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Editorial on the Research Topic

Advances in autonomous ships (AS) for ocean observation
Introduction

Ocean observation is the basis for understanding and studying marine science. In

recent years, the application of autonomous ships (AS), including Unmanned Surface

Vessels (USVs), Autonomous Underwater Vehicles (AUVs), and Remotely Operated

Vehicles (ROVs), in ocean observation has gained significant traction due to their

capability to perform maritime autonomous tasks of oceans efficiently and safely in

challenging marine environments. Compared with traditional technical means, the

unique technical capability of ASs in marine environment observation is the ability to

maneuver on demand under the influence of complex marine environments. Therefore,

giving full play to its controllable maneuverability and realizing its perception, task

decision-making, path planning, control, and perception data analysis is the key to its

application. Equipped with advanced sensors and instruments, these vessels can gather

critical ocean data over large areas and long durations, providing invaluable insights for

marine scientists.

This editorial aims to highlight the latest advancements in AS technology and their

implications for ocean science, particularly the integration of Artificial Intelligence (AI) and

Machine Learning (ML). These innovations have the potential to greatly enhance the

efficiency and accuracy of ocean observation, transforming the field of marine science.
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Contributing articles and
main conclusions

This Research Topic comprises eleven high-quality papers, each

contributing to many different aspects of autonomous ships (AS)

for ocean observation. In the realm of enhanced data collection

techniques, Berild et al. sampled river plume fronts in three-

dimensional space using AUVs. This model addresses critical

challenges in coastal environments impacted by climate change

and human activities. In another study, AUVs equipped with

interferometric side-scan sonar were used to monitor aquaculture

setups in high-energy shallow water environments (Peck et al.). Lei

et al. developed a novel calibration method for the Simulating

Waves Nearshore wave model, incorporating the white-capping

dissipation term. Validated across diverse global locations,

including the South China Sea, Gulf of Mexico, and

Mediterranean Sea, this method demonstrates broad applicability

in wave modeling. For the detection of small marine targets, Cheng

et al. proposed an enhanced method based on the YOLOv7 model

to detect small targets in SSS images, and introduced a global

attention mechanism to focus on global information and extract

target features. Experimental results show that this method can be

applied to autonomous target detection in USVs and AUVs, thereby

enhancing the autonomous operation capability of unmanned

autonomous ocean observation platforms. The development of

hydrodynamic simulation tools for ROVs has led to better

understanding of the forces acting on these vehicles during

operation (Zhang et al.). Such simulations are instrumental in

improving the design and maneuverability of underwater vehicles,

which is essential for complex tasks such as monitoring volcanic

activities around active volcanoes (Tada et al.). In complex ocean

environments, multiple ASs are required to collaborate to complete

observation tasks. Kang et al. demonstrated the potential to improve

the efficiency of maritime operations through collaborative ocean

observation research by communicating heterogeneous USVs.

Furthermore, adaptive terminal sliding mode control schemes

have been developed to maintain the formation of USVs and

ROVs even under deceptive attacks (Zhang et al.). In terms of

innovative imaging technologies for marine science, to address the

challenges posed by adverse weather conditions, such as rain, and

haze, a prompt-based learning method was proposed for maritime

image restoration by He et al. This method enhances the quality of

maritime images, which is essential for navigation, fishing, and

search and rescue operations. Additionally, hybrid dynamic

transformers have been developed for underwater image super-

resolution (He et al.), significantly improving the clarity and detail

of underwater imagery. In the aspect of maritime and ocean

observation understanding and decision support, Li et al.

introduced a framework utilizing knowledge graph technology to

analyze maritime data. By integrating Automatic Identification

System data with spatial information from port facilities, they

created semantic connections among ships, berths, and

waterways. This approach enhances ship identification and berth

al location, improving decision-making for intel l igent

maritime systems.
Frontiers in Marine Science 026
In summary, these collective efforts underscore a

comprehensive approach to advancing maritime research and

technology. By leveraging the capabilities of Autonomous Ships

(ASs) and integrating sophisticated modeling, autonomous systems,

image processing, and data analysis techniques, researchers are

addressing complex challenges in marine science. These

advancements not only enhance our ability to monitor and

understand marine environments more effectively but also

improve the efficiency and safety of oceanographic research. The

integration of AI and ML within AS technology exemplifies how

innovation is transforming ocean observation, offering valuable

insights into oceanic systems and facilitating better management

of marine resources.
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José Pinho,
University of Minho, Portugal

*CORRESPONDENCE

Yanzhen Gu

guyanzhen@zju.edu.cn

Fangguo Zhai

gfzhai@ouc.edu.cn

RECEIVED 22 September 2023

ACCEPTED 13 November 2023
PUBLISHED 30 November 2023

CITATION

Lei Z, Wu W, Gu Y, Zhai F and Li P (2023) A
general method to determine the optimal
whitecapping dissipation coefficient in the
SWAN model.
Front. Mar. Sci. 10:1298727.
doi: 10.3389/fmars.2023.1298727

COPYRIGHT

© 2023 Lei, Wu, Gu, Zhai and Li. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 30 November 2023

DOI 10.3389/fmars.2023.1298727
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Qingdao, China, 5Hainan Observation and Research Station of Ecological Environment and Fishery
Resource in Yazhou Bay, Sanya, China
Whitecapping dissipation is a critical term in affecting the accuracy of wave

height modeling. However, the whitecapping dissipation coefficient (Cds), as a

primary factor influencing whitecapping, is commonly determined through trial

and error in various studies. In this study, we present a general method for

calibrating the Simulating Waves Nearshore (SWAN) wave model using the

whitecapping dissipation term, demonstrated through a detailed study in the

South China Sea (SCS). Theoretical analysis reveals that the optimal Cds value

shows a one-to-one correspondence with the applied wind field. Expectedly,

under high-quality wind field conditions, the optimalCds values tend to fall within

a narrow range, regardless of the model domain or time span. Numerical

experiments executed in the SCS further consolidated this inference,

encompassing two common wind input schemes (ST6 and YAN) and three

distinct whitecapping dissipation schemes (KOMEN, JANSSEN, and WST).

Based on the experimental results, we have identified an optimal Cds range for

each whitecapping dissipation scheme. Cds values within the optimal range

consistently outperformed the default Cds in the SWAN model. Subsequent

experiments verified the method’s applicability to the Gulf of Mexico and the

Mediterranean Sea. The findings suggest that this research holds substantial

promise for practical applications on a global scale.

KEYWORDS

SWAN, whitecapping dissipation coefficient, wind errors, ERA5, SARAL
1 Introduction

In recent decades, the third-generation wave models that can solve the spectral

action balance equation without assuming a priori spectral shape (The WAMDI

Group, 1988; Booij et al., 1999) have been widely developed and applied worldwide

(Cavaleri et al., 2020; Shao et al., 2023). Among the terms in the wave action equation,
frontiersin.org017

https://www.frontiersin.org/articles/10.3389/fmars.2023.1298727/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1298727/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1298727/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1298727/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1298727&domain=pdf&date_stamp=2023-11-30
mailto:guyanzhen@zju.edu.cn
mailto:gfzhai@ouc.edu.cn
https://doi.org/10.3389/fmars.2023.1298727
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1298727
https://www.frontiersin.org/journals/marine-science


Lei et al. 10.3389/fmars.2023.1298727
whitecapping, responsible for energy dissipation in deep water,

remains one of the least understood physical aspects (Rogers

et al., 2002; Cavaleri et al., 2019). Several whitecapping

expressions had been proposed (Hasselmann, 1974; Komen

et al., 1984; Janssen, 1992; Banner et al., 2000; Alves and

Banner, 2003; Van der Westhuysen et al., 2007). Early

whitecapping expressions were adjusted based on closing the

energy balance of waves in fully developed conditions, as

exemplified in the work of Komen et al. (1984) (hereinafter

referred to as the KOMEN expression or KOMEN). Alves and

Banner (2003) refined the KOMEN expression based on

observations, proposing an expression predominantly reliant

on the ratio of azimuthal-integrated spectral saturation to the

saturation spectrum. Van der Westhuysen et al. (2007) proposed

a novel whitecapping expression based on Alves and Banner

(2003) but removed the dependence on mean spectra, increasing

its suitability for nearshore applications. The Simulating Waves

Nearshore (SWAN) model, one of the prominent representatives

of third-generation wave models, provides 6 whitecapping

expressions with 19 adjustable parameters (The SWAN

team, 2021a).

Whitecapping plays a fundamental role in achieving the

correct energy balance and significantly influences the

accuracy of wave models (Roland and Ardhuin, 2014; Cavaleri

et al., 2019). Therefore, the selection and tuning of the

whitecapping scheme are crucial (Sun et al., 2022). The

whitecapping dissipation coefficient (Cds) is a key parameter

that integrally controls the whitecapping dissipation, which is

not dependent on the wave steepness or the wave number (Sun

et al., 2022). Among all the parameters in the whitecapping

schemes, Cds is usually used as a tuning parameter in the

calibration process (Cavaleri et al., 2018; Cavaleri et al., 2020).

Extensive research indicates that suitable schemes and optimal

parameters may vary by region or forcing wind field (Shao et al.,

2023). For instance, in the Bohai Sea, the KOMEN expression

effectively represents the wind-wave characteristics with the Cds

of 2.2E-5 (Lv et al., 2014). Appendini et al. (2013) and

Amarouche et al. (2019) improved the model performance

using the expression proposed by Janssen (1992) (hereinafter

referred to as the JANSSEN expression or JANSSEN) but with

entirely different optimal Cds in the Mediterranean Sea (MS).

Appendini et al. (2013) achieved the optimal combination of Cds

at 1.5 and d (the coefficient determining the dependence of

whitecapping on the wave number) at 0.7, whereas Amarouche

et al. (2019) found the optimal Cds to be 1.0. Off the west coast of

Norway, the expression proposed by Van der Westhuysen et al.

(2007) provided the best performance with mixed swell-wind sea

conditions (Van der Westhuysen et al., 2007; Christakos et al.,

2021) found that default settings of the whitecapping dissipation

scheme commonly led to overestimation of the peak frequency

and underestimation of the energy level of the spectral peak

during high wind speed conditions. Consequently, wave

parameters such as significant wave height (SWH) and mean

wave period may be underestimated (Elkut et al., 2021; Umesh

and Behera, 2021). Although calibrating the model using Cds
Frontiers in Marine Science 028
lacks a valid physical basis, as the simulated whitecapping

dissipation may not accurately reflect realistic conditions, this

approach is widely acknowledged for improving practical wave

simulations (Wu et al., 2021; Bujak et al., 2023).

Most wave modeling studies typically involve conducting

multiple experiments over a certain range of Cds and determining

the optimal Cds based on simulation results (e.g., Akpinar and

Ponce de León, 2016; Kutupoğlu et al., 2018; Bingölbali et al., 2019;

Sun et al., 2022). Wu et al. (2021) proposed a novel Cds calibration

method that requires at least two experiments to determine the

optimal Cds. However, this method relies on a fitting formula based

on experimental results, inevitably introducing fitting errors.

Although both methods can obtain the optimal Cds, they require

significant time and computational resources. Therefore, finding a

general method to determine the optimal Cds value is necessary.

Overall, the accuracy of wave model results, particularly in SWH, is

strongly influenced by the forcing wind field and source term

parameterization (Cavaleri and Bertotti, 1997; Zhai et al., 2021).

The wind field provides positive energy flux to the wave model,

while the dissipation term contributes to negative energy flux

(Babanin et al., 2010). Thus, there exists a potential relationship

between the wind field and Cds. Based on this concept, it is

theoretically feasible to calibrate the wave model.

This study aims to propose a general method for determining

the optimal Cds to improve the efficiency of wave simulation. The

remaining parts of this paper are structured as follows. Section 2

describes the study area and bathymetry data. Section 3 details the

primary data and methods, including the basic principle of SWAN,

observations, and error metrics. Section 4 presents the theoretical

basis of this work. In Section 5, numerical experiments are

conducted to explore the characteristics of the optimal Cds.

Section 6 discusses the applicability of the conclusions we have

obtained to different regions. Finally, Section 7 provides

the conclusion.
2 Study area and bathymetry

The study area of this work encompasses the South China Sea

(SCS; 104°E–124°E, 0°–25°N), as delineated by the solid black line

box in Figure 1. The SCS is a typical semi-enclosed marine region,

connected to the Pacific Ocean and the Indian Ocean through

narrow straits or channels (Su et al., 2017; Ou et al., 2018). It

features intricate topography, characterized by three distinct

elements: the continental shelf that connects to the land, the

continental slope at the outer edge of the continental shelf, and

the central basin. As depicted in Figure 1, this region is marked by

significant variations in water depth, with a maximum depth

exceeding 5500 meters and an average depth of approximately

1200 meters. The general pattern is one of shallow waters in the

north and south and deeper waters in the central area (Zhang et

al., 2020). Given its strategic importance in shipping and trade

routes, along with its abundant reserves of oil, natural gas, and

fisheries, the SCS holds significant economic and geopolitical

value (Wang, 2021).
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The bathymetry data used in this study was interpolated from

the General Bathymetric Chart of the Oceans (GEBCO1) dataset.

The GEBCO is a global terrain model that provides elevation data

on a 15-arc-second interval grid with a resolution of almost 0.46 km

(Weatherall et al., 2021). Due to its high resolution, GEBCO

accurately depicts near-shore and deep-sea terrain, making it

widely used in wave simulation (Akpinar et al., 2016; Kutupoğlu

et al., 2018; Beyramzade et al., 2019; Sun et al., 2022).
3 Data and methods

3.1 SWAN model description

The third-generation wave model SWAN is developed at the Delft

University of Technology (The SWAN team, 2021b). SWAN is well

known for its implicit schemes and iteration techniques, which make

the model performance more robust and economic, especially in

shallow shelf seas. As a third-generation wind-wave model, SWAN

computes the rate of change of wave action density (N) as follows

∂N
∂ t +

∂ cxN
∂ x +

∂ cyN
∂ y + ∂ csN

∂s + ∂ cqN
∂ q = Stot

s (1)

The first term on the left-hand-side represents the rate of

change of N with time, and the second and third terms represent

the propagation of waves in geographic space. cx and cy are the wave

propagation velocities in the zonal and meridional directions

respectively. The fourth term represents the shifting of the radian
1 https://download.gebco.net/.
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frequency (s ) due to variations in depth and mean currents. The

fifth term demotes the depth-induced and current-induced

refraction in wave propagation direction (q). The right side of

this equation, Stot is the superposition of all sink and source terms:

Stot = Sin + Sds,w + Sds,b + Sds,br + Snl3 + Snl4 (2)

These six terms denote, respectively, wave growth by the wind,

wave decay due to whitecapping, bottom friction and depth-

induced wave breaking, nonlinear transfer of wave energy

through three-wave and four-wave interactions. Detailed

descriptions of these terms can be found in the SWAN scientific

and technical documentation (The SWAN team, 2021b).

In SWAN, the whitecapping expressions are based on a pulse-

based model (Hasselmann, 1974), and remodified by the WAMDI

Group (1988):

Sds,w(s , q) = −G ~s k
~k
E(s , q) (3)

in which ~s and ~k represent the mean frequency and mean wave

number respectively, and k is the wave number. G is a coefficient

related to the wave steepness and has been adapted by Günther et al.

(1992) from Janssen (1992):

G = Cds (1 − d ) + d k
~k

� �
~s

~sPM

� �p
(4)

where ~s is the overall wave steepness, and Cds, d and p are tunable

coefficients. ~sPM =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:02� 10−3

p
is the value of ~s for the Pierson-

Moskowitz spectrum (Pierson and Moskowitz, 1964). Cds has two

different choices in SWAN, namely KOMEN and JANSSEN. The

default value of Cds is 2.36E-5 for KOMEN but 4.5 for JANSSEN.
FIGURE 1

Bathymetry map of the study area. The black solid line frame denotes the SCS.
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Van der Westhuysen et al. (2007) divided the dissipation mode

into breaking and non-breaking waves, which were active in

different parts of the spectrum:

Sds,w(s , q) = fbr(s )Sds,break + ½1 − fbr(s )�Sds,non−break (5)

Sds,break(s , q) = −Cds
B(k)
Br

� �p
2
(tanh(kh))

2−p0
4

ffiffiffiffiffi
gk

p
E(s , q) (6)

where Sds,break and Sds,non−break are the contribution by breaking

and non-breaking waves, respectively. B(k) =
Z 2p

0
cɡk

3E(s , q)dq is

the azimuthal-integrated spectral saturation, Br is a threshold

saturation level. Br and Cds are both tunable parameters and the

default settings in SWAN are Br = 1.75E-3 and Cds = 5.0E-5.

However, the theory of non-breaking low-frequency waves is not

yet mature, so Sds,non−break is usually replaced by KOMEN.

The scheme of Van der Westhuysen et al. (2007) is always used

in conjunction with the wind input scheme of Yan (1987)

(hereinafter referred to as YAN), and the expression is given as

Sin,YAN (s , q) =

C1
U*
cph

� �2
+C2

U*
cph

� �
+ C3

� �
cos(q − qw) + C4

� �
sE(s , q)

(7)

where C1 = 4.0E-2, C2 = 5.52E-3, C3 = 5.2E-5, C4 = −3.02E-4 are

constants (The SWAN team, 2021b), U* and cph are the friction

velocity and phase speed respectively. In SWAN, the whitecapping

scheme of Van der Westhuysen et al. (2007) and YAN are usually

treated as a stand-alone scheme, hereinafter referred to as WST.

Since the implementation of the “ST6” source term package

(Rogers et al., 2012; The SWAN team, 2021b) (hereinafter referred

to as ST6), its good performance at different spatial scales and weather

conditions has made it widely used (Liu et al., 2019). According to

Zieger et al. (2015) and Rogers et al. (2012), the wind input expression

of ST6 is given as

Sin,ST6(s , q) =
ra
rw
s 2:8 − ½1 + tan h(10

ffiffiffiffiffi
Bn

p
W − 11)�f g ffiffiffiffiffi

Bn
p

WE(s , q)

(8)

W = W1(s , q) − a0W2(s , q) (9)

where Bn is the spectral saturation. W1 and W2 represent the

positive and adverse wind inputs respectively and their magnitudes are

dependent on the friction velocityU*. a0 is the wind scaling coefficient.
3 https://cds.climate.copernicus.eu/.
3.2 Model setup

In this study, we used the hindcast model SWAN Cycle III

version 41.31AB2. The SWAN model is operated in the third

generation and non-stationary mode with a spatial resolution of

0.25° × 0.25°. A time step of 30 minutes is adopted, and each time

step is iterated up to a maximum of 5 times. The JONSWAP (Joint

North Sea Wave Project) spectrum is divided into 72 directions and
2 https://swanmodel.sourceforge.io/.
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frequency bins between 0.04 Hz and 1.0 Hz. The JONSWAP

spectrum is used for the bottom friction with Cb (the bottom

friction coefficient) setting to 0.038 (Hasselmann et al., 1973). The

study period spans from 2017 to 2021. To investigate the effect of

different whitecapping schemes, we evaluate three schemes:

KOMEN, JANSSEN, and WST. For KOMEN and JANSSEN, we

employ the ST6 with the wind drag formula developed by Hwang

(2011) and the wind scaling coefficient a0 set to 28. For WST, we

still use YAN as the wind input scheme. Due to computational

resource limitations, we mainly conduct numerical experiments

using these two wind input schemes, ST6 and YAN. The detailed

settings of all experiments are provided in Table 1.
3.3 Atmospheric forcing data
and observations

Forcing wind fields significantly affect the accuracy of wave

models (Kutupoğlu et al., 2018; Yang et al., 2022). In this study, we

utilized 10-m wind speeds (U10) from three high-quality wind

products to drive the wave model, namely the fifth-generation

European Centre for Medium-Range Weather Forecasts

(ECMWF) Reanalysis (ERA53), the Cross-Calibrated Multi-

Platform Version 2.0 (CCMP4), and the National Centers for

Environmental Prediction (NCEP) Final Reanalysis Data (FNL5).

The latest atmospheric reanalysis data from ECMWF is ERA5,

which supersedes ERA-Interim since September 2019 (Jiang et al.,

2022). ERA5 offers a finer spatial grid, higher temporal resolution,

and more vertical levels compared to ERA-Interim (Hersbach et al.,

2020). The dataset used in this study has a horizontal resolution of

0.25° × 0.25° and a temporal resolution of 1 hour. Previous studies

have demonstrated the exceptional performance of ERA5 in our

study area (Zhang et al., 2020; Feng et al., 2022; Yang et al., 2022;

Zhai et al., 2023). Therefore, ERA5 was selected as the primary

forcing wind field to drive the model.

CCMP is a Level-3 ocean vector wind analysis product that

provides high-quality global wind field data with a six-hour

temporal resolution from 1988 to the present and a spatial

resolution of 0.25° × 0.25° (Wentz, 2015; Mears et al., 2019; Wu

et al., 2022). Experimental validation conducted by Atlas et al.

(2011) demonstrated a significant improvement in the accuracy of

CCMP data compared to wind field measurements from individual

satellite platforms, rendering it well-suited for oceanic and

atmospheric research.

FNL is a global reanalysis product with a six-hour temporal

resolution spanning from 1999 to the present and a spatial

resolution of 1.00° × 1.00° (Appendini et al., 2013; Chen et al.,

2020). It employs an advanced data assimilation system and

assimilates observation data from various sources. The product is

founded upon the Global Data Assimilation System (GDAS) and is
4 https://data.remss.com/ccmp/v02.0/.

5 https://rda.ucar.edu/datasets/ds083.2/.
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prepared operationally every 6 hours using the identical model and

assimilation scheme as the NCEP operational Global Forecast

System (GFS).

The Satellite with ARgos and ALtiKa (SARAL6) project is a joint

mission operated by the Indian Space Agency (ISRO) and the

French Space Agency (CNES), designed for ocean observations

(Verron et al., 2015). AltiKa, SARAL’s primary payload, is the first

spaceborne altimeter operating at the Ka-band frequency

(35.75 GHz). The higher frequency leads to a smaller footprint (8

km diameter) and so a better spatial resolution (Verron et al., 2021).

Since March 2013, SARAL has been providing along-track data for

various physical oceanographic parameters on a global scale,

including sea surface wind speed, SWH, and sea surface height

(Verron et al., 2015). Recent studies have affirmed SARAL’s high

accuracy, data quality, and availability (Sepulveda et al., 2015;

Sharma et al., 2022). SARAL offers a range of processed data

products at various levels. In this study, we utilized a delayed-

mode version, specifically the Nadir altimeter Geophysical Data

Record (GDR).We performed interpolation on the wind-forcing

data and simulated SWH data through temporal (cubic spline) and

spatial (nearest-neighbor) methods to align them with the altimeter

data. To ensure the reliability of our validation results, we excluded

the altimeter data that was more than 5 kilometers away from the

nearest grid points. The variations in the quantity of valid altimeter

data under different conditions are detailed in Table 2.
3.4 Error metrics

To accurately quantify the model performance, we employed

two commonly used error metrics, including the index of agreement

(d) proposed by Willmott (1982), and Slope. The specific formula

for the d index is presented below
6 ftp://ftp-access.aviso.altimetry.fr.
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d = 1 − on
1
(Si−Oi)

2

on
1
( Si−�Oj j+ Oi−�Oj j)2 (10)

where Oi is the observed value, �O is the mean value of the

observed data, Si is the value of the wind products or model outputs,

and n is the sample size. The d index displays the differences

between simulated and observed means and variances, which reflect

sensitivity to outliers in the observation data and insensitivity to

additional and proportional variances between simulated and

observed values (Zheng et al., 2023). Moreover, the d index is a

standardized metric, with values ranging between 0 and 1, where

values closer to 1 indicate higher consistency between two datasets

(Willmott, 1982). The Slope provides an indication of the direction

of errors and is calculated as the linear regression coefficient in the

regression model y = cx. A Slope value greater (or less) than 1

signifies that Si tends to be larger (or smaller) than Oi. This paper

will primarily use the d index to measure the consistency between Si
and Oi, while the Slope will be used as a secondary measure to assess

the direction of errors.
4 Theoretical basis

4.1 The wind errors and Cds

With the wind input scheme determined, the forcing wind field,

the only input variable, directly determines the magnitude of the

input energy. However, errors in the wind field can affect the

simulated SWH. Positive errors in the wind field lead to larger

simulated SWH, while negative errors lead to smaller simulated

SWH (Wu et al., 2020). Taking physical quantities in real

environment as reference, positive errors in the forcing wind field

require greater dissipation energy than in reality to maintain energy

balance, whereas negative errors require less. It can be inferred that

Cds, which is the primary factor influencing dissipation energy, may

exhibit a compensatory relationship with wind errors. In order to
TABLE 1 Parameter settings of SWAN model.

Model physics Parameterization scheme Parameters Values

Wind input
ST6

HWANG –

a0 28

YAN – –

Triad wave–wave interactions LTA Ur 0.01

Quadruplet wave interactions DIA
l 0.25

Cnl4 3E+7

Bottom friction JONSWAP Cb 0.038

Depth-induced wave breaking CONSTANT
a 1.0

g 0.73

Whitecapping

KOMEN cds2 –

JANSSEN cds1 –

WST cds2 –
fron
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explore this relationship, sensitivity experiments were conducted.

Figure 2A illustrates simulations where the wind field was scaled by

factors of 0.8, 0.9, 1, 1.1, and 1.2, with a constant Cds value of 0.22E-

5. Likewise, in Figure 2B, simulations were performed using the

same wind field but varying Cds values. A comparison between

Figures 2A, B reveals that, when Cds is held constant, the simulated

SWH gradually increases as the wind field increases. Conversely,

when the wind field remains constant, the simulated SWH

gradually decreases with increasing Cds. Hence, when the wind

errors are determined, the corresponding optimal value of Cds can

also be determined.
4.2 The errors in the wind fields

Currently, a wide range of wind field products are available, and

with advancements in observation and assimilation techniques,

these products consistently demonstrate high quality (Wu et al.,

2020; Wu et al., 2022). However, the utilization of diverse

assimilation data and methods in different wind field products

results in variations in their errors. Figure 3 illustrates the

interannual variations in the errors of three wind field products:

ERA5, FNL, and CCMP. Analysis of the Slope values reveals a

consistent underestimation of actual wind fields by ERA5 over 2017

−2021, corroborating findings from previous studies (Shi et al.,

2021; Son et al., 2023; Zhai et al., 2023). Furthermore, in 2019 and

2020, all three wind field products exhibited varying degrees of

underestimation. When examining the trend of the d index, CCMP

consistently displayed the highest quality with a d index of

approximately 0.92, while FNL exhibited the poorest quality with

a d index of around 0.89. In 2020, there was a fluctuation in the
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quality of these three wind field products compared to the norm,

with a d index of approximately 0.86. Overall, the d index of the

three high-quality wind field products ranges from 0.86 to 0.93, and

the Slope values are also near 1. This indicates that the errors in each

wind field product are relatively stable.

Based on the findings in Section 4, it is hypothesized that when

using high-quality wind field products, the optimal Cds values will

exhibit minimal variability. Therefore, conducting a series of

numerical experiments to validate this hypothesis is essential.
5 Numerical experiments

In this section, we will conduct an extensive sensitivity analysis

to validate whether the hypothesis proposed in the previous chapter

still holds under different seasons, years, and wind field types. If

confirmed, we will also determine the specific range of the optimal

Cds, which can greatly enhance the accuracy of wave simulation.

According to the conclusions in Section 4, there is a monotonic

relationship between Cds and simulated SWH. In other words, as Cds

increases, there will inevitably be an optimal simulation effect at a

certain value. To determine this optimal simulation accuracy, we

search for the maximum value of the d index. Guided by this

principle, we initiate our experiments using one-tenth of the default

Cds as the starting point and apply a step size of 0.1E-5 or 0.1.
5.1 Sensitivity to different seasons

Firstly, we examine the seasonal characteristics of the optimal

Cds values under three distinct whitecapping dissipation schemes
BA

FIGURE 2

Bin-averaged scatterplots of simulated SWH versus the observations under (A) variable wind fields and (B) variable Cds. In panel (A), ERA5 U10 is
scaled at 0.8, 0.9, 1.1, and 1.2 times with a fixed Cds value of 0.22E-5. In panel (B), Cds values are varied at 0.22E-5, 0.32E-5, 0.42E-5, 0.52E-5, and
0.62E-5, while ERA5 U10 remains unchanged.
TABLE 2 Amount of valid altimeter data under different conditions.

Gribed data ERA5 CCMP FNL Simulated SWH

Amount of valid data 68,827 67,929 16,803 68,181
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using ERA5 as the forcing wind field. Figure 4 illustrates the d index

represented by purple bars, the Slope depicted by a black curve, and

the maximum value of the d index indicated by a green dashed line,

corresponding to the position of the optimal Cds values. The

comparison of the d index for each season reveals that the

simulation performance in spring is notably inferior to that of

other seasons, even when considering the optimal Cds values, as the

d index remains below 0.90. Analyzing the simulation results of the

three schemes across different seasons shows that WST only

achieves a d index above 0.90 in winter, suggesting that the

overall simulation performance of KOMEN and JANSSEN

surpasses that of WST.

Regarding the distribution of the optimal Cds values, KOMEN

remains fixed at 0.52E-5, while JANSSEN ranges from [0.66, 0.76],

and WST fluctuates within the range of [0.72E-5, 1.12E-5]. It is

important to note that reducing the step size of Cds and increasing

the number of experiments may yield more accurate values for the

optimal Cds, but this is expected to have only a minor impact on the

experimental results. Based on the experimental outcomes, it is

evident that the three whitecapping dissipation schemes exhibit

seasonal fluctuations in the optimal Cds values. However, the

magnitude of these fluctuations is minimal.

Based on the observed variations in the Slope, it is evident that

an increase in Cds corresponds to a gradual decrease in the Slope,

implying a systematic decline in the simulated SWH. This finding

reinforces the conclusion established in Section 4. Additionally, it is

worth mentioning that at the optimal Cds values, all of the Slope

consistently fall below 1, indicating an underestimation of the

simulated SWH relative to the observed values. Notably, WST

exhibits the most pronounced underestimation among the

evaluated schemes.
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5.2 Sensitivity to different years

To determine the optimal Cds values for each year, we expanded

the range of Cds based on the experiments in Section 5.1. Figure 5

illustrates the interannual characteristics of the optimal Cds values

for the three whitecapping dissipation schemes. The optimal Cds

range is [0.42E-5, 0.52E-5] for KOMEN, [0.46, 0.86] for JANSSEN,

and [0.72E-5, 1.12E-5] for WST. Comparing the seasonal

characteristics of the optimal Cds values, JANSSEN exhibits a

slightly larger fluctuation, while the other two schemes remain

relatively consistent. Overall, we can conclude that the interannual

variability of the optimal Cds values is also very small.

Regarding the d index, the simulation performance in 2020

exhibits the poorest results, with the d index falling below 0.90 for

all three schemes. When examining the d index of the optimal Cds

values, the simulation performance of KOMEN and JANSSEN is

superior to that of WST, even in the year with the worst simulation

performance in 2020.

As highlighted in Section 4.2, the quality of the wind field in

2020 displayed fluctuations, with its Slope significantly lower than

that of other years. This discrepancy indicates a severe

underestimation of the actual wind field by the wind field product

in 2020. Referring to Figure 5, it is evident that the optimal Cds value

for 2020 is the smallest among the five years. This finding further

strengthens the confirmation of the compensatory relationship

between the wind errors and Cds, as elucidated in Section 4.

To address the potential impact of short-term disruptions on

the overall quality of the wind field, we considered the period from

2017 to 2021 as a unit, as depicted in Figures 5P–R. Comparing the

optimal Cds values for the five years to that of 2021 reveals a

complete equivalence between them. In Figure 3, the Slope and d
FIGURE 3

Time series analysis of wind field quality. Red, sky blue, and dark blue are ERA5, FNL and CCMP, respectively. The bars represent the d index, while
the dashed line indicates the Slope value. The final point on the X-axis represents the overall error for a five-year period (2017−2021).
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index of ERA5 for the five-year timeframe closely approximate

those of 2021, providing further evidence of the direct relationship

between wind errors and the optimal Cds values. Furthermore, by

comparing the d index in close proximity to the optimal Cds values,

we observe minimal differences among them. This finding implies

that the optimal value attained for the five-year period consistently

yields favorable simulation performance annually. In essence, the

longer the simulation timeframe, the more accurately the main

characteristics of the optimal Cds can be reflected. Therefore, a

simulation duration of five years will be maintained for subsequent

validation experiments.
Frontiers in Marine Science 0814
5.3 Sensitivity to different wind fields

The preceding section focused on the optimal Cds characteristics

when using ERA5 as the forcing wind field. In order to assess the

generalizability of the optimal Cds features, we conducted

experiments using CCMP and FNL as alternative forcing

wind fields.

As shown in Figure 3, the Slope reaches the highest when the

CCMP is applied, while it is the lowest for the ERA5 winds. Figure 6

provides an illustration of the optimal Cds values, showing that

CCMP generally has the highest Cds values among the three wind
B C

D E F

G H I

J K L

A

FIGURE 4

The distributions of d index and Slope for spring (A–C), summer (D–F), autumn (G–I), and winter (J–L). From left to right, (A, D, G, J) are KOMEN;
(B, E, H, K) are JANSSEN; (C, F, I, L) are WST. The purple bars show the d index for each experiment, corresponding to the left Y-axis. The solid black
line shows the Slope distribution corresponding to the right Y-axis. The green dotted line indicates the experiment corresponding to the maximum
value of the d index, that is, the experiment corresponding to the optimal Cds. The black dashed line represents the Slope equal to 1.
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field products, while ERA5 exhibits the lowest values. This finding

provides further confirmation of the compensatory relationship

between wind field errors and Cds. Remarkably, for KOMEN, it is

observed that the optimal Cds values are identical across all three

wind field products, at 0.52E-5. The optimal Cds range for JANSSEN

is [0.66, 0.76], while for WST, it fluctuates within the range of

[0.92E-5, 1.12E-5]. Similar to the seasonal and interannual

characteristics, the fluctuation range of the optimal Cds among

different wind field products is also minimal.

Figure 7 presents the differences in simulation performance

between the optimal Cds values and the default Cds values across all

experiments. The optimal Cds values are represented by the black
Frontiers in Marine Science 0915
lines in the figure, corresponding to the right y-axis. The maximum

value on the right y-axis represents the default Cds for each scheme.

It is evident that the range of the optimal Cds values for all three

schemes is significantly narrower compared to the default values of

the model. Specifically, for the individual whitecapping dissipation

schemes, the optimal Cds range is [0.42E-5, 0.52E-5] for KOMEN,

[0.46, 0.86] for JANSSEN, and [0.72E-5, 1.12E-5] for WST. From

the experiments conducted above, we can conclude that the

variations in wind field errors across different time scales and

types indeed result in fluctuations in the optimal Cds values.

However, due to the overall stability of wind field errors, the

optimal Cds values also fluctuate within a small range. These
B C
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FIGURE 5

The distributions of d index and Slope for 2017 (A–C), 2018 (D–F), 2019 (G–I), 2020 (J–L), 2021 (M–O) and the five years (P–R). From left to right,
(A, D, G, M, J, P) are KOMEN; (B, E, H, K, N, Q) are JANSSEN; (C, F, I, L, O, R) are WST. The crimson bars show the d index for each experiment,
corresponding to the left Y-axis. The other settings are the same as in Figure 4.
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results demonstrate the reliability of the theoretical basis proposed

in Section 4.

The red and dark blue bars in Figure 7 represent the d index of

the optimal Cds and default Cds, respectively, corresponding to the

left y-axis of the figure. It can be observed that the d index of the

optimal Cds values for all three schemes is consistently around 0.90,

indicating significantly improved simulation performance

compared to the default values. The most notable enhancement is

observed for JANSSEN with the optimal Cds values, while the

improvement is minimal for WST. This finding suggests that the

default value of WST exhibits the best simulation performance

among the three schemes. From the previous experimental results,

we have discovered that Cds values near the optimal Cds also yield

excellent simulation performance. In other words, selecting any Cds

value within the proposed optimal value range would result in

improved simulation performance than the default value of

the model.
6 Discussion

This study aims to propose a general method for determining

the optimal Cds to enhance the accuracy of ocean wave simulation.

However, the primary focus of this paper is on the SCS. Therefore,

to determine the wider applicability of the optimal Cds intervals, two
Frontiers in Marine Science 1016
additional regions, namely the Gulf of Mexico (GoM; 98°W–78°W,

17°N–31°N) and the MS (8°W–37°E, 28°N–45°N), were selected as

study areas. The GoM and the MS share similarities with the SCS,

featuring complex topography and drastic variations in water depth.

They also serve as vital maritime routes and regions rich in natural

resources (Huerta and Harry, 2012; Appendini et al., 2013; Elkut

et al., 2021; Beyramzadeh and Siadatmousavi, 2022). Therefore,

choosing these areas as subjects of study holds heightened practical

relevance. The time range, model settings, and observational data

remained consistent with this study. Similarly, we filtered the raw

data by excluding data points that were more than 5 kilometers

away from the grid points. As a result, there were 44,756 valid data

for the GoM and 84,272 valid data for the MS. To effectively utilize

computational resources, we only used ERA5 to drive the model.

Figure 8A displays the bathymetry map for the GoM and the

MS. For the GoM (Figures 8B, D, F), optimal Cds values are

determined as 0.42E-5 for KOMEN, 0.46 for JANSSEN, and

0.82E-5 for WST, respectively. Similarly, for the MS (Figures 8C,

E, G), the optimal Cds values for the respective schemes are 0.52E-5,

0.66, and 1.02E-5. All the optimal Cds values for both regions fall

within the proposed range, demonstrating the robust applicability

of the proposed viewpoint across different regions.

This study primarily focuses on two wind input schemes, ST6

and YAN, in SWAN. However, SWAN offers multiple other wind

input schemes to choose from. Different wind input schemes can
B C

D E F

G H I

A

FIGURE 6

The distribution of d index and Slope of ERA5 (A–C), CCMP (D–F), and FNL (G–I). From left to right, (A, D, G) are KOMEN; (B, E, H) are JANSSEN; (C,
F, I) are WST. The blue bars show the d index for each experiment, corresponding to the left Y-axis. The other settings are the same as in Figure 4.
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result in variations in the energy input to the wave model (Wang

and Huang, 2004; Adcock and Taylor, 2018), potentially leading to

variations in the optimal Cds range. Nevertheless, the optimal Cds

values will always fluctuates within a very small range.

When utilizing the optimal Cds range, two considerations

must be taken into account. Firstly, our conclusions are based on

a large volume of observational data. In cases where the

validation dataset is insufficient or the simulation duration is

too short, such as during typhoon events, the limited number of

samples can lead to potential errors. Therefore, it’s essential to

exercise caution when applying the optimal Cds range under these

circumstances. Additionally, for nearshore wave simulations,

where whitecapping dissipation no longer dominates, the

contributions of bottom friction and depth-induced breaking to

the dissipation process become prominent (Xu et al., 2013; Peng

et al., 2023). Moreover, errors in nearshore wind fields can

increase. Therefore, adjusting a single parameter alone may not

yield satisfactory simulation results. In such cases, the utilization

of the optimal Cds range also needs to be approached with
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caution. Typhoon and nearshore wave simulations hold

significant research value, and these aspects will be the main

focus of our future investigations.
7 Conclusion

Calibrating wave models is of paramount importance for

simulating SWH, with Cds often serving as a primary calibration

parameter. Nevertheless, determining the optimal Cds value is a

challenging task. This study, through theoretical analysis and

numerical experiments, provides a robust optimal Cds range.

Within this range, the accuracy of simulated SWH for any Cds

value is better than the model’s default Cds.

Specifically, we begin by revealing a direct relationship between

wind errors and the optimal Cds through sensitivity experiments.

Through a comprehensive evaluation of high-quality wind field

products using satellite observational data, we have discovered that

the errors of these wind field products are stable. This mechanism
B

C

A

FIGURE 7

The difference in model performance between the optimal Cds and the default Cds for KOMEN (A), JANSSEN (B), and WST (C). The X-axis represents
the experiment number: 1) 1–4 are seasonal results driven by ERA5; 2) 5–9 are interannual results driven by ERA5; 3) 10–12 are 5-year simulation
results driven by ERA5, CCMP, and FNL. The red and dark blue bars represent the d index for the optimal Cds and the default Cds, corresponding to
the left Y-axis. The dash black line shows the optimal Cds values distribution for all experiments, corresponding to the right Y-axis.
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suggests that, under high-quality wind field conditions, the optimal

Cds values will exhibit small fluctuations.

To verify this conjecture, we conducted a five-year wave

simulation in the SCS using SWAN, covering various scenarios

with different time scales and wind field types. Employing two wind

input schemes (ST6 and YAN) and three whitecapping dissipation

schemes (KOMEN, JANSSEN, and WST), we observed that the

optimal Cds values for all three whitecapping dissipation schemes

fluctuated within a narrow range. Specifically, the optimal Cds range

was [0.42E-5, 0.52E-5] for KOMEN, [0.46, 0.86] for JANSSEN, and

[0.72E-5, 1.12E-5] for WST. These results demonstrate the

applicability of our proposed viewpoint across different time

scales and wind field types. Furthermore, compared to the

model’s default Cds, we found that any Cds within the optimal

range had better simulation performance.

To investigate the applicability of the optimal Cds characteristics

in different regions, we conducted similar experiments in the GoM

and the MS using ERA5. The findings demonstrated that the optimal
Frontiers in Marine Science 1218
Cds values in these regions aligned with the suggested range,

affirming the universality of this approach across a global scale.
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Efficient 3D real-time adaptive
AUV sampling of a river
plume front
Martin Outzen Berild1*, Yaolin Ge1, Jo Eidsvik1,
Geir-Arne Fuglstad1 and Ingrid Ellingsen2

1Department of Mathematical Sciences, Norwegian University of Science and Technology,
Trondheim, Norway, 2Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
The coastal environment faces multiple challenges due to climate change and

human activities. Sustainable marine resource management necessitates

knowledge, and development of efficient ocean sampling approaches is

increasingly important for understanding the ocean processes. Currents,

winds, and freshwater runoff make ocean variables such as salinity very

heterogeneous, and standard statistical models can be unreasonable for

describing such complex environments. We employ a class of Gaussian

Markov random fields that learns complex spatial dependencies and

variability from numerical ocean model data. The suggested model further

benefits from fast computations using sparse matrices, and this facilitates

real-time model updating and adaptive sampling routines on an autonomous

underwater vehicle. To justify our approach, we compare its performance in a

simulation experiment with a similar approach using a more standard

statistical model. We show that our suggested modeling framework

outperforms the current state of the art for modeling such spatial fields.

Then, the approach is tested in a field experiment using two autonomous

underwater vehicles for characterizing the three-dimensional fresh-/

saltwater front in the sea outside Trondheim, Norway. One vehicle is

running an adaptive path planning algorithm while the other runs a

preprogrammed path. The objective of adaptive sampling is to reduce the

variance of the excursion set to classify freshwater and more saline fjord water

masses. Results show that the adaptive strategy conducts effective sampling

of the frontal region of the river plume.
KEYWORDS

adaptive sampling, ocean modeling, autonomous underwater vehicle, Gaussian random
field, stochastic partial differential equations, surrogate model
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1 Introduction

Human activities and pollution are heavily impacting the

world’s oceans (Halpern et al., 2008). Anthropogenic climate

change and local intrusion from industries can lead to

fundamentally altered ocean ecosystems, challenging species

distributions, loss in biodiversity, incidence of disease, and more

(Hoegh-Guldberg and Bruno, 2010; Doney et al., 2012). The

changes in ecosystem structure further influence important

services such as carbon sequestration, oxygen production, and

nutrient food chains. In order to achieve a more sustainable

utilization of marine resources and services, we need to enhance

our insight. Developing smart technologies for efficient monitoring

of the ocean can provide information that enables us to identify

adverse effects and guide development of countermeasures, and it

can hence be vital in saving or maintaining local ecosystems.

Commonly used ocean observation technologies are buoys,

drifters, satellites, unmanned surface vehicles, Argo floats,

underwater gliders, cabled seafloor observatories, autonomous

underwater vehicles (AUVs), hadal landers, or some coupled

system of these technologies (see, e.g., Lin and Yang (2020) for an

overview). Ocean monitoring systems are advancing from simple

and static single sensors systems to dynamic and multisensor

systems that can cover a large spectrum of temporal and spatial

scales. With the drive in artificial intelligence and robotic systems,

there is also a development toward intelligent sampling systems

where observations of various kinds are gathered and processed

where and when it is considered valuable.

With the improved affordability and functionality of AUVs, the

research literature has seen many advances lately; Zhang et al.

(2012; 2013) used deterministic algorithms to map coastal

temperature upwellings; Das et al. (2015) demonstrated AUV

mission planning for informative plankton sampling; Fossum
Frontiers in Marine Science 0222
et al. (2018) monitored large temperature gradients by adaptively

choosing surveys paths that substantially reduce the uncertainty in

the statistical temperature model; Fossum et al. (2019) conducted a

3D AUV survey for chlorophyll-a mapping; Mo-Bjørkelund et al.

(2020) employed hexagonal grids for equilateral survey paths to

adaptively explore large temperature gradients; Foss et al. (2022)

used a 2D spatiotemporal model onboard an AUV to supervise

mining waste seafill; Fonseca et al. (2023) compared satellite

imagery and adaptive AUV sampling results for predicting algal

blooms. These examples from recent research activity have

advanced the field of ocean monitoring with AUVs by going from

planar (sea-surface) fields to volumetric fields, in the combination

of various data sources, or by presenting a novel algorithm for

adaptive exploration.

Considering the vastness of our ocean, it is extremely difficult to

obtain sufficient data to cover the full range of scale and resolution

desired. Instead, one must rely on a combination of different data

sources and sophisticated modeling tools. To fill in the gaps

effectively, one can further proactively plan targeted and high-

precision sampling campaigns that will improve predictions and

support decision-making. At its core, these tasks relate to statistical

methods that can combine various data sources for prediction and

for evaluating data sampling designs to optimize further data-

gathering efforts.

In this work, we combine the fields of oceanography, statistics, and

robotics to effectively monitor freshwater frontal regions of river outlets

in three dimensions (north, east, depth) using AUVs. Specifically, we

conduct sampling in the Nidelva River running into the fjord outside

Trondheim, Norway (see Figure 1). The freshwater coming from the

river is mixing slowly with the more saline fjord waters, which can

cause a sharp gradient between the different water masses.

At our availability, we have output from a complex numerical

ocean model Slagstad and McClimans (2005), henceforth referred
FIGURE 1

Map of the operational area in the fjord outside Trondheim, Norway. The location of Trondheim is indicated by the red circle on the map of
Scandinavia in the top left corner. We have 3D numerical ocean model data at a high lateral and depth resolution in these coastal waters. The blue
square just north of the Nidelva River outlet indicates the boundaries of the autonomous underwater vehicle mission in a map view. The operation
domain extends from the sea surface to 5-m depth.
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to as SINMOD. Along with many other physical oceanography

variables, SINMOD outputs salinity at every grid node in a dense

spatial (3D) and temporal grid. Even though this model carries

much physical insight, the salinity output can be systematically

biased, and we will calibrate and update the salinity by deploying an

AUV. In this way, the SINMOD data are used to form a prior model

for the salinity trends and variations at the time of the AUV

deployment. We fit a Gaussian process prior as a surrogate model

to the numerical ocean model SINMOD. This surrogate model has

the advantage that it can be updated onboard the AUV, and it can

hence assimilate in-situ data efficiently. Moreover, this surrogate

model enables fast evaluation of various AUV sampling designs in

real time whereas it is maneuvering in the water. Fossum et al.

(2021) used similar methods to fit a surrogate model from

SINMOD, but only in 2D space. Ge et al. (2023) used a 3D

Gaussian surrogate prior model, but only for a small-size grid

and assuming a much simpler spatial dependency structure.

This paper brings together many elements, and the novelty lies

in a more realistic description of spatial correlations with a complex

model learned from SINMOD data (Berild and Fuglstad, 2023). The

approach is made computationally feasible through modern

techniques using a 3D Gaussian random fields with a Markov

property, and this enables adaptive AUV sampling based on the

new surrogate model in a large-size 3D waypoint graph used during

AUV deployments. Additionally, we
Fron
• fit the more realistic 3D statistical model to 3D numerical

ocean data, and develop a fast algorithm for updating this

model onboard an AUV during field deployment,

• develop methods for adaptive path-planning in the context

of 3D space with the more realistic model onboard

the AUV,

• show through a simulation study, based on SINMOD, that

the more realistic statistical model allows an AUV to sample

and map the ocean domain better than with a standard

statistical model,

• run two AUVs simultaneously in the ocean and show that

the combination of an intelligent adaptive survey design

and the more realistic model outperforms a standard pre-

scripted AUV sampling plan.
In Section 2, we describe the numerical ocean model and its

statistical surrogate model. In Section 3, we present the data

assimilation part and our approach for adaptive AUV sampling

designs. In Section 4, we study properties of the suggested methods

in a simulation study. In Section 5, we show results of deployments

with one adaptive AUV mission and one preprogrammed mission.

In Section 6, we conclude and point to future work.
2 Prior model for salinity

Consider a three-dimensional ocean domain D ⊆  R3, where x

(s) represents the salinity field at a specific location s =  (latitude,

longitude, depth)T     ∈  D. The salinity in this ocean domain

exhibits both spatial and temporal variations. However, we focus
tiers in Marine Science 0323
on short-term AUV deployments and simplify our analysis by

excluding temporal effects.
2.1 Numerical ocean model

An approximation of the salinity field is achieved using the

complex numerical ocean model SINMOD, developed by SINTEF

ocean (Slagstad and McClimans, 2005). SINMOD is a three-

dimensional model based on the primitive equations, solved using

finite difference methods on a regular grid with horizontal cell sizes

of 20 km × 20 km, which are nested in several steps down to 32m ×

32m for the bay outside Trondheim. The model employs varying

vertical resolutions, allowing for higher resolution near the dynamic

surface and more uniform resolution in deeper waters. Atmospheric

forces (obtained from forecasts available at https://www.met.no),

freshwater outflows (data from HBV model (Beldring et al., 2003)

provided by the Norwegian Water Resources and Energy

Directorate (NVE)), and tides (https://www.tpxo.net/) drive the

model. SINMOD offers numerical simulations of multiple ocean

variables, including temperature and currents as well as salinity. It is

a multipurpose tool that has been used for instance in the prediction

of Arctic ocean primary production by leveraging physical–

biological coupling (Slagstad et al., 2015; Vernet et al., 2021), in

quantifying the effects of the aquaculture structures for large-scale

cages by specifying and incorporating drag parameters in SINMOD

(Broch et al., 2020), and coupled with the particle dispersion of

waste from fish farming (Broch et al., 2017), oil production

(Nepstad et al., 2022), or mine tailings (Berget et al., 2018;

Nepstad et al., 2020; Berget et al., 2023). For a more

comprehensive explanation of the SINMOD methodology,

readers are directed to Slagstad and McClimans (2005).

In the current paper, we are only using the salinity outputs from

SINMOD. Figure 2 shows an example of SINMOD salinity data and

an excursion set (salinity ≤25.4 g/kg) separating water masses into

freshwater/saltwater in the fjord outside Trondheim. We notice that

the river plume has lower salinity than the surrounding brackish

water. There are very low salinity levels (around 5 g/kg–10 g/kg) in

the river outlet, whereas the salinity increases further out in the

fjord (around 31 g/kg). The temporal resolution of the SINMOD

numerical model used for these simulations is 10 min. Salinity is

measured in grams salinity per kilogram water (g/kg), which is

dimensionless and equal to ‰ and sometimes referred to as the

practical salinity unit (PSU).
2.2 Surrogate model with spatially
varying anisotropy

In-situ salinity observations made with an AUV are assumed to

be more accurate than the forecast provided by SINMOD. However,

an AUV measurement only characterizes the salinity at the specific

location where the measurement was taken, whereas a model like

SINMOD or similar is required to extrapolate variables in space and

time. For onboard computing, SINMOD is however too

computationally intensive, and it is challenging to assimilate AUV
frontiersin.org
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observations in real time with a full-fledged numerical ocean model.

Instead, a surrogate model can be trained from the numerical

model. It forms an approximate representation of the underlying

physical model and is highly applicable for different tasks that

require fast updating. Statistical models with spatial effects have

shown very suitable for such a task (Gramacy, 2020), and we

employ a particular statistical surrogate model for the numerical

ocean model salinity data here.

We use the spatial statistical model presented in Berild and

Fuglstad (2023), where the 3D salinity field is modeled as a

Gaussian Markov random field (GMRF) that allows sparse matrix

computations and realistic modeling via spatial variability in the

directional dependencies and the variance components. This model

is an extension of Lindgren et al. (2011) and Fuglstad et al. (2015).

Assuming that the 3D discretization of the domain D ⊆  R3

consists of n1×n2×n3 grid cells, the salinity field, x(s), is represented
by a vector of concatenated field values of size n = n1n2n3. In the

application, we have n1 = 50, n2 = 45, n3 = 6 with 32 × 32 m2 lateral

resolution and 1-m depth resolution. The vector x of salinity values

is modeled by a Gaussian distribution, i.e.,

x ∼ N n(m,S),        S = Q−1 : (1)

Here, the ∼ symbol means “distributed according to,” and N n

(m,S) refers to the n-variate Gaussian (or normal) distribution with

mean vector µ and covariance matrix S, where its inverse, namely,

the precision matrix, is denoted Q.

There is much flexibility in choosing the mean vector and

covariance matrix in Equation (1), and the Gaussian distribution

can hence form quite realistic surrogate models. The mean vector µ
of the salinity field captures the spatial trends of the field, which in

our case entails fresher water near the river gradually getting more

saline going out in the fjord. To form a realistic covariance

structure, the idea of Berild and Fuglstad (2023) is to form a

random process for u = x−µ via differential operators and

Gaussian noise forming a stochastic partial differential equation

(SPDE) as

(k 2(s) −∇ ·H(s)∇ )u(s) = W(s) : (2)
Frontiers in Marine Science 0424
Here, s is a location in the domain of interest D ⊆  R3 , u(s) is
the spatially varying deviation from the trend, and and W(s) is a

Gaussian white noise process (with zero mean and statistically

independent values), where as k (s)  =  k (s;  q)  >  0 and H

(s)  =  H(s;  q)  >  0 as differentiable are model components

controlled by parameters q that regulate the variability and

dependency within the process.

Equation (2) is solved locally for the zero-mean random field u

(s) using numerical integration and differentiation on a

discretization of the domain of interest D. The solution is u  ∼
 N n(0,  Q

−1), where the precision matrix Q  =  Q(q) inherits the

sparsity of the differential operators in Equation (2), and it

describes the Markov structure in the GMRF model. This

structure is very important for our purposes because it enables

fast matrix factorization and matrix-vector computations. Hence,

the GMRF formulation means that we can update the model

onboard the AUV. It is also used in the sampling design

evaluations. Without this sparsity, the Gaussian surrogate model

could not scale up the magnitude of the ocean mass in 3D (Berild

and Fuglstad, 2023).

A detailed description of the model is provided in the

Supplementary Material.
2.3 Parameter estimation for salinity field

In order to estimate the parameters and components of the

statistical GMRF model for salinity, we utilize numerical ocean

model data from SINMOD as the training dataset. These data are

denoted as y(si, tj), where si  ∈  D represents the location of cell i ∈
[1,…,n] at time tj for SINMOD realization j = 1,…,T. The surrogate

data model is then

y(si)  ∼  N (x(si),  s
2
S ),         i  =  1,   :   :   :  ,  n,  

where s 2
S is an unstructured noise variance of the

SINMOD dataset.

We estimate a location-dependent mean μ(si) of the GMRF

using the empirical average across all replicates tj as:
A B

FIGURE 2

Salinity simulation (A) and corresponding freshwater excursion (B) from the numerical ocean model SINMOD for 08/09/2022.
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m̂ (si) =
1
To

T

j=1
y(si, tj), ∀si ∈ D : (3)

We compute an estimate q̂ of the covariance parameters of the

GMRF by maximizing the likelihood function L(q), given residual

data from an autoregressive model fitted to the SINMOD data [see

Supplementary Material and (Berild and Fuglstad, 2023)]. In

Sections 4 and 5, the covariance parameters of the models are

estimated using a dataset from the SINMOD model, which spans

144 timesteps over the course of 1 day with a temporal resolution of

10 min. This dataset includes observations for all locations within

the spatial field at each timestep. Optimizing the likelihood of this

rather sophisticated covariance model is not straightforward, but it

gets less difficult with more data and this also improves the accuracy

of estimates. Berild and Fuglstad (2023) suggest that at least 10

timesteps of the whole field should be used to find reasonable

parameter values for such a flexible model.

Figure 3 shows the prior mean (Equation (3)), the prior variance

of the n-variate Gaussian distribution x, and the corresponding

spatial correlation of the marked location. The mean salinity clearly

increases going north in the fjord, away from the river outlet. The

salinity variance is larger near the river. For the correlation, we

notice non-circular contours indicative of anisotropy. Here, the

correlation appears to be stronger in the directions where salinity is

expected to be similar to that of the reference location.
3 Adaptive AUV sampling

We now delve into our approach for adaptive AUV exploration.

One part of this involves continuous updates of the GMRF

surrogate model through onboard data assimilation of the in-situ
Frontiers in Marine Science 0525
AUV salinity data. Another part is the strategic planning of the next

AUV sampling locations.
3.1 Conditioning to AUV data

Assume that the AUV gathers in-situ data at m locations or

design points d  =  d1,   :   :   :  ,  dm, where dj  ∈  D. In practice,

these locations form an AUV design (a trajectory). Data y(dj), j  =
 1,   :   :   :  ,  m, are noisy measurements of the salinity x(dj) at the
location dj where they are made. We organize the data in a length-m

vector y, and we allocate these observations to the correct grid

locations by using a sizem �  n selection matrix A. This matrix has

a single 1 entry in each row, and otherwise only 0 entries. With this

structure, it selects the m indices in the length-n vector x of

discretized salinity field variables in Equation (1). The

measurement model is then

y  =  Ax  +  ϵ,  ϵ  ∼  Nm(0,  s
2
auvIm) :

Here, the variance s 2
auv of the independent additive noise terms

aggregates the AUV positioning error and measurement noise. This

variance parameter is specified from existing AUV data.

