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Editorial on the Research Topic
Multi-sensor imaging and fusion: methods, evaluations, and applications,
volume II

Introduction

Multi-sensor imaging and fusion technology plays an increasingly important role inmedical
imaging [1, 2], medical image segmentation [3, 4], engineering construction [5, 6], complex task
object detection [7, 8] and other fields [9, 10]. Multi-sensor image fusion mainly processes
images of the same object or scene captured by multiple sensors [11], which complement each
other by combining multi-level and multi-spatial information, ultimately providing a consistent
interpretation of the observed environment. In recent years, multi-sensor image fusion has
become a highly active Research Topic, and various fusion methods have been proposed. In
addition, the performance evaluation and downstream applications ofmulti-sensor imaging and
fusion technology [12] are also receiving increasing attention. This Research Topic focuses on
cutting-edge research related to multi-sensor imaging and fusion technology, including image
detection and fusion methods [13], objective evaluation methods [14], and specific applications
in engineering problems [15]. After a thorough peer review process, all fifteen articles submitted
to this Research Topic were accepted for publication. The main research results of these works
are summarized in the following three aspects.

Imaging detection, feature extraction, and fusion
methods in multi-sensors

Chen et al. proposed a structure similarity virtual map generation network (SVGNet) for
optical and SAR imagematching. This method uses an AttentionU-Net and a conditional GAN
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to reduce modal differences, significantly improving the matching
accuracy by more than two times compared to direct image matching.

Feng et al. proposed a cross-modal fusion framework based on
YOLOv5 to improve night-time pedestrian detection under low-light
conditions. This dual-stream architecture processes visible and infrared
images separately, using a cross-modal feature rectification module
(CMFRM) to fine-tune features and reduce noise. The two-stage feature
fusion module (FFM) enhances feature output through cross-attention
and mixed-channel embedding, significantly improving the accuracy
and robustness of night-time pedestrian detection.

Xiong et al. proposed a sparse hair cluster detection model based
on improved object detection neural networks and dermoscopic
images. This model utilizes a multi-level feature fusion module to
extract and fuse features at different levels, and a channel-space dual
attention module to enhance representation capabilities and
detection accuracy. The model, tested on self-annotated data, can
accurately identify and count sparse hair clusters, which
outperforms existing methods in accuracy and efficiency, making
it a valuable tool for early detection and treatment of hair loss.

Chen et al. proposed the spatial-channel synergistic optimization
net (SCSONet), a lightweight network for skin lesion segmentation
designed to run efficiently with limited computing resources. This
model introduces a ConvStem module with full-dimensional attention
to enhance the recognition of irregularly shaped lesion regions while
reducing parameters and computational burden. The SCF block further
optimizes the model by fusing spatial and channel features to reduce
feature redundancy. SCSONet was validated on two public skin lesion
segmentation datasets, showing high effectiveness and robustness with
low computational resource requirements.

Wang et al. developed a long-depth-of-field (DOF) full-field optical
angiography (FFOA) imaging system to address the limitations of
capturing complete blood flow information. A novel multi-focus
image fusion scheme based on gradient feature detection was
proposed. This method uses non-subsampled contourlet transform
(NSCT) to decompose FFOA images and applies fusion rules based
on gradient feature detection. Experimental results on phantoms and
animal cases showed that this method effectively expands the DOF and
solves the defocus issues, providing a more comprehensive description
of blood information compared with a single FFOA image.

Song et al. investigated the application of deep learning in medical
ultrasound imaging with a focus on reducing computational complexity
and assisting novices. They explored deep learning solutions for
improving image reconstruction and clinical diagnosis.

Objective evaluation methods in multi-
sensor imaging

Peng et al. developed a novel method for detecting intracerebral
hemorrhage (ICH) based on the frequency-dependent variations in
permittivity, eliminating the need for non-hemorrhagic baseline data.
By identifying the frequency points with the maximal permittivity
differences between blood and other brain tissues, the method enables
absolute detection of ICH. Experimental results show that specific
frequency ranges can effectively detect blood in different tissue
environments, bringing promise for rapid and accurate ICH detection.

Song et al. used functional magnetic resonance imaging (fMRI)
and diffusion tensor imaging (DTI) to detect brain alterations in

intensive care unit (ICU) patients developing delirium and assess
their predictive value. The study compared fifteen ICU patients with
delirium to fifteen healthy controls and found significant differences
in brain activity and structure. In the delirium group, the regional
homogeneity (ReHo) values of the left caudate nucleus and frontal
lobe were lower, the amplitude of low-frequency fluctuations
(ALFF) in the hippocampus and frontal lobe was altered, and the
mean diffusivity (MD), radial diffusivity (RD), fractional anisotropy
(FA), and axial diffusivity (AD) in several brain regions were
reduced. Early fMRI and DTI examinations are recommended to
predict delirium and facilitate early intervention, potentially
improving patient outcomes.

Huang et al. used electrical capacitance tomography (ECT) with
a symmetrical cancellation method to detect intracerebral
hemorrhage (ICH). This method places electrodes symmetrically
around the head and subtracts the measured capacitances to isolate
hemorrhagic events. Testing on various models shows this method
can achieve absolute imaging of ICH, although mirroring artifacts
and the need for precise electrode alignment pose challenges.
Nonetheless, this method shows promise for pre-hospital
emergency detection of ICH.

Specific applications of multi-sensor
technology in engineering problems

Li et al. proposed a densemetal corrosion depth estimationmethod
based on image segmentation and inpainting to accurately measure
corrosion depth using X-ray images. This method also includes virtual
data generation techniques to create training images with ground-truth
annotations, thereby improving the accuracy and reliability of the
corrosion depth estimates. Experimental results confirm the
effectiveness of the method on both virtual and real datasets.

Yang et al. applied a digital twin to highway tunnels using a
multi-modal information fusion method based on convolutional
neural network (CNN)–long short-term memory (LSTM)–
attention. This system solves the challenges of sensor breakdown
and insufficient data support in tunnel management. By realizing
closed-loop management of “accurate perception–risk
assessment–decision warning–emergency management,” the
digital twin enhances traffic safety, reduces management costs,
and improves driving comfort in highway tunnels.

Xian et al. developed an auto-verbalizer filtering method for
prompt-based aspect category detection (ACD) in sentiment
analysis. This approach automatically builds the verbalizer in
prompt learning, enhancing the reliability of aspect categories in
predictions. By leveraging the semantic extension of category labels
and an indicator mechanism, their model significantly improves
performance, improving by 7.5% on the zero-shot tasks and 2% on
the few-shot tasks compared with the second-best models, especially
excelling in handling general or miscellaneous aspect categories.

Luo et al. introduced an enhanced YOLOv5s + Deep SORT
method for highway vehicle speed detection and multi-sensor
verification. This approach optimizes data augmentation and
incorporates the Swin Transformer module to improve local feature
recognition. The model enhances vehicle detection using complete IoU
(CIoU) loss for higher accuracy and Mish activation function for better
convergence. Modified Deep SORTmitigates identity switching, and an
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image-to-coordinate transformation is used to calculate vehicle speed
and average it over multiple frames. Multi-sensor verification shows the
mean average precision (mAP) exceeds 90% and the speed
measurement error is within 1–8 km/h, proving the model’s
reliability and applicability for highway scenarios.

Wang et al. developed a novel algorithm for road surface detection
that combines LiDAR point clouds with 2D images to predict drivable
areas for autonomous vehicle navigation. The method constructs an
altitude discrepancy map from LiDAR data to exploit the height
uniformity of the road surface. An innovative attention mechanism
with adaptive weighting coefficients is introduced to integrate altitude
disparity images with image features for semantic segmentation.
Empirical evaluation using the KITTI dataset demonstrates the
superior accuracy of this method in road surface detection,
advancing 3Dperception technology in autonomous driving.

Tang et al. applied mixed reality navigation technology (MRNT)
to brainstem hematoma puncture and drainage surgery in seven
patients with primary brainstem hemorrhage (PBH). This study
aims to verify the feasibility and safety of MRNT. The technology
demonstrates high precision, low cost, and an immersive operating
experience. The results show that the average hematoma evacuation
rate was 50.39%, and the postoperative GCS scores of patients
improved significantly. No intraoperative deaths or postoperative
complications were reported, indicating the potential of MRNT to
improve surgical outcomes in patients with PBH.

Conclusion

Overall, the Research Topic collects a wide range of relevant
topics. In particular, there are research hotspots in the fields of object
detection, medical image analysis and evaluation, signal monitoring
and fault detection.

Special thanks to Frontier in Physics for its support and efforts in
this Research Topic. We would also like to thank all authors who
contributed original work to this Research Topic and all reviewers

for sharing their thoughts on the submissions. We hope that this
Research Topic will inspire researchers in this field and push the
research on multi-sensor imaging and fusion to new frontiers.
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Dense metal corrosion depth
estimation

Yanping Li1, Honggang Li1, Yong Guan2, Xinyu Zhang2 and
Xiaomei Zhao1*
1School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan, China, 2SHI
Changxu Advanced Material Innovation Center, Chinese Academy of Sciences, Shenyang, China

Introduction: Metal corrosion detection is important for protecting lives and
property. X-ray inspection systems are widely used because of their good
penetrability and visual presentation capability. They can visually display both
external and internal corrosion defects. However, existing X-ray-based defect
detection methods cannot present and estimate the dense corrosion depths. To
solve this problem, we propose a densemetal corrosion depth estimationmethod
based on image segmentation and inpainting.

Methods: The proposed method employs an image segmentation module to
segment metal corrosion defects and an image inpainting module to remove
these segmented defects. It then calculates the pixel-level dense corrosion depths
using the X-ray images before and after inpainting. Moreover, to address the
difficulty of acquiring training images with ground-truth dense corrosion depth
annotations, we propose a virtual data generation method for creating virtual
corroded metal X-ray images and their corresponding ground-truth annotations.

Results: Experiments on both virtual and real datasets show that the proposed
method successfully achieves accurate dense metal corrosion depth estimation.

Discussion: In conclusion, the proposed virtual data generation method can
provide effective and sufficient training samples, and the proposed dense
metal corrosion depth estimation framework can produce accurate dense
corrosion depths.

KEYWORDS

corrosion depth estimation, image segmentation, image inpainting, virtual training data
generation, x-ray image

1 Introduction

Metal objects are common and important in daily life. However, contact with air and
water often cause unavoidable corrosion during the service life of metal components.
Corrosion significantly reduces the strength of metal materials, shortening their service
life and even posing serious safety hazards. Therefore, timely and accurate metal corrosion
detection can effectively protect lives and property.

At present, many defect detection methods have been proposed, using RGB [1] or RGB-
D images [2, 3], eddy currents [4], and ultrasound [5]. However, these methods either cannot
detect internal corrosion defects or cannot visually display them. In contrast, X-ray
inspection systems have the visual presentation capability to display both external and
internal structures. Therefore, X-ray inspection systems are often used to detect metal defects
including corrosion. Existing automatic defect detection methods using X-ray images fall
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into three categories: classification-based, target detection-based,
and segmentation-based methods.

1) Classification-based methods generally use and improve classic
classification networks [6–9] such as Inception [10] andVGG [11].
For example, Zhang et al. [9] trained Inception and MobileNet
[12] by transfer learning and combined these two networks
through a multi-module ensemble framework to classify weld
defects. Hu et al. [6] proposed an object-level attentionmechanism
and used this mechanism to train a VGG16-based type
classification module and a defect classification module to
classify casting defects. Jiang et al. [8] improved VGG16 by
employing attention-guided data augmentation to train the
casting defect classification network with effective data
augmentation. Tang et al. [7] improved VGG16 by employing
a spatial attention mechanism and bilinear pooling to classify
casting defects. As shown in Figure 1A, classificationmethods only
output an image-level classification result to determine whether
there is a defect in the image.

2) Target detection-based methods generally use and improve popular
object detection networks such as Faster RCNN [13]. For example,
Gong et al. [14] improved domain adaptive Faster RCNN (DA
Faster) [13] by adding a feature pyramid network (FPN) [15], small
anchor strategies, ROI Align, and other strategies to detect defects in

spacecraft composite structures. Liu et al. [16] improved Faster
RCNN by employing a residual network combined with FPN and
an efficient convolutional attention module to detect weld defects.
Cheng et al. [17] improved DS-Cascade RCNN [18] by adding a
spatial attention mechanism, deformable convolution and pruning
algorithms to detect wheel hub defects. As shown in Figure 1B, these
target detection methods can roughly locate the position of defects
using bounding-boxes.

3) Segmentation-based methods generally use segmentation networks
with encoder–decoder structures, such as U-Net [19]. Du et al. [20]
improved U-Net to segment defects in casting parts by changing its
backbone to ResNet 101 [21], adding a contrast-limited adaptive
histogram equalization module, a gated multi-layer fusion module,
and a weighted intersection over union (IOU) loss function. Yang
et al. [22] improved U-Net by adding a multi-scale feature fusion
block and a bidirectional convolutional Long Short-Term Memory
block to segment welding defects. Du et al. [23] built an interactive
X-ray network (IXNet) with a click attention module based on
U-Net to perform interactive segmentation of casting defects. As
shown in Figure 1C, the segmentation results of these methods
contain detailed defect location, area, and shape information.

Of all these methods, segmentation-based approaches provide
the most detailed defect information. Despite this, even these

FIGURE 1
Comparison of results of different kinds of defect detection methods (A) classification-based method (B) target detection-based method (C)
segmentation-based method; and (D) the proposed dense metal corrosion depth estimation method.

Frontiers in Physics frontiersin.org02

Li et al. 10.3389/fphy.2023.1277710

9

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1277710


methods cannot estimate the depth of defects, which is a crucial
parameter for metal corrosion analysis. Currently, software
developed by NOVO DR Ltd. Is able to estimate the depth of
defects through the DoubleWall Technique (DWT) [24]. The major
drawback of DWT is its strongly reliance on manual operation,
making it unusable for automatic depth estimation.

To address these limitations, we propose a new defect detection
method that detects corrosion defects based on dense metal
corrosion depth estimation. The proposed method is capable of
automatically estimating the corrosion depth maps that contain
dense corrosion depth information. An example of estimated
corrosion depth map from our method is shown in Figure 1D,
with the value of each pixel denoting its corresponding corrosion
depth. The estimated corrosion depth map not only contains dense
corrosion depth information but also includes detailed information
regarding the location, area, and shape of corrosion defects.

The proposed method is composed of three modules for corrosion
segmentation, corrosion inpainting, and dense corrosion depth
calculation. The corrosion segmentation module is based on the state-
of-the-art real-time instance segmentation method YOLOv8 [25]. The

corrosion inpainting module is based on the state-of-the-art image
inpainting method LAMA [26]. The corrosion depth calculation
module is based on the Beer–Lambert law [27]. Both the corrosion
segmentation and the corrosion inpainting modules are based on deep
learning neural networks, which require a large number of training
images with ground-truth annotations. However, annotating corrosion
defects in X-ray images not only requires significant manpower and time
but also extensive expertise. This implies that only adequately trained
researchers possess the ability to annotate corrosion defects in X-ray
images. As a result, it is very hard to annotate sufficient X-ray images for
training. To address this issue, we propose a novel virtual data generation
method. This method can generate virtual corroded metal X-ray images
and their corresponding ground-truth annotations automatically without
any manual intervention.

The main contributions of this paper are as follows.

1) We propose a novel dense metal corrosion depth estimation
framework to address the problem that previous technologies
cannot automatically estimate dense corrosion depths. This
proposed framework uses a corrosion segmentation module

FIGURE 2
The flow chart of our proposed dense metal corrosion depth estimation framework. CSM denotes the corrosion segmentation module. CIM
denotes the corrosion inpainting module. DCDCM denotes the dense corrosion depth calculation module.
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(CSM) to segment corrosion defects and a corrosion inpainting
module (CIM) to remove these segmented corrosion defects.
Then, a dense corrosion depth calculation module (DCDCM) is
employed to calculate the pixel-level dense corrosion depths
using the X-ray images before and after inpainting.

2) We propose a novel virtual data generation method to address
the issue that it is difficult to manually annotate dense corrosion
depths in X-ray images. This proposed method contains a virtual
corrosion cell generation module (VCCGM) to generate virtual
corrosion cells, and a virtual corrosion image generation module
(VCIGM) to generate virtual corroded metal X-ray images and
their corresponding ground-truth dense corrosion depth
annotations. With the help of this method, sufficient virtual
images and their ground-truth annotations are generated for
training and testing.

3) We perform sufficient experiments on both virtual and real
datasets to prove the effectiveness of the proposed virtual data
generation method and dense metal corrosion depth estimation
framework. The experimental results show that the proposed
framework trained by the generated virtual dataset successfully
produces accurate dense metal corrosion depths.

2 Dense metal corrosion depth
estimation

2.1 Overview

The process flow of our dense metal corrosion depth estimation
framework is shown in Figure 2. The framework is composed of
three modules: the corrosion segmentation module (CSM), the
corrosion inpainting module (CIM), and the dense corrosion
depth calculation module (DCDCM). An incoming X-ray image

with corrosion defects is first given to CSM. CSM outputs its
corresponding corrosion segmentation result. CIM then removes
the corrosion defects according to the original X-ray image and its
corresponding corrosion segmentation result. Finally, DCDCM
calculates the corrosion depth of each pixel according to the
X-ray images before and after inpainting. These modules are
described in detail in the following sections.

2.2 Corrosion segmentation module

In the field of computer vision, YOLO plays an important role. It
stands out from a large number of methods for its remarkable
balance of speed and accuracy [28]. The first version of YOLO was
proposed in 2015 [29]. Through the efforts of many researchers, the
eighth version of YOLO, YOLOv8, was proposed in early 2023 [25].
YOLOv8 achieves state-of-the-art performance in real-time object
detection and instance segmentation. Therefore, we use YOLOv8 in
our corrosion segmentation module (CSM).

The simplified network architecture of YOLOv8 is shown within
the CSM in Figure 2. As shown, five convolutional blocks are first
employed to extract high-level features. After passing through each
convolutional block, the height and width of feature map are
reduced. In Figure 2, these feature maps produced by the
different convolutional blocks are denoted as P1, P2, P3, P4, and
P5. Then, a neck block called PANFPN is employed to combine
image features from P3, P4 and P5, enhancing the spatial and
semantic information across different scales. PANFPN outputs
three collections of features, each at different scale, denoted as
F3, F4, and F5. The heights and widths of F3, F4, and F5 match
the heights and widths of P3, P4, and P5, respectively. Finally, the
category, bounding box, and segmentation mask of each object are
predicted using F3, F4, and F5.

FIGURE 3
The architecture of fast Fourier convolution (FFC).
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We design the CSM module to segment corrosion defects from
X-ray images of corroded metal materials. As shown in Figure 2, the
outputs of the neural network consist of two parts:N detection results

and 32 segmentation prototypes [30]. Let us use PreN to denote the
prediction results, wherePreN � pren|n � 1, 2, 3, . . . . . . ,N{ },N is the
number of detected corrosion defects, and pren is the nth detection

FIGURE 4
The components of the virtual data generationmethod and examples (A) the flowchart of the VCCGM (virtual corrosion cell generationmodule) and
the VCIGM (virtual corrosion image generation module) (B) examples of virtual contour maps (C) examples of virtual corrosion cells (D) a real metal X-ray
image without corrosion (E) the foreground segmentation result (F) the generated virtual corrosion region (G) the randomly selected regions that used to
place virtual corrosion cells (H) the generated virtual corrosion depth map; and (I) the generated virtual corroded metal X-ray image.

TABLE 1 Evaluation scores of the framework with different instance segmentation models.

Frameworks with different instance segmentation
models

mAPbox50 mAPmask
50 mIoU

(%)
Speed
(ms)

MAE
(×10–2) ↓

MSE
(×10–2) ↓

Framework with YOLOv5 73.6% 61.1% 62.6 38.3 1.32 2.26

Framework with YOLOv7 73.4% 60.3% 62.3 37.5 1.33 2.37

Framework with YOLOv8 75.0% 71.3% 69.4 38.5 1.23 1.92

Scores marked in bold indicate the best results on the corresponding metric.
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TABLE 2 Evaluation scores of the proposed framework with different inpainting models.

Frameworks with different inpainting models MAE (×10–2) ↓ MSE (×10–2) ↓

Framework with AOT 7.05 189.51

Framework with PUT 3.99 26.74

Framework with LAMA 1.23 1.92

Scores marked in bold indicate the best results on the corresponding metric.

FIGURE 5
The inpainting and depth map estimation results of different frameworks (A) virtual corroded metal X-ray image (B) the ground-truth inpainting
result (C) the ground-truth depth map (D) the inpainting result of AOT (E) the estimated depth map of the framework with AOT (F) the inpainting result of
PUT (G) the estimated depth map of the framework with PUT (H) the inpainting result of LAMA; and (I) the estimated depth map of the framework with
LAMA.
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result. pren � Coef32
n , Conf

1
n, Clas

1
n, Box

4
n{ }. Coef32

n denotes the
segmentation prototype coefficients in the nth detection result, and
Coef32

n � coefl
n|l � 1, 2, 3, . . . . . . , 32{ }, where coefl

n denotes the lth

segmentation prototype coefficient. Conf1
n denotes the confidence of

the nth detection result. The length of Conf1
n is 1. Clas1n denotes the

classification result of the nth detection result. The length of Clas1n is 1.

FIGURE 6
Examples of dense metal corrosion depth estimation on virtual images (A) the virtual corroded metal X-ray image (B) the ground-truth depth maps
(C) the corrosion defect segmentation results of CSM (using YOLOv8) (D) the corrosion defect inpainting results of CIM (using LAMA); and (E) the
estimated corrosion depth map.
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Box4
n denotes the bounding box of the n

th detection result. The length of
Box4

n is 4, and it contains the horizontal and vertical coordinates of the
upper-left corner of the bounding box, as well as the width and height of
the bounding box. The 32 segmentation prototypes are denoted as
Pro32 � prol|l � 1, 2, 3, . . . . . . , 32{ }, where prol denotes the lth

segmentation prototype. The segmentation mask of the nth detection
result is calculated based on Coef32

n , Box
4
n, and Pro32 through the

following three steps:

(1) Coef32
n � coefl

n|l � 1, 2, 3, . . . . . . , 32{ } are used as the
combination weights to linearly combine the 32 segmentation
prototypes Pro32 � prol|l � 1, 2, 3, . . . . . . , 32{ } and obtain the
combination result comn, comn � ∑32

l�1coef
l
n × prol.

(2) comn is processed using a sigmoid nonlinearity operation and a
binarization operation to obtain the primary segmentation
mask pmn � Binary(Sigmoid(comn)), where Sigmoid()
denotes the sigmoid nonlinearity operation and Binary()
denotes the binarization operation.

(3) The primary segmentation mask pmn is cropped by the
bounding box of the nth detection result Box4

n, and the final
segmentation mask of the nth detection resultmn � Crop(pmn)

is obtained. The cropping operation Crop() assigns zero to
pixels outside of Box4n.

A set of corrosion segmentation results are shown in Figure 2. Each
detected corrosion defect contains its bounding box coordinates,
classification value, confidence value, and segmentation mask.

During training of the CSM, binarized virtual corrosion depthmaps
and the bounding boxes of disconnected corrosion areas are used as the
ground truth of the instance segmentation results. Further details on the
generation of virtual corroded X-ray images and their corresponding
ground-truth depth maps are presented in Section 3.

2.3 Corrosion inpainting module

In the proposed dense corrosion depth estimation framework, we
use a corrosion inpainting module to remove corrosion defects. This
module employs the state-of-the-art image inpainting method LAMA
[26]. LAMA builds its inpainting network using fast Fourier
convolutions (FFCs) to obtain an image-wide receptive field and
improve inpainting performance.

FIGURE 7
X-ray images of the test metal pipe (A) raw image of the metal pipe with six holes of known depths; and (B) annotated image with the position and
depth of each hole.

TABLE 3 The depth estimation results of the proposed framework and DWT using a real X-ray image of a metal pipe with six holes of known depths.

Index of holes Ground-truth
depth (mm)

DWT Ours

Predicted
depth (mm)

Absolute
error (mm)

Predicted
depth (mm)

Absolute
error (mm)

➀ 3.00 3.08 0.08 3.04 0.04

➁ 3.00 3.16 0.16 3.18 0.18

➂ 2.40 2.24 0.16 2.27 0.13

➃ 2.60 2.49 0.11 2.52 0.08

➄ 1.40 1.12 0.28 1.11 0.29

➅ 1.50 1.22 0.28 1.21 0.29
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The architecture of FFC is shown in Figure 3. FFC contains two
parallel branches: a local branch and a global branch [31]. The local
branch uses conventional convolutions to extract local features. The

global branch uses a spectral transformer to extract global features.
The spectral transformer first transforms image features into a
spectral domain by fast Fourier transform (FFT), then conducts

FIGURE 8
Examples of densemetal corrosion depth estimationwith real images (A) the real corrodedmetal X-ray image (B) the corrosion defect segmentation
results from CSM (using YOLOv8) (C) the corrosion defect inpainting results from CIM (using LAMA) (D) the estimated corrosion depth maps (to make the
corrosion defects more significant, each corrosion depth map has been divided by its maximum depth); and (E) the estimated corrosion depth map
shown in 3D.
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an efficient global update in the spectral domain, and finally converts
features back to the spatial domain via inverse fast Fourier transform
(Inv FFT). A point-wise update in the spectral domain globally
affects all spatial features [31]. Therefore, the spectral transformer
can extract global features. The above local features and global
features are then combined to fuse multi-scale features. A large
effective receptive field plays a crucial role in the inpainting task
[26]. However, conventional convolutions cannot provide a large
effective receptive field, especially in the early layers of the network.
In contrast, FFC can provide an image-level receptive field in very
early layers of the network [26]. Therefore, FFC effectively improves
the inpainting performance.

The simplified network architecture of LAMA is shown within
the CIM in Figure 2. In our project, the resolution of the processed
images is large, so we use an architecture containing low-resolution
and high-resolution pipelines. These two pipelines use the same
network (i.e., having the same architecture and weights) to process
inputs in different resolutions. As shown in Figure 2, the
inpainting network contains three blocks: a downscaling block
(labeled D in Figure 2), an FFC residual block, and an upscaling
block (labeled U in Figure 2). The downscaling block contains
3 FFCs with strides set to 2. The FFC residual block contains
18 sub-residual blocks built on FFCs with strides set to 1. The
upscaling block uses 3 transpose convolutions with strides set to 2.
The inpainting results produced by the inpainting network have
the same size as the inputs as a result.

In the inpainting architecture, the two pipelines play different
roles. As shown in Figure 2, the low-resolution pipeline uses the
downscaled inputs for inpainting. Smaller inputs are beneficial to
generate inpainting results with better global structures [32].
However, many image details can be lost during the down-
sampling operation. In contrast, the high-resolution pipeline uses
the original inputs for inpainting. No image details are lost in its
inputting step. However, larger inputs cause incoherent structures
[32]. To maintain image details while generating inpainting results
with better global structures, the inpaining results of the low-
resolution pipeline are used to supervise the global structures of
the inpainting results of the high-resolution pipeline. The
supervision process is operated by minimizing the L1 loss
between the downscaled high-resolution inpainting results and
the low-resolution inpainting results. Note that the L1 loss is
minimized by updating the feature map from the downscaling
block of the high-resolution pipeline FD (as shown in Figure 2),
rather than the parameters in the neural network. Using the above
method, FD can learn the global structures of the low-resolution
inpainting results. FD passes these good global structures to the final

inpainting results of the high-resolution pipeline through forward
propagation. Therefore, the final inpainting results of the high-
resolution pipeline can maintain image details and have good global
structures.

The binary mask used for inpainting is provided by the CSM, as
shown in Figure 2. It covers all detected corrosion defects. The
original X-ray image, as shown in Figure 2, is masked using this
binary mask. This masked X-ray image is then stacked with the
binary mask to generate a fused input. The inpainting network
finally outputs the inpainting result with the same scale as the
original X-ray image, as shown in Figure 2. A comparison of the
images in Figure 2 before and after inpainting shows that the
corrosion defects have been removed.

When training CIM, the actual X-ray images without corrosion
that used to combine virtual corrosion depth maps are used as the
ground truth of image inpainting results. Further details on the
generation of virtual corroded X-ray images and their corresponding
ground-truth depth maps are presented in Section 3.

2.4 Dense corrosion depth calculation
module

In X-ray images, the gray value of each pixel is exponentially
related to the corresponding thickness of the transilluminated
material as given by:

gk � go
ke

−μtk (1)
where gk represents the gray value of the kth pixel in X-ray image
I � gk|k � 1, 2, 3, . . . , K{ }; K denotes the total number of pixels in
this image; go

k is a parameter related to the intensity of incident
X-ray; μ represents the attenuation coefficient, which can be roughly
considered as a constant when the material category and the
radiation source are the same; and tk represents the thickness of
the corresponding transilluminated material. If corrosion occurs
and the corrosion depth is Δtk, the gray value will change to:

gc
k � go

ke
−μ tk−Δtk( ) (2)

Eq. 2 can be rewritten as:

gc
k � go

ke
−μtk · e−μΔtk (3)

As go
ke

−μtk � gk, we obtain the equation:

gc
k � gk · eμΔtk (4)

According to Eq. 4, the corrosion depth can be calculated as:

Δtk � 1
μ
ln

gc
k

gk
( ) (5)

Therefore, when the values of μ, gc
k, and gk are known, the

corrosion depth of the kth pixel Δtk can be calculated. The value of μ
can be calibrated by a step wedge of the same material in advance. gc

k

is the gray value of the kth pixel in the corroded metal X-ray image
Ic � gc

k|k � 1, 2, 3, . . . , K{ }, and Ic is the X-ray image to be
processed. gk is the gray value of the kth pixel in the X-ray
image without corrosion defects I. In practice, when we obtain
the X-ray image to be processed Ic, it is difficult to obtain its
corresponding I. In this paper, we use the inpainting result

TABLE 4 Corrosion depth estimation results for our framework and DWT using
real corroded metal X-ray images.

Index of points DWT (mm) Ours (mm)

➀ 3.15 3.06

➁ 2.66 2.55

➂ 2.23 2.16

➃ 1.77 1.79

➄ 0.68 0.79
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Ĩc � g̃c
k|k � 1, 2, 3, . . . , K{ }, instead of the real I. The estimated

corrosion depth of the kth pixel Δt̃k can then be calculated as:

Δt̃k � 1
μ
ln

gc
k

g̃c
k

( ) (6)

From Eq. 6, we obtain a pixel-level dense corrosion depth map
Δ~T � Δt̃k|k � 1, 2, 3, . . . , K{ }, as shown in Figure 2.

3 Virtual data generation

As described above, the proposed dense corrosion depth
estimation framework contains two deep learning-based modules:
CSM and CIM, both of which need a large number of annotated
images for training. However, it is quite difficult to annotate the
corrosion defects in real X-ray images. We propose the virtual data
generation method in this section to solve this problem. This
method automatically generates virtual corroded metal X-ray
images and their corresponding virtual corrosion depth maps for
the purpose of acquiring sufficient and various annotated training
X-ray images automatically.

A flowchart of the proposed virtual data generation method is
shown in Figure 4A. A set of images in the key steps of our proposed
method are shown in Figures 4(B)–(I). This method consists of two
modules: the virtual corrosion cell generation module (VCCGM)
and the virtual corrosion image generation module (VCIGM).
VCCGM and VCIGM cooperate to generate the virtual corrosion
image and the corresponding corrosion depth map. Specifically,
VCCGM provides virtual corrosion cells for VCIGM; VCIGM
randomly combines these virtual corrosion cells to generate
virtual corrosion depth maps and combines the virtual corrosion
depth maps with real metal X-ray images without corrosion to
generate virtual corroded metal X-ray images.

In the following subsections, we first introduce the working
principle of the virtual data generation method in detail, and then we
introduce VCCGM and VCIGM in detail.

3.1 Principle of virtual data generation

As shown in Eq. 4, when the gray value without corrosion gk, the
corrosion depth Δtk, and the attenuation coefficient μ are known, we
can obtain the gray value after corrosion gc

k. gk comes from I, the
X-ray image without corrosion, with I � gk|k � 1, 2, 3, . . . , K{ } and
K denoting the total number of pixels in the image. We can obtain I
by taking X-ray images of metal materials without corrosion. Based
on I, if we wish to obtain a virtual gc

k, denoted as ĝc
k, we need to

generate a virtual Δtk, denoted as Δt̂k, and a virtual μ, denoted as μ̂:

ĝc
k � gk · eμ̂Δt̂k (7)

In this paper, we treat μ̂ as a constant, generated by experience.
Thus, the challenge of generating ĝc

k is how to generate Δt̂k. The
values of Δt̂k differ for each pixel, but the values of Δt̂k are not
independent within the image. These values have a reasonable global
structure. Therefore, instead of generating pixel-level Δt̂k values one
by one, we generate an image-level virtual dense corrosion depth

map ΔT̂ � Δt̂k|k � 1, 2, 3, . . . , K{ }. The relationship among I, μ̂, ΔT̂,
and Îc � ĝc

k|k � 1, 2, 3, . . . , K{ } can be formulated as:

Îc � I · eμ̂ΔT̂ (8)

Therefore, the main mission of the proposed virtual data
generation method is to generate a reasonable virtual dense
corrosion depth map ΔT̂. ΔT̂ is then combined with the existing
real X-ray image without corrosion I to generate the virtual
corroded metal X-ray image Îc.

In the field of image processing, a generative adversarial network
(GAN) is commonly used for generating virtual images. However, a
GAN needs a large number of real data samples for training, and it is
difficult to acquire real dense corrosion depth maps. Therefore, it is
difficult to train a GAN that can generate virtual dense corrosion
depth maps.

Through the observation of many corroded metal X-ray images,
we find that the brightness fluctuations in the corrosion areas of
X-ray images are similar to the topographic fluctuations. Thus, one
solution to the above problem is to borrow the concept of contour
maps from geography and use terrain contour maps downloaded
from the internet as real data samples to train a GAN that can
generate virtual contour maps. Then, virtual depth maps can be
obtained by interpolating these virtual contour maps. However, the
above solution has two problems: 1) it is difficult to download
sufficient complex terrain contour maps to simulate complex
corrosions, and 2) it is difficult to interpolate complex contour maps.

To solve the above two problems, we only use a GAN to generate
virtual corrosion cells by VCCGM, and then we randomly combine
different virtual corrosion cells to generate virtual corrosion depth
maps by VCIGM. Although it is difficult to download sufficient
complex terrain contour maps, it is much easier to download simple
terrain contour maps with one or two peaks. We use these simple
terrain contour maps downloaded from the internet as real data
samples to train a GAN that can generate simple virtual contour
maps. Virtual corrosion cells can be generated by interpolating these
simple virtual contour maps. By randomly combining different
virtual corrosion cells, we can generate a large number of various
virtual corrosion depth maps.

3.2 Virtual corrosion cell generation module

The virtual corrosion cell generation module is designed to
generate a series of virtual corrosion cells as shown in the examples
in Figure 4C. Virtual corrosion cells are sub-depth maps with simple
structures and fixed scale.

In order to generate sufficient virtual corrosion cells with a
variety of structures, we create the virtual corrosion cell generation
module (VCCGM) using a generative adversarial network (GAN).
GAN is a commonmethod used for data augmentation. A simplified
GAN structure is shown in the VCCGM of Figure 4A. GAN has two
main blocks: a generator block and a discriminator block. During
training, the two blocks play against each other and finally generate
virtual data samples which are indistinguishable from real ones.

Even though GAN is able to generate a large number of high-
quality virtual data samples, it also needs a large number of real data
samples for training. However, it is very difficult to obtain a sufficient
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number of real corrosion cells. To solve this problem, we borrow the
concept of contour maps from geography and use some terrain
contour maps downloaded from the Internet as real data samples.

The processing steps of VCCGM are as follows.

Step 1.Virtual contour map generation. The GAN, which is trained
by terrain contour maps, generates virtual contour maps, with
examples shown in Figure 4B.

Step 2. Interpolation. The generated virtual contour maps are
interpolated to generate virtual corrosion cells as shown in
Figure 4C.

3.3 Virtual corrosion image generation
module

The virtual corrosion image generation module generates virtual
corrosion depth maps by combining the virtual corrosion cells
provided by the VCCGM and generates virtual corroded metal
X-ray images by combining the generated virtual corrosion depth
maps with real X-ray images without corrosion. The flow chart of
this module has been shown in the VCIGM in Figure 4A. To ensure
that the generated virtual corrosion defects locate at the foreground
areas, the X-ray images without corrosion that used to combine
virtual corrosion depth maps also participate in generating virtual
corrosion depth maps. The steps of how to use virtual corrosion cells
to generate virtual corrosion depth maps and how to generate virtual
corroded metal X-ray images are as follows.

Step 1. Foreground segmentation. An actual X-ray image
without corrosion, as shown in Figures 4D, is sent into the
foreground segmentation step. The foreground segmentation
part, built using YOLOv8, produces the segmentation result
shown in Figure 4E;

Step 2. Virtual corrosion region generation. This step randomly
generates a bounding box in the segmented foreground area. The
green bounding box in the white foreground area shown in Figure 4F
is an example. Virtual corrosion will be put in this bounding box;

Step 3. Random placement of virtual corrosion cells in the virtual
corrosion region. A cluster of sub-boxes are randomly generated in
the virtual corrosion region. These sub-boxes have been marked in
red in Figure 4G. They have different sizes and different aspect
ratios. Each sub-box selects a virtual corrosion cell generated by
VCCGM and resizes the selected virtual corrosion cell to fill itself. If
overlap occurs, the overlapping parts are added together. After this
step, a preliminary virtual corrosion depth map is obtained;

Step 4.Normalization. This step normalizes the preliminary virtual
corrosion depth map into a reasonable value range. The upper
bound of corrosion depth equals the thickness of inspected metal
material. The lower bound of corrosion depth is 0. The max value of
depth map d max is randomly selected between the upper and lower
bounds. Then, the value range of preliminary virtual depth map is
linearly transformed to [0, dmax] to obtain the final virtual corrosion
depth map shown in Figure 4H;

Step 5. Combination. This step combines the generated virtual
corrosion depthmap shown in Figure 4H and the actual X-ray image
without corrosion shown in Figure 4D according to Eq. 8. The result
is a virtual corroded metal X-ray image, as shown in Figure 4I.

4 Experiments

In this paper, we have presented our framework for estimating the
dense metal corrosion depth using X-ray images. In view of the
previously described difficulties in obtaining actual corroded metal
X-ray images with ground-truth annotations, we have also presented a
method for generating virtual corrosion images for the purposes of
training our method. In our experiments, we used 16,199, 4,200, and
2,170 virtual images for training, validation, and testing, respectively.
To verify that the model trained on virtual datasets is also suitable for
real datasets, we also tested our proposed model on several real cases.
All our experiments were implemented using PyTorch with two
NVidia RTX 3090 GPUs and one Intel Xeon Gold 5222 CPU.

4.1 Experiments on virtual dataset

As described in Section 2, our framework has three modules: a
corrosion segmentation module (CSM), a corrosion inpainting module
(CIM), and a dense corrosion depth calculation module (DCDCM).
CSM and CIM use the YOLOv8 real-time instance segmentationmodel
and the LAMA inpainting model, respectively. To verify their
effectiveness, we also performed experiments with other models. We
employedmean absolute error (MAE) andmean square error (MSE) to
evaluate the corrosion depth estimation performance. The formulas of
MAE and MSE are:

MAE � 1
K
∑K
k�1

Δtgtk − Δtpk( )∣∣∣∣∣ ∣∣∣∣∣ (9)

MSE � 1
K
∑K
k�1

Δtgtk − Δtpk( )2 (10)

where K denotes the total number of pixels in this image; Δtgtk
represents the corrosion depth value of the kth pixel in the
ground-truth depth map; and Δtpk represents the corrosion
depth value of the kth pixel in the predicted depth map. The
evaluation scores of the proposed framework with different
instance segmentation models and different inpainting models
are shown in Table 1 and Table 2.

To compare different instance segmentation models in more
aspects, we also show mAPbox50 , mAPmask

50 [25], mIoU [33], and
processing speed in Table 1. As shown in this table, we tested
three instance segmentation models (YOLOv5 [34], YOLOv7 [35],
and YOLOv8 [25]) with the proposed framework. The use of
YOLOv8 yielded the best performance, largely owing to its
higher segmentation accuracy. The processing speeds of these
three instance segmentation methods are comparable.

As shown in Table 2, we tested three inpainting models (AOT
[32], PUT [36], and LAMA) on the proposed framework. LAMA
provided the best performance, with a large performance gap
compared to the others, because the inpainting performance of
LAMA is significantly higher than that of the other two methods. To

Frontiers in Physics frontiersin.org12

Li et al. 10.3389/fphy.2023.1277710

19

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1277710


qualitatively compare the inpainting performance of AOT, PUT,
and LAMA, we show a group of their inpainting results in Figure 5.

As shown in Figure 5, the corrosion regions are still readily
visible (indicating reduced inpainting performance) in the
inpainting result of AOT as indicated by the red circles. PUT
was better, but in the regions marked with green circles, the
differences between corroded and normal areas are still visible. In
the inpainting results of LAMA, it is quite difficult to distinguish
corrosion regions from normal regions. As LAMA provides the best
inpainting results, the corrosion depths calculated from its
inpainting results are more accurate. The predicted corrosion
depth maps of the proposed frameworks with AOT, PUT, and
LAMA are also shown in Figure 5. The predicted corrosion depth
map when using LAMA is closest to the ground-truth depth map.

Figure 6 shows more examples of corrosion depth estimation
with virtual cases. CSM accurately segmented most corrosion
defects; CIM successfully removed the segmented corrosion
defects; and DCDCM estimated accurate and reasonable depth
maps that are fairly close to the ground-truth depth maps.

4.2 Experiments on real dataset

It is extremely difficult to quantitatively evaluate the dense metal
corrosion depth estimation performance on real corrodedmetal X-ray
images because it is hard to obtain their ground-truth corrosion depth
maps. In this section, we used a metal pipe with six holes of known
depths to quantitatively evaluate the depth estimation accuracy of our
proposed framework, and collected several real corroded metal X-ray
images to qualitatively evaluate the dense metal corrosion depth
estimation performance of our proposed framework.

4.2.1 Quantitative experiment
As noted, we used a metal pipe with six holes of known depths.

The wall thickness of this pipe was 3 mm. The raw and annotated
X-ray images are shown in Figure 7. The depth estimation results of
our framework and DWT are shown in Table 3. DWT is the defect
depth estimation method used in NOVO DR systems [24].

As shown in Table 3, the depth estimation absolute errors of our
framework are comparable with DWT, indicating similar accuracy.
DWT, however, requires human–computer interaction, while our
framework is fully automatic. Therefore, our framework is more
convenient to use.

4.2.2 Qualitative experiment
In this experiment, we collected some real X-ray images of corroded

metal pipes. Because we could not obtain their ground-truth corrosion
depth maps, we could not quantitatively evaluate the dense corrosion
depth estimation performance using MAE and MSE. However, we can
still qualitatively analyze the performance of our proposed framework
by checking whether the estimated corrosion depth maps are
reasonable. Three group of examples are shown in Figure 8.

As shown in Figure 8, CSM successfully segmented the corrosion
defects; CIM successfully removed these corrosion defects, obtaining
accurate inpainting results; and DCDCM successfully estimated the
dense corrosion depth maps according to the original corroded metal
X-ray images and their corresponding inpainting results. In order to
present the estimated corrosion depth maps more vividly, they are

shown in 3D in the last row of Figure 8. As shown in Figure 8A, the
three cases had different degrees of corrosion: in the first case, the
corrosion defects were large, dense, and deep; in the second case, the
corrosion defects were much smaller; in the third case, the corrosion
defects were very shallow. The estimated corrosion depthmaps shown
in Figure 8E are consistent with these observations.

Even though we could not obtain the ground truth of corrosion
depths, we still compared the depth estimation results of our
framework with DWT at five different points, labeled as ➀, ➁,
➂, ➃, and ➄ in Figure 8. The depth estimation results of these five
points are shown in Table 4. DWT is widely used in the NOVODR
systems [24]. Although it is not perfect (as shown in Table 3, the
depth estimation results of DWT are not exactly equal to the
ground-truth values), widespread experience shows that DWT is a
reliable defect depth estimation method. As shown in Table 4, the
depth estimation results of our framework are close to the depth
estimation results of DWT, demonstrating that the depth values in
our estimated dense corrosion depth maps are reasonable.

5 Conclusion

In this paper, we propose a novel dense metal corrosion depth
estimation framework for X-ray images. It consists of three modules: a
corrosion segmentation module (CSM), a corrosion inpainting
module (CIM), and a dense corrosion depth calculation module
(DCDCM). CSM segments corrosion defects from the X-ray
images. CIM removes these segmented corrosion defects. DCDCM
calculates the corrosion depth maps, which contain dense corrosion
depth information, according to the original X-ray images and the
inpainting results of CIM. To solve the problem of lacking training
dataset with ground-truth of annotations, we propose a virtual data
generation method to generate virtual corroded metal X-ray images
and their corresponding ground-truth corrosion depth annotations.
The virtual data generation method consists of two modules: a virtual
corrosion cell generation module (VCCGM) and a virtual corrosion
image generation module (VCIGM). VCCGM generates virtual
corrosion cells using a generative adversarial network. VCIGM
generates virtual corrosion depth maps by combining the virtual
corrosion cells and produces virtual corroded metal X-ray images by
combining the generated virtual corrosion depth maps with actual
X-ray images without corrosion. We use these generated images to
train both CSM and CIM. Experimental results show that the
proposed dense metal corrosion depth estimation framework
trained using the generated virtual dataset could successfully
estimate accurate and dense metal corrosion depth automatically.
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Study on detection of
intracerebral hemorrhage based
on frequency difference of
permittivity
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Introduction: Current detection of intracerebral hemorrhage (ICH), whether
employing Electrical Capacitance Tomography (ECT) or other electrical
imaging techniques, rely on time-difference measurements. The time-
difference methods necessitate baseline measurements from the patient in a
non-hemorrhagic state, which is impractical to obtain, rendering rapid detection
of ICH unfeasible.

Methods: This study introduces a novel approach that capitalizes on the distinct
dispersion characteristics of the permittivity in brain tissue and the spectral
variance of the permittivity between blood and other brain components.
Specifically, the frequency-dependent variations in the permittivity are
employed to achieve absolute detection of ICH, thereby eliminating the need
for non-hemorrhagic baseline data. The methodology entails identification of two
frequency points that the frequency-dependent variation in the permittivity at
these two frequency points manifest the maximal difference between blood and
other brain tissues. Subsequently, this permittivity differential at the two identified
frequency points is utilized for hemorrhage detection. Experimental
measurements were conducted using an impedance analyzer and a parallel
plate capacitor to capture the capacitance in four single-component
substances—distilled water, sheep blood, isolated pig fat, and isolated pig
brain—as well as three mixed blood compounds—distilled water enveloping
sheep blood, pig fat encapsulating sheep blood, and pig brain surrounding
sheep blood—across a frequency range of 10 kHz to 20 MHz.

Results: The results show that in different frequency bands, it is indeed possible to
distinguish single-component substances from mixed substances by the
frequency difference of capacitance variation. Comparative analysis reveals that
the 1 MHz to 5 MHz frequency range is most effective for detecting blood in
distilled water. For blood detection in pig fat, a 10 kHz to 1 MHz frequency range is
identified as optimal, while a 10 kHz to 0.5 MHz frequency range is advantageous
for blood detection in pig brain tissue.

Discussion: The findings confirm that absolute detection of ICH is achievable
through frequency-dependent variations in the permittivity. However, this
necessitates the identification of the frequency band manifesting the largest
difference of frequency-dependent variation between single-component and
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mixed substances. The study acknowledges limitations primarily due to the use of
anticoagulant-altered sheep blood, which exhibits permittivity divergent from
those of natural blood. Additionally, the in vitro pig fat and pig brain samples,
having been subjected to freeze-thaw cycles, also demonstrate permittivity
unrepresentative of in vivo tissue.

KEYWORDS

intracerebral hemorrhage, ECT, permittivity, frequency-differential, capacitance

Introduction

Intracerebral hemorrhage (ICH) is an acute cerebrovascular
disorder precipitated by the rupture of cerebral vessels, leading to
blood accumulation within the brain parenchyma [1]. Characterized
by rapid onset and elevated mortality, ICH poses a significant public
health concern. Among cerebrovascular events, it is second only to
ischemic stroke in incidence, with a rate of 12–15 cases per
100,000 person-years [2]. In Western countries, ICH comprises
approximately 15% of all stroke cases, whereas in China, this figure
varies between 18% and 47% [3]. The ailment exhibits a substantial 30-
day mortality rate of 35%–52%. Moreover, a mere 20% of affected
individuals regain self-care capabilities within a 6-month period, thereby
exerting a considerable socioeconomic burden. ICH can be classified
into primary and secondary types; primary ICH accounts for 80%–85%
of all instances and is predominantly associated with hypertension,
thereby termed as hypertensive intracerebral hemorrhage. Presently,
China’s hypertensive population approximates 245 million, establishing
hypertension as the principal risk factor for ICH [4]. Timely
identification and intervention are pivotal for enhancing therapeutic
success and postoperative outcomes. For cases with minimal bleeding
and relative clinical stability, intervention within 6 hours post-onset is
recommended. In contrast, for cases with extensive bleeding and critical
status, emergency intervention within 1 hour is imperative. Currently,
computed tomography (CT) scanning is considered the diagnostic gold
standard for ICH. However, substantial delays occur in the period
between patient transport to the hospital, CT examination, and the
receipt of diagnostic results. These delays often lead to a missed
therapeutic window for effective ICH treatment. Furthermore, the
bulky nature of existing diagnostic equipment precludes its use for
pre-hospital triage and bedside monitoring. Consequently, there is an
urgent need for a portable, cost-effective, non-invasive, and rapid
detection technology for ICH.

The detection of ICH using the electrical characteristics of
biological tissues is a new type of measurement technology,
especially represented by Electrical Impedance Tomography
(EIT) and Magnetic Induction Tomography (MIT) [5, 6]. Studies
on the permittivity of brain tissues have indicated a significantly
higher permittivity for blood compared to other cerebral
constituents. Specifically, at a frequency of 1 MHz, the
permittivity values for blood, gray matter, and cerebrospinal fluid
are 3,000, 990, and 108, respectively [7]. Although permittivity
across all brain tissues declines as frequency increases, blood
consistently exhibits elevated permittivity levels. Therefore,
theoretically, monitoring alterations in cerebral permittivity offers
a more effective approach to ICH detection. Electrical Capacitance
Tomography (ECT) serves as a technique to map the permittivity
distribution within an object, reliant on multi-electrode capacitance

measurements. Originally developed for applications in oil industry
multiphase flow measurements and fluidized bed evaluations within
the pharmaceutical sector [8, 9], ECT has demonstrated promise in
ICH detection. In prior experiments, a parallel-plate capacitor was
employed to directly measure capacitance changes within the brain
due to hemorrhage. Animal experiments revealed a positive
correlation between injected blood volume and induced cerebral
capacitance alterations [10]. Subsequently, a 16-channel ECT system
was developed and successfully utilized for in vitro imaging of
hemorrhagic events within porcine cerebral tissue [11].

The outcomes of these experiments substantiate the feasibility of
utilizing capacitance changes in brain tissue as a marker for the
detection of ICH.While the latter experiment successfully employed
ECT for in vitro ICH imaging, the methodology was reliant on time-
difference imaging. Specifically, this involved subtracting reference
data obtained prior to the hemorrhagic event from post-bleed
measurements, an approach commonly employed in
contemporary electrical imaging modalities [12, 13]. However,
this time-difference detection strategy necessitates baseline
measurements from the patient prior to the onset of ICH, which
is operationally challenging. As such, this method is unsuitable for
rapid ICH detection and is limited to monitoring temporal
variations in ICH. To achieve rapid ICH detection, it is
imperative to obtain absolute distribution data, akin to the
information provided by CT and MRI. Traditional electrical
imaging faces several limitations in this context. First, the subtle
differences in permittivity between ICH-affected tissue and normal
brain tissue are difficult to discern, particularly given the diminutive
volume of ICH relative to overall brain tissue. Consequently, the
weak electrical or magnetic signals emitted from hemorrhagic
regions are often masked by signals from other normal brain
tissues, thereby complicating the separation of weak ICH signals
from dominant background signals [14]. Second, the sensitivity of
traditional electrical imaging techniques for biological tissue
detection is markedly inferior to that of CT and MRI. These
challenges collectively hinder the application of traditional
electrical imaging for the acquisition of absolute ICH distribution
within the brain, relegating it to the role of monitoring dynamic ICH
changes over time.

Due to the dispersion characteristics inherent in biological
tissues, they exhibit varying electrical properties across different
frequencies [15]. Gabrel et al. assessed the electrical conductivity and
permittivity distribution of diverse brain tissues within the
frequency range of 10 Hz–20 GHz [16]. The findings revealed
that although the permittivity of all brain tissues decreases with
increasing frequency, the rate of this decrease varies among tissues
and frequency bands. Importantly, the permittivity of blood
consistently surpassed that of other brain tissues across all
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frequencies, displaying a larger range of change in specific frequency
bands. Consequently, these changes of permittivity with frequency
can be harnessed for the detection of ICH. To address the limitations
of time-difference methods, the current study employed a parallel
plate capacitor coupled with an impedance analyzer. This
configuration facilitated the measurement of capacitance
distribution in both blood and normal brain tissue, within a
frequency span of 10 kHz–20 MHz. The measured capacitance is
proportional to the permittivity of the substance under test. The
objective was to identify a frequency band where the difference of
permittivity frequency change between ICH-affected and normal
brain tissues is maximized. Subsequently, capacitance changes in
this identified frequency band were analyzed for both ICH and non-
ICH models. The aim was to evaluate the feasibility of leveraging
these differences for ICH detection. To validate the applicability of
this approach, the permittivity frequency spectrum of various
substances—namely distilled water, sheep blood, pig fat, and pig
brain—was measured. Utilizing the frequency-dependent
differences in permittivity, we conducted assessments on three
distinct models: blood suspended in distilled water, blood
encased in pig fat, and blood embedded in pig brain. The results
of these experiments are expected to corroborate the viability of this
frequency-specific detection method for ICH.

Methods and materials

Capacitance measurement system based on
a parallel plate capacitor

The measurement system for the capacitance is shown in
Figure 1, including a parallel plate capacitor and a 4294A

impedance analyzer manufactured by Agilent. The capacitor
employs two identical copper foils, each with a thickness of
0.1 mm, affixed to the exterior of a 3D-printed, cuboid-shaped
barrel. Specific dimensions of the capacitor are presented in
Figure 2. The electrodes measure 50 mm × 50 mm, with an inter-
electrode distance of 44 mm and a barrel wall thickness of 2 mm.
Connection wires are soldered centrally to each plate and
subsequently interfaced with the measurement fixture of the
impedance analyzer. The Agilent 4294A impedance analyzer
operates within a test frequency range of 40 Hz–110 MHz and
utilizes four-port measurement technology. This facilitates the
assessment of impedance parameters such as resistance,
inductance, and capacitance with a test accuracy up to 0.05%

FIGURE 1
Capacitance measurement system based on a parallel plate capacitor.

FIGURE 2
Schematic diagram of the parallel plate capacitor.
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[17]. A 16047E two-port fixture, specifically designed for dual-port
component parameter measurement, is used as the measurement
fixture. During the evaluation, the subject under investigation is
positioned between the two plates of the parallel plate capacitor.
According to Figure 2, let the capacitance between the two plates be
C, then:

C � εr · ε0 · S
d

(1)

where εr is the equivalent permittivity of the contents between the
two plates, ε0 is the vacuum permittivity, S and d are the surface area
of the plate and the distance between the two plates respectively.
Given constant plate area and distance, capacitance is directly
proportional to the relative permittivity of the material situated
between the plates. Thus, the capacitance values obtained from this
parallel plate capacitor system serve as reliable metrics for gauging
the permittivity of the examined material.

Capacitance frequency sweep
measurements of single-component
substance

The previously described parallel plate capacitor measurement
system was employed to conduct frequency-dependent capacitance
measurements on four single-component substances: distilled water,
anticoagulant-treated sheep blood, pig fat, and pig brain. These
substances were placed in the 3D-printed cuboid barrel shown in

Figure 1, which has dimensions of 50 mm × 44 mm × 50 mm and a
wall thickness of 2 mm. Photographic evidence of these
measurements is provided in Figure 3. For the substances in
liquid form, namely, water and blood, the barrel was filled to
capacity. Solid pig fat was acquired commercially and cut into a
cuboid measuring 46 mm × 40 mm × 50 mm before placement in
the measurement barrel. Pig brain was gently stacked and
compressed to fill the barrel. The fresh sheep blood was
purchased from Alibaba’s Taobao shopping app, and the seller
has a license to sell animal blood. Fresh pig brain was purchased
fromWal-Mart Supermarket in Chongqing. Fresh pig brain is a kind
of fresh ingredient in China that can be freely bought and sold
without ethical certification.

The impedance analyzer was configured with a frequency
measurement range of 10 KHz–20 MHz. Measurement
parameters were set to series capacitance, the data collection
points were set at 150, and the accuracy level was maximized.
For each substance, the measurement protocol involved initially
filling the barrel and executing a single frequency sweep
measurement with the impedance analyzer. Subsequently, the
barrel was emptied and another measurement was taken. The
data from these two steps were then subtracted to derive the
change in capacitance (ΔC) at each frequency point. This
procedure was repeated thrice for each substance to calculate the
average ΔC at each frequency point. The four substances were
evaluated in a sequential manner, adhering to the outlined protocol.

Capacitance frequency sweep
measurements of mixed substances
containing blood

Capacitance frequency sweep measurements were conducted on
mixtures of blood with distilled water, pig fat, and pig brain, in
accordance with the method delineated in Section 2. Photographic
documentation of these experiments is presented in Figure 4. For the
water-blood mixture (A), a needle tube with a 15 mm diameter
(needle head removed) was positioned centrally within the distilled
water. Sheep blood was then introduced into this tube until it
reached the same height as the surrounding distilled water. For
the fat-blood combination (B), a cylindrical hole with a 15 mm
diameter was carved into the center of the cuboid pig fat sample and
subsequently filled with sheep blood. Finally, in the brain-blood
model (C), a 15 mm diameter needle tube was inserted centrally into
the pig brain, and sheep blood was injected until the blood level
equated that of the surrounding pig brain tissue. The measurement
protocol remained consistent with that described in Section 2, thus
ensuring uniformity in data acquisition across different
experimental setups.

Results and discussions

Capacitance sweep measurement results of
single-component substance

Figure 5 presents the results of raw ΔC measurements across
three frequency ranges—10 KHz–1 MHz (A), 1 MHz–10 MHz (B),

FIGURE 3
Measurement photos of four single-component substances. (A)
Distilled water. (B) Sheep blood. (C) Pig fat. (D) Pig brain.
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FIGURE 4
Measurement photos of three mixed blood substance models. (A) Water-blood mixture. (B) Fat-blood combination. (C) Brain-blood model.

FIGURE 5
Frequency sweep measurement results of capacitance changes (ΔC) of four single-component substances: distilled water, sheep blood, pig fat and
pig brain. (A, B, C) are the original ΔC in the three frequency ranges of 10 KHz–1 MHz, 1 MHz–10 MHz and 10 MHz–20 MHz, respectively. (D, E, F) are the
normalized data of the original data in (A, B, C) relative to the ΔC data of the initial frequency.
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and 10 MHz–20 MHz (C)—for distilled water, sheep blood, pig fat,
and pig brain. Subfigures D, E, and F depict normalized data of the
raw data in A, B, and C, scaled to the initial frequency data.

In the 10 KHz–1 MHz frequency range (A), the greatest ΔC is
observed in sheep blood, followed by distilled water, with the
smallest ΔC seen in pig fat. These results indicate a marginally
higher permittivity for sheep blood relative to distilled water. This
observation deviates from existing literature, which can be attributed
primarily to the dilution effect of the added heparin sodium
anticoagulant in the sheep blood used, bringing its permittivity
closer to that of a liquid medium.

Moreover, both pig brain and pig fat exhibited smaller
permittivity than water. This reduction is ascribed to the pre-
experimental conditions—namely, the freezing and subsequent
thawing of these tissues, leading to a significant incorporation of
melted ice water, thereby diminishing the permittivity.

Analysis of A and D reveals that, within the frequency range of
10 KHz–1 MHz, the most pronounced decrement in ΔC is seen in
pig brain, followed by distilled water and blood. Pig fat exhibits
negligible frequency-dependent change, as indicated by an almost
horizontal trend line. Consequently, while the difference in this
frequency range between distilled water and blood is negligible,
distinctions between blood, pig fat, and pig brain are readily
discernible.

Analysis of data sets B and E indicates a discernible discontinuity
at approximately 5 MHz across all four substances under
investigation. Upon measuring the impedance of an unoccupied
parallel plate capacitor, this irregularity was identified to emanate
from a circuit resonance at around 5 MHz, resulting from the
capacitance of the parallel plate capacitor and the circuit’s
parasitic inductance. In the 1 MHz–5 MHz frequency window,
the ΔC of blood exhibits a gradual increase, whereas that of
distilled water shows a decline; the changes for pig fat and pig
brain are inconsequential in this range. Thus, differentiation
between distilled water and blood becomes feasible in this
specific frequency domain. The 5 MHz–10 MHz frequency span
sees a general upward trend in ΔC for all substances. Pig brain
registers the most significant increment, followed by blood. Distilled
water’s ΔC remains virtually static initially but starts ascending after
surpassing the 8 MHz threshold. Data sets C and F provide insights
into the 10 MHz–20 MHz range. In this frequency span, pig brain’s
ΔC skyrockets, eventually surpassing that of blood and inducing a
new circuit resonance around 15 MHz. Across this frequency range,
all substances exhibit a positive correlation between frequency and
ΔC, albeit at varying magnitudes. Specifically, the values for blood
and distilled water closely align, while pig fat shows the least
amplitude variation. The data corroborate that the ΔC
fluctuations differ among the four substances depending on the
frequency range in question. Accordingly, frequency intervals
manifesting the most substantial divergences may be leveraged
for the effective discrimination of these substances.

However, the measurement results given in Figure 5 seems to be
different from the data in Ref. [16]. According to the results in Ref.
[16], the permittivity of blood and other brain tissues decrease
gradually with increasing frequency. However, Figure 5 shows that
the measurement results of blood, pig fat and pig brain all increase
with increasing frequency in the 1 MHz–20 MHz frequency range.
This is mainly because the measurement results in Figure 5 are the

capacitance values, but the data in Ref. [16] are the permittivity
values. Although it was mentioned earlier that the capacitance of a
parallel plate capacitor is directly proportional to the dielectric
constant of the material between the plates, this is conditional
and only applies to low-frequency electrostatic fields. Therefore,
in the frequency range of 10 kHz to 1 MHz, as shown in Figures 5A,
D, the capacitance changes of the blood, pig fat, and pig
brain—indeed decrease with increasing frequency. However, at
higher frequencies, the impact of stray inductance and
capacitance in the measuring circuit becomes more significant,
and the capacitance measured by the impedance analyzer then
shows certain discrepancies from the dielectric constant.
Particularly when the frequency increases to a certain value, the
entire measuring circuit undergoes resonance, as evidenced by the
resonance occurring around 5 MHz in Figure 5B. After resonance,
the direction of capacitance change measured also varies. Although
at high frequencies, the capacitance measured by the impedance
analyzer differs from the permittivity of the material being tested,
this discrepancy is consistent across all materials tested. Therefore,
the capacitance measured by the impedance analyzer and the
parallel plate capacitor can be used to assess the differences in
the permittivity of different materials.

Capacitance sweep measurement results of
three kinds of mixed blood substances

The ΔCmeasurement results for both pure distilled water and its
mixtures with blood are illustrated in Figure 6. Subsets A, B, and C
depict raw ΔC measurement data across three frequency bands:
10 KHz–1 MHz, 1 MHz–10 MHz, and 10 MHz–20 MHz. D, E, and
F represent the normalized versions of these data, scaled to the initial
frequency ΔC. Data sets A and D indicate that both solutions display
almost the same ΔC variations across the 10 KHz–1 MHz frequency
range, rendering the identification of blood presence in distilled
water challenging at these lower frequencies. In contrast, subsets B
and E, which focus on the 1 MHz–5 MHz range, demonstrate a
decreasing trend in ΔC as frequency escalates. Importantly, the
magnitude of this decrement differs significantly between the two
solutions. Specifically, the ΔC changes within the 1 MHz–5 MHz
frequency range are quantified as 3.287 ± 0.11pF and 4.275 ± 0.18 pF
for the two solutions, as shown in Figure 7. This implies that the
blood-induced increment in the ΔC decrement is approximately
30% of that observed in pure distilled water, a differential that is easy
to detect. Lastly, subsets C and F, which encompass the
10 MHz–20 MHz frequency range, reveal an increasing trend in
ΔC for both solutions. However, the magnitude of this increase is
largely comparable, resulting in closely aligned values. Upon a
comprehensive analysis of the data, it can be concluded that the
most favorable frequency domain for the differentiation of blood
presence in distilled water lies between 1 MHz and 5 MHz.

There is a aberration in the results shown in Figure 6. The results
in Figure 5 indicates that the ΔC measurement results of pure sheep
blood is larger than that of pure distilled water. So the permittivity of
a water-blood solution should be greater than that of distilled water
alone theoretically, but the results presented in Figure 6 show the
opposite. The reason lies in the methodology described in the article:
as shown in Figure 4A, the water-blood solution was not created by
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directly dissolving blood in water. Instead, the blood was first placed
in a plastic tube, which was then placed in distilled water. Thus, there
was a plastic film (1 mm thick) separating the blood from the

distilled water. This plastic tube effectively isolates the distilled
water and blood, acting as a capacitor. Although the dielectric
constant of the plastic tube is very low, at higher frequencies, its
capacitive effect becomes quite significant, thereby altering the
overall capacitance value of the distilled water-blood solution.

The ΔCmeasurement results across various frequency bands for
pure fat and fat-encapsulated blood are shown in Figure 8. Subsets
A, B, and C are the raw ΔC measurement data in the frequency
bands of 10 KHz–1 MHz, 1 MHz–10 MHz, and 10 MHz–20 MHz,
respectively. D, E, and F represent the normalized data, scaled
according to the initial frequency-specific ΔC. Subsets A and D
reveal that in the 10 KHz–1 MHz frequency domain, both
substances exhibit a declining trend in ΔC as frequency escalates.
However, the magnitude of this decline differs substantially between
the two, with a more pronounced decrement evident upon blood
addition. Quantitative data, elaborated in Figure 9, establish ΔC
changes for these substances in the 10 KHz–1 MHz range as 0.577 ±
0.041pF and 0.670 ± 0.036pF, respectively. The blood-induced
augmentation in ΔC decline constitutes 16% of that of the pure
fat, a differential that is discernible. In the 1 MHz–10 MHz

FIGURE 6
The frequency sweep measurement results of capacitance changes (ΔC) of pure distilled water and distilled water mixed blood. (A, B, C) are the
original ΔC measurement data in the three frequency ranges of 10 KHz–1 MHz, 1 MHz–10 MHz, and 10 MHz–20 MHz, respectively. (D, E, F) are the
normalized data of the original data in (A, B, C) relative to the data of the initial frequency of each frequency band.

FIGURE 7
The ΔC differences between 1 MHz and 5 MHz for pure distilled
water and distilled water mixed blood solution.
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frequency band, represented by subsets B and E, the differential in
ΔC changes between the substances is marginal. While a larger ΔC
change in the fat-encapsulated blood model is observed within the
5 MHz–10 MHz subset, the differential is not markedly pronounced.
Subsets C and F, capturing data in the 10 MHz–20 MHz band,

indicate almost identical ΔC changes between the substances,
negating the possibility of discerning blood presence in fat at
these frequencies. A holistic analysis suggests that the
10 KHz–1 MHz frequency range is the most efficacious for
detecting the presence of blood in pig fat through frequency
differential analysis.

The ΔC measurement results for both pure pig brain and
blood-infused pig brain are shown in Figure 10. Subsets A, B,
and C represent the raw ΔCmeasurement data across three distinct
frequency bands: 10 KHz–1 MHz, 1 MHz–10 MHz, and
10 MHz–20 MHz. Subsets D, E, and F provide normalized data
corresponding to the raw measurements in A, B, and C, scaled
relative to the initial frequency data. Within the 10 KHz–1 MHz
range, subsets A and D indicate a frequency-dependent decrease in
ΔC for both pure pig brain and blood-infused pig brain. However,
the magnitude of this decline differs between the two, with a more
modest reduction observed post-blood infusion. This observation
is corroborated by frequency sweep data of pure pig brain and pure
blood depicted in Figure 5; within the same frequency range, the
rate of ΔC decline in pure pig brain substantially exceeds that of
pure blood. Consequently, the introduction of blood into the pig
brain reduces the overall decline in ΔC, yet this alteration does not

FIGURE 8
The frequency sweep measurement results of capacitance changes (ΔC) of pure fat and fat-wrapped blood. (A, B, C) are the original ΔC
measurement data in the three frequency ranges of 10 KHz–1 MHz, 1 MHz–10 MHz, and 10 MHz–20 MHz, respectively. (D, E, F) are the normalized data
of original data in (A, B, C) relative to the data of the initial frequency of each frequency band.

FIGURE 9
The ΔC differences between 10 KHz and 1 MHz for pure pig fat
and pig fat wrapped blood.
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impede its detect ability. Figure 10 subsets A and D further reveal
relatively large difference of ΔC decline between the two materials
in the 10 KHz–0.5 MHz range, but negligible difference in the
0.5 MHz–1 MHz range. These quantitative differences are

documented in Figure 11, with values of 4.576 ± 0.12pF and
4.048 ± 0.05pF, respectively. Therefore, the reduced ΔC decline
due to the infusion of blood represents 11.5% of the ΔC decline
observed in pure pig brain, a difference that remains within
detectable limits. Subsets B and E indicate almost the same ΔC
fluctuations in the frequency band of 1 MHz–10 MHz for two
materials. Subsets C and F delineate that within the frequency
range of 10 MHz–15 MHz, the divergence in ΔC fluctuations
between pure pig brain and blood-infused pig brain remains
minimal. It should be noted that at approximately 16 MHz, the
measurement circuit exhibited resonance, a factor which
necessitates consideration in future experimental setups.
Continuing from the previous data analysis, Upon aggregating
the data, it is concluded that the most effective frequency domain
for ascertaining the presence of blood in pig brain is between
10 KHz and 0.5 MHz. However, within this specified range, the
decrease in ΔC decline due to blood infusion amounts to only
11.5% of the ΔC decline observed in the pure pig brain. This
percentage is markedly lower than the 16% registered in pig fat and
the 30% observed in distilled water, as per previous studies. Hence,
the task of detecting blood in pig brain via frequency-dependent

FIGURE 10
The frequency sweep measurement results of capacitance changes (ΔC) of pure pig brain and pig brain wrapped blood. (A, B, C) are the original ΔC
measurement data in the three frequency ranges of 10 KHz–1 MHz, 1 MHz–10MHz, and 10 MHz–20 MHz, respectively. (D, E, F) are the normalized data
of the original data in (A, B, C) relative to the data of the initial frequency of each frequency band.

