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Cover art by Urmila Das, AmanPreet Badhwar, and Peter 

Kochunov. The background was painted to look deep and dark, 

like the universe, by artist Urmila Das, who wanted to create a 

feeling of the mystic unknown. The lines and dots are there to 

give an idea of “connecting”, not only with other people, but also 

to link the past and the future. The focus is on the head. Urmila 

chose the color orange to represent compassion and kindness, 

a symbol for humankind, and the open door is for new ways 

and opportunities. Through the open door we see the brain, an 

organ of infinite scale and mystery. Artist and scientist AmanPreet 

Badhwar attempts to capture the complexity of the brain by using 

brain science data and emulating the feel of inter-connected 

galaxies in the universe (or, as she calls it, the “brainverse”). 

Embedded in the background are artworks by scientist Peter 

Kochunov, generated using probabilistic tractography of fiber 

tracts going through the corpus callosum and the fornix, further 

reinforcing the concept of multiple and complex connections, 

be it in the brain or the universe.
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The human brain is incredibly complex, and the more we learn about it, the more 
we realize how much we need a truly interdisciplinary team to make sense of its 
intricacies. This eBook presents the latest efforts in collaborative team science from 
around the world, all aimed at understanding the human brain.
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Editorial on the Research Topic

Collaborative Efforts for Understanding the Human Brain

Advancements in the technologies and methods used to study the brain have improved our
capability to collect, share, and analyze large, detailed, datasets including brain imaging, genetic,
andv behavioral data. This data-rich environment has allowed researchers to study the complex
relationships between the structure and function of the brain throughout the lifespan with different
behaviors or even clinical disease states. Today, research aimed at understanding the human brain
necessitates new collaborative efforts that bring together domain experts across neuroscience,
computer science, biology, engineering, statistics, medicine, and clinical practice in order to
maximize the impact of these large and diverse datasets.

In this Research Topic, we highlight many novel and exciting aspects of this collaborative effort
to study the human brain. This issue begins by providing perspectives on the evolving field of
reproducible science, which is a main goal for collaborations in the field, and also highlights
the emerging use of web-based applications for bringing together researchers from around the
world. Next, several papers describe new large-scale neuroinformatics platforms that centralize data
collection, simplify data management, implement rigorous quality control, and integrate complex
multi-modal neuroimaging, genetic, and behavioral datasets. These are followed by several papers
describing new software analysis pipelines for neuroimaging data (e.g., PET imaging and stroke
MRI imaging), which provide flexible yet standardized and reproducible tools for data analysis. This
issue also contains several reports comparing different ways of collecting and analyzing large, multi-
site data, and provides new insights into best practices for multi-site diffusion MRI acquisition,
neuroimaging data analysis, and imaging genetics analyses. Finally, several papers introduce new
methods for analyzing multi-site data, including decentralized voxel-based analyses, hybrid mesio-
temporal lobe segmentation, and analyses for post-traumatic epilepsy data. Overall, these papers
demonstrate the breadth of work focused on bringing researchers together to decode the mysteries

of the human brain.

PERSPECTIVES ON REPRODUCIBLE SCIENCE

As research becomes more collaborative, excitement around issues of reproducible and open
science are growing. In this special issue, several authors provided insight on how to
perform reproducible and collaborative research using cutting-edge open-source tools. For
example, Kennedy et al. describe work emerging from ReproNim: A Center for Reproducible
NeuroImaging Computation and detail principles of reproducible science, focusing on
publications that can be re-executed. In doing so, they highlight a number of ReproNim

6
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tools for data management, analysis, and reporting. Building on
this, Keshavan and Poline share their perspective on a new wave
of collaborative science happening over web-based platforms.
They outline how the internet allows for improved sharing
of data and research projects, and they share numerous web-
based tools for everything from crowd-sourced data analysis to
collaborative writing.

FRAMEWORKS AND PLATFORMS TO

FACILITATE DATA SHARING

The implementation of these principles for open science is
also detailed in several papers describing new neuroinformatic
platforms for managing and harmonizing large multi-modal
datasets. First, Mohaddes et al. described a neuroinformatics
platform developed for the Canadian Consortium on
Neurodegeneration in Aging (CCNA). This framework
uses the LORIS data management system and supports the
acquisition, storage, curation and dissemination of imaging,
genetic, clinical, and biospecimen data related to aging. Next,
Das et al. describe an integrated “-omics” framework, also
using the LORIS platform, for analyzing multiple types of
“-omics” datasets, including genomics, imaging, and behavior.
Similarly, Vaccarino et al. describe the Ontario Brain Institute’s
Brain-CODE platform, which facilitates clinical, neuroimaging,
and molecular data management, analysis and sharing in
one consolidated, open-source platform. Finally, Rotenberg
et al. describe a use case of the Brain-CODE platform from
the Center for Addiction and Mental Health (CAMH). This
platform provides an environment for centralized data capture,
visualization, and analysis for psychiatric data. Importantly, all
of these platforms and examples emphasize key issues in data
management, such as privacy, data permissions, and quality
control. They also all focus on integrating complex multimodal
data sources in a manner that is easy to curate and share.

SOFTWARE PIPELINES FOR

HARMONIZED ANALYSES

While the neuroinformatics platforms aim to simplify data
management, there are also attempts to develop software
pipelines that will standardize data analysis. Funck et al. describe
the APPIAN (Automated Pipeline for PET Image Analysis)
toolbox, which allows for the robust, reproducible analysis of
PET imaging data with many options for flexible processing.
For stroke MRI data, Ito et al. describe the PALS (Pipeline
for Analyzing Lesions After Stroke) toolbox, which supports
large-scale lesion analysis and quality control with many user-
defined options for analysis. Both are good examples of software
pipelines that can harmonize data analysis across research sites

and improve reproducibility of results.

HARMONIZATION OF PROTOCOLS AND

METHODS

In addition to new platforms and software, another important
issue in collaborative research is to evaluate and compare

different methods of data acquisition and analysis. To this end, a
number of papers examined different methods for acquiring and
analyzing data in order to harmonize data collection and analysis
across research sites. Zavaliangos-Petropulu et al. compared six
different diffusion tensor imaging (DTI) scanner acquisition
protocols acquired across 47 different research sites from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Although
they found differences in diffusion metrics based on the imaging
protocol, they were able to successfully pool the data across the
sites and protocols into one cohesive dataset. Boedhoe et al. from
the ENIGMA Obsessive-Compulsive Disorder Working Group
used multi-site data from 38 research sites to compare statistical
approaches to pooling MRI-derived measures, and found that
for this type of data, mega-analytic approaches are favorable
to meta-analytic analyses. Kochunov et al. compared different
methods for estimating heritability from imaging genetics data
using a host of tools across multiple datasets. They found
that although the different methods yielded different results
depending on the dataset and the approach, incorporating
several homogenization steps prior to estimating heritability
was effective in producing converging results across methods.
Each of these important contributions not only shows how
multi-site data can be affected by different methods, but also
provides recommendations for improving harmonization of
the data.

METHODS FOR MULTI-SITE DATA

ANALYSES

Finally, several papers described new methods for analyzing
multi-site data. Gazula et al. proposed new decentralized
methods for structural (voxel-based morphometry) and
functional (dynamic functional connectivity) analyses, and
compared this with standard centralized methods. They
found that the decentralized methods worked equally well
as centralized methods but are more flexible for use with
multi-site data, opening the doors for large-scale collaborative
analyses without bulky data-transfers. Kim et al. discussed a
new hybrid template approach for automated segmentation
of mesiotemporal structures, including the hippocampus,
amygdala, and parahippocampal gyrus, which reliably performs
better than existing segmentation methods across multiple
datasets. Finally, Duncan et al. describe preliminary methods
and results for analyzing multi-site data in individuals with
epilepsy following traumatic brain injury from the multi-site
Epilepsy Bioinformatics Study for Antiepileptogenic Therapy
(EpiBioS4Rx) study, which collects MRI, EEG, and intracranial
EEG from humans and animals. Overall, these papers reveal new
methods specific for multi-site data analysis.

CONCLUSIONS AND FUTURE

DIRECTIONS

Work presented in this Research Topic collectively highlights
the growing trend for collaborative efforts for the neurosciences.
These collaborations come in the form of developing tools for
external researchers to access or contribute data, developing
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methods that are confirmed to be robust across MRI datasets
and acquisitions, and empirically testing harmonization methods
for diverse datasets. Through the tools, methods, and results
presented in this issue and beyond, researchers around the world
are teaming up to ensure this new era of science provides robust,
reliable and internationally meaningful findings to drive the
understanding of the human brain forward.
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There has been a recent major upsurge in the concerns about reproducibility in
many areas of science. Within the neuroimaging domain, one approach is to promote
reproducibility is to target the re-executability of the publication. The information
supporting such re-executability can enable the detailed examination of how an
initial finding generalizes across changes in the processing approach, and sampled
population, in a controlled scientific fashion. ReproNim: A Center for Reproducible
Neuroimaging Computation is a recently funded initiative that seeks to facilitate the “last
mile” implementations of core re-executability tools in order to reduce the accessibility
barrier and increase adoption of standards and best practices at the neuroimaging
research laboratory level. In this report, we summarize the overall approach and tools
we have developed in this domain.

Keywords: reproducibility, neuroimaging, data model, publication, re-executability

INTRODUCTION

There has been a recent major upsurge in the concerns about reproducibility in many areas of
science (Ioannidis, 2005, 2011; Button et al., 2013). The reasons for the concern are numerous, and
there are numerous practices in the scientific field that have been found to exacerbate the problem.
At a high level, a premium is put on novel, high-profile publications (in contrast to replications
and negative findings) and a specific p-value (typically 0.05) as a proxy for truth has been adopted
(Simonsohn et al., 2014; Wasserstein and Lazar, 2016). These aspects, in the context of a scientific
reporting system that is out of touch with the digital age, have combined to create a perfect storm
of practices that do not readily support the transparency needed to embrace reproducibility more
substantively (Martone, 2015; Starr et al., 2015).

In acknowledgment of this situation, each scientific field is forced to re-examine the
best-practices that are expected of practitioners in that field. Each field grapples with what
reproducibility looks like within the context of that field. Neuroimaging provides a lens on various
biological processes, and how these biological processes change over the course of development, and
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in the face of pathological insult. As the biological process is
the ultimate target of the neuroimaging inquiry, the question
of reproducibility relates principally to the conclusions reached
about such processes. A true biological inference about a
population or process should generalize to other valid ways of
observing that process and other samples of that population. In
the quest to advance the overall reproducibility of neuroimaging
science, one approach is to target the re-executability of the
publication; the basic, current building block of the dissemination
of scientific knowledge. The information supporting such re-
executability can enable the detailed examination of how an
initial finding generalizes across changes in the processing
approach, and sampled population, in a controlled scientific
fashion (see Figure 1A). It is only in the context of a systematic
ability to probe a finding that the true generalizability of a claim
can emerge.

It can be argued that “everything matters” in the
generalizability of the traditional neuroimaging publication.
The issues already identified span all levels of the experimental
ecosystem:

• Computational environments matter (Glatard et al., 2015);
• Tool selection matters (Tustison et al., 2014; Dickie et al.,

2017);
• Tool version matters (Dickie et al., 2017);
• Statistical model matters (Tan et al., 2016);
• Study population characteristics matter.

In the context of all these things that matter, what is an
appropriate approach that investigators in this field should take?
Our position is that the key to a comprehensive understanding of
the published neuroimaging literature is to comprehensively, and
in a machine-accessible manner, describe each of the elements
of the experiment: input data, processing steps, computational
environment, statistical assessment, and complete results (Ghosh
et al., 2017a). The human understandable interpretations and
claims, typical of a publication, can then exist around these
machine-readable [and hence Findable, Accessible, Interoperable
and Reusable (i.e., FAIR; Wilkinson et al., 2016)] elements. The
existence of this machine readable and actionable provenance (the
description of the origins of all elements of the publication) is
what is needed to trace back and validate the underpinnings of
a claim, and the starting point for the systematic examination of
that claims’ generalizability.

Within the neuroimaging community, the prognosis for
the ability to establish a complete description of accessible
elements for all parts of the publication is quite good.
The field has good data standards [DICOM1, NIfTI2, BIDS3

(Gorgolewski et al., 2016), MINC4, etc.], excellent platforms
for the sharing of code and data management and sharing
(Git, GitHub, DataLad, OSF, etc.), there are ample raw data

1https://www.dicomstandard.org/current/
2https://nifti.nimh.nih.gov/nifti-1/
3http://bids.neuroimaging.io/
4https://en.wikibooks.org/wiki/MINC/SoftwareDevelopment/MINC2.0_File_
Format_Reference

repositories (XNAT5 (Herrick et al., 2016), NITRC-IR6 (Kennedy
et al., 2016), NIMH Data Archive (NDA)7, International
Neuroimaging Data-sharing Initiative (INDI)8 (Mennes et al.,
2013), Human Connectome Project (HCP)9 (Marcus et al., 2013),
OpenNeuro10, etc.), numerous workflow systems (Nipype11

(Gorgolewski et al., 2011), LONI Pipeline12 (Rex et al., 2003), etc.),
package and execution management systems (NeuroDebian13,
Docker14, NeuroDocker15, Singularity16, NITRC-CE17, etc.), and
several outlets to disseminate results (NeuroVault18, BrainSpell19,
NeuroSynth20, etc.). Importantly, a standard data model for the
description of all these research elements, the Neuroimaging
Data Model (NIDM)21 (Keator et al., 2013), is also in place to
facilitate and distribute semantically annotated and unambiguous
representations of the complete experimental cycle. As such,
the main barrier to the generation of re-executable publications
which foster reproducibility and generalizability is not the core
resources, but rather the ease of use alongside the acceptance
of best practices (Eglen et al., 2017; Nichols et al., 2017), in the
typical neuroimaging laboratory. In addition to knowing that
the resources for reproducibility exist, the community needs to
embrace an approach of “Reproducible by Design” (as opposed
to reproducibility as an afterthought). ReproNim: A Center for
Reproducible Neuroimaging Computation is a recently funded
initiative that seeks to facilitate the “last mile” implementations
of these core tools in order to reduce the accessibility barrier and
increase adoption of standards and best practices at the research
laboratory level.

REPRONIM APPROACH

In the remainder of this report, we provide an annotated
perspective on the ReproNim vision for the re-executable
publication. For this purpose, we concentrate on a laboratory
data acquisition centric version of the research workflow. Other
workflows (i.e., data query from accessible data resources) can
be envisioned, but will be outside the purview of this report.
Figure 1B depicts a stylized version of the data workflow in a
typical neuroimaging experiment. Current publication practice
focuses on human readable descriptions of the detailed data

5https://www.xnat.org/
6https://www.nitrc.org/ir/
7https://data-archive.nimh.nih.gov/
8http://fcon_1000.projects.nitrc.org/
9https://www.humanconnectome.org/
10https://openneuro.org/
11https://nipype.readthedocs.io/en/latest/
12http://pipeline.loni.usc.edu/
13http://neuro.debian.net/
14https://www.docker.com/
15https://github.com/kaczmarj/neurodocker
16https://www.sylabs.io/docs/
17https://www.nitrc.org/ce/
18https://neurovault.org/
19http://brainspell.org/
20http://neurosynth.org/
21http://nidm.nidash.org/
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FIGURE 1 | ReproNim conceptual workflows. (A) Pictorial depiction of the concepts of re-executability (same data, same analysis), replication (same analysis, similar
data), robustness (same data, similar analysis), and generalization (similar data, similar analysis). Adapted from multiple sources, including Dr Drummond (2009),
Peng (2011); Hong (2015), Goodman et al. (2016); Whitaker (2016), and Allard (2018). (B) General neuroimaging data workflow: Imaging data and behavioral/clinical
measures enter into a local analysis, generate results that then get published. Substantial variability in the published literature exists in how the data, analysis and
results are described. (C) The ReproNim vision of the general neuroimaging data workflow where control of the data model and machine-readable markup is invoked
to completely represent the data workflow, processing and results using the tools of ReproIn, BrainVerse, NICEMAN, and NeuroBlast. (D) Detailed data
transformations and markup as the data work their way through the planned analysis and tools.
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collection, the processing workflow and environment, and the
statistical procedures and results. Therefore, across the field,
there is vast variability in the detail, precision and completeness
of these published descriptions. This variance in description
may contribute to the limited ability of the field to replicate
findings. Because we do not know exactly what a given paper
did or observed, when a subsequent paper examines a similar
topic it is impossible to parse similarities and differences
in results appropriately. Figure 1C overviews the ReproNim
vision for taking control of these variance points, through
instrumentation that generates machine-readable provenance
in each of the following areas: experimental data description
and versioning (NIDM-E), processing workflow (NIDM-WF),
and results (NIDM-R). While the analytic processing steps for
a neuroimaging workflow using any processing tool (SPM22,
FSL23, FreeSurfer24, AFNI25, etc.) will remain identical and
completely under the researcher’s control, we will insert
simple “wrapper” functionality that manage the conversion
and markup of incoming imaging data (ReproIn), markup of
subject-specific observations and experiment-specific analysis
plans (BrainVerse), interrogation and management of execution
environments (NICEMAN), and the distribution of the results
to user-identified, appropriate and FAIR data repositories
(NeuroBLAST). The data transformations and annotations that
these tools impart upon the data flow are illustrated in Figure 1D.

MATERIALS AND METHODS

In this section we will review the current status of the key tools
that are in place to support the re-executable publication. Each
resource will be summarized in terms of its purpose, how to
access it, and its functionality as of this writing.

ReproIn
ReproIn is a specification and a software platform to fully
automate acquisition, preparation and layout of collected
MRI data in the BIDS data structure with DataLad version
management, so they will be ready for local distribution and
processing in a scalable and flexible manner, while retaining all
provenance information from the moment of their creation, in
order to ease later sharing or publication.

ReproIn is accessed from the ReproIn Github repository26.
To not reinvent the wheel, the software development of

ReproIn is largely done through contribution to existing
software projects: HeuDiConv27 – a flexible DICOM converter
for organizing brain imaging data into structured directory
layouts; and DataLad28 – a modular version control platform
and distribution for both code and data including entire

22https://www.fil.ion.ucl.ac.uk/spm/
23https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
24https://surfer.nmr.mgh.harvard.edu/
25https://afni.nimh.nih.gov/
26https://github.com/ReproNim/reproin
27https://github.com/nipy/heudiconv
28https://www.datalad.org/

containerized computation environments via the DataLad-
containers extension and automated execution provenance
recording within version control systems (VCS) using DataLad’s
“run” functionality to provide a fully re-executable VCS-tracked
analysis record. The ReproNim project actively contributes to
those existing solutions to provide all necessary components for
computationally reproducible research.

General features of ReproIn include:

• A flexible naming convention for study description and
acquisition details to be used at an MR scanner console
that extends the information typically available in DICOM
metadata, to allow for an automated translation of MR
scans in DICOM format into BIDS datasets.

• A HeuDiConv ReproIn heuristic implementation29 to
process and validate the above BIDS specification30.

• Support for automated metadata generation by HeuDiConv
(e.g., to tag potentially sensitive information) using
DataLad’s metadata capabilities.

• Datasets can be incrementally expanded with new
acquisitions, as well as merged with any changes (new data,
adjusted templates) from the data acquisition server.

• Optional automatic obfuscation of time stamps in the VCS
records to protect privacy of study participants.

• Standalone Docker and Singularity containers for turnkey
processing and analysis deployment.

BrainVerse
BrainVerse is a cross-platform software framework and
collaborative desktop application to help researchers annotate
the research workflow from experimental planning to execution
of analysis. Annotation includes semantic coding of all data
elements, as well as the merging of the imaging data and
behavioral/clinical data streams, resulting in semantically
marked up BIDS data structures (the so called “ReproBIDS”
datasets) also under DataLad version management. Key
application areas include:

• Harmonization with the NIMH Data Archive (NDA):
Allows importing and curating the NDA schemas
to generate collection instruments that support
harmonization of variables within and across project.

• Project planner and executor: Allows creating a plan for an
experimental protocol in a project and collecting data using
harmonized and reusable forms.

• NIDM term editor: Allows the community to search
for and build a common descriptive vocabulary around
neuroimaging.

BrainVerse is accessed from the BrainVerse website/Github
repository31.

General features include:

29https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.
py
30https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin_
validator.cfg
31https://github.com/ReproNim/brainverse
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• GitHub based login and authorization;
• Cross-platform support (based on the Electron32

framework) on desktops with an option for server
based installation;

• NDA harmonizer and editor:

◦ Import, select, and preview forms,
◦ Edit forms,
◦ Push to common repository on ReproNim,
◦ Pull curated forms from ReproNim repository;

• Project planner and form-based data collector:

◦ Create project execution plan with multiple session
support,

◦ Reuse/Create session instruments,
◦ Add participants to project and collect data using project

plan,
◦ Export collected data to CSV files for visualization and

analysis;

• NIDM term editor:

◦ Display of terms from NIDM owl files,
◦ Edit terms and send review requests.

NICEMAN
NICEMAN is a specification and software system that
supports the management of computation environments
and computations, targeting the neuroimaging domain. It
provides:

• A specification to describe environments consistently
across available data and software distributions (e.g.,
VCS such as git, Debian-based systems, Conda Python
distribution, Singularity and Docker images),

• A software platform to allow convenient discovery,
description, and management of the computation
environment(s) so that they could be easily traced (to
automatically collect the specification from existing
environment or a dedicated process), validated (to satisfy
necessary requirements), compared (to determine how
requirements differ), satisfied (to create a new or adjust an
existing environment), execute necessary computation(s)
and interface the output(s).

NICEMAN developed openly and accessible on Github33.
General features include:

• retrace command allows users to establish a detailed
description of the environment given an initial specification
(e.g., from reprozip34, Nipype’s.trig PROV) or from a
list of files provided on the command line. It generates
tracing information that is sufficient for re-establishing
the environment (origins, versions, etc.) for Debian-based
systems, VCS (svn and git), and Conda,

32https://electronjs.org/
33https://github.com/repronim/niceman
34https://www.reprozip.org/#

• Support of Docker, shell (via ssh or localhost) environments
for scripted or interactive sessions, with a centralized
resources manager (ls command to list available
environments/resources and query their status), and
with basic support for Docker and Amazon Web Services
(AWS) backends life-time (bootup/shutdown),

• Create/install commands to fulfill the specification and
provide the requested environment (via Docker, AWS, etc.).

• Support for Singularity and Docker environments.

NeuroBlast
NeuroBlast is a share, search and discovery service. The
NeuroBlast service facilitates data sharing (raw and results) of
known existing repositories and assists users in the data discovery
process to find matching/similar studies based on a combination
of task, analysis, and activation patterns. This novel environment
utilizes all information about a study, enabling researchers to
select appropriate sharing sites, and find similar studies utilizing a
number of different similarity metrics. This service employs deep
semantics, building from terminologies managed by InterLex and
its associated ontology, to enhance the search for similar data sets
utilizing multiple features for comparison.

InterLex can be accessed at InterLex.org and the ontology can
be accessed from its GitHub repository35.

RESULTS

In this section, we briefly summarize a couple of example use-
cases that demonstrate the ReproNim vision in action.

Tools Matter
Shared neuroimaging data is an important means of promoting
an open and reproducible neuroimaging analysis culture. The
Autism Brain Imaging Data Exchange (ABIDE1) dataset (Di
Martino et al., 2014) is a premier example of shared neuroimaging
data that promotes exploration of the factors related to the
autism diagnosis relative to features accessible in structural and
resting state functional MRI in over 1000 subjects. There are
many factors related to the reproducibility of neuroimaging
findings, including selection of software tools. In this report,
we take advantage of the ABIDE Preprocessed Connectomes
project36 which has performed a comparative analysis of ABIDE1
data using three widely used structural analysis software tools:
FreeSurfer (Fischl et al., 2002), versions 5.1 and 5.3, and ANTS
(Avants et al., 2011). In an ideal world, regional thickness data
would be independent of the specific software tool used to
generate the result, when applied to common data. We utilize this
dataset to evaluate the extent to which the selection of a software
tool matters, and provide a common open source platform to
support further exploration of these results. We identified the
subset of (976 cases (from the 1112 ABIDE1 original cases)) that
had completed all three analyses and are available at the ABIDE
Preprocessed Connectomes site.

35https://github.com/SciCrunch/NIF-Ontology
36http://preprocessed-connectomes-project.org/abide/
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FIGURE 2 | Everything matters. (A) Tools matter: Same data (976 ABIDE1 cases), different tools (FreeSurfer 5.1 and 5.3 and ANTS). For a specific anatomic region
(left caudal anterior cingulate cortex), we show a matrix of the between tool comparisons. On the diagonal (from upper left to lower right) we see the distribution
histogram of average left caudal anterior cingulate cortex thicknesses for ANTS, FreeSurfer 5.1 and FreeSurfer 5.3, respectively. The three scatter plots (left column,

(Continued)
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FIGURE 2 | Continued
middle, left column bottom and middle column bottom) show the between tool scatter plots and regression line for these data for: ANTS vs. FreeSurfer 5.1
(Pearson’s correlation coefficient r = 0.16); ANTS vs. FreeSurfer 5.3 (Pearson’s correlation coefficient r = 0.21); and FreeSurfer 5.1 vs. FreeSurfer 5.3 (Pearson’s
correlation coefficient r = 0.90), respectively. (B) Sample size matters: Same analysis (FreeSurfer 5.3 and a statistical model looking at gender effects in hippocampus
volume) as a function of the large-scale publically available structural imaging data in typically developing children in ∼2005 (NIH PEDS, N = 325) and ∼2011 (PING,
N = 1239). The plot shows the observed effect size and 95% confidence interval for the total hippocampal volume for these two cohorts. (C) Computational
Environment Matters: Same data, same workflow, different workflow operating system environments results in different results, as shown for the volume of the left
amygdala in subset of 24 cases. See text for further details.

