figure 5, highlights the role of the state-space model in
suppressing the stochastic fluctuations of the attention markers
and thereby providing a robust and smooth measure of the
attentional state.

In response to abrupt step-like changes in the attentional state,
we define the transition delay as the time it takes for the output of
the real-time estimator to reach the pk = 0.5 level, which marks
the point at which the classification label of the attended speaker
changes. We calculate the transition delay after calibrating for
the built-in delay, for all the real-time estimator outputs. Thus,
the overall delay of the system in detecting abrupt attentional
state changes is equal to the sum of the built-in and transition

delays. The red intervals in Case 1 of row F in Figure 4 and row
C of Figure 5mark the transition delay of the real-time estimator
corresponding to the correlation-based and ℓ1-based attention
markers, respectively. From the deflection point at 30 s, this delay
is given by ∼2.3 s. The transition delay is due to the forgetting
factor mechanism and the smoothing effect of the state-space
estimation given the backward- and forward-lags, which have
been set in place to increase the robustness of the decoding
framework to stochastic fluctuations of the extracted attention
markers. As a result, such classification delays in response to a
sudden attention switches are expected by design. Specifically,
the sole contribution of the forgetting factor mechanism to this
delay can be observed as the red interval in Case 1 of row A
in Figure 5, which precedes the application of the state-space
estimation.

Comparing the batch-mode and the real-time estimators in
Figures 4, 5, we observe that the real-time estimators closely
follow the output of the batch-mode estimators, while having
access to data in an online fashion. A significant deviation
between the batch-mode and real-time performance is observed
in rows B and C (Cases 1 and 2) of Figure 5 in the form of
sharp drops in the real-time estimates of the attentional state
probability. Given that the real-time estimator has only access
to the attention marker within KF samples in the future, the
confidence intervals significantly narrow down within the first
half of the trial, as all the past and near-future observations are
consistent with attention to speaker 1. However, shortly after the
30 s mark, the estimator detects the change and the confidence
bounds widen accordingly (see red arrows in row C of Case 2 in
Figure 5).

In order to further quantify the performance gap between
the batch-mode and real-time estimators, we define their relative
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Mean Squared Error (MSE) as:

MSE=
1

K

K
∑

k=1





1

1+ exp
(

−ẑ
(B)
k

) −
1

1+ exp
(

−ẑ
(R)
k

)





2

(5)

where ẑ
(R)
1 :K and ẑ

(B)
1 :K denote the real-time and batch-mode state

estimates over a given trial, respectively. We have considered

the logistic transformation of ẑ
(B)
1 :K and ẑ

(R)
1 :K , which gives the

probability of attending to speaker 1. The rationale behind this
MSE metric is to measure the performance and robustness of
the real-time estimator with respect to the batch-mode estimator,
since they both operate on the same computed attentionmarkers,
but in different algorithmic fashions.

Figure 6 shows the effect of varying the forward-lag KF from
0 s (i.e., fully real-time) to 5 s with 0.5 s increments for the two
attention markers in Case 2 of Figures 4, 5, as an example. All of
the other parameters in the simulation have been fixed as before.
The left panels in Figure 6 show the MSE for different values
of KF in the real-time setting. As expected, for both attention
markers, the MSE decreases as the forward-lag increases. The
right panels in Figure 6 display the incremental MSE defined as
the change in MSE when KF is increased by 0.5 s at each value,
starting from KF = 0. The incremental MSE is basically the
discrete derivative of the displayed MSE plots and shows the
amount of relative performance boost between two consecutive
values of KF , if we allow for a larger built-in delay. Notice that
even a 0.5 s forward-lag significantly decreases the MSE from
KF = 0. The subsequent improvements of the MSE diminish
as KF is increased further. Our choice of KF corresponding to
1.5 s in the foregoing analysis was made to maintain a reasonable

FIGURE 6 | Effect of the forward-lag KF on the MSE for the two attention

markers in case 2 of Figures 4, 5. (A) Correlation-based attention marker, (B)

ℓ1-based attention marker. As the forward-lag increases, the MSE decreases,

and the output of the real-time estimator becomes more similar to that of the

batch-mode. This results in more robustness for the real-time estimator at the

expense of more built-in delay in decoding the attentional state. The right

panels show that the incremental improvement to the MSE decreases as KF
increases.

tradeoff between the MSE improvement and the built-in delay
in real-time operation. In summary, Figure 6 shows that having
larger forward-lags can make our estimates more robust but it
creates a larger built-in delay. Whether higher levels of delay are
tolerable or not depends on the particular attention decoding
application.