FIGURE 11
The ΔC differences between 10 KHz and 0.5 MHz for pure pig
brain and pig brain wrapped blood.
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capacitance changes proves more challenging compared to the
other models.

Conclusion

At present, whether ECT or other electrical imaging, ICH can
only be detected by time-difference measurements. Such an
approach necessitates baseline, non-hemorrhagic
measurements data from the patient, which is often
impracticable to acquire in a clinical setting. To address this
shortfall, the present study advocates for the utilization of
frequency-dependent permittivity variations as an alternative
modality for the absolute identification of ICH. This strategy
leverages the distinct dispersion properties of the permittivity in
brain tissue, along with the spectral disparity in permittivity
between blood and other cerebral tissues. Notably, this
frequency-based approach obviates the need for non-
hemorrhagic reference data. It mandates only the acquisition
of measurement data at specific frequency points post-
hemorrhage, thereby rectifying the limitations inherent to
time-difference imaging techniques. Initial steps in this
method involve identifying two critical frequency points at
which the permittivity frequency difference of blood and
surrounding brain tissues exhibit maximum variations.
Subsequently, the differential permittivity at these frequencies
are employed to detect ICH. In the scope of this paper, the
capacitance variations of four individual substances and three
composite materials were quantified using an impedance
analyzer in conjunction with a parallel plate capacitor.

The study confirms that distinct frequency bands can
effectively discriminate between single-component and mixed
substances based on variations in capacitance with frequency.
Comparative analysis reveals that the frequency range between
1 MHz and 5 MHz is most efficacious for the detection of blood in
distilled water. For the identification of blood in pig fat, the optimal
frequency range is between 10 KHz and 1 MHz. When isolating
blood within pig brain tissue, the frequency range of 10 KHz to
0.5 MHz demonstrates optimal results. Thus, the study establishes
that the absolute detection of ICH is feasible through frequency-
differential measurements of the permittivity. Nonetheless, this
research is not without limitations. The sheep blood used in the
experiments of this paper was diluted with sodium heparin
anticoagulant, resulting in its permittivity being significantly
lower than in vivo blood, only slightly higher than that of
water. This was proven in our preliminary experiments. The
use of such treated blood was a necessary compromise, as fresh
blood coagulates very quickly. The pig fat and pig brain used in the
experiments were also previously frozen in a refrigerator. Before
the experiments, they were thawed out, and during this process,
melting ice water was also mixed in. Therefore, the permittivity of
these ex vivo pig fat and pig brain tissues differs greatly from that of
in vivo tissues. The primary objective of this paper was to verify the
feasibility of using the frequency differences in permittivity to
detect cerebral hemorrhage. Therefore, we initially conducted
verification through experiments with ex vivo tissues, with plans
to validate further through in vivo animal experiments in the later

stages. Additionally, there is a divergence in the capacitance sweep
measurements obtained in this study compared to those reported
in existing literature. This discrepancy can be largely attributed to
the measurement circuitry. The parallel plate capacitor, along with
parasitic inductance within the circuit, manifests varying
impedances at different frequencies, leading to resonance at
specific frequencies.
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Application of a digital twin for
highway tunnels based on
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Due to the harsh environment of highway tunnels and frequent breakdowns of
various detection sensors and surveillance devices, the operational management
of highway tunnels lacks effective data support. This paper analyzes the
characteristics of operational surveillance data in highway tunnels. It proposes
a multimodal information fusion method based on CNN–LSTM–attention and
designs and develops a digital twin for highway tunnel operations. The system
addresses issues such as insufficient development and coordination of the
technical architecture of operation control systems, weak information service
capabilities, and insufficient data application capabilities. The system also lacks
intelligent decision-making and control capabilities. The developed system
achieves closed-loop management of “accurate perception–risk
assessment–decision warning–emergency management” for highway tunnel
operations based on data-driven approaches. The engineering demonstration
application underscores the system’s capacity to enhance tunnel traffic safety,
diminish tunnel management costs, and elevate tunnel driving comfort.

KEYWORDS

highway tunnel, operational surveillance, information fusion, deep learning, digital twin

1 Introduction

Tunnels are vital infrastructures on national highway networks. As of the end of 2021,
there were 23,268 road tunnels in China, with a total length of 24,698.9 km, an increase of
1,952 tunnels and 2,699.6 km, of which there were 1,599 special long tunnels with a length of
7,170.8 km and 6,211 long tunnels with a length of 10,844.3 km [1]. To supervise the
operation of highway tunnels, tunnels are equipped with electromechanical systems which
consist of communication and monitoring facilities. During the construction and operation
of highway tunnel electromechanical systems, a large amount of experience has been
accumulated and complete engineering technical specifications and related product
standards have been formed, laying a good foundation for realizing intelligent
management and control of highway tunnel operations. With the large-scale
construction and operation of Chinese tunnels, especially the increasingly mature digital
tunnel monitoring technology, most highway tunnels currently use area control and switch
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ring network control transmission technology, which has realized
equipment control and data monitoring management inside the
tunnel, and the technology is mature and stable [2].

As early as the 1960s, countries such as the United States,
Germany, and Japan began researching about the mechanical and
electrical control systems of highway tunnels. In the mid-1970s,
Japan’s OMRON Corporation studied a controller link network
control technology that could form a redundant token ring network
with autonomous control capabilities. In the mid-1980s, Germany’s
Phoenix Contact Corporation researched an INTERBUS fieldbus
technology that is suitable for network technology in the automatic
control field. Based on the INTERBUS technology, a highway tunnel
operation control system can perform distributed monitoring of the
mechanical and electrical equipment in single-tube two-way
highways or dual-tube one-way highways. Each tunnel can have
an independent centralized monitoring center. In themid-1990s, the
United States’ Echelon Corporation introduced a LonWorks
distributed highway tunnel monitoring system, which was
developed based on Echelon’s OpenLNS Server software platform
and possessed characteristics such as distribution, openness,
interoperability, and adaptability. These research results have
been widely recognized by the industry and have become
mainstream standards for control networks, widely applied in the
mechanical and electrical control of highways and tunnels
worldwide [3–5].

Since the beginning of the 21st century, countries have gradually
improved the theoretical and technical aspects of highway tunnel
operation safety monitoring. The United States, Germany, and other
countries have formulated technical standards and traffic control
regulations for highway tunnel operation management systems,
while continuously researching and developing updated highway
monitoring facilities and software systems with the application of
new technologies [6–9]. Research on tunnel operation management
technology in China began in the 1980s. Researchers gradually
conducted research on tunnel structural design, safety
construction monitoring, and operational safety management.
The Shanghai Yan’an East Road Tunnel and the Shenzhen
Wutongshan Tunnel were the earliest to introduce foreign tunnel
monitoring systems for application. The Zhongliangshan Tunnel
and the Jinyunshan Tunnel of the Chongqing–Guizhou Highway
also successively introduced advanced equipment from abroad.
With the accumulation of experience in the construction and
operation of highway electromechanical systems, a series of
national standards and industry specifications related to highway
tunnel traffic engineering design were formed. A number of
successful cases have been established, such as the Hong
Kong–Zhuhai–Macao Bridge long-span immersed tunnel
monitoring and management platform, the
Qinling–Zhongnanshan Mountain long tunnel monitoring and
management platform, the Shandong Province Jilai Highway
tunnel monitoring and management platform, and the CMCT’s
new generation of intelligent highway tunnel management platform,
which has laid a good foundation for achieving intelligent
management and control of highway network traffic operation.
In recent years, with the continuous advancement of China’s
construction of a transportation power, provinces such as
Shandong, Zhejiang, Jiangsu, Gansu, Henan, and Yunnan have
successively issued local smart highway construction guidelines

[10–15]. Industry software and hardware leaders such as
Hikvision, Huawei, and Wanji also successively released smart
highway overall solutions [16, 17]. As tunnels are key nodes of
highways, higher requirements have been put forward for intelligent
tunnel operation management systems [18–21].

The data in highway tunnels exhibit characteristics such as
multiple sources and heterogeneity. Various pieces of
electromechanical equipment inside the tunnel constantly
generate a massive amount of data, including real-time
monitoring data such as video, environmental conditions, and
traffic data collected by vehicle detectors (e.g., traffic flow, speed,
and occupancy). The equipment control parameters include
ventilation-, lighting- and traffic-related ones. Due to the harsh
operating environment in the tunnel, the operational data detection
equipment, such as CO/VI detectors, wind speed and direction
detectors, brightness detectors, and vehicle detectors, experiences
frequent failures, leading to distortedmonitoring data. This hampers
the provision of data-based guidance for the precise control of
ventilation, lighting, traffic, and guidance. Currently, research and
application of data mining in highway tunnel monitoring systems
are almost nonexistent, with few relevant research achievements.
The road condition perception system on the Yanqing to Chongli
highway employs LiDAR-vision fusion for road information
acquisition [22]. However, this approach is hampered by the
absence of an integrated data fusion process, leading to
asynchronous radar and video data collection. This limitation
results in a restricted range of data on individual vehicle
operations. In contrast, the Jinghu Jilai Highway tunnels employ
a more advanced traffic data collection system, integrating
technologies such as laser radar, millimeter-wave radar, and
panoramic cameras. The practical outcomes of this system reveal
that traffic data collection, when based on a multi-sensor fusion
approach, significantly surpasses the accuracy of target recognition
achievable with a single sensor. Furthermore, the implementation of
a bidirectional optimal estimation algorithm, built upon the fused
data, enhances the reliability of traffic flow data collection.

In its role as a facilitator of intelligent highway tunnel operation,
the current mechanical and electrical system still has the following
problems in technology architecture, functional design, and
operation management: the development of the system’s
technical architecture is not enough, the coordination is
insufficient, and it is difficult to adapt to the edge-cloud
architecture; the system’s functions have relatively single
information exchange modes and weak precision and timely
information service functions, and the data intelligent
aggregation, analysis, and application capabilities need to be
improved urgently. Furthermore, the establishment of intelligent
decision control capability remains a pending endeavor. This article
initiates its exploration from the feature analysis of monitoring data
pertinent to highway tunnel operations in Section 2. Aiming to
significantly elevate the accuracy of highway tunnel operational
status assessments, this is achieved through the implementation
of a multimodal information fusion method grounded in
CNN–LSTM–attention in Section 3. It designs and develops a
digital twin system for highway tunnel operations in Section 4,
realizing a closed-loop management of “precise perception–risk
judgment–decision warning–emergency control” for highway
tunnel based on data-driven approaches.
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2 Acquisition and feature analysis of
operational monitoring data for
highway tunnels

2.1 Operational data collection of
highway tunnels

The discrimination and control of the operating status of
highway tunnels mainly rely on the monitoring facilities on site.
Monitoring facilities generally include monitoring, control, and
induction facilities. Monitoring facilities typically consist of

vehicle detection facilities, environmental detection facilities,
road anomaly detection facilities, video surveillance facilities,
and alarm facilities [23–25]. Control and induction facilities
include emergency call facilities, information release and
control facilities, and local control facilities. The monitoring
settings related to highway tunnel operation data collection
mainly include vehicle detection sensors, light intensity
detection sensors, carbon monoxide/visibility detection
sensors, wind speed and direction detection sensors, and video
image sensors, and the collection content, methods, and
installation requirements are shown in Table 1.

TABLE 1 Collection methods and requirements of highway tunnel operation data.

Data Collection method Sensor installation requirement

Speed data Vehicle detection sensor 1. When using induction coil detection sensors, the spacing
should be arranged between 300–750 m

Traffic volume data 2. Vehicle detection sensors (radar, microwave, LiDAR fusion
sensors, etc.) should be set up to prevent other equipment or
objects from blockingPercentage of lane occupancy data

Video data Video image sensor 1. The video image sensor outside the tunnel should be set at the
entrance and exit of the tunnel between 100–250 m

2. For the video image sensor inside the tunnel, a spacing of
100–200 m should be used at a distance of 2–5 m from the
entrance, and the recommended setting is 120–150 m

Carbon monoxide data Carbon monoxide detection sensor 1. For tunnels with jet fans for longitudinal ventilation, they
should be set up in the middle, at the bends, and a distance of
100–150 m from the exit

Visibility data Visibility detection sensor 2. For tunnels with vertical and inclined shaft ventilation, they
should be set up 30 m in front of the exhaust port

3. The detection sensor is installed on the outer side wall bracket
of the tunnel, with a height of 2.5–3 m from the maintenance
road

Nitrogen dioxide data Nitrogen dioxide detection sensor The detection sensor is installed on the outer side wall bracket of
the tunnel, with a height of 2.5–3 m from the maintenance road

Light intensity data outside the tunnel Light intensity detection sensor Light intensity detection sensor outside the tunnel is installed
outside the tunnel, a distance of one parking line of sight
(100–200 m) from the tunnel entrance

Light intensity data inside the tunnel Light intensity detection sensor Light intensity detection sensor inside the tunnel is installed
inside the tunnel, 20–25 m away from the tunnel entrance

Wind speed and direction data Wind speed and direction detection sensor 1. For tunnels with jet fans for longitudinal ventilation, they
should be set up at the bends and a distance of 100–150 m from
the exit

2. For tunnels with vertical and inclined shaft ventilation, they
should be set up 30 m in front of and behind the exhaust and
supply air outlets

3. The detection sensor is installed on the outer side wall bracket
of the tunnel, with a height of 2.5–3 m from the maintenance
road or installed on the nails on both sides of the inside and
outside of the tunnel, and the two probes make an angle of
30°–60° with the longitudinal center line of the tunnel, preferably
45°, and cannot encroach on the building clearance

Traffic event data Event monitoring sensor 1. Setting principles refer to video image sensors

2. It is recommended to repurpose existing video image sensors.
If using fusion perception devices, they can replace the original
video image sensors
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2.2 Characteristic analysis of highway tunnel
operation data

In the process of managing the operation of highway tunnels, traffic
and environmental conditions are the focus of attention for managers.
The spatiotemporal variation of traffic volume and composition, as well
as vehicle speed, can determine whether there are traffic safety hazards in
the tunnel and whether the luminaires meet the requirements of traffic
safety [26–28]. This paper selects data from ventilation, lighting, and
traffic detection sensors for analysis. The data characteristics are shown
in Table 2, and the data correlations are shown in Eqs 1–4. The data
collected by the vehicle detection sensors and visibility detection sensors
can be calibrated through video images [29–33], as shown in Figure 1.

QVI � 1
3.6 p 106

p qVI p f a VI( ) p f d p f h VI( ) p f iv VI( ) p L p ∑ nD
m�1 Nm p f m VI( )( ).

(1)

This equation includes the following variables: QVI is the
smoke emission amount of the tunnel; qVI is the benchmark
smoke emission amount for the target year, which can be
calculated based on the specifications; fa(VI) is the coefficient
of vehicle condition considering smoke, which is determined
according to the specifications; fd is the vehicle density
coefficient, which is determined according to the
specifications; fh(VI) is the altitude coefficient considering
smoke, which is determined according to the specifications;
fiv(VI) is the longitudinal slope-speed coefficient considering
smoke, which is determined according to the specifications; L
is the length of the tunnel; fm(VI) is the diesel vehicle type
coefficient considering smoke; nD is the number of diesel
vehicle type categories; and Nm is the traffic volume of the
corresponding vehicle type, which is determined according to
the specifications.

TABLE 2 Characteristics of highway tunnel operation data.

Tunnel environment Direction data Data
units

Data range Data
accuracy

Data transmission
cycle (min)

Ventilation environment
monitoring

Visibility data m-1 0–0.0015 m-1 ± 0.0002 m-1 5–10

Carbon monoxide data 10–6 (ppm) 0–300 × 10−6

(0–300 ppm)
± 2 × 10−6

(± 2 ppm)
5–10

Wind speed and direction data m/s −20 ~ +20 m/s ± 0.2 m/s 5–10

Nitrogen dioxide data 10–6 (ppm) 0–10 cm3/m3 ± 5% indicated
value

5–10

Lighting environment
monitoring

Light intensity data outside the
tunnel

cd/m2 1–6500cd/m2 ± 3% indicated
value

5–10

Light intensity data inside the
tunnel

lx 1–1000lx ± 3% indicated
value

5–10

Traffic environment monitoring Speed data Km/h 5–2000 km/h Accuracy ≥ 85% 5–10

Traffic volume data Vehicle/h - Accuracy ≥ 85% 5–10

Percentage of lane occupancy
data

Vehicle/km - Accuracy ≥ 85% 5–10

FIGURE 1
Image-based visibility detection and recognition.
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FIGURE 2
Multimodal fusion network architecture of tunnel operation monitoring data.

FIGURE 3
CBAM attention mechanism structure diagram.
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QCO � 1
3.6 p 106

p qCO p f a p f d p f h p f iv p L p ∑ nD
m�1 Nm p f m( ). (2)

This equation describes the calculation of carbon monoxide
(CO) emissions in a highway tunnel. QCO represents the amount of

CO emissions, while qCO is the baseline emissions rate for the target
year, which can be calculated based on relevant specifications. The
coefficients fa, fd, fh, and fiv represent the effects of vehicle
condition, traffic density, altitude, and slope-velocity on CO
emissions, respectively, and they are obtained according to
specifications. L is the length of the tunnel. fm is the coefficient
for diesel vehicle type considering CO emissions, nD is the number
of diesel vehicle types, and Nm is the traffic volume for the
corresponding vehicle type, which are all determined based on
specifications.

Lth1 � k p L20 S( ). (3)

This equation includes the following variables: Lth1 represents
the brightness of the TH1 section at the tunnel entrance; Lth1
represents the brightness of the TH2 section at the tunnel
entrance; k is the reduction coefficient of the entrance section
brightness, which is obtained by consulting the specifications
based on traffic volume data; and L20(S) represents the
brightness outside the tunnel.

TABLE 3 1D CNN–LSTM model parameters.

Layer Parameter

Convolutional layers Filter = 20, kernel size = (10.1), and stride = 1

Max pooling layer + dropout (0.15) Pool size = (2.1) and stride = 2

Convolutional layers Filter = 40, kernel size = (5.1), and stride = 1

Max pooling layer + dropout (0.15) Pool size = (2.1) and stride = 2

Convolutional layers Filter = 80, kernel size = (3.1), and stride = 1

Max pooling layer + dropout (0.15) Pool size = (2.1) and stride = 2

LSTM Hidden size = 64

FIGURE 4
CNN–LSTM test results. (A)CNN-LSTM-base test results. (B)CNN-LSTM-ECA test results. (C)CNN-LSTM-SE test results. (D)CNN-LSTM-CBAM test
results. (E) CNN-LSTM-TPA test results.
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Lth2 � 0.5 p k p L20 S( ). (4)

In the field of tunnel vehicle operation data collection and
processing, the integration of LiDAR-vision machines and edge
processors can be utilized to sequentially accomplish the
collection, recognition, and fusion of radar and video data.

The steps are as follows: 1) The LiDAR-vision machine
conducts real-time data collection of vehicles in the target
area, acquiring both radar and video detection data. 2) The
edge processor extracts radar and video detection data
separately. It utilizes the YOLOv5 algorithm to extract vehicle
type information from the video, and the 3DSSD radar target
detection algorithm to extract vehicle position information. 3)
The extracted target data undergo spatiotemporal
synchronization. Through time registration, ineffective radar
and video frames are eliminated. Spatial calibration is then
applied to transform valid radar data into pixel space. 4) The
region of interest (ROI) method is used to merge radar- and
video-detected vehicle targets. Vehicle target information from
both LiDAR and vision sources is fused based on detection
distance, thereby achieving holographic perception of vehicles
passing through highway tunnels.

However, the current operating environment in highway
tunnels is harsh, with frequent malfunctions of operational data

FIGURE 5
Confusion matrix. (A) CNN-LSTM-SE test results. (B) CNN-LSTM-ECA test results. (C) CNN-LSTM-CBAM test results. (D) CNN-LSTM-TPA
test results.

TABLE 4 Test results.

Model RMSE Reduce

CNN–LSTM–BASE 0.01254 0

CNN–LSTM–ECA 0.00526 58%

CNN–LSTM–SE 0.00036 97%

CNN–LSTM–CBAM 0.00023 98%

CNN–LSTM–TPA 0.00015 99%
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FIGURE 6
Schematic diagram of the overall system architecture.

FIGURE 7
Schematic diagram of system technical architecture.
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detection equipment such as carbon monoxide/visibility detection
sensors, wind speed/direction detection sensors, brightness
detection sensors, and vehicle detection sensors, making long-
term stable operation impossible. While video imaging can be
used to detect traffic flow, visibility, and other data, it is still
difficult to accurately predict the overall operating status of the
tunnel, and operational management decisions lack effective data
support. Due to most tunnel data detection sensors currently being
integrated into the tunnel monitoring system via PLC controllers,
the data are first converted from digital to analog form and then back
to digital form before being transmitted to the monitoring system. If
the PLC devices lack effective maintenance, the precision of the data
will not meet the requirements for tunnel operation management
[34, 35]. In response to these issues, this article proposes a method

based on multi-sensor fusion to discriminate the operating state of
highway tunnels.

3 Prediction method of highway tunnel
operation status based on multimodal
data fusion

3.1 Highway tunnel operation status
prediction model based on multimodal
data fusion

The operational status of highway tunnels encompasses various
aspects such as traffic operation status, the adaptability of traffic

FIGURE 8
Schematic diagram of system business architecture.
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TABLE 5 Code of basic tunnel parameters.

Name Abbreviation Data types Can be null Notes

Tunnel name TunName Varchar (20) False

Tunnel beginning number TunBegin Numeric (7.3) False Unit: kilometer

Tunnel ending number TunEnd Numeric (7.3) False Unit: kilometer

Tunnel central number TunCentre Numeric (7.3) False Unit: kilometer

Classification code ClaCode Varchar (20) False

Length Length Numeric (6.2) False Unit: kilometer

Clear width CleWidth Numeric (6.2) False Unit: meter

Clear height CleHeight Numeric (6.2) False Unit: meter

Hole mode HoMode Varchar (20) False

Mode of the cross-section SecMode Varchar (20) False

Lining material LinMaterial Varchar (20) False

Mode of lighting conditions LighMode Varchar (20) False

Mode of ventilation VenMode Varchar (20) False

Mode of electromechanical facilities FaciMode Varchar (20) False

Completion date ComDate Datetime False

Design unit DesUnit Varchar (20) False

Construction unit ConsUnit Varchar (20) False

Supervision unit SupUnit Varchar (20) False

Management unit ManUnit Varchar (20) False

Maintenance unit MainUnit Varchar (20) False

Name of the sender SendMan Varchar (20) Yes

Date and time SectTime Datetime Yes

Vehicle detection sensor ID VDID Varchar (20) False

Collection time RecTime Datetime False

Collection cycle RerPeriod Smallint Yes

Upstream heavy vehicle flow UupFluxB Smallint Yes

Upstream light vehicle flow UupFluxS Smallint Yes

Upstream flow UupFlux Smallint Yes Total traffic volume of all lanes in the upstream direction

Downstream heavy vehicle flow DwFluxB Smallint Yes

Downstream light vehicle flow DwFluxS Smallint Yes

Downstream flow DwFlux Smallint Yes Total traffic volume of all lanes in the downstream
direction

Upstream average speed UpSpeed Smallint Yes

Downstream average speed DwSpeed Smallint Yes

Upstream average occupancy rate UpOccup Numeric (5.2) Yes

Downstream average occupancy rate DwOccdown Numeric (5.2) Yes

Total number of lanes LaneNum Tinyint Yes Number of lanes detected by the equipment

Working status Status Tinyint Yes 0- normal, 1- fault, and 2- unknown

Communication status CommStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

(Continued on following page)
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engineering and auxiliary facilities, the environmental adaptability
of tunnel operations, and operational risk. These aspects can be
quantitatively assessed through the status of tunnel infrastructure
and data collected by sensors. The traffic operation status of tunnels
can be determined using data from vehicle sensors. The adaptability
of traffic engineering and auxiliary facilities can be assessed through
the status data of tunnel electromechanical facilities. The
environmental adaptability of tunnel operations can be evaluated
using data collected by environmental sensors in the tunnel.
Operational risks can be identified through event detection
sensors. A comprehensive evaluation standard for the operational
status of highway tunnels can be computed using multimodal data
processing methods, which analyze the connections between various
types of data.

This article combines the CNN–LSTMdeep learningmodel with
the self-attention mechanism to apply it to the judgment of tunnel
operation status. The CNN–LSTM model is used to extract features
from nonintrusive multimodal time series data, and the self-
attention mechanism is used to integrate traffic flow, carbon
monoxide, and visibility detection data, to effectively judge the
tunnel operation service level by weighing the features of
different modes [36]. The multimodal fusion architecture mainly
includes four steps: preprocessing, feature extraction, feature fusion,
and classification, as shown in Figure 2.

3.1.1 1D-CNN
The CNNmodel usually consists of three main components: the

convolutional layer, pooling layer, and fully connected layer.
The role of the convolutional layer is to perform convolutional

operation between the local region of the input data and the
convolution kernel and slide the convolution kernel window to
traverse the entire input data through local receptive fields. The
convolution calculation equation is as follows:

xli � f wl
i pX

l−1 + bli( ). (5)

In the equation, xli represents the ith feature of the output
value of layer l, wl

i represents the weight matrix of the ith
convolution kernel in layer l, * operator represents the
convolution operation, Xl−1 represents the output of layer l-1,
bli represents the bias term, and f represents the activation
function of the output. CNN uses a nonlinear activation
function to solve real-world nonlinear problems and chooses
rectified linear unit (ReLU) as the activation function of the
convolutional neural network.

The role of the pooling layer is to combine spatially, reducing the
dimensionality of the feature map while maintaining the most
important information. There are many types of it, and the
maximum pooling is generally used, and its expression is

TABLE 5 (Continued) Code of basic tunnel parameters.

Name Abbreviation Data types Can be null Notes

Carbonmonoxide and visibility detection sensor ID COVID int False

Collection time COVTime Datetime False

Collection period COVPeriod Smallint Yes

Carbon monoxide concentration COConct Smallint Yes

Visibility Visibility Smallint Yes

Working status WorkStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Communication status CommStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Light intensity detection sensor ID LOLIID int False

Acquisition time LOLITime Datetime False

Acquisition period LOLIPeriod Smallint Yes

Outside brightness of the hole LOLumi Smallint Yes

Inside brightness of the hole LILumi Smallint Yes

Working status WorkStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Communication status CommStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Wind speed and direction detection sensor ID WSID int False

Collection time WSTime Datetime False

Collection cycle WSPeriod Smallint Yes

Wind direction Direction Tinyint Yes

Wind speed Speed Smallint Yes

Working status WorkStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown

Communication status CommStatus Tinyint Yes 0- normal, 1- fault, and 2- unknown
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TABLE 6 Description of the digital twin system for highway tunnel operation.

Subsystem Function name Description

Comprehensive monitoring
system

Tunnel daily management control According to the monitoring center, the selected tunnels within its jurisdiction can realize
the functions of tunnel electromechanical equipment status, detection information
collection, single control, group control, event monitoring, and alarm information
confirmation, and event and fault information entry in a three-dimensional and two-
dimensional visual model

Digital twin system Tunnel basic information digital twin The digital twin presents the basic information of the tunnel

Digital twin system Field electromechanical equipment digital twin The digital twin presents and controls the electromechanical equipment outside the tunnel
and related road sections

Digital twin system Comprehensive environmental information
digital twin

The digital twin presents the environmental monitoring information of the tunnel and
related road sections

Digital twin system Real-time traffic operation digital twin The digital twin presents the real-time traffic flow and vehicle information of the tunnel and
related road sections

Digital twin system Traffic incident digital twin The digital twin presents the tunnel event detection

Digital twin system Emergency linkage digital twin The digital twin presents the emergency linkage control plan of the tunnel

Specialized control system Video inspection special item The cameras of the selected road sections and tunnels are grouped into 16 video streams for
broadcasting, and the situation inside the tunnel is inspected

Specialized control system Tunnel lighting special item control Remote control, manual control, intelligent control, and contingency control can be
selected for the selected tunnels’ lighting control

Specialized control system Road guidance special item control Graphically display the variable information identification settings of the tunnel’s
surrounding road network, display the current display content of each variable information
sign, and support manual and contingency information release and single or group release
per the contingency plan

Specialized control system Electromechanical equipment linkage control The linkage control plan can be customized based on the tunnel’s actual needs, and the
control modes are accident linkage control mode and daily linkage control mode

Command and control
system

Linkage emergency plan management The graphical interface realizes the linkage control plan for tunnel electromechanical
equipment, and add/delete/modify/query functions are available

Command and control
system

Emergency special plan management The graphical interface realizes the emergency plan for tunnel events, and add/delete/
modify/query functions are available

Command and control
system

Operation log The operation records of the current system users can be viewed

Maintenance management
system

Maintenance task management Tunnel electromechanical system maintenance task management (daily inspection, regular
maintenance, and periodic maintenance task formulation) and tunnel maintenance plan
formulation

Maintenance management
system

Electromechanical equipment fault management Manage faulty electromechanical equipment and fault repair tasks

Maintenance management
system

Data management Manage tunnel electromechanical system-related contracts and knowledge base

Maintenance management
system

Operation log The operation records of the current system users can be viewed

Data analysis system Operation theme data statistical analysis By collecting, summarizing, comparing, and analyzing operation-related data, statistical
and analytical reports in predetermined or customizable formats can be generated

Data analysis system Traffic theme data statistical analysis By collecting, summarizing, comparing, and analyzing traffic-related data, statistical and
analytical reports in predetermined or customizable formats can be generated

Data analysis system Equipment data statistical analysis By collecting, summarizing, comparing, and analyzing electromechanical equipment-
related data, statistical and analytical reports in predetermined or customizable formats can
be generated

Data analysis system Dashboard- operation data display Traffic theme, energy-saving theme, environmental theme, and equipment status data
display

Data analysis system Dashboard- electromechanical equipment
automatic inspection

Inspect the working status of tunnel electromechanical equipment online and automatically
discover abnormal devices

(Continued on following page)
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yl+1i j( ) � max xji k( )k ∈ Dj. (6)

This sentence describes the max pooling operation in a CNN
model. yl+1

i (j) represents an element in the jth pooled feature map
of the (l+1)th layer after pooling. Dj is the jth pooling region, and
xj
i (k) represents an element of the lth layer’s ith feature map within

the pooling kernel.

3.1.2 LSTM
LSTM is an upgraded variant of RNN that adds gate structures

internally, including input gates, forget gates, and output gates,
which can adjust the values of input and hidden layers. The
calculation process is as follows:

f t � σ Wf ht−1, xt + bf[ ]( )
it � σ Wi ht−1, xt + bi[ ]( )
~Ct � tan h Wc ht−1, xt[ ] + bc( )
Ct � f tCt−1 + it C̃t

ot � σ Wo ht−1, xt[ ] + bo( )
ht � σt tanh Ct( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (7)

In the equation, ft, it, and ot are the computation functions of
the forget gate, input gate, and output gate vectors, respectively. ~Ct

represents the candidate state information. σ is the sigmoid function.
Wf,Wi,Wc, andWo are the corresponding weight matrices, and bf,
bi, bc, and bo are the corresponding bias vectors. xt is the input vector
at time t, Ct−1 is the stored cell information from the previous time
step, and ht is the LSTM output vector.

3.1.3 Attention mechanism
By using the attention mechanism, efficient allocation of

information processing resources can be achieved. Due to the
difference in the importance of features in short subsequences of
long time series, significant features often contain more
information and have a greater impact on the trend of actual
demand. If CNN is given the ability to focus more on high-
importance features, it can better extract short-term patterns and
optimize LSTM input information [37]. Therefore, this paper
uses the attention mechanism to extract significant features of
short sequences.

The attention mechanism can be categorized into hard attention
and soft attention. Hard attention selects the ROI as input and is
effective in focusing on the target object by removing meaningless
background data in image research. However, the direct restriction
of input content processing method used in hard attention is not

entirely suitable for time series prediction. Even if there are
differences in the importance of input sequences, since each
input subsequence contains certain information at different
positions in the sequence, it cannot be identified and removed.
Additionally, hard attention requires reinforcement learning
optimization, which makes training difficult and less universal. In
contrast, soft attention uses weights trained by neural networks to
globally weight input features in space or channel, achieving the goal
of focusing on specific spatial regions or channels. Moreover, this
method is differentiable in backpropagation, allowing end-to-end
learning and direct learning of attention networks. Based on these
principles, this paper introduces soft attention into one-dimensional
CNN, weighting all input features one by one, focusing on specific
spatial regions and channels to achieve the significant and fine-
grained feature extraction of time series.

3.1.3.1 SE attention mechanism
The purpose of the SE (squeeze-and-excitation) module is to

apply a weight matrix from the channel domain perspective,
assigning different weights to various positions in an image,
thereby extracting more significant feature information.

To obtain channel-wise attention, the feature map is first
globally average pooled based on its width and height, reducing
spatial dimensions to 1 × 1. Then, two fully connected layers and
nonlinear activation functions are used to establish connections
between channels. The SE module first performs a “squeeze”
operation on the convolutional feature map to obtain global
channel-wise features and then performs an “excitation”
operation to learn the relationships between channels and obtain
weights for each channel. Finally, the original feature map is
multiplied by the channel-wise weights to obtain the final feature.
Essentially, the SE module performs attention operation on the
channel dimension, allowing the model to focus more on the most
informative channel features while suppressing those that are
not important.

3.1.3.2 ECA attention mechanism
The SE attention mechanism first compresses the input feature

map along the channel dimension, but this compression can have a
negative impact on learning dependencies between channels. Based
on this idea, the ECA attention mechanism avoids dimensionality
reduction and efficiently implements local cross-channel
interactions using a 1D convolution to extract inter-channel
dependencies. The specific steps are as follows:

TABLE 6 (Continued) Description of the digital twin system for highway tunnel operation.

Subsystem Function name Description

Data analysis system Dashboard- emergency command Event detection, alarm confirmation, video call, and contingency plan selection and
demonstration

Data analysis system Operation log The operation records of the current system users can be viewed

Backend management system Role information management The platform’s organization structure management, personnel management, full selection
management, and user management are available

Backend management system Basic data management Manage electromechanical equipment, contract unit, equipment manufacturer, emergency
facilities, and external units management

Backend management system Platform log management The operation records of the current system users can be viewed
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Step 1: Global average pooling is performed on the input
feature map.

Step 2: A 1D convolution operation is performed with a kernel size
of k, and the sigmoid activation function is applied to obtain the
weight w for each channel, as shown in the following equation:

ω � σ C1Dk y( )( ). (8)

Step 3: The weights are multiplied with the corresponding elements
of the original input feature map to obtain the final output feature
map. The idea and operation of the ECA attention mechanism are

FIGURE 9
Digital twin system for highway tunnel operation. (A) Integrated monitoring system function page. (B) Traffic operation digital twin page.
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extremely simple and have minimal impact on network processing
speed. However, ECA attention only uses channel attention, and its
accuracy still needs to be verified for specific application scenarios.

3.1.3.3 Convolutional block attention module
The convolutional block attention module (CBAM) combines

the two-dimensional attention mechanism of feature channel and
feature space, and the structure diagram is shown in Figure 3.

The CBAM, like SE-Net, automatically learns the importance of
each feature channel. Additionally, it learns the importance of each
feature space in a similar manner. By utilizing the importance levels
obtained, the CBAM enhances relevant features and suppresses
those less important for the current task.

The CBAM extracts channel attention in a manner largely
similar to SE-Net, as demonstrated in the code for channel
attention. Building upon the foundation of SE-Net, the CBAM
introduces an additional feature extraction method using max
pooling, while the remaining steps are identical. The features
extracted from channel attention serve as inputs for the spatial
attention module.

In the CBAM, the method for extracting feature space attention
involves processing the feature maps through channel attention to
prioritize channels based on their importance. These feature maps
are then fed into the spatial attention module. Similar to the channel
attention module, spatial attention involves processing the channels
through both maximum and average pooling. The results of these
two processes are concatenated, followed by a convolutional
operation to reduce them into a 1WH feature map, representing
spatial weights. These weights are then applied to the input features
through a point-wise multiplication, thereby implementing the
spatial attention mechanism.

3.1.3.4 Temporal pattern attention mechanism
Temporal pattern attention (TPA) is used for multivariate time

series forecasting. First, a large number of time series are fed into
LSTM to obtain a hidden state matrix H. For each row (ith row) of
the hidden state matrix H, k CNN filters are used to extract features,
resulting in an npk-dimensional matrix HC.

HC
i,j � ∑w

l�1Hi, t − w − 1 + l( ) pCj,T−w+l. (9)

For ht to be predicted, it is interacted with each row of the HC

matrix to produce a weight ai for each row. This weight represents
the strength of the effect of each row of the HC matrix on ht to be
predicted, i.e., the strength of the influence of each time series on ht.

f HC
i , ht( ) � HC

i( )TWaht , (10)
ai � sigmoid f HC

i , ht( )( ). (11)

Each row is weighted and summed to obtain vt, which represents
the combined effect of all rows on ht, i.e., the effect of time,
i.e., time attention.

vt � ∑n

i�1aiH
C
i . (12)

When predicting ht, we add the influence of all time series on ht
to the original equation, namely,

h,t � Whht +Wvvt , (13)

yt−1+Δ � Wh,ht , . (14)

The first step is to synchronize the dynamic traffic detection data
and environmental detection data. Abnormal data in the detection
data are identified and replaced or removed intelligently. To reduce
the data differences between different monitoring points, all data are
normalized. Then, the sliding window method is used to divide each
feature of each mode into time windows with a fixed window size
and overlap. A new training dataset is composed of the generated
time windows, with each label corresponding to the original dataset.

Next, the new training datasets for each mode are input into the
1D-CNN and LSTM framework to extract features. Segment time
windows from the training dataset are first fed into the 1D-CNN to
automatically learn features. Since the time window is a time series, a
one-dimensional convolution layer is used. The feature extraction
framework consists of three one-dimensional convolution layers,
three max pooling layers, and two LSTM layers, with detailed
parameter settings shown in Table 3. The convolution layer uses
a sliding filter to extract effective features. The activation function of
the convolution layer is chosen as the exponential linear unit (ELU),
which can accelerate convergence and improve the robustness of the
model. After each convolution layer, a max pooling layer is used to
reduce the amount of data to half the original size. A dropout layer is
used after the pooling layer to avoid overfitting. In each training
epoch, a random subset of the neurons in the dropout layer is
selected and not allowed to participate in weight optimization. After
three layers of convolution and pooling, the input data are
transformed into a high-dimensional feature map. Since the
feature map is extracted from the time window, and the
convolution and pooling operations do not change their time
sequence, the feature map is directly input into two LSTM layers.
The LSTM network handles time series through gate mechanisms,
including forget gates, input gates, and output gates. They can
control the discard or addition of information to achieve
forgetting and memory. The LSTM network converts the feature
map into the corresponding hidden state.

During the fusion step, the hidden states generated from the
detection data are integrated to create a new feature map. This
feature map contains hidden states and is denoted as H:

H � h1, h2, . . . , hn( ). (15)
Due to the varying degrees of impact of different hidden states

on tunnel operation monitoring, this paper introduces a self-
attention mechanism to measure all hidden states. These hidden
states are aggregated into a vector s through an attention layer,
which is calculated using the following equation:

ut � tanh wht + b( ), (16)

at � exp uT
t u( )

∑n
t�1exp uT

t u( ), (17)

s � ∑n

i�1atht . (18)

The hidden state ht is first input into a fully connected layer with
a tanh activation function to obtain the hidden representation ur as
ht. The transpose of the output values is multiplied by a trainable
parameter vector to obtain the attention alignment coefficients.
Then, the alignment coefficients are normalized using the
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softmax function to obtain the summation weights at. Next, the
vector representation s is computed as the weighted sum of the
hidden states. In the final step of the decision-making process, the
vector representation s can be input as a feature vector into a
softmax classifier for judgment. Here, w is the weight matrix and
b is the bias vector of the fully connected layer in the attention layer,
with a dimension of da. The parameter vector u represents the
context information and also has a dimension of da. The value of da
is an important hyperparameter of this model; therefore, to balance
model performance and computational complexity, the optimal
dimension of da is set to 64. During the training process, the
weight matrix w, bias vector b, and parameter vector u are
randomly initialized.

3.2 Example analysis

This article focuses on predicting the air quality level in
tunnel operation using environmental detection data (carbon
monoxide, visibility) and traffic detection data (vehicle flow) as
the research object. The dataset consists of 10,500 sets of data
collected automatically every 5 min from carbon monoxide/
visibility sensors and integrated detection sensors, at the same
location and time in the tunnel. Among them, 10,000 sets of data
are used as training samples, and the remaining 500 sets are used
as test samples. The sample data are combined into a feature
vector using a CNN–LSTM–attention model, and this feature
vector is set as the air quality level of tunnel operation to compare
the predicted and actual states to test the accuracy of the
proposed multimodal fusion algorithm for evaluating tunnel
operation status.

3.2.1 Prediction process
The feature extraction framework for traffic detection data

and environmental detection data mainly includes three steps:
preprocessing, feature extraction, feature fusion, and
classification. First, all data are normalized using min–max
normalization. After preprocessing (missing and abnormal
values), three types of environmental features (carbon
monoxide, visibility, and vehicle flow) and traffic features are
extracted. Finally, all traffic and environmental features are
combined into a feature vector, which is then input into the
classifier. A CNN–LSTM–attention network is used as the
classifier for handcrafted traffic and environmental features.

The handcrafted multimodal data fusion method combines
features from traffic detection data and environmental detection
data into a feature vector, which is set as the air quality level of tunnel
operation. Based on the corresponding historical air quality level of
tunnel operation for traffic and environmental detection data at the
same location and time in the tunnel, this feature vector is defined as
a value between 0 and 1, where 0–0.4 is low, 0.4–0.8 is medium, and
0.8–1.0 is high. This vector is input into the CNN–LSTM–attention
network, and the predicted air quality level of tunnel operation is
compared with the actual state.

3.2.2 Prediction results
The CNN–LSTM–attention network effectively fuses data

from different modalities by allocating different weights to

different features through the self-attention mechanism. The
prediction results of different attention mechanisms, including
CNN–LSTM–BASE, CNN–LSTM–ECA, CNN–LSTM–SE,
CNN–LSTM–CBAM, and CNN–LSTM–TPA, without adding
the self-attention mechanism are compared, and the samples
between 200 and 500 are selected. The accuracy of the evaluation
algorithm under different attention mechanisms is different. The
prediction results of each model are shown in Figure 4.

3.2.3 Evaluation metrics
The root mean square error (RMSE) is used as the measure of

accuracy, which is the square root of the sum of the squared
differences between the predicted values and the actual values,
divided by the number of observations m.

RMSE X, h( ) �
�������������������
1
m
∑m

i�1 h x i( )( ) − y i( )( )2.
√

(19)

3.2.4 Evaluation results
The evaluation results of each model on the test set are shown in

Table 4, and the confusion matrix is shown in Figure 5.
Based on the test results shown in Figure 5, the predictions of

the CNN–LSTM–attention model for tunnel operation air quality
levels are very close to the true values. According to the RMSE
test results in Table 4, the CNN–LSTM–ECA, CNN–LSTM–SE,
CNN–LSTM–CBAM, and CNN–LSTM–TPA models reduced
RMSE by 58%, 97%, 98%, and 99%, respectively, compared to
the CNN–LSTM–BASE model without the self-
attention mechanism.

The confusion matrix shown in Figure 5 indicates that the
CNN–LSTM–SE model achieved prediction accuracy rates of
0.76, 0.93, and 0.92 for high, medium, and low levels of tunnel
operation air quality, respectively. This suggests that the SE
attention mechanism can effectively predict the low and
medium levels of tunnel operation air quality. The
CNN–LSTM–ECA model achieved prediction accuracy rates
of 0.76, 0.70, and 0.63 for high, medium, and low levels of
tunnel operation air quality, respectively, indicating that the
ECA attention mechanism had moderate performance in
predicting the high, medium, and low levels of tunnel
operation air quality. The CNN–LSTM–CBAM model
achieved prediction accuracy rates of 0.85, 0.92, and 0.93 for
high, medium, and low levels of tunnel operation air quality,
respectively, indicating that the CBAM attention mechanism
can effectively predict the low and medium levels of tunnel
operation air quality. The CNN–LSTM–TPA model achieved
prediction accuracy rates of 0.94, 0.95, and 0.97 for high,
medium, and low levels of tunnel operation air quality,
respectively, indicating that the TPA attention mechanism
can effectively predict the high, medium, and low levels of
tunnel operation air quality.

From the test results and confusion matrix, it can be
concluded that the CNN–LSTM–attention model has high
prediction accuracy for tunnel operation air quality levels,
with an average NMSE of 0.0015 and an average reduction of
70%. The multimodal fusion algorithm using the TPA attention
mechanism achieved the best analysis and prediction
performance.
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4Design and development of the digital
twin system for highway
tunnel operation

4.1 System architecture design

4.1.1 Overall structure
The digital twin system for highway tunnel operation is based on

the current situation of the highway tunnel operation management
system and monitoring system. It fully utilizes existing resources and
constructs a highway tunnel operation data system with data
homogeneity and business collaboration. The system is not only
suitable for the current distributed architecture model of regional
controllers and services but also adaptable to the future smart
highway’s edge-cloud architecture [38–40], as shown in Figure 6.
On the basis of ensuring the unity of data and business, the system
can be efficiently iterated and updated to support the practical
implementation of various innovative services for the future
smart highway.

4.1.2 Technical architecture
The digital twin system for highway tunnels adopts a

middleware architecture for design and development, which
extracts reusable capabilities from the business, data, technology,
algorithms, and other aspects of highway tunnel operations
management to form a middleware platform, as shown in Figure 7.

(1) Basic backend

The basic backend fully considers various equipment interfaces and
communication methods. By incorporating Internet of Things (IoT)
access modules with built-in multi-brand and multi-type device
communication methods and protocols (such as TCP, WebSocket,
UDP, andHTTP), it ensures reliable and stable communication and fast
integration of tunnel electromechanical equipment. After unifying
coding standards, it forms the highway tunnel basic database,
business database, theme database, and shared database.

(2) Capability middleware

Business middleware: Precious business capabilities are
precipitated into the business middleware to achieve business
capability reuse and linkage and coordination between various
business modules, ensuring stable and efficient critical business
links and enhancing business innovation efficiency.

Data middleware: Highway operating data are uniformly
managed to provide complete and accurate data services for
various business applications, including data storage, processing,
and management.

Technology middleware: Common facilities, development
technology components, and services are integrated and packaged to
provide simple, consistent, and easy-to-use basic infrastructure capability
interfaces, which help the rapid development of upper-layer services.

(3) Application frontend

The application frontend is built around the core business of
tunnel operation management and includes various function

systems such as the tunnel basic information digital twin, field
electromechanical equipment digital twin, comprehensive
environmental information digital twin, real-time traffic
operation digital twin, abnormal traffic event digital twin, daily
operation management digital twin, and emergency linkage control
digital twin, achieving the digitalization, three-dimensionalization,
and precision monitoring and management of tunnel operation.

4.1.3 Business architecture
In daily management, the comprehensive monitoring system is

the business core, which collects real-time detection data of highway
tunnel, monitors the operation status, and completes daily
monitoring management of traffic control, ventilation, lighting,
etc. In abnormal events, it realizes zoning and intelligent linkage
control based on the location of the event, emergency plan, and
precise implementation of special plans, as shown in Figure 8.

4.2 Digital twin model

The digital twin system for highway tunnels divides the
multidimensional data of highway tunnel operation and
management into basic parameter data, electromechanical facility
operation and functional data, civil engineering structure facility
condition data, event data, and maintenance inspection data.
According to the actual needs of the information project, a
digital twin model can be established for the relevant data. For
the convenience of data interconnection, the data of the existing
highway tunnel can be converted and coded according to the coding
format, and the data of the new highway tunnel can be coded
according to the coding format requirements. The data categories of
the highway tunnel digital twin model should include tunnel basic
information, electromechanical facility status and operation
function data, event data, and maintenance inspection data. The
operation data should be coded according to a unified standard, with
complete and accurate parameter information and following the
“one source, one number” principle to avoid duplicate collection.
Data should be managed and classified in a centralized manner, and
the application types can include equipment and facility operation
monitoring, traffic safety control, abnormal event handling, and
public travel services. The digital twin system for highway tunnels
should achieve information interconnection, integration, sharing,
and exchange. The code of highway tunnel information model is
shown in Table 5.

In this article, 3D visualization modeling is conducted for the
basic information, mechanical and electrical facilities, and
operational environment detection data of the highway tunnel.
The following are partial 3D visualization model prototype
diagrams for some mechanical and electrical facilities.

4.3 System function research and
development

The digital twin system for highway tunnels includes seven
functional subsystems: comprehensive monitoring, digital twin,
specialized control, maintenance management, command and
dispatch, data analysis, and backend management. The
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subsystems share data and coordinate their operations to achieve
unified control over 14 types of electromechanical equipment, such
as ventilation, lighting, traffic control, and guidance. The system
enables fine-tuned, modular, and intelligent control over ventilation
and lighting dimming, as well as standardized and integrated
classification control over the entire route guidance system. It
also includes intelligent and linked control based on event types
and rapid, standardized, and traceable command and dispatch based
on eight types of frequently occurring event plans, as well as one-
stop configuration management of basic data information.

The digital twin system for highway tunnel operations is a
tangible representation of sensor data. Taking the precise
perception of traffic volume data (such as cross-sectional traffic
flow, regional traffic flow, vehicle violation information, and traffic
event information) as an example, a holographic, visual, and digital
model of vehicles passing through tunnels is established using
vehicle positioning and trajectory fusion technologies. This model
allows for the identification of vehicle violations such as wrong-way
driving and illegal lane changes based on high-precision trajectory
data and determines speeding or slow-moving vehicles based on
their speed. Additionally, traffic event types are detected and
classified using feature matching and deep learning techniques.

The multimodal information fusion algorithm plays a crucial
role, especially when one or more sensors fail or provide erroneous
detection data. By utilizing the spatiotemporal correlation between
data, the algorithm calibrates and supplements problematic data,
thereby deriving a comprehensive operational status
evaluation indicator.

4.4 Engineering application verification

Multiple sensor fusion perception, multimodal data fusion,
and digital twinning technologies have been applied to the highway
tunnel operation control system. The system has been successfully
implemented in more than 2,000 km of long tunnels in nine
provinces, achieving the standardization of basic data,
visualization of daily management, and process-based
emergency control of tunnel operation management. The
system collects highway tunnel operation monitoring data
through multiple sensors and applies a multimodal information
fusion method based on CNN–LSTM–attention to predict the
highway tunnel operation status. The system supports the
calculation of tunnel ventilation and lighting requirements
under various operating conditions and improves the reliability
and accuracy of tunnel operation intelligent control under normal
conditions and can enable tunnel ventilation and luminaires to
autonomously adjust based on external environmental changes.
This adaptive regulation significantly reduces the energy
consumption costs associated with tunnel operations. In tunnel
lighting, lamps are the primary consumers of electrical energy. In
practical applications, the system employs a smart lighting control
method based on multi-parameter control. This approach
effectively enhances the overall visual environment of the
tunnel, reducing the adverse effects of tunnel black hole and
white hole phenomena on driving safety. The lighting fixtures
and other electromechanical facilities adaptively adjust according
to external environmental changes, significantly reducing the

energy consumption costs of tunnel operations. As a result,
there is an approximate 20% reduction in the energy
consumption costs of tunnel operation. By accurately
monitoring tunnel environmental data and setting up fan
interlocking control programs, it is possible to achieve a 100%
qualification rate for air quality during the regular operation of the
tunnel. In abnormal conditions, by proactively defining the control
scope for tunnel emergencies, traffic management and
electromechanical equipment interlock control plans are
automatically generated based on real-time monitoring data
(location and type of the event) for early warning. Once the
monitor confirms the situation, they can simply click a
confirmation button within the system to deploy the
prearranged plan with a single click. This significantly enhances
the capability for traffic accident prevention and control, as well as
the emergency response to sudden incidents, ensuring that the
emergency response time for exceptional events is less than 2 min.
The number of tunnel traffic accidents has been reduced by over
25% for two consecutive years, effectively guaranteeing the “safe,
smooth, and orderly” operation of the highway tunnel. Description
of the digital twin system for highway tunnel operation is given in
Table 6, and function pages of the system are shown in Figure 9.

5 Conclusion

This article tackles the challenge of frequent failures in
operational data detection equipment within highway tunnels,
including sensors for carbon monoxide/visibility, wind speed and
direction, brightness, and vehicle detection. The harsh internal
environment of tunnels makes accurate prediction of their
operational state difficult, resulting in a lack of effective data
support for management. To address these issues, this article
advocates for the adoption of multi-sensor fusion perception and
digital twin technology in the information infrastructure of
highway tunnels. By creating a unified digital twin
information model tailored to the tunnel’s operational
characteristics, and applying a multimodal information fusion
method based on CNN–LSTM–attention, the accuracy of
highway tunnel operational status assessments has been
markedly improved. This approach significantly enhances the
stability and reliability of target recognition, reduces the
likelihood of target omission, and, through data-driven
methods, greatly improves the efficiency of tunnel ventilation
and lighting control. The developed digital twin system for
highway tunnels addresses centralized management, linkage
control, data sharing, and business coordination challenges.
Practical engineering results demonstrate that the system has
bolstered tunnel traffic safety, reduced management costs, and
improved the comfort of tunnel passage, thereby ensuring the
“safety, smoothness, and orderliness” of highway tunnel
operations.
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Structure similarity virtual map
generation network for optical
and SAR image matching
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Introduction: Optical and SAR image matching is one of the fields within multi-
sensor imaging and fusion. It is crucial for various applications such as disaster
response, environmental monitoring, and urban planning, as it enables
comprehensive and accurate analysis by combining the visual information of
optical images with the penetrating capability of SAR images. However, the
differences in imaging mechanisms between optical and SAR images result in
significant nonlinear radiation distortion. Especially for SAR images, which are
affected by speckle noises, resulting in low resolution and blurry edge structures,
making optical and SAR image matching difficult and challenging. The key to
successful matching lies in reducing modal differences and extracting similarity
information from the images.

Method: In light of this, we propose a structure similarity virtual map generation
network (SVGNet) to address the task of optical and SAR image matching. The
core innovation of this paper is that we take inspiration from the concept of image
generation, to handle the predicament of image matching between different
modalities. Firstly, we introduce the Attention U-Net as a generator to decouple
and characterize optical images. And then, SAR images are consistently
converted into optical images with similar textures and structures. At the
same time, using the structural similarity (SSIM) to constrain structural spatial
information to improve the quality of generated images. Secondly, a conditional
generative adversarial network is employed to further guide the image generation
process. By combining synthesized SAR images and their corresponding optical
images in a dual channel, we can enhance prior information. This combined data
is then fed into the discriminator to determine whether the images are true or
false, guiding the generator to optimize feature learning. Finally, we employ least
squares loss (LSGAN) to stabilize the training of the generative
adversarial network.

Results and Discussion: Experiments have demonstrated that the SVGNet
proposed in this paper is capable of effectively reducing modal differences,
and it increases the matching success rate. Compared to direct image
matching, using image generation ideas results in a matching accuracy
improvement of more than twice.

KEYWORDS

structural similarity, multi-sensor, virtual map, image matching, deep learning,
generative adversarial networks, SAR images
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1 Introduction

With the advancement of satellite remote sensing technology
[1], the means of data acquisition are constantly being enriched.
How to effectively integrate multi-sensor, high-resolution, multi-
spectral, and multi-temporal remote sensing data for fusion
processing has become a hot and key research topic in the field
of remote sensing at present. Multi-source image matching [2, 3],
especially the matching between optical and SAR images [4, 5], is
one of the core problems that urgently needs to be solved. However,
due to the completely different imaging mechanisms, there are
radiation anomalies, geometric differences, and scale differences
between optical and SAR images. This increases the difficulty of
image matching and makes SAR and optical image matching an
international challenge.

Currently, multi-modal image matching can be categorized into
three main types: region-based matching, feature-based matching, as
well as deep learning-based matching. Region-based image matching
places emphasis on comparing local regions in the images by calculating
grayscale information and establishing correlation signals. Common
similarity measurement functions [6] include SSD, NCC, MI, and PC.
However, region-based matching methods are sensitive to nonlinear
grayscale distortions, making them less suitable for multi-modal image
matching. Feature-based matching methods [7] extract common
features from reference and target images and establish
correspondences to determine the transformation model parameters
for matching. These features include region features, line features
(extracted from edges and texture information) and point features.
Point features are the most extensively studied, involving the extraction
of key points with certain invariance properties and their description
using specific descriptors. Common methods for point feature
extraction include Harris corner detection, SIFT [8], and SURF [9].
Researchers have also proposed geometric structure-based feature [10]
descriptors like HOPC, CFOG and RIFT [11] to meet the requirements
of multi-modal images. Feature-based matching methods provide
higher-level information beyond grayscale and offer adaptability to
grayscale variations, image deformations, and occlusions, thereby
broadening the application scope of image matching techniques.

The popular deep learning methods in recent years are mainly
divided into single-loop deep neural network and end-to-end deep
networks. Single-loop deep neural networks include D2-Net, Superglue,
and so on. End-to-end deep networks include MUNIT-based multi-
modal image matching, Dual-Attention Networks for multi-modal
image matching, Cross-Modal Feature Fusion and generative
adversarial networks (GAN). Furthermore, the basic ideas of style
transfer methods [12] and end-to-end patterns are the same. By
utilizing deep learning networks [13] to obtain optical image
features, replicate attributes originating from SAR data onto optical
representations, and then match them using traditional methods, such
as SIFT, SURF, and RIFT. The goal of these approaches is to maintain
consistency [14] between the transformed SAR images and the original
images, followed by feature matching with traditional methods. These
methods require further research on the depth matching framework,
the loss function [15], and training strategies with the intention of
improving matching performance for heterogeneous remote sensing
image matching.

Consequently, the pursuit of efficacious strategies to mitigate
feature matching discrepancies bears substantial practical research

implications. This is done by enhancing consistency between
generated and original images, and achieving robust matching of
heterogeneous images. In light of this, we study style transfer
methods and perform feature transformation on SAR images.
This is to ensure that the traits of the generated SAR image align
with those of the corresponding optical image, thereby optimizing
the matching of heterogeneous images.

In this paper, we propose the SVGNet to seek effective methods
for reducing modal differences. This framework leverages
Conditional Generative Adversarial Network (CGAN), Attention
U-Net, SSIM, and LSGAN to generate virtual maps and optimize
multi-modal image matching. Specifically, for feature learning
without the need for additional supervision, we employ Attention
U-Net with attention gates that automatically focus on salient
feature regions during feature learning. Therefore, we utilize
Attention U-Net as the generator to extract image features.
Additionally, we transform the task of multi-modal image
matching into the task of reducing modality differences, for
which CGAN is employed to generate virtual maps and
minimize modality disparities. By incorporating conditional
constraints, CGAN controls the details of image generation to
achieve desired effects, making this model exceptionally effective.
Finally, to optimize the overall training performance of the
generative model and improve the realism of generated images,
we utilize SSIM to constrain spatial information and enhance image
quality. Simultaneously, LSGAN is employed to stabilize SVGNet
training. To validate the effectiveness of our proposed method, we
conduct extensive experiments to demonstrate SVGNet’s
superiority over other generative adversarial networks. We also
demonstrate the quality of our generated virtual maps. The
results indicate that SVGNet has advantages in the direction of
multi-modal image matching. The major contributions of this paper
can be summarized as follows:

1. We introduce SVGNet, an innovative approach to meet the
challenges of optical and SAR image matching.

2. We employ CGAN to reduce dissimilarities between matched
images and generate superior-quality images specifically
tailored for matching task.

3. We adopt an Attention U-Net in a decoder module, to extract
and learn features from optical images to better focus on
relevant regions of the images.

4. We utilize SSIM and LSGAN losses to amplify the model’s
optimization performance and foster training stability.

5. We conduct extensive experiments to study in detail the high-
quality impact of the generating virtual maps and the superior
performance of the network.

The results show that the SVGNet proposed in this paper shows
superiority in the quantitative analysis of optical and SAR
image matching.

2 Related work

In the most recent years, deep learning [16] has gained attention
and accomplished significant advancements in fields like visual
cognition and natural language understanding. Researchers have
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proposed deep learning-based methods [17] for multi-source image
matching. These methods can be categorized into two aspects:

2.1 Single-loop deep neural network

Single-loop deep neural network, which only replaces some
matching links, is often more flexible and can meet different
needs by combining other advantageous structures to build a
complete matching model. Numerous scholars harness the power
of deep learning to meticulously detect a significantly enhanced and
dependable set of salient critical points from images, adeptly
acquiring the principal orientation or predominant scale for each
individual feature point, along with refining more discriminative
and correspondingly matchable feature descriptors. At the
beginning, Dusmanu et al. [18] innovatively constructed the
network structure D2-Net, which integrates detection features
and feature description. The key points are extracted by slicing
the feature map, using convolutional neural networks (CNN) to
calculate the descriptors. By improving D2-net, MA et al. [19]
demonstrated CMM-Net and applied it to multi-modal image
matching. This method used dynamic adaptive Euclidian distance
threshold and RANSAC algorithm to eliminate the wrong matching
points and showed excellent matching effect in the image matching
of alien remote sensing images. Hao et al. [20] designed a multi-level
semantic extractor to extract rich and diverse semantic features from
real images to effectively guide sample generation. Ma et al. [21]
explored a matching method integrating deep learning with
conventional local features from rough to fine, extracted deep
features through CNN for rough matching, and then adjusted the
rough matching results by combining more accurate local features,
so as to produce more stable matching results. To learn descriptor
representations of multimodal image blocks, Zhang et al. [22] used
maximum positive sample and negative sample feature distances as
loss functions in their full-convolutional neural network (FCN) built
upon the Siamese network structure. Subsequently, Li et al. [10]
presented a rotation-invariant multi-modal image matching method
grounded in deep learning jointly with Gaussian features. A neural
architecture referred to as RotNET underwent training to forecast
the rotational interrelationship among images. Subsequently, the
alignment of two images was achieved through the establishment of
gradient-oriented Gaussian pyramid features (GPOG). Some
scholars also use deep learning to learn more reliable similarity
measurement criteria and gross error elimination among
descriptors. Sarlin et al. [23] designed a representative network
superglue for feature matching and gross error elimination. This
neural framework approaches the challenge of feature matching by
framing it as the task of addressing the differentiable optimal
transport quandary. Recurrent neural network (RNN) is
constructed to solve this problem. Ma et al. [24] employed deep
learning techniques to devise a gross error elimination network,
denoted as LMR, bearing resemblance to the RANSAC algorithm.
This approach translated the task of gross error elimination into a
binary classification paradigm. The deep learning network was
harnessed to assess the validity of each initial match pair,
culminating in the successful mitigation of gross errors. These
approaches leverage the robust deep feature extraction
proficiency and the adeptness in high-dimensional feature

representation offered by deep learning methodologies. By
training a single network to replace a certain link in multi-modal
image matching, these methods are combined with others to
construct a comprehensive multi-modal image matching model,
which has greater flexibility in use.

2.2 End-to-end deep neural network

Devise an end-to-end matching network directly predicated
upon the principles of deep learning. The framework consists of
three neural network structures for feature extraction, feature
matching, and outlier removal, which provide excellent matching
results pertaining to images obtained by optical and SAR techniques.
In Hughes et al. [25], a neural network based algorithm for
automatically matching multi-scale and multi-modal images has
been developed, consisting of three neural network structures,
corresponding to feature space extraction, matching based on
feature space correlation functions, and outlier elimination,
respectively. The matching effect for optical and SAR images is
excellent. The KCG-GAN algorithm, as outlined in [26],
incorporates K-means segmentation as an input modality for the
image synthesis process. Through the imposition of spatial
information synthesis constraints, it enhances the fidelity of
synthesized imagery, and its application encompasses the realm
of SAR and optical image alignment. Nevertheless, owing to the
higher requirements of multi-modal image training data sets, and
the complexity of imaging differences, mixed noise, and regional
gray level differences between images. Sun et al. [27] described the
LoFTRmatchingmethod of Canonical, which detects, describes, and
matches image features on a coarse-grained basis, before refinement
of the intensive subpixel matching on a fine-grained basis.
Moreover, the Transformer model employs self-attention and
cross-attention mechanisms as foundational components for
generating feature descriptors from a pair of images. End-to-end
networks can also be used to preprocess images, using techniques
such as image synthesis and style transfer. Based on the imaging
characteristics of different modal images, transform the style of
images in different modalities, and used to expand the multi-modal
image dataset or directly convert it into the same modal image form
for matching.

3 Methods

3.1 Network architecture

Our objective is to achieve a better matching effect between SAR
images and optical images, and the key lies in reducingmodal differences
between them. As shown in Figure 1, the red box represents our
proposed SVGNet based on GAN. By introducing the concept of
style transfer, the network generates novel images that bridge the gap
between single-mode and multi-modal datasets, showcasing the process
of image-to-image conversion. The fundamental idea of SVGNet is to
train the generative model through adversarial training. In other words,
throughmutual competition and learning, the generationmodel and the
discrimination model are constantly improved to achieve the
optimal state.
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However, the unrestricted nature of GANs, lacking prior
modeling, poses challenges in controlling them effectively for
large-scale images with numerous pixels. To tackle this challenge,
our proposition involves the incorporation of CGAN into the
framework. According to Figure 1, the condition variable we use
in this paper is the original optical image. By connecting the real
optical image and its label, we can determine whether an image is a
“real” image or a “fake” image. A fake label is generated as a
condition for generating the optical image using the true
optical image.

The proposed SVGNet has the following four improvements: (1)
To enhance the network’s training capability and achieve desired data
generation, we introduce CGAN and modify the unsupervised GAN
[28] to a supervised GAN. This modification involves incorporating
conditional information and adjusting the generator and discriminator.
(2) This network uses Attention U-Net [29], which provides a more
flexible structure, higher-quality image generation, and better
preservation of semantic information than KCG-GAN. Optical
images serve as conditional information, while the original SAR
image labels serve as random noise. These two factors are fed into
the generator in order to generate initial coarse maps, which then guide
the optimization of feature learning. (3) On the other hand, the
discriminator utilizes a fully convolutional neural network to ensure
training stability and evaluate the authenticity of generated images.
Optical images serve as conditional information, and the coarse map
labels generated by the discriminator are used to evaluate authenticity.
The discriminator plays a crucial role in determining the authenticity of
refined maps. (4) Additionally, the losses of the generator and

discriminator are computed. The SSIM is applied throughout the
training process to enhance spatial constraints and improve image
quality. Moreover, the training utilizes LSGAN to stabilize SVGNet.
Once the losses reach saturation and a certain number of iterations are
reached, a virtual map is generated.

With the generated virtual maps, we can perform better image
matching. Below, we will discuss in more detail the specific modules
and loss functions used in SVGNet.

3.1.1 Generative network
We propose to generate virtual maps to promote more efficient

matching of optical and SAR images. Thus, in the generation
network, it is essential for the generator to accurately and
effectively extract the features of optical images. Furthermore,
high-resolution input grids to high-resolution output grids are
the hallmark of image-to-image transformation challenges.
Additionally, the input and output appear differently on the
surface, but they are both rendered with the same underlying
structure. Consequently, the input and output structures are
roughly aligned. We formulate the generator architecture with
these considerations at its core. Therefore, we use Attention
U-Net as a generator, as shown in the Generator module in
Figure 1, which has image reconstruction capability and an
attention mechanism. First, the proposed network consists of an
encoder and a decoder. Specifically, the encoder learns the potential
features of the original optical images, while the decoder is
responsible for reconstructing from the low-level feature to the
high-level feature to obtain the generated optical images.

FIGURE 1
The architecture of optical and SAR image matching method based on SVGNet.
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To simplify the description of the network, we refer the convolution
layer [30], Batch Norm layer [31], and Rectified Linear Unit [32] as
Conv, BN, and ReLu respectively. The structure of Attention U-Net can
be seen in the generatormodule in Figure 1. The output of the nodeXi,j,
which is denoted as xi,j, is defined as Eq. 1:

xi,j � C D xi−1,j( )( ), j � 0
C A xi,j−1, U xi+1,j−1( ), U xi+1,j−1( )( )[ ]( ), j> 0

{ (1)

In the equation, the functions C(·),D(·),U(·), A(·) and [·] denote
the convolution, down sampling, up sampling, AG, and concatenation
operations, respectively. The convolutional block consists of two Conv-
BN-ReLU layers, each employing a filter size of 3 × 3, a padding of 1,
and a stride of 1. This configuration is strategically designed to ensure the
output feature map preserves the identical dimensions as the input. The
downward arrows indicate a 2 × 2 max-pooling layer, and the upward
arrows indicate 2 × 2 up-sampling, aiming at decoding low level feature
map to acquire a high-resolution feature map. Second, to address the
challenge of image consistency, an attention module (Attention Gate,
AG) is introduced to the U-Net architecture as depicted in Figure 2. It is
aimed at highlighting significant features by skipping connections,
extracting information from rough scale to distinguish irrelevant
features from noise, and letting the value of irrelevant regions be
suppressed and the value of target regions become larger. By
generating a gated signal, AG effectively modulates the significance of
features across diverse spatial locales. This signal serves to prioritize
attention on salient features deemed valuable for tasks related to phase
recovery, while concurrently dampening the influence of extraneous
regions within the input image. Intuitively, it inserts an AG in each skip
connection, which concatenates the same-level xi,j−1 feature map with
the up-sampled feature map U(xi+1,j−1) as input. Then, through
ReLU and Sigmoid operations, the attention coefficient map is
obtained. Finally, the inner product of the attention coefficient map
and the up-sampled feature map is used to obtain the attention
map. Consequently, the network will allocate heightened focus
toward the attributes inherent in the optical image.

In general, the Attention U-Net network is used in this paper
because it is capable of extracting image details well and retaining

image information on different scales. The AG of Attention U-net
improves the discernment and precision of the dense feature
prediction model and improves the prediction accuracy. CGAN
can effectively transform both deep feature information in the image
and deep feature information that cannot be transformed. Attention
U-Net encodes 256 × 256 input SAR images in the coded down-
sampling and then decodes and up-sampling after the down-
sampling is completed. The output image is still 256 × 256 in size.

3.1.2 Discriminant network
Compared to the original GAN discriminator, the Markov

discriminator (Markovan Discriminator) is one of the
discriminators in CycleGAN. As shown in Figure 1, the
discriminant network is not implemented by utilizing various
convolution layers that are then input into the connection layer
or activation function, but by using a sliding window approach to
determine whether individual patches are genuine and authentic. By
upholding local coherence, this approach enables the generative
network to discern finer-grained information from its contextual
surroundings.

This paper divides the discriminant images into N × N patches
as input to the discriminant network. Every element in the output
matrix indicates the likelihood of the corresponding image patch
being authentic or synthetically generated. By analyzing the
structural features of each patch in the image, the network can
better process the high-frequency information part of the image.

3.2 Loss function

The loss functions used in this paper include the SSIM and
LAGAN loss functions, which will be introduced in detail below.

(1) SSIM

Based on the network framework of CGAN, the algorithm replaces
random noise as input. For supervised segmentation, we adopt SSIM

FIGURE 2
The structure of the Attention Gate (AG).