The conditional model for salinity x, given measurements y, is
Gaussian distributed with an updated precision matrix

QC = Q + ATA=s 2
auv, (4)

and conditional mean

µC =  µ  +  Q−1
C AT(y  −  Aµ) =s 2

auv : (5)

With the sparse precision matrices, the updating in Equations

(4, 5) can be computed very fast.
A B C

FIGURE 3

Prior expectation (A), the variance of the process model (B), and the spatial correlation of the location highlighted (C). The N-arrow is the
cardinal north.
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Given a series of observations collected with the AUV along a

straight line from the river plume and straight north, we calculate

the conditional precision matrix and mean using Equations (4) and

(5) of the model estimated in Section 2.3. Using the precision, we

calculate the inverse diagonal (the conditional variance of the field),

and from this the correlation about a location in space. We

demonstrate the effect of data conditioning using a visualization

of the conditional expectation, conditional variance, and

conditional correlation given a series of updates, which are shown

in Figures 4-6, respectively. Figure 4 indicates that the river water is

going further north than anticipated in the prior mean. In Figure 5,

we see that the variance is reduced where the AUV has visited, and

as a consequence, the correlation range shown in Figure 6 gets

lower. Dense data sampling tends to reduce the spatial correlation.
3.2 Excursion sets and plume
mapping criterion

One goal of the AUV sampling is to improve the

characterization of the plume front defined in our case as the

zone separating fresh river waters and more saline fjord waters.

Following Fossum et al. (2021) and Ge et al. (2023), we use the

uncertainty in the random set of excursions below a salinity

threshold ℓ to distinguish river and fjord water. The excursion set

is defined by

ES  =   s ∈ D :  x(s) < ‘f g :
The associated excursion probability (EP) and the Bernoulli

variance (BV) is

EP(s)  = P(x(s) < ‘),     BV(s)  =  EP(s)½1  −  EP(s)�         s ∈ D :
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The BV is near 0 at locations where the EP is near 0 or 1,

whereas it is at its maximum value 0.25 at locations, which have EP

equal to 0.5.

When AUV salinity data y are available, we get a conditional

GMRF and conditional EPs and BVs. Effective AUV sampling

designs get salinity data that can pull these EPs closer to 0 or 1,

and in doing so, one reduces the uncertainty of the river plume

front. Conditional on salinity data y = yd according to design d  ∈
 D. The conditional EPs and BVs are

P(x(s) <  ‘ yd),       P(x(s) <  ‘j jyd)½1  − P(x(s) <  ‘ yd)� :j
Design plans must be made before the data yd is revealed, and

we take the expectation over the data when calculating the most

effective design. Focusing on improved spatial mapping of the river

plume front, it is natural to integrate the objective criterion over all

locations in the domain. The expected integrated Bernoulli variance

(EIBV) of a design d is then defined by

EIBVd(m,Q) =
Z
D
EydfP(x(s) < ‘jyd)½1 − P(x(s) < ‘jyd)�gds : (6)

For the GMRF surrogate model specified by mean µ and

precision Q, the EIBV for a design d has a closed form involving

sums of bivariate cumulative distribution functions F2 for the

Gaussian distribution. In this expression, the design is here

involved via a one-entry structure of the selection matrix A = Ad.

The closed-form solution facilitates very fast computations of

multiple sampling designs. The complete derivations of the closed

forms are in the Supplementary Material. See also Fossum et al.

(2021) and Ge et al. (2023). In our approach with the sparse GMRF

model, we use Monte Carlo sampling from the conditional model to

approximate the variance reduction components that are required

in the EIBV (see Supplementary Material).
FIGURE 4

Conditional expectation given AUV measurements along a fixed transect path at a 0.5-m depth.
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3.3 Adaptive AUV sampling algorithm

The AUV cannot navigate to all possible design locations.

Rather, its continued path is constrained by the current location

and the possible maneuvers it can perform. We let P  ⊂  D denote

the possible designs the AUV can choose from, defined by

directions (straight, left, right, up, down) from the current AUV

location. The chosen design is the one that minimizes the EIBV in

Equation (6). This means that

d∗ =  argmaxd∈PEIBVd(µ,  Q) : (7)
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During the AUV operation, this kind of design choice is done at

many time points, and with an updated model that is conditional on

all the data gathered up to this point. In this way, we utilize the benefits

of robotic intelligence to navigate the uncertain ocean plume zone.

We outline a myopic adaptive sampling algorithm in the 3D

domain. This is a sequential selection of waypoints or grid nodes

where the AUV data are sampled and the model updated. The

myopic approach represents a heuristic optimization strategy for

the AUV operation that does not anticipate potential data or

navigation choices beyond the current time. It makes the optimal

choice based on the expected values at the current time alone.
FIGURE 6

Conditional correlation of the marked point given AUV measurements along a fixed transect path at a 0.5-m depth.
FIGURE 5

Conditional variance in the process model given AUV measurements along a fixed transect path at a 0.5-m depth.
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Figure 7A shows the idea of adaptive sampling in a sketch with a

cycle of tasks where one leads to the next. Here, the AUV senses the

salinity, updates its onboard model, and plans where to navigate to,

and then it continues on the next cycle.

Hence, at the planning stage, the computer onboard the AUV

solves Equation (7) to navigate in promising 3D directions

(Figure 7B). To compensate for the time it takes to do the

computation, and to make the system near real time,

asynchronous parallel computing is applied to compensate for the

excessive computing time onboard.

Algorithm 1 shows the main steps of this adaptive AUV

sampling approach. In this algorithm, we use t to indicate

subsequent stages of AUV sampling. At stage t, the updated mean

in the onboard surrogate model
Fron
Initialization: Prior model µC,0 = µ, QC,0 = Q. Set start

location d0. Set t = 1.

while True do

Plan:

Choose design that reduces EIBV the most

dt = arg min EIBVd(µC,t−1,QC,t−1)

d ∈ Pt

Form selection matrix At = A(dt).

Act/sense:

Move according to design dt collecting measurements yt

Model Update:

With the collected measurements, update the GMRF

QC,t =  QC,t−1  +  AT
tAt=s

2
auv

µC,t =  µC,t−1 +  Q−1
C,t  A

T
t(yt   −  AtµC,t−1)=s

2
auv

Set t = t + 1.

end while
Algorithm 1. Myopic EIBV minimizing sampling with a GMRF
surrogate model.
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is denoted µC,t and the updated precision is QC,t. The selection

matrix At = A(dt) is formed based on the most promising design dt
at each stage. This design dt is chosen among several possible

designs Pt   ⊂  D that vary depending on where the AUV is at the

current stage and the operational navigation opportunities it has

according to the grid. In our implementation, the AUV can

continue from its current location to go straight ahead, or turn

left, right, up, or down. It cannot return back to its previous grid

location (Figure 7B). There are natural exceptions at the

grid boundary.
4 Simulation study

In this section, we conduct a simulated experiment to evaluate

the performance of our approach for monitoring the three-

dimensional freshwater plume of the Nidelva River in

Trondheim, Norway. The operational area is outlined in Figure 1.

Specifically, we will compare the effectiveness of the suggested

complex GRF model and a more standard model. The complex

model is discretized with a resolution of 32m x 32m square cells in

the horizontal plane and the standard model with a hexagonal grid

with a lateral neighbor distance of 120 m. Both models have 1-m-

depth increments ranging from 0.5 m to 5.5 m, resulting in a total of

n = 50 × 45 × 6 spatial location for the complex model and 1,098 for

the standard model. This is in line with the capabilities of the AUVs’

onboard computer.

Initially, both models are estimated on the SINMOD data

within the operational area in order to form a prior field. The

standard model is specified using a standard variogram analysis,

resulting in a Matérn covariance with a lateral correlation range of

550 m, a vertical range of 2 m, a prior marginal variance of 1, and a

nugget effect of 0.4 (see Section 2.4 of Cressie (1993) for a

description of this spatial data analysis method). The parameters

of the complex model are estimated through the approach described

in Section 2.3, and detailed in the Supplementary Material and

Berild and Fuglstad (2023). Both models use the empirical average

across all timesteps (replicates) of the SINMOD data, Equation (3),

as its prior expectation.
A B

FIGURE 7

Illustration of the adaptive sampling mechanism. Visualization of the adaptive sampling design (A). The AUV evaluates the potential high-value
locations to determine the next visiting waypoint (B). Red colors represent more interesting next waypoints.
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In order to obtain performance statistics, we ran L = 100

simulated field experiments where the AUV is equipped with

either one of the models estimated above and tasked with

monitoring the salinity field according to Algorithm 1. The AUV

is in this simulation environment exploring a SINMOD dataset

from the 09/11/2022 with an assumed additional Gaussian noise

term with standard deviation 0.12. This noise represents positional

error and measurement error in a real experimental setting.

Moreover, the AUV is set to travel at 1 m/s and each simulated

field experiment is run for T = 25 sequential steps of Algorithm 1,

i.e., visiting 25 spatial locations, where the starting location is kept

the same for each run.

Within the lth simulated experiment and after visiting the tth

location, the following three metrics are calculated: integrated

Bernoulli variance (IBV), root mean squared error (RMSE), and

classification error (CE). Let xl be the ground truth (SINMOD

data) in the lth experiment. Then, we calculate the metrics as

IBVl,t =o
n

i=1
EPl,t(si)1 − EPl,t(si)�,

RMSEl,t =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
½xl(si) − mC,l,t(si)�2

s
,

CEl,t =
1
no

n

i=1
I(El(si) ≠ Ê l,t(si)),       El(si) = I(xl(si) ≤ ‘ Þ;

Ê l,t(si) = I(mC,l,t(si) ≤ ‘),

where I is the indicator function, t ∈ [0,T], where T = 25 indicates

the sequential step, and l  =  1,   :   :   :  ,  L with L = 100 replicate field

experiment. The summary statistics of these metrics from the L

replicated experiments are shown in Figure 8. The solid lines are the

average across all L replicates at time t for each metric, e.g.,

dIBVt =
1
Lo

L

l=1

IBVl,t ,

and similarly the error bars show the empirical standard

deviation at time t across all L replicates as
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SD(IBVt) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L − 1o
L

l=1

(IBVl,t − dIBVt)
2 :

s

Each display has one of the metrics on the second axis and time

stages on the first axis. For the IBV and CE criteria, the percentage

reduction compared with the starting value is shown since the

models are constructed differently and therefore will also differ

prior to the mission, as can be seen in the middle RMSE display.

The IBV reduction (Figure 8A) indicates the ability of the AUV

to capture the river plume boundary. A lower IBV means that the

AUV is better at sampling the frontal salinity region separating river

and fjord water masses. In this spatial example, the IBV has a

tendency of going down, even though it could increase at some

stages (because data pull probabilities closer to 0.5). The complex

GMRF model clearly achieves lower IBV than the simpler model.

After some stages, the curve for the complex GMRF model declines

rapidly, indicating that the AUV is efficient at exploring the

boundary. This means that incorporating a more realistic

covariance structure helps the AUV choose the best designs and

it tends to move in the right direction.

The RMSE plot (Figure 8B) reflects the similarity between the

ground truth and the updated field. The ground truth is here the

same as what the AUV is sampling, i.e., the SINMOD dataset from

09/11/2022, but without the added noise term. A lower RMSE

means that the AUV is gathering data that helps in predicting the

salinity field. Again, the complex model is performing much better

than the simpler one. For CE (Figure 8C), a lower value means that

the updated model is good at classifying the excursion set associated

with the ground truth. The complex model has CE results that are

declining faster than the simpler model. The complex model

performs better than the standard model due to its versatile

capability and flexibility. However, we do realize that training

such models often requires expert knowledge and it can be a

laborious process to fine-tune the parameters for such a

complex model.

In all displays of Figure 8, we observe larger metric variability

for the complex GMRF model. The underlying reason for this is the

Monte Carlo variance in the EIBV calculation for the GMRF model

(see Section 3.2). With the relatively small sampling size, the Monte

Carlo error is still not negligible and, influenced by this estimate, the
A B C

FIGURE 8

Variation in integrated Bernoulli variance (A), root mean square error (B), and classification error (C) over the 100 replicate runs with the standard
model (blue) and the complex model (orange). The solid lines show the averages, and the vertical error bars show the empirical standard deviations
of the respective metrics.
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directional sampling decision made by the AUV exhibits more

small-scale variability than that of the standard model, which has a

closed-form variance expression. Over many replicates, the

variability in metrics then gets larger for the GMRF model,

especially for the IBV, which relates directly to the AUV

sampling decision criterion.
5 Results of Nidelva mission

The field experiment was executed in the Nidelva River plume

outside Trondheim, Norway, on the 08/09/2022. The duration of

this field deployment spanned 1.5 h. Figure 1 shows the

operational area.
5.1 Experimental setup

For this experiment, two AUVs are deployed. This is intended

to not only increase the amount of data collected but also enable us

to compare the performance of our embedded system under similar

conditions. One of the AUVs was programmed with the adaptive

sampling algorithm, whereas the other was running with a

preprogrammed path plan onboard.

LAUV (Light Autonomous Underwater Vehicle) Harald and

LAUV Roald (Figure 9) from the Applied Underwater Robotics

Laboratory at NTNU were employed for this mission. LAUV Roald

was programmed to carry out the adaptive experiment, and LAUV

Harald was programmed to conduct the predesigned plan. To

measure the salinity in the water, LAUVs Harald and Roald use

CTD sensors, or conductivity, temperature, and depth sensors.

Harald uses a SeaBird SBE 49 FastCAT and Roald an AML OEM

SV Xchange. Despite being from different manufacturers, the

specifications from the suppliers indicate that they should have

the same level of precision and accuracy. All the essential scripts

were integrated onboard on the backseat NVIDIA Jetson TX2 CPU.

For hardware and software in the loop testing and the actual
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deployment, we relied on the framework developed by Mo-

Bjørkelund et al. (2020). The onboard implementation of

Algorithm requires Robot Operating Systems (ROS) (Quigley,

2009) and a software bridge to the LAUV, running DUNE

(DUNE: Unified Navigation Environment Pinto et al. (2013))

embedded and communicating over the Inter Module

Communication (IMC) message protocol (LSTS, 2022).

The software bridge between ROS and IMC was adapted from

the Swedish Maritime Robotics Centers implementation of a ROS-

IMC bridge (Bhat et al., 2020) (https://github.com/smarc-project/

imc_ros_bridge) to include messages going from ROS to the vehicle.

In addition, a wrapper for the vehicle IMC messages was used,

facilitating interaction between the adaptive software and the

vehicle. The communication bridge and framework between ROS

and IMC use the same back-seat interface as Pinto et al. (2018), with

IMC messages being transmitted over Transmission Control

Protocol (TCP) (Cerf and Kahn, 1974) between the main CPU

and the auxiliary CPU in the AUV. The adaptive code was running

on the auxiliary CPU in order to preserve the integrity of the main

CPU. For illustration, a flowchart containing the main software

components is presented in Figure 10.

Before conducting the principal deployment, we gained

understanding of the sea conditions via a preliminary survey. We

first launched the pre-survey adaptive mission with a reasonable

threshold based on our belief field and then updated the threshold

to be 25.4 g/kg after observing the updated salinity field from the

pre-survey run.
5.2 Field operation

The AUVs started moving from their starting location around

12:50 a.m. We received the “Mission Complete” message from the

AUVs around 14:15 p.m., which marks the end of the operation.

In Figure 11, the results of the AUV conducting adaptive

sampling are displayed. Here, we plot the AUV path (black) and

the updated posterior mean salinity field over time steps. The AUV
FIGURE 9

LAUV Roald is on expedition with an adaptive sampling algorithm onboard. The AUV is around 2 m long and runs at around 1 m/s. It is doing a 3D
sampling mission at depths ranging from 0.5 m to 5.5 m.
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began near the river mouth and gradually moved toward the frontal

region, occasionally diving to the deeper layers. In total, the AUV

traveled approximately 9.734 km, with a coverage of 6.9% of the

field at 0.5 m, 6.3% at 1.5 m, 1.6% at 2.5 m, and 0.1% at 3.5m. Both

the AUVs were set to travel at 1.5 m/s, but the speed varies widely

because of conditions in the ocean. During the mission, the plume

expanded due to the tidal effect, so the AUV attempted to follow the

front more closely. Interestingly, the AUV did not dive deeper than

2.5 m. This can be attributed to the fact that the water becomes

more homogeneous and saline when it is too deep, and the river

plume tends to stay close to the upper layers. Also, this can be an

effect of the model learning from observation closer to the surface. It

should be noted that the trajectory presented in Figure 11 exhibits a
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seemingly disjointed appearance. This phenomenon arises from the

methodology employed, wherein observed measurements are

allocated to the nearest center of the grid cell corresponding to

their actual spatial location. Furthermore, this disjointedness is

exacerbated by the movement of the AUV across various-depth

layers, which introduces discontinuities in the trajectories within

each layer.

In Figure 12, the salinity prediction results of the AUV’s pre-

planned sampling are displayed. The path was designed to

maximize the sampling coverage and consequently reduce the

variance of the field. The AUV was programmed to move along

the path with a consistent YoYo pattern. This pattern involves the

AUV moving between 0.5 m and 5.5 m repeatedly. The
FIGURE 11

Salinity prediction during the adaptive sampling mission 08/09/2022. The AUV (black) began close to the river mouth and gradually moved toward
the frontal region and dived to deeper layers occasionally.
FIGURE 10

The diagram of the software component in the adaptive sampling system. The main CPU of the AUV is running DUNE (Pinto et al., 2013), whereas
IMC (LSTS, 2022) messages are sent through TCP (Cerf and Kahn, 1974) to a secondary CPU, where the adaptive code and ROS (Quigley, 2009)
are executed.
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preprogrammed path approach ensures a more systematic and

exhaustive coverage of the volume, providing a broader

perspective but lacking the pinpoint accuracy on such a large and

rapidly changing ocean volume. The path the AUV traveled along

was approximately 9.346 km with a coverage of 7.9% at 0.5 m, 8.3%

at 1.5 m, 9.1% at 2.5 m, 8.6% at 3.5 m, 7.9% at 4.5 m, and 7.2% at

5.5 m.

Given the unpredictable nature of the location of the freshwater

front, it is virtually impossible to preplan precise sampling paths.

The shifts and movements of the plume demand a real-time

responsive approach like adaptive sampling. This is also evident

when comparing Figures 11, 12. On the other hand, if a broad

overview of the ocean volume is the goal, then a preplanned design

likely is useful to ensure a systematic coverage of the region, leaving

minimal gaps in the data collection. Also, note that diving 1 m is

significantly more time efficient than moving 32 m in the horizontal

plane for the AUV, this can be viewed by the coverage in each layer

by two missions. The fixed path mission has good coverage within

each layer whereas the adaptive mission mostly considers the top

two layers. Because of this, it could be interesting in future work to

consider adaptive sampling in only the horizontal plane and to

always move in a YoYo pattern.
5.3 SINMOD and AUV data comparison

Even though salinity is only one state variable in SINMOD, it is

useful and interesting to compare the AUV salinity measurements

with the predictions made by SINMOD, as it will give information

on the overall performance of the hydrodynamic model. Using all

the data collecting by both AUVs, we compare the location-specific

observations made by the AUVs with the associated SINMOD

predictions for this day.

As illustrated in Figure 13, there is a clear inclination of

SINMOD to overpredict salinity values. This trend is evident as a

majority of the AUV measurements are situated below the zero

error line (dotted line). In shallow water regions, both SINMOD

and the AUV measurements exhibited high salinity variability,
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which is reasonable considering the freshwater influx from the

river and local disturbances. For deeper waters, the salinity is higher

for both models and more concentrated, with a bias around 3.5 g/kg

between the SINMOD predictions and AUV measurements. The

highest measured salinity value by the AUV was 28.0 g/kg, whereas

the highest value from SINMOD was 31.5 g/kg, further confirming

that the numerical model overestimates salinity both for the water

in the river plume and in the brackish layer in the fjord.

While this discrepancy between SINMOD and the actual

salinity field is evident, this will not impact the learning of the

covariance structure, which captures the spatial correlation and

variability within the data and is independent of any systematic bias.

That said, the observed overestimation in SINMOD does set a prior

expectation in our model that is skewed slightly high and will

initially impact the adaptive sampling algorithm.
6 Conclusions

In this study, we have presented an approach for effective 3D

(north, east, depth) sampling of salinity in a river plume front,

employing a realistic and flexible spatial covariance model running

onboard an AUV in real time. Results of a deployment in the

Trondheim fjord demonstrate that prior inputs from the SINMOD

numerical ocean model are effectively calibrated with the in-situ

AUV measurements. In a mission focusing on mapping the frontal

region, the AUV adapts naturally to the updated situation and zig-

zags near the plume front to improve its spatial characteristics.

Moreover, it is evident that the adaptive approach holds a distinct

advantage over the preplanned method when it comes to accurately

monitoring dynamic zones like the river plume front.

In Section 2.3, we estimate our surrogate model with the prior

mean and covariance structure, which in the visualization both

appear reasonable and are well-suited for the domain of interest.

Furthermore, as detailed in Section 4, the surrogate model

consistently outperformed a standard benchmark model across

several key performance metrics. Lastly, in Section 5.2, we present

the results of the field mission. Figure 11 depicts the AUV’s
FIGURE 12

Salinity prediction during the fixed path mission on 08/09/2022. The AUV (black) aims to cover the spatial domain.
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predictions throughout the adaptive sampling mission, which we

interpret as indicative of reasonable adaptive sampling behavior

under the given conditions. The surrogate model, while promising

in these results, does necessitate further refinement to fully realize

its potential in this context. Firstly, refining its parameterization

slightly to simplify the likelihood surface can potentially improve

the optimization process significantly. Furthermore, estimating the

covariance structure to innovations constructed from the SINMOD

data, as described in Berild and Fuglstad (2023), is not guaranteed to

be accurate in removing the temporal effect in the data, thus making

it challenging to ascertain if the final structure is only capturing the

spatial effect.

The prior models used in this work included 3D space with no

temporal variation. A natural extension is to include temporal

variation in the prior, which could be done in a Gaussian

framework assuming known advection and diffusion (Foss et al.,

2022). However, more research is required to develop realistic

space–time models for frontal regions, such as that associated

with river plumes, while maintaining the computational efficiency

required to conduct expansive field surveying as considered in this

study. Lastly, our exploration was confined to a near-sighted

myopic sampling scheme. Future avenues might explore more

sophisticated strategies (Bai et al., 2021), using longer sampling

horizons where one can look ahead and anticipate the information

gained by traversing longer distances with the AUV while also

accounting for operational constraints.

In closing, it is important to highlight that while our study is

centered on separating ocean masses of low (freshwater plume) and
Frontiers in Marine Science 1333
high (brackish water) salinity concentrations, we believe that this

approach transfers well to other applications in physical or biological

oceanography, such as polar melting water, high chlorophyll

concentrations, oxygen or carbon content, or pollution detection.
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Adaptive terminal sliding mode
control for USV-ROVs formation
under deceptive attacks
Qiang Zhang, Sihang Zhang, Yang Liu*, Yan Zhang
and Yancai Hu

School of Navigation and Shipping, Shandong Jiaotong University, Weihai, Shandong, China
This work investigates the cooperative formation control problem of unmanned

surface vehicle-remotely operated vehicles (USV-ROVs) subject to uncertainties

under deceptive attacks. In the control design, with the utilization of the desired

formation as well as the geometric position between USV and ROVs, a geometric

transformation approach is developed and a geometric constraint relationship of

governing formation positions is derived. Under the terminal sliding mode

control (TSMC) design framework, a novel terminal sliding surface is crafted to

circumvent the singularity issue. To further bolster robustness, using the sliding

mode damper concept, a variable damping reaching law is devised. To refrain

from the effectiveness of attacks and uncertainties, the adaptive technique is

integrated into the TSMC framework. To save the communication resources, an

event-triggering mechanism is established between the distributed controller

and ROVs. Then, an event-triggered adaptive finite-time cooperative formation

control scheme is developed for the USV-ROVs. The Lyapunov theory analysis

shows that the cooperative formation control issue of USV-ROVs is realized and

the deceptive attack can be suppressed efficaciously. The simulation,

comparison, and quantitative analysis demonstrate the relative effectiveness

and superiority of the developed scheme.
KEYWORDS

cooperative formation, USV, ROVs, deceptive attack, sliding mode control
1 Introduction

In recent years, the field of marine engineering has witnessed a significant shift towards

the exploration of collaborative multi-intelligent body formation control. This research

direction involves the coordination and cooperation of multiple intelligences, which has the

advantages of improving survivability, reducing operation cost, and expanding operation

range compared with the traditional operation of a single intelligence (Xu et al., 2022).

Intelligent aircraft and underwater operation equipment such as unmanned surface

vehicles (USV), remotely operated vehicles (ROV), and autonomous underwater vehicles

(AUV) play an important role in related engineering scenarios (Li et al., 2023b). Therefore,
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control issues become critical in order for multi-intelligence bodies

to achieve safe cooperative formation navigation and to perform

smoothly according to pre-designed missions. In USVs in

unmanned control mode, the network becomes an important

medium for executing tasks, and in open network links between

sensors, controllers, and actuators, the exchanged data are

vulnerable to attacks because of protocol vulnerabilities,

misconfigurations, and other situations. In recent years, a number

of maritime security incidents related to network attacks have been

triggered around the world, raising serious security concerns

(Swaszek et al., 2013). Hence, addressing the issue of network

attacks is pivotal for achieving secure formation navigation of

USV-ROVs and the successful execution of assigned missions.

Network attack methods are generally categorized into Denial

of Service (DoS) attacks, replay attacks, and deceptive injection

attacks (Chen et al., 2019). DoS attacks are crafted to overwhelm a

system’s resources, rendering it incapable of processing legitimate

service requests. Replay attacks and deceptive injection attacks can

be collectively categorized as deceptive attacks, centered around

manipulating and corrupting transmitted data within the network.

Replay attacks involve maliciously resending the same data

repeatedly, constituting a specialized form of deception attack. In

deceptive injection attacks, attackers inject spoofed commands into

sensors that receive ship data, subsequently integrated into the

control system. In contrast, deceptive injection attacks are more

harmful to USV-ROVs formation control because of their stealthy

nature (Ding et al., 2016). Maritime security mechanisms for

network control systems (NCS) have primarily focused on IT-

level designs (Li et al., 2022), such as setting up firewalls, to

enhance security control and detect potential threats at the

computer system level. However, these measures alone are

insufficient for regulating the control of formation devices when

they come under deceptive attacks (Sandberg et al., 2015). To

address this issue, security control strategies need to be developed

at the control level to ensure the safety and integrity of marine

operations, in conjunction with security software. Researchers have

explored various control techniques, such as sliding mode control

(Shi et al., 2018a), observer-based control (Jin, 2018), and adaptive

control (Zhang and Zhang, 2015), due to their robustness in dealing

with system uncertainties and external disturbances. These

techniques constitute a resilient compensation mechanism (Wu

et al., 2019) to mitigate the impact of attacks on the system. Sliding

mode control has attracted many scholars to study it because it

relies less on the accuracy of the systemmodel and has less influence

of system parameter variations and external perturbations

compared to other control techniques. W Wang (Wang et al.,

2021) investigated the problem of formation control for uncertain

systems under deceptive attacks, incorporating adaptive methods to

improve control efficiency, performance, and system resilience. T

Yin (Yin et al., 2022) investigated the problem of event-based

intermittent formation control under deceptive attacks by

introducing an averaging method in the event triggering

mechanism to reduce the burden on the network bandwidth. DW

Zhang (Zhang and Liu, 2023) proposed a predictive sliding mode

control method to improve the closed-loop system robustness of the

formation by introducing a sliding variable to defend against
Frontiers in Marine Science 0236
random deceptive attacks. In the field of cyber security control,

the issue of chattering associated with sliding mode control is often

overlooked (Saihi et al., 2019). Additionally, some researchers have

employed the theory of uncertain system state estimation to model

attack damage control commands as virtual unknown states. They

transformed these commands into unknown state estimation

problems, established adaptive resilience policies using continuous

incentive mechanisms, and designed event-triggered filters to

counter deceptive attacks (Liu et al., 2020). Other studies have

proposed novel observers (Huang and Dong, 2019) to address

attack problems from a modeling perspective by algebraically

modifying the attack abstraction model of the device. However,

the effectiveness of resilient compensation and the associated

constraints still require further exploration and validation due to

the sudden and unpredictable nature of attacks.

In addition to the aforementioned challenges, formation control

differs from single-vessel trajectory tracking control as it requires

maintaining a specific formation. Common formation control

methods include the leading-following method, virtual structure

method, behavior-based method, and artificial potential

field method; among these, the leading-following method has

garnered extensive attention due to its simplicity and practical

applicability. Essentially, this method involves designating an

individual within the formation as a navigator and the remaining

members as followers; a relationship is then established between the

navigator and the followers to achieve effective formation control. H

Xu (Xu et al., 2023) et al. proposed a leading-follower formation

control method combined with a fixed-time perturbation observer,

which solved the problem of USVs formation control in the

presence of unknown perturbations. L Ding (Ding and Guo,

2012) et al. aimed at the synergy problem between USVs,

combined the leading-follower method and backstepping method

together to design a new formation control law. Based on the virtual

leader strategy, M Fu (Fu et al., 2018) et al. designed a new control

law by simplifying the backstepping control technique through

coordinate transformation, and proved the stability of the whole

formation system. Based on graph topology theory, Li Y (Yun and

Ying, 2016) et al. introduced a hybrid leading-follower method to

design control strategies to control the formation sequentially

according to the motion patterns in different phases, and Lin

et al. used the pilot-follower method to divide the ships in the

formation into virtual leader and follower, and introduced an

observer to eliminate the virtual leader and follower. Lin A (Lin

et al., 2018) et al. used the leading-follower method to categorize the

ships in the formation into a virtual leader and followers,

introduced observers to eliminate unknown disturbances, and

reduced the complexity of designing formation controllers by

transforming the formation control into the design of controllers

for three subsystems. The above studies conducted intelligent

control research on different tasks from the perspective of

equipment coordination, but most of them focused on power

localization and did not bring out the unmanned advantages that

USVs themselves possess, and the motion control of USV-ROVs in

formation coordination was not further studied.

During navigation, USV-ROVs are affected by a variety of

uncertainties in addition to network attacks, such as external
frontiersin.org
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perturbations caused by wind, waves, and currents, and internal

uncertainties such as ship dynamic uncertainties and model errors

(Li et al., 2023a). USV-ROV formation systems are characterized by

offshore operations, and the time-varying disturbances caused by

sea winds and waves to the USV-ROV are the primary control

challenges from the external environment (Skjetne et al., 2005).

These components can affect the control performance of the whole

formation control system and reduce the robustness of the system.

In order to deal with these problems, some effective uncertainty

estimation and reconstruction methods have been presented, such

as sliding mode, observer, and parameter adaptive techniques,

among which terminal sliding mode control has been widely used

by many scholars due to its strong anti-interference ability. Yang G

(Yang and Chen, 2020) et al. proposed a power convergence law,

which can adaptively select parameters to improve the convergence

speed of the convergence law. Kang Z (Kang et al., 2020) et al.

proposed a double power convergence law, which adaptively

combined the terminal sliding mode with the double power

convergence law, which can better accomplish the tracking task

while weakening the jitter phenomenon. Tian Y (Tian et al., 2020)

et al. designed a fast convergence fixed-time non-singular terminal

sliding mode method for a class of second-order non-linear systems

with matching uncertainty, which avoids the singularity

phenomenon, improves the fast response capability of the system,

and suppresses the jitter phenomenon of the sliding mode control.

Sun R (Sun et al., 2018) et al. combined a neural network based

neural network-based formation switching strategy and terminal

sliding mode control technology to design the controller, which

effectively improves the control accuracy and reduces the real-time

computational load of the controller. Many scholars have achieved

good results in the field of network attack formation and terminal

sliding mode control, but since USV-ROVs are a kind of multi-

input non-linear system, the design is usually more complicated,

and the convergence law has a crucial role in the rapidity and

stability of the controller. Based on the aforementioned approach,

the primary objective of this paper is to design a novel terminal

sliding mode control to address the formation problem under

deceptive attacks. The main contributions of this paper are

as follows.
Fron
1. In this paper, mathematical abstraction modeling of

stealthy attacks and perturbations caused by internal and

external factors including actuator matching perturbations

is carried out in part 2. Aiming at the stealthy nature of a

deceptive attack, a sliding mode control scheme is adopted

from the perspective of control system robustness. In part

3.1, considering the singularity and trajectory tracking time

requirements, a new terminal sliding mode surface design is

carried out to complete the convergence phase and sliding

phase in a limited time to improve the control efficiency.

2. In part 3.2, based on the dynamic characteristics of the

sliding mode convergence phase, a dynamic dampener is

introduced, and a novel variable damping sliding mode

convergence law is developed. In this approach, the

convergence speed at the junction of convergence and

arrival phases have been reduced, thereby minimizing
tiers in Marine Science 0337
sliding mode chattering. Moreover, it increases dynamic

speed when moving away from the sliding mode surface to

improve response efficiency, leading to better response and

compensation effects in sliding mode control.

3. To tackle the challenges related to saturation filtering, a

non-linear saturation fitting function has been devised in

part 3.3, which is coupled with an event-triggering

mechanism. This innovative approach serves to decrease

the utilization of communication resources and effectively

mitigates communication congestion triggered by

deceptive attacks.
Notations: Rm�n is m� n-dimensional Euclidean space, sin ( · )

is sinusoidal function, cos ( · ) is cosine function, ·k k is Euclidean

parameter, sign( · ) is symbolic function, tanh ( · ) is hyperbolic

tangent function, sat( · ) is saturation function, diag( · ) is diagonal

matrix, and min ·f g and max ·f g are minimum and maximum

values, respectively.
2 Problem description

2.1 Mathematical model

The investigation of USV-ROVs formation control in this paper

is based on the three degrees of freedom planar motion synergy

problem (Min et al., 2020; Fan et al., 2021; Chen et al., 2023),

wherein the kinematics of the two devices are described within the

generalized coordinate system.

The kinematics and dynamics equations of USV (Zhu and Du,

2018) are described as (Equations 1) and (2).

_qusv = Jusv(qusv)uusv (1)

_uusv = ~Busvtusv − F
⌢
rov(uusv) + �tusvd (2)

w h e r e Jusv(qusv) = ½cos (qusv),   − sin (qusv),  0;   sin (qusv),         
cos (qusv),  0;  0,  0,  1� is the transformation matrices for dynamics

and kinematics in the coordinate system; _qusv = ½ _xusv ,   _yusv ,   _qusv�T is

the vector of first-order derivatives of the position coordinate

vector. F
⌢
usv(uusv) = M−1

usvCusv(uusv)uusv +M−1
usvDusvuusv is uncertain.

tusv = ½tusv1 ,  tusv2 ,  tusv3 �T is the ship system input. �tusvd = M−1
usv�tdusvf

is the external perturbation of the converted system, with low-

frequency accretion characteristics. ~Busv = M−1
usv is a matrix of

system control input conversion coefficients. Musv is the ship type

relationship and hydrodynamic additional relationship matrix, Cusv

(uusv) is the Coriolis centripetal matrix, and Dusv is the

hydrodynamic damping coefficient matrix.

A tracked differential ROV with incomplete constraint

characteristics is selected for underwater navigation according to

the requirements of ocean engineering. The kinematics and

dynamics equations of ROV (Wu and Wang, 2020) are described

as (Equations 3) and (4).

_qrov = Jrov(qrov)urov (3)
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_urov = ~Brovtrov − F
⌢
rov( _qrov) − �trovd (4)

whe r e Jrov(qrov) = ½cos (qrov),  drov sin (qrov);   sin (qrov),   − drov
cos (qrov);  0,  1� is the ROVs transformation matrix; _qrov = ½ _xrov ,   
_yrov ,  _qrov�T is the first derivative vector of the position coordinate

vector. The robot system input trov = ½trov1,  trov2�T is the left and

right wheel drive torque vector. �trovd = �M−1
rovS

T
rov(qrov)�trovdf is the

external perturbation of the converted system, with low-frequency

accretion characteristics. F
⌢
rov( _qrov) = �M−1

rovS
T
rov(q(t))�Frov( _q(t)) is

uncertain. �M−1 = (mr)−1½J ,  0;  0,  m�T . �Frov( _qrov) is the friction

matrix; AT
rov(qrov) = ½sin (qrov),   − cos (qrov),   − drov�T is a non-

complete constraint matrix; lrov is the Lagrange multiplier. ~Brov =

  1
mrovrrov

,   1
mrovrrov

;   brov
Jrovrrov

,   −brov
Jrovrrov

 
h iT

is the matrix of system input

conversion coefficients, Jrov is the moment of inertia; mrov is the

quality of ROV; brov is the ROV width; and rrov is the driving

wheel radius.
2.2 Attack models

The USV-ROV formation system, employing a centralized

control scheme and formation strategy for command

transmission, faces security risks in its semi-open wireless

network environment. Deceptive attacks are a common threat,

involving IP hijacking and the injection of false data, bypassing

firewalls and compromising the control of USV-ROV formations.

Additionally, these attacks can result in offline damage to wireline

switching equipment, impacting overall formation effectiveness.

Existing network control systems often neglect post-attack

damage and lack adequate countermeasures. Therefore, it is

crucial to design security control strategies specifically at the

control level to comprehensively address these threats.

Remark 1: Element i = �l ∈ a0,  a1,  a2, · · ·a�Lf g in the USV

identification, i = a ∈ a1,  a2, · · ·aNf g represents the leader USV and

the virtual leader sequence, and L
⌢
= �L + 1. The USV smart device with

device identification sequence i ∈ a�L+1, · · ·aNf g is a follower of the

ROV device of i = b ∈ b1,  b2, · · ·bMf g, G = N +M − L
⌢
. Then g =

a�L+1, · · ·aN ,  b1,  b2, · · ·bMf g is the set of follower identification.
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A stealth deceptive attack uses a hidden identity to access the IP

and injects bounded interval false data that mimics normal data to

the control command data; the deceptive data injection logic is

shown in Figure 1.

From a control instruction perspective, this attack can be

abstracted as an unknown additive signal (Ito and Takanami,

1997). Consequently, the actuator input signal modeled by the

stealth deceptive attack is (Equation 5).

�tai = t*i + zb
i (5)

where �tai (k) is a control command sent by the controller to be

transmitted to the system inputs in the physical perception layer

after a stealthy deceptive attack at the receiver side of the network

layer. zb
i is bounded unknown data. t*i is the NCS output.

The success rate of the attack can be represented using the

Bernoulli series, and the final form of the false data is (Equation 6).

zb
i = sb

i m
b
i (6)

where sb
i is the attack rate concomitant matrix with Bernoulli

distribution properties and mb
i is the false data value. An attacker

injects bounded random data in order to reduce the probability of

being captured by a security program; �xbi ≥ xbi
��� ��� ≥ 0, sb

i

��� ��� = 0 is

the tampering probability when the attack is unsuccessful or not

performed during the three interactions.
2.3 Formation model

During the actual operational process, each device exhibits a

saturation characteristic in its execution performance. To represent

this physical attribute, a saturation function is introduced. The

control input is (Equation 7).

tsi = sat  (�tai ) =
�tai �taik k ≤ Mt

Mt �tai > Mt

(
(7)

where Mt = tM is the constant absolute value of the physical

saturation of the actuator and sat   ·)ð is the saturation function.

The global motion model of USV and ROV considering attack,

matching, external disturbance, and uncertainty is (Equation 8).
FIGURE 1

Stealth deceptive attack data injection.
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_qi = Si(qi)ui

_ui = ~Bisat   t*i + zb
i

� �
− F

⌢
i( _q) − tid

8<
: (8)

where i is the model physical item of equipment, i = a is the

USV equipment identification sequence, and i = b is the ROV

equipment identification sequence.

FD
lg = ½LDlg ;  yD

lg ;  y
D
gl � is the matrix of geometric features of the

desired formation of leaders and followers in the global generalized

coordinate system, Flg = ½Llg ;  ylg ;  ygl� is the real formation feature

matrix, i ∈ g is the follower device, and i ∈ l is the leader device.

Taking the geometric position of a single ship and a single robot as

an example, the formation relationship of the formation system is

shown in Figure 2.

Assumption 1: The motion state of the formation system

represents the actual configuration of the formation once each

local equipment achieves a specific geometric arrangement within

the formation.

The essence of synergistic control of formation geometry and

formation motion is that the control system allows the current

formation geometry feature Flg described as

lim
t→∞

(FD
lg −Flg) = 0 (9)

(Equation 9) illustrates if the collaborative goal can be achieved

is dependent on the transformation form of the dynamic

characteristics of each device. The relationship between the

dynamic positions of each device and the dynamic transformation

characteristics is (Equation 10).
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_ql = _qg + G _qlg =

_xl

_yl

wl

2
664

3
775 =

_xg

_yg

wg

2
664

3
775 +

G _xlg

G _ylg

G _qlg

2
664

3
775 (10)

where G _xlg = dg sin (qg)wg − _Llg cos (ql + ylg) + Llg(wl + _ylg) sin

(ql + ylg) is the motion conversion item of the X-axis; G _ylg =

dg cos (qg)wg − _Llg sin (ql + ylg) − Llg(wl + _ylg) cos (ql + ylg) is the

dynamic component conversion item in the direction of the Y-

axis; and G _qlg = _ylg + _ygl − dg cos (ygl)wg is the motion conversion

item of the speed.

After collation, it becomes evident that the formation motion

difference model that requires control within the formation scheme

is (Equation 11). Subsequently, this formation relationship matrix

will be utilized for formation control system design with a view to

achieving the target expectation lim
t→∞

hE
i = 0 to accomplish the

formation control task.

hE
i = hD

i − hs
i =

hd
l

hd
g

�hb
l

�hb
g

2
6666664

3
7777775
−

hl

hg

�hl

�hg

2
666664

3
777775

(11)

where hd
l
is the expected position vector of the leader and hl is

the position vector of the leader. According to assumption 1, they

are all virtual leaders, the formation differences are split according

to kinematics and dynamics to give dynamic errors _hei =
_hd
l
− _hl

_hd
g − _hg

2
4

3
5

FIGURE 2

Geometric relationship of USV-ROV formation system.
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and _�hei =

_�hb
l
− _�hl

_�hb
g
− _�hg

2
64

3
75.

To facilitate the heterogeneous formation control, the error is

divided by the equipment labeling, the first-order derivation of

(Equation 11) is carried out and brought into the model (10)

deformation can be shown that the dynamic formation

cooperative model is (Equation 12).

_Eqi = (Sd
i
(qdi )u

d
i
− Gd

_qlg
) − Si(qi)ui

_Eui = _ubi − ~Bitsi − F
⌢
i( _q) − �tid

8<
: (12)

where ub
l
is the virtual movement expectation of the leader, ub

g
is

the virtual movement expectation of the follower, and i = l and i = g

are the speed states of the leader and the followers, respectively.

If every device, under the influence of two synergy programs,

attains the expected state simultaneously, the formation’s motion

state can be maintained. The geometric synergy program

successfully guides the controlled system to achieve the desired

geometric characteristics, signifying the completion of the

formation restoration process. Moreover, if the speed of each

device, governed by the motion synergy program, tends to

converge, it indicates that the formation system has achieved the

anticipated motion state.
3 Controller design and
stability analysis

3.1 Design and analysis of non-singular
terminal sliding mode surface

To address the singularity issue of the terminal sliding mode

surface, following the traditional terminal sliding mode surface

design concept (Min et al., 2020), the non-singular terminal sliding

mode surface can be expressed as

Sui = ai1Eui + ai2∫ Euik k1
4sign½Eui�dgt + ai3 Euik k9

4sign½Eui� (13)

where ai1, ai2, and ai3 are normal constant diagonal matrices.

Deriving (Equation 13), the result shown in (Equation 14) can

be obtained. It is evident that there are no singular points in _Su,

signifying that the non-singular sliding mode surface will not

encounter issues related to singularities.

_Sui = (ai1 +
9ai3
4

Euik k5
4sign½Eui�) _Eui + ai2 Euik k1

4sign½Eui� (14)

Analysis of (Equation 13) shows that the design meets the

sliding mode dynamic standard Equation 15) (Shi et al., 2018b).

Sui > 0, Eui > 0

Sui = 0,

Sui < 0,

Eui = 0

Eui < 0

8><
>: (15)

To verify that the terminal sliding mode (13) can converge in a

finite time, assuming that when _Sui =
dSui
dt = 0, transform (14), and
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the definite integral is calculated on both sides in the convergence

time Tsu* interval , and according to −mue(Tsu* − 0) ≥ −

∫
Tsu*
0

9ai3
4

Euik k5
4dt ≥ −Mue(Tsu* − 0), it can be described as

− Tsu* ≥ a−1i2 ∫
Eui(Tsu*)
Eui(0)

ai1 Euik k1
4d( Euik k) ≥ −a−1i2 ai1 Eui(0)k k3

4 (16)

where Mue and mue are the maximum and minimum values of
9ai3
4 Euik k5

4 , respectively.

It can be seen that the terminal sliding mode surface (13) can

converge in finite time Tsu* ≤ a−1i2 ai1 Eui(0)k k3
4 when Eui(0) ≠ 0. It is

evident that the terminal sliding mode surface can achieve

convergence during the sliding phase within a finite time.
3.2 Dynamically adjusted approach
rate design

In pursuit of achieving global finite-time convergence of the

sliding mode while optimizing chattering and enhancing robust

response capability, a dynamic damper is designed based on the

dynamic information of the sliding mode can be described in

(Equation 17). Additionally, based on the traditional reaching

law, a dynamic adjustment reaching law can be described in

(Equation 18).

Di(Sui) = (2 + S2ui) ln(2 + S2ui) − 2 ln(2) (17)

_SDi = −euiD(Sui)sign½Sui� (18)

where Di(Sui) = diag Di1(Sui)⋯Diki (Sui)
� �

, eui is a diagonal

matrix with positive definite coefficients. When Eui → 0,

dynamically adjust the approach law _SDi → 0, which can prove

that it will not cause over-switching of the control approach and

weaken the chattering. According to (Equation 18), it can be seen

that the closer to the sliding mode surface, the smaller the reaching

law, and the farther away from the sliding mode surface, the larger

the reaching law value.

Lemma 1 (Chen et al., 2023). If a continuous non-linear system,

such as _xϵ = Fϵ(xϵ), is controllable, then for xe ≢ 0, the Lyapunov

function Vϵ ∈ C2 exists and is positive definite. If   _Ve (xe) +

kc1Ve(xe ) + kc2V
o
e (xe ) − DM ≤ 0, DM > 0, kc1  > 0, kc1  > 0, and 0

< o < 1, then it can be stabilized in finite time, and Tϵ ≤ k−1c2(kc1 −

kc1o)
−1(kc2V

1−k
e (xe (t0)) + kc1) is the finite time horizon.

Establishing Lyapunov positive definite function VSD* = 0:5(STui
Sui)

2 and deriving it, the equation can be gotten:

_VSD* = −STuiSuiS
T
ui(euiDzi(Sui)sign½Sui� + kuiSui )

≤ −STuiSui½eu STui
�� ��(1 + cb* Suik k − 0:5c2b*) − 2 ln (2)euSTui�

≤ −euDVSD* − eu*
_V

3
4
SD*

(19)

wh e r e cb* ≥ 0:25, eu* = min cb* − 2 ln (2)eu
n o

, euD = min

eu − 0:5euc2b*

n o
, eu − 0:5euc2b* > 0. (Equation 19) satisfies Lemma

1; it can be seen that the finite time approach can be realized under

the action of this reaching law.
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3.3 Event trigger mechanism design

Taking into consideration the control physical saturation

characteristics of each device, the event trigger condition can be

described as

t*i = t*ik, ∀t ∈ ½tk, tk+1)

t*ik = inf t*i ,   xitk k:: ∂ik t*i
��� ��� + ‘ik

n o
8<
: (20)

where xit = t*i − t*ik; ∂ik is the trigger condition value, 1 > ∂ik >

0, ‘ikk k ≥ 0. Triggered at the time tk,    k ∈ R+, at which point the

control input is updated. If the calculation at the control end cannot

satisfy (Equation 20), the control command transmission will not be

performed, and the USV-ROVs will execute the control command

in ½tk, tk+1) under the action of the zero-order keeper. t*i =

Lid tanh (ti) + Eid is the controller output after smooth saturation

fitting, Lid is the control threshold parameter for saturated non-

linear filtering, and Eid is the filtering error.
3.4 Formation controller design

The dynamic adjustment terminal sliding mode formation

controller will be designed in two steps, and the control process is

depicted in Figure 3.

To simplify the algorithm design and address the issue of

heterogeneous equipment with varying orders, derived after

introducing auxiliary variables in (12), the new error surface is

(Equation 21).

_EQi =
_EQa

_ESb

" #
=

QlaEqa − Qqa

Eqb

" #
(21)

where ESb and EQa are the ROV auxiliary sliding mode surfaces,

ESb = Eqb, EQa = QlaEqa − Qqa, Qla = ½1,  0,  0;  0,  1,  0;  0,  0,  0�,   

Qqa = ½d − d cos (qe),   − d sin (qe) − qe,  (1 − cos (qe))0:5�T.
Based on the system model (Equation 8) and the coordination

model (Equation 16), the problem of geometric kinematics
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coordination for the formation is reformulated as the

coordination and stabilization problem of the relative pose

coordinates of each equipment. The virtual inversion finite-time

kinematics controller is (Equation 22).

uDi = WQiEQi + �WEi (22)

where WQi = ½WQa,  0;  0,  WQb�, �WEi = ½WEa,  WEb�T. Among

them, WQa = ½ka2,  0,  1;  0,   ∂a ka1,  0� and WQb = diag(asbx ,  asby ,  

asbq) are positive parameter matrices of the kinematic controller,

WEb = Dzb(ESb)sign½ESb� + hd
b and WEa = ½−1 − varEQax − warqae +

var ;  bavar   sin (qae) + war� are auxiliary quantities.  ba, ∂a, asbx ,

asby , and asbq are all normal constants, and ZbEq = Dzb(ESb) is a

dynamic regulator.

Lemma 2 (Gao et al., 2016). The Radial Basis Function Neyral

Network (RBFNN) is cited because of the non-linear characteristics

of system uncertainty. If there exists m-dimensional compact set

Xmk ⊆Rmk → R and there is an unknown non-linear function fk (

Q) with initial value 0 defined on Xmk , then the RBFNN

approximator is used to fit the dynamic values of fk (Qk ) =

W*T
k Zk (Qk ) + eZk (Qk ),  ∀Qk ∈ Xmk , w h e r e eZk (Qk ) i s t h e

bounded RBF fitting error, which is defined on the compact set

Xmk . eZ(Q)j j ≤ �eZ , and �eZ is the maximum nuclear distance. To

improve the non-linear local approximation ability, the Gaussian

function Zk (Qk ) = exp ((Qk − k )T(Qk − k )= − l2) is selected as the

smooth kernel function. The k is approaching the center column

distance vector. The l is varying constant value. W*
k is the order m-

dimensional weight row vector of optimally fitted, as

W*
k = arg min

W
⌢ *

k
sup

Qk∈Xmk
W
⌢ *T

k Zk (Qk ) − fk (Qk )

����
����

( ) !
, wh e r e W

⌢ *
k i s t h e

minimum estimate of W*
k .

Using the RBF neural network in Lemma 2 to estimate the

dynamic uncertainty of the model, the RBF neural network

approximator F
⌢
i(hi) = W*T

i ZWi(hi) + eZi(hi) is constructed and

brought into (Equation 12), and in (Equations 21) and (22), once

the outer-loop model is organized based on the classification of
FIGURE 3

Schematic diagram of USV-ROV dynamic adjustment terminal skid formation control process.
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formation equipment, using the design concept of the back-

stepping virtual control law, the error dynamic Equation 23 can

be described as

_Eui = _�hb
i
− (~Bitsi −W*T

i ZWi(hi) − eZi(hi) − �tid) (23)

where eZi(hi) is the approximation error of device i and W*T
i is

the neural network weight matrix. ZWi(hi) is the hyperbolic tangent

kernel function for feature extraction.

Utilize terminal sliding mode surfaces and dynamically regulate

convergence laws to exploit sliding mode robust response with two-

stage global finite time convergence capability for passive resilient

aggression tolerant formation control of deceptive attacks.

_SDi = −ϵuiDzi(Sui)sign½Sui� + kuiSui (24)

where Dzi(Sui) = (ςui + S2ui) ln(ςui + S2ui) −  ln(ςui) is the sliding

mode reaching law dynamic regulator.

Based on the model (8) and the dynamic adjustment approach

law (Equation 24), the inner loop formation controller and the

adaptive law are described in (Equations 25) and (26), respectively.

ti = (~BiAi2 Þ−1½euisign½Sui� ln½1 + Suik k2�(1 + ln½1 + Suik k2� Suik k2−1)

+ĵ t iGti tanh (DtiSui) + GHiĵ t iSuiH
4
di + Ai2

_�hb
i
�

(25)

_̂j t i = GtiSu tanh (DtiSui) − bt iĵ t i + GHi Suik k2tanh ( Suik k2)H4
di (26)

where Gt , Dti, GHi, and bt i are bounded normal constants.

Ai1 = ai2sign(Eui) Euik k1
4 , Ai2 = ai1 +

9ai3
4 Euik k5

4sign(Eui). _̂j t i is an

adap t i v e RBF d i s tu rbance compensa to r , jt (t) = max

Ai2
~BitM

�� ��, ~Biet*

��� ���, Ai2z
b
i (1 + eZi)

��� ���, Ai2W*k k, Ai2�td(t)k k,Ai1

n o
,

Hdi = ~Btmax

�� �� + 5 + Zk k + uek k, jt ik k ≤ �jt i.
3.5 Stability analysis

The stability verification of the kinematics controller and the

dynamics controller will be conducted separately.

A. Kinematics stability proof

Based on the formation system, the Lyapunov direct method is

utilized to design VO = 1
2 E

T
QiEQi, and deriving it, one can get

_VO = _VO1 + _VO2 = ET
Qa

dEQa
dt

+ ET
Qi
dEQi
dt

(27)

Substituting (Equations 22) and (24) into (Equation 27) results

in, when combined with Young’s inequality, the equation

_VO ≤ −LOd1VO1 − LOd2V
0:5

O1 + LOd3 − e*zb1VO2 − e*zb2V
0:5
O2 + ezb3

≤ −LOs1VO − LOs2V
0:5

O + LOs3
(28)

where LOd1 = min l2,  l4,  l6f g, LOd1 = min l1,  l3,  l5f g, LOd3 = 6,

l1 = k0:5a2 , l2 = ka2, l3 =
ffiffiffiffiffiffiffiffiffiffiffi
∂a ka1

p
, l4 = ∂a ka1, and l5 = l6 = 1. e*zb1 =

min ezbf g, e*zb2 = min ϵzb(csb2 − csb1 − ςub ln (ςub))f g, csb2 > csb1 ≥
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0:25, and csb2 − csb1 ≥ ςub ln (ςub) ≥ 0. LOs1 = min LOd1,  e*zb1
n o

, LOs2

= min LOd2,  e*zb2
n o

, and LOs3 = max ezb3,  LOd3f g. (Equation 28) can

prove that the dual-loop controller can stabilize the global motion

of the formation system in a finite time.

B. Proof of dynamic stability of USV-ROV system

Based on (Equations 8), (14), and (26), design Lyapunov

function Vu =
1
2 S

T
uiSui +

1
2
~jT
t i~jt i, where ~jt i = jt i − ĵ t i. Deriving

Vu, using the norm inequality and the minimum learning

parameter reduction method, combined with Young’s inequality,

the Equation 29 can be gotten:

_Vu  ≤ 0:5eui Suik k2−eiu(c1 − c2) Suik k − (0:25bt i − 0:5)~jT
t i~jt i − 0:25 ~jt ik k

  + euic22 + 0:2785D−1
ti Gti �jt i + 0:5~jT

t ijt i + 0:5bt ijT
t ijt i + 1=16bt i

(29)

where c2 > c1 and bt i > 2.

Lemma 3 (Liu et al., 2020). For xe , ye ∈ Rne , any (xe , ye1), (xe ,

ye2) ∈ W, t h e r e ex i s t s a con s t an t Lϵ ≥ 0 such tha t

fe(xe , y1) − fe (xe , ye2)k k ≤ Le (xe , ye1) − (xe , ye2)k k exists, then fe( · )

is said to satisfy the Lipschitz condition on the tight set W.

Based on (Equation 27), the Lyapunov global function VD* =

 VO +  Vu is established, and after derivation and simplification, the

equation can be gotten:

_VD* ≤ −l1( Suik k + ~juik k + Eqb
�� ��) − l2( Suik k2+ ~juik k2+ET

qbEqb) + x

                   ≤ −l1V0:5
D* − l2VD* + x

(30)

w h e r e l1 = min eui(c1 − c2),     0:25,     LOs2    f g, l2 = min

0:5Gseu,     (0:25bt − 0:5),   LOS1  f g. The boundary term is x = max

2 + Gseuc22 + 0:2785D−1
t Gt  �jt (t) + x1

� �
. I t can be seen that

(Equation 30) can converge in a finite time.

Based on the convergence and boundedness of the closed-loop

system, when t → Tu, it can be seen that there is boundedness

VD*

��� ���, , x
l2
1
in the system. Tsu* is the bounded time for convergence,

Tsu*, ,
2
l1
ln l1V0:5(0)+l2

l2

h i
.