The result of this effort is a publically available GitHub
repository37, which identifies the specific cases that are included,
contains summary data tables of the volume and surface area
results of the three analysis tools, software to load these
data tables into the R statistical software analysis package
(R reader), and an R script to correlate the corresponding
analytical results between the different structural analysis runs.
The surface-based results are represented as average cortical
thickness for each of the 62 (31 bi-laterally represented)
anatomic regions in the Desikan-Killiany-Tourville (DKT) atlas
(Klein and Tourville, 2012). For each anatomic region, we
calculate the three inter-tool result correlations (FreeSurfer 5.1
vs. FreeSurfer 5.3; FreeSurfer 5.1 vs. ANTS, and Freesurfer 5.3
vs. ANTS). Findings can be summarized as follows. The mean
and range of region-wise correlation were observed as follows
between the various tool-pair combinations: ANTS vs. FreeSurfer
5.1 mean regional correlation = 0.43, [minimum = 0.19
(rostralanteriorcingulate L), maximum = 0.59 (superiortemporal
R)]; ANTS v FreeSurfer 5.3 mean regional correlation = 0.47,
[minimum = 0.19 (caudalanteriorcingulate R), maximum = 0.67
(superiortemporal R)]; FreeSurfer 5.1 vs. FreeSurfer 5.3 mean
regional correlation = 0.87, [minimum = 0.76 (insula R),
maximum = 0.93 (paracentral L)]. The FreeSurfer analysis in
this data presents excellent inter-version (5.1–5.3) commonality.
There are, however, substantial differences between the regional
thickness results between the FreeSurfer and ANTS analysis. As
an example, the scatter plots and distributions for the left caudal
anterior cingulate is shown in Figure 2A.

Sample Size/Quality Matters
In this example, we look at the potential gender effect of total
hippocampal volume in typically developing children, and how
an observation of this effect can evolve over time as a function
of the imaging technology and the amount of available data.
We model total hippocampus volume as a function of gender,
covarying for age, sex by age interaction, site, and total cerebral
volume. We used state-of-the-art at the time data available from
two national typically developing cohorts. We first look at the
gender effect as observed in ∼2005 from the NIH Pediatric
Database (N = 325 (159 males/166 females); aged 4.2–18.4 years)
(Evans and Brain Development Cooperative Group, 2006). We
also look at data from the PING cohort (Pediatric Imaging,
Neurocognition and Genetics) (Jernigan et al., 2016), as released
in ∼2011 (total N = 1239 (644 males/595 females), aged 3–
20 years). We applied a common analysis (FreeSurfer 5.3) using
default parameters to each of these datasets in house. These

37https://github.com/companat/compare-surf-tools

results are shown in Figure 2B. In this case, we note a lack of
significant gender dimorphism of the total hippocampus seen
in children from the PEDS cohort (p = 0.9379). However, the
PING dataset documents a significant gender effect for the total
hippocampus volume (p = 0.013269). While sample size is one
of the differences between these studies, it is also the case the
image quality and acquisition technology had evolved in the years
between these two studies. Nevertheless, we feel that this type
of observation is reflects the types of conclusions that are often
gleaned from the literature: observations that are not significant
based upon older, smaller N studies may not generalize to newer,
larger N studies. The tightening of the error bars around a specific
observation can be attributed to many sources, not the least of
which, in this case is the sample size. Indeed, the observed effect
size in the PING sample falls within the observed range of the
older, smaller PEDS distribution of observations.

Simple Re-executable Publication
In this last example, we document a set of procedures,
which include supplemental additions to a manuscript,
that unambiguously define the data, workflow, execution
environment and results of a neuroimaging analysis, in order to
generate a verifiably re-executable publication. Re-executability
provides a starting point for examination of the generalizability
and reproducibility of a given finding. We have provided an
example “publication” with four supplementary files (Ghosh
et al., 2017a), the: (1) data file, (2) workflow file, (3) execution
environment specification, and (4) results. In this example,
the data is from 24 publically accessible typically developing
subjects between the ages of 10–15 that have a structural scan
at 3 Tesla available from the 1000 Functional Connectomes
Project at NITRC (doi 10.18116/C6C592; Kennedy, 2017).
The workflow is a FSL-based (version 5.0.9) assessment of
total brain, gray and white matter and subcortical structural
volumes and is accessible at doi: 10.5281/zenodo.800758,
(Ghosh et al., 2017b). The execution environment is controlled
through the use of Docker; the docker image is available
at https://github.com/ReproNim/simple_workflow. Finally,
the complete results of the reference run are stored in the
expected_output folder of the GitHub repository38. By sharing
the results of this reference run, as well as the data workflow,
and a program to compare results from different runs, we can
enable others to verify that they can arrive at the exact same
result (if they use the exact same workflow and execution
environment), or how close they come to the reference results
if they utilize a different computational system (that may differ

38https://github.com/ReproNim/simple_workflow/tree/1.1.0/expected_output
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in terms of operating system, software versions, etc.). Figure 2C
demonstrates the imprecision of “the same data and workflow”
run (in this case left amygdala volumes for each of the 24 subjects)
on different hardware platforms (Docker Debian 8.7 (Reference
Run) vs. Mac OS X 10.12.4), documenting the importance of
taking control over the complete description of all elements of
the reported research publication. Ideally, while the amygdala
volume will differ by subject, the same workflow when rerun
should yield the line of identity. It is the case that when the
same Docker image is run, the identical results are generated.
However, as illustrated in Figure 2C, running the same workflow
on a Debian 8.7 vs. Mac OS X 10.12.4 system the results deviate
substantially from the expected relationship.

SUMMARY

In this perspective we have reviewed the ReproNim vision and
rationale for enhancing the reproducibility of the neuroimaging
literature through an emphasis on individual publication re-
executability. A given publication, if published in a completely
re-executable fashion, forms the basis for future systematic
explorations of the generalization of the observations through
independent manipulation of the data and processing details
separately. Reproducible claims and conclusions are supported
by findings that are generalizable to data beyond that originally
reported and should be demonstrated to be robust with respect
to details of the analytic approach. The key to controlling the re-
executability of the publication is the generation and reporting,
at all stages of the process, machine readable provenance
documentation that details the input data sources, the analysis
workflow, the statistical model, the execution environment and
the complete results. Since we know that all these factors matter,

a good scientific report should be able to describe each of these
factors unambiguously.

Time will tell if the tools and procedures promoted by
the ReproNim effort (or other efforts) to enhance publication
level re-executability will be successful. We can assert that the
majority of neuroimaging publications to date do not expose
this complete set of publication details explicitly. We envision
a future re-executability check list that can be retrospectively
applied by the community to the corpus of publications (or,
better yet, used by reviewers of publications prospectively) that
generates a catalog of compliant elements on a publication
by publication basis. One can then observe, over time, the
extent to which the exposure of publication elements (input
data, workflow, execution environment, complete results)
increases. Efforts are underway to generate more compelling
scientific examples of the re-executable publication in response
to exploring the generalizability of specific findings in the autism
and schizophrenia literature.
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Web technology has transformed our lives, and has led to a paradigm shift in the

computational sciences. As the neuroimaging informatics research community amasses

large datasets to answer complex neuroscience questions, we find that the web

is the best medium to facilitate novel insights by way of improved collaboration

and communication. Here, we review the landscape of web technologies used in

neuroimaging research, and discuss future applications, areas for improvement, and the

limitations of using web technology in research. Fully incorporating web technology in

our research lifecycle requires not only technical skill, but a widespread culture change;

a shift from the small, focused “wet lab” to a multidisciplinary and largely collaborative

“web lab.”

Keywords: neuroimaging, open science, infrastructure, web browser, collaboration, communication

1. INTRODUCTION

The internet is ubiquitous and infiltrating every aspect of our lives by way of the web browser.
Desktops, tablets, and cell phones have web browsers, but also televisions, game consoles,
wristwatches, cars, glasses, and even refrigerators can effortlessly display all the information that
resides on the internet. Information that, in theory, includes nearly all scientific knowledge.

The web browser has transformed our scientific practices, by giving us access to an almost
infinite information resource. It provides a flexible and immediate platform for publishing research
products. It gives us access to powerful computing platforms and databases. It enables us to
collect large amounts of data from many people (e.g., citizen science). It is absolutely essential for
communication and scientific collaboration. And above all, its main strength is its transportability;
science, particularly in computational fields such as neuroimaging, can be performed anywhere
(given a speedy internet connection).

Scientific collaboration is becoming increasingly important as computing technology enables
us to rapidly collect and analyze data. The result of this data deluge is that we have an increased
need for interdisciplinary, collaborative research. A combination of scientists with domain
specific knowledge and those with a intimate grasp of computer science, data wrangling, and
statistics/machine learning are needed to fully capitalize on the potential of large datasets.

We have witnessed enormous leaps of scientific knowledge that were a direct result of large
scale collaborations, like the Human Genome Project, the Large Hadron Collider, ITER (research
in nuclear fusion), and LIGO (to measure gravitational waves) to name a few. And it was
primarily because of a large scientific collaboration at CERN where one of the most transformative
technologies of the late 21st century was born: the World Wide Web.
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Around the same time as the invention of the web came
the invention of functional magnetic resonance imaging (Ogawa
et al., 1990) in 1990, which revolutionized neuroscience research
on brain-behavior relationships. Enabled with the ability to image
brain function, neuroimaging researchers have been collecting
vast amounts of data to answer more complex questions
about the relationship between brain structure and function.
And as a result, neuroimaging researchers are collecting large
amounts of data, and encountering the same roadblocks and
bottlenecks that come with any “big data” science. Here, we
propose that by more deeply incorporating web technology
into the lifecycle of neuroimaging research, we can not only
accelerate neuroscience discoveries but also develop and test
novel neuroscience questions. In the following sections, we
discuss the paradigm shift that web technology brings to the
scientific research lifecycle in terms of two main principles:
collaboration and communication.

In addition, the use of web technology should have an impact
on today’s reproducibility crisis (Collins and Tabak, 2014). It
has become clear in several fields of the life sciences that our
current research practices are not best adapted to the production
of robust and replicable results. Web technologies with their
capacity to scale are key for the emergence of solutions to
this crisis.

2. COLLABORATION

2.1. Data Sharing and the Web
One may remember the first attempts at data sharing in
functional neuroimaging, the fMRI data center (Van Horn and
Gazzaniga, 2013), and the difficulty of getting and reusing data
sent over on compact discs or DVDs. Creating a culture of data
sharing has many advantages: it can lead to more rapid scientific
discovery for basic science and clinical research, can improve
data quality, reduce costs, and improve reproducibility, and is in
some cases a requirementmade by funding agencies (Poline et al.,
2012; Poldrack and Gorgolewski, 2014; Madan, 2017a). Some
researchers argue that it is an ethical imperative (Brakewood and
Poldrack, 2013) to maximize a subject’s contributions, especially
in clinical trials (Bauchner et al., 2016). But just because the data
is shared, it doesn’t mean the data can be found.

First and -possibly- foremost, browsers are the doors to the
four principles of FAIR (Findable, Accessible, Interoperable,
and Reusable), a set of guidelines developed by stakeholders in
academia, industry, and funding agencies to promote data reuse
(Wilkinson et al., 2016). We review them briefly here in the
context of the web technology:

1. Findable: In order for scientists to discover data that may be
of use for their research questions, datasets need to be indexed
within a central database server, with appropriate metadata
such that search engine algorithms can efficiently perform
queries, and most importantly, with a browser-based user
interface for researchers to submit queries and display results.

2. Accessible: the standard HTTP protocol used by browsers
and web servers is open, free, and can provide authentication
if needed.

3. Interoperable: all browsers speak the same language,
regardless of their base operating system. Data description
should adopt standards and convention to enable reuse
across datasets, for instance through linked data technologies
(Berners-Lee, 2009).

4. Reusability requires critically a community effort, to define
relevant metadata and to standardize metadata reporting. This
can be streamlined with web interfaces.

A key feature of the FAIR principles is that when possible they
should be applicable not only to humans, but also to machines.
For instance, datasets should be findable by “bots” by being
tagged with the appropriate machine-readable metadata.

Neuroimaging groups have developed web portals that make
it easy for other researchers to query, explore, contribute, and
share both raw data and derived data. The COINS web platform
(Scott et al., 2011) provides data management tools, an intuitive
user interface, and was built with an emphasis for PHI security
and multisite collaborations. The LORIS platform (Das et al.,
2012) includes a web portal for data management and data
quality control with neuroimaging viewers. The LONI Image
Data Archive (LONI-IDA) is a long-term, centralized, HIPAA-
compliant relational database archive for researchers to upload
and share their data (Van Horn and Toga, 2009); as of this
writing, the LONI-IDA has provided over 50 million downloads
and over 1 million uploads to the archive. Web application
such as these reduce the technical overhead to find, share, and
aggregate data, and should ideally become standard practice for
all large data collection efforts in neuroimaging.

The accessibility (FAIR-ness) of derived data is key to
meta- and mega- analyses. A prominent example is the
ENIGMA project (Thompson et al., 2014), which disseminated
standardized analysis scripts to be able to co-analyze (e.g., a
mega-analysis) a set of individual center’s results, by sharing
derived data rather than raw data. A mega-analysis strategy is
especially optimal in cases where raw data sharing is not feasible.
For task and resting state fMRI, the NeuroVault (Gorgolewski
et al., 2015) web application enables scientists to upload fMRI
statistical maps (e.g., derived data) in the standardized MNI
space, and link to their publications; this platform includes both
volume and surface-based visualization, and can enable more
accurate meta- and mega-analyses. For diffusion imaging, the
Automated Fiber Quantification (AFQ) package (Yeatman et al.,
2012) has an associated web-viewer (Yeatman et al., 2018) and
vault1 to easily share derived AFQ data in a standardized format.
Building software that returns derived data in standardized
formats and lowers barriers to sharing these derivatives with
the neuroimaging community will facilitate meta- and mega-
analyses in future years.

In the past, sharing data was a technical challenge (Van Horn
and Gazzaniga, 2013); now, it is easier to share data even if
the data are not part of a large consortium. The OpenNeuro
web application enables researchers to upload and share their
neuroimaging data as long as the data follow a community-
developed standard to organize and describe neuroimaging

1http://afqvault.org
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datasets called the Brain Imaging Data Structure (BIDS)
(Gorgolewski et al., 2016). Adopting standards for how
data are stored enables sharing by reducing the overhead
needed to curate heterogeneous datasets, and therefore
promotes interoperability and reusability of data (Tenopir et al.,
2011). Examples of standardized data formats outside of the
neuroimaging field include the Open Geospatial Consortium
(Castronova et al., 2013) and the Ecological Metadata
Language (Fegraus et al., 2005).

In general, the FAIR principles do not stipulate how data
sharing should be incentivized. The adoption of FAIR principles
requires financial support as well as community adoption. While
the OpenNeuro project has been funded by the NIH2, the BIDS
standard that it relies upon is, importantly, starting to be adopted
by a wide community. The standard has recently been endorsed
by the International Neuroinformatics Coordinating Facility
(INCF)3, and is recommended by several journals. Funding
agencies (e.g., theWellcome Trust4) are increasingly asking that a
wider set of research products are shared with the community to
increase reuse andmaximize the funding impact on research. The
set of tools that facilitate the conversion of small datasets to BIDS
format is also growing (see the BIDS starter kit5), which may
mitigate the need for long-term funding. Concurrently, training
material to educate researchers to adopt the BIDS format is being
actively developed by ReproNim (e.g the “FAIR data” module6).

In the genomic community, the Bermuda principles
(Contreras, 2011) led to the establishment of few large
public databases, but the brain imaging community has
been less unified. This led to a variety of large or small
initiatives, such as ADNI (Mueller et al., 2005), BIRN (Keator
et al., 2008), BrainMap (Laird et al., 2011), INDI (Mennes
et al., 2013), OpenfMRI (Poldrack et al., 2013), OMEGA
(Niso et al., 2016), OpenNeuro (Gorgolewski et al., 2017a),
Schizconnect portal(Wang et al., 2016), Healthy Brain
Network (Alexander et al., 2017) to name a few [for more,
see (Eickhoff et al., 2016)], and more recently the funder-based
National Data Archive. Specialized tools to discover these
resources and their content are improving fast [see for instance
Scicrunch (Grethe et al., 2014)].

Efforts have begun in the neuroimaging community to create
centralized resources to find openly released neuroimaging
datasets. A very simple yet valuable collection was collaboratively
compiled on the social coding platform Github7. OpenMorph,8

(Madan et al., 2018), is a curated list of open access datasets
that can be used to study brain morphology. It includes sample
sizes, types of MRI modalities, the associated publications and a
link to each project’s web portal to download the data. Anyone

2https://www.braininitiative.nih.gov/funded-awards/openneuro-open-archive-

analysis-and-sharing-brain-initiative-data
3https://www.incf.org/node/295
4https://wellcome.ac.uk/funding/guidance/guidelines-good-research-practice
5https://github.com/bids-standard/bids-starter-kit
6http://www.reproducibleimaging.org/module-FAIR-data/00-Introduction-to-

Module/
7https://www.github.com
8https://github.com/cmadan/openmorph

can contribute to this collection by creating a GitHub9 account
and editing the document. The DataLad (Halchenko et al.,
2018) project has developed a crawler to index the data from
various scientific data portals for a unified interface from which
to download these datasets from the command line interface
on their computers. DataLad also hosts a web application to
interactively explore the various datasets that have been indexed.
We hope to see more aggregation of open neuroimaging datasets
in the future, with accessible web interfaces to query and explore
all our resources.

More generally, platforms like Zenodo (https://zenodo.org),
Dryad https://datadryad.org/, and the Open Science Framework
https://osf.io give researchers generous storage for their datasets
and assign digital object identifiers (DOIs) to datasets. This
means that researchers who primarily collect data can get credit
via citations, potentially alleviating concerns about “research
parasites” (Longo and Drazen, 2016) that prevent some from
openly sharing data. Our scientific culture is in part a roadblock
to data sharing (Tenopir et al., 2011). Ideally, moving away from
placing importance on only the first and last authors during
grant and career reviews may incentivize data sharing and large
collaborations. It is clear that technical challenges are not the
only barrier to data sharing; we discuss the social and ethical
challenges with data sharing in the “pitfalls” section. For an
overview of the resources on data sharing, data analysis, and data
collection, see Figure 1.

2.2. Collaborative Work and the Web
2.2.1. Collaborative Data Analysis Through the Web
Data, albeit the foundation of most work, is only the first
element of a research project. The reusability of other research
products such as software, libraries, scripts, and pipelines or
workflows, has traditionally been poor, with the exception of a
few neuroimaging software packages [e.g., SPM (Friston et al.,
1994), FSL (Smith et al., 2004), and Freesurfer (Fischl, 2012)].
With a greater ease of dissemination and search of these objects,
research is entering a phase of accelerated efficiency, providing
building blocks for fast construction of a new analysis. Todays
researcher in neuroimaging is able to search for and download
an entire software environment in a Docker10 container and
launch complex pre-processings and analyses. Neurodocker
(Kaczmarzyk et al., 2018) makes it possible in a single command
line to create an environment with all necessary software specific
version for an analysis. Reprozip (Chirigati et al., 2016) makes
it possible to trace all the dependencies of a single command
and create reusable packages that rerun the exact command,
even on a different system. fMRIprep (Esteban et al., 2019) and
MRIQC (Esteban et al., 2017) provide environments for fMRI
preprocessing or MRI quality control. Work that may have taken
a post-doc or a graduate student a few months can take now a
few days if not a few hours. This order of magnitude acceleration
factor has been made possible because (1) these projects are
often highly collaborative and often will have inputs from tens

9https://www.github.com
10https://docker.com
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FIGURE 1 | Overview of discussed collaborative scientific web tools. General resources for data sharing include. (1) Zenodo https://zenodo.org; (2) Dryad: https://

datadryad.org/; (3) OSF: https://osf.io; Neuroimaging specific data sharing resources include (4) COINS (Scott et al., 2011) (5) LORIS (Das et al., 2012) (6) LONI-IDA

(Van Horn and Toga, 2009) (7) NeuroVault (Gorgolewski et al., 2015) For general data analysis: (8) Project Jupyter (Ragan-Kelley et al., 2014; Kluyver et al., 2016) To

access cloud resources with Jupyter notebooks, try: (9) Binder https://mybinder.org/; (10) Colaboratory https://colab.research.google.com/notebook; (11) Azure

Notebooks https://notebooks.azure.com; For neuroimaging specific cloud computing, see (12) OpenNeuro (Gorgolewski et al., 2017a), https://openneuro.org; (13)

CBRAIN (Sherif et al., 2014) (14) BrainLife (Hayashi and Pestilli, 2017), https://brainlife.io; (15) BrainCode (Vaccarino et al., 2018), https://www.braincode.ca/; For data

analysis with citizen science, see (16) Zooniverse (Simpson et al., 2014), https://zooniverse.org; and for neuroimaging-specific projects, see: (17) Brainspell (Badhwar

et al., 2016), https://brainspell.org; (18) BrainBox (Heuer et al., 2016), http://brainbox.pasteur.fr; (19) Mindcontrol (Keshavan et al., 2017a), https://mindcontrol-hbn.

herokuapp.com; (20) braindr (Keshavan et al., 2018), https://braindr.us; For behavioral experiments, web services such as (21) psiTurk (Gureckis et al., 2016), https://

psiturk.org; (22) expfactory integrate with Amazon mTurk. (Sochat et al., 2016), https://expfactory.org.

of individuals leveraging social coding platforms (e.g., Github),
and (2) the communication of the technologies and repositories
through web based platforms.

Cloud computing provides unlimited, scalable, computing
resources (provided enough financial resources), but can be
difficult to interface with because it requires specialized
expertise. Through web interfaces, cloud computing can be
made accessible such that domain specific researchers can
reap its full benefits. OpenNeuro (Gorgolewski et al., 2017a),
currently hosted on Amazon Web Services, enables researchers
to upload BIDS-compatible datasets and then run analyses
via BIDS-Apps (Gorgolewski et al., 2017b) on the AWS
cloud for free, given that the data is publicly shared after a
certain grace period. The Canadian Brain Imaging Research
Platform (CBRAIN) web platform (Sherif et al., 2014) can
bring together heterogeneous data sources and compute grids
into one, secure web interface. The BrainLife11 (Hayashi and
Pestilli, 2017) web application is in development to provide

11https://brainlife.io

researchers with an intuitive interface to cloud computing
resources, enable data sharing, and the publishing of results
with clear provenance. The Brain-Code (Vaccarino et al., 2018)12

web portal and data management/analysis platform aims to
foster collaboration and data discovery across various clinical
brain disorders.

The Jupyter project (Ragan-Kelley et al., 2014; Kluyver
et al., 2016) has been actively developing a web-based scientific
notebook interface for various programming languages (Julia,
Python, R, and more). Researchers can interact with various
programming kernels on a web interface that can be deployed
locally, or on the cloud. The resulting notebook can be shared
as a website, with not only code displayed but also the
resulting figures, and associated documentation that is formatted
in Markdown, which can also render equations. The Jupyter
notebook comes with the ability to write interactive widgets, such
as javascript-based sliders that let users explore various parameter
spaces of the functions they write. Interactive plotting libraries,

12https://www.braincode.ca/
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like Plotly13 can be integrated within the Jupyter notebook,
enabling researchers to create rich, interactive data visualizations.
The Binder14 project, as of this writing, provides a free service
to host instances of Jupyter notebooks on the cloud. Azure
notebooks15 and Google Colaboratory16 also provide similar
notebook hosting services. Currently, Colaboratory provides
access to GPUs instances, which are incredibly useful for
deep learning projects. Services that enable easy deployment
of notebooks and their associated computing environments
will vastly improve the transportability of research objects;
we therefore encourage neuroinformatics researchers to take
advantage of these web services.

2.2.2. Collaborative Writing on the Web
In the past, collaboratively preparing manuscripts might only
have been possible with those in a scientist’s immediate
vicinity. With the web browser, email drastically improved
the collaborative writing process, but it is still a slow, serial
process of emailing documents back and forth. Google Docs17

was a breakthrough web application that parallelized the
manuscript preparation process by enabling multiple authors to
simultaneously write, edit, comment, and even chat with each
other. Version control, tracking changes, and generous free cloud
storage means researchers are much less likely to lose their work.
Microsoft Word, the most widely used software for preparing
manuscripts, offers an “edit in the browser” feature for realtime
collaborative editing18. For reference management, Paperpile19

interfaces nicely with Google Docs. For those who prefer to
prepare manuscripts with LaTeX, services such as Overleaf20 and
Authorea21 compile latex on the cloud, removing the technical
overhead of setting up latex locally and compiling the document.
Collaborators who are less familiar with LaTeX can now easily
contribute to these manuscripts. See Table 1 for a summary of
collaborative writing web applications.