Frontiers in Physics frontiersin.org05

Chen and Mei 10.3389/fphy.2024.1287050

57

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1287050


loss [33] with the objective of making the segmentation map as close to
the ground truth as possible. SSIM can be defined by Eq. 2:

LSSIM x, y( ) � 2μxμy + C1( ) 2σxy + C2( )
μ2x + μ2y + C1( ) σ2x + σ2y + C2( ) (2)

Where x, y denote the phase images restoration results and the
ground truth, μx, μy and σ2x + σ2y are the mean and the deviations of
the image respectively, σxy is the covariance for the x, y and C1, C2

are small constants.

(2) LSGAN

Regular GAN loss can suffer from model collapse and is
notoriously difficult to converge.

Due to the fact that LSGANs are more stable and have been
shown in previous experiments to be capable of achieving better
segmentation results, we adopt them as the loss function in our work
[34], since they are more stable and have been shown to achieve
better segmentation results. It is defined by Eq. 3:

LLSGAN D( ) � Ei,y ~Pdata i,y( ) D i, y( ) − 1( )2[ ]
+ Ei ~Pdata i( ) D i, G i( )( )( )2[ ] (3)

Furthermore, the adversarial learning process can be notably
enhanced by employing LSGAN, as expounded in Eq. 4 below:

LLSGAN G( ) � Ei ~Pdata i( ) D i, G i( )( ) − 1( )2[ ] (4)

In the Eqs 3, 4, i is the input and y is the ground truth.

(3) Final loss function

The objective function for SVGNet is defined by Eq. 5:

min
D

L G( ) � LLSGAN D( )
min

G
L G( ) � LLSGAN G( ) + λLSSIM

(5)

where λ governs the relative importance of the two objective
functions. As a matter of experience, we set λ to 10 in our work.

4 Experiment and analysis

4.1 Datasets

This paper utilizes the widely-used SEN1-2 dataset [35], which
provides a comprehensive collection of aligned Sentinel 1 SAR and
Sentinel 2 optical images. In this context, the dataset consists of
282,384 image pairs with a resolution of 256 pixels and an 8-bit
depth. It encompasses diverse geographical regions and countries,
capturing various features such as cities, agricultural land, forests,
mountains, and water bodies. The following three scenarios were
selected for a comprehensive evaluation: rural (300 image pairs),
semi-urban (300 image pairs), and urban (300 image pairs). The
trained model then applies style transfer to the test set, generating
images depicting cities, towns, and countryside landscapes. The
dataset allows for a clear separation between training and testing
data, enabling an unbiased performance evaluation. Notably, this
dataset has been extensively used in deep learning-based alignment
studies for SAR and optical images. Figure 3 provides representative
samples from the dataset. There are three different scenarios: Rural,
Semi-urban and Urban. Each group has optical images on the left
and SAR images on the right.

FIGURE 3
SEN1-2 data set. Three different scenarios: Rural, Semi-urban and Urban; Each group has optical images on the left and SAR images on the right.
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4.2 Experimental details

4.2.1 Evaluation metrics
In this paper, we will analyze the quality of virtual maps and the

effectiveness of image matching. Therefore, three metrics are
selected for evaluating the effectiveness of image matching: NCM
(Number of Correct Matching points), Matching success rate and
RMSE (Root Mean Square Error) [16]. Evaluation Metrics for
effectiveness of image matching are defined as follows:

(1) Number of Correct Matching points (NCM) indicates the
number of feature points correctly matched between two images.
Consequently, the higher the NCM value, the more accurate the
matching results are.

(2) Matching Success Rate (MSR) is known as matching
accuracy. It is a performance metric used to evaluate the
accuracy of image matching algorithms. A higher matching
correctness rate indicates a more reliable and accurate matching
result, which is due to the algorithm’s ability to correctly identify and
match corresponding points across the images. It is computed
through the division of NCM by the total number of matched
points. The formula can be defined as follows in Eq. 6:

MSR � NCM

Total number of matching points
*100% (6)

(3) Root Mean Square Error (RMSE) means that the point
coordinates of the same label in the benchmark image and the
prepared matching image are labelled as (xi, yi) and (x′i , y′

i)
respectively. S represents the number of the points with the
same label selected; (x′i , y′

i) is the coordinate of the i th

prepared matching image pair of the same label (xi, yi) after
the matching correspondence conversion. RMSE is defined as
follows in Eq. 7:

RMSE �

���������������������
1
S
∑S
i�1

xi − x′
i( )2 + yi − y′

i( )2
√√

(7)

4.2.2 Parameter settings
All experimental endeavors are executed within the PyTorch

framework, renowned for its adeptness in high-performance
computation. For computation, a sole NVIDIA Tesla A100 GPU
is deployed, replete with a GPU memory capacity of 80 GB. For the
duration of the model’s training period, a batch size of 8 is employed,
with each model undergoing a maximum of 1000 training epochs.
The optimization process is facilitated by Adam, chosen for its
efficacy, and initialized with a learning rate of 0.002 to circumvent
issues tied to insufficient learning weight. To preclude overfitting
during the training process, the early stopping technique is
judiciously incorporated.

4.3 Image generation results and analysis

Visually, it is observable that the radiation difference
between the SAR generated image and the original optical
image is reduced. For certain images, such as the bottom row
image in the Semi-urban group of Figure 4, the virtual maps
generated by our SVGNet are almost identical to the optical

FIGURE 4
The performance of the virtual maps. There are three types of scenes: rural, semi-urban and urban, each of which shows 3 groups of images. In each
group, the left column features the generated virtual maps, while the right column displays the corresponding original optical images.
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images, with clear edge textures and nearly identical shapes. The
grayscale is similar, the size, shape and relative position of the
objects are almost the same. In virtual maps, the texture and fine
features of the original optical image can be preserved. Several
areas have been cut for enlargement display and quantitative
analysis has been performed in order to better display the
generation effect.

For the purpose of quantitative analysis, we randomly selected
4 groups of data separately from the semi-urban and urban

scenarios for testing. After that, random pixel values are
extracted from rows and columns and drawn into one
dimension for each group of graphs. To compare the pixel
values of corresponding positions, the curve of pixel values of
the two graphs is drawn on a graph, as shown in Figures 5, 6. In the
result graph, it can be seen that the curve fitting degree of the pixel
values is extremely high, which indicates that the virtual maps
generated by SVGNet method are very similar to the optical
original image, and the effect is truly remarkable.

FIGURE 5
Comparison of virtual maps and optical images in the semi-urban group. From left to right are the corresponding SAR image, optical image,
generated virtual maps and pixel contrast curve of the virtual maps; Mark the randomly selected test area with a pixel size of 30 × 30with a yellow box and
place it at the image’s upper right corner; Contrast curve of pixel values (red: the virtual maps generated by us; blue: corresponding optical image;
horizontal axis: pixel position; vertical axis: corresponding pixel value).
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4.4 Matching effect comparison and analysis

We compare SVGNet for image matching from two perspectives in
this paper in order to evaluate its effectiveness: (1) Comparing the
generated adversarial network between KCG-GAN and SVGNet in this
paper, the matching method adopts the traditional RIFT algorithm; (2)
Comparison of matching methods. This paper compares the proposed
method to three baseline methods, including LoFTR, D2-Net, and
Superglue. LoFTR is an end-to-end deep network, while D2-Net and
Superglue are single-loop networks. Initially, LoFTR establishes coarse-

grained image feature detection and matching, and then refines
subpixel-level intensive matching to refine the results. Furthermore,
Transformer uses both self-attention layers in order to obtain feature
descriptors for two images, and it also utilizes mutual attention layers in
order to do so. D2-Net innovatively constructs a network structure
integrating detection features and feature descriptions. Descriptors were
calculated by slicing CNN feature maps, and then key points are
extracted by calculating descriptors. Superglue solves this problem by
treating the feature matching problem as solving the differentiable
optimal transport problem, and then constructing the RNN.

FIGURE 6
Comparison of virtual maps and optical images in the Urban group. From left to right are the corresponding SAR image, optical image, generated
virtual maps and pixel contrast curve of the virtual maps; Mark the randomly selected test area with a pixel size of 30 × 30with a yellow box and place it at
the image’s upper right corner; Contrast curve of pixel values (red: the virtual maps generated by us; blue: corresponding optical image; horizontal axis:
pixel position; vertical axis: corresponding pixel value).
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4.4.1 Visual performance
The traditional feature matching method, RIFT, is selected for

feature extraction. We compare the generated networks between
KCG-GAN and SVGNet in this paper. Compared with KCG-GAN,
our SVGNet virtual maps are more realistic and have high optical
consistency. In the texture of KCG-GAN maps, details and
surrounding areas are more discordant, and the edges and
textures are not as clear as our virtual maps.

From Figure 7, it can be observed that thematching performance of
the generated images by KCG-GAN is inferior, with fewer matching
points. This can be attributed to the fact that KCG-GAN may not fully
preserve the semantic information of the original SAR images during
the transformation process to optical images. A comparison between
the virtual maps and true optical imagesmay reveal differences in terms
of object shape, structure, and other aspects, leading to less accurate
matching. Moreover, KCG-GAN’s training process may be unstable,
such as difficulties in achieving a proper balance between the generator
and discriminator or issues such as gradient vanishing or exploding.
These factors can hinder network convergence, thereby impacting the
quality of generated images and the matching effectiveness. By contrast,
our approach demonstrates better matching performance with a higher
number of matching points and a higher proportion of correct matches

between virtual and optical images. To conclude, our SVGNet generated
is superior to the KCG-GAN.

Demonstrated by Figure 8, we compare the matching methods,
including LoFTR [27], D2-Net and Superglue [23]. The matching
results of our virtual maps and optical images are better than those of
the original SAR images and optical images. Considering the fact
that the virtual maps generated by our SVGNet can compensate for
the loss of information that may occur when the optical and SAR
images are considered separately, we can provide a better level of
visual information, and we can integrate the visual information and
feature representation capabilities of the optical and SAR images.
The virtual maps we created retain not only the shape and structure
information obtained from SAR on the target, but they also retain
the advantages of optical maps in terms of color and detail. These
images contained many incorrect matching points, and the number
of matching points is relatively small between the original SAR
images and the optical images. In contrast, the virtual maps we
generated match the optical images better, with more matching
points, almost 10 times more than the non-generated matching
results, which is a huge improvement, and the results are exciting. It
shows that the virtual map generated by our generation
network works well.

FIGURE 7
Comparison between KCG-GAN and SVMNet with RIFT matching method. The left column of each figure uses KCG-GAN, and the right side is our
SVGNet in this paper. On the left side of each set of images are the generated images and on the right side are the optical images.
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Overall, SVGNet reduces modal differences and achieves the
desired effect. A quantitative analysis of matching methods
comparison is presented in the following subsection.

4.4.2 Quantitative analysis
To conduct a quantitative comparison of the effectiveness of our

SVGNet, the results are presented in Table 1, which includes a
comparison between KCG-GAN and SVGNet, along with a
comparison of the generated images before and after applying
the three deep learning methods.

The upper part of Table 1 presents comparison of KCG-GAN
and SVGNet, showing NCM results and the matching success rate.
In three different scenarios, our generative network outperforms
KCG-GAN in both NCM and matching success rate. The number
of correct matching points is nearly 1.3 times higher than that of
KCG-GAN, and our matching success rate (59.78%) is higher than
that of KCG-GAN. SVGNet image generation ideas result in a
more than double improvement in matching accuracy over
direct image matching. Furthermore, our SVGNet improves the
RIFT feature matching, indicating the efficiency of the
proposed method.

Meanwhile, the bottom half of Table 1 showcases the
comprehensive evaluation of three deep learning-based

matching methods: LoFTR, D2-Net and Superglue. We use
virtual maps generated by the SVGNet to calculate the NCM of
matched images and the matching success rate. Prior to the
generation of virtual maps, the NCM and matching success
rates of the three matching methodologies in the three
scenarios were significantly lower. The NCM of LoFTR with the
greatest matching effect is almost 85.76 times that of SAR in virtual
maps in rural scenes, and 686.05 in urban scenes. In addition, the
overall matching success rate of virtual maps using LoFTR
matching method reached 95.72%, which was about 4.75 times
before the generation. The NCM of D2-Net matching method is
about 3.72 times higher after generation, and the matching success
rate is also higher than before generation. The NCM of the
Superglue matching method in the semi-urban scenario is
27.44 times higher than before, and the matching success rate is
also increased by 20.67%. In general, the matching effect after
generation has been improved to different degrees under different
matching methods. The virtual maps generated by our SVGNet
have obtained inspiring results.

Our further evaluation of the accuracy and consistency of image
matching consisted of the selection of 20 random images and the
manual selection of 10 corresponding checkpoints distributed
evenly on the graph after image correction. We use this method

FIGURE 8
Comparison and display of image matching effect before and after generation. (A–C) represent three deep learning-based matching methods: (A)
LoFTR; (B) D2-Net; (C) Superglue. In each method, the top row showcases the results of image matching after generation, while the bottom row shows
the results of image matching before generation.
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to determine the degree of difference between the predicted value
and the true value, and a smaller RMSE indicates a more reliable
prediction. In Figure 9, the virtual map generated by our SVGNet is
shown to have lower RMSE than the original SAR image, achieving
the lowest RMSE of 0.460 and the highest RMSE of 0.678. Each of
the calculated images has a lower RMSE than the original SAR
image. Raw SAR images and optical images have a RMSE of 0.564 in
the lowest case and 1.502 in the highest case. Consequently, this
result indicates that the proposed methodology can enhance
matching effectiveness and effectively reduce the noise in the
SAR images.

The analysis presented above illustrates the efficacy of the
SVGNet for matching images. The evaluation of image matching
algorithms using NCM, matching success rate, and RMSE metrics
provides comprehensive insights into their performance. As a result
of our study, our proposed SVGNet-based method provides superior

performance in the generation of virtual maps and in the
improvement of image matching accuracy.

4.5 Ablation experiment

In order to evaluate the effectiveness of AG (Attention Gate),
SSIM (Structural Similarity), and the kw (sliding window), we
conduct a large number of ablation experiments. The following
table shows the results of the experiment. Specific experiments are as
follows: (a) We remove the AG module from the generator; (b)
Instead of using SSIM loss function, L1 is used instead; (c) We
modify the size of the sliding window in the discriminator and
replace the original 4 with 3, 5 and 7 respectively for the experiment.

The quantitative indicators are summarized in Table 2 below.
We select a deep learning matching method LoFTR to evaluate the
matching effect of the generated network. From the two indicators
shown, removal of AG module, replacement of SSIM and different
sliding window sizes will reduce the matching effect. In general,
whether it is removing the AG module or replacing the SSIM used,
or modifying the size of the sliding window, the matching effect will
be reduced. Among them, in the network with AGmodule removed,
although NCM is slightly higher than other methods, it has a certain
advantage in matching points. However, to accurately compare the
matching accuracy, it is necessary to calculate the MSR (Matching
Success Rate). From the results, our results show that it is better than
the network without AG module and other networks.

The visual performance of the ablation experiment is as follows.
As shown in the Figure 10, in the process of matching images
generated by various network modules (image A-E), there is a
significant augmentation in the number of visual matching
points. Notably, our SVGNet (image F) produces virtual graphs
that exhibit superior matching results, characterized by the highest
density of corresponding points. This underscores the effectiveness
of SVGNet in enhancing the quality and richness of image matching
outcomes compared to other modules. In general, the image
generated by our SVGNet is better for matching, and the effect is
good for different scenes.

TABLE 1 Quantitative comparison.

Method NCM Matching success rate (%)

Rural Semi -urban Urban

RIFT KCG-GAN 76.50 79.58 87.77 28.00

Ours 123.27 132.32 143.99 59.78

LoFTR Optical_SAR 6.40 16.85 16.10 20.15

Optical_Virtual 548.90 530.10 686.05 95.72

D2-Net Optical_SAR 6.53 5.20 5.90 34.10

Optical_Virtual 24.30 22.40 19.50 35.33

Superglue Optical_SAR 3.80 3.33 7.58 32.27

Optical_Virtual 65.75 91.40 117.90 52.94

Note that the values in bold are the highest.

FIGURE 9
Plot of the calculation results for the 20 images used to
calculate RMSE.
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TABLE 2 Results of ablation experiments. (Red and blue bold letters represent the optimal and sub-optimal values, respectively. 7means not used, ✓means
used and numbers or specific content means alternative content.)

Matching method Image data Generative adversarial network Metrics

LoFTR Optical_Virtual Generator Discriminator NCM MSR

AG Loss (SSIM) kw (4) Rural Semi-Urban Urban

7 ✓ ✓ 160.99 190.30 156.97 57.16%

✓ L1 ✓ 148.98 156.06 214.10 56.36%

✓ ✓ 3 158.43 176.97 248.99 59.16%

✓ ✓ 5 150.71 169.24 244.39 57.69%

✓ ✓ 7 152.16 166.44 249.49 57.95%

✓ ✓ ✓ 160.83 185.74 252.57 59.75%

FIGURE 10
Visual performance of the ablation experiment. Use LoFTR for matching. A to H respectively represent: (A) no AGmodule; (B) The loss function uses
L1 instead of SSIM; (C) kw = 3; (D) kw = 5; (E) kw = 7; (F) SVGNet; (G) not generated before the match.

Frontiers in Physics frontiersin.org13

Chen and Mei 10.3389/fphy.2024.1287050

65

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1287050


5 Conclusion

The paper proposes the Structure Similarity Virtual Map
Generation Network as a new generative adversarial network for
matching optical and SAR images. The consistency transformation
network constructs the U-Net network into a generating network to
learn image textures and discover correlations between images. In
order to deal with high frequency components effectively and reduce
computation, the SSIM is used to reconstruct spatial information to
improve image quality. In addition, LSGAN stabilizes GAN training.
It has been shown by numerous experiments that NCM andmatching
success rates are higher for both the comparison network and the
comparison before and after the generation, particularly in the more
advanced matching method LoFTR, which has an overall matching
success rate of 95.72% and a lower RMSE than the non-generated
matching method. By using SVGNet in this paper, the virtual maps
generated are more realistic. This diminishes the modal difference
between SAR and optical images, mitigates the challenge of matching
heterosource images and enhances the robustness of the model.

In the future, geometric feature-based approaches can be used to
reduce modality differences and improve image alignment in SAR and
optical imagematching. By incorporating geometric cues and constraints,
we aim to achievemore accurate and robust imagematching results. This
novel perspective will complement existing style transfer-based methods
and pave the way for a comprehensive and effective framework formulti-
modal image registration and analysis in diverse real-world applications.
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Hair cluster detection model
based on dermoscopic images
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Introduction: Hair loss has always bothered many people, with numerous
individuals potentially facing the issue of sparse hair.

Methods: Due to a scarcity of accurate research on detecting sparse hair, this
paper proposes a sparse hair cluster detection model based on improved object
detection neural network andmedical images of sparse hair under dermatoscope
to optimize the evaluation of treatment outcomes for hair loss patients. A new
Multi-Level Feature Fusion Module is designed to extract and fuse features at
different levels. Additionally, a new Channel-Space Dual Attention Module is
proposed to consider both channel and spatial dimensions simultaneously,
thereby further enhancing the model’s representational capacity and the
precision of sparse hair cluster detection.

Results: After testing on self-annotated data, the proposed method is proven
capable of accurately identifying and counting sparse hair clusters, surpassing
existing methods in terms of accuracy and efficiency.

Discussion: Therefore, it can work as an effective tool for early detection and
treatment of sparse hair, and offer greater convenience for medical professionals
in diagnosis and treatment.

KEYWORDS

hair loss, dermatoscope, hair cluster detection, feature fusion, dual attention module

1 Introduction

As a common issue, sparse hair [1] brothers many people, affecting both males and
females alike [2], [3]. Hair loss or thinning primarily attributed to genetic factors, hormonal
changes, environmental conditions, or medical conditions is a prevalent problem affecting
millions worldwide [4]. Regardless of gender or age, it impacts an individual’s self-esteem,
personal aesthetics, and overall mental health. Traditional solutions such as drug
treatments, hair transplants, or wearing wigs have achieved varying degrees of success
and affordability, but they do not fundamentally resolve the problem or prevent its
recurrence. Therefore, early detection and predictive analysis of sparse hair conditions
are vital for implementing preventative measures and more effective treatments [5].

Over the past few decades, both domestic and international researchers have been
exploring how to accurately detect sparse hair. The earliest research primarily relies on
manual feature extraction and traditional image processing techniques [6]. However, due to
the limitations on the selection and representational power of features, these methods are
difficult to adapt to the complex and diverse forms of hair clusters. Therefore, with the rapid
development of computer vision and deep learning [7], researchers introduce neural
network into the field of sparse hair target detection. In recent years, with the advent of
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artificial intelligence (AI) and deep learning technologies, their
application in the healthcare sector grows exponentially,
providing promising results in different fields like diagnosis,
prognosis, treatment planning, and public health [8]. In light of
this, the development of AI-driven sparse hair detection models [9],
especially those based on neural network, offers a promising
research pathway.

Based on the strong learning capability and adaptability, neural
network is able to learn effective feature representations from a large
amount of data and train and optimize through the backpropagation
algorithm. This provides new opportunities and challenges for the
target detection of sparse hair [10]. Researchers design and improve
hair cluster target detection models based on neural network to
enhance detection accuracy and robustness.

At present, domestic and international research in the field of
sparse hair detection is still in the exploratory stage [11]. Some
studies have utilized traditional Convolutional Neural Network
(CNN) to detect hair clusters, improving detection performance
by constructing deep-level feature representations and using
effective loss functions. Other studies have explored more
advanced network structures, such as Recurrent Neural Network
(RNN) and Attention Mechanisms, to capture the temporal
information and local details of hair clusters. In summary, using
neural network in hair cluster target detection models for sparse hair
detection has enormous potential to thoroughly transform hair care
and treatment [12].

However, the target detection of sparse hair still faces some
challenges. Hair clusters exhibit diverse morphologies with
differences in color, texture, and shape [13], posing difficulties
for detection algorithms. Additionally, due to the sparse
distribution of hair, hair cluster targets unevenly occupy
proportions in images, making target detection more challenging.
Currently, dermatoscopy is a non-invasive diagnostic technique that
allows the observation of hair shafts, follicles, and capillaries,
providing a visual representation of inflammation around the
scalp and changes in hair shaft diameter and shape [14]. It is
widely used in the diagnosis and treatment of hair diseases, as
well as in the assessment and follow-up of prognosis [15], [16], [17],
[18]. Digital intelligent analysis of dermatoscopy is still in the
developmental stage, and research on dermoscopy for
androgenetic alopecia is limited. For the daily management and
assessment of treatment outcomes for patients with hair loss, hair
counting plays a crucial role. However, there are currently no clear
standards for a comprehensive evaluation of hair loss across the
entire scalp.

In response to these challenges, this study utilizes hair images
obtained by dermoscopy, combined with existing advanced target
detection techniques, to propose an efficient and accurate sparse hair
cluster target detection model. This model sets the hair cluster as the
detection target (in this paper, the sparse hair or hair loss area) and
predicts the number of hair clusters. This paper has three main
contributions as follows.

1. Based on the advanced existing object detection networks, a
dermoscopy image hair detection network structure based on
an improved object detection neural network is proposed to
better adapt to sparse hair detection. Through experiments, it
proves that the proposed method surpasses the existing

methods in terms of accuracy and efficiency, providing an
effective tool for early detection and treatment of sparse hair.

2. Multi-Level Feature Fusion Module: A new multi-level feature
fusion Module (MLFF) is designed to extract and fuse features
at different levels. The MLFF structure can obtain features
from different convolutional layers, then integrate these
features through a specific fusion strategy to produce a
richer, more representative feature expression.

3. Channel-Space Dual Attention Module: A new attention
mechanism, the Channel-Space Dual Attention Module, is
proposed to consider both channel and spatial dimensions’
information simultaneously. The CSDA module can handle
channel and spatial correlation in a unified framework, thereby
further enhancing the model’s expressive capacity and
accuracy of sparse hair detection.

2 Related work

With the rapid development of computer technology and
computer-assisted medical diagnostic systems, the continuous
growth of computational power and data, deep learning has
experienced tremendous development, becoming one of the
powerful tools in the medical field. The technology of feature
extraction and classification from medical images [19], [20] using
maturing deep learning models is increasingly mature.

The field of object detection has always been a research hotspot.
For instance, one study proposed a safety helmet detection method
based on the YOLOv5 algorithm [21]. This research involved
annotating a collected dataset of 6,045, training, and testing the
YOLOv5 model with different parameters. In another study,
YOLOv4 was employed for small object detection and anti-
complex background interference in remote sensing images [22].
With the use of deep learning-based algorithms, ship detection
technology has greatly enriched, allowing monitoring of large,
distant seas. Through the use of a custom dataset with four types
of ship targets, Kmeans++ clustering algorithm for prior box
framework selection, and transfer learning method, the study
enhanced YOLOv4’s detection ability. Further improvements
were introduced by replacing Spatial Pyramid Pooling (SPP) with
a Receptive Field Block with dilated convolution and adding a
Convolutional Block Attention Module (CBAM). These
modifications have improved the detection performance of small
vessels and enhanced the model’s resistance to complex
backgrounds. Due to the relatively large size and distinct features
of vessels, the detection results are satisfactory. However, it remains
a challenge for densely packed, small targets.

In recent years, there has been an emergence of research utilizing
deep learning methods in skin imaging analysis, particularly in
studies related to hair. Researchers have explored the application
of deep learning-based object detection [23], [24], segmentation
[25], and other algorithms in hair detection and segmentation.
These studies primarily focus on aspects such as hair detection,
removal, segmentation, and even reconstruction, but there is room
for improvement in terms of accuracy.

Various deep learning structures and techniques are
introduced in multiple studies to address the challenges related
to hair recognition and removal in dermoscopic images. One such
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study proposed a novel deep learning technique, Chimera Net [26],
an encoder-decoder architecture that uses a pretrained
EfficientNet and squeeze-and-excitation residual (SERes)
structure. This method exhibited superior performance over
well-known deep learning methods like U-Net and ResUNet-a.
Additionally, other research explored difficulties and solutions
related to hair reconstruction. A novel method was proposed to
capture high-fidelity hair geometry with strand-level accuracy
[13]. The multi-stage approach includes a new multiview stereo
method and a novel cost function for reconstructing each hair pixel
into a 3D line. The task of Digital Hair Removal (DHR) also
received ample research. One study proposed a DHR deep learning
method using U-Net and free-form image restoration architecture
[9]. It outperforms other state-of-the-art methods on the
ISIC2018 dataset. Another study explored a similar theme Attia
et al. [10], highlighting the challenges associated with hair
segmentation and its impact on subsequent skin lesion diagnosis.
Moreover, one paper delved into an important metric for
determining the number of hairs on the scalp [27]. It stressed the
need for an automated method to increase speed and throughput while
lowering the cost of counting andmeasuring hair in trichogram images.
The proposed deep learning-based, enables rapid, fully automatic hair
counting and lengthmeasurement. Another study described a real-time
hair segmentation method based on a fully convolutional network, the
basic structure of which is an encoder-decoder [28]. This method uses
Mobile-Unet, a variant of the U-Net segmentation model, which
combines the optimization techniques of MobileNetV2.

In summary, the above studies emphasize the enormous
potential of deep learning techniques in advancing hair-related
dermoscopy research. However, deep learning-based sparse hair
detection is still in the exploratory stage. To address these challenges,
this paper, based on sparse hair dermoscopic medical images,
proposes a dermoscopic image hair detection network structure
based on an improved object detection neural network to achieve the

detection of sparse hair clusters (sparse hair or hair loss areas in this
paper) and predict the number of hair clusters.

3 Materials and methods

In this section, we will provide a detailed introduction to the
proposed sparse hair detection network structure, which is based on
the object detection network [29]. Firstly, we will describe the overall
structure of the network in Section 3.1. Subsequently, we will
highlight the novel contributions of this paper in Sections 3.2,
3.3, namely, the MLFF Module and the CSDA Module, respectively.

3.1 Overall structure

The overall framework proposed for sparse hair detection in this
article is illustrated in Figure 1, primarily based on enhancements to
classical object detection network architectures. Given the crucial
significance of the accuracy of the sparse hair detection model for
hair target recognition and assisting doctors in obtaining diagnostic
results, the model proposed in this article is intended for application
in sparse hair target detection models.

It can be divided into three parts: the feature extraction
backbone network, the feature enhancement and processing
network, and the detection network. Specifically, the feature
extraction backbone network is a convolutional neural network
that incorporates the concept of a feature pyramid architecture,
capable of extracting image features at different levels and reducing
model computation while speeding up training. As shallow features
contain more semantic information, a MLFF Module is proposed to
handle them, preventing the loss of semantic information. At the
end of the feature extraction backbone network, there is a Spatial
Pyramid Pooling (SPP) module aimed at improving the network’s

FIGURE 1
The method proposed in this paper.
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receptive field by transforming feature maps of arbitrary sizes into
fixed-size feature vectors. Three main backbone features can be
obtained through the feature extraction backbone network.

In the feature enhancement and processing network, the Channel-
Spatial Dual Attentionmodule (CSDA) is introduced. The three feature
layers obtained from the backbone network undergo processing
through this module to generate enhanced features. Subsequently,
processing is carried out based on the YOLOv5 network model.
This network segment primarily consists of a series of feature
aggregation layers that mix and combine image features to generate
a Feature Pyramid Network (FPN). The output feature maps are then
transferred to the detection network. With the adoption of a novel FPN
structure, this design strengthens the bottom-up pathway, improving
the transfer of low-level features and enhancing the detection of objects
at different scales. Consequently, it enables the accurate identification of
the same target object with varying sizes and proportions.

The detection network is primarily employed for the final
detection phase of the model. It applies anchor boxes to the
feature maps output from the preceding layer and outputs a
vector containing the class probability, object score, and position
of the bounding box around the object. The detection network of the
proposed architecture consists of three detection layers, with inputs
being feature maps of sizes 80 × 80, 40 × 40, and 20 × 20,
respectively, used for detecting objects of different sizes in the
image. Each detection layer ultimately outputs an 18-dimensional
vector ((4 + 1+1)×3 anchor boxes). The first four parameters are
used for determining the regression parameters for each feature
point, and adjusting these regression parameters yields the predicted
box. The fifth parameter is utilized to determine whether each
feature point contains an object, and the last parameter is
employed to identify the category of the object contained in each
feature point. Subsequently, the predicted bounding boxes and
categories of the targets in the original image are generated and
labeled, enabling the detection of clusters of hair targets in the image.

Algorithm 1 describes the training process of the hair detection
model in dermoscopic images. The computation time increases
linearly with the increase of training sample, batch size, and
training epochs. The time complexity of the training algorithm is
O [E × (n/B) × 2 × (M − 1)].

Input: Training dataset D, segmentation model M, number

of epochs E, learning rate η, n training samples, loss

function L, batch size B

Output: Trained segmentation model M̂.

1: Initialize segmentation model M

2: for e ∈ [1, E] do

3: for b ∈ [1, n/B](mini-batch b in D with size B) do

4: Perform forward pass on M with mini-batch b

5: Calculate detection loss according to the

loss function L

6: Perform backward pass and update model

weights and model according to the gradient

7: end for

8: Save the trained model M̂

9: end for

Algorithm 1. A dermoscopy-image hair detectionmodel based on improved

object detection neural network.

3.2 Multi-level feature fusion structure

The main task of the MLFF (Multi-Level Feature Fusion)
structure is to process a large amount of semantic information
contained in shallow layers. Its structure is shown in Figure 2. The
purpose of this module is to extract and fuse semantic information
from shallow features, so that the resulting feature information is
more detailed and more suitable for subsequent object detection
tasks. Semantic feature information reflects a global feature of
homogeneous phenomena in the image, depicting the surface
organization and arrangement rules of slow-changing or
cyclically-changing structures in the image. However, the low-
level information extracted by the original backbone network
(such as pixel values or local region attributes) is often of low
quality and contrast, making it difficult to obtain and utilize this low-
level information effectively. This paper proposes the MLFF module
to address this problem.

As shown in Figure 2, in this module, a feature X1 Eq. 1 before
the output of this module serves as the input. It undergoes two
consecutive CBS modules, resulting in two feature layers X2 and X3

Eq. 1, represented as follows:

X1 ∈ RH×W×C

X2 ∈ RH×W×C

X3 ∈ RH×W×C
(1)

The CBS module represents a sequence of convolution
operation, batch normalization operation, and activation function
operation. This sequence is designed to capture local relationships
within the input data, facilitating effective feature learning in images.
Simultaneously, it helps mitigate the vanishing gradient problem
and enhances the model’s adaptability to changes in the distribution
of input data. The CBS module can be expressed as follows:

Xout � SiLU BN Conv Xin, cin, cout( )[ ]{ } (2)

Where Conv represents the convolution operation, BN
represents batch normalization operation, and SiLU represents
the activation function operation. Xout represents the output
feature of the CBS module, Xin represents the input feature of
the CBS module, cin represents the number of channels in the
input feature, and coutrepresents the number of channels in the
output feature.

After the three features obtained through stacking and fusion,
two feature layers are obtained. They will undergo another CBS
module (where cin = cout) for feature processing. Finally, these
features will be stacked together, achieving feature integration.
With the depth of feature processing and fusion, the dimension
of the image feature vector continuously increases, and the size of
each slice changes accordingly. Finally, after passing through a CBS
module (where cin = cout), as in Eq. 2, the output feature Eq. 3 is:

XMLFF ∈ R
H
4×

W
4 ×4C (3)

The obtained features will be inputted into the feature
enhancement and processing network for further processing,
where the abundant semantic information contained in the
shallow layers will be fully utilized to achieve better detection
performance. The first three branches actually correspond to
dense residual structures, which take into account the easy-to-
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optimize characteristics of residual networks, and the ability of
residual networks to improve the overall accuracy of the network
by adding a considerable depth. In addition, skip connections are
used to alleviate the problem of gradient disappearance caused by
the depth of the neural network.

For the CBS module, the SiLU activation function is used, which
is an improved version based on the Sigmoid activation function and
ReLU activation function. SiLU has the characteristics of no upper
bound and a lower bound, smoothness, and non-monotonicity.
SiLU performs better than ReLU in deep models and can be
considered as a smoothed ReLU activation function. Its specific
implementation is shown in the equation below Eq. 4:

f x( ) � x · sigmoid x( ) (4)

3.3 Channel-space dual attention module

After obtaining feature information at different depths, it is
necessary to further process these features to capture the target
information in them. Therefore, this paper proposes a Channel-
Space Dual Attention Module (CSDA) for feature inference, as
shown in Figure 3. Finally, the inferred information is passed

through the second part of the object detection model
architecture to obtain three types of feature maps.

The module proposed in this article takes the feature layers
obtained from the feature extraction backbone network, namely,
F1 ∈ R80×80×256, F2 ∈ R40×40×512 and F3 ∈ R20×20×1024, and infers
attention maps along two different dimensions. One dimension is
the channel attention mechanism, which is based on the SE module
[30] and uses global average pooling to calculate channel attention.
The other dimension is the spatial attention mechanism, which
focuses on which pixels in different feature maps are important and
require significant attention. Then, the channel attention map and
the spatial attention map are multiplied successively with the feature
maps on the backbone to perform adaptive feature focusing,
resulting in corresponding feature maps F′1, F′2 and F′3.

For the Squeeze-and-Excitation module, it can be viewed as a
computational unit that mainly embeds the dependency factors of
feature map channels into variable υ. This is to ensure that the
network can enhance its sensitivity to information features and
suppress less useful features. In the channel-wise optimization
process, squeezing and excitation steps are applied to optimize
the response of the convolutional kernel, in order to capture the
correlation of channel information. The specific implementation is
shown in the following equation:

FIGURE 2
Multi-level feature fusion structure.

FIGURE 3
Channel spatial dual attention module.
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Ctran: x → y; x, y ∈ RH×W×C (5)

In the equation, Ctran is the convolutional operator, υ = [v1, v2,
. . . , vn] represents the learned weights in the network, and n denotes
the parameters of the n − th convolutional kernel. Therefore, the
output of the convolutional operator is Y = [y1, y2, . . . , yn], which is
implemented as shown in Eq. 5 and Eq. 6. In the proposed attention
module, after the channel attention, we can obtain the
feature Fchannel.

Y � υpX � ∑n
n�1

vnpxn (6)

Regarding the spatial attention module, as shown in the right
half of Figure 3, the feature map obtained by the feature extraction
network is understood as a three-dimensional space, where each
slice corresponds to a channel. Firstly, the values at the same
position on different channels are subjected to average pooling
and max pooling operations to obtain the features Fmax, Faverage
Eq. 7.

Fmax � MaxPool F( )
Faverage � AvgPool F( ) (7)

Finally, convolution and normalization operations are applied to
generate a 2D spatial attention map Fspatial, which is computed as
follows Eq. 8:

Fspatial � sigmoid f7×7 Fmax, Faverage( )( ) (8)

The symbol f7 × 7 represents a convolution operation with a
kernel size of 7 × 7. After obtaining the channel attention map, it is
multiplied with the input feature map F to obtain a new feature map
F′. This new feature map F′ is then multiplied with the spatial
attention map to obtain the final feature map F″. The overall process
can be described as follows Eq. 9:

F′ � Fchannel ⊗ F
F″ � F′ ⊗ Fsaptial

(9)

Finally, three feature maps, denoted as F′1, F′2 and F′3, can be
obtained. The obtained new features are then processed and
enhanced using feature processing networks and detection
networks to obtain the final object detection results. The
experimental results of the proposed network will be discussed in
Section 3 of this paper.

3.4 Attention dynamic head

Introducing dynamic heads [31], based on three feature maps
F′1, F′2 and F′3, the general formula for applying self-attention is as
follows Eq. 10:

W F( ) � π F( ) · F (10)

Where π(·) is an attention function. A simple solution to this
attention function is achieved through fully connected layers.
However, due to the high dimensionality of tensors, directly
learning attention functions across all dimensions is
computationally expensive and practically unaffordable.

Therefore, transforming the attention function into attention
along three directions, with each attention focusing on a single
direction, is proposed Eq. 11.

W′ F( ) � πC πS πL F( ) · F( ) · F( ) · F (11)

Where πL (·), πS (·), πC (·) are three different attention functions
applied respectively to dimensions L, S, and C.

4 Experimental results and analysis

4.1 Datasets

In the experiment described in this paper, both the training
and testing datasets are sourced entirely from hospitals and
collected based on different patients, each with varying
degrees of hair sparsity. The original dataset is devoid of any
annotations, and labeling is used to annotate it, generating XML-
format files to store the labeled tags. Each image corresponds to
one XML file, containing multiple hair cluster labels, primarily
annotating each hair cluster. In the experiment, each hair cluster
does not exceed three strands. A total of 200 images were
annotated for the dataset. As neural network-based object
detection models are developed on the basis of extensive
image data, the dataset is expanded and divided through data
augmentation, resulting in 500 images. From these, 50 images are
randomly selected as the validation set, and another 50 images
are chosen as the test set. This is done to enrich the dataset size,
better extract features of hair belonging to different labeled
categories, and prevent the trained model from overfitting.
The objective of this dataset is to achieve hair detection in
populations with sparse hair, identifying the number of
hair clusters.

4.2 Experimental details

During the preprocessing stage, the source dataset had a size of
1,920 × 1,080. In this study, all hair datasets underwent image
enhancement and partitioning, resulting in a final size of 640 × 640
for each slice.

In the experiment, all programs were implemented in the
PyTorch framework under the Windows 10 operating system.
The training process used one GeForce RTX 3090 GPU and was
written in Python language, calling CUDA, CuDNN, OpenCV, and
other required libraries. The optimizer used in the experiment was
SGD, with a momentum of 0.937 and default parameters for other
settings. The initial learning rate, weight decay, and batch size were
set to 0.01, 5e-4, and 8, respectively, and the epoch was set to 500.
The trained model’s weight file was saved, and the model’s
performance was evaluated using the test set.

The model evaluation metrics adopted include commonly
used object detection metrics such as Precision, Recall, mAP
(mean average precision), and F1 score, which are used to assess
the performance of the trained model. Visual comparison was
also conducted. The implementation of these metrics is as follows
Eq. 12:
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FIGURE 4
Network training situation.

FIGURE 5
Correlation between predicted labels during network training.
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Precision � TP

TP + FP

Recall � TP

TP + FN

mAP � 1
C
∑C
k�0

APk

F1 � 2
1

Precision
+ 1
Recall

(12)

Among them, TP represents the number of correctly identified
clusters of hair; FP represents the number of clusters mistakenly
identified as hair; FN represents the number of hair cluster targets
that were not successfully identified; C represents the number of
categories of hair cluster targets; AP represents the area enclosed by
the precision-recall curve and the coordinate axis.

Figure 4 displays the training and validation loss curves, as well
as precision, recall, and mAP curves for the entire training process.
The model is trained from scratch, and from the curves in the
figure, it is evident that the network model descends rapidly in the
first 50 epochs and gradually stabilizes thereafter. In the figure, a
smaller box_loss indicates more accurate bounding boxes, and a
smaller obj_loss indicates more accurate predictions of targets.
Precision, recall, and mAP curves stabilize later, indicating a good
training outcome. In summary, the figure demonstrates that the
model for hair cluster detection is well-trained and does not exhibit
overfitting. Figure 5 shows the correlation between predicted labels
during the training process of the hair cluster object detection
model. Figure 5 is a set of 2D histograms, illustrating the contrast
between each axis of the data. Labels in the image are located in the

xywh space, where x and y represent the center values of the label
box, and w and h represent the length and width of the label box.
The histograms of x and y in Figure 5 indicate that the size
variation of detected targets is small. Additionally, the
distribution plots of x and width, as well as y and height, show
that their relationships have a linear correlation. Combined with
Figure 4, this suggests that the proposed model for the hair cluster
object detection task is trainable.

4.3 Comparative experiments

In the comparative experiments, to validate the performance of
the proposed hair cluster detection model based on sparse hair,
experiments and analyses were conducted on test set images using
publicly available source code of classical object detection models.
The object detection network developed in this study was compared
with YOLOv3 [32], YOLOv4 [33], MobileNet YOLOv4, YOLOv5,
Detr, FastestV2, YOLOv7, FastestDet, and YOLOv8 on test set
images. Table 1 presents the performance of the proposed
method and other methods on the test set.

The comparative experimental results in Table 1 indicate that
the hair cluster detection model proposed in this study achieves the
highest mAP value, surpassing the classical YOLOv5 network model
by 2.8%. Additionally, it outperforms the latest YOLOv8 by 7.6%.
This suggests that the proposed algorithm has advantages in the task
of hair cluster target recognition. Moreover, the proposed model
achieves the highest Precision, F1, and Recall scores, demonstrating
the superior performance of the sparse hair cluster model proposed
in this study. Therefore, the results indicate that the proposed model
can ensure accurate identification of sparse hair clusters, comparable
to the best methods in terms of metrics, and surpassing most
other methods.

To more clearly illustrate the performance of the proposed
method, visual experiments were conducted on six images selected
from the test set, as shown in Figure 6. Figure 6 displays the visual
comparison of hair cluster detection results obtained by the
proposed method and five other methods (YOLOv8, YOLOv7,
Detr, FastestDet, FastestV2) under the same experimental
conditions. It is evident that the proposed method achieves
more accurate hair cluster detection results compared to
other methods.

As evident from the obtained detection results above, the proposed
hair cluster detection model for sparse hair in this study has achieved
significant results. Simultaneously, the algorithm accomplishes
counting and visualizing the detected clusters. A comparison reveals
that themethod developed in this study exhibits the best performance in
hair cluster detection. In Figure 6, it can be observed that othermethods
show instances of hair cluster omission. In summary, the method
investigated in this study demonstrates commendable hair cluster
detection performance. Finally, for a more comprehensive
comparison of the advantages of the proposed method against
different approaches, Figure 7 depicts bar charts representing the
hair cluster detection performance of various methods across
different metrics. The performance on four metrics is illustrated
separately. It is evident that the proposed method holds a significant
advantage in hair cluster detection tasks.

TABLE 1 Comparison with different detection networks (Bold numbers
represent best results).

Networks year Precision mAP F1 score Recall

YOLOv3 2018 0.733 0.500 0.35 0.471

YOLOv4 2020 0.768 0.561 0.58 0.434

Mobilenet
YOLOv4

2020 0.792 0.406 0.21 0.245

YOLOv5 2020 0.865 0.706 0.63 0.677

Detr 2020 0.822 0.717 0.65 0.854

FastestV2 2021 0.479 0.458 0.52 0.564

YOLOv7 2022 0.816 0.697 0.66 0.691

FastestDet 2022 0.609 0.524 0.47 0.593

YOLOv8 2023 0.820 0.658 0.63 0.712

Our network - 0.898 0.734 0.72 0.873

TABLE 2 Comparison of ablation experiments of target detection indicators
on data sets (Bold numbers represent best results).

Networks Precision mAP F1 score Recall

Without MLFF 0.817 0.680 0.57 0.712

Without CSDA 0.762 0.599 0.33 0.588

Our network 0.898 0.734 0.72 0.873
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FIGURE 6
Visual comparison of hair cluster detection results.

FIGURE 7
Performance comparison of different detection methods on the four indicators of Precision, Recall, mAP (mean average precision), and F1 score.
The method that performs best in each case is marked with an asterisk.
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4.4 Ablation experiment

This study utilizes the developed model as the network for sparse
hair target detection (Ours) in hair cluster detection. Experiments were
conducted by removing the designed modules from this model.
Specifically, the MLFF module was removed from the feature
extraction network to assess the extraction of image features, and
the CSDA module was removed from the feature enhancement and
processing network to examine feature inference and fusion. As shown
in the performance metrics results in Table 2, removing the
corresponding modules leads to a decrease in the model’s detection
performance. Additionally, as depicted in Figure 8A, it is apparent that
some smaller and overlapping hair clusters are missed when certain
modules are removed, while the detection results proposed in this study
remain superior.

To further explore the differences between different modules and
their reasons, a heatmap analysis was conducted. Figure 8B visualizes
the objective performance of different modules. It can be observed that
removing the CSDA module generates regions of interest extending
beyond the actual target area, focusing on some irrelevant background
information. While focusing on certain background regions might not
significantly impact normal target detection, it proves detrimental for
densely distributed small targets, exacerbating background interference
and the difficulty of instance recognition. Without the MLFF module,
the situation of missed detections is more severe, indicating that the

inclusion of theMLFFmodule in the network brings more information
about the target. In conclusion, the proposed modules in this study
contribute to improving the model’s detection performance to a certain
extent, significantly enhancing the overall performance of the target
detection network.

5 Conclusion

In this study, we have proposed and implemented an efficient
and accurate detection model specifically designed for sparse hair
clusters. This model is based on an improved neural network for
object detection. The construction of this model introduces three
innovative aspects: firstly, we designed a new neural network
structure based on existing advanced object detection networks to
optimize the detection of sparse hair. Secondly, a novel multi-level
feature fusion structure was devised to better extract and fuse
features at different levels. Lastly, a new attention mechanism,
the Channel-Spatial Bi-Attention Module, was introduced to
simultaneously consider information in both channel and spatial
dimensions, further enhancing themodel’s expressive power and the
accuracy of sparse hair detection.

The model primarily consists of three parts: a feature extraction
backbone network, a feature enhancement and processing network,
and a detection network. It effectively achieves the detection of hair

FIGURE 8
Visual comparison of ablation experiment results. (A): Comparison of detection results; (B): Comparison of detection heatmaps.
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clusters, predicting the number of hair clusters with promising
results in experiments. Despite the application of dermoscopy in
hair detection being in an exploratory and developing stage, and
related research being incomplete, our study provides a new and
effective tool for the precise detection of sparse hair clusters. It opens
up new avenues for research and applications in hair detection,
contributing to the advancement of dermoscopy in hair detection.
This, in turn, assists healthcare professionals in diagnosing
conditions and selecting treatment plans, while also providing
convenience for daily management and condition monitoring for
individuals with hair loss.

If the decisions made by the model are not interpretable, they
may not be accepted by individuals. In future research, our project
team will explore the interpretability of the hair cluster object
detection network, applying these advancements to help
healthcare professionals understand the processes in image
analysis. Additionally, in order to bring the detection model to
edge devices for user convenience, we will explore the development
of lightweight hair cluster object detection models in the future.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Medical Ethics
Committee of the Second Affiliated Hospital of Army Medical
University of Chinese People’s Liberation Army. The studies
were conducted in accordance with the local legislation and
institutional requirements. Written informed consent for
participation in this study was provided by the participants’ legal
guardians/next of kin. Written informed consent was obtained from

the individual(s) for the publication of any potentially identifiable
images or data included in this article.

Author contributions

YX: Data curation, Software, Supervision, Visualization,
Writing–original draft. KY: Resources, Software, Validation,
Writing–original draft. YL: Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Software, Writing–review and
editing. ZL: Data curation, Formal Analysis, Project administration,
Software, Supervision, Writing–review and editing. DF:
Conceptualization, Data curation, Resources, Writing–original draft.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Sperling LC, Mezebish DS. Hair diseases. Med Clin North America (1998) 82:
1155–69. doi:10.1016/s0025-7125(05)70408-9

2. Franzoi SL, Anderson J, Frommelt S. Individual differences in men’s perceptions of
and reactions to thinning hair. J Soc Psychol (1990) 130:209–18. doi:10.1080/00224545.
1990.9924571

3. Shapiro J. Hair loss in women. New Engl J Med (2007) 357:1620–30. doi:10.1056/
nejmcp072110

4. Ahmed A, Almohanna H, Griggs J, Tosti A. Genetic hair disorders: a review.
Dermatol Ther (2019) 9:421–48. doi:10.1007/s13555-019-0313-2

5. York K, Meah N, Bhoyrul B, Sinclair R. A review of the treatment of male pattern
hair loss. Expert Opin Pharmacother (2020) 21:603–12. doi:10.1080/14656566.2020.
1721463

6. O’Mahony N, Campbell S, Carvalho A, Harapanahalli S, Hernandez GV, Krpalkova
L, et al. Deep learning vs traditional computer vision. In Advances in Computer Vision:
Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1; 25-26 April
2019; Las Vegas, Nevada, USA. Springer (2020). 128–44.

7. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E, et al. Deep learning
for computer vision: a brief review. Comput intelligence Neurosci (2018) 2018:1–13.
doi:10.1155/2018/7068349

8. Esteva A, Chou K, Yeung S, Naik N, Madani A, Mottaghi A, et al. Deep learning-
enabled medical computer vision. NPJ digital Med (2021) 4:5. doi:10.1038/s41746-020-
00376-2

9. Li W, Raj ANJ, Tjahjadi T, Zhuang Z. Digital hair removal by deep learning for skin
lesion segmentation. Pattern Recognition (2021) 117:107994. doi:10.1016/j.patcog.2021.
107994

10. Attia M, Hossny M, Zhou H, Nahavandi S, Asadi H, Yazdabadi A. Digital hair
segmentation using hybrid convolutional and recurrent neural networks architecture.
Comp Methods Programs Biomed (2019) 177:17–30. doi:10.1016/j.cmpb.2019.05.010

11. Kim M, Gil Y, Kim Y, Kim J. Deep-learning-based scalp image analysis using
limited data. Electronics (2023) 12:1380. doi:10.3390/electronics12061380

12. Hosny KM, Elshora D, Mohamed ER, Vrochidou E, Papakostas GA. Deep
learning and optimization-based methods for skin lesions segmentation: a review.
IEEE Access (2023) 11:85467–88. doi:10.1109/access.2023.3303961

13. Nam G, Wu C, Kim MH, Sheikh Y. Strand-accurate multi-view hair capture. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition; June 16 2019 to June 17 2019; Long Beach, CA, USA (2019). p. 155–64.

14. Cuéllar F, Puig S, Kolm I, Puig-Butille J, Zaballos P, Martí-Laborda R, et al.
Dermoscopic features of melanomas associated with mc1r variants in Spanish cdkn2a
mutation carriers. Br J Dermatol (2009) 160:48–53. doi:10.1111/j.1365-2133.2008.
08826.x

15. Tosti A, Torres F. Dermoscopy in the diagnosis of hair and scalp disorders. Actas
dermo-sifiliográficas (2009) 100:114–9. doi:10.1016/s0001-7310(09)73176-x

16. Pirmez R, Tosti A. Trichoscopy tips. Dermatol Clin (2018) 36:413–20. doi:10.
1016/j.det.2018.05.008

Frontiers in Physics frontiersin.org11

Xiong et al. 10.3389/fphy.2024.1364372

78

https://doi.org/10.1016/s0025-7125(05)70408-9
https://doi.org/10.1080/00224545.1990.9924571
https://doi.org/10.1080/00224545.1990.9924571
https://doi.org/10.1056/nejmcp072110
https://doi.org/10.1056/nejmcp072110
https://doi.org/10.1007/s13555-019-0313-2
https://doi.org/10.1080/14656566.2020.1721463
https://doi.org/10.1080/14656566.2020.1721463
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1016/j.patcog.2021.107994
https://doi.org/10.1016/j.patcog.2021.107994
https://doi.org/10.1016/j.cmpb.2019.05.010
https://doi.org/10.3390/electronics12061380
https://doi.org/10.1109/access.2023.3303961
https://doi.org/10.1111/j.1365-2133.2008.08826.x
https://doi.org/10.1111/j.1365-2133.2008.08826.x
https://doi.org/10.1016/s0001-7310(09)73176-x
https://doi.org/10.1016/j.det.2018.05.008
https://doi.org/10.1016/j.det.2018.05.008
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1364372


17. Van Camp YP, Van Rompaey B, Elseviers MM. Nurse-led interventions to
enhance adherence to chronic medication: systematic review and meta-analysis of
randomised controlled trials. Eur J Clin Pharmacol (2013) 69:761–70. doi:10.1007/
s00228-012-1419-y

18. Shen X, Yu RX, Shen CB, Li CX, Jing Y, Zheng YJ, et al. Dermoscopy in China:
current status and future prospective. Chin Med J (2019) 132:2096–104. doi:10.1097/
cm9.0000000000000396

19. Zhu Z, He X, Qi G, Li Y, Cong B, Liu Y. Brain tumor segmentation based on the
fusion of deep semantics and edge information in multimodal mri. Inf Fusion (2023) 91:
376–87. doi:10.1016/j.inffus.2022.10.022

20. He X, Qi G, Zhu Z, Li Y, Cong B, Bai L. Medical image segmentationmethod based
on multi-feature interaction and fusion over cloud computing. Simulation Model Pract
Theor (2023) 126:102769. doi:10.1016/j.simpat.2023.102769

21. Zhou F, Zhao H, Nie Z. Safety helmet detection based on yolov5. In:
2021 IEEE International conference on power electronics, computer
applications (ICPECA) (IEEE); January 22-24, 2021; Shenyang, China (2021).
p. 6–11.

22. Huang Z, Jiang X, Wu F, Fu Y, Zhang Y, Fu T, et al. An improved method for ship
target detection based on yolov4. Appl Sci (2023) 13:1302. doi:10.3390/app13031302

23. Qi G, Wang H, Haner M, Weng C, Chen S, Zhu Z. Convolutional neural network
based detection and judgement of environmental obstacle in vehicle operation. CAAI
Trans Intelligence Tech (2019) 4:80–91. doi:10.1049/trit.2018.1045

24. Qi G, Zhang Q, Zeng F, Wang J, Zhu Z. Multi-focus image fusion via
morphological similarity-based dictionary construction and sparse representation.
CAAI Trans Intelligence Tech (2018) 3:83–94. doi:10.1049/trit.2018.0011

25. Li Y, Wang Z, Yin L, Zhu Z, Qi G, Liu Y. X-net: a dual encoding–decoding method in
medical image segmentation.Vis Comp (2021) 39:2223–33. doi:10.1007/s00371-021-02328-7

26. Lama N, Kasmi R, Hagerty JR, Stanley RJ, Young R, Miinch J, et al. Chimeranet:
U-net for hair detection in dermoscopic skin lesion images. J Digital Imaging (2023) 36:
526–35. doi:10.1007/s10278-022-00740-6

27. Sacha JP, Caterino TL, Fisher BK, Carr GJ, Youngquist RS, D’Alessandro BM, et al.
Development and qualification of a machine learning algorithm for automated hair
counting. Int J Cosmet Sci (2021) 43:S34–S41. S34–S41. doi:10.1111/ics.12735

28. Yoon HS, Park SW, Yoo JH. Real-time hair segmentation using mobile-unet.
Electronics (2021) 10:99. doi:10.3390/electronics10020099

29. Wu W, Liu H, Li L, Long Y, Wang X, Wang Z, et al. Application of local fully
convolutional neural network combined with yolo v5 algorithm in small target detection of
remote sensing image. PloS one (2021) 16:e0259283. doi:10.1371/journal.pone.0259283

30. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition; June 18 2018 to June
23 2018; Salt Lake City, UT, USA (2018). 7132–41.

31. Dai X, Chen Y, Xiao B, Chen D, Liu M, Yuan L, et al. Dynamic head: unifying
object detection heads with attentions. Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition; June 20 2021 to June 25 2021; Nashville, TN,
USA (2021). 7373–82.

32. Redmon J, Farhadi A. Yolov3: an incremental improvement[J] (2018). arXiv
preprint arXiv:1804.02767 Available at: https://arxiv.org/pdf/1804.02767.pdf.

33. Bochkovskiy A, Wang CY, Liao HYM. Yolov4: optimal speed and accuracy of
object detection[J] (2020). arXiv preprint arXiv:2004.10934 Available at: https://arxiv.
org/abs/2004.10934.

Frontiers in Physics frontiersin.org12

Xiong et al. 10.3389/fphy.2024.1364372

79

https://doi.org/10.1007/s00228-012-1419-y
https://doi.org/10.1007/s00228-012-1419-y
https://doi.org/10.1097/cm9.0000000000000396
https://doi.org/10.1097/cm9.0000000000000396
https://doi.org/10.1016/j.inffus.2022.10.022
https://doi.org/10.1016/j.simpat.2023.102769
https://doi.org/10.3390/app13031302
https://doi.org/10.1049/trit.2018.1045
https://doi.org/10.1049/trit.2018.0011
https://doi.org/10.1007/s00371-021-02328-7
https://doi.org/10.1007/s10278-022-00740-6
https://doi.org/10.1111/ics.12735
https://doi.org/10.3390/electronics10020099
https://doi.org/10.1371/journal.pone.0259283
https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1364372


Enhanced YOLOv5s + DeepSORT
method for highway vehicle
speed detection and multi-sensor
verification

Zhongbin Luo1,2, Yanqiu Bi3,4*, Xun Yang1,2, Yong Li5,6,
Shanchuan Yu1,2, Mengjun Wu1,2 and Qing Ye1,2

1China Merchants Chongqing Communications Research and Design Institute Co., Ltd., Chongqing,
China, 2Research and Development Center of Transport Industry of Self-Driving Technology,
Chongqing, China, 3National and Local Joint Engineering Research Center of Transportation Civil
Engineering Materials, Chongqing Jiaotong University, Chongqing, China, 4School of Civil Engineering,
Chongqing Jiaotong University, Chongqing, Shandong, China, 5College of Computer Science,
Chongqing University, Chongqing, China, 6Key Laboratory of Dependable Service Computing in Cyber
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Addressing the need for vehicle speed measurement in traffic surveillance, this
study introduces an enhanced scheme combining YOLOv5s detection with Deep
SORT tracking. Tailored to the characteristics of highway traffic and vehicle
features, the dataset data augmentation process was initially optimized. To
improve the detector’s recognition capabilities, the Swin Transformer Block
module was incorporated, enhancing the model’s ability to capture local
regions of interest. CIoU loss was employed as the loss function for the
vehicle detection network, accelerating model convergence and achieving
higher regression accuracy. The Mish activation function was utilized to
reduce computational overhead and enhance convergence speed. The
structure of the Deep SORT appearance feature extraction network was
modified, and it was retrained on a vehicle re-identification dataset to mitigate
identity switches due to obstructions. Subsequently, using known references in
the image such as lane markers and contour labels, the transformation from
image pixel coordinates to actual coordinates was accomplished. Finally, vehicle
speed was measured by computing the average of instantaneous speeds across
multiple frames. Through radar and video Multi-Sensor Verification, the
experimental results show that the mean Average Precision (mAP) for target
detection consistently exceeds 90%. The effective measurement distance for
speed measurement is around 140 m, with the absolute speed error generally
within 1–8 km/h, meeting the accuracy requirements for speed measurement.
The proposed model is reliable and fully applicable to highway scenarios.

KEYWORDS

YOLOv5S, Deep SORT, swin transformer, vehicle speed, traffic monitoring

1 Introduction

Intelligent Transportation Systems (ITS) have been widely applied to practical traffic
scenarios such as highways, urban roads, tunnels, and bridges. This integration owes much
to the convergence of various technologies, including pattern recognition, video image
processing, and network communication [1, 2]. Vehicle speed is a crucial parameter that
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directly reflects the state of traffic [3, 4]. Meanwhile, in highly
complex traffic monitoring scenarios and under special weather
conditions, intelligent transportation monitoring systems face
numerous significant challenges. In addressing the issue of
vehicle speeding, the measurement of vehicle speed can provide
vital data for traffic management authorities. Accurate measurement
of vehicle target speed is one of the challenges faced by traffic
monitoring systems.

Traditional vehicle speed detection primarily utilizes inductive
loop detection, laser detection, and radar detection. These methods
are well-developed and commonly used in traffic systems. However,
traditional detection methods have the following disadvantages: (1)
the required equipment is expensive; (2) the equipment is installed
under the road surface, leading to high subsequent maintenance
costs and maintenance not only affects traffic but also damages road
structure. Video-based vehicle speed detection leverages numerous
traffic video monitoring devices, significantly overcoming the high
costs and difficult maintenance issues associated with traditional
speed detection methods. The vehicle speed detection system can be
categorized into two types: one type focuses on accurate speed
monitoring systems (such as speed camera applications) [5, 6],
and the other type, though less precise, can be used to estimate
traffic speed (such as traffic camera application scenarios) [7, 8].
This classification system takes into account the intrinsic parameters
of the camera (such as sensor size and resolution, focal length), as
well as extrinsic parameters (such as the camera’s position relative to
the road surface, drone-based cameras, etc.), and the number of
cameras (monocular, stereo, or multiple cameras).

Through these parameters, the actual scene on the image plane
can represent one or multiple lanes, as well as the relative position of
vehicles to the camera, ultimately yielding one of the most critical
variables: the ratio of pixels to road segment length, i.e., the road
length each pixel represents. Due to the perspective projection
model, this ratio is directly proportional to the square of the
camera’s distance, implying that measurements over long
distances have poor accuracy. Accurate estimation of the
camera’s intrinsic and extrinsic parameters is required to provide
measurements in the actual coordinate system. The most common
approach is soft calibration, which involves calibrating intrinsic
parameters in a verification laboratory or using sensor and lens
characteristics, and estimating the rigid transformation between the
camera and the road surface using manual [9, 10] or automatic
[11] methods.

Hard calibration involves estimating both the intrinsic and
extrinsic parameters of the camera, which can be done either
manually [12] or automatically [13–15]. In certain limited
scenarios, some details of camera calibration may be overlooked,
such as the exact position of the camera, anchoring systems, gantries.
Since cameras are mostly static (except for drone cameras), vehicle
detection is most often addressed by modeling the background
[16–18]. Other methods are feature-based, such as detecting
vehicle license plates [19, 20] or other characteristics [21–23].

Recently, learning-based approaches have become increasingly
popular for recognizing vehicles in images [24, 25]. The ability to
track vehicles with smooth and stable trajectories is a key issue in
handling vehicle speed detection. Vehicle tracking can be divided
into three different categories: The first category is feature-based
[26–28], where tracking originates from a set of features of the

vehicle (such as optical flow). The second category focuses on
tracking the centroid of a vehicle’s blob or bounding box [29,
30]. The third category concentrates on tracking the entire
vehicle [31, 32] or its specific parts (such as the license plate [33, 34]).

The prerequisite for speed measurement is the effective
assessment of distance. In monocular vision systems, the
estimation of vehicle distance typically relies on specific
constraints and methods. These include: (1) Flat road assumption
and homography-based methods, which assume that the road is flat
and apply a mathematical transformation known as homography
[35, 36], helping in mapping the view of a scene from one
perspective to another, which is crucial for estimating distances
in 2D images; (2) Detection of lines and specific areas [37, 38]. By
detecting lines and specific areas, designed detection lines and areas
can be overlaid on the real-world view, providing a reference scale
for measuring distances; (3) Use of prior knowledge about object
dimensions, utilizing the known dimensions of certain objects to
estimate distances. For instance, knowing the standard sizes of
license plates ([39, 40]) or the average dimensions of vehicles
[41] can assist in calibrating distance measurements. However,
these monocular methods have limitations, which are addressed
in stereo vision systems. In stereo vision systems [42], two cameras
are used to capture the same scene from slightly different angles,
similar to human binocular vision. This setup allows for more
accurate depth perception and distance estimation, as it
mimics the way.

Currently, speed detection is primarily divided into macroscopic
traffic flow speed and individual vehicle speed. Macroscopic traffic
flow speed detection is based on a specific road section, using the
length of the section and travel time to estimate the average speed of
the segment [43, 44]. Individual vehicle speed detection focuses on
the micro-level speed of the vehicle itself, presenting greater
technical challenges. This process requires prior knowledge of the
camera’s frame rate or accurate timestamps for each image to
calculate the time between measurements. Utilizing consecutive
or non-consecutive [45] images to estimate speed is a key factor
impacting accuracy. In summary, whether in traffic flow speed or
individual vehicle speed detection, factors such as the method of
image capture (continuous or non-continuous), frame rate,
timestamp accuracy, and the integration of various measurement
data need to be carefully considered. The selection method and
precision of these factors directly affect the accuracy of speed
estimation.

In summary, vision-based vehicle speed detection involves the
entire process of camera calibration, distance estimation, and speed
estimation. However, the calibration process for monocular vision
cameras is complex, the accuracy of distance estimation is relatively
poor, and the precision of individual vehicle speed estimation needs
improvement. Currently, there are few instances of rapidly detecting
and stably tracking vehicle instantaneous speeds solely through
video recognition technology, which limits the broader
application of video recognition technologies in the field of traffic
safety. Therefore, this study introduces an enhanced scheme that
combines YOLOv5s detection with Deep SORT tracking, targeting
the need for vehicle speed measurement in traffic monitoring. The
dataset data expansion process is preliminarily optimized based on
the characteristics of highway traffic and vehicle features. The Swin
Transformer Block module is introduced to improve the detector’s
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recognition capabilities and enhance the model’s ability to capture
areas of interest. The CIoU loss is employed as the loss function for
the vehicle detection network to accelerate model convergence and
achieve higher regression precision. The Mish activation function is
used to reduce computational costs and improve convergence speed.
Modifications are made to the structure of the Deep SORT
appearance feature extraction network, and it is retrained on the
vehicle re-identification dataset to mitigate identity switches caused
by obstacles. Subsequently, known references in the image, such as
lane markings and contour labels, are used to complete the
conversion from image pixel coordinates to actual coordinates
through maximum likelihood estimation, maximum posterior
estimation, and non-linear least squares methods. Finally, vehicle
speed is measured by calculating the average of instantaneous speeds
over multiple frames. The algorithm can detect and track vehicle
targets without prior camera parameters and calibration, extract
known reference information such as lane lines and contour labels,
and automatically convert pixel coordinates to actual coordinates in
traffic monitoring scenes, as well as automatically measure vehicle
speeds, the algorithm framework as shown in Figure 1. Accurate
estimation of vehicle speed can support the detection of traffic
accidents and incidents, offering scientific technical means for active
safety management in intelligent transportation systems.

2 Improved YOLOv5s + DeepSORT
algorithm for highway vehicle
detection and tracking

2.1 Construction of vehicle target dataset

2.1.1 Characteristics of highway traffic scenarios
There are typically four categories of common highway traffic

scenarios, as shown in Figure 2.

(a) Scene variations, as the setup of traffic monitoring varies, so
do the monitoring angles and heights. For instance, the
monitoring angle and scene characteristics inside a tunnel
differ greatly from those on a highway, leading to significantly
reduced detection accuracy and numerous false detections of
vehicle targets, as shown in Figure 2A.

(b) The same scene at different times also exhibits significant
differences. With changes in time, the brightness and visibility
of scene images vary. The characteristics of vehicle targets at
night are particularly difficult to capture due to the substantial
interference from vehicle lights at night, making it hard to
accurately obtain the body contours of target vehicles. If the
dataset does not include such special night scene data, the
detection results are not ideal Figure 2B.

(c) Vehicle targets at different positions in the image will have
obvious deformation. The same vehicle target will undergo
significant size deformation from distant to closer positions in
the image, affecting the detection accuracy of small targets.
The red boxes in Figure 2C indicate significant deformations
of the same vehicle target at different locations.

(d) On actual roads, there is a widespread occurrence of vehicle
occlusion, which can lead to multiple targets being detected as
one, resulting in missed and false detections. The red boxes in
Figure 2D represent situations where vehicles are obstructing
each other.

The existence of these four types of issues makes large public
datasets such as COCO and VOC unsuitable for the perspectives
captured by highway cameras, leading to a large number of false
positives and missed detections of target vehicles.

2.1.2 Data preparation
Given the relatively uniform types of motor vehicles in

highway scenarios, vehicles are generally classified into three

FIGURE 1
Algorithm framework diagram.
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categories: Car, Bus, and Truck. Car mainly refer to passenger
vehicles with seating for fewer than seven people; Bus mainly
include commercial buses, public transport buses, etc.; Truck
primarily refer to small, medium, and large trucks, trailers, and
various types of special-purpose vehicles as shown in Table 1. By
collecting datasets from different scenes on highways and
manually labeling them using the labelImg tool, a dataset in
YOLO format was ultimately created.

The specific process includes: (1) Data Collection: Collect
representative image data covering various scenes and angles of
target categories. (2) Data Division: Divide the dataset into training,
validation, and test sets, typically in a certain ratio, to ensure the
independence and generalizability of the data. (3) Bounding Box
Annotation: Annotate each target object with a bounding box,
usually represented by a rectangle, including the coordinates of
the top-left and bottom-right corners. Category Labeling: Assign
corresponding category labels to each target object, identifying the
category to which the object belongs. During dataset annotation,
rectangular bounding boxes encompassing the entire vehicle are
marked, with each side fitting closely to the vehicle. Annotation is
not performed when the occlusion exceeds 50%, the vehicle type is
indistinguishable, or the size is below 10*10 pixels. Furthermore, in
cases where vehicles are truncated, the truncation is not considered
to affect the overall annotation. Trucks used for transportation are
uniformly annotated, without separately marking the
vehicles on them.

2.1.3 Data augmentation
To enhance the accuracy and generalization capability of model

training, data augmentation techniques are employed, tailored to the
characteristics of highway traffic environments and vehicle features.
These techniques include Mosaic, Random_perspective, Mixup,
HSV, Flipud, Fliplr, as shown in Figure 3.

2.2 Optimization of object
detection network

In response to the identified issues with YOLOv5 in highway
vehicle detection, the following optimizations were made to enhance
the accuracy of vehicle detection: (1) Incorporating the Swin
Transformer Block module to improve the model’s ability to
capture information from local areas of interest; (2) Utilizing
CIoU loss as the loss function for the vehicle detection network
to accelerate model convergence and achieve higher regression
accuracy; (3) Adopting the Mish activation function to reduce
computational overhead and increase convergence speed.

2.2.1 Introduction of swin transformer block
To address the shortcomings of traditional YOLOv5 in traffic

object detection, the Swin Transformer Block module is introduced
for optimization.