C. Event trigger proof of Zeno-free phenomenon

Since tk+1 − tkk k > tu*, tu* ∈ N+, t*i
��� ��� ≤ tM can be known

according to (Equation 20), thus xitk k = t*i − t*ik
��� ��� ≤ t*, where t*

> 0. Then, integrating the trigger error xit with t, it can be gotten that

d xitk k
dt = sign½ _xit � _xit
⩽ d Lid tanh (ti)+Eidk k

dt

(31)

According to Equation 31 and the controller output time

correlation, and the input is limited by saturation tM , (tk+1 −

tk)t
−1
u* : : t

−1
u*dt : : : (tMtu*)

−1dxit : : ( lim
t→tk+1

xit (t) − xit (tk))(tMtu*)
−1 : :

(∂ik t*i
��� ��� + ‘ik)(tMtu*)

−1 can be obtained. From this we can know

that inf tu*

n o
= ( ∂ik t*i

��� ��� + ‘ik)=(tMtu*), so the trigger condition

(20) can avoid the proof of Zeno’s phenomenon.
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Hence, the stability of the entire formation control system has

been demonstrated.

4 Simulation analysis

For the scientific rigor of the simulation, the ROV in the USV-

ROV formation system uses the submarine operation ROV in the

literature (Chen et al., 2023); the mass is 15kg, the width is 0:5m, the

driving wheel radius is 0:1m, the distance between the center of

mass and the center of gravity is 0:05m, the driving input is ½15N ·

m,    15N ·m�T, and the moment of inertia is Jrov = 5kg ·m2. The

USV chooses the 1 : 70 ship CyberShip II (Zhang et al., 2022) of the

Norwegian University of Science and Technology as the simulation

object, which has double symmetrical propellers, double tail

rudders, and single side thrusters; the mass is 23:8kg the length of

the hull is 1:255m, the width is 0:29m, and the drive input is ½5N,
   5N ,    2:5N ·m�T. At the same time, the parameters are d11 =

12kg=s, d22 = 17kg=s, d33 = 0:5kg=s, d23 = d32¼ 0:2kg=s, m11 =

25:5kg, m22 = 33:8kg, m33 = 2:76kg, and m23 = m32¼ 1:0948kg.

The stealthy deception attack probability is sb
i = 0:7, and mb

i ∈
½−2,   2� is the attack random tampering amount. tda = ½tdav ,  tdar ,  
tdaw� are wind, wave, and current disturbances (Zhang et al., 2022),

tdaw = 0:25 cos (t) + 0:25Nw, tdav = 0:2 sin (0:5t + p=4) + Nw, and

tdar = 0:18 sin (0:5t) + 0:1 cos (t) + Nw; tdb = ½1 + Nw,  1:5 sin (t) +

1:5 cos (t),   sin (1:5t) + cos (1:5t)� is the amount of external

disturbance (Chen et al., 2023) encountered by the ROV during

its movement, and Nw is Gaussian white noise with a power of one.
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The total simulation time is 200s, and the step size of the simulation

is 0:01s. The amount and number of USV three-channel attack

tampering is shown in Figure 4.

To verify the control performance of the control algorithm in

different tasks, the curvature-transformed trajectory that

synthesizes the broken line and curve characteristics is selected as

the reference trajectory of the virtual leader qa0 = ½xr ,    yr ,    qr�T; to
facilitate the verification of the USV-ROV formation control effect,

one USV is selected as the leader, and two ROVs are selected as

follows: qa1s (0) = ½4,    8,    1:8−1p � is the USV initial position, and

qb1 (0) = ½3,    7,    1:8−1p �T and qb2 (0) = ½6,    5,    1:8−1p �T are ROV

initial positions. To verify the superiority of the algorithm in this

paper, Sui2 = ai1Eui + ai2∫Euidgt + ai3 _Eui is introduced, and the

comparison controller is designed in combination with the

exponential reaching law, and Equation 32 can be obtained

ti2 = (~Biai1)
−1½euisign½Sui2� + ĵ t iGti tanh (DtiSui2)

+ GHiĵ t iSui2H
4
di + ai1 _�h

b
i
� (32)

The parameters for the formation kinematics and dynamics

controller can be described in Table 1.

To quantitatively assess the effectiveness of the algorithm

presented in this paper, the following metrics are employed: mean

integral absolute control (MIAC) is used to compute input energy,

mean integral square error (MISE) is utilized tomeasure error control

accuracy, and mean integral total variation (MITV) is designed to

assess incoming communication transmission frequencies. The
FIGURE 4

Deceptive attack onset time and amount of tampering.
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results are summarized in Tables 2 and 3, providing quantitative

i n s i g h t s . MIAC = (tf − t0)
−1∫

tf
t0 tsik kdm, MITV = (tf − t0)

−1

∫
tf
t0 ‖ tsi(m + 1) − tsi(m) ‖dm, MISE = (tf − t0)

−1∫
tf
t0 EDk k2dm.

Figure 5 illustrates the formation recovery and hold control

achieved under deceptive attacks using the controller (25) proposed

in this paper. Position error comparisons in Figures 6–8 reveal that

the algorithm presented in this study exhibits higher control

accuracy than controller (32). Under the control of controller

(25), the formation can attain the desired position in

approximately 18 seconds, demonstrating superior tracking

efficiency compared to controller (32). Quantitative values of

MISE in Tables 2, 3 further confirm the enhanced control

accuracy of this paper’s algorithm, showcasing improvements of

12:82%, 8:92%, and 28:00%, respectively, for position error

compared to controller (32). Additionally, during the attack phase

of 50s-150s in Figures 6–8, the error fluctuation of controller (25) is

smaller than that of controller (32), indicating better stability for the

proposed algorithm in this paper.
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Analyzing Figures 9–11 reveals that, in comparison to

controller (32), controller (25) is more effective in reducing jitter.

The sliding phase converges faster to the expectation Sui = 0, and

during the sliding mode switching in the attack phase, controller

(25) experiences less jitter under the influence of dynamic

convergence law (24), achieving faster convergence and meeting

design expectations. Taking 140-160s in Figures 10–12 as an

illustration, the proposed method exhibits smaller jitter

fluctuations and shorter convergence recovery response times

compared to controller (32).

Figures 12, 13 illustrate that, in contrast to controller (32),

controller (25) integrates the adaptive parameter estimator (26)

designed by the RBF neural network with the influence of the

minimum learning parameter. This integration establishes a virtual

model for deceptive attacks and external disturbances, allowing for

effective compensation of input anomalies. Controller (25) exhibits

resistance against the continuous excitation of state changes,

thereby countering the effects of deceptive attacks and disturbances.
TABLE 1 Formation controller parameters.

Parameters Value Parameters Value

asax diag  (0:1,      0:01,      10) kb1 0.4

asay diag  (0:1,      0:2,      5:5) kb2 1.15

asaq diag  (0:1,      0:1,      100:2)   ∂b 0.5

ai1 diag  (100,      185,      150,      1:5,      90) GHir diag (5 � 10−5, 0, 0)

ai2 diag  (100,      0:01,      0:5,      0:8,      150) GHiv diag (10−11, 10−5, 10−5)

ai3 diag  (0:65,   15:5,      55,      150,     0:01) GHiw diag (1, 2� 10−5, 2� 10−5)

Dtir diag  (25,  0,   0) Gtir diag  (0:005, 0, 0)

Dtiv diag  (10,  10,  78) Gtiv diag  (10, 15� 10−7, 15� 10−7)

Dtiw diag (100, 78, 78) Gtiw diag  (0:05, 10−5, 10−5)

ϵri diag  (0:05,   0,   0) bt iv diag  (180, 195, 195)

ϵwi diag  (0:0115,     0:025,      0:025) bt ir diag (130, 0, 0)

ϵvi diag (0:05,     0:015,      0:015) bt iw diag  (80, 140, 140)
TABLE 2 Quantitative analysis of control effect of controller (25).

Evaluation criteria MIAC MISE MITV Transfer times

equipment a1 [0.8, 1.19, 2.66] [3.62, 3.32, 4.60] [7.8, 6.19, 6.01] [7980, 8610]

equipment b1 [0.9, 1.69] [3.35, 2.82, 2.02] [5.9, 6.31] [8433, 9106]

equipment b2 [1.1, 1.09] [3.10, 2.93, 2.66] [5.1, 5.90] [6621, 7638]
TABLE 3 Quantitative analysis of control effect of controller (32).

Evaluation criteria MIAC MISE MITV Transfer times

equipment a1 [1.8, 2.37, 4.06] [4.12, 4.01, 4.71] [8.61, 5.90, 8.21] 20000

equipment b1 [1.20, 3.71] [4.27, 3.46, 2.52] [5.85, 7.01] 20000

equipment b2 [0.85, 2.52] [2.87, 2.73, 2.81] [6.43, 6.40] 20000
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Examining Figures 14–16 and the MIAC in Tables 2 and 3, let

us consider the time interval of 50-100s. In comparison to controller

(32), the input of the controller (25) proposed in this paper, despite

being exposed to deceptive attacks, exhibits a smaller jitter range,
Frontiers in Marine Science 1145
fewer high-frequency spikes, conserves more control resources, and

demonstrates superior control dynamics.

Observing the MITV and transfer times in Tables 2 and 3, it is

evident that controller (25), in contrast to controller (32), employs

an event triggering mechanism with saturation characteristics to

govern the controller output. This approach conserves

approximately 50% of control resources, enhancing control

robustness within the rated power limit. Simultaneously, it

improves transfer regulation performance, achieving superior

control efficacy under deceptive attacks.
5 Conclusion

This paper addresses the control of USV-ROVs formation systems

in the presence of deceptive data injection. A controller is designed

considering dynamic uncertainties, deceptive attacks, unknown time-

varying environmental disturbances, equipment matching

disturbances, and input saturation constraints. First, a formation

control scheme is designed to successfully realize the desired

operational formation through geometric transformations. Then, a

new terminal sliding mode surface is designed to solve the singularity
FIGURE 5

USV-ROV formation collaborative tracking movement.
FIGURE 6

Comparison of position error convergence of USV equipment a1.
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FIGURE 8

Convergence comparison of position error of ROV equipment b2.
FIGURE 7

Convergence comparison of position error of ROV equipment b1.
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FIGURE 10

Dynamic comparison of sliding mode of ROV equipment b1.
FIGURE 9

Dynamic comparison of sliding mode of USV equipment a1.
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FIGURE 12

Comparison of adaptive approximation response of USV equipment a1.
FIGURE 11

Dynamic comparison of sliding mode of ROV equipment b2.
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FIGURE 14

USV equipment a1 system input comparison.
FIGURE 13

Comparison of adaptive approach response of ROV equipment.
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FIGURE 16

ROV equipment b2 system input comparison.
FIGURE 15

ROV equipment b1 system input comparison.
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problem of the terminal sliding mode surface while achieving global

finite time convergence. After that, a new dynamic convergence law is

designed to speed up the convergence response, optimize the sliding

mode jitter problem, and ensure robustness under deceptive attacks.

Finally, a new controller is designed using an event-triggered

mechanism, RBF neural networks, and adaptive techniques to avoid

the effects of deceptive attacks and uncertainty, save control resources,

and enhance robustness. To verify the control stability of the algorithm

under the influence of deceptive attacks, experiments were conducted

using single USV and dual ROVs formation configurations. These

results were then compared with the performance of a conventional

sliding mode control algorithm. The experiments confirm the

feasibility and superiority of the method proposed in this paper and

ultimately demonstrate the effectiveness of the robust adaptive

compensation mechanism against deceptive attacks.
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Underwater small target
detection based on dynamic
convolution and
attention mechanism
Chensheng Cheng, Can Wang, Dianyu Yang, Xin Wen,
Weidong Liu and Feihu Zhang*

School of Marine Science and Technology, Northwestern Polytenical University, Xi’an, China
In ocean observation missions, unmanned autonomous ocean observation

platforms play a crucial role, with precise target detection technology serving

as a key support for the autonomous operation of unmanned platforms. Among

various underwater sensing devices, side-scan sonar (SSS) has become a primary

tool for wide-area underwater detection due to its extensive detection range.

However, current research on target detection with SSS primarily focuses on

large targets such as sunken ships and aircraft, lacking investigations into small

targets. In this study, we collected data on underwater small targets using an

unmanned boat equipped with SSS and proposed an enhancement method

based on the YOLOv7 model for detecting small targets in SSS images. First, to

obtain more accurate initial anchor boxes, we replaced the original k-means

algorithm with the k-means++ algorithm. Next, we replaced ordinary

convolution blocks in the backbone network with Omni-dimensional Dynamic

Convolution (ODConv) to enhance the feature extraction capability for small

targets. Subsequently, we inserted a Global Attention Mechanism (GAM) into the

neck network to focus on global information and extract target features,

effectively addressing the issue of sparse target features in SSS images. Finally,

we mitigated the harmful gradients produced by low-quality annotated data by

adopting Wise-IoU (WIoU) to improve the detection accuracy of small targets in

SSS images. Through validation on the test set, the proposed method showed a

significant improvement compared to the original YOLOv7, with increases of

5.05% and 2.51% in mAP@0.5 and mAP@0.5: 0.95 indicators, respectively. The

proposed method demonstrated excellent performance in detecting small

targets in SSS images and can be applied to the detection of underwater mines

and small equipment, providing effective support for underwater small target

detection tasks.
KEYWORDS

side-scan sonar, underwater target detection, YOLOv7, K-Means++, ODConv,
GAM, WIoU
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1 Introduction

Due to the distinctive attributes of the underwater environment,

optical imaging techniques face substantial limitations when

deployed underwater. Conversely, sound waves experience

minimal attenuation in water, rendering side-scan sonar (SSS) a

prevalent tool for underwater target detection.

Sonar target detection methods can be categorized into traditional

techniques and Convolutional Neural Network (CNN)-based

approaches. Conventional sonar image detection methods

predominantly employ pixel-based (Chen et al., 2014), feature-based

(Mukherjee et al., 2011), and echo-based (Raghuvanshi et al., 2014)

strategies. These methods utilize manually crafted filters founded on

pixel value characteristics, grayscale thresholds, or a priori information

about the targets for detection. However, underwater settings are

intricate, and sonar echoes contend with self-noise, reverberation

noise, and environmental noise. Consequently, sonar images exhibit

low resolution, blurred edge details, and significant speckle noise,

complicating the identification of dependable pixel traits and

grayscale thresholds. Furthermore, owing to the diminutive

illuminated regions and ambiguous target features in acoustic

images, even for the same target, discrepancies in the sonar’s

position, depth, and angle can lead to variations in the

morphological attributes of the target within sonar images. Hence,

existing conventional algorithms encounter notable constraints in

terms of technical feasibility, time requirements, and applicability

when confronted with intricate sonar target detection scenarios. A

pressing necessity exists for a detection algorithm that remains robust

against fluctuations in target morphology in sonar images, mitigates

erroneous detections and omissions induced by background noise

interference, and exhibits commendable generalization capabilities.

In comparison to traditional methodologies, deep learning

approaches rooted in CNN offer substantial advantages due to their

capacity to autonomously acquire and extract deep-level features from

images. The learned feature parameters often outperform manually

devised counterparts, resulting in significantly heightened detection

accuracy when applied to large datasets, as compared to traditional

methods. Presently, CNN-based object detection methodologies within

the domain of optical image processing have attained a mature stage of

development. Researchers have progressively extended the application

of these technologies to various inspection tasks, such as steel defect

detection (Yang et al., 2021; Zhao et al., 2021), medical image analysis

(Bhattacharya et al., 2021; Jia et al., 2022), marine life detection (Chen

et al., 2021; Wang et al., 2023c), radar image interpretation (Hou et al.,

2021; Zhang et al., 2021a), agricultural product inspection (Soeb et al.,

2023; Yang et al., 2023), and more. Significant achievements have been

made in each of these fields. Moreover, CNN-based methods can also

be employed for image enhancement to improve the quality of blurry

images and enhance the recognition of regions of interest (Chen et al.,

2023; Wang et al., 2023b), thereby enhancing the effectiveness of target

detection. Therefore, investigating how to apply CNN-based object

detection methods more efficiently to the field of underwater acoustic

image target detection is a highly worthwhile research endeavor.

Furthermore, this research can contribute to addressing the

challenges associated with underwater acoustic image target

detection difficulties.
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As of now, employing deep learning techniques for target

detection in SSS images still faces several challenges (Le et al.,

2020; Neupane and Seok, 2020; Hożyń, 2021). Firstly, current target

detection networks typically rely on anchor box initializations

derived from extensive optical datasets, which may not necessarily

be suitable for our unique SSS dataset. Consequently, there is a need

to re-cluster and generate anchor box initializations customized to

specific dataset. Secondly, factors such as sound wave propagation

loss, refraction, and scattering often result in acquired sonar images

exhibiting characteristics such as low contrast, strong speckle noise,

and blurry target edges. In comparison to conventional camera

images, sonar images significantly differ in terms of texture

diversity, color saturation, and feature resolution. Hence, it is

imperative to enhance the feature extraction capability of the

backbone network and apply appropriate attention mechanisms

to target features in sonar images, aiming to improve detection

accuracy. Lastly, due to the formidable challenges associated with

collecting SSS image data, obtaining a sufficient quantity of

thoroughly comprehensive and high-quality image data for

network training is challenging. This necessitates making the

most of all available data, including some lower-quality data, to

maximize the average detection accuracy.

In response to these challenges, this paper takes full

consideration of the unique characteristics of the SSS dataset.

Four improvements are made to the YOLOv7 network to

enhance its detection performance for small targets in SSS images.

The effectiveness of the proposed improvements is validated

through multiple experiments. The main contributions of this

paper are as follows:
1) We replaced the k-means algorithm with k-means++ to

recluster the annotated bounding boxes in the SSS dataset,

thereby obtaining initial anchor boxes that are more

suitable for the sizes of small targets in the dataset.

2) We replaced the static convolutional blocks in the backbone

network with Omni-dimensional Dynamic Convolution

(ODConv), considering the multi-dimensional information

of convolutional kernels. This substitution enhances the

feature extraction capability of the network without

significantly increasing the number of parameters.

3) In the neck network, five global attention mechanism

(GAM) modules are introduced, taking into account

global information and enhancing the capability to extract

target features. This addresses the challenge of feature

sparsity commonly found in SSS images.

4) In the loss function section, we introduced Wise-IoU

(WIoU) to address the issue of poor quality in SSS data.

Such an improvement can alleviate the adverse impact of

low-quality data on gradients, leading to higher data

utilization and, consequently, an improvement in the

detection accuracy of the trained model.
The remaining sections of this paper are structured as follows.

Section 2 elaborates on related research concerning underwater

acoustic target detection. In Section 3, we detail the methodology
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adopted in this study. The experimental procedure and outcome

presentation are outlined in Section 4. Finally, Section 5 provides a

summary of this paper and offers prospects for future work.
2 Related work

Extensive research has been undertaken in the domain of

underwater acoustic image target detection (Lee et al., 2018;

Zhang et al., 2021b; Kim et al., 2022; Tang et al., 2023). These

endeavors encompass the design of specialized functional modules

tailored to data characteristics or the adaptation and enhancement

of networks originally well-suited for optical data to underwater

acoustic data.

(Jin et al., 2019) devised EchoNet, a deep neural network

architecture that leverages transfer learning to detect sizable objects

like airplanes and submerged vessels in forward-looking sonar

images (Fan et al., 2021). introduced a 32-layer residual network

to replace ResNet50/101 in MASK-RCNN, streamlining the

network’s parameter count while upholding object detection

accuracy. They also adopted the Adagard optimizer in place of

SGD and evaluated the detection accuracy of the network model

through cross-training with a collection of 2500 sonar images

(Singh and Valdenegro-Toro, 2021). conducted a comparison of

diverse target segmentation networks, including LinkNet,

DeepLabV3, PSPNet, and UNet, based on an extensive dataset of

over 1800 forward-looking sonar images. Their investigation

revealed that a UNet network employing ResNet34 as the

backbone, tailored for their sonar dataset, achieved the most

favorable outcomes. This network was subsequently applied to

the detection and segmentation of marine debris (Xiao et al.,

2021). addressed shadow information in acoustic images by

introducing a shadow capture module capable of capturing and

utilizing shadow data within the feature map. This module,

compatible with CNN models, incurred a modest parameter

increase and displayed portability. The incorporation of shadow

features improved detection accuracy (Wang et al., 2021). proposed

AGFE-Net, a novel sonar image target detection algorithm. This

algorithm extended the receptive field of convolutional kernels

through multi-scale receptive field feature extraction blocks and

self-attention mechanisms, thus acquiring multi-scale feature

information from sonar images and enhancing feature

correlations. Employing a bidirectional feature pyramid network

and an adaptive feature fusion block enabled the acquisition of deep

semantic features, suppression of background noise interference,

and precise prediction box selection through an adaptive non-

maximum suppression algorithm, ultimately enhancing target

localization accuracy. To address the issue of suboptimal transfer

learning results due to significant domain gaps between optical and

sonar images (Li et al., 2023a), introduced a transfer learning

method for sonar image classification and object detection known

as the Texture Feature Removal Network. They considered texture

features in images as domain-specific features and mitigated

domain gaps by discarding these domain-specific features,

facilitating a more seamless knowledge transfer process. This

innovative approach aims to bridge the gap between optical and
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sonar image analysis, enhancing the effectiveness of transfer

learning techniques.

Due to the YOLO series of networks’ excellent detection

performance and ease of deployment, they have found wide

application in the field of underwater target detection.

Additionally, researchers have made numerous enhancements to

the YOLO series networks, making them even more suitable for

object detection in underwater acoustic images. In order to address

the limitations in detection performance and low detection accuracy

resulting from multi-scale image inputs (Li et al., 2023b), proposed

an underwater target detection neural network based on the

YOLOv3 algorithm, enhanced with spatial pyramid pooling. The

improved neural network demonstrated promising results in the

detection of underwater targets, including shipwrecks, schools of

fish, and seafloor topography (Li et al., 2021). introduced an

enhanced RBF-SE-YOLOv5 network that reallocates channel

information weights to enhance effective information extraction.

This enhancement entailed refining the backbone network of the

original model and integrating it with RBFNet, thus improving the

network’s receptive field, feature representation, and capacity to

learn vital information. The study demonstrated that amplifying

perception information in high receptive fields and integrating

multi-scale information augments the efficacy of vital feature

extraction. The proposed algorithm notably enhances effective

feature extraction, comprehensively captures global information,

and mitigates prediction errors and issues of low credibility.

Addressing the deficiency in detecting small targets in underwater

sonar images (Wang et al., 2022), harnessed the YOLOv5

framework for marine debris detection. They introduced a multi-

branch shuttle network into YOLOv5s and replaced YOLOv5s’ neck

network with BiFPN to augment detection performance. The study

also analyzed the impact of uneven target data distribution and

network scale on model performance, thereby furnishing reference

solutions for ensuring accuracy and speed in target detection

(Zhang et al., 2022a), grounded in the YOLOv5 framework,

employed the IOU value between initial anchor boxes and target

boxes instead of YOLOv5’s Euclidean distance as the clustering

criterion. This refinement brought the initial anchor boxes closer to

true values, enhancing network convergence speed. Additionally,

they introduced coordinate information by appending pixel

coordinates of the image as extra channels to the feature map and

performing convolution operations, consequently amplifying the

accuracy of the detection module’s localization regression (Li et al.,

2023c). proposed MA-YOLOv7, a YOLOv7-based network that

incorporates multi-scale information fusion and attention

mechanisms for target detection and filtering in images. They also

introduced a target localization method to determine target

positions (latitude and longitude).

However, current research primarily revolves around

employing SSS to detect large targets such as airplanes and

sunken ships, or using forward-looking sonar to detect small

targets at close range. There remains a significant dearth of

research focused on utilizing SSS for wide-ranging detection of

small underwater targets. This paper constructs a small target SSS

dataset based on data collected during experiments and conducts a

comprehensive study on small target detection methods in SSS. The
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primary objective is to facilitate the advancement of the field of

small target detection in SSS.

3 Improved methods

YOLOv7, introduced in 2022, stands as a one-stage object

detection network (Wang et al., 2023a). It demonstrates

outstanding proficiency in both detection speed and accuracy

compared to other detection algorithms. In this study, we

improved the YOLOv7 model and, through multiple experimental

validations, identified four effective improvement points, as

illustrated in Figure 1. We applied these enhancements to small

target detection in SSS images, achieving notable improvements in

detection performance compared to the original YOLOv7, as

evidenced by significant enhancements in detection metrics.
3.1 K-means++

To enhance both efficiency and accuracy in detection, this study

employs the k-means++ (Arthur and Vassilvitskii, 2007) technique

to supplant the k-means approach, initially employed in YOLOv7,

for clustering anchor boxes within the dataset. In the conventional

k-means method, the first phase involves the random generation of

n cluster centers from the data samples. Subsequently, the Euclidean

distance between each sample and the cluster centers is computed,

and the sample is assigned to the cluster center exhibiting the

smallest Euclidean distance. In the subsequent phase, the cluster

centers are reevaluated, and samples are reclassified. This iterative

process is repeated until the cluster centers reach stability.

The k-means++ method represents an enhancement over the

conventional k-means approach. Unlike generating all cluster

centers randomly in a single instance, k-means++ generates one

cluster center at a time. It calculates the Euclidean distance D(x)

between all samples and the cluster center, subsequently deriving

the probability of each sample being chosen as the next cluster

center through the Equation 1.

P(x) =
D(x)2

ox∈XD(x)
2 (1)

Subsequently, the next cluster center is chosen via the roulette

wheel selection method. This sequence of steps is reiterated until n

cluster centers are generated. After this stage, the ensuing process

resembles that of the conventional k-means algorithm: the cluster

centers are updated, samples are reclassified, and these steps are

iterated until the cluster centers achieve stability. While the k-

means++ algorithm invests more time in selecting initial cluster
Frontiers in Marine Science 0456
centers, once these initial centers are established, the convergence

speed accelerates, yielding cluster centers that hold greater

representativeness. This approach mitigates the challenge of

becoming trapped in local optima.
3.2 Omni-dimensional
dynamic convolution

In current neural networks, the majority typically employ static

convolutional kernels. However, recent research on dynamic

convolutions suggests calculating relevant weights based on the

input and linearly combining n convolutional kernels according to

these weights. This makes the convolution operation dependent on

the input, leading to a significant improvement in neural network

accuracy. The experimental results from (Li et al., 2022)

demonstrate that the use of ODConv enhances the detection

performance for small targets. Therefore, in this study, all

convolutional operations in the YOLOv7 backbone network are

replaced with ODConv to enhance the detection performance of

the network.

The core innovation of ODConv lies in its multi-dimensional

dynamic attention mechanism. Traditional dynamic convolution

typically achieves dynamism only in the dimension of the number

of convolutional kernels, by weighting and combining multiple

kernels to adapt to different input features. ODConv extends this

concept further by dynamically adjusting not only the number of

convolutional kernels but also three other dimensions: spatial size,

input channel number, and output channel number. This means

that ODConv can adapt more finely to the features of input data,

thereby improving the effectiveness of feature extraction.

Additionally, ODConv employs a parallel strategy to

simultaneously learn attention across different dimensions. This

strategy allows the network to efficiently process features on each

dimension while ensuring complementarity and synergy among the

dimensions. This is particularly beneficial for handling complex

features in SSS images. The network structure is illustrated

in Figure 2.

The output after ODConv can be expressed using the Equation 2.

y = (d1 ☉ c1 ☉ b1 ☉ a1 ☉W1 +… + dn ☉ cn ☉ bn ☉ an ☉Wn)*x (2)

where a represents the attention parameter for the spatial

dimensions of the convolutional kernel, b represents the attention

parameter for the input channel dimensions, c represents the

attention parameter for the output channel dimensions, d

represents the attention parameter for the convolutional kernel W.
3.3 Global attention mechanism

The incorporation of attention mechanisms within neural

networks draws inspiration from human visual attention,

enhancing feature extraction by assigning distinct weights to

various channels within neural network feature layers. This

strategy enables the model to concentrate on pertinent
FIGURE 1

Improvements made to YOLOv7.
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information while disregarding irrelevant data, leading to resource

conservation and augmented model performance. Several

mainstream attention mechanisms, such as SE-Net (Hu et al.,

2018), ECA-Net (Wang et al., 2020), BAM (Park et al., 2018),

CBAM (Woo et al., 2018) and GAM (Liu et al., 2021), have been

demonstrated to enhance the detection performance of models.

The GAM represents a form of global attention mechanism that

curtails information loss and amplifies interactions across global

dimensions. Consequently, the neural network’s aptitude for

extracting target features is bolstered. The schematic depiction of

the GAM module structure is presented in Figure 3.

GAM employs a sequential channel-spatial attention

mechanism with the aim of amplifying global inter-feature

interactions while reducing information dispersion. In the

channel attention submodule of GAM, a three-dimensional

configuration is employed to preserve tridimensional information.

The input feature map undergoes dimensional transformation and

subsequently undergoes an MLP operation. The result is then
Frontiers in Marine Science 0557
reverted to the original dimension, and a sigmoid function is

applied to produce the final output.

In the spatial attention submodule, aimed at intensifying focus on

spatial information, two convolutional layers facilitate spatial data

fusion. Initially, a convolution employing a kernel size of 7 is

executed to diminish channel count and computational complexity.

Subsequently, another convolution with a kernel size of 7 enhances the

number of channels while maintaining uniform channel consistency.

The resulting output is then processed through a sigmoid function.

In order to enhance the detection performance of the detection

network, we introduced GAM modules at five distinct locations in

the neck network. The architecture of the YOLOv7 network with

added GAM modules, as well as the specific structures of individual

sub-modules within the network, are illustrated in Figure 4.
3.4 Wise-IoU

The bounding box regression function holds a pivotal role in

object detection by enhancing object localization accuracy,

accommodating objects of varying scales, rectifying object

orientations and shapes, and bolstering algorithmic robustness.

This collective functionality contributes significantly to the

advancement of object detection algorithms.

However, the majority of current research on Intersection over

Union (IoU) (Yu et al., 2016) assumes that the training data consists

of high-quality samples, with their primary focus being on

enhancing the fitting capability of bounding box regression loss

functions, such as Generalized-IoU (GIoU) (Rezatofighi et al.,

2019), Distance-IoU (DIoU) (Zheng et al., 2020), Complete-IoU

(CIoU) (Zheng et al., 2020), and Efficient-IoU (EIoU) (Zhang et al.,

2022b), as shown in Table 1, where their advantages and

disadvantages are compared. Yet, when dealing with datasets that
FIGURE 2

The architecture of the ODConv module.
FIGURE 3

The structure diagram of the GAM module.
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contain a significant amount of inaccurately annotated low-quality

data, blindly intensifying the fitting ability of the bounding box

regression loss function can have detrimental effects on the model’s

learning process.

In SSS imagery, targets are highly susceptible to noise

interference in the generated images, which presents significant

challenges for annotation. In the process of manual annotation,

inaccuracies inevitably arise, as illustrated in Figure 5. If the
Frontiers in Marine Science 0658
annotation boxes are initially flawed, when an excellent detection

model generates high-quality anchor boxes for low-quality sample

data, the loss function LIoU will have a relatively large value, leading

to a substantial gradient gain. In such cases, the model will learn in

an unfavorable direction. This phenomenon is particularly relevant

in the context of scientific research and analysis for SSS imagery.

To address the issue of poor quality in underwater SSS data, we

introduce the WIoU (Tong et al., 2023) as the bounding box loss
FIGURE 4

The network architecture diagram of the improved YOLOv7.
TABLE 1 Comparison of the advantages and shortcoming of different IoU methods.

Overlapping Center
Point

Aspect
Ratio

Advantage Shortcoming

IoU ✓ × × Taking into account scale invariance and
non-negativity.

If two boxes do not intersect, it cannot reflect the distance
and cannot accurately reflect the degree of overlap

between the two boxes.

GIoU ✓ × × Addressing the issue where the loss equals zero
when there is no overlap between the detection

box and the ground truth box.

When there is containment between the detection box and
the ground truth box, GIOU degenerates into IOU, and
when the two boxes intersect, convergence is slow in both

the horizontal and vertical directions.

DIoU ✓ ✓ × Directly regressing the Euclidean distance
between the centers of the two boxes to

accelerate convergence.

Considering the aspect ratio of bounding boxes during the
regression process, there is still room for further

improvement in accuracy.

(Continued)
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function. This aims to alleviate the impact of low-quality anchor

boxes generated during annotation. The WIoU function employs a

dynamic non-monotonic focus mechanism that evaluates anchor

box quality through outliers, instead of IoU. This approach

furnishes a judicious gradient allocation strategy, curbing the

competitiveness of high-quality anchor boxes while attenuating

detrimental gradients arising from low-quality instances.

Consequently, WIoU prioritizes anchor boxes of moderate

quality, ameliorating detector performance overall.

The symbols defined in WIoU are illustrated as shown in

Figure 6. In this figure, the blue box represents the smallest

bounding box, and the red line represents the line connecting the

centers of the true box and the predicted box, where the union area

is denoted as Su = wh + wgthgt −WiHi.

The WIoU methodology, founded on distance metrics,

incorporates a two-tier attention mechanism known as WIoU v1.

WIoU v1 can be represented by Equations 3, 4.

LWIoUv1 = RWIoULIoU (3)

RWIoU = exp 
(x − xgt)

2 + (y − ygt)
2

(W2
g + H2

g Þ*

 !
(4)
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where LIoU ∈  ½0, 1�, Wg and Hg are the dimensions of the

minimum bounding box, (x, y)and (xgt , ygt) represent the center

coordinates of the predicted box and the ground truth box.

Subsequently, building upon WIoU v1, the incorporation of

outliers is achieved through the Equation 5.

b =
L*IoU
LIoU

∈ ½0, +∞) (5)

Finally, a non-monotonic focus coefficient b is formulated and

integrated into WIoU v1. As a result, we obtain Equation 6.

LWIoU = rLWIoUv1, r =
b

dab−d (6)

A reduced outlier score implies a higher quality anchor box,

yielding a diminished gradient gain assigned to it. Consequently,

the bounding box regression concentrates on anchor boxes of

intermediate quality. In contrast, anchor boxes exhibiting larger

outlier scores are allocated lesser gradient gains, effectively

curtailing the generation of significant harmful gradients from

low-quality instances. Notably, as LIoU remains dynamic, the

categorization threshold for anchor boxes’ quality also remains

adaptive. This adaptability empowers WIoU to judiciously allocate
B C D

E F G H

A

FIGURE 5

Low quality annotated samples. (A–D) are low-quality samples with inaccurate annotations, while (E–H) have accurate annotations.
TABLE 1 Continued

Overlapping Center
Point

Aspect
Ratio

Advantage Shortcoming

CIoU ✓ ✓ ✓ Introducing loss terms for the scale of the
detection box, as well as for its length and
width, which makes the predicted box better

match the ground truth.

The aspect ratio describes relative values, introducing
some degree of ambiguity and not considering the balance

of difficulty levels among samples.

EIoU ✓ ✓ ✓ Calculating differences in width and height
instead of aspect ratio, while also incorporating
Focal Loss to tackle the problem of imbalanced

difficulty levels among samples.

More attention is given to high-quality anchor boxes, with
insufficient focus on low-quality anchor boxes.
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gradient gains that are suitable for real-time scenarios, enhancing its

effectiveness in each instance.
4 Experiments

4.1 Experiment platform

The experiments presented in this study were carried out on an

Ubuntu 20.04 system, serving to corroborate the efficacy of the

proposed enhanced detection algorithm. Detailed configuration

parameters of the system are provided in Table 2.
4.2 Model evaluation metrics

When evaluating the detection performance of the improved

YOLOv7, we employed evaluation metrics including Recall (R),

Precision (P), Average Precision (AP), and mean Average Precision

(mAP). The calculation methods of these four indicators can be

expressed by Equations 7–10 respectively.

R = TP=(TP + FN) (7)

P = TP=(TP + FP) (8)

AP =
Z 1

0
P(R)dR (9)

mAP =o
N

i=1
APi=N (10)

Within the array of evaluation metrics mentioned, True Positive

(TP) signifies the tally of correctly identified positive samples, False

Positive (FP) corresponds to the count of erroneously identified

negative samples, and False Negative (FN) stands for the tally of

positively labeled samples that remain undetected. The variable N

represents the overall number of detected categories.
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4.3 Dataset preparation

In the data acquisition phase, we deployed objects of two

types, namely cylindrical and conical structures, as detection

targets in the experimental marine area. We utilized the SS3060

dual-frequency SSS as the detector for data collection. The SSS

and detection targets are illustrated in Figure 7. The size of the

SSS is 100mm in diameter and 1250mm in length, with a weight of

25kg in air and 12kg in water. And the performance parameters of

SSS are presented in Table 3. For the experiment’s execution, the

SSS was affixed beneath an unmanned boat. The utilization of

GPS signals emanating from the unmanned boat enabled the

verification of congruence between features visible in the SSS

images and the physically predetermined targets. This

methodology thereby facilitated the creation of a dataset

characterized by high quality.

After deploying the targets, to ensure the diversity of the collected

dataset, we employed two different survey paths in the target water area

to perform a comprehensive scan of underwater targets. The placement

of the targets and the scanning paths are illustrated in Figure 8. In the

figure, the lateral distance between the targets is approximately 50

meters, and the longitudinal distance is approximately 100 meters. Due

to the influence of underwater currents, some degree of deviation in

this distance is inevitably present.

Due to the complex and variable underwater environment, as

well as the susceptibility of images to noise interference, the images

acquired using SSS also exhibit significant variations, as shown

in Figure 9.

Discerning distinct target features within SSS images presents a

formidable challenge. Manual annotation subsequent to data

collection is arduous, making on-site, real-time labeling the

optimal strategy. To attain the real-time processing of SSS images,

we adopt a tactic wherein image segments are extracted from the

sonar waterfall plot at intervals of 30 seconds, illustrated in

Figure 10. This approach facilitates the annotation of targets on

SSS images in real-time, while accounting for the field environment

and GPS coordinates.

Furthermore, the targets occupy a minuscule proportion within

the complete SSS image. Training the network directly with large-

scale SSS images would generate an excessive number of negative

samples, potentially impeding the training process and squandering

computational resources. Moreover, considering practical

applications, the network needs to be deployed on resource-
FIGURE 6

The symbol definitions in WIoU.
TABLE 2 Experimental environment settings.

Component Specification

Operating system Ubuntu 20.04(64-bit)

Deep learning framwork Pytorch 1.11

Programming language Python 3.9

GPU accelerated environment CUDA 11.3

Graphics Card (GPU) Nvidia GeForce RTX 3090

Processor (CPU) Platinum 8255C CPU @ 2.50GHz
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constrained underwater autonomous vehicles, making it imperative

to restrict the image size fed into the detection network. To address

these challenges, we partitioned the images into diminutive patches

with dimensions of 200 × 200. Each patch features a 50-pixel

overlap to prevent the loss of target characteristics. From these

patches, we selectively identified those containing targets for

training, significantly reducing the generation of irrelevant

negative samples stemming from extraneous background

information. Similarly, during the detection phase, we performed
Frontiers in Marine Science 0961
the same cropping operation before inputting the complete image

into the detection network.

Finally, we filtered out unusable data and conducted data

augmentation using high-quality data, yielding a total of 975

sample images. These images include 293 Cones, 318 Cylinders,

and 364 Non-target instances. (“Non-target” refers to miscellaneous

items on the seafloor, such as rocks or accidentally dropped artificial

objects, which were not intentionally deployed by us. Despite not

being the primary focus of the experiment, these Non-target items

share certain similarities with the intentionally deployed targets.

Including them in the dataset is essential, as their presence could

potentially impact our ability to detect the deployed targets.) These

samples were then randomly divided into training, validation, and

test sets in a 7:1:2 ratio, with the specific number of samples for each

set as shown in Table 4.
4.4 Experiment results

To validate the effectiveness of the algorithm proposed in this

study for detecting small targets in SSS imagery, we tested the
BA

FIGURE 7

The SSS and preset targets. (A) SSS. (B) preset targets.
TABLE 3 Performance parameters of the SSS.

Frequency 300kHz 600kHz

Maximum range 150m 100m

Maximum slope distance 230m 200m

Horizontal beam width 0.5° 0.26°

Vertical beam width 50° 50°

Horizontal resolution 1.3m 0.45m

Vertical resolution 2.5m 1.25m
BA

FIGURE 8

The target deployment locations and scanning paths. (A) Scanning path 1. (B) Scanning path 2.
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algorithm on a real dataset collected during our sea trials. The

variations in various loss functions and accuracy metrics during the

training process are illustrated in Figure 11.

To ensure that all the introduced modifications exerted a

positive influence on the network, a sequence of ablation

experiments was carried out. The results of these experiments are

presented in Table 5. In the table, mAP@0.5 represents the average

precision at an IoU threshold of 0.5, while mAP@0.5: 0.95

represents the average of mAP values at IoU thresholds ranging

from 0.5 to 0.95. It is apparent that the integration of k-means++,

ODConv, GAM, and WIoU enhancements has resulted in an
Frontiers in Marine Science 1062
improved detection performance of the original YOLOv7 model

on our assembled SSS dataset. The comparison of Precision-Recall

(PR) curves on the test set between the improved YOLOv7 network

and the original YOLOv7 network is shown in Figure 12, while the

comparison of confusion matrices is shown in Figure 13. From

Figure 12, it can be observed that the improved YOLOv7 network

achieved an average precision improvement of 5.05% on the test set.

From Figures 12, 13, it can be observed that the improved

YOLOv7 network demonstrates a noticeable enhancement in the

detection performance of Non-target objects. In Figure 12, the PR

curve of the enhanced YOLOv7 network for the Non-target
B

C

D

A

FIGURE 9

Acquired Sonar Images. (A) Background Images. (B) Images with Targets. (C) Target Images in Complex Environments. (D) Interfered Images.
FIGURE 10

Preprocessing of SSS images. We partitioned the images into diminutive patches with dimensions of 200×200. Each patch features a 50-pixel
overlap to prevent the loss of target characteristics.
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category shows a value of 0.909, which represents an improvement

of 0.095 compared to the original network’s 0.814. In Figure 13,

within the improved YOLOv7’s confusion matrix, the Non-target

category registers a value of 0.94, as opposed to the original

network’s 0.92, marking a 0.02 improvement.

In addition, our experimental results provide evidence of the

enhanced network’s superior performance in detecting Non-target

objects, as depicted in Figure 14. The original YOLOv7 network

misclassified Non-target objects as Cylinder and Cone, whereas the

improved YOLOv7 network can accurately identify Non-target

categories. This advancement has reduced the false detection rate
Frontiers in Marine Science 1163
for Non-target, which holds significant practical significance in

engineering applications. During the search process, it prevents

wasting time on Non-target objects.

Furthermore, a comparative analysis was conducted between

our enhanced detection algorithm and prominent detection

networks to validate the efficacy of the proposed methodology.

The comparative visualization of detection outcomes is illustrated

in Figure 15. Detailed detection metrics are presented in Table 6.

These findings collectively furnish compelling evidence for the

superior performance of the approach proposed in this paper

within the domain of small target detection using SSS.
TABLE 4 The actual dimensions of underwater targets and the final dataset sample size.

Category
Target Dataset

Diameter Height Number Train Val Test Total

Cone 0.30m/0.50m 0.60m 4 205 29 59 293

Cylinder 0.50m 1.00m 4 223 31 64 318

Non-target / / / 255 36 73 364
FIGURE 11

The loss function and relevant metrics during the training process of the improved YOLOv7. The horizontal axis in the figure represents the number
of training epochs.
TABLE 5 Ablation experiment.

Model K-means++ ODConv GAM WIoU mAP@0.5(%) mAP@0.5: 0.95(%)

× × × × 90.73 49.78

✓ × × × 91.77(1.04↑) 50.39(0.61↑)

YOLOv7 ✓ ✓ × × 93.28(2.55↑) 51.17(1.39↑)

✓ ✓ ✓ × 94.49(3.76↑) 51.79(2.01↑)

✓ ✓ ✓ ✓ 95.78(5.05↑) 52.29(2.51↑)
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BA

FIGURE 12

The PR curve on the test set. (A) initial YOLOv7 network. (B) improved YOLOv7 network.
BA

FIGURE 13

The Confusion Matrix on the test set. (A) initial YOLOv7 network. (B) improved YOLOv7 network.
B CA

FIGURE 14

Comparison of Non-target category detection results between the improved YOLOv7 and the original YOLOv7 networks. (A) Labels. (B) Initial
YOLOv7 network. (C) Improved YOLOv7 network.
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The results illustrated in Figure 15 provide empirical

validation of the efficacy of the approach introduced in this

research. As demonstrated in columns (2), (3), and (4) of

Figure 15, some mainstream detection networks often exhibit
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mis-detections when accurately distinguishing between the

categories of cylindrical and conical objects. In contrast, the

proposed method in this paper demonstrates accurate detection

for objects that are challenging to differentiate, with higher
FIGURE 15

Comparison of detection results between our method and other detection networks. The first row in the figure represents the ground truth labels
for different target categories, while the second to fifth rows depict the detection results of various algorithms.
TABLE 6 Comparison of detection metrics between our method and other detection networks.

Method Precision(%) Recall(%) mAP@0.5(%) mAP@0.5: 0.95(%)

SSD 88.31 89.76 89.28 48.24

Faster-RCNN 85.33 83.91 87.19 46.73

YOLOv5 88.72 90.46 89.98 49.80

YOLOv7 93.56 89.12 90.73 49.78

Our method 92.99 89.10 95.78 52.29
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probability values assigned. This highlights the superiority of the

algorithm presented in this paper.

Nonetheless, it is important to note that the enhanced network

in this study does exhibit certain limitations. For example, as

depicted in column (6) of Figure 15, all networks misclassify a

Non-target as a Cone. This misclassification arises due to the

distinct shadow surrounding the Non-target and the similarity in

the size of the bright spot to the Cone category, resulting in a false

positive detection. At present, there is a lack of definitive solutions

for scenarios in which acoustic image features exhibit extremely

high similarity, yet the actual objects belong to different categories.

Using a higher-precision device to acquire images with increased

resolution may be beneficial for addressing this issue.
5 Conclusions

This study collected a dataset of small target SSS images during

sea trials and proposed an enhancement method based on the

YOLOv7 model for detecting small targets in SSS images. The

method utilizes the k-means++ algorithm to obtain more accurate

initial anchor box sizes. Subsequently, it employs ODConv to

replace static convolution modules in the YOLOv7 backbone

network and integrates a GAM attention mechanism into the

YOLOv7 neck network, thereby enhancing the feature extraction

capabilities of the detection network. In the loss function section, a

WIoU loss function is introduced to balance the impact of high-

quality and low-quality anchor boxes on gradients, enhancing the

network’s focus on average-quality anchor boxes. Experimental

results demonstrate the effectiveness of the proposed YOLOv7-

based enhancement algorithm, with mAP@0.5 and mAP@0.5: 0.95

metrics reaching 95.78% and 52.29%, respectively, representing

improvements of 5.05% and 2.51% over the original YOLOv7

network. Furthermore, comparisons with mainstream underwater

detection networks confirm the superiority of the proposed method

in small target detection in SSS images.

The proposed method can be applied to autonomous target

detection in Unmanned Underwater Vehicles (UUVs) and

Unmanned Surface Vehicles (USVs), enhancing the autonomous

operational capabilities of unmanned autonomous ocean observation

platforms. In the future, we plan to collect more diverse small target

data and continue researching SSS-based small target detection

methods to further contribute to underwater exploration.
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Unmanned surface vehicles (USVs) are crucial in ensuring maritime safety and

observation, attracting widespread attention and research. However, a single

USV exhibits limited performance and cannot effectively observe complex

marine environments. In contrast, clusters of USVs can collaborate to execute

complex maritime tasks, thereby enhancing the overall operational efficiency.

USVs typically form heterogeneous clusters by combining vehicles with varying

maneuverabilities and communication network capabilities. This has sparked an

increased interest in cooperative communication research within heterogeneous

USV clusters. The heterogeneous USVs discussed in this paper share the same

dynamic model; however, they differ in dynamic parameters and communication

capabilities. First, this study establishes a three-degree-of-freedom motion

mathematical model for an underdriven USV considering environmental

interference. It estimates the dynamic parameters of four USVs and evaluates

their communication abilities, laying the foundation for researching the

cooperative control of heterogeneous USV clusters and their application in

Ocean Observation. Next, the communication capability of the USVs is

assessed by studying the communication mode and signal transmission loss

within the USV clusters. This study investigates the problem of cooperative

communication in USV cluster formation, starting with the communication

delay of USV clusters under a directed switching topology. Finally, a coherent

formation controller is designed under a switching communication topology to

address the dynamic transformation of communication topologies within

heterogeneous USV clusters. This verifies that heterogeneous USV clusters can

seamlessly form andmaintain formation shapes during communication topology

transformations through formation simulation experiments involving four

heterogeneous USVs was 22% higher than that of dispersed control topology

structures. This study provides a solid foundation for future investigations into the

cooperative control of heterogeneous USV clusters and their applications in

marine observations.
KEYWORDS

heterogeneous, USV, collaborative communication, ocean observation,
topology optimization
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1 Introduction

Unmanned surface vehicles (USVs) are pivotal tools for ocean

exploration and are currently garnering global attention. In

December 2018, the International Maritime Organization (IMO)

Maritime Safety Committee approved a framework and

methodology for a regulatory scoping exercise for autonomous

surface vessels at sea during its 100th session (Schröder-Hinrichs

et al., 2019). Owing to its capability to conduct autonomous

navigation at sea, USVs offer advantages such as high autonomy,

broad operating range, effective concealment, and substantial

reductions in labour and maintenance costs. Equipped with

various technologies, USVs can autonomously execute a diverse

range of maritime tasks, significantly enhancing task execution

efficiency (Zhang et al., 2019). Consequently, USVs are

considered crucial platforms for future maritime operations. In

addition, the technological advancements in this field are significant

for the exploration, development, and protection of oceans.

When a USV performs autonomous navigation and operation at

sea, the motion is characterised by typical underdrive, non-linearity,

uncertainty, multiple constraints, unpredictable state, and limited

communication (Gu et al., 2019). Furthermore, the superposition of

multiple factors makes it difficult to control the USV, and the operating

environment at sea is complex, with relatively severe perturbations of

wind, waves, and currents, limited communication, and relatively

complicated task allocation problems. The cooperative control of

USV clusters under communication constraints also faces significant

challenges (Wang et al., 2020).

USV clusters are connected via the communication network to

form a whole, and the communication mode determines the control

mode between clusters to a certain extent. The interaction of USV

information can be divided into three types (Xie et al., 2021):

centralised, decentralised, and distributed communications.

Centralised communication (Sun et al., 2022) is amulti-intelligence

body cluster with a control centre that designs the global control

protocol and communicates with all other intelligences to exchange

information. Thus, the performance of centralised communication has

a natural superiority, is easy to implement, and is currently the most

commonly used communication method in cluster research. However,

centralised communication has a high computational cost and poor

robustness, is not easily scalable, and has poor responsiveness to

environmental changes.

Decentralised communication (Chainho et al., 2017) means

that each intelligence has a controller that can communicate

directly with other intelligences, and each intelligence

autonomously processes information and makes plans and

decisions. This depends on local information, which reduces the

computational burden and complexity; however, the lack of

communication and cooperation between intelligences leads to a

lower synergy efficiency and does not ensure the realisation of

global goals.

Distributed communication (Lim et al., 2008) differs from

centralised and decentralised communication and is a type of

communication between the two. Intelligent bodies and adjacent

intelligent bodies in distributed communication can realise mutual

communication and coordinated action, and the information of
Frontiers in Marine Science 0269
intelligent bodies does not need to pass through the control centre.

This apportions the communication pressure of the entire system to

each intelligent body, improves the coordination of multi-intelligent

body communication systems, and has the advantages of

robustness, flexibility, and ease of expansion.

For a USV cluster adopting distributed communication, each

USV interacts with the neighbouring USVwith information to ensure

that the state quantity or a certain variable of all USVs is eventually

consistent. Moreover, it can effectively improve the efficiency of the

system synergy and the robustness of the system under the premise of

realising a global goal. This paper presents a method for assessing the

communication capabilities of heterogeneous USVs. By comparing

three communication methods among USVs clusters, stable and real-

time radio communication has been chosen as the mode for

information exchange between USVs clusters. A method for

evaluating the communication capabilities of heterogeneous USVs

based on a signal transmission loss model is proposed. The

communication topology of USVs is abstracted into a graph data

structure, and several important properties of Laplace matrices are

provided. Based on the observation progress consistency controller,

the speeds of heterogeneous USVs are adjusted through the

optimization of communication topology to achieve consistent

observation progress among all vessels. Finally, compared

with dispersed control experiments, the optimization of

communication topology based on the consistency controller has

improved observation efficiency by 22%.
2 Mathematical modelling of
heterogeneous USV motion

To study the motion simulation and cooperative communication

problems of a USV, it is necessary to obtain its dynamic parameters.

Currently, the kinetic parameters of a USV are identified through

experiments, theoretical calculations, and approximate projections

(Wu, 2011). Owing to the complexity and variability of the structure

and working conditions of a USV (Xing, 2012), theoretical

calculations and experimental measurements have certain errors

and limitations. Therefore, this study adopts an integrated method

to estimate the dynamic parameters of a USV using a combination of

theoretical calculations and experiments. The method is based on the

known parameters of the USV for theoretical calculation, and the

principles of the theoretical calculation are as follows:
(1) Additional inertial mass term, m1 ≈ 1:05m, where m is the

actual mass of the USV.

(2) Additional inertial mass term, m2 ≈ m + 0:5(rpD2L),

where r is the density of water, D is the average depth of

immersion of the ship, and L is the effective length of

the ship.

(3) Additional inertial mass term m3 ≈ mL2=8. This formula is

applicable to paddle rudder and dual-thruster USVs, m3 ≈

(m(L2 +W2) + 0:5(0:1mB2 + rpD2L3))=12 Fig, where W is

the actual width of the ship and B is the distance between

the two thrusters (Lim et al., 2008).
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Fron
(4) The hydrodynamic damping term is d1 ≈ m1g=(2u0),

where g is the gravitational acceleration and u0 is the

economical velocity of the USV.

(5) Hydrodynamic damping term d2 ≈ −0:5ru0L2Y 0v, where
Y 0v = −5(D=L)2.

(6) Hydrodynamic damping term d3 ≈ 0:5rVL4N 0r, where N 0

r = −0:65(D=L)2.
These kinetic parameters were partially calculated using Smit’s

formula. First, according to the above theoretical calculation, the

calculation results are then substituted into the standard USV

motion model to obtain a set of preliminary dynamic parameters

Ship slewing simulation experiments are carried out on the computer,

and the simulation results are compared and analysed with the

measured data of the actual slewing test on the water surface to

determine the differences between the two and the reasons for the

differences. Moreover, according to the results of the analysis, the

dynamic parameters are adjusted and optimised appropriately to

ensure they are more aligned with the real situation. Finally, based

on the analysis results, the dynamic parameters were adjusted and

optimised to make them more consistent with the actual situation.

In the following, real ship data verify the abovementioned

kinetic parameter identification method, and four USVs, named

USV I-IV, developed by a 3I team personnel of the School of Marine

Science and Technology of Tianjin University, are considered. The

physical photos are shown in Figure 1.

A comprehensive approach combining theoretical calculations

and experiments, as described above, was used to confirm the

kinetic parameters of the USV; Table 1 lists the parameters of

each USV and the kinetic parameters determined.

The accuracy of the established motion model and parameters

of the USV were verified, and a constant-slewing motion simulation
tiers in Marine Science 0370
was performed using the USV dynamic parameters listed in Table 1.

The USV sailed in the due north direction at an economical velocity

with the paddle or vector thrusters turned to the right by 35° (USV

III was turned off by controlling the right thrusters).

In static waters without environmental interference, the motion

trajectories depicted by the centres of gravity of the four USVs are

shown in Figure 2A. It is shown that the different USVs exhibit

different longitudinal and transverse distances as well as different

diameters of rotary gyration, reflecting the different manoeuvrability

of each USV. In the presence of interference from sea winds and

currents, the wind velocity UT = 2  m=s, wind direction  yT = 0 °,

current velocity Vc = 0:15  m=s, and current direction yc = p=4
were set, and the motion trajectories depicted by the centres of

gravity of the four USVs are shown in Figure 2B. The experimental

results show that the motion of each USV tends to drift in the

direction of p=4, which indicates that the sea current has a significant
influence on the USV motion state.

The simulation experiments show that the underdriven three-

degree-of-freedom motion mathematical model established in this

study can correctly describe the navigation of the USV and

demonstrate the manoeuvrability of different USVs considering

environmental perturbations.
3 USV cluster
cooperative communications

3.1 Communication methods for
USV clusters

The maritime Internet of Things (IoT) has recently emerged as

a revolutionary communication paradigm where a large number of
B

C D

A

FIGURE 1

Physical drawing of four USV. (A) USV I, (B) USV II, (C) USV III, (D) USV VI.
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moving vessels are closely interconnected in intelligent maritime

networks. To promote smart traffic services in maritime IoT, it is

necessary to accurately and robustly predict the spatiotemporal

vessel trajectories. It is beneficial for collision avoidance, maritime

surveillance, and abnormal behaviour detection, etc. Motivated by

the strong learning capacity of deep neural networks, RyanWen Liu

et al. (Liu et al., 2022; Liang et al., 2022; Liang et al., 2024) proposed

an AIS data-driven trajectory prediction framework, whose main

component is a long short-term memory (LSTM) network.

Maritime communication networks primarily include radio-,

satellite-, and shore-based cellular network communication

systems. All of these communication systems can be applied to

USV-trunking communication. Figure 3 shows the widely used

maritime communication networks.

Radio communication systems (Xia et al., 2017) are widely used

in marine communications and can provide near-, medium-, and

long-range communication. Typical frequencies are medium

frequency (MF), high frequency (HF), and very high frequency

(VHF). USVs can communicate with the surrounding USVs and are
Frontiers in Marine Science 0471
generally suitable for short-range communication. The radio

communication system has a stable signal, low cost, and good

real-time performance; however, with increased communication

distance, the data transmission rate decreases, and it cannot realise

global communication coverage.