GitHub22, “the social coding platform”, has simplified and
improved the collaborative writing of software. Github provides
a visual representation of the somewhat complicated git version
control system. GitHub repositories contain the full codebase
for a project, all the changes that have been made, and who
made them (via git). Users can“Fork” GitHub repositories, which
makes a copy of the code to their account. They can then make
changes to the code and send the changes back to the original
repository via “Pull Requests,” which begins a discussion thread
for others to comment on the code (called a code review).
GitHub also provides an “Issues” page for each repository, where
users can discuss any issues and ask the community for help.
Continuous integration software testing can be automatically run

13www.plot.ly
14https://mybinder.org/
15https://notebooks.azure.com
16https://colab.research.google.com/notebook
17https://drive.google.com
18https://support.office.com/en-us/article/collaborate-on-word-documents-

with-real-time-co-authoring-7dd3040c-3f30-4fdd-bab0-8586492a1f1d
19https://paperpile.com/
20https://www.overleaf.com
21https://www.authorea.com
22https://www.github.com

TABLE 1 | Summary of collaborative tools for writing manuscripts and code on

the web.

Name URL Comment

Google Drive https://drive.google.com Write manuscripts,

spreadsheets, etc

Office 365 https://office.com Write manuscripts

MS Word online.

Paperpile https://paperpile.com Reference

manager for

google docs

Overleaf https://overleaf.com Write manuscripts

(LaTEX)

Authorea https://authorea.com Write manuscripts

(LaTEX, HTML)

GitHub https://github.com Write code

GitLab https://gitlab.com Write code

Travis-CI https://travis-ci.com Test code (links to

GitHub/Lab)

Circle-CI https://circleci.com Test code (links to

GitHub/Lab)

on the cloud once changes to the code are pushed to GitHub, by
web-hooks to services like Travis CI23 and Circle CI24, which
provide a generous free tier for open source projects. GitHub
repositories can also host static websites; this is extremely useful
for hosting code documentation. GitLab25 is an open source
alternative to GitHub, which can be deployed by researchers in
cases where they need a private git web application. Many open
source neuroimaging tools are built collaboratively on GitHub,
such as Nipype26 (Gorgolewski et al., 2011) , Dipy27 (Garyfallidis
et al., 2014), and Nilearn28 (Abraham et al., 2014), to name a
few. By developing open source neuroimaging software packages
on social coding web interfaces, researchers are able to engage a
much larger community of contributors than would have been
possible in the earlier days of the web.

2.2.3. The Web for Mass Collaboration: Citizen

Science and Crowdsourcing
The web browser is particularly well suited for citizen science
and crowdsourcing; this is becoming necessary as neuroimaging
datasets grow, and data analysis bottlenecks arise when massive
amounts of data need visual inspection. In the astronomy
community, the Galaxy Zoo (Lintott et al., 2008) web application
was successful at engaging citizen scientists in visually classifying
galaxies. This project evolved into a more general citizen science
platform called the Zooniverse (Simpson et al., 2014), which
enables researchers from any domain to engage citizen scientists
in annotating their data. In the neuroscience field, EyeWire (Kim
et al., 2014) and Mozak (Roskams and Popović, 2016) have

23https://travis-ci.org
24https://www.circleci.com
25https://gitlab.com
26https://www.github.com/nipy/nipype
27https://www.github.com/nipy/dipy
28https://www.github.com/nilearn/nilearn
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gamified the tracing of neurons. The EyeWire project was able
to engaged over 100,000 citizen scientists from all over the world
to collaboratively trace the neurons of the human retina. Such
a massive engagement of collaborators would not have been
possible without the web browser.

The neuroimaging community is just beginning to engage
citizen scientists as a resource in our data analyses. The Brainspell
(Badhwar et al., 2016) web application was developed tomanually
annotate fMRI coordinate tables that were automatically
extracted by Neurosynth https://neurosynth.org (Yarkoni et al.,
2011), which itself is a web application to perform coordinate-
based fMRI meta-analyses. BrainBox (Heuer et al., 2016) and
Mindcontrol (Keshavan et al., 2017a) are web applications to
annotate MRI volumes (e.g., to edit segmentations). Recently, a
mobile-optimized and gamified web application called braindr
(Keshavan et al., 2018) was developed to perform quality control
on images from the Healthy Brain Network initiative. At the time
of this writing, braindr has engaged over 400 citizen scientists
and over 100,000 annotations. Image labels were aggregated
by weighting citizen scientists based on how well their ratings
matched an expertly labeled “gold standard” subset of images. A
deep learning network was then trained from these aggregated
labels to automatically rate image quality to near perfect accuracy.
Hybrid human-computer approaches for quality control seem
the most promising (Esteban et al., 2018), such as “triaging”
image reviews based on machine-learning output probability
scores for Freesurfer image segmentation as in Klapwijk et al.
(2018). Whether citizen science applications can go beyond
quality control and toward more complex tasks like image
segmentation and registration remains to be explored.

The cognitive science and psychology communities often
utilize paid crowdsourcing web platforms like Amazon
Mechanical Turk (mTurk) to run behavioral experiments
with large, diverse populations. The psiTurk (Gureckis et al.,
2016) and ExpFactory (Sochat et al., 2016) frameworks enable
scientists to interface with mTurk and create reusable web-based
psychology experiments. For image processing, the quanti.us
(Hughes et al., 2018) platform can be used to interface with
mTurk to crowdsource the segmentation of biological images.
In neuroimaging, Ganz et al. (2017) showed it was feasible
to crowdsource the detection of Freesurfer (Fischl, 2012)
cortical surface delineation errors on mTurk. We expect to
see more utilization of citizen science, gamification, and paid
crowdsourcing platforms in neuroimaging research, and there
are still many open questions about which strategies (citizen
science vs. paid crowdsourcing) and task designs are better suited
for various analyses, as well as how to properly acknowledge the
contributions of citizen scientists [see (Hunter and Hsu, 2015)
for a proposed method].

2.3. Pitfalls
Even though the benefits of the web browser for scientific
collaborations are evident, using the web for our research comes
with some drawbacks or difficulties. Collaboration requires the
sharing of data, and while some argue that data sharing is an
ethical imperative (Brakewood and Poldrack, 2013; Bauchner
et al., 2016), one must consider the risks of reidentification of our

subjects, particularly for clinical research. True deidentification is
difficult because of linked metadata (Narayanan and Shmatikov,
2008; de Montjoye et al., 2015). For example, in Narayanan and
Shmatikov (2008), researchers identified pseudo-anonymized
Netflix users by linking data with metadata from another website
(IMDB). In de Montjoye et al. (2015), researchers proved
that pseudo-anonymized credit card data could be reidentified
provided just four spatiotemporal points. Research in differential
privacy (Sarwate et al., 2014) might alleviate some of these risks;
regardless, it is important that subjects are made aware of the risk
in the consent process. The Open Brain Consent website29 is a
collaborative effort to provide resources that aid researchers in
the IRB process for sharing data, writing the consent form, and
tools for the anonymization of neuroimaging data.

Legal obligations concerning personal data handling
are evolving and the recent European Union General
Data Protection Regulation (GDPR) will likely change the
requirements for participants control over their personal data.
This will need to be considered at all stages of the research
data lifecycle. While a full discussion on the legal and ethical
aspects of data dissemination and reuse is out of the scope
of this article [see for example (Marelli and Testa, 2018) on
the GDPR] it is clear that legal and regulatory constraints
are going to shape the implementation and use of web based
data dissemination and retrieval tools, and this will require
increased attention and human resources in the future. The
challenge will be to constantly adapt our infrastructures and
practices to the new regulations, which will require continuous
software development.

Another drawback of using web technology for collaboration,
in terms of sharing data, accessing cloud resources for analysis,
and distributing work, is bit rot (Baker et al., 2006; Cerf, 2011).
Bit rot refers to the eventual degradation of information stored
on electronic media; for example, information stored on floppy
disks is likely not accessible for most of us. Web technology is
advancing rapidly: the browsers we use now look nothing like
they did a decade ago. Some websites that were built in the
past do not work with modern browser technology, and most
websites from the past are not available to us anymore. A decade
from now, many of the links presented in this article may no
longer exist. Servers cost money, and domain names are charged
annually. Software needs to be consistently maintained to be
compatible with current technology. Efforts such as the Internet
Archive30 andDigital Object Identifier (DOI) system are working
to preserve the information on the web, and in the case of DOI,
provide persistent links to our research articles. But we need to
work with funding agencies to ensure we have the resources to
maintain scientific output, outside of our research articles, that
depend on web technology.We also need to work with publishers
to ensure our full scientific output, including the web technology
that is used to produce it, can be fully preserved.

Finally, web-based research depends on a stable and fast
internet connection. Such infrastructure may not be available
to scientists in developing countries, which further drives

29https://open-brain-consent.readthedocs.io/en/stable/
30https://archive.org/
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inequalities and will decrease the diversity of our scientific
community. It is important to keep this in mind when designing
web applications, by optimizing websites for slow internet
connections, and building offline support.

3. COMMUNICATION

Scientific work in the public imagination is still often
thought to be a rather solitary activity of independent
individuals, sometimes attracting introverted personalities.
But actual scientific work is largely communication, where
a large proportion of time is spent thinking of the best
way to communicate research to collaborators, to scientific
communities, to the public, and to funders. Different
scientific fields have different levels of interdependencies. A
researcher in a specialized mathematical subfield like non
Riemannian geometry could be mostly working on their
own, but fields like neuroscience or the biomedical sciences
are highly multidisciplinary. The ability to absorb and reuse
research from other laboratories is most often critical for
progress, as the systems studied are both too complex and
too interdependent to be understood by individuals or single
labs. While conferences and in-person meetings are traditional
methods for communicating research, the web now expands
scientific communication to a completely new level, by removing
time delays and scalability constraints. Now, even social
network communication tools are used for the benefit of
scientific communication.

3.1. Local Networks Communication
The small or medium size laboratory structure [5–15 people
(Conti and Liu, 2015; Cook et al., 2015)] is still the predominant
basic research structure in universities and research institutes,
and these are mostly set up such that in person meetings
are practical. Nevertheless, it is common that one or several
members of the laboratory are temporarily located in another
institution or building and the meeting will occur through web
video conferences. The number of companies proposing free
or paid services that may include capacity to share documents
has multiplied during the past few years (the authors count at
least 7 web video conference systems as of today, for instance
Zoom31, Webex32, BlueJeans33, Skype34, Google Hangouts35,
appear.in36, GoToMeeting37, etc, as well as project management
systems such as Trello38 or Asana39), allowing for unprecedented
efficiency even in local communication. A key aspect of some
of these communication tools is their capacity to record the
meeting (audio-video) permitting delayed communication and
traceability of discussion points, ideas or decisions, as well

31https://zoom.us/
32https://www.webex.com/
33https://www.bluejeans.com/
34https://www.skype.com/en/
35https://hangouts.google.com/
36https://appear.in
37https://www.gotomeeting.com/
38https://trello.com
39https://asana.com/

as scaling for larger groups. Another key aspect is that the
use of these tools allow a group to immediately scale to
non local members.

3.2. Scholarly Communication
A neuroimaging or neuroscience researcher’s work is heavily
influenced, if not directed by, the search for funding and
progression in academia career. As these mostly still depend on
the quality and number of publications, it is clear that publishing
activity is central to a researcher’s academic life.

The current publishing industry is still very much influenced
by how this activity used to be at the turn of the twentieth
century, at a time when manuscripts had to be manually
typed and printed, and distribution of journals was achieved
through mail. Today, the article remains a standard for
scholarly communication, even though an increasing number of
researchers realize that the actual scholarship may actually reside
in the code and data rather than the article40. Jon Claerbout, a
professor from Stanford University, argues that an article about
a computational result is advertising, rather than scholarship.
The actual scholarship is the full software environment, code
and data, that produced the result (Donoho, 2010). The web
has transformed the industry and is de facto the new media
for scholarly communication, but somehow less rapidly and less
radically than it could have. Most traditional journals are still
shipping some printed copies of their editions, while a very
large number of “on-line only” journals with an open access
policy have emerged with a business model based on article
processing charges (ACP), occasionally generating low quality
content, but a highly profitable business (for a long list of
questionable publishers, see the Beall’s List41). We note that
Beall’s list does not necessarily have the level of granularity
required as it can address general publishers rather than
specific journals.

Even when the web is adopted as the communication media,
the very large majority of the articles are based on HTML
and PDF, with almost none of the modern visualization and
interactive figure components that can be delivered by modern
JavaScript libraries (e.g., D3.js42). In neuroimaging, a number
of open source, browser-based visualization tools have been
developed. Javascript brain viewers like BrainBrowser (Sherif
et al., 2015), papaya.js43, XTK.js44 (Haehn et al., 2014), and
AMI library (Bernal-Rusiel et al., 2017) enable researchers
visualize neuroimaging data in the browser. Interactive, linked
data dashboards have been built as outputs of neuroimaging
software, like ROYGBIV45 (Keshavan et al., 2017b; Klein et al.,
2017), AFQ-Browser46 (Yeatman et al., 2018), and MRIQC has
a web-based viewer to visually inspect outputs (Esteban et al.,

40https://www.researchtrends.com/issue-31-november-2012/force11-gains-

momentum-creating-the-future-of-research-communications-and-e-

scholarship/
41https://beallslist.weebly.com/standalone-journals.html
42https://d3js.org/
43https://github.com/rii-mango/papaya
44https://github.com/xtk/X
45http://roygbiv.mindboggle.info
46https://yeatmanlab.github.io/AFQBrowser-demo
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2017). The Open Anatomy Browser47 (Halle et al., 2017) hosts
a variety of atlases with collaborative viewing. These tools have
greatly simplified the process of building and sharing complex,
interactive visualizations. For example, researchers may deploy
an AFQ-Browser visualization of their data with two simple
commands (afqbrowser-assemble, afqbrowser-publish). These
interactive figures may go much beyond the convenience of a
better view of the result; they allow to test for the potential
robustness or sensitivity with data input or methods in a way
that cannot be provided by static figures. In such a case, some
parts of the scholarship need to be communicated by interactive
figures, but few publishers are able to provide the infrastructure
for hosting such “interactive articles”.

Recently, the rise of documents able to mix code and
narrative such as R-markdown or Jupyter notebooks also provide
researchers with new opportunities for communicating full
fledged research objects. Some publishers already have embraced
these new possibilities. For instance, eLife is working with
Stencila48, designed to be documents that “... are self-contained,
interactive and reusable, containing all the text, media, code
and data needed to fully support the narrative of research
discovery” to foster more reproducible and reusable research,
see eLife. In the near future, systems such as Binder (Jupyter
et al., 2018) will allow not only to publish and review the
computational documents but also provide with a container
and the environment for a fully re-executable publication. The
new web tools are not only key to provide us with ways of
publishing a more complete set of research objects, they also
allow for new review workflows to be implemented. For instance,
Frontiers developed a platform that intended to make the
interaction between reviewers and authors more efficient. Tools
such as https://web.hypothes.is/49 permit readers to annotate
only specific parts of an article and may in the future be re-used
by a review system. Such a review system could associate expert
reviews and open community based reviews.

The web is also transforming how research communities meet
for discussions by creating virtual conferences. A number of
virtual conferences have been successfully organized in the past,
removing the constraints of space and travels, while still allowing
for questions and answer sessions monitored online (see for
instance neuroscience-201850). A recent twitter conference was
recently organized (the Brain Twitter Conference) which could
scale easily to tens of thousands of participants. These events are
much easier to organize in a short time and less costly if not free
for attendees. They also are possible to attend by all researchers
independently of possible travel and funding restrictions and are
only limited by time zone constraints. For example, Chris Madan
advocates using Twitter for science in (Madan, 2017b), and see
his associated blog post51 on this topic.

In the same spirit, global Brainhack events gather locally
groups of neuroinformaticians who collaborate on software

47https://www.openanatomy.org/
48https://stenci.la/
49https://web.hypothes.is/
50https://www.labroots.com/virtual-event/neuroscience-2018
51https://medium.com/@cMadan/on-the-benefits-of-twitter-5af59158e4e2

development projects, and are also sharing courses and seminars
across locations. The latest Brainhack52 event took place
in 16 countries and gathered more than 1000 participants
in 5 different time zones. The University of Washington
hosts various week-long summer schools or“hack weeks” (e.g.,
Astrohackweek, Geohackweek, and Neurohackweek) to promote
education and training, tool development, community building,
and interdisciplinary research by combining pedagogy with
project-based learning (the“hacking”) around a specific domain
(Huppenkothen et al., 2018). They found that this combination
is particularly effective at fostering collaborations and promoting
best practices. Through collaborative web applications like
GitHub, the projects started at these hackweeks have continued
even after the events ended, and have resulted in measurable
scientific output [for details, see Huppenkothen et al. (2018)].
Data analysis challenges hosted by conferences or symposia like
MICCAI53 bring researchers together to solve problems in the
field, even if they cannot be present at the conference, and
these groups collaboratively publish their results [for example see
Commowick et al. (2018) for the results of a multiple sclerosis
lesion segmentation challenge]. A curated list of biomedical
image challenges can be found at https://grand-challenge.org/
challenges/. We expect these types of events to be more frequent
in the future, limiting the ecological, time, and cost impact of
physical travels but offering the capacity for communication of
research at a truly global scale.

3.3. Larger Public Communication
Ultimately, research needs to go beyond the scientists and will
need to be disseminated to the larger public which, through
taxes, is funding a large part of it (Illes et al., 2010). The field of
neuroimaging necessitates costly acquisition devices (MRI, PET,
E/MEG), and has been particularly well funded, not only because
of its potential for neuroscience, but also because the ideas were
communicated well to the public and to funders. Communication
is now largely operated and achieved by social media platforms
such as Twitter, LinkedIn, Facebook, and blog platforms, to name
a few. To read more about the advantages and disadvantages
of social media use for scientific communication, see (Bik and
Goldstein, 2013). Online resources that teach how to effectively
communicate science are provided by the Alda-Kavli Center for
Communicating Science54. To consolidate the current consensus
of knowledge,Wikipedia is probably the best resource; offering an
introduction to functional magnetic resonance imaging through
the consensus writing of many researchers (for example, see the
Wikipedia article for fMRI).

Last, but certainly not least, web based education platforms
are also re-inventing how training is performed in neuroimaging.
The standard in person courses are now often replaced by
on-line material (see ReproNim55, Coursera online courses56,

52http://www.brainhack.org/global2018/
53https://www.miccai.org/
54https://www.aldacenter.org/aklc
55www.repronim.org
56https://www.coursera.org/learn/functional-mri
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EdX online courses57), and a series of YouTube videos by
Jeanette Mumford58) and also Dirk Ostwald59 as examples,
amongst many good online materials. This allows laboratories
to give some inverted classroom type of training by considering
that formal lectures can be taken on-line but exercises or
projects are best solved or supervised with direct interactions.
It should be noted that on-line question and answer forums
such as Neurostars60 (with a tagging system similar to
stackoverflow61), NITRC, and software tool email lists, are
also key for the training of young researchers and boost
efficiency. For a review of scientific web communcation
tools, see Figure 2.

3.4. Pitfalls
There are both limits and dangers associated with relying
too much - possibly almost fully - on web technologies and
browser enabled applications and workflows for research. Web
communication does not necessarily allow the level of in depth
interactions that are required to discuss a specific research
question. In person meetings can be necessary both to organize
projects and to advance the understanding of our scientific
questions. In our experience, in person meetings are better at
providing decision structures and at building trust, which are
both necessary for the management of scientific projects.

Some of the dangers associated with the use of social media
could also propagate to the scientific arena. For instance, while
social media may be a great medium for quickly accessing or
publicizing articles, it may also focus the attention on a specific
cluster of the scientific community. This in turn may create
research networks that are less permeable to different ideas, like a
scientific echo chamber (Kim et al., 2017).

The immediate access to non -or poorly- peer-reviewed
works may also amplify incorrect results that would not stand
scrutiny under peer review. Take for example, a paper posted
on the preprint server arXiv called “Automated Inference on
Criminality using Face Images,” which received a lot of criticism
from the scientific community62. Even though it was not peer
reviewed, and as of this writing has not been published in a peer-
reviewed journal, it nevertheless received a lot of alarmist press
coverage. This can occur within the traditional literature, albeit at
a slower pace. The neuroscience and public health communities
are still contending with the spread of misinformation regarding
a link between vaccines and autism (Del Vicario et al., 2016),
despite the strong evidence to the contrary (Taylor et al., 2014).
Scientific communication is our responsibility as scientists, not
only to the scientific community but to the general public; we
must be cautious of the immediacy of the web.

57https://www.edx.org/course/fundamentals-biomedical-imaging-magnetic-

epflx-fndbioimg2x-0
58https://www.youtube.com/channel/UCZ7gF0zm35FwrFpDND6DWeA
59https://www.youtube.com/channel/UCQ8y5WCi5yAgDFxLmh2MJyg/videos
60https://neurostars.org
61https://stackoverflow.com
62https://arxiv.org/abs/1611.04135

4. CONCLUSION

The way web technologies - and the browser as the window to
these - are transforming scientific activity is still evolving. It is
clear that an important part of research work will be on-line
for the future PhD student, whether to acquire or disseminate
knowledge, conduct an experiment, and collaborate with experts.
This paradigm shift is already apparent with the advent of e-
conferences and the use of social media in the neuroscience
community. Some researchers now mostly rely on their Twitter
feeds to learn about new and interesting studies, delivering more
directed and rapid content than a traditional journal’s table of
contents. The browser brings the potential for massive online
collaboration and more effective communication, but the web
is still mostly an untapped resource in the neuroimaging and
neuroscience fields.

Some scholars argue that we are having a reproducibility
crisis. Many neuroimaging studies are found underpowered, and
have reported possibly inflated effect sizes and unstable results
(Yarkoni, 2009). We believe the browser can help, by connecting
users to large, documented, and shared datasets through web
portals, and by providing interfaces to upload, annotate, share
and publish raw and derived data. This would result in a
much broader pool of data that could be investigated and lead
to more stable results, such as those from meta- or a more
distributed, ENIGMA-style mega- analyses. These efforts should
complete the FAIR principles, moving toward “Interoperable
and Reusable” data, with community-defined documentation and
metadata standards.

Replicating a study is complex because computing
environments are difficult to transport to other systems.
Works produced with tools that are not easily transportable
to the web will be harder to communicate, and potentially less
reproducible or re-usable by others. The analysis of a dataset
performed on a local computer and producing figures as files
on a local disk will need to consider all the hurdles of local
storage, computational environments, and other technological
challenges, to create robust software tools that work on all
computational environments. Difficult installations limit the
capacity to rapidly reuse the results. The web browser can

help: the same analysis developed through a Jupyter notebook
interface and running on the Binder service will be re-usable at
no cost of transfer on either the producer and the receiver side.
Considering the cost for an individual or lab to reproduce an
analysis, collaborate on it, or re-use a component of it, should
be a key question when working on a research project. In many
cases, web technologies are the ideal solution.

We are experiencing a data deluge. As neuroimaging studies
accumulate larger datasets, we encounter many new challenges
in data analysis that we did not have with smaller datasets,
both in terms of our capacity to consolidate datasets originating
from various cohorts acquired on different scanners, and in
terms of the sheer computational power needed to process very
large datasets. Browsers, by interfacing with cloud computing
infrastructures, can provide us access to an almost infinite
resource of compute power. Data analyses that require visual
inspection are unfeasible to scale; the browser provides the
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FIGURE 2 | Overview of discussed scientific communication web resources. General resources for data sharing include (1) D3.js https://d3js.org; 2) Plotly: https://

plotly.com/; General neuroimaging data visualization libraries include

3) XTK (Haehn et al., 2014) 4) BrainBrowser (Sherif et al., 2015) 5) AMI.js (Bernal-Rusiel et al., 2017) 6) papaya.js https://github.com/rii-mango/papaya; 7) Open

Anatomy Browser (Halle et al., 2017) Some neuroimaging packages that release associated web-viewers: 8) AFQ-Browser (Yeatman et al., 2018) 9)

ROYGBIV/Mindboggle (Keshavan et al., 2017b; Klein et al., 2017) 10) MRIQC (Esteban et al., 2017) For scholarly publishing and review: 11) Stencila https://stenci.la;

12) hypothes.is https://hypothes.is; In education: 13) EdX https://www.edx.org/; 14) Coursera https://www.coursera.org/; For neuroimaging-specific courses and

resources: 15) YouTube channels of Dr. Jeanette Mumford and Dr. Dirk Ostwald 16) ReproNim training modules http://www.reproducibleimaging.org/; 17) Neurostars

forum https://neurostars.org; Web resources for learning how to communicate to the general public: 18) Alda-Kavli Learning Center online resources https://www.

aldacenter.org/AKLC

medium to collaborate with not only other experts, but
also citizen scientists. Communicating insights from high-
dimensional datasets is challenging, but the browser can host
interactive data visualizations that can be easily shared. As a
community we need to move toward developing browser-based
tools to efficiently gain insights from large neuroimaging datasets.