The Swin Transformer network [46], proposed in 2021, is a
Transformer network enhanced with a local self-attention
mechanism. It has stronger dynamic computation capabilities
compared to convolutional neural networks, with enhanced
modeling capacity, and can adaptively compute both local and
global pixel relationships, making it highly valuable for
widespread use.

The core modules of the Transformer Block overall architecture
are the Window-based Multi-Head Self-Attention layer (W-MSA)
and the Shifted Window-based Multi-Head Self-Attention layer
(SW-MSA). By restricting attention computation within a
window, the network not only introduces the locality of
convolution operations but also saves computational resources,
resulting in good performance.

This article proposes the integration of the Swin Transformer
Block structure into the backbone feature extraction network and

FIGURE 2
Common issues in target vehicle detection.
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neck feature fusion, utilizing the efficient self-attention mechanism
module to fully explore the potential of feature representation. The
improved YOLOv5 network incorporating the Swin Transformer
Block module is shown in Figure 4, named
SwinTransYOLOv5 network.

2.2.2 Improvement of loss function
YOLOv5s employs GIoU loss as the bounding box regression

loss function to evaluate the distance between the predicted
bounding box (PB) and the ground truth bounding box (GT), as
shown in Eq. 1.

GIoU � IoU − Ac − U
Ac

LGIoU � 1 − GIoU

⎧⎪⎨⎪⎩ (1)

In the formula, IoU represents the intersection over union of PB
and GT, Ac is the area of the smallest rectangular box containing
both PB and GT,U is the union of PB and GT, and LGIoU is theGIoU
loss. The advantage of GIoU loss is its scale invariance, meaning the

similarity between PB and GT is independent of their spatial scale.
The problem with GIoU Loss is that when either PB or GT
completely encompasses the other, GIoU Loss degenerates
entirely into IoU loss. Because it heavily relies on the IoU term,
this results in slow convergence during actual training and
lower accuracy of the predicted bounding boxes. To address
these issues, CIoU loss also considers the overlapping area of PB
and GT, the distance between their centroids, and their aspect ratios,
as shown in Eq. 2.

CIoU � IoU − ρ2 b, bgt( )
c2

− av

LCIoU � 1 − CIoU

⎧⎪⎪⎨⎪⎪⎩ (2)

In the formula, b and bgt represent the centroids of PB and GT,
ρ2(.) denotes the Euclidean distance, c is the length of the
shortest diagonal of the smallest enclosing box of PB and GT, a
represents a positive balance parameter, and v indicates the
consistency of the aspect ratio of PB and GT. The definitions of
a and v are as follows in Eq. 3.

FIGURE 3
Data augmentation Flowchart.

FIGURE 4
SwinTransYOLOv5 network structure diagram.
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v � 4

π2 arctan
ωgt

hgt
− arctan

ω

h
( )

a � v
1 − IoU( ) + v

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

In the formula, ωgt, hgt andω, h respectively represent the width
and height of GT and PB.

Compared to the GIoU loss used in YOLOv5s, CIoU loss
incorporates penalty terms for the distance between the centers
of PB and GT, as well as their aspect ratios in the loss function. This
ensures faster convergence of the predicted bounding boxes during
training and yields higher regression localization accuracy. In This
article, CIoU loss is adopted as the loss function for the vehicle
detection network.

2.2.3 Activation function
Changing the activation function can significantly enhance

recognition performance. Activation functions are categorized
into saturated and non-saturated types. The primary advantages
of using non-saturated activation functions are twofold [47]: firstly,

they effectively address the vanishing gradient problem, which
becomes more severe with saturated activation functions;
secondly, they can accelerate the convergence speed. After
comparing the pros, cons, and characteristics of various
activation functions without significantly increasing
computational load, as shown in Table 2, the Leaky ReLU
activation function in YOLOv5 was replaced with the Mish
activation function.

2.3 Optimization of deep SORT for
vehicle tracking

The multi-object online tracking algorithm SORT [48] (Simple
Online and Realtime Tracking) utilizes Kalman filtering and
Hungarian matching, using the IoU between tracking and
detection results as the cost matrix, to implement a simple,
efficient, and practical tracking paradigm. However, the SORT
algorithm’s limitation lies in its association metric being effective
only when the uncertainty in state estimation is low, leading to

TABLE 1 Dataset categorization.

Type Example

Car

Bus

Truck
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numerous identity switches and tracking failures when the target is
occluded. To address this issue, Deep SORT [49] combines both
motion and appearance information of the target as the association
metric, improving tracking failures caused by the target’s
disappearance and reappearance.

2.3.1 Tracking processing and state estimation
Deep SORT uses an 8-dimensional state space

(u, v, γ, h, x, y, γ, h) to describe the target’s state and motion
information in the image coordinate system. u and v represent
the center coordinates of the target detection box, γ and h
respectively represent the aspect ratio and height of the detection
box, and (x, y, γ, h) represent the relative velocity of the previous
four parameters in the image coordinates. The algorithm employs a
standard Kalman filter with a constant velocity model and a linear
observation model, using the detection box parameters (u, v, γ, h) as
direct observations of the object state. By combining motion and
appearance information, the Hungarian algorithm is used to match
predicted and tracked boxes, and cascaded matching is integrated to
enhance accuracy.

(1) Mahalanobis Distance

The Mahalanobis distance is used to evaluate the predicted
Kalman state and the new state, as shown in Eq. 4.

d 1( ) i, j( ) � dj − yi( )TS−1i dj − yi( ) (4)

d(1)(i, j) represents the motion matching degree between the j
detection and the i trajectory, where Si is the covariance matrix of the
observation space at the current moment predicted by the Kalman
filter for the trajectory, yi is the predicted observation of the
trajectory at the current moment, and dj is the state of the
j detection.

Considering the continuity of motion, detections are filtered
using this Mahalanobis distance, with the 0.95 quantile of the chi-
square distribution as the threshold value, defining a threshold
function, as shown in Eq. 5.

b 1( )
i,j � 1 d 1( ) i, j( )≤ t 1( )[ ] (5)

(2) Appearance features

While Mahalanobis distance is a good measure of association
when the target’s motion uncertainty is low, it becomes ineffective in
practical situations like camera movement, leading to a large number
of mismatches. Therefore, we integrate a second metric. For each
BBox detection, we compute an appearance feature descriptor. We
create a gallery to store the descriptors of the latest 100 trajectories and
then use the minimum cosine distance between the i and j trajectories
as the second measure, as shown in Eq. 6.

d 2( ) i, j( ) � min 1 − rj
Tr i( )

k | r i( )
k ∈ Ri{ } (6)

Can be represented using a threshold function, as shown in
Eq. 7.

TABLE 2 Comparison of common activation functions.

Sigmoid tanh ReLU Leaky ReLU Mish

Function
graphs

Function
Formula

δ(x) � 1
1+e−x tanh(x) max(0, x) max(0.1x, x) x* tanh(softflus(x))

Advantages Can restrict the output to
be between (0, 1),
facilitating the completion
of classification tasks

①Can restrict the output to
be between (−1, 1),
facilitating the completion of
classification tasks

Linear: Saves computational
resources and shortens
convergence time

①Linear ①Linear

②Zero-Centered ②Gradient non-saturation,
no neuron death

②Gradient non-saturation,
no neuron death

③The network’s
convergence is the best
among the five activation
functions

Disadvantages ①The output is not zero-
centered, leading to a
zigzag pattern in gradient
descent

②Gradient saturation,
Gradient vanishing

Neuron Death: The left side of
the ReLU function is completely
flat. When the neuron’s z-value
is negative, the output α is 0, and
the gradient is also 0, making it
impossible to alter the weight
value w through the gradient,
leaving w unchanged

The network’s convergence
is not advantageous
compared to the latest
networks

Relatively higher
computational cost

②Gradient saturation,
Gradient vanishing

③Non-linear

③Non-linear, involves
exponential operations,
consuming more resources
during computation
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b 2( )
i,j � 1 d 2( ) i, j( )≤ t 2( )[ ] (7)

Mahalanobis distance can provide reliable target location
information in short-term predictions, and the cosine
similarity of appearance features can recover the target ID
when the target is occluded and reappears. To make the
advantages of both measures complementary, a linear
weighting approach is used for their combination, as shown
in Eqs 8, 9.

ci,j � λd 1( ) i, j( ) + 1 − λ( )d 2( ) i, j( ) (8)
bi,j � ∏2

m�1 b
m( )
i,j (9)

In summary, distance measurement is effective for short-term
prediction and matching, while appearance information is more
effective for matching long-lost trajectories. The choice of
hyperparameters depends on the specific dataset. For datasets
with significant camera movement, the degree of motion
matching is not considered.

(3) Cascaded matching

The strategy of cascaded matching is used to improve matching
accuracy, mainly because when a target is occluded for a long time,
the uncertainty of Kalman filtering greatly increases, leading to a
dispersion of continuous prediction probabilities. Assuming the
original covariance matrix is normally distributed, continuous
predictions without updates will increase the variance of this
normal distribution, so points far from the mean in Euclidean
distance may obtain the same Mahalanobis distance value as
points closer in the previous distribution. In the final stage, the
authors use IOU association from the previous SORT algorithm to
match n � 1 unconfirmed and unmatched trajectories. This can
alleviate significant changes caused by abrupt appearance shifts or
partial occlusions. However, this approach may also connect some
newly generated trajectories to older ones.

2.3.2 Deep appearance features
The original algorithm uses a residual convolutional neural

network to extract the appearance features of the target, training
the model on a large-scale pedestrian re-identification dataset for
pedestrian detection and tracking. Since the original algorithm was
only used for the pedestrian category and the input images were

TABLE 3 Adjusted reconstruction network.

Network layer Convolutional kernel parameters Output size

Conv 1 3 × 3/1 32 × 128×128

Conv 2 3 × 3/1 32 × 128×128

Max Pool 3 3 × 3/2 32 × 64×64

Residual 4 3 × 3/1 32 × 64×64

Residual 5 3 × 3/1 32 × 64×64

Residual 6 3 × 3/2 64 × 32×32

Residual 7 3 × 3/1 64 × 32×32

Residual 8 3 × 3/2 128 × 16×16

Residual 9 3 × 3/1 128 × 16×16

Dense 10 - 128

Batch and2 Norm - 128

FIGURE 5
Pixel coordinate conversion diagram.
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scaled to 128 × 64, which does not match the aspect ratio of vehicle
targets, this article improves the network model by adjusting the
input image size to 128 × 128, as shown in Table 3. The adjusted
network is then re-identification trained on the vehicle re-
identification dataset VeRi [50].

3 Vehicle speed measurement

3.1 Model assumptions

All locations in road monitoring images can be mapped to the
Zw � 0 plane of the world coordinate system through camera
calibration, as shown in Figure 5. However, the precise
measurement of vehicle speed depends not only on camera
calibration but also significantly on the vehicle’s trajectory. To
better implement vehicle speed measurement, the speed model
assumes the following: (1) In highway scenarios, the road is
relatively flat without significant undulations, meeting the
condition of Zw � 0; (2) In highway monitoring scenarios, the
movement of vehicles between each frame is linear, allowing for
the measurement of vehicles moving in both straight and non-
straight paths using the proposed speed measurement method; (3)
In highway video surveillance, the time interval between each frame
is the same, facilitating the calculation of vehicle speed after
obtaining the exact vehicle position using the interval
between frames.

3.2 Model design and implementation

Based on the assumptions and establishment of the
aforementioned speed model, the specific process of speed
detection is implemented. Firstly, using the YOLO object
detection algorithm, the coordinates of the top-left corner of the
image detection box are obtained. By determining the length and
width of the detection box, the coordinates of the center of the
bottom edge of the box can be obtained. This ensures that the
measured vehicle speed is closer to the actual speed. For every target
vehicle in each frame of the video stream, a set of vector relations can
be obtained, as shown in Eq. 10.

di � ui t( ) − ui t − Δt( ) (10)

Here, ui(t) represents the center coordinates of the bottom edge
of the vehicle target detection box in the current video frame;
ui(t − Δt) represents the center coordinates of the bottom edge
of the vehicle target detection box in the previous frame; Δt is the
time interval between the two frames; i � (1, 2, . . . , n) represents the
tracked trajectory points.

di represents the pixel distance between adjacent frames, and
calculating the speed requires mapping the pixel coordinates to
world coordinates. The current common method involves camera
calibration, but camera calibration requires knowledge of the
camera’s focal length, height, internal parameters, etc., and the
calibration process can be cumbersome.

In This article, state estimation is performed using the popular
methods of maximum likelihood estimation, maximum a posteriori

estimation, and non-linear least squares, selecting the best
estimation parameters based on the loss in state estimation.

(1) Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is an important and
widely used method for estimating quantities. MLE explicitly uses a
probability model with the goal of finding a system occurrence tree
that can produce observed data with a high probability. MLE is a
representative of a class of system occurrence tree reconstruction
methods based entirely on statistics. Given a set of data, if we know it
is randomly taken from a certain distribution, but we don’t know the
specific parameters of this distribution, that is, “the model is
determined, but the parameters are unknown.” For example, we
know the distribution is a normal distribution, but we don’t know
the mean and variance; or it’s a binomial distribution, but we don’t
know the mean. MLE can be used to estimate the parameters of the
model. The objective of MLE is to find a set of parameters that
maximize the probability of the model producing the observed data,
as shown in Eq. 11.

argmax
μ

p X; μ( ) (11)

Here, X � x1, x2, ..., xn{ } represents the observed sequence data,
and p(X; μ) is the likelihood function, which denotes the probability
of the observed data occurring under the parameter μ. Assuming
each observation is independent, as shown in Eq. 12.

p x1, x2, . . . , xn; μ( ) � ∏n

i�1 p xi; μ( ) (12)

To facilitate differentiation, the log is generally taken of the
target. Therefore, optimizing the likelihood function is equivalent to
optimizing the log-likelihood function, as shown in Eqs 13, 14.

argmax
μ

p X; μ( ) � argmax
μ

log p X; μ( ) (13)

xMLE
* � argmaxP u | X( ) (14)

(2) Maximum A Posteriori Estimation

In Bayesian statistics, Maximum A Posteriori (MAP) Estimation
refers to the mode of the posterior probability distribution. MAP
estimation is used to estimate the values of quantities that cannot be
directly observed in experimental data. It is closely related to the
classical method of Maximum Likelihood Estimation (MLE), but it
uses an augmented optimization objective that further considers the
prior probability distribution of the quantity being estimated.
Therefore, MAP estimation can be seen as a regularized form of
MLE, as shown in Eqs 15, 16.

θ̂MAP � arg max
θ

p θ | x( )

� arg max
θ

p x | θ( ) × p θ( )
P x( )

� arg max
θ

p x | θ( ) × p θ( )

(15)

xMAP
* � argmax P x | z( ) � argmax P z | x( )P x( ) (16)

Here, θ is the parameter to be estimated, and p(θ | x) represents
the probability of occurrence of xwhen the estimated parameter is θ.
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(3) Non-Linear Least Squares

The Least Squares Method (also known as the Method of Least
Squares) is a mathematical optimization technique. It finds the best
function match for data by minimizing the sum of the squares of the
errors. The Least Squares Method can be used to easily obtain
unknown data, ensuring that the sum of the squares of the errors
between these obtained data and the actual data is minimized. The
Least Squares Method can also be used for curve fitting, and other
optimization problems can be expressed using this method by
minimizing energy or maximizing entropy. Using the Least
Squares Method to estimate the mapping relationship, the
mapping parameters are obtained, as shown in Eqs 17, 18.

min
x

∑ ‖ yi − f xi( ) ‖2∑−1
i

(17)

Where f(xi) is a nonlinear function, and ∑−1
i is the

covariance matrix.

ψ x( ) � ∑ ‖ yi − f xi( ) ‖2∑−1
i

(18)

Then, the Gauss-Newton method is used to solve for ψ(x), as
shown in Eq. 19:

ψ x( ) � ∑ ‖ yi − f xi( ) ‖2∑−1
i

� ∑m

i�1‖ ei x( ) ‖2 � eTi x( )ei x( )
� ∑m

i�1φi x( ) (19)

For the sum of errors, we investigate the i term, also performing
a second-order Taylor expansion, followed by differentiation. We
first calculate its first-order derivative (gradient) and second-order
derivative.

First-order derivative, as shown in Eqs 20, 21.

∂φi x( )
∂xj

� 2 · ei x( ) · ∂ei x( )
∂xj

(20)

∂ψ x( )
∂xj

� ∑m

i�1 2 · ei x( ) · ∂ei x( )
∂xj

(21)

Where ∂ei(x)
∂xj is the element in the i column of the j row of the

Jacobian matrix, thus the first-order derivative can also be expressed
in the following form, as shown in Eq. 22.

∂ψ i x( )
∂xj

� 2 · JT · e x( ) (22)

Second-order derivative, as shown in Eq. 23.

∂2ψ x( )
∂xj∂xk

� ∂
∂xk

∑m

i�1 2 · ei x( ) · ∂ei x( )
∂xj

( )
� 2∑m

i�1
∂ei x( )
∂xj

· ∂ei x( )
∂xk

+ ei x( ) · ∂
2ei x( )
∂xj∂xk

( ) (23)

Observing the result of the second-order derivative, the terms
∂ei(x)
∂xj and ∂ei(x)

∂xk
are elements of the Jacobian matrix. When the

iterative point is far from the target point, both the error and its
second-order derivative are small and can be ignored. Therefore, the
second-order derivative can be expressed in the following form, as
shown in Eq. 24.

∂2ψ x( )
∂xj∂xk

� 2 · JT · J (24)

Therefore, after the second-order expansion, ψ(x) can be
written in the following form, as shown in Eq. 25:

ψ x( ) � ψ x k( )( ) + 2 x − x k( )( )TJe x( ) + x − x k( )( )TJTJ x − x k( )( )
(25)

Similarly, by differentiating it and setting the derivative equal to
zero, Eq. 26:

∇ψ x( ) � 2JTe x k( )( ) + 2JTJ x − x k( )( ) � 0 (26)

Let △x � x − x(k) then, as shown in Eq. 27:

△x � − JTJ( )−1 · JT · e (27)

3.3 Vehicle speed measurement

Through prior estimation, ui(t) and ui(t − Δt) can be mapped
to the world coordinate system, representing the actual distance
moved by the target vehicle from the previous frame to the current
frame, as shown in Eq. 28. ‖Si‖ is measured in meters and is the
Euclidean norm of Si, representing the physical distance moved by
the target vehicle in the world coordinate system from time t − Δt to
t. The speed of the vehicle target can be measured using ‖Si‖ as Eq.
29. Here, Δt is the time between two frames, measured in seconds,
and is considered constant, being the reciprocal of the frame rate.
For highway surveillance videos, which typically have a frame rate of
25 fps, Δt = 1/25.

Si � φ a, b, c( ) · ui t( ) − φ a, b, c( ) · ui t − Δt( ) (28)

vi � Si‖ ‖
Δt

� φ a, b, c( ) · ui t( ) − φ a, b, c( ) · ui t − Δt( )���� ����
Δt

(29)

FIGURE 6
Model training loss convergence status.
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Assuming a vehicle’s trajectory contains m frame trajectory
points, meaning in the first m frames of the video, the vehicle’s
speed between each adjacent pair of frames is v1, v2, . . . , vm−1, then
according to Eq. 29, v1, v2, vm−1 as shown in Eqs 30–32:

v1 � S1‖ ‖
Δt

� φ a, b, c( ) · u2 t( ) − φ a, b, c( ) · u1 t( )���� ����
Δt

(30)

v2 � S2‖ ‖
Δt

� φ a, b, c( ) · u3 t( ) − φ a, b, c( ) · u2 t( )���� ����
Δt

(31)

vm−1 � Sm−1‖ ‖
Δt

� φ a, b, c( ) · um t( ) − φ a, b, c( ) · um−1 t( )���� ����
Δt

(32)

Therefore, the average driving speed of the target vehicle in the
first m frames is as shown in Eq. 33. The detection of the target
vehicle’s speed is achieved by calculating the average of the
instantaneous speeds over multiple frames.

v � ∑m−1
i�1 vi

m − 1
(33)

4 Model training and evaluation
metrics selection

4.1 Experimental environment and
model training

Experimental setup and hardware environment for the dataset:
System Type: Windows 10 64-bit Operating System, Memory:
64GB, GPU: NVIDIA GeForce RTX3080ti, 24 GB Graphics Card.
Software environment: The auxiliary environment includes CUDA
V11.2, OpenCV4.5.3. This article tested different corresponding
datasets for various traffic scenarios. The dataset established in
This article comprises a total of 30,000 images, including a
diverse collection from different scenes, angles, and times.

During training, 80% of the dataset was used for training, while 20%
of the data was reserved for testing. Data augmentation was applied in
this study, which involved random scaling, cropping, and arrangement
of images using theMosaic method. Random rotation (parameter set to
0.5), random exposure (parameter set to 1.5), and saturation (parameter
set to 1.5) were employed to enrich the training data. The learning rate
was initially set to 0.001, and the maximum number of training
iterations was set to 50,000. To optimize model convergence, the

learning rate was adjusted to 0.0005 after 40,000 iterations. The
input images to the network were resized to a resolution of 416 ×
416, and a batch size of 8 was used during training to ensure efficient
network processing. The convergence of the model’s training loss and
mAP (mean Average Precision) can be observed in Figure 6. It shows
that the model converged around 3,000 iterations, and as the loss
decreased, mAP also reached a high level.

Convolutional Neural Networks (CNNs) are capable of extracting
key features from image objects. The detected objects are classified into
three categories: Car, Truck, and Bus. The unique features of each class
can be observed in Figure 7, where each class of object exhibits distinct
characteristics within the convolutional network. These distinct features
are used for classification and detection purposes.

4.2 Selection of evaluation metrics

To verify the effectiveness of the model’s detection, several
typical metrics in the field of object detection and classification
were selected for evaluation. For distracted driving behavior
detection and classification, the focus is on detection precision
and recall rate, as well as classification accuracy. Therefore, the
model is evaluated using precision, recall, and F1_Score.

AP (Average Precision) is the average accuracy and a
mainstream evaluation metric for object detection models. To
correctly understand AP, it is necessary to use three concepts:
Precision, Recall, and IoU (Intersection over Union). IoU
measures the degree of overlap between two areas, specifically the
overlap rate between the target window generated by the model and
the originally marked window, which represents the detection
accuracy IoU. The calculation formula is shown in Eq. 34. In an
ideal situation, IoU equals 1, indicating a perfect overlap.

IoU � Detection Result ∩ Ground Truth
Detection Result ∪ Ground Truth

(34)

Precision and Recall in object detection: Assuming a set of images
containing several targets for detection, Precision represents the
proportion of targets detected by the model that are actual target
objects, while Recall represents the proportion of all real targets detected
by the model. TP (True Positive) denotes samples correctly identified as
positive, TN (True Negative) denotes samples correctly identified as
negative, FP (False Positive) denotes samples incorrectly identified as

FIGURE 7
Classified target feature map.
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positive, and FN (False Negative) denotes samples incorrectly identified
as negative. The calculation of Precision and Recall values relies on the
formulas shown in Eqs 35, 36.

Precision � TP
TP + FP

(35)

Recall � TP
TP + FN

(36)

After calculating values using the formula, a PR (Precision-
Recall) curve can be plotted. The AP (Average Precision) is the mean
of Precision values on the PR curve. To achieve more accurate
results, the PR curve is smoothed, and the area under the smoothed
curve is calculated using integral methods to determine the final AP
value. The calculation formula is shown as Eq. 37.

AP � ∫1

0
Psmooth r( )dr (37)

The F1-Score, also known as the F1 measure, is a metric for
classification problems, often used as the final metric in multi-class
problems. It is the harmonic mean of precision and recall. For the F1-
Score of a single category, the calculation formula is as shown in Eq. 38.

F1k � 2
Recall k × Precision k

Recall k + Precision k
(38)

Subsequently, calculate the average value for all categories,
denoted as F1. The calculation formula is shown in Eq. 39.

F1 � 1
n
∑F1k( )2

(39)

mAP (mean Average Precision) involves calculating the AP
(Average Precision) for all categories and then computing the
mean. The calculation formula is shown in Eq. 40.

mAP � ∑APi

n
, i � 1, 2,/, n (40)

5 Results and discussion

5.1 Evaluation of object detection
model results

Based on the aforementioned evaluation metrics, the trained
object detection models are tested and assessed using the test sets

from the datasets. The algorithm shows good statistical accuracy for
different vehicle types, with APs of Car, Bus, Truck being 93.58,
91.26, 90.05 respectively, mAP at 92.42, and F1_Score at 97. This is
primarily due to the high visibility in tunnel and roadbed sections,
where target features are more distinct, resulting in a more accurate
model. Overall, the model’s detection accuracy for buses is lower
than for other categories, mainly because the sample size for buses is
significantly smaller than for other categories. However, with a mean
Average Precision (mAP) exceeding 90%, it demonstrates that the
proposed model is reliable and fully applicable to highway scenarios.

5.2 Evaluation of speed estimation results

5.2.1 Selection of optimal fitting model
Based on the data distribution, This article selects 7 video points

for fitting analysis with 7 sets of linear and nonlinear data. This curve
relationship is not intuitively obvious but requires statistical testing.
The optimal fitting model is chosen by comparing the degree of fit
and its significance. The Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) are two commonly used
indicators for assessing model fitness, with smaller values
indicating a better-fitting model. Therefore, before selecting a
model, it is necessary to assess the AIC and BIC values for each
model, including dependent and independent variables.
Additionally, the goodness of fit R2 and p-value are also key
parameters for evaluating the quality of the fit. As the data
distribution within the range of road video surveillance is
essentially similar in terms of distance calibration, a random
surveillance point is selected for the fitting analysis of the
7 formulas, with results as shown in Table 4.

From Table 4, it is evident that apart from linear fitting, the
goodness of fit R2 for all other methods is greater than 0.8. Among
them, the Exp 3p fitting shows the best performance, hence Exp 3p
is chosen as the formula for distance-speed fitting.

To obtain the best fitting parameters for Exp 3p, employing
Maximum Likelihood Estimation, Maximum A Posteriori
Estimation, and Non-linear Least Squares method for parameter
estimation on the distance calibration data from 7 video points. The
parameters are evaluated using AIC, BIC, R2, and p-value, with the
evaluation results presented in Table 5; Figure 8.

From the above table, it is clear that for the Exp 3p parameter
estimation of the 7 video points, Maximum Likelihood Estimation

TABLE 4 Fitting model results.

Number Formulas Abbreviation AIC BIC R2 p-value

1 y � a*x + b Line2p 139.69 141.6 0.774 3.3085e-05

2 y � 1/(a*x + b) Com2p 95.8 98.3 0.912 1.08e-08

3 y � 1/(a*x + b) + c Com3p 94.5 96.7 0.913 5.35e-07

4 y � a*x̂2 + b*x + c Line3p 118.0 121.0 0.958 2.59e-08

5 y � a* ln(x) + b Log2p 130.9 132.8 0.880 7.2456e-07

6 y � a* exp(b*x) Exp2p 84.7 86.6 0.996 1.71e-15

7 y � a* exp(b*x) + c Exp3p 82.8 85.4 0.997 2.52e-14

Bold values represent the method chosen in this article.
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shows the best performance, followed by Maximum A Posteriori
Estimation, and lastly Non-linear Least Squares method, as
indicated by AIC, BIC, R2, and p-value.

5.2.2 Speed estimation results
To evaluate the measurement results of the speed estimation

method, based on radar and video multi-sensor fusion technology,
the results measured by millimeter-wave radar are taken as the true
speed values. The verification experiment was conducted in the
Shimen Tunnel on the Hanping Expressway in Shaanxi China,

where radar and video integration devices were installed at 150-
m intervals, totaling seven units, to achieve holographic perception
of traffic flow states within a 1050-m range, obtaining detailed
information on coordinates, lane positions, and speeds for
different lanes and vehicle types. Vehicle speeds detected by
millimeter-wave radar and video were extracted using timestamps
and target IDs. The comparison between the measured results and
the true speed values, along with the overall experimental results and
performance analysis, are shown in Table 6.

From Table 6, it is observed that the vehicle speed measurement
method based on video, as discussed in This article, shows relatively
good performance in scenarios with high overall speeds on
highways. The minimum root mean square error is 2.0635, and
the maximum is 9.2797. The main reasons for the larger deviation
between the measured speeds and the actual values are
environmental conditions, such as lighting and line shape. The
coefficient of determination ranges from a minimum of
0.68259 to a maximum of 0.97730. The variation in the goodness
of fit is for the same reasons as the minimum mean square error.
Additionally, to further evaluate the speed tracking performance of
this method, the vehicle speed measurement data from 7 video
locations are manually divided into Front section, Middle section,
Back section, and End section, for a comprehensive analysis of the
overall tracking effect in these four segments, as seen in Figure 9.

As depicted in Figure 9, the effective measurement distance of
this method is around 140 m, with the absolute speed error generally
within 1–8 km/h, meeting the accuracy requirements for speed

TABLE 5 Parameter estimation results.

Number MLE MAP NLS

AIC BIC R2 p-value AIC BIC R2 p-value AIC BIC R2 p-value

1 80 82 0.998 2.52e-14 81 83 0.998 1.15e-14 82 85 0.997 2.52e-14

2 83 86 0.994 1.76e-10 84 87 0.994 4.32e-10 86 89 0.993 5.38e-10

3 81 84 0.996 5.81e-13 84 86 0.995 7.65e-13 84 87 0.995 8.26e-13

4 94 100 0.923 5.63e-09 96 103 0.913 4.25e-08 98 105 0.902 5.63e-08

5 83 91 0.983 8.54e-13 85 92 0.980 2.85e-12 85 93 0.975 3.16e-12

6 84 87 0.992 2.52e-10 85 88 0.995 5.15e-10 87 90 0.990 6.87e-10

7 82 85 0.995 4.84e-12 83 87 0.994 6.62e-12 86 89 0.993 5.36e-12

Bold values represent the method chosen in this article.

FIGURE 8
Parameter estimation results.

TABLE 6 Overall speed measurement results and performance analysis.

Station number MSE RMSE MAE R2

K733 + 953 26.9133 5.1878 3.8536 0.87993

K734 + 088 14.2012 3.7685 2.9179 0.90497

K734 + 843 52.2661 7.2295 5.3957 0.8889

K734 + 983 86.1127 9.2797 7.3639 0.68259

K735 + 123 6.6045 2.5699 2.0935 0.96168

K735 + 263 4.2581 2.0635 1.6984 0.97730

K735 + 403 81.6310 9.0205 7.6991 0.75010
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measurement. This method has certain advantages in distance
detection, especially in tunnel scenarios, where a camera spacing
of 150 m allows for continuous tracking of vehicle trajectories and
speeds based on video. For further analysis of speed tracking
differences within the 150 m detection range, it’s divided into
The first half and The second half. The first half data shows a
minimum significance level of 0.4261, indicating small differences in
speed tracking, reflecting stable tracking performance. The second
half data has a minimum significance level of 0.0179, indicating
some fluctuations in speed in the End section of The second half, but
the absolute speed error still shows good precision.

6 Conclusion

This article proposes an improved YOLOv5s + DeepSORT
vehicle speed measurement algorithm for surveillance videos in
highway scenarios, capable of vehicle target detection and
continuous speed tracking without camera prior parameters and
calibration. The main conclusions are as follows:

(1) The introduction of the Swin Transformer Block module
improves the model’s ability to capture local areas of
interest, effectively increasing the detector’s accuracy; using
CIoU Loss to replace the original GIoU loss further enhances

the detector’s localization precision and effectively reduces
omissions in congested vehicle scenarios; the algorithm shows
good statistical accuracy for different vehicle types, with APs
of Car, Bus, Truck being 93.58, 91.26, 90.05 respectively, mAP
at 92.42, and F1_Score at 97.

(2) A calibration algorithm for traffic monitoring scenarios was
proposed, which uses known reference points such as the
image’s centerline and contour marks. It applies Maximum
Likelihood Estimation, MaximumA Posteriori Estimation, and
Non-linear Least Squares method for the conversion between
image pixel coordinates and actual coordinates. The parameter
estimation showed good results, with Maximum Likelihood
Estimation being the best, and AIC, BIC, R2, and p-value being
83.56, 87.86, and 8.66E-10 respectively.

(3) The vehicle speed measurement is achieved by calculating the
average of instantaneous speeds over multiple frames. This
method’s effective measurement distance is about 140m, with
an absolute speed error generally within 1–8 km/h, meeting the
accuracy requirements for speed measurement. It has certain
advantages in distance detection, especially in tunnel scenarios
where a camera spacing of 150 m allows for continuous
tracking of vehicle trajectories and speeds based on video.

(4) However, during experiments, it was found that vehicle speed
accuracy is influenced by road geometry, environmental
conditions, lighting, resolution, etc., These can be mitigated

FIGURE 9
Analysis of speed tracking effect.
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through image enhancement optimization algorithms or by
increasing video resolution, thus achieving more accurate
vehicle speed measurements, which help regulatory bodies
more effectively control speeds on the roads, reducing
instances of speeding and thereby decreasing traffic
accidents, enhancing road safety. Additionally, with the
rapid development of multi-sensor fusion technology, the
integration of video and millimeter-wave radar detection
results can complement each other, providing technical
support for active traffic safety management on highways.
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Auto-verbalizer filtering for
prompt-based aspect
category detection

Yantuan Xian1,2, Yuan Qin1,2 and Yan Xiang1,2*
1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming, China, 2Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and
Technology, Kunming, China

Aspect category detection (ACD) is a basic task in sentiment analysis that aims to
identify the specific aspect categories discussed in reviews. In the case of limited
label resources, prompt-based models have shown promise in few-shot ACD.
However, their current limitations lie in the manual selection or reliance on
external knowledge for obtaining the verbalizer, a critical component of prompt
learning that maps predicted words to final categories. To solve these issues, we
propose an ACDmethod to automatically build the verbalizer in prompt learning.
Our approach leverages the semantic expansion of category labels as prompts to
automatically acquire initial verbalizer tokens. Additionally, we introduce an
indicator mechanism for auto-verbalizer filtering to obtain reasonable
verbalizer words and improve the predicting aspect category reliability of the
method. In zero-shot task, our model exhibits an average performance
improvement of 7.5% over the second-best model across four ACD datasets.
For the other three few-shot tasks, the average performance improvement over
the second-best model is approximately 2%. Notably, our method demonstrates
effectiveness, particularly in handling general or miscellaneous category aspects.

KEYWORDS

aspect category detection, prompt learning, few-shot, verbalizer, sentiment analysis

1 Introduction

Aspect category detection (ACD) is a subtask of sentiment analysis that aims to detect
the categories contained in reviews from a predefined set of aspect categories. For example,
the sentence “Nevertheless the food itself is pretty good” contains the aspect category
“Food,” and the sentence “But the staff was so horrible to us” contains the aspect category
“Service.” Most of the existing excellent methods [1–3] finetune the pre-trained language
models to solve ACD tasks, and their effects largely depend on the size of labeled data.
However, as online reviews are updated quickly, the aspect categories will also be updated. It
is difficult to provide sufficient label data for newly emerging categories. Therefore, the
performance of the above methods will drop significantly when there are only few
labeled samples.

In order to stimulate pre-trained language models (PLMs) to exhibit a greater
performance under the conditions of few-shot and zero-shot, the researchers were
inspired by GPT-3 [4] and LAMA [5] and proposed to use prompt to convert the
classification task into a cloze task, which unified the downstream task and PLMs into
the same schema to maximize the use of prior knowledge of PLMs. Prompt learning obtains
the probability of each token filled in the [MASK] position in the PLM vocabulary through
the prompt and then uses the verbalizer to map it to the final category. As one of the
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important components of prompt learning, the verbalizer contains
the mapping relationship between prompt words and the final
aspect category. Therefore, constructing a high-quality prompt
word set can greatly improve the performance of the verbalizer.

The current methods of constructing prompt word sets can be
roughly divided into three types: manual construction [6], search
based [7], and continuously learnable [8]. Table 1 shows the
prompt words selected for the “miscellaneous” category of the
restaurant dataset by different methods. It can be seen that the
main problems are as follows: 1) These methods either require
intensive manual work or require the support of external
knowledge bases and labeled data and, thus, cannot handle
zero-shot tasks at a small cost. At the same time, many words
searched from external knowledge will not appear in the PLM
vocabulary. For example, for the words highlighted in red in the
third row of Table 1, statistics show that 11 of the first 50 prompt
words obtained for this category cannot be recognized by PLMs.
This is because the vocabulary of the external knowledge base is
different from the PLMs, due to which the overlap between the
two is lacking. 2) The manually constructed prompt word sets
only contain category words themselves, so the diversity of
prompt words is not enough. For example, the first row in
Table 1 only contains the word “miscellaneous” itself. Search-
based methods do not consider the specificity of prompt words,
where a word may appear in different word sets. For example,
words such as “anonymous” in the second row of Table 1 also
appear in prompt word sets of other categories at the same time.
In addition, these methods do not consider the characteristics of
the ACD task, such as categories are basically represented
by nouns.

In response to the first type of problems mentioned above, we
propose to use the semantic expansions of category labels as
prompts to directly search for the initial prompt words from the
internal vocabulary of PLMs so that the prompt words in the
verbalizer conform to the PLM vocabulary. For the second type
of problem, we propose a filtering mechanism to select prompt
words. Specifically, we first consider the task characteristics; that is,
the ACD task is to detect predefined aspect categories contained in
sentences which should be represented by words with actual
meaning. Therefore, we start from the parts of speech and select
nouns, verbs, and adjectives. Second, we consider diversity and select
words with high semantic similarity to the category. Finally, in terms
of specificity, choosing words that are much more similar to the
category to which they belong than to other categories as prompt
words can avoid confusion in the mapping process. The main
contributions of this article are as follows:

1) Auto-verbalizer filtering methods are proposed for prompt-
based aspect category detection, which alleviates the
limitations of the detection performance caused by
unreasonable verbalizer design in existing prompt-based
ACD methods.

2) The semantic extension of category labels is used as prompts to
construct an initial verbalizer and eliminate dependence on
labeled data and external knowledge bases. At the same time,
an automatic filtering mechanism is introduced for the
verbalizer to select prompt words related to aspect categories.

3) Experiments show that the proposed method can achieve
optimal performance under zero-shot and few-shot
conditions compared with existing prompt-based
learning methods.

2 Related work

2.1 Aspect category detection

Semeval proposed the ACD subtask in 2014. Under the
condition of sufficient labeled data, most of the previous ACD
methods are based on machine learning, such as the classic SVM
[9] and maximum entropy [7,10] which handcrafts multiple features
such as n-grams and lexical features to train a set of classification
devices. In recent years, methods based on deep neural networks [2]
have been widely adopted. In [11], the output of CNN training as a
type of feature and other POS tags and other features was sent into
the one-vs-all classifier. The one-vs-all classifier used in [3] consists
of a set of CNN network layers above the LSTM layer, which
implements aspect category detection and aspect term extraction
in parallel.

2.2 Prompt verbalizer construction

In the case of insufficient labeled data, researchers detect
categories by mining association rules [12] or calculating word
co-occurrence frequencies [13], but this requires obtaining
reasonable rules in advance. Since the release of GPT-3, prompt
learning has provided new ideas for ACD when labels are
insufficient. The way of using prompts to stimulate internal
knowledge of PLMs and avoiding the introduction of a large
number of parameters to be trained usually includes two
important parts: templates and a verbalizer. According to the
manually created cloze template provided by the LAMA dataset,
the previous templates are all artificially created auxiliary sentences
which are human-understandable. For example, manually designed
prefix-type prompts [4] had achieved good results in some NLP
tasks, such as text question answering and neural machine
translation. However, although this type of template has the
advantage of being intuitive, it requires a lot of experience and a
lot of time to obtain good performance prompts and cannot be
optimized to the best. To solve these problems, automated template-
based methods are proposed [14–17], which automatically search
for natural language phrases in discrete space to form prompt
templates. Later, scholars discovered that the prompts were
constructed to allow PLMs to better understand the task rather

TABLE 1 Examples of verbalizer words in the “miscellaneous” category. Bold
indicates that it appears in the other categories, and “xx” indicates that it
does not appear in the PLM vocabulary.

Method Prompt words

Manual Miscellaneous,. . .

Search based Bryan, anonymous, Wes, noise, LM, KH, Ethan, Wayne, dark,
iii, YOU. . .

KBs Sundry, assorted, heterogeneous, multifarious, extraneous,
mixed. . .
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than humans. Therefore, they proposed that templates do not need
to be limited to human understandability. In [18–21], continuous
templates were directly constructed in the model embedding space.
The template is no longer restricted by additional parameters and
can itself be trained and optimized along with downstream tasks.

When working on templates, researchers are also focusing on
exploring another important component of prompt learning—the
construction of the verbalizer. The most straightforward method is
to use manually selected words to construct prompt word sets, and it
has been proven to be effective [7]. However, this type of method
involves personal biases, so the coverage of the vocabulary is
insufficient. Based on these problems, some automatically search-
based methods have been proposed. The work in [22] searched for
label words in the pruned candidate space and redefined the k
classification problem as a binary classification problem of “1 vs. k-
1” so that PLMs can distinguish category y from other categories. In
[21], a two-stage gradient-based automatic search method was used
to calculate the representation of each category in the first stage and
train a classifier. The second stage uses this classifier to select words
that are close to the category representation to construct a verbalizer.
In [23–25], relevant words were selected from the external
knowledge base and then refined to align with the PLM
vocabulary. However, such automatically search-based methods
require the assistance of sufficient training data or external
knowledge. In contrast to the discrete verbalizer, the continuous
verbalizer [8,20] represents categories in word embedding space and
can be trained and optimized. In [8], vector form was used to
represent categories, carry out a dot product between the token
vector predicted by PLMs and the category vector, and select the
corresponding category that obtains the maximum dot product as
the prediction result. In [26], the filled-in token vectors of all
sentences under each category were averaged to obtain the
prototype representation of this category, and this prototype was
continuously optimized. Similarly, continuous vectors also require a
large amount of data for training and optimization, so they cannot
be directly applied to zero-shot learning.

3 Prompt-based aspect category
detection with auto-verbalizer filtering

3.1 Task definition

ACD is to identify aspect categories y ∈ 1, 2, . . .C{ } for a given
sentence, where C is the number of aspect categories. The basic
process of prompt-based ACD is as formula (1): the ith sentence xi is
packed into xpi with a template, which is a natural language text with
the “[MASK]” token:

xp
i : xi [sep] It is about [MASK] category. (1)

We obtain the probability p ([MASK]� v|xp
i ) of each token v in

the vocabulary V ∈ RD
filling in the [MASK] position by PLMs. The

probability distribution vector of the entire vocabulary for the ith
sentence is PV

i ∈ R1×D. Finally, the probability of category y can be
calculated as formula (2)

p MASK[ ] � v|xp
i( ) � f p MASK[ ] � v|xp

i( )|v ∈ Vp( ), (2)

where Vp is the prompt word set of the verbalizer and f is a function
transforming the probability of prompt words into the probability of
the category.

3.2 Initial construction of the verbalizer
based on label semantic extension

When evaluating aspect categories of reviews, the most
important consideration is the semantic similarity between the
review and the label categories [27–29]. Consequently, the
specific category label itself serves as valuable prior knowledge
that can be utilized. Following this idea, we propose to utilize
category labels as prompts to construct the verbalizer.

Specifically, as shown in Figure 1A, we use task-specific
templates such as “[x]. This is about the [MASK] category,”
where [x] is the definition statement of the corresponding
category label j in Wikipedia (see Table 2). The definition
statement is encapsulated into a natural language text xcj with
[MASK] tokens and is sent to PLMs to obtain the probability
that each token in the vocabulary V is filled to the [MASK]
position. In this way, the probability distribution vector
PV
j ∈ R1×D for a given label category j can be obtained. As shown

in Figure 1B, this is carried out for different label categories, and a
complete verbalizer initial probability matrix P ∈ RC×D is
constructed.

3.3 Indicator mechanism for
verbalizer filtering

We propose an indicator-based filtering mechanism to improve
the verbalizer. Specifically, we set an indicator value bji for each
probability pji in the probability matrix P representing the
correlation of token i with a specific category j. A value of
1 signifies that the token is highly important for the
corresponding category, whereas a value of 0 signifies the
opposite. Initially, all indicator values are set to 1, forming the
indicator matrix B ∈ RC×D. Next, as shown in Figure 1C, we refine the
indicator matrix to obtain more reasonable prompt words by
considering three parts.

(1) In order to be more consistent with the characteristics of the
ACD task, we use the pos_tag method from the nltk package
to define the set of tokens in the vocabulary V that match
nouns, verbs, and adjectives as pos{ } and then adjust the
corresponding element values in the indicator matrix B to get
a new indicator matrix Bpos according to formula (3):

bposji � bji if vi ∈ pos{ }
0 else

{ (3)

(2) In order to retain prompt words with more highly semantic
similarity to a specific category, we further modify the
element values in the matrix Bpos based on category
semantic relevance and obtain Bsem according to formula (4):

bsemji � bposji if pji >MAX_M PV
j( )

0 else
{ , (4)
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FIGURE 1
Illustration of our model. (A) Initial Verbalizer words probabilities based on label semantic extension for the “food” category. (B) Initial Verbalizer
construction for all the categories. (C) Indicator mechanism for Verbalizer filtering. (D) The process of prediction.

TABLE 2 Semantic extensions of categories. The semantic extensions are derived from Wikipedia or Baidu Encyclopedia. We take the first one or two
sentences of the definition as the semantic extensions.

Label Semantic extension

Food Food is any substance consumed by an organism for nutritional support

Service Customer service refers to the provision of assistance to customers or clients

Price Price is the quantity of payment or compensation given by one party to another in return for goods or services

Ambience Ambience which is also known as atmospheres or backgrounds

Miscellaneous Miscellaneous refers to a collection of writings on various subjects or topics

Comfort Comfort is the physical and psychological sense of ease

Size Clothing size in general is the magnitude or dimensions of a thing

Quality Quality is a product or service free of deficiencies

Layout Keyboard layout is an arrangement of the keys on a typographic keyboard

Connection Connection refers to a communication link between two or more devices

Service Customer service is the assistance and advice provided by a company to those people who buy or use its products or services

Image A digital image is an image composed of picture elements which is also known as pixels

Sound The sound is the loudness of the sound and the characteristics of the timbre
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whereMAX_M(.) represents theMth largest probability value in the
probability distribution vector of the label category.

(3) In order to select the prompt words with specificity, we adjust
the element values in the matrix Bpos based on the following
formula to obtain the updated indicator matrix Bspe

according to formula (5):

bspeji �
bposji if

pji

∑C
j�1

pji

> α

0 else

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, (5)

where α is a threshold indicating that the words exceeding this
threshold are class-specific.

Also, the modified matrix B′ is calculated as formula (6)

B′ � Bsem◦Bspe, (6)
where ◦ represents the Hadamard product.

Finally, the prompt words of each category are composed of tokens
whose indicator value is 1 in the matrix B′ under this category.

3.4 Aspect category prediction

During category prediction, we package the review xi into a
natural language text like in Figure 1D and send it to PLMs to obtain
a probability distribution vector PS

i ∈ R1×D and finally map it to the
aspect category label by the constructed verbalizer.

For the zero-shot scenario, we assume that all prompt words in
the verbalizer contribute equally to the prediction of the
corresponding category, so we calculate the category probability
Ŷij of the sentence xi with respect to category j using the following
formula (7):

Ŷij � PS
i Bj′( )T. (7)

For few-shot scenario, we set a weight parameter for each token,
and the probability Ŷij of the sentence xi with respect to category j is
calculated as formula (8)

Ŷij � PS
i ◦W( ) Bj′( )T, (8)

where W ∈ R1×D is the parameter vector to be trained, which can be
optimized using the cross-entropy loss as formula (9). The objective
function is the loss between the final predicted label and the true label:

loss � − 1
C

∑
i∈|Dtrain |

∑
j∈C

ŷlogp yj|xi( ), (9)

where ŷ is the true label of input xi.

4 Experiment

4.1 Datasets

We conducted experiments on four ACD datasets, including
Restaurant-2014, Boots, Keyboards, and TV of the Amazon dataset.
In the few-shot experiment, following most few-shot learning
settings, we adopt the N way K shot mode, randomly selecting K

samples of each category for the validation set and the training set,
and the remaining samples are used as the test set. The size of the
training set and validation set are |Ddev|=|Dtrain|=N * K.

4.2 Baselines

We selected several advanced models for comparative
experiments. Same as this model, all prompt learning methods
adopt the most basic prompt learning method: templates were
used to convert the input into a natural language text with the
[MASK] token, and the vocabulary token probability output by the
model is mapped to class labels by the verbalizer. All models use the
same template, so only the verbalizer is constructed differently.

Finetuning: The traditional finetuning methods add a
classification layer after the PLM model, obtaining the hidden
vector of [CLS] and making predictions via the classification layer.

Manual: The manually constructed verbalizer contains limited
category prompt words. In this experiment, we use the category
word itself to represent the only prompt word of this category.

WARP [8]: The model uses continuous vectors instead of discrete
words to represent the categories. The output of the [MASK] position
also obtains its hidden vector, and the two calculate the probability of
belonging to different categories through the dot product. In the
experiment, we use the word embedding of the category word as
the initialization of the category vector.

PETAL [22]: The model uses labeled data and unlabeled data to
automatically search for prompt words from PLM pruned
vocabularies. By maximizing the likelihood function, it ultimately
prefers to select words with higher frequency.

Auto-L [17]: The model sequentially prunes the search space
through the initial probability distribution of the vocabulary and
maximizing the accuracy in the zero-shot task and finally uses
reordering to search for the best top n prompt words on the
validation set. We fixed the automatic template generation part
of the model and only use the construction part of the verbalizer.

KPT [23]: This method expands the verbalizer with the help of
external knowledge and then refines the selected prompt words in
various ways on the support set.

4.3 Experiment settings

The PLMs in the model adopt RoBERTa large. For zero-shot
experiments, since there are no trainable parameters, we use the
results of one experiment as the experimental data. For few-shot
experiments, we use five different seeds to randomly select data, and
the final experimental data are obtained by averaging the results from
these five experiments. This setting ensures that the experimental
findings are not overly influenced by a specific random initialization
and provide a more robust and reliable assessment of the model’s
performance. Macro F1 is used as the test indicator in the experiment.

4.4 Main results

Table 3 contains all the experimental results on the four datasets,
where AVG represents the average performance of eachmodel of the
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four datasets and bold represents the optimal performance. As
shown in the table, our model achieves almost the best results
under all settings. Compared with the second-best model, our model
increased by 9.3%, 5.9%, 4.7%, and 9.9%, respectively, on the four
datasets under the zero-shot setting, and the growth rate was
particularly obvious. It shows that the prompt words searched
from the PLM vocabulary using our method can better represent
the category labels. Under different K values of the few-shot task, our
method maintains a certain degree of performance growth in
different field datasets which indicates that our model has a
certain degree of generalization. Using the average performance
AVG for comparison, our model increased by 2.2%, 2.8%, and 2.0%,
respectively, under different K-shots compared to the second-best
model. This shows that introducing weights for each prompt word
and further training are beneficial to the optimization of the
mapping process.

When further comparing different prompt learning methods, it
can be found that our model almost achieved the best results under
all K value settings, which proved the effectiveness of the design of
this method. When the K value is small, the effect of the PETAL
model is lower. According to the construction method of the
verbalizer, it is speculated that PETAL needs training data to
search for prompt words. So, when the labeled data are less, the
deviation of the searched prompt words is greater. Auto-L may not

consider the word confusion problem, so the effect is still lacking. As
the K value continues to increase, KPT becomes the best model
among all baselines, proving that the model requires training data to
reduce the impact of noise words to a certain extent.

In addition, it is observed that the finetuning method is lower
than all cue learning models in both zero-shot and few-shot tasks, so
prompt learning is an advantageous method when there is less
labeled data. However, as the training data increases, that is, as the K
value increases, the gap between the two results decreases. It can be
speculated that when the K value increases to a certain value, the
finetuning method will still show comparable results.

4.5 Ablation study

To evaluate the impact of some designs in the model on the final
performance, we conduct ablation experiments. We tested the
influence of the three parts of the indicating filtering mechanism
on the four datasets, respectively, and the results are shown in
Figure 2. “w/o pos,” “w/o spe,” and “w/o sem” mean not to use Bpos,
Bspe, and Bsem, respectively for verbalizer filtering.

Compared with the complete model, the significant decrease
in experimental results of three ablation models illustrates that
these three parts of the indicator mechanism can greatly ensure

TABLE 3 Macro F1 (%) of different models on the four datasets.

K Dataset Finetuning Manual WARP PETAL Auto-L KPT Ours

0-shot Restaurant 5.4 28.8 – – – 38.1 74.4

Boots 15.9 32.4 – – – 28.8 34.7

Keyboards 11.3 22.7 – – – 20.4 25.1

TV 3.4 18.7 – – – 16.3 26.2

AVG 9.0 25.7 – – – 25.9 33.4

5-shot Restaurant 40.3 67.6 70.9 63.2 71.2 67.9 73.5

Boots 23.7 55.4 60.1 48.6 57.2 55.6 60.9

Keyboards 22.2 39.6 39.7 42.8 44.3 40.1 45.4

TV 25.9 47.9 44.1 46.3 49.7 47.8 51.2

AVG 28.0 52.6 53.7 50.2 55.6 52.9 57.8

10-shot Restaurant 66.5 70.3 72.2 76.5 78.0 77.3 78.8

Boots 43.2 61.6 60.2 48.4 58.3 66.1 67.2

Keyboards 30.2 49.6 51.4 43.2 45.6 46.3 51.3

TV 43.7 48.6 47.5 46.8 50.6 49.2 52.6

AVG 45.9 57.5 57.8 53.7 58.1 59.7 62.5

20-shot Restaurant 78.4 79.2 76.6 80.3 80.6 81.2 82.8

Boots 55.7 68.3 65.3 64.4 64.3 65.2 69.2

Keyboards 44.1 60.1 58.8 56.2 56.5 57.4 60.9

TV 51.9 50.9 52.2 50.1 51.8 51.1 53.5

AVG 57.5 64.6 63.2 62.8 63.3 63.7 66.6

Bold values indicate the best performance.
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that the most reasonable prompt words are searched for each
category, thereby ensuring model performance. In addition, the
following can be clearly observed: 1) The “w/o pos” model
performs the worst on all four datasets, and the growth rate is
lower than that of other models. This shows the prompt word set
that has not been denoised contains more meaningless tokens,
and these tokens have a higher prediction probability when filling
in the [MASK] position, resulting in a decrease in the mapping
performance of the verbalizer. 2) The performance of the “w/o
sem” and “w/o spe” models is similar, indicating that category
specificity and category semantic similarity are equally important
when searching for prompt words. The common constraints of
the two make each prompt word set not only have as many
prompt words as possible and avoid mapping contradictions
between different categories, which is beneficial to the
subsequent mapping process.

4.6 Comparison of the
miscellaneous category

This section quantitatively and qualitatively studies the effects of
different models on the “miscellaneous” and “general” categories.
The Amazon dataset contains the “general” category. For
convenience of presentation, the two labels are collectively
referred to as “miscellaneous” below. Figure 3 shows the results
of each model under zero-shot and few-shot conditions,
respectively. Table 4 shows the prompt words of “miscellaneous”
obtained by different models. As shown in Figure 3, our model
showed excellent results in different settings; especially in the zero-
shot task, the improvement effect is obvious. On the zero-shot task,
our method demonstrates improvements of 14.1%, 10.6%, 6.9%, and
11.1% compared to the second-best model across four datasets.
Additionally, for the 10-shot task, our method exhibits

enhancements of 3.0%, 4.8%, 6.3%, and 3.8% on the same
datasets, respectively.

Referring to the data in Table 4, we speculate that because the
sentences of the “miscellaneous” category have no obvious
characteristics and the range of semantic expression is wide,
the manual method only uses category word as the prompt word,
which obviously cannot cover all data of this category, so the
results are not ideal. Although KPT has expanded the scope of
mapping, most of the prompt words searched from the external
knowledge base for this category are uncommon and cannot be
recognized by PLMs, resulting in poor performance in this
category. Although the search-based model does not suffer
from these two problems, it ignores the confusion between
categories and can easily cause misjudgments during the
prediction process. In addition, our model focuses on and
solves the above problems, and the obtained prompt words
have a high correlation with the category and can show good
prediction ability on semantically ambiguous sentences.

4.7 Impact of the semantic extension

Our method still has certain prediction ability in the case of
zero-shot because of using the semantic extended sentences of
category labels as prior knowledge. This section studies the
impact of the semantic extended sentences of category labels.
Figure 4 shows the effect of the length of the semantic extension
sentence on the final results. Wikipedia has a very detailed
explanation for category words, usually from different aspects, so
the optional range of semantic expansion sentences is long. The
length “len” is calculated based on the number of tokens. In addition
to using the category word itself with “len” as 1, the length of the
semantic extended sentence is changed by continuously increasing
the number of tokens in the definition statement.

FIGURE 2
Ablation study on four datasets. (A) Ablation Study on “Restaurant” dataset. (B) Ablation Study on “Boots” dataset. (C) Ablation Study on “Keyboards”
dataset. (D) Ablation Study on “TV” dataset.
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Combining the results of the four datasets, it can be
observed that the experimental results have improved with
the increase in extended sentence tokens. This may be
because the semantics of sentence expressions are rich, and
PLMs can better understand the meaning of category labels to
search for more reasonable prompt words. However, when the
length is too long, the performance decreases instead. We
speculated that it may be because the meaning contained in
the semantic extensions is too complex leading to
understanding deviation, which is not conducive to the

model to choose more accurate prompt words. The semantic
extended sentences used in the best experimental results of the
method can be found in Table 2.

4.8 Impact of the templates

Template is another important component that affects prompt
learning performance, so in this section, we tested the impact of
different prompt templates on the proposed method. Table 5 lists all

FIGURE 3
Experiments on the “Miscellaneous” category. (A) Zero-shot experiments on “Miscellaneous” category. (B) Few-shot experiments on
“Miscellaneous” category.

TABLE 4 Prompt words for the “Miscellaneous” category.

Dataset Method Verbalizer token

Restaurant Manual miscellaneous

PETAL darkness, fiction, opinions, academia, interests, sociology, links,. . .

Auto-L Bryan, anonymous, Wes, noise, LM, Ethan, Wayne, dark,. . .

KPT heterogeneous, diverse, dissimilar, disparate, different, unlike,. . .

Ours same, general, main, particular, whole, specific, various, primary,. . .

Amazon Boots Manual general

PETAL remembered, Articles, arrived, finished, published, instructed,. . .

Auto-L produced, systems, published, female, default, quoted, . . .

KPT army, officer, brigadier, military, air, commander, field,. . .

Ours interesting, done, closed, clear, true, possible, established, like,. . .

Amazon Keyboards Manual general

PETAL votes, remarks, guy, Subject, excerpt, speakers, policy,. . .

Auto-L god, voice, journal, Jackson, guy, James, blogger, admin, hi,. . .

KPT lieutenant, cosmopolitan, universal, ecumenical, consumable,. . .

Ours included, fix, changed, summary, various, basic, likely,. . .

Amazon TV Manual general

PETAL url, AUTHOR, Hannah, username, starred, published, Votes,. . .

Auto-L controversy, followers, community, ranking, Society, twitter,. . .

KPT generality, rank, oecumenical, commander, admiral, full. . .

Ours titled, defined, concluded, called, summarized, cited, listed,. . .
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the templates used in experiments. Figure 5 shows the results of
using different templates on the Restaurant and Boots datasets
under the 10-shot setting. As can be seen from the figure, our
model not only maintains excellent performance in both datasets but
also has a relatively gentle change curve compared with some other
methods, indicating that it has a certain degree of robustness to
different templates.

4.9 Impact of hyperparameters

In this section, we explore the impact of hyperparameters on
experimental results and conduct grid searches on the Restaurant
and Boots datasets for the two hyperparameters of “taking the
first M words” and “taking the specificity probability greater than
the threshold α.” For the parameter M and parameter α, we set
them to 50, 100, 300, 500, 1000{ } and 0.90, 0.80, 0.75, 0.70, 0.60{ },
respectively. We use grid search to find the optimal values within
the ranges of two parameters. The experimental results for
parameter M are shown in Figure 6A. The results show that as
the M value continues to increase, the model performance
increases. However, when M increases to 1,000, the
performance decreases, indicating that at too large M, it may
select some low-quality prompt words, resulting in the reduction
of the final classification results. Similar to the M value, as shown

FIGURE 4
Impact of semantic extension length.

TABLE 5 Templates used in experiments.

ID Templates

1 The “mask” category is discussed

2 The sentence discusses the “mask” category

3 It is about the “mask” category

4 Category: “mask”

FIGURE 5
Impact of templates. (A) Experiment on “Restaurant” dataset. (B) Experiment on “Boots” dataset.

FIGURE 6
Impact of hyperparameters. (A) Experiment of parameter M. (B) Experiment of parameter α.
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in Figure 6B, the α experimental curve also shows a trend of
increasing first and then decreasing. This is because a too small α
value will also introduce low-quality words and affect the model
performance. The best experimental results in this article were
obtained when M = 800 and α=0.8.

4.10 Case study

Table 6 shows some examples from different test sets. For
example 1, the meaning expressed by this sentence does not
belong to the categories “food,” “service,” “price,” and
“ambience,” but to “miscellaneous.” We speculate that due to the
word “restaurant” in the sentence, the prompt word “restaurant” in
the “food” category from the KPT model is easy to obtain a higher
probability, and thus, it is mapped to the “food” category. The
manual method detected errors in both examples. This may be
because the category words themselves cannot better summarize the
meaning of the example sentences, and it is easy to be misjudged as
other categories.

5 Conclusion

In this paper, we propose a simple and effective method for
aspect category detection based on prompt learning. To address
the challenge of lack of labeled data and external knowledge, the
semantic expansion of category labels is exploited to build the
initial verbalizer. Additionally, we employ an indication
mechanism to construct an appropriate verbalizer for category
mapping. We conduct experiments on zero-shot and few-shot
settings, respectively, and the results demonstrated the
superiority of the proposed method. In our article, the
verbalizer is constructed under a predefined manual template.
In recent years, there has been a lot of work exploring the design
of templates, but in most cases, the construction of the two is still
separated, and both require certain labeled data. Therefore, in
future work, we plan to further explore how to build prompt
templates and verbalizers simultaneously to find the best
combination of these two components.

.
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SCSONet: spatial-channel
synergistic optimization net for
skin lesion segmentation
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In the field of computer-assisted medical diagnosis, developing medical image
segmentation models that are both accurate and capable of real-time operation
under limited computational resources is crucial. Particularly for skin disease
image segmentation, the construction of such lightweight models must balance
computational cost and segmentation efficiency, especially in environments with
limited computing power, memory, and storage. This study proposes a new
lightweight network designed specifically for skin disease image segmentation,
aimed at significantly reducing the number of parameters and floating-point
operations while ensuring segmentation performance. The proposed ConvStem
module, with full-dimensional attention, learns complementary attentionweights
across all four dimensions of the convolution kernel, effectively enhancing the
recognition of irregularly shaped lesion areas, reducing the model’s parameter
count and computational burden, thus promoting model lightweighting and
performance improvement. The SCF Block reduces feature redundancy
through spatial and channel feature fusion, significantly lowering parameter
count while improving segmentation results. This paper validates the
effectiveness and robustness of the proposed SCSONet on two public skin
lesion segmentation datasets, demonstrating its low computational resource
requirements. https://github.com/Haoyu1Chen/SCSONet.

KEYWORDS

light-weight model, medical image segmentation, attention mechanism, mobile health,
skin lesion segmentation

1 Introduction

In 2024, it is projected that around 99,700 cases of in situ melanoma will be diagnosed,
with an estimated 13,120 deaths from skin cancer, of whichmelanoma accounts for 99% [1].
Early detection of melanoma can often lead to cure through simple outpatient surgery, as
opposed to late-stage diagnosis significantly reducing survival rates from over 99%–32%.
Early detection is thus crucial for improving survival chances [2].

Dermatologists typically use dermatoscopy, an intuitive method for skin lesion
examination, which relies on experienced doctors manually inspecting images [3].
However, this method can be less accurate for inexperienced dermatologists [4].

Traditional image segmentation methods, such as threshold-based [5], edge-based [6],
and clustering-based [7] approaches, have played a role but are often time-consuming and
error-prone, with limited effectiveness on complex datasets. In contrast, deep learning
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enhances accuracy and adaptability in image segmentation, making
skin disease diagnosis more efficient and widespread.

Over the years, with the enhancement of computing
capabilities and advancements in deep learning technologies,
segmentation methods based on convolutional neural
networks have seen significant performance improvements [8].
Fully Convolutional Networks (FCN) were developed as pioneers
for semantic segmentation [9]. The introduction of the U-Net
network marked a major breakthrough in medical image
segmentation [10]. Following that, the integration of
Transformer technology through Vision Transformer (ViT)
further enhanced the capabilities in medical image
segmentation [11]. These advanced network technologies
continue to push the performance and accuracy of medical
image segmentation, providing more efficient and widespread
technical support for the diagnosis of skin diseases.

Previous work on enhancing the performance of the U-Net
network has tended to introduce more complex modules. However,
in the field of medical image segmentation, the importance of model
lightweighting is self-evident. In the modern medical field, especially
in the application of medical image analysis, the importance of
lightweight models is becoming increasingly prominent. These
models can run efficiently on devices with limited memory and
processing capabilities, and they show great potential in mobile
healthcare and rapid response scenarios. Forn make high-qua
instance, in emergencies, they can be used to quickly diagnose a
patient’s condition, saving valuable treatment time. Moreover, these
models are particularly valuable in remote areas because they cality
medical diagnostic services more widespread and accessible,
representing a significant advancement for typically resource-
poor regions.Furthermore, the economic benefits of lightweight
models cannot be overlooked. They can reduce the investment in
hardware and operations for medical institutions, bringing cost
benefits to medical systems around the world, especially in
developing countries. By lowering medical costs, lightweight
models provide more equal opportunities for medical services to
a broader population, thereby helping to address socio-economic
inequalities. In summary, the development of lightweight medical
image segmentation models is not only a manifestation of
technological progress but also an important part of social
responsibility and commitment, aiming to improve the health
level of all humanity by popularizing high-quality medical services.

To address the need for lightweight models, solutions like
MobileNets [12–14] and transformer-based lightweight models
such as MobileViT [15] have been developed for real-time image
classification and segmentation of 2D images. Inception-ResNet
optimizes inception modules and residual networks to enhance
image feature extraction and detail restoration [16]. Additionally,
in medical image segmentation, MISegNet [17] offers a powerful yet
lightweight network for real-time segmentation of multimodal
medical images. The UNeXt [18] model, combining UNet and
MLP technologies, reduces parameters and computational load
while maintaining high performance. MALUNet, through
channel reduction and multiple attention mechanisms, shows
superior performance in skin lesion segmentation, maintaining
compactness and efficiency [19].

While existing lightweight medical image segmentation models
have made progress in reducing computational resource

consumption, they often overlook the issues of spatial and
channel redundancy. Previous research has shown that there is
considerable redundancy in both the spatial and channel dimensions
of deep neural network feature maps. This redundancy can lead to
insufficient extraction of key edge features in lesion areas, affecting
the model’s performance and segmentation accuracy. Moreover, the
presence of redundancy leads to wasteful use of computational
resources. Therefore, addressing spatial and channel redundancy
is crucial for enhancing the segmentation performance of
lightweight medical image models.

In this study, we designed a U-shaped network architecture, the
core of which is the Spatial-Channel Fusion Block (SCF Block). In
addition, by incorporating ConvStem at the initial stage of feature
extraction, we combined the stability of traditional convolution with
the dynamic adaptability of Omni-dimensional Dynamic
Convolution (ODConv) [20]. Additionally, our network
introduces Channel Attention Bridge Block (CAB) and Spatial
Attention Bridge Block (SAB) through skip connections,
effectively achieving fusion of multi-level and multi-scale
information. The core SCF Block, based on Spatial and Channel
Reconstruction Convolution (SCConv) [21], significantly reduces
feature redundancy through spatial-channel feature fusion
technology, incorporating the Efficient Multi-Scale Attention
Module (EMA) [22] and Partial Convolution (Pconv) [23] to
establish short and long-range dependencies and enhance feature
extraction capabilities. This ensures a substantial improvement in
SCConv’s segmentation performance while reducing the parameter
count and computational cost.In summary, our contributions
are threefold:

• The Spatial-Channel Fusion Block (SCF Block) introduced
aims to apply SCConv in the medical image segmentation
field, reducing redundancy in the spatial and channel
dimensions of feature mappings as well as in dense model
parameters. It enhances the model’s ability to extract key edge
features in lesion areas, significantly reducing parameter count
and computational cost while ensuring
segmentation accuracy.

• We introduced a unique lightweight feature extractor,
ConvStem, that employs the ODConv convolution
mechanism. By learning four different types of attention in
parallel across the four core spatial dimensions, this
mechanism not only enhances the model’s efficiency in
capturing features but also significantly reduces the
additional number of parameters. ConvStem merges the
stability of traditional convolution with the dynamic
adaptability of enhanced convolution structures, ensuring
the model remains lightweight while effectively capturing a
richer array of local features and details.

• We present SCSONet, a model characterized by innovative
lightweight design and efficient feature extraction
mechanisms. It significantly reduces the model’s parameters
while maintaining segmentation accuracy. This approach not
only streamlines the computational demands but also
enhances the model’s applicability in real-world scenarios
where resources are limited, ensuring both high
performance and efficiency in medical image
segmentation tasks.
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2 Related work

In the evolution of medical image segmentation, Convolutional
Neural Networks (CNN) have played a pivotal role. The
introduction of Fully Convolutional Neural Networks (FCN) laid
the foundation for precise segmentation and identification of target
areas in images. UNet, with its encoder-decoder structure and
efficient skip connections, significantly advanced medical image
segmentation. Following UNet, architectures like 3D U-Net [24],
V-Net [25], and U-Net++ [26] improved segmentation performance
through enhanced convolution processes and connections. SF-Net
[27] is an innovative multi-task framework that boosts tumor
segmentation precision by fusing multimodal features and
employing an uncertainty-based method for adaptive loss weight
adjustment.TDGraphDTA Through multi-scale information
interaction and graph optimization techniquesthe method
enhances the accuracy of predictions and the interpretability of
the model [28].BTSFDS-EI-MMRI [29] develops an advanced
technique utilizing the Swin Transformer and CNNs for
enhanced MRI image analysis, focusing on integrating semantic
and edge features for improved accuracy.X-Net [30] combines
CNNs and Transformers for improved medical image
segmentation, employing a dual architecture for enhanced feature
extraction and accuracy on small datasets.GSOMMIF-AL [31]
introduces an adversarial approach for enhancing glioma
segmentation from multi-modal MR images, emphasizing image
fusion for better segmentation outcomes.MISMFIF [32] presents a
cloud-enhanced medical image segmentation technique, integrating
Transformers and CNNs for robust feature extraction and
employing an interactive module for improved accuracy,
showcasing cloud computing’s scalability and performance
advantages.ASTCMSeg [33] presents a 3-D self-training
framework for segmenting medical images across different
modalities without paired data, focusing on anatomical
consistency and a novel frequency domain approach for
improved accuracy.ViT-UperNet [34], a hybrid model leveraging
vision transformers and a unified-perceptual-parsing network,
excels in medical image segmentation by combining self-attention
with multi-scale feature fusion, significantly improving accuracy on
cardiac MRI images.