Satellite communication systems (Xia et al., 2017) play an

irreplaceable role in marine communication and provide global

coverage. Typical examples are the maritime satellite system

(INMARSAT), the Iridium system (Iridium), and China’s Beidou

satellite navigation system, which is one of the most common and

reliable choices for USV communication. Moreover, USVs can

communicate with ground stations or other USVs over long

distances, thereby enabling remote control, data transmission, and

other functions. Satellite communication systems cover a wide

range of applications; however, they exhibit extremely high costs,

signal delays, and information security problems.

Shore-based cellular network communication systems (Xia

et al., 2017) suit offshore marine communication. USVs can use

mobile communication technologies, such as 4G and 5G, to provide
BA

FIGURE 2

Steady rotation Experiment for four USVs. (A) Without environmental interference, (B) With environmental interference.
TABLE 1 Physical and kinetic parameters of four USV.

Parameter BISHENG(USV I)
YEYING
(USV II)

DOLPHIN-1(USV III)
LIEYAN
(USV IV)

length/m 1.23 0.75 3.20 1.37

width/m 0.38 0.25 2.20 0.38

mass/kg 12.4 16.6 90.0 10.1

Mode of advancement oar and rudder vector thruster Dual Thrusters vector thruster

m1/kg 13.02 17.43 94.5 10.61

m2/kg 27.28 20.95 256.93 13.63

m3/kg·m2 2.35 2.33 57.6 2.37

d1/kg·s-1 17.72 5.5 163.67 11.88

d2/kg·s-1 23.07 24.3 234.89 17.93

d3/kg·s-1 4.54 2.78 312.69 4.37

Economic velocity/m·s-1 3.6 4.1 2.8 4.4
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high-velocity and stable offshore network services. However, the

range of coastal sea areas covered by shore-based cellular networks

is minimal.

As shown in Table 2, Radio communication systems

(Alqurashi et al., 2023) have been widely used in the field of

maritime communication, offering stable signals, low costs, and

good real-time capabilities for near, medium, and short-distance

communication. Shore-based cellular network communication

systems are an excellent choice for near-sea maritime

communication, while unmanned vessels can also utilize mobile

communication technologies such as 4G and 5G to provide high-

speed and stable network services in coastal areas. However,

the coverage range of shore-based cellular networks in maritime

areas is limited. Satellite communication systems hold an

irreplaceable position in maritime communication, offering global

communication coverage. However, they currently suffer from high

costs, significant signal latency, and potential issues related to

information security. In most cases, heterogeneous USV clusters

require continuous information interaction. Owing to the

shortcomings of satellite communication, such as signal delay and

high cost, and the limitations of cellular networks, radio

communication has become the optimal communication mode for

real-time control and cooperative operation of USV clusters. Stable

radio communication with good real-time performance can satisfy

cluster information interaction requirements.
Frontiers in Marine Science 0572
3.2 Assessment of USV cluster
communications capability

To ensure that the unmanned crafts within a cluster system

communicate effectively with each other, an assessment of the

communication capabilities of the unmanned craft is required to

determine the communication connectivity of the cluster. The

USV cluster is assumed to communicate via the HF/VHF

frequency digital transmission radio, and the signals are

transmitted along the line-of-sight channel. As shown in

Figure 4, according to the radio transmission theory, the

channel loss experienced when signals are transmitted at sea

mainly consists of large-scale and small-scale fading, with large-

scale fading including path transmission loss, shadow fading, and

small-scale fading, including multipath fading. To confirm

whether the two vessels can communicate, the performance of

the communication systems of the two vessels, as well as the loss

during signal transmission, can be evaluated.

First, a signal transmission loss model is established, assuming

that two USVs, A and B, in the cluster interact with each other for

information. In addition, the distance between the two USVs is d

(km), the frequency of the signal is f (Mhz), and the loss of the signal
FIGURE 3

Schematic diagram of the maritime communications network.
TABLE 2 Comparison of the characteristics of USV cluster
communication methods.

Method Advantages Disadvantages

Radio communications Good real-time, low-
cost, and stable signal

Limited by distance,
weather, and
other factors

Satellite
communications

Wide coverage and
stable signal

Signal delays and
high costs

Shore-based cellular
network

communications

Stable signal and
high bandwidth

Limited to near-
shore communications
FIGURE 4

Maritime communications propagation loss.
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in the propagation process is Lp (dB). According to the study (Jin,

2013), the formula is calculated as follows Equation 1:

Lp = 20 log10 (f ) + 20 log10 (d) + 32:45 + 10k log10 (
d
d0

) (1)

where k is the path loss exponent and the specific value is

determined by the communication environment factors at sea.

Equation 1 considers marine environment correction compared

to the signal-free space transmission model.

Second, the signal reception strength is calculated using the

performance parameters of the communication systems of the two

USVs and the signal transmission loss. The formula for calculating the

signal reception strength of A and B USVs is as follows Equation 2:

RSSA = Pt,B + Gt,B + Gr,A − Lp

RSSB = Pt,A + Gt,A + Gr,B − Lp (2)

RSSA is the signal strength transmitted by USV B and received

by USV A, RSSB is the signal strength transmitted by USV A and

received by USV B, Pt,A and Pt,B are the signal transmitting powers

of USVs A and B, respectively. Gt,A and Gt,B denote the transmitting

antenna gains of USVs A and B, respectively. Gr,A and Gr,B are the

receiver antenna gains for USVs A and B, respectively.

Finally, the heterogeneous USVs cluster communication

capability is evaluated using the wireless signal strength to

measure communication effectiveness between two USVs. It is

known that the reception sensitivity of USV A is Rs,A, whereas the

receiving sensitivity of USV B is Rs,B. Considering PBA, PAB mean

the success or failure status of communication from USV B to USV

A and from USV A to USV B, respectively, then whether the two

USVs can communicate or not can be determined using the

following relationship:

(1) For communications from USVs B to A.

If RSSA − Rs,A ≥ −83   dBm, PBA = 1(Communication from

USVs B to A is successful).

I f RSSA − Rs,A < −83   dBm  or the two USVs do no t

communicate at the same frequency, PBA = 0 (Communication

from USVs B to A is unsuccessful).

(2) For communication from USVs A to B.

If RSSB − Rs,B ≥ −   83dBm, PAB = 1(Communication from

USV A to USV B is successful).

I f RSSB − Rs,B < −   83dBm or th e two USVs do no t

communicate at the same frequency, PAB = 0 (Communication

from USV A to USV B is unsuccessful).

The assessment of the communication capability of heterogeneous

USVs shows that two USVs can interact with each other through the

HF/VHF frequency digital transmission radios depending mainly on

the frequency of the signals, the distance between the two USVs, the

performance of the communication system, and the environmental

interference of the communication scenario, among other factors.

Furthermore, this can occur without considering the mutual

communication interference between multiple USVs. Evaluating the

communication capabilities of any twoUSVs in a cluster can determine

the overall communication connectivity.
Frontiers in Marine Science 0673
3.3 Unmanned vessel cluster
communication topology

After completing the communication capability assessment of

heterogeneous USV clusters, the communication topology between

USVs is described using a graphical data structure (Zhou, 2011).

Consider a cluster system consisting of a total of n USVs, which is

represented by the graph G = (V , E), where V = v1, v2,…vnf g is the
set of vertices, and each vertex represents each USV. E = V · V =

(vi, vj), i, j = 1… n
� �

is the set of edges, vi is the starting point, vj is

the ending point, and E denotes whether a communication link is

established between the USVs or not, and if there exists an edge

from a vertex to reach vi, the vertex is said to be a neighbour j of vi,

and the set of j is Ni. Describing the connectivity of a graph using a

matrix of A = ½aij� ∈ Rn�n, A is the adjacency matrix, which

represents the connectivity between vertices, and according to the

evaluation of the communication capabilities discussed in the

previous section and aij is as follows Equation 3:

aij =
1 if  Pji = 1

0 otherwise

(
(3)

Consider that the USV can process its own information

directly such that aii = 0, i = 1,…, n, that is, the main diagonal

of the adjacency matrix, is zero. If communication does not

consider direction, G is an undirected graph when A is a

symmetric matrix.

The degree d(vi) of vertex vi denotes the number of edges

associated with the vertex. For directed graphs, the degree of vertex

vi is divided into the in-degree din(vi) and out-degree dout(vi), that is,

the number of directed edges from entering vertex vi and the

number of directed edges from exiting vertex vi. Moreover, the

in-degree matrix better captures the impact of neighbouring USVs

on one’s ship. For an undirected graph, the degree of vertex vi is the

number of edges and is equal to the number of neighbours. D =

diag d(v1), d(v2),…, d(vn)f g is a degree matrix that represents the

communication connectivity of a USV.

The Laplace matrix L that defines the graph is given by

Equation 4.

L = D − A (4)

If the communication topology is a directed graph, D denotes

the incidence matrix. For example, Figure 5 illustrates the

communication topology of a cluster of four USVs.

The corresponding adjacency, degree, and Laplace matrices for

the communication topology shown in Figure 5 are as follows:

D =

2 0 0 0

0 3 0 0

0 0 3 0

0 0 0 2

2
666664

3
777775
A =

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

2
666664

3
777775
L =

2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 1 −1 2

2
666664

3
777775

The computed Laplace matrix reflects important information

regarding the communication system, and several important
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properties of the Laplace matrix L are described below (Liu and

Huang, 2023).
Fron
(1) For undirected graphs, Laplacian matrix L is symmetric and

semi-positive definite (given a real symmetric matrix A of

size n × n, matrix A is a semi-positive definite matrix if

there is a constant xTAx ≥ 0for any vector x of length n).

(2) For an undirected graph, the eigenvalues of the Laplacian

matrix L are ordered to satisfy l1≤l2≤…≤ln, where l1 = 0

and l2 > 0 if and only if the graph is connected.

(3) For a directed graph, a sufficient condition for containing a

directed spanning tree is that L has one and only one zero

eigenvalue, and all other eigenvalues have nonnegative

real parts.
4 Coherent formation control of USV
clusters under switching
communication topology

4.1 Unmanned vessel cluster
coherence control

Consistency control under a switching communication topology

is a core problem in cooperative control. First, we introduce the basic

concept of coherence control, analyse traditional coherence control

strategies, and discuss their effects when applied to USV clusters with

a single static communication topology.

The goal of consistency research is to design a consistency

algorithm that relies only on the information of its neighbours to

ensure that all intelligent bodies agree on a certain quantity of

interest (Olfati-Saber et al., 2007). Consistency can be used to study

clustered distributed architectures in which no individual of the

cluster is overly dependent on any individual; therefore, the system

as a whole is more robust. Designing consistency algorithms is an

important aspect of consistency studies; for a first-order continuous

system, it is modelled as follows Equation 5:
tiers in Marine Science 0774
_xi(t) = ui(t) (5)

where xi denotes the state of the ith intelligence and ui denotes the

control input of the ith intelligence. The most common continuous

time consistency algorithm is shown in Equation 6:

ui(t) = −on
j=1aij(t)½xi(t) − xj(t)� (6)

where aij(t) denotes the value of the connection state between the

intelligence i and neighbour j in the communication topology in a

first-order system, and if t → ∞ and xi(t) − xj(t)
�� �� → 0, i, j = 1, 2,

…, n,∀ i ≠ j exist, then the cluster of intelligences is said to have

reached agreement. Suppose the communication topology graph is

undirected and is connected under the control of Equation 6. In that

case, the states of the individual intelligences gradually converge to

those of the neighbouring intelligences until the states of all the

intelligences converge to become consistent. The convergence time

depends specifically on the structure of the communication

topology graph, and good control must converge within the

shortest possible time.

Furthermore, Equation 6 is written in matrix form as follows

Equation 7:

_x(t) = −Ln(t)x(t) (7)

where x(t) = ½x1(t), x2(t),⋯, xn(t)� is the cluster state vector and Ln
(t) is the Laplace matrix of the cluster communication topology.

If xi denotes the displacement of the ith intelligence, Equation 7

is referred to as a first-order consistency algorithm. For second-

order intelligence considering displacements and velocities, the

second-order multi-intelligence model is defined by Equation 8:

_xi(t) = vi(t)

_vi(t) = ui(t)
, i = 1, 2,…, n

(
(8)

where vi denotes the velocity of the ith intelligence, and the second-

order consistency algorithm is given as follows Equation 9:

ui(t) = −on
j=1aij(t)½(xi(t) − xj(t)) + g (vi(t) − vj(t))� (9)

g denotes the coupling strength coefficient g > 0 in a second-order

system if t → ∞ or xi(t) − xj(t)
�� �� → 0, vi(t) − vj(t)

�� �� → 0, i, j = 1, 2,

…, n,∀ i ≠ j. The cluster of intelligence is then said to have reached

an agreement.

Similarly, Equation 9 can be written in matrix form as follows

Equation 10:

_x(t)

_v(t)

" #
=

0n�n In

−Ln(t) −g Ln(t)

" #
x(t)

v(t)

" #
(10)

where v(t) denotes the cluster velocity vector. A sufficient condition

for the second-order consistency Equation 9 to achieve consistency

is that the communication topology graph has a spanning tree, and

the coupling strength coefficient g satisfies (Gao et al., 2017)

Equation 11:

g > max
i=2,⋯,n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

li( − L)j j cos ( p2 − tan−1 −Re (li(−L))
Im(li(−L))

)

s
(11)
IIIII

I IV

FIGURE 5

Communication topology with four nodes.
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where li denotes the characteristic root of the Laplace matrix L. It is
evident that, unlike the first-order model, parameter g also influences

whether the second-order system can achieve consistency.

To illustrate the usefulness of the consistency algorithm, a

cluster of n = 4 USVs is selected. The simplified USV model is

given by Equation 8, with the cluster having the following

undirected communication topology, as shown in Figure 6.

The degree, adjacency, and Laplace matrices of the

communication topology graph were obtained from Figure 6:

D =

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

2
666664

3
777775
A =

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

2
666664

3
777775
L =

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

2
666664

3
777775

Obviously this communication topology graph contains a

spanning tree that sets the x(0) = [4.5, 3.0, 4.0, 5.7]T and v(0) =
[1.0, 1.5, 1.2, 1.7]T.

Using the second-order consistency controller (10), according

to the coupling strength coefficient condition (11), it is necessary to

satisfy the g > 0:71. In this study we used g = 1. The simulation was

performed for 30 s, and Figure 7 depicts graphs of the positions and

velocities of the four USVs under the control of a second-order

consistency algorithm.

As shown in Figure 7, the initial positions and velocities of the

four USVs are different; however, under the control of the second-

order consistency algorithm, the positions of the USVs eventually

converge to the same position at approximately 5 s, and later.

Subsequently, the velocities of the USVs converge to the same

velocity at approximately 7 s, which ultimately converge to the

average value of the initial velocities. Therefore, the simulation

results verify the correctness of Equation 10, and the system

exhibited good convergence.
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4.2 Study of coherent formation based on
cooperative communication of USVs

Unmanned USV clusters can cooperate with each other and

adapt to the formation environment; that is, the offset is

superimposed based on consistency, as shown in Figure 8. In the

realisation of USV formation control, considering the communication

capability of heterogeneous USV clusters, the communication

distance between cluster individuals and the limitations and

perturbations of the communication environment may interrupt

the communication link. This results in a change in the

communication topology map of the USV clusters. To ensure the

consistency of the switching topology, the corresponding mechanisms

and algorithms were studied to ensure that the system can adaptively

deal with topology changes, maintain a high degree of reliability and

stability of the cluster, and enhance the robustness and fault tolerance

of the system.

Starting with the communication delay, the problem of USV

cluster formation was investigated under a directed switching

topology. The feedback linearisation of the USV dynamics model

into a second-order integrator model considers a USV cluster

system consisting of n USVs moving in a two-dimensional plane,

and the motion model of the ith USV can be expressed as follows

Equation 12:

_xxi(t) = vxi(t)

_vxi(t) = uxi(t)

_xyi(t) = vyi(t)

_vyi(t) = uyi(t)

8>>>>><
>>>>>:

(12)

where xxi, vxi, and uxi denote the position, velocity, and control

input of the ith USV in the x-direction, respectively, and xyi, vyi, and

uyi denote the position, velocity, and control input of the ith USV in

the y-direction, respectively.

To realise consistent control of the USV clusters, the controller

of the ith USV is proposed as follows Equation 13:

ui(t) = − ∂1 (vi(t) − vd(t))−

oj∈Ni
aij(t) ∂2½(xi(t) − (xj(t − tt) − dij))� + ∂3½(vi(t) − vj(t − tt)�

� �
(13)

where tt denotes the communication delay between individual

USVs; ∂1, ∂2, and ∂3 denote the control gains; vd(t) is the

reference velocity for USV cluster navigation; and dij is the

desired relative position of USV j concerning USV i.

The condition for the system to agree in a finite amount of time

is the existence of t0 ∈ ½0, +∞), then,

l im
t→t0

jj xi(t) − (xj(t − tt) − dij) jj = 0

l im
t→t0

jj xi(t) − vj(t) jj = 0

8><
>: (14)

This controller can prove the stability of the system by

constructing Lyapunov-Krasovskii generalised functions Equation

14 (Zhang et al., 2023); eventually, the system is globally

asymptotically stabilised, and controller (13) maintains the system

consisting of model (12) in formation and brings the velocity to
1 2

34

FIGURE 6

Quad-Intelligent body cluster communication topology.
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unity. Considering the USV as moving on a two-dimensional plane,

the equation of motion of USV i is expressed as follows Equation 15:

_xxi(t) = vxi(t)

uxi(t) = − ∂1 (vxi(t) − vxd(t))

−oj∈Ni
aij(t) ∂2½(xxi(t) − (xxj(t − tt) − dx(i, j)))� + ∂3½(vxi(t) − vxj(t − tt)�

� �
_xyi(t) = vyi(t)

uyi(t) = − ∂1 (vyi(t) − vyd(t))

−oj∈Ni
aij(t) ∂2½(xyi(t) − (xyj(t − tt) − dy(i, j)))� + ∂3½(vyi(t) − vyj(t − tt)�

� �

8>>>>>>>>>>><
>>>>>>>>>>>:

(15)

dx(i, j) and dy(i, j) are the elements in the relative position matrices

dx, and dy in the x- and y-direction, respectively.

Consider a USV cluster system consisting of four USVs with the

initial state of each USV as follows:

(xx1, xy1, vx1, vy1) = (0m, 0m, 0 m
s , 0

m
s )

(xx2, xy2, vx2, vy2) = (0m, 100m, 0 m
s , 0

m
s )

(xx3, xy3, vx3, vy3) = (0m, 200m, 0 m
s , 0

m
s )

(xx4, xy4, vx4, vy4) = (0m, 300m, 0 m
s , 0

m
s )

The communication capability is simplified to a maximum

communication distance of 110 m, the parameters in the

controller are set to ∂1= 1.4, ∂2= 1.1, and ∂3= 1.2. Furthermore,

the communication delay is set to a constant t = 0.5 s, the desired
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velocity of the cluster is vd = 2 m/s, and the setup is to form a

positively oriented formation, with a relative position matrix of:

dx =

0 100 100 0

−100 0 0 −100

−100 0 0 −100

0 100 100 0

2
666664

3
777775
dy =

0 0 100 100

0 0 100 100

−100 −100 0 0

−100 −100 0 0

2
666664

3
777775

At the beginning of the formation, the USVs are lined up in a

single line. The communication topology of the cluster is shown in

Figure 9A, and the formation is formed after 32.8 s. The

communication topologies are shown in Figure 9B, where both

communication topologies contain spanning trees.

Figure 10 shows the position change diagram of the USV cluster

that gradually formed under the control of the coherent-formation

controller. In the formation process, owing to the change in the

relative positions of each USV, the communication topology of the

USV cluster changes accordingly. The communication topology

changes from Figure 9A to Figure 9B and maintains the shape of the

formation under the communication topology Figure 9B. As shown

in Figure 10, at the initial position (0m), the four USVs are arranged

in a line formation to begin the observation mission. As the USVs

carry out different observation tasks, the relative positions of each

USV change, causing the dynamic topology of the USV formation

to change. Under the optimization of communication topology, the

USVs cluster will restore its square formation shape at 80 meters. It

can be observed that the USV cluster also forms and maintains its

shape smoothly under changes in the communication topology.

Figures 11, 12 show the velocity changes of the four USVs in the

x- directions and y-directions during the communication topology

switching process. It can be observed that from the initial position

(0 meters) to the position at 30 meters, the velocities of the USVs

change due to the variations in their relative positions. Under the

transformation of communication topology, the communication

topology optimization algorithm based on a consensus controller

enables the velocities of the four USVs in the x and y directions to

quickly converge at the position of 30 meters, maintaining the

formation of the USVs cluster. This verifies the effectiveness and

stability of the control algorithm.
FIGURE 7

Position and velocity versus time curves of four USVs.
FIGURE 8

Schematic diagram of USV clusters forming a formation.
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After a period under the control of the ocean observation progress

consistency controller, the ocean observation progress of the four USVs

gradually became consistent, synchronously completing observation

tasks until the end. The variation in the velocity of each unmanned

vessel, as shown in Figure 13 under the drive of the ocean observation

progress consistency controller, the progress of oceanic observation

based on communication topology optimization dynamically optimizes

the topology structure according to the observation velocity of the USV

and the ability to complete observation tasks. This ensures the

completion of oceanic observation tasks while improving the

efficiency of oceanic observation. From the figure, it can be seen that

the slower vessels (such as: USV III) accelerate to “catch up” with the

observation progress while ensuring task completion. Conversely, the

faster vessel (such as: USV IV) decelerates to “slow down” the

observation progress. Eventually, the progress of the final task was

consistent with the constraints of the USV model.

The observation coordination of the collaborative consensus

controller based on communication topology optimization reduces

the observation time by 22% compared to dispersed control.
Frontiers in Marine Science 1077
Because each USV initially has the same position, and dispersed

control entails each USV independently completing its respective

tasks based on its observation capabilities, resulting in task

intersections and reduced efficiency. In contrast, the collaborative

consensus controller based on communication topology

optimization coordinates control according to changes in

communication topology structure, as well as the velocity and

observation capabilities of each USV. They complement each

other’s advantages and synchronize completion until the end of

the observation tasks. A comparison of test results, as shown in

Table 3, demonstrates a 22% increase in search efficiency for

observation progress coordination compared to dispersed control.
5 Conclusion

To maintain the formation of heterogeneous USV clusters under

dynamic changes in communication topology, the feedback of the

heterogeneous USV model was linearised into a second-order
FIGURE 10

Map of changes in the position of USV clusters.

FIGURE 11

Velocity in the x-direction of each USV under switching topology.
USV I USV II

USV IIIUSV IV

USV I USV II

USV IIIUSV IV

BA

FIGURE 9

Communication topology before and after switchover. (A) Initial communication topology, (B) Optimized communication topology.
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integrator model. Starting from the communication delay, the

formation generation simulation experiments with four

heterogeneous USV formations verified that the communication

topology transformation can smoothly form and maintain the

formation shape of heterogeneous USV clusters. The efficiency of

marine observation by USV clusters based on topology optimisation

of consistent communication was 22% higher than that of dispersed
Frontiers in Marine Science 1178
control topology structures. This study provides a solid foundation for

future investigations into the cooperative control of heterogeneous

USV clusters and their applications in marine observations. Currently,

the research has not considered the influence of marine environmental

factors on the coordinated formation of USV clusters. The next step

will involve studying factors such as wind and currents.
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Navigation velocity of each USV.
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TABLE 3 Simulation experiment results for search progress consistency.

No.
Allocated
area (nmi2)

Collaborative
Consensus
controller
Time (h)

Dispersed
Control
Time (h)

USV
I

4.49 3.34 2.70

USV
II

3.38 3.13 2.70

USV
III

7.61 3.48 2.70

USV
IV

6.33 2.98 2.70
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Numerical simulation of
hydrodynamics of ocean-
observation-used remotely
operated vehicle
Dapeng Zhang1, Bowen Zhao2*, Yi Zhang1 and Nan Zhou3

1Ship and Maritime College, Guangdong Ocean University, Zhanjiang, Guangdong, China,
2Department of Applied Mathematics and Mathematical Modeling, Saint-Petersburg State Marine
Technical University, Saint-Petersburg, Russia, 3Harbin Engineering University, Qingdao Innovation
and Development, Qingdao, Shandong, China
Remotely operated vehicle is the most widely used underwater robot and can

work safely and steadily in complex environments compared to autonomous

underwater vehicle and other types. It has obvious advantages in operation time

and plays a significant function in marine engineering equipment. Hydrodynamic

coefficients are the coefficients of ROVmotion equation. In order to simulate the

motion and predict the performance of a ROV, the hydrodynamic coefficients

must be determined first. The motion mathematical model of remotely operated

vehicles is also established, and the hydrodynamic dynamics of the vehicles are

simulated using the finite volume method by combining overset mesh

technology and governing equations. Finally, a simulation and verification of

the standard model SUBOFF model and the calculation process’s dependability

are also conducted. The primary hydrodynamic coefficients of the ROV were

derived through the simulation data fitting process. The results showed that the

ROV’s asymmetry results in an obvious disparity in pressure resistance between

the forward and backward sailing, ascending and descending motions, and this

disparity becomes significantly greater as the velocity increases. This method

confirmed the accuracy of the hydrodynamic simulation computation of the

remotely operated vehicle and served as a guide for the maneuverability and

design of the vehicle.
KEYWORDS

ROV, hydrodynamic calculat ion, overset mesh, numerical s imulat ion,
hydrodynamic coefficient
1 Introduction

The underwater robots offer a significant role in maritime engineering equipment. In

addition to having a more flexible operating mode and the ability to be outfitted with

various operating instruments for a variety of activities and working settings, underwater

robots also provide a number of benefits over other types of equipment in terms of
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operational efficiency. Additionally, using underwater robots, which

can function at depths that divers are unable to reach, may speed up

human progress into the deep sea. In addition to being able to

function in unique settings that divers are unable to access,

underwater robots are also often used in nuclear waste cleaning

operations in nuclear power plant reservoirs. This efficiently

preserves practitioner safety and enhances nuclear power plant

safety. Underwater vehicles have been classified into many

categories, including autonomous underwater vehicles (AUVs),

remotely operated vehicles (ROVs), and underwater gliders

(UGs). Among them, ROVs are divided into three types: self-

propelled in water, towed, and crawling (Dalibor and Marcin,

2024). AUVs are not bound by cables, have a large range of

activities, and have good concealment performance, but their

underwater operation time is affected by the amount of energy

they carry. The energy of the ROV is provided by the mother ship

through cables, and it is capable of carrying out complex

underwater operations for a long time, and is currently the most

widely used underwater robot (Zhang et al., 2023).

The United States created the first ROV in 1960 and called it

“CURV1”. First shown to the public at large, this ROV type was

instrumental in retrieving a hydrogen bomb that had been

abandoned by the US in Spanish seas (Whitcomb and Yoerger,

1993; Fan et al., 2012; Cepeda et al., 2023). During this time, ROVs

were just starting out; the primary function of these early ROVs was

to assist the military with recovery operations. Owing to the effects

of the Middle East oil crisis in the 1970s, nations all over the globe

dedicated significant resources to the study and creation of

machinery for the extraction of subterranean oil. The offshore oil

sector is expanding, and with it, so is the need for ROVs to monitor

offshore oil platforms. The major working waters of this kind of

ROV are in the North Sea oilfield, and its birth also signals the

market acknowledgment of the ROV business and builds a firm

market basis for the long-term growth of the ROV industry

(Christophe, 2023; Selig et al., 2023).

The performance of ROVs has significantly improved between

the early 1980s of the 20th century and the early 21st century. The

most notable improvements have been in the operating depth,

operating range, and operating duration of ROVs, which have been

developed by various nations. The development of large-scale

“operational-grade” ROVs at this time was mainly driven by the

exploration of seabed resources by different nations, which improved

human knowledge of the kinds and composition of resources in the

deep sea and on the seabed. As a result of this era’s progress, ROVs

are now in the large-scale manufacturing phase and have amassed the

necessary technology to enter the large-scale commercial usage phase

(Ren and Hu, 2023). Since the beginning of the 21st century, the

evolution of ROVs has been characterized by functional diversity and

miniaturization. The future development trend for ROVs is

miniaturization and intelligence, which will drive industry

upgrading and further development of ROVs in aquaculture,

military reconnaissance, underwater equipment maintenance, and

marine resource development.

In order to save design expenses and increase efficiency, it is

crucial to accurately determine the ROV’s hydrodynamic

coefficients. These coefficients are then used to make selections
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about the ROV’s layout, propeller model, and handling

performance. At present, the following methods are typically used

to determine the hydrodynamic coefficient of underwater vehicles:

system identification, experimentation with constraint models,

empirical formula technique, and CFD software simulation

calculation method. The empirical formula is the empirical or

semi-empirical formula produced by synthesizing the data

acquired by a vast number of previous model experiments or

ROV actual excursion. By considering the analysis of control

systems that are designed to maximize the operability limits for

launch and recovery of a ROV from a small unmanned surface

vessel (USV), Ahsan Tanveer and Sarvat Mushtaq Ahmad (Tanveer

and Ahmad, 2023) use numerical simulation for the analysis, where

the method combines recent approaches for wave compensating

dynamic positioning, active heave compensation, and positioning

control of the ROV with multi-body dynamic simulation of the

surface vessel and ROV, including hydrodynamic forces and

dynamic interactions from wires that depend on the ROV depth

and moonpool. A fuzzy adaptive controller considering thruster

dynamics is proposed by Mingjie et al. to improve the trajectory

tracking performance of work-class ROVs (Mingjie et al., 2023).

The system identification approach involves using the ROV’s

motion data from real navigation or the experimental data from

the constraint model to build a mathematical model. This model is

then used to estimate the hydrodynamic coefficients that describe

the ROV’s hydrodynamic performance.

The rapid advancement and widespread adoption of high-speed

computers in recent years have allowed several scientific researchers

to notice that computational fluid dynamics (CFD) software can

rapidly calculate the hydrodynamic force of ROV. The previous

approaches’ drawbacks may be successfully addressed by the CFD

software simulation technique, which can also assist researchers in

increasing the effectiveness of their R&D and confirming if the

hydrodynamic performance of ROV satisfies design specifications.

SKORPA (Skorpa, 2012) performed hydrodynamic numerical

simulation calculations on the WR-200 ROV model by

simplifying it and using CFD software to analyze the results. The

findings indicate that the pitch torque of the ROV can be effectively

decreased by adjusting whether the water flow passes through the

middle of the ROV. Chin and Lau (2012) carried out hydrodynamic

numerical computations on the ROV model using ANSYS-CFX

software. The findings demonstrated that the hydrodynamic

coefficients acquired by CFD software may successfully help

designers enhance the structural design of ROVs.

With the wide application of underwater robots in the

development of marine resources, people have more stringent

requirements for the performance of underwater robots. The

hydrodynamic performance of the ROV is the basis of

underwater positioning, path planning and maneuvering control,

and the quality of the hydrodynamic performance directly

determines the success of an ROV design (Manimaran, 2022).

Due to the complex shape and structure of the ROV, the ROV is

affected by various complex forces such as thrust of the propulsion

mechanism, water flow resistance, buoyancy, gravity and tensile

force in the water, so the calculation of the hydrodynamic force of

the ROV is a complex kinematic and dynamic problem.
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Understanding the hydrodynamic performance of ROVs is essential

for several reasons. Firstly, it ensures efficient and precise operation

of the vehicle, allowing operators to navigate through challenging

underwater environments with accuracy. This is especially

important when performing delicate tasks such as manipulating

equipment, collecting samples, or conducting repairs. Furthermore,

studying ROV hydrodynamic performance helps in enhancing

safety. By understanding how the vehicle responds to different

conditions, operators can mitigate potential risks and avoid

collisions with underwater obstacles or hazards. This not only

protects the ROV but also minimizes the potential damage to the

surrounding environment. Moreover, the hydrodynamic

performance of ROVs directly affects the speed and efficiency of

tasks. By optimizing the vehicle’s maneuverability, operators can

reduce the time required to complete missions, saving resources and

improving overall productivity.

The motion of the ROV is a spatial motion with six degrees of

freedom. According to the movement force and moment, the

maneuverability mathematical model can be constructed to

determine the optimal control rule and control system (Zhao

et al., 2022; Zhao et al., 2023). Hydrodynamic coefficients are the

coefficients of ROV motion equation. In order to simulate the

motion and predict the performance of a ROV, the hydrodynamic

coefficients must be determined first. The existing hydrodynamic

computation techniques for ROV mainly include the following

methods: system identification, experimental constraint model

method, empirical formula method, and CFD simulation

calculation method. However, the hydrodynamic calculation

theory of AUV is more mature than that of ROV, and the

hydrodynamic calculation of ROV requires further improvement

and verification of the dependability of the simulation calculation

technique. Thus, the hydrodynamic forces of the ROV model

during straight-line and planar motion mechanism (PMM) need

to be primarily determined. The purpose of this study is to show the

approach and method to obtain these hydrodynamic coefficients

using CFD method, and to investigate the hydrodynamic

characteristics of the ROV during turning maneuver. The rest of

the paper is organized as follows. Section 2 presented the

mathematical models for hydrodynamics and maneuverability of

ROV. Section 3 carried out a verification study of hydrodynamic

numerical methods. Section 4 and 5 simulated the hydrodynamic

performance of ROV in steady and unsteady motions and fitted a

large number of hydrodynamic coefficients. Finally, the conclusion

draw from this paper are presented in Section 6.
2 Computational theory

2.1 Mathematical models

A motion coordinate system consisting of two right-hand

coordinate systems E − xhz and O − xyz was established, as

shown in Figure 1.

The linear velocity and angular velocity of the ROV in the

moving coordinate system can be expressed as V1 = ½V1  V2�T ,
linear velocity V1 is expressed as V1 = ½u   v  w�T , angular velocity
Frontiers in Marine Science 0382
V2, expressed as V2 = ½p   q   r�T . The forces and moments

experienced by the ROV in the dynamic coordinate system can

be expressed as A = ½F M�T , ROV is expressed as the force F =

½X  Y  Z�T , the moment exerted is expressed as: M = ½K  M  N�T .
The force and velocity of the ROV are positive in the direction of the

coordinate axis of the dynamic coordinate system, and the moment

and angular velocity are determined by the right-hand rule. Table 1

shows the six ROV degrees of freedom, while Table 2 shows the

motion parameters and coordinate components.

The dynamic equation of the ROV must be established before

analyzing its motion. The following assumptions are applied to the

ROV model to answer the equation of motion: the ROV is a rigid

body with a constant form, mass, and centroid. The hydrodynamic

force of ROV is considered independent of the impact of the seabed

environment and umbilical cable. The theory proposes that the

center of gravity coincides with the origin of the secondary

coordinate system, and the three axes of the follower coordinate

system represent the inertial main axes of the ROV. The dynamic

model of the ROV could be developed using the moment of inertia

and the rigid body motion hypothesis, as shown in Equation (1).

MRB
_V + CRB(V)V = F (1)

In Equation (1), MRB is ROV quality matrix; CRB is centripetal

force and coriolis matrix of ROV, CRB(V) = −CRB
T (V) coefficient is

related to the speed of movement, whereas; F displays overall torque

in the ROV. The mass-matrix of the ROV is given in Equation (2).

MRB =
mI3�3 03�3

03�3 Ig

" #
(2)
FIGURE 1

ROV system coordinate system.
TABLE 1 The six degrees of freedom of ROV.

Type of Motion X axis Y axis Z axis

Translation Surge Sway Heave

Rotation Roll Pitch Yaw
front
iersin.org

https://doi.org/10.3389/fmars.2024.1357144
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2024.1357144
Herein, m is mass; Ig is inertial matrix; Ig = diag½ Ix Iy Iz � in Ix,

Iy, Iz, as shown in Equations (3–5):

Ix = ∫mr(yi
2 + zi

2)dxidyidzi (3)

Iy = ∫mr(zi
2 + xi

2)dxidyidzi (4)

Iz = ∫mr(xi
2 + yi

2)dxidyidzi (5)

Coriolis and centripetal matrices of CRB(V) are depicted in

Equation (6).

CRB(V) =
mS(V2) 03�3

03�3 −S(IgV2)

" #
(6)

where S is the vector multiplication operator, which can be

represented by the following matrix.

S(l) = −ST(l)

0 −l3 l2
l3 0 −l1
−l2 l1 0

2
664

3
775 (7)

By combining Equations (2) and (6), the Equation (7) is

simplified as shown in Equation (8).

X = m( _u − vr + wq)

Y = m( _v − wp + ur)

Z = m( _w − uq + vp)

 K = Ix _p + (Iz − Iy)qr

M = Iy _q + (Ix − Iz)rp

 N = Iz _r + (Iy − Ix)pq

8>>>>>>>>>>><
>>>>>>>>>>>:

(8)

To improve an analysis of the dynamical features of ROVs, it is

critical to develop a hydrodynamic model that serves as the

foundation for forecasting their maneuverability. In order to

reduce the impact of variables like size, speed, and mass, a non-

factor approach was used. The following hydrodynamic coefficients

are unitless, and their unitless guidelines are shown in Table 3. By

using the dimensionless rule outlined in Table 3, the dimensionless

model of the ROV may be derived by applying the dimensionless

hydrodynamic coefficients (Zhao et al., 2022; Zhao et al., 2023), as

shown in Equations (9–14).
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XD =
r
2
L4(X

0
qqq

2 + X
0
rrr

2 + X
0
rprp) +
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L3(X

0
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+
r
2
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0
uuu

2 + X
0
vvv

2 + X
0
www

2) (9)
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r
2
L4(Y

0
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0
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0
wrwr) +
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2
L3(Y

0
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0
upup
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0
v rj j

v
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0
uvuv
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v vj jv
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1
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ZD =
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0
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0
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0
rrrr)
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0
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0
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0
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KD =
r
2
L5(K

0
p pj jp pj j + K

0
pqpq + K

0
prpr) +

r
2
L4(K

0
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0
urur
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MD =
r
2
L3(M

0
uwuw +M
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2 +M
0
w wj jw (v2 + w2)
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��� ��� +M
0
wj juw

+M
0
w wj jw (v2 + w2)

1
2
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0
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2

��� ���q) (13)
TABLE 2 Motion parameters and coordinate components.

Vector X axis Y axis Z axis

Velocity V1

u
(Longitudinal

velocity)

v
(Lateral velocity)

w
(Vertical velocity)

Angular
velocity V2

p (Longitudinal
angular velocity)

q (Lateral
angular velocity)

r (Vertical
angular velocity)

External
force F

X
(Longitudinal force)

Y (Lateral force) Z (Vertical force)

Moment M K (Roll moment)
M

(Pitch moment)
N (Yaw moment)
TABLE 3 Non-dimensioning rules.

Item Non- dimensionless

Time t0 = tU=L

Velocity (u0 , v0 ,w0) = (u, v,w)=U

Mass m0 = m=(
1
2
rL3)

Length l0 = l=L

Angular velocity (p0 , q0 , r0) = (p, q, r)=U

Moment of inertia I0 = I=(
1
2
rL5)

Acting force (X0 ,Y 0 ,Z0) = (X,Y ,Z)=(
1
2
rU2L2)

Moment (K 0 ,M0 ,N 0) = (K ,M,N)=(
1
2
rU2L3)
frontiersin.org

https://doi.org/10.3389/fmars.2024.1357144
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2024.1357144
ND =
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2
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2
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0
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r
2
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0
rjr r r + N

0
pqpq + N

0
qrqr)

��� (14)
2.2 CFD basic theory

The basic theory of the governing equation is the three

conservation laws: the law of conservation of momentum, the law

of conservation of mass, and the law of conservation of energy.

Since the solution process in this paper does not involve energy, the

law of conservation of energy is not considered in the governing

equation in this paper. The basic form of the equation for the

conservation of momentum is the N-S equation, which was

proposed by Navier-Stokes and needs to be satisfied in general

fluid systems, the N-S equation form, as shown in Equation (15).

r du
dt = pgx −

∂ p
∂ x + m( ∂2 u∂ x2 +

∂2 u
∂ x2 +

∂2 u
∂ x2 )

r du
dt = pgy −

∂ p
∂ y + m( ∂2 u∂ y2 +

∂2 u
∂ y2 +

∂2 u
∂ y2 )

r du
dt = pgz −

∂ p
∂ z + m( ∂2 u∂ z2 +

∂2 u
∂ z2 +

∂2 u
∂ z2 )

8>>><
>>>:

(15)

where, r is water density, p is pressure and µ is kinematic

viscosity coefficient.

The standard representation of mass conservation is the

continuity equation, which states that the mass of matter in a

given space remains constant. The change in mass within a control

volume is determined by the difference between the inflow and

outflow of mass from that volume. This work examines an

incompressible fluid with a constant density. The continuity

equation is further simplified, as seen in Equation (16).

∂ u
∂ x

+
∂ v
∂ y

+
∂w
∂ z

= 0 (16)

Herein, u, v, w are fluid velocity components.

The standard adopted in this article is k-e turbulence model. At

present, the RANS approach is the most frequently employed

approach in engineering applications to analyze turbulence

models, and it is also the method utilized in this research.

r
∂ �ui
∂ t

+ r�ul
∂ �ui
∂ xj

= r�fl +
∂ �p
∂ xi

+
∂

∂ xj
(m

∂ �ui
∂ xj

− ru0
iu

0
j) (17)

In Equation (17), r -Fluid density; �p -Pressure average; µ —

Dynamic viscosity; ru0
iu

0
j  —Reynolds stress.

In computational fluid dynamics, the basic principle of

numerical solving is to solve for each discrete node to obtain an

approximation of the overall flow field. The finite volume method

(FVM) is used to discretize the governing equations. The wall

function approach is employed to address the flow field in

proximity to the wall. The development of the overset mesh

approach accelerates the resolution of intricate flow fields. Its

fundamental idea involves breaking down complex flow fields

into smaller, independent sub-regions, with each sub-region

generating a distinct mesh. When simulating complicated

motions, there is no need to renew the mesh since each sub-

region’s mesh shape is fixed. Complex motions could be

accomplished by specifying motions inside each sub-region’s mesh.
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As shown in Figure 2, the calculation steps of overset meshes

mainly include: (1) sub-region division and mesh generation, (2)

determining overset boundary conditions, (3) determining the

interpolation type between sub-regions, and (4) calculating the

flow field. In the calculation, the first three steps need to be

continuously adjusted to ensure the convergence of the flow field.

The difficulty of the overset mesh technique is that as the mesh

position of each sub-region changes, the position of the boundary

and the position of the hole area need to be determined repeatedly.
3 Verification of hydrodynamic
numerical methods

3.1 SUBOFF Model

3.1.1 Proposal of verification methods
In order to verify the reliability of the theory proposed in this

paper in the numerical calculation of underwater vehicles and the

rationality of the numerical calculation model and meshing form,

the standard model of underwater submersibles, the SUBOFF

model, was selected for the verification of hydrodynamic

numerical calculations.

3.1.2 SUBOFF Parameters of the model
The SUBOFF model has been accepted as a standard model by

the ITTC. This standard model can be built according to the shape

formula in ITTC. The SUBOFF model used in this paper is shown in

Figure 3. The main model parameters are shown in Table 4.
FIGURE 2

Overset mesh.
FIGURE 3

SUBOFF model.
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3.2 Compute domain determination
and meshing

3.2.1 Computational domain
A computational domain needs to consider whether the area is

capable of ensuring fully convergent computational results and

limit the percentage of invalid regions to increase computational

efficiency. The size of the computational domain for this paper is

calculated based on the partition of the computational domain in

prior SUBOFF simulation studies. The domain length is determined

by multiplying the length by 6. The height is determined by

multiplying the length by 3. Similarly, the width is determined by

multiplying the length by 3. Furthermore, for an adequately

accelerated flow field, the submersible is situated at a distance

equal to two-hull dimensions. The length of the hull from the

velocity inlet is twice the length of the boat, while the length of the

boat is three times the length from the pressure outlet.

3.2.2 Meshing
According to the results of the division of the calculation area,

this paper divides the meshing of different regions. When meshing,

the basic principle of meshing is strictly followed, and the mesh

refinement is carried out in the area close to the hull, and the mesh

density is reduced layer by layer in the area far away from the hull.

In this paper, we select tetrahedral mesh, cut mesh, and prismatic

layer mesh model, and set the basic mesh size to 0.3m, set the

boundary layer to 5 layers, and set the minimum mesh size to

3.125% of the basic mesh size. Figure 4 is the longitudinal meshing
Frontiers in Marine Science 0685
result in the calculation domain, Figures 5, 6 are the meshing result

of the bow and stern of the hull, respectively.
3.3 Simulation calculation and verification

In order to enhance computational efficiency, it is critical to

reduce the proportion of invalid regions in the computational

domain and ascertain whether the computational area will deliver

fully convergent results when determining the computational

domain. The size of the computational domain to be employed in

this research is established by referring to the partition of the

computational domain in the previous SUBOFF simulation

studies. The width is three times the length, the height is three

times the length, and the computed domain length is six times the

length. Additionally, the SUBOFF is positioned at the second-hull

length, the hull length is tripled from the pressure outlet, and the

hull length from the velocity inlet is doubled from the hull length in

order to be sure that the computed flow field has a viable

acceleration area.

3.3.1 Boundary and computation conditions
The boundary conditions should be set separately in every

surface of calculation domain. The boundary conditions are

determined by designating the incoming flow as the velocity inlet,

the outlet as the pressure outlet, the hull surface as the wall, and the

surrounding surface as the wall. The standard k − ϵ model is

selected as the turbulence model. Five working conditions with
TABLE 4 SUBOFF model parameters.

Parameter Value

Overall length 4.356m

Forebody length 1.016m

Parallel body length 2.229m

Afterbody length 1.111m

Maximum Diameter 0.508m

Volume of displacement 0.718m3

Longitudinal center of buoyancy 2.012m
FIGURE 4

Vertical overall meshing results.

FIGURE 6

Stern mesh.
FIGURE 5

Bow mesh.
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velocities of 3.045, 5.144, 6.091, 7.161 and 8.231 m/s were selected

for straight-line simulation experiments.
3.3.2 Calculation results and validity analysis
According to the boundary conditions under different working

conditions, five straight-line simulations are carried out in this

section, and the simulation results and the relative error results of

the simulated calculation are shown in Table 5.

In addition, the simulation results are compared with

the experimental results, as shown in Figure 7. Through the

comparison curve between the experimental values and the

simulated values, it can be clearly seen that the straight-line

resistance value gradually increases with the increase of velocity,

but the relationship between resistance and velocity is not linear. At

a velocity of 3.045m/s, the error between the simulated value and

the experimental value is the largest, and the reliability of the

simulated value at low velocity is slightly lower than that at

medium and high velocities. Overall, the simulation data are

basically consistent with the experimental data, and the relative

error between the two is 1%-3%, which can meet the actual

standards of the project.

By analyzing the SUBOFF straight-line simulation experiment,

the engineering standard can be satisfied, and then it is confirmed

that the calculation theory, the meshing method and the selected

calculation model proposed in this paper are reasonable and

reliable, so the calculation method can be popularized and used

in the subsequent simulation experiments.
4 Simulation calculation of the steady
motion of the ROV

4.1 ROV model simplification and
computational domain division

4.1.1 Simplified ROV model
Figure 8 shows that the computational model used in this paper is

based on a small ROV. In order to do simulation calculations using

CFD software, it is necessary to simplify the model of the ROV by

removing the complex surfaces that do not contribute to the

computation. The principle of simplification encompasses several

key characteristics. Firstly, the simplified model must align with the

primary scale of the original model, while also preserving the essential

components of the ROV. Furthermore, the internal components of

the original model do not impact the simulation experiment and can

be excluded. This study integrates the pertinent components of the

ROV to assure the consistency of the reduced model. A basic ROV
Frontiers in Marine Science 0786
model is seen in Figure 9. The simplified model is derived by

undergoing the process of simplification, and the fundamental

parameters of the simplified model are shown in Table 6.

4.1.2 Computational domain division and
boundary layer setting

In the simulation calculation, the length of the calculated

domain is 9L (L is the length of ROV), the length of the ROV

from the velocity inlet is 3L, the length from the pressure outlet is

5L, the height and width of the calculated domain are taken as 5L,

and the ROV is placed on the third L. In order to easily control the
TABLE 5 Resistance calculation value and error.

Velocity(m/s) 3.045 5.144 6.091 7.161 8.231

Simulation values(N) 105.10 279.96 383.96 519.68 674.35

Experimental values(N) 102.30 283.80 389.93 528.89 680.14

Relative error(%) 2.737% -1.353% -1.531% -1.741% -0.851%
FIGURE 7

Comparison of simulation and experimental data.
FIGURE 8

Three-dimensional model.
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mesh size of different regions, it is necessary to set up an internal

calculation domain in the overall calculation domain. Referring to

the division of the internal computing domain of the standard

model in Section 3, this paper divides the internal computing

domain into two modules: hull refinement area and wake

refinement area. The overall computational domain in the ROV

stationary motion simulation experiment is shown in Figure 10, and

the internal computational domain is shown in Figure 11.

Based on the empirical formula, the thickness of the boundary

layer is 5 mm. The number of boundary layers is generally

determined according to the Reynolds number of the calculated

working case, and for the movement under the high Reynolds

number, the number of boundary layers is set to 5-10 layers. The

mesh quality under different boundary layers is compared, and the

number of boundary layers is finally determined to be 5.

4.2 Mesh type and mesh
independence validation

4.2.1 Mesh type
The ROV model is relatively simple in the simulation

calculations to be carried out in this section; the hexahedral mesh

type is used. From the tank wall to the ROV surface, the produced
Frontiers in Marine Science 0887
mesh is encrypted layer by layer, which reduces computation time

and guarantees simulation calculation accuracy. Hexahedral mesh is

also used in this paper’s internal calculation domain, as the ROV

model does not need complicated maneuvers in the stationary

motion simulation calculation.

4.2.2 Mesh independence validation
In order to ensure the accuracy and precision of the simulation

results, in addition to considering the mesh type, the number of

meshes is also an important influencing factor after the mesh type

and calculation domain size are determined. In this paper, a mesh

independence verification is designed to determine the appropriate

number of meshes. Seven mesh quantities of 780,000, 1.06 million,

1.54 million, 2 million, 2.21 million, 2.53 million and 3 million were

selected for independent verification, and the ROV velocity was set

to 1.5m/s. The ROV forward motion simulation experiments were

carried out under different mesh numbers, and the resistance values

under different mesh numbers were counted, as shown in Table 7.

The data in the table is generated into a resistance graph, as shown

in Figure 12.

Figure 12 illustrates that the resistance value rises with a decreasing

number of meshes and tends to stabilize at a certain number of meshes.

Due to the large mesh size, the reproduction degree of the ROV is

limited when the number of meshes is fewer than one million, which

causes the ROV simulation experiment to have a high resistance value.

When there are more than 2.5 million meshes, the mesh size is smaller,

the ROV form is better restored, and the ROV resistance value is more

in line with the experimental value. Furthermore, the resistance value

tends to remain stable when the mesh count exceeds 2.5 million. This is
FIGURE 9

Simplified model.
TABLE 6 ROV basic parameters.

Parameters Numeric value

Length (mm) 475.2

Width (mm) 338.05

Altitude (mm) 253.85

surface area (mm2) 918600

Lateral profile area (mm2) 105600

Front view section area (mm2) 48100

Top view section area (mm2) 134600
FIGURE 10

Overall calculation domain.
FIGURE 11

Internal computing domain.
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because, beyond this threshold, further reductions in mesh size no

longer enhance the reduction degree of ROV shape. Consequently, the

resistance values obtained through simulation calculation under

identical working conditions are congruent with the experimental

values, and the resistance values remain stable. The number of

meshes used in this article is 2.53 million in order to prevent having

too many meshes affect the simulation computation and to take

computer performance into consideration. The mesh for simulation

calculations is completed based on the size of the calculation domain

and the meshing form that was previously established. Figure 13

displays the longitudinal overall mesh; Figure 14 displays the head

mesh of the RVO model; and Figure 15 displays the surface pressure

distribution in the ROV.
4.3 Hydrodynamic calculations

4.3.1 Hydrodynamic calculations
The ROV resistance under different velocities was simulated

and calculated. The simulation results at different velocities are

shown in Table 8. The resistance values at different velocities in

Table 7 are represented by graph lines, as shown in Figures 4–9.

Figure 16 shows that the difference between total resistance and

compressive resistance grows with increasing velocity, but the

values of both resistances increase linearly with increasing

velocity. The fraction of pressure resistance in the overall

resistance of the progressive voyage is much higher than the

shear resistance. The pressure differential between the front and

rear surfaces of the ROV rises as velocity increases, which also

increases the pressure resistance since the compressive resistance is

produced by this pressure difference between the surfaces during

movement. In addition, as the velocity increases, the proportion of

pressure resistance in total resistance is decreasing. Because the
Frontiers in Marine Science 0988
velocity gradient of the ROV surface flow field increases with

increasing velocity, the value of the shear resistance is closely

related to the velocity gradient of the flow field. In general, the

increase in positive resistance is mainly due to the pressure

resistance, and it is necessary to pay close attention to the shape

of the front and rear surfaces of the ROV in the design of the ROV,

and minimize the lateral water frontal area.

4.3.2 Hydrodynamic calculations for
reverse navigation

Given the asymmetrical form of the ROV in relation to the mid-

cross profile, it is necessary to treat the numerical modeling of the

reverse journey condition as a distinct consideration in the straight-

line experiment. Similar to the actual journey, the simulation trials

are conducted at five different velocities. The boundary

requirements for the rear simulation are identical to those for the

positive course. However, the calculation region must be partitioned

again to ensure that the tail of the ROV model is oriented towards

the direction of the entering flow. Figure 17 displays the

longitudinal overall mesh after resetting the computation domain

and mesh in the reverse navigation scenario. Figure 18 displays the

distribution of surface pressure. The computed outcomes for the

five operational scenarios are shown in Table 9. The information

presented in the table is visually represented in the form of a graph,

as seen in Figure 19.

The shear resistance and pressure resistance in Tables 7, 8 are

plotted and compared, and the results are shown in Figures 20, 21.

In Figure 20, the shear resistances during forward and backward

sailing are seen to grow as the velocity increases. Additionally, the

shear resistance values for both positive and backward sailing states

are almost identical at the same velocity. This is due to the similarity

in velocity gradient and shear resistance along the wall of the ROV,

which remains consistent at the same velocity. Figures 21, 22 clearly
TABLE 7 Different mesh resistance values.

Number of meshes/(10,000) 78 106 154 200 221 253 300

Resistance value/(N) 48.2 46.48 46.25 46.02 45.85 45.59 45.52

Relative error — 3.567% 0.480% 0.493% 0.388% 0.560% 0.156%
frontie
FIGURE 12

Resistance value changes with the number of meshes.

FIGURE 13

Longitudinal overall mesh of forward motion.
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demonstrate a noticeable disparity in pressure resistance between

the positive and backward navigation modes. Furthermore, the

pressure resistance in both states escalates as the velocity rises. The

compressive resistance of the ROV is influenced by its shape,

particularly the asymmetry between the front and rear parts. As a

result, the disturbance caused by the ROV to the surrounding flow

field is different when it is moving forward compared to when it is

moving in reverse. The reverse pressure resistance is greater than

the positive pressure resistance at the same velocity, primarily due

to the poor streamlining of the ROV tail. It can be concluded that

when designing the ROV, the symmetry of the front and rear parts

of the ROV should be ensured as much as possible while ensuring

that the ROV shape is fluid. This shape distribution is conducive to

reducing the straight-line resistance of the ROV and improving the

propulsion efficiency.

4.3.3 Hydrodynamic calculations of
ascent motion

The underwater submersible is capable of executing six degrees

of freedom of motion underwater. In addition to the direct motion
Frontiers in Marine Science 1089
along the x-axis, the simulation computation for stable motion

should also take into account the direct motion along the y-axis and

z-axis directions. This chapter focuses on simulating and calculating

the direct motion of the negative direction of the z-axis. The first

step involves dividing the calculation domain and creating a mesh.

The meshing results for the negative direction of the z-axis are

shown in Figure 23. Furthermore, the insignificance of the mesh

count is confirmed, and it is established that there are precisely 2.58

million meshes without upward motion. Figure 24 displays the

surface pressure distribution of the ascending motion.

After setting the boundary conditions of the calculation model,

four working conditions were selected for simulation calculation,

and the simulation results are shown in Table 10.

The data in Table 9 are plotted as graphs, as shown in Figure 24.

Figure 25 demonstrates that the pressure resistance and shear

resistance both escalate as the velocity of upward motion increases.

During the upward motion, the ratio of pressure resistance to total

resistance is higher compared to the motion along the x-axis, and

the shear resistance is much reduced. Since the shape of the ROV is

cuboidal, the waterfront area in the z-axis direction is larger than

the waterfront area in the x-axis direction, the proportion of the

pressure resistance caused by the pressure difference between the

upper and lower surfaces in the z-axis direction in the total

resistance is much greater than the ratio of the pressure resistance

in the x-axis direction to the total resistance. When designing the

ROV, it is necessary to comprehensively consider the ratio of the z-

axis waterfront area to the x-axis waterfront area according to the

working conditions of the ROV, which can effectively improve the

hydrodynamic performance of the ROV.

4.3.4 Hydrodynamic calculations of
sinking movements

The asymmetry of the top and lower sections of the ROV is

contemplated, comparable to the simulation along the x-axis. This

study presents a numerical calculation of motion along the axis in

both positive and negative directions. Initially, the computational

domain undergoes re-meshing, and the outcome of the meshing

process is shown in Figure 26. Figure 27 displays the surface

pressure distribution of the descending motion.

After the boundary conditions of the calculation model are set,

the simulation of the four working conditions is carried out, and the

simulation results are shown in Table 11.

The data in Table 10 are plotted as shown in Figure 28.

Comparing the data in Tables 9, 10, Figures 29–31 is obtained.