The browser was built under egalitarian principles of free
and open information exchange63, but scientific information is
not completely free. Today, traditional scientific publishers are
making unusually high profit margins and a large body of the
literature is behind paywalls (Buranyi, 2017). This prevents text-
mining and creates an unnecessary bottleneck to much needed
meta-analyses (Van Noorden, 2012). In addition, research has
become highly competitive [e.g., the famous adage, “publish or
perish” (De Rond and Miller, 2005)]. Some of this competition is
an impediment to the collaborative nature of research, and the
community as a whole could work much more efficiently and
reduce research cost if free and open principles were extended

63https://webfoundation.org/about/vision/history-of-the-web/

as much as possible (respecting ethical and legal constraints).
In order to advance more efficiently our understanding of the
brain, we need to shift our scientific culture away from silos of
domain expertise to a more collaborative, distributed network of
information exchange; a shift from the wet lab to the web lab.
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The Canadian Institutes for Health Research (CIHR) launched the “International

Collaborative Research Strategy for Alzheimer’s Disease” as a signature initiative,

focusing on Alzheimer’s Disease (AD) and related neurodegenerative disorders (NDDs).

The Canadian Consortium for Neurodegeneration and Aging (CCNA) was subsequently

established to coordinate and strengthen Canadian research on AD and NDDs. To

facilitate this research, CCNA uses LORIS, a modular data management system

that integrates acquisition, storage, curation, and dissemination across multiple

modalities. Through an unprecedented national collaboration studying various groups of

dementia-related diagnoses, CCNA aims to investigate and develop proactive treatment

strategies to improve disease prognosis and quality of life of those affected. However,

this constitutes a unique technical undertaking, as heterogeneous data collected from

sites across Canada must be uniformly organized, stored, and processed in a consistent

manner. Currently clinical, neuropsychological, imaging, genomic, and biospecimen data

for 509 CCNA subjects have been uploaded to LORIS. In addition, data validation is

handled through a number of quality control (QC) measures such as double data entry

(DDE), conflict flagging and resolution, imaging protocol checks1, and visual imaging

quality validation. Site coordinators are also notified of incidental findings found in

MRI reads or biosample analyses. Data is then disseminated to CCNA researchers

via a web-based Data-Querying Tool (DQT). This paper will detail the wide array of

capabilities handled by LORIS for CCNA, aiming to provide the necessary neuroinformatic

infrastructure for this nation-wide investigation of healthy and diseased aging.

Keywords: database, neuroimaging, infrastructure, dementia, Alzheimer’s

1Canadian Dementia Imaging Protocol (CDIP).
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INTRODUCTION

With 500,000 Canadians diagnosed with Alzheimer’s Disease
(AD), neurodegenerative diseases (NDDs) are becoming an
increasing priority for Canadian society due to their significant
and increasing socio-economic costs, which is estimated
nationally at 15 billion Canadian dollars annually, and expected
to rise to 150 billion dollars by 2038 (Fostering Alzheimer
Society of Canada, 2010; Statistics Canada, 2016). As a result,
conducting a nationwide study to investigate NDDs is paramount
for achieving a better understanding of their etiologies, finding
ways to mitigate their impact, and ultimately preventing
their development. In response, an initiative spearheaded by
the Canadian Institutes of Health Research (CIHR)2 and
supported by various provincial and non-governmental partners
(Appendix 1), assembled 340 researchers from across Canada
to form the Canadian Consortium on Neurodegeneration and
Aging (CCNA)3 The ultimate mandate of CCNA is to coordinate
and strengthen Canadian research groups to better delineate and
manage the causes, early detection, and treatment of dementia.

The primary vehicle for pursuing this mandate is the
Comprehensive Assessment of Neurodegeneration and
Dementia (COMPASS-ND), the signature clinical study
of CCNA, which is currently collecting clinical, sensory,
neuropsychological, neuroimaging, biological, and genetic
data from a cohort of 1,650 individuals aged 50–90 with
multiple types and severities of cognitive impairment, as well
as 660 cognitively intact elderly individuals, recruited across
30 Canadian sites (Appendix 2). This study poses a unique
and challenging technical undertaking, as it requires curation
and standardization of diversified data from numerous sites
across the country. To this end, CCNA has deployed LORIS4,
a web-based data management system for multi-site studies, to
facilitate collection, processing, analysis, and dissemination of
multi-modal data, while ensuring accuracy and completeness
with numerous quality control (QC) metrics in place (Das
et al., 2012, 2016). LORIS has been tailored to CCNA’s needs
through the customization of key features, such as (1) Bilingual
forms, (2) Training Portal for the familiarization of clinical
and neuropsychological measures (Campbell, 2017), (3) Study

Tracker for detailed study progression, 4) Biobanking module
with support for any type of biospecimen, (5) Genomic Browser
hosting CPG, SNP, and CNV genomics data (Rogers, 2015), (6)
Imaging Uploader for multi-modal imaging data (Mohaddes,
2015), (7) Radiological Review module for incidental finding
alerts and tracking, (8) Web-based Data-Querying Tool (DQT)
that enables customizable query-building and data extraction
(MacFarlane, 2014), (9) Configuration module to allow end-
users to customize the interface, and (10) Publications module
to manage consortium-led publications. LORIS’ user-friendly
interface, visualization tools, and targeted workflows also
conveniently connect interdisciplinary teams of researchers on
one platform.

2http://www.cihr-irsc.gc.ca/e/46475.html
3http://ccna-ccnv.ca
4http://loris.ca

In designing the specific features of LORIS for use within
CCNA, many lessons from other international initiatives
have been considered. Firstly, emphasis has been placed on
building features within LORIS that are FAIR (Findable,
Accessible, Interoperable and Reusable) (Chertkow, under
review). The driving impetus revolves around concerns of
usability and accuracy of data, especially given that the field of
neuroscience (among other scientific fields) has been faced with
a “reproducibility crisis” (Bennet and Miller, 2010; Glatard et al.,
2015; Eklund et al., 2016; Fostering reproducible fMRI Research,
2017; Gilmore et al., 2017). As data proliferates, the methods of
managing this data need to be carefully considered to avoid time
and resource-consuming errors related to the increased order of
complexity in its handling.

Through the use of a comprehensive data management
system, CCNA hopes to contribute pivotal research findings to
expand our understanding of NDDs, working toward prevention,
and improving the quality of life for those with dementia.
This paper examines how LORIS is tailored to the specific
workflows within CCNA and highlights key features that have
been implemented in order to facilitate data sharing between
CCNA and similar studies at a provincial level, including Ontario
Neurodegenerative Disease Research Initiative (ONDRI)5 and
Consortium for the Early Identification of Alzheimer’s Disease
(CIMA-Q)6

METHODS

The CCNA infrastructure is composed of numerous elements
that need to be organized, interoperable, and scalable, while
conforming to the CCNA-specific cohorts, such as COMPASS-
ND, the 5-years observational study aimed at recruiting 1,650
subjects (Chertkow, under review). The LORIS platform has
been chosen to service this national initiative and has been
set up to: (1) enable clinical sites to collect behavioral data
with multi-modal QC checks, and direct feedback to data entry
personnel, (2) facilitate biosample collection, (3) streamline
imaging acquisitions and related QC metrics, (4) allow data
sharing among researchers by performing self-administered
queries, while tracking participant status and data entry progress
throughout the study, (5) improve interoperability between
different projects using APIs, and (6) provide comprehensive
user support for the CCNA research community. As highlighted
below, we will examine each of these aspects to delineate how the
various multi-modal workflows have been configured in LORIS.

Behavioral Data Acquisition
Behavioral data acquisition includes the collection of
numerous measures (clinical, demographic, psychometric,
and neuropsychological) from subjects across study sites. Data
are collected through the use of paper forms which are later
digitized by entering the information into replicate online forms.
Several QC steps have been implemented in order to prevent
the storage and distribution of erroneous information at the

5http://ondri.ca
6http://www.cima-q.ca/en/home
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FIGURE 1 | CCNA data-upload flow in LORIS. Step 1: Creation and registration of subjects, Step 2: Creation of timepoint and media upload, Step 3: Behavioral data

entry and QC, and Step 4: Visit review and data dissemination.

time of dissemination. Rules are also coded within the LORIS
forms to ensure the completion of all required fields, avoiding
accidental omission of critical data. Similarly, fields that are
not contingent on the condition of a particular response are
exempt to avoid redundant data. Forms are also translated
in both French and English, with a unified backend storage
solution that stores a singular value across languages for analysis
consistency.

The procedure for uploading participant data into the
database (Figure 1) includes four different QC checks: (1) double
data entry (DDE), (2) conflict resolution, (3) monitoring, and (4)
final submission validation. As described in Figure 1, scanned
documents and audio files are uploaded to LORIS via the
Media Uploader where COMPASS-ND7 naming conventions
are imposed. Subsequently, data monitoring checks take place

7“COMPASS-ND Study.” CCNA. Available online at: http://ccna-ccnv.ca/en/

compass-nd-study/ (Retrieved December 11, 2016).

between initial and DDE. Once data have been validated
and pertinent details have been reported by a monitor via
the Behavioral Feedback tool, DDE is then completed by a
second individual. In case of a discrepancy between initial
and DDE results, a conflict will automatically be flagged in
the Conflict Resolver module. Conflicts are then resolved
when data entry personnel review and manually select the
correct answer from the conflicting options, by cross-referencing
the scanned original paper forms (uploaded to the Media
Uploader).

Finally, once all conflicting data have been amended and
behavioral feedback have been addressed, forms can be set
to “Complete” and the timepoint can be submitted for final
validation. This final step requires a specialist to confirm that
all necessary actions were taken and that the data are correct
and ready for release; only at this point will the data be frozen
to avoid any further modifications, and made available for
dissemination.
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Biosample Collection
Representing a core aspect of the data collected for the
COMPASS-ND Study, biospecimen collection brings its share of
challenges to the project. Biosamples collected from a subject can
not be digitized and archived in the same manner as imaging
and behavioral data, because the sample location, status, and
availability must be easily accessible while continuously staying
up to date, both in the system and in their physical storage.
A Biobanking tool within LORIS was designed specifically for
these purposes. Each collected specimen has a predefined storage
destination (see Table 1) and processing plan (see Figure 2).
CCNA draws on expertise from researchers across Canada
including, but not limited to, the Toronto Genomics Center
and the Canadian Biosample Repository (CBSR). As the CBSR
facilities provide a biosample storage solution for CCNA’s needs,
LORIS adapted its sample tracking tool to streamline interactions
with the CBSR database. This collaborative effort has led to
the development of a strict standard for export and import of
biospecimen data between CCNA sites and the CBSR database,
reinforced on both ends by LORIS software and CBSR-Biobank
software, respectively.

Imaging
Another crucial aspect to CCNA’s COMPASS-ND project is
the neuroimaging collection. The imaging workflow has been
summarized in Figure 3 and consists of (1) scan collection, (2)
visual QC, (3)MRI reads, and (4) storing volumetric data analysis
derived from external tools. An important step in this workflow
is the automated notifications to the sites when necessary.

Scan Collection
A major aspect of a multi-site study like COMPASS-ND is
the importance of timely scan upload by the acquisition sites.

TABLE 1 | Sample types, amounts, and destination.

Sample type Amount (tubes) Amount Destination

Whole blood 6ml (two 3ml tubes) N/A Sent to local labs for

CBC and HbA1C

analysis

Serum 30ml (three 10ml red top

tubes)

15ml 30 aliquots → CBSR

Buffy Coat 12ml (two 6ml lavender top

tubes)

1ml 2 aliquots → CBSR

Plasma 6ml 12 aliquots → CBSR

DNA 6ml (one 6ml lavender top

tube)

N/A Genomics Center,

Toronto

RNA 2.5ml (one 2.5ml paxgene

tube)

N/A Genomics Center,

Toronto

Urine Up to 60ml 6ml 12 aliquots → CBSR

Saliva 4ml (1 DNA genotek tube) 4ml 8 aliquots → CBSR

3ml → locally for

glucose, cells

CSF 15ml (two 10ml

polypropylene tubes for

12ml plus two standard

hospital tubes 1–2ml each)

15ml 24 aliquots → CBSR

Enabling faster QC allows for re-scan possibilities and quicker
response to incidental findings. Furthermore, the COMPASS-ND
central administration has set up a site reimbursement policy
whereby scan costs are reimbursed only after images have been
uploaded to LORIS and have adequate quality based on visual
assessments. This has resulted in reducing (if not eliminating)
missed scan uploads.

Another challenge in the success of this multi-site study is
adherence to a common MRI protocol that is flexible enough
to accommodate different scanner hardware capabilities across
manufacturers (Siemens, GE, and Philips), yet strict enough
to maintain a certain level of parameter uniformity across the
different MRI modalities collected. The Canadian Dementia
Imaging Protocol (CDIP; Duchesne, 2015; Duchesne et al.,
2018) used in CIMA-Q, a preceding dementia study in Québec
(Belleville, 2014), was extended to cover an increased number of
scanners (7) in CIMA-Q vs. 20 in CCNA) and recruitment sites
(7) in CIMA-Q vs. 35 in CCNA), thereby striking the balance
between flexibility and uniformity.

Visual QC
All scans inserted into LORIS are reviewed visually by a trained
team looking for artifacts (motion, scanner, intensity, and
others). Newly inserted scans can be identified quickly which

facilitates the visual QC feedback to be entered directly in the
system. The goal of this step is to identify images within a session
that pass QC standards set by the study, allowing further analysis
to proceed. In addition, in failed QC cases, further information is
communicated to the site to decide on the proper course of action
(subject re-scan if required).

Incidental Findings
Visually QC’ed sessions are important because they trigger
another important step in the imaging workflow, namely, the
MRI interpretations by another specialized team. The goal is
to identify any incidental findings and report back to the site
coordinator for further action in a timely manner. Forms with
restricted access granted to the COMPASS-ND radiology team
are devised for the study, and a notification system to alert the
site when this “research” read is completed. This notification
system points the site coordinator to a text printable version of
the report, and requires an acknowledgment of receipt of such
notification by the site. In case of incidental findings, the site takes
the full responsibility to follow up with the subject’s physician,
while LORIS facilitates physician access to the images, if desired.
A detailed workflow diagram and timeline is shown below (see
Figure 4 for incidental findings procedure).

Derived Data
Although derived data of non-imaging modalities are being
incorporated, the focus here is on illustrating how two types
of derived imaging data, both constituting an integral part of
the COMPASS-ND imaging workflow and mandate, are being
integrated back to LORIS. The first is an automated hippocampal
segmentation analysis based on True Positive Medical Devices
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FIGURE 2 | Sample collection and distribution.

(TPMD)8, where the goal is to perform volumetric analysis,
along with z-scores on different brain regions in comparison with
a control cohort from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI9). LORIS is extended to facilitate this task using
a set of tools that imports this data, processed externally, back
onto LORIS. The larger goal of importing this data back into
LORIS as behavioral forms is made possible through built-in
DQT capabilities that render this information as easily queryable
and accessible by researchers.

The second type of derived data is the lego phantom image
processing results (Fonov et al., 2010) for scanner distortion
identification and parameter extraction. These data are re-
inserted into LORIS for further correction by researchers, if
needed. A LORIS-CBRAIN hook was developed to read phantom
images (T1W, T2W, PD, and resting state fMRI) from LORIS’

8http://truepositivemd.com
9http://adni.loni.usc.edu

filesystem, processed on CBRAIN (Sherif et al., 2014), with
processed images and files put back onto the COMPASS-ND
filesystem. This used a containerized version of the Fonov
processing pipeline. Automatic launching of these tasks directly
from LORIS (i.e., without requiring logging into and launching
the task from within CBRAIN) is currently being developed,
making the process completely automated to the LORIS CCNA
user.

Data-Dissemination
Data dissemination is a crucial aspect in processing and analysis.
For this reason, we have incorporated several tools into LORIS
to facilitate querying, download and sharing, including our DQT
and Study Tracker.

The Data Query Tool
Historically, researchers required a programmer or database
administrator to query the database, and disseminate particular
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FIGURE 3 | Imaging workflow.

data outputs. This had potentially translated into days or weeks of
delay for their investigations. Today, LORIS assigns great priority
to data dissemination and enables researchers to directly query
the database and easily retrieve data. The DQT allows researchers
to design, execute, and save queries in a simple and intuitive
manner, without having to write complex database queries. The
interface allows for selection of variables, and quick download
in most commonly used formats (e.g., Excel, comma separated
values, and tab separated values). In addition, users can save
any query (both the variables and the population) and use it in
the future with new or updated data, without worrying about
ambiguities and inconsistencies. Datasets can also be tagged
with a version number or a timestamp such that longitudinal
comparisons can be made, minimizing any ambiguity about what
has been downloaded (Das et al., 2012; MacFarlane, 2014).

Study Tracker
Due to the magnitude and complexity of the COMPASS-ND
project, there is substantial difficulty in monitoring the progress
of data entry and visit registration among the dozens of study

sites submitting hundreds of different forms. Queries to the
database to acquire this information would be considerably
complex, with outputs that are convoluted and time consuming
for users to parse. With this in mind, the Study Tracker
module was developed, as described in Figure 5, to provide
study administrators an efficient graphical interface to view
the progression of data entry and visit registration. Using a
simple color coded system, representing data entry completion
relative to each timepoint’s individual deadline, users are able
to quickly identify data entry bottlenecks and unresolved
issues for each study participant at every visit. Focusing
on a specific timepoint brings up links that allow users
to navigate to: (1) individual measures administered at that
timepoint, (2) Conflict Resolver module to settle conflicting
data entry values, and (3) open Behavioral Feedback discussion
threads.

Interoperability
An important aspect of this study is being able to aggregate data
from already existing nodes. In order to reach COMPASS-ND’s
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FIGURE 4 | Detailed diagram of procedure for incidental findings.

enrollment target, interoperability has been developed with
BrainCODE10, a platform that houses the ONDRI study as
part of CCNA’s mandate. There are currently about 150
subjects in ONDRI that can be shared with CCNA. As
such, LORIS and BrainCODE needed to customize their API
capabilities to enable a 2-way transfer of imaging data that
adheres to the internal structures and desired business rules
of both systems. Transfer of images from BrainCODE to
LORIS is based on LORIS polling BrainCode’s XNAT imaging
storage system through a middleware interface (Figure 6).
Conversely, transferring images to BrainCODE relies on a
LORIS initiation of an automated message to BrainCODE’s
XTXGate11 notification system. The XTXGate system receives
a JSON-encoded message from LORIS with all metadata
necessary to identify, and subsequently download, the raw
DICOM images of the newly added MRI study using LORIS’
API.

10http://braininstitute.ca/research-data-sharing/brain-code
11https://xtxgate.braincode.ca/notify

User Support
Serving as a centralized user support portal for the consortium,
the Member’s Portal is a forum relying on the Discourse
software12 to connect users, coordinators, and administrators to
each other. The Discourse application is integrated inside LORIS
to avoid confusion and the steeper learning curves associated
with multiple-platform training. The portal posts are constantly
and consistently monitored by moderators and support staff to
ensure the content is appropriate and triaged in the appropriate
categories.

RESULTS

One of the major goals of CCNA is to develop a national
cohort to provide researchers with data to test and refine their
hypotheses about the progression of dementia. LORIS itself is the
tool through which the research community can access data in
a trustworthy and robust manner. This section will highlight the

12https://www.discourse.org
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FIGURE 5 | Study Tracker. Each row corresponds to a participant, with each circle in that row corresponding to a visit for that participant. The border color of the

circle represents the status of visit registration and the fill indicates data entry completion with respect to the due date. Here the open sidebar has the visit specific

view in focus, with links to individual forms as well as links to the Conflict Resolver.

data that were acquired, as well as several features that have been
tailored and developed within LORIS.

Behavioral Data in Numbers
Presently, CCNA has 509 registered subjects for COMPASS-
ND across 10 cohorts of various NDDs, 459 (90.17%) of
which are currently active in the study, omitting subjects who
have since become inactive (excluded, ineligible, etc.). Table 2
summarizes the number of registered subjects by cohort and
includes an in-depth breakdown of currently active subjects by
sex. COMPASS-ND will enroll 1,650 participants with various
types and severities of cognitive impairment, as well as 660
cognitively intact participants, which will be “deeply phenotyped”
through data collection from numerous modalities (Chertkow,
under review).

Currently clinical, neuropsychological and biospecimen data
for 509 COMPASS-ND subjects have been uploaded as described
in steps 1–4 in Figure 1. Upon successful upload, COMPASS-
ND coordinators use a suite of behavioral QC modules,
such as the Conflict Resolver and Feedback Module, to
ensure completeness and accuracy of the data. There have
been just over 30,000 conflicts flagged since the launch of
COMPASS-ND, spread over ∼200 subjects with over 8,100
data fields each; this number represents a 1.84% data entry
error rate and 60% conflict resolution rate. Once data
have passed the approval stage, they can be flagged as
“ready for dissemination” and are then accessible through
the DQT.

Biobank
The biospecimen collection and tracking needs for the study
have been addressed by the development of a specialized tool

in LORIS. This was implemented in order to streamline and
increase the level of automation for acquisition, and tracking
of biosamples on site during the subject’s visit. The tool is
composed of seven pages, each dealing with specific tissue
types or bodily fluids organized in their order of collection:
blood, urine, saliva, cerebrospinal fluid (CSF), buccal and fecal
samples, and a final page for extras (if there are any unused
vials). Each page is fully independent and each row on the page
contains information on a single sample only (see Figure 7);
a row contains information on the time of collection, barcode
ID, destination and location of the biosample. Each field can
also be saved independently. Furthermore, a set of rules and
validation steps automatically enforced by the software prevent
loss of data integrity. These rules ensure that all barcode IDs
are unique in the database, that the barcode scanned is of the
correct type for the specimen, that any modification is logged
with a timestamp, and that no field is left incomplete. After
all the biosamples are scanned into LORIS, a shipment flag is
enabled indicating that the sample is ready to be sent to the
off-site biospecimen repository; this flag can only be set if all
validations pass. Before the samples are shipped out and the
data are exported, a last quality check consisting of all of the
validations above is run by an administrator on the data. This
ensures that the exported data have not been modified between
the entry date and export date. Through training of the staff, in
conjunction with LORIS monitoring for omissions or errors in
the data entry of biosamples, the risk of inconsistencies in the
database is significantly reduced.

Imaging in Numbers
A total of 467 imaging scans (364 subjects and 103 phantoms,
76 of which are for lego phantoms), conformant to the Canadian
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FIGURE 6 | Imaging transfer (A) BrainCODE to LORIS (B) LORIS to BrainCODE.

Dementia Imaging Protocol (CDIP), have been uploaded from
20 different sites via the Imaging Uploader (Mohaddes, 2015).
Visualization and QC of image files are tailored to each
modality and customized per type of review (on-site, centralized,
manual, or automated). Of the 364 uploaded scans, 346
underwent visual QC on the different MRI subtype structural
modalities (with the following visual QC failures: 6 T1W, 3
2D Flair, 17 T2∗, and 5 dual echo PD/T2), and 331 were
read for MRI incidental findings, of which 19 had potentially
clinically relevant incidental findings. The remaining scans are
queued to be QC’d as well, as our QC team manages to
complete on average roughly a dozen QCs a week. In addition,
TPMD processed data analysis for 266 subjects have been
performed offline and results were imported back to LORIS,
with more analyses from the remaining subjects to come. Each
analysis contains specific anatomical measurements for gray
and white matter volume and other quantitative biomarkers.

Follow-up scans obtained from these subjects can then be
processed using TPMD, allowing for not only the course of the
degenerative diseases to be tracked, but quantified with precise
measurements.

Data Dissemination
The web-based DQT enables download of validated scalar
data (clinical, demographic, psychometric, biosample, and
neuropsychological data) linked to imaging data through a
simple querying interface (see Figure 8). Currently, curation has
been completed on the first 4 initial assessment visits (screening,
clinical, neuropsychological, and MRI) including data entry
feedback and conflict resolution in preparation for an upcoming
data release (fall of 2018) of the first 200 CCNA participants. This
release for CCNA researchers will include collected and derived
measures, all made accessible through a simple query in the DQT.
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TABLE 2 | Subject demographics per cohort.

Cohort Registered

subjects total

Active subjects

total

Male Female

SCI 82 76 23 (30.3%) 53 (69.7%)

MCI 186 176 86 (48.9.%) 90 (51.1%)

V-MCI 51 47 31 (66.0%) 16 (34.0%)

AD 71 55 34 (61.8%) 21 (38.2%)

Mixed 22 18 14 (77.8%) 4 (22.2%)

FTD 23 16 11 (68.7%) 5 (31.3%)

PD 21 29 18 (62.1%) 11 (37.9%)

PD-MCI 23 20 19 (86.4%) 3 (13.6%)

PDD 8 4 4 (100.0%) 0 (0.0%)

LBD 22 18 14 (77.8%) 4 (22.2%)

Total 509 459 252 (54.9%) 207 (45.1%)

SCI, Subjective Cognitive Impairment; MCI, Mild Cognitive Impairment; V-MCI, Subcortical

Ischemic Vascular MCI; AD, Alzheimer’s disease; Mixed, Dementia of Mixed Etiology; FTD,

Frontotemporal dementia; PD, Parkinson’s dementia; PD-MCI, Parkinson’s dementia (PD)

with MCI; PDD, Parkinson’s Disease Dementia; LBD, Lewy Body disease.