As models grow in scale and complexity, so do their
computational and storage costs, limiting their practical
application in resource-constrained settings. This highlights the
need for optimizing model efficiency without compromising
performance, ensuring that advanced medical image
segmentation technologies can be effectively deployed in diverse
environments, particularly where computational resources
are scarce.

To address these challenges, researchers are focusing on the
design of lightweight segmentation networks for efficient visual
processing. Innovations such as MobileNets with depthwise
(DW) and pointwise (PW) convolutions, grouped convolutions
from AlexNet [35], ODConv with multidimensional attention,
PConv focusing on reducing redundant computation, and
SCConv reducing feature map redundancy, are paving the way
for more resource-efficient and practical models in medical
image segmentation, especially in scenarios with limited
computational and memory resources.

Recently, UNeXt, based on Multi-Layer Perceptrons (MLP) and
UNet, has become a more suitable solution for practical applications
in medical image segmentation due to its significant reduction in
parameter count. MALUNet, as a lightweight medical image
segmentation model incorporating various attention mechanisms,
is better suited for clinical settings. However, despite these
advancements, lightweight models still have performance gaps
compared to larger models, with room for improvement in
parameter efficiency and GFlops. Additionally, these methods
have not fully addressed the redundancy in spatial and channel
dimensions during the feature extraction process.

Given these considerations, this paper introduces an innovative
lightweight UNet segmentation model based on the Spatial-Channel
Fusion Block (SCF Blcok). This model effectively addresses spatial
and channel redundancy issues by fusing multi-level, multi-scale
information in skip connection paths, simultaneously enhancing
segmentation accuracy and efficiency. Its innovation lies in its ability
to deliver efficient, accurate segmentation results while maintaining
low computational complexity, making it an ideal choice for
practical applications and the mobile health domain. This
approach offers a more efficient, practical solution for medical
image analysis, also providing new directions for future
developments in medical image segmentation technology.

3 Methods

3.1 Overview

The proposed skin lesion segmentation framework is shown in
Figure 1, which consists of ConvStem, SCF Block, and SCAB
modules. ConvStem enhances flexibility and reduces parameters
through dynamic adjustment of convolution kernels via omni-
dimensional attention, moving beyond static application. The
SCF Block, comprising SCConv for spatial-channel
reconstruction, PConv, and EMA for establishing dependencies
and enhancing feature extraction, reduces spatial and channel
redundancy, refining feature representation. SCAB, with CAB
and SAB, improves multi-level and multi-scale information
fusion, reducing feature loss during downsampling.

3.2 ConvStem

Lesion areas in medical images often present irregular shapes
and vary greatly across different images, making accurate
identification and segmentation a highly challenging task. To
enhance the performance of medical image segmentation,
particularly in capturing fine-grained and shape-sensitive local
details, this study introduces the ConvStem module, as shown in
the top right corner of Figure 1.

Traditional Convolutional Neural Networks are limited in
simulating complex and irregular shape changes due to the fixed
geometric structure of their basic modules. To overcome this
limitation, the ConvStem module employs ODConv at the initial
feature extraction stage, an innovative convolutional method with
Omni-Dimensional attention mechanisms. ODConv combines the
stability of traditional convolution with the flexibility of dynamic
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convolution, enabling the model to more effectively capture and
process shape-aware features of irregularly shaped lesion areas in
medical images. Through this design, the ConvStem module
significantly enhances the network’s ability to recognize complex
lesion morphologies in medical images, thereby providing richer
and more accurate primary feature information for subsequent
network layers’ feature learning and fusion.

The input image, denoted as F0 ∈ RH×W×C, is initially operated
by ConvStem.ConvStem consists of two standard convolutions and

one ODConv, with a max pooling downsampling step in between.
ODConv introduces a multidimensional attention mechanism that
employs a parallel strategy to learn different attentions across all four
spatial dimensions of the convolution kernel. Figure 2 provides a
schematic illustration of ODConv, which can also be represented by
the Eq. 1:

y � αw1 ⊙ αf1 ⊙ αc1 ⊙ αs1 ⊙ W1 +/ + αwn ⊙ αfn ⊙ αcn ⊙ αsn ⊙ Wn( )*x
(1)

FIGURE 1
The framework of the proposed skin lsion segmentation method. It llustrates the framework for segmenting skin diseases, primarily consisting of
three modules: the ConvStem module, the SCF Block, and the SCAB module for skip connections.

FIGURE 2
The architecture of Omni-dimensional Dynamic Convolution.
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where αwi ∈ R denotes the attention scalar for the convolutional
kernelWi, αsi ∈ Rk×k , αci ∈ RCin and αfi ∈ RCout denote three newly
introduced attentions, which are computed along the spatial
dimension, the input channel dimension and the output channel
dimension of the kernel space for the convolutional kernel Wi,
respectively; denotes the multiplication operations along different
dimensions of the kernel space. Here, αsi, αci, αfi and αwi are
computed with a multi-head attention module.: (1)αsi assigns
different attention scalars to convolutional parameters (per filter)
at k × k spatial locations; (2)αci assigns different attention scalars to
cin channels of each convolutional filterWmi; (3) αfi assigns different
attention scalars to cout convolutional filters; (4) αwiassigns an
attention scalar to the whole convolutional kernel. ODConv
enhances feature extraction focus and efficiency by dynamically
concentrating on key aspects of the input features through its
attention mechanism across each dimension.

This application within ConvStem allows the convolution
kernels to adjust dynamically to different inputs, moving away
from a static, singular approach. This increases the model’s
flexibility, reduces the number of parameters and computational
burden, aiding in model lightweighting while boosting performance.
Standard convolution captures basic features efficiently, while
ODConv’s dynamic adjustment provides a deeper understanding
and extraction for specific features, crucial for complex skin disease
image analysis. Combining these convolutions, ConvStem outputs
feature mappings that finely reflect shapes and local details, enabling
our proposed SCSONet to produce more detailed lesion
segmentation results, showcasing rich, multi-faceted feature
information. After passing through ConvStem, the input F0
produces the outputs F1, F2 and F3, as described by the following
Eq. 2.

F1 � MaxPool Conv F0( )( )
F2 � MaxPool ODonv F1( )( )
F3 � MaxPool Conv F2( )( )

⎧⎪⎨⎪⎩ (2)

F1, F2 and F3 are each connected to the decoder through the SCAB,
which includes a Channel Attention Bridge Block (CAB) and a
Spatial Attention Bridge Block (SAB).

The SAB uses max and average pooling operations at each stage
to establish short and long-range dependencies and enhance feature
extraction capability. After these operations, feature maps with
channel C, height H, and width W are concatenated into feature
maps with two channels, while height and width remain unchanged.
Dilated convolution and the sigmoid function are then applied to
obtain spatial attention maps for each stage. Finally, these are
element-wise multiplied with the initial images of the stage, and
the residuals are summed, restoring the original channel count for
each stage.

The CAB is primarily designed to fuse features across different
channel orders to better integrate information. The internal
workings of this module can be represented by the following
Eq. 3:

ti′ � GAP ti( ),
T � Concat′ t1′, t2′, . . . , ts−1′( ),
T′ � Conv1D T( ),
Atti � σ FCi Ti( )( ),
Out i � ti + ti ⊙ Atti.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3)

Pi is the feature map obtained at stage input. Is the total number of
stages, FCi is the fully connected layer at stage, and σ is the
sigmoid function.

The two bridge attention modules can fuse the multi-stage and
multi-scale features of Stages 1–3 (Including the output from the
subsequent SCF Block) to generate the attention maps in the spatial
and channel dimension. And then, we add features obtained by
bridge attention modules with features of the decoder part to reduce
the feature semantic difference between the encoder and decoder
while alleviating the information loss caused by the
sampling process.

3.3 Spatial-channel fusion block (SCF block)

Although existing lightweight medical image segmentation
models have made progress in reducing computational resource
consumption, they often overlook issues of spatial and channel
redundancy. To address these problems, the SCF Block was
designed to significantly optimize the feature fusion process,
particularly in reducing feature map redundancy across spatial
and channel dimensions. By integrating the spatial-channel
feature fusion technique of SCConv, the SCF module
innovatively reduces feature redundancy, while the
introduction of EMA and PConv enhances the model’s ability
to capture short and long-range dependencies, further improving
the efficiency and accuracy of feature extraction. This method,
which focuses on feature fusion, not only reduces computational
costs and model parameters but also greatly enhances the quality
and precision of the segmentation results while maintaining the
model’s lightweight stature. The SCF Block for Stage 2 can be
represented as follows Eq. 4:

F4 � MaxPool EMA PConv SCConv F3( )( )( )( ) (4)

As shown in Figure 3. SCConv initially obtains spatially refined
features Xw through SRU operations, and then acquires channel-
refined features Y using CRU operations.

The Spatial Reconstruction Unit (SRU) reconstructs redundant
features based on weights to suppress redundancy in the spatial
dimension and enhance feature representation. The formula for
calculating weights is as follows Eq. 5:

W � Gate Sigmoid Wγ GN X( )( )( )( ) (5)

The formula for reconstruct is as follows Eq. 6:

Xw
1 � W1 ⊗ X, Xw

2 � W2 ⊗ X,
Xw

11 ⊕ Xw
22 � Xw1, Xw

21 ⊕ Xw
12 � Xw2

Xw1 ∪ Xw2 � Xw.

⎧⎪⎨⎪⎩ (6)

The Channel Reconstruction Unit (CRU) employs a Split −
Transform − and − Fuse strategy to reduce redundancy in the
channel dimension, as well as computational and storage costs.
After splitting, the spatially optimized feature Xw is divided into
upper Xup and lower Xlow parts. In the Transform stage, Xup

undergoes efficient convolution operations (i.e., GWC and PWC),
and the outputs are aggregated to form a combined representative
feature map Y1. The upper layer transformation stage can be
represented as follows Eq. 7:
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Y1 � MGXup +MP1Xup (7)

Xlow is input into a lower transformation stage where a cost-effective
1 × 1 PWC operation is applied to generate a feature map Y2 with
shallow hidden details, complementing the rich feature extractor.

Global spatial information s1 and s2 are then collected through
global average pooling, and channel soft attention operations
produce feature importance vectors β1 and β2. These vectors
guide the fusion of upper-layer features Y1 and lower-layer
features Y2, generating refined features Y. The specific formula is
as follows Eq. 8:

β1 �
es1

es1 + es2
, β2 �

es1

es1 + es2
, β1 + β2 � 1

Y � β1Y1 + β2Y2

⎧⎪⎪⎨⎪⎪⎩ (8)

After passing through Partial Convolution (PConv),
conventional convolution is applied to only a portion of the
input channels for spatial feature extraction, with the remaining
channels left unchanged, as shown on the right side of Figure 1. For
continuous or regular memory access, the first or last continuous cp
channels are computed as a representation of the entire feature
map. Therefore, the Floating Point Operations (FLOPs) of a PConv
are significantly reduced, as indicated by the Eq. 9:

h × w × k2 × c2p (9)

With a typical partial ratio r � cp
c � 1

4, the FLOPs of a PConv is
only 1

16 of a regular Conv.To further reduce computational
redundancy and ensure model lightweighting, on one hand,
PConv applies convolution to only a subset of channels,
refining channel features. On the other hand, the CRU in the
subsequent SCF Block integrates the uneven channels from
Partial Conv, achieving better performance with fewer
parameters and more efficient computation, thus enhancing
the overall quality of the features.

To address the potential loss of important features due to
SCConv’s spatial information compression, we introduced an
Efficient Multi-Scale Attention (EMA) mechanism.

As shown on the right side of Figure 1, EMA reshapes part of the
channel dimensions into batch dimensions, avoiding dimensionality
reduction through standard convolution. This approach allows for
different strategies in parallel subnetworks to maximally preserve
multi-scale features of pathological sections. Moreover, EMA fuses
output feature maps of two parallel subnets using a cross-space
learning method, ensuring areas with potential targets in the final
output feature map have higher feature weights.

By adjusting channel dimensions and applying multi-scale
attention, EMA compensates for SCConv’s limitations in feature
extraction, enhancing the capture of key features, optimizing feature
representation, and improving the accuracy of medical image
segmentation, effectively addressing SCConv’s limitations in
handling fine-grained features.

The SCF Block represents a significant advancement in medical
image segmentation, offering a robust solution for reducing
redundancy while enhancing feature representation through
spatial-channel fusion. By integrating SCConv, EMA, and PConv,
it addresses the critical need for efficient, high-performance
segmentation in medical imaging. This module’s innovative
approach to capturing fine-grained details and dependencies not
only improves segmentation accuracy but also ensures the model’s
lightweight nature, making it an ideal choice for applications where
computational resources are limited.

3.4 Loss function

In this study, each image in the dataset is associated with a
corresponding binary mask. Skin lesion segmentation is treated as a
pixel-level binary classification task, distinguishing skin lesions from
the background. The combination of Binary Cross-Entropy (BCE)
loss and Dice similarity coefficient loss is used as the loss function to
optimize network parameters, effectively addressing the challenges
of skin lesion segmentation by balancing pixel-wise accuracy and
overlap between the predicted and ground truth masks.

The loss function is BceDice loss, which can be expressed by the
Eq. 10:

FIGURE 3
The architecture of Spatial and Channel Reconstruction Convolution.
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LBce � − 1
N

∑N
i�1

yi log pi( ) + 1 − yi( )log 1 − pi( )[ ]

LDice � 1 − 2|X ∩ Y|
|X| + |Y|

LBceDice � α1LBce + α2LDice

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(10)

Where N is the total number of samples, yi is the real label,pi is
the prediction. |X| and |Y| represent ground truth and X ∩ Y
prediction, respectively. α1 and α2 refer to the weight of two loss
functions. In this paper, both weights are taken as one by default.

4 Experiment

4.1 Datasets

The segmentation tasks were conducted on the ISIC2017 [36] and
ISIC2018 datasets.Figure 4 showcasing a portion of the ISIC2017 and
ISIC2018 datasets. The International Skin Imaging Collaboration (ISIC)
dataset is a widely used open dataset in dermatological research. These
datasets aim to facilitate computer-assisted dermatology diagnosis and
research by providing a large collection of skin lesion images and related
clinical metadata, supporting the development and validation of
segmentation algorithms.

The ISIC2017 and ISIC2018 datasets contain 2,150 and
2,694 dermoscopic images with segmentation mask labels, respectively.
For experimental purposes, the datasets were randomly split into training
and testing sets at a 7:3 ratio. Specifically, the ISIC2017 dataset was divided
into 1,500 images for training and 650 for testing, while the
ISIC2018 dataset was divided into 1,886 images for training and
808 for testing. Comparative experiments were conducted on both
ISIC2017 and ISIC2018, with ablation studies performed on ISIC2018.

4.2 Implementation details

All experiments were implemented in the PyTorch framework
and conducted on an NVIDIA GeForce RTX 3070 Ti Laptop GPU

with 8 GB of memory. Based on experience, all images were
normalized and resized to 256 × 256, with data augmentation
techniques including vertical flip, horizontal flip, and random
rotation applied. The loss function used was the BceDice loss,
represented by Eq. 10. AdamW was used as the optimizer with
an initial learning rate of 0.001, employing a cosine annealing
scheduler for learning rate adjustment, with a maximum of
50 iterations, a minimum learning rate of 0.00001, training
epochs set to 300, and a batch size of 8.

Five metrics including Mean Intersection over Union (mIoU)
and Dice similarity score (DSC), Eq. 11 are used to measure
segmentation performances. In addition, Params is utilized to
indicate the number of parameters, and the unit is Million (M).
The computational complexity is calculated regarding the
number of floating point operators (GFLOPs). Note that the
parameters and GFLOPs of models are measured with 256 × 256
input size.

mIoU � TP

TP + FP + FN

DSC � 2TP
2TP + FP + FN

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

Where TP, FP, FN, TN represent true positive, false positive,
false negative, and true negative.

4.3 Comparsion with other methods

In comparative experiments, the proposed SCSONet demonstrated
significant advantages over advanced models like EGEUNet [37],
showcasing its lightweight nature with fewer parameters and
GFLOPs. Notably, SCSONet achieved the lowest GFLOPs among
skin disease segmentation methods, at only 0.056, highlighting its
efficiency. Figure 5 emphasized SCSONet’s reduced computational
demand, making it an ideal choice for resource-constrained
environments while maintaining high segmentation performance.

Table 1 showcase SCSONet’s performance against other
methods on the ISIC2017 and ISIC2018 datasets, illustrating its

FIGURE 4
A portion of the ISIC2017 and ISIC2018 datasets.
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state-of-the-art overall performance. Specifically, compared to larger
U-net models, SCSONet not only achieved superior performance
but also significantly reduced parameters and GFLOPs by 451× and
1,224×, respectively. It outperformed other lightweight models by
increasing mIoU by 7.56% over QGD-Net, with fewer parameters.

Surpassing EGEUNet, it demonstrated better results in mIoU and
DCS while reducing GFLOPs by 22.2%, able to train within 0.6 GB
of VRAM. Its effectiveness is showcased in Figures 5, 6.

The qualitative comparison results, as shown in Figure 7, involve
randomly selected test samples for qualitative evaluation. It is observed

FIGURE 5
Histogram visualization with the Y-axis set as a logarithmic scale comparison with other methods on parameters and FLOPs.

TABLE 1 Comparative experimental results on the ISIC2017 and ISIC2018 dataset.

Data Model Params GFLOPs mIoU (%) DSC(%)

ISIC2018 UNet (2015) 7.77 13.76 78.13 86.99

Unet++(2018) 9.16 34.86 78.92 87.83

TransFuse[38](2021) 26.16 11.5 80.63 89.27

FF-UNet (2022) 3.94 — 80.2 88.7

UNeXt-S (2022) 0.32 0.1 79.09 88.33

MALUNet (2022) 0.175 0.083 80.25 89.04

MAAU (2023)[39] 4.2 — — 88.1

AMCC-Net (2023)[40] 0.845 — — 89

SEACU-Net (2023)[41] 12.81 — — 87.58

EGE-Unet (2023) 0.053 0.072 80.94 89.46

SCSONet (ours) 0.149 0.056 80.99 89.5

ISIC2017 UNet (2015) 7.77 13.76 76.98 86.99

TransFuse (2021) 26.16 11.5 79.21 88.4

UNeXt-S (2022) 0.32 0.1 78.26 87.8

FAT-Net (2022)[42] 30 23 76.53 85

MALUNet (2022) 0.175 0.083 78.78 88.13

EGFNet (2022)[43] 0.52 — — 84.87

MMS-Net (2023)[44] 67.34 68.52 77.9 87.6

QGD-Net (2023)[45] 0.777 — 72.58 —

LCAUnet (2023)[46] 13.38 18.91 76.1 86.6

EGE-Unet (2023) 0.053 0.072 79.81 88.77

SCSONet (ours) 0.149 0.056 80.14 88.97

The bold values represent the optimal metrics.
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that SCSONet effectively differentiates between skin lesion areas and
normal skin, achieving more accurate target area localization and
boundary prediction compared to other models, which show issues
with over-segmentation and under-segmentation. These comparisons
demonstrate SCSONet’s effectiveness in skin lesion segmentation.

4.4 Ablation studies

As shown in Table 2, ablation studies were conducted to assess the
effectiveness of each module within the proposed method. MALUNet

served as the base model. Initially, ablation on the ConvStem module
showed significant improvements in mIoU and DSC with notable
reductions in parameters and GFLOPs, by replacing the first three
convolutional layers in the base with ConvStem. Subsequently,
replacing the base model’s last three layers with three SCF Blocks
similarly resulted in performance enhancement and reductions in
parameters and GFLOPs. The ablation study meticulously
demonstrates the significant contributions of key modules within
SCSONet—ConvStem and SCF—towards enhancing medical image
segmentation performance. The ConvStem module, by incorporating
Omni-Dimensional Dynamic Convolution (ODConv), significantly

FIGURE 6
Lightweight model performance comparison.

FIGURE 7
Comparison of segmentation results from different models on the ISIC2018 dataset and Grad CAM visualization (utilizing heatmaps to visualize the
network prediction process.
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enhances themodel’s capability to recognize the shapes of irregular lesion
areas, substantially improving the efficiency of primary feature extraction.
Meanwhile, the SCF module effectively reduces feature map redundancy
through spatial-channel feature fusion technology, further enhancing the
model’s segmentation precision and efficiency.Experimental results
indicate that the inclusion of each module positively impacts model
performance, particularly when used in combination, leading to optimal
performance in terms of mIoU and DSC, while also achieving a

significant reduction in the number of parameters and computational
costs. These findings not only validate the effectiveness of the ConvStem
and SCFmodules inmedical image segmentation tasks but also highlight
the potential application of our lightweight network architecture in
resource-constrained environments.Finally, for clearer visual
comparison, experimental results are shown in Figure 8.

In Table 3, we conduct micro ablations on SCF Block.Further
ablation studies within the SCF Block compared the effects of

TABLE 2 Objective evaluation results of the ablation study on the ISIC2018 benchmark.

Model Params GFLOPs mIoU (%) DSC(%)

Base 0.175 0.083 79.01 88.27

Base + ConvStem 0.164 0.057 80.02 89.01

BASE + SCF Block 0.150 0.078 80.48 89.19

Base + ConvStem + SCF Block 0.149 0.056 80.99 89.50

The bold values represent the optimal metrics.

FIGURE 8
The results of the ablation study on the ISIC2018.

TABLE 3 Comparison and ablation experiments within the SCF Block.

Model Params GFLOPs mIoU (%) DSC(%)

SCConv 0.131 0.072 79.20 88.42

SCConv + PConv 0.148 0.075 80.24 89.01

SCConv + DepthwiseSeparableConv 0.141 0.074 79.86 88.75

SCConv + Dilated convolution 0.181 0.082 79.14 88.32

SCConv + PConv + EMA 0.149 0.056 80.48 89.19

The bold values represent the optimal metrics.
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PConv, DepthwiseSeparableConv, and Dilated convolution. The
results highlighted PConv’s significant contribution to SCConv’s
performance enhancement, also confirming the role of EMA within
the SCF Block for improving the segmentation capabilities of
the network.

SCSONet stands out as the first lightweight model to reduce
GFlops to around 0.056 while maintaining exceptional segmentation
performance. Its effectiveness is showcased in Figures 5, 6, which
clearly present experimental results and segmentation outcomes,
respectively. Demonstrating robust performance on two public
datasets, SCSONet’s primary clinical application is to assist in
diagnosis, helping doctors quickly delineate focal areas or
enabling non-specialists to diagnose diseases rapidly. Deploying
this model in hospitals for semantic segmentation on small
datasets can achieve higher segmentation accuracy.

5 Conclusion and future works

In the field ofmedical image processing and analysis, hospitals often
rely on high-performance GPUs and large computational devices,
requiring substantial computational resources. However, for under-
resourced or remote medical facilities, limited computational resources
pose a significant barrier to implementing advanced medical image
analysis. This gap hinders the widespread adoption and application of
advanced medical imaging technologies, especially in regions that need
them most. And also, for rapid lesion detection and diagnosis in the
field or emergency situations, a model that can be easily integrated into
mobile devices is equally necessary.To address this challenge, this paper
proposes SCSONet, an innovative lightweight network architecture
comprising ConvStem, SCF Block, and skip connections, aimed at
bridging this gap by enabling efficient, high-quality medical image
analysis with lower computational demands.

The ConvStem module with full-dimensional attention effectively
enhances the recognition of irregularly shaped lesion areas while
reducing the model’s parameter count and computational load,
facilitating model lightweighting and performance improvement.
The SCF Block, through spatial and channel feature fusion,
efficiently reduces feature redundancy, significantly lowering
parameter count while improving segmentation results. It addresses
the challenges of resource-intensive traditional segmentation methods
and high hardware requirements, offering an efficient solution for skin
disease image segmentation tasks.

This study demonstrates the superior performance of the SCSONet
model through optimization of parameters and floating-point
operations (FLOPs), showcasing its strong generalizability and
adaptability compared to other advanced models, while significantly
reducing network parameters and computational costs. SCSONet
achieves competitive segmentation performance with only 0.149 M
parameters and 0.056GFLOPs, making it, to our knowledge, the first
model to operate under such low computational load. Notably,
SCSONet’s lightweight design allows it to be trained with just
0.6 GB of VRAM, a breakthrough feature that not only reduces the
dependence on high-performance computing resources but also offers a
new solution for medical image segmentation tasks in resource-limited
environments. This design focus underscores the innovativeness and
practical application value of our model, particularly in advancing
mobile health technology and remote medical services.

While SCSONet exhibits a notable reduction in parameters and
computational efficiency, it still has a gap compared to EGEUnet in
terms of parameter quantity. Additionally, the limited datasets used
for experiments and the model’s generalizability are areas for further
inquiry. Additionally, during multiple training sessions, there were
occasional instances of lower accuracy. This indicates that the model
may not consistently achieve the expected high precision under
certain specific datasets or training conditions, suggesting a
sensitivity to training data or a deficiency in the optimization
strategy under specific conditions. Although these instances are
rare, they must be taken seriously as they could affect the model’s
reliability and robustness in practical applications.

Future research should focus on extending the lightweight
architecture to additional semantic segmentation tasks, alongside
a thorough examination of its integration with hardware devices for
enhanced performance. Investigating advanced training techniques
and structural adjustments to the model will be crucial for
augmenting its adaptability and consistency across diverse
training scenarios. The ultimate objective is to refine
segmentation efficiency without compromising accuracy, thereby
rendering the model more effective for assisted diagnostics within
medical image analysis. This approach aims to strike a balance
between computational efficiency and diagnostic precision,
facilitating broader application in real-world clinical settings.
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Cross-modality feature fusion for
night pedestrian detection

Yong Feng, Enbo Luo, Hai Lu and SuWei Zhai*

Electric Power Research Institute, Yunnan Power Grid Corporation, Kunming, China

Night pedestrian detection with visible image only suffers from the dilemma of
high miss rate due to poor illumination conditions. Cross-modality fusion can
ameliorate this dilemma by providing complementary information to each other
through infrared and visible images. In this paper, we propose a cross-modal
fusion framework based on YOLOv5, which is aimed at addressing the challenges
of night pedestrian detection under low-light conditions. The framework
employs a dual-stream architecture that processes visible images and infrared
images separately. Through the Cross-Modal Feature Rectification Module
(CMFRM), visible and infrared features are finely tuned on a granular level,
leveraging their spatial correlations to focus on complementary information
and substantially reduce uncertainty and noise from different modalities.
Additionally, we have introduced a two-stage Feature Fusion Module (FFM),
with the first stage introducing a cross-attention mechanism for cross-modal
global reasoning, and the second stage using a mixed channel embedding to
produce enhanced feature outputs. Moreover, our method involves multi-
dimensional interaction, not only correcting feature maps in terms of channel
and spatial dimensions but also applying cross-attention at the sequence
processing level, which is critical for the effective generalization of cross-
modal feature combinations. In summary, our research significantly enhances
the accuracy and robustness of nighttime pedestrian detection, offering new
perspectives and technical pathways for visual information processing in low-
light environments.

KEYWORDS

pedestrian detection, YOLOv5, vision transformer, CNNs, feature fusion

1 Introduction

Pedestrians are a vital element in traffic scenarios, and the ability to detect pedestrians
quickly and accurately has increasingly become a critical research topic in the field of
computer vision. Pedestrian detection plays an essential role in various practical
applications, such as autonomous driving perception systems [1–3] and intelligent
security monitoring systems [4–6]. Additionally, pedestrian detection serves as the
foundational task for downstream tasks like pedestrian tracking [7–9], action
recognition and prediction [10–12], with its accuracy directly impacting the
performance of these tasks. With the significant advancements in convolutional neural
networks (CNNs), pedestrian detection models [13–16] have been continually updated and
iterated, bringing forth models with outstanding performance. However, most pedestrian
detection models are trained on single-modality, well-illuminated visible light datasets
[17–19]. When faced with low-light conditions such as at night, their performance
significantly declines due to excessive noise and decreased discriminability [4, 20].
Pedestrian detection using only nighttime visible light images is particularly challenging
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because the data modality itself lacks a valid target area. Therefore,
an increasing amount of research is focusing on cross-modality
fusion learning, such as the fusion detection of visible and infrared
images [21–26].

Infrared vision sensors operate on the principle of thermal
imaging, distinguishing pedestrians from the background by
differences in thermal radiation. Infrared imagery is robust
against interference and is not easily affected by adverse
environmental conditions [27, 28]. Even at night, infrared images
can reveal the shape of pedestrians, effectively compensating for the
vulnerability of visible light images to lighting conditions. However,
infrared images also have drawbacks, such as lower resolution and a
lack of texture information. On the other hand, visible light images
provide rich detail and texture information [22]. Therefore, cross-
modal fusion aims to extract complementary information between
these two modalities, enhancing the flow of information between
them and improving the perceptibility and robustness of detection
algorithms. In the field of image fusion, a lot of work [29] has been
carried out on the effective fusion of infrared images and visible
light images.

In the field of pedestrian detection that fuses visible and infrared
imaging, many approaches rely solely on Convolutional Neural
Networks (CNN) to extract deep features [21, 23, 25, 26], with
artificially designed complex fusion mechanisms to integrate
features from different modalities. Extensive research has
demonstrated the powerful representational capabilities of CNNs
for expressing visual features in single-modality scenarios [30–32].
However, due to the limited receptive field, CNNs, while adept at
capturing local information, exhibit weaker capabilities in capturing
global texture information across modalities in fusion tasks.
Transformer [33, 34] is equipped with self-attention mechanisms,
possess a global receptive field and excel at learning long-range
dependencies. Therefore, combining CNNs with transformers for
cross-modality nighttime pedestrian detection can leverage the
strengths of both, resulting in complementary advantages and
enhanced detection performance.

Recently, vision transformers [33, 35–37] have been processing
inputs as sequences and have demonstrated the capability to capture
long-range correlations, offering a promising avenue towards a
unified framework for multi-modal tasks. However, it remains to
be clarified whether vision transformers can bring potential
improvements to vis-inf pedestrian detection compared to
existing multi-modal fusion modules [38–40] based on
Convolutional Neural Networks (CNNs). Crucially, while some
earlier studies have employed a simplistic global multi-modal
interaction strategy, such an approach has not been universally
applicable across various sensing data combinations [41–43]. We
posit that in vis-inf pedestrian detection, which involves a variety of
supplementary information and uncertainties, a comprehensive
cross-modal interaction should be implemented to fully leverage
the potential of cross-modal complementary features.

To address the challenges in vis-inf nighttime pedestrian detection,
we propose an interactive cross-modal fusion framework based on
yolov5, named FRFPD. This framework aims to enhance the
performance of detection algorithms through efficient information
fusion. FRFPD is constructed as a dual-stream architecture,
specifically handling visible light (VIS) and infrared (Inf) data
streams. On this foundation, we have designed feature interaction

and fusion modules to optimize model performance: The Cross-
Modal Feature Rectification Module (CMFRM) fine-tunes VIS and
Inf features at a granular level, utilizing their spatial correlations to
enhance the model’s focus on complementary information and
effectively reduce the uncertainty and noise from different
modalities. This process precisely handles the complexity of multi-
source data, paving the way for more effective feature extraction and
interaction. Moreover, the Feature Fusion Module (FFM) [41] is
structured in two stages, ensuring ample information exchange
before feature fusion on a global scale. In the first stage, we
introduce a cross-attention mechanism for cross-modal global
reasoning, propelled by a wide receptive field facilitated by the self-
attention mechanism. In the second stage, a mixed channel embedding
is employed to generate enhanced feature outputs. In essence, the
interaction strategy we introduce is multidimensional: within the
CMFRM module, we correct feature maps on a spatial dimension;
while in the FFM module, it apply a cross-modal attention mechanism
for feature fusion across the global channel dimension. These
approaches are vital for the effective generalization of cross-modal
feature combinations, enhancing the model’s capability to process
information from diverse sensory modalities. Our contributions are
summarized as follows:

(1) A dual-stream architecture is proposed in the FRFPD framework,
leveraging YOLOv5, to handle visible light (VIS) and infrared
(INF) data streams separately, tailored for addressing low-light
challenges in nighttime pedestrian detection.

(2) The Cross-Modal Feature Rectification Module (CMFRM) is
introduced to fine-tune visible and infrared features,
exploiting their spatial correlations to enhance focus on
complementary information, significantly reducing
uncertainty and noise from different modalities. NF.

(3) An advanced Feature FusionModule (FFM) developed in [41]
is introduced, in two stages to promote ample information
exchange and utilize a mixed channel embedding for
generating enhanced feature outputs, improving detection
capabilities.

2 Related works

The widespread application of Transformers in the field of
Natural Language Processing (NLP) has proven their excellence
and convenience in handling sequential data, which has also made
them popular for visual tasks.

2.1 Vision transformer

The widespread application of Transformers in the field of
Natural Language Processing (NLP) has proven their excellence
and convenience in handling sequential data, which has also made
them popular for visual tasks [35, 36, 44]; [45, 46]. ViT [35]
addresses the high computational cost issue of Transformers in
traditional visual tasks by flattening images into a series of pixel
blocks (patches), transforming image processing tasks into a form
similar to the word sequence processing in NLP. DeiT [47] further
proposes a convolution-free Transformer structure, introducing a
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teacher-student strategy through distillation tokens, with training
conducted solely on ImageNet. Moreover, the positional encoding
feature of Transformers is used to capture the order information of
sequence data, which can be either fixed or learnable [48].

In the field of computer vision, Visual Transformer (VT) have
demonstrated significant capabilities across various tasks such as
image Fusion [49, 50]), pedestrian detection [51], particularly
excelling in multispectral detection tasks [52–55] where they can
focus on important features scattered across different spectral bands.
Their self-attention mechanism’s ability to model long-range
dependencies and capture global context is especially valuable.
Unlike convolutional neural networks [26, 56–58], VT operate on
sequences of image patches (tokens) and are adept at learning to
concentrate on themost informative parts of the input, making them
inherently suited for multispectral detection where significant
features may be sparsely distributed across spectral bands.
However, the application of VT in multispectral detection,
especially under challenging lighting conditions, remains a
developing field. Our work is inspired by the intrinsic advantages
of VT to tackle unique challenges in low-light multispectral
scenarios. We have introduced a novel VT-based framework,
specifically designed for this purpose, that incorporates modules
sensitive to the nuances of multispectral data. Our proposed Cross-
Modal Feature RectificationModule (CMFRM) expands the concept
of VT by integrating cross-modal learning directly into the
transformer architecture, serializing tokens along the spatial
dimension, thereby enhancing the model’s ability to perform
fine-grained feature adjustment. This is critical for aligning
features across different modalities, particularly when contending
with varying levels of illumination and noise inherent in low-light
conditions.

2.2 Multispectral pedestrian detection

The field of pedestrian detection has seen the emergence of
numerous outstanding studies, including early traditional detection
methods [59, 60] and the surge of CNN-based detection
technologies [61–64] that came with the rapid development of
Convolutional Neural Networks (CNN). However, the majority
of research is still focused on single-modality visible light images.
In nocturnal environments, relying solely on visible light images for
pedestrian detection often fails to achieve satisfactory results, mainly
because conventional visible light cameras perform poorly in night-
time imaging, with target areas not being distinct and substantial
noise interference. For this reason, it becomes extremely difficult for
models like CNNs to extract effective features from nighttime visible
light images. As research has deepened, infrared imagery, with its
unique advantages in night-time settings, has started to be used to
complement the shortcomings of visible light images. This has
attracted increasing attention from researchers and has spurred
the advancement and exploration of multispectral pedestrian
detection technologies, especially those based on CNN approaches.

In the field of multispectral detection, fusion algorithms play a
crucial role. The AR-CNN [65] model introduces an end-to-end
region alignment algorithm, which addresses the subtle
misalignments caused by positional offsets between
multimodalities. This fusion approach reweights features to

prioritize more reliable characteristics and suppress ineffective
ones. Meanwhile, the CIAN [26] model leverages the interactive
properties of multispectral input sources, proposing a cross-channel
interactive attention network. This network extracts global features
from each channel of the twomodalities and recalibrates the channel
responses of intermediate feature maps using an attention
mechanism by computing the inter-channel correlation. In
existing multispectral detection research, models like AR-CNN
and CIAN offer solutions for minor misalignments between
modalities and feature recalibration; however, these methods still
show limitations in complex scenarios under low-light conditions,
such as night-time pedestrian detection. These limitations manifest
in two aspects: firstly, feature information loss due to insufficient
lighting under low-light conditions cannot be compensated for by
simply reweighting features; secondly, despite the CIAN model
employing an interactive attention mechanism, more efficient
strategies for information exchange and fusion are needed to
handle the complex interactions between different modalities.
CFT [66] proposed a fusion algorithm that combines transformer
and CNN, which can learn remote dependencies and extract global
context information. Self-attention can fuse features within and
between modes. It is a relatively novel method recently, but this
model uses traditional transformer, which has the problems of
positional encoding and multi-head attention mismatch cross-
modality fusion. ProbEn [67] research primarily focuses on the
issue of multimodal object detection, with a particular emphasis on
addressing the challenges of object detection in low-light conditions.
It introduces the ProbEn probabilistic ensemble technique to
effectively fuse object detection results from different sensors,
thereby significantly enhancing the performance of multimodal
object detection. UGC [68] is dedicated to addressing crucial
challenges in multispectral pedestrian detection, encompassing
issues such as image calibration and disparities between different
modalities. The authors introduce a novel approach that aims to
enhance pedestrian detection performance by incorporating Region
of Interest (RoI) uncertainty and predictive uncertainty into the
feature fusion and modality alignment processes.

To overcome these limitations, we propose the FRFPD
framework, central to which are the Cross-Modal Feature
Rectification Module (CMFRM) and the Feature Fusion Module
(FFM). The CMFRM is motivated by the need to serialize tokens in
the spatial dimension for fine-grained feature adjustment, aligning
features within the visible and infrared modalities. Its design aims to
finely tune features across modalities by exploiting their spatial
correlations to amplify complementary information, thereby
significantly reducing uncertainty and noise in low-light
conditions. This approach is crucial for enhancing the accuracy
and robustness of detection under varied lighting conditions.
Concurrently, the FFM addresses the challenge of integrating
diverse modalities effectively. It serializes tokens globally in the
channel dimension, first performing global reasoning between
modalities through a cross-attention mechanism, then refining
the feature output with hybrid channel embedding. This strategy
is driven by the need to provide not only an in-depth exchange of
information but also a more nuanced enhancement of channel
responses than the CIAN model. The motivation behind FFM is
to improve the overall quality of feature fusion, enhancing the
detection capabilities in complex scenarios. The FRFPD
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framework sets a new performance benchmark for cross-modal
feature fusion through its multi-dimensional interaction strategy,
correcting feature maps on the channel and spatial dimensions, and
implementing cross-attention at the sequence processing level.

3 Proposed method

3.1 Overview

Among the numerous target detection CNN models,
YOLOv5 [69] is a highly reliable algorithm with fast recognition
speed, which is easier to deploy and train. It is also one of the most
popular detection frameworks currently and has a wide range of
applications. Therefore, in this paper, we choose YOLOv5 to extract
deep features and extend the transformer fusion algorithm to a dual-
stream architecture. The backbone of YOLOv5 is modified from a
single-stream structure to a dual-stream structure to separately
extract deep features of the input visible light and infrared
images. The rectification module, called Cross-Modal Feature

Rectification Module (CMFRM), is implemented three times in
the backbone. CMFRM is corrected one feature against another,
and vice versa. In this way, the features of both modalities can be
corrected. Additionally, as illustrated in Figure 1B, we introduced a
Feature Fusion Module (FFM) [41] that merges features belonging
to the same level into a single feature map. Then, a detection head is
used to predict the final pedestrian positions. Our proposed network
framework is illustrated in Figure 1.

3.2 Cross-modality feature
rectification module

In this paper, we explore the complementarity of information from
different sensors [8], [9], noting that while this information is valuable,
it is often affected by noise. To address this issue, we introduce a novel
Cross-Modal Feature Rectification Module (CMFRM) in Figure 1B,
which is capable of performing precise feature correction at each stage
of feature extraction on parallel data streams. Utilizing Transformer
technology for spatial feature correction, the CMFRM provides a

FIGURE 1
TheNetwork structure of our proposals. (A) shows our overall network architecture, which adopts a novel combination of CNN and transformer. The
deep features of visible and infrared images are extracted by two-streamCNN, and the proposed CMFRMmodule is used to leverag the features fromone
modality to rectify the features of the other modality. Feature Fusion Module (FFM) operates through a bifurcated process, as illustrated in (C) an initial
stage of global information exchange followed by a stage of comprehensive global feature fusion. This structure is designed to facilitate extensive
information interchange preceding the fusion of features at a global level. In addition, (D) shows the structure of the components in (A).
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granular correction mechanism. This not only effectively handles noise
and uncertainty across different sensory modalities but also enhances
the extraction and interaction of multimodal features, thereby
improving the overall performance of the system.

In a two-stream structure, we extract features from visible and
infrared images independently through Convolutional Neural
Networks (CNN), obtaining visible feature and infrared feature,
respectively. Both feature sets have the shape (B,C,H,W), where B is
the batch size, C is the number of channels, and H and W are the
dimensions of the spatial size. To adapt these features for the
transformer, we flatten them into the shape (B, N, C), while
proceeding along the spatial dimensions. where N is the number
of tokens, given by N = H × W. This step is a crucial phase in the
transition of CNN features to transformer-based CMFRM module.

flatvis � Fvis · view B, C,−1( ) (1)
flatinf � Finf · view B, C,−1( ) (2)

flatcat � concat flatvis, flatinf( ), dim � 2( ) (3)
Z � flatcat.permute 0, 2, 1( ) (4)

where Fvis and Finf represent the visible and infrared features from the
CNN, respectively. The view function reshapes the tensor of specified
shape without changing its data, and concat concatenates the given
tensors along the specified dimension. The permute function outputs
a tensor after permuting the dimensions of the input tensor. Thus, in Eq
4, the shape of Z is (B, 2N, C).

Positional embeddings enable the model to discern spatial
relationships between different tokens during training. After
positional embedding, the input sequence Z is then projected onto

three weight matrices to compute a set of queries, keys, and values (Q,
K, andV), expressed as Q = ZWQ, K = ZWK, V = ZWV. In this context,
the weight matrices are defined as WQ ∈ RC×DQ , WK ∈ RC×DK , and
WV ∈ RC×DV . Furthermore, the dimensions DQ, DK, and DV are
equivalent in our transformer model, such that DQ = DK = DV =
C. The Multi-head Self-Attention layer computes the attention
weights by calculating the scaled dot products between Q and K.
These weights are then applied to V to infer the refined output Ẑ.

Ẑ � Attention Q,K, V( ) � sof tmax
QKT���
DK

√( )V (5)

However, multimodal data is distributed across different spatial
domains, and relying solely on self-attention is insufficient for fully
exploiting the mixed modality information, which may result in
inadequate rectification. Based on the principle of self-attention, we
speculate that exchanging the “values” and “keys” between different
modalities might better enhance the vital information and facilitate
the flow of complementary information. Building on these
considerations, we have extended the traditional multi-head
attention based on a cascading strategy by incorporating two
instances of Cross-Attention (CA), as shown in Figure 1B.
Additionally, the process of information exchange during the two
instances of Cross-Attention can be represented by Eqs. 6–9.

CA1
vis Qvis, Kinf, Vvis( ) � sof tmax

QvisK
T
inf��

dk

√( )Vvis (6)

CA1
inf Qinf, Kvis, Vinf( ) � sof tmax

QinfK
T
vis��

dk

√( )Vinf (7)

FIGURE 2
The visualization of the detection results, subfigure (A) shows the input visible lr images, subfigure(B) is the corresponding infrared images, subfigure
(C) is the prediction result of ourmodel, and subfigure (D) is the ground truth. These images are selected from the dataset listed at https://soonminhwang.
github.io/rgbt-ped-detection/
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and

CA2
vis Qvis, Kvis, Vinf( ) � sof tmax

QvisK
T
vis��

dk

√( )Vinf (8)

CA2
inf Qinf, Kinf, Vvis( ) � sof tmax

QinfK
T
inf��

dk

√( )Vvis (9)

where vis, inf represent visible token and infrared token from Ẑ
respectively. After processing through two cascaded multi-head
cross-attention layers, the visible and infrared features are
subjected to Layer Normalization (LN) and Multi-Layer
Perceptron (MLP), ultimately producing two output features, ~Fvis
and ~Finf.

3.3 Two-stage feature fusion module

After obtaining the feature mappings from each layer, a two-
stage feature fusion module (Feature Fusion Module, FFM) [41] is
introduced to enhance the interaction and integration of global
information. As illustrated in Figure 1C, in the first stage, the two
branches are kept separate, and a cross-attention mechanism is
designed to facilitate the global exchange of information between the
two branches. In the stage 2, the concatenated features are
transformed back to the original scale through a mixed
channel embedding.

Global Information exchange stage. We first flatten the input
feature of size ~Fvis and ~Finf ∈ RH×W×C into RN×C along with channel
dimension, where N = H ×W, and C is the number of tokens, Then,
through linear embedding, we generate two vectors of the same size
RN×C, named the residual vector Xres and the interactive vector Xinter.
Building upon this, we propose an efficient cross-attention
mechanism that applies to these two interactive vectors from
different modal pathways, achieving comprehensive information
exchange across modalities. This mechanism offers complementary
interactions from a sequence-to-sequence perspective, surpassing
the rectification-based interactions from the feature map perspective
in CMFRM.

Our cross-attention mechanism, designed for improved cross-
modal feature fusion, is an adaptation of the conventional self-
attention mechanism [33]. The traditional method encodes inputs
into Queries (Q), Keys (K), and Values (V), computing a global
attention map via QKT. This results in a computationally expensive
N × N matrix. Alternatively [70], proposes using a global context
vector G = KTV, reducing the size to Chead × Chead. Our approach
builds on this by embedding interactive vectors into K and V for
each head, with both matrices sized N × Chead. The final output is a
product of these interactive vectors and the context vector from an
alternate modality, constituting the cross-attention process.

Gvis � K̂
T

visV̂vis

Ginf � K̂
T

infV̂inf

(10)

Uvis � Xinter
vis Sof tmax Ginf( )

Uinf � Xinter
inf Sof tmax Gvis( ) (11)

Note that G denotes the global context vector, while U indicates
the attended result vector. To realize attention across different
representational subspaces, we maintain the multi-head

mechanism, where the number of heads corresponds to the
number of elements in the transformer backbone. Subsequently,
the attended result vector U and the residual vector are
concatenated. Finally, we apply a second linear embedding and
resize the feature back to RH×W×C.

Global Feature Fusion Module. In the fusion component of the
Feature Fusion Module (FFM), channel-wise integration is
performed using 1 × 1 convolution for combining features from
dual pathways. Considering the necessity of spatial context for Vis-
Inf pedestrain detection, we adopt a strategy influenced by Mix-FFN
[71] and ConvMLP [72], incorporating a depth-wise 3 × 3
convolution (DW Conv) to form a skip connection architecture.
This approach facilitates the consolidation of the concatenated
feature dimensions RH×W×2C into the decoder output
dimension RH×W×C.

4 Experiments

In this section, we first introduce two multispectral datasets,
KAIST [73] and LLVIP [22]. The KAIST dataset compiles data from
day and night autonomous driving scenarios, while the LLVIP
dataset is composed of night-time surveillance scenarios. Given
our focus on nighttime pedestrian detection, we exclusively
selected the nighttime subset of the KAIST dataset. Subsequently,
we delve into some specifics of the model training phase. The
evaluation metrics for pedestrian detection diverge slightly from
those of traditional object detection, hence we will clarify the
evaluation metrics utilized in this study. We benchmark our
results against state-of-the-art methods and conduct ablation
studies to assess the effectiveness of our proposed module. Lastly,
the visualization of our proposals is provided to facilitate an intuitive
understanding of their impact. At last, we provide a visualization of
the predicted results as shown in Figure 2.

4.1 Dataset

KAIST. The KAIST dataset [73], introduced at CVPR2015,
consists of 95k aligned pairs of visible and infrared images and has
been extensively utilized. All annotations are manually labeled,
including 1,182 pedestrian instances. Due to biased annotations in
the original training set, this study employs the sanitized version
[23]. The sanitized KAIST provides 7,601 training images with at
least one valid pedestrian instance, filtered and sampled from the
original training videos. There are 2,846 pairs for night training
and 4,755 pairs for day training. The test set comprises
2,252 image pairs, with 797 for night and 1,455 for day. Test
annotations from the improved version [31], which corrects the
initial annotations, are used. The resolution of training and test
images is 640 × 512.

LLVIP. LLVIP [22] is a nighttime pedestrian dataset for
surveillance scenarios, presented at ICCV2021. It includes
15,488 strictly aligned visible-infrared image pairs, featuring
numerous pedestrians and cyclists from diverse street locations
between 6 and 10 p.m. [22]. The original resolution of the
images is 1280 × 1024, but to reduce computational demands, we
scale down the images by half to 640 × 512 in this paper.
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4.2 Evaluation

Evaluation metrics. The first assessment metric is the Log-
Average Miss Rate (LAMR), which is a specialized metric for
evaluating the performance of pedestrian detection systems. The
relationship between the Miss Rate (MR) and the False Positives Per
Image (FPPI) is plotted on a log-log scale, and nine FPPI reference
points are selected within the range [10–2, 100], evenly spaced in the
logarithmic space. LAMR is defined as shown in Eq 14.

MR � FN

TP + FN
(12)

FPPI � FP

imgs num
(13)

LAMR � exp
1
9
∑
f

log MR argmax
FPPI≤f

FPPI⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (14)

where f is within the set {10–2, 10–1.75, . . . , 100}, TP represents the
number of True Positives, FP is the number of False Positives, and
FN denotes the number of False Negatives. Additionally, we utilize
AP50 as our second metric, complementing LAMR. In the

evaluation process, all detected bounding boxes are matched to
ground truth annotations for each image via a greedy algorithm. If
the Intersection over Union (IoU) between the detection box and the
ground truth exceeds a specified threshold, the detection is
considered a True Positive (TP), indicating a successful
prediction. Due to the highly non-rigid nature of pedestrians, we
adopt the common IoU threshold of 0.5. Thus, AP50 denotes the
Average Precision when the IoU threshold is 0.5.

4.3 Comparison of results on KAIST
night dataset

We compared our model with the results of state-of-the-art models
on the KAIST Night test set, as presented in Table 1. Our model builds
upon a two-stream architecture extended from yolov5; hence, we
assessed the single-modality detection capabilities of yolov5 with
only visible and only infrared images on the same dataset. The task
of night-time pedestrian detection using solely visible light images poses
a substantial challenge, reflected in a high LAMR of 63.65%. Through
the development of effective cross-modality fusion algorithms, such as
MSDS-RCNN [23] and CFT [66], the LAMR for night-time pedestrian
detection can be significantly decreased, improving detector
performance. Furthermore, our proposed method records a LAMR
of 10.79% and an AP50 of 82.48%, evidencing the effectiveness and
competitive edge of our approach.

4.4 Ablation study

From the previous sections, we have familiarized ourselves with the
architecture and proposed modules such as CMFRM, as well as the
enhancements in our method. However, the exact quantitative
improvements contributed by these modules remain uncertain.
Therefore, in this section, we present a succinct and insightful
ablation study to address the aforementioned inquiries. Table 2
illustrates that CMFRM has led to a decrease of 1.14% in LAMR
and an enhancement of 1.47% in AP50 on the KAIST Night dataset,
and a reduction of 0.63% in LAMR on the LLVIP dataset. FFM
contributes to a decrease of 0.57% in LAMR and an improvement
of 1.18% inAP50 on the KAISTNight dataset, and a reduction of 0.80%
in LAMR on the LLVIP dataset. Finally, when compared to the baseline
model CFT [66], our comprehensive model CMTF decreases LAMR by
1.38% and enhances AP50 by 3.2% on the KAIST Night dataset, and
lowers LAMR by 1.62% on the LLVIP dataset.

TABLE 1 Results on KAIST night dataset and the results in bold indicate the
optimal.

Methods Data modality LAMR (%) AP50

Yolov5 [69] Visible 63.65 43.95%

Yolov5 [69] Infrared 14.73 77.51%

MLF-CNN [74] Visible + Infrared 25.65 67.60%

IATDNN [75] Visible + Infrared 26.88 67.02%

CWF-CNN [76] Visible + Infrared 30.82 64.59%

L-SSD [77] Visible + Infrared 35.38 48.77%

MSDS-RCNN [23] Visible + Infrared 13.73 -

CS-RCNN [78] Visible + Infrared 11.86 -

CIAN [26] Visible + Infrared 11.13 -

MBNet [79] Visible + Infrared 10.98 -

UGC [68] Visible + Infrared 10.92 -

ProbEn [67] Visible + Infrared 10.83 -

Our Method Visible + Infrared 10.79 82.48%

TABLE 2 Results of ablation study and the results in bold indicate the optimal.

Method KAIST night LLVIP

Base CMFRM FFM LAMR (%) AP50 (%) LAMR (%) AP50 (%)

✓ 12.71 79.28 5.40 97.50

✓ ✓ 11.57 80.75 4.77 97.72

✓ ✓ 12.14 80.46 4.60 97.09

✓ ✓ ✓ 10.79 82.48 3.78 97.98
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4.5 Conclusion

In this paper, we introduce an interactive cross-modal fusion
framework based on YOLOv5, designed to improve the performance
of nighttime pedestrian detection algorithms through efficient
information fusion. Our framework utilizes a dual-stream
architecture to separately handle visible and infrared images,
effectively addressing the challenges posed by low-light conditions.
Our proposed FRFPD significantly enhance model performance by
fine-tuning features acrossmodalities, reducing uncertainty and noise,
and focusing on complementary information. These modules also
facilitate multi-dimensional feature interaction and rectification,
including cross-attention mechanisms at the sequence processing
level, which are crucial for the effective generalization of cross-
modal feature combinations. Overall, our research not only boosts
the performance of nighttime pedestrian detection but also offers new
technical solutions and perspectives for visual information processing
under low-light conditions.
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Application of mixed reality
navigation technology in primary
brainstem hemorrhage puncture
and drainage surgery: a case
series and literature review

Xiaoyong Tang1†, Yanglingxi Wang1†, Guoqiang Tang2, Yi Wang3,
Weiming Xiong1, Yang Liu1, Yongbing Deng1* and Peng Chen1*
1Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central
Hospital, Chongqing, China, 2Pre-hospital Emergency Department, Chongqing Emergency Medical
Center, Chongqing University Central Hospital, Chongqing, China, 3Qinying Technology Co., Ltd.,
Chongqing, China

Objective: Themortality rate of primary brainstem hemorrhage (PBH) is high, and
the optimal treatment of PBH is controversial. We used mixed reality navigation
technology (MRNT) to perform brainstem hematoma puncture and drainage
surgery in seven patients with PBH. We shared practical experience to verify the
feasibility and safety of the technology.

Method: We introduced the surgical procedure of brainstem hematoma
puncture and drainage surgery with MRNT. From January 2021 to October
2022, we applied the technology to seven patients. We collected their clinical
and radiographic indicators, including demographic indicators, preoperative and
postoperative hematoma volume, hematoma evacuation rate, operation time,
blood loss, deviation of the drainage tube target, depth of implantable drainage
tube, postoperative complications, preoperative and 1-month
postoperative GCS, etc.

Result: Among seven patients, with an average age of 56.71 ± 12.63 years, all had
underlying diseases of hypertension and exhibited disturbances of
consciousness. The average evacuation rate of hematoma was 50.39% ±
7.71%. The average operation time was 82.14 ± 15.74 min, the average
deviation of the drainage tube target was 4.58 ± 0.72 mm, and the average
depth of the implantable drainage tube was 62.73 ± 0.94 mm. Among all seven
patients, four patients underwent external ventricular drainage first. There were
no intraoperative deaths, and there was no complication after surgery in seven
patients. The 1-month postoperative GCS was improved compared to the
preoperative GCS.

Conclusion: It was feasible and safe to perform brainstem hematoma puncture
and drainage surgery by MRNT. The technology could evacuate about half of the
hematoma and prevent hematoma injury. The advantages included high
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precision in dual-plane navigation technology, low cost, an immersive operation
experience, etc. Furthermore, improving the matching registration method and
performing high-quality prospective clinical research was necessary.

KEYWORDS

primary brainstem hemorrhage, mixed reality navigation technology, brainstem
hematoma puncture and drainage surgery, neuronavigation, deviation

Introduction

Primary brainstem hemorrhage (PBH) is spontaneous
brainstem bleeding associated with hypertension unrelated to
cavernous hemangioma, arteriovenous malformation, and other
diseases. Hypertension is the leading risk factor for PBH, and
other elements include anticoagulant therapy, cerebral amyloid
angiopathy, et al. PBH is the deadliest subtype of intracerebral
hemorrhage (ICH), accounting for 6%–10% of all ICH with an
annual incidence of approximately 2–4/100,000 people [1–3]. The
clinical characteristics of PBH are acute onset, rapid deterioration,
poor prognosis, and high mortality (30%–90%) [1, 4, 5].

The inclusion criteria of previous ICH research all excluded
PBH, such as STICH and MISTIE trials. There is no clear evidence
for the optimal treatment of PBH, and the view of surgical treatment
has noticeable regional differences. European and North American
countries generally believe that severe disability or survival in a
vegetative state is a high mental and economic burden for PBH
patients and their families. These countries do not favor surgical
treatment. However, many PBH surgical treatments have been
carried out in China, Japan, and South Korea. Surgical treatment
methods, surgical effects, monitoring methods, and complications
have been investigated, and much experience has been accumulated.

In 1998, Korean scholars performed the first craniotomy to
evacuate the brainstem hematoma [6]. However, in 1989, the
Japanese scholar Takahama performed stereotactic brainstem
hematoma aspiration surgery [7]. In our opinion, microsurgery
craniotomy requires high electrophysiological monitoring and
surgical skills, and these limitations are not conductive to
popularization. Minimally invasive surgery has the characteristics
of a simple operation, minimally invasive, and short operation time,
and it is believed to reduce the damage to critical brainstem
structures and protect brainstem function as much as possible.
More and more minimally invasive treatments have been
adopted to improve the precision of PBH puncture, including
stereotactic frameworks, robotic-assisted navigation systems, 3D
printing techniques, and even laser combined with CT navigation
techniques.

Mixed reality navigation technology (MRNT) is based on virtual
and augmented reality development. The technology uses CT
images to construct a 3D head model and design an individual
hematoma puncture trajectory. The actual environmental position is
captured by a camera during surgery and was fused with 3D head
model synchronously. MRNT not only display the model image
combined with actual environment but also navigate the puncture
trajectory in real time, allowing the surgeon to precisely control
puncture angle and depth to achieve a perfect procedure. This
technology makes the head utterly transparent during the surgery
and brings an immersive experience to the surgeon.

MRNT has broad application prospects. However, it is still in its
infancy, and its application in neurosurgery has rarely been
reported. Furthermore, there is no report on application of
MRNT in the surgical treatment of PBH. In this study, we used
MRNT to perform brainstem hematoma puncture and drainage
surgery in seven patients with PBH to share practical experience to
verify the feasibility and safety of the technology.

Materials and methods

General information

With the approval of the Ethics Committee of the Chongqing
Emergency Medical Center, we included seven patients diagnosed
with PBH from January 2021 to October 2022. All underwent
brainstem hematoma puncture and drainage surgery with MRNT
under general anesthesia. Indications for surgery were patients who
1) were 18–80 years of age; 2) had hematoma volume greater than
5 mL and less than 15 mL; 3) had a diameter of the hematoma
greater than 2 cm; 4) had hematoma deviating toward one side or
the dorsal side; 5) had GCS less than 8; and 6) had surgery within
6–24 h after onset. Family members were informed and signed the
consent form [8]. Exclusion criteria were patients who had 1)
brainstem hemorrhage caused by cavernous hemangioma,
arteriovenous malformation, and other diseases; 2) GCS >12; 3)
bilateral pupil dilation; 4) unstable vital signs; 5) severe underlying
disease; or 6) coagulation dysfunction.

Mixed reality navigation technology (MRNT)

All patients preparing for surgery were required to wear sticky
analysis markers in the parieto-occipital region and undergo a CT
scan before surgery. CT image scanning was performed with a 64-
slice CT scanner (Lightspeed VCT 6, General Electric Company,
United States of America). The image parameters included in the
exposure were 3 mAS, the thickness was 5mm, and the image size
was 512 × 512. The DICOM data were analyzed to construct the 3D
model of the hematoma and head, and the volume of brainstem
preoperative hematoma was calculated using software (Medical
Modeling and Design System). In addition, the hematoma
puncture trajectory was designed according to the constructed
head model.

After general anesthesia, the sticky analysis markers were
replaced with bone nail markers, keeping the same position [9].
Based on the principle of near-infrared optical navigation, the
camera captured the actual space position in real-time, fused it
with the markers of the 3D head model (HSCM3D DICOM), and
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transmitted the information to the wearable device (HoloLens).
During surgery, the camera continuously tracked the position of the
puncture needle to achieve navigation function. In short, the image
processing software matched and fused information from camera
systems and wearable device through multiple markers. When
controlling the movement of surgical tools, the software also
processed the dynamic tool position data and fused it with the
virtual model through wireless transmission.

Surgical procedures

Hydrocephalus patients were first treated with external
ventricular drainage (EVD), and the frontal Kocher point was
selected as the cranial entry point. The procedures were cutting
the skin, drilling the skull, cutting the dura mater, puncturing in the
direction of the plane of binaural connection, fixing the drainage
tube, and suturing it layer by layer.

The patient was placed in a prone position with the head frame
fixed. The puncture point was 2 cm below the transverse sinus and
3 cm lateral to the midline of the hematoma side. After cutting the
skin, the muscle was separated. The dura mater was cut through a
drilled hole. Wearing HoloLens, the surgeon synchronously
observed actual head structure and fused puncture trajectory
from multiple angles and used dual-plane navigation technology
[9] for hematoma puncture. After watching that the drainage tube
was in place, the puncture needle was removed, and a 5 mL empty
syringe was connected for suction. The drainage tube was fixed and

sutured layer by layer. The head CT was reviewed immediately after
the surgery, and the decision whether to inject urokinase according
to the drainage tube’s position and the residual hematoma volume.
Urokinase was injected from a drainage tube for 2-3 w units every
12 h, usually 4–6 times, and kept for 1.5 h before opening the tube.
The retention time of the drainage tube was no more than 72 h after
the surgery. The surgical procedure to apply MRNT is shown
in Figure 1.

Clinical and radiographic indicators

The indicators for analysis included: demographic indicators,
preoperative and postoperative hematoma volume, hematoma
evacuation rate, operation time, blood loss, deviation of the
drainage tube target, depth of implantable drainage tube,
postoperative complications, and preoperative and 1-month
postoperative GCS, etc.

The deviation of the drainage tube target was defined as the
distance between the tip of the drainage tube and the planned
puncture hematoma target. The deviation calculation was done with
the BLENDER 2.93.3 software, which used the 3D global coordinate
system to visualize the distance.

The head CT examination was reviewed within 24 h after surgery,
and the postoperative hematoma volumewasmeasured by non-operators
using previous software (Medical Modeling and Design System).
Hematoma evacuation rate = (preoperative hematoma volume -
postoperative hematoma volume)/preoperative hematoma volume.

FIGURE 1
Surgical procedure for brainstem hematoma puncture and drainage surgery with MRNT (A) Patients were required to wear sticky analysis markers in
the parieto-occipital region. (B) The camera captured the real space position of the calibration plate, puncture needle, and head. (C)Wearing HoloLens,
the surgeon viewed the two planes of the image. (D)MRNT displays themodel image and the actual environment synchronously, allowing the surgeon to
perform precise surgery. (E) The real-time navigation of MRNT showed that the puncture needle was close to the hematoma target. (F) The surgeon
was aspirating the hematoma.
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Statistical analysis

All statistical analyses were performed with SPSS (version 21,
IBM, Chicago, IL, United States). Quantitative variables are
presented as means ± standard deviations. The normality of
quantitative variables was assessed through the Kolmogorov-
Smirnov test. If the distribution was found to be normal, paired
t-test were performed. The categorical variables are presented as
percentages and tested by χ2 or Fisher’s test. A p-value less than
0.05 was considered statistically significant.

Results

From January 2021 toOctober 2022, seven patients were diagnosed
with PBH and underwent brainstem hematoma puncture and drainage
surgery with MRNT. A summary of the demographic and clinical
characteristics of the patients was provided in Table 1. Among the seven
patients, five were men, with an average age of 56.71 ± 12.63 years
(37–74 years). The seven cases had underlying hypertension, and four
cases had diabetes. The average time from onset to admission was 4.2 ±
1.47 h. Seven patients had prominent disturbances of consciousness,
four required ventilator assistance, and three had a high fever.

According to the brainstem hematoma classification advocated
by Chung [10], 2 cases belonged to small unilateral tegmental type,
4 cases belonged to basal-tegmental type, and other 1 case belonged
to bilateral tegmental type. The average volume of preoperative
brainstem hematoma was 8.47 ± 2.22 mL (range, 5.45–12.2 mL), the
average volume of postoperative brainstem hematoma was 4.16 ±
1.17 mL (range, 3.14–5.95 mL), and the differences were significant.
The average hematoma evacuation rate was 50.39% ± 7.71% (range,
41.65%–63.23%). Four of the seven patients underwent EVD first
(57.1%), and one underwent EVD 2 days after hematoma puncture
and drainage surgery. The average operation time was 82.14 ±
15.74 min, the average blood loss was 32.2 ± 8.14 mL, the
average deviation of the drainage tube target was 4.58 ± 0.72 mm
(range, 3.36–5.32 mm), and the average depth of the implantable
drainage tube was 62.73 ± 0.94 mm (range, 61.42–64.23 mm). Three
patients were injected with urokinase after surgery, and the average
retention time of the drainage tube was 53.56 ± 7.83 h.

There were no intraoperative deaths in seven patients. Two
patients had slight intraoperative fluctuations in vital signs. The
most common postoperative comorbidity was pneumonia (7/7,
100%), followed by gastrointestinal bleeding (5/7, 71.43%). There
were no rebleeding incidents, ischemic stroke, intracranial infection,
or epilepsy within 2 weeks after surgery. The preoperative high fever
symptoms were relieved after surgery. Only one patient died due to
pneumonia 12 days after surgery, one patient gave up 20 days after
surgery. Two patients were conscious and three patients were still in
a coma 1 month after surgery.

The average preoperative GCS was 6.57 ± 1.51, and the average
postoperative GCS was 10.00 ± 2.83 1 month after surgery. The
improvement was statistically significant. The representative cases
are shown in Figure 2 and Figure 3.

Discussion

The brainstem is small, deep in the skull, and includes the
midbrain, pons, and medulla oblongata. The brainstem is the center
of life, controlling respiration, heart rate, blood pressure, and body
temperature. About 60%–80% of PBH occurs in the pons due to the
rupture of the perforating vessels of the basilar artery [1, 2].
Hypertension is one of the most common causes of severe
cerebrovascular disease. By causing mechanical and chemical
damage to essential structures in the brainstem, such as the
nucleus clusters and the reticular system, the hematoma quickly
induces clinical symptoms such as coma, central hyperthermia,
tachycardia, abnormal pupils, and hypotension. The prognosis is
extremely poor, which presents a challenge to existing
treatment methods.

The conservative treatment strategy for PBH is mainly related to
the hypertensive treatment strategy for ICH [11]. Since the primary
damage of PBH is irreversible, surgical treatment is believed to
relieve mechanical compression of the hematoma and prevent
secondary injury, improving prognosis [1, 12, 13]. However,
there have been some controversies about surgical treatment.
Due to the high mortality and disability rate of PBH, it is
necessary to strictly evaluate the indications for surgery.
Indications for surgery proposed by Shresha included a

TABLE 1 Demographic and clinical characteristics of seven patients.

Case,
no

Age
(years),
gender

Pre-
operative
volume
(ml)

Post-
operative
volume
(ml)

HER
(%)

EVD Deviation
(mm)

Depth
(mm)

GCS (pre-
operation)

GCS
(1month)

Outcome

1 67/M 8.54 3.14 63.23 + 4.05 62.57 8 13 CON

2 64/M 5.45 3.18 41.65 4.22 63.42 8 13 CON

3 47/F 6.83 3.51 48.61 4.92 62.92 8 9 COMA

4 37/M 8.36 3.74 55.26 + 5.32 64.23 5 7 COMA

5 53/M 10.21 5.95 41.72 + 3.36 61.84 5 8 COMA

6 55/F 12.21 5.67 53.56 + 4.96 61.42 5 DEAD

7 74/M 7.66 3.93 48.69 + 5.22 62.69 7 GIVE UP

CON, conscious; EVD, external ventricular drainage; GCS, glasgow coma scale; HER, hematoma evacuation rate.
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hematoma volume greater than 5 mL, a relatively concentrated
hematoma, GCS less than 8, progressive neurological
dysfunction, and uneventful vital signs, particularly requiring
ventilatory assistance [14]. Huang established a brainstem
hemorrhage scoring system and suggested patients with a score

of 2–3 might benefit from surgical treatment. A score of 4 was a
contraindication to surgical treatment [15]. A review of 10 cohort
studies showed that the patients in the surgical group were
45–65 years old, unconscious, with a GCS of 3–8, and the
hematoma volume was approximately 8 mL. The surgical group

FIGURE 2
The representative case 2 (A) Preoperative CT showed PBH in the axial, sagittal, and coronal planes. (B) The 3D model constructed from CT images
showed hematoma and designed the puncture trajectory from the axial, sagittal, and coronary positions. (C) Postoperative CT of the axial plane showed
that the drainage tube location was precise. The yellow circle indicated the tip of the drainage tube. (D) Fusion of preoperative and postoperative 3D
model showed that the preoperative hematoma volumewas 5.45 mL, the postoperative hematoma volumewas 3.18 mL, the hematoma evacuation
rate was 41.65%, the deviation of the target drainage tube was 4.22 mm, and the depth of the implantable drainage tube was 63.42 mm.

FIGURE 3
The representative case 5. (A) Preoperative CT showed PBH in the axial, sagittal, and coronal planes. (B) The 3Dmodel constructed from CT images
showed hematoma, lateral ventricular, and a designed puncture trajectory from axial, sagittal, and coronary positions. (C) Postoperative CT of the axial
plane showed that the drainage tube location was precise. The yellow circle indicated the tip of the drainage tube. (D) Fusion of the preoperative and
postoperative 3D model showed that the preoperative hematoma volume was 10.21 mL, the postoperative hematoma volume was 5.95 mL, the
hematoma evacuation rate was 41.72%, the deviation of the drainage tube target was 3.36 mm. The depth of the implantable drainage tube
was 61.84 mm.
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had a better prognosis and lower mortality than the conservative
treatment group. The research also suggested that older age and
coma were not contraindications for brainstem hemorrhage surgery
[16]. According to the Chinese guidelines for brainstem
hemorrhage, we specified the following surgical indications: age
18–80 years old, hematoma volume greater than 5 mL and less than
15 mL, hematoma diameter greater than 2 cm, hematoma deviated
to one side or the dorsal side, GCS less than 8, surgery performed
within 6–24 h after onset, and family consent [8].