Finally, Figure 7 shows the estimated attention probabilities
and their 90% confidence intervals for the correlation-based
attention marker in Case 2 of Figure 4, as an example of the
output of the state-space estimator. The three curves correspond
to the extreme values of KF in Figure 6 corresponding to 0 s
(blue) and 5 s (red) forward-lags, and the batch-mode estimate
(green). All the other parameters have been fixed as described
above. The fixed-lag smoothing approach with KF of 5 s is as
robust as the batch-mode estimate. The fully real-time estimate
with KF of 0 s follows the same trend as the other two. However,
it is susceptible to the stochastic fluctuations of the attention
marker, which may lead to misclassifications (see the red arrows
in Figure 7). The red interval in Figure 7 displays the difference
between the transition delays corresponding to the forward-lag
of 0 s and 5 s. Although the built-in attention decoding delay of
a 5 s forward-lag is more than that of 0 s by 5 s, the transition
delay corresponding to the former is smaller due to observing
the future attention marker samples up to 5 s. Therefore, the
parameter KF also provides a tradeoff in the overall delay of the
framework in detecting abrupt attention switches, which equals
the transition delay plus the built-in delay. The choice of 1.5 s for
the forward-lag in our analysis was also aimed to minimize this
overall delay.

3.2. Application to EEG
In this section, we apply our real-time attention decoding
framework to EEG recordings in a dual-speaker environment.
Details of the experimental procedures are given in section 2.4.

3.2.1. Preprocessing and Parameter Selection
Both the EEG data and the speech envelopes were downsampled
to fs=64Hz using an anti-aliasing filter. As the trials had variable

FIGURE 7 | Estimated attention probabilities together with their 90%

confidence intervals for the correlation-based attention marker in Case 2 of

Figure 4. The blue, red and green curves correspond to KF of 0 s, KF of 5 s,

and batch-mode estimation, respectively. The estimator for KF of 5 s is nearly

as robust as the batch-mode. However, the fully real-time estimator with KF of

0 s is sensitive to the stochastic fluctuations of the attention markers, which

results in the misclassification of the attentional state at the instances marked

by red arrows.
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lengths, we have considered the first 53 s of each trial for analysis.
We have considered consecutive windows of length 0.25 s for
decoder estimation, resulting in W = 16 samples per window
and K = 212 instances for each trial. Also, we have considered
lags up to 0.25 s for decoder estimation, i.e., Ld = 16. The latter
is motivated by the results of O’Sullivan et al. (2015) suggesting
that the most relevant decoder components are within the first
0.25 s lags. Prior studies have argued that the effects of auditory
attention and speech perception are strongest in the frontal and
close-to-ear EEG electrodes (Kähkönen et al., 2001; Power et al.,
2012; Bleichner et al., 2016; Khalighinejad et al., 2017). We have
only considered 28 EEG channels in the decoder estimation
problem, i.e., C = 28, including the frontal channels Fz, F1-F8,
FCz, FC1-FC6, FT7-FT10, C1-C6, and the T complex channels
T7 and T8. This subsampling of the electrodes is inspired by
the results in Mirkovic et al. (2015), which show that using an
electrode subset of the same size for decoding results in nearly
the same classification performance as in the case of using all the
electrodes. Note that for our real-time setting, a channel selection
step can considerably decrease the computational cost and the
dimensionality of the decoder estimation step, given that a vector
of size 1+C(Ld+1) needs to be updated within each 0.25 s window.

We have determined the regularization coefficient γ = 0.4
via cross-validation and the forgetting factor λ = 0.975, which
results in an effective data length of 10 s in the estimation of the
decoder and is long enough for stable estimation of the decoding
coefficients. It is worth noting that small values of λ, and hence
small effective data lengths, may result in an under-determined
inverse problem, since the dimension of the decoder is given by
1+C(Ld + 1). Finally, in the FASTA package, we have used a
tolerance of 0.01 together with Nesterov’s accelerated gradient
descent method to ensure that the processing can be done in an
online fashion.