It is expected that this release will provide data to 17 different
CCNA teams aiming at addressing 106 proposed research
projects. Example questions include:

• What distinguishes V-MCI fromMCI? Mixed from AD?
• How does frailty impact cognition?
• How does sensory impairment relate to cognitive impairment?
• Does a comprehensive blood profile distinguish MCI from

AD?
• Do gait metrics distinguish AD from other types of dementia?

Interoperability
The technical infrastructure for imaging interoperability between
COMPASS-ND and ONDRI operates without user intervention.
It consists of scan imports from ONDRI, and includes DICOM
header de-identification, automatic file renaming, as well as
insertion via the Imaging pipeline using customizable MRI
protocol validation. In addition, the LORIS API was extended to
allow sharing/downloading of raw DICOM images (along with
its already existing MINC sharing capability). The addition of an
on-demand notification system to inform ONDRI of any newly
added DICOMs also allows for the flow of images from CCNA
to ONDRI, facilitating bi-directional MRI scan exchange in a
seamless manner.

User Support in Numbers
User support in a project of this scope does require significant
support mechanisms. The central purpose of the Members
Portal is to provide user support, similar to a web forum
where discussion occurs, and the highest number of posts are
prioritized. Currently there are 457 support requests from users
with 437 resolved issues, 12 with fixes underway, and 8 requiring
more information from the reporter.

It has been nearly 2 years since the start of CCNA’s COMPASS-
ND data collection, and LORIS’ technology and tools have
been extended to fulfill COMPASS-ND’s clinical and research

needs. This is further demonstrated with a comprehensive,
organized, and multi-modal dataset for 200 subjects that
will be disseminated to CCNA researchers in fall 2018 (see
Figures 9–11).

DISCUSSION

A national infrastructure for data management serves many
needs that are paramount to the consortium’s success (Toga,
2012). Having a tested technical platform for incoming data
reduces the burden on researchers to manually manage data, and
also provides tools and methods for accurate and efficient data
entry (Poline et al., 2012; Nichols et al., 2016).

One of the most fundamental aspects is standardization,
which remains an ongoing issue for any data sharing consortium.
If data are properly structured, collaborative efforts become
much more efficient and reduce the future burden of cross-
site analysis (Gorgolewski et al., 2016; Munafo et al., 2017).
To that effect, the CCNA infrastructure has incorporated many
such standardization techniques in LORIS. Behavioral measures
are coded in a structured manner, with all QC checkpoints
rigorously enforced, and in turn, queryable alongside individual
data items. Imaging acquisitions have been harmonized, as
prescribed by the CDIP protocol. Biospecimen data have been
organized to conform to a standard established between CCNA
and CBSR, allowing for easier collaboration and safer data
transfers. Collecting data according to a standardized common
protocol and organizing it in a uniform manner makes it easier
to process and share, while simultaneously reducing error rates
resulting from manual manipulation of data (Gorgolewski and
Poldrack, 2016). A great problem in the neuroscience community
has been the ability to properly reproduce findings, an issue that
stems in no small part from the lack of consistency of the data
(Zuo and Xing, 2014; Zuo et al., 2014; Turner et al., 2018).

A major challenge within a national network, such as CCNA
is ensuring interoperability between all technical segments
and institutions. This is achieved through standardization
initiatives, ensuring data harmonization, and proper API
documentation and development useable between existing
platforms and tools. To that effect, the CCNA-LORIS system has
demonstrated interoperability, in that LORIS and BrainCODE
regularly exchange imaging data between the ONDRI study
and the national CCNA data platform. The technical software
infrastructure for bi-directional exchange of behavioral data can
mirror the imaging data, as embedded API functionalities make
this sharing of behavioral data possible (for example in JSON
format). However, any such behavioral data exchange includes
additional challenges, in large part due to the harmonization
required to translate data forms and dictionaries betweenONDRI
and CCNA or any two projects in general (Richesson and
Nadkami, 2011). An extensive data mapping exercise is currently
underway in LORIS transferring behavioral data from CIMA-Q
to CCNA, with a similar endeavor shortly taking place between
ONDRI and CCNA. While LORIS includes a data dictionary
tool to facilitate ontological harmonization for any given study,
limitations persist to map ontologies across studies due to greater
standardization issues within the neuroscience community.
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FIGURE 7 | Biosamples collection forms.

FIGURE 8 | Sample result (extracted from DQT) for the upcoming CCNA release.

Provenance capture is also an important requirement
in ensuring that data are usable and reproducible. LORIS
natively handles a great deal of provenance information. For
example, images including any associated metadata (e.g., scanner
specifications, protocols, demographic information, and image
processing details) are always extracted and stored. Behavioral
data, scoring, updates, corrections, and any QC results are
also captured. In addition, project metadata, as well as a
complete subject audit trail are always available. LORIS also
leverages existing platforms to provide the necessary information
required for analysis (Maumet et al., 2016), and works

with standardization groups to ensure maximum provenance
retention (Glatard et al., 2015; Gorgolewski et al., 2016)

Increasing sample sizes and recruitment targets can improve
collaborations and result in reduced redundancy in how
research resources are invested (Evans and Brain Development
Cooperative Group, 2006). Nationally coordinated approaches
to building infrastructure can ensure more fruitful returns
to a greater number of researchers across federally-funded
initiatives. Furthermore, increased population can result in a
more diversified sample that considers demographic variability,
which is key to generalizability of results (Zuo et al.,
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FIGURE 9 | Graphs showing overall activity on the Member’s Portal over the last year. Signups: accounts added which are imported automatically from the LORIS

users list. Topics: number of new support requests. Posts: number of support replies from our user support team. Daily active users/monthly active users (DAU/MAU):

number of members that logged in within the last day, divided by number of members that logged in within the last month. Daily Engaged Users: number of users that

liked or posted something new per day. New Contributors: number of users that made their first contribution during the indicated period.

FIGURE 10 | Graph representing the number of topics (support requests) created across time between January 1st, 2016 and August 18th, 2018.

2014). These points are especially true when dealing with
machine learning algorithms, which require access to large
data samples that need to be organized in a consistent
manner (Toga, 2012). In the absence of larger cohorts,
researchers have traditionally leveraged smaller studies with
non-standardized protocols for meta-analysis, often lacking

adequate harmonization or normalization. Consequently, this
results in significant variability and decreased confidence in
findings. Momentum has accumulated toward sustaining a
higher standard of data quality and volume to accelerate
research discovery optimized for transparent and reliable
results.
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FIGURE 11 | Graph representing the longitudinal number of posts (support request replies) between January 1st, 2016 and August 18th, 2018.

Establishing a unified methodological approach to data
acquisition and processing can dramatically reduce the burden
associated with calibration and harmonization (Poldrack and
Poline, 2015). This setup typically requires less training as
most researchers become familiar with one system for data
management. Another benefit of a national infrastructure is the
ability to leverage expertise of highly specialized laboratories for
specific processing and analysis. Proven benefits of data sharing
within a multi-site national infrastructure can be drawn from
ADNI’s global impact (Weiner et al., 2015). A decade since its
inception, over 1000 scientific publications have been produced
using this dataset (Toga and Crawford, 2015). There is a strong
argument to bemade that the choice of this approach has resulted
not only in increased citations, but also in collaborations (Toga
et al., 2017).

Despite the benefits, challenges persist in large data
infrastructure and analysis (Kang et al., 2016). There is
often an initial investment required in terms of effort to unify
the various members of a scientific discipline, as well as a
technical platform to develop (or adopt) a comprehensive
infrastructure. The technical challenges can manifest themselves
in a number of ways. Data management platforms need to
be customizable, easily extensible, and highly interoperable.
While LORIS has been designed with these features from
its onset, establishing data access barriers between projects
and sites continues to be improved. LORIS defines several
access control for specific modules and modalities, however
more granular permissions are being added (such as project-
dependent access restrictions or project/site-specific permission

assignment). Exchanging data between existing sites can require
establishing common data definitions and exchange protocols.
Often, specialized laboratories rely on external analysis tools
that generate proprietary or unstandardized output, or in the
case of neuroimaging analysis tools, rely on pipelines that are
either developed in-house, or placed on distributed computing
resources. It then becomes imperative for the data management
system to carefully: (1) interact harmoniously with external tools
in terms of not only reading, but also writing the data back onto
the system, and (2) integrate analyzed and derived data in a
harmonized and queryable manner.

Scaling these operations across a national consortium can
also be an ongoing challenge. Leveraging the full power of high
performance computing environments can involve a significant
learning curve both at a low-level of computing infrastructure as
well as higher level issues of processing and analysis (Da Mota
et al., 2014).

Issues can also result from policy requirements that might
differ between sites or regions. For any study, there are specific
ethical and regulatory procedures that are governed by local
ethics committee, regional governing boards, and legislative
privacy and ethics laws. Although LORIS is not directly governed
by these procedures, there are indirect consequences which
constantly present new challenges to the software. A simple
example of such procedures is amendments brought to existing
instruments which go through ethics approval in each region of
the country simultaneously, as they are reviewed independently
in each province and approved at different times. During this
process, sites in different provinces administer different versions
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of a single instrument, while LORIS, currently displays a single
version of any instrument. Studies can certainly benefit from
ethical frameworks for data sharing (Dyke et al., 2018) as these
issues must be internalized when sharing data nationally (or
internationally).

It should be noted that there are other systems that can
curate and manage data, some of which have gained significant
adoption, such as RedCap (Harris et al., 2009), a platform
to create clinical and psychometric forms for web-based data
entry. While this platform has been developed to simplify
several aspects of data collection, it was not designed for
multi-modal curation (such as imaging or genomics data). In
comparison, LORIS is extensible, modular and scalable to allow
for heterogeneous data types. There are numerous tools that
manage parts of the curation process, but do not handle array
of functionalities required for the full lifecycle of a longitudinal,
multi-modal study. Other open source platforms also exist
such as XNAT (Vaccarino et al., 2018) and COINS (Scott
et al., 2011), each of which can handle such requirements,
but have different methodologies for curation. While each of
these systems could be leveraged, LORIS has recently heavily
invested in open science principles and resulting data sharing
capabilities.

Adhering to the FAIR principles (Findable, Accessible,
Interoperable, and Reproducible) (Wilkinson et al., 2016) is a
central tenet in building a data sharing platform (Gorgolewski
et al., 2013). As CCNA continues to develop, the underpinning
factors for successful data collection and sharing across a national
consortia will likewise undergo enhancements, in supporting a
technical infrastructure that is flexible enough to import data
from other platforms, harmonize and coordinate data from
different sources in a queryable manner, and seamless user-facing
processes which increase the transparency and datamanagement.
To that end, CCNA has considered these concepts in its adoption
of LORIS, which integrates and continues to enhance these facets
in data sharing.

Future Developments
Future developments are planned in the following areas: (1)
biospecimen data, (2) imaging modalities, (3) new behavioral
cohorts, and (4) CCNA-specific technological advancements.

1) Biospecimens: Collection will require the following features in
the CCNA data platform:

• Biobank: Processed data to be imported for subject
biomarkers (general health metrics, sex-related hormones,
inflammation, lipid metabolism, microbiome, and
oxidative stress)

• Genomic Browser: Extensive genotyping13 with summary
epi/genetic data (CPG, SNP, and CNV) will be stored (and
visualizable) to evaluate markers of genetic susceptibility.

• Brainbank: Brain tissue pathology data for diagnosis and
proteomics to be imported from Canadian ADNI Brain

13Using the Affymetrix UK Biobank Axiom array chip for genetic association

analysis at Mt. Sinai Clinical Genomics Centre.

Donation & Neuropathology Network (Franklin et al.,
2015).

2) Imaging: Upgrades are planned to incorporate additional
modalities:

• Electrophysiological module:COMPASS-ND to be extended
to study epilepsy. LORIS will display EEG14, by integrating
an EEG-BIDS15 reader for standardized EEG data.

• Positron Emission Tomography (PET): Extensions to
support PET from Siemens High-Resolution Research
Tomograph (HRRT) is currently being developed.

3) Behavioral cohorts: Clinical/psychometric data will be coded
in LORIS:

• Functional Assessment of Vascular Reactivity (FAVR):16

Longitudinally investigating cognitive impairment and
vascular dysfunction in AD, and small vessel disease for
subjects with cerebral amyloid angiopathy, AD, and MCI.

• Normative Comparison & Control Group: Cognitively
intact older individuals, providing normative
neuropsychological data to the COMPASS-ND battery.

• Sleep Study: Identify brain mechanisms linking sleep and
circadian rhythm disruption to cognitive decline and
incident AD, and other dementias in older adults17.

• COMPASS-ND Intervention Studies:

◦ SYNERGIC (Synchronizing Exercise Remedies in Gait &
Cognition)

◦ ENGAGE (Exploring Novel Group Activities for
Geriatric Enrichment)

◦ LEAD (Lifestyle, Exercise, And Dementia).

4) Novel Technological components: New features and
technologies enhance reliability:

• Interoperability:DataLad and Git-Annex is currently being
developed to:

◦ Submit metadata and images from sites to a central
repository.

◦ Build multi-layered user-access with prolific levels of
control for sharing data.

◦ Leverage metadata searching capabilities already
integrated within DataLad.

◦ Seamlessly link metadata with the MRI images tracked
through Git-Annex18.

◦ Download images in BIDS format19 (Gorgolewski et al.,
2016).

14Electroencephalography (EEG).
15http://bids.neuroimaging.io/
16https://www.ucalgary.ca/esmithresearch/projects/favr
17Using data collected in LORIS from the following tools: a) Actigraphy for

Quantification of Sleep Architecture and Circadian Irregularity, b) WatchPAT

Finger Plethysmography for Quantification of Sleep Apnea, and c) Ambulatory

Polysomnography sleep recording.
18Scans acquired are for one CCNA and two ONDRI human phantoms. Both

studies will be augmented to 3 human phantoms to measure inter-scanner

variability. Data will eventually be shared openly.
19Brain Imaging Data Structure.

Frontiers in Neuroinformatics | www.frontiersin.org December 2018 | Volume 12 | Article 8544

http://bids.neuroimaging.io/
https://www.ucalgary.ca/esmithresearch/projects/favr
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Mohaddes et al. National Neuroinformatics Framework for Dementia

• API: Automate time consuming tasks to improve
interoperability/reliability with:

◦ Direct database queries/updates to allow external apps to
use LORIS.

◦ Enable mass uploads.
◦ Create subject identifiers.
◦ Extract-Transform-Load tool to import data (SQL and

JSON) with user-defined rules.

• Standardization: To ensure reproducibility, several features
can be improved:

◦ Image processing containerization (e.g., tissue
classification & volumetrics).

◦ Common data elements are being leveraged
increasingly.

◦ Forms building tools20 to abet this process.

• User Interface: Several updates will be made to optimize

usability:

◦ Dashboard will be further personalized with
notifications and visualizations.

◦ Workflow integration (intuitive sequencing of user
tasks) will be customized.

CONCLUSION

CCNA’s COMPASS-ND study leverages the infrastructure of
LORIS, an established data management platform with the ability
to harmonize, consolidate, and disseminate heterogeneous data
types in a user-friendly, and robust fashion. LORIS has been fully
customized to the pan-Canadian nature of CCNA, and offers
the flexibility to allow for ongoing development as the study
matures. This infrastructure also meets the evolving needs of the
Canadian data sharing landscape, where CCNA is an exemplar
of the successful efforts to consolidate data across the country to
accelerate discovery in NDD research.

20Brainverse is an example.
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Analysis of “omics” data is often a long and segmented process, encompassing multiple
stages from initial data collection to processing, quality control and visualization. The
cross-modal nature of recent genomic analyses renders this process challenging to both
automate and standardize; consequently, users often resort to manual interventions that
compromise data reliability and reproducibility. This in turn can produce multiple versions
of datasets across storage systems. As a result, scientists can lose significant time
and resources trying to execute and monitor their analytical workflows and encounter
difficulties sharing versioned data. In 2015, the Ludmer Centre for Neuroinformatics
and Mental Health at McGill University brought together expertise from the Douglas
Mental Health University Institute, the Lady Davis Institute and the Montreal Neurological
Institute (MNI) to form a genetics/epigenetics working group. The objectives of this
working group are to: (i) design an automated and seamless process for (epi)genetic data
that consolidates heterogeneous datasets into the LORIS open-source data platform;
(ii) streamline data analysis; (iii) integrate results with provenance information; and
(iv) facilitate structured and versioned sharing of pipelines for optimized reproducibility
using high-performance computing (HPC) environments via the CBRAIN processing
portal. This article outlines the resulting generalizable “omics” framework and its benefits,
specifically, the ability to: (i) integrate multiple types of biological and multi-modal
datasets (imaging, clinical, demographics and behavioral); (ii) automate the process of
launching analysis pipelines on HPC platforms; (iii) remove the bioinformatic barriers
that are inherent to this process; (iv) ensure standardization and transparent sharing
of processing pipelines to improve computational consistency; (v) store results in a
queryable web interface; (vi) offer visualization tools to better view the data; and
(vii) provide the mechanisms to ensure usability and reproducibility. This framework
for workflows facilitates brain research discovery by reducing human error through
automation of analysis pipelines and seamless linking of multimodal data, allowing
investigators to focus on research instead of data handling.

Keywords: workflow, omics analysis, integrative neuroscience, reproducibility, database, HPC, genomics,
biostatistics
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INTRODUCTION

Genomic analysis and bioinformatics have undergone a
technological revolution over the past few decades, one that
holds great promise for scientific discovery but also poses
significant big-data challenges. To increase accessibility for
researchers with varying levels of informatics expertise, the
‘‘Big Data’’ components of ‘‘omics’’1 analyses need to be
integrated into an automated and seamless workflow. To this
end, in 2015 the Ludmer Centre for Neuroinformatics and
Mental Health2 created a genetic/epigenetic working group
composed of three member institutions of McGill University:
(i) the Douglas Mental Health University Institute, focusing
on biological questions; (ii) the Lady Davis Institute at the
Jewish General Hospital, focusing on tools for statistical analysis;
and (iii) the McGill Centre for Integrative Neuroscience at the
Montreal Neurological Institute (MNI), responsible for the
neuroinformatics infrastructure (Das et al., 2016, 2017).

The goal of the working group is the integration of
‘‘omics’’ data into the LORIS data platform3, a web-based
open-source data and project management platform (Das et al.,
2011) to streamline analysis, integrate results, and facilitate
structured sharing for optimized reproducibility, using high-
performance-computing (HPC) environments via CBRAIN4

(Sherif et al., 2014), a web-based open-source platform that
allows computationally intensive analyses of data by connecting
researchers to HPC facilities. The pilot use-case for multimodal
‘‘omics’’ workflow integration focused on analysis outputs
from the Methylation450k5 pipeline, a functional normalization
pipeline for epigenomic data from a Ludmer Centre-based study.

This article describes an extensible and adaptable framework
that addresses critical gaps in integrating ‘‘omics’’ data with
multi-modal phenotypic datasets (imaging, behavioral, clinical,
demographic, . . .) using HPC and databases, while leveraging
standardization and automation to provide GUI-based
workflows for less technical researchers. Analysis of data,
specifically genomic or imaging, can involve multiple parallel
paths. These workflows typically begin with the processing of
biological samples, followed by quality control and analysis
using data-specific pipelines, and culminate in querying and
visualization of summary data. The complexity of such analyses
often requires a framework that can comprehensively integrate
these steps across data modalities, an element that is currently
lacking in many existing ‘‘omics’’ toolboxes and workflows
(Kanwal et al., 2017).

In designing such a framework, it is also important to consider
features that would simplify and strengthen effective data sharing
mechanisms, especially as we enter the era of Open Science.
The processing of raw data is often performed by third-party
platforms, whereby the resulting files are processed using one or
more bioinformatic pipelines by the host laboratories.

1Such as transcriptomics, proteomics, blood sugar, anthropometry, etc.
2http://ludmercenter.ca
3http://www.loris.ca
4http://mcin-cnim.ca/technology/cbrain/
5https://github.com/GreenwoodLab/methylation450KPipeline

One of the inefficiencies of this model is that each processing
step typically generates a new version of the dataset, which
is often stored on a local workstation or distributed across
multiple drives. As quality control and post-processing tasks
remove aberrant values, additional versions can multiply across
storage systems, but without having sufficient transparency in
the options or environment parameters used in the execution
to generate each version (Glatard et al., 2015). Not surprisingly,
this also leads to ineffective data-sharing, whereby it becomes
unclear which copies of the data contain the most comprehensive
and accurate information, requiring researchers to sift through
redundant data.

A few systems have been created, such as the Galaxy platform
for genomic data (Afgan et al., 2016, 2018) to integrate biological
data and streamline genetic analysis (Kanwal et al., 2017). Many
software platforms exist for sharing workflows to capture and
promote the execution of reproducible analyses, such as Jupyter
notebooks6. While such models seek to increase reproducibility
in computational biology, they do not prioritize cross-modal
data integration. Importantly, the field would benefit from
a structured workflow that links organized cross-sectional or
longitudinal multimodal data (genetics, imaging, behavioral)
with HPC platforms for analysis (Poldrack et al., 2017).

We have leveraged existing architectures to create a model
that aims to abstract the complexities of multi-modal processing
and analysis. This combined framework builds upon systems
documented in previous publications (Das et al., 2016, 2017) and
integrates additional technologies and feature-layers to support
an approach that prioritizes the: (i) integration of heterogeneous
biological data with multi-modal datasets (imaging, clinical,
demographics and behavioral); (ii) automation in launching
analysis pipelines on HPC platforms; (iii) removal of technical
barriers that are inherent to this process (Pool and Esnayra,
2000); (iv) standardization and transparent sharing of processing
pipelines to improve computational consistency; (v) storage
of results into a queryable web interface; (vi) feature rich
visualization tools; and (vii) provision of mechanisms to
ensure usability and reproducibility. The result is a streamlined
approach for cross-modal analysis (such as imaging genetics)
that also promotes the FAIR principles (Findable, Accessible,
Interoperable and Reproducible) for data sharing (Wilkinson
et al., 2016). The framework presented in this article can
be used by researchers interested in integrating ‘‘omics’’ data
with other multimodal datasets, such as those utilized in
behavioral and/or imaging genetics projects, and can be readily
modified to accommodate the specific needs of other users and
projects.

MATERIALS AND METHODS

The goal of this ‘‘omics’’ framework is to take individual
processing and analysis tasks, including any manual steps that
might already exist, and integrate them into a more automated
model that leverages: (i) standardization and harmonization
tools; (ii) HPC resources; and (iii) application programming

6http://jupyter.org/
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interface (API) interoperability for automation between the
existing platforms. In this section, we describe the components
of software and platforms, and recent extensions, which
together support workflows for processing and transferring
‘‘omics’’ data.

The complexities of cross-modal workflows in ‘‘omics’’
analyses is a significant challenge for researchers given that such
workflows are difficult to automate and require regular user
intervention, support and maintenance. Tool development and
integration at iterative stages of development is time-consuming
and mandates thorough testing to successfully build a workflow.
To this end, identifying the labor-intensive steps (file transfers,
versioning, user access, etc.) of a data processing workflow and
automating them is an essential priority.

Building a generalized framework by extending the MNI
ecosystem’s combined platform of LORIS and CBRAIN starts
with populating the LORIS database with participant data for
all modalities (such as behavioral, imaging and ‘‘omics’’). For
the two systems to communicate and exchange data as input
or output of a given pipeline, a shared space must be defined.
(This role can be served by a CBRAIN DataProvider, accessible

to the LORIS filesystem). That is followed by the installation
of tools on CBRAIN such that they can be launched on HPCs.
Finally, customizations and extensions to LORIS can support
new formats of data. Figure 1 shows the cyclical flow of data
between LORIS and CBRAIN, whereby stored datasets are
processed and their outputs returned as results.

A typical use-case begins with biological samples and
phenotypic data collected during a subject’s visit. The
biological/phenotypic samples are then processed on-site
or shipped to a specialized facility for genomic analysis or
image capture, after which raw data files are created and
made available for statistical and/or bioinformatics analysis.
Files containing raw data are stored in a LORIS database and
then subsets are queried, selected and sent to CBRAIN to be
processed by an analysis tool. The output is returned back
to LORIS for storage along with its provenance metadata
from the processing task. Summary and aggregate data can be
parsed and explored through various LORIS modules and then
queried to create new datasets linked to provenance metadata.
This model allows for iterative processing as data selections
can be resubmitted from LORIS for further processing and

FIGURE 1 | Generalized Workflow cycle between the LORIS data-management platform and the CBRAIN processing platform. Data from LORIS (Storage) can be
queried and filtered (Genomic Browser and other tools) to select a set of variables and/or files. The newly created dataset is then transferred to the CBRAIN
DataProvider for processing (Task Launching) and analysis (high-performance computing, HPC). The output is synced back to LORIS with the provenance data.
Results can be examined and a new iteration can begin with the added derived variables. For stepwise details of this model, please see Figure 2 in “Results” section.
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FIGURE 2 | Genomic processing cycle between LORIS and CBRAIN through the DataProvider. Methylation450K pipeline—Brown path (1): IDAT files are transferred
to the DataProvider, then the methylation normalization pipeline is launched. The Beta-values output file is returned to the DataProvider, and then loaded into LORIS
using the Genomic Uploader. The inserted results can be browsed or visualized in the Genomic Browser module. ImputePrepSanger pipeline—Green path (2): PLINK
files are added to LORIS via the Genomic Uploader, selected in the DatasetBuilder, and sent to CBRAIN for the imputePrepSanger tool to be run. The resulting
Variant Call Format (VCF) output file is stored in LORIS—Pink path (4). Statistical analysis—Blue path (3): using the DatasetBuilder module in LORIS, data from any
source (Orange path (5), Red path (6)) can be packaged in a new dataset and sent to CBRAIN via the DataProvider for statistical analysis using (e.g.,) the principal
component of explained variance (PCEV) pipeline.

analysis tasks via CBRAIN, with derived results returned once
again into LORIS for storage and dissemination. It should
be noted that a specific use-case will be demonstrated in the
Results section that focuses on genomic and epigenomic data;
however, similar procedures would apply for other ‘‘omics’’ data
types.

