Experimental and clinical evidence demonstrates an intense crosstalk among the nervous, endocrine and immune systems. The central nervous system (CNS) not only has the capacity to affect peripheral immune function, but is also able to sense and process signals from the peripheral immune system. The bi-directional interaction between the CNS and the peripheral immune system has gained great interest as it can help better understand disease pathophysiology as well as improving health and treatment outcomes in patients. On the one hand, inflammatory factors are known to affect CNS functions and to induce neuropsychiatric symptoms, making immune-to-brain communication highly relevant for psychiatric diseases and their treatments. On the other hand, analyzing pathways of brain-to-immune communication will help to understand the pathophysiology of chronic inflammatory disorders and will form the basis for optimizing treatment of these diseases.
The potential clinical relevance of the bidirectional communication between the brain and the peripheral immune system is largely disregarded. For this Research Topic, we will therefore encourage researchers to submit original work or perspectives that provide new insights on the clinical relevance of brain-to-immune and immune-to-brain communications.
Experimental and clinical evidence demonstrates an intense crosstalk among the nervous, endocrine and immune systems. The central nervous system (CNS) not only has the capacity to affect peripheral immune function, but is also able to sense and process signals from the peripheral immune system. The bi-directional interaction between the CNS and the peripheral immune system has gained great interest as it can help better understand disease pathophysiology as well as improving health and treatment outcomes in patients. On the one hand, inflammatory factors are known to affect CNS functions and to induce neuropsychiatric symptoms, making immune-to-brain communication highly relevant for psychiatric diseases and their treatments. On the other hand, analyzing pathways of brain-to-immune communication will help to understand the pathophysiology of chronic inflammatory disorders and will form the basis for optimizing treatment of these diseases.
The potential clinical relevance of the bidirectional communication between the brain and the peripheral immune system is largely disregarded. For this Research Topic, we will therefore encourage researchers to submit original work or perspectives that provide new insights on the clinical relevance of brain-to-immune and immune-to-brain communications.