In studies involving correlation-based measures, such as
O’Sullivan et al. (2015) and Akram et al. (2016), the convention
is to train attended and unattended decoders/encoders using
multiple trials and then use them to calculate the correlation
measures over the test trials. The correlation-based attention
marker, however, did not produce a statistically significant
segregation of the attended and the unattended speakers in our
analysis. This discrepancy seems to stem from the fact that the
estimated encoders/decoders and the resulting correlations in
the aforementioned studies are more informative and robust
due to the use of batch-mode analysis with multiple trials for
decoder estimation, as compared to our real-time framework.
The ℓ1-based attentionmarker, however, resulted in ameaningful
statistical separation between the attended and the unattended
speakers. Therefore, in what follows, we present our EEG analysis
results using the ℓ1-based attention marker.

The parameters of the state-spacemodels have been set similar
to those used in simulations, i.e., KA =

⌊

15fs/W
⌋

, KF =
⌊

1.5fs/W
⌋

, a0 = 2.008, b0 = 0.2016. Considering the 0.25 s
lag in the decoder model, the built-in delay in estimating the
attentional state for the real-time system is 1.75 s. For estimating
the prior distribution parameters for each subject, we use the first
15s of each trial. As mentioned before, considering the 15 s-long
sliding window, we can treat the first 15 s of each trial as a tuning

step in which the prior parameters are estimated in a supervised
manner and the state-space model parameters are initialized with
the values estimated using these initial windows. Thus, similar to

the simulations,
(

α
(a)
0 ,α

(u)
0 ,β

(a)
0 ,β

(u)
0 ,µ

(a)
0 ,µ

(u)
0

)

for each subject

have been set according to the parameters of the two fitted Log-
Normal distributions on the ℓ1-norm of the decoders in the first
15 s of the trials, while choosing large variances for the priors to
be non-informative.

3.2.2. Estimation Results
Figure 8 shows the results of applying our proposed framework
to EEG data. For graphical convenience, the data have been
rearranged so that speaker 1 is always attended. The left, middle
and right panels correspond to subjects 1, 2, and 3, respectively.
For each subject, three example trials have been displayed in rows
A, B, and C. Row A includes trials in which the attention marker
clearly separates the attended and unattended speakers, while
Row C contains trials in which the attention marker fails to do
so. Row B displays trials in which on average the ℓ1-norm of the
estimated decoder is larger for the attended speaker; however,
occasionally, the attention marker fails to capture the attended
speaker.

Consistent with our simulations, the real-time estimates (third
graphs in rows A, B, and C) generally follow the output of the
batch-mode estimates (second graphs in rows A, B, and C).
However, the batch-mode estimates yield smoother transitions
and larger confidence intervals in general, both of which are due
to having access to future observations.

Figure 9 shows the effect of forward-lag KF on the
performance of real-time estimates, similar to that shown in
Figure 6 for the simulations. The forward-lag KF is increased
from 0 s to 5 s with 0.5 s increments while all the other parameters
of the EEG analysis remain the same. The MSE in Figure 9 has
been averaged over all trials for each subject. As we observe in the
incremental MSE plot, even a 0.5 s lag can significantly decrease
the MSE from the case of 0 s forward-lag (corresponding to the
fully real-time setting). Similar to the simulations, we have chosen
a KF of 1.5 s for the EEG analysis, since the incremental MSE
improvements are significant at this lag, and this choice results
in a tolerable built-in delay for real-time applications.

Finally, Figure 10 summarizes the real-time classification
results of our EEG analysis at the group level, in order to present
subject-specific and individual trial performances. Figure 10A
shows a cartoon of the estimated attention probabilities for a
generic trial in order to illustrate the classification conventions.
We define an instance (i.e., one of the K consecutive windows
of length W samples) to be correctly (incorrectly) classified
if the estimated attentional state probability together with its
90% confidence intervals lie above (below) 0.5. If the 90%
confidence interval at an instance includes the 0.5 attention
probability line, we do not classify it as either correct or incorrect.
Figure 10B displays the correctly classified instances (y-axis) vs.
those incorrectly classified (x-axis) for each trial. The subjects are
color-coded and each circle corresponds to one trial. The average
classification results over all trials for each subject are shown in
Figure 10C. In summary, our framework provides∼80% average