To illustrate this framework with a genomic processing
workflow, the relevant components of the LORIS and CBRAIN
platforms (and feature extensions) are described below.
Also outlined are the structural design elements facilitated
by RESTful7 API interoperability between the two systems
including: (i) the data transfer mechanisms; (ii) the abstraction
of data organization; and (iii) the pipeline execution flow. Key

7Representational State Transfer (REST) is an software architecture style
compliant with Hypertext Transfer Protocol (RFC 2616) where each url is a
resource that can be interact with using verbs (GET, PUT, POST, DELETE, etc.).

auxiliary components and technologies interfacing with these
platforms are integral to the multimodal framework, including
containerization of pipelines, visualization of genomic and
epigenomic data and NoSQL data storage.

LORIS Data Platform
The LORIS platform is the entry point for data in most workflows
deployed on this integrated framework. LORIS can house data
at various stages of the processing lifecycle, and can typically
be customized with import pipelines to accept and validate files
of any type. Imported files can then be parsed to extract and
store any relevant values in relational database tables, which
are accessed by web-facing front-end modules. For large files,
the filesets themselves will be organized on the LORIS data
partition, and linked by their file paths from individual database-
table entries, which serve as pointers to the data location on the
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server. Metadata for these files can also be stored in database
tables in a key-value pair format, which is also an extensible
structure that accepts any data format. File paths and metadata
are easily accessible via LORIS’ front-end modules, through
which users can peruse, filter, visualize and retrieve these datasets
for download or export to other systems via the user-friendly web
interface. Later in under the ‘‘LORIS Genomic Browser’’ section,
we expand upon new ‘‘omics’’ features in LORIS.

CBRAIN
CBRAIN’s web-based portal for the Compute Canada8 network
enables user-friendly deployment and execution of pipelines
across the Canadian HPC grid. For LORIS to launch a data
processing task9 through CBRAIN, the interface between these
systems must define the expected types and formats for both
inputs and outputs.

Several key CBRAIN features support the workflow model
across platforms. First, data storage and transfers are handled by
a DataProvider (a designated file server space which connects to
CBRAIN and the HPC grid), which caches and tracks data files
across the HPC network. Second, CBRAIN’s ToolConfiguration
profile enables rapid setup and user-friendly re-use of a
scientific tool, describing where and how it is available on the
supercomputer clusters, as well as defining the cluster setup
parameters (environment setup, CPUs used, queue name, etc.)
and input parameters required for executing the tool.

The ToolConfiguration can be automatically generated
in CBRAIN through a Boutiques descriptor (Glatard et al.,
2018) which provides a standard JSON protocol for defining
the command-line and input and output variables for
pipeline execution. Typically, this initial setup needs to be
configured only once, thereafter allowing for re-use of the
same software setup by providing the proper input parameters.
Together, the DataProvider and ToolConfiguration abstract
the infrastructural complexities of data storage, transfer and
processing parameters for the user while promoting transparency
and reproducibility.

While CBRAIN supports the direct installation of pipelines
for execution on HPC clusters, it has also introduced support for
container technologies to specify the environment and package
versions for optimally pre-defined execution of such pipelines.

LORIS DataProvider for CBRAIN
The DataProvider acts as a shared file system, such that
CBRAIN and LORIS can interoperate with file-level read and
write access of both the data and metadata. On the CBRAIN
side, files are read from the LORIS DataProvider repository
and made available to the HPC network. Once processing has
been completed on the HPC grid, results from the pipeline
execution on CBRAIN are written to the LORIS DataProvider,
and subsequently recognized and imported back into the LORIS
database and file system.

8www.computecanada.ca
9A task is an instance of a tool running on CBRAIN where a tool is any piece of
software that take inputs and generates outputs installed on CBRAIN.

To make the file system interaction easier for LORIS’ web
application, a dedicated directory on the LORIS server is
designated as the DataProvider. Both CBRAIN and LORIS
can read and write to this directory, which effectively allows
for communicating datasets between platforms along with
accompanying metadata.

Preparation of Pipelines (Containers)
To facilitate the flexible and reproducible integration and
deployment of new tools across different HPC resources,
CBRAIN and other execution platforms support containerization
technology such as Docker10 and Singularity11. A container
encapsulates the setup of the processing environment as well
as any specific support packages that are needed, thereby
making installation of software architecture independent, which
improves reproducibility of analysis. Typically, an accompanying
container description file12 describes every step necessary to
construct the container. This provides the benefit of organizing
and recording each aspect of the pipeline, and facilitates
transparency in defining the runtime environment in a shareable,
versionable document.

Additionally, by documenting the input parameters for the
pipeline, specific aspects of the pipeline run can be adjusted
and tracked in a controlled manner ensuring that all other
factors stay the same, such as running the same pipeline
using a different R package for functional normalization. For
instance, the Methylation450k pipeline, which provides quality
control (QC) and functional normalization of the Illumina 450k
beadchip array data, currently integrates the funNorm (Fortin
et al., 2014) R package. However, the flexibility offered by
container-defined plug-ins and parameters enables a user to
rapidly relaunch the same pipeline on a similar R package
funtooNorm (Oros Klein et al., 2016), providing a clearly
documented trace of provenance for comparison of results
between the two normalization algorithms.

Another example is the imputePrepSanger13 pipeline from
the Ludmer Centre. This tool prepares PLINK genotype files to
be sent to the Sanger Institute’s online Imputation Service14 by
performing quality control, adjusting the positions and strand
alignment of PLINK files, then converting them to VCF15

for submission to the Sanger server. The pipeline execution
parameters were defined in a container on CBRAIN.

A third pipeline, principal component of explained variance
(PCEV)16, was prepared to run a dimension-reduction algorithm
to explain a maximum of variance in a response vector
governed by a set of covariates. Specifically, this tool can be
run multiple times, using different genomic-ranges to provide

10Docker containers are units of processing where tool versions, an environment
(OS), and sequences of operations can be reproduced on any system.
11Singularity is another container technology that has been privileged over Docker
on HPC units served by CBRAIN.
12Container description files are versioned text files that contain the recipe to
(re)build a given container image; they present themselves as a sequence of shell
commands.
13https://hub.docker.com/r/eauforest/imputeprepsanger/
14https://www.sanger.ac.uk/science/tools/sanger-imputation-service
15Variant Call Format. A specification to encode genetic variations in a text file.
16https://github.com/GreenwoodLab/pcev_pipelineCBRAIN
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a new set of methylation Beta-values and genomic variants
and/or a different set of covariates from behavioral and imaging
metrics.

This model can be adapted for larger workflows, enabling
reproducible execution of pipelines as a generalizable concept
that could be applied to many use-cases. Examples include
automatically running a piece of software when new data are
available, performing quality control or validation, or ensuring
that users run the same tool version in the same runtime
conditions throughout the lifecycle of a study.

CBRAIN/LORIS Hooks
In order for data to pass seamlessly from one system to another,
communication occurs between LORIS and CBRAIN using a
RESTful (web) API for requests, and the DataProvider for
data transfer and registration. A client for the CBRAIN API
written in the PHP programming language has been created
using SwaggerEditor17 with a schema18 following OpenAPI
specification v2.0, which allows LORIS to look at available
files and tools on CBRAIN. This PHP client also abstracts the
handling of HTTP GET and POST requests which trigger the
creation of new processing tasks on the HPC grid via CBRAIN.
For a newly generated dataset, LORIS starts by registering the
files in CBRAIN, making it possible to run relevant tasks. The
type of the tasks, their parameters, and input files are then
communicated through the API to CBRAIN, which launches
them.

A LORIS process running in the background monitors a
CBRAIN task’s status. The task progress can be followed from
LORIS’ Server Processes Manager module. Capture of logs from
data insertion and the task’s output from CBRAIN, as well as
queries used to generate the new dataset, will be stored in a
header file or in the database. This way, at the time of publication,
all information describing provenance can be formatted in a file
compliant with the Neuroimaging Data Model (NIDM; Keator
et al., 2016).

LORIS Genomic Browser
The Genomic Browser module (Rogers et al., 2015) is the
principal LORIS component for visualization, querying,
validation and storage of genomic and genetic data, and is part
of an open-source feature set available on GitHub. This module
enables browsing of single-nucleotide polymorphisms (SNPs)
and copy number variants (CNVs) data, but has been expanded
for this application to allow exploration of epigenomic data
using the same functionalities. Any filtered subset of data can
be downloaded and exported for further analysis, in addition to
being passed to the visualization utilities embedded within the
module. This allows for a genomic dataset to be viewed alongside
behavioral and imaging data. The system includes functionality
for viewing, filtering and linking of summary genetic data
[CNV, SNP and other results from genome wide association

17https://editor.swagger.io/
18https://github.com/aces/cbrain/blob/master/BrainPortal/public/swagger/
cbrain-4.5.1-swagger.yaml

studies (GWAS)]. Links to reference databases (UCSC genome
browser19, dbSNP) have also been added.

Genomic Uploader
Genomic data is loaded into LORIS from raw or processed
files using the web interface in the Genomic Uploader. This
rudimentary upload tool is provided to facilitate loading and
linkage of data files and records in the database. In addition to
maintaining a reference for uploaded files, the uploader creates
relations between inserted values, their annotations, and the
study subject they belong to within the file header. When the file
type fits a study’s expected types, user-defined scripts tailored to
the genotyping platform of interest are provided. Inserted data
are accessible and browsable in the module’s tabs.

Profile Summary Tab
The first tab of the Genomic Browser is called the Profile
Summary tab and provides researchers with a high-level
understanding of the data types available for individual subjects
as well as summary statistics. This tab displays a sortable view of
this information and enables filtering by population of interest
and subject metadata for available genomic datasets stored in
LORIS. The number of CNVs and SNPs or methylation CpGs
found for each subject can be reviewed, filtered and sorted at a
glance. By applying filters based on cohort or phenotypic gender,
users can view these summary statistics for a sub-population of
interest.

Genomic Browser Tabs: CNV, SNP, Methylation
Other tabs of the Genomic Browser provide subject-specific
results for each data type from various epi-genomic and -genetic
analyses (e.g., for CNV, SNP, or methylation results). When
pipeline outputs are imported into LORIS and matched with
an expected file format, the appropriate tab is automatically
populated with data that is visible to the user. Each tab enables
filtering by specific genomic regions around genes of interest or
shared properties.

Genomic Viewer
An additional tab within the Genomic Browser was added to
provide advanced exploration for epigenomic data, with genomic
data aligning these points along the genome in superimposed
tracks. This visualization technique is found in many domain-
specific softwares and was developed for LORIS using React.js20

components for each track to dynamically render as page
elements. Interactive display features are also created using
D3.js21 visualization libraries for HTML5 canvas and SVG image
generation. These combined technology layers can efficiently
manage large volumes of data.

In our example implementation, the Methylation450k
normalization pipeline produced a single output file containing
Beta-values for all samples across all probes which were
uploaded as a batch into LORIS via CBRAIN. Upon loading

19https://genome.ucsc.edu/
20https://reactjs.org/
21https://d3js.org/
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FIGURE 3 | Relationship between three files required for loading of methylation data in LORIS’ Genomic Browser. The Beta-values file contains a value for each
biosample tested on each probe. Each biosample in the Beta-values file is linked to a study subject in the Sample mapping file, using a subject identifier
(Participant_id). Each probe from the Beta-values file is linked to a set of properties in the Annotations file provided by the chip manufacturer (Illumina).

Beta-values22 into LORIS, each probe must be associated with
an annotation record provided by the manufacturer of the
array (Illumina). These annotation records are stored in the
genomic_cpg_annotation database table which is populated
using a script23 provided in the LORIS codebase. Each probe
is then linked to a sample ID and a corresponding subject in
the database. A mapping file is used in this process to link each
sample to the subject ID.

The MySQL database contains paths to the three files
(Figure 3) that comprise the dataset: the Beta-values file,
the sample mapping file, and an annotation file. Once
registered in the database, any type of biological data can
be linked to behavioral and imaging data for each subject
using their subject ID. The relationship between subjects and
their biological data records is defined at the sample level,
allowing for metrics from duplicate biosamples to be linked
to the same subject. Once this link has been established,
visualization tools within the Genomic Browser are used
to look at available data for regions of interest on the
genome. The SNP and CpG locations are aligned with histone
marks or CpG islands, providing additional information about
genomic features and regulatory interactions in the same
locus.

Building Cross-Modal Queries
Within LORIS, a prototype DatasetBuilder module allows users
to create new datasets by joining filtered genomic data with
phenotypic data and/or imaging files queried from the Data
Querying Tool (DQT; MacFarlane et al., 2014), to rapidly handle
large datasets on the scale of genomic results, and provide that
data to the user-facing frontend.

Both the DQT and the DatasetBuilder are built upon
CouchDB, a file-based NoSQL database that provides a REST

22Beta-values represent levels of DNA methylation at a given probe (CpG) and
range from 0 to 1, representing 0%–100% DNA methylation at a given site.
23https://github.com/aces/Loris/blob/master/modules/genomic_browser/tools/
HumanMethylation450k_annotations_to_sql.py

API for querying and filtering prebuilt data views. The views
are generated by applying MapReduce24 algorithms, where each
document is transformed using a mapping function and then
summarized by the reducer function to create an indexed set of
key-value pairs.

The DatasetBuilder processes an HTTP request issued for
a specified genomic_range or DNA chip probe identifier, and
retrieves all data records corresponding to the indexed range. For
each record returned, a filter function identifies the samples of
interest and extracts the Beta-values for display in the module.
The subject IDs corresponding to these records are identified and
a request is made to run an existing query saved in the DQT to
select other phenotypic variables of interest (e.g., demographics,
behavioral measures, etc.). The phenotypic datasets returned by
the DQT are then joined with the biosample subject data to
produce a combined dataset of fields across all modalities. These
results are exported as CSV files to the CBRAIN DataProvider for
further processing.

RESULTS

To demonstrate this framework for ‘‘omics’’ workflows, a specific
‘‘use-case’’ implementation from the Ludmer Centre working
group is discussed, which includes genotyping, methylation
assessments and typical phenotypic data (age, sex, etc.). The data
was collected and derived from human subjects participating
in a longitudinal study conducted by Ludmer researchers at
the Douglas Mental Health University Institute in Montreal.
The Methylation450k pipeline was run on the study dataset,
and the outputs transferred via CBRAIN to LORIS. Using the
Genomic Browser in LORIS, users could then query, select
visualize and download data across phenotypic and epigenomic
datasets. Further containers were created for additional pipelines
such as PCEV, and installed and launched on the HPC grid

24Category of functions that split a problem into parallelizable parts so it can run
on multiple threads and/or distributed computers.
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via CBRAIN. The output of each task is transferred to the
DataProvider and can then be loaded in the database, where it
is linked to the provenance history of the task parameters and
inputs.

Throughout this example, end-users seeking to reproduce,
review, and use the data and metadata have the ability to use
this complex pipeline with little technical knowledge through
transparently accessible computing, negating the need to focus
on: (i) transferring files across servers and clusters; (ii) managing
versions; (iii) controlling user access; (iv) connecting with
HPC units; (v) launching tasks; (vi) tracking progress; and
(vii) capturing processing status, parameters and results. Once
the outputs are stored and accessible in the main data platform,
users can explore their data across modalities using additional
web-based tools.

Loading Raw Files Into the Relational
Database
In a typical implementation of a workflow in this framework,
raw data is imported into the LORIS data system and
stored or linked in its relational tables. For the Ludmer
Centre’s pilot implementation, data on 328 subjects from the
Maternal Adversity, Vulnerability and Neurodevelopment study
(MAVAN; O’Donnell et al., 2014) were processed and stored
in LORIS. Data collected and stored on these subjects included
questionnaires, demographic and phenotypic information and
imaging scans.

Biosamples from each subject were collected, stored, and then
processed by a third-party genotyping facility. The resulting
IDAT files were run on the the Methylation450k pipeline and
then transferred via a project-specific DataProvider to CBRAIN.

This output was stored on CBRAIN as a large (CSV) matrix
of 328 columns (samples) and 450,000 rows (probes) of Beta-
values. This file was transferred to the LORIS server via SFTP
and its contents were loaded into LORIS along with the Illumina
annotation records. The Genomic Uploader module in LORIS
was used to do this, creating a bio-sample record that associated
over 450,000 values with each subject in LORIS. As a result,
more than 147,600,000 values were stored in the genomic_cpg
table.

In parallel, SNP data from these processed biosamples were
transferred in the form of PLINK files (.PED and .MAP format)
from a private FTP site to the LORIS server. These data points
were transformed via PLINK commands and loaded into the
LORIS database. SNP annotations were taken from the dbSNP25

resource database to build filters on individual SNP values in the
Genomic Browser.

Selection, Filtering and Visualization Within
the LORIS Data Platform
With several modalities of data for the population now stored in
LORIS, the Genomic Browser and Genomic Viewer were used to
select and filter variables of interest across data types. With the
DatasetBuilder, new datasets were then defined by joining across
other modalities, and can serve as input for later processing tasks
to be launched on the HPC grid via CBRAIN.

Genomic Browser
For researchers, a key feature is linking cross-modal data
using a simple interface with querying, visualization, and

25https://www.ncbi.nlm.nih.gov/projects/SNP/

FIGURE 4 | LORIS Genomic Browser: Profiles tab. Filter applied to search for subjects based on Site, Gender, Subproject, External ID and the availability of genomic
data. In the table, detailed subject data can be accessed by clicking on the link that appears on each item.
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FIGURE 5 | Filters and Methylation Beta-values in the Genomic Browser. Filters are applied on subject information, genomic range and the probe’s annotations. The
filtered data view can be downloaded as a CSV file. Hyperlinks on each “CpG Name” column cell will bring the user to the online UCSC genome browser[10], which
provides detailed information about a given CpG from the most recent human genome build version.

search capabilities. The Genomic Browser (Figures 4, 5) enabled
filtering values by their annotations, such that genomic data
was uploaded and imported into LORIS, and then analyzed and
visualized.

Genomic Viewer
For each subject’s methylation data, the Genomic Viewer tab
(Figure 6) displayed detailed genomic information. In this
tab, users could view aggregated CpG Beta-value distributions

FIGURE 6 | Example Genomic Viewer shows the context for single-nucleotide polymorphisms (SNPs) and CpGs in a small region of CpGs. Visualized context
includes features from external sources, for chromosome Y from position 15010000 to 15039953. The upper section of the visualization plot presents the transcripts
of gene DDX3Y with 5′UTR, as well as exons and transcription direction dynamically queried from the UCSC Genome browser. In the middle track, box plot
distributions show Beta-values for each CpG. In the lowest track, in this view, users can view SNP and CpG positions stored in LORIS.
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FIGURE 7 | Prototype DatasetBuilder module. The preview panel displays all records returned from jointly querying the database, using the “BMI underweight”
pre-built query stored in the data querying tool (DQT) module. This is joined with all subject-samples on which CpGs were found on chromosome 1 between position
15865 and 1266504 from the Methylation450k dataset Beta-values.

visually aligned with SNP data alongside salient gene features
for a given range on the genome. This module complemented
more sophisticated and domain-specific tools by providing an
intuitive web-accessible exploration utility directly within the
context of the database, aligning all data points for all subjects of
interest on the genome. The ability to ‘‘zoom in’’ on the genome,
to better contextualize the measurement of interest, facilitates

understanding of the data within a unified platform. Additional
‘‘tracks’’ from the UCSC Genome Browser are dynamically
displayed to provide context for displayed CpGs and SNPs.

DatasetBuilder
Once genomic data have been filtered and collated, the
DatasetBuilder (Figure 7) allows users to aggregate phenotypic,

FIGURE 8 | Prototype of LORIS Imaging Browser with PhantomPipeline processing launch capability using a single button. A user can click on the “Launch” button,
under the “PhantomPipeline”column to initiate transfer of the scan dataset to CBRAIN to begin execution of the task.
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FIGURE 9 | View of task (PhantomPipeline) running on CBRAIN web portal, launched from LORIS Imaging Browser module in Figure 8. The task was launched
automatically through CBRAIN’s application programming interface (API), but can also be viewed and monitored interactively this way.

imaging, and other modalities of data for a range of variables
across all subjects. A custom dataset can be filtered for specific
genomic regions of interest. An intuitive interface design leads
users through a process of selecting a genomic fileset, targeting
ranges of interest on the genome, and then cross-joining these
results by subject ID based on a pre-constructed query across
other modalities. The results are saved on the DataProvider
directory file structure, ensuring that they are available to
CBRAIN.

CBRAIN Execution of Containerized Tools
Several pipelines have been made available through CBRAIN
for the MAVAN study, such as the Methylation450K and
imputePrepSanger26 PCEV, all described and running in
containers. Once installed on CBRAIN and freely available to
the community, users can launch these pipelines for their project
easily on a number of available HPC resources without any need
for additional installation or setup.

The above-mentioned pipelines are spawned as tasks on HPC
clusters, where they process data accessed via the DataProvider.
The output formats described for the pipeline are predefined and
remain consistent. These pipelines can be updated on CBRAIN
with new versions which may include updates to data format
definitions.

Recent work on both LORIS and CBRAIN allows for task
creation to spawn processes on CBRAIN where each instance
is logged in the LORIS database. Provided an existing tool is
registered on CBRAIN and the DataProvider is set up, LORIS
can register files on CBRAIN and launch an analysis process on
them using CBRAIN’s RESTful API. Once files are registered on
a DataProvider, they are recognized by CBRAIN, and transferred
to HPC units without any user intervention.

Applications of Additional Pipelines for
Derived Data
After pre-processing datasets using containerized pipelines on
CBRAIN, additional pipelines can be executed on selected
datasets from LORIS in a similar manner. Populations and fields
of interest are identified, the datasets are sent to CBRAIN, and

26https://hub.docker.com/r/eauforest/imputeprepsanger

then a particular container-defined pipeline can be launched.
All of these steps can be customized in order to enable
execution from the LORIS front-end. Derived datasets from
pipeline runs can be generated and returned to LORIS in
a similar manner. As mentioned above, users also have the
flexibility to re-run desired pipelines with altered parameters
in subsequent stages to compare the results within or between
pipelines.

Beyond the Ludmer Centre pilot project, applications of
this model have been tested on neuroimaging datasets for the
Canadian Consortium for Neuroimaging in Aging (CCNA,
Mohaddes et al., 2018, this issue). Derived data from MRI lego
phantom processing (Fonov et al., 2010) plays a key role in
identifying and correcting scanner distortion on scans collected
across the CCNA network. LORIS’ Imaging Browser (Figure 8)
is being customized to support automatic launching of the
PhantomPipeline (Fonov et al., 2010) for execution through
CBRAIN (Figure 9).

A key advantage of this framework is reproducibility of
results, facilitated by detailed provenance capture (logs and
parameter definitions from each processing step), as well
as container technology (Merkel, 2014) to encapsulate the
software environment used for processing and enabling rapid
re-deployment.

DISCUSSION

This article focuses on the integration of ‘‘omics’’ data
with phenotypic data to describe a novel framework for
multimodal workflows. One of the key advantages of
this model is the variety of functions and tasks covered
within a single access-controlled system, such as enhanced
monitoring of tasks, provenance tracking and storage
of results and visualization features. Improving setup
time for installation and re-deployment of containerized
pipelines, and abstraction of HPC execution complexities
also serve to remove constraints on researchers embarking
on the computational learning curve. That being said, the
most important aspect of a generalizable framework is to
streamline processing and analysis through automation
and standardization. Our use-case concretely exemplifies
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those steps through: (i) containerizing the Methylation450K
and ImputePrepSanger pipelines in CBRAIN; (ii) launching
and relaunching analysis from LORIS using APIs; and
(iii) returning results to the Genomic Browser module in a
structured manner.