The surgical treatments for PBH included microscopic
craniotomy to evacuate the hematoma, which removed the
hematoma as much as possible, performed hemostasis, and
removed the fourth ventricular hematoma to smooth the
circulation of cerebrospinal fluid. However, this technology
required various intraoperative monitoring methods and
proficient surgical skills. The most widely chosen method was
stereotactic hematoma puncture and drainage surgery. To achieve
precise puncture of the brainstem hematoma, surgeons had used
invasive stereotaxic frames [17], robot-assisted navigation systems
[18], the 3D printing technology navigation method [19], and laser
combined with CT navigation technology [13]. The above
techniques had shortcomings, including invasive placement
positioning framework, the risk of skull bleeding and infection,
expensive costs of robot-assisted and neuronavigation systems, the
lengthy procedure of 3D printing technology, etc.

We innovatively used MRNT to perform brainstem hematoma
puncture and drainage surgery. Our team used this technology to
successfully perform intracranial foreign body removal [20] and
minimally invasive puncture surgery for deep ICH, with a deviation
of the drainage tube target of 5.76 ± 0.80 mm [9]. Based on previous
experience and technical improvement, we applied technology to
perform brainstem hematoma puncture and drainage surgery. The
average volume of preoperative brainstem hematoma was 8.47 ±
2.22 mL, postoperative brainstem hematoma was 4.16 ± 1.17 mL,
and the average hematoma evacuation rate was 50.39% ± 7.71%,
which prevented hematoma primary compression and secondary
injury. The surgical procedure under general anesthesia took an
average of 82.14 ± 15.74 min, the average target deviation was 4.58 ±
0.72 mm, and the average depth of the implantable drainage tube

was 62.73 ± 0.94 mm. The depth of the drainage tube was longer
than that in the application of deep ICH, which required higher
precision. Moreover, we found MRNT was safe in seven patients.

A comparison of the precision of augmented reality technology,
mixed reality technology, and traditional stereotactic methods have
been discussed in previous literature. Van Doormaal et al. conducted
a holographic navigation study using augmented reality technology.
They found that the fiducial registration error was 7.2 mm in a
plastic head model, and the fiducial registration error was 4.4 mm in
three patients [21]. A meta-analysis was conducted to systematically
review the accuracy of augmented reality neuronavigation and
compare it with conventional infrared neuronavigation. In
35 studies, the average target registration error of 2.5 mm in
augmented reality technology was no different from that of
2.6 mm in traditional infrared navigation [22]. Moreover, In the
study of neuronavigation using mixed reality technology, the
researchers received a target deviation range of 4–6 mm [23–25].

The augmented reality technology application scenarios mainly
involve intracranial tumors and rarely involve ICH. Qi et al. used
mixed reality navigation technology to perform ICH surgery. They
also used markers for point registration and image fusion. The
results showed that the occipital hematoma puncture deviation was
5.3 mm due to the prone and supine position, and the deviation in
the basal ganglia was 4.0 mm [26]. Zhou et al. also presented a novel
multi-model mixed reality navigation system for hypertensive ICH
surgery. The results of the phantom experiments revealed a mean
registration error of 1.03 mm. The registration error was 1.94 mm in
clinical use, which showed that the system was sufficiently accurate
and effective for clinical application [27]. A summary of the
deviations in the application of MR or AR was provided in Table 2.

In addition to precision puncture and hematoma drainage,
surgical treatment of PBH also required further discussion on the
timing of surgery, external ventricular drainage, and fibrinolytic
drugs. Shrestha et al. found that surgical treatment within 6 h after
onset was associated with a good prognosis [14]. The ultra-early
operation alleviated the hematoma mass effect and reduced
secondary injury. In particular, for patients with a severe
condition, early hematoma aspiration could immediately
eliminate harmful effects and prevent worse clinical outcomes

TABLE 2 Reported cases of deviations in the application of MR or AR in neurosurgery.

References Year Types of studies Technology Disease Deviation (mm)

Chen peng et al. [9] 2022 Case Series MR HICH 5.76 ± 0.80

Zhu Tao et al. [28] 2022 Case Series AR HICH 1.28 ± 0.43

Zhou Zeyang et al. [27] 2022 Case Series MR HICH Phantom 1.65

Clinical experiment 1.94

Hou Yuanzheng et al [29] 2016 Case Series AR Intracranial Lesions ≤5

Qi Ziyu et al [26] 2021 Case Series MR Intracranial Lesions 4.1

Li ye et al [25] 2018 Case Series MR EVD 4.34

van Doormaal et al [21] 2019 Case Series AR Brain tumor plastic head 7.2 ± 1.8

Clinical experiment 4.4 ± 2.5

Tim Fick et al [22] 2021 Meta Analysis AR Neurosurgery 4.3

AR, augmented reality; EVD, external ventricular drain; HICH, hypertensive intracerebral hemorrhage; MR, mixed reality.
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[17] However, many primary hospitals are not equipped with PBH
surgical treatment abilities. Patients have to waste a lot of time in the
transfer process, which is a big challenge in clinical treatment. PBH
can also cause cerebrospinal fluid circulation disorder that induces
patients to become unconscious. External ventricular drainage is
beneficial in improving cerebrospinal fluid circulation, managing
intracranial pressure, and facilitating patient recovery [17]. In our
study, external ventricular drainage was performed in five cases of
seven patients. Previous research investigating the effects of rtPA on
ICH and ventricular hemorrhage by MISTIE and CLAEA
demonstrated that fibrinolytic drug administration did not
increase the risk of hemorrhage [30–33]. Currently, there is no
evidence and consensus to verify the effects of the thrombolytic drug
used in PBH. We also found that urokinase did not increase the risk
of bleeding and improve drainage efficiency, as reported in previous
literature [13, 18].

Compared with the expensive neuronavigation system, mixed
reality navigation technology was an independent research and
development project, the equipment of the technology was
simple, and the cost was low. The effect of the technology met
the clinical application of intracerebral hemorrhage surgery, and was
beneficial to popularization for primary hospital.

There were also some limitations in our technology. Firstly, in
order to introduce our innovative mixed reality navigation
technology earlier and faster, we reported few cases, so there are
not enough data to verify the advancement of the technology. At
present, it was difficult to perform a cohort study because of the
small number of patients enrolled. We plan to carry out clinical
study with other centers in the future. Secondly, navigation
technology was mainly based on point-matching technology,
which enabled the fusion of the image model with the actual
space through markers. Implementing invasive markers in the
skull might carry potential risks of bleeding or infection.
Moreover, the procedure required CT examinations before
surgery, which delayed surgery time, and increased costs. Some
researchers proposed the face registration plan, but the target
deviation of the face registration was higher than that of the
point registration, and the clinical practicability was poor [34].
Clinical practice must explore a precise, simple, fast, and
noninvasive matching and fusion innovative solution.

Conclusion

It was feasible and safe to perform brainstem hematoma
puncture and drainage by MRNT. Early minimally invasive
precise surgery could prevent hematoma primary and secondary
injury, and improve the prognosis of patients with PBH. The
advantages included high precision in dual-plane navigation
technology, low cost, an immersive operation experience, etc.
Furthermore, improving the matching registration method and
performing high-quality prospective clinical research was necessary.
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Brain functional magnetic
resonance imaging in ICU patients
who developed delirium

Ren-Jie Song1†, Fu-Jian Guo1,2†, Xiao-Fei Huang1, Mo Li1,
Yi-Yun Sun1, An-Yong Yu1* and Tian-Xi Zhang1*
1Emergency Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China, 2Renhuai People’s
Hospital, Zunyi, China

Objective: To detect brain alterations in intensive care unit (ICU) patients who
develop delirium using functional magnetic resonance imaging (fMRI) and
diffusion tensor imaging (DTI) and to determine their predictive value.

Methods: Fifty-two patients who were admitted to the ICU of the Affiliated
Hospital of Zunyi Medical University between June 2021 and June 2022 were
enrolled. Fifteen patients whowere diagnosedwith delirium by the Intensive Care
Delirium Screening Checklist (ICDSC) after MRI were selected as the delirium
group, and 15 healthy volunteers who were examined during the same period
served as the control group. Both groups underwent fMRI and DTI. Quantitative
fMRI and DTI data were compared between the two groups to detect abnormal
structural and functional brain damage. The relationships between MRI outliers
and clinical indicators in the delirium group were also assessed.

Results: Demographic characteristics and imaging indicators before delirium
were not correlated with ICDSC scores after delirium. Compared with the healthy
control group, the delirium group had significantly lower regional homogeneity
(ReHo) values in the left caudate nucleus and frontal lobe on fMRI. The amplitude
of the low-frequency fluctuations (ALFF) values of the delirium group were
significantly increased in the hippocampus but significantly decreased in the
frontal lobe. Compared with the healthy control group, the delirium group
showed reduced mean diffusivity (MD) values, mainly in the right cerebellum
and right middle temporal gyrus; reduced radial diffusivity (RD) values, mainly in
the anterior cerebellum and right middle temporal gyrus; reduced fractional
anisotropy (FA) values, only in the corpus callosum; and reduced axial diffusivity
(AD) values, mainly in the anterior cerebellar lobe, right middle temporal gyrus,
and left middle frontal gyrus on DTI. The statistical thresholds for quantitative DTI
measurements were p < 0.005 at the voxel level and a cluster size > 5.

Conclusion: Abnormal resting-state brain activity in the left superior frontal gyrus
and structural changes in the frontal lobe, temporal lobe, corpus callosum,
hippocampus, and cerebellum were observed in ICU patients who developed
delirium during hospitalization. Early-brain fMRI and DTI examinations are
recommended for the prediction of delirium according to unique quantitative
indicators to facilitate early intervention for critically ill patients, reduce the length
of hospital stay, and improve patient prognosis.

KEYWORDS

delirium, functional magnetic resonance imaging, diffusion tensor imaging, predictive
value, brain imaging
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1 Introduction

Delirium is a form of acute organic brain dysfunction that
occurs most often in ICU patients. Patients in the ICU are
exposed to numerous risk factors for delirium during treatment
of the primary illness. Approximately one-third of critically ill
patients in the ICU exhibit delirium, and a much greater
prevalence of delirium is found in patients receiving mechanical
ventilation [1, 2]. Moreover, the incidence of delirium in
hospitalized patients aged over 65 years is approximately 48%,
and the postoperative incidence is 15%–50% [3]. To date, several
studies have shown that delirium is associated with increased
mortality, length of hospital stay (LOS), and cost. In addition,
when high-risk groups are considered, such as older individuals
and patients on mechanical ventilation, delirium can occur in up to
80% of ICU patients [4]. Fluctuations in attention and cognition are
observed in patients with delirium [5], and the clinical
manifestations, including delusions, hallucinations, or
disorientation due to different causes of injury [6], vary and have
long-term effects on the quality of life of patients. Despite the high
incidence of delirium, it is often underrecognized clinically.
Currently, the clinical diagnosis of delirium is usually verified by
delirium assessment tools, including the ICU Delirium Assessment
Scale, the Intensive Care Delirium Screening Checklist (ICDSC), and
the Delirium Screening Checklist [7]. However, these diagnostic
tools are highly subjective, time-consuming, and limited by the
patient’s speech, which poses substantial barriers to the early
diagnosis of delirium by clinicians and affects the early treatment
and prognosis of patients with delirium.

Previous neuroimaging studies of delirium have shown that
patients with cortical atrophy, white matter lesions, and ventricle
enlargement are at increased risk of delirium [8]. However, the
pathophysiological mechanisms of delirium are still poorly
understood. Neuroimaging offers a noninvasive method to
advance our understanding of the mechanisms of delirium [9].
Delirium can generally be divided into three types: excitatory,
inhibited, and mixed [10]. Excitatory delirium is clinically
characterized by excitement and mania, and it is easy to identify
clinically. However, inhibited delirium is more common than
excitatory delirium. Studies have reported that the proportion of
patients with inhibited delirium in the ICU is the highest, followed
by patients with mixed delirium and patients with excitatory
delirium [11]. Inhibited delirium often leads ICU doctors to
misjudge the mental state of patients. Usually, these patients are
relatively calm, but patients with severe anxiety and hallucinations
are unable to properly express their thoughts. As a result, inhibited
delirium is often missed; targeted treatment is often delayed or even
absent, and the prognosis of patients with inhibited delirium is
often worse.

Delirium has been reported to be correlated with the prognosis
of ICU patients, and early intervention is effective in reducing pain
[6], disability, mortality, and medical costs. Therefore, there is an
urgent need for objective auxiliary tools to assist clinicians in the
quick and accurate detection of delirium in patients. Functional
magnetic resonance imaging (fMRI) and diffusion tensor imaging
(DTI) are newly developed imaging techniques that can measure
brain function. These techniques have been widely used to study
neurological diseases but have rarely been used to examine

individuals with delirium. Previous studies have shown abnormal
resting-state activity in several brain regions in patients with
delirium. To this end, we conducted resting-state fMRI and DTI
examinations of ICU patients in our hospital in this single-center,
prospective, cohort study and analyzed patients who developed
delirium in the middle and late stages of an ICU admission to
further explore the changes in patient-specific brain function in
regions before delirium occurred. We hoped to provide a theoretical
basis for the use of imaging to facilitate the clinical prediction of
delirium, increase early diagnosis and treatment, and reduce the
impact of delirium on the quality of life of patients.

2 Data and methods

2.1 Ethics

This study complied with medical ethics standards and was
approved by the ethics committee of the Affiliated Hospital of Zunyi
Medical University (approval number: KLL-2020-133). All the
scanned patients and healthy volunteers were fully informed
about the study and volunteered to participate in the present study.

2.2 Study conditions

All imaging scans were performed using the same MRI device
(HDxT 3.0 T, GE, USA) at the imaging center of the Affiliated
Hospital of Zunyi Medical University under the guidance of
specialized technicians.

2.3 Study subjects

From 21 June 2021 to 30 June 2022, 52 patients admitted to the
ICU of the Affiliated Hospital of Zunyi Medical University were
selected as the study population. All patients underwent fMRI
within 72 h after admission to the ICU. Delirium was diagnosed
using the ICDSC, which has a total score range of 0–8; scores equal
to or greater than 4 indicate clinical delirium. The diagnosis was
made by two experienced ICU attending physicians with extensive
clinical expertise. All patients included in this study were right-
handed based on the Chinese handedness assessment criteria.
Healthy volunteers from our hospital during the same period
who were matched for age, sex, and educational level with the
patients and provided signed informed consent forms indicating
their willingness to participate in the study were selected as controls.

2.3.1 Inclusion criteria
The inclusion criteria were as follows: Aged 14–70 years,

underwent MRI within 72 h after ICU admission, and had an
education level above primary school.

2.3.2 Exclusion criteria
The exclusion criteria were as follows: preexisting neurological and

psychiatric disorders or genetic disorders, history of severe hepatorenal
or cardiac disorders, presence of metallic medical implants, or deafness
or blindness that may affect the outcome of delirium.
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2.3.3 Elimination criteria
The elimination criteria were as follows: unwillingness to

cooperate with scanning, the use of sedatives, or excessive
scan artifacts.

2.4 Data collection

Patient sex, age, education level, and ICDSC score after the
occurrence of delirium in the ICU were recorded.

2.5 Image acquisition

A USA (United States) superconducting MRI scanner and skull
coil were used. During the scanning process, the subjects were
instructed to lie quietly in the supine position, close their eyes,
and avoid thinking of anything in particular. Axial T2 fluid-
attenuated inversion recovery (FLAIR) images were obtained to
rule out organic brain lesions and obvious degradation of white
matter. The fMRI parameters were as follows: repetition time (TR) =
2000 m, echo time (TE) = 40 m, slice thickness = 4 mm, slice
interval = 0, slice layer = 33, number of slices = 210, field of
view (FOV) = 24 cm × 24 cm, number of excitations (NEX) = 1,
matrix = 64 × 64, and flip angle = 90°. A total of 6930 images were
acquired. The DTI parameters were as follows: TR = 8500 m, TE =
40 m, slice thickness = 4 mm, slice interval = 0, number of slices =
35, FOV = 24 cm × 24 cm, diffusion sensitive gradient (b value) =
0 to 1 000 s/mm2, diffusion sensitive gradient direction = 25, NEX =
1, matrix = 128 × 128, and flip angle = 90°.

2.6 Data processing

2.6.1 Resting-state fMRI data analysis
Slice timing correction: The time information about each layer of

each subject’s whole brain (volume) was corrected to eliminate the
phase difference of each layer of the time series of each subject. Head
motion correction: There was a small amount of head motion caused
by the subjects’ breathing and heartbeats during data acquisition.
Therefore, using the first volume of each subject as the reference
standard, the remaining volume was spatially transformed using a six-
parameter rigid body transformation to eliminate any head motion.
Average images were generated after head motion correction. Spatial
normalization: To conduct item-by-item statistical analysis of one or
more datasets, voxelwise alignment was performed on all subjects
considering the variations in brain shape and size. The average image
obtained after head motion correction served as the source image for
estimating registration parameters, using the blood oxygen level-
dependent (BOLD) brain template in the Montreal Neurological
Institute (MNI) space as the reference standard. Subsequently,
spatial transformation employing a 12-parameter affine
transformation and nonlinear deformation was applied to align the
images after head motion correction with normalization to eliminate
intersubject differences. Gaussian smoothing: Following spatial
normalization, the data were smoothed using an 8-mm full-width
at half-maximum Gaussian kernel to further reduce noise. Statistical
analysis involved transforming the data to adhere to a normal

distribution. Linear drift elimination: Linear drift during data
acquisition was removed. Regression: Signals originating from
white matter and cerebrospinal fluid were regressed out to mitigate
their influence on gray matter signals. Friston’s 24-motion parameter
model regression was performed to eliminate the influence of head
motion on the data. Low-frequency filtering: As the signals related to
physiological activity were concentrated in the low-frequency band,
the data were bandpass filtered at a frequency range of 0.01–0.1 Hz
before statistical analysis. Quantitative calculation: Quantitative
indicators such as the amplitude of low-frequency fluctuations
(ALFF) and regional homogeneity (ReHo) in all subjects were
calculated using DPABI software. Quantitative indicator
smoothing: Quantitative indicators were smoothed using a 4-mm
full-width at half-maximum Gaussian kernel before statistical
analysis. Voxel-by-voxel statistical analysis of quantitative
indicators: Based on the generalized linear model, statistical
analysis models were constructed to analyze the smoothed
quantitative data, and voxel-by-voxel statistical analysis was carried
out to establish a model for paired-sample t-tests. Correlation analysis
of quantitative indicators: The average value of all quantitative
indicators in each brain region was extracted according to the
90 ROIs (including the left and right sides) of the Automated
Anatomical Labeling (AAL) brain atlas in the MNI space.
Correlation analysis was performed with clinical indicators.

2.6.2 DTI data analysis: data transfer
The DICOM data collected by the device were converted to

NIFTI format. Data inspection: The quality of the images was
checked individually, mainly to ensure the completeness of the
data acquisition and the absence of substantial artifacts. Eddy-
current correction and head motion correction: the FMRIB
Software Library (FSL) was used to correct for eddy-current
effects in the acquired DTI data, as well as for the small amount
of head motion caused by the subjects’ breathing and heartbeats.
Gradient correction: After eddy-current correction, the FSL was
used to correct the tensor data. Quantitative calculation: ExploreDTI
was applied to calculate quantitative indicators, including mean
diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD),
and radial diffusivity (RD). Spatial normalization: To perform item-
by-item statistical analysis of one or more sets of data, voxel-by-
voxel alignment of all subjects was required, given that the brain
shape and size of each subject were different.

With the T2-weighted brain template in the MNI space as the
reference standard, the registration parameters were estimated by
using the b0 image as the source image after eddy-current correction
and head motion correction. Then, spatial transformation of the
quantitative indicators of the image was conducted with 12-
parameter affine transformation and nonlinear deformation, and
the brain images of all subjects were normalized to the template
space to eliminate individual differences. Gaussian smoothing: The
data were smoothed with an 8-mm full-width at half-maximum
Gaussian kernel after spatial normalization to further remove noise.
The data were then transformed to follow a normal distribution.
Extraction of quantitative indicators: The average values of all
quantitative indicators in each brain region were extracted
according to the 90 ROIs of the AAL brain atlas in MNI space
and the JHU white matter atlas (including the left and right sides)
and stored as an MS Excel worksheet. Voxel-by-voxel statistical
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analysis: Based on the generalized linear model, all quantitative
indicators were compared between groups, and the regions with
significant differences between groups were identified and stored
according to heatmaps and positioning documents. Correlation
analysis: A pairwise correlation analysis was performed between
all brain regions of all quantitative indicators in the delirium group
before and after treatment, and clinical information and p values
indicating significant correlations were obtained.

3 Results

3.1 General information and clinical data

Overall, 15 patients were included in the delirium group after
scanning. There were eight men and seven women, with an age of
43.40 ± 10.12 years. Fifteen healthy volunteers, including eight men and
seven women aged 41.53 ± 4.11 years, composed the control
group. There were no statistically significant differences in the
numbers of men and women or in the ICDSC scores between the
two groups (p > 0.05) (Table 1).

3.2 Comparison of ALFF values

ALFF values were analyzed to determine the intensity of
spontaneous activity in the voxels identified in the delirium
group. Compared with the healthy control group, the delirium
group exhibited a significant increase in ALFF values on both
sides of the hippocampus (all p < 0.05, Gaussian random field
[GRF] corrected) and a significant decrease in ALFF values in

the frontal lobe (all p < 0.05, GRF corrected) (Figure 1;
Tables 2, 3).

3.3 Comparison of ReHo values

ReHo values were analyzed to determine the temporal
synchronization of local neural activity in the delirium
group. Compared with the healthy control group, the delirium
group had significantly increased ReHo values in the left brainstem
and left medial superior frontal gyrus but significantly decreased
ReHo values in the left caudate nucleus and left medial superior
frontal gyrus (all p < 0.05, GRF corrected) (Figure 2; Tables 4, 5).

3.4 Comparison of MD

MD values were analyzed to determine the changes in regional brain
water content and the regional integrity of the myelin sheath in the
delirium group. Compared with the healthy control group, the delirium
group had decreasedMDvalues in the right cerebellum and rightmiddle
temporal gyrus (all p < 0.05, GRF corrected) (Figure 3; Table 6).

3.5 Comparison of RD

RD values were analyzed to determine the regional integrity of the
myelin sheaths in the delirium group. Compared with the healthy
control group, the delirium group had reduced RD values in the
anterior cerebellar lobe and right middle temporal gyrus and did not
exhibit any regions with increased RD values (Figure 4; Table 7).

TABLE 1 Comparison of demographic characteristics and ICDSC scores between patients who developed delirium and healthy volunteers.

Group Number Sex (male: female) Age ICDSC score

Delirium group 15 8:7 43.40 ± 10.12 6.27 ± 1.12

Healthy control group 15 8:7 41.5 ± 4.11 1.57 ± 0.63

p-value >0.05 >0.05 >0.05

Note: ICDSC, Intensive Care Delirium Screening Checklist.

FIGURE 1
Brain regions with abnormal ALFF values in the delirium group. Note: ALFF, amplitude of low-frequency fluctuations; GRF, Gaussian random field.
Red indicates brain regions with increased ALFF. Blue indicates brain regions with decreased ALFF.
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3.6 Comparison of FA

Compared with the healthy control group, the delirium group
had reduced FA values in the corpus callosum and no areas with no
increased FA values (Figure 5; Table 8).

3.7 Comparison of AD

Compared with the healthy control group, the delirium group had
reducedADvalues in the anterior cerebellar lobe and the leftmiddle frontal
gyrus and no regions with no increased AD values (Figure 6; Table 9).

TABLE 2 Brain regions with increased ALFF values in patients who developed delirium compared with healthy controls according to resting-state fMRI.

Brain region Peak MNI coordinates (mm) (X, Y, Z) Number of activated voxel clusters p-value, GRF-corrected

Hippocampus 36 37 30 275 <0.05

Note: ALFF, amplitude of low-frequency fluctuation; fMRI, functional magnetic resonance imaging; MNI, Montreal Neurological Institute; GRF Gaussian random field.

TABLE 3 Brain regions with decreased ALFF values in patients who developed delirium compared with healthy controls according to resting-state fMRI.

Brain region Peak MNI coordinate (mm) (X, Y, Z) Number of activated voxel clusters p-value, GRF-corrected

Frontal lobe −3 54 6 84 <0.05

Note: ALFF, amplitude of low-frequency fluctuations; fMRI, functional magnetic resonance imaging; MNI, Montreal Neurological Institute; GRF Gaussian random field.

FIGURE 2
Brain regions with abnormal ReHo values in the delirium group. Note: ReHo, regional homogeneity; GRF, Gaussian random field. Red indicates brain
regions with increased ReHo. Blue indicates brain regions with decreased ReHo.

TABLE 4 Brain regions with increased ReHo values in patients who developed delirium compared with healthy controls according to resting-state fMRI.

Brain region Peak MNI coordinates (mm)
(X, Y, Z)

Number of activated voxel clusters p-value, GRF-corrected

Left brainstem 9–36 -30 71 <0.05

Left medial superior frontal gyrus −20–30 42 23 <0.05

Note: ReHo, regional homogeneity; fMRI, functional magnetic resonance imaging; MNI, Montreal Neurological Institute; GRF, Gaussian random field.

TABLE 5 Brain regions with decreased ReHo values in patients who developed delirium compared with healthy controls according to resting-state fMRI.

Brain region Peak MNI coordinates (mm)
(X, Y, Z)

Number of activated voxel clusters p-value, GRF-corrected

Left caudate nucleus −18–3 -6 131 <0.05

Left medial superior frontal gyrus 0 48 48 124 <0.05

Note: ReHo, regional homogeneity; fMRI, functional magnetic resonance imaging; MNI, Montreal Neurological Institute; GRF, Gaussian random field.
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4 Discussion

fMRI can provide a visualization of brain structure and function.
Unique quantitative indicators widely used to predict clinical
disorders, especially delirium-like disorders, can facilitate early
diagnosis and intervention, reduce the length of hospital stay,

improve patient prognosis, and decrease mortality. Data,
including sex, age, and ICDSC score after the onset of delirium,
were collected from patients admitted to the ICU; these variables
were not correlated with the imaging indicators before the onset of
delirium and thus could not predict whether delirium would occur
later. Accordingly, objective variables that can be used to predict

FIGURE 3
Brain regions with abnormal MD values in the delirium group. Note: MD, mean diffusivity. Blue indicates brain regions with decreased MD.

TABLE 6 Brain regions with decreased MD values in patients who developed delirium compared with healthy controls according to DTI.

Brain region Peak MNI coordinates (mm) (X, Y, Z) Number of activated voxel
clusters

p-value, GRF-
corrected

Right cerebellum −12, –58, −30 374 <0.05

Right middle temporal gyrus −20, 28, 48 33 <0.05

Note: MD, mean diffusivity; DTI, diffusion tensor imaging; MNI, Montreal Neurological Institute; GRF, Gaussian random field.

FIGURE 4
Brain regions with abnormal RD values in the delirium group. Note: RD, radial diffusivity. Blue indicates brain regions with decreased RD.

TABLE 7 Brain regions with decreased RD values in patients who developed delirium compared with healthy controls according to DTI.

Brain region Peak MNI coordinates (mm) (X, Y, Z) Number of activated voxel
clusters

p-value, GRF-
corrected

Anterior cerebellar lobe −14–8 0 2017 <0.05

Right middle temporal gyrus 24 6–40 18 <0.05

Note: RD, radial diffusivity; DTI, diffusion tensor imaging; MNI, Montreal Neurological Institute; GRF, Gaussian random field.
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delirium are urgently needed. With advances in pathophysiological
research on clinical diseases and improvements in DTI and fMRI in
recent years, delirium has been studied in depth in the medical field,
making it possible to predict the occurrence of delirium.

fMRI analysis methods largely focus on describing the
synchrony and spontaneity of brain activity. For instance, ReHo
has been utilized to detect similarities in activity between adjacent
voxels. ReHo is a whole-brain data analysis method based on

Kendall’s coefficient of concordance (KCC). The hypothesis
proposed by the ReHo method is that brain activity is not shown
in a single voxel unit but rather in the form of multivoxel clusters or
brain regions. This method uses KCC to measure the
synchronization of a particular voxel and its 26 adjacent voxel
time series to obtain the KCC map of the whole brain. ALFF can
indirectly reflect neuronal activity and describe the intensity of
spontaneous voxel activity by calculating the average value of the

FIGURE 5
Brain regions with abnormal FA values in the delirium group. Note: FA, fractional anisotropy. Blue indicates brain regions with decreased FA.

TABLE 8 Brain regions with decreased FA values in patients who developed delirium compared with healthy controls according to DTI.

Brain region Peak MNI coordinates (mm) (X, Y, Z) Number of activated voxel clusters p-value, GRF-corrected

Corpus callosum −4–24 14 32 <0.05

Note: FA, fractional anisotropy; DTI, diffusion tensor imaging; MNI, Montreal Neurological Institute; GRF, Gaussian random field.

FIGURE 6
Brain regions with abnormal AD values in the delirium group. Note: AD, axial diffusivity. Blue indicates brain regions with decreased AD.

TABLE 9 Brain regions with decreased AD values in patients who developed delirium compared with healthy controls according to DTI.

Brain region Peak MNI coordinates (mm) (X, Y, Z) Number of activated voxel clusters p-value, GRF-
corrected

Anterior cerebellar lobe 12–56 30 1800 <0.05

Left middle frontal gyrus −20 48 28 33 <0.05

Note: AD, axial diffusivity; DTI, diffusion tensor imaging; MNI, Montreal Neurological Institute; GRF, Gaussian random field.
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amplitude at all frequency points within 0.01–0.08 Hz. These two
characteristics are the main features of resting-state imaging. In this
study, the ALFF and ReHo values in the delirium group were lower
than those in the healthy control group prior to the onset of
delirium. A previous study showed that the frontal lobe is highly
correlated with higher-order functions, such as emotion regulation,
cognition, decision making, and executive function [12]. The human
prefrontal cortex supports cognitive control, the ability to generate
behavioral strategies to coordinate actions and thoughts to achieve
internal goals [13]. Lower BOLD signals in the frontal lobe during
spontaneous activity and reduced ReHo may impair human
emotion regulation, leading to thought disturbances and
calculation errors. The results of this study suggest that patients
who develop delirium have substantially decreased spontaneous
neuronal activity in the frontal lobe compared with healthy
volunteers, which is consistent with the findings from the above
study. Damage to the left caudate nucleus might be implicated in
delirium, as confirmed in our previous study, and thus could lead to
the subsequent occurrence of delirium [14]. In this study, the
synchronization of neural activity in the left caudate nucleus
started to decrease prior to the occurrence of delirium, and
activity in brainstem regions was not coordinated, which suggests
that this variable may predict the risk of delirium. It was also found
that ReHo was increased in the brainstem and that brain
connectivity was reduced before the occurrence of delirium,
which suggests that these changes may be neural correlates of
delirium [15]. Moreover, the ALFF values of the bilateral
hippocampus in the delirium group were greater than those in
the healthy control group, indicating the involvement of impaired
hippocampal function in the occurrence of delirium from an
imaging perspective. In addition, animal experiments have
demonstrated that the loss of E4bp4 in the hippocampus, which
leads to circadian rhythm disturbance, is the basis of the cognitive
decline associated with delirium. Pharmacological intervention was
shown to affect neuronal activity in the hippocampus and, in turn,
cause memory and attention deficits [16]. Taken together, the above
findings suggest that impaired hippocampal function is the
pathophysiological basis of delirium.

The hippocampus is thought to be strongly associated with
consciousness and memory formation [17]. This belief is consistent
with our present findings that impaired hippocampal function is
involved in the development of delirium. Additionally, we revealed a
significant difference in the intensity of spontaneous activity in the
hippocampus between the delirium group and the healthy control
group, whichmay provide a foundation for future research on delirium.

The concept of DTI was proposed by Basser et al. in the mid-
1990s and has become an important technique in functional magnetic
resonance imaging. DTI can further reflect tissue integrity by
providing information on the spatial composition of living tissues
and water exchange among tissue components under pathological
conditions [18]. TheMD value is obtained by summing and averaging
the three dispersion directions along and perpendicular to the fiber.
When a lesion affects brain structure, the integrity of the brain tissue is
disrupted, as evidenced byMD,which reflects brain water content and
myelin integrity [19]; AD, which reflects axonal integrity; and RD,
which reflects myelin integrity. In our study, MD values in the right
cerebellum and RD and AD values in the anterior cerebellar lobe were
lower in the delirium group before the occurrence of delirium than in

the healthy control group, suggesting that the integrity of cerebellar
myelination and axons was impaired. This result is consistent with
that of another study that identified a strong correlation between
dyskinesia and disrupted integrity of cerebellar myelination and axons
in patients with delirium [20]. Moreover, neuropsychological and
neuroimaging studies have shown that greater cortical function is
generally impaired in patients with delirium, particularly in the
nondominant prefrontal cortex, frontal cortex, and temporoparietal
cortex [21]. Neuronal degeneration and damage to the fiber tract were
also observed in the present study; specifically, MD values in the right
middle frontal gyrus of the nondominant hemisphere were decreased
in the delirium group. FAmainly describes the longitudinal dispersion
characteristics of a specific brain region along the direction of the
fibers, and a decrease in FA reflects damage to white matter fiber
integrity. In our study, FA values in the corpus callosum before the
occurrence of delirium were significantly lower in the delirium group
than in the healthy control group. Considering that the corpus
callosum is the largest commissural fiber network in the brain,
disrupted integrity of nerve fibers in the corpus callosum may be
the structural basis for subsequent cognitive impairments and
personality changes in patients. The corpus callosum is considered
the control center for personality abnormalities and cognitive
dysfunction; one possible reason is that microstructural changes
occur in the upper longitudinal tract following cortical
degeneration in patients with delirium, which further leads to
various degrees of acute personality abnormalities and cognitive
dysfunction [22]. Therefore, the altered FA values of the corpus
callosum in the patients who developed delirium observed in our
study are consistent with the above studies. Overall, DTI can predict
the occurrence of delirium by allowing the direct measurement of the
number and integrity of nerve fibers and can reveal the severity of the
disease according to patient imaging parameters. Regarding DTI
parameters, FA and MD values indicated microstructural damage
inmultiple brain regions of patients who later developed delirium, and
there appeared to be correlations between microstructural damage in
different brain regions and the occurrence of delirium. In particular,
structural damage to the cerebellum in the same brain region with
reducedMD, RD, andAD values seemed to bemore closely correlated
with the occurrence of delirium.

The main limitation to this study was its relatively small sample
size. Further studies with larger sample sizes are required to perform
subgroup analyses according to delirium type, such as hyperactive,
hypoactive, and mixed types. In addition, the current design of this
study does not allow us to establish a true “cause/effect” relationship
between delirium and a particular factor.

5 Conclusion

In summary, the abnormal resting-state activity of the left
superior frontal gyrus in ICU patients was strongly associated
with the subsequent occurrence of delirium. Structural changes
and functional abnormalities in the frontal lobe, temporal lobe,
corpus callosum, hippocampus, and cerebellum may be preliminary
imaging indicators for the prediction of delirium. For patients with
delirium, early identification and intervention are recommended to
avoid loss of independence and decrease medical costs and
mortality risks.
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Fusion of full-field optical
angiography images via gradient
feature detection
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Full-field optical angiography (FFOA)—a real-time non-invasive imaging
technique for extracting biological blood microcirculation
information—contributes to an in-depth understanding of the functional and
pathological changes of biological tissues. However, owing to the limitation of
the depth-of-field (DOF) of optical lenses, existing FFOA imaging methods
cannot capture an image containing every blood-flow information. To address
this problem, this study develops a long-DOF full-field optical angiography
imaging system and proposes a novel multi-focus image fusion scheme to
expand the DOF. First, FFOA images with different focal lengths are acquired
by the absorption intensity fluctuation modulation effect. Second, an image
fusion scheme based on gradient feature detection in a nonsubsampled
contourlet transform domain is developed to capture focus features from
FFOA images and synthesize an all-focused image. Specifically, FFOA images
are decomposed by NSCT into coefficients and low-frequency difference
images; thereafter, two gradient feature detection-based fusion rules are used
to select the pre-fused coefficients. The experimental results of both phantom
and animal cases show that the proposed fusion method can effectively extend
the DOF and address practical FFOA image defocusing problems. The fused FFOA
image can provide a more comprehensive description of blood information than
a single FFOA image.

KEYWORDS

full-field optical angiography, gradient feature detection, multi-focus image fusion,
nonsubsampled contourlet transform, fusion rule

1 Introduction

Blood microcirculation information is critical for gaining insights into both the normal
development and pathogenesis of diseases such as cancer and diabetic retinopathy [1–3]; for
example, microvascular rarefaction is a hallmark of essential hypertension [4]. Therefore, it
is essential to accurately depict high-resolution full-field images of blood vessels to enhance
the accuracy of biological studies. In existing full-field optical imaging methods, such as full-
field optical coherence tomography [5], laser scatter contrast imaging [6], and full-field
optical angiography (FFOA) [7, 8], the imaging speed and sensitivity of bio-optical imaging
can be slightly improved, but the imaging range is limited to the depth-of-field (DOF). In
addition, high-resolution images are usually obtained by increasing the magnification of the
lens, which further reduces the DOF range and cannot ensure that all relevant objects in
focus are distinctly imaged. The multi-focus image fusion technique is a feasible method for
addressing the issue of a limited DOF. Images of the same scene with different DOFs can be
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obtained by changing the focal length; thereafter, the focus features
from these images are extracted to synthesize a sharp image to
extend the DOF.

Current multi-focus image fusion methods can be essentially
classified into four categories [9]: transform domain [10–13], spatial
domain [14–19], sparse representation (SR) methods [20–25], and
deep learning methods [26–30]. The spatial domain methods
implement image fusion mainly by detecting the activity level of
pixels or regions. For example, Xiao et al. [31] used the multi-scale
Hessian matrix to acquire the decision maps. SAMF [32]proposes a
new small-area-aware algorithm for enhancing object detection
capability. MCDFD [33]proposes a new scheme based on multi-
scale cross-differencing and focus detection for blurred edges and
over-sharpening of fused images. Spatial domain methods are
known for their simplicity and speed; however, accurately
detecting pixel activity poses a significant challenge. Inaccurate
pixel activity detection may lead to block artifact occurrence and
introduce spectral distortions of the fusion results. Since the
overcomplete dictionaries of SR methods contain richer basis
atoms, SR methods are more robust to misalignment than spatial
domain methods [34]. Tang et al. [35] used joint patch grouping and
informative sampling to build an overcomplete dictionary for SR. SR
is usually time-consuming, and sparse coding using SR is complex;
furthermore, it inevitably loses important information of source
images. Recently, deep learning methods have gained widespread
attention owing to their excellent feature representation capabilities.
Liu et al. [26] first applied a CNN to obtain the initial decision of
focused and out-of-focus regions. Thereafter, other authors
proposed extensive deep learning image fusion algorithms,
including generative adversarial network-based [36], encoder-
decoder-network based [37], and transform-based methods [27].
REOM [38] measure the similarity between the source images and
the fused image based on the semantic features at multiple
abstraction levels by CNN. AttentionFGAN [39] used dual
discriminators in order to avoid the modal unevenness caused by
a single discriminator. Tang et al. [40] proposed an image fusion
method based on multiscale adaptive transformer, which introduces
adaptive convolution to perform convolution operation to extract
global contextual information. CDDFuse [41] propose a novel
correlation-driven feature decomposition fusion network, to
tackle the challenge in modeling cross-modality features and
decomposing desirable modality-specific and modality-shared
features. However, these training data lack consistency with real
multi-focal images; therefore, real multi-focal images cannot be
processed effectively. Transform domain methods decompose
images into different scales, analogous to the process of human
eyes handling visual information ranging from coarse to fine; thus,
the latter can achieve a better signal-to-noise ratio [42]. Transform
domain methods usually include pyramid transform [43], wavelet
transform [44, 45], and nonsubsampled contourlet transform
(NSCT) [46, 47].

In a previous study, a large-DOF FFOA method was developed
that uses the contrast pyramid fusion algorithm (CPFA) to achieve
image fusion [48]. Pyramid transform is a popular tool that is simple
and easy to implement; however, it creates redundant data in
different layers and easily loses high-frequency details. In
comparison with the pyramid transform, the wavelet transform
has attracted more attention owing to its localization, direction, and

multi-scale properties. Nevertheless, discrete wavelet transform
cannot accurately represent anisotropic singular features [16].
Because it is flexible, multi-scale, multi-directional, and sift-
invariant, NSCT has gained an encouraging reputation for multi-
focus image fusion and can decompose images in multiple directions
and obtain fusion results withmore correct information. Li et al. [16]
performed comprehensive experiments to analyze the performance
of different multi-scale transforms in image fusion and their
experimental results demonstrated that the NSCT can
overperform other multi-scale transforms in terms of multi-focus
image fusion. This study devised a long-DOF full-field optical
technique based on gradient feature detection (GFD). A series of
FFOA images with different focal lengths were first acquired by the
absorption intensity fluctuation modulation (AIFM) effect [8].
Subsequently, a novel multi-focus image fusion method in the
NSCT domain was developed to fuse the source FFOA images to
extend the DOF. The proposed fusion scheme includes the following
three steps. First, the initial images (FFOA images with different
DOFs) are decomposed by NSCT into corresponding low-frequency
coefficients (LFCs); thereafter, a series of high-frequency directional
coefficients (HFDCs), and low-frequency difference images (LFDIs)
are obtained by subtracting the LFCs from the source images.
Second, two gradient feature detection-based fusion rules are
proposed to select the pre-fused coefficients. Finally, the fused
image is generated by taking the inverse NSCT (INSCT) on
different pre-fused coefficients. This article compared the fusion
results using objective assessment and subjective visual evaluation.
The experimental results show that the proposed GFD fusion
scheme can yield better blood microcirculation images and
effectively retain the focus information in the source image.

The main contributions of this study are as follows:

(1) This article constructs a full-field optical imaging system to
acquire phantom and animal FFOA images with
different DOFs.

(2) This article proposes a gradient feature detection-based image
fusion scheme in the NSCT domain that can effectively fuse
FFOA images to extend the DOF.

(3) This article develops two fusion rules to fuse the LFCs and
HFDCs of NSCT that can be used to extract more detailed and
structured FFOA image information, thereby improving the
visual perception of the fused images.

The remainder of this paper is organized as follows. Section 2
introduces the imaging system, acquisition of FFOA images, and
proposed fusion model based on GFD in the NSCT domain. Section
3 focuses on the experimental results and discussion. Finally, Section
4 provides the conclusions of the study.

2 Materials and methods

2.1 System setup

A schematic of the constructed system is given in Figure 1. The
80-mW laser beam (λ0 = 642 nm, bandwidth = 10 nm) from the
semiconductor is reflected by the beam splitter (BS), thus vertically
illuminating the sample; the speckle pattern is recorded by a
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complementary metal-oxide semiconductor (CMOS) camera
(acA2000-340km, Basler. Pixel size, 5.5 μm × 5.5 μm; sampling
rate, 42 fps; exposure time, 20 ms). Samples were placed on the
optical mobile platform (OMP), and the focal length in the
z-direction was changed by computer control of the electric
zoom lens (EZL) to obtain FFOA images ( Z1, Z2, Z3, . . . Z10)
with different DOFs; the multi-focus image fusion technique was
then used to fuse the 10 images to obtain the fused image. The data
collection was controlled using LabVIEW software.

2.2 Acquisition of FFOA image

First, describe the theory of the AIFM effect in realizing the
FFOA image [8]. Under irradiation from a low-coherence light
source, the red blood cell (RBC) absorption coefficient is
significantly higher than the background tissue. In the vascular
region, when the RBCs flow, a high-frequency fluctuation signal
(IAC) is generated by the combination of different absorptions of
RBCs and background tissue; the above phenomenon is called the
AIFM effect. However, the region outside the blood vessels produces
a DC signal (IDC) that does not fluctuate over time because it only
contains background tissue. Thereafter, the time sequences (IAC)
and (IDC) are independently demodulated by respectively applying
a high-pass filter (HPF) and low-pass filter (LPF) in the frequency
domain. The employed formulas are as Eq. (1):

IDC x, y, t( ) � LPF I x, y, t( ){ }
IAC x, y, t( ) � HPF I x, y, t( ){ } (1)

where I(x, y, t) is the value of the pixel at spatial coordinate (x, y) at
time t. The samples have a small concentration of scattering
examples, so the collected intensity signal is proportional to the
scattering concentration, i.e., IDC ∝ nDC and IAC ∝ nAC, where nAC

and nDC represent the moving RBC and background scattering
numbers, respectively. Under the condition of IAC ≪ nAC, the
moving RBC concentration can be defined as Eq. (2):

ρ � nAC
nAC + nDC

≈
nAC
nDC

� IAC
IDC

(2)

In current FFOAmethods [7, 8], the imaging parameter is called
averaged modulation depth (AMD), defined as the ratio of the
average dynamic signal intensity 〈IAC(x, y, t)〉t to the average
static signal intensity 〈IDC(x, y, t)〉t. The employed formula is as
Eq. (3):

AMD x, y( ) � 〈IAC x, y, t( )〉t
〈IDC x, y, t( )〉t (3)

2.3 Proposed fusion scheme for
FFOA images

The proposed fusion scheme is illustrated in Figure 2. For a
convenient explanation, only two FFOA images are used for the
entire process, and the above process is iterated to achieve the
fusion of three or even more images. The fusion scheme mainly
includes three steps. First, the NSCT is performed on the source
images to obtain the corresponding LFCs and HFDCs, and LFDIs
are obtained by subtracting the LFCs from the source images.
Thereafter, a sum-modified-Laplacian and local energy (SMLE) is
used to fuse the LFCs, and the structural tensor and local
sharpness change metric (SOLS) is used to process the LFDIs
to obtain the initial decision map. Finally, the HFDC of the fused
image is obtained by fusing the HFDC obtained by the final
decision map, and an INSCT is performed on all coefficients to
generate the final fused image.

FIGURE 1
GFD FFOA fusion system. Z1 to Z10 represent 10 FFOA images with different foci, OMP is the optical mobile platform, BS is the beam splitter, EZL is
electric zoom lens, TC is the transparent container, and GT is the glass tube.

Frontiers in Physics frontiersin.org03

Wang et al. 10.3389/fphy.2024.1397732

148

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1397732


2.3.1 NSCT
The NSCT consists of a non-subsampled pyramid (NSP)

structure and non-subsampled directional filter banks (NSDFBs)
to provide a decomposition of images [47]. Figure 3 depicts an
overview of the NSCT. The ideal support regions of the low-
frequency and high-frequency filters at the j level are
complementary and can be expressed as [−(π/2j), (π/2j)]2 and
[−(π/2j−1), (π/2j−1)]2/[−(π/2j), (π/2j)]2, respectively. The source
image is first decomposed into a high-frequency coefficient (HFC)
and an LFC by NSP; subsequently, the LFC is decomposed iteratively
using NSP. After processing by k-stage NSP, k+1 coefficients (an

LFC and k HFCs) with the same size as the source image
are generated.

The k-th level NSP is defined as Eq. (4):

Hn Z( ) � H1 Z2n−1I( )∏n−2
j�0H0 22jI( ), 1≤ n≤ k

∏n−2
j�0H0 22jI( ), n � k + 1

⎧⎨⎩ (4)

whereHn(Z) is the low-pass filter, andHn(Z) is the high-pass filter
at the n-th stage. NSDFB is a filter bank consisting of a two-channel
tree structure. The HFCs from the NSP are decomposed by the
NSDFB in one step, and one HFC can generate 2l HFDCs. Because

FIGURE 2
Proposed FFOA images fusion scheme.

FIGURE 3
Overview of NSCT (A) Nonsubsampled filter bank structure. (B) Idealized frequency partitioning.
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upsampling and downsampling are eliminated, NSDFB can provide
directional unfolding with shift invariance for the image. Further
details about the NSCT can be found in [47].

To understand the following presentation, let us recall some
frequently used symbols. A, B, and X denote the source images, F
indicates the fused image, and (x, y) represents the pixel points in
the image. The LFC and HFC of the source image X are represented
by CF

L(x, y) and CF
g,l(x, y), respectively, where L represents the

coarsest scale, and g and l are the decomposition level and direction,
respectively. IX(x, y) denote the low frequency difference image and
is obtained by subtracting the LFC from the original image
(IX(x, y) � X(x, y) − CX

L (x, y)).

2.3.2 LFCs fusion based on SMLE
In addition to the selection of transform domain, fusion rules

are also critical in the multi-focus fusion method. For a pair of
LFCs of image X obtained by NSCT decomposition, which
retains the majority of the energy information from the
source image, the energy change between the clear and
defocused objects in the image is relatively large. According
to existing literature [49], sum-modified-Laplacian (SML)
performs excellently in guiding the selection of LFCs. SML is
defined as Eq. (5):

SML CX
L x, y( )( ) � ∑M

m�−M
∑N
n�−N

MLX
L x +m, y + n( )2 (5)

where M × N denotes the 3 × 3 window centered at (x, y).
MLXL (x, y) denotes the modified Laplacian of CX

L (x, y) at point
(x, y), and is defined as Eq. (6):

MLX
L x, y( ) � 2CX

L x, y( ) − CX
L x − 1, y( ) − CX

L x + 1, y( )∣∣∣∣ ∣∣∣∣
+ 2CX

L x, y( ) − CX
L x, y − 1( ) − CX

L x, y + 1( )∣∣∣∣ ∣∣∣∣ (6)

SML can effectively reflect the changes in the energy of LFCs but
cannot reflect the brightness information; therefore, adding the local
energy (LE) of LFCs is considered to improve SML. The LE is
defined as Eq. (7):

LE CX
L x, y( )( ) � ∑M

m�−M
∑N
n�−N

CX
L x +m, y + n( )2 (7)

where M × N denotes the window size centered at (x, y);
considering the time complexity and performance, they can be
set as M � N � 1. Therefore, a combination of SML and LE is
used to construct a new fusion rule (SMLE), as shown in Eq. (8):

SMLE CX
L x, y( )( ) � SML CX

L x, y( )( )*LE CX
L x, y( )( ) (8)

SMLE is selected as the fusion rule, and the coefficient with a
larger SMLE is taken as the LFC after fusion. The coefficient
selection principle for an LFC can be described as Eq. (9):

CF
L x, y( ) � CA

L x, y( ), SMLE CA
L x, y( )( )> SMLE CB

L x, y( )( )
CB

L x, y( ), otherwise
{

(9)
where CF

L(x, y) denotes the LFC of the fused image, CA
L (x, y) and

CB
L(x, y) are the LFCs of images A and B decomposed by NSCT,

respectively.

2.3.3 HFDCs fusion based on SOLS
The process of HFDC fusion based on SOLS consists of three

steps. First, the initial decision map is obtained by describing the
changes in LFCs using SOLS; thereafter, the initial decision map is
optimized using consistency verification and morphological filtering
operations to obtain the final decision map; and finally, the final
decision map is used to guide the fusion of HFDCs.

The HFDCs obtained by the NSCT decomposition mainly
contain most of the detailed information, such as contours, lines,
edges, region boundaries, and textures, and the local geometric
structures (LGS) of the focused region tend to be more
prominent [50]. Therefore, fusion can be achieved by describing
the variation of LGS in HFDC. In recent years, the SOT has gained
widespread adoption in image fusion, emerging as a critical method
for analyzing the LGS of images [51]. This article selected SOT as a
descriptive tool to describe the variation of LGS in the HFDC;
however, when SOT is directly selected to guide HFDC fusion, the
decision maps of different HFDCs may not be consistent, which can
lead to the introduction of error information in the fused images;
thus, the fusion decision maps of HFDCs of decision maps are
obtained by LFDIs. The process steps are described as follows.

Considering the low frequency difference image IX(x, y) of
image X, the square of the rate of change of image A in any direction
θ at the point (x, y) can be expressed as [52]:

dIX( )2 � IX x + ε cos θ, y + ε sin θ( ) − IX x, y( )����� �����22
≈ ∑

ω x,y( )
∂IX
∂x

ε cos θ + ∂IX
∂y

ε sin θ( )
2

(10)

where the window ω(x, y) is defined as the Gaussian function
exp − (x2+y2)

2δ2
. Using C(θ) to represent the change rate of LGS of

image IX(x, y), Eq. (10) can be expressed as Eq. (11):

C θ( ) � ∑
ω x,y( )

∂IX
∂x

ε cos θ + ∂IX
∂y

ε sin θ( )
2

� cos θ, sin θ( )

∑
ω x,y( )

∂IX
∂x

( )
2

∑
ω x,y( )

∂IX
∂x

∂IX
∂y

∑
ω x,y( )

∂IX
∂x

∂IX
∂y

∑
ω x,y( )

∂IX
∂y

( )
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
cos θ, sin θ( )T

� cos θ, sin θ( ) ∑
ω x,y( )

∇g∇gT cos θ, sin θ( )T

(11)
where ∇g � (∂IX∂x ∂IX

∂y )T; ∇g∇gT is the SOT, which is defined as
Eq. (12):

S � ∑
ω x,y( )

∇g∇gT � H M
M V

[ ] (12)

where H � ∑
ω(x,y)

(∂IX∂x )2, M � ∑
ω(x,y)

∂IX
∂x

∂IX
∂y , and V � ∑

ω(x,y)
(∂IX∂y )2.

The structure tensor S has two eigenvalues, which can be
explicitly calculated as Eq. (13):

λ1,2 � 1
2

H + V( ) ±
��������������
V −H( )2 + 4M2

√( ) (13)
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In general, relatively small values of λ1 and λ2 indicate that
pixel values change minimally in the region, i.e., they are flat. A
larger value of λ1 or λ2 indicates a large change in the pixel in one
direction, and this region is more inclined to be the focusing
region. The structure tensor [53] salient detection operator can
be defined as Eq. (14):

STS IX x, y( )( ) �
���������������������
λ1 + λ2( )2 + 0.5 λ1 − λ2( )2

√
(14)

STO can describe the amount of LGS information in LFDIs;
however, it cannot accurately reflect the changes in local contrast. In
this study, the sharpness change metric (SCM) is used to overcome
this deficiency, and the SCM is defined as Eq. (15):

SCM IX x, y( )( ) � ∑
x0 ,y0∈Ω0( )

IX x, y( ) − IX x0, y0( )( )2 (15)

In the formula,Ω0 is a local region of size 3 × 3 centered on (x,y).
In addition, considering the correlation between the pixels in the (x,y)
neighborhood, the local SCM (LSCM) is optimized as Eq. (16):

LSCM IX x, y( )( ) � ∑M
m�−M

∑N
n�−N

SCM x +m, y + n( ) (16)

where M × N is a neighborhood with size of 3 × 3.Therefore, a
combination of SOT and LSCM is used to construct a new fusion
rule (SOLS), as shown in Eq. (17):

SOLS IX x, y( )( ) � STS IX x, y( )( ) × LSCM IX x, y( )( ) (17)

Consequently, the process of constructing the initial decision
map IDM(x, y) of the fused image detail layer using SOLS can be
described as Eq. (18):

IDM x, y( ) � 1, SOLS CL
A x, y( )( )> SOLS CL

B x, y( )( )
0, otherwise

{ (18)

where SOLS(CL
A(x, y)) and SOLS(CL

B(x, y)) denote the SOLS of the
LFDIs A and B, respectively. The IDM in Figure 2 reveal small holes,
fine grooves, protrusions, and narrow cracks. To correct these
erroneous pixels, the “bwareaopen” filter with adaptive threshold
was utilized to improve the IDM, as described in Eq. (19):

MDM � bwareaopen IDM x, y( ), th( ) (19)
where MDM denotes the intermediate decision map. The
“bwareaopen” filter removes isolated areas smaller than the
threshold (th) in the binary map. Considering that different
image sizes adapt to different values of th, th = 0.015 × S in our
scheme, where S denotes the image area. Considering the object
integrity, the MDM can be further improved using the consistency
verification operations., as described in Eq. (20):

FDM x, y( ) � 1, if ∑
a,b( )∈Θ

MDM x + a, y + b( )
0, otherwise

⎧⎪⎨⎪⎩ (20)

where FDM(x, y) is the final decision map of the detail layer, andΘ
is a square neighborhood centered at (x, y) with size 21 × 21.

The fusion detail layer is generated using the final decision map
as Eq. (21):

CF
g,l x, y( ) � CA

g,l x, y( ), if FDM x, y( ) � 1
CB

g,l x, y( ), otherwise
{ (21)

where CF
g,l(x, y) denotes the HFDC of the fused image, and

CA
g,l(x, y) and CB

g,l(x, y) are HFDCs of images A and B
decomposed by NSCT, respectively.

Finally, the fused image is obtained by INSCT using the LFC
CF
L(x, y) and HFDCs CF

g,l(x, y).

2.4 Evaluation of the FFOA images

For subjective visual evaluation, this article measured the quality
of fusion using the difference image, which was obtained by
subtracting the fused image from the source image; the difference
image Dn(x, y) is given as Eq. (22):

Dn x, y( ) � F x, y( ) − In x, y( ) (22)
where F(x, y) denotes the final fused image, and In(x, y) denotes
the n-th source image. This article inverted the pixel value of the
information residual image for better observation.

For the same focused regions in the fused images, less residual
information in the difference image indicates better performance of
the fusion method; therefore, difference images are employed for
subjective visual evaluation.

Subjective visual evaluation offers a direct comparison, but
occasionally, it may be difficult to determine the best performing
case. In contrast, objective evaluations can provide a quantitative
analysis of fusion quality. In this study, six popular metrics were
used to evaluate fusion quality: 1) Normalized Mutual Information
(QMI) [54] for measuring the information preservation degree; 2)
Nonlinear Correlation Information entropy (QNCIE) [55] for
measuring the nonlinear correlation degree; 3) Gradient-based
Fusion Performance (QG) [56]; 4) Image Fusion Metric-Based on
a Multiscale Scheme (QM) [57] for measuring image features; 5)
Metric-Based on Phase Congruency (QP) [58]; and 6) Visual
Information Fidelity (VIF) [59]. Considering the evaluation
results of these metrics, a comprehensive evaluation of the fusion
effect can be provided. The greater the value of all these metrics, the
better the quality of the fused image. Further information regarding
the calculation of objective evaluations can be found in [60].

The proposed method was compared with four advanced
methods—CPFA [48], IFCNN [61], U2Fusion [62], and NSSR
[63]— to verify its effectiveness. For a fair comparison, the
parameter settings of all the methods were consistent with the
original publications. In the fusion experiments, the CPFA, NSSR
and proposed methods were implemented in MATLAB 2019a,
IFCNN and U2Fusion methods were implemented in PyCharm
2022. All the fusion methods were executed on a PC using an
Intel(R) Core (TM) i7-5500U CPU @ 2.40 GHz (2,394 MHz)
and 12 GB RAM.

3 Results and discussion

To verify the effectiveness of the GFD scheme, this article
compared the CPFA, IFCNN, U2Fusion, NSSR, and GFD using
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phantom and animal experimental results. In all examples, using
10 images with different DOFs for fusion, the DOF was extended by
multiples of three. For the NSCT used in the proposed method, a
four-layer decomposition was performed from coarse to fine in [1, 1,
1, 1] directions, with “vk” and “pyrexc” as the pyramid and the
direction filter, respectively. In addition, owing to the limited DOF
extended by the fusion of the two images, in all experiments, this
article chose to fuse 10 images to get the final fusion results.

3.1 Phantom experimental

This article first demonstrates the validity of the method through
simulation experiments, the experimental results of which are shown in
Figure 4. A glass tube with a 0.15 mm radius was placed inside the
transparent container at an angle of 60° to the horizontal for simulating
blood vessels, and the transparent container was filled with 3.2 mg/mL of
agar solution to imitate background tissue. RBCs were simulated using
an approximately 5 μm radius TiO2 particle, and 0.5-mg/mL TiO2

solution was injected into the glass tube at a speed of 5 mL/h to simulate
blood flow. In the experiment, the EZL increased the focal length by
2.4 mm each time to acquire FFOA images; themagnification of the lens
was 2, the camera exposure time and frame rate were 0.8millisecond and
95 fps, respectively, and the DOF was expanded from 1 to ~3.2 mm.

Figure 4 shows the FFOA fusion results generated by the
different methods. FFOA images A and B represent the first and
10th images, with the focus regions in the images boxed in red and
blue, respectively. The fusion results of each method contain three
images; the first image represents the fused image produced by

fusing 10 FFOA images, and the second and third images are the
difference images produced by subtracting the fused image from
FFOA images A or B, respectively. Themagnified image of the boxed
region was placed in the middle of the two difference images for
better visibility. By analyzing the red and blue boxed regions, it can
be found that the proposed method and U2Fusion had fewer
residuals; in contrast, the difference images of CPFA, IFCNN,
and NSSR had more residual information. The above results
indicate that the proposed method can retain more source image
information than othermethods. Figure 5 was obtained by excluding
the subjective visual evaluation in Figure 4; it was used to validate the
effectiveness of the proposed method and shows the objective
evaluation metrics of the nine fusions used in the phantom
experiment. Furthermore, it shows that in the objective
evaluation of QMI, QG, QM, and QP, both NSSR and the
proposed method exhibited excellent performance; however, the
proposed method was slightly better than the NSSR method,
whereas the CPFA, IFCNN, and U2Fusion performed poorly in
these objective evaluations. Regarding the objective evaluation VIF,
NSSR performed the best, and the proposed method and U2Fusion
also showed good performance. The subjective and objective
evaluations in Figures 4, 5 showed that the proposed method is
effective in the phantom experiment.

3.2 Animal experimental

This article performed vivo experiments using mouse ears to
validate the proposed method further. The mouse (C57BL/6,

FIGURE 4
Subjective evaluation of phantom experiments.
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9 weeks old, and 21 g in weight) was anesthetized with 0.12 mL of
chloral hydrate at a concentration of 0.15 g/mL. In the experiment,
the EZL increased the focal length by 2.4 mm each time to acquire
FFOA images, the magnification of the lens was 1.15, and the camera
exposure time and frame rate were 0.45 ms and 42 fps, respectively.
For a fair comparison, the experimental data of the first groupmouse
ear is from literature [48], and the second group mouse ear is from
literature [63].

Figures 6, 7 show the experimental results of two different
groups of mouse ears. The DOF was expanded from 0.8 to
~3.3 mm. Figure 6 presents the first group of mouse ear
experiments, and the FFOA images A and B are mouse ears
with different DOFs; the focused regions are marked with red and
blue boxes. This article boxed some blood vessels with different
thicknesses in FFOA image A and one complete vascular vein in
FFOA image B. The fusion results of each method contain three

FIGURE 5
Objective evaluation of phantom experiments.

FIGURE 6
Subjective evaluation of the first of group mouse ear experiments.
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images: the first image is the fused image, and the second and
third images are the difference images. A comparison of the red-
boxed regions shows that the residual information from the
boxed regions of the proposed method and U2Fusion is
smaller, which indicates that the GFD scheme was able to
retain more information from the source image for different
vessel thicknesses. Figure 7 shows the second group of mouse ear
experiments. Here, the boxed region in the FFOA image A
contains relatively more background tissue and fewer
capillaries, and the boxed region in the FFOA image B
contains rich capillary information; the other images in
Figure 7 were obtained in the same manner as those in

Figure 6. The blue zoomed area shows that there are cloud-
like residuals in the fusion results of CPFA, IFCNN, and
U2Fusion, suggesting that the GFD scheme can be effective
for regions with fewer capillaries and more background tissue.
In the difference images of the red focus region, CPFA, IFCNN,
and U2Fusion show more evident vascular veins and lose some
important contour edge details of the source images. NSSR also
has a large number of residuals, demonstrating that NSSR poorly
preserves the edge details of capillaries. The GFD scheme retains
only a few residual information.

To evaluate the fusion results, QMI, QNCIE, QG, QM, QP, and
VIF were used to evaluate nine fusions. Figures 8, 9 show the

FIGURE 7
Subjective evaluation of the second group mouse ear experiments.

FIGURE 8
Objective evaluation of the first of group mouse ear.
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metric values for the nine fusions of the ears of the first and
second groups of mice, respectively. Table 1 lists the metric
average values of the nine fusions; the optimal values are
mentioned in bold font. Figures 8, 9 show that metrics QMI,
QNCIE, QG, QM, and QP, than the other methods, and IFCNN and
NSSR showed better performance, whereas CPFA and U2Fusion
performed poorly. In terms of the VIF, the proposed method and
NSSR showed excellent performance. Table 1 shows that the
proposed method has the highest average value in terms of
objective evaluation of the mouse ear in the first and second
groups, and the NSSR also has good performance compared with
other methods.

3.3 Fusion on the public dataset

To demonstrate the generalization of the proposed method, the
Lytro dataset [64], which contains 20 pairs of multi-focus images, was
used to validate the effectiveness of the method. The fusion results
produced by the differentmethods on a set of Lytro dataset are shown in
Figure 10. The average values of the objective evaluation of the Lytro
dataset and Figure 10 are presented in Table 2.

In Figure 10, images A and B are produced by DOF in the same
scene, which contains a motion field and a metal grid. The fusion
result of each method consists of a fusion image and two difference
images. The difference images were produced from the fusion result

FIGURE 9
Objective evaluation of second of group mouse ear.

TABLE 1 Objective evaluation of mouse ears.

Experimental data Method QMI QNCIE QG QM Qp VIF

First set of images CPFA 0.7385 0.8156 0.4945 0.5013 0.5195 0.4536

IFCNN 0.7373 0.8159 0.5444 0.5774 0.5417 0.4435

U2Fusion 0.7274 0.8133 0.4372 0.4333 0.6270 0.4486

NSSR 0.7650 0.8160 0.5319 0.9749 0.6032 0.5588

Proposed 0.9231 0.8233 0.6189 1.6765 0.7082 0.5613

Second set of images CPFA 0.9282 0.8307 0.7092 1.1195 0.8515 0.6550

IFCNN 0.7791 0.8219 0.6839 0.5273 0.7985 0.5513

U2Fusion 0.7153 0.8186 0.6328 0.5331 0.8023 0.4987

NSSR 0.9203 0.8301 0.7081 1.2126 0.8602 0.6727

Proposed 1.1517 0.8514 0.7254 1.6541 0.9338 0.6730

The best results are in Bold.
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and original images A and B. Regions in the difference map
containing focus and out-of-focus information were selected and
enlarged in the middle of the two difference maps. From the overall
fusion results, all methods can retain the brightness and color
information in the source image satisfactorily; however, the fused
images produced by NSSR and the proposed method achieve
satisfactory results in terms of sharpness. The different methods
showed a distinct gap in the difference images. In the difference
images of CPFA, IFCCN, U2Fusion, and NSSR, residuals appeared
in the focus region, indicating that these methods introduce
information concerning the out-of-focus region in the fusion
results. Particularly in the difference images NSSR-A and NSSR-
B, there is almost no metal lattice shown in the out-of-focus images;
this is attributable to the limited ability of the dictionary to

characterize the image in the SR methods. In a comprehensive
comparison, the proposed method achieved satisfactory subjective
results in the subjective evaluation. In the objective evaluation
results of the Lytro dataset, the proposed method achieved the
best rankings in the metrics QMI, QNCIE, QG, QM and QP, although
the value of the VIF was lower than that of NSSR, as shown in
Figure 10. Considered together, the proposed method indicators
were the best in the overall objective evaluation.

Based on the above discussion, this article confirmed the validity
and stability of the proposed program. First, this is because, in
contrast to CPFA, NSCT does not perform upsampling and
downsampling. Thus, it reduces the redundancy between data in
different layers and reduces the possibility of losing high-frequency
detailed information in upsampling and downsampling, which may

FIGURE 10
Subjective evaluation of the Lytro dataset.

TABLE 2 Objective evaluation of the Lytro dataset.

Experimental data Method QMI QNCIE QG QM Qp VIF

Objective evaluation of Figure 10 CPFA 0.9017 0.8306 0.6279 1.1729 0.8019 0.4652

IFCNN 0.9545 0.8330 0.6377 0.8563 0.7984 0.4847

U2Fusion 0.8144 0.8252 0.5614 0.5253 0.7474 0.4247

NSSR 0.9289 0.8312 0.6216 1.6815 0.7788 0.5234

Proposed 1.0943 0.8437 0.6719 2.1190 0.8100 0.5192

Average evaluation values of Lytro dataset CPFA 0.9089 0.8286 0.6601 1.2671 0.8032 0.5086

IFCNN 0.9377 0.8298 0.6628 0.9471 0.8178 0.5225

U2Fusion 0.7989 0.8231 0.5601 0.4699 0.7272 0.4361

NSSR 0.9493 0.8305 0.6869 1.7788 0.8183 0.5517

Proposed 1.1157 0.8406 0.7088 2.1405 0.8329 0.5634

The best results are in Bold.
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blur the fused images in the reconstruction process. Second, the
NSCT can extract more accurate directional information to better
represent image information. Finally, different fusion rules were
adopted for different coefficients separately, which can stably retain
the source image information. The proposed method could have
potential applications in optical angiography experiments to
extend the DOF.

3.4 Discussion on time efficiency

In this section, the time efficiency of the proposed method will
be compared with other methods on grayscale images (size 710 ×
620). As summarized in Table 3, the NSSR method takes the longest
time because it uses a dictionary for the SR of the image. In contrast,
the CPFA has the shortest time because of the fast contrast pyramid
construction process and the simple fusion rules used. The
computational efficiencies of the deep learning methods IFCNN
and U2Fusion were relatively high because they use pre-trained
models. In terms of the time required, proposed method ranked
fourth; this is attributable to the large amount of time spent on the
NSCT decomposition and the relative complexity of the
computation of the fusion rule. The speed of proposed method
may not be the highest, but its high performance makes it effective.
Additionally, optimizing the underlying code and utilizing tools
such as GPUs and C++ holds the potential to significantly reduce the
execution time of proposedmethod, which will enable the method to
meet the requirements of a wider range of applications.

4 Conclusion

Blood microcirculation information is essential for biological
research. This article developed a GFD method to solve the
defocusing problems by extending the DOF. FFOA images with
different DOFs were obtained using the AIFM effect; subsequently,
the DOF was extended using the proposed fusion method. The
proposed fusion methodology consists of three steps. First, the
NSCT decomposes the FFOA images into LFC and HFDCs. GFD
rules are employed to fuse the LFC and HFDCs, and the final fused
images are obtained by performing INSCT. Subjective visual
comparison and objective assessment in the experiments can
certify the validity and stability of the proposed scheme.
Experimental results show that the proposed method can solve
the FFOA scattering problem biological samples due to surface
and thickness inhomogeneity, and has the potential applications in
optical angiography experiments; notably, it provides effective
technical support for target identification and tracking.