Frontiers in Neuroscience | www.frontiersin.org 13 May 2018 | Volume 12 | Article 262191

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Miran et al. Real-Time Tracking of Auditory Attention

FIGURE 8 | Examples of the ℓ1-based attention markers (first panels), batch-mode (second panels), and real-time (third panels) state-space estimation results for nine

selected EEG trials. (A) Representative trials in which the attention marker reliably separates the attended and unattended speakers. (B) Representative trials in which

the attention marker separates the attended and unattended speakers on average over the trial. (C) Representative trials in which the attention marker either does not

separate the two speakers or results in a larger output for the unattended speaker.

hit rate and ∼15% average false-alarm per trial per subject. The
group-level hit rate and false alarm rate are respectively given by
79.63 and 14.84%.

3.3. Application to MEG
In this section, we apply our real-time attention decoding
framework to MEG recordings of multiple subjects in a dual-
speaker environment. The MEG experimental procedures are
discussed in section 2.5.

3.3.1. Preprocessing and Parameter Selection
The recorded MEG responses were band-pass filtered between
1 and 8 Hz (delta and theta bands), corresponding to the slow

temporal modulations in speech (Ding and Simon, 2012a,b), and
downsampled to 200Hz.MEG recordings, like EEG, include both
the stimulus-driven response as well as the background neural
activity, which is irrelevant to the stimulus. For the encoding
model used in our analysis, we need to extract the stimulus-
driven portion of the response, namely the auditory component.
In Särelä and Valpola (2005) and de Cheveigné and Simon
(2008), a blind source separation algorithm called the Denoising
Source Separation (DSS) is described which decomposes the data
into temporally uncorrelated components ordered according to
their trial-to-trial phase-locking reliability. In doing so, DSS only
requires the responses in different trials and not the stimuli.
Similar to Akram et al. (2016, 2017), we only use the first DSS
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FIGURE 9 | Effect of the forward-lag KF on MSE in application to real EEG

data. The left panel shows the MSE with respect to the batch-mode output

averaged over all the trials for each subject. The right panel displays the

incremental MSE at each lag, from KF of 0 s to KF of 5 s with 0.5 s increments.

FIGURE 10 | Summary of the real-time classification results in application to

real EEG data. (A) A generic example of the state-space output for a trial

illustrating the classification conventions. (B) Classification results per trial for

all subjects; each circle corresponds to a trial and the subjects are

color-coded. The trials falling below the dashed line have more incorrectly

classified instances than correctly classified ones. (C) Average classification

performance over all trials for the three subjects.

component as the auditory component, since it tends to capture
a significant amount of stimulus information and to produce a
bilateral stereotypical auditory field pattern.

Since DSS is an offline algorithm operating on all the data at
once, we cannot readily use it for real-time attention decoding.
Instead, we apply DSS to the data from preliminary trials from
each subject in order to calculate the subject-specific linear
combination of the MEG channels that compose the first DSS
component. We then use these channel weights to extract the
MEG auditory responses during the constant-attention and
attention-switch experiments in a real-time fashion. Note that
the MEG sensors are not fixed with respect to the head position
across subjects and are densely distributed in space. Therefore,
it is not reasonable to use the same MEG channel weights for all
subjects. The preliminary trials for each subject can thus serve as a

training and tuning step prior to the application of our proposed
attention decoding framework.

The MEG auditory component extracted using DSS is used
as Et in our encoding model. Similar to our foregoing EEG
analysis, we have considered consecutive windows of length 0.25 s
resulting in W = 50 samples per window and a total number of
K = 240 instances, at a sampling frequency of 200Hz. The TRF
length, or the total encoder lag, has been set to 0.4 s resulting in
Le = 80 in order to include the most significant TRF components
(Ding and Simon, 2012a). The ℓ1-regularization parameter γ

in Equation (1) has been adjusted to 1 through two-fold cross-
validation, and we have chosen a forgetting factor of λ = 0.975,
resulting in an effective data length of 10 s, long enough to ensure
estimation stability.