Another important element to consider is that in many
research environments, workflows are typically processed
without the benefits of automated tools or computational
infrastructure leading to inefficiencies, disorganization and
with time, unmaintained datasets (Siebra et al., 2012).
This has become increasingly evident in collaborations
that require data sharing, scaling, or re-analysis. As such,
we have leveraged established infrastructure to remove
or abstract the complexities of data management from
the end-user. This is of particular importance given that
not all researchers have the time, interest, or expertise
to manage the technical aspects of pipeline design and
implementation of HPC execution on large datasets. The
benefits of organized and curated datasets (Van Horn and
Toga, 2009; Kanwal et al., 2017; Nichols et al., 2017; NIH
Data Sharing Policy) have been reinforced through the
generalizable framework described in this article. While it
is true that there are a plethora of software tools and platforms
that seek to reduce the technical burden on researchers,
not all of them incorporate the full array of best practices
necessary for ensuring reproducibility and accuracy in scientific
analysis. Our main focus has been to leverage those missing
pieces, namely standardization, provenance capabilities,
interoperability between systems (such as HPCs) and enhance
them with multimodal capabilities and effective visualization
of data.

The ability to cross-link -omic output with phenotypic and
imaging datasets is becoming an increasingly important factor
in analysis. Cross-modal linking enables centralized sharing
of richer study datasets within a network of investigators,
establishing common dataset versions among researchers,
and reducing the diffusion of multiple versions of similar
datasets. In environments where computational infrastructure
is lacking, a great deal of time is typically spent manually
organizing datasets in spreadsheets and linking multi-modal
data (Calabria et al., 2015). The Genomic Browser we describe
provides an at-a-glance view of the available data for each
participant within LORIS. It also provides a transparent
and reproducible capability for visualizing genomic data
by enabling filtering and querying across all available data
types on shared properties and specific genomic regions
around genes of interest. All of these features are graphically
displayable on the Genomic Viewer. At the same time,
the DatasetBuilder assembles multimodal datasets to run
on processing pipelines in an automated and reproducible
manner to significantly improve reliability of data outputs and
traceability of targeted datasets. Looking towards a broader use-
case, integration of genetics with other data types in a single
platform can facilitate validation of genotypic vs. phenotypic
characteristics. Basic validations of reported/phenotypic sex
compared to genomic sex in a population and comparing
reported ethnicity to genomic population markers are common

examples. Such functions, which consider participant-specific
phenotypes, allow for multi-level data integration, which
are lacking in many existing online informatic resources
e.g., GTEx.

Pursuant to utilizing an established data management
platform, the benefits of standardization are an important
topic and become evident in the execution of pipelines.
A key example is how standardizing software installation
through container technology reduces potential errors in
the configuration and deployment of such pipelines. At
the same time, it enhances portability to other platforms,
irrespective of the operating systems (Roure et al., 2011;
Cito et al., 2016; Sochat et al., 2017), while ensuring the
pipelines are consistently executed across networks and research
applications. This standardized execution and storage model
can be generalized and scaled to larger, more complex
workflows and multimodal data types ranging from other
kinds of biological ‘‘omics’’ data (transcriptomics, proteomics,
blood sugar, anthropometry) to behavioral, imaging and
electrophysiological data, among others (Zhao et al., 2008).
Beyond the example of the Methylation450k pipeline, this
framework can be used to run any other processing task
supported in CBRAIN, yet launched through LORIS. Currently,
development is underway to use Galaxy to design additional
workflows, and further optimize the PCEV27 pipeline. This
pipeline is however only one amongst many other analysis
methods that can be used in imaging genetics (Vilor-Tejedor
et al., 2018).

Provenance also remains an important issue in any kind
of analysis, especially in a multi-modal and multi-software
environment, such as the generalizable workflow proposed in
this article. To ensure complete accessibility of provenance
information:

• task log details from CBRAIN’s internal records are
communicated to LORIS with each set of returned results and
made queryable via the LORIS front-end.

• standard file formats (e.g., JSON, XML, TSV) are used for
the re-insertion process for derived data, as well as metadata
to facilitate integration into LORIS with minimal interface
development.

• quality control results are stored alongside raw and processed
outputs which improves usability.

• increasing adoption of Boutiques descriptors (Glatard et al.,
2018) as a framework for sharing and defining task creation on
HPC resources will support standardization and transparency
in neuroinformatic analyses.

The ultimate aim is to produce results and maintain
provenance information that is compatible with
emerging neuroimaging standards (e.g., the NIDM,
Keator et al., 2016).

Interoperability between systems and datasets has become a
requirement for sharing and collaboration in numerous fields
involving many complex analytics, such as machine learning
algorithms which are a rising interest in the field of imaging

27https://github.com/GreenwoodLab/pcev_pipelineCBRAIN
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genetics. Making use of APIs that can seamlessly operate from
one environment to another is a key consideration in our model.
Linking to other systems to share data, or simply for reference
pointers (e.g., links to the UCSC Genome Browser), is an
important step in data harmonization (Zaveri, 2017). Developing
APIs that are streamlined across platforms and easily fulfill
community standards and workflow requirements provides an
important asset for interoperability in large-scale consortia and
open data initiatives (Poline et al., 2012; Poldrack et al., 2013;
Van Horn and Toga, 2014; Craddock et al., 2016; Das et al.,
2017).

One key advantage of this infrastructure is ‘‘Privacy by
Design’’ which uses several mechanisms from acquisition to
dissemination to ensure privacy, such as anonymous identifiers
that link epigenetic data to a subject record, encryption methods
to secure data transfers, specific anonymization techniques and
other best practices (Cavoukian, 2009). This method largely
removes the need to store personally identifying information
(e.g., research participants and patient names) further mitigating
the risk of re-identification. This facilitates sharing of other
available data elements with a detailed provenance history
when publishing analyses of genomic data through LORIS,
where permissible, and in compliance with ethical regulations.
Rendering these datasets non-identifiable is an active research
area, giving rise to masking algorithms, which may be of interest
to data-sharing initiatives.

Another major challenge in analysis is reproducibility. This
becomes particularly evident in workflows that span different
domains such as imaging and genetics (Nekrutenko and Taylor,
2012). In its process design and technical implementation, this
generalizable framework aims to adhere to the FAIR (Wilkinson
et al., 2016) data principles. In our workflow, inputs and outputs
of each processing task are available to platform members
alongside provenance information from container descriptions
and pipeline execution logs, and each step of the workflow can
be re-run locally or on other systems. Using the open-source
constituent tools of this workflow, capturing the same outputs in
the same manner from a reproduction of this workflow provides
a powerful means to directly compare each aspect of an analysis
that has been re-run.

Through the development of this combined framework
and across several infrastructure initiatives, best practices have
emerged. These have been articulated in Appendices 1 and
2 as guidelines summarizing both the principles and practical
recommendations for implementations of this framework.

Future extensions of this infrastructure, based on user
feedback, will add richer features and more seamless automation
at several stages. As a result, a number of features will be
developed and improved:

• Streamlining the data-loading processes in LORIS via the
release of open-source tools will facilitate easier adoption of
this framework for other ‘‘omics’’ workflows.

• Integrating formats from other platforms will expand the
scope of this technology.

• Address scaling challenges through increasing use of NoSQL
schema-less databasing to flexibly handle increasing volumes

of genomic data and its significant variability across data types
and structures.

• Boutiques descriptors for CBRAIN to generalize LORIS
task-launching capabilities and ease the development burden
of deploying new pipelines.

• A well-defined API using the OpenAPI28 standard, registered
on SmartAPI29, to facilitate the creation of specialized tools to
interact with LORIS programmatically.

• Interoperability with data discovery platforms like DataLad30,
to support querying, packaging and return of LORIS-hosted
data into BIDS31-formatted data objects. Adding enhanced
support for API endpoints will support these operations.

• Encapsulating the Genomic Viewer into a Javascript module
would help portability across platforms.

While these components will fulfill the vision for a fully
robust feature-set in LORIS and CBRAIN, further developments,
documentation, unit tests and integration tests will be important
to include beyond the prototyping stage, to ensure the resulting
combined framework does not amass technical debt for future
workflows.

CONCLUSION

The goal of this article is to present a novel framework that
can facilitate brain research discovery by reducing human error
through the automation of analysis pipelines and seamless
linking of multimodal data workflows. The described framework
for ‘‘omics’’ workflows integrates multi-modal data support in
a mature databasing system with analysis on HPC platforms,
with a wide array of capabilities including provenance tracking,
a well-defined processing environment, visualization, querying
and links with other existing genomics databases. Ultimately, this
framework aims to create an optimally user-friendly experience
to allow researchers to focus on scientific aims rather than the
obstacles that otherwise occur with complex data handling.
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Preface to Appendices: The authors have developed and
recommend community-supported best practices for adhering to
FAIR principles in both the development of infrastructure and its
implementation in practice.

APPENDIX 1

Best Practices checklist for technology design and development
for FAIR Multimodal Framework integration:

Findable:

– Recognized by SmartAPI registry
– Use DOI for datasets and link them to LORIS API endpoint
– Softwares openly available via public repositories, and free (as

in Freedom32)
– Connect datasets using technologies like DataLad
– Publish and cite others

Accessible:

– Must be governed by the study and subject consent
– Ensure protection of https but no institution-restricting

firewall (hospitals)
– Sustainable infrastructure plan to backup, support and

maintain the server and storage. This includes software
security upgrades to keep data safe as well as accessible

Interoperable:

– API endpoints for datasets + version (GitAnnex/DataLad)
– Converters for BIDS—import/export of datasets
– Provide guidance where possible on use with other standards

such as NIDM

Reusable:

– Container technologies
– Boutiques descriptors

32https://www.gnu.org/philosophy/free-sw.en.html

– Software pipelines coded in a way that it can be
reused

– Reuse of analysis results: ensure execution parameters
and Provenance information is readily accessible and
shareable with the data (so they can be exported
together)

APPENDIX 2

Implementation Guidelines for FAIR Multimodal Workflow
integration:

– Store raw data at an early stage; this facilitates the linkage
between subjects and the provenance ‘‘trail’’

– Use a centralized database system with user authentication for
full auditing and data organization

– Describe entities, agents and activities with PROV33 family
vocabulary.

– Use https and ssh as protocols of communication
– Use a network with known geographical location of nodes

(HPC, Storage, Hubs)
– Design pipelines with checkpoints where the state of the data

can be reused with alternative paths (forks)
– Use container technology to describe the execution

environment setup
– Publish software (web-apps, pipelines, containers) in a public

hub with appropriate licenses—ideally free (as in freedom)
– Document software for users but also future contributors,

including ‘‘contribution guidances’’
– Describe pipeline requirements: space, CPUs, nodes, formats

(Kanwal et al., 2017)
– Cite all used software and datasets
– Publish datasets on sustainable platforms
– Describe your datasets with common terms and standard

community-supported formats (JSON-LD, RDF)

33https://www.w3.org/TR/prov-overview/ PROV is a family of standards for inter-
operable interchange of provenance information.
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Historically, research databases have existed in isolation with no practical avenue for
sharing or pooling medical data into high dimensional datasets that can be efficiently
compared across databases. To address this challenge, the Ontario Brain Institute’s
“Brain-CODE” is a large-scale neuroinformatics platform designed to support the
collection, storage, federation, sharing and analysis of different data types across
several brain disorders, as a means to understand common underlying causes of
brain dysfunction and develop novel approaches to treatment. By providing researchers
access to aggregated datasets that they otherwise could not obtain independently,
Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both
within and across disorders and across a wide array of data types, including
clinical, neuroimaging and molecular. The Brain-CODE system architecture provides
the technical capabilities to support (1) consolidated data management to securely
capture, monitor and curate data, (2) privacy and security best-practices, and (3)
interoperable and extensible systems that support harmonization, integration, and query
across diverse data modalities and linkages to external data sources. Brain-CODE
currently supports collaborative research networks focused on various brain conditions,
including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases,
epilepsy and mood disorders. These programs are generating large volumes of data
that are integrated within Brain-CODE to support scientific inquiry and analytics across
multiple brain disorders and modalities. By providing access to very large datasets on
patients with different brain disorders and enabling linkages to provincial, national and
international databases, Brain-CODE will help to generate new hypotheses about the
biological bases of brain disorders, and ultimately promote new discoveries to improve
patient care.
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INTRODUCTION

The principles of data sharing as a catalyst for scientific discovery
are widely recognized by international organizations such as
the National Institutes of Health (2003), Wellcome Trust
(2010) and Canadian Institutes of Health Research (2013).
Historically, however, research databases have existed in isolation
with no practical avenue for sharing or pooling medical data
into high dimensional “big” datasets that can be efficiently
compared across databases. Databases have their own sets of
data standards, software and processes, thus limiting their ability
to synthesize and share data with one another. To address
this challenge, the Ontario Brain Institute (OBI) created Brain-
CODE – an extensible, neuroinformatics platform designed to
support curation, sharing and analysis of different data types
across several brain disorders1. Brain-CODE allows researchers
to collaborate and work more efficiently to understand the
biological basis of brain disorders.

Ontario Brain Institute supports collaborative research
networks focused on various brain conditions, including
neurodevelopmental disorders2, cerebral palsy3, epilepsy4, mood
disorders5, and neurodegenerative diseases6 (Figure 1). The
creation of these programs has resulted in a “big data”
opportunity to support the development of innovative, impactful
diagnostics and treatments for brain disorders (Stuss, 2014,
2015). By providing researchers access to aggregated datasets
that they otherwise could not obtain independently, Brain-
CODE incentivizes data sharing and collaboration, and facilitates
analyses both within and across disorders and across an array of
data types, including clinical, neuroimaging, and molecular. By
collecting data elements across disorders Brain-CODE enables
deep phenotyping across data modalities within a brain disorder,
as well as investigations across disorders. Moreover, linkages
with provincial, national and international databases will allow
scientists, clinicians, and industry to work together in powerful
new ways to better understand common underlying causes of
brain dysfunction and develop novel approaches to treatment.

Using the FAIR Data Principles as guidance, Brain-CODE is
being developed to support the principles of data being Findable,
Accessible, Interoperable, and Reusable (FAIR, Wilkinson et al.,
2016). The Brain-CODE system architecture provides the
technical capabilities to support:

• Consolidated data management to securely capture,
monitor and curate data.

• Privacy and security best-practices.
• Interoperable and extensible federation systems that

supports harmonization, integration and query across
diverse data modalities and linkages to external data
sources.

1www.braincode.ca
2www.pond-network.ca
3cpnet.canchild.ca
4www.eplink.ca
5www.canbind.ca
6www.ondri.ca

Brain-CODE Design Principles
Interoperability and Standardization to Support Data
Integration and Collaboration
The types of data being collected in modern research are
increasingly diverse, from larger numbers of sources and patient
populations, and involving highly specialized technologies,
from genomics and imaging, to wearable devices and surveys
delivered via mobile apps. There is also a growing need to
link and query data collected within a given research study
with data stored in disparate other locations and formats,
such as public data repositories, health administration data
holdings, electronic medical records, and legacy databases. As
a result, researchers deploy a broad range of tools to collect,
process and analyze their data, but the lack of interoperability
of these platforms serves as a barrier to data sharing and
collaboration. Establishing standard software would address
these issues; however, available platforms each have their unique
advantages and there is a significant cost for researchers in
time and effort to move to new platforms. This complex
set of data integration needs cannot be addressed using
inflexible systems working in isolation nor by the development
of a “one size fits all” platform. Rather, to support this
level of data integration, interoperability must be a core
requirement. This approach differs from most other data
platforms in which data are combined at the data analyses stage.
Interoperability, however, enables large-scale data aggregation
and federation of systems and data across multiple data
types, allowing novel discoveries and analyses to be conducted.
Moreover, allowing researchers to decide which system to use
ensures greater researcher uptake, which facilitates collaboration
and data sharing within and across the broader research
community.

From its inception, Brain-CODE architecture was designed
with interoperability in mind, such that it could support the
integration and analysis of large volumes of complex data from
diverse sources. With this approach each platform can maintain
its autonomy while still integrating into a much larger whole.
This can be a challenge as databases are often stored in individual
“silos” with their own sets of data standards, software and
processes which limit their ability to interact with one another.
Interoperability, therefore, requires the development of pipelines
and processes between existing platforms; software to allow
efficient and seamless exchange of data and information between
systems and technologies, including application programming
interfaces (APIs) to allow data flow between applications. In
addition, rigorous standardization processes are required that
govern how information is recorded and exchanged in order to
define and format the vast array of clinical, neuroimaging and
molecular data, and to optimize federation by ensuring that data
in one system is understood by another. Effort must, therefore,
be devoted to creating standards across studies, including
common data elements (CDEs) (i.e., the same endpoints
applied to multiple studies), common ontologies (i.e., utilizing
common nomenclature and format across studies), as well as
standard processes and procedures related to the collection of
data.
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FIGURE 1 | Ontario Brain Institute (OBI) Programs. These programs take a different approach to research that spans many disciplines and brings together a diverse
group of stakeholders including researchers, clinicians, industry partners, and patients and their advocates. The programs collect various types of data, including
genetic, molecular, imaging, and behavioral, which are stored on Brain-CODE. Figure adapted from Stuss (2014).

An Extensible Design to Accommodate Expanded or
Modified Functionality
Since not all functionality can be determined upfront,
extensibility of the system must also be considered a core design
principle to accommodate new and expanded functionality
without impacting existing features. This approach allows the
integration of users’ programs and third-party software into the
system, as well as allowing for customization and enhancement
of existing systems. Choice of technologies used and how the
databases are built is critical and the use of commercial software
can limit the ability to extend functionality, as these are typically
built for a specific purpose and source codes are often not
available. Extensibility is less of an issue when using open source
software, as the code is published and can be modified. Where
possible, therefore, Brain-CODE infrastructure is built using
open-source tools.

Privacy and Security
Brain-CODE was designed with best-practice privacy strategies
at the forefront to enable secure capture of sensitive participant
data in a manner that abides by ethical principles and
government legislation while fostering data sharing and linking
opportunities. As such, privacy and security features have been
robustly incorporated into the foundation of Brain-CODE’s
infrastructure, and are reinforced by guidelines and safeguards
that ensure participant data security.

Federation and linking with other databases involves the
implementation of high-security data transfer infrastructure.
These include encryption and de-identification tools to protect
participant data and enhanced validation certificates to guarantee
authenticity of outward-facing software applications, as well as
administrative, physical and technical safeguards and security
processes that are aligned with Code of Federal Regulations
Title 21, Part 11 standards (CFR Title 21, Part 11, 2017). As a
result, OBI has been named a “Privacy by Design” Ambassador

by the Office of the Information and Privacy Commissioner
of Ontario (Cavoukian, 2011). This designation refers to the
mitigation of privacy and security risks through a proactive
and preventative approach to research data management by
embedding privacy and security measures directly into the design
of systems and practices. Working with a team of experts, OBI
has developed clear and comprehensive policies and guidelines
on data privacy and governance7. These documents outline how
data are collected, stored, and accessed by Brain-CODE users.

DATA LIFE-CYCLE

Researchers collect sensitive participant data in the form of
clinical assessments, interventional studies, and brain imaging,
cognitive and sensory-motor measures, as well as biological
samples for proteomic and (epi-)genetic analyses. Personal
Health Information (PHI) must be carefully handled in
accordance with the Personal Health Information Protection
Act, 2004, S.O. 2004, c. 3, Sched. A (Personal Health
Information Protection Act [PHIPA], 2004) from a governance
and contract perspective, as informed by principles in ISO
27001 for information management. To maximize the data
sharing and analytics capacity of Brain-CODE, while enabling
the secure collection of PHI, processes were developed to permit
functional separation of sensitive data while being complemented
by granular access controls to ensure that data are only
available to Brain-CODE users who are authorized to access it
(Figure 2).

Data Capture and Curation
Brain-CODE provides a virtual laboratory environment where
researchers (data producers) can upload, download, manage,

7www.braincode.ca/content/governance
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FIGURE 2 | Data life cycle within Brain-CODE.

curate and share their own research datasets with direct study
collaborators. Based on Research Ethics Board (REB) approval
and participant informed consent, data uploaded to Brain-CODE
may include PHI. Before any data are uploaded to Brain-
CODE, institutions enter into a Participation Agreement with
OBI, whereby the institution and affiliated researchers agree to
make use of the platform in a manner that abides by OBI’s
Informatics Governance Policy, Platform Terms of Use and
applicable privacy laws, and particularly institutional REBs. The
participating institutions also grant OBI a non-exclusive license
to share de-identified study datasets in the future, following an
exclusivity period. An exclusivity plan is established between
OBI and the researchers; during the period of exclusivity, data
access remains exclusive to data producers and their direct
collaborators. Before, during and after the exclusivity period,
data producers and direct collaborators continue to have full
access to their data, including access to a suite of analytical tools
and workspaces, to enable data cleaning, curation and analysis
required by studies.

Curated Data Archive
Following an exclusivity period, curated datasets are versioned
for long-term secure storage. These data are labeled as either
“Controlled Data” or “Public Data.” Controlled Data are datasets
that have been de-identified. These Controlled datasets are made
available to third-party Brain-CODE users by request, and can
be augmented through links to external databases in a secure
environment. Public Data are either basic science datasets (i.e.,
from animal model studies), metadata, or human datasets that
did not previously contain PHI. Public datasets can be shared
directly with Brain-CODE users, without requiring an access
request.

Open Data Repository
One of the goals of Brain-CODE is to release high quality research
data to researchers outside of OBI. The “Open Data” interface
was developed for third-party users to browse information about
Controlled and Public datasets and access data releases (see
Figures 2, 3). While Public Data can be accessed directly,
Controlled Data requires users to submit data access requests.
Data access requests are reviewed by Brain-CODE’s Data
Access Committee (DAC) which is composed of researchers,
neuroinformatics experts, and OBI staff. The DAC makes a
recommendation to the Informatics Steering Committee, which
makes final decisions related to data access. Once a request is
approved, third-party users must provide proof of REB approval
and enter into a Data Use Agreement with OBI before being
granted access to the data for retrieval and analyses. The
de-identified dataset can be exported to a workspace environment
available upon request to any registered Brain-CODE user,
allowing access to high performance computing resources and
analysis tools. The access request, review and approval process
is streamlined within the Brain-CODE portal to ensure a timely
turnaround of 10 days from access request to granting data access.

CONSOLIDATED DATA MANAGEMENT

Within the Brain-CODE Portal, data capture is consolidated with
a diverse set of electronic data capture (EDC) tools for various
data modalities including clinical, imaging, and ‘omics that
allow researchers to securely upload, store and manage research
data electronically8 (Table 1). The Brain-CODE platform was

8www.braincode.ca
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FIGURE 3 | Data exploration and release dashboard. Open data release of High Resolution MRI of Mouse Models Related to Autism. Available at www.braincode.ca

developed to allow incorporation of new data capture systems as
required by the various research teams (Figure 4). In addition to
providing a single point of access to data management tools, the
Brain-CODE Portal features project management dashboards,
private file repositories and discussion for a that researchers can
use to facilitate sharing and collaboration.

As with most data repositories, naming conventions standards
are key. Not only do these features enable a given subject’s data
to be linked across the corresponding data stored on separate
data capture systems (e.g., that same subject’s clinical data
stored on REDCap system with imaging stored on XNAT), but
such standardization ensures that automated quality assurance
(QA) and quality control (QC) pipelines can be successfully
applied to the data. The naming format used across Brain-CODE
programs conform to the general format of PPPTT_HHH_SSSS,
where PPP is the program code, TT is the study code, HHH
is the site code and SSSS is the subject number. The four-
digit subject number is typically assigned by the subject co-
coordinator. A fifth Subject ID digit can be employed if deemed
necessary.

Clinical Data Management
A core objective of Brain-CODE is to organize, standardize,
and integrate the various forms of clinical information collected
from OBI-funded and partner research programs. Traditionally,
data have been collected on paper but there is a growing
trend both in industry and academic research settings toward
EDC for some forms of data (Food and Drug Administration
[FDA], 2013). However, many academic research teams lack the
necessary infrastructure and specialized skills to use and maintain
a clinical data management system. To alleviate this situation,
multiple web-based clinical data management software packages
are deployed and hosted in Brain-CODE to allow researchers to

remotely access these tools and integrate them into daily research
practice.

The two primary clinical data management systems used to
collect demographic and clinical data are REDCap (Research
Electronic Data Capture9) and OpenClinica10. REDCap is a web-
based application developed by a multi-institutional consortium
led by Vanderbilt University specifically to support data capture
for academic research studies. The software is freely available
under the conditions of an end-user license agreement, and
has been designed to be very simple to configure, use and
maintain. As such, REDCap has grown into a very popular
solution within the research community. REDCap is designed
to comply with the United States’ Health Insurance Portability
and Accountability Act of 1996 (HIPAA) regulations, but is
currently not CFR Title 21, Part 11 compliant. OpenClinica
is developed and maintained by OpenClinica LLC, in both an
open source Community Edition as well as a commercially
licensed Enterprise Edition, the latter providing training and
technical support. The Enterprise Edition is currently deployed
in Brain-CODE; both a development/test and a production
instance are installed. OpenClinica LLC fully maintains the
deployment, including installation validation, database backup
configuration, OS updates, software patches and upgrades, and
technical support. OpenClinica is a fully featured, web-based
system that supports multi-site clinical trials and clinical data
management. The software is compliant with HIPAA and CFR
Title 21, Part 11, providing the required electronic signature and
audit trail functionality for use in clinical trials requiring FDA
regulatory approval. Additional clinical data capture systems can
be deployed as required.