Although the proposed GFD method can obtain high-resolution
blood flow images by extending the DOF, there are some limitations.
First, the EZL has a limited focusing speed, resulting in the inability to
image in real time. Second, the decomposition level of NSP and

decomposition direction of NSDFB in the NSCT must be set using
artificial empirical values, which increases the uncertainty of the fusion
effect; moreover, the computational efficiency of the GFD needs to be
refined. Finally, the completed FFOA image must be registered to
reduce artifacts from the sample jitter in the fused image. In future
work, the designed algorithm will be improved to enhance the
robustness of fusing noise-disturbing and misregistered images.
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Currently, there is an urgent need for a fast and portable intracerebral
hemorrhage (ICH) detection technology for pre-hospital emergency
scenarios. Owing to the disproportionately elevated permittivity of blood
compared to other brain tissues, Electrical Capacitance Tomography (ECT)
offers a viable modality for mapping the spatial distribution of permittivity
within the brain, thus facilitating the imaging-based identification of ICH.
Currently, ECT is confined to time-differential imaging due to limited
sensitivity, and this methodology requires non-hemorrhagic measurements for
comparison, data that are frequently inaccessible in clinical contexts. To
overcome this limitation, in accordance with the natural bilateral symmetry of
the cerebral hemispheres, a symmetrical cancellation scheme is introduced. In
this method, electrodes are uniformly arrayed around the cranial periphery and
strategically positioned in a symmetrical manner relative to the sagittal suture.
Subsequently, the measured capacitances for each electrode pair are subtracted
from those of their symmetrical counterparts aligned with the sagittal suture. As a
result, this process isolates the capacitance attributable solely to hemorrhagic
events within a given hemisphere, permitting the absolute imaging of ICH. To
assess the feasibility of this method, simulation and empirical imaging were
conducted respectively on a numerical hemorrhage model and three physical
models (a water-wrapped hemorrhage model, an isolated porcine fat-wrapped
hemorrhage model, and an isolated porcine brain tissue-wrapped hemorrhage
model). Traditional absolute imaging, time-differential imaging and symmetrical
cancellation imaging were performed on all models. The results substantiate that
the proposed imaging modality is capable of obtaining absolute imaging of ICH.
But a mirrored artifact, symmetrical to the site of the actual hemorrhage image
appeared in each of the imaging results. This mirror artifact was characterized by
identical dimensions and an inverted pixel-value schema, an intrinsic
consequence of the symmetrical cancellation imaging algorithm. The real
image of hemorrhage can be ascertained through pre-judgment with the
symptoms of the patient. Additionally, the quality of this imaging is seriously
dependent on the precise alignment between the electrodes and the sagittal
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suture of the brain; even a minor deviation in symmetry could introduce excessive
noises. Thus, the complicated operational procedures remain as challenges for
practical application.

KEYWORDS

intracerebral hemorrhage, ECT, symmetrical cancellation imaging, prehospital
emergency, measurement

Introduction

Spontaneous intracerebral hemorrhage (ICH) constitutes
hemorrhage induced by the disruption of blood vessels within
the brain parenchyma. It represents the most grave form of acute
stroke due to its immediacy, perilous nature, high morbidity, and
mortality. Annually, ICH is accountable for approximately
2.8 million fatalities, yielding an incidence rate of 4.1% [1].
According to the 2018 China Stroke Prevention and Treatment
Report, the incidence rate of hemorrhagic stroke was 126.34 per
100,000 person-years in China [2]. Optimal postoperative outcomes
and survival rates subsequent to ICH could be substantially
improved through prompt diagnosis and intervention [3, 4].
Presently, CT and MRI scans constitute the primary modalities
for ICH detection. However, considerable temporal lags ensue
during patient transit to healthcare facilities, CT examination,
and consequent diagnostic revelation, thereby losing the most
ideal time for effective treatment. Moreover, these voluminous
pieces of equipment are infeasible for pre-hospital emergency
care and bedside monitoring. Hence, a portable, cost-effective,
non-invasive, and expedient detection technology for ICH is
imperatively necessitated.

Innovative methodologies, aimed at diagnosing cerebral
pathologies, capitalize on the electrical properties of biological
tissues, notably exemplified by Electrical Impedance Tomography
(EIT) andMagnetic Induction Tomography (MIT) [5, 6]. Due to the
relatively high electrical impedance of the skull, there is a
considerable attenuation of the exciting current in EIT. Secondly,
EIT requires the connection of electrodes with the scalp, which
results in a very large contact impedance. These issues result in low
sensitivity of EIT in imaging brain tissues. As for MIT, the induced
magnetic field generated in biological tissues exposed to an
excitation field is negligible because of the biological tissue’s poor
conductivity (0.1–2 S/m). Furthermore, the conductivity of blood is
not noticeably different from those of other brain tissues. Because of
these two factors, MIT has relatively poor sensitivity for visualizing a
brain hemorrhage.

Investigations into the permittivity of cerebral tissues have
elucidated that the permittivity of blood markedly supersedes
that of other tissues. At a frequency of 1 MHz, the permittivity
values for blood, grey matter, and cerebrospinal fluid stand at 3,000,
990, and 108, respectively [7]. Albeit the permittivity across all
cerebral tissues diminishes in tandem with frequency, the
permittivity indices of blood remain uniformly elevated. Hence,
theoretical considerations suggest that imaging based on
permittivity distributions is more efficacious than conductivity-
based imaging for ICH detection. Electrical Capacitance
Tomography (ECT) serves as a technological platform for
visualizing permittivity distribution within the object under

examine, predicated upon capacitance measurements obtained
from a multi-electrode sensor encircling said object—a technique
commonly employed in multi-phase flow analyses in the oil sector
and fluidized bed measurements in the industry [8, 9]. Previous
experimental endeavors have utilized parallel plate capacitors to
measure cerebral capacitance change concurrent with hemorrhagic
events; results from animal studies showed an increment in cerebral
capacitance change with increased volumes of blood infusion [10].
Subsequently, we engineered a 16-channel ECT system, successfully
employing it to visualize hemorrhagic phenomena within porcine
cerebral tissue ex vivo [11]. These preliminary studies proved the
feasibility of detecting the onset of cerebral hemorrhage via
capacitance variations in brain tissue. Although the utility of
ECT in our last study for in vitro imaging of cerebral
hemorrhage, the employed methodology was that of time-
differential imaging—subtracting pre-hemorrhagic measurement
data from post-hemorrhagic data—which is commonly adopted
in most current electrical imaging modalities [12]. Given that
baseline, non-hemorrhagic data is unattainable in clinical
settings, this approach is restricted to the dynamic monitoring of
bleeding, thus lacking the ability for initial ICH diagnosis. To fulfill
the unmet need for immediate ICH detection, it is imperative to
ascertain the absolute spatial distribution of cerebral hemorrhage,
rather than its temporal change, akin to the capabilities of CT and
MRI. Owing to the subtle electrical property differentials between
cerebral hemorrhage and other biological tissues, coupled with the
minuscule volume of cerebral hemorrhage relative to normative
cerebral tissues, the weak signal emanating from the hemorrhagic
region is subsumed within the electrical noise generated by normal
cerebral tissue. Consequently, conventional electrical imaging
techniques are incapable of delineating the absolute electrical
parameter distributions within the entire cerebral domain, much
less those specifically related to cerebral hemorrhage.

The examination of the structural composition of the human
brain demonstrates that the left and right hemispheres are
substantially symmetrical with respect to the sagittal suture, and
the histological distributions within these hemispheres are
analogous [13, 14]. Numerous studies indicate that the
impedance in the left and right hemispheres of a healthy brain is
comparatively homogenous. Empirical evidence from numerous
cases reveals that most cerebral hemorrhages (excluding
subarachnoid hemorrhages) manifest in a single hemisphere, and
localized hemorrhagic events do not perturb the tissue distribution
of the contralateral hemisphere in the absence of a midline shift [15,
16]. However, the occurrence of localized bleeding within a
hemisphere disrupts the impedance equilibrium between the two
hemispheres [17]. In this study, a modified ECT imaging—termed
symmetrical cancellation ECT—is proffered, predicated upon the
inherent structural characteristics of the human brain. In this
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paradigm, electrodes strategically arrayed around the cranium are
positioned in a symmetrical manner relative to the sagittal suture.
Subsequently, the measured capacitance from each electrode pair is
subtracted from the reference capacitance of the symmetrical
electrode pair adjacent to the sagittal suture, serving as the
imaging data. This imaging technique is devised to counteract all
capacitance signals emanating from normative brain tissue at
symmetrical positions within the left and right hemispheres,
isolating only the capacitance signals attributable to hemorrhagic
events. In theory, this enables the acquisition of absolute imaging of
cerebral hemorrhage [18]. Barry McDermott et al. [19] applied this
approach in EIT, arranging the EIT electrodes symmetrically on
both hemispheres of the skull and using the voltage differences
between symmetrically placed electrodes as imaging data. In their
simulations and physical experiments, they achieved absolute
imaging of cerebral hemorrhage. The imaging results included
not only the hemorrhage image but also a mirrored image with
pixel values that were inversely related. Subsequently, they proposed
a dual-frequency symmetrical cancellation EIT imaging method to
minimize the impact of electrode symmetry errors on the imaging
outcomes [20]. These two articles verify the feasibility of
this method.

This paper substantiates the feasibility of the proposed method
via simulation and empirical imaging exercises. In the simulation
experiment, a cerebral hemorrhage model comprising six distinct
tissue types was constructed, and cerebral hemorrhage was depicted
using both time-differential imaging and symmetrical cancellation
imaging. In the experimental phase, three prototypical cerebral
hemorrhage models were established: a model of water-
encapsulated blood, a model of isolated porcine adipose tissue-
encapsulated blood, and a model with isolated porcine cerebral
tissue-encapsulated blood. Subsequent imaging utilizing the
aforementioned 16-electrode ECT system was conducted on these
models, employing absolute imaging, time-differential imaging, and
symmetrical cancellation imaging. The resultant imaging outcomes
were then comparatively analyzed.

Methods and materials

Symmetrical cancellation ECT method

The typical ECT imaging system is composed of three
components: 1) sensor, 2) data acquisition system, and 3)
computer for reconstruction. Figure 1 illustrates an ECT sensor
equipped with 16 electrodes, denoted by integers 1 to 16. These
16 homogeneous electrodes are uniformly arrayed around the
cranium (represented by a sizable white circle at the center). The
spherical cranium is partitioned into the left and right hemispheres,
and exhibits symmetry about the central sagittal suture (delineated
by dashed line AB). A crimson circle is situated in the upper-right
quadrant of the right hemisphere to signify hemorrhage. To
implement a symmetrical cancellation measurement, it is
important that the electrodes dispersed in the left and right
hemispheres maintain symmetry relative to the sagittal suture. To
satisfy this criterion, one must ensure that the sagittal suture of the
skull and the midpoint of a pair of opposing electrodes are collinear.
In Figure 1, the sagittal suture is aligned with the midpoint of
electrodes 1 and 9; that is, dashed line AB intersects the centers of
electrodes 1 and 9 as well as the central imaging region.
Consequently, electrodes 2 and 16 are symmetrical, as are
electrodes 3 and 15, electrodes 4 and 14, electrodes 5 and 13,
electrodes 6 and 12, electrodes 7 and 11, and electrodes 8 and 10.
AB additionally serves as the axis of symmetry for the ECT sensor. In
a complete measurement protocol within conventional ECT
systems, an electrode is successively chosen as the excitation
electrode, while the remaining serve as detection electrodes, to
obtain the capacitance data between all different electrode pairs.
Taking an sixteen-electrode sensor in Figure 1 as an example,
capacitance measurements are obtained in the following
sequential steps. Initially, a voltage signal is administered to
electrode 1, followed by the measurement of electric charges on
electrodes 2–16, thereby quantifying the capacitances between
electrode 1 and the other 15 electrodes. Subsequently, electrodes
2–15 are activated in a systematic sequence, thus enabling the
acquisition of capacitance data for all unique electrode pairs,
culminating in a total of 120 independent electrode
combinations. With this measurement strategy, the number of
independent capacitance measurements is

M � N N − 1( ) /2 (1)
where N is the number of electrodes. For this particular sensor, N =
16, and 120 independent capacitances can be measured from
different electrode pairs.

ECT imaging data are typically rendered by subtracting the
reference frame data from the substance-field measurements.
Various imaging modalities employ different sets of reference
frame data. In traditional absolute imaging, the reference data are
the measurement data (i.e., the empty field measurement data) when
the imaging area is entirely comprised of air. For time-differential
imaging, the reference data are derived from pre-hemorrhagic
measurements; however, it is impossible to acquire such
measurements in a real-world setting. The reference data for each
electrode pair in symmetrical cancellation ECT proposed herein
utilizes the data of the electrode pair exhibiting axial symmetry,

FIGURE 1
The schematic diagram of ECT Sensor with symmetrical
cancellation.
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therefore the measurement data and the reference data are all
derived from the substance-field measurement data. Ci-j is
utilized to denote the capacitance of the electrode pair
comprising the excitation electrode i and the measurement
electrode j. As depicted in Figure 1, for instance, with electrode
1 serving as the excitation electrode, the reference electrode pair for
C1-2 is C1-16, the reference electrode pair for C1-3 is C1-15, . . ., the
reference electrode pair for C1-9 is C1-9, the reference electrode pair
for C1-10 is C1-8, . . ., the reference electrode pair for C1-16 is C1-2.
Table 1 enumerates all the measured electrode pairs and their
corresponding reference electrode pairs for symmetrical
cancellation when electrodes 1, 5, 9, 13 function as excitation
electrodes. Electrode pairs corresponding to the remaining

electrodes align with their reference electrode pairs, and so forth.
Consequently, the reference data for symmetrical cancellation ECT
originate from substance-field measurement data (Post-hemorrhage
measurement), negating the need for measurements from a non-
hemorrhaging cranium; thus, enabling the absolute imaging of
cerebral hemorrhage. The imaging workflow for the symmetrical
cancellation method is elucidated in Figure 2. Initially, the
capacitance of all electrode pairs within a frame is measured, and
the capacitance of all symmetrically offset reference electrode pairs is
ascertained according to Table 1. Subsequently, the capacitance of
each electrode pair in the original measurement frame is subtracted
from the capacitance of the corresponding reference electrode pair,
resulting in the ultimate imaging data for each electrode pair. Lastly,
this finalized imaging capacitance data is integrated into the imaging
algorithm to facilitate image reconstruction.

Imaging algorithm

The inverse problemwithin ECT seeks to reconstruct the permittivity
distribution within an object based on capacitance measurements. In the
case of minor change of permittivity Δε, the relationship between the
capacitance changeΔC and the change of permittivityΔε can be simplified
to the following approximated linear equation:

ΔC � SΔε (2)
Where, S is the sensitivity matrix, which is the prior information

of image reconstruction that maps the permittivity distribution to
capacitance change ΔC. Eq. 2 has to be discretized to calculate S and

TABLE 1 All themeasuring electrode pairs and their corresponding reference electrode pairs in symmetrical cancellation ECTwhen electrodes 1, 5, 9, 13 are
used as excitation electrodes.

Excitation electrode 1 Excitation electrode 5 Excitation electrode 9 Excitation electrode 13

Measuring
electrode

pairs

Reference
electrode

pairs

Measuring
electrode

pairs

Reference
electrode

pairs

Measuring
electrode

pairs

Reference
electrode

pairs

Measuring
electrode

pairs

Reference
electrode

pairs

C1-2 C1-16 C5-6 C13-12 C9-10 C9-8 C13-14 C5-4

C1-3 C1-15 C5-7 C13-11 C9-11 C9-7 C13-15 C5-3

C1-4 C1-14 C5-8 C13-10 C9-12 C9-6 C13-16 C5-2

C1-5 C1-13 C5-9 C13-9 C9-13 C9-5 C13-1 C5-1

C1-6 C1-12 C5-10 C13-8 C9-14 C9-4 C13-2 C5-16

C1-7 C1-11 C5-11 C13-7 C9-15 C9-3 C13-3 C5-15

C1-8 C1-10 C5-12 C13-6 C9-16 C9-2 C13-4 C5-14

C1-9 C1-9 C5-13 C13-5 C9-1 C9-1 C13-5 C5-13

C1-10 C1-8 C5-14 C13-4 C9-2 C9-16 C13-6 C5-12

C1-11 C1-7 C5-15 C13-3 C9-3 C9-15 C13-7 C5-11

C1-12 C1-6 C5-16 C13-2 C9-4 C9-14 C13-8 C5-10

C1-13 C1-5 C5-1 C13-1 C9-5 C9-13 C13-9 C5-9

C1-14 C1-4 C5-2 C13-16 C9-6 C9-12 C13-10 C5-8

C1-15 C1-3 C5-3 C13-15 C9-7 C9-11 C13-11 C5-7

C1-16 C1-2 C5-4 C13-14 C9-8 C9-10 C13-12 C5-6

FIGURE 2
The flow chart of symmetrical cancellation ECT.
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visualize the permittivity distribution. The sensing area is divided
into N elements or pixels. The discrete form of Eq. 2 can now be
expressed as [21]:

ΔCM×1 � SM×N · gN×1 (3)
where ΔC is the capacitance vector, g is the permittivity vector,
i.e., the grey level of pixels in the imaging region, and S is the
linearized sensitivity matrix, giving a sensitivity map for each
electrode pair. M indicates the number of independent
capacitance measurements in Eq. 1. The sensitivity map S is
generally computed by the finite element simulation.

The sensitivity was calculated with the imaging zone under the
air domain. The sensitivity of electrode pairs i-j at pixel point P(x, y)
is shown in Eq. 4, with (Exi, Eyi) being the x-directional electric field
component and the y-directional electric field component at pixel
point P when electrode i is used as the excitation. (Exj, Eyj) are the
x-directional electric field component and the y-directional electric
field component at pixel P when electrode j is used as the excitation.
This air domain sensitivity matrix is used for both the simulation
imaging and the later actual imaging.

Sij x, y( ) � −Exi × Exj + Eyi × Eyj (4)

The inverse problem of ECT is to deduce the permittivity
distribution ε(x, y) from the measured capacitance vector ΔC. In
its discrete form, the objective is to compute the unknown
variable g from the known ΔC, employing Eq. 3, wherein S is
considered a constant, a priori calculated matrix [22]. The
resolution of this inverse problem constitutes the task of
image reconstruction. Owing to the fact that the number of
pixels N substantially exceeds the number of capacitance
measurements M, Eq. 3 is ill-posed, rendering the solution
non-unique. Therefore, reconstruction algorithms are
imperative for the pursuit of an approximate solution.

In this paper, the Tikhonov regularization method is utilized to
address the inverse problem of ECT [21]. The reconstructed
distribution of permittivity g is ascertained as Eq. 5:

g � ST SST + λI( )−1ΔC (5)

Where I is the identity regularization matrix, and λ is the
regularization parameter which accounts for the degree of
smoothness of the reconstructed image. The value was
empirically selected and remained constant for the reconstructed
images in subsequent sections. In order to overcome the issues of
excessive smoothing and loss of information in the conventional
Tikhonov regularization method, adaptive regularization methods
should be considered in the future, where the regularization
parameters are dynamically adjusted according to the
characteristics of the data. Additionally, combining various
regularization techniques such as Tikhonov regularization and
L1 regularization (LASSO) could leverage the strengths of both to
enhance the model’s generalization ability and sparsity.

Simulation experiments

The simulation was executed using COMSOL Multiphysics and
MATLAB on a computing environment equipped with an Intel Core
i7 processor operating at 3.40 GHz. First and foremost, a 16-
electrode ECT sensor model, depicted in Figure 3, was
constructed in COMSOL, conforming to the dimensions of the
actual ECT sensor employed in the subsequent physical experiment.
Sixteen homogeneous rectangular electrodes (each possessing a
width of 12 mm) were equidistantly positioned around a circle
with a diameter of 60 mm. The internal surface of the
16 electrodes is encircled by a circle with a 60 mm diameter,
constituting the imaging area. The 16 electrodes were
enumerated in a clockwise orientation, with electrode 1 at the
apex and electrode 9 at the nadir. For the resolution of the
inverse problem, the imaging area is partitioned into a 32 ×
32 grid, and the external portion of the circle is excluded,
yielding 812 pixels within the imaging area. The sensitivity
metrics for each of the 812 pixels were subsequently calculated
for each electrode pair and utilized for imaging. Three distinct
cerebral hemorrhage models (Figures 3A–C) were formulated for

FIGURE 3
Simulation models of three cerebral hemorrhages. (A) Air-encapsulated cerebral hemorrhagemodel. (B)Water-encapsulated cerebral hemorrhage
model. (C) Complex cerebral hemorrhage model comprising six distinct tissue.

TABLE 2 The relative permittivity of each part in themodels A and B (1 MHz).

Model A B

Red (blood) 3000 3000

Background 1 (Air) 80 (Water)

Frontiers in Physics frontiersin.org05

Huang et al. 10.3389/fphy.2024.1392767

164

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1392767


numerical simulation. The red circles in the triad of models serve to
simulate hemorrhagic incidents, each with a diameter of 10 mm.

In bothModels A and B, the coordinates of the red circle’s center
are (0 mm, 15 mm), strategically situated at the midpoint between
the imaging area center O and electrode 5. The remainder of the
imaging area in Models A and B, exclusive of the red circle,
constitutes the background; Model A is denoted by white, and
Model B is denoted by blue. Apart from the difference in the
permittivity setting for the background, Models A and B are
entirely same. The permittivity for each segment of Models A
and B is specified in Table 2. The permittivity of the red circle is
configured at 3000, equivalent to the permittivity of blood at 1 MHz.
The background permittivity forModel A is set at 1, representing air,
while the background for Model B is configured at 80, signifying
water. Consequently, Model A represents an air-encapsulated
cerebral hemorrhage model, and Model B represents a water-
encapsulated cerebral hemorrhage model. Model C incorporates a
complex cerebral hemorrhage model comprising six distinct tissue
types. This model is grounded upon actual brain architecture, yet
simplified by segmentation into six layers from the external to the
internal, simulating skin (orange), skull (black), cerebrospinal fluid
(green), gray matter (gray), white matter (yellow), and blood (red).
The outermost layer is air. The relative permittivity of each
component in Model C is calibrated to the measured values of
human brain tissue, as documented in the literature [7] (Table 3).
The small red circle denotes hemorrhaging in the right hemisphere,
with central coordinates at (9 mm, 7 mm).

For each model, the data computed in accordance with the
aforementioned permittivity parameters constitute the substance-
field measurement data. This field measurement data is subtracted
from the reference frame data to yield the final imaging data.
Distinct reference data correspond to different imaging
methodologies. For Model A, the reference data is the data
obtained when the red sphere is eliminated and the imaging area
is uniformly set to air. The substance-field data is subtracted from
the reference data for imaging, signifying absolute imaging as the
traditional manner. ForModel B, traditional absolute imaging, time-
differential imaging, and symmetric cancellation imaging are
executed respectively. The reference data calculation scenarios for
these three imaging methods are as follows: the imaging area is
uniformly set to air (permittivity of 1), the imaging area is set to a
blue background (permittivity of 80) post-elimination of the red
circle, and the unaltered environment is congruent with substance-
field measurement environment. For Model C, three modalities of
imaging are also undertaken. The reference data calculation
scenarios for these three imaging methodologies are as follows:
the imaging area is uniformly set to air (permittivity of 1), the red
circle is excised to retain other colored segments, and the unaltered
environment is consistent with the substance-field measurement
environment.

To evaluate the quality of image reconstruction, the relative
image error and the correlation coefficient between the true model
and reconstructed images serve as assessment criteria. The
definition of the relative image error and correlation coefficient
is shown in Eqs 6, 7, respectively [22]. The lower the image error
and the higher the correlation coefficient mean better image
reconstruction outcomes.

Image error � ĝ − g
���� ����

g
���� ���� × 100% (6)

Correlation coefficient �
∑P
i�1

gi − �g( ) ĝi − ĝ( )																			
∑P
i�1

gi − �g( )2∑P
i�1

ĝi − ĝ( )2
√ (7)

where ĝ is the normalized pixel value reconstructed, and g is the
normalized permittivity vector of a true distribution in the model. ĝ,
�g respectively, are the mean values.

Physical model experiments

Subsequent to the simulation experiment, the 16-electrode ECT
system designed in the preceding stage was utilized to image various
physical models of cerebral hemorrhage employing diverse
methodologies. The efficacy of various imaging methods was
assessed to evaluate the feasibility of symmetric cancellation ECT
imaging modalities. The 16-electrode ECT imaging system we
employed is depicted in Figure 4. Its design originates from an
impedance analyzer and is elaborated upon in the referenced
literature [11].

TABLE 3 The relative permittivity of each part in the ICH model (1 MHz) [7].

Color Orange Black Green Gray Yellow Red

Typical tissues Skin Skull Cerebrospinal fluid Gray matter White matter Blood

Relative permittivity 150 108 991 700 3000

FIGURE 4
16-electrode ECT system.
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The ECT Sensor comprises sixteen square electrodes, which are
uniformly arranged on a circular base with a diameter of 60 mm. A
singular electrode is fabricated from a square thin copper film
(50 mm * 12 mm) imprinted on a PCB, incorporating a solder
pad centrally located for welding electrode leads. The imaging
area is a circle with a diameter of 60 mm, centered around the
electrode circle and uniformly partitioned into 812 pixel points. The
ECT Sensor can provide 16*15/2 = 120 independent capacitance
measurements for the inverse calculating of the permittivities for the
812 pixels. An impedance analyzer (4294A, Agilent Technologies)
was engaged to measure the capacitances of the electrode pairs. The
excitation signal frequency is 1 MHz.

Imaging experiments of water-wrapped
blood hemorrhage model

As shown in Figure 5, a 3D-printed cylinder (inner diameter
56 mm, outer diameter 58 mm) is equipped with a thin tube with a
diameter of 10 mm. The center of the tube is situated 15 mm from
the center of the cylinder. The interior of the tubule was inundated
with fresh sheep blood following anticoagulation with heparin
sodium, and the exterior of the tubule was inundated with
distilled water. The elevation of the water surface is congruent
with the elevation of the blood surface; both are 50 mm. Thus, in
this model, blood serves as the imaging target, and water functions as
the background. The cylinder injected with blood and distilled water
is delicately positioned at the center of the ECT sensor and is coaxial
with the imaging center. The thin tube filled with blood is aligned
along the axis between the center of horizontal electrode 5 and
electrode 13. The ECT system depicted in Figure 4 is utilized to
measure a frame of data, constituting the substance-field
measurement data. Subsequently, the blood in the thin tube is
drained, and another frame of data is measured, serving as the
reference frame data for the time-differential imaging. All the
distilled water is then drained, and the entire interior of the
barrel is rendered air-filled; another measurement ensues. The

outcome is the reference data for traditional absolute imaging.
The reference data for the symmetric cancellation method is
extracted from the substance-field measurement data in
accordance with the methodology outlined in Figure 2.
Subsequently, the substance-field measurement data are
subtracted from three disparate reference data for imaging, and
the traditional absolute imaging, time-differential imaging, and
symmetric cancellation imaging outputs are acquired respectively.

Imaging experiments of fat-wrapped blood
hemorrhage model

As shown in Figure 6, a section of fresh porcine adipose tissue
was procured from the market and reshaped using a cylindrical
blade with an inner diameter of 56 mm. This yielded a cylindrical
adipose specimen with a diameter of 56 mm and a height of 50 mm.
Subsequently, another cylindrical blade, featuring an inner diameter
of 10 mm, was utilized to excavate a cylindrical cavity with a
diameter of 10 mm, situated 15 mm from the center of the
adipose cylinder. This cavity was then inundated with the
aforementioned sheep blood. The adipose cylinder engorged with
blood was positioned at the center of the ECT Sensor’s imaging area.
Its orientation was adjusted to align the blood-filled cavity along the
axis between the centroids of horizontal electrodes 5 and 13. In this
model, blood serves as the imaging target while adipose tissue
constitutes the background. Initially, the ECT system is engaged
to capture a frame of data, constituting the substance-field
measurement data. Thereafter, the blood within the adipose
cavity is drained, followed by another data frame measurement,
which serves as the reference data for time-differential imaging. The
adipose samples are then removed, and the interior of the chamber is
rendered air-filled; a subsequent measurement is taken. This yields
the reference data for traditional absolute imaging. The reference
data for the symmetric cancellation method is extracted from the
substance-field measurement data. The substance-field
measurement data are then subtracted from three distinct

FIGURE 5
Water-wrapped blood hemorrhage model.

FIGURE 6
Fat-wrapped blood hemorrhage model.
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reference data sets to generate imaging outputs: traditional absolute
imaging, time-differential imaging, and symmetric cancellation
imaging of the blood.

In vitro pig brain hemorrhagemodel imaging
experiments

As shown in Figure 7, fresh porcine brain tissue is procured from
the market and cautiously positioned within a cylinder featuring an
inner diameter of 56 mm. It is gently compressed to preserve its
anatomical structure, ensuring the symmetry of the left and right
hemispheres about the longitudinal cerebral fissure. A syringe with a
10 mm diameter (lacking its tip) is inserted into the right
hemisphere, and the syringe’s center is situated approximately
13 mm from the center of the brain tissue. The syringe is then
inundated with the aforementioned sheep blood. The cylinder, now
filled with cerebral tissue and blood, is positioned at the center of the
ECT Sensor’s imaging area. By rotating the cylinder, the longitudinal
fissure of the porcine brain is aligned with the axis connecting the
centroids of electrodes 1 and 9, while the blood is located along the
axis between the centroids of horizontal electrode 5 and 13. This
orientation satisfies the requirement for symmetric cancellation
imaging. In this model, blood is the imaging target and cerebral
tissue serves as the background. Initially, the ECT system is engaged
to capture a frame of data, which is the substance-field measurement
data. Subsequently, the blood within the syringe is drained, followed
by another data frame measurement, constituting the reference data
for time-differential imaging. All cerebral tissue is then extracted,
and the chamber is rendered air-filled; another measurement ensues.
This produces the reference data for traditional absolute imaging.
The reference data for the symmetric cancellation method is
extracted from the substance-field measurement data. Thereafter,
the substance-field measurement data are subtracted from three
distinct reference data sets to yield imaging outputs for absolute
imaging, time-differential imaging, and symmetric cancellation
imaging of the blood.

Results and discussion

Simulation imaging results

The imaging results corresponding to the three simulation models
in Figure 3 are delineated in Figure 8. The first line is the three original
models of A, B and C, the second line is the traditional absolute imaging
result corresponding to eachmodel, the third line is the time-differential
imaging result corresponding to each model, and the fourth line is the
symmetrical cancellation imaging outcome corresponding to each
model. For the absolute imaging utilizing the traditional method,
only the result of Model A clearly delineates the location and
dimension of the red blood circle, whereas the results of Model B
and C negate the visualization of the blood spheres altogether. Owing to
the fact that Model A is elementary and the background consists of air,
its traditional absolute imaging is also time-differential imaging. The
background of Model B and C is intricate. Particularly in Model C, the
blood sphere is encased by quintuple layers of tissue. In this model, the
capacitance change attributable to the blood sphere is entirely obscured
by the capacitance change induced by the background, thereby
corroborating that the traditional absolute imaging is unable to
visualize the blood encased with a complex background. The time-
differential imaging outcomes of the three models manifestly reflect the
location and dimension of the blood spheres. However, the spatial
localization of the image of blood of Model B and C exhibits a
perceptible deviation relative to their positions in the original
models, with both shifting towards the centroid. The white dotted
circle in the imaging demarcates the original locale of the blood spheres
in the model. This is predominantly attributable to the intricate
backdrop. Because the sensitivity matrix S employed for imaging is
calculated in the imaging region where the backdrop is a uniform
permittivity distribution of air, and the background of Model B and C
comprises heterogeneous distributions of varying permittivity. These
distributions predominate over the expanse of the imaging area, and
collectively converge towards the center of the imaging area; thus, the
image of the blood in the imaging result shifts to the central point.
Although time-differential imaging can visualize blood encased in
intricate backdrops, it is inapplicable for the rapid detection of
cerebral hemorrhage in clinical applications. This is predicated on
the fact that the reference frame data requisite for time-differential
imaging is the measurement devoid of hemorrhage, which can be
simulated in computational environments, yet remains unattainable in
clinical settings. The symmetrical cancellation imaging results of B and
C explicitly demonstrate two symmetrical images of differing chromatic
attributes, one pixel value being positive (red) and the other negative
(blue). The chromatically red image is in precise correspondence with
the position and dimension of the blood sphere in themodel, indicating
that the chromatically red image is indubitably the image of the blood in
the model. Secondly, the pixel value is positive, indicative of an increase
in the permittivity relative to the background, which is commensurate
with the permittivity of actual blood. This congruence exists because the
permittivity of the blood in the model exceeds that of the backdrop. It is
justifiable to observe two symmetrical images with one positive and one
negative pixel values in the symmetrical cancellation imaging results.
This is corroborated by Figure 2, wherein the measurement capacitance
of all electrode pairs in the symmetric cancellation mode is subtracted
from the measurement capacitance of the electrode pairs symmetrically
oriented about the intermediate symmetry axis. The capacitance of the

FIGURE 7
In vitro pig brain wrapped blood hemorrhage model.
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electrode pairs of the hemorrhagic hemisphere is increased due to the
presence of bleeding. In this context, the electrode pair capacitance of
the hemorrhagic hemisphere subtracted from the electrode pair
capacitance of the symmetrical non-hemorrhagic hemisphere
constitutes a positive capacitance change. Conversely, the electrode
pair capacitance of the same non-hemorrhagic hemisphere subtracted
from the electrode pair capacitance of the symmetrical hemorrhagic
hemisphere represents a negative capacitance change. The real
hemorrhagic image in the outcomes of symmetric cancellation
imaging can be prejudged based on the patient’s symptoms. The left
and right neural centers of the brain severally govern the contralateral
limb activity; thus, left cerebral hemorrhage predominantly induces
right limb activity dysfunction, while right cerebral hemorrhage
primarily provokes left limb activity dysfunction [23]. Additionally,
the language center is localized in the left hemisphere, hence left cerebral
hemorrhage can precipitate language dysfunction. The right brain
orchestrates spatial imagination capabilities, and patients with right
cerebral hemorrhage may manifest spatial imagination disorders.
Moreover, experience can be accrued through imaging the cerebral
hemorrhage ascertained by CT, thereby serving as a criterion for

evaluating the real hemorrhage image in subsequent symmetrical
cancellation imaging. A concomitant issue with symmetrical
cancellation imaging results exists. The position of the blood image
in BCmodel is likewise misaligned from its original locale in the model.
In the figure, the white dotted circle demarcates the original position of
the blood in the model. The reason for this result is the same as that of
time-differential imaging. Model A did not undergo symmetrical
cancellation imaging due to the simple background with air. The
image error and correlation coefficient of different imaging results
for the three models are shown in Table 4, and the symmetrical
cancellation imaging results only consider the right red image.

Experimental results of physical
model imaging

The results of the water-wrapped hemorrhage model are shown
in Figure 9. The first row is the photographs of two original physical
model. The blood-filled tubules in a horizontal orientation are
proximal to electrode 13 (left) and electrode 5 (right),

FIGURE 8
Simulation imaging results of threemodels. (A) Imaging results of the air-encapsulated cerebral hemorrhagemodel. (B) Imaging results of thewater-
encapsulated cerebral hemorrhage model. (C) Imaging results of the complex cerebral hemorrhage model comprising six distinct tissue.
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respectively. The center of the tubules is 15 mm away from the
center of the imaging area. The second row displays the absolute
imaging results with the traditional method. From the imaging
results, the presence of blood cannot be seen at all. This
predominantly stems from the fact that the volume of blood
accounts for only 1/6 of the volume of the imaging area, which is
much smaller than the volume of water. Subsequently, the
permittivity of blood processed with heparin sodium is
significantly attenuated compared to that of unadulterated blood,
albeit marginally surpassing that of water [11]. These two reasons
make it difficult for traditional absolute imaging to visualize water-
wrapped blood. In the third row, two time-differential imaging
images can clearly show the existence of blood, and the position and
size of the circular image are basically the same as the position and
size of the blood in the actual model, but its position is shifted to the
center of the imaging area by about 5 mm. The white dotted circle in
the image indicates the position of the actual blood. This
phenomenon corroborates the outcome of the time-differential
imaging in the simulation of Figure 8, and the reason is the
same. The fourth row exhibits the symmetrical cancellation
imaging results. Each image clearly shows two circular images of
the same shape and size, one red and one blue, and is symmetrical
about the axis of symmetry of the ECT Sensor. By analyzing the
imaging data, it is found that the pixel values of the two symmetrical
images are also complementary; ergo, one is positive, and one is
negative. The pixel value of the red image is positive, and the value of
the blue image is negative. Since the permittivity of the blood
exceeds that of the ambient water, the red circular image
represents the image of the actual blood, which also corresponds
to the position of the blood in the actual model. Thus, symmetric
cancellation imaging can indeed execute absolute imaging of water-
wrapped blood without the need for reference data devoid of
bleeding, which is not possible with time-differential imaging.
Nonetheless, the noise in the symmetrical cancellation imaging
result is much larger than the time-differential imaging. In
addition to the two blood images of one red and one blue,
numerous artifacts reside on the edge. This is predominantly
attributable to the position deviation of the bucket in the actual
model. Since the external diameter of the bucket is 58 mm and the
diameter of the imaging area is 60 mm, there exists a gap of 1 mm
between the edge of the bucket and the electrode surface. In practice,
it is difficult to guarantee that the center of the bucket completely
coincides with the center of the imaging area, thereby engendering a
variable gap size between the upper and lower and left and right
boundaries of the bucket and the corresponding electrodes. This
inconsistency culminates in left and right asymmetry, and the
accuracy of symmetry cancellation imaging entirely depends
upon the symmetry of the upper and lower and left and right

sectors. The higher the symmetry, the better the imaging quality.
The asymmetry of the left and right sides of the bucket will engender
symmetrical image noise on the left and right edges, and the
asymmetry of the upper and lower sides of the bucket will also
cause symmetrical image noise on the upper and lower edges.
Because the overall volume of the barrel is much larger than the
blood, very small asymmetry will cause a large image noise. The
position of the blood image in the symmetrical cancellation imaging
is also approximately 5 mm away from the center relative to its
actual position, which is the same as the result in the simulation, and
the reason is the same. The image error and correlation coefficient
for the three imaging results of the two models are shown in Table 5.
The image error of the time-differential imaging is the smallest, the
correlation coefficient is the best, and the second is the symmetrical
cancellation imaging. Because the result of absolute imaging is too
poor, two imaging quality metrics are not included.

The results of the fat-wrapped hemorrhage model are shown in
Figure 10. In the two prototypes in the first row, the blood in the
horizontal cylindrical cavity is proximate to electrode 13 (left) and
electrode 5 (right), respectively, and the center of the blood is 15 mm
away from the center of the imaging area. The absolute imaging results of
the second row are completely red, and the existence of blood cannot be
seen at all, which proves that the absolute imaging with the traditional
method cannot image the blood wrapped by fat tissue. The time-
differential imaging results of the third row can clearly show the
image of the blood. As in the scenario of water-wrapped hemorrhage
model, the position of the blood image is shifted to the center by several
millimeters relative to its position in the actual model. The white dotted
circle in the figure demarcates the actual locus of the blood. In the
symmetrical cancellation imaging results of the final row, both images
clearly show two images with the same shape and size, one red and one
blue color, and is symmetrical about the axis of the ECT Sensor. As in the
case of the water-wrapped hemorrhagemodel, the pixel values of the two
symmetrical images are equivalent, albeit with antithetical signs. As the
permittivity of the blood is also greater than that of fat, so the positive red
image is the actual image of the blood, which also corresponds to the
position of the blood. Similarly, the noise in the symmetrical cancellation
imaging result is much larger than that of the time-differential imaging,
and many small patches appear on the edge. This is mainly due to the
inconsistent gap size between the outside surface of the barrel and the
electrode array, which is caused by poor symmetry. Secondarily, owing to
limited manufacturing precision, the fat structure lacks a standardized
cylindrical configuration, and its surface is not entirely planar, which
further compromises bilateral symmetry. The position of the blood image
deviates by several millimeters toward the center relative to its actual
localization. In comparison to the symmetrical cancellation imaging
results of the water-wrapped blood model in Figure 9, it is found that
the dual symmetrical images of the blood in Figure 10, irrespective of hue,

TABLE 4 Image error (%) and Correlation coefficient for simulation results.

Image error (%) Correlation coefficient

Model A B C A B C

Absolute imaging 9.58 86.56 94.27 0.96 0.23 0.18

Time-differential imaging 9.58 17.34 18.98 0.96 0.88 0.85

Symmetrical cancellation imaging 28.48 29.76 0.82 0.79
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FIGURE 9
The results of three kinds of imaging methods for two water-wrapped blood models.

TABLE 5 Image error (%) and Correlation coefficient for imaging results of two water-wrapped blood models.

Image error (%) Correlation coefficient

Blood on the left Blood on the right Blood on the left Blood on the right

Time-differential imaging 25.47 26.52 0.78 0.77

Symmetrical cancellation imaging 35.35 35.69 0.73 0.71
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are diminished in intensity. That is, the contrast differential between the
pixel values of the blood image and the background is attenuated. This is
mainly because the permittivity difference between fat and blood is
inferior to that betweenwater and blood, rendering itmore challenging to
visualize fat-wrapped blood. The image error and correlation coefficient
for the three imagingmodalities are shown in Table 6. The image error of

time-differential imaging is the smallest, the correlation coefficient is the
best, followed by symmetrical cancellation imaging. Due to the poor
performance in absolute imaging, two quantitative metrics are
not included.

The imaging results of the isolated porcine brain wrapped
hemorrhage model are shown in Figure 11. In the two prototypes

FIGURE 10
The results of three kinds of imaging methods for two fat-wrapped blood models.
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TABLE 6 Image error (%) and Correlation coefficient for imaging results of two fat-wrapped blood models.

Image error (%) Correlation coefficient

Blood on the left Blood on the right Blood on the left Blood on the right

Time-differential imaging 27.55 25.64 0.73 0.75

Symmetrical cancellation imaging 37.65 38.76 0.71 0.70

FIGURE 11
The results of three kinds of imaging methods for two isolated porcine brain wrapped blood models.
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presented in the first row, the syringes filled with blood in a
horizontal orientation are proximate to electrode 13 (left) and
electrode 5 (right), respectively, and the center of the syringe is
13 mm from the center of the imaging area. The absolute imaging
results with the traditional method of the second row are wholly
suffused in red hue, rendering the presence of blood indiscernible.
This is the same as the absolute imaging results of the previous two
models, which proves that the traditional absolute imaging cannot
image the blood wrapped in the porcine brain. The time-differential
imaging results of the third line can clearly show the images of the
blood in the two models, and the position of the blood image is
shifted to the center by several millimeters relative to the position of
the blood in the actual model. The white dotted circle in the figure
represents the actual locus of the blood. In the symmetrical
cancellation imaging results of the final row, both images clearly
show two images with the same shape and size, one in a red hue and
another in blue, symmetrical about the axis of the ECT Sensor.
Consistent with the preceding models, the pixel values of the two
symmetrical images are equivalent, albeit with antithetical signs. As
the permittivity of the blood is also greater than that of other brain
tissues, so the positive red image is the actual image of the blood,
which also corresponds to the position of the blood in the actual
model. Similarly, the noise in the symmetrical cancellation imaging
result is much larger than that in the time-differential imaging, and
numerous noises manifest at the periphery of the imaging area. This
predominantly emanates from the inconsistent gap size between the
outside surface of the barrel and all electrodes due to the asymmetry.
Secondarily, due to the inherent pliability of the porcine brain tissue
and manual stacking, the resultant structure lacks a standardized
cylindrical configuration and bilateral symmetry is compromised.
Furthermore, in an attempt to preserve the original morphology of
the left and right hemispheres, the surface remains non-planar, thus
impacting the symmetry. The size and position of the blood image in
the two models in the final row vary, attributed to the relative
position discrepancy of the barrel in the two models. The spatial
orientation of the blood image deviates minimally toward the center,
yet this deviation is less than in previous models. This is attributed to
the nearer proximity of the actual syringe center, being only 13 mm
from the imaging area’s center. The reason behind this procedural
adjustment lies in the intrinsic softness of the porcine brain tissue;
positioning the syringe closer to the edge would destroy its overall
structural integrity. Analogous to the fat-wrapped blood scenario,
the contrast differential between the pixel values of the blood image
and the background image is attenuated in Figure 11. This is mainly
because the permittivity difference between the porcine brain tissue
and blood is inferior to that between water and blood, making it
more difficult to visualize porcine brain tissue-wrapped blood. The
image error and correlation coefficient of imaging results are shown
in Table 7. Similarly, the image error of time-differential imaging is

the smallest, the correlation coefficient is the best, followed by
symmetrical cancellation imaging. Due to the poor performance
in absolute imaging, two quantitative metrics are not included.

Conclusion

At present, ECT can only image cerebral hemorrhage with time-
differential imaging. Time-differential imaging requires
measurement data when the patient is not bleeding, but this is
difficult to achieve in practice. Therefore, this imaging modality
lacks the capability for rapid acquisition of the absolute image
information of cerebral hemorrhage, thus rendering it unable for
rapid diagnostic applications. To solve this limitation, a symmetrical
cancellation ECT Imaging method was proposed, predicated upon
the anatomical symmetry between the left and right cerebral
hemispheres. This method only needs that the sagittal suture of
the examined cranium remain collinear with the central axis
(symmetry axis) of a corresponding pair of electrodes in the ECT
sensor. Such alignment enables the electrodes on both sides to
maintain symmetry about the sagittal suture. Consequently,
imaging data is attainable through the subtraction of capacitance
measurements from their symmetrical counterparts. The reference
data for this novel imaging modality is directly derived from the
measurement data after bleeding, thereby eliminating the need for
pre-hemorrhage measurement. In order to verify the feasibility of
this scheme, simulation and empirical imaging evaluations were
conducted across various cerebral hemorrhage models. The findings
corroborate that the imaging method can indeed facilitate the
absolute imaging of cerebral hemorrhage in the established way.
Moreover, the results of this imaging method have a significant
feature, that is, an artifact with the same size and shape and the
opposite pixel value symbol appears on the opposite side of the
actual bleeding image. This is determined by the principle of
symmetrical cancellation imaging, no need to worry. Clinically,
the hemisphere in which hemorrhage exists can be easily
determined through patient’s symptoms. Moreover, the imaging
quality is intrinsically dependent upon the anatomical symmetry
across the cerebral hemispheres around the electrode’s symmetry
axis; superior symmetry yields enhanced imaging quality and
diminished noises. Nonetheless, practical applications are
encumbered by operational complexities and the imperative for
precise cranial alignment. The blood locus within the symmetrical
cancellation imaging exhibits a slight deviation from its true
coordinates, primarily due to non-homogeneous distribution of
the permittivity within the imaging domain. Brain belongs to the
non-uniform dielectric distribution, which contains tissues such as
gray matter white matter cerebrospinal fluid, and also contains a
small amount of residual blood, so it is a very inhomogeneous

TABLE 7 Image error (%) and Correlation coefficient for imaging results of two porcine brain wrapped hemorrhage models.

Image error (%) Correlation coefficient

Blood on the left Blood on the right Blood on the left Blood on the right

Time-differential imaging 29.12 28.38 0.71 0.72

Symmetrical cancellation imaging 39.44 38.25 0.69 0.68
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medium, thus leading to a large difference between the sensitivity
distribution of the imaging area full of brain and that full of air, and
the sensitivity matrices used for imaging in this paper are all
calculated when the imaging zone are full of air, so it leads to
poor imaging of blood, which may also be the reason why the
imaging results deviate from the actual location. This problem can
be potentially mitigated through refinement in the computational
approaches for sensitivity matrix and imaging algorithms. In
summation, the Symmetrical Cancellation Imaging modality
elucidated here demonstrates potential for achieving absolute
cerebral hemorrhage imaging, although further research is
require for entering practical stage. The most significant hurdles
pertain to the intricacy of operational procedures and the precision
required in cranial placement. Future directions involve the
refinement of ECT sensor design, computational methodologies
for sensitivity matrix and imaging algorithms to enhance the
imaging quality for this innovative imaging paradigm. To ensure
that the ECT electrode array maintains precise symmetry with
respect to the skull’s anatomical structure, it is proposed to
install laser range sensors in the center of each electrode. This
setup will allow for real-time display of the distances between all
electrodes and the subject’s skull. Consequently, based on the
measurements from the laser range sensors, the gap between the
ECT electrode array and the skull can be adjusted more
conveniently, significantly improving the precision of the array’s
symmetry relative to the skull. Additionally, procedure for the
calibration of symmetrical cancellation ECT is needed. It is
proposed to design a 3D-printed adult skull model based on 3D
scanning data of an adult skull. The model will include major fillers
such as cerebrospinal fluid, gray matter, and white matter, whose
electromagnetic parameters match those of their real-life
counterparts. Before each measurement, the model will be
measured first by the symmetrical cancellation ECT, the
measurement data will be stored as calibration data. Subtracting
this calibration data from subsequent actual measurements can
achieve high-precision imaging results.
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Road surface detection plays a pivotal role in the realm of autonomous vehicle
navigation. Contemporary methodologies primarily leverage LiDAR for acquiring
three-dimensional data and utilize imagery for chromatic information. However,
these approaches encounter significant integration challenges, particularly due to
the inherently unstructured nature of 3D point clouds. Addressing this, our novel
algorithm, specifically tailored for predicting drivable areas, synergistically combines
LiDAR point clouds with bidimensional imagery. Initially, it constructs an altitude
discrepancy map via LiDAR, capitalizing on the height uniformity characteristic of
planar road surfaces. Subsequently, we introduce an innovative andmore efficacious
attention mechanism, streamlined for image feature extraction. This mechanism
employs adaptive weighting coefficients for the amalgamation of the altitude
disparity imagery and two-dimensional image features, thereby facilitating road
area delineation within a semantic segmentation framework. Empirical evaluations
conducted using the KITTI dataset underscore our methodology’s superior road
surface discernment and extraction precision, substantiating the efficacy of our
proposed network architecture and data processing paradigms. This research
endeavor seeks to propel the advancement of three-dimensional perception
technology in the autonomous driving domain.

KEYWORDS

road vehicles, convolutional neural nets, image processing, data fusion, semantic
segmentation

1 Introduction

In the evolving landscape of intelligent transportation, the escalating demand for
precision in perception algorithms renders single image sensor modalities inadequate.
Visual imagery is susceptible to ambient light intensity variations, where shadows cast by
tall structures and trees can precipitate algorithmic inaccuracies or omissions. In scenarios
devoid of depth information, conventional visual image-based algorithms exhibit limited
efficacy in discerning road edges and pedestrian crossings. Conversely, LiDAR radar,
impervious to lighting and shadows, provides high-precision environmental depth data,
enhancing detection stability significantly. Perceiving road information using LiDAR point
cloud, which is collected by LiDAR sensors, is both a challenging research area and a key
focus in the field.
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Several researchers have explored LiDAR-based road
information extraction techniques. Zhang et al. [1] utilized
Gaussian difference filtering for point cloud segmentation,
aligning the results with a model to isolate ground points. Chen
et al. [2], targeting lane edge information, segmented lanes post
feature extraction. Asvadi et al. [3] adopted segmented plane fitting
as their evaluative criterion. Wijesoma et al. [4] approached the
challenge by focusing on road edge detection, employing extended
Kalman filtering for lane edge feature extraction.

The fusion of LiDAR and camera data for road perception has
garnered increasing scholarly interest. The inherent disparity between
three-dimensional LiDAR point clouds and two-dimensional image
pixels presents a significant data space challenge. Innovative algorithms
have been developed to transform and densify sparse point cloud data
into continuous, image-like formats. Chen et al. [5] leveraged LiDAR’s
scanning angle data to create image-like representations from point
clouds. Thrun et al. [6] introduced a top-down radar feature
representation based on vertical point cloud distribution. Gu et al.
[7] employed linear upsampling for point cloud data preprocessing,
extracting features from the densified clouds for road perception.
Similarly, Fernandes et al. [8] utilized upsampling but projected the
point cloud onto the X-Y plane before extracting Z-axis height values.
Caltagirone et al. [9] generated a top view of point clouds by encoding
their average degree and density, facilitating road perception. Han X
et al. [10] and Liu Z et al. [11] further contributed with high-resolution
depth image generation and directional ray map implementation,
respectively.

Existing methods that densify point clouds into more manageable
data forms often lead to computationally intensive outputs,
compromising the real-time capabilities of the overall algorithm. To
address this, our paper introduces a novel method for 3D point cloud
conversion, leveraging weighted altitude differences. This approach not
only efficiently preserves essential road information but also enhances
the distinction between road and non-road areas.

In this study, we propose distinct fusion strategies at both the data
and feature levels, tackling the challenges posed by disparate sensor data
structures and varied road characteristics. Initially, we transform three-
dimensional point cloud data into a two-dimensional weighted altitude
difference map. This process, anchored on the uniform height variation
in flat road areas, not only retains crucial road features but also
facilitates data-level fusion. Subsequently, we introduce a LiDAR-
camera feature adaptive fusion technique. This innovative method
refines the semantic segmentation network encoder and integrates a
feature adaptive fusion module. This module, comprising an adaptive
feature transformation network and a multi-channel feature weighting
cascade network, adeptly linearly transforms LiDAR radar features.
These transformed features are then coalesced with visual image
features across multiple levels, achieving effective feature-level fusion
of multimodal data.

2 Weighted altitude difference map
based on point cloud data

2.1 Altitude difference map

The disparity between original LiDAR data and visual data
presents significant challenges in direct data fusion and feature

extraction. LiDAR data, comprising tens of thousands of points
in a three-dimensional space, assigns each point with 3D
coordinates (x, y, z). In contrast, visual data consists of an array
of pixels on a two-dimensional image plane, each pixel defined by an
RGB value. This fundamental difference in data space complicates
their direct integration.

In the context of road areas, the LiDAR point cloud exhibits a
unique smoothness compared to other objects. This smoothness is
evident as the road area’s point cloud in 3D space shows fewer
irregularities, unlike non-road areas and entities like vehicles and
pedestrians. The discontinuities in the point cloud bounding box are
more pronounced for these non-road elements. The road surface’s
smoothness is quantified by the minimal average altitude difference
between road surface points and their neighboring points.

Through the process of joint calibration parameters and sparse
point cloud densification, a detailed projection image of the dense
LiDAR point cloud is obtained. This involves projecting the 3D
coordinate vectors of the LiDAR points onto a 2D image plane,
resulting in varying shapes depending on the observation
coordinates along the X, Y, and Z-axes. By defining the X-Y
plane as the base, the Z-axis can be interpreted as the height
value of the point cloud, providing a crucial dimensional
perspective.

As shown in Figure 1A, the absolute value of the altitude
difference between two positions (such as Z0 and Zi in the
Figure 1) is calculated as the spatial displacement between them.
The specific formula for the altitude difference value gx,y located at
(x0, y0) is as follows:

gx,y � 1
M

∑
i

Zi − Z0| |

In the formula, Z0 represents the height on the Z-axis of the
point projected at the coordinate (x0, y0), Zi represents the height
on the Z-axis of other points in the neighborhood of point (x0, y0),
and M represents the total number of points to be considered in the
set neighborhood.

Finally, all calculated gx,y values are scaled between 0–255, and
the scaled gx,y is used as the gray value at point (x, y) on the image
to form a gray-scale image with the altitude difference value as the
pixel value. This can be regarded as a two-dimensional image plane
composed of the average altitude difference values of the projected
points. The resulting altitude difference gray-scale image is shown
in Figure 1B.

The relationship between the average altitude difference of a
point relative to its neighbors and the resultant grayscale value in the
converted height map is inversely proportional. As illustrated in
Figure 1B, an upright and sharply defined object will cast a
projection with a significant altitude difference on the image
plane. Consequently, the road area, characterized by minimal
intensity, appears darker in the image. In contrast, other objects
typically exhibit higher altitude values, resulting in more
pronounced intensity differences when compared to the road
area. This conversion from original 3D data to point cloud
altitude difference effectively encapsulates the road’s inherent
characteristics and smoothness present in the initial LiDAR data.
The height map thus produced simplifies the task for a deep
convolutional neural network model in discerning and
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identifying the road, enhancing the model’s ability to differentiate
between various features.

2.2 Weighted altitude difference map

The elevation difference image principally focuses on the height
variation between a central point and its surrounding points. Upon
examination, it becomes apparent that the low grayscale values in

road areas on this image stem from the negligible height changes
extending in all directions from any given point on the road, leading
to minimal elevation difference values. Conversely, the areas of
higher intensity on the elevation difference image are predominantly
located where road and non-road areas intersect. These high-
intensity regions usually align approximately along the Y-axis. A
marked change in elevation difference values is observed when
neighboring points along the X-axis direction are selected for
calculation, distinguishing them from the road surface area.

FIGURE 1
Altitude difference image conversion process. (A) The point cloud image, (B) the calculated altitude difference image.

FIGURE 2
Point cloud data conversion results, (A) is the RGB image, (B) is the original Altitude Difference Map, and (C) is the Weighted Altitude Difference
Map. (C) Contains more details, and the changes in height are more pronounced in the pixel values.
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To leverage this characteristic, we propose an enhanced
elevation difference conversion method. The novel formula for
calculating elevation difference values is structured to more
accurately reflect these spatial variations. This approach aims to
provide a clearer distinction between road and non-road areas,
improving the precision of the elevation difference image for
subsequent analysis and application. The new formula for
calculating elevation difference values is as follows:

gx,y � max
1
M

∑
i

γ1i · Zi − Z0| |, 1
M

∑
i

γ2i · Zi − Z0| |⎛⎝ ⎞⎠

γ1i � Sigmoid Xi −X0( ) + 0.5

γ2i � Sigmoid X0 −Xi( ) + 0.5

In the formula, X0 and X0 respectively represent the X-axis
coordinates of the center point and the neighborhood point, and γ1i
and γ2i are adaptive weight parameters. When the center point is
located in the road surface area, the introduction of new weight
calculation will not cause an increase in numerical intensity. When
the center point is located near the left or right boundary, the
characteristic of the drastic increase in elevation difference will be
amplified by one of the adaptive weight parameters γ1i and γ2i. The
amplified elevation difference value is selected as the output value,
and the contrast at the boundary of the resulting elevation difference
image will be more obvious.

When considering the altitude difference between the
neighborhood points and the center point, the altitude difference
changes of the points closer to the center point can better reflect the
overall flatness of the neighborhood. Therefore, the weight values of
the points closer to the center point should be increased. The
formula with the added distance weight is as follows:

gx,y � max ( 1
M

∑
i

γ1i ·
Zi − Z0| |�������������������

Xi −X0( )2 + Yi − Y0( )2
√

1
M

∑
i

γ2i ·
Zi − Z0| |�������������������

Xi −X0( )2 + Yi − Y0( )2
√ ⎞⎟⎟⎟⎠

Where, X0, Y0, Z0 respectively represent the X, Y, and Z-axis values
of the LiDAR point projected onto the point (x, y), and (Xi, Yi, Zi)
represent the X, Y, and Z-axis values of other points in the
neighborhood of the center point (x, y). In our refined approach
for calculating altitude differences, the inverse of the distance
between a certain LiDAR point and the center point is
incorporated. This modification places greater emphasis on the
contribution of points closer to the center, making their altitude

FIGURE 3
Feature adaptive fusion network.

FIGURE 4
FAFM.
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differences more pronounced. This technique effectively enhances
the distinction between road and non-road areas in the altitude
difference image. The impact on road surface points is minimal,
preventing any significant intensification in the overall image
intensity, while markedly increasing the visibility of non-road
surface areas.

For the conversion of point cloud data, we set a 5 × 5 grid
centered around (x, y) as the neighborhood range for each point.
Consequently, the maximum number of LiDAR points, M, required
for computation within this neighborhood is 24 (excluding the
center point itself). The algorithm’s computational complexity is
a function of the generated weighted height map’s dimensions
(length W and width H), as well as the number of neighborhood

points, M. As a result, the computational demand remains low,
ensuring the algorithm’s real-time performance efficacy. Figure 2
illustrates the outcome of this process: the first row depicts the
original RGB image, the second row shows the LiDAR point cloud
data, and the third row presents the adaptive weighted altitude
difference image. This transformation process converts the initially
unordered and sparse point cloud information into a structured,
regular two-dimensional image format, where each pixel’s grayscale
value corresponds to the weighted altitude difference at
that location.

3 Feature adaptive fusion network

To integrate the transformed 3D point cloud data with visual
image data for better road surface recognition results, we
designed a dual-source feature adaptive fusion network, as
shown in Figure 3.

The diverse input data sources within our network contribute to
a notable disparity between features extracted from the altitude
difference map and those derived from visual images. This disparity
presents a challenge to the effective fusion of LiDAR and vision

FIGURE 5
Pavement recognition results before and after optimization.

TABLE 1 Perception algorithm accuracy statistics results.

MaxF (%) AP (%) PRE (%) REC (%)

Image 87.90 90.92 86.66 89.18

Image + WADM 89.39 91.18 88.91 89.87

Image + WADM +
FAFM

92.34 92.61 92.65 92.04

FIGURE 6
Road perception results before and after optimization on real data.
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features, hindering seamless integration. To address this challenge,
we have devised a methodology for refining features extracted from
LiDAR point cloud data. This refinement process enhances the
compatibility and synergistic enhancement of LiDAR features with
visual features, consequently bolstering road perception
performance based on visual inputs.

To materialize this approach, we have developed the Feature
Adaptive Fusion Module (FAFM), a novel component comprising
two essential elements: the Feature Transformation Network (FTN)
and a multi-channel feature weighting cascaded network. The FTN is
specifically engineered to adapt LiDAR-derived features to align more

cohesively with visual features, facilitating a smoother integration process.
Meanwhile, the multi-channel network orchestrates the weighted
amalgamation of these refined features. The overarching architecture,
illustrated in Figure 4, delineates a sophisticated system that harmoniously
leverages the strengths of both LiDAR and visual data for superior road
perception capabilities.

3.1 Feature transformation network

The primary objective of the Feature Transformation Network
(FTN) is to conduct a linear transformation of LiDAR-derived
features, generating new features that exhibit similarity and
compatibility with visual image features. This linear
transformation is achieved through the following formula:

f FTN Flidar( ) � αFlidar + β

Where, Flidar represents the lidar features, α represents the weight,
and β represents the offset. To estimate α and β reasonably and
achieve a better fusion of the two features, this paper introduces a
feature transformation network to learn and adapt to the lidar
features. The following feature transformation network is used to
estimate α and β:

α � f α Flidar, Fimage;Wα( )
β � f β Flidar, Fimage;Wβ( )

Fimage represents the visual image features, fα represents the
network function that calculates α, and f β represents the network
function that calculates β. Wα and Wβ are the weight parameters of
the corresponding networks. The weight values Wα and Wβ are
constantly updated during the entire network training process,
which makes the estimated weight α and offset β more reasonable.

FIGURE 7
Training process diagram. The figure shows the changes in AP
during the training process. The model quickly converged to a
relatively high level after 50 epochs, and finally completed training
after about 240 epochs.

FIGURE 8
Comparison of different algorithms. We used MaxF and AP, the two most significant parameters, as comparison metrics. Our algorithm exhibited a
considerable advantage in MaxF and achieved a second-best performance in AP.
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The number of output channels for each layer is unified to
256. Flidar and Fimage are input into the transformation network
and their channels are stacked. Two 1 × 1 convolution kernels
are used in the transformation network to implement fα and fβ.
The stacked input of Flidar and Fimage channels is used as input
because the 1 × 1 convolution kernel does not change the size of
the input feature map. The output is a 256-dimensional weight
vector and an offset vector. To avoid introducing too much
computational burden, no activation function is added in the
transformation network. On the other hand, because the
expression ability of the linear model is not sufficient, (α + 1)
is selected as the final weight vector to introduce nonlinear
factors into the network.

3.2 Multi-channel feature weighted
cascade network

The fusion function is achieved by taking the visual image
features and the transformed lidar features as inputs, as
shown below:

f kfuse � Fkimage + λf kFTN Fklidar( )
In the context of the road detection system, let k denote the features

from the kth convolution stage of the Deep Convolutional Neural
Network (DCNN), and λ represent a weight parameter. Semantic
segmentation heavily relies on information provided by visual image
features, with added lidar point cloud features serving as supplementary
data. However, experiments have demonstrated that an excessively large
proportion of lidar point cloud features can impact the expression of
image features, leading to a reduction in semantic segmentation accuracy.
Conversely, when the proportion of lidar point cloud features is too small,
the effect on algorithmic accuracy optimization is not significant. Optimal
balance is achieved when the value of λ is approximately 0.1, resulting in
the highest accuracy (subsequent experiments were conducted under the
condition of λ = 0.1).

4 Experiments and results

This paper’s experimental evaluation comprises two distinct
parts: 1) assessing the efficacy of fusing point cloud altitude

FIGURE 9
Comparison of lane boundary recognition effects. (A) DeepLabV3 (B) Ours.

TABLE 2 Statistical results of lane extraction accuracy evaluation parameters.

Methods Input MaxF (%) AP (%) PRE (%) REC (%)

DeeplabV3+ [12] Image 90.66 88.23 90.81 90.51

LoDNN [13] LiDAR 94.07 92.03 92.81 95.37

LidCamNet [14] Image + LiDAR 96.03 93.93 96.23 95.83

SNE-RoadSeg, [15] Image + LiDAR 96.42 93.67 96.59 96.26

USNet [16] Image + LiDAR 96.46 92.78 96.32 96.6

SAR-Net [17] Image + LiDAR 96.51 92.57 97.36 96.66

Ours Image + LiDAR 96.72 93.74 96.76 96.68

The bolded data represent the best results among the comparison algorithms.

Frontiers in Physics frontiersin.org07

Wang et al. 10.3389/fphy.2024.1387717

182

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1387717


difference data with the feature-adaptive module; 2) benchmarking
the recognition accuracy against other leading road detection
algorithms.

(1) In the first part, we conducted quantitative assessments of our
algorithm’s enhancement in road perception accuracy on the
public KITTI dataset. We configured three distinct network
structures for this purpose: 1) Image: inputs only the visual
image, representing the baseline unoptimized network; 2)
Image + WADM (Weighted Altitude difference Map):
combines the visual image with the adaptive weighted
altitude difference map; 3) Image + WADM + FAFM:
integrates the visual image and the adaptive weighted
altitude difference map, incorporating the feature-adaptive
fusion network for a fully optimized algorithm.

As depicted in Figure 5, the results before and after optimization
reveal notable differences. The unoptimized road perception algorithm
shows marginally weaker semantic segmentation, influenced more
significantly by shadows and background luminosity. However, the
optimizations, specifically the altitude difference conversion and
feature-adaptive fusion, markedly enhance segmentation accuracy.
These optimizations address semantic segmentation blurring due to
shadows and object occlusion, improving the delineation of
segmentation boundaries and the accuracy of distant object
perception. Additionally, the integration of LiDAR data bolsters the
segmentation effects across various environmental objects.

We further analyzed the performance enhancement of the
altitude difference weighted transformation and feature adaptive
fusion network. Comparative experiments were conducted
under three scenarios, with statistical analyses of various

performance metrics tabulated in Table 1. The results affirm
that both improvements substantially optimize the algorithm.
We used parameters such as MaxF, AP, PRE, and REC to
evaluate the algorithm. Their meanings are as follows: MaxF
stands for Maximum F1-measure; AP refers to Average
Precision as used in PASCAL VOC challenges; PRE indicates
Precision; and REC denotes Recall. Notably, the Image +
WADM network configuration enhanced the MaxF by 1.49%
compared to the baseline, underscoring the significant impact of
incorporating LiDAR point cloud information. This addition
also positively influenced other parameters, evidencing the
improved robustness of the algorithm. The final algorithm
model (Image + WADM + FAFM) exhibited the best
performance overall, with notable advancements in recall rate
and a more balanced performance across all parameters. This
underscores the effectiveness and necessity of the feature-
adaptive fusion network, confirming its pivotal role in
enhancing the algorithm’s overall robustness.

In addition, we tested the road perception accuracy of the
algorithm before and after full optimization in a real
environment. In Figure 6, the first column shows the original
visual image (a) in the input network, the second column shows
the road perception result under the Image condition (b), and the
third column shows the road result under the Image + WADM +
FAFM condition (c).

The road perception algorithm designed in this study performs
well on both simple and complex structured roads. Compared with
the algorithm before optimization, the proposed improvement
scheme has improved the accuracy of the algorithm perception
and has better robustness under different road conditions. The lane
segmentation results are more detailed.

FIGURE 10
Comparison of lane and sidewalk segmentation effects. (A) DeepLabV3 (B) Ours.
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(2) In the lane boundary recognition accuracy experiment, the
efficacy of our proposed algorithm was benchmarked against
other leading algorithms on the KITTI road dataset. The training
process is shown in Figure 7. As detailed in Figure 8; Table 2, our
algorithm demonstrates substantial improvements across all
accuracy parameters. However, it’s noteworthy that the
incorporation of two DCNN networks and the fusion
network has resulted in a decrease in algorithm speed.

When comparing specific inputs, the LoDNN network, which
solely relies on point cloud data, and the DeeplabV3+, which only
uses image data, both fall short in overall accuracy compared to
algorithms that integrate Image + LiDAR inputs. Among algorithms
that employ visual image and LiDAR point cloud data fusion,
including LidCamNet, SNE-RoadSeg, USNet, SARNet, and our
proposed algorithm, ours shows superior performance in MaxF,
PRE, and REC parameters. Although it slightly lags behind
LidCamNet in the AP parameter, it maintains a competitive edge.

Based on the subjective and objective evaluation indicators of
comprehensive road perception and lane extraction, it can be proved
that the algorithm proposed in this paper not only takes into account
the effect of road perception, but also has high-precision lane extraction
capability.

Our proposed up-sampling network, an enhancement of the
Deeplabv3+ network, underwent comparative experiments with
the original network. The detailed results, as shown in Figure 9,
highlight the algorithm’s proficiency. The original image data,
road perception results, and lane boundary details are
sequentially presented. The proposed algorithm excels at
delineating the intersection between lanes and other objects,
yielding more precise lane extraction results. This
improvement is attributed to the addition of lane edge
constraints when converting LiDAR point cloud data into a
weighted altitude difference map. This enhancement clarifies
lane edge features, heightening their distinctiveness from other
objects and facilitating the network’s ability to extract the lane
area, thereby improving lane recognition accuracy.

In Figure 10, a comparative analysis of segmentation results between
two algorithms for lanes and sidewalks underscores our algorithm’s
superior detection capabilities, even with distant objects. It achieves
precise segmentation of lanes and sidewalks, thus significantly
enhancing the accuracy of road segmentation at extended distances.

5 Summary

In this study, we meticulously preprocessed the LiDAR point
cloud data by removing noise points and optimizing the information
within the cloud. This refined 3D point cloud was then projected onto
the image plane using specific calibration parameters. A pivotal
method based on weighted altitude difference was developed for
converting the LiDAR point cloud data. This technique harnessed
the height consistency characteristic of flat road areas to extract an
altitude difference map from the LiDAR-derived height map. We
integrated neighborhood point distance constraints and road
boundary point constraints, culminating in the formation of a
detailed weighted height map. This innovative approach
transforms 3D point cloud data into 2D weighted height map

data, adeptly preserving road surface characteristics and
accentuating road boundary features. This transformation lays a
solid foundation for subsequent fusion with visual imagery. The
incorporation of spatial point coordinate information in the point
cloud data, coupled with boundary constraints during the conversion
process, enabled the explicit representation of road boundary features.
This enhancement made the delineation between road and non-road
areas more pronounced, greatly benefiting the feature extraction
capabilities of subsequent semantic segmentation networks.
Additionally, the weighted altitude difference map addresses the
susceptibility of visual images to lighting and shadow effects. It
remains effective even under challenging conditions of strong light
and shadow occlusion, consistently conveying comprehensive road
information. The integration of this weighted altitude difference map
has significantly bolstered the accuracy of our road perception
algorithm, marking a substantial advancement in the field.
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A survey on deep learning in
medical ultrasound imaging
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Ultrasound imaging has a history of several decades. With its non-invasive,
low-cost advantages, this technology has been widely used in medicine and
there have been many significant breakthroughs in ultrasound imaging. Even
so, there are still some drawbacks. Therefore, some novel image
reconstruction and image analysis algorithms have been proposed to solve
these problems. Although these new solutions have some effects, many of
them introduce some other side effects, such as high computational
complexity in beamforming. At the same time, the usage requirements of
medical ultrasound equipment are relatively high, and it is not very user-
friendly for inexperienced beginners. As artificial intelligence technology
advances, some researchers have initiated efforts to deploy deep learning
to address challenges in ultrasound imaging, such as reducing computational
complexity in adaptive beamforming and aiding novices in image acquisition.
In this survey, we are about to explore the application of deep learning in
medical ultrasound imaging, spanning from image reconstruction to
clinical diagnosis.