As for the encoder model, we have used a Gaussian dictionary
G0 to enforce smoothness in the TRF estimates. The columns
of G0 consist of overlapping Gaussian kernels with the standard
deviation of 20 ms whose means cover the 0 s to 0.4 s lag range
with Ts = 5 ms increments. The 20ms standard deviation is
consistent with the average full width at half maximum (FWHM)
of an auditoryMEG evoked response (M50 orM100), empirically
obtained from MEG studies (Akram et al., 2017). Thus, the
overall dictionary discussed in Remark 2 takes the form G =

diag (1,G0,G0). Also, similar to Akram et al. (2017), we have
used the logarithm of the speech envelopes as the regression
covariates. Finally, the parameters of the FASTA package in
encoder estimation have been chosen similar to those in the
foregoing EEG analysis.

The M100 component of the TRF has shown to be larger
for the attended speaker than the unattended speaker (Ding and
Simon, 2012a; Akram et al., 2017). Thus, at each instance k, we
extract the magnitude of the negative peak close to the 0.1 s delay
in the real-time TRF estimate of each speaker as the attention

markers m
(1)
k

and m
(2)
k
. For the state-space model and the fixed-

lag window, we have used the same configuration as in our
foregoing EEG analysis, i.e., KA =

⌊

15fs/W
⌋

, KF =
⌊

1.5fs/W
⌋

,
a0 = 2.008, and b0 = 0.2016. Note that the built-in delay in
estimating the attentional state is now only 1.5 s, given that we use
an encoding model for our MEG analysis. Furthermore, the prior
distribution parameters for each subject were chosen according
to the two fitted Log-Normal distributions on the extractedM100
values in the first 15 s of the trials, while choosing large variances
for the Gamma priors to be non-informative. Similar to the
preceding cases, the first 15 s of each trial can be thought of as
an initialization stage.

3.3.2. Estimation Results
Figure 11 shows our estimation results for four sample trials
from the constant-attention (cases 1 and 2) and attention-switch
(cases 3 and 4) experiments. For graphical convenience, we have
rearranged the MEG data such that in the constant-attention
experiment, the attention is always on speaker 1, and in the
attention-switch experiment, speaker 1 is attended from 0 to
28 s. Cases 1 and 3 corresponds to trials in which the extracted
M100 values for the attended speaker are more significant than
those of the unattended speaker during most of the trial duration.
Cases 2 and 4, on the other hand, correspond to trials in which
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FIGURE 11 | Examples from the constant-attention and attention-switch MEG experiments, using the M100 attention marker, for trials with reliable (cases 1 and 3)

and unreliable (cases 2 and 4) separation of the attended and unattended speakers. (A) TRF estimates for speakers 1 and 2 over time with the extracted M100 peak

positions tracked by a narrow yellow line. (B) Extracted M100 peak magnitudes over time for speakers 1 and 2 as the attention marker. In cases 1 and 3, the M100

components exhibit a strong modulation effect of the attentional state, i.e., the attended speaker has a larger M100 peak, in contrast to cases 2 and 4, where there is

a weak modulation. (C) Batch-mode state-space estimates of the attentional state. (D) Real-time state-space estimates of the attentional state. The strong or weak

modulation effects of attentional state in the extracted M100 components directly affects the classification accuracy and the width of the confidence intervals for both

the batch-mode and real-time estimators.

the extracted M100 values are not reliable representatives of the
attentional state. Row A in Figure 11 shows the estimated TRFs
for speakers 1 and 2 in time for each of the four cases. The
location of the M100 peaks is shown and tracked with a narrow
line (yellow) on the extractedM100 components (blue). TheM50
components are also evident as positive peaks occurring around
the 50ms lag. The M50 components do not strongly depend on
the attentional state of the listener (Chait et al., 2004, 2010; Ding
and Simon, 2012a; Akram et al., 2017), which is consistent with
those shown in Figure 11A. It is worth noting that real-time
estimation of the TRFsmakes the estimates heavily affected by the
dynamics of neural response and the background neural activity.
Therefore, the estimates contain longer latency components
which are typically suppressed in the offline estimates of TRFs

common in the literature, which use multiple trial averaging to
extract the stimulus-driven response (Ding and Simon, 2012a;
Power et al., 2012). The width of the extracted components in
Figure 11 is due to the usage of a Gaussian dictionary matrix to
represent the TRFs.