By analyzing the data in Figures 29–31, it is assessed that in the

ascending and sinking motions, the resistance of the ascending

motion is less than that of the sinking motion. Different from the

experimental data of forward and reverse sailing, the shear resistance
FIGURE 14

Header mesh.
FIGURE 15

Surface pressure distribution of forward motion.
TABLE 8 Numerical calculation results of forward motion.

Velocity(m/s) 1.0 1.25 1.5 1.75 2.0

Pressure resistance(N) -19.33 -30.20 -43.64 -59.74 -78.24

Shear resistance(N) -0.93 -1.40 -1.96 -2.67 -3.42

Total resistance(N) -20.26 -31.60 -45.60 -62.41 -81.66
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and pressure resistance in the ascending and descending motion have

obvious changes at the same velocity. The change of shear resistance

relative to the pressure resistance is small, and the pressure resistance

accounts for a large proportion of the difference between the two

states. In this regard, the causes of the upward and downward

movements are analyzed in depth, and due to the asymmetry of

the upper and lower parts of the ROV shape, the pressure difference

between the upper and lower surfaces in the upward and downward

movements is different, which makes the difference in the downward

pressure resistance of the two working conditions. In addition,

because the water facing area in the z-axis heave motion is greater

than the forward navigationmotion of the x-axis, the motion of the z-

axis has a great influence on the flow field around the ROV, and the

velocity gradient near the wall of the ROV changes significantly in the

ascending and sinking motions, which leads to the difference between

the shear resistances of the two motion states.

4.3.5 Hydrodynamic calculations for
lateral movements

Considering that the left and right parts of the ROV are

symmetrical, only one direction is selected for numerical

calculation of the movement along the y-axis. The meshing and

computational domains were re-meshed, and the meshing results

are shown in Figure 32. The surface pressure distribution is shown

in Figure 33.
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The simulation results of the four calculation cases are shown

in Table 12.

The graph is plotted based on the data in Table 11, as shown

in Figure 34.

In Figure 34, the resistance of the ROV transverse motion

increases with the increase of velocity, and the pressure resistance

occupies the main part of the total resistance. In lateral motion, there

is a significant pressure difference between the frontal and backwater

surfaces of the ROV, which is the main cause of the pressure

resistance. Since the ROV is moving at a low velocity, the velocity

gradient of the surrounding flow field is smaller, and the shear

resistance caused by the velocity gradient of the flow field near the

wall of the ROV is much smaller than the pressure resistance.
4.4 Data processing

4.4.1 Principles of data processing for
stationary motion

Because the stationary motion is a uniform motion, the

hydrodynamic term moving in all directions of the extension only

has a velocity term and has nothing to do with the acceleration

term. Simplifying the kinematic equations on the three axes yields

Equation (18).

Fx = −Xuuu
2

Fy = −Yv vj j (v2)
1
2

��� ���
Fz = − Z

0
w wj jw (w2)

1
2

��� ��� + Z
0
www (w2)

1
2

��� ���h i

8>>>><
>>>>:

(18)

In Equation (18): Fx, Fy, Fz are numerical calculation of the

resistance value; X
0
uu, Z

0
ww, Y

0
v vj j, Z

0
w wj j are nonlinear hydrodynamic

coefficients.

In order to facilitate data expression, the variables in the

formula need to be dimensionless. Several variables in

Equation (18) are dimensionless, as shown in Equation (19).

Xuu =
r
2
L2X

0
uu,  Yv vj j =

r
2
L2Y

0
v vj j

Zw wj j =
r
2
L2Z

0
w wj j,  Zww =

r
2
L2Z

0
ww (19)
FIGURE 16

Forward resistance.
FIGURE 17

Inverted longitudinal overall mesh.

FIGURE 18

Surface pressure distribution of reverse motion.
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In Equation: L for ROV length; r for the density of water.

Bringing Equation (19) into Equation (18) gives a dimensionless

expression, as shown in Equation (20).
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(20)

Considering the external characteristics of the ROV, when

moving laterally, its resistance values in the positive and negative

directions are the same. However, when the z-axis is moving, the

resistance values of the rising (w<0) and sinking (w>0) movements

are different, and the resistance coefficients are also different. The

resistance to the z-axis motion is expressed as shown in

Equation (21).

= Zw wj jw wj j + Zwwww =
(Zw wj j + Zww)w wj j, (w > 0)

(Zw wj j − Zww)w wj j, (w < 0)

(
(21)

Further analysis can be obtained the expression of the

coefficient Zw wj j and Zww in Equation (22).

Zww =
1
2

Z        (+)
w wj j + Z        (−)

w wj j
� �

Zw wj j =
1
2
(Z        (+)

w wj j − Z        (−)
w wj j ) (22)

4.4.2 Fitting of the data
According to the above equation of motion, the data fitting

results of hydrodynamic calculation are carried out by the least
Frontiers in Marine Science 1291
squares method, and MATLAB software is used in the data fitting,

compared with the resistance curve in the simulation calculation,

the fitting curve obtained by the least squares method is more

accurate, as shown in Figures 35–37.

The values of each hydrodynamic coefficient could be derived

based on the functional expression of the curve fitted to the data. The

hydrodynamic coefficients of a statistical type are shown in Table 13.
5 Simulation calculation of the
unsteady motion of the ROV

In the direct motion state, only the hydrodynamic coefficient

related to the velocity can be obtained, and the hydrodynamic

coefficient related to the acceleration cannot be obtained. In order to

comprehensively analyze the motion of the ROV, it is not

comprehensive to obtain only the coefficient related to the

acceleration, and it is necessary to obtain the hydrodynamic

coefficient of the acceleration term in order to accurately analyze

the motion of the ROV.
5.1 The ROV model simplifies the
computational domain division and
boundary layer setting

5.1.1 Meshing and mesh-independent verification
5.1.1.1 Meshing

To analyze the unstable motion, it is essential to use overset

meshes, which consist of two distinct sets of meshes that are

separated independently and then nested and merged. When the
TABLE 9 Calculation results of reverse flight value.

Velocity(m/s) 1.0 1.25 1.5 1.75 2.0

Pressure resistance(N) -21.79 -34.01 -48.92 -66.59 -87.02

Shear resistance(N) -0.93 -1.40 -1.96 -2.62 -3.36

Total resistance(N) -22.72 -35.41 -50.88 -69.21 -90.38
FIGURE 19

Inversion resistance.

FIGURE 20

Shear resistance comparison.
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overset mesh replicates intricate movement, the inner mesh propels

the ROV to move in unison, while the outside mesh emulates the

stationary motion inside the complicated movement. These two

movements are interconnected to achieve the complex motion of

the ROV. However, the use of an overset mesh necessitates the

inclusion of two sets of meshes, resulting in a larger number of

meshes. This increase is constrained by the limitations of computer

performance. When employing the overset mesh calculation

method, it is necessary to divide the mesh area into smaller

sections in order to achieve greater precision. Ultimately, the

determination of the number of meshes and the size of each

mesh section should be based on a comprehensive assessment of

calculation accuracy and computer performance. The mesh is

divided into two areas, the inner mesh and the outer mesh, and

in order to avoid the interpolation of the mesh affecting the

calculation accuracy, the inner mesh must be set to ensure that it

has a certain distance from the ROV surface. In this article, this

distance is set to 0.25L. The outer mesh needs to be divided into

multiple regions, which has the advantage of ensuring the

calculation accuracy and effectively controlling the number of
Frontiers in Marine Science 1392
meshes. Here, the outer mesh is divided into four parts: the

motion area, the encryption area, the transition area, and the

outer mesh area. When meshing, you need to set the mesh base

size for different areas, as shown in Table 14.
5.1.1.2 Mesh independence validation

After determining the mesh type and calculation domain, in

order to ensure the accuracy of the simulation results and the

calculation accuracy, in addition to considering the mesh type, the

number of meshes is also an important influencing factor. Before

performing numerical simulation calculations, mesh independence

verification is required to determine the appropriate number of

meshes. In this paper, six mesh quantities of 950,000, 1.17 million,

1.54 million, 1.95 million, 2.46 million, and 3 million are selected for

verification. According to the set mesh type and boundary

conditions, a working condition in the heave motion is selected

for verification, the velocity is set to V=1.5m/s, the frequency is

f=0.3125, and the simulation values of the force under different

mesh numbers are counted, and the calculation results are shown

in Table 15.

According to the analysis of the change of force and mesh

number in Figure 38, the Lateral force decreases with the increase of

the number of meshes, and the resistance value tends to be flat when

the number of meshes is greater than 2.46 million. When the

number of meshes is less than 2 million, the mesh size is large,
FIGURE 21

Comparison of pressure resistance.
FIGURE 23

Vertical overall mesh of ascending motion.
FIGURE 22

Differential pressure resistance.

FIGURE 24

Pressure distribution on the surface of ascending motion.
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the surface restoration degree of the mesh to the ROV is poor, and

the gap between the simulated value and the experimental value is

large. When the number of meshes is greater than 2.67 million, the

mesh size is small, and the mesh can better restore the shape and

flow field of the ROV, and the resistance value obtained is also more

accurate. Considering the requirements of computer performance

and computational accuracy, the final number of meshes in this

paper is 2.67 million.
5.2 Hydrodynamic calculations of planar
motion mechanism

5.2.1 Definition and description of pure
lateral motion

In the plane motion, there are two kinds of motion states, pure

transverse motion and pure bow roll, in which the pure transverse

motion is formed by the coupling of the uniform motion in the

direction of the extended x-axis and the translational movement in

the direction of the extended y-axis, and the motion is sinusoidally

oscillating in the horizontal plane, and the angle between the bow

and the x-axis is always zero. In the setting of this paper, according

to the calculation results of the direct course resistance, the

incoming flow velocity in the x-axis direction of the pure lateral

motion is selected as V=1.5m/s. A schematic diagram of the motion

of the pure lateral motion state, as shown in Figure 39.

The equation of motion for a pure lateral motion is shown in

Equation (23).
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h = a sinw  t

y = _y = 0

v = _h = aw cosw  t

_v = −aw2 sinw  t

8>>>>><
>>>>>:

(23)

In Equation (23), h—ROV lateral shift;

a —ROV Pure transverse amplitude;

w —ROV Pure horizontal swing circle frequency;

y 、 _y —ROV Tilt angle and angular velocity about the z-axis;

v、 _v —ROV Transverse velocity and acceleration.

The Lateral force Y and the yaw moment N are expressed using

the velocity and acceleration terms, and the force and moment

expressions are shown in Equation (24).

Y = Y _v _v + Yvv + Y0

N = N _v _v + Nvv + N0

(
(24)

Bringing Equation (23) into Equation (24), the expression of

force and moment can be expressed by Equation (25).

Y = Y0 − aw2Y _v sinw  t + awYv cosw  t

N = N0 − aw2N _v sinw  t + awNv cosw  t

(
(25)

In order to simplify the writing and facilitate the subsequent

data fitting, Equation (25) is further simplified to obtain Equation

(26).

Y = Y0 + Ya sinw  t + Yb cosw  t

N = N0 + Na sinw  t + Nb cosw  t

(
(26)

The expression of the relationship between (25) and the

coefficient in Equation (26) is represented by Equation (27).

Ya = −aw2Y _v ,Yb = awYv
TABLE 10 Numerical calculation results of ascending movement.

Velocity(m/s) 1.0 1.25 1.5 1.75

Pressure resistance(N) 64.161 100.264 145.230 198.090

Shear resistance(N) 0.627 0.928 1.276 1.668

Total resistance(N) 64.788 101.192 146.506 199.758
FIGURE 25

Ascending motion resistance.

FIGURE 26

Vertical overall mesh of sinking motion.
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Na = −aw2N _v ,Nb = awNv (27)

The hydrodynamic coefficients of the pure lateral motion are

dimensionless, and the results are shown in Equation (28).

Y
0
_v =

Y _v
1
2 rL

3 ,Y
0
v =

Yv
1
2 rL

2U
,N

0
_v =

N _v
1
2 rL

4 ,N
0
v =

Nv
1
2 rL

3U
(28)

The hydrodynamic coefficients that need to be obtained in pure

lateral motion are shown in Table 16.

5.2.2 Post-processing and data analysis of pure
lateral movements

In the pure traverse motion simulation, according to the motion

analysis of the ROV, the motion of the ROV needs to be expressed

through the functional equation. Pure transverse motion is formed

by superimposing a constant velocity motion in the x-axis direction

and a variable velocity motion in the y-axis. In this paper, the flow

velocity V=1.5m/s is obtained, and the motion of the y-axis can be

defined by the field function. The motion of the ROV in the y-axis

direction is programmed, and the field function is written according

to the equation of motion of the ROV to prepare for the subsequent

ROV motion setting. The frequencies were f=0.2, 0.25, 0.3125 and

0.4 respectively. In this paper, the flow velocity is taken as V=1.5m/

s, and for the amplitude a, a=0.15m is selected based on referring to

the predecessors. In this paper, the simulation time is 4T (T is the

motion period). For the time step, T/500-T/300 is generally taken in

the simulation experiment, and the time step in this paper is set to

T/400 considering the performance limitation of the computer. The

step sizes and calculation times for the four working conditions are

listed in Table 17.

For the simulation data in unsteady motion, the corresponding

hydrodynamic coefficient can be obtained through data processing,
Frontiers in Marine Science 1594
and it is not appropriate to directly use the least squares method to

process the simulation data because the lateral force and the yaw

moment are periodically varying in the pure lateral motion.

Previous studies have shown that accurate hydrodynamic

coefficients can be obtained by processing the periodic data by

Fourier expansion. The Fourier expansion is shown in Equations

(29), (30).

f (t) =
a0
2
+o∞

n=1(an cos (
np t
l

) + bn sin (
np t
l

)) (29)

an =
1
l

Z l

−l
f (t) cos (

np t
l

) dt, (n = 0,   1, 2…)

bn =
1
l

Z l

−l
f (t) sin (

np t
l

) dt, (n = 0,   1, 2…)

8>>><
>>>:

(30)

Suppose the period is2l, because w = 2p
T = p

l , then Equation (29)

can be reduced to Equation (31).

f (t) =
a0
2
+ a1 cos (w  t) + b1 sin (w  t) +o∞

n=2(an cos (nw  t)

+ bn sin (nw  t)) (31)

Because n=2 and later terms have much less than the coefficient

values a1 and a2, in omitted n=2 and after the item, Equation (32)

can be obtained.

f (t) =
a0
2
+ a1 cos (w  t) + b1 sin (w  t) (32)

Using the Fourier theorem to expand Equation (30), we get

Equations (33), (34).
FIGURE 27

Surface pressure distribution of sinking motion.
FIGURE 28

Sinking resistance.
TABLE 11 Numerical calculation results of sinking motion.

Velocity(m/s) 1.0 1.25 1.5 1.75

Pressure resistance(N) 70.862 107.930 157.455 213.711

Shear resistance(N) 0.332 0.504 0.699 0.941

Total resistance(N) 71.194 108.434 158.154 214.652
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For Lateral force Y:

b1 = Ya = −aw2Y _v =
1
l

Z l

−l
 f (t) sin (w  t)dt

a1 = Yb = awYv =
1
l

Z l

−l
 f (t) cos (w  t)dt

8>>><
>>>:

(33)

For yaw moment N:

b
0
1 = Na = −aw2N _v =

1
l

Z l

−l
 f (t) sin (w  t)dt

a
0
1 = Nb = awNv =

1
l

Z l

−l
 f (t) cos (w  t)dt

8>>><
>>>:

(34)

The simulation calculation of working conditions at different

frequencies is carried out, and the stable data that can be used for

data processing are selected from the simulation data, and the

simulation data can be found to be stable after the second cycle

through experiments. In this paper, the data of the third cycle are

selected for analysis and processing, and the simulation data of

the third cycle is fitted by Fourier series using MATLAB software.

The coefficients under the Fourier series were obtained by fitting the

curves, and the fitting coefficients under different working

conditions were counted, and the statistical results are shown

in Table 18.
FIGURE 29

Shear resistance comparison.
FIGURE 31

Pressure resistance difference.
FIGURE 32

Vertical overall mesh of lateral motion.
FIGURE 33

Pressure distribution on surface of lateral motion.
FIGURE 30

Comparison of pressure resistance.
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According to Equations (33), (34), the data in the table are fitted

by MATLAB software, and the hydrodynamic coefficients of the

ROV in the unsteady state can be obtained through the quadratic

fitting, and the fitting results are shown in Figures 40–43.

The hydrodynamic coefficients obtained are shown in Table 19.

5.2.3 Definition and description of pure
yaw motion

Pure yaw motion refers to superimposing a bow motion on the

basis of pure lateral motion, and ensuring that the direction of the

velocity of the ROV movement is tangent to the trajectory. And in

the follower coordinate system, the lateral motion velocity and

lateral acceleration of the follower coordinate system are zero.

Through the pure yaw motion experiment, the hydrodynamic

coefficients of the underwater robot in relation to angular velocity

and angular acceleration can be obtained. As with the pure lateral

motion, the incoming velocity is set to V=1.5m/s in this paper. A

schematic diagram of a pure yaw motion is shown in Figure 44.

The pure yaw motion can be expressed by the equation of

motion, which can be expressed as Equation (35).

y = y0 sin (w  t)

r = _y = y0w cos (w  t)

_r = −y0w2 sin (w  t)

v = _v = 0

8>>>>><
>>>>>:

(35)

In Equation (35):

y—amplitude of pure yaw motion;

y0—amplitude of pure bow shake movement;

w—the circular frequency of the pure yaw motion;
Frontiers in Marine Science 1796
r, _r—the angle of rotation about the z-axis and the

angular velocity;

v, _v—Lateral velocity and acceleration.

After analyzing the pure yaw motion of the ROV, the lateral

force Y and the yaw moment N are expressed by angular velocity

and angular acceleration, and the expressions of force and moment

are obtained, as shown in Equation (36).

Y = Y0 + Y_r _r + Yrr

N = N0 + N_r _r + Nrr

(
(36)

If the parametric expression in Equation (54) is brought into

Equation (55), then the expression of force and moment can be
TABLE 12 Numerical calculation results of lateral movement.

Velocity(m/s) 1.0 1.25 1.5 1.75

Pressure resistance(N) -55.385 -87.262 -125.136 -171.153

Shear resistance(N) -0.485 -0.747 -1.078 -1.467

Total resistance(N) -55.87 -88.009 -126.213 -172.62
FIGURE 34

Lateral motion resistance.

FIGURE 36

y-axis resistance fitting curve in the y-axis direction.
FIGURE 35

Resistance fitting curve.
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expressed as Equation (37).

Y = Y0 − y0w2Y_r sinw  t + y0wYr cosw  t

N = N0 − y0w2N_r sinw  t + y0wNr cosw  t

(
(37)

In order to simplify the writing and facilitate the subsequent

data processing, Equation (37) is simplified to obtain Equation (38).

Y = Y0 + Yc sinw  t + Yd cosw  t

N = N0 + Nc sinw  t + Nd cosw  t

(
(38)

The relationship between Equation (36) and the coefficient of

the corresponding term in Equation (38) can be expressed by

Equation (39).

Yc = −y0w
2Y _v ,Yd = y0wYv (39)

The hydrodynamic coefficients were dimensionless respectively,

and the results are shown in Equation (40).

Y
0
_r =

Y_r
1
2 rL

4 ,Y
0
r =

Yr
1
2 rL

3U
,N

0
_r =

N_r
1
2 rL

5 ,N
0
r =

Nr
1
2 rL

4U
(40)

The hydrodynamic coefficients that need to be obtained in a

pure bow motion are shown in Table 20.
5.2.4 Post-processing and data analysis of pure
bow motion

Initially, it is necessary to establish a fresh coordinate system

whereby the point of origin coincides with the location of the center
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of gravity. The equation of motion of the pure bow jolt should be

programmed first, as with the pure yaw motion, and the code

acquired by programming is saved in the field function to prepare

for the succeeding motion settings. Following the completion of the

overlap area’s motion configuration, simulation and calculation are

required for the four working conditions that were selected: f=0.2,

0.25, 0.3125, and 0.4. The entering velocity in pure bow motion is

fixed at V=1.5m/s. The time step size and calculation time remain

the same as those used for pure sideways motion. For a pure yaw

motion, the Lateral force and the yaw moment are expanded in

Fourier series, as shown in Equations (41), (42).

For Lateral force Y:

c1 = Yc = −y0w2Y_r =
1
l

Z l

−l
 f (t) sin (w  t)dt

d1 = Yd = y0wYr =
1
l

Z l

−l
 f (t) cos (w  t)dt

8>>><
>>>:

(41)

For yaw moment N:

c
0
1 = Nc = −y0w2N_r =

1
l

Z l

−l
 f (t) sin (w  t)dt

d
0
1 = Nd = y0wNr =

1
l

Z l

−l
 f (t) cos (w  t)dt

8>>><
>>>:

(42)

As with the pure lateral motion, the data of the third period are

selected for data fitting, and the fitting coefficients under different

working conditions in the Fourier fitting are counted, as shown

in Table 21.
FIGURE 37

Fitting curve of ascending and sinking resistance.
TABLE 13 Statistics of hydrodynamic coefficients of steady motion.

Hydrodynamic
coefficient

Numeric
value

Non -sub-
traction

coefficient

Numeric
value

Xuu -20.36 X
0
uu -0.1955

Yv vj j -56.26 Y
0
v vj j -0.5401

Zw wj j -67.61 Z
0
w wj j -0.6490

Zww -2.5 Z
0
ww -0.0240
TABLE 14 Meshing settings.

Mesh Area Mesh Name Mesh Size

Inner Mesh Overset mesh 3.125%X

Outer mesh

Movement area 3.125%X

Encrypted area 6.25%X

Transition area 12.5%X

Exterior area 400%X
The mesh size is expressed as a percentage of the base size, and X represents the base size value
in the mesh settings.
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According to Equations (41), (42), the data in the table are

quadratically fitted by MATLAB software, and the hydrodynamic

coefficients of pure yaw motion can be obtained through quadratic

fitting, and the results of quadratic fitting are shown in Figures 44–48.

The hydrodynamic coefficients and dimensionless coefficients

obtained by quadratic fitting are counted, and the statistical results

are shown in Table 22.
5.3 Hydrodynamic calculation of the
vertical plane motion mechanism

5.3.1 Definition and description of pure
heave motion

The motion of the vertical plane mechanism includes two kinds

of motions: pure heave and pure pitching, and the pure heave

motion refers to the combined motion formed by the superposition

of the uniform motion of the x-axis and the variable velocity motion

in the z-axis direction, and the trajectory of the pure heave motion

in the xoz plane is a sine wave, and the angle between the bow and
Frontiers in Marine Science 1998
the x-axis of the ROV is always kept at zero degrees. In this paper,

the constant motion of the extended x-axis is set to V=1.5m/s. A

schematic diagram of the pure heave motion is shown in Figure 49.

The pure heave motion can be expressed by a parametric

equation as shown in Equation (43).

z = a sin (w  t)

q = _q = 0

w = _z = aw cos (w  t)

_w = −aw2 sin (w  t)

8>>>>><
>>>>>:

(43)

In Equation (43):

z—ROV vertical displacement;

a—penchant amplitude;

w—circular frequency;

q ,   _q—angular velocity about the y-axis;

w,   _w—Vertical velocity and acceleration.

The vertical force Z and the pitching moment M are expressed

by the terms velocity and acceleration, and the expression for the

force and moment is shown in Equation (44).
TABLE 15 Vertical force of different meshes.

Number of meshes/(10,000) 95 117 154 195 267 300

Lateral force/(N) -44.57 -44.81 -45.23 -45.71 -45.98 -46.05

Relative error — -0.538% -0.937% -1.061% -0.591% -0.152%
front
FIGURE 39

Schematic diagram of pure swaying motion.
FIGURE 38

Force changes with the number of meshes.
iersin.org
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Z = Z0 + Z _w _w + Zww

M = M0 +M _w _w +Mww

(
(44)

Transporting Equation (43) into Equation (44) allows for a pure

equation of motion for heave and heave, as shown in Equation (45).

Z = Z0 − aw2Z _w sin (w  t) + awZw cos (w  t)

M = M0 − aw2M _w sin (w  t) + awMw cos (w  t)

(
(45)

In order to simplify the writing and facilitate subsequent data

processing, Equation (45) is simplified, and the simplified equation

is shown in Equation (46).

Z = Z0þZ1 sinw  t + Z2 cosw  t

M = M0 +M1 sinw  t +M2 cosw  t

(
(46)

The expression of the relationship between Equation (45) and

the coefficient of the corresponding term in Equation (46) is

represented by Equation (47).

Z1 = −aw2Z _w,Z2 = awZw

M1 = −aw2M _w,W2 = awMw (47)

The hydrodynamic coefficients in Equation (45) are

dimensionless respectively, and the dimensionless mode is shown

in Equation (48).

Z
0
_w =

Z _w
1
2 rL

3 ,Z
0
w =

Zw
1
2 rL

2U
,M

0
_w =

M _w
1
2 rL

4 ,M
0
w =

Mw
1
2 rL

3U
(48)
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The hydrodynamic coefficients that need to be obtained in the

pure heave and heave are shown in Table 23.

5.3.2 Post-processing and data analysis of pure
heave motion

In pure heave motion, the trajectory of the ROV in the xoz

plane is a sine wave. As with pure transverse motion, the sinusoidal

motion is decomposed into a uniform motion in the direction of the

x-axis and a variable velocity motion in the direction of the z-axis.

For the constant velocity motion in the x-axis direction, the velocity

V=1.5m/s, and the variable velocity motion in the z-axis direction is

represented by a mathematical function.

In order to facilitate the setting of the velocity of the variable

velocity movement, it is necessary to encode in the field function

and write the expression of the function that controls the variable

velocity motion. Once the code has been programmed in the field

function, you can continue to set the variable velocity motion in the

z-axis direction of the overlap area. After the motion setting of the

overlap area is completed, four working conditions with frequencies

of f=0.2, 0.25, 0.3125 and 0.4 are selected for calculation. The

incoming velocity is set to V=1.5m/s, and the amplitude is

consistent with the pure lateral motion, and a=0.15m is selected.

In order to obtain stable data, the calculation period is selected as

four periods, and the data of the third period is selected for data

fitting. Time step, set to T/400.

Considering the periodicity of the data, it is necessary to use the

Fourier series expansion for the data obtained in the simulation

calculation, and the Fourier series expansion for the vertical force Z

and the pitching moment M is shown in Equations (48), (59).

For the vertical force Z:

e1 = Z1 = −aw2Z _w = 1
l

Z l

−l
 f (t) sin (w  t)dt

f1 = Z2 = awZw = 1
l

Z l

−l
 f (t) cos (w  t)dt

8>>><
>>>:

(49)
TABLE 16 Hydrodynamic coefficients of pure transverse motion.

Lateral force coefficients Yaw moment coefficients

Yv Y _v Nv N _v

Y
0
v Y

0
_v N

0
v N

0
_v
TABLE 18 Pure sway calculation data.

Frequency f(HZ) w = 2pf (1/s) aw −aw2 Ya Yb Na Nb

0.2000 1.2566 0.1885 -0.2369 3.9270 -16.3500 0.2140 0.0502

0.2500 1.5708 0.2356 -0.3701 5.5970 -21.5800 0.2925 0.0692

0.3125 1.9635 0.2945 -0.5783 8.3060 -28.0900 0.3872 -0.0921

0.4000 2.5133 0.3770 -0.9475 13.0800 -38.2000 0.4806 -0.5153
TABLE 17 Initial value setting.

Frequency(f/HZ) Cycle (T/s) w = 2pf (1/s) Step(s)
Simulation

time

0.2 5 1.2566 0.01250 20

0.25 4 1.5708 0.01000 16

0.3125 3.2 1.9635 0.00800 12.8

0.4 2.5 2.5133 0.00625 10
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For the yaw moment M:

e
0
1 = M1 = −aw2M _w = 1

l

Z l

−l
 f (t) sin (w  t)dt

f
0
1 = M2 = awMw = 1

l

Z l

−l
 f (t) cos (w  t)dt

8>>><
>>>:

(50)

After calculating the working conditions at different

frequencies, the data of the third period were selected from the

obtained data for processing, and the data were fitted by Fourier

series using MATLAB software. The coefficients of the fitting curves

under different working conditions are statistically shown

in Table 24.

According to Equations (49), (50), the data in the table are fitted

by MATLAB software, and the hydrodynamic coefficients in the

pure heave motion can be obtained through the secondary fitting,

and the results of the second fitting are shown in Figures 50–53.
FIGURE 40

Ya fitting curve.
FIGURE 41

Yb fitting curve.
FIGURE 42

Na fitting curve.
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FIGURE 43

Nb fitting curve.
FIGURE 45

Yc fitting curve.
FIGURE 44

Pure yow motion.
TABLE 19 Statistics of pure transverse hydrodynamic coefficients.

Lateral force coefficient Yaw moment coefficient

Yv -115.8 Y _v -12.9 Nv -3.127 N _v -0.3661

Y
0
v -0.7411 Y

0
_v -0.2710 N

0
v -0.0438 N

0
_v -0.0168
F
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The hydrodynamic coefficients obtained by quadratic fitting

and their dimensionless values are statistically analyzed, and the

statistical results are shown in Table 25.
5.3.3 Definition and description of pure
pitching motion

Pure pitch motion is a combination of a rotational motion

about the y-axis on the basis of pure lateral motion. In motion, the

direction of velocity of the ROV is tangent to the sinusoidal

trajectory. In the follow-up coordinate system, the vertical

velocity and acceleration of the ROV are zero. With pure pitching

motion, the hydrodynamic coefficients related to angular velocity
Frontiers in Marine Science 23102
and angular acceleration of the underwater robot can be obtained,

assuming that the velocity of the moving flow is V=1.5m/s. A

schematic diagram of pure pitch motion is shown in Figure 54.

The pure pitch motion of the ROV can be expressed by the

parametric equation, as shown in Equation (51).

q = q0 sin (w  t)

w = _w = 0

q = _q = q0w cos (w  t)

_q = −q0w2 sin (w  t)

8>>>>><
>>>>>:

(51)

In Equation (51):

q—Pitch angle;

q0—Pitching motion amplitude;

w—Circular frequency;

q,   _q—Angle and angular velocity about the y-axis;

w,   _w—Vertical velocity and acceleration.

The equations for the ROV pitch moment M and the vertical

force Z can be expressed by the pitch angle and the pitch angular

velocity, as shown in Equation (52).
FIGURE 46

Yd fitting curve.
FIGURE 47

Nc fitting curve.
TABLE 20 Pure yaw motion coefficients.

Lateral force coefficient Yaw moment coefficient

Yr Y_r Nr N_r

Y
0
r Y

0
_r N

0
r N

0
_r
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Z = Z0 + Z _q _q + Zq

M = M0 +M _q _q +Mq

(
(52)

Bringing the equation of pure pitch motion into Equation (52)

gives Equation (53).

Z = Z0 − q0w2Z _q sin (w  t) + q0wZq cos (w  t)

M = M0 − q0w2M _q sin (w  t) + q0wMq cos (w  t)

(
(53)
TABLE 21 Calculation data of pure yaw motion.

Frequency
f (HZ)

w = 2pf (1/s) y0w −y0w Yc Yd Nc Nd

0.2000 1.2566 0.1579 -0.1984 21.9400 -15.5500 0.3853 -0.2365

0.2500 1.5708 0.2467 -0.3876 29.5200 -20.3400 0.7122 -0.7061

0.3125 1.9635 0.3855 -0.7570 40.2600 -27.2000 1.3480 -1.4570

0.4000 2.5133 0.6317 -1.5876 57.2700 -38.6500 2.2790 -2.8750
FIGURE 48

Nd fitting curve.
TABLE 22 Statistics of pure motion hydrodynamic coefficient.

Lateral force coefficient Yaw moment coefficient

Yr -48.500 Y_r -24.680 Nr -5.5800 N_r -1.3470

Y
0
r -0.6792 Y

0
_r -1.1344 N

0
r -0.1710 N

0
_r -0.1355
front
FIGURE 49

Pure heave motion.
TABLE 23 Pure heave hydrodynamic coefficient.

Vertical force coefficient Pitch moment coefficient

Zw Z _w Mw M _w

Z
0
w Z

0
_w M

0
w M

0
_w
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In order to simplify the writing and facilitate the subsequent

data processing, Equation (53) is simplified to obtain Equation (54).

Z = Z0þZ3 sinw  t + Z4 cosw  t

M = M0 +M3 sinw  t +M4 cosw  t

(
(54)

The relationship between Equation (53) and the coefficient of

the corresponding term in Equation (54) can be expressed by

Equation (55).

Z3 = −q0w
2Z _q,Z4 = q0wZq

M3 = −q0w
2M _q,W4 = q0wMq (55)
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The hydrodynamic coefficient of pure pitching motion and its

dimensionless value are shown in Equation (56).

Z
0
_q =

Z _q
1
2 rL

4 ,Z
0
q =

Zq
1
2 rL

3U
,M

0
_q =

M _q
1
2 rL

5 ,M
0
q =

Mq
1
2 rL

4U
(56)

The hydrodynamic coefficients that need to be obtained in pure

pitching and sinking are shown in Table 26.
5.3.4 Post-processing and data analysis of pure
pitching movements

Pure pitch motion is made by superimposing a rotational angular

velocity on the basis of pure heave motion, and in pure pitch motion, the
TABLE 24 Pure heave calculation data.

Frequency f(HZ) w = 2pf (1/s) aw −aw2 Z1 Z2 M1 M2

0.2000 1.2566 0.1885 -0.2369 7.8060 -21.4300 -0.2524 1.6190

0.2500 1.5708 0.2356 -0.3701 11.6100 -28.4800 -0.3763 2.0220

0.3125 1.9635 0.2945 -0.5783 15.9700 -38.4700 -0.5651 2.5040

0.4000 2.5133 0.3770 -0.9475 23.4300 -54.2500 -0.8938 3.2090
frontie
FIGURE 50

Z1 fitting curve.
FIGURE 51

Z2 fitting curve.
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trajectory of the center of gravity is a sine wave. In this paper, the flow

velocity is set to V=1.5m/s, and the variable velocity motion in the z-axis

direction is set to be the same as the pure heave motion. In addition, an

angular acceleration needs to be superimposed on the ROV, and the

angular acceleration expression is shown in Equation (57).

q0 = aw
V

q = _q = q0w cos (w  t) = aw2

V cos (w  t)

(
(57)

In the original pitch motion simulation calculation, as with the

pure heave motion, the pure pitch equation of motion must be

programmed first. The code that results from this programming is

then saved in the entry function to set up the future motion settings.

Following the completion of the overlap area’s motion setting

procedure, four operating conditions—f=0.2, 0.25, 0.3125, and

0.4—are chosen for simulation computations. Since the amplitude
Frontiers in Marine Science 26105
is consistent with the pure heave motion and the incoming flow

velocity of V=1.5 m/s, a= 0.15 m is chosen. The calculating period is

chosen to consist of four periods in order to provide steady data; the

third period’s data is chosen for data fitting. Set the time step to T/

400. The step size and calculation period parameters are shown in

Table 25. The extension of the Fourier series of the data received via

simulation is required due to the periodic character of the data: the

vertical force Z and pitching moment M Fourier series expansions

are presented in Equations (58), (59).

For the vertical force Z:

e2 = Z3 = −q0w2Z _q =
1
l

Z l

−l
 f (t) sin (w  t)dt

f2 = Z4 = q0wZq =
1
l

Z l

−l
 f (t) cos (w  t)dt

8>>><
>>>:

(58)
FIGURE 52

M1 fitting curve.
FIGURE 53

M2 fitting curve.
TABLE 25 Statistics of pure heave hydrodynamic coefficient.

Vertical force coefficient Pitch moment coefficient

Zw -174.9 Z _w -21.59 Mw 8.414 M _w 0.9012

Zw′ -1.1193 Z
0
_w -0.4535 M

0
w 0.1178 M

0
_w 0.0414
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For yaw moment M:

e
0
2 = M3 = −q0w2M _q =

1
l

Z l

−l
 f (t) sin (w  t)dt

f
0
2 = M4 = q0wMq =

1
l

Z l

−l
 f (t) cos (w  t)dt

8>>><
>>>:

(59)

Following the calculation of operating conditions at various

frequencies, the data from the third cycle had been selected for

analysis and processing. The MATLAB program was then used to fit
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the data using Fourier series. The statistical analysis of the Fourier

fitting yields the coefficients of the fitting curves, which are shown

in Table 27.

According to Equations (58), (59), the data in the table were re-

fitted by MATLAB software, and the fitting results are shown in

Figures 55–58.

The statistically solved hydrodynamic coefficient of pure

pitching motion and its dimensionless value, and the numerical

statistical results are shown in Table 28.
6 Conclusion

In summary, the ROV’s asymmetry results in an obvious

disparity in pressure resistance between the forward and

backward sailing, ascending and descending motions, and this

disparity becomes significantly greater as the velocity increased.
FIGURE 54

Pure pitch motion.
FIGURE 55

Z3 fitting curve.
TABLE 27 Pure heave calculation data.

Frequency f (HZ) w = 2pf (1/s) q0w −q0w2 Z3 Z4 M3 M4

0.2000 1.2566 0.1579 -0.1984 -17.8200 -28.6100 1.4680 1.4010

0.2500 1.5708 0.2467 -0.3876 -24.8400 -37.7400 1.7900 1.6290

0.3125 1.9635 0.3855 -0.7570 -34.4200 -49.3000 2.1910 1.8710

0.4000 2.5133 0.6317 -1.5876 -50.0500 -65.9000 2.9300 2.0750
TABLE 26 Pure pitch hydrodynamic coefficients.

Vertical force coefficients Pitch moment coefficients

Zq Z _q Mq M _q

Z
0
q Z

0
_q M

0
q M

0
_q
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The relationship between pressure resistance and pressure

resistance is closely related to the shape of the ROV model.

Therefore, when designing the ROV, attention should be taken to

ensure that the shape is as symmetrical as possible in order to

achieve optimal hydrodynamic performance. Through a
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comparative and analytical analysis of the calculated and

experimental values of the SUBOFF model, the reliability of the

simulation process used in this paper is confirmed. Furthermore,

the process is extended to the simulation calculation of the ROV

model, enabling it to complete the ROV model simulation
FIGURE 56

Z4 fitting curve.
FIGURE 58

M4 fitting curve.
FIGURE 57

M3 fitting curve.
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experiment and yield high-quality experimental results. This work

also confirms that the unstable motion of the ROV can be simulated

using the technique of superimposing the field function of the

overset mesh, with satisfactory simulation results.

By analyzing data, we can derive some of the ROV’s

hydrodynamic coefficients; they will serve as a foundation for

future maneuverability tests and will cut down on the time it

takes to develop the ROV. In ROV hydrodynamic modeling

simulations, simulations can help predict the performance of

ROVs under various constraint conditions and optimize their

design and operation before actual deployment. They can also

assist in evaluating the impact of different constraints on ROVs,

such as maneuverability and stability under varying depths, water

flow conditions, and workloads. By conducting simulation

experiments, the costs and risks associated with physical testing

can be reduced, while providing reliable data to guide the design

and operation of ROVs.

Although the hydrodynamic calculation of ROV is performed

in this study, no approximate formula for the hydrodynamic

calculation of ROV is developed in this paper owing to

experimental equipment limitations and computation time

limitations. Further comparisons between the experimental data

and the hydrodynamic coefficients found in this study are

necessary. Future research may investigate the impact of various

mesh types and mesh numbers on hydrodynamic computing

efficiency; nevertheless, this paper’s meshing verification still has

some holes due to computational restrictions.
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Glossary

u Longitudinal velocity

p Roll angular velocity

X Longitudinal force

v Lateral velocity

q Pitch angular velocity

Y Lateral force

w Vertical velocity

r Yaw angular velocity

Z Vertical force

K Roll moment

m Mass

a Angle of attack

M Pitch moment

I Moment of inertia

b Drift angle

N Yaw moment

r Water density

f Roll angle

q Pitch angle

y Yaw angle
F
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Adverse weather conditions such as rain and haze often lead to a degradation in

the quality of maritime images, which is crucial for activities like navigation,

fishing, and search and rescue. Therefore, it is of great interest to develop an

effective algorithm to recover high-quality maritime images under adverse

weather conditions. This paper proposes a prompt-based learning method

with degradation perception for maritime image restoration, which contains

two key components: a restorationmodule and a promptingmodule. The former

is employed for image restoration, whereas the latter encodes weather-related

degradation-specific information to modulate the restoration module,

enhancing the recovery process for improved results. Inspired by the recent

trend of prompt learning in artificial intelligence, this paper adopts soft-prompt

technology to generate learnable visual prompt parameters for better perceiving

the degradation-conditioned cues. Extensive experimental results on several

benchmarks show that our approach achieves superior restoration performance

in maritime image dehazing and deraining tasks.
KEYWORDS

maritime image, image restoration, image deraining, image dehazing, prompt learning,
deep learning, visual transformer
1 Introduction

Adverse weather conditions, including rain and haze, frequently occur in our everyday

environment. These conditions result in diminished visual quality in captured images and

significantly affect the effectiveness of numerous maritime vision systems, such as

autonomous ships for ocean observation (Zheng et al., 2024). In maritime navigation

and transportation, correctly identifying and interpreting environmental information from

images is vital for safety. Figure 1 shows the physical imaging process of different adverse

weather conditions. Thus, image processing under adverse weather conditions contributes
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to enhancing the safety of maritime traffic and navigation by

reducing accidents and collisions (Lu et al., 2021).

To solve image restoration under adverse weather conditions,

early algorithms are predominantly based on traditional prior

models. In the context of image dehazing, one common approach

was the atmospheric scattering model (He et al., 2010), which

assumed that haze in an image could be represented as a result of

light scattering due to atmospheric particles (Li et al., 2018a). These

algorithms typically aim to estimate and remove the haze from

images, enhancing visibility. On the other hand, for image

deraining, a prevalent technique was the linear superposition

model. This model assumed that the observed image under rainy

conditions could be expressed as a linear combination of the clean

background scene and the rain streaks (Chen et al., 2023b). These

early deraining algorithms focus on separating the rain streaks from

the desired scene, thus improving the clarity of the image. However,

these early prior-based algorithms struggled to adapt to complex

and rapidly changing scenes, as they relied heavily on predefined

models that could not effectively account for the wide range of

scenarios encountered in real-world environments.

With the rise of big data and artificial intelligence, a plethora of

image restoration methods based on deep learning have emerged.

These techniques aim to learn the mapping relationship between

degraded images and their corresponding clear counterparts.

Convolutional Neural Networks (CNNs) have emerged as a

powerful tool for image restoration due to their inherent ability to

capture and learn complex hierarchical features from data. We have

witnessed the rapid advancement of CNNs in image dehazing and

deraining (Li et al., 2020; Zhou et al., 2021; Chen et al., 2022).

However, due to the inherent characteristics of convolution

operations, specifically the use of local receptive fields and the

independence of input content, CNNs struggle to effectively model

spatially-long feature dependencies of images (Chen et al., 2023c).

Later, Transformer-based models (Vaswani et al., 2017)

originally bring significant breakthroughs to the natural language

processing (NLP) field. The vision Transformer (ViT), as a new

network backbone, has been widely applied to various tasks. It has

also been utilized in image restoration tasks Zamir et al. (2022) and

has achieved better performance compared to CNNs due to its

ability to model non-local features effectively. Albeit these

approaches have achieved commendable restoration performance

in the given weather situation, they often exhibit suboptimal results

when applied to maritime images.

The reason behind this can be summarized as follows:

(1) Maritime images are often captured over large bodies of

water, which introduces additional complexities due to the

presence of reflective surfaces, varying water conditions, and

dynamic backgrounds. These factors can exacerbate the impact of

weather-related degradation. (2) Weather conditions at sea can

change rapidly, with haze and rain appearing and dissipating

quickly. This dynamic nature poses challenges for image

restoration, as algorithms must adapt to evolving weather

conditions. Thus, effective image restoration techniques tailored

to the unique characteristics of maritime environments are essential

for ensuring safe and efficient maritime activities (Zheng

et al., 2020).
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This raises a question: how to better help image restoration in

adapting to the complex and ever-changing maritime scenes under

adverse weather conditions? Recent trends of prompt learning

(Wang et al., 2022) in artificial intelligence, may offer a potential

solution. Prompt learning empowers deep models to adapt swiftly

to complex and dynamically changing environments. It allows for

the creation of tailored prompts that can capture the intricacies of

specific situations, ensuring the model’s responsiveness to various

challenges. Therefore, this motivates us to introduce prompt

learning to better encode degradation features of different weather

conditions. This paper proposes a prompt-based learning method

with degradation perception for maritime image restoration. The

proposed method comprises two essential components: a

restoration module and a prompting module. The restoration

module is employed for image restoration, while the prompting

module encodes weather-related degradation-specific information

to modulate the restoration module. Specifically, the main

contributions of this paper are as follows:
• This paper presents a new solution for image restoration in

adverse weather conditions for maritime images. By

incorporating prompt learning into the Transformer-

based restoration network, it enhance the adaptability of

deep networks to various weather degradation characteristics,

enabling our model to adaptively learn more useful features

to facilitate better restoration.

• This paper employs a prompt creation block to generate a

set of learnable parameters by implicitly predicting

degradation-conditioned soft prompts. In addition, this

paper further introduces a prompt fusion block to guide

the restoration process by interacting with the

network backbone.

• Quantitative and qualitative experiments demonstrate that

our proposed method achieves favorable performance on

multiple benchmark datasets, and can better reconstruct

clear images and restore image details compared to

previous methods.
2 Related work

In this section, this paper presents a review of recent work

related to maritime image restoration and prompt learning.
2.1 Maritime image restoration

To deal with the uncertain task of maritime image restoration,

considerable efforts have been made. Existing approaches can be

categorized into strategies based on priors and learning-based

strategies. Hu et al (Hu et al., 2019). proposed a haze removal

method based on illumination decomposition. This method

decomposes the hazy image into a haze layer by separating the

glow layer. It estimates the transmission rate using haze-line prior,

thereby restoring the haze-free image. Luo et al (Lu et al., 2021).
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proposed a novel CNN-based visibility dehazing framework aimed

at enhancing the visual quality of images captured by maritime

cameras under hazy conditions. This framework comprises two

subnetworks: the coarse feature extraction module and the fine

feature fusion module. Hu et al. (Hu et al., 2021) proposed a deep

learning-based variational optimization method for reconstructing

haze-free images from observed hazy images. This method fully

leverages a unified denoising framework and strong deep learning

representation capabilities. Guo et al. (Guo et al., 2021) designed a

heterogeneous twin birth haze removal network, HTDNet, to

enhance maritime surveillance capabilities in haze environments.

The network consists of a twin feature extraction module for

learning coarse haze features and a feature fusion module for

integration and enhancement.

Van et al. (Van Nguyen et al., 2021) proposed a haze removal

algorithm for maritime environment images based on texture and

structure priors in illumination decomposition. This method

utilizes a haze removal algorithm to eliminate the haze

component from the glow-free layer and employs illumination

compensation to restore natural illumination in the glow layer.

Yang et al. (Yang et al., 2022) proposed a multi-head pyramid large

kernel encoder-decoder network (LKEDN-MHP) for denoising

tasks in maritime images. This method utilizes the transmission

map extracted from the guidance image as an additional input to

improve the network performance. Liu et al. (Liu et al., 2022)

proposed a CNN-based dual-channel two-stage image dehazing

network, which utilizes an attention mechanism to achieve adaptive

fusion of multi-channel features. Hu et al. (Hu et al., 2022) proposed

a maritime video dehazing algorithm based on spatiotemporal

information fusion and improved dark channel prior. This

method utilizes an enhanced dark channel prior model to restore

each frame image, thereby achieving video dehazing.

Recently, Huang et al. (Huang et al., 2023) proposed an

improved convex optimization model based on an atmospheric

scattering model to achieve image dehazing. This method integrates

simplified atmospheric light value estimation and the V channel in

the HSV color space to obtain more local information. He et al. (He

and Ji, 2023) improved MID-GAN is capable of training with non-

paired adversarial learning. It consists of a CycleGAN cycle

framework with two constraint branches. And it introduced an

effective attentionrecursive feature extraction module to gradually

extract haze components in an unsupervised manner. Chen et al.

(Chen et al., 2022) introduced a contrastive learning mechanism

based on the CycleGAN framework to improve dehazing

performance. However, due to the limited performance of the

aforementioned methods in the task of maritime image

restoration and the relative saturation of model capabilities, there

is a need to explore an effective approach to address these issues.
2.2 Prompt learning

Prompt learning was initially introduced in the field of natural

language processing (NLP) and has proven to be highly effective, it
Frontiers in Marine Science 03113
has been applied to various vision-related tasks. Prompt learning is

divided into two different methods: hard prompts and soft prompts.

Hard prompts refer to explicit and predefined instructions given to

the model during training. These prompts provide specific

information and guide the model to produce the desired output.

Soft prompts are more flexible and adaptive. They are not explicitly

defined but rather generate prompt information based on input

data or learn from the training process. Soft prompts allow the

model to dynamically adjust its behavior based on input and

context, enabling it to capture more specific and nuanced

contextual information.

Recently, Zhou et al. (Zhou et al., 2022) demonstrated that a

simple design based on conditional prompt learning performs

exceptionally well in various problem scenarios, including

generalization from base classes to novel classes, cross-dataset

prompt transfer, and domain generalization. Potlapalli et al.

(Potlapalli et al., 2023) demonstrated the effectiveness of their

designed prompt block in integrated image restoration by

integrating it into state-of-the-art restoration models. The prompt

block can interact with input features, dynamically adjust

representations, and adapt the restoration process to the relevant

degradation. Li et al. (Li et al., 2023b) proposed a novel prompt-in-

prompt learning for universal image restoration. The method

involves simultaneous learning of high-level degradation-aware

prompts and low-level basic restoration prompts to generate

effective universal restoration prompts. By utilizing a selective

promptfeature interaction module to modulate features most

relevant to the degradation. Ai et al. (Ai et al., 2023) proposed a

multi-modal prompt learning method called MPerceiver, which

includes cross-modal adapters and image restoration adapters to

learn holistic and multiscale detail representations. The adaptability

of text and visual prompts is dynamically adjusted based on

degradation prediction, enabling effective adaptation to various

unknown degradations. Kong et al. (Kong et al., 2024) proposed

sequential learning strategy and prompt learning strategy,

respectively. These two strategies are effective for both CNN and

Transformer backbones, and they can complement each other to

learn effective image representations.

Inspired by these methods, this paper proposes a prompt-based

learning approach to guide the maritime image restoration process,

facilitating the integration and communication of information.
3 Proposed method

In this section, this paper first describes the overall pipeline of

the model. Then, this paper provides details of the restoration

module and prompting module, which serve as the fundamental

building blocks of the approach. The restoration module mainly

comprises two key elements: multi-head self-attention (MHSA) and

dual gated feed-forward network (DGFN). The prompting module

mainly consists of two key elements: prompt creation block (PCB)

and prompt fusion block (PFB).
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3.1 Overall pipeline

The overall pipeline of the proposed model, as illustrated in the

Figure 2, is based on a hierarchical encoder-decoder framework

(Chen et al., 2023a). Given a maritime degraded image Irain ∈
RH×W×3, where H × W denotes the spatial resolution of the feature

maps, and C represents the channels, this paper performs feature

projection embedding using a 3 × 3 convolution. On the network

backbone, this paper stacks 4 levels of hierarchical encoder-

decoders, where the encoder-decoder serves as the restoration

module of the model, extracting rich spatially variant degradation

distribution features. To extract multiscale representations from

degradation information, each level of the restoration module

covers its specific spatial resolution and channel dimensions.

Beginning with high-resolution input, the restoration module

aims to progressively decrease spatial resolution while enhancing

channel capacity, resulting in a low-resolution latent representation

F ∈ RH/8×W/8×8C. During the stage of high-resolution image

restoration, this paper incorporates a prompting module into the

framework to generate prompts and enrich input features for

dynamically guiding the restoration process of the restoration

module. This paper also introduces skip connections (Li et al.,

2023a) to bridge consecutive intermediate features, ensuring stable

training. Next, this paper provides a detailed description of the
Frontiers in Marine Science 04114
proposed restoration module, prompting module, and their core

building blocks.
3.2 Restoration module

This paper develops a restoration module as a feature extraction

unit, which can be used to encode degradation information to

recover output clean restored images. Formally, given the input

features of the (l − 1)-th block Xl−1, the encoding of the restoration

module process can be represented as Equations (1, 2):

X
0
l = Xl−1 +MHSA(LN(Xl−1)), (1)

Xl = X
0
l + DGFN(LN(X

0
l )), (2)

where LN denotes the layer normalization, X
0
l and Xl represent

the outputs of MHSA and DGFN, which are described below.

3.2.1 Multi-head self-attention
In reviewing the standard self-attention mechanism in

Transformers (Zamir et al., 2022), given queries Q, keys K, and

values V, the output of dot-product attention is typically

represented as Equation (3):
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FIGURE 1

The physical imaging process of different adverse weather conditions.
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Attention0 = Softmax
Q⊤K
a

� �
· V , (3)

where a is a learnable parameter; Q, K, and V represent the

matrix forms of Q, K, and V, respectively. It is noted that

computing self-attention using the Softmax function may lead

to unstable gradients due to the presence of exponential

functions, which could also limit the network’s ability for

nonlinear fitting. This work replaces it with the ReLU

activation function, which can alleviate the issues of gradient

vanishing or exploding, and aid in learning better feature

representations. Specifically, this work starts by aggregating

pixel-level cross-channel context through the application of a

1 × 1 convolution. Subsequently, a 3 × 3 depthwise convolution is

applied to encode channel-wise context. This work employs bias-

free convolution layers in the network. Next, it reshapes

the projections of queries and keys to allow their dot

product interaction to generate a transposed attention map of

size RĈ�Ĉ , rather than a massive regular attention map of size
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RĤ Ŵ�Ĥ Ŵ . Then, the attention map is further interacted with

the reshaped projections of values to complete the self-

attention computation. Overall, the MHSA process is defined as

Equations (4, 5):

Attention = ReLU
Q⊤K
a

� �
· V , (4)

X̂ = Conv
1�1

(Attention(Q,K ,V)) + X, (5)

where X and X̂ are the input and output feature maps, Conv1×1
(·) denotes 1 × 1 convolution.

3.2.2 Dual gated feed-forward network
To enhance the enrichment of contextual information, this

paper introduces a dual gated feed-forward network that operates

on each pixel. It incorporates two branches based on a gating

mechanism. They initially undergo feature Y transformation by

using 1 × 1 convolutions, followed by 3 × 3 depth-wise convolutions
FIGURE 2

The overall architecture of the proposed network.
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to encode information from spatially adjacent pixel positions,

facilitating the learning of local image details for effective

restoration. One branch extends the feature channels, while the

other branch, activated with GELU non-linearity, reduces the

channels back to the original input dimensionality, enabling the

discovery of non-linear contextual information in hidden layers.

The DGFN is formulated as Equations (6, 7):

Gated = GELU(Conv3�3(Conv1�1(X)))⊙Conv3�3(Conv1�1(Y)),

(6)

Ŷ = Conv1�1(Gated(Y)) + Y , (7)

where Ŷ , Conv3×3(·), ⊙ denote outputs, 3 × 3 depthwise

convolution and element-wise multiplication, respectively.

Overall, compared to MHSA, DGFN plays a distinctly different

role by governing the flow of information across various levels in

our pipeline, thereby enabling each level to focus on fine details

complementary to other levels.
3.3 Prompting module

Different from (Zhou et al., 2023) that models global features,

this paper further proposes a prompting module designed to

perceive features of interfering information in degraded images

and dynamically generate valuable prompts to guide high-quality

maritime image restoration. Given the input features F, the

prompting module first employs PCB to generate prompts for the

distribution of degraded features. Subsequently, PFB collaboratively

fuses the input features F with the generated prompt information to

obtain the output features Fb. The overall procedure of prompting

module is defined as Equation (8):

F̂ = PFB(PCB(F, Fpc), F), (8)

where Fpc represents the learnable prompt components,

the prompt creation block and prompt fusion block are

described below.

3.3.1 Prompt creation block
The PCB dynamically captures the distribution characteristics

in degraded maritime images. This capability enhances the

provision of useful prompt information for the restoration

process. Here, this paper employs a soft prompt (Potlapalli et al.,

2023) to generate a set of learnable parameters, which encode

distinctive deteriorative features related to various weather

conditions. For input features F, the network first applies global

average pooling, followed by a 1 × 1 convolution to obtain a

compact feature vector. Subsequently, a Softmax function is

applied to derive the prompt weights W ∈ RN, where the value of

N is determined by the prompt length. In soft prompt learning, the

length of the prompt determines the amount of information and

guidance provided to the model. In fact, it’s essential to strike a

balance between the impact of prompt length, choosing an

appropriate length that balances information, guidance, and

diversity of generation to achieve satisfactory results. This paper
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will analyzes its impact in Section 4.4.2. Next, the weights are

adjusted within the prompting components using a linear

combination. Finally, a 3 × 3 convolution is applied to obtain the

conditional prompt P. The overall procedure of PCB is defined as

Equations (9, 10):

Wi = Softmax(Conv1�1(GAP(F))), (9)

P = Conv3�3(Linear(Wi · Fpc)), (10)

where GAP(·), Linear(·) denote the global average pooling and

linear combination, respectively.