KEYWORDS

medical ultrasound imaging, deep learning, ultrasound beamforming, medical image
analysis, clinical diagnosis

1 Introduction

1.1 Brief introduction to medical imaging

Medical imaging relies on various physical phenomena to visualize human body
tissues, internally and externally, through non-invasive or invasive techniques. Key
modalities such as computed tomography (CT), magnetic resonance imaging (MRI),
X-ray radiography, ultrasound, and digital pathology generate essential healthcare data,
constituting around 90% of medical information [1]. Consequently, medical imaging
plays a vital role in clinical assessment and healthcare interventions. Deep learning, as
the cornerstone technology propelling the ongoing artificial intelligence (AI)
revolution, exhibits significant potential in medical imaging. It spans from image
reconstruction to comprehensive image analysis[2–8]. The integration of deep learning
with medical imaging has spurred advancements, with the potential to reshape clinical
practices and healthcare delivery. Empirical evidence has proven that deep learning
algorithms exhibit performance comparable to that of medical professionals in
diagnosing various medical conditions from imaging data [9]. At the same time,
many applications of deep learning in clinics have emerged [10–16]. Consequently,
there is a discernible trend towards certifying software applications for clinical
utilization [17].
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1.2 Literature reviews of deep learning in
ultrasound beamforming

The development of medical ultrasound has a history of
80–90 years now. Medical ultrasound began as an investigative
technology around the end of World War II [18]. With
advancements in electronics, this technology improved.
Ultrasound is being continually refined for better resolution,
more portable devices, and more automated systems that can aid
even in remote diagnostics. The most recent advancement in
medical ultrasound is the incorporation of AI to help diagnosis.

The application of AI in medical ultrasound is long-standing
[19–25]. With the explosion of deep learning, its application in
medicine has become even more widespread. The medical
ultrasound system mainly includes image reconstruction and
image analysis, both of which have seen extensive applications of
deep learning [26]. Deep learning has brought a revolutionary
change in ultrasound beamforming, significantly enhancing
image quality and improving computational efficiency.
Ultrasound beamforming is a process of combining signals from
multiple ultrasound elements to construct a focused image.
Traditional methods rely heavily on user intervention and
predefined parameters, which may limit the image quality and
accuracy. Deep learning, on the other hand, uses neural network
models to learn and generalize from examples. In the context of
ultrasound beamforming, deep learning methods can learn to
extract relevant features from raw ultrasound data and form a
high-quality image without needing explicit instructions or
predefined parameters. The process is relatively autonomous and
adaptable. In training phase, a deep learning model is trained with a
large amount of data (usually raw Radio Frequency (RF) data) which
includes both inputs (ultrasound signals) and outputs (desired
images). The model learns to identify patterns in the data and
how to predict the output from given inputs. Once trained, the
model can be used with new input data to predict the corresponding
output images. The advantage is that this prediction process is
usually faster than traditional beamforming methods as it bypasses
the need for complex signal processing. Deep learning models such
as Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have been successfully used in ultrasound
beamforming. They have shown promising results in enhancing
image resolution, reducing speckle noise, improving contrast, and
even performing advanced tasks like tissue characterization and
acoustic aberration correction. Around 2017, applications of deep
learning in beamforming began to appear in publications [27,28],
and the interest in this area has been increasing ever since. In plane
wave imaging, if only one plane wave is emitted, a very high frame
rate can be achieved, but this will lead to poor image quality.
Therefore, to improve image quality, a method called coherent
plane wave compounding (CPWC) [29] has been proposed to
solve this problem. However, using this method usually requires
the emission of plane waves at multiple angles, which leads to a
reduction in frame rate. Gasse et al. [27] propose a method using
CNNs that allows for the acquisition of high-quality images even
with the emission of only three plane waves. Luchies and Byram
[28,30] discuss how to use deep neural networks (DNNs) to suppress
off-axis scattering. The study is based on operations in the frequency
domain through short-time Fourier transform. There are also some

studies on bypassing beamforming [31–36]. The principal concept
involves utilizing advanced deep learning methodologies to directly
reconstruct images or conduct image segmentation from raw RF
data. Deep learning has also been used to reduce artifacts in multi-
line acquisition (MLA) and multi-line transmission (MLT) [37,38,
39]. Luijten et al. [35,40] investigate how deep learning can be
applied to the adaptive beamforming process, addressing the
computational challenges and aiming to produce better
ultrasound images. Wiacek et al. [35,42] explore the use of
DNNs to estimate normalized cross-correlation as a function of
spatial lag. This estimation is specifically for coherence-based
beamforming, such as short-lag spatial coherence (SLSC)
beamforming [44]. Using sub-sampled RF data to reconstruct
images can increase the frame rate, but the image quality will
decrease. Some researchers [31,45–47] propose using deep
learning to address this issue. More research is focused on the
application of deep learning in plane wave imaging [48–56]. Some
studies [57–59] discuss the training schemes. In addition, the
ultrasound community also organized a challenge to encourage
researchers to engage in deep learning research [60,61].

1.3 Overview of deep learning in clinical
application of ultrasound

Deep learning plays a significant role in ultrasound clinical
applications as it enhances the efficiency and accuracy of
diagnosis, reducing human errors and paving the way for more
sophisticated applications. Deep learning models can be trained to
automatically detect and segment lesions in ultrasound images. This
reduces the workload for radiologists and increases accuracy, as
human interpretation can be subjective and variable. They can also
be trained to classify diseases based on ultrasound images. Deep
learning helps build more detailed 3D and 4D imaging from 2D
ultrasound images, providing a more comprehensive picture of the
patient’s condition. Deep learning algorithms can be used to predict
clinical outcomes or progression of a disease based on ultrasound
imaging data. From Ref. [19–25], it can be seen that the application
of AI in medical ultrasound analysis predates that of beamforming.
Medical ultrasound analysis mainly includes segmentation,
classification, registration, and localization [62,63]. The
integration of deep learning with ultrasound image analysis has
spurred advancements, with the potential to reshape clinical
practices. Breast cancer is a disease that seriously threatens
people’s health [64]. The application of deep learning in breast
ultrasound can effectively assist radiologists or clinicians in
diagnosis. Becker et al. [65] are attempting to use a deep learning
software (DLS) to classify breast cancer from ultrasound images. Xu
et al. [66] focus on segmenting breast ultrasound images into
functional tissues using CNNs. This segmentation aids in tumor
localization, breast density measurement, and treatment response
assessment, crucial for breast cancer diagnosis. Qian et al. [67]
discuss a deep-learning system designed to predict Breast Imaging
Reporting and Data System (BI-RADS) scores for breast cancer
using multimodal breast-ultrasound images. Chen et al. [68]
introduce a novel deep learning model for breast cancer
diagnosis using contrast-enhanced ultrasound (CEUS) videos.
Jabeen et al. [69] present a novel framework for classifying breast
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cancer from ultrasound images. The method employs deep learning
and optimizes feature selection and fusion for enhanced
classification accuracy. Raza et al. [70] propose a deep learning
framework, DeepBreastCancerNet, designed for the detection and
classification of breast cancer from ultrasound images. Deep
learning is also widely applied in cardiac ultrasound. Degel et al.
[71] discuss a novel approach to segment the left atrium in 3D
echocardiography images using CNNs. Leclerc et al. [72] evaluate
encoder-decoder deep CNN methods for assessing 2D
echocardiographic images. The study introduces the Cardiac
Acquisitions for Multi-structure Ultrasound Segmentation
(CAMUS) dataset, the largest publicly available and fully
annotated dataset for echocardiographic assessment, featuring
images from 500 patients. Ghorbani et al. [73] investigate the
application of deep learning models, particularly CNNs, to
interpret echocardiograms. Narang et al. [74] explore the efficacy
of a deep learning algorithm in assisting novice operators to obtain
diagnostic-quality transthoracic echocardiograms. Ultrasonography
is also a primary diagnostic method for thyroid diseases [75]. Thus,
some studies on the assistance of deep learning in the diagnosis of
thyroid diseases [76–81] emerged. There are also many applications
of deep learning in prostate cancer detection [82–84] and prostate
segmentation [85–91]. In ultrasound fetal imaging, deep learning
also plays an increasingly important role[92–97]. In addition, there
is a constant emergence of deep learning research in ultrasound
brain imaging [98–103].

1.4 Other review articles on deep learning in
ultrasound imaging

There are already some review articles about deep learning in
medical ultrasound imaging. van Sloun et al. [104] presents an
inclusive examination of the potential and application of deep
learning strategies in ultrasound systems, spanning from the
front end to more complex applications. In another article
[105], they specifically discussed deep learning in
beamforming. They introduce the potential role that deep
learning can play in beamforming, as well as some of the
existing achievements of deep learning in beamforming, and
also look forward to new opportunities. Ref. [106] discusses
the shortcomings of traditional signal processing methods in
ultrasound imaging. The paper suggests a blend of model-based
signal processing methods with machine learning approaches,
stating that probability theory can seamlessly bridge the gap
between conventional strategies and modern machine/deep
learning approaches. However, these articles mainly focus on
the principles of ultrasound imaging and do not discuss clinical
applications. There are also some articles that provide reviews
from the perspective of image analysis and clinical practices.
Reference [62,63] discuss deep learning in medical ultrasound
analysis from multiple perspectives. Afrin et al. [107] discuss the
application of deep learning in different ultrasound methods for
breast cancer management - from diagnosis to prognosis.
Reference [108] presents an in-depth analysis of the
application of AI in echocardiography interpretation.
Khachnaoui et al. [109] discuss the role of ultrasound imaging
in diagnosing thyroid lesions. In this review, our aim is to

introduce the application of deep learning in medical
ultrasound from the perspective of image reconstruction to
clinical applications. The content seems to be quite broad, we
aim to provide a comprehensive perspective on the application of
deep learning in medical ultrasound and introduce the potential
role of deep learning in ultrasound imaging from a system
perspective.

2 Overview of medical
ultrasound system

A medical ultrasound system consists of various interconnected
modules, each of which is further segmented into numerous smaller
components. Figure 1 illustrates a simplified block diagram of a
medical ultrasound system. The entire signal processing pipeline of
an ultrasound system is relatively complex, with even more detailed
subdivisions for each module. For those interested in a deeper
exploration, please refer to [110]. Here, we are only providing
readers with a high-level overview, and a more in-depth
introduction to the modules we are interested in will be covered
subsequently. The dashed box in Figure 1 represents the analog
signal processing module, which is not within the scope of
discussion in this survey. We will focus on the discussion of the
transmit and receive beamforming and introduce the post-
processing as well. The transmit and receive beamforming are
actually two distinct parts; however, in Figure 1, we categorize
both under beamforming. In subsequent discussions, we will
address these two parts separately. The categorization of post-
processing here may be overly broad. In fact, after beamforming,
there is a series of intermediate processing steps before the final post-
processing. However, in this context, we refer to all these processing
steps collectively as post-processing.

2.1 Transmit processing

In ultrasound systems, transmit beamforming is a technique that
involves controlling the timing of excitation of multiple transducer
elements to produce a directional beam or focus the beam within a
specific area. By precisely adjusting the phase and amplitude of each
element, an ultrasound beam with a specific direction and focal
depth can be formed [111].

It can be seen from Figure 2, which illustrates the process of
transmit beamforming, that the distance from each element on the
transducer to the focal point is different. To ensure the beam
ultimately focus at the point, it is necessary to control the
emission timing of each element. It is noteworthy that in the
typical transmission focusing, only a subset of elements are
involved. In plane wave imaging, all elements on the transducer
need to transmit, and the direction of the plane wave is controlled by
adjusting the transmission timing of each element.

2.2 Receive processing

The receive beamforming is a crucial signal processing
technique used to construct a high quality image from the echoes

Frontiers in Physics frontiersin.org03

Song et al. 10.3389/fphy.2024.1398393

188

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1398393


returning from the scanned tissue or organs in ultrasound imaging.
When an ultrasound probe emits high-frequency sound waves, they
travel through the body, echolocate off structures, and are then
reflected back to the receiver. The reflected echoes are captured by
multiple transducer elements arranged in an array on the probe. The
schematic is illustrated in Figure 3.

Receive beamforming involves combining the signals received
by each of these elements in an intelligent way to construct a
coherent and high-resolution representation of the scanned
region. The most fundamental beamforming technique is the
delay-and-sum (DAS) [112] method where the received signals
from different transducer elements are delayed relative to each
other to account for the different times of flight from the
reflecting structure. They are then summed together, enhancing
the signal from a specific direction or focal point while attenuating
the signals from other directions. While the transmitted beam can be

focused at a certain depth, receive beamforming allows dynamic
focusing at various depths on receive. The delays are continuously
adjusted as the echoes return from different depths, effectively
focusing the beam at multiple depths in real-time. The
apodization process involves weighting the received signals before
they are summed, reducing side lobes and improving the lateral
resolution. Advanced beamforming techniques use adaptive
methods like Minimum Variance (MV) [113] to improve the
image quality further by adapting to the signal environment,
hence reducing the impact of off-axis scattering and noise. The
result of receive beamforming is a narrow, well-defined beam that
can accurately locate and display the internal structures of the body,
thus providing detailed images for diagnosis. Advances in digital
signal processing and hardware technology have significantly
improved beamforming techniques, making them more
sophisticated and effective.

FIGURE 1
Schematic of ultrasound imaging system.

FIGURE 2
Schematic of transmit beamforming. By controlling the emission time of each element on the transducer, the waves emitted by each element can
ultimately be focused on one point.
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2.3 Post processing

Ultrasound imaging can be roughly divided into pre-processing
and post-processing [114]. Beamforming, as a key part of pre-
processing, plays an important role in imaging quality, but post-
processing is also an indispensable step. The post-processing is a
research field that involves applying several steps after the channel
data are mapped to the image domain via beamforming. These steps
include further image processing to improve B-mode image quality,
such as contrast, resolution, despeckling. It also involves
spatiotemporal processing to suppress tissue clutter and to
estimate motion. For 2D or 3D ultrasound data, post-processing
is crucial for automatic analysis and/or quantitative measurements
[115]. For instance, the recovery of quantitative volume parameters
is a unique way of making objective, reproducible, and operator-
independent diagnoses.

Medical ultrasound image analysis involves the use of diagnostic
techniques, primarily those leveraging ultrasound, to create an
image of internal body structures like blood vessels, joints,
muscles, tendons, and internal organs. These images can then be
used to measure certain characteristics such as distances and
velocities. Medical ultrasound image analysis has extensive
applications in various medical fields, including fetal, cardiac,
trans-rectal, and intra-vascular examinations.

Common practices in the analysis of medical ultrasound
images often encompass techniques such as segmentation and
classification. Segmentation separates different types of organs
and structures in the image, especially for regions of interest.
Segmentation often uses edge detection, region growing,
thresholding techniques, and more advanced techniques such
as cascade classifiers, random forests, deep learning, etc.
Classification is also a key part of image analysis. It classifies
the images into normal images and abnormal images based on the
previously extracted features, or further, performs disease
classification. Common classification methods include neural
networks, K-nearest neighbors (K-NN), decision trees, Support
Vector Machines (SVM), etc. In recent years, deep learning-
based classification models, such as CNNs, have been widely

used, and with their powerful performance and accuracy, are
extensively applied in the field of medical image analysis.

3 Deep learning in medical
ultrasound imaging

We will discuss the application of deep learning in medical
ultrasound imaging from several perspectives. First is the
improvement of different beamforming techniques via deep
learning, followed by a discussion on clinical application, and
then the analysis of the application of deep learning in portable
ultrasound devices and training schemes. Finally, we will briefly
introduce the CNNs and transformer.

3.1 Image reconstruction

3.1.1 Bypass beamforming
Beamforming plays a crucial role in enhancing image quality.

DAS algorithm, as a classic beamforming technique, is widely used
in ultrasound imaging systems. Despite its operational simplicity
and ease of implementation, this method also presents certain
limitations and drawbacks. DAS beamforming generates relatively
high side lobes and grating lobes, which are unwanted beam
directions that may capture reflected signals from non-target
areas, reducing image contrast and resolution. To suppress the
side lobes, a common method is to use apodization, which is the
application of weighting windows.

Usually, beamforming synthesizes the signals received by an
array of elements to form a directional response or beam pattern, but
this process can be computationally intensive. Deep learning
approaches can potentially learn to perform the beamforming
operation more efficiently, leading to faster image reconstruction
without compromising quality. Simson et al. [31] address the
challenge of reconstructing high-quality ultrasound images from
sub-sampled raw data. Traditional beamforming methods, although
adept at generating high-resolution images, impose considerable

FIGURE 3
Schematic of receive beamforming. In order to align the echo received by each transducer element that is reflected from a certain point, it is
necessary to properly delay the signal received by each element.
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computational demands and their efficacy diminishes when dealing
with sub-sampled data. To overcome this issue, the authors propose
“DeepFormer,” an end-to-end, deep learning-based method
designed to reconstruct high-quality ultrasound images in real-
time, using sub-sampled raw data. Traditional beamforming
algorithms often ignore the information between scan lines. Yet,
a fully convolutional neural network (FCNN) is capable of capturing
this information and utilizing it effectively; thus, enabling cross-scan
line interpolation in sub-sampled data. As shown in Eq. 1 [31], the
loss function used in DeepFormer is a combination of ℓ1 loss and
Structural Similarity Imaging Metric (SSIM) [116].

LDF � αLMS−SSIM + 1 − α( )L1 (1)
Their results, which were tested on an in vivo dataset of some
participants, indicate that DeepFormer is a promising approach for
enhancing ultrasound image quality while also providing the speed
necessary for clinical use. In addition, Nair et al. [32–35], introduced
a concept with the objective of achieving high frame rates for
automated imaging tasks over an extended field of view using
single plane wave transmissions. They address the typical
challenge of suboptimal image quality produced by single plane
wave insonification and propose the use of DNNs to directly extract
information from raw RF data to generate both an image and a
segmentation map simultaneously. Unlike traditional beamforming,
which generally only reconstructs images, they have utilized deep
learning to achieve both image reconstruction and segmentation at
the same time. They employed FCNN, the entire network includes
an encoder and two decoders, one for image reconstruction and the
other for image segmentation. As shown in Eq. 2 [35], the loss
function of the entire network also adopts a combination of ℓ1 loss
and Dice similarity coefficient (DSC) loss.

LT θ( ) � ℓ1 θ( ) +DSC θ( ) (2)
The DSC loss is used to measure the overlap between the predicted
and true segmentation masks during the training of their DNN.
Specifically, the DSC loss is utilized to quantify the similarity
between the predicted DNN segmentation and the true
segmentation. The DSC is calculated as a function of the overlap

between these two segmentations, with a value of one indicating
perfect overlap and 0 indicating no overlap. The DSC loss
complements the mean absolute error loss by focusing on the
segmentation performance of the network. While the mean
absolute error provides a pixel-wise comparison between the
predicted and reference images, the DSC loss offers a more
holistic measure of the segmentation quality, especially important
in medical imaging where the precise localization of structures is
vital. This dual-loss approach enables the network to learn both the
image reconstruction and segmentation tasks effectively, ensuring
that the network parameters are optimized to generate accurate
segmentations alongside the reconstructed images. The comparison
between classic beamforming and this method is shown in Figure 4.

3.1.2 Adaptive beamforming
Traditional beamforming typically uses a fixed, predetermined

set of weights applied to the received signals from each transducer
element. These weights are usually uniform (DAS) or they use
simple apodization (windowing) techniques. The resolution is
generally limited by the fixed nature of the weights. The main
lobe width does not adapt to different signal scenarios, which can
lead to a less focused image. Traditional approaches may exhibit
relatively higher side lobes, inducing higher levels of interference
and clutter within the image. However, these methods are simpler to
implement and faster in terms of computation, which makes them
suitable for many real-time imaging applications.

The MV beamforming uses an adaptive approach to determine
the weights applied to the signals. It calculates the weights that
minimize the variance of the noise and interference, essentially
optimizing the signal-to-noise ratio. The adaption of weights allows
to generate a much narrower main lobe in the beam pattern, which
translates to higher spatial resolution and better ability to distinguish
between closely spaced scatterers. As a result of the narrower main
lobe and suppressed side lobes, MV can provide significantly
improved image resolution and contrast. It allows for clearer
delineation of structures within the body, especially beneficial
when visualizing small or closely spaced scatterers. The MV
algorithm uses the data from the transducer elements to estimate
the covariance matrix of the received signals. As shown in Eq. 3

FIGURE 4
A comparison between DAS beamforming (top) and a deep learning method that bypasses the beamforming process [35] (bottom).
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[113], the weights are derived to minimize the output variance while
maintaining the gain in the direction of the signal of interest.

ŵ � min
w

wHRxw

s.t. wHa � 1
(3)

where Rx is the covariance matrix of the received signals and a is a
steering vector of ones. This optimization process, typically solved as
a constrained minimization problem, is more complex than
applying fixed weights as in traditional beamforming methods.
This process involves calculating the correlations between the
signals received at each pair of array elements. As the number of
elements increases, the size of this matrix grows quadratically, thus
increasing the computational burden. To compute the weights that
will minimize the variance of the noise and interference, the MV
algorithm requires the inversion of the covariance matrix. The
inversion of a matrix is considered a process that requires
significant computational resources, especially as the size of the
matrix grows with the number of transducer elements. The
algorithm must dynamically adapt and recalculate the weights for
each focal point in real-time as the transducer moves and steers its
beam. This continuous adaptation requires the algorithm to perform
the above computations for each new set of received signals, which is
computationally demanding.

Luijten et al. [35,40] examine the applicability of deep learning
to augment the adaptive beamforming process, addressing the
computational challenges and aiming to produce better
ultrasound images. They develop a neural network architecture,
termed Adaptive Beamforming by deep LEarning (ABLE), which
can adaptively calculate apodization weights for image
reconstruction from received RF data. This method aims to
improve ultrasound image quality by efficiently mimicking
adaptive beamforming methods without the high computational
burden. The ABLE network consists of fully connected layers and
employs an encoder-decoder structure to create a compact
representation of the data, aiding in noise suppression and signal
representation. The training of ABLE is performed using a
specialized loss function designed to promote similarity between
the target and the produced images while also encouraging unity
gain in the apodization weights. The study demonstrates ABLE’s
effectiveness on two different ultrasound imaging modalities: plane
wave imaging with a linear array and synthetic aperture imaging
with a circular array. Moreover, ABLE’s computational efficiency, as
assessed by the number of required floating-point operations, is
significantly lower than that of Eigen-Based Minimum Variance
(EBMV) beamforming, highlighting its potential for real-time
imaging applications. In the training strategy, the network
employs a total loss function composed of an image loss and an
apodization-weight penalty. The image loss is designed to promote
similarity between the target image and the one produced by ABLE,
while the weight penalty encourages the network to learn weights
that facilitate a distortionless response in the beamforming process.
This penalty is inspired by MV beamforming principles, which aim
to minimize output power while ensuring a distortionless response
in the desired direction. By incorporating this constraint, the
network is guided to learn apodization weights that not only aim
to reconstruct high-quality ultrasound images but also adhere to a
fundamental beamforming criterion, ensuring the network’s

predictions align with the physical beamforming process. The
comparison between MV and ABLE is shown in Figure 5.

3.1.3 Spatial coherence-based beamforming
Spatial coherence-based beamforming is a sophisticated method

employed in ultrasound imaging that focuses on analyzing the
spatial coherence of received echo signals to form diagnostic
images. It improves image clarity by emphasizing echoes that
show consistent phase or time delays across neighboring
transducer elements, which indicates they are coming from a real
reflector-like tissue structure, rather than random noise or
scattering. By harnessing this spatial coherence, the beamformer
can more effectively differentiate between signal and noise, leading
to images with better resolution and contrast.

Typically, the DAS algorithm only utilizes one attribute, the
signal strength, while spatial coherence reflects the similarity of
signals [117]. Therefore, this is another property that can be used to
enhance image quality. There are many studies based on spatial
coherence, such as coherence factor (CF) [118], generalized
coherence factor (GCF) [119], and phase coherence factor (PCF)
[120]. Lediju et al. [44] have proposed a spatial coherence-based
method named short-lag spatial coherence (SLSC). This method
leverages the coherence of echoes that occur at short lags. The
objective of this method is to overcome the limitations of traditional
ultrasound imaging, caused by factors such as acoustic clutter,
speckle noise, and phase aberration. SLSC images demonstrate
improved visualization when compared to matched B-mode
images by addressing these issues. By applying the SLSC imaging,
the researchers aim to enhance ultrasound image quality and
diagnostic accuracy, benefiting the field of medical imaging. The
spatial coherence is calculated by Eq. 4 [44],

R̂ m( ) � 1
N −m

∑N−m

i�1

∑s2
s�s1xi s( )xi+m s( )������������������∑s2

s�s1x
2
i s( )∑s2

s�s1x
2
i+m s( )

√ (4)

where xi is the aligned signal received by the ith element, si
represents the sample index along the axial direction. In addition,
N denotes the receive aperture, and m indicates the lag. From this
equation, it can be seen that its computational complexity is
relatively high. Wiacek et al. [35,42] have proposed a deep
learning approach named CohereNet to estimate the normalized
cross correlation as a function of lag. This network can be used to
replace the SLSC beamforming. They delve into the potential of
FCNNs as “universal approximators” that could learn any function.
In CohereNet, a 7 × 64 input is adopted, which means the axial
kernel chooses seven samples in the axial direction, while the
aperture size is 64. The output is the spatial correlation at
different lag distances. The network structure consists of an input
layer, three fully connected layers using rectified linear unit (ReLU)
as the activation function, followed by a fully connected layer using
hyperbolic tangent (tanh) as the activation function, and an average
pool output layer. In essence, CohereNet aims to utilize the
capability of DNNs to enhance the beamforming process, thereby
improving image quality and computational efficiency. As described
in [43], the CohereNet is faster than SLSC, and this network also has
high generality. The Figure 6 illustrates the comparison between
DAS and CohereNet.
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3.2 Deep learning in clinical applications

Ultrasound imaging, due to its non-invasive characteristic and
real-time imaging capabilities, has seen extensive use across various
medical domains. This section delves into the clinical applications of
deep learning, including breast imaging, cardiology, prostate
imaging, fetal, thyroid, and brain.

3.2.1 Breast imaging
Breast ultrasound imaging is commonly utilized to detect

potential breast diseases [121]. Although it falls short in
identifying microcalcifications compared to X-ray
mammography, it is instrumental in distinguishing benign
masses like cysts and fibroadenomas from malignant ones. With
the development of AI, especially the advent of deep learning

FIGURE 5
A comparison among (A)DAS, (B)MV and (C)ABLE [41]. The weights in DAS are typically pre-set fixed values, while the weights in MV and ABLE are
adaptive. ABLE can be seen as an alternative form ofMV. They both adaptively estimate weights through the received signals. The calculation of weights in
MV requires a large amount of computation, while ABLE reduces the computational complexity.

FIGURE 6
A comparison between DAS beamforming (top) and CohereNet [43] (bottom). The DAS algorithm obtains the final result by aligning the received
signals and then weighting and summing them up. On the other hand, SLSC achieves the final result through calculating the spatial coherence.
CohereNet reduces the computational complexity of SLSC.
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technologies, it has also promoted the evolution of ultrasound breast
imaging. Some open-source datasets, such as Breast Ultrasound
Images Dataset (BUSI) [122], have also promoted the widespread
application of deep learning. As depicted in Figure 7, the images
within the BUSI dataset are classified into three distinct categories:
normal, benign, and malignant.

In 2018, Becker et al.[65] reported using generic deep learning
software (DLS) for the classification of breast cancer in ultrasound
images. The study aimed to evaluate the effectiveness of a DLS in
classifying breast cancer using ultrasound images and compare its
performance against human readers with varying levels of breast
imaging experience. They used Receiver Operating Characteristic
(ROC) to assess the accuracy of diagnostic results. The DLS
achieved diagnostic accuracy comparable to radiologists and
performed better than a medical student with no prior experience.
Although they did not discuss the technical details of deep learning, the
study demonstrated that deep learning software could achieve high
diagnostic accuracy in classifying breast cancer using ultrasound
images, even with a limited number of training cases. The fast
evaluation speed of the software supports the feasibility of real-time
image analysis during ultrasound examinations. This indirectly
illustrates the potential of deep learning in improving diagnostic
processes. Xu et al. [66] develop a CNN based method for the
automatic segmentation of breast ultrasound images into four major
tissues: skin, fibroglandular tissue, mass, and fatty tissue, to aid in tumor
localization, breast density measurement, and assessment of treatment
response. They designed two CNN architectures CNN-I and CNN-II.
CNN-I is an 8-layer CNN for pixel-centric patch classification. CNN-II
is a smaller CNN to combine the outputs of three CNN-Is, each trained

on orthogonal image planes, to provide comprehensive evaluation.
CNNs were trained using the Adam optimization algorithm, and
dropout methods were applied to prevent overfitting. The proposed
method achieved high quantitative metrics for segmentation. Accuracy,
Precision, Recall, and F1-measure all exceeded 80%. Jaccard similarity
index (JSI) for mass segmentation reached 85.1%, outperforming
previous methods. The proposed method provided better
segmentation visualization and quantitative evaluation compared to
previous studies. The automated segmentation method can offer
objective references for radiologists, aiding in breast cancer diagnosis
and breast density assessments. Qian et al. [67] have proposed a deep
learning system to assess the breast cancer risk. The system was trained
on a large dataset from two hospitals, encompassing 10,815 ultrasound
images of 721 biopsy-confirmed lesions, and then prospectively tested
on an additional 912 images of 152 lesions. The deep-learning system,
when applied to bimodal (B-mode and color Doppler images) and
multimodal (including elastography) images, achieved high accuracy in
predicting BI-RADS scores. The system’s predictions align with
radiologists’ assessments, demonstrating its potential utility in
clinical settings. It could facilitate the adoption of ultrasound in
breast cancer screening, particularly beneficial for women with dense
breasts wheremammography is less effective. This research underscores
the potential of deep learning in enhancing breast ultrasound’s
diagnostic power, offering a tool that aligns with current BI-RADS
standards and supports radiologists in decision-making processes. Chen
et al. [68] introduce a deep learning model for breast cancer diagnosis.
They leverage the domain knowledge of radiologists, particularly their
diagnostic patterns when viewing CEUS videos, to enhance the model’s
diagnostic accuracy. The model integrates a 3D CNN with a domain-

FIGURE 7
Three examples from BUSI dataset[122]. (A) A normal image and (D) its corresponding mask, (B) a benign image and (E) its corresponding mask, (C)a
malignant image and (F) its corresponding mask.
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knowledge-guided temporal attention module (DKG-TAM) and a
domain-knowledge-guided channel attention module (DKG-CAM).
These modules are designed to mimic the attention patterns of
radiologists, focusing on specific time slots in contrast-enhanced
ultrasound (CEUS) videos and incorporating relevant features from
both CEUS and traditional ultrasound images. The study utilizes a
Breast-CEUS dataset comprising 221 cases, which includes CEUS
videos and corresponding images, making it one of the largest
datasets of its kind. Reference [69] addresses the challenge of breast
cancer, the second leading cause of death among women worldwide. It
highlights the importance of early detection through automated systems
due to the time-consuming nature of manual diagnosis. The study
introduces a new framework leveraging deep learning and feature
fusion for classifying breast cancer using ultrasound images. The
proposed framework comprises five main steps: data augmentation,
model selection, feature extraction, feature optimization, feature fusion
and classification. Operations like horizontal flip, vertical flip, and 90-
degree rotation were applied to enhance the original dataset’s size and
diversity. The pre-trained DarkNet-53 model was modified and trained
using transfer learning techniques. Features were extracted from the
global average pooling layer of the modified model. Two improved
optimization algorithms, reformed differential evolution (RDE) and
reformed gray wolf (RGW), were used to select the best features. The
optimized features were fused using a probability-based approach and
classified using machine learning algorithms. The study concludes that
the proposed framework significantly improves the accuracy and
efficiency of breast cancer classification from ultrasound images. It
highlights the potential of the method to provide reliable support for
radiologists, enhancing early detection and treatment planning. Rzaz
et al. [70] present DeepBreastCancerNet, a new deep learning model
designed for the detection and classification of breast cancer using
ultrasound images. This model addresses the challenges of manual
breast cancer detection, which is often time-consuming and prone to
inaccuracies. The proposed DeepBreastCancerNet framework includes
24 layers, consisting of six convolutional layers, nine inceptionmodules,
and one fully connected layer. It employs both clipped ReLU and leaky
ReLU activation functions, batch normalization, and cross-channel
normalization to enhance model performance. Images were
augmented through random translations and rotations to enhance
the dataset’s size and diversity, thereby reducing overfitting. The
architecture starts with a convolutional layer followed by max
pooling, batch normalization, and leaky ReLU activation. Inception
modules are used for extracting multi-scale features. The model ends
with a global average pooling layer and a fully connected layer for
classification. The proposed model achieved a classification accuracy of
99.35%, outperforming several state-of-the-art deep learning models.
On a binary classification dataset, the model achieved an accuracy of
99.63%. The DeepBreastCancerNet model outperformed other pre-
trained models like AlexNet, ResNet, and GoogLeNet in terms of
accuracy, precision, recall, and F1-score. Ablation studies confirmed
the importance of using both leaky ReLU and clipped ReLU activation
functions and global average pooling for optimal performance.

3.2.2 Cardiology
In cardiology, echocardiography, particularly through

ultrasound imaging of the heart, represents a pivotal area in
medical ultrasound research, with abundant literature focusing
on automated methods for segmenting and tracking the heart’s

left ventricle - a crucial component evaluated in heart disease
diagnosis. Echocardiography is a test that uses high-frequency
sound waves to make pictures of your heart. It can show the size,
shape, movement, pumping strength, valves, blood flow and other
features of the heart. The quality of echocardiographic images can be
influenced by multiple factors such as patient’s body habitus, lung
disease, or surgical dressings, which can make interpretation
difficult. Interpreting the results of an echocardiography exam
requires significant expertise and experience. Sometimes not all
views of the heart can be visualized adequately, which may limit
the amount of information obtained from the test. Deep learning
techniques can solve these problems to a certain extent.

Ref.[71] addressed the challenge of segmenting the left atrium
(LA) in 3D ultrasound images using CNNs. The proposed method
aims to automate this process, which is traditionally time-
consuming and dependent on the observer. The introduction of
shape priors and adversarial learning into the CNN framework
enhances the accuracy and adaptability of the segmentation across
different ultrasound devices. The framework integrates three
existing methods: 3D Fully Convolutional Segmentation Network
(V-Net), Anatomic Constraint via Autoencoder Network and
Domain Adaptation with Adversarial Networks. The V-Net
processes 3D image volumes and creates segmentation masks.
Shape priors are incorporated through an autoencoder network
trained on ground truth segmentation masks. This ensures that the
segmentation masks adhere to anatomically plausible shapes.
Domain adaptation is achieved by training a classifier to identify
the data source, aiming to make the feature maps domain invariant.
The combined approach of using shape priors and adversarial
learning in CNNs significantly improves the segmentation of the
left atrium in 3D ultrasound images. This method not only boosts
accuracy but also ensures the generalizability of the model across
different devices, making it a promising tool for clinical use.

2D echocardiographic image analysis is crucial in clinical
settings for diagnosing cardiac morphology and function. Manual
and semi-automatic annotations are still common due to the lack of
accuracy and reproducibility of fully automatic methods. Challenges
in segmentation arise from poor contrast, brightness
inhomogeneities, speckle patterns, and anatomical variability.
Leclerc et al.[72] evaluate the performance of state-of-the-art
encoder-decoder deep CNNs for segmenting cardiac structures in
2D echocardiographic images and estimating clinical indices using
the CAMUS dataset. CAMUS is the largest publicly available and
fully annotated dataset for echocardiographic assessment,
containing data from 500 patients. The CAMUS dataset enables
comprehensive evaluation of deep learning methods for
echocardiographic image analysis. Encoder-decoder networks,
especially U-Net, demonstrate strong potential for accurate and
reproducible cardiac segmentation, paving the way for fully
automatic analysis in clinical practice. The study confirms that
encoder-decoder networks, particularly U-Net, provide highly
accurate segmentation results for 2D echocardiographic images.
However, achieving inter-observer variability remains challenging,
and more sophisticated architectures did not significantly
outperform simpler U-Net designs. The findings suggest that
further improvements in deep learning methods and larger
annotated datasets are essential for advancing fully automatic
cardiac image analysis.
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Ghorbani et al. [73] have developed a deep learning model
named EchoNet to interpret the echocardiograms. This model could
identify local cardiac structures, estimate cardiac function, and
predict systemic phenotypes like age, sex, weight, and height with
significant accuracy. EchoNet is able to accurately predict various
clinical parameters, such as ejection fraction and volumes, crucial for
diagnosing and managing heart conditions. It also demonstrated the
potential to predict systemic phenotypes that are not directly
observable in echocardiogram images. By automating
echocardiogram interpretation, such AI models could streamline
clinical workflows, provide preliminary interpretations in regions
lacking specialized cardiologists, and offer insights into phenotypes
challenging for human evaluation. The research emphasized the
potential of deep learning to enhance echocardiogram analysis,
offering a step toward more automated, accurate, and
comprehensive cardiovascular imaging diagnostics. Due to the
lack of experience among novices, Narang et al. [74] proposed
the use of deep learning techniques to assist them. The deep
learning algorithm provides real-time guidance to novices,
enabling them to capture essential cardiac views without prior
experience in ultrasonography. The study involved eight nurses
without prior echocardiography experience who used the AI
guidance to perform echocardiographic scans on 240 patients.
These scans were then compared with those obtained by
experienced sonographers. The primary outcome was the ability
of the AI-assisted novices to acquire echocardiographic images of
sufficient quality to assess left and right ventricular size and
function, as well as the presence of pericardial effusion. Results
indicated that the novice-operated, AI-assisted echocardiograms
were of diagnostic quality in a high percentage of cases, closely
aligning with the quality of scans performed by experienced
sonographers. The study suggests that AI-guided echocardiogram
acquisition can potentially expand the accessibility of
echocardiographic diagnostics to settings where expert
sonographers are unavailable, thereby enhancing patient care in
diverse clinical environments.

3.2.3 Thyroid
The thyroid gland, located in the neck and comprising two

interconnected lobes, plays a critical role in hormone secretion,
impacting protein synthesis, metabolic rate, and calcium
homeostasis. These hormones are particularly influential in
children’s growth and development. Despite its small size, the
thyroid is susceptible to various disorders, such as
hyperthyroidism, hypothyroidism, and nodule formation.
Diagnosing these conditions involves a range of techniques,
including blood tests for hormone levels, ultrasound imaging for
gland volume and nodule detection, and fine-needle aspiration
(FNA) for definitive tissue analysis. FNA, the most invasive of
these methods, is being increasingly circumvented by leveraging
ultrasound imaging with advanced deep learning and computer-
aided diagnosis (CAD) systems to enhance diagnostic accuracy and
nodule characterization.

Wang et al. [79] introduce a deep learning method for
diagnosing thyroid nodules using multiple ultrasound images
from an examination. The study proposes an architecture that
includes three networks, addressing the challenge of using
multiple views from an ultrasound examination for a

comprehensive diagnosis. The research involves a dataset with
7803 images from 1046 examinations, employing various
ultrasound equipment. The dataset is annotated at the
examination level, categorizing examinations into malignant and
benign based on ultrasound reports and pathological records. The
method integrates features frommultiple images using an attention-
based feature aggregation network, aiming to reflect the diagnostic
process of sonographers who consider multiple image views. The
model demonstrated high diagnostic performance on the dataset,
showcasing the potential of deep learning in enhancing the accuracy
and objectivity of thyroid nodule diagnosis in ultrasound imaging.
The attention-based network assigns weights to different images
within an examination, focusing on those with significant features,
which aligns with clinical practices where sonographers prioritize
certain image views. Peng et al. [77] have developed a deep learning
AI model called ThyNet. This model was designed to differentiate
between malignant tumors and benign thyroid nodules, aiming to
enhance radiologists’ diagnostic performance and reduce
unnecessary FNAs. ThyNet was developed using 18,049 images
from 8,339 patients across two hospitals and tested on
4,305 images from 2,775 patients across seven hospitals. The
model’s performance was initially compared with 12 radiologists,
and then a ThyNet-assisted diagnostic strategy was developed and
tested in real-world clinical settings. The AI model, ThyNet,
demonstrated superior diagnostic performance compared to
individual radiologists, with an area under the receiver operating
characteristic curve (AUROC) of 0.922, significantly higher than the
radiologists’ AUROC of 0.839. When radiologists were assisted by
ThyNet, their diagnostic performance improved significantly. The
pooled AUROC increased from 0.837 to 0.875 with ThyNet
assistance for image reviews and from 0.862 to 0.873 in a clinical
setting involving image and video reviews. The ThyNet-assisted
strategy significantly decreased the percentage of unnecessary FNAs
from 61.9% to 35.2%, while also reducing the rate of missed
malignancies from 18.9% to 17.0%.

3.2.4 Prostate
Prostate cancer ranks as the most frequently diagnosed

malignancy among adult and elderly men, with early detection
and intervention being crucial for reducing mortality rates.
Transrectal ultrasound (TRUS) imaging, in conjunction with
prostate-specific antigen (PSA) testing and digital rectal
examination (DRE), plays a pivotal role in the diagnosis of
prostate cancer. The delineation of prostate volumes and
boundaries is critical for the accurate diagnosis, treatment, and
follow-up of this cancer [123]. Typically, the delineation process
involves outlining prostate boundaries on transverse parallel 2-D
slices along its length, leading to the development of various (semi-)
automatic methods for detecting these boundaries. In the diagnosis
of prostate diseases, deep learning techniques provide some
additional insights.

Azizi et al. [83] present a deep learning approach using
Recurrent Neural Networks (RNNs), particularly Long Short-
Term Memory (LSTM) networks, for prostate cancer detection
through Temporal Enhanced Ultrasound (TeUS). The study
aimed to leverage the temporal information inherent in TeUS to
distinguish betweenmalignant and benign tissue in the prostate. The
authors utilized RNNs to model the temporal variations in
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ultrasound backscatter signals, demonstrating that LSTM networks
outperformed other models in identifying cancerous tissues. The
study analyzed data from 255 prostate biopsy cores from
157 patients. LSTM networks achieved an area under the curve
(AUC) of 0.96, with sensitivity, specificity, and accuracy rates of
0.76, 0.98, and 0.93, respectively, highlighting the potential of RNNs
in medical imaging analysis. The study also introduced algorithms
for analyzing LSTM networks to understand the temporal features
relevant for prostate cancer detection. This analysis revealed that
significant discriminative features could be captured within the first
half of the TeUS sequence, suggesting a potential reduction in data
acquisition time for clinical applications. The research suggests that
deep learning models, particularly LSTM-based RNNs, can
significantly enhance prostate cancer detection using ultrasound
imaging, offering a promising tool for improving diagnostic
accuracy and potentially guiding biopsy procedures. Karimi et al.
[89] introduces a method for the automatic segmentation of the
prostate clinical target volume (CTV) in TRUS images, which is
crucial for brachytherapy treatment planning. The method employs
CNNs, specifically an ensemble of CNNs, to improve segmentation
accuracy, particularly for challenging images with weak landmarks
or strong artifacts. The method uses adaptive sampling to focus the
training process on difficult-to-segment images and an ensemble of
CNNs to estimate segmentation uncertainty, improving robustness
and accuracy. For segmentations with high uncertainty, a statistical
shape model (SSM) is used to refine the segmentation, utilizing prior
knowledge about the expected shape of the prostate. The method
achieved a Dice score of 93.9% ± 3.5% and a Hausdorff distance of
2.7 ± 2.3 mm, outperforming several other methods and
demonstrating its effectiveness in reducing the likelihood of large
segmentation errors. This study highlights the potential of deep
learning and ensemble methods to enhance the accuracy and
reliability of medical image segmentation, particularly in
applications like prostate cancer treatment where precision
is crucial.

3.2.5 Fetal
Ultrasonography is a pivotal technology in prenatal diagnosis,

renowned for its safety for both the mother and fetus. This research
area encompasses numerous subfields, often employing
segmentation and classification techniques akin to those used in
adult diagnostics but adapted for the smaller scale of fetal organs.
This miniaturization introduces diagnostic challenges due to less
pronounced signs of abnormalities. Furthermore, ultrasound
imaging must penetrate maternal tissue and the placenta to reach
the fetus, potentially introducing noise, exacerbated by the
movements of both mother and fetus, emphasizing the need for
enhanced automated diagnostic methods. Especially in
underdeveloped areas with a shortage of medical personnel, such
automatic diagnostic methods can provide tremendous help.

Van den Heuvel et al. [94] present a study where a system is
developed to estimate the fetal head circumference (HC) from
ultrasound data obtained using an obstetric sweep protocol
(OSP). This protocol can be taught within a day to any
healthcare worker without prior knowledge of ultrasound. The
study aims to make ultrasound imaging more accessible in
developing countries by eliminating the need for a trained
sonographer to acquire and interpret images. The system uses

two FCNNs. The first network detects frames containing the fetal
head from the OSP data, and the second network measures the HC
from these frames. The HC measurements are then used to estimate
gestational age (GA) using the curve of Hadlock. The study,
conducted on data from 183 pregnant women in Ethiopia, found
that the system could automatically estimate GA with a reasonable
level of accuracy, indicating its potential application inmaternal care
in resource-constrained settings. Pu et al. [96] developed an
automatic fetal ultrasound standard plane recognition (FUSPR)
model. This model is designed to operate in an Industrial
Internet of Things (IIoT) environment and leverages deep
learning to identify standard planes in fetal ultrasound imagery.
The research introduces a distributed platform for processing
ultrasound data using IIoT and high-performance computing
(HPC) technology. The FUSPR model integrates a CNN and an
RNN to learn spatial and temporal features of ultrasound video
streams, aiming to improve the accuracy and robustness of fetal
plane recognition. The system’s goal is to aid in gestational age
assessment and fetal weight estimation by accurately identifying and
analyzing key anatomical structures in ultrasound video frames. The
study demonstrates that the FUSPRmodel significantly outperforms
baseline models in recognizing four standard fetal planes from over
1000 ultrasound videos. The use of deep learning within the IIoT
framework presents a promising approach to enhancing the
efficiency and reliability of fetal ultrasound analysis, particularly
in resource-constrained environments. A study by Xu et al.[124]
introduced a novel segmentation framework incorporating vector
self-attention layers (VSAL) and context aggregation loss (CAL) to
address the challenges of fetal ultrasound image segmentation. The
VSALmodule allows for simultaneous spatial and channel attention,
capturing both global and local contextual information. The CAL
component further enhances the model’s ability to differentiate
between similar-looking structures by considering both inter-class
and intra-class dependencies. On the multi-target Fetal Apical Four-
chamber dataset and one-target Fetal Head dataset, the proposed
framework outperformed several state-of-the-art CNN-based, U-net
[125], methods in terms of pixel accuracy (PA), dice coefficient
(DCS), Hausdorff distance (HD) metrics, demonstrating its
potential for improving fetal ultrasound image segmentation
accuracy. The study showcases the effectiveness of self-attention
techniques in enhancing the accuracy and reliability of fetal
ultrasound image segmentation, offering a promising tool for
improving prenatal diagnostics and care.

3.2.6 Brain
The brain, a pivotal organ in the nervous system, epitomizes

complexity within the human body, orchestrating the functions
of voluntary organs and muscles. Despite its critical role, the full
extent of its operations remains partially elusive, prompting
ongoing research to decipher its mechanisms. Notably, the
brain undergoes a phenomenon termed “brain shift,” a
potential deformation during surgical procedures that could
impact surgical outcomes. Ultrasound technology, particularly
when integrated with magnetic resonance (MR) imaging data,
serves as a crucial aid in neurosurgical contexts. This
integration is instrumental in addressing the challenges
posed by brain shift and enhancing intraoperative navigation
and decision-making.
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Milletari et al.[98] discuss a deep learning approach using CNNs
combined with a Hough voting strategy for segmenting deep brain
regions in MRI and ultrasound images. The study showcases the use
of this method for fully automatic localization and segmentation of
anatomical regions of interest, utilizing the features produced by
CNNs for robust, multi-region, and modality-flexible segmentation.
The method is particularly designed to adapt to different imaging
modalities, showing effectiveness in MRI and transcranial
ultrasound volumes. It demonstrates the potential of CNNs in
medical image analysis, particularly in the challenging context of
brain imaging, where accurate segmentation of anatomical
structures is critical. The study systematically explores the
performance of various CNN architectures across different
scenarios, offering insights into the effective application of deep
learning techniques in medical imaging. Reference [99] presents a
method for segmenting brain tumors during surgery using 3D
intraoperative ultrasound (iUS) images. The technique employs a
tumor model derived from preoperative magnetic resonance (MR)
data for local MR-iUS registration, aiming to enhance the
visualization of brain tumor contours in iUS. This multi-step
process defines a region of interest based on the patient-specific
tumor model, extracts hyperechogenic structures from this region in
both modalities, and performs registration using gradient values and
rigid and affine transformations to align the tumor model with the
3D-iUS data. The method’s effectiveness was assessed on a dataset of
33 patients, showing promising results in terms of computational
time and accuracy, indicating its potential utility in supporting
neurosurgeons during brain tumor resections. Di Ianni and Airan
[102] introduce a deep learning-based image reconstruction method
for functional ultrasound (fUS) imaging of the brain. The method
significantly reduces the amount of data required for imaging while
maintaining image quality, using a CNN to reconstruct power
Doppler images from sparsely sampled ultrasound data. The
approach enables high-quality fUS imaging of brain activity in
rodents, with potential applications in various settings where
dedicated ultrasound hardware is not available, thereby
broadening the accessibility and utility of fUS imaging technology.

3.3 Deep learning in portable
ultrasound system

Due to its portability and low cost, handheld ultrasound devices
have great application prospects in areas such as emergencies, point-of-
care, sports fields, and outdoors. At the same time, it is also suitable for
assisting doctors in diagnosing diseases in remote and medically
undeveloped areas. Portable ultrasound diagnostic devices appeared
in the 1980s. Initially, they were mainly used to scan the bladder to
measure the volume [126–129]. Compared to the common invasive
method of catheterization through a urinary catheter, the bladder
scanner does not cause any harm to the patient. Until now, the
development of bladder scanners has been a direction in the
advancement of portable ultrasound devices [130–132]. However,
besides this field, portable ultrasound devices have many other
applications, such as Color Doppler imaging [133], blood flow
imaging [134], echocardiography [135], skin imaging [136] and so
on. During the outbreak of COVID-19, portable ultrasound devices also
played a positive role in assisting diagnosis [137–139].

Indeed, the compact size of portable ultrasound devices does
present significant challenges for both hardware design and the
development of imaging algorithms [140,141]. Despite its portable
advantages, these challenges need to be meticulously addressed to
ensure the efficient performance and accuracy of the device. With
the advancement of semiconductor technology, technologies such as
Field Programmable Gate Arrays (FPGAs) [142] and Application
Specific Integrated Circuits (ASICs) [143] have been successively
applied to portable ultrasound devices to overcome some of the
challenges in hardware design. From the perspective of algorithm
design, beamforming technology based on compressed sensing
[144] has extensive research in portable ultrasound [145–148].

These methods have promoted the development of portable
ultrasound devices, and with the advancement of artificial
intelligence technology, the corresponding technologies have also
brought new development directions for portable ultrasound
devices. Zhou et al. [149] proposed to apply Generative
Adversarial Network (GAN) to enhance the image quality of
handheld ultrasound devices. They introduce a novel approach
using a two-stage GAN to enhance image quality. The proposed
two-stage GAN framework incorporates a U-Net network and a
GAN to reconstruct high-quality ultrasound images from low-
quality ones. The method focuses on reconstructing tissue
structure details and speckles of the ultrasound images, essential
for accurate diagnostics. The paper presents a comprehensive loss
function combining texture, structure, and perceptual features to
guide the GAN training effectively. The simulated, phantom and
clinical data are used to demonstrate the method’s efficacy, showing
significant improvements in image quality compared to original
low-quality images and other algorithms. In addition, Soleimani
et al. [103] developed a lightweight and portable ultrasound
computed tomography (USCT) system for noninvasive imaging
of the human head with high resolution. The study aims to
compare the effectiveness of a deep neural network combining
CNN and long short-term memory (LSTM) layers against
traditional deterministic methods in creating tomographic images
of the human head. The research shows that the proposed neural
network is more effective in dealing with noisy and synthetic data
compared to deterministic methods, which often require additional
filtering to improve image quality. The findings suggest that the
CNN + LSTMmodel is more versatile and generalizable, making it a
superior choice for medical ultrasound tomography applications.
The study contributes to the advancement of USCT by
demonstrating the potential of deep learning approaches in
improving the accuracy and reliability of noninvasive brain
imaging techniques.

3.4 Training scheme

Vienneau et al. [57] discuss the training methods for DNNs in
the context of ultrasound imaging. They address the issues with
traditional ℓp norm loss functions when training DNNs, where lower
loss values do not necessarily translate to improved image quality.
Ref. [57] presents an effort to better align the optimization objective
with the relevant image quality metrics. The authors suggest that
their novel training scheme can potentially increase the maximum
achievable image quality for ultrasound beamforming using DNNs.
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Luchies and Byram [58] investigate practical considerations of
training DNN beamformers for ultrasound imaging. They discuss
the use of combinations of multiple point target responses for
training DNNs, as opposed to single point target responses. It
also examines the impact of various hyperparameter settings on
the quality of ultrasound images in simulated scans. The study
demonstrates that DNN beamforming exhibits robustness when
confronted with electronic noise, and it points out that mean
squared error (MSE) validation loss is not a reliable predictor for
image quality. Goudarzi and Rivaz [52] used real photographic
images as the ground-truth echogenicity map in their simulations to
provide the network with a diverse range of textures, contrasts, and
object geometries during the training phase. This approach not only
enhances the variety in the training dataset, which is crucial for
preventing overfitting but also aligns the simulation settings more
closely with the real experimental imaging settings of in vivo test
data, thus minimizing unwanted domain shifts between training and
test datasets.

3.5 Transformer/attention mechanism
and CNN

CNNs have been the backbone of medical image analysis for
years. It can be seen from our previous review that a larger number
of architectures are based on the CNNs.They excel in extracting local
features through convolutional layers, pooling, and activation
functions. Networks such as U-Net[125] and its variants
[150–153] have been particularly successful in medical image
segmentation tasks due to their encoder-decoder architectures,
which capture detailed spatial hierarchies. However, CNNs face
limitations inmodeling global context and long-range dependencies.
This shortfall can lead to suboptimal performance in tasks where the
relationship between distant regions in the image is crucial. In
ultrasound imaging, this limitation manifests in difficulties
handling speckle noise and artifacts, which require broader
contextual understanding to be effectively mitigated. On the
other hand, the advent of Transformer models and their self-
attention mechanisms [154] has introduced new opportunities
for enhancing ultrasound image analysis. The integration of
U-net with transformer has also become a new direction for
current research [155–159]. This section delves into the
application of Transformers and attention mechanisms in
medical imaging focusing on ultrasound, comparing their
performance with traditional CNNs.

Transformers, originally designed for natural language
processing, utilize a self-attention mechanism that allows the
model to weigh the importance of different input elements
dynamically [154]. This capability is particularly beneficial for
medical image analysis [124,156,160–167], where different
regions of an image may hold varying levels of significance for
accurate diagnosis. The self-attention mechanism operates by
creating attention scores between all pairs of input elements,
which in the context of images, correspond to pixels or features.
These scores determine how much attention each element should
receive from the others. This global consideration enables the
Transformer to capture long-range dependencies and contextual
information that CNNs might miss due to their localized receptive

fields [154]. In the realm of medical imaging, the Transformer
models have been adapted to handle the unique challenges posed
by this modality. For instance, TransUNet [156] architecture
integrates CNNs and Transformers into a unified framework,
where CNNs are employed to extract initial feature maps from
medical images, and Transformers encode these features into
tokenized patches to capture global context. This hybrid
approach enables the model to retain detailed spatial information
while benefiting from the global attention provided by
Transformers; the GPA-TUNet[162] model integrates Group
Parallel Axial Attention (GPA) with Transformers to enhance
both local and global feature extraction. This hybrid approach
leverages the strengths of Transformers in capturing long-range
dependencies and the efficiency of GPA in highlighting local
information. Another segmentation method specific to ultrasound
images is the integration of a Vector Self-Attention Layer (VSAL)
[124], which performs long-range spatial and channel-wise
reasoning simultaneously. VSAL is designed to maintain
translational equivariance and accommodate multi-scale inputs,
which are critical for handling the variability in ultrasound
images. This layer can be seamlessly integrated into existing
CNN architectures, enhancing their performance by adding the
benefits of self-attention. Studies [124] have shown that
Transformer-based models significantly improve the accuracy of
ultrasound image segmentation tasks. For example, in the
segmentation of fetal ultrasound images, models incorporating
VSAL and context aggregation loss (CAL) demonstrated superior
performance compared to traditional CNNs.

The adaptive multimodal attention mechanism [160] is another
advanced approach used in deep learning models to improve the
generation of descriptive and coherent medical image reports. Yang
et al. propose a novel framework for generating high-quality medical
reports from ultrasound images using an adaptive multimodal
attention network (AMAnet). This framework addresses the
challenges of tedious and time-consuming manual report writing
by leveraging deep learning techniques to automate the process. The
core innovation of AMAnet lies in its adaptive multimodal attention
mechanism, which integrates three key components: spatial
attention, semantic attention, and a sentinel gate. The spatial
attention mechanism focuses on the relevant regions of the
ultrasound images, ensuring that the model captures essential
visual details. Meanwhile, the semantic attention mechanism
predicts crucial local properties, such as boundary conditions and
tumor morphology, by using a multi-label classification network.
These predicted properties are then used as semantic features to
enhance the report generation process. The sentinel gate is a pivotal
element in the AMAnet framework, designed to dynamically control
the attention level on visual features and language model memories.
This gate allows the model to decide whether to focus on current
visual features or rely on the learned knowledge stored in the Long
Short-Term Memory (LSTM) when generating the next word in the
report. This adaptive mechanism is particularly beneficial in
handling fixed phrases commonly found in medical reports,
ensuring that the model can generate coherent and contextually
appropriate text. The incorporation of semantic features and the
adaptive attention mechanism contribute to the model’s superior
performance, highlighting its potential for practical clinical
applications. In practical terms, consider a scenario where the
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model is generating a report for an ultrasound image showing a
tumor. The spatial attention mechanism might focus on the region
where the tumor is located. The semantic attention mechanism will
consider properties such as “irregular morphology” and “unclear
boundary” predicted by the multi-label classification network. The
sentinel gate will dynamically balance between these features and the
language model’s internal memory to generate a sentence like “The
ultrasound image shows an irregularly shaped tumor with unclear
boundaries.” This adaptive attention mechanism ensures that the
model generates accurate and contextually appropriate reports,
enhancing its utility in clinical settings, which CNNs alone might
struggle to achieve.

Chi et al. [168] propose a unified framework that combines the
2D and 3D Transformer-UNets into a single end-to-end network.
This novel method enhances the segmentation of thyroid glands in
ultrasound sequences, addressing several key limitations of existing
deep learning models. The proposed Hybrid Transformer UNet
(H-TUNet) integrates both intra-frame and inter-frame features
through a combination of 2D and 3D Transformer UNets,
significantly improving segmentation accuracy and efficiency. The
framework is designed to exploit both the detailed intra-frame
features and the broader inter-frame contextual information,
resulting in a more accurate and robust segmentation of the
thyroid gland in ultrasound images. The proposed method
outperforms state-of-the-art CNN-based models, such as 3D
UNet, in terms of segmentation accuracy, demonstrating the
effectiveness of hybrid Transformer-2D-3D models in ultrasound
image analysis. Wang et al.[169] presents a groundbreaking method
for enhancing the safety and efficiency of robot-assisted prostate
biopsy through advanced force sensing techniques. This method
addresses the limitations of existing VFS techniques, particularly in
accurately sensing the interaction force between surgical tools and
prostate tissue. The core innovation of TransVFS is the spatio-
temporal local–global transformer architecture. This model captures
both local image details and global dependencies simultaneously,
which is crucial for accurately estimating prostate deformations and
the resulting forces during biopsy. The architecture includes efficient
local–global attention modules that reduce the computational
burden associated with processing 4D spatio-temporal data. This
makes the method suitable for real-time force-sensing applications
in clinical settings. The proposed method was extensively validated
through experiments on prostate phantoms and beagle dogs. The
results demonstrated that TransVFS outperforms state-of-the-art
VFS methods and other spatio-temporal transformer models in
terms of force estimation accuracy. Specifically, TransVFS provided
significantly lower mean absolute errors in force estimation
compared to the most competitive model, ResNet3dGRU. The
paper highlights the practical benefits of TransVFS in improving
the safety and efficacy of robot-assisted prostate biopsies. By
providing accurate real-time force feedback, TransVFS can help
reduce the risk of tissue damage and improve the precision of biopsy
procedures, thereby enhancing patient outcomes. Ahmadi et al.[170]
integrate a spatio-temporal architecture that combines anatomical
features and the motion of the aortic valve to accurately classify AS
severity. The Temporal Deformable Attention (TDA) mechanism is
specifically designed to capture small local motions and spatial
changes across frames, which are critical for assessing AS
severity. The model incorporates a temporal coherent loss

function to enforce sensitivity to small motions in spatially
similar frames without explicit aortic valve localization labels.
This loss helps the model maintain consistency in frame-level
embeddings, enhancing its ability to detect subtle changes in the
aortic valve’s movement. An innovative attention layer is introduced
to aggregate disease severity likelihoods over a sequence of
echocardiographic frames, focusing on the most clinically
informative frames. This temporal localization mechanism
enables the model to identify and prioritize frames that are
critical for accurate AS diagnosis. The model was tested on both
private and public datasets, demonstrating state-of-the-art accuracy
in AS detection and severity classification. On the private dataset, the
model achieved 95.2% accuracy in AS detection and 78.1% in
severity classification. On the public TMED-2 dataset, the model
achieved 91.5% accuracy in AS detection and 83.8% in severity
classification. By reducing the reliance on Doppler measurements
and enabling automated AS severity assessment from two-
dimensional echocardiographic data, the proposed framework
facilitates broader access to AS screening. This is particularly
valuable in clinical settings with limited access to expert
cardiologists and specialized Doppler imaging equipment.

Transformers address the limitations of CNNs by incorporating
self-attention mechanisms that consider the entire input sequence
(or image) simultaneously. This allows for a more comprehensive
understanding of the image, capturing both local and global features
effectively. Transformers can capture long-range dependencies and
relationships across the entire image, which is essential for
accurately interpreting ultrasound images that may contain
complex structures and subtle differences. By dynamically
adjusting the attention weights, Transformers can focus on the
most relevant parts of the image, enhancing feature extraction
and reducing the impact of irrelevant or noisy regions. Recent
methods further develop the advantages via Integration with
CNNs: Hybrid models, such as GPA-TUNet[162], combine the
strengths of CNNs and Transformers, using CNN layers for
initial feature extraction and Transformers for global context
modeling. This integration leads to superior performance in
segmentation tasks, particularly for images with large axial spans.
Adaptive Attention Mechanisms: Models like AMAnet[160]
incorporate adaptive attention mechanisms that dynamically
control the focus on visual features and language model
memories. This enables the model to generate coherent and
contextually appropriate reports, enhancing its utility in clinical
settings. Efficient Spatio-Temporal Processing: Methods like
TransVFS[169,170] introduce factorized spatio-temporal
processing strategies that significantly reduce computational
complexity, making them suitable for real-time force-sensing
applications in clinical settings. These advanced techniques
demonstrate the potential of Transformers and attention
mechanisms in enhancing the accuracy and reliability of medical
ultrasound image analysis, offering a promising solution for
improving diagnostic outcomes and patient care.

The integration of Transformer models and attention
mechanisms into ultrasound image analysis represents a
significant advancement over traditional CNN-based approaches.
The ability of Transformers to capture long-range dependencies and
model global context enhances the accuracy and reliability of
medical image segmentation tasks. As research continues, these
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models [160,162,169,170] are likely to play an increasingly vital role
in improving diagnostic accuracy and patient outcomes in
medical imaging.

4 Discussion

With the rapid development of deep learning, its range of
applications has also expanded into more fields. In this paper, we
summarize the applications of deep learning in medical ultrasound
imaging, focusing on its promoting effect on beamforming
algorithms and clinical applications. We compared the classic
beamforming algorithm and its corresponding deep learning
alternatives. For both adaptive beamforming and SLSC
beamforming algorithms, the use of deep learning can reduce
computational complexity and enhance efficiency. Deep learning
can enhance beamforming algorithms in medical ultrasound
imaging in several ways. Data-Driven Optimization: Deep
learning models can be trained on large datasets of ultrasound
images to learn optimal beamforming parameters for different
imaging conditions. This can result in better image quality
compared to traditional beamforming techniques that use preset
parameters. Feature Extraction: Neural networks, especially CNNs,
are highly efficient at automatically extracting relevant features from
ultrasound data. These features can then be employed to improve
the spatial and contrast resolution of the images. Reducing Artifacts:
Deep learning can help identify and reduce artifacts in ultrasound
images, such as speckle noise, which can interfere with the clarity of
the images and the diagnosis. Speeding Up Processing Time: Deep
learning can significantly reduce the computational time required
for beamforming, making real-time imaging more feasible and
efficient. Advanced Reconstruction Techniques: Through the use
of deep learning, more advanced beamforming algorithms, such as
synthetic aperture and plane wave imaging, can be optimized for
better resolution and frame rates. In summary, deep learning can
play a crucial role in the advancement of beamforming algorithms
by enhancing image quality, reducing noise, and improving the
overall efficiency of medical ultrasound imaging.

In the section on “clinical applications”, we reviewed the
application of deep learning in some clinical scenarios. The
specific applications of deep learning in medical image analysis
include the following aspects. Image registration and orientation:
Deep learning can align the spatial orientation and adjust the pixel
intensity of multiple images from different sources, times, directions,
or modalities to increase the effective sample size and reduce non-
biological differences. Tissue segmentation: Deep learning
technology can achieve precise segmentation of target structures
in medical images, which helps to improve the speed and accuracy of
medical image analysis. Disease prediction and diagnosis: Deep
learning can assist doctors in diagnosing various diseases,
including tumors, inflammations, injuries, etc. For example, it
has been successfully used in the diagnosis of many diseases such
as lung cancer and breast cancer. Medical image feature learning:
Intelligent calculations of medical imaging based on deep learning
can automatically learn excellent feature expressions from large
sample data.

Deep learning, as an advanced machine learning technique, has
significant potential in improving the performance of beamforming

algorithms in medical ultrasound. Deep learning may have a positive
impact on beamforming algorithms in medical ultrasound in the
future. Deep learning can improve the quality of ultrasound images
by denoising, enhancing edges and contrast, and reconstructing
details more finely. Accelerating the beamforming computational
process through deep learning models could significantly reduce the
time required to acquire high-quality ultrasound images. Deep
learning models can optimize beamforming algorithms based on
different patient characteristics and scanning conditions to achieve
more personalized imaging. Deep learning models can increase the
dynamic range of images, making it possible to display both high
and low signal areas in the same image, and enhance resolution. It
can also identify and reduce artifacts in ultrasound imaging, such as
sidelobe contamination and Doppler artifacts. Beamforming
algorithms integrated with deep learning can assist in real-time
detection of lesions and measurement of biomarkers, providing
more diagnostic information. Deep learning can be used for
rapid reconstruction of three-dimensional and four-dimensional
data, providing clinicians with a more comprehensive view. Deep
learning can help performmore accurate tissue quantitative analysis,
such as the measurement of tissue stiffness, which is particularly
important for certain diagnoses. By continuously learning from
clinical data, deep learning models can improve their
performance over time, enhancing the accuracy and reliability of
beamforming technology. Deep learning can be used to
automatically determine the optimal beamforming parameters,
simplifying clinical operations and reducing the workload of
physicians.

The integration of AI in portable ultrasound devices with remote
servers is also helpful. AI algorithms can analyze ultrasound images
in real-time, helping to identify patterns, anomalies, or specific
conditions. This can assist healthcare professionals in making
more accurate and faster diagnoses. AI can enable remote
monitoring of patients, analyzing ultrasound data transmitted to
the remote server and alerting healthcare professionals to any
concerning changes or findings that require immediate attention.
AI can generate preliminary reports based on the ultrasound data,
highlighting key findings and suggesting possible diagnoses. This
can expedite the review process by healthcare professionals. AI also
can help in organizing and managing vast amounts of ultrasound
data, making it easier for healthcare professionals to access and
retrieve patient information when needed.

Meanwhile, based on the Segment Anything (SA) project [171],
Kirillov et al. developed a new segmentation model (SAM). The SAM
demonstrates impressive zero-shot performance across various tasks,
often matching or exceeding fully supervised methods. This indicates
themodel’s generalizability and potential applicability to awide range of
segmentation challenges. Numerous studies have adopted the SAM in
the medical image segmentation [172,173]. With the continuous
development of large language models (LLMs), AI technology based
on these models can also be applied to medicine [174–178]. Based on
these studies, it can be seen that LLMs can play a significant role in
medical ultrasound imaging. It can be used to generate preliminary
reports of ultrasound imaging by analyzing the textual descriptions
provided by the sonographer or the data obtained from the ultrasound
device. The reports will not only save time but also reduce the workload
of radiologists. LLMs can generate descriptive annotations for the
images based on the features identified through image processing
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techniques. By working through complex medical language and jargon,
LLMs can translate these into more patient-friendly language. This
helps patients better understand their medical condition and the
significance of their ultrasound results. LLMs can be utilized in
creating interactive training material for medical students and
professionals. This can assist them in learning the nomenclature,
understanding complex medical conditions, and being updated with
the latest medical research associated with ultrasound imaging. LLMs
can assist in data collection, research conduction, and generating
insights from large bodies of medical texts or research papers,
offering valuable contributions to the field of medical ultrasound
imaging. LLMs can also be integrated with AI and machine learning
algorithms aimed at identifying and diagnosing diseases from
ultrasound imagery. The LLM can then provide detailed
explanations or feedback based on the AI’s findings in a way that is
understandable for the healthcare provider.

5 Conclusion

In conclusion, the future application of deep learning in medical
ultrasound imaging is multifaceted. It can not only enhance image
quality and diagnostic efficiency but also promote the development of
personalized medicine and precision medicine. With the increasing
availability of computational resources and the continuous
improvement of algorithms, we can expect deep learning to play an
increasingly important role in ultrasound imaging technology.
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