Row B in Figure 11 displays the extracted M100 peak
magnitudes over time for speakers 1 and 2. The attention
modulation effect is more significant in cases 1 and 3. Rows C
and D respectively show the batch-mode and real-time estimates
of the attentional state based on the extracted M100 values.
As expected, the batch-mode output is more robust to the
fluctuations in the extracted M100 peak values, with smoother
transitions and larger confidence intervals. Despite the poor
attention modulation effect in cases 2 and 4, we observe that
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both the real-time and the batch-mode state-space models show
reasonable performance in translating the extracted M100 peak
values to a robust measure of the attentional state. This effect
is notable in Rows C and D of Case 4. We performed the same
analysis as in Figure 9 to assess the effect of the forward-lag
parameter KF . Since the results were quite similar to those in
Figures 6, 9, we have omitted them for brevity and chose the
same forward-lag of 1.5 s.

Finally, Figure 12 summarizes the real-time classification
results for the constant-attention (left panels) and attention-
switch (right panels) MEG experiments. The classification
convention is similar to that used in our EEG analysis, and is
illustrated in Figure 12A for the completeness. For the attention-
switch experiment, the 28–30 s interval is removed from the
classification analysis, as it pertains to a silence period during
which the subject is instructed to switch attention. Figure 12B
shows the corresponding classification results, consisting of
36 trials for the constant-attention and 18 trials for the

attention-switch experiments. Each circle corresponds to a
single trial and the subjects in each experiment are color-
coded. The average classification results per trial are shown
in Figure 12C for each subject. The average hit rate and
false alarm rates in the constant-attention experiments are
respectively given by 71.67 and 20.81%. These quantities for the
attention-switch experiment are respectively given by 64.12 and
26.16%, showing a reduction in hit rate and increase in false
alarm.

4. DISCUSSION

In this work, we have proposed a framework for real-time
decoding of the attentional state of a listener in a dual-speaker
environment from M/EEG. This framework consists of three
modules. In the first module, the encoding/decoding coefficients,
relating the neural response to the envelopes of the two speech

FIGURE 12 | Summary of real-time classification results for the constant-attention (left panels) and attention-switch (right panels) MEG experiments. (A) a generic

instance of the state-space output for a trial illustrating the classification convention. (B) Classification results per trial for all subjects; each circle corresponds to a trial

and the subjects are color-coded. The trials falling below the dashed line have more incorrectly classified instances than correctly classified ones. (C) Average

classification performance over all trials for the six subjects.
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streams, are estimated in a low-complexity and real-time fashion.
Existing approaches for encoder/decoder estimation operate in
an offline fashion using multiple experiment trials or large
training datasets (O’Sullivan et al., 2015; Akram et al., 2016;
Aroudi et al., 2016; Van Eyndhoven et al., 2017), and hence are
not suitable for real-time applications with limited amount of
training data and potential variability in the recording setup.
To address this issue, we have integrated the forgetting factor
mechanism used in adaptive filtering with ℓ1-regularization, in
order to capture the coefficient dynamics andmitigate overfitting.

In the second module, a function of the estimated
encoding/decoding coefficients and the acoustic data, which we
refer to as the attention marker, is calculated in real-time for
each speaker. The role of the attention marker is to provide
dynamic features that create statistical separation between
the attended and the unattended speakers. Examples of such
attention markers include correlation-based measures (e.g.,
correlation of the acoustic envelopes and their reconstruction
from neural response), or measures solely based on the estimated
decoding/encoding coefficients (e.g., the ℓ1-norm of the decoder
coefficients or the M100 peak of the encoder).

Finally, the attention marker is passed to the third module
consisting of a near real-time state-space estimator. To control
the delay in state estimation, we adopt a fixed-lag smoothing
paradigm, in which the past and near future data are used
to estimate the states. The role of the state-space model is to
translate the noisy and highly variable attention markers to
robust measures of the attentional state with minimal delay. We
have archived a publicly available MATLAB implementation of
our framework on the open source repository GitHub in order to
ease reproducibility (Miran, 2017).