3.3.2 Prompt fusion block
To facilitate more effective interaction between the prompt

information and input features for better guidance in the

restoration process, this paper designs a PFB. In this module, the

input features F are concatenated with the degradation distribution

prompt P along the channel dimension. Subsequently, the

concatenated information is further processed by the restoration

module to generate the transformation of the input features. Finally,

through operations of 1 × 1 convolution and 3 × 3 convolution, the

features are smoothed and mapped to the output features F̂ . The

overall procedure of PFB is defined as Equation (11):

F̂ = Conv3�3(Conv1�1(RM(C(F · P)))), (11)

where RM(·) and C(·) denote the process of involving

restoration module and concatenation, respectively.
3.4 Loss function

To supervise the training progress of our network, this paper

employs the L1 pixel loss function. The final output is the restored

image Irec. It is obtained by adding the residual image Ires to the

input degraded image Ideg, where Ires ∈ RH×W×3. During training,

the network minimizes the loss function ,which is defined as

Equation (12):

Lpixel = Irec − Igt
�� ��

1, (12)

where Igt represents the ground truth image, and ∥ · ∥1 denotes
the L1-norm.
4 Experiments

In this section, this paper evaluates our method on benchmarks

for image dehazing and image deraining tasks. The main

experiments are conducted using PyTorch and trained on 4

TESLA V100 GPUs.
4.1 Experimental settings

Following (Zamir et al., 2022), our method employs a 4-level

encoder-decoder framework. From level-1 to level-4, the number of
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restoration module is [4,6,6,8], attention heads are [1,2,4,8], and

number of channels is [48,96,192,384]. The prompt length in the

prompting module is 5. The batch size and patch size are configured

as 16 and 128, respectively. Our model is trained using the AdamW

optimizer for a total of 300,000 iterations with cosine annealing

scheme (Loshchilov and Hutter, 2016) to gradually decrease the

initial learning rate from 3×10−4 to 1×10−6. Specifically, the learning

rate is initially set at 3×10−4 for the 92,000 iterations and

subsequently reduced to 1 × 10−6 over the next 208,000 iterations.
4.2 Experimental results on
image dehazing

To evaluate the dehazing performance of the method, this paper

trains on the RESIDE SOTS-Outdoor (Li et al., 2018a), but since

this dataset lacks maritime scenes, this paper conducts testing on

real maritime hazy images. It should be noted that there are no

ground truth images for real maritime hazy images. Here, this paper

compares our method with 6 popular image dehazing algorithms,

including DCP (He et al., 2010), DehazeNet (Cai et al., 2016),

AODNet (Li et al., 2017), GridDehazeNet Liu et al. (2019), MSBDN

(Dong et al., 2020), and DeHamer (Guo et al., 2022). For fair

comparison, all comparison algorithms use consistent pre-trained

weights trained on the training set. In the case of hazy maritime

images without ground truth data, this paper employs non-

reference metrics such as NIQE (Naturalness Image Quality

Evaluator) (Mittal et al., 2012b) and BRISQUE (Blind/

Referenceless Image Spatial Quality Evaluator) (Mittal et al.,

2012a). When the NIQE or BRISQUE scores are lower, it means

that the image is considered to have higher quality in terms of

naturalness (for NIQE) or overall spatial quality (for BRISQUE).

As presented in Table 1, our proposed method achieves notably

lower NIQE and BRISQUE scores, indicating that it produces high-

quality outputs characterized by clearer content and superior

perceptual quality when compared to other models in maritime

scenarios. This underscores the effectiveness of our model in

enhancing image quality within maritime contexts. To provide

compelling evidence, this paper illustrates a visual quality

comparison between two samples generated by recent methods in

Figure 3. It is observed that the performance of DCP (He et al.,

2010) is suboptimal, particularly in the sky region, where

undesirable halo effects occur. DehazeNet (Cai et al., 2016) and

AODNet (Li et al., 2017), are found to exhibit insufficient learning

capabilities, resulting in their inability to effectively remove haze

from images. The limitations in their learning capabilities become

particularly evident when dealing with challenging and complex

hazy scenes, such as those with dense fog or severe haze. The
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dehazing results obtained from GridDehazeNet Liu et al. (2019),

MSBDN (Dong et al., 2020), and DeHamer (Guo et al., 2022) still

exhibit residual haze, indicating limitations in the generalization of

their algorithms to maritime images. These residual haziness issues

suggest that their models may struggle to effectively adapt to the

unique challenges posed by maritime scenarios. In contrast, our

method demonstrates the capability to recover significantly clearer

images, particularly in the sailboat regions. This suggests that the

introduction of prompt learning cues can substantially improve the

adaptation of dehazing algorithms to more challenging maritime

images. The enhanced performance underscores the effectiveness of

incorporating prompt learning, which enables better haze removal

and results in visually superior outcomes in maritime scenes.
4.3 Experimental results on
image deraining

To evaluate the deraining performance of the method, this

paper carries out comprehensive experiments using the Rain13K

dataset (Jiang et al., 2020), comprising 13,700 pairs of clean and

rainy images. To evaluate our approach, this paper employs 4

benchmarks [Test100 (Zhang et al., 2019), Rain100H (Yang et al.,

2017), Rain100L (Yang et al., 2017), and Test2800 (Fu et al., 2017b)]

for testing purposes. Here, this paper compares our method with 9

popular image deraining algorithms, including DerainNet (Fu et al.,

2017a), SEMI (Wei et al., 2019), DIDMDN (Zhang and Patel, 2018),

UMRL (Yasarla and Patel, 2019), RESCAN (Li et al., 2018b),

PReNet (Ren et al., 2019), MSPFN (Jiang et al., 2020), MPRNet

(Zamir et al., 2021), and IDT (Xiao et al., 2022). Here, this paper

uses full-reference image evaluation metrics, as there are ground

truth images available. This paper quantitatively assesses our results

by computing both PSNR (Peak Signal-to-Noise Ratio) and SSIM

(Structural Similarity Index) scores (Wang et al., 2004), specifically

using the Y channel within the YCbCr color space. This allows us to

make objective comparisons, focusing on luminance information,

which is crucial for evaluating image quality accurately. These

metrics provide valuable insights into the fidelity and structural

similarity between the deraining images and their corresponding

ground truth references.

Table 2 presents the quantitative results of various algorithms

for image deraining. In comparison to the recent IDT method (Xiao

et al., 2022), our approach demonstrates an average improvement of

1dB across the four datasets. This significant enhancement

highlights our method’s ability to adapt more effectively to

diverse rainy conditions. Our results suggest that our approach

outperforms existing methods by providing superior deraining

performance across a range of challenging rain scenarios.
TABLE 1 Quantitative comparisons of different methods on hazy maritime images.

Method DCP DehazeNet AODNet GridDehazeNet FFA Net DeHamer Ours

NIQE 3.464 3.466 3.433 3.504 3.530 3.483 3.015

BRISQUE 22.149 25.884 25.006 24.113 24.847 25.054 22.028
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Figures 4 and 5 show the visual results on the Rain100H and

Test100 datasets. Observing these visual results, it becomes evident

that DerainNet (Fu et al., 2017a), SEMI (Wei et al., 2019), and

DIDMDN (Zhang and Patel, 2018) struggle to effectively remove

heavy rain artifacts. UMRL (Yasarla and Patel, 2019), RESCAN (Li

et al., 2018b), and PReNet (Ren et al., 2019) still leave residual rain

streaks in their recovery results. MSPFN (Jiang et al., 2020),

MPRNet (Zamir et al., 2021), and IDT (Xiao et al., 2022) exhibit
Frontiers in Marine Science 08118
shortcomings in preserving local image details, especially in regions

such as the ship’s hull. In contrast, our approach stands out due to

its incorporation of prompt learning, enabling adaptive feature

extraction. As a result, it excels in eliminating rain streaks while

effectively retaining intricate image structures. This demonstrates

the robustness and effectiveness of our method in addressing the

challenges posed by rainy conditions and preserving fine-grained

image details.
Input DCP DehazeNet AODNetInput DCP DehazeNet AODNet

GridDehazeNet MSBDN DeHamer Ours

FIGURE 3

Image dehazing comparisons for different methods on hazy maritime images.
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TABLE 2 Quantitative comparisons of different methods on the Rain13K dataset.

Datasets
Method

Test100 Rain100H Rain100L Test2800 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 22.26 0.787

SEMI 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 22.09 0.725

DIDMDN 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 23.32 0.738

UMRL 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 27.39 0.872

RESCAN 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 28.11 0.852

PReNet 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 28.94 0.894

MSPFN 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 30.35 0.900

MPRNet 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.68 0.923

IDT 29.69 0.905 29.95 0.898 37.01 0.971 33.38 0.937 32.51 0.928

Ours 31.08 0.907 30.85 0.900 38.30 0.974 34.02 0.941 33.56 0.930
F
rontiers in Marine
 Science
 09119
 fr
Bold indicates the best results.
Input DerainNet SEMI DIDMDN UMRL RESCANInput DerainNet SEMI DIDMDN UMRL RESCAN

PReNet MSPFN MPRNet IDT Ours GTPReNet MSPFN MPRNet IDT Ours GT

FIGURE 4

Image deraining comparisons for different methods on the Rain100H dataset.
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4.4 Ablation experiment and analysis

To further analysis the effectiveness of our proposed method,

this paper conducts additional ablation experiments. This paper

focuses on evaluating the performance of our approach in the image

deraining task, specifically examining the effectiveness of prompting

modules and the effect of prompt length in prompting modules.
Frontiers in Marine Science 10120
4.4.1 Effectiveness of prompting modules
In this experiment, this paper aims to gauge the contributions of

the prompting modules within our methodology. This paper

designs three distinct model variants to comprehensively analyze

the impact of prompting modules on our approach. These variants

encompass models with or without prompting modules, models

with or without PFB, and models with prompting modules placed at
PReNet MSPFN MPRNet IDT Ours GTPReNet MSPFN MPRNet IDT Ours GT

Input DerainNet SEMI DIDMDN UMRL RESCANInput DerainNet SEMI DIDMDN UMRL RESCAN

FIGURE 5

Image deraining comparisons for different methods on the Test100 dataset.
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different positions within the network architecture. The quantitative

results for these various model variants are documented in Table 3,

shedding light on their respective contributions to the image

restoration task.

Starting with Model (a), the performance starkly deteriorates in

the absence of prompting modules. This striking decline

underscores the pivotal role that prompting modules play in the

image restoration process. They serve as critical components in

guiding the model’s understanding of the task and assisting it in

achieving high-quality restoration results. Comparing Model (b)

and Model (c), it becomes evident that the absence of PFB in the
Frontiers in Marine Science 11121
prompting modules results in a disconnect between the guidance

provided by the prompts and the features processed in the main

restoration modules. This lack of synchronization hinders the

model’s ability to effectively utilize the provided prompts,

consequently restricting its overall performance. Further

comparison between Model (c) and Model (d) reveals the

advantage of introducing prompting modules during the network

decoding phase. This strategic placement allows the model to better

harness the clear image features, facilitating improved performance

and yielding the best network performance among the variants.

4.4.2 Effect of prompt length in
prompting modules

To delve deeper into the impact of prompts in our prompting

modules, this paper conducts experiments to investigate the effect of

prompt length. This paper varies the length of prompts while

keeping other parameters constant and examined how it

influenced the model’s performance. Table 4 presents the

quantitative results. Our findings reveal that prompt length plays

a crucial role in image restoration process. Specifically, shorter

prompts tend to yield faster convergence and better overall results,

while longer prompts sometimes lead to overfitting or increased

computational complexity. This analysis allows us to optimize the

prompt length within our prompting modules to achieve the best

balance between performance and efficiency. Finally, this paper

determines that a prompt length of 5 is the most suitable

configuration for our model.
4.5 User study

This paper conducts a user study to assess the outcomes of

various image restoration techniques. These studies are based on

restoring real foggy maritime images. A portion of the participants

invited to our user study are professionals engaged in maritime
TABLE 3 Ablation experimental result on the effectiveness of
prompting modules.

Model

Prompting module
Resto-
ration
module

PSNR/
SSIMPCB PFB

Positi-
on

(a) × × – ✓

33.15/
0.924

(b)
✓

× Enc. ✓
33.39/
0.927

(c)
✓

✓ Enc. ✓

33.48/
0.929

(d)
✓

✓ Dec. ✓
33.56/
0.930
Bold indicates the best results.
TABLE 4 Ablation experimental result on the effect of prompt length in
prompting modules.

Length 3 4 5 6 7

PSNR/
SSIM

33.41/
0.928

33.49/
0.929

33.56/
0.930

33.52/
0.930

33.44/
0.927
Bold indicates the best results.
FIGURE 6

Averaged selection percentage of user study.
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activities to ensure the professionalism of our work. Additionally, in

order to enhance the universality of our work, this paper has also

invited non-maritime professionals to participate in our user study.

Participants are presented with a set of images and asked to select

the one with the best visual clarity. To maintain fairness, the

methods remain anonymous, and the images within each set are

randomly ordered. This paper distributes the questionnaire widely

to online users and collect responses. Finally, this paper receives

responses from 46 human evaluators. Figure 6 depicts the average

selection percentage for each method. Based on the majority of

human evaluators’ feedback, our method consistently outperforms

the others.
4.6 Limitations

While our proposed method introduces prompt learning

to enhance restoration performance under adverse weather

conditions, it comes with relatively high parameter count and

computational complexity. The comparison results are presented

in the Table 5, compared to other methods, our approach has a

higher parameter count. As a result, significant computational

resources are also required, which to some extent limits the

applicability of the model. In order to enable our method to be

more rapidly and conveniently applied in maritime operations, this

paper plans to address this issue through strategies such as model

compression and pruning, aiming to make the model more suitable

for maritime vision applications.
5 Conclusions

This paper has proposed a prompting image restoration

approach by learning degradation-aware visual prompt for

maritime surveillance. Our proposed approach possesses the

capability to interact with input features, allowing for dynamic

adjustments in weather-related representations. This adaptability

ensures that the restoration process is tailored to the specific

degradation being addressed. This paper has validated the

effectiveness of our method on extensive experimental datasets,

enhancing its restoration performance in various weather

conditions, including rain removal and haze removal in maritime

images. In future work, this paper plans to explore leveraging text
Frontiers in Marine Science 12122
models such as CLIP as alternative prompts to further guide the

image restoration process.
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TABLE 5 Comparison of model efficiency.

Uformer Restormer IDT DRSformer Ours

Paramaters (M) 50.8 26.1 16.4 33.7 35.6

Flops (G) 45.9 174.7 61.9 242.9 43.2
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Underwater image super-resolution is vital for enhancing the clarity and detail of

underwater imagery, enabling improved analysis, navigation, and exploration in

underwater environments where visual quality is typically degraded due to

factors like water turbidity and light attenuation. In this paper, we propose an

effective hybrid dynamic Transformer (called HDT-Net) for underwater image

super-resolution, leveraging a collaborative exploration of both local and global

information aggregation to help image restoration. Firstly, we introduce a

dynamic local self-attention to adaptively capture important spatial details in

degraded underwater images by employing dynamic weighting. Secondly,

considering that visual transformers tend to introduce irrelevant information

whenmodeling the global context, thereby interfering with the reconstruction of

high-resolution images, we design a sparse non-local self-attention to more

accurately compute self-similarity by setting a top-k threshold. Finally, we

integrate these two self-attention mechanisms into the hybrid dynamic

transformer module, constituting the primary feature extraction unit of our

proposed method. Quantitative and qualitative analyses on benchmark

datasets demonstrate that our approach achieves superior performance

compared to previous CNN and Transformer models.
KEYWORDS

underwater image, image super-resolution, local self-attention, sparse self-attention,
deep learning, visual transformer
1 Introduction

Underwater imaging poses distinct challenges owing to the natural attenuation,

scattering, and color distortion of light within aquatic environments. These factors

contribute to degraded image quality, thereby constraining the effectiveness of

underwater observation, exploration, and surveillance systems (refer to Figure 1).

Consequently, underwater image enhancement techniques, notably super-resolution,

have attracted considerable attention in recent years. Super-resolution aims to

reconstruct high-resolution images from low-resolution counterparts, thereby improving
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image clarity and detail. It holds immense potential for enhancing

the visual quality of underwater scenes, facilitating better analysis,

interpretation, and decision-making in various marine applications,

such as ocean-observation and offshore engineering (Liu

et al., 2024).

Despite recent advancements, underwater image super-

resolution remains an active area of research, with ongoing efforts

to develop robust and efficient algorithms capable of addressing the

specific challenges.

posed by underwater environments (Islam et al., 2020a). Early

efforts in underwater image super-resolution predominantly relied

on traditional interpolation algorithms such as bicubic and bilinear.

These approaches, while widely used in conventional image

processing tasks, often yielded suboptimal results when applied to

underwater imagery due to the unique characteristics of

underwater environments.

In recent years, significant strides have been made in leveraging

deep learning techniques, particularly convolutional neural

networks (CNNs), for underwater image super-resolution. Unlike

conventional interpolation methods, CNN-based approaches

harness the capabilities of deep learning to discern intricate

mappings between low-resolution and high-resolution image pairs

directly from data. Various architectures, such as SRCNN (Super-

Resolution Convolutional Neural Network) (Dong et al., 2015),

VDSR (Very Deep Super-Resolution) (Kim et al., 2016), and EDSR

(Enhanced Deep Super-Resolution) (Lim et al., 2017), have

demonstrated remarkable performance improvements over those

of conventional approaches. Subsequent research tends to focus on

developing larger and deeper CNN models to enhance learning

capabilities. However, due to the extensive number of network

parameters, the computational cost of these methods is

considerably high, limiting their applicability in real-world

underwater scenarios (Jiang et al., 2021).

Later, Transformer-based architectures (Vaswani et al., 2017)

have emerged as promising alternatives for underwater image

super-resolution, offering unique advantages over CNN-based
Frontiers in Marine Science 02125
approaches. Unlike CNNs, Transformers leverage self-attention

mechanisms to capture global dependencies and long-range

dependencies within the input data (Han et al., 2022). For

example, SwinIR (Liang et al., 2021) employs the window-based

attention mechanism to better solve image super-resolution.

Although the self-attention mechanism in the sliding window

approach enables the extraction of local features, the

discontinuity of the windows limits the ability to model local

features within each window. In other words, these window-based

image super-resolution methods are unable to aggregate

information from outside the window, thus limiting the capability

to model global information (Li et al., 2023a).

Indeed, the complexity and variability inherent in underwater

environments elevate the challenges associated with underwater

image super-resolution beyond those encountered in natural image

superresolution tasks. The Transformer model, renowned for its

adeptness in capturing global features, tends to introduce noticeable

redundancy during the modeling process. Regrettably, this aspect

has often been neglected in prior Transformer-based super-

resolution approaches (Xiao et al., 2024). Therefore, developing a

method to explore the characteristics of Transformers, aiming to

better integrate both local and global features for joint modeling to

achieve high-quality image reconstruction while reducing

computational costs, holds significant promise.

To this end, we develop an effective hybrid dynamic

Transformer (called HDT-Net) to solve underwater image super-

resolution. The proposed method combines dynamic local self-

attention with sparse non-local self-attention to synergistically

enhance the representation capability of the Transformer model.

The former dynamically explores local feature relationships based

on a fully CNN model, mitigating errors induced by discontinuous

windows. The latter aggregates features by selecting the most useful

similarity values, alleviating redundancy caused by small self-

attention weights. These strategies are carefully designed to

address the challenges of complex underwater environments,

thereby leveraging more effective feature information to improve

the quality of image super-resolution. Finally, experimental

validation on benchmark datasets confirms the effectiveness of the

proposed approach.

In summary, the main contributions of this paper are as follows:
• We propose a lightweight deep model based on a hybrid

Transformer for underwater image super-resolution tasks,

aiming to enhance the quality of image reconstruction by

jointly exploiting local and global features representation.

•We integrate a dynamic local self-attention and a sparse non-

local self-attention to enable better capture of local and

global feature information respectively, making the

Transformer more effective and compact in long-

range modeling.

• Experimental evaluation on commonly used benchmark

datasets for underwater image super-resolution

demonstrates that our method outperforms previous CNN

and Transformer-based approaches both quantitatively

and qualitatively.
FIGURE 1

The physical imaging process of underwater conditions.
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2 Related work

In this section, we present a review of recent work related to

underwater image super-resolution and vision transformer.
2.1 Underwater image super-resolution

Underwater image super-resolution is an uncertain task, and

numerous studies have been conducted to explore suitable methods

to address this challenge. Among the deep learning-based

underwater image super-resolution models, CNN is one of the

most common techniques. Shin et al. (Shin et al., 2016). proposed a

CNN-based framework for estimating environmental light and

transmission, featuring a versatile convolutional structure

designed to mitigate haze in underwater images. Wang et al.

(Wang et al., 2017). proposed a CNN-based underwater image

enhancement framework called UIE-Net, comprising two sub-

networks: CC-Net and HR-Net. CC-Net outputs color absorption

coefficients for different channels to correct color distortion

in underwater images. HR-Net outputs light attenuation

transmission maps to enhance the contrast of underwater images.

Li et al. (Li et al., 2017). proposed a novel generator network

structure that combines the underwater image formation process

to generate high-resolution output images. Subsequently, a dense

pixel-level model learning pipeline is employed to perform color

correction on monocular underwater images trained based on RGB-

D and their corresponding generated images. The methods describe

above address some aspects of underwater image super-resolution,

yet they still exhibit a lack of robustness when handling highly

complex underwater scenes.

Li et al. (Li et al., 2019). constructed an underwater image

enhancement benchmark dataset, which provides a large-scale

collection of real underwater images along with their

corresponding reference images. This benchmark dataset

facilitates comprehensive research on existing underwater image

enhancement methods and enables easy training of CNNs for

underwater image enhancement. But it lacks novelty in terms of

algorithmic advancements compared to other methods. Guo et al.

(Guo et al., 2019). proposed an underwater image enhancement

method based on GAN. Additionally, the introduced MSDB

combined with residual learning can improve network

performance, while multiple loss functions can generate visually

satisfactory enhancement results. Islam et al. (Islam et al., 2020b).

proposed a simple yet effective underwater image enhancement

model based on conditional genetic algorithms. This model

evaluates image quality by incorporating global color, content,

local texture, and style information to establish a perceptual loss

function. Additionally, they provided a large-scale dataset

consisting of paired and unpaired underwater image collections

for supervised training. Chen et al. (Chen et al., 2020). proposed an

improved deep reinforcement convolutional neural network based

on deep learning principles. The main innovation involves

incorporating wavelet bases into turbulence-based deep learning

convolutional kernels, introducing an improved dense block
Frontiers in Marine Science 03126
structure. Further investigation is needed to assess the

generalization of the methods utilized in the aforementioned

studies to different underwater conditions.

Recently, Li et al. (Li et al., 2021). proposed a deep underwater

image enhancement model. This model learns feature

representations from different color spaces and highlights the

most discriminative features through channel attention modules.

Additionally, domain knowledge is integrated into the network by

utilizing inverse media transmission maps as attention weights. Li

et al. (Li et al., 2023b). proposed a novel method for realistic

underwater image enhancement and super-resolution called

RUIESR. Its purpose is to obtain paired data consistent with

realistic degradation for training and to accurately estimate dual

degradation to assist in reconstruction. In deep-sea or heavily

polluted waters, the degradation characteristics may differ from

those observed in the training data, potentially affecting the

performance of the above methods. Dharejo et al. (Dharejo et al.,

2024). investigated the integration of a typical Swin transformer

with wave attention modules and reversible downsampling to

achieve efficient multiscale self-attention learning with lossless

downsampling. As a potential improvement over SwinIR, this

model allows for faster training and convergence, as well as

greater capacity and resolution. The computational complexity

and resource requirements of this Transformer-based method

may pose challenges.
2.2 Vision transformer

Vision Transformer (ViT) (Vaswani et al., 2017) is a model

based on the Transformer architecture, initially proposed by

Dosovitskiy et al. (Dosovitskiy et al., 2020). in 2020 to address

image classification tasks in the field of computer vision. The

introduction of ViT signifies the expansion of Transformer

models from the domain of natural language processing to

computer vision, ushering in a new paradigm for image

processing tasks. Liang et al. (Liang et al., 2021). proposed

an image restoration model called SwinIR. This model consists of

three modules: shallow feature extraction, deep feature

extraction, and HR reconstruction. It emphasizes the content-

based interaction between image content and attention weights,

achieved through a shifting window mechanism for long-

range dependency modeling. The IPT (Chen et al., 2021)

employs a multi-head, multi-tail, shared transformer body design,

aiming to maximize the potential of the transformer architecture in

serving various image processing tasks such as image super-

resolution and denoising. The high computational complexity

arising from this Transformer design may limit scalability to

high-resolution images.

DRSAN (Park et al., 2021) proposes a dynamic residual network

solution for lightweight super-resolution systems, leveraging

different combinations of residual features considering input

statistics. Additionally, it introduces residual self-attention, which,

in collaboration with residual structures, enhances network

performance without adding modules. Zamir et al. (Zamir et al.,
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2022). introduced Restormer, an image restoration transformer

model known for its high computational efficiency in handling

high-resolution images. They made critical design adjustments to

the core components of the transformer block to enhance feature

aggregation and transformation. To integrate the robustness of

CNNs into the Transformer model, Restormer incorporates deep

convolutions for encoding spatial local context. ELAN (Zhang et al.,

2022) utilizes shift convolution (shift-conv) to effectively extract

local structural information from the image. Subsequently, it

introduces an intra-group multi-scale self-attention (GMSA)

module to leverage the long-range dependency of the image.

Further acceleration of the model’s computation is achieved by

employing a shared attention mechanism. In the task of image

super-resolution, the effectiveness of integrating local and global

feature representations in the aforementioned methods still requires

further improvement.

Diverging from current approaches, we introduce a lightweight

deep model rooted in a hybrid dynamic Transformer (HDT-Net).

The goal is to bolster the quality of image reconstruction by

synergizing local and global feature representations.
3 Proposed method

In this section, we first describe the overall pipeline of the

model. Then, we provide details of the hybrid dynamic transformer

module (HDTM), which serve as the fundamental building modules

of the approach. HDTM is composed of four identical hybrid

dynamic transformer blocks (HDTBs) connected end to end, as

illustrated in the Figure 2. The HDTB mainly comprises three key

elements: dynamic local self-attention (DLSA), sparse non-local

self-attention (SNSA), and feed-forward network (FFN).
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3.1 Overall pipeline

Figure 2 illustrates an overview of the proposed HDT-Net for

underwater image super-resolution. Specifically, the low-resolution

underwater image is first processed through a convolutional layer

with a filter size of 3×3 pixels for shallow feature extraction.

Subsequently, the feature information is sequentially processed

through six identical HDTMs for deep feature extraction and

fusion, both locally and globally. Within each HDTM, four

internal HDTBs are connected end to end for processing, and the

extracted features are finally passed to the next module through a

3 × 3 convolution. After the completion of HDTM processing, the

features are further projected using a convolutional layer with a

filter size of 3 × 3 pixels. Following that, high-resolution image

reconstruction is performed through a 3 × 3 convolution and

upsampling operation using PixelShuffle (Shi et al., 2016).

The process of the overall pipeline can be represented as

Equations 1-4:

X
0
= Conv3�3(X), (1)

HDTMs = HDTM6(… (HDTM1(X
0))), (2)

Xlow = X0 + HDTMs(X
0), (3)

Xhigh = P(Conv3�3(Xlow)), (4)

where X,Conv3� 3,  P( · ),Xlow,Xhigh represent the input features

and 3 × 3 convolution, upsampling operation using PixelShuffle,

low resolution image features and high resolution image features,

respectively. The process of HDTM in the overall pipeline can be

expressed as Equations 5, 6:
FIGURE 2

The overall architecture of the proposed network.
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HDTBs = HDTB4(… (HDTB1(X))), (5)

HDTM = X + Conv3�3(HDTBs(X)) (6)
3.2 Hybrid dynamic transformer block

We propose a hybrid dynamic transformer block consisting of

DLSA, SNSA, and FFN. By combining DLSA and SNSA, the hybrid

self-attention mechanism effectively weights each position against

others in the input data, facilitating the integration of global

information into each position’s representation. Moreover, it

enables the capturing of both global and local feature

relationships at different positions in the image, allowing the

model to capture long-range dependencies in the data. After each

self-attention computation, the representation at each position

undergoes non-linear transformation through FFN, mapping it to

a new representation space to enhance the model’s expressiveness.

Formally, given the input features of the (l − 1)-th block Xl−1, the

encoding of the HDTB process can be represented as Equations 7–

10:

Xd
l = Xl−1 + DLSA(LN(Xl−1)), (7)

Xf
l = Xd

l + FFN(LN(Xd
l )), (8)

Xs
l = Xf

l + SNSA(LN(Xf
l )), (9)

Xl = Xs
l + FFN(LN(Xs

l )), (10)

where LN denotes the layer normalization, Xd
l . d Xs

l represent the

outputs of DLSA and SNSA, Xf
l . d Xl represent the outputs of FFN,

which are described below.

3.2.1 Dynamic local self-attention
To enhance the extraction and fusion of local features, we

introduce a DLSA method aimed at capturing spatial

relationships within an image, while also accommodating variable

receptive fields. In contrast to conventional self-attention

mechanisms, DLSA functions uniformly across the entire image.

This dynamic approach empowers each spatial location to

selectively attend to its nearby regions based on contextual cues.

Specifically, given input features Xin ∈ RH�W�C generated by layer

normalization, 1 × 1 convolution is performed for feature

aggregation. Similar to (Li et al., 2023a), we introduce a squeeze

and excitation network (SENet) (Hu et al., 2018) as our dynamic

weight generation network, which has no normalization layers and

non-linear activations. Additionally, we employ a 3×3 depth-wise

convolutional layer in SENet to encode features, ensuring better

calculation of dynamic attention for local attention.

The proposed dynamic weight generation formula is as

Equations 11-13:

X1 = DCo n v3�3 ( C o n v1�1 ( Xi n )), (11)
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X2 = C on v1�1 ( X1 ), (12)

W (x) = R( X2 ), (13)

where R( · ) represents the reshaping function. In DLSA, we utilize

learnable dynamic convolutions. Unlike traditional fixed kernels,

learnable dynamic convolutional kernels offer greater flexibility and

adaptability. Each pixel has a corresponding K × K dynamic kernel

for dynamic convolution. We divide the number of feature channels

intoG heads, and learn separate dynamic weights in parallel. For the

generated pixel-wise weights W, we obtain the aggregated features

using the following formula as Equation 14:

DLSA(X) = W⊛Xin, (14)

where ⊛ denotes the dynamic convolution operation using weight

sharing across each channel.

3.2.2 Sparse non-local self-attention
Due to the fact that the dynamic estimated features generated by

DLSA are based on fully convolutional operations, the efficiency of

modeling global features is relatively low. To better perceive global

features, we revisit the standard dot-product self-attention in

Transformer (Zamir et al., 2022). However, this algorithm

calculates attention maps based on fully connected operations for

all query-key pairs. In our work, we develop SNSA to replace it,

which leverages sparsity by selecting the top-k tokens (Chen et al.,

2023) most relevant to the query, thus obtaining the most crucial

information for computation. This approach avoids involving

irrelevant information in the feature interaction process.

Specifically, we first perform feature aggregation by applying a

1 × 1 convolution, followed by a depthwise convolution with filter

size of 3×3 pixels to encode per-channel contexts. This allows for

self-attention computation across the three dimensions of query Q,

key K, and value V, rather than spatial dimensions. Utilizing

channel-wise similarity helps reduce memory consumption for

efficient inference. Next, we compute the similarity between all

pairs of queries and keys, and employ a selection strategy to

mask out values with lower similarity, retaining those with

higher similarity.

As shown in the Figure 2, k represents an adjustable parameter

for dynamically setting the sparsity level. When k=70%, only the top

70% of elements with the highest scores are retained for activation,

while the remaining 30% of elements are masked as 0. Finally,

softmax is applied to normalize elements larger than the top-k,

ensuring the output is a probability distribution. For elements with

scores less than top-k, we use a scatter function to replace their

probability at the given index with 0. This dynamic selection results

in attention following a sparse distribution. Finally, matrix

multiplication is used to multiply softmax with Value, which is

then connected to the input residual through feature projection to

obtain the final result.

The derivation formula for SNSA is as Equation 15:

SNSA(Q,K,V) = S Mk⊙
QK⊤

l

� �
V, (15)
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where S( · ) represents the softmax operation, l is an

optional temperature factor defined by l =
ffiffiffi
d

p
. Typically, multi-

head attention is applied to each of the k new Q, K, and V,

resulting in d = C/k channel dimension outputs, which are

then concatenated and projected linearly to obtain the final result

of all heads.

½Mk�ij =
1, Mij ∈  top − k (row j) 

0,  otherwise 
,

(
(16)

where Mk denotes the top-k selection operator in Equation 16.
3.2.3 Feed-forward network
To extract sophisticated features from both the local and global

self-attention data of the model and facilitate the learning of

abstract representations, we introduce the FFN following

the DLSA and SNSA modules. Specifically, we design two

branches based on gating mechanisms. It first uses 1×1

convolutions for feature transformation and then employs 3 × 3

depth-wise convolutions to encode information from spatially

adjacent pixel positions. One branch is used to expand feature

channels, while in the other branch, it is activated along with the

Gelu nonlinearity to reduce the channels back to the original input

dimension and search for nonlinear contextual information in the

hidden layers.

The FFN is formulated as Equations 17-19:

X1 = GELU(Conv3�3(Conv1�1(X))), (17)

X2 = Conv3�3(Conv1�1(X)), (18)

X̂ = Conv1�1(X1 ⊙X2) + X : (19)

In general, FFN plays a distinctly different role compared to

self-attention. It controls the flow of information passing through

various levels of our pipeline, allowing each level to focus on

complementary contextual information to other levels.
3.3 Loss function

Building upon existing methods, we adopt the L1 loss function

as the loss function for our model. The expression for the L1 loss

function is defined as Equation 20 :

L =
1
No

N

i=1
║ yi − ŷ i ║1, (20)

where N is the number of samples in the dataset. yi represents the

ground truth value for the i-th sample. ŷ i represents the predicted

value for the i-th sample.

The L1 loss function calculates the mean absolute error between

the predicted values and the ground truth values, providing a

measure of the average magnitude of the errors.
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4 Experiments

In this section, we first introduce the implementation details,

datasets and evaluation metrics. Then, we compare the proposed

HDT-Net with 10 baseline methods, including bicubic, SRCNN

(Dong et al., 2015), DSRCNN (Mao et al., 2016), SRGAN (Ledig

et al., 2017), SRDM-GAN (Islam et al., 2020a), RFDN (Liu et al.,

2020), LatticeNet+ (Luo et al., 2020), SMSR (Wang et al., 2021), IPT

(Chen et al., 2021), and SwinIR (Liang et al., 2021). Finally, ablation

experiments are conducted to validate the effectiveness of the

proposed method. The experiments are trained on a server with

two NVIDIA GeForce RTX 3090 GPUs.
4.1 Experimental settings

4.1.1 Implementation details
In the proposed SNSA, the threshold for top-k is set to 70%.

We will analyze its impact in the ablation study. During the

training, the batch size and patch size are configured as 16 and

64, respectively. The number of multi-head self-attention is set to be

6, and the number of feature is set to be 90. We utilize the

Adam optimizer (Kingma and Ba, 2014) with default parameter

configurations to train our model. The initial learning rate is

established at 5 × 10−4, employing a multi-step scheduler over

500K iterations.

4.1.2 Datasets and evaluation metrics
We validate the performance of various methods using

the classic underwater image super-resolution benchmark

datasets, USR-248 and UFO-120 (Liu et al., 2024). Each

dataset showcases distinct underwater degradation characteristics,

enabling comprehensive evaluation across diverse underwater

imaging scenarios. Consistent with previous studies, we utilize

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural

Similarity Index) scores (Wang et al., 2004) to quantitatively

compare the restoration results of different algorithms, enabling

performance evaluation. In addition, we conduct evaluation

calculations on the model parameter quantities of different

deep networks.
4.2 Quantitative evaluation

Following (Dharejo et al., 2024), Table 1 presents the

quantitative results of various methods on the USR-248 and

UFO-120 datasets, including experimental setups with three

different super-resolution scaling factors: ×2, ×4, and ×8.

As shown, the experimental results demonstrate that our

proposed HDT-Net consistently achieves the best quantitative

performance. Compared to the state-of-the-art method

SwinIR (Liang et al., 2021), our approach shows an average

improvement of 0.5dB in PSNR, with a reduction in parameters

by 58%. This indicates that our proposed hybrid transformer,
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as opposed to window-based transformers, can better capture

feature correlations. Particularly challenging is the task of image

super-resolution at a scaling factor of ×8. In contract, our proposed

solution, leveraging the efficient fusion of local and global

information, exhibits robust performance advantages in complex

underwater scenes.
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4.3 Qualitative evaluation

Figures 3, 4 illustrate the visual comparison results of different

methods on the USR-248 and UFO-120 datasets, respectively. Note

that we do not compare RFDN (Liu et al., 2020) and LatticeNet+

(Luo et al., 2020) as their visual results are not available. It is evident
TABLE 1 Quantitative comparisons of different methods on the USR-248 and UFO-120 datasets.

Methods

USR-248 UFO-120 Average

Params(M)Scale PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic x2 26.78 0.8263 27.01 0.8465 26.89 0.8364 –

SRCNN x2 27.89 0.8467 27.12 0.8654 27.50 0.8560 0.067

DSRCNN x2 28.12 0.8584 27.88 0.8731 28.00 0.8657 0.361

SRGAN x2 28.41 0.8612 28.54 0.8815 28.47 0.8713 1.54

SRDM-GAN x2 28.51 0.8592 28.58 0.8823 28.54 0.8707 0.586

RFDN x2 28.72 0.8633 28.81 0.8841 28.76 0.8737 0.528

LatticeNet+ x2 28.74 0.8714 28.85 0.8854 28.79 0.8784 0.75

SMSR x2 28.88 0.8712 28.91 0.8862 28.89 0.8787 0.985

IPT x2 29.33 0.8831 29.05 0.8921 29.19 0.8876 11.3

SwinIR x2 29.88 0.9018 30.01 0.9021 29.94 0.9019 11.45

Ours x2 31.23 0.9217 31.54 0.9168 31.38 0.9192 4.71

Bicubic x4 25.07 0.7823 25.12 0.8165 25.09 0.7994 –

SRCNN x4 25.17 0.7978 25.21 0.8157 25.19 0.8067 0.067

DSRCNN x4 25.78 0.8064 26.81 0.8177 26.29 0.8120 0.361

SRGAN x4 26.09 0.8178 26.14 0.8188 26.11 0.8183 1.54

SRDM-GAN x4 26.19 0.8211 26.51 0.8247 26.35 0.8229 0.586

RFDN x4 26.66 0.8216 26.81 0.8350 26.73 0.8283 0.528

LatticeNet+ x4 26.78 0.8239 26.85 0.8245 26.81 0.8242 0.75

SMSR x4 27.07 0.8296 27.15 0.8310 27.11 0.8303 0.985

IPT x4 27.11 0.8626 27.16 0.8632 27.13 0.8629 11.3

SwinIR x4 27.18 0.8634 27.27 0.8644 27.22 0.8639 11.45

Ours x4 27.69 0.8712 27.82 0.8745 27.75 0.8728 4.71

Bicubic x8 23.46 0.7684 23.84 0.7781 23.65 0.7732 –

SRCNN x8 24.07 0.7877 24.12 0.7981 24.09 0.7929 0.067

DSRCNN x8 24.12 0.7987 24.18 0.8031 24.15 0.8009 0.361

SRGAN x8 24.22 0.8021 24.29 0.8024 24.25 0.8022 1.54

SRDM-GAN x8 24.41 0.8162 24.47 0.8178 24.44 0.8170 0.586

RFDN x8 24.55 0.8178 24.67 0.8218 24.61 0.8198 0.528

LatticeNet+ x8 25.08 0.8321 25.11 0.8324 25.09 0.8322 0.75

SMSR x8 25.16 0.8344 25.23 0.8354 25.19 0.8349 0.985

IPT x8 25.22 0.8353 25.34 0.8411 25.28 0.8382 11.3

SwinIR x8 25.82 0.8555 26.04 0.8559 25.93 0.8557 11.45

Ours x8 26.37 0.8662 26.48 0.8655 26.42 0.8658 4.71
Bold indicates the best results.
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that effectively enhancing image resolution quality in complex

underwater environments presents a formidable challenge

compared to natural images. We find that the restoration results

of most Transformer-based approaches tend to smooth out the

details and textures of the images, which is attributed to the dense

pattern of self-attention mechanisms. Furthermore, window-based

self-attention global modeling methods fail to effectively aggregate

information outside the window, thus affecting the quality of the

restored images, as observed in SwinIR (Liang et al., 2021). In

contrast, our proposed method achieves better image restoration by

exploring the aggregation of local and global information. These

quantitative and qualitative results indicate the effectiveness of the

proposed hybrid dynamic Transformers, providing new insights

into the challenging task of underwater image super-resolution.
4.4 Ablation study

In this section, we conduct a further analysis of the impact of

the components proposed in our method and compare it against

baseline models. To ensure a fair comparison, we employ the same

settings used to train all baseline models as those of the proposed

method. Here, we conduct ablation experiments with ×2 super-

resolution on the USR-248 dataset. Specifically, the ablation study

includes (1) effectiveness of the DLSA and SNSA, (2) effect of top-k

values in the SNSA, and (3) effect of the number of HDTMs.
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4.4.1 Effectiveness of the DLSA and SNSA
First, we analyze the effectiveness of the two key components

proposed in the method, including DLSA and SNSA. To do this, we

separately remove one of the components for comparative analysis.

Table 2 presents the quantitative results of different variant models. It

can be seen that our approach combining DLSA and SNSA achieves

the best performance. Figure 5 illustrates the visual comparison results

of different ablation models. It can be observed that, compared to

using only a single self-attention mechanism for feature modeling, our

proposed method can better restore the structure and detail regions of

underwater images. The combination of local and non-local self-

attention mechanisms enables the model to strike a balance between

enhancing local details and preserving the overall scene context,

resulting in more accurate and coherent super-resolved images.

4.4.2 Effect of top-k values in the SNSA
Next, we analyze the impact of the top-k value in SNSA.

Regarding the choice of sparsity value, it also plays a crucial role

in determining the performance of the model. A smaller sparsity

value may result in a dense attention map, which could lead to
FIGURE 3

Image super-resolution comparisons for different methods on the USR-248 dataset.
FIGURE 4

Image super-resolution comparisons for different methods on the UFO-120 dataset.
TABLE 2 Quantitative comparison of ablation results about the
effectiveness of DLSA and SNSA.

Models w/o DLSA w/o SNSA Ours

PSNR/SSIM 30.48/0.9060 29.63/0.8958 31.23/0.9217
f
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increased computational overhead and potential overfitting to noisy

or irrelevant features. On the other hand, a larger sparsity value may

cause the model to miss important global context or relevant

features. Therefore, selecting an optimal sparsity value, such as

k=70% in Figure 6, strikes a balance between capturing sufficient

global information and maintaining computational efficiency,

ultimately contributing to improved performance in underwater

image super-resolution tasks.

4.4.3 Effect of the number of HDTMs
Finally, we analyze the impact of the number of HDTMs in the

network backbone. Figure 7 presents the quantitative results using

different numbers of HDTMs. It can be observed that when the

number ranges from 6 to 8, the growth of PSNR value gradually

converges. Therefore, to balance model efficiency and performance,

we ultimately choose N = 6 as the configuration for the

final network.
4.5 Limitations

While our proposed method demonstrates superior

performance on classical underwater image super-resolution

datasets (visible data) (Liu et al., 2024), its applicability is
Frontiers in Marine Science 09132
currently somewhat limited. The model’s performance is

significantly affected in scenarios with low light conditions, such

as deep-sea environments or areas with poor visibility, where

methods utilizing sonar (Yang, 2023; Zhang et al., 2024) for

detection are more prevalent. To adapt our method to a wider

range of underwater scenarios, we will explore the potential

applications of the proposed method in sonar images.
5 Conclusions

In this paper, we have proposed an effective hybrid dynamic

Transformer for underwater image super-resolution. We demonstrate

the crucial importance of jointly exploring local features and global

information in underwater image reconstruction for achieving high-

quality results. At the technical level, we integrate dynamic local self-

attention and sparse non-local self-attention to stack into the hybrid

dynamic transformer module, forming the backbone of our proposed

method. The former effectively captures details in underwater image

regions, while the latter aids in the recovery of global image structure

and color. Our proposed method achieves satisfactory reconstruction

results on benchmark datasets. In future work, we will explore the

extension of this hybrid transformer approach to other navigation-

related visual tasks.
FIGURE 5

Visual comparison of ablation results about the effectiveness of DLSA and SNSA.
FIGURE 6

Comparison of ablation results about the effect of top-k values in
the SNSA.
FIGURE 7

Comparison of ablation results about the effect of the number
of HDTMs.
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In maritime logistics optimization, considerable research efforts are focused on

the extraction of deep behavioral characteristics from comprehensive shipping

data to discern patterns in maritime vessel behavior. The effective linkage of

these characteristics withmaritime infrastructure, such as berths, is critical for the

enhancement of ship navigation systems. This endeavor is paramount not only as

a research focus within maritime information science but also for the progression

of intelligent maritime systems. Traditional methodologies have primarily

emphasized the analysis of navigational paths of vessels without an extensive

consideration of the geographical dynamics between ships and port

infrastructure. However, the introduction of knowledge graphs has enabled the

integration of disparate data sources, facilitating new insights that propel the

development of intelligent maritime systems. This manuscript presents a novel

framework using knowledge graph technology for profound analysis of maritime

data. Utilizing automatic identification system (AIS) data alongside spatial

information from port facilities, the framework forms semantic triplet

connections among ships, anchorages, berths, and waterways. This enables

the semantic modeling of maritime behaviors, offering precise identification of

ships through their diverse semantic information. Moreover, by exploiting the

semantic relations between ships and berths, a reverse semantic knowledge

graph for berths is constructed, which is specifically tailored to ship type, size,

and category. The manuscript critically evaluates a range of graph embedding

techniques, dimensionality reduction methods, and classification strategies

through experimental frameworks to determine the most efficacious

methodologies. The findings reveal that the maritime knowledge graph

significantly enhances the semantic understanding of unmanned maritime

equipment, thereby improving decision-making capabilities. Additionally, it

establishes a semantic foundation for the development of expansive maritime

models, illustrating the potential of knowledge graph technology in advancing

intelligent maritime systems.
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1 Introduction
The advent of smart maritime systems was marked by the

integration of distributed devices and the application of artificial

intelligence (AI) and machine learning (ML) technologies. These

systems extensively utilize sensors, including GPS, radar, and

meteorological sensors, to capture real-time positioning and vital

status information of vessels. However, the maritime domain is

characterized by intricate spatiotemporal relationships, influenced

by factors such as ship trajectories, weather variations, and port

activities. Traditional AI and ML techniques face challenges in

accurately modeling these relationships due to their limited

knowledge representation capabilities, which fail to generalize the

dynamic and multidimensional nature of the maritime

environment. Additionally, the heterogeneity of maritime data,

arising from disparate sources and formats, poses significant

challenges in data standardization and interoperability in initial

smart maritime systems.

To address these limitations, this study introduces knowledge

graphs as a sophisticated method for exploring complex

spatiotemporal relationships within the maritime domain. By

defining entities and their interconnections, knowledge graphs

offer a robust mechanism for semantic consistency, facilitating the

resolution of semantic discrepancies during the information fusion

process and ensuring data standardization and consistency. This

knowledge graph-based approach, which transcends traditional

distributed device and ML methods, enables advanced intelligent

queries and reasoning with its graph data representation. Moreover,

it exhibits remarkable scalability, allowing for the seamless

integration of new entities and relationships (Fensel et al., 2020).

Within the maritime sector, this methodology enables

comprehensive analyses through the rules and relationships

defined in the knowledge graph, thereby offering flexible

adaptation to the evolving informational landscape and

supporting a wider array of application scenarios.

A knowledge graph constitutes a network of interconnected

entities and their relationships, where each entity and its attributes

represent distinct knowledge points, and the relationships describe

the associations among these points. Formally, a knowledge graph

G is represented as G ∈ (E,  R,   S), where E = e1, e2,…, en  f g
denotes the entity set in the knowledge base, encompassing Ej j
distinct entities; R = r1, r2,…, rnf g signifies the relationship set,

comprising Rj j different relationships; and S⊆ E � R� E

encapsulates the triple set within the knowledge base. A triplet,

the fundamental unit of this representation, is denoted as s =

(h,   r,   t), where h,   t ∈ E represent the head and tail entities in

the triplet, and r ∈ R denotes the relationship connecting these two
02136
entities. For instance, in the triplet (Paris, the Capital of, France), the

head “Paris“ and the tail “France“ are real-world entities connected

through the relationship “the Capital of”. Graph data in knowledge

graphs, characterized by numerous nodes and edges, represent a

high-dimensional data structure. However, processing such data

can introduce computational complexity, the curse of

dimensionality, and challenges in interpretability and

visualization. Graph embedding techniques, therefore, are crucial

for transforming high-dimensional graph data into manageable,

lower-dimensional vector representations, capturing the intrinsic

relationships, similarities, and structural characteristics among

graph nodes (Wang et al., 2017). Prominent embedding

methodologies like TransE (Bordes et al., 2013), TransD (Wang

et al., 2014), and RESCAL (Nickel et al., 2011), among others,

facilitate dimensionality reduction and vectorization of graphs

through diverse principles. Knowledge graphs and graph

embedding techniques have found application across intelligent

transportation and maritime sectors (Ahmed et al., 2022; Liu et al.,

2023a; Wang et al., 2023a; Liu et al., 2023b; Li et al., 2024) for

functions such as traffic anomaly detection, marine environmental

monitoring, and maritime geographic analysis, presenting their

versatility and utility in addressing industry-specific challenges.

In shipping, ships form similar geographical relationships with

geographic elements such as waterways, anchorages, and berths.

Meanwhile, berths also consider the size and cargo type of ships in

order to accommodate them, forming a relationship with the

attributes of the ships. However, traditional recommendation

methods are manual and cannot empower decision-making

machines to meet the requirements of shipping. Therefore, the

following two problems need to be addressed in research: (1) How

to characterize the behavior of ships and the profile of berths using

an understandable semantic pattern; (2) How to assist unmanned

devices in making accurate decisions based on this pattern, thereby

ensuring the safety of jurisdictional waters and efficiency of the port.

This study introduces the “Maritime Heterogeneous Knowledge

Graph Brain”, a concept based on the heterogeneous knowledge

graph’s construction. This system capitalizes on the heterogeneous

knowledge graph data to autonomously perform tasks such as node

classification, clustering, link prediction, and multimodal fusion,

which integrates node and edge features, graph structure, and

contextual characteristics. The “Maritime Heterogeneous

Knowledge Graph Brain” employs diverse maritime graph data to

enhance ship dispatch efficiency, optimize maritime decision-

making, and improve the utilization of shore-based facilities,

thereby boosting emergency response capabilities in ports and

maritime environments. As depicted in Figure 1, the maritime

heterogeneous knowledge graph is stored across multiple

distributed databases. Information is then transmitted to various
frontiersin.org
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task-specific terminals, such as ships and shore-based facilities, via

servers dedicated to different tasks. This arrangement facilitates

real-time processing and response, advancing the development of

maritime intelligence. The study conducts experiments and

analyzes the effects based on the previously constructed maritime

heterogeneous knowledge graph, focusing on typical applications

such as ship classification and similar berth recommendation.

This manuscript combines knowledge graphs with maritime

domain expertise to introduce a pioneering intelligent maritime

application framework predicated on knowledge graph technology.

The principal contributions of this manuscript are shown below:
Fron
1. The manuscript proposes pragmatic solutions to real-world

challenges within the maritime industry. By using

knowledge graph embedding technology, it addresses the

uncertainties inherent in ship type prediction and the

complexities surrounding similar berth recommendations

for these two pivotal business scenarios. These solutions

significantly contribute to enhancing the operational

efficiency of shipping companies, optimizing berth

allocations, and minimizing waiting times.

2. An innovative intelligent maritime application framework,

grounded in knowledge graphs and graph embedding

technology, is proposed. This framework not only

integrates complex data pertaining to ships and

infrastructure but also elucidates deep semantic

relationships between entities via graph embedding

algorithms. Designed with the maritime industry’s

specific requisites in mind, its modular architecture

ensures both sca lab i l i ty and adaptab i l i ty for

prospective applications.

3. The paper investigates the utilization of this framework in

facilitating specific downstream tasks, specifically ship type

prediction and similar berth recommendation. Through

the optimization of embedding models, classification

models, and other components, significant enhancements
tiers in Marine Science 03137
in task accuracy were achieved. Moreover, experimental

validation of the influence of varied weight distributions

within the combined model on the performance of the

berth recommendation system provides novel insights for

the intelligent recommendation system design.
The structure of this manuscript is methodically organized as

follows: Section 1 introduces the prevailing challenges in the

intelligent maritime domain and advocates for the integration of

knowledge graph methodologies. Section 2 delves into related works

concerning knowledge graphs and the analysis of ship behaviors.

Section 3 introduces the proposed intelligent maritime application

framework that leverages knowledge graphs and graph embedding

techniques. Section 4 validates the framework’s efficacy and optimal

performance for various downstream tasks through comparative

experiments. Section 5 discusses the framework’s applicability

scope, alongside its algorithmic constraints. Section 6 concludes

the manuscript, outlining future research trajectories.
2 Related work

2.1 Overview of related work on
knowledge graphs

Knowledge graphs have become instrumental in the realm of

knowledge storage and representation, exerting a significant

influence across diverse domains. The emergence of big data

coupled with advancements in AI technologies has propelled the

exploration and application of knowledge graphs into a prominent

position within various disciplines. These fields include computer

science, natural language processing, information retrieval, ML, and

human-computer interaction (Fensel op. cit.; Wang op. cit.).

In exploring algorithms related to knowledge graphs, current

research trends focus primarily on enhancing the performance of

downstream tasks and refining the accuracy of knowledge graph
FIGURE 1

Illustration of the “Maritime Heterogeneous Knowledge Graph Brain” concept.
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embeddings. While traditional embedding models have shown

commendable results in tasks like knowledge graph completion,

they often overlook temporal dynamics and the integration of

background knowledge. Li et al. (2023a) put forward an

innovative rule-based embedding technique that extracts

attributes from entities, employing logical rules to augment

datasets, which in turn enhances the precision of knowledge

graph completion endeavors. Jiang et al. (2024) unveiled a

cutting-edge link prediction framework that leverages a multi-

source hierarchical neural network based on knowledge graph

embeddings, aimed at overcoming challenges in extracting

intricate graph information and fostering the fusion of multiple

feature knowledge semantics.

Owing to their robust knowledge representation capabilities,

knowledge graphs have found applications in diverse fields,

including recommendation systems (Bertram et al., 2023),

intelligent healthcare (Yang et al., 2024), and industrial

production (Zhengyu et al., 2022). For instance, Chen et al.

(2022) utilized migration data from official provincial and city

websites to craft a knowledge graph that maps the activities of

COVID-19 patients, facilitating tracking, visualization, and

reporting efforts in managing the pandemic. In the maritime

sphere, Liu et al. (2023c) developed a Transformer-based model

employing multi-convolution bidirectional encoders for extracting

essential information from maritime pollution prevention

regulations and laws, aiding in port state control inspections to

minimize ship pollution. Furthermore, Gan et al. (2023) analyzed

ship collision investigation reports issued by the China Maritime

Safety Administration, proposing a novel approach for constructing

knowledge graphs to elucidate the underlying factors of maritime

accidents, thereby aiming to improve maritime traffic safety.

Despite the extensive utility of knowledge graphs across various

sectors, challenges remain in the domain of geographical

information, especially concerning maritime transportation. One

primary issue is the need for real-time updates; maritime data, such

as ship positions and weather conditions, are subject to rapid

changes, necessitating knowledge graphs that can accommodate

immediate updates to mirror the current realities. Additionally, the

integration of disparate data sources to achieve data consistency and

connectivity for a comprehensive knowledge graph poses significant

hurdles. The diversity in data standards and formats across sources

calls for the development of robust data integration and cleansing

methodologies to ensure seamless knowledge graph construction.
2.2 Overview of related work on ship
behavior mining

The advent of deep neural networks, computer vision, and

natural language processing has spotlighted ship behavior mining as

a key area within the intelligent maritime domain. Focused research

endeavors in this area include ship trajectory detection (Deng et al.,

2023; Zhang et al., 2023), intention prediction (Gao and Shi, 2020;

Murray and Perera, 2021), and classification (Zhou et al., 2019),

employing advanced computational models like convolutional

neural networks (CNNs) (Chen et al., 2020, 2024) and generative
Frontiers in Marine Science 04138
adversarial networks (GANs) (Jia et al., 2023). Wang et al. (2023b)

proposed a ship trajectory prediction model based on a sparse

multi-graph convolutional hybrid network. This model simulates

the dynamics and movement patterns of ships across spatial and

temporal dimensions, incorporating features of ship trajectories

that are sensitive to time into the prediction framework. Ma et al.

(2021), by conducting statistical analysis on recorded ship

movement trajectories, discovered that ship movements

frequently show a strong correlation with their long-term

historical trajectories. Consequently, they proposed an augmented

long short-term memory network (ALSTM), which incorporates

skip connections and adaptive memory modules into the traditional

LSTM structure. This enhancement enables current memory units

to engage with past data, facilitating a more sophisticated

representation of the uncertainty and varied movements of

individual ships. Zheng et al. (2022) introduced a proximal policy

optimization and route guidance (PPORG) algorithm for

autonomous ship navigation, focusing on collision avoidance and

route optimization.

Ship classification research has also seen significant

advancements. Escorcia-Gutierrez et al. (2022) employed masked

convolutional neural networks for the detection of small ships and

used a collision body optimization algorithm alongside a weighted

regularized extreme learning machine method for the efficient

classification of the detected ships. Similarly, Liang et al. (2021)

introduced a multi-view feature fusion network (MVFFNet) for

ship classification in the context of imbalanced data. This approach

begins by extracting various multi-view features from automatic

identification system (AIS)-based ship trajectories, followed by the

application of a bidirectional gated recurrent unit network to

amalgamate these multi-view features, thereby producing the ship

classification results.

Multimodal approaches represent a prominent method for

mining ship behavior by extracting features from various sensing

modes and integrating these features to gain a more thorough

understanding and enhanced data mining capabilities. Guo et al.

(2023) developed a multimodal ship trajectory prediction approach

through pattern distribution modeling. This approach utilizes a

vector, randomly sampled from a multivariate Gaussian

distribution, as the representation of trajectory patterns to

generate multiple predicted trajectories. It employs adversarial

learning to allow this Gaussian distribution to effectively capture

ship trajectory patterns. Xiao et al. (2023) introduced an adaptive

data fusion model that leverages multi-source AIS data for ship

trajectory prediction. This model merges maritime mobile service

identifiers and timestamps with multi-source AIS data, utilizing

deep learning techniques for feature extraction and to enhance

adaptability. Wang et al. (2023c) introduced a ship trajectory

prediction model utilizing a sparse multi-graph convolutional

hybrid network (SMCHN), which simulates interactions and

movement trends among ships across temporal and spatial

dimensions. This model enhances its predictive capability by

integrating multi-source information and adjusting weights, and

incorporates a temporal convolutional network with a gating

mechanism for future trajectory predictions. Concurrently, Wang

et al. (2023d) proposed a propagation trajectory interval prediction
frontiersin.org
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framework that employs upper and lower bound estimation and

attention-modified long short-term memory (LSTM) networks

optimized through Bayesian techniques. This framework adopts

dual optimization strategies tailored to interval prediction of ship

trajectories, focusing on differentiated interval widths for longitude

and latitude and a hyperparameter optimization to minimize

coverage width criterion. Wang et al. (2024) presented an

approach that merges spatial and temporal models to extract

high-level features of ships from historical trajectory data.

Employing a spatio-temporal graph convolutional network (ST-

GCN) followed by RT-CNN, this method captures temporal

dependencies of spatial interaction features, yielding refined

spatio-temporal trajectory predictions. Shin et al. (2024)

developed the AIS-ACNet, a deep learning framework for

predicting AIS data that utilizes auxiliary tasks and a

convolutional encoder. This model leverages diverse AIS data

features and effectively integrates ship dynamics to enhance

trajectory prediction accuracy. Zhang et al. (2024) introduced

TrajBERT-DSSM, a novel method for ship destination prediction

that analyzes AIS records to compare navigational trajectories of

vessels with historical data, focusing on spatio-temporal

correlations, geometric properties, and motion patterns. This

method integrates a hierarchical geospatial coding system,

geohash, with TrajBERT and the deep structured semantic model

(DSSM) to assess trajectory similarity and predict destinations. Liu

H et al. (2023) proposed a mechanism for monitoring and detecting

abnormal ship behavior using a graph attention predictive and

reconstructive network. This mechanism employs a sliding window

technique for consistent data input and utilizes the peak over

threshold (POT) method to dynamically adjust anomaly detection

thresholds based on environmental changes in marine settings.

Similarly, Li et al. (2022) presented a method for the semantic

recognition of ship entry and exit movements based on a

probabilistic topic model. This method is capable of uncovering

ship movement patterns from vast amounts of trajectory data in an

unsupervised way, thereby rendering the results more interpretable.

Furthermore, some studies have extended intelligent systems to

other aspects of the maritime domain. Li X et al. (2023) introduced

the temporal fusion transformer (TFT), a forecasting model based

on attention mechanisms, taking the Tianjin Port maritime area as a

case study to achieve multi-period, multi-feature forecasts of

pollutant emissions, providing data references for management

decisions of relevant departments. Xie et al. (2023) utilized the

TFT, a deep learning model for time series forecasting based on

attention mechanisms, to predict the spatiotemporal characteristics

of ship emissions over multiple periods, achieving fine-grained

traceability of ship emissions.

Our maritime prediction framework distinguishes itself from

existing research by its foundation on a heterogeneous knowledge

graph, which incorporates various data processing methods tailored

to different downstream tasks. This design not only enhances the

framework’s scalability but also improves its reusability across

diverse tasks.
Frontiers in Marine Science 05139
3 Technical framework and dataset

3.1 Technical framework

This paper introduces an application framework leveraging the

versatility of knowledge graphs within the maritime domain. The

framework is designed around two key application scenarios: ship

classification and similar berth recommendations. It integrates

knowledge graph embeddings using comprehensive AIS data

from ports and ships, utilizing the resulting vectors for specific

downstream tasks. Additionally, the framework includes a

visualization component, facilitating the graphical representation

of maritime knowledge graphs derived from the dataset.

3.1.1 Process flowchart
The operational flow of this framework is illustrated in Figure 2.

The initial phase involves constructing ship and berth knowledge

graphs from triplet data. Following this, a knowledge graph

embedding model trains on this data to learn the representative

vectors for ships and berths. To improve computational efficiency,

these learned vectors undergo dimensionality reduction. The

dimensionally reduced vectors are then employed in data analysis

for downstream tasks, specifically focusing on ship classification

models and similar berth recommendation strategies.
3.1.2 Graph embedding model
The data within knowledge graphs consist of an extensive array

of nodes and edges, embodying a form of high-dimensional data.

While processing such data is plausible, it often incurs challenges

including computational complexity, the curse of dimensionality,

and impediments in interpretability and visualization. To address

these challenges, graph embedding methods are employed to

transform high-dimensional graph data into more manageable,

lower-dimensional vector representations. This process entails

converting nodes and edges within knowledge graphs into vectors

within a vector space, enabling these vectors to encapsulate the

relationships, similarities, and structural characteristics among

nodes. Such transformation facilitates the application of

knowledge graphs across diverse data analysis and ML endeavors.

In our framework, we adopt various graph embedding models

including TransE (Bordes op. cit.), TransD (Wang op. cit.),

TransH (Lin et al., 2015), TransR (Ji et al., 2017), Analogy (Liu

et al., 2017), ComplEx (Trouillon et al., 2016), and DistMult (Yang

et al., 2014) to capture and elucidate the latent features inherent in

the relationships and entities associated with berths. This

methodology allows for encoding each berth into vectors of

uniform dimensionality, thereby furnishing a quantifiable and

analyzable feature representation for berths. Here is a brief

overview of the graph embedding model implemented in this study.

TransE is a seminal approach to knowledge graph embedding.

Central to TransE is the notion of transforming entities and their

interrelations into vectors within a unified, low-dimensional vector
frontiersin.org

https://doi.org/10.3389/fmars.2024.1390931
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1390931
space, effectively capturing the relational semantics between them.

For each fact triple (h, r, t) in the knowledge graph, TransE treats

this as a translational operation where the vector of the head entity

h, through the action of the relation vector r, aligns with the vector

of the tail entity t. Figure 3A illustrates the TransE model schematic.

The model is trained to minimize the translational distance for

positive sample embeddings while maximizing it for negative ones.

This approach not only enhances the model’s efficacy in tasks like

link prediction but also enhances computational efficiency.

However, TransE has limitations in addressing complex

relationships, such as one-to-many, many-to-one, and many-to-

many scenarios.
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To overcome these limitations, the TransD model extends the

capabilities of TransE. Illustrated in Figure 3B, TransD introduces a

dynamic mapping matrix for each entity-relation pair, which

facilitates the generation of new embeddings for head and tail

entities. This matrix, derived from the original embedding vectors

of the entities and relations, allows TransD to flexibly model a

variety of relationship types. Given a fact triple (h, r, t), In TransD,

the mapped head and tail entity vectors are denoted as h 0 = h +Mrh

and t 0 = t +Mrt, respectively, with Mr being the mapping matrix

calculated based on relation r. Like TransE, TransD employs

translational operations to link the head and tail entities, but its

introduction of a dynamic mapping matrix significantly augments
B

C

D

A

FIGURE 3

(A–D) Schematic diagram of the graph embedding model based on vector decomposition.
FIGURE 2

Framework flowchart.
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the model’s ability to handle complex relational structures, building

upon the foundational principles established by TransE.

The TransH model builds upon the foundations of the TransE

model by introducing a novel approach that models each relation as

a hyperplane. In this setup, entities are projected onto this

hyperplane using relation-specific projection vectors, followed by

a translational operation similar to TransE. Figure 3C illustrates the

schematic diagram of the TransH model. For a given fact triplet

(h, r, t), TransH first computes the projection vectors h⊥  and t⊥ of

the head and tail entities onto the hyperplane corresponding to

relation r. Then, on this hyperplane, it ensures that h⊥ is brought

close to t⊥ through the translation of relation r, i.e., h⊥ + r   ≈   t⊥.

TransH utilizes two principal mapping functions: the projection

function that maps entities from the original space onto the

hyperplane, and a translation function that carries out the

translational operation within the hyperplane. This dual-function

approach allows TransH to model various types of relations with

enhanced flexibility.

Similarly, the TransR model evolves from TransE to address

more complex relational structures within knowledge graphs.

TransR segregates entity and relation embeddings into separate

vector spaces, transforming entity vectors from their native entity

space to the relation-specific space using a dedicated transformation

matrix. The model’s schematic diagram is shown in Figure 3D. For

a fact triplet (h, r, t), TransR first transforms the entities h and r into

the relation space using the corresponding transformation matrix

Mr, yielding transformed head entity hr and tail entity tr. In this

relation space, TransR’s goal is to align the transformed head entity

hr closely with the transformed tail entity tr through the translation

of relation r, i.e., hr + r ≈ tr . While TransR substantially enhances

the handling of complex relationships by utilizing separate spaces,

the requisite transformation matrices add computational and

relational complexity, resulting in increased parameterization and

certain operational constraints.

Analogy is a graph embedding model that emphasizes linear

structures to enhance the representation of semantic information in

knowledge graphs. This model strives to maintain the linear structure

of entity and relation embeddings. For a fact triplet (h, r, t), Analogy

approximates the tail entity t by computing the Hadamard product

of the head entity h with the relation r, denoted as h ∘ r ≈ t, where ∘
represents the Hadamard product between vectors. One of the

notable advantages of Analogy is its simplicity and computational

efficiency. With its streamlined architecture, Analogy can be trained

at a lower computational cost, yet it still manages to learn high-

quality embedding vectors. Additionally, by preserving the linear

structure of embeddings, Analogy effectively captures the complex

semantic relationships inherent in knowledge graphs, making it a

robust model for understanding and processing graph-based data.

The ComplEx model leverages the properties of complex

numbers to enhance the representation of entities and relations in

knowledge graphs, particularly focusing on symmetric and anti-

symmetric relationships. In this model, each entity and relation is

depicted as a vector in the complex space. For a triplet (h, r, t) in the

knowledge graph, ComplEx represents the entities h and t, and the

relation r, as complex vectors h, r, t ∈ Cd . A distinctive scoring

function is employed by ComplEx to assess the validity of a triplet,
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defined as score(h, r, t) = Re(od
i=1hi · ri ·�ti), where Re(·) denotes

taking the real part of the complex number and �ti represents the

conjugate of ti. One of the primary strengths of ComplEx is its

adeptness at articulating symmetrical and anti-symmetrical

relationships via the utilization of complex spaces. For example,

within an anti-symmetrical relation r, if (h, r, t) is valid, then (t, r, h)

is typically not valid, highlighting the model’s capacity to discern

and represent such relational nuances effectively. Additionally, the

ComplEx model is noted for its simplicity and streamlined

parameter set, which contributes to greater efficiency during

training, especially advantageous when handling large-scale

knowledge graphs.

The DistMult graph embedding model utilizes a simplified

matrix factorization approach to learn representations of entities

and relations. In this model, relations are modeled as diagonal

matrices, which significantly reduces the number of parameters and

boosts computational efficiency compared to other matrix

factorization-based graph embedding models. DistMult employs a

direct scoring function to evaluate the validity of a triplet. For a

given triplet (h, r, t), the score is computed by score(h, r, t) =

h⊺diag(r)t, where diag(r) transforms the relation vector r into a

diagonal matrix, and ⊺ denotes the vector transpose. The primary

advantage of the DistMult model is its simplicity and operational

efficiency. By modeling relations as diagonal matrices, DistMult

reduces its parameter load, thereby enhancing its efficiency for

training on large-scale knowledge graphs. However, this simplicity

comes with certain drawbacks. The reliance on diagonal matrices to

represent relations limits DistMult’s ability to capture complex

relational patterns, particularly asymmetric relations.

Consequently, DistMult may underperform in tasks that require

modeling of intricate relationship dynamics compared to more

complex models.
3.1.3 Dimensionality reduction model
Despite the initial transformation of graph data into vector

representations via the aforementioned graph embedding models,

further refinement is crucial to enhance computational efficiency

and focus on the pivotal features of each berth representation

vector. This refinement process aims to filter out noise and

redundant information, thereby sharpening the subsequent

analyses. To achieve this, our framework incorporates established

dimensionality reduction techniques, namely principal component

analysis (PCA) and t-distributed stochastic neighbor embedding (t-

SNE). These methods are adept at condensing the representation

vectors while preserving essential information, thus facilitating

more precise analyses. Here is a brief acknowledgment of the

dimensionality reduction techniques applied in this study.

PCA reduces the dimensionality of data by identifying the

directions that maximize variance within the data. The process

begins with standardizing the data features, followed by calculating

the covariance matrix to analyze correlations between these

features. This analysis helps identify the principal directions of

variance, known as principal components. The original data are

then projected onto the new space defined by these principal

components, effectively reducing its dimensionality.
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t-SNE is an ML-based dimensionality reduction algorithm that

maps high-dimensional data points into a two-dimensional or

three-dimensional space. It simulates the distribution of

similarities among high-dimensional data points in the low-

dimensional space. t-SNE maintains proximity between similar

points and ensures distances between dissimilar ones through an

optimization process, thus preserving both the local and global

structures of the data in the low-dimensional space.

3.1.4 Classification model
Leveraging the dimensionally reduced ship representation vectors,

the framework employs multiple classification models to categorize

ships effectively. This array includes K-nearest neighbor (KNN),

decision tree, random forest, support vector machine (SVM), and

Gaussian naive Bayes, among others. The diversity of ML classification

models enriches the analysis by providing multiple analytical

perspectives and employing varied classification strategies. This

approach ensures the identification of the most effective model for

the intended downstream tasks, optimizing the classification process.

3.1.5 Similarity calculation
For the purpose of similarity analysis, particularly in discerning

the similarity between berths, the framework adopts the cosine

similarity metric. The calculation method of cosine similarity is

shown in Equation (1):

similarity = cos(q) =  
A · B

jjAjj  jjBjj (1)

where A and B denote the vectors under comparison, with the

denominator representing the product of their magnitudes and the

numerator being the dot product of the vectors. This metric’s

independence from vector dimensionality and insensitivity to
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vector scale render the similarity results straightforward

and interpretable.
3.2 Dataset

The dataset used in this study consists of two primary

components: the vessel entry and departure dataset and the berth

statistics dataset. The vessel entry and departure data were gathered

from the AIS records of ships entering and exiting Tianjin Port,

China, from January to May 2022, as depicted in Figure 4. Tianjin

Port was selected as the focus of this research due to its extensive

navigational channels, anchorages, and berth resources, which offer

a wealth of data and a variety of scenarios for analysis. This selection

enables a thorough examination of vessel behavior and berth

utilization across diverse conditions.

To determine whether the AIS data collected encompassed ship

berthing activities and to eliminate noise data, this study performed

a behavioral analysis on the gathered AIS data. Within this dataset,

each docked ship was identified and cataloged by its Maritime

Mobile Service Identity (MMSI), which facilitated the construction

of a behavioral sequence for the ships based on their MMSI.

Notably, berthing events displayed unique behavioral patterns,

such as a reduction in the ship’s speed to nearly zero during

docking and adherence to the International Maritime

Organization (IMO) standards regarding the ship’s minimum

queue length. Utilizing a sliding window algorithm, as illustrated

in Figure 5, this study grouped points that exhibited latitude and

longitude differences below a specified threshold within a certain

timeframe into single trajectory points. By linking these trajectory

points, the ship’s AIS trajectory was accurately reconstructed to

reflect its behavioral patterns. From the extensive AIS dataset, a
FIGURE 4

The scope of the Tianjin Port vessel entry and departure dataset is shown in the figure, where the orange represents the anchorage area. The green
indicates the entry and departure channels, and the red represents the berthing areas.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1390931
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1390931
total of 45,648 entries of vessel entry and departure data that

conformed to the study’s criteria were successfully filtered.

The berth statistics dataset was collected based on the utilization

of berths at Shanghai Port and the surrounding port areas

throughout 2021, with the detailed scope of berth data collection

depicted in Figure 6. The Yangtze River Delta region, recognized as

one of China’s most critical economic zones, features an extensive

array of berths within a dynamic maritime transportation

environment. Selecting this region for the study offers a more

comprehensive insight into the complexities and distinctive

challenges of berth management and vessel transportation within

major port clusters.

The statistics compiled include the service duration and the

vessels served at each berth. However, during the data collection

process, instances were noted where multiple ships were docked at

the same berth simultaneously. This could occur either because the

berth is sufficiently large to accommodate several smaller ships at

once, or due to larger vessels at adjacent berths overlapping into the

berth under study, thus influencing the recorded docking data. To

accurately assess berth usage while preserving the diversity of data
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across different ship types, this study implemented a specialized

statistical method for berth data. Initially, each berth was treated as

an individual research unit, with its operational duration calculated

based on the arrival and departure times of all ships that docked

there. During this period, the docking of each type of ship was

recorded separately to explore the docking characteristics specific to

the berth. This approach resulted in a comprehensive dataset

comprising 151,682 ship berthing records.

In the process of forming triplets, the connections between

vessels and infrastructure are precisely articulated utilizing two

entities (for instance, a vessel and a berth) and a relation (such as

“docks at”). For the Tianjin Port vessel entry and departure statistics

dataset, a triadic relationship among the ship’s MMSI, navigation

channel, anchorage, and berth was established based on the vessel’s

entry and departure data. A total of 21,374 triadic data entries were

compiled, including relationships such as (MMSI, channel, channel

number), (MMSI, berth, berth number), and (MMSI, anchorage,

anchorage number). For the Shanghai Port berth statistics dataset, a

triadic relationship was also delineated between different berths and

their territorial belonging, as well as the characteristics of the vessels

serviced by these berths. A total of 12,885 triadic data entries were

constructed, covering relationship types such as (berth ID,

affiliation, port), (berth ID, affiliation, port area), (berth ID, type

of docked ship, ship type), (berth ID, affiliated, berth office), (berth

ID, purpose of berth, purpose), and (berth ID, tonnage of berth

ship, tonnage type). The dataset categorizes ship’s tonnage into four

types: small-medium (0–5,000 t), medium (5,000–20,000 t), large

(20,000–50,000 t), and extra-large (over 50,000 t).

Tables 1 and 2 provide a comprehensive enumeration of

different types of vessels included in the port-related dataset and

the specific data types utilized in this study, respectively.

The triplets, including those associated with vessels and berths,

are identified and listed in Table 3. A knowledge graph was

constructed utilizing these identified triplets.

Figure 7 illustrates a schematic of the maritime knowledge

graph, constructed using triadic relationships derived from the

Tianjin Port entry and exit data, along with the Shanghai Port
FIGURE 5

Methods for mining berthing statuses through AIS trajectory analysis.
FIGURE 6

The scope of the berth statistics dataset, with red marked points
indicating the locations of the berths being analyzed.
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berth statistics data. This knowledge graph’s triadic construction

method effectively captures the relational features between ships

and port maritime facilities. By extracting analyzable relational

semantics, it lays a solid foundation for subsequent tasks, such as

maritime shipping feature analysis, enabling a deeper

understanding of the dynamics and interactions within

port operations.

In this study, Figures 7A–C, depict homogeneous relationship

graphs representing ships at anchorages, berths, and in navigation

channels, respectively. These figures highlight the relationship

characteristics between ships and specific categories of maritime

facilities. By analyzing these relational and connective patterns

among the maritime entities, the extracted features can be

leveraged for various downstream analytical tasks. Figures 7D, E

illustrate the relationship graphs of individual ships and berths with
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associated maritime entities, respectively. Through these focused

entity relationship graphs, features of particular entities are more

effectively extracted and modeled, enhancing the precision of the

analysis. Figures 7F, G are heterogeneous maritime information

knowledge graphs, constructed using the datasets from ship entries

and exits at Tianjin Port and berth statistics from Shanghai Port,

respectively. These graphs vividly display the connections and

interactions among a range of maritime entities. In these

heterogeneous graphs, not only are relationships between entities

described, but concepts such as meta-paths are also employed.

These meta-paths facilitate the consideration of structural and

semantic connections between entities, thus enabling a more

profound understanding of the complex relationships inherent in
TABLE 1 Number of ships in each category in the port-related dataset.

Ship Category Quantity

Dry bulk carrier 2610

Product oil tanker 600

Container vessel 365

Fishing boat 510

Roll-on-roll-off ship 115

LNG/LPG carrier 105

Total 4305
TABLE 2 Data types included in this study’s dataset.

Data Data Type Data Description

AIS Data

MMSI
A unique nine-digit numerical code used to identify vessels, maritime mobile communication

satellite service stations, and other radio stations within the maritime mobile
communication system.

Tunnel
Designated routes in waterways for vessel navigation, typically marked to ensure safe and

efficient passage.

Anchorage
Designated areas in the waters near ports, provided for vessels to temporarily anchor while

waiting or to conduct other activities.

Berth
Specific areas near ports or coastlines, designated for vessels to dock and for loading or unloading

cargo or passengers.

Maritime
Shipping Data

Port
A waterfront facility that provides services for docking, loading and unloading cargo, and

embarking or disembarking passengers.

Port Area
A larger administrative or management area that includes one or more ports along with their

surrounding land facilities and related infrastructure.

Berth Office
An institution or organization responsible for managing and maintaining a specific berth or a
group of berths, tasked with arranging vessel docking, maintaining berth facilities, and ensuring

the safety and efficiency of berth operations.

Vessel Data

Vessel Type
Different types of vessels are crucial for understanding aspects such as the function of the ship,

shipping routes, types of cargo transportation, and the adaptability of port facilities.

Vessel Usage
Determines the design and operational mode of a vessel, the required port facilities, and its

compatibility with specific types of cargo and routes.

Vessel Tonnage
Affects the cargo carrying capacity of a vessel, suitable shipping routes, required berth depth and

port facilities, as well as its decisive impact on shipping costs and efficiency.
TABLE 3 Triplet extraction in this paper.

Type of Triplets Triplet Expression

Vessels

<Vessel_i, Moor at, Berth_i>

<Vessel_i, Anchor at, Anchorage_i>

<Vessel_i, Sail, Channel_i>

Berths

<Berth_j, Usage, Berth Usage>

<Berth i, Port_Subjection, Port i>

<Berth i, Harbor_Subjection, Harbor District i>

<Berth i, Berth Office_Subjection, Berth Office i>

<Berth i, Berthed, Ship Type>

<Berth i, Berthed Ship’s Tonnage, Tonnage Type >
frontiersin.org

https://doi.org/10.3389/fmars.2024.1390931
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1390931
the data. This comprehensive approach supports enhanced data

mining and analytical tasks by providing a deeper insight into the

multifaceted features of maritime data.
3.3 Introduction to application scenarios of
the framework

Scenario 1 - Ship Type Prediction: Ship type prediction stands

as a pivotal technology within the intelligent maritime domain,

essential for enhancing ship traffic monitoring, port management,
Frontiers in Marine Science 11145
cargo tracking, and coastal patrol and border security measures.

This study leverages knowledge graph embedding models to distill

features from multiple dimensions, generating comprehensive

feature vectors. Through subsequent dimensionality reduction

and classification processes, ships under test are accurately

classified into their respective predefined types, showcasing the

application’s potential in operational optimization. As illustrated in

Figure 8, from a micro-perspective, ships routinely exhibit

behaviors such as anchoring, sailing, and berthing while

navigating within harbors. Their trajectories intersect with specific

geographic spaces like fairways, anchorages, and berths. Rather than
B

C

D E
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A

FIGURE 7

(A–G) Examples of graph visualization results.
FIGURE 8

The scenario of ship type prediction.
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relying solely on numerical data represented by latitude and

longitude, ship captains focus more on the semantic information

concerning “where the ship is navigating”, “where it is anchoring”,

and “where it is berthing” during their voyage. Upon receiving

lookout information (such as passing a lighthouse or traversing a

waterway) and multisource perception data, captains also abstract

these ship behaviors into semantic networks and engage in

contemplation. This process results in the formation of a “small

network” that has the characteristic features of ship navigation.

Scenario 2 - Similar Berth Recommendation: Similar berth

recommendation represents a practical application within the

intelligent maritime domain, utilizing advanced information

technology to recommend optimal docking locations for ships.

This scenario facilitates port resource optimization, shipping

company route planning, and the efficiency of cargo handling

processes. By establishing a berth knowledge graph and applying

similarity calculations and recommendations, the study identifies

and suggests berths with similar characteristics, enhancing

operational efficiency and decision-making processes. As shown

in Figure 9, berths demonstrate specific berthing preferences for

different vessels, influenced by their infrastructure attributes, such

as ship size and capacity, as well as commercial attributes like port

ownership and port area. These factors necessitate their integration

into the autonomous berthing decision-making process. To

accommodate this, a multidimensional berth similarity model has

been developed, which effectively recommends berths by

comprehensively considering these diverse factors.
4 Experimental results and analysis

This section presents a comprehensive evaluation of the

proposed model across various datasets and application scenarios,

focusing on downstream tasks including similar berth

recommendation and ship type prediction. Utilizing a custom-

built port-related dataset, the study embarks on a multi-faceted
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examination: Initially, the semantic construction of ships and port

infrastructure through the knowledge graph is outlined, setting the

stage for in-depth analysis. Evaluation metrics specific to each

dataset are introduced, providing a benchmark for assessing

model performance. The efficacy of individual graph embedding

models is scrutinized across different datasets, highlighting their

capabilities and limitations. The performance of combined models

on the datasets is evaluated, with ablation experiments and internal

analyses conducted to ascertain the contribution of each

framework module.
4.1 Ship type prediction

4.1.1 Evaluation metrics
For ship type prediction, a supervised classification approach

was employed, necessitating the use of conventional evaluation

metrics to determine the effectiveness of the classification models.

These metrics include:

Accuracy: Measures the ratio of correctly classified ship

samples within the test set.

Precision: Indicates the ratio of correctly identified ship

samples to all samples classified by the model.

Recall: Represents the ratio of correctly identified samples

within each ship type category of the test set.

F1 Score: Calculates the harmonic mean between Precision and

Recall, providing a balance between the two metrics.

Macro Average: Computes the arithmetic mean of the metrics

for each ship type category, treating each category with equal

importance. This metric, however, may be affected by categories

with fewer samples.

Weighted Average:Determines the weighted mean of each ship

type category’s metrics, according to the proportion of samples in

each category relative to the total sample set. This approach

accounts for sample imbalances across categories.
FIGURE 9

Schematic diagram of the similar berth recommendation scenario.
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4.1.2 Experimental setup
The experiment utilized a series of relational triplets from the

port-related dataset, derived from ships’ entry and exit records.

Introduce the OpenKE graph embedding model framework (Han

et al., 2018) using PyTorch and Sci-kit Learn libraries. Configure

embedding vectors for entities within the graph to dimensions of 50,

100, and 200 using graph embedding and supervised ML

classification models. Comparative analysis across several

classification models, including KNN, decision tree, random

forest, SVM, and Gaussian naive Bayes, aimed to categorize ships

into six distinct classes: dry bulk carriers, product oil tankers,

container vessels, fishing boats, roll-on-roll-off ships, and LNG/

LPG carriers. The dataset underwent a random split, allocating 80%

for training and 20% for testing, with this division repeated five

times to compute the average metric scores.

4.1.3 Experimental results
To evaluate the experimental effectiveness of the framework

proposed in this study for ship classification tasks using port-related

datasets, and to determine the optimal model combination, various

graph embedding models and embedding dimensions were

explored in the classification experiments. Figures 10A–C display

the Precision, Recall, and F1 Scores for various graph embedding

models and dimensions within the dataset, incorporating all

dimensionality reduction techniques and classification methods in

the analysis. Significantly, the TransR model demonstrated superior

average performance across all evaluated metrics with an

embedding dimension of 50. It achieved precision, recall, and F1

scores of 0.744, 0.749, and 0.737, respectively. Meanwhile, the

ComplEx and DistMult models also showed commendable

performance across various metrics and dimensions, highlighting

the effectiveness of these embedding models in classifying

ship types.

To ascertain the most effective dimensionality reduction

technique and optimal embedding dimensions, we focused on the
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TransR, ComplEx, and DistMult models due to their superior

average performance in preliminary experiments. Figures 11–13

illustrate the average Precision (Figures 11A, 12A, and 13A), Recall

(Figures 11B, 12B, and 13B), and F1 Scores (Figures 11C, 12C, and

13C) for the ship classification tasks within the port-related dataset

across different embedding dimensions. They highlight results

across various dimensionality reduction methods and embedding

dimensions, utilizing all classification approaches within our

framework. The TransR model, with an embedding dimension of

50 and utilizing t-SNE for dimensionality reduction, emerged as the

most effective configuration for ship classification. Notably, its

performance remained superior when reduced to either 2 or 3

dimensions, outperforming other model combinations. Specifically,

when reduced to 2 dimensions, the model achieved an accuracy of

0.811, a recall of 0.812, and an F1 score of 0.808. Similarly, when the

classification was reduced to 3 dimensions, it recorded an accuracy

of 0.800, a recall of 0.802, and an F1 score of 0.798.

Building upon the identified optimal combination of the

embedding model and dimensionality reduction method—

specifically, the TransR model at an embedding dimension of 50

with t-SNE—further investigations were conducted to explore the

effects of different ML classification methods on ship classification

results. Figures 14 and 15 visualize the classification results for each

ship in the test set, employing the TransR model reduced to either

two or three dimensions via t-SNE, across various classification

methods. Figures 14A–E and 15A–E present the classification

results when using KNN, decision tree, random forest, SVM, and

Gaussian naive Bayes methods, respectively, with reductions to two

and three dimensions.

The visualization results highlight that various classification

models are effective at distinguishing different categories of ships

when all ship vectors are projected onto the same coordinate

system. Particularly in regions where features are prominent and

distinguishable, most models excel in this differentiation. Notably,

the TransR model, at an embedding dimension of 50 and using t-
B CA

FIGURE 10

(A–C) Average classification results for the port-related dataset classification task using different embedding models.
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SNE for reducing dimensionality to 2D, demonstrated relatively

optimal classification results when paired with classification

methods such as KNN or Random Forest. These combinations

achieved accuracies of 0.825 and 0.823, respectively, underscoring

their effectiveness in accurately classifying ship types.

To enhance the accuracy of experimental results, the dataset

was partitioned randomly into the same ratio five times, with each

division undergoing t-SNE dimensionality reduction to 2D and 3D

for classification experiments. Figures 16A–C illustrate the average

Precision, Recall, and F1 Scores for various ship categories under

2D dimensionality reduction. Conversely, Figures 16D–F display

these metrics under 3D dimensionality reduction. Figures 17A, B

provide a comparison of Macro Average results for overall test data

Precision, Recall, and F1 Scores across different levels of

dimensionality reduction, while Figures 17C, D contrast the

weighted average results for these metrics. The experimental

findings reveal that c lass ificat ion outcomes with 2D

dimensionality reduction generally surpass those with 3D

reduction. Notably, bulk cargo ships exhibit the best classification

results, achieving an accuracy of 0.890, a recall of 0.905, and an F1

score of 0.891. The substantial variation in classification results
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across different ship categories can primarily be attributed to the

differing volumes of data in the dataset. The dataset contains the

smallest amount of data for LNG/LPG ships, which significantly

impacts the extraction of semantic information from their

embedding vectors, leading to lower classification accuracy. In

contrast, bulk cargo ships, which are represented with a larger

volume of data, show higher classification accuracy.

Figure 18 examines classification accuracy across varying

dimensionality reductions. The findings suggest that employing the

TransR model with a 50-dimensional embedding and reducing it to

2D using t-SNE, in conjunction with the KNN model, yields a more

accurate classification performance for most ship categories in the

task of ship classification on a port-related dataset. The superior

performance of this experimental combination could be attributed to

the dataset’s particular compatibility with the TransR model’s ability

to capture relationships and hierarchies, where the 50-dimensional

embeddings retain adequate semantic information without leading to

overfitting. The integration of 2D t-SNE reduction with the KNN

classification model capitalizes on t-SNE’s strength in preserving local

data features, with the 2D space enhancing KNN’s effectiveness in

applying its distance-based classification principle.
B CA

FIGURE 12

(A–C) Classification results of ComplEx using different dimensionality reduction methods and dimensions.
B CA

FIGURE 11

(A–C) Classification results of TransR using different dimensionality reduction methods and dimensions.
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FIGURE 14

(A–E) Classification results using different methods with 50-dimensional TransR model embedded and t-SNE reduced to two dimensions.
B CA

FIGURE 13

(A–C) Classification results of DistMult using different dimensionality reduction methods and dimensions.
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4.1.4 Ablation study
An ablation study was conducted to discern the impact of each

component within our framework on the classification task,

specifically examining the effect of omitting the dimensionality

reduction module (DRM). Model variants tested included

configurations with and without DRM, focusing on the

classification of ships using 50-dimensional embeddings from the

TransR model paired with the KNN method.

Figures 19A–C present the Precision, Recall, and F1 Scores for

ship classification within the port-related dataset, comparing

performances with and without t-SNE reduction to 2D.

Compared to the classification results prior to dimensionality
Frontiers in Marine Science 16150
reduction, the performance in categories with a larger sample size

improved following the application of t-SNE reduction. The

Precision, Recall, and F1 Scores across the board also enhanced

post t-SNE reduction, underscoring the effectiveness of the

dimensionality reduction module in ship classification endeavors.

For instance, the classification accuracy for bulk carriers improved

from 0.856 to 0.877. The application of dimensionality reduction

techniques plays a crucial role in eliminating noise and primarily

preserving key semantic features, which aids the classification

model in focusing on distinctive attributes, thus enhancing

classification accuracy. Additionally, dimensionality reduction

often results in a more uniform distribution of vectors in the
B

C D

E

A

FIGURE 15

(A–E) Classification results using different methods with 50-dimensional TransR model embedded and t-SNE reduced to three dimensions.
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space, with similar vectors becoming more clustered. This clustering

is advantageous for distance-based classifiers such as KNN, as it

supports more precise classification results.
4.2 Similar berth recommendation

4.2.1 Evaluation metrics
For the development of a similar berth recommendation

system, six key dimensions were identified for analysis: affiliated

port, belonging harbor district, affiliated berth office, berth usage,

type of ships berthed at the berth, and tonnage of ships berthed at

the berth. These dimensions serve as the basis for evaluating and

determining the similarity between two berths. The evaluation

accuracy pa for a given berth a within this system can be

mathematically defined as Equation (2):

pa   =   rat     (0 ≤ r ≤ 6) (2)

where t denotes the total number of similar berths identified for a

given berth under comparison, ra represents the count of identical

relationships between each suggested similar berth and the berth being

compared a. When extending this calculation across the entire dataset,
Frontiers in Marine Science 17151
the model’s overall evaluation accuracy, or the total count of identical

relationships PFull, can be expressed as Equation (3):

PFull =  on
i=1pi =on

i=1rit   (0 ≤ ri ≤ 6)   (3)

where n is the total number of berths within the dataset. The

model’s performance is better indicated by the higher number of

identical relationships found between similar berths across the entire

dataset and the corresponding berths they are compared with.

Moreover, to further assess the model’s recommendation

capabilities, we introduced two additional metrics: the average

count of identical relationships for top t recommended berths

PTopt and the average count of identical relationships per

recommended berth Psingle. The calculation methods are shown in

Equation (5) and Equation (6) respectively. These metrics aim to

capture the model’s general recommendation effectiveness for a

single compared berth and the precision of the model’s

recommendations for each similar berth, respectively:

PTopt =  
PFull

n
=  o

n
i=1pi
n

=  o
n
i=1rit

n
  (0 ≤ ri ≤ 6) (4)

PSingle =  
PTopt

t
=  

PFull

nt
=  o

n
i=1pi
nt

=  o
n
i=1ri
n

  (0 ≤ ri ≤ 6) (5)
B C

D E F

A

FIGURE 16

(A–F) Classification results for each ship category using different dimensionality reduction dimensions and classification methods with 50-
dimensional TransR model combined with t-SNE reduction.
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FIGURE 18

Accuracy using different dimensionality reduction dimensions and classification methods with 50-dimensional TransR model combined with t-
SNE reduction.
B

C D

A

FIGURE 17

(A–D) Macro average and weighted average results using different dimensionality reduction dimensions and classification methods with 50-
dimensional TransR model combined with t-SNE reduction.
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4.2.2 Experimental setup
This experiment employed the port-related dataset, where

relational triplets were pre-constructed for each berth

comparison. The top 20 berths with the highest similarity were

recommended for analysis. Utilizing the PyTorch framework, graph

embedding and berth similarity analysis models were implemented,

with embedding vector dimensions set at 50, 100, and 200.

4.2.3 Experimental results
The proposed framework’s efficacy was evaluated on the port-

related dataset, particularly examining the influence of

dimensionality reduction on similar berth recommendations.

Figures 20A–C display the total count of identical relationships,

the average count of identical relationships for the top 20

recommended berths, and the average count of identical

relationships per recommended berth using different dimensions

of the TransE model after various dimensionality reduction

methods. The findings suggest that omitting dimensionality

reduction results in the most accurate berth recommendations.
Frontiers in Marine Science 19153
The average count of identical relationships per recommended

berth for embedding vectors with dimensions of 50, 100, and 200

reached 2.420, 3.157, and 3.324, respectively, all surpassing

performances in scenarios where dimensionality reduction was

applied. This indicates that the complex relationship dimensions

within the similar berth knowledge graph, which are more

numerous than those in ship classification, contribute to a richer

set of embedding vector features. Reducing these dimensions could

potentially remove critical features, thereby decreasing the accuracy

of the recommendations.

Figures 21A–C present the total count of identical relationships,

the average count of identical relationships for the top 20

recommended berths, and the average count of identical

relationships per recommended berth, respectively, for tasks

involving similar berth recommendations within the port-related

dataset, utilizing various embedding techniques in our framework.

The findings indicate that the Analogy method outperforms others

in terms of recommendation precision with an embedding

dimension of 50. Given that the port-related dataset encompasses
B CA

FIGURE 20

(A–C) Recommendation accuracy of different dimensionality reduction methods in the port-related dataset.
B CA

FIGURE 19

(A–C) Classification results before and after using t-SNE reduction with 50-dimensional TransR model combined with KNN classification method.
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six types of triplets, this result implies that the berth knowledge

graph encompasses a wide array of relationship types. The Analogy

method’s superior performance, particularly at lower dimensions,

suggests its proficiency in capturing this diversity and effectively

representing these relationships without leading to overfitting. The

Analogy model’s distinct advantage lies in its ability to handle

analogical relationships, which, within the context of the port-

related dataset, could be interpreted as the resemblance in

characteristics or functions among different berths.

Based on the foundation of single base embedding models, this

study further explored a combined model strategy for enhancing the

accuracy of similar berth recommendations. Figures 22A–C present

the comparative results of the total count of identical relationships,

the average count of identical relationships for the top 20

recommended berths, and the average count of identical

relationships per recommended berth in the port-related dataset

for the task of recommending similar berths when the similarity

score weights of the two sub-models in the combined model are set

at a 1:1 ratio. Based on the integrated model approach, the
Frontiers in Marine Science 20154
combina t i on o f any two mode l s exh ib i t s supe r io r

recommendation accuracy compared to the performance of either

model independently. This indicates that the combined model

possesses enhanced adaptability and efficacy in the task of

recommending similar berths.

Particularly, the synergistic combination of TransD, Analogy,

and DistMult models outperforms other model pairings in the task

of similar berth recommendation. The TransD and Analogy

models, when combined at an embedding dimension of 100,

showcase the highest efficacy, achieving an average count of

identical relationships per recommended berth of 3.748. This

enhancement can be attributed to TransD’s capability to

encapsulate complex semantic relationship features through

distinct mapping matrices for each entity-relation, coupled with

the Analogy model’s proficiency in handling symmetry and anti-

symmetry in entity relationships. When TransD, known for its

dynamic mapping capabilities, is integrated with Analogy, which

excels in capturing symmetry, the combined model potentially

enhances its ability to understand and represent berth similarities
B CA

FIGURE 22

(A–C) Recommendation accuracy of various combined models in the port-related dataset.
B CA

FIGURE 21

(A–C) Recommendation accuracy of different embedding models in the port-related dataset.
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more comprehensively. The synergy between TransD’s flexibility in

handling complex relationships and Analogy’s efficiency in

recognizing symmetric patterns could offer a more nuanced

representation of berth similarities.

To delve deeper into how weight distribution affects the

similarity results, this study introduces a weight parameter n to

the combined model consisting of TransD, Analogy, and DistMult.

This exploration aims to discern the relative influence of each

model within the trio on the combined model’s results. The

Equation (6) to assess the impact of merging models A and B

with a specific weight value n is conceptualized to quantify their

combined effect on similarity assessments:

Similarityunion = nSimilarityA + (1 − n)SimilarityB (6)

Merging the similarity calculation values from two models

allows the combined model to adopt the recommendation

tendencies and strengths of both constituent models. Figures 23–

25 illustrate the variations in the average count of identical

relationships per recommended berth for the TransD, Analogy,

and DistMult models across different embedding dimensions,

utilizing the port-related dataset for the recommendation of

similar berths. Specifically, Figures 23A–C detail the trends for

the TransD model at embedding dimensions of 50, 100, and 200,

respectively. Figures 24A–C present the trends for the Analogy
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model at these same dimensions, while Figures 25A–C depict the

trends for the DistMult model.

The data reveal that the introduction of the combined model

markedly improves the performance in recommending similar

berths, with the optimal effects varying at different dimensions

according to the weight value n. The synergy between the TransD

and Analogy models is most effective at n = 0.4, where it achieves an

average count of identical relationships per recommended berth of

3.755. The Analogy model exhibits a high level of proficiency in

identifying similarities between berths for the recommendation task

within the dataset used in this study. Although the weight assigned

to TransD is marginally lower, its contribution to the overall

similarity calculation remains substantial. The structured

relationship recognition facilitated by TransD’s dynamic mapping

mechanism may complement the Analogy model’s capabilities,

addressing aspects of similarity that the Analogy model alone

might overlook.

Using the optimal combination obtained from this experiment,

the actual effect of recommending similar berths was tested, taking

three berths in the Yangshan Port area of Shanghai Port as an

example. The selected comparable berths and the recommended

berths with high similarity are shown in Figure 26, where the red

indicates the selected comparable berths, and the blue indicates the

recommended candidate berths with high similarity.
B CA

FIGURE 24

(A–C) Trend of similar berth recommendation results by the Analogy model at different dimensions with changes in weight value n.
B CA

FIGURE 23

(A–C) Trend of similar berth recommendation results by the TransD model at different dimensions with changes in weight value n.
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5 Discussion

The framework introduced in this study utilizes knowledge

graphs and graph embedding technologies to adeptly navigate the

complexities of multi-source data fusion and its applications within

the maritime sector. Through empirical validation in two distinct

application scenarios—ship type prediction and similar berth

recommendation—this research underscores the framework’s

capacity to amalgamate AIS data with static maritime

information, thereby offering sophisticated intell igent

recommendation and prediction capabilities in the maritime

domain. Nonetheless, the research framework encounters

limitations, notably the static nature of the knowledge graphs and

graph embedding models used. This limitation constrains the

models’ ability to comprehend and incorporate temporal

dynamics, which are critical for capturing more nuanced

semantic relationships. Integrating temporal dimensions into the

framework could significantly enrich its semantic capacity, thereby

enhancing the precision of its recommendations and predictions.

By constructing maritime semantic networks through knowledge
Frontiers in Marine Science 22156
graphs, we can effectively profile various entities in the maritime

domain, such as vessels and shore-based facilities. This approach

enables a more intuitive representation of the relationships and

structures among these entities and allows for detailed descriptions

and classifications, presenting the complex systems and

multidimensional characteristics of the maritime domain from

various perspectives and levels. For example, at the application

level, taking vessel traffic services (VTS) as a case study, integrating

this framework can equip vessels with more intelligent and efficient

navigation, traffic monitoring, and decision-making services.

Looking forward to future research based on this study, a key

challenge is how to achieve deeper integration with other multi-

source data, such as remote sensing. Furthermore, with the

continuous emergence and development of large language models

like GPT (Brown et al., 2020) and Gemini (Team G, 2023), there is

an opportunity to gain a deeper understanding of the contextual

and semantic information within maritime knowledge graphs.

Leveraging the maritime and shipping expertise contained in

these graphs can significantly enhance the logical reasoning and

problem-solving capabilities of large language models in the
FIGURE 26

Example of similar berth recommendation effectiveness using the optimal model combination of this framework.
B CA

FIGURE 25

(A–C) Trend of similar berth recommendation results by the DistMult model at different dimensions with changes in weight value n.
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maritime domain. This advancement can lead to the development

of more specialized maritime large language models, offering highly

specialized intelligent analysis and decision-support. Such tools are

applicable to improving navigation management, vessel

monitoring, environmental monitoring, and enhancing

maritime safety.
6 Conclusions and future work

To conclude and propose directions for future research, this

study has established a semantically comprehensible framework

utilizing knowledge graph technology to elucidate ship behaviors

and berth profiles, presenting a pioneering intelligent maritime

application framework. This framework capitalizes on knowledge

graphs and graph embedding techniques to address key challenges

in the maritime industry, such as ship type prediction and berth

recommendation. By constructing an intricate knowledge graph

that encompasses extensive information on ships and

infrastructure, and by exploring various entity relationships

through triplets, this research lays a robust foundation for

translating complex relational data into actionable vector

representations. Through exhaustive comparative analyses, the

efficacy of different graph embedding models within maritime

contexts was evaluated, investigating how variations in

embedding dimensions and model weight distribution influence

overall performance. The results of this investigation not only

validate the utility of knowledge graphs and graph embedding

technologies in maritime applications but also contribute

significant empirical evidence and insights for future research

endeavors. The developed intelligent transportation systems can

aid unmanned devices in making precise decisions based on this

model, thereby ensuring the safety of jurisdictional waters and

dock efficiency.

While this study has made significant contributions, there are

several areas that warrant further exploration. Future research could

focus on advancing model fusion techniques to better integrate

diverse data sources and improve predictive accuracy. Optimizing

real-time data integration and dynamic updates is another critical

area that could enhance the responsiveness and accuracy of the

system in live environments. Additionally, developing and applying

cross-domain knowledge graphs could provide deeper insights by

l inking data across di fferent sectors , enhancing the

comprehensiveness of analyses. Enhancing the scalability and

generalization capabilities of the framework is also crucial, as it

would allow the system to handle larger datasets and apply learned

insights across various maritime contexts. Furthermore, exploring

the integration of this framework with large model domains, such as
Frontiers in Marine Science 23157
advanced machine learning and artificial intelligence platforms,

could open up new avenues for more sophisticated analytical tools

and decision-support systems.
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Challenge for multifaceted
data acquisition around
active volcanoes using
uncrewed surface vessel
Noriko Tada1*, Akira Nagano2, Satoru Tanaka1,
Hiroshi Ichihara1,3, Daisuke Suetsugu1, Daisuke Matsuoka4,
Makoto Ito2, Tatsu Kuwatani1 and Makio C. Honda2

1Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and
Technology, Yokosuka, Kanagawa, Japan, 2Research Institute for Global Change, Japan Agency for
Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan, 3Earthquake and Volcano
Research Center, Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi, Japan,
4Research Institute for Value-Added-Information Generation, Japan Agency for Marine-Earth Science
and Technology, Yokohama, Kanagawa, Japan
Monitoring of volcanic eruptions, the atmosphere, and the ocean, along with

their scientific understanding, can be achieved through multifaceted

observations that include camera images, topographic deformations, elastic

waves, geology, and the chemical constituents and temperatures of air and

water. However, regions of increased volcanic activity and/or shallow waters are

difficult to access by crewed ship due to danger or grounding risk. To overcome

these difficulties, we used an uncrewed surface vessel (USV), Bluebottle, to

operate multiple observation around oceanic volcanoes in the Bonin Island arc

in May 2023. Even under adverse sea conditions, the USV successfully reached a

remote observation site, Nishinoshima volcano, which is about 130 km away

from Chichijima Island where the USV started out from. The USV conducted five

days of observations at shallower than 500 m water depth around Nishinoshima

Island, the first time after violent eruptions of Nishinoshima in June 2020. The

USV is equipped with various sensors and data collection technologies, including

a single-beam echosounder, oceanographic and meteorological sensors, an

Acoustic Doppler Current Profiler, and a time-lapse camera. These tools have

provided a multi-dimensional view of the underwater landscape and marine

conditions near the volcano for the first time in the world. We obtained new

bathymetric data, sub-bottom images, and measurements of temperature,

salinity, and pH. This study leverages advanced technologies and innovative

methodo log ies to enhance our unders tand ing of mar ine and

geological phenomena.
KEYWORDS

USV, volcanic islands, Nishinoshima, bathymetric survey, marine geological survey,
ocean monitoring, ocean surveillance
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1 Introduction

Volcanic activities, many of which occur in volcanic islands and

submarine volcanoes in the Earth, can potentially cause severe

damage to human activities, as the 2022 eruption of the Hunga

Tonga-Hunga Ha’aoai volcano generated a huge amount of

volcanic ash that reached the mesosphere (e.g., Matoza et al.,

2022) and a global tsunami (e.g., Proud et al., 2022). Monitoring

of volcanic eruptions and their scientific understanding can be

achieved by multifaceted observations, including camera images,

topographic deformations, elastic waves, geology, and chemical

constituents and temperatures of air and water. Recently, the

understanding and monitoring of inland volcanoes have

progressed based on integrated land-based observations (e.g.,

Iguchi et al., 2019). However, studies of oceanic volcanoes have

lagged far behind those of inland volcanoes due to fundamental

inaccessibility and difficulty for the scientists to deploy instruments.

In addition, observations by crewed ship are very costly. Moreover,

areas inaccessible to crewed vessels, such as regions of increased

volcanic activity and/or shallow waters prone to grounding risks,

become blind spots for observations even in coastal waters.

Sea surface currents vary on wide ranges from basin-scale to

mesoscale (~10–100 km) and smaller scale (i.e., submesoscale) and

decadal to daily scales. Recently, mesoscale and submesoscale eddies

have been highlighted because they may contribute to the transport

and redistribution of heat and materials (Ando et al., 2021). The

kinetic energies of mesoscale and submesoscale eddies are limited to

western boundary currents such as the Kuroshio and the Gulf

Stream and around topographies such as islands and seamounts.

Mesoscale and submesoscale eddies in the Kuroshio Extension

region have been intensively studies (e.g., Inoue et al., 2016;

Nagano et al., 2016). Meanwhile, observations of mesoscale and

submesoscale features generated by topographies are quite limited

except for areas performed in specific projects (Johnston et al.,

2019). In addition, the atmosphere is considered to be modified by

the temperature variations associated with topography-induced

mesoscale and submesoscale ocean features through the air–sea

interaction but the modification has not been revealed yet.

The advancements in automation and miniaturization of

observing instruments have enabled the efficient and cost-effective

execution of observations through the use of uncrewed surface

vessels (USVs) (Patterson et al., 2022). Besides, such small platforms

do not disturb the atmosphere and ocean as much as shipboard

observations (Nagano et al., 2022). Thus, uncrewed observations

provide a remarkable means realizing data acquisition in previously

inaccessible oceanic regions. In particular, USV’s observations of

oceanic volcanoes have great potential in term of 1) the ability to

observe in the near-shore region can fill observation gap the above-

mentioned, 2) multiple USVs can be deployed around the volcano

to build a cost-effective observation network, and 3) USVs can

obtain atmospheric and oceanic parameters related to volcanic

activities and the topography-generated eddies (however, note

that chemical investigations often require sampling and analysis

of water from volcanic lakes on land). On the other hand, USV

observations still face challenges such as navigation permit issues

and lack of fuel, power, and communication capacity.
Frontiers in Marine Science 02160
Nishinoshima Island and Fukutoku-Oka-no-Ba submarine

volcano (hereafter, FOB) in the Bonin Island arc (Figure 1) are

recently erupted volcanoes with the above-mentioned observational

difficulties. Nishinoshima Island is an uninhabited island located

about 1000 km south of Tokyo and about 130 km west of the

nearest inhabited island, Chichijima Island. Nishinoshima volcano

resumed volcanic activity in 2013 for the first time in about 40 years

and has been actively erupting ever since, significantly enlarging the

portion of the island above sea level (Maeno et al., 2021). In June

2020, due to navigation warnings, it became not possible to go

within 1.5 km of the summit crater of Nishinoshima, resulting in

blank areas on the latest topographical and nautical charts.

FOB is situated about 335 km south of Nishinoshima Island. On

August 13, 2021, FOB experienced a major eruption, producing a

vast amount of pumice and an eruption column up to 16,000 m

(e.g., Maeno et al., 2022; Yoshida et al., 2022). An island temporarily

emerged but was eroded by waves and disappeared below the sea

surface about three months later. FOB is expected to have very

shallow waters, making observation by crewed vessels risky due to

the high probability of grounding. After significant eruptions at

both volcanoes, attempts were made to acquire new bathymetric

data to compare with pre-eruption maps. We do not have any

bathymetric data, i.e., depth data, following eruption, so it is unclear

whether the changes in depth are gradual or if features like side

volcanoes or chimneys have formed, suddenly making the water

shallower. Additionally, discolored water and bubbles, presumably

caused by volcanic activity, have been observed around

Nishinoshima Island and crater area of FOB, and the potential

impacts on crewed ships and their occupants are not yet

understood. Therefore, in the 2022 crewed voyage, we adopted a

precautionary approach by not approaching areas shallower than

500 meters with crewed ships.

In this paper, we present a considerably challenging observation

conducted using a single engineless USV targeting the volcanoes

Nishinoshima and FOB, which are located a significant distance

from any inhabited islands. The study includes multiple
FIGURE 1

Location of Chichijima Island, Nishinoshima Island, Kita-Iwo Island,
and Fukutoku-Oka-no-Ba submarine volcano (FOB). Elevation data
are from the ETOPO1 global relief model (NOAA, 2009).
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observational objectives deploying USVs in remote volcanic regions

for the first time in the world. First, the USV and the observation

instruments mounted on the USV are described. Then an overview

of the operations from departure to observation and return is given.

Next, the obtained data are described. Based on these results, the

usefulness and problems of these observations, including

operations, are discussed.
2 Methods

2.1 USV

We utilized a USV Bluebottle (Supplementary Table S1;

Figure 2), developed and owned by the Australian private

company OCIUS (https://ocius.com.au/). The Bluebottle boasts

a total length of 6.8 m and, when its sail is deployed, reaches a

height of approximately 5.0 m above the waterline. The vessel is

designed with a payload capacity of up to 350 kg. Figures 2A, B

illustrate the Bluebottle with its sail raised and lowered,

respectively, showcasing the vessel’s versatility in adapting to

various marine research and observation conditions. The

Bluebottle is propelled primarily by wind power and
Frontiers in Marine Science 03161
supplemented by wave and solar power (photovoltaics) and

does not use an engine. Remote control, facilitated through the

use of Iridium, adjusts the sail angle for wind-driven navigation

from a land-based station. The current location of the Bluebottle,

along with essential navigation information such as wind

direction and speed, and the view ahead, can be monitored

nearly in real-time via a web interface (Figure 3). The vessel

sails at speed of 2–4 knots under the solar-powered mode and 0.5–

1.5 knots wave-powered mode. The nominal maximum speed can

reach 6.0 knots. The Bluebottle is equipped with an Automatic

Identification System (AIS), a 360-degree time-lapse camera,

radar, lights, and a horn. OCIUS monitors Bluebottle’s

navigation around the clock using AIS, radar, and the 360-

degree camera. While the vessel lacks automated obstacle

avoidance capabilities, potential collisions or accidents are

mitigated through remote control operation.
2.2 Data acquisition instruments

Prior to the Bluebottle survey commencement, all instruments

were configured to meet project specifications (Supplementary

Table S2). Heading, rolling, and positional data was collected
B

C

A

FIGURE 2

The Bluebottle (A) with its sail raised and (B) lowered. The locations of Seapath 130 sensor, Brinno Timelapse camera. (C) Spider cable connected to
a fixed motion reference unit.
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using a Seapath 130 sensor settled on top of the Bluebottle

(Figure 2B). The Seapath 130 sensor contains integrated Global

Navigation Satellite System (GNSS) antennas and receivers and is

connected to a fixed motion reference unit (MRU), which is housed

within an underwater enclosure, using a spider cable (Figure 2C).

The MRU orientation was installed based on guidelines and

configured within the Seapath 130 software to ensure accurate

Inertial Navigation System (INS) and positional data.

Acquiring accurate topographical and geological data is

paramount for understanding the dynamic changes of oceanic

island volcanoes and submarine volcanoes. Depth data, essential

for this purpose, can be comprehensively obtained through sub-

bottom profiling, enabling the determination of sediment layer

thickness and, in areas of volcanic activity, the depth of volcanic
Frontiers in Marine Science 04162
ash layers. Additionally, side-scan sonar data facilitate the

examination of reflectance intensity, serving as a critical tool for

discerning the composition of the seabed, particularly for

identifying exposed lava formations in regions not obscured by

volcanic ash. To achieve this integrated data acquisition, the

Kongsberg EA640/EA440 All-in-one system was deployed on the

Bluebottle, as illustrated in Figure 4. The advanced system

incorporates a 200 kHz side-scan sonar, a 15 kHz sub-bottom

profiler/transducer, and a 200kHz transducer, all connected

through the EA440 Wide Band Transceiver (WBT) operating

with a sampling interval of 0.1 seconds. The bathymetry survey

utilized both 15 kHz and 200 kHz frequencies to maximize data

accuracy and resolution. Installation of the single-beam

echosounder, side-scan sonar, and sub-bottom profiler at the aft
BA

FIGURE 4

The location of the EA640/440 All-in-one system.
FIGURE 3

An example of a web interface showing the current location of the Bluebottle with essential navigation information.
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end of the keel ensures optimal performance and data collection

efficiency. The entire suite of instruments is meticulously

configured and managed via the EA440 software interface,

ensuring seamless operation for the collection of submarine

topography and geology data.