We validated the performance of our proposed framework
using simulated EEG and MEG data, in which the ground truth
attentional states are known. We also applied our proposed
methods to experimentally recorded MEG and EEG data. As for
a comparison benchmark to study the effect of the parameter
choices in our real-time estimator, we considered the offline
state-space attention decoding approach of Akram et al. (2016).
Our MEG analysis showed that although the proposed real-
time estimator has access to significantly fewer data points, it
closely matches the outcome of the offline state-space estimator
in Akram et al. (2016), for which the entire data from multiple
trials are used for attention decoding. In particular, our analysis
of the MEG data in constant-attention conditions revealed a hit
rate of ∼70% and a false alarm rate of ∼20% at the group level.
While the performance is slightly degraded compared to the
offline analysis of Akram et al. (2016), our algorithms operate in
real-time with 1.5 s built-in delay, over single trials, and using
minimal tuning. Similarly, our analysis of EEG data provided
∼80% hit rate and ∼15% false alarm rate at a single trial level.
These performance measures are slightly degraded compared to
the results of offline approaches such as O’Sullivan et al. (2015).

Our proposedmodular design admits the use of any attention-
modulated statistic or feature as the attention marker, three of
which have been considered in this work. While some attention
markers perform better than the rest in certain applications,
our goal in this work was to provide different examples of

attention markers which can be used in the encoding/decoding
models based on the literature, rather than comparing their
performance against each other. The choice of the best attention
marker that results in the highest classification accuracy is a
problem-specific matter. Our modular design allows to evaluate
the performance of a variety of attention markers for a
given experimental setting, while fixing the encoding/decoding
estimation and state-space modules, and to choose one that
provides the desired classification performance. Our state-space
module can also operate on the output of existing methods
with encoder/decoder coefficients that are pre-estimated using
training datasets (O’Sullivan et al., 2015; Zink et al., 2017) to
provide a robust and statistically interpretable measure of the
attentional state at high temporal resolutions.

A practical limitation of our proposed methodology in its
current form is the need to have access to clean acoustic data
in order to form regressors based on the speech envelopes. In
a realistic scenario, the speaker envelopes have to be extracted
from the noisy mixture of speeches recorded by microphone
arrays. Thanks to a number of fairly recent results in attention
decoding literature (Biesmans et al., 2015, 2017; Aroudi et al.,
2016; O’Sullivan et al., 2017; Van Eyndhoven et al., 2017), it
is possible to integrate our methodology with a pre-processing
module that extracts the acoustic features of individual speech
streams from their noisy mixtures. We view this extension as a
future direction of research.

The proposed approach requires a minimal amount of labeled
training data for tuning purposes. However, we can determine the
attended speaker in an unlabeled dataset as the speaker whose
speech signal best fits the EEG data or whose encoder/decoder
estimates have larger peaks at certain time lags, and then train the
decoders or hyperparameters with these data-driven labels. This
can be done both in existing methods such as that of O’Sullivan
et al. (2015) for attended decoder estimation and in our approach
for capturing the statistical properties of attention markers for
hyperparameter tuning. We view this extension to deal with
unlabeled data as a future direction of research.

Our proposed framework has several advantages over existing
methodologies. First, our algorithms require minimal amount of
offline tuning or training. The subject-specific hyperparameters
used by the algorithms are tuned prior to real-time application
in a supervised manner. The only major offline tuning step
in our framework is computing the subject-specific channel
weights in the encoding model for MEG analysis in order to
extract the auditory component of the neural response. This
is due to the fact that the channel locations are not fixed
with respect to the head position across subjects. It is worth
noting that this step can be avoided if the encoding model
treats the MEG channels separately in a multivariate model.
Given that recent studies suggest that the M100 component
of the encoder obtained from the MEG auditory response is
a reliable attention marker (Ding and Simon, 2012a,b; Akram
et al., 2017), we adopted the DSS algorithm for computing the
channel weights that compose the auditory response in an offline
fashion.

Second, our framework yields robust attention decoding
performance at a temporal resolution in the order of ∼1 second,
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comparable to that at which humans switch their attention
from one speaker to another. The accuracy of existing methods,
however, significantly degrades when they operate at these
temporal resolutions (Zink et al., 2016, 2017). Our proposed
framework operates in a near real-time fashion, where the
attention decoding delay can be adjusted for controlling the
trade-off between robustness and adaptivity of the attentional
state estimates. In addition, the probabilistic output of our
attentional state decoding framework can be used for further
statistical analysis and soft-decision mechanisms which are
desired in smart hearing aid applications. Finally, the modular
design of our framework facilitates its adaptation to more
complex auditory scenes (e.g., with multiple speakers and
realistic noise and reverberation conditions) and integration
of other covariates relevant to real-time applications (e.g.,
electrooculography measurements).
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