We used a suit of meteorological sensors, an Airmar WS-

200WX IPx7, mounted on the Bluebottle to obtain variations in

atmospheric parameters (air temperature, atmospheric pressure,

and wind speed/direction). The device was installed to the

highest point of the communications mast (the rear mast) of

the vessel to ensure minimal interference with wind speed and

direction readings for collection of wind speed/direction, air

temperature, and atmospheric pressure data (Figure 5A). The

height of the device from the sea level was approximately 3 m. A

YDHS-01 humidity sensor was used to measure relative

humidity on this mission (Figure 5A). However, the humidity

sensor and a cable connection between the sensor and data
Frontiers in Marine Science 05163
logging system was submerged by heavy rainfall in the first

trial. Because the connector could not be completed the repair

until the deployment on May 16, 2003, we abandoned the

humidity measurement. Infrared thermometers, Heitronics

CT15.10 and CT9.10WT, were installed to monitor the sea

surface skin temperature. The CT15.10 was instal led

downward fac ing , and the CT9.10WT faced the sky

(Figure 5A). The CT9.10WT readings were used to provide

temperature compensation signal. Readings of these devices

were uploaded in real-time to the OCIUS database at 1 Hz.

Changes in water temperature, salinity, dissolved oxygen

concentration (DO), turbidity, phytoplankton concentration, and

pH resulting from volcanic activity and ocean current variability

excited by the topography were monitored using a multiparameter

probe Aqua TROLL 600 (In-Situ, Port Colins, CO, USA) mounted

on the Bluebottle. The device is anti-corrosive and has a low power

consumption, rendering it highly suitable for this USV survey. The
BA

FIGURE 5

ADCP, Airmar, and Aqua TROLL 600.
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probe was installed aft end of the keel of the Bluebottle at a depth of

approximately 1 m with the sensor orientation pointed towards the

keel to ensure minimal interference with sonar equipment

(Figure 5B) and which measured pH, DO, conductivity,

temperature, chlorophyll-a fluorescence, and pressure with 1-

minute sampling intervals. Salinity in practical salinity unit was

calculated from temperature and conductivity values. The

accuracies of the instrument are 0.1°C for temperature, 0.1 for

salinity, 0.1 for pH, and 0.1 mg/L for DO.

For more detailed analysis of the hydrographic structures

around the island and volcano, temperature and salinity were also

measured each 10 min by using another conductivity-temperature-

depth sensor JES10mini (Offshore Technologies, Yokohama, Japan)

installed near the Aqua TROLL 600 probe. The temperature and

conductivity accuracies of the JES10mini are 0.005°C and 0.005 S/

m, respectively. The accuracy of computed salinity is better

than 0.04.

Moreover, a backscatter meter with fluorometer (FLBBSB,

Seabird Science, USA) was installed next to JES10mini to observe

the spatio-temporal variabilities in underwater biogenic and

lithogenic particles.

Additionally, an Acoustic Doppler Current Profiler (ADCP)

(Nortek Signature100 ADCP, Norway) was installed downward to

the bottom end of the rear keel (Figure 5B) to measure the vertical

structure of current velocity, enhancing our understanding of

underwater current patterns and temporal variations. The ADCP

is a long-range current profiler and collects a current profile at

depths from 0 to 500 m every 1 minute. In this survey, the

instrument was set to record current profiles after averaging 10

minutes. Because this instrument does not detect the seabed, we

removed data deeper than the water depth based on data collected

by the 15 kHz sub-bottom profiler. In regions of water depths

greater than 500 m, where are located far from the island, no data

was obtained below 500 m depth.

To monitor the color of the seawater and floating objects in the

area where the Bluebottle is sailing, we took time-lapse photos of the

ocean surface. Specifically, understanding how marine debris,

including ocean plastics, is distributed in the open sea is crucial

for grasping the overall situation of the marine plastic issue, which

has become a significant problem in recent years. The Brinno

TLC2020-C Timelapse Camera (Figure 2B) was utilized to

capture downward facing images of the water’s surface during the

mission. The camera’s picture frequency was chosen to maximize

the framerate of the images while ensuring a sufficient level of

charge was maintained. Information from the device was recovered

at the end of the mission.
3 Results and discussion

3.1 Observation cruises

The Bluebottle was transported from Fremantle (Australia) to

Chichijima Island (Japan), which is an inhabited island of Japan

relatively close to Nishinoshima and FOB, to conduct observation
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cruises in the Bonin region. As the Bluebottle is a USV owned by

OCIUS, an Australian company, transporting and operating it in a

territory of Japan through challenging procedures related to import

and adherence to Japanese laws. For instance, any floating object

exceeding 3.3 meters in length requires ship registration and

inspection on site before its voyages. That forced us to have an

additional preparation period and costs for the USV surveillance.

The Leg 1 cruise of the Bluebottle started on April 24, 2023,

from Futami port of Chichijima Island toward FOB (Figure 1). The

Bluebottle had advanced near the southern vicinity of Kita-Iwo

Jima. However, due to difficulties encountered in data acquisition, it

was decided to return to Chichijima Island on April 27. The

Bluebottle arrived back at Futami port of Chichijima Island on

May 1, marking the conclusion of Leg 1 of the cruise. Unfortunately,

topographical, geological, meteorological, and oceanographic data

were not acquired around FOB this time.

The ship track of each day in the Leg 2 journey is illustrated in

Figure 6A. The Leg 2 cruise of the Bluebottle commenced on May

16 from Futami port, heading towards Nishinoshima Island. Upon

arrival in the observation area on May 19, the Bluebottle began

operations of the EA640/440 All-in-one system to acquire

topographical and geological datasets. Initially, the Bluebottle

navigated along planned survey lines running northeast to

southwest on the northwest side of Nishinoshima Island, spaced

50 m apart, to collect data. The Bluebottle complete two round

trips mostly along planed survey lines. However, the interaction

between the vessel’s heading, tidal currents, and wind direction

and power prevented it from sailing linearly along the survey lines

at all times. Figure 6B shows the fluctuation in the battery’s

remaining charge during this phase. From Figure 6B, it is

evident that during May 19 to May 21, 2023, the solar-powered

battery was hardly able to charge, and the battery percentage

consistently decreased. This suggests that the sunlight was

insufficient to recover the battery’s remaining charge, and just

five days after departure, the battery’s remaining charge had

already halved. Consequently, to acquire accurate bathymetric

data over a wider area while minimizing power consumption, we

decided to navigate the Bluebottle in a way that requires minimal

power, adjusting the navigation according to the prevailing wind

directions and tidal currents at the eastern side of Nishinoshima

Island. Moreover, interested in the variations in water depth

depending on the direction from the crater, we also conducted

circumnavigational observations around the island. With the

approach of the powerful Typhoon Mawar on May 20

(minimum pressure 900 hPa and maximum wind speed 60 m/s;

Japan Meteorological Agency, 2023), the Bluebottle was forced to

depart from the observation area around Nishinoshima Island on

May 23, and arrived back at Chichijima Island on May 28, thereby

concluding the Leg2 cruise. Even under adverse sea conditions, the

Bluebottle, which operates solely on natural energy without a

combustion engine, successfully reached a remote observation site

and conducted five days of observations. However, the inability to

allocate a sufficient observation period remains a challenge for

future endeavor.

The currents around Nishinoshima Island were much stronger
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than previously anticipated. In this condition, the Bluebottle

needed to use a significant amount of throttle to achieve the

desired transects. Because the Bluebottle had to save throttle

usages for sustainable operation, the Bluebottle had to loiter in

the lee of the currents. In the western North Pacific, typhoons

frequently occurs and the Kuroshio current, other adjacent

current systems, and mesoscale eddies are associated with quite

strong currents. To conduct observations in the severe sea

conditions in the western North Pacific, USVs, including

Bluebottle, should have so strong body as to stay under such

severe conditions and sufficient mobility to escape typhoons and

other atmospheric disturbances. Additionally, in the extratropical

regions, cloudy and rainy days are relatively more frequent

particularly in winter and early summer (the rainy season in
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Japan). More development of the solar-powered battery

management system is considered to be essential to perform

long-term observations regardless of the season.
3.2 Observed data

3.2.1 Topographical and geological data
In the Leg 2 cruise, single-beam bathymetric data were collected

from May 19 to May 23 around Nishinoshima Island. Over this

five-day survey period, a total of 27,717 raw bathymetric files were

logged. The data from the single-beam echosounder, covering

depths of 0–1200 m at 15 kHz and 0–150 m at 200 kHz were

processed into a grid with a resolution of 10 meters and are
B

A

FIGURE 6

(A) Mission track of the Leg 2 cruise and (B) the battery charge remaining during the Leg 2 cruise.
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presented in Figures 7A, B, respectively. Figure 7A reveals that

although the data acquisition is uneven, it clearly delineates the

contrasting seabed topographies on the northwestern and eastern

sides of the island. The depth reaches 400 meters at about 3 km

from the crater and approximately 2 km from the shoreline on the

northwestern side, whereas on the eastern side, it occurs less than 2

km from the crater and about 1 km from the shoreline. This

suggests a more gradual slope on the northwestern side compared

to the eastern side. The same trend is observable in Figure 7B, which

has higher resolution in shallower areas. The bathymetric data,

which nearly encircles the island, indicate that the northern to
Frontiers in Marine Science 08166
northwestern sides have shallower depths compared to other

directions. The bathymetric data reveal a steep slope of

approximately 40 degrees on the northeast to eastern flank of the

volcano, where water depths exceed 100 m.

Sub-bottom profiler data collected at 15 kHz to the northeast and

to the southeast of Nishinoshima Island are shown in Figures 8A, B,

respectively. Both sub-bottom profiler datasets exhibit continuous high

reflection layers. Figure 8A displays two such layers, with the lower

high reflection layer appearing similar to the high reflection layer in

Figure 8B, suggesting that these layers represent the seabed foundation.

In contrast, the upper high reflection layer in Figure 8A shows lower
B

A

FIGURE 7

Seafloor topography data sampled (A) at 15 kHz and (B) at 200 kHz. The white double arrows and numbers indicate the distances from the shoreline
to a water depth of 400 meters.
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reflectivity on the west side, and the layer thickness between the high

reflection layers seems to thin towards the east. The thinning of layers

away from Nishinoshima Island indicates that volcanic ash erupted

from the volcano has accumulated on top of the foundation, forming

layers. The weak reflection area on the west side may indicate that the

volcanic ash has not yet solidified sufficiently. Moving forward, we aim

to extract as much information as possible about the horizontal extent

and thickness variation of this presumed ash layer from the data we got

in this observation, to assess the amount of volcanic ash deposited on

the seabed.

The attempt to obtain meaningful acoustic image of the seabed

using side-scan sonar was unsuccessful. The side-scan sonar used in

this study operated at a high frequency of 200 kHz, which is highly

effective in shallow water. Given that the shallowest observed water

depth was around 30 meters (Figure 7B), it is unlikely that no data

were captured at all. Therefore, future efforts will involve verifying

the side-scan sonar data in conjunction with sub-bottom profiler

data and water depth data. This will allow us to thoroughly review
Frontiers in Marine Science 09167
whether any data were indeed collected by the side-scan sonar and

to revalidate the data accordingly.

3.2.2 Meteorological data
Immediately after the passage of a low-pressure system, the

Bluebottle departed at the Chichijima Island and observed the

northwesterly wind (Figure 9A). Throughout the observation, two

low-pressure systems passed during the observation. Associated

with the atmospheric disturbances, the wind was observed to rotate

and to be equivalent to or exceeds approximately 10 m/s during the

most of the observation. Because of cloudiness during the passages

of the low-pressure systems, the Bluebottle battery was concerned

not to be sufficiently charged and not to continue the observation.

Due to the cold skin effect (e.g., Saunders, 1967), skin

temperature similarly varied with temperature at 1 m depth, i.e.,

SST, but was always lower than SST (Figures 9B, C). The low skin

temperature is considered to be closely related to the heat exchange

between the atmosphere and ocean. The low-skin-temperature may
B

A

FIGURE 8

Sub-bottom profiles acquired (A) in the northeast and (B) in the southeast of Nishinoshima Island.
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suggest that the turbulent plus long-wave heat flux was

always upward.

3.2.3 Water properties
Figures 9C, D show temperature and salinity observed by the

CTD JES10mini along the Bluebottle track, which are referred in

this paper as sea surface temperature (SST) and sea surface salinity

(SSS), respectively. SST and SSS ranged in 21–25°C and 34.2–34.8,

respectively, which are consistent with climatology in this region.

Notably, the SST and SSS are found to covary on spatial scales of

about 10–50 km, which is within the mesoscale range. For example,

the Bluebottle observed cold and fresh water on the westward track

from 141.6°E to 141.1°E and warm and saline water on the

southward track from 27.6°N to 27.0°N. Furthermore, focusing

on the variations in temperature and salinity around Nishinoshima

Island, the SST and SSS varied on time scales shorter than

approximately 6 hours (Supplementary Figure S1). During the

observation, a mesoscale cyclonic eddy was detected to the

northeast of Nishinoshima Island by the satellite sea surface
Frontiers in Marine Science 10168
height observation. The high-frequency SST and SSS variabilities

may be attributed to submesoscale (< 10 km) hydrographic

structures generated around the volcano in a background

southeastward flow generated by the mesoscale eddy.

Eastward currents over 0.5 m/s were observed to be along the

contours of the topography to the northwest of the island by the

ADCP (for example, current velocity vectors at 7 m depth are shown

in Figure 10). The current speed is much larger than the estimated

velocity from altimetric sea surface height data (~0.2 m/s). The strong

current may be driven by the cyclonic eddy and modified by the

topography. Remarkably, the ADCP observed currents directed to the

west on the leeward side of the island or east of the island. Such

current normal to topographic contours must not be in the

geostrophic balance and be highly variable in space and time, as

observed in SST and SSS (Figures 9C, D).

On the way to Nishinoshima Island, DO varied from 6.3 to 6.6

mg/l (197 to 206 micro mol/l) (Figure 11A). These values are typical

values observed in late spring in the western Pacific subtropical

region (~ 200 micro mol/l; e.g., Honda, 2020). East of Nishinoshima
BA

C D

FIGURE 9

(A) Wind vectors in m/s on the Bluebottle track. Wind speed is indicated by color bar at the bottom of the panel. (B) Skin temperature in °C on the
Bluebottle track. (C) Temperature and (D) salinity on the Bluebottle track observed by the CTD JES10mini.
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Island, DO decreased suddenly although data were limited

(Figure 11B). Essentially, DO correlated well with SST

(Supplementary Figure S2), while DO did not correlate with Chl-

a (not shown). It is indicative of that DO concentration were

determined by, not primary productivity, but solubility. However,

lower DO deviated from SST-DO linier regression line. Thus, the

water east of Nishinoshima Island was likely affected by outflow

from the island. This outflow water might be reductive due to

volcanic gas such as CO2 and SO2 (e.g., de Ronde and

Stucker, 2015).

As the Bluebottle was approaching to Nishinoshima Island, pH

values decreased and the minimum was observed at the east of the

island (Figure 12). Lower pH near volcanically-active Nishinoshima

Island was expected before this investigation as reported previously

(Sato et al., 2018). However, absolute value ranged from 8.6 and 9.7

and these values are never observed in the surface water of western

North pacific subtropical area (usually ~ 8.1; Honda et al., 2017).

Based on pH measurement of discolored seawater sampled by using

multicopter, low pH of ~6.5 was observed around Nishinoshima

(Takai, 2024). In addition, pH sensor values monotonically

decreased during deployment and did not have any significant

correlations with other properties; unfortunately, the observed

change might be artifact.

Backscatter of light of 700 nm wave length (bbp(700)) values

were lower than 0.01 m-1 or under detection limit on the way to and

north of Nishinoshima (Figure 13A). This is typical value in the

open ocean in the western Pacific subtropical area (e.g., Fujiki, 2019;
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Taketani, 2021; Kitamura, 2022). However, backscatter increased

largely east side of Nishinoshima (Figure 13B). The bbp(700) > 0.05

m-1 (upper detection limit) has not been observed in the open ocean

of the western Pacific previously. This unusual high backscatter

coincides with the fact that the surface seawater around

Nishinoshima Island discolored shown in pictures taken by time-

lapse camera on the Bluebottle (Figure 14). Based on chemical

analysis, Takai (2024) reported that this discoloring (red-brown

color) was attributed to suspended particles rich in iron.

Chl-a also increased slightly east of Nishinoshima Island

(Figure 15). Weak but significant positive correlation was

observed between Chl-a and backscatter, especially near

Nishinoshima Island (solid black circles in Supplementary Figure

S3A). Thus, although high backscatter was mainly attributed to

iron-rich suspended particles as discussed in the previous

paragraph, particles detected as backscatter might be partly

phytoplankton. In addition, Chl-a observed at night near

Nishinoshima Island correlated negatively with temperature (solid

blue crosses in Supplementary Figure S3B). However, the maximum

of Chl-a was very low (at most 0.15 mg/m3) and, thus, it is hard to

say that, due to supply of micro (iron)/macro (e.g., nitrogen and

phosphate) nutrient, volcanic activity or the outflow from

Nishinoshima Island enhanced phytoplankton.

3.2.4 Surface photo images
From May 16, 2023, to May 28, 2023, the Brinno Timelapse

Camera recorded data, capturing photos every five minutes,
FIGURE 10

ADCP velocity vectors in m/s at the uppermost layer (7 m depth). Current speed is represented by the color bar at the bottom. Vectors with speed
greater than 0.3 m/s were plotted. Bottom topography based on ETOPO 2022 was shown by contours at intervals of 100 m. The area shaded in
gray represents Nishinoshima Island.
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B

A

FIGURE 11

DO data (A) time-series variability west of 142°E. Yellow hatched area denotes the period when the USV-BB stayed near Nishinoshima. (B) horizontal
distribution near Nishinoshima.
FIGURE 12

Time-series variability in pH west of 142°E. Yellow hatched area denotes the period when the USV-BB stayed near Nishinoshima.
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resulting in a total of 3506 photos throughout the mission. These

images, with timestamps in Japan Standard Time (JST, UTC+9),

offer a detailed visual log of the marine environment during this

period. Figures 14A-D shows varying oceanic conditions:

Figures 14A, B reveal possibly marine debris (plastic bottle) and

leaves floating on the sea surface, respectively. Figures 14C, D both

show the effect of time on the images. Figure 14C, taken at 8:31 a.m.

after dawn, shows sunlight reflecting off the surface of the water,

reducing visibility. Figure 14D, taken around 4:00 a.m. before dawn,

is mostly a noise-like image.

Figures 14E, F, derived from Bluebottle’s 360-degree camera,

further illustrates these observations. Figure 14E shows

Nishinoshima Island and its fumarolic gases, with the
Frontiers in Marine Science 13171
surrounding seawater appearing in its normal blue state. In

contrast, Figure 14F, taken closer to the island, clearly shows the

Bluebottle navigating through discolored waters, reinforcing the

impact of volcanic activity on water coloration. This photographic

evidence, cross-referenced with vessel data including location,

head ing , and gyroscop ic measurements , prov ides a

comprehensive view of the environmental changes encountered.

The variation in water color, from the typical oceanic blue to a

murky appearance near Nishinoshima Island, underscores the

significant influence of volcanic activity on marine conditions.

The utilization of the Brinno Timelapse Camera and

Bluebottle’s 360-degree camera system provided unprecedented

visual data on marine conditions, enabling a detailed analysis of
B

A

FIGURE 13

Backscatter data [bbp(700) (m
-1)] (A) time-series variability west of 142°E. Yellow hatched area denotes the period when the USV-BB stayed near

Nishinoshima shown in (B). (B) horizontal distribution near Nishinoshima.
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changes over time. The timelapse photography allowed for

continuous monitoring of the marine environment, capturing

dynamic processes and transient events that traditional

observation methods might miss.

3.2.5 Implications for marine volcano observation
with USV

The USV conducted five days of observations at shallower than

500 m water depth around Nishinoshima Island, the first time after

the big eruption of Nishinoshima in June 2020. The single-beam

bathymetric data around Nishinoshima Island reveal the presence

of a steep slope with an inclination of approximately 40 degrees on

the eastern flank (Figure 7). This is significantly larger than the

inclinations observed on the north side and is consistent with the

major growth of Nishinoshima Island on the north side of the crater

during the large-scale eruptions from December 2019 to June 2020

(Maeno et al., 2021). The clear reflective surfaces and their depth

changes in the sub-bottom profile data (Figure 8) are likely

indicative of the distribution of volcanic sediments. Although

these volcanological interpretations will be left for subsequent

papers, these results hold important implications for

understanding the formation of Nishinoshima volcano.

Additionally, the continuous day-time observations of fumarolic

activity obtained through 360-degree time-lapse photography
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(Figure 14) serve as evidence that our observations have realized

real-time monitoring of Nishinoshima volcano.

pH anomalies particularly on the east side near Nishinoshima

Island (Figure 12) and the color anomalies in seawater observed

through camera images (Figure 14) suggest seawater abnormalities

associated with the activity of Nishinoshima volcano. Besides, the

observed submesoscale variations in water temperature, salinity, and

current aroundNishinoshima Islandmay be influenced by the presence

of this massive volcano, which extends from 4000 m below the sea floor

to above the sea surface, and potentially by volcanic activities. The

submesoscale ocean variations can have impacts on the atmospheric

boundary layer. Clarifying phenomena that involve interactions among

the solid Earth, oceans, and atmosphere, as observed in this

comprehensive USV-based observation, hold great significance.
4 Concluding remarks

Our preliminary investigation around the volcanic island

evinced that the employment of USV presents a significant

advantage in marine research, particularly in hazardous or

inaccessible areas, although we have to overcome some

operational problems, such as increasing of electrical capacity and

driving power of USV, to realize sustainable observations. Its ability
B

C D

E F

A

FIGURE 14

Downward facing camera and Bluebottle’s 360-degree camera images.
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to navigate autonomously and gather multiple data in real-time

under challenging conditions, such as near volcanic activity zones

or in turbulent weather, minimizes risks to human researchers and

reduces operational costs. Additionally, the integration of various

sensors and data collection technologies, such as the single-beam

echosounder for bathymetric data, and the oceanographic and

meteorological sensors, despite their limitations, has provided a

multi-dimensional view of the underwater landscape and marine

conditions. In this study, we discussed the data acquired

individually; however, moving forward, we plan to advance the

understanding of various phenomena around Nishinoshima Island

by integrating and analyzing multiple datasets in conjunction.
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The use of autonomous
underwater vehicles for
monitoring aquaculture
setups in a high-energy shallow
water environment: case
study Belgian North Sea
Christopher J. Peck1*, Kobus Langedock1, Wieter Boone1,
Fred Fourie1, Ine Moulaert1, Alexia Semeraro2,
Tomas Sterckx3, Ruben Geldhof4, Bert Groenendaal5

and Leandro Ponsoni1

1Flanders Marine Institute (VLIZ), Ostend, Belgium, 2Flanders Research Institute for Agriculture,
Fisheries and Food (ILVO), Ostend, Belgium, 3DEME Group, Zwijndrecht, Belgium, 4Jan De Nul,
Aalst, Belgium, 5Sioen Industries NV, Ardooie, Belgium
Effective and frequent inspections are crucial for understanding the ecological

and structural health of aquaculture setups. Monitoring in turbid, shallow, and

dynamic environments can be time-intensive, expensive, and with a certain level

of risk. The use of monitoring techniques based on autonomous vehicles is an

attractive alternative approach because these vehicles are becoming easier to

use, cheaper and more apt to carry different sensors. In this study, we used an

Autonomous Underwater Vehicle (AUV) equipped with interferometric side scan

sonar to observe an aquaculture setup in the Belgain North Sea. The surveys

provided information on the longlines and indicated that the mussel dropper

lines touched the seabed, implying that mussel growth weighed the longlines

down. The side scan imagery also captured significant scouring around the

longline anchors and localized debris on the seabed, which is important

information to ensure the long-term sustainability of the setup and impact on

the seabed. The results show that observing mussel longlines in a turbid, shallow,

and high-energy environment using an AUV is a viable technique that can provide

valuable information. Thus, the present study provides key insights into the

application of innovative uncrewed monitoring techniques and forms an

important step towards efficient and sustainable management of offshore

aquaculture setups.
KEYWORDS

autonomous underwater vehicles, side scan sonar, mussel aquaculture setup, shallow
high-energy environment, Belgian North Sea
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1 Introduction

Aquaculture setups for mussels cultivation are utilized globally,

accounting for 94% of the world’s mussel production (Avdelas et al.,

2021). In addition to their role in food production, and within a

context of increasing threat of coastal zones by climate change-

related processes, mussel aquaculture setups have also been

explored as a strategy to kickstart and sustain mussel reefs on the

seafloor (Goedefroo et al., 2022; Boulenger et al., 2024), offering a

nature-based solution (Krull et al., 2015; Seddon et al., 2020; Van

der Meulen et al., 2023) for coastal protection (Murray et al., 2002;

Borsje et al., 2011; Temmerman et al., 2013; Walles et al., 2016). The

rationale is that mussel reefs at the seafloor show potential

in providing coastal protection by trapping and stabilizing

sediments, diminishing wave impact, and alleviating the effects

of sea level rise (Goedefroo et al., 2022; Ells and Muarry 2012;

Koch et al., 2009; Boulenger et al., 2024). In both scenarios,

whether deployed as a food production system or a nature-based

solution, these setups necessitate regular monitoring to assess

their structural integrity, the health status of mussels, and their

environmental impact.

Traditionally, mussel aquaculture monitoring has been

predominantly conducted manually (Bao et al., 2020), often

involving divers (Lowry et al., 2014; Hicks et al., 2015; Ali et al.,

2022), which is labor intensive and carries an amount of risk. Diving

efforts are also restricted by environmental conditions such as

visibility, strong currents and waves, leading to limited coverage.

With increasing investments and automation in the food industry,

aquaculture has become one of the fastest-growing sectors of food

production globally (Allison, 2011) and consequently, monitoring

techniques are continuously evolving and adapting to the specific

characteristics of individual aquaculture setups (e.g., species,

covered area, depth, proximity to the coast, accessibility) and the

environmental conditions in which they operate. In this direction,

efforts to minimize human intervention in sampling approaches for

mussel aquaculture setups and seafloor reefs have increased, aided

by aerial (e.g., Barbosa et al., 2022) and marine uncrewed vehicles

(Bao et al., 2020).

Commonly, aerial-based remote sampling relies on optical

techniques (Massarelli et al., 2021), rendering them ineffective in

turbid waters due to reduced visibility caused by suspended

sediment and other particulate matter which interferes with

optical signals (Zhao et al., 2018). In contrast, in situ

measurements through marine uncrewed vehicles enable detailed

monitoring of the aquaculture setups and underlying seabed. The

use of marine robots with application to aquaculture monitoring

has increased in the latest years through different approaches and

employed different types of vehicles (see Ubina and Cheng (2022)

for a review), such as Uncrewed Surface Vehicle (USV; e.g., Sousa

et al., 2019), Remotely Operated Vehicle (ROV; e.g., Amundsen

et al., 2021), or even through USV-ROV interactions (Osen et al.,

2018). Although most of the use of autonomous vehicles in

aquaculture was focused on the pisciculture industry, operations

by USVs and ROVs would still be adaptable and applicable for

mussel aquaculture and, therefore, eliminate the need for divers and

associated risks. However, the spatial coverage and environmental
Frontiers in Marine Science 02176
conditions might still be an issue even if to a lesser extent.

USV operations might be hampered by waves and currents and

restricted at near-surface inspections. ROV dives have reduced

spatial coverage and present the risk of entanglement between the

umbilical cable and the mussels’ long- and dropper lines.

Autonomous Underwater Vehicles (AUVs) do not have these

issues as there is no requirement for an umbilical cord and they

are able to repeat pre-programmed missions (Wynn et al., 2014).

AUVs have also been tested to autonomously inspect fish farm

cages and the surrounding water quality (Karimanzira et al., 2014).

While optical methods encounter limitations across various

sampling platforms (e.g., divers, aerial uncrewed vehicles, ROVs,

and SUVs), AUVs are also well-suited for employing acoustic

methods, such as side scan sonar (Wynn et al., 2014; McGeady

et al., 2023). This technology finds extensive application in

hydrographic (Mitchell and Somers, 1989; Ryant, 1975) and

marine geological surveys (Johnson and Helferty, 1990; Greene

et al., 1999), and benthic habitat monitoring (Brehmer et al., 2003;

Marsden et al., 2023; Greene et al., 2018; Ali et al., 2022). Essentially,

side scan sonar detects seabed objects and discerns sediment types,

while also able to inspect water column structures like piers and

bridge supports for signs of damage (Clausner and Pope, 1988;

Murphy et al., 2011; Bryant 1975; Hou et al., 2022). A hull-mounted

side scan sonar system was previously employed to monitor

installations of a mussel aquaculture setup in the French

Mediterranean, although clarity for detecting mussel dropper

lines was occasionally limited (Brehmer et al., 2006). While often

operated from vessels, side scan sonar surveys are increasingly being

conducted by AUVs (Wynn et al., 2014). AUVs offer advantages

over vessel-mounted or towed side scan sonar, as they can fly

relatively close to the targets (seabed and mussel lines), enabling the

collection of more tailored datasets.

However, the use of AUVs in shallow and turbid, high-energy

environments poses challenges. The strong currents and waves in

such environments can cause the AUVs to roll, significantly

impacting the quality of the side scan sonar data. Furthermore,

local current velocities may exceed the vehicle’s speed (Wynn et al.,

2014) and, therefore, considerably impact the sampling strategy.

This study aimed to investigate the hypothesis that “AUVs

equipped with interferometric side scan sonar can effectively

monitor mussel aquaculture installations, including long- and

dropper lines, anchoring systems, and the seabed beneath, in high-

energy and turbid environments”. To validate this hypothesis, the

following questions will be addressed: 1) Can an AUV safely

conduct surveys of aquaculture infrastructure in shallow and

turbid, high-energy environments? 2) If so, which side scan sonar

settings yield the highest quality data? 3) What relevant information

can be ascertained about the aquaculture setup? 4) What pertinent

information can be unraveled about the seabed surrounding the

aquaculture setup?

This paper is organized as follows: Section 2 introduces the

aquaculture setup and the study area (Section 2.1), along with the

AUV survey strategy (Section 2.2) and methods applied on the data

collection, processing, and analysis (Section 2.3). Section 3 presents

the results and corresponding discussions, including side scan sonar

settings (Section 3.1), outcomes from the mussel aquaculture setup
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(Section 3.2), and seafloor inspections (Section 3.3). Lastly, Section

4 provides objective answers to the research questions and offers

concluding remarks regarding the raised hypothesis.
2 Methods

2.1 Aquaculture setup and study area

As part of the Coastbusters 2.0 project, three mussel longlines

were deployed in two different areas in the Belgian North Sea

(Figure 1A), near the municipality of De Panne (Figure 1B). The site

closer to the shore was considered sheltered, as it is adjacent to sand

banks on the offshore side. The site further offshore is on the other

side of the sand banks and is considered exposed (Figure 1B).

The longlines were spaced between 30 and 40 m apart at the

sheltered site (Figure 1C) and between 20 and 50 m at the exposed

site. Each longline was approximately 150 m long and consisted of a

(near)surface line secured on the seabed by an anchor on either

extremity. Two types of anchors were used at each site: a screw

anchor, which was drilled directly into the seabed, and a block

anchor with a chain attached to the end of the longline (Figure 2).

Along the longlines, there were 36 three-meter-long mussel dropper
Frontiers in Marine Science 03177
lines, where mussel larvae could attach, spaced 1.5 m from each

other. At the end of each dropper line, there was a concrete block

weighing the lines down vertically in the water column. Buoys were

attached to the longline in order to keep the longline occupied by

dropper lines at the surface and not resting on the seabed. The

mussel larvae were expected to settle on the dropper lines and

metamorphose into the juvenile phase, allowing mussels to grow

before dropping onto the seabed (Figure 2).

The seabed in the region is mainly composed of sand with fine

to medium grain size (Degraer et al., 2000), with an area of muddy

sand to the south of the sheltered site. At both sites, the mussel

longlines were deployed at a depth of 5 m LAT (lowest astronomical

tide). The tide in the area is semi-diurnal with a range of 3.5 m

during the neap tides and more than 5 m during spring tides. The

large tidal range is associated with strong tidal currents, with peaks

exceeding 1 m s-1 in the nearshore area (Haerens et al., 2012).

Wind speed data from the Westinder weather and wave height

data from the Trapegeer wave buoy (both from the Agency for

Maritime Services and Coast, Flemish Government, 2023) were

collected for the two survey years and months (Figure 3). The

average prevailing wind and wave direction is southwesterly.

However, because of the angle of the coast, the highest waves are

generated when the wind is northwesterly (Fettweis et al., 2012).
B

C

A

FIGURE 1

Location of aquaculture setup deployment sites off the coast of Belgium in the North Sea (A), near the city of De Panne (B). The longlines were
deployed at an exposed site (black rectangle) and a sheltered site (red rectangle). Each side is composed of three long-lines (C) with 36 dropper
lines, as represented in Figure 2. Base map: ESRI Ocean.
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The winds were similar between the two months with the majority

of the wind coming from the southwest. However, October has

stronger winds in all directions and has periods of stronger winds

and higher waves (Figures 3C–F). More northwesterly winds occur

during October (Figures 3C, E) while August has periods of easterly

winds (Figure 3A).
2.2 AUV surveys

The AUV used in this research (AUV Barabas) is a commercial-

off-the-shelf Teledyne Gavia modular vehicle (Figure 4A). For the

surveys, it had a configuration of 2.87 m long, with a nose cone, a

single battery pack module, and modules for navigation, control,

surveying and propulsion. The AUV Barabas was equipped with an

iXBlue Compact C5 inertial navigation system (INS) aided by a

Pathfinder Doppler Velocity Log (DVL), European Geostationary

Navigation Overlay Service-capable (EGNOS) Differential Global

Positioning System (DGPS), and Keller pressure sensor (± 0.005

accuracy) (Figure 4A). The INS houses three fiber-optic gyros and

three accelerometers. The data from the INS and the available

aiding sensors are fed into a Kalman filter, which calculates a best

guess of the position, speed, and altitude of the vehicle in all three

dimensions, as well as their respective error estimates (Table 1).

After starting the vehicle and prior to deployment, a continuous

DGPS input is needed to align the INS. When the AUV Barabas is

submerged, the combination of the Compact C5 INS and the

Pathfinder DVL limits the increase in the position error to 0.02%

of the distance travelled (CEP 50). Each time the AUV Barabas

surfaces, the DGPS antenna will be able to obtain a new position fix,

and the positioning error will decrease.

The speed of the AUV is vital to collect high quality side scan

imagery, particularly in an environment with a strong current. The

AUV’s speed can be set either as a fixed revolutions per minute

(RPM) for the propeller or a fixed speed over ground (SOG). With a

set RPM, the AUV’s SOG fluctuates with current speed, impacting
Frontiers in Marine Science 04178
data consistency. Alternatively, setting a fixed SOG allows real-time

adjustment of propeller RPM for more consistent data, but affects

maneuverability. Low RPM in current reduces maneuverability, while

high RPM risks aggressive behavior and mission aborts. A minimum

RPM of 500 and maximum of 1000 maintained stability, with an

optimal SOG of 1.7 m s-1 in background currents up to 0.5 m s-1. For

background currents with speed between 0.5 and 0.8 m s-1, the AUV

started to respond more erratically to disturbing factors. For

background flow between 0.8 and 1 m s-1, the AUV was still able

to track a sampling line, but occasionally aborted the mission in the

turn between lines, since it was unable to generate enough speed for

drastic maneuvers. Above 1 m s-1 currents, the increased risk of a

mission abort and the reduced data made us decide not to deploy the

AUV. Based on this empirical approach, the AUV Barabas sailed at a

fixed speed over ground of 1.7 m s-1 for this study, ensuring optimal

flying mode and fixed sampling resolution to facilitate post-

processing of the side scan sonar mosaic (see Section 2.3). At the

very rear of the AUV, a nozzle contains the single propeller and four

individually controlled fins. The fins thus control roll (actively

maintaining 0° roll), pitch (used for depth control) and heading

(used for track keeping). The AUV is not equipped with actuators to

move laterally.

The AUV Barabas was successfully deployed in three campaigns

(August and October 2021 and October 2022) equipped with a

Klein 3500 dual-frequency interferometric side scan sonar (see

details in Section 2.3) by the research vessel Simon Stevin. Several

surveys of varying lengths were conducted for each campaign. Since

the AUV Barabas was operating in-between and around the mussel

longlines in a high-energy environment, a few considerations

needed to be taken for each survey. The surveys were conducted

with the AUV Barabas flying aligned either against or with the

prevailing tidal current to prevent sideways movements of the

vehicle, since this would lead to poor side scan sonar imagery. As

mentioned above, navigation with AUVs is known to be challenging

as vehicles lose GPS signals when underwater, and the error of INS

increases the longer a vehicle is underwater (Wynn et al., 2014;
FIGURE 2

Sketch of the deployed structures in the context of the Coastbusters 2.0 project displaying longlines, surface buoys, dropper lines, end-weights, and
anchors. Note that the sketch is not to scale; not all 36 dropper lines are represented in the figure. Three of these structures were deployed at
each site.
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Paull et al., 2018). To avoid collision with the longlines, the survey

lines that passed closest to the obstacles were executed first when the

position uncertainty was minimal. The mussel lines were installed

parallel to the main current flow, but as the current turns with the

tides, the mussel lines would curve between the anchors (either

towards or away from the coast). This behavior was anticipated and

taken into account when planning the survey tracks (Figure 4B).

The track plan was relatively close to the longlines to ensure that

they were captured in the side scan sonar swath (Figure 4C).

However, the distance between the AUV Barabas and the longline

would vary with the state of the tide and the ambient current.
Frontiers in Marine Science 05179
2.3 Data collection, processing,
and analyses

Side scan sonar operates by emitting a signal, commonly

referred to as a “beam”, which travels through the water column

and reaches the seafloor or structures located on either side of the

sampling platform. This platform is typically a towfish or vessel

(Blondel, 2009). In our study, however, the side scan sonar was

mounted on an AUV (e.g., Wynn et al., 2014). The AUV Barabas

was equipped with a Klein 3500 dual-frequency interferometric side

scan sonar. Figure 4A shows the positioning of the side scan sonar
B

C D

E F

A

FIGURE 3

Wind speed and direction (A, C, E) from the Westinder weather station and significant wave height and direction (B, D, F) from the Trapegeer buoy
for the year of 2021. Data was acquired from the Agency for Maritime Services and Coast, Flemish Government (2023).
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system on the vehicle. Once the data was collected, it was displayed

and processed using two different methods: waterfall and mosaics.

The raw data was plotted as waterfall images using the SonarPro

software (version 14.1, Klein Marine Systems, Inc). Waterfall

images depict the intensity of the sonar signal return. While

various methods exist for presenting waterfall images, in this

study, distances are plotted along the x-axis, with increasing

distance from the center of the figure. Additionally, successive

data samples are represented along the y-axis, which corresponds
Frontiers in Marine Science 06180
to both time and distance, considering the sampling rate and the

vehicle’s cruising speed. Waterfall images enable the identification

and measurement of features and contacts, as well as the acquisition

of individual positions. However, due to the extensive number of

samples, only a fraction of the data can be displayed. Additionally,

these images cannot be integrated with other data sources due to the

absence of georeferencing.

On the other hand, the mosaics are georeferenced images and

were created with SonarWiz software (SonarWiz 7, Chesapeake
B

C

A

FIGURE 4

(A) Modules of the AUV Barabas used for the surveys, including the nose, battery, internal navigation system (INS), control module, Klein side scan
sonar (SSS) module, and the prop. Typical survey pattern conducted by the AUV (B) and how it would fly next to the mussel longlines so that the
side scan sonar could capture it (C). The image is a stylized representation and not to scale.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1386267
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Peck et al. 10.3389/fmars.2024.1386267
Technology, Inc), where movements of the AUV Barabas (pitch,

roll, and yaw) are also compensated for. Depending on the quality

and quantity of the images, building a mosaic can be labor intensive,

requiring specialized software and some resolution can be lost. A

mosaic can be exported in a wide range of data formats, allowing the

data to be overlaid with other georeferenced data.

As a dual-frequency system, the sonar transducer emitted

acoustic signals at two distinct frequencies: a relatively high

frequency of 900 kHz and a relatively low frequency of 455 kHz.

The high-frequency (900 kHz) beam has a horizontal opening angle

of 0.34°, and the range (single side) can be set between 15 m and 75

m. The low-frequency (455 kHz) beam had a horizontal opening

angle of 0.48°, and the range could be set between 30 m and 200 m.

The optimal altitude above the seafloor is 10–15% of the sonar

range, meaning that the operational range of the sonar will be

limited by the local depth. The along-track sampling is inversely

proportional to the AUV’s sailing speed and sonar range, whereas

the cross-track resolution of the side scan sonar’s Compressed

High Intensity Radar Pulse (CHIRP) relies on the sampling

frequency. A variety of side scan sonar settings were tested during

each survey to define which settings obtained the most useful data.

The altitudes tested were 3 m and 5 m, with corresponding ranges

of 30 m and 50 m. Both high-frequency and low-frequency data

were collected simultaneously. Finally, pulse lengths of 2 ms and

1 ms were tested, with a respective sampling frequency of 31250 Hz

and 62500 Hz, providing an across track resolution of 4.8 cm

and 2.4 cm.
3 Results and discussion

3.1 Optimizing AUV surveys and side scan
sonar settings

For this research, high and low-frequency transducer settings

were used and analyzed both in a waterfall display and as mosaic

images. The high frequency was used for the analysis as it provides
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the highest resolution of the data. The low-frequency setting was

run at the same time and was used for redundancy.

The survey area is affected by wind and wave action, which

impact the AUV Barabas and the quality of side scan sonar data

when the vehicle is close to the sea surface. Therefore, the altitude

of the AUV Barabas combined with the tidal height is critical. There

were two main survey heights: 3 and 5 m from the seabed. At 5 m,

roll artefacts were seen in both the waterfall and in the mosaic data

(Figure 5A). The mosaic looked ‘wavy’ and had shading in places

where there is no object to cast an acoustic shadow (Figure 5A). It is

clear that the AUV Barabas was too close to the surface and was

being excessively impacted by the surface waves. When the survey

height was set at 3 m from the seabed, the roll artefacts were

significantly reduced (Figure 5B). With the survey site being

relatively shallow, even small surface waves (<0.5 m) will have

more of an effect on the AUV Barabas, reducing the operational

window in which the largest coverage and highest quality of data

can be obtained. The altitude of the AUV Barabas affects the

maximum distance that can be imaged by the side scan sonar,

which is also known as the range. In general, a lower range provides

a higher image resolution but covers a smaller area of the seabed. A

range of 10 times the altitude was found to cover the largest area

while providing the highest resolution (Flemming, 1976). In the

three campaigns, two ranges were used: 30 m and 50 m. Since 3 m

altitude produced better quality data, it became the predominant

survey altitude and, therefore, 30 m became the predominant

acoustic range used.

Throughout the campaigns, different surveys used a pulse

length of either 2 ms (31250 Hz sampling frequency) or 1 ms

(62500 Hz sampling frequency), as shown in Figure 6. We found the

higher across track resolution of the 1 ms pulse length to provide a

clearer image when analyzing the objects on the seabed in the

waterfall, such as an anchor (Figure 6A, B). However, when using

the mosaic format, we found that the higher resolution provided

little added value, and the contrast between the seabed and objects

on the seabed decreased (Figure 6C). Therefore, a pulse length of 2

ms is better suited for mosaics, as it creates a clearer image of the

seabed and provides better contrast between objects (Figure 6D).

This could be clarified by the stretching of pixels when

georeferencing: at a sonar range of 30 m and sailing at 1.7 m s-1,

the along-track sampling resolution is 6.8 cm, which is closer to the

across-track resolution of the 2 ms pulse (4.8 cm) than to that of the

1 ms pulse (2.4 cm). When using side scan sonar mosaics and

waterfall together, the choice of pulse length depends on the specific

mission objectives.
3.2 Aquaculture setup inspection

The most data was collected from the sheltered site and is only

data analyzed in the following section. The images captured by the

side scan sonar on the AUV Barabas clearly show the mussel

longlines in both the waterfall and the mosaics, even when the

longlines are above the transducer and sometimes at the surface of

the water column. When compiling the survey images together into

a mosaic, it is possible to see all three longlines (Figures 7, 8). Using
TABLE 1 Details and accuracy of AUV Barbara navigation equipment.

Navigation
sensor/
input

Model Standard deviation and
Kahlman settings

INS iX Blue
Phins

Compact
C5

Heading accuracy calculated realtime. SD <0.1°
during survey

Roll and pitch accuracy calculated realtime SD
< 0.002° during survey

DGPS Septentrio
AsteRx4

Position accuracy estimated realtime. During
this survey approximately 5 m after surfacing,

decreasing to minimum 0.36 m after
continuous fixing (SD)

DVL RDI 600
kHz

Pathfinder

Fixed input value. SD of linear speed 0.05 m/s
in every direction

Pressure sensor Kalman
PA-30X

Fixed input value. SD of depth 1 m (±
0.005 accuracy)
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this technique, a surveyor can confirm that the lines and their

anchors are still intact and assess how the lines are being impacted

by the local currents. An example of this is the distinctive curve of

the longlines as they are pushed in the direction of the tide, curving
Frontiers in Marine Science 08182
towards the shore during the flood current or away from the shore

during the ebb current (Figures 7, 8).

In addition to the mosaics, the waterfall images show the

individual dropper lines as the AUV Barabas flies parallel to the
BA

FIGURE 5

Images showing the difference in the quality of side scan sonar data at a relatively high altitude of 5 m (A) and low altitude of 3 m from the seabed
(B). The side scan sonar data settings were as follows: frequency 950 kHz, altitude 5 m (A) and 3 m (B), range 50 m (A) and 30 m (B), pulse length 2
ms. Both images have had the same degree of processing applied.
B

C D

A

FIGURE 6

Waterfall and mosaic images of an anchor on the seafloor comparing the two pulse rates used 1 ms (A, C) and 2 ms (B, D). The other side scan
sonar data settings were as followed: Frequency 950 kHz, Altitude 5 m, Range 30m.
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lines, and if the dropper lines are not visible, the acoustic shadows

often appear (Figure 9). The shadows not only show that the mussel

dropper lines are intact, but by using SonarPro and measuring the

distance between the start of the shadow and the dropper line, one can

determine their height above the seabed (Figure 9). From analyzing

the waterfall image (Figure 9), there are three places where the shadow

of the longline or the dropper lines touch the respective reflections,

indicating that the objects are on the seabed. Looking in further detail

at the mussel dropper lines at the top of the image, there are nine on

the seabed. The dropper lines then quickly rise off the seabed with an

increase of 1.2 m between dropper lines 2 and 3 (Figure 9).

Using the AUV Barabas to conduct repeated surveys provides

insight into how the longlines might change over time. The August

2021 survey (Figure 7B) was able to pick out the buoys on the line

and the dropper lines. When the entire dropper line is at

approximately the same distance from the transducer, the

dropper lines are displayed as dots, highlighted in blue, similar to

a top-side view. The same survey was conducted in October 2021

(Figure 8B), and in this survey, some dropper lines were visibly
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resting on the seabed. The two surveys were conducted at similar

states of tide (Table 2), so this could indicate that the mussel

dropper lines were heavier in October than in August, suggesting

there had been mussel growth compatible with the relatively higher

mussel growth and ventral thickness of the shells expected at this

time of the year (Nagarajan et al., 2006). The dropper lines on

longline 3 were clearly dragged along the seabed, as this longline

does not have a uniform curve like lines 1 and 2 (Figure 8A). With

the mussel dropper lines resting on the seabed, they are at risk of

entanglement (Figure 8B). They add extra stress on the longline and

will also impact the surrounding seabed as the dropper lines are

dragged back and forth with the tide. From an aquaculture

perspective, the dropper lines should avoid touching the seabed,

as the quality of the mussels will be impacted. It is well known that

mussels suspended in the water column produce a higher yield, as

they are able to feed constantly and require less cleaning to remove

sand and grit before consumption (Cheong and Lee, 1984). From a

reef building perspective (as is the case for the Coastbusters 2.0

project), dropper lines on the seafloor could hamper the creation of
B

A

FIGURE 7

Side scan sonar mosaic of the sheltered site conducted in August 2021, with the three mussel longlines clearly visible (A) and the individual mussel
dropper lines (B). Some of the individual dropper lines are highlighted in blue, with the square indicating a surface buoy on the longline. The side
scan sonar data settings were as follows: frequency 950 kHz, altitude 3 m, range 30 m, pulse length 2 ms.
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a reef. As the dropper lines are dragged along the seabed with tidal

currents, the concrete weights at the end of the line can induce

significant scour and disturb any organisms on the seabed.
3.3 Seabed inspection and
environmental impact

Using side scan sonar to detect objects, such as reefs or

shipwrecks, and monitor scouring on the seabed is a common

practice (Johnson and Helferty, 1990; Penrose et al., 2005). Our

surveys indicated both mussels on the seabed and seabed scouring

from the aquaculture setup. The surveys conducted in October 2021

detected a large number of reflections that appeared as bright spots

surrounding longline 2 (Figure 8A). The reflections are similar to how

mussels appear on side scan sonar in previous studies (Powers et al.,

2015) and mussels were found beneath long lines by diving surveys in

summer and winter of 2021, but no surveys were conducted when the

data for Figure 8A was collected (Islam et al., 2024).
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The AUV itself will have very little impact on the environment

and the seafloor as it needs to be kept at least 3 m off the seabed in

order to collect high quality side scan data as discussed in section

2.2. The Gavia AUV is also battery powered and contributes to the

decarbonization of marine fleets. However, the mussel long lines

can negatively impact the seabed. Although longlines are deployed

in high-energy environments where the sediment is routinely

disturbed, scouring can still have an impact on benthic habitats

(Broad et al., 2020) and can potentially release carbon stored in the

seafloor, which may then enter the atmosphere (Atwood et al.,

2024). From analyzing the side scan imagery, the scouring is most

significant around the block anchors for the mussel longlines

(Figure 10). Scouring is important to monitor, especially in

shallow high-energy environments, as it is well known to affect

the stability of structures on the seabed (Sumer and Fredsøe, 2002).

For the two types of anchors (screw and block anchors, as described

in Section 2.1), there are different degrees of scouring. The screw

anchor shows no evidence of scouring, while there is significant

scouring around the block and chain anchor (Figure 10). There is a
B

A

FIGURE 8

Side scan sonar mosaic of the sheltered site conducted in October 2021, with the three mussel longlines clearly visible. Potential contacts of
mussels on the seafloor are highlighted in blue (A). Individual mussel dropper lines resting on the seabed (B). The side scan sonar data settings were
as follows: frequency 950 kHz, altitude 3 m, range 30 m, pulse length 2 ms.
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large pit around the block and under the chain, which is a result of

the tidal current pushing the chain back and forth. Scouring was

more apparent in waterfall images than in mosaics, where the

processing and combining of survey tracks reduced the

appearance of anchor pits. Anchors and their chains are well

known to create pits and displace sediments. These sediments

usually support a variety of marine life, including polychaetes,

crustaceans, mollusks, and sponges, all of which are vulnerable to

anchors and their associated scour (Sorokin et al., 2005; Pitcher

et al., 2009). Given that there is no scouring present when using a

screw anchor, it would be the preferable method of the two anchors

used here for mussel longline deployment to prevent the

unintentional destruction of a potential mussel reef.
4 Summary and conclusions

The objective of this study was to test the following hypothesis:

“AUVs equipped with interferometric side scan sonar can effectively

monitor mussel aquaculture installations, including long- and

dropper lines, anchoring systems, and the seabed beneath, in high-

energy and turbid environments”. To address this hypothesis the

following four questions were raised. First, can an AUV safely

conduct surveys of aquaculture infrastructure in shallow and turbid,

high-energy environments? Three campaigns and several surveys

were successfully conducted in and around the mussel lines in the
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Belgian North Sea, an area with current speed exceeding 1 m s-1.

This study shows that side scan sonar mounted on an AUV is a

viable technique in support of management of aquaculture and

coastal protection setups. Apart from mapping the seabed,

structures in the water column can be detected and analyzed.

Using an AUV in a shallow, high-energy environment is not

without challenges. The strong current and waves associated with

the high-energy environment can cause roll, which has the greatest

impact on the quality of the side scan sonar data (Figure 4).

To combat the strong currents, AUV Barabas was aligned either

against or with the prevailing tidal current to prevent the

instrument from moving sideways. The speed of the AUV was

also set a fixed SOG of 1.7 m s-1 as that was found to be the best for

the current conditions and provided the best quality of data. The

impact of surface waves was addressed by flying the AUV Barabas at

a lower altitude; however, the AUV Barabas still needed to be high

enough to detect the mussel longlines on the surface. The close

proximity to submerged obstacles called for a high navigational

accuracy, which was ensured by planning short missions with

intermittent GPS fixes.

The second question was: which side scan sonar settings yield

the highest quality data? The altitude of the AUV impacts coverage

of the side scan sonar. With the AUV Barabas at a lower altitude (3

m instead of 5 m from the seabed) to avoid impact from surface

waves, the range is lower and covers less of the seabed. However, the

resolution is higher and the AUV will pitch and roll less, providing

more detailed images. As expected the high frequency setting (900

kHz) produced the highest data resolution. The quality of the data

produced by the two pulse lengths used depended upon the format

in which the data was displayed. In the mosaic, a pulse length of 2

ms provided better data, whereas a pulse length of 1 ms provided

more detail when displayed in the waterfall.

The third question was: what relevant information could be

ascertained about the aquaculture setup? The surveys provided
FIGURE 9

Waterfall images displaying of the longline and mussel dropper lines. L is the measured distance between the acoustic shadow and the object, used
to calculate the height of bottom of surface buoy = 2.1 m, dropper line 1 = 0 m, dropper line 2 = 0.36m and dropper line 3 = 1.5m. The side scan
sonar data settings were as follows: frequency 950 kHz, altitude 3 m, range 30 m, pulse length 2 ms.
TABLE 2 Tidal information during AUV Barabas surveys displayed in
Figures 5 and 6.

Survey date Survey time Low tide High tide

12/08/2021 11:44 10:57 16:36

08/10/2021 10:19 9:30 15:07
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details on not only the longlines and their anchors but also the

individual dropper lines in the water column. The surveys show

how far the dropper lines are above the seabed and when they rest

upon it. This is relevant for both aquaculture setups, as it provides

insight into the stressors placed on longlines in high-energy

environments and the impact of the setup on the seabed. If the

survey shows the dropper lines on the seabed, the entire setup can

be properly adjusted to ensure that the mussel dropper lines stay

above the seabed. This is critical for both the quality of the mussels

harvested in aquaculture and the development of a mussel reef for

coastal protection.

Finally, we addressed the fourth question to investigate what

pertinent information can be unraveled about the seabed

surrounding the aquaculture setup and, therefore, investigated the

potential impact on the seabed. The side scan sonar surveys also

collected data on the surrounding environment and show that the

main impact of the aquaculture setup on the seabed is scouring,

particularly around the anchors. A traditional block and chain

anchor induces significantly more scouring than a screw anchor.

Scouring from the anchor could affect not only organisms in the

surface substrate but also any mussels that settle on the seabed from

the dropper lines.

The results demonstrate that employing an Autonomous

Underwater Vehicle (AUV) equipped with a side scan sonar is a

viable and innovative technique for monitoring mussel longlines.

As these techniques continue to evolve, they could offer a more cost-

effective and simpler alternative to the traditionally challenging

logistics of conventional monitoring methods. This advancement

underscores the potential for significant enhancements in

aquaculture management, particularly in optimizing operational

efficiencies and reducing risks. However, monitoring with an AUV

is not without drawbacks. Side scan sonar does not provide direct

information on the health of the mussels setup such as occurrence

of predators or fouling. The positioning error from underwater

navigation increases the longer the AUV is under the water.
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Therefore, shorter and more frequent dives with surfacing to

regain accurate positioning from satellite navigation systems

might be required.

Another limitation is the size of the AUV itself. With a length of

almost 3 m, the used AUV Barabas has a relatively large turning

radius, which is not ideal for a lawnmower pattern flown between

two mussel longlines. The size and weight also require a support

vessel for safe launch and recovery. Since most of our findings are

not specific to the AUV Barabas used, the issues could be overcome

by using smaller AUVs. Smaller, cheaper AUVs are emerging on the

market, and while they are unable to match the sonar range, depth

rating, and navigation precision of a survey class AUV, these factors

might be less of a concern in very shallow water. The data quality

could be sufficient for operational monitoring, with much lower

acquisition costs and a minimal logistical footprint.

The approach used in this study shows that it is an efficient and

safe alternative to combine AUVs and side scan sonar in the

detailed monitoring of an aquaculture setup. A similar approach

could be implemented in the monitoring of offshore mussel farms at

a large production scale, allowing for intense monitoring in short

periods. This monitoring strategy could also be suitable for other

aquaculture setups. For example to monitor structural integrity of

pisciculture cages, oyster cages/beds, and more particularly their

impact on the seafloor. The AUV platform allows for multiple

sensors to be collecting data at once so environmental data could be

collected along with side scan sonar data, providing information on

temperature, salinity and water pH. Using an AUV also provides a

low risk alternative to site inspection to either identify suitable areas

for aquaculture installations or after disaster, such as structural

damage after a storm. Monitoring aquaculture setups with an AUV

could also be used in tandem with other marine robotic platforms

such an ROV. An AUV survey would provide information about a

site as a whole, then an ROV could perform detailed visual

inspection on areas of interest and look at specific problems for

example biofouling on the mussels.
FIGURE 10

Waterfall images of significant scouring around the two different anchors of the mussel longlines, a screw anchor (left) and block anchor (right).
The side scan sonar data settings were as follows: frequency 950 kHz, altitude 5 m, range 50 m, pulse length 2 m.
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