9projectredcap.org
10www.openclinica.com
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TABLE 1 | Data modalities currently collected in Brain-CODE.

Modality

Demographics

Patient-reported outcomes

Clinician-reported outcomes

Cognitive assessments

Structural MRI

Functional MRI

Diffusion tensor imaging (DTI)

Spectral MRI

Behavioral outcome files (timing, events)

Investigators notes

Electroencephalogram (EEG)

Electrocardiograph (ECG)

Pulse plethysmograph (PPG)

Respiratory

Magnetoencephalogram (MEG)

Ocular computed tomography (OCT)

Fundal photography

Eye tracking

Pupil metrics

Gait track data

Accelerometers

Force plate

Audio files

Video files

Pathology images

Imaging manual QC

fBIRN fMRI imaging metrics

OHIP numbers

Genotyping

ONDRISeq

SNP and expression arrays

GWAS

Sequencing (NGS)

Proteomics

Absorbance based assays (i.e., ELISA, etc.)

Clinical Data Standardization
Brain-CODE includes multidisciplinary collaborative research
networks across multiple brain disorders. Given the different
research aims, study designs and technologies used across
research programs, establishment of a minimum set of clearly
defined and standardized assessments across studies is essential
to facilitate data sharing and integration, and to conduct
meaningful analyses across disorders. Indeed, these data
must be sufficiently comparable to allow any levels of data
integration, and in the absence of common measures and
data standards it is difficult to compare the results from one
study to another. From a data integration perspective, CDEs
and other standardized variables represent shared attributes
between different data models that can significantly enhance
the implementation of the federated database by reducing
the semantic and syntactic heterogeneities between constituent
databases. Therefore, in an effort to optimize the ability to

aggregate and analyze data within Brain-CODE, CDEs were
developed to provide standard definitions and formats so
that investigators collect data consistently across studies and
programs.

Using the framework of the National Institute of Neurological
Disorders and Stroke (NINDS) CDE Project as guidance
(Grinnon et al., 2012), a Delphi consensus-based methodology
(Dalkey and Helmer, 1963; Hsu and Sandford, 2007) was
used to identify core demographic and clinical variables to be
collected across all participating OBI research programs. The
CDEs include standardized assessments across the life-span
of quality of life, medical and psychiatric co-morbidities, as
well as clinical outcome measures of depression, anxiety,
and sleep (Table 2). There was also agreement that when
possible, the measure should be patient-reported, brief
and easy to administer, widely used and validated, and
available in the public domain. In addition, where possible
the Clinical Data Interchange Standards Consortium
(CDISC) standards are applied to define data collection
fields, formatting, and terminology (Souza et al., 2007).
This reduces variability in data collection and ultimately
facilitates comparisons across disorders, merging of datasets and
meta-analyses.

Clinical Data Quality Assurance and Control
Prior to data collection, clinical databases are validated to
ensure adherence to data standards, compliance with the
Brain-CODE CDEs, potential governance and privacy issues,
and database quality. Identifying fields are compared against
the language used in their ethics submission for compliance.
Validation can also identify errors or missing data points in the
database before data entry begins. Project validation involves a
thorough review of a project’s variable naming, field naming,
item coding, field validation and case report form equivalence
through data entry, the data dictionary and data exports. This
process is partially automated against a library of existing scales
where possible. For novel forms, the digital version of the
form is compared to the paper form and scoring manual as
well.

Once collected, data cleaning and curation is typically
supported within the clinical EDC system. REDCap users
have the option to use REDCap’s API to extract data directly
into a Brain-CODE workspace, allowing users to extract,
subset and analyze their data, entirely within Brain-CODE’s
secure environment. By extracting the data directly into a
workspace, researchers avoid any errors potentially introduced
by spreadsheet software, or through encoding conversion issues.
For large collaborative studies having a centralized way for
multiple users to run outlier analysis scripts in the same
environment can help save data analysis resources required
to reconfigure pipelines between different users’ institutional
and personal computers. After the data are exported from the
EDC system they will typically be manually reviewed against
source documentation, or run through a curation pipeline to
detect any outlying erroneous or aberrant data points. Those
data points are then reviewed and if appropriate corrected
in the source data, or noted as true outliers by the study
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FIGURE 4 | Brain-CODE system architecture.

teams in the data capture system itself alongside the raw
data.

Imaging Data Management
Many of the studies hosted on Brain-CODE collect various
forms of medical imaging, with a particular focus on Magnetic
Resonance Imaging (MRI). Although many different scanners
are used across the various research sites, all the scanners provide
data in the Digital Imaging and Communications in Medicine

TABLE 2 | Summary of Brain-CODE core demographic and clinical CDEs.

Domain Sub-domain Brain-CODE CDE

Patient Demographic Sex, DOB, Handedness, Ethnicity

Characteristics SES Education, Marital Status,
Occupation, Income

Physical and
Mental Health

Quality of Life WHO Quality of Life -Short Version1

KINDL-R2,3

Activities of
Daily Living

Sheehan Disability Scale1

Medical
Comorbidity

NINDS Medical History1,2,3

Psychiatric
Comorbidity

Brief Symptom Inventory1,2

Clinical
Endpoints

Depression Quick Inventory of Depressive
Symptomatology1 Revised
Children’s Anxiety and Depression
Scale2,3

Anxiety Generalized Anxiety Disorder-71

Revised Children’s Anxiety and
Depression Scale2,3

Sleep Pittsburgh Sleep Quality Index1,2

Children’s Sleep Habits
Questionnaire3

1Adult; 2adolescent; 3child.

(DICOM) format11. The open source XNAT (eXtensible
Neuroimaging Archive Toolkit) project by the Neuroinformatics
Research Group at Washington University in St. Louis (Marcus
et al., 2007) is used within Brain-CODE to gather, organize,
query, and control access to MRI and related data. In addition
to DICOM data, XNAT at Brain-CODE is also used to
organize and assemble other large binary datasets, including
magnetic encephalography (MEG), electrocardiography
(ECG), electroencephalography (EEG), ocular computed
tomography (SD-OCT), fundal photography, accelerometer
and instrumented gait tracking data. Several forms of data that
are required to interpret the scans are also included, such as
output from stimulus presentation systems such as E-Prime R©

and even simple scans of hand-written notes taken during
sessions.

Data are uploaded via a secure web page into XNAT,
either via manual transfer or through bulk upload via scripts.
Using sophisticated DICOM interpretation capabilities, XNAT
organizes the input files into appropriate sessions, which can
be confirmed by the user or the upload script. Once in place,
the system generates visual thumbnails, as well as populates a
PostgreSQL database with metadata from the DICOM headers as
well other environmental sources. These data are made available
for searching, retrieval of metadata, and download, under a
well-defined authorization structure.

Imaging Standards
The Brain-CODE’s XNAT file structure is hierarchically
organized, with Project ID folders (i.e., PPPTT_HHH, see
naming convention standards in section “Consolidated
Data Management” above) occupying the highest level and
containing the brain imaging data for that particular project.
Within the Project ID folders are a series of subject folders (i.e.,

11www.dicomstandard.org
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PPPTT_HHH_SSSS), each containing Session ID folders of brain
imaging data from one or more distinct testing sessions from that
subject. A Session ID always begins with a Subject ID, followed by
an underscore and a_2-digit Visit ID, and then “_SE” and a 2-digit
session number (i.e., ‘PPPTT_HHH_SSSS_02_SE01_MR’), as
well as an optional “part code” which, if present, is a single lower
case letter used to identify and link sessions that were broken
up or spread out over time (e.g., intervening days as is the case
with MR rescan requests). The session number is then followed
by an underscore and a Modality code, which is a string of 2–4
characters indicating the imaging/recording modality.

Anyone requested by the program manager can be given
read-only access to a Project folder, while only program manager-
approved users who have also taken and passed an upload
training tutorial on a non-production version of XNAT can
be given upload access to such project(s). In order to reduce
the chance of upload errors, XNAT uploaders are given the
opportunity to review files and correct any issues at a pre-archive
stage. Once archived, however, only Brain-CODE administration
staff is allowed to amend files, and only at the written request
of uploaders. To ensure provenance and prevent accidental
data loss, data are not actually deleted, but session names have
the suffix ‘_deleted’ added to them so that the files can be
excluded from eventual curation. The one exception to this
non-deletion rule pertains to uploaded data that violate ethical
restrictions.

Imaging Quality Assurance and Control
Imaging data undergo multiple QA/QC steps as well as curation.
Some forms have built-in support via XNAT, such as the manual
QC reports, while others represent custom extensions to the
basic system. Such custom extensions were started in the Stroke
Patient Recovery Research Database (SPReD) (Gee et al., 2010)
and extended within Brain-CODE so that the neuroimaging
component is referred to as SPReD powered by XNAT, which
we will simply refer to as XNAT. The extensive back-end API
supported via a representational state transfer (REST) interface
allows many manual and automated pipelines to be connected to
XNAT, providing automated image transformation, conversion,
evaluation and process coordination.

Multi-site brain-imaging studies offer many unique challenges
compared to traditional single-site research approaches (see
Farzan et al., 2017). Many of these become apparent when
reviewing the QA and QC measures that are undertaken for
imaging data on Brain-CODE. There are several QA and QC
pipelines that are employed on Brain-CODE‘s XNAT. Due to its
DICOM format, many of these pipelines cater to MR data.

SPReD/XNAT naming consistency QC
The naming consistency pipeline is a Python executable
script that every night iterates through the data uploaded to
SPReD/XNAT in Brain-CODE and checks whether the names of
the uploaded files comply with the naming convention described
above. In case a non-compliant name is found, the data uploader
is notified by e-mail within 24 h, if the naming problem persists
more than 7 days, the Program Manager is notified weekly by
e-mail until the problem is corrected.

Scan acquisition protocol QC (pipeline operational for
scanning sites)
The scan acquisition QC pipeline compares the parameters for
all scans within an MRI session from a particular scanning site
against a reference protocol defined by the relevant program. The
protocols are configured on a project-by-project and scanner-
by-scanner basis for each scanning site. The protocol defines
a set of pulse sequences that should exist within the session,
along with a set of values for the acquisition parameters for
each sequence. Each parameter has an upper and lower value
against which the actual scan parameters are evaluated. Within
24 h of a failure occurring for any parameter the Program and
Brain-CODE neuroimaging managers are notified by e-mail and
s/he will contact and work with the scanning site to try to
ascertain and correct the cause of the failure. Protocol adherence
is aggregated and displayed (Figure 5).

Manual/visual QC
It is strongly recommended to every program that they institute
a manual visual inspection of all data uploaded to SPReD. The
criteria for assessment is based on the Qualitative Quality Control
Manual by Massachusetts General Hospital (2013). Results of the
manual QC check are recorded in SPReD/XNAT and may be
viewed and retrieved from the records of each scan session. If
any acquisition fails manual QC the results are discussed with the
scanning site within 48 h of the initial patient scan.

fMRI QA pipeline for fBIRN phantom
The goal of the fBIRN phantom and pipeline software from
the Biomedical Informatics Research Network is to provide QA
tools for tracking functional MRI (fMRI) imaging performance
(Friedman and Glover, 2006). OBI scanning sites have an fBIRN
phantom purchased for them by OBI. These phantoms are
scanned on a monthly basis and uploaded to XNAT. The fBIRN
QA pipeline is then automatically run on these data within
24 h of upload, and a full QA report is generated and stored
within the session. The phantom and QA procedures are more
formally described in Friedman and Glover (2006), and Glover
et al. (2012). Tools for tracking these QA results over time and
notification thresholds for scanning sites have been developed
using dashboards visualizations. Currently a site is notified if any
derived phantom parameter differs from its mean by more than
3 Standard Deviations, based on all previous values acquired to
date.

DTI QA pipeline for fBIRN phantom
The utility of the fBIRN spherical gel phantom has been extended
to monitoring the performance of DTI acquisitions (Chavez et al.,
2018). As is the case for the fMRI QA results, tools for tracking
these DTI QA results over time and notification thresholds for
scanning sites are available as dashboards.

fBIRN fMRI human QC pipeline
A goal of the Biomedical Informatics Research Network is
to provide QC tools for tracking functional MRI imaging
performance. A full QC report (index.html) for every fMRI scan
generated by running the fBIRN phantom and the fBIRN human
pipeline software packages on human data is available through
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FIGURE 5 | Sample MR QA Dashboard. Longitudinal display of parameter acquisition values obtained from one scanner’s monthly fMRI scans of an fBIRN phantom.
Longitudinal results for the TR, TE, Flip angle, Pixel Bandwidth, Matrix size, Voxel size, and Slice Number parameters are displayed for 38 scans obtained between
June 2014 and August 2017. Red and green traces indicate parameter values that deviate or fall within normal limits of the expected values, respectively.

the Brain-CODE XNAT file manager in the scan’s session folder.
Tools for tracking these QC results over time and notification
thresholds for scanning sites are available as dashboards.

LEGO phantom QA/QC pipeline
The LEGO phantom and associated pipeline are designed
to measure and correct for magnetic field gradient induced
geometric distortion, and thereby reduce measurement
variability of morphometric measurements from high-resolution
T1 MRI scans. The pipeline procedure and its impact on
morphometric measurements in neurodegeneraton are described
in Caramanos et al. (2010).

MRI registration QC pipeline
The MRI registration pipeline automatically registers (non-linear
warping with ANTS12) every new high-resolution T1 MRI
structural scan to a template and then automatically measures
signal-to-noise (SNR) and contrast-to-noise (CNR) in gray
matter. The pipeline also includes white matter and automatically
measured volumes of interest using the MNI152 registration
template and the LPBA40 segmentation atlas (Shattuck et al.,
2008).

DICOM header de-identification pipeline
Brain-CODE also employs a number of security pipelines for
imaging data. The de-identification pipeline is configured to
remove or replace a set of fields within the header of MRI DICOM
files and employs a fixed set of fields to be cleared or modified.
The appropriate set of fields needs to be reviewed by the users, as
they may vary somewhat between projects, between scanners and
even between scanner software revision levels.

12http://sourceforge.net/projects/advants/

Defacer pipeline
The Deface DICOM pipeline removes facial features from a
DICOM-format T1 image, and produces a defaced DICOM
image that is identical to the original in all other respects.
It is based on the mri_deface tool released with FreeSurfer
and described in Bischoff-Grethe et al. (2007). The output of
mri_deface is in Neuroimaging Informatics Technology Initiative
(NIfTI) format. The pipeline converts this to DICOM, using
the original DICOM file set and the tools mri_convert and
analyze2dcm.

Virus pipeline
All new files in the SPReD/XNAT database are scanned for viruses
every 24 h.

‘Omics and Molecular Data Management
Many of the participating studies collect various molecular
and ‘omics data as biomarkers for diagnosis and prognosis of
disease (Lam et al., 2016; Farhan et al., 2017). Ultimately, Brain-
CODE federates these various molecular data modalities with the
clinical and imaging data also being collected in these studies,
enabling integrated query and analysis of these complex datasets.
Brain-CODE currently utilizes the LabKey Server Community
Edition, an open source web server developed by the LabKey
Corporation13. LabKey provides an array of features crucial in
efficient management and organization of molecular data from
sample tracking, to file archiving to tabularization of finalized
datasets. LabKey provides both technology/assay-specific as well
as customizable data schemas, making it a flexible and scalable
solution for dealing with the large variety of data types being

13www.labkey.com
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collected by the Brain-CODE-supported studies. Additionally,
LabKey provides a suite of intuitive collaboration features,
making it more efficient for investigators across multiple sites to
coordinate biological samples, processing and analysis of data.

The installation of LabKey within Brain-CODE provides
researchers from multiple labs with a centralized location for
the collection and tracking of sample information, raw data
files, processed data and associated metadata, including protocol
and experimental details, QA/QC and processing metadata of
samples and resulting data. Projects are set up to ensure that all
these components are appropriately integrated, making it easy
to obtain query-based data cuts of processed data and raw data
files. Additionally, where possible, final processed data points are
structured into a Postgres database which enables more granular
and in-depth integrated queries of the molecular datasets with
other data modalities. This provides a challenge as ‘omics datasets
expand in size and complexity, requiring scalable query solutions
that can be integrated into existing systems.

‘Omics and Molecular Standards
Centralized management of ‘omics and molecular data introduce
a unique set of challenges including a very diverse set of
data modalities, large and ever-growing datasets and files,
and harmonization with prominent ‘omics databases, like
the Gene Expression Omnibus (GEO), GenBank, Sequence
Reach Archives, and existing standards [i.e., Minimum
Information About a Microarray Experiment (MIAME),
Minimum Information about a high-throughput nucleotide
SEQuencing Experiment (MINSEQE), Global Alliance for
Genomics and Health (GA4GH) and others]. Brain-CODE
takes advantage of existing standards and workflows to ensure
a thorough capture of all data and associated metadata, while
harmonizing with the upload processes of prominent ‘omics
databases. This in turn makes future submission of data
prospectively collected on Brain-CODE simpler for the data
producer.

Data Query and Visualization
Several levels of query access are possible on the Brain-CODE
system (see Figure 4). At the project level, researchers may query
their own data within the applicable Brain-CODE data collection
platform(s). Post-federation, the Brain-CODE data warehouse
structure allows for flexibility in query methodology using either
traditional relational database approaches (Structured Query
Language, SQL) or unstructured methods such as Lucene via
ElasticSearch14. This approach allows for future scalability as
additional studies and data collection platforms are added to
the Brain-CODE system. Metadata compiled for each study
are stored in the Brain-CODE system and provides additional
context to the data tables.

At the federation level, raw and/or curated federated datasets
appropriate to the stage of the Brain-CODE data life-cycle are
compiled for exposure to end users. Data visualization and query
tools such as TIBCO Spotfire15 are employed to display and

14www.elastic.co
15spotfire.tibco.com

permit query of aggregated datasets across platforms and, if
appropriate, permit users to access and download data tables.
Alternative query tools can also be implemented to accommodate
different data modalities. Security is ensured by means of user-
based access controls at all levels of the data query system.

Brain-CODE currently utilizes Spotfire to develop
comprehensive administrative and analytic dashboards,
providing unified views on integrated datasets stored in
the platform’s federation system (Figure 6). This takes
advantage of the continuous data federation across multiple
data sources, allowing near real-time interaction with cross-
project, multi-modal datasets. Administrative dashboards allow
the Brain-CODE team to monitor the status of all studies
on the Brain-CODE platform, describe and quantify data
table properties, and apply global QC methods to ensure data
quality across all studies and platforms. Project dashboards are
configured to provide researchers with fully customizable views
of the status of their studies (e.g., recruitment rates, participant
profiles), ongoing QC and edit checks (e.g., missing data,
protocol violations), and the ability to track ethics and informed
consent restrictions. Data exploration and query dashboard
interfaces enable permission-based sharing of data, both within
study teams and with collaborators, and the broader research
community.

Analytics Workspace
Research groups utilizing Brain-CODE present highly variable
computational needs during the data curation and analysis
stages of their studies. Some are self-sufficient in their capacity
to process large volumes of raw data such as MR images or
DNA sequences, or to apply machine learning tools on high-
dimensional datasets. For example, core sequencing labs used by
some research groups have access to their own bioinformatics
pipelines, server clusters and expertise required to conduct
whole-genome variant detection, differential RNA quantification,
or other analysis. Other groups are less equipped, wish to
supplement their resources, or prefer to avoid the cost and risk
associated with the transfer of large datasets and choose instead
to carry out their computations where the data are already
aggregated.

To this end, researchers can access a Brain-CODE analytics
workspace, a secure environment with dedicated computing
resources and necessary software to allow for specialized
data processing and analyses. The term “workspace” is used
broadly. It can be a cluster of Linux virtual machines (VMs)
running the Slurm job scheduler for batch processing; a single
Windows VM with SAS or SPSS installed; or an RStudio shared
project accessed by data scientists from multiple locations. The
analytics workspaces ensure the data are kept securely within
the platform to satisfy any privacy and REB requirements
while providing easy access to both the data and required
resources.

Subject Registry
When researchers enter or upload a dataset for a given
participant, a standard Brain-CODE subject ID is assigned.
A unique index of projects and Subject IDs is maintained in
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FIGURE 6 | Data exploration dashboard showing summary of the data in Brain-CODE. Updated summary found at www.braincode.ca

the Brain-CODE “Subject Registry,” which regularly collects
all subject identifiers from the domain-specific databases and
provides QC functionality. This critical integration between
each database system and the Subject Registry is implemented
through a “Reporter” application which extracts necessary
information from the database (e.g., the Subject ID) and reports
the information to the Subject Registry over REST-based web
services.

The Subject Registry also provides functionality for encryption
of PHI that can be used to link participant level information
across databases, such as a health plan or medical record
numbers. Encryption is performed within the user’s web browser,
and the original value of the element never leaves the research
site; only the ciphertext is transmitted and stored in the Subject
Registry. Furthermore, the private key required for decryption
is maintained by a third-party and is not known to Brain-
CODE. The encryption algorithm has a particular homomorphic
property which allows mathematical operations and comparisons
to be applied to the encrypted data itself, i.e., without the need
for decryption. These encryption capabilities not only provide
robust safeguards against re-identification of sensitive data, they
also enable secure data integration. For example, using a common
identifier such as the Ontario Health Insurance Plan number,
research data stored in Brain-CODE can be securely linked with
administrative health databases such as the Institute for Clinical
and Evaluative Sciences without requiring either party to disclose
PHI.

Privacy and Security
PHI and De-Identification
To protect the privacy and confidentiality of individuals and
security of data held in Brain-CODE, OBI has adopted a

Privacy-by-Design approach to creating and implementing
protective measures. This policy is specific to Brain-CODE and is
based on the 10 Canadian Standards Association (CSA) Privacy
Principles (Canadian Standards Association [CSA], 1996). To
ensure that privacy is not compromised, direct identifiers that
provide an explicit link to a study participant and can identify an
individual (i.e., health card number) are removed (or encrypted)
to the extent possible. Nonetheless, Brain-CODE may include
personal health information that has been collected for the
purposes of the research study and analyses (i.e., date of birth).
When such information is required and informed consent has
been obtained, only researchers involved in the study will have
access to it in a firewalled and secure environment. Prior to
disclosure to third parties, direct identifiers are removed (or
encrypted) to the extent possible.

Ethics Tracking and Monitoring
Brain-CODE operates based upon informed participant consent,
meaning that institutional REB approvals and associated
informed consents govern which data can be collected, uploaded,
de-identified, and shared on Brain-CODE. This information is
tracked in a centralized Brain-CODE Ethics Tracking Database,
which contains information on the sensitivity of datasets and
sharing permissions. The information in the Ethics Tracking
Database is linked to each participant via the Subject Registry
which allows the tracking and management of data permissions
on a participant-by-participant basis.

DATA FEDERATION AND LINKING

By design, research data stored in Brain-CODE are distributed
over multiple distinct database applications, each with a unique

Frontiers in Neuroinformatics | www.frontiersin.org May 2018 | Volume 12 | Article 2873

www.braincode.ca
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00028 May 22, 2018 Time: 17:15 # 12

Vaccarino et al. Brain-CODE Neuroinformatics Platform

underlying data model geared toward the capture of a subset
of data modalities. There may be multiple systems in place
to support a given modality. For example, clinical assessment
data are captured in OpenClinica for some studies, and in
REDCap for others. The choice of a clinical data management
system for a given study is left to individuals involved in the
study and to Brain-CODE personnel providing study support,
who collectively take into consideration various factors such as
regulatory requirements, training implications, specific features,
etc. The same reasoning applies to data capture for other
modalities, such as neuroimaging or molecular. While this
approach provides maximum flexibility to researchers, allows
use of best-of-breed systems developed by domain experts,
and enables the platform as a whole to adapt and evolve
according to changing needs, it does entail the technical
challenge of systematic aggregation of data stored amongst
several heterogeneous systems.

To make it possible to search, query, and extract these
distributed data, Brain-CODE employs a hybrid “federated data
hub” model whereby relevant data from each data source are
harmonized and aggregated into one or more repositories (see
Figure 4). APIs allow cross-system, and hence cross-modality
query of federated data for diverse purposes by downstream
systems, such as curation pipelines, interactive dashboards,
search interfaces, and linkages with data systems external to
Brain-CODE.

In its current implementation, federated data sources include:
OpenClinica EnterpriseTM; REDCapTM; Medidata RAVETM;
LimeSurveyTM; Subject Registry; XNAT; LabKeyTM; LORIS (Das
et al., 2012). The federated repository is implemented with
a combination of IBM InfoSphere Federation Server16, which
provides functions for extracting and staging source data into
a DB2 relational database system, and Elasticsearch17, which
provides functions to store data without the need of a pre-
defined data model, and functions to index these data for
very rapid searching. Query APIs consist of database-level
functions and REST-based web services. Automated pipelines
are implemented to extract data from source systems and ingest
them into the repository. These pipelines execute at varying
frequencies for different data types, depending on downstream
data consumption needs; generally, federated data are refreshed
daily.

Data records stored in the federated repository are associated
with metadata. For participant records, these metadata include
identifiers which point to the research project, data collection
site, and participant associated with the data. Additional
participant-related metadata include data sharing permissions
derived from informed consent forms and institutional ethics
review. These metadata provide a basis for access control
implemented in downstream systems. This allows permission-
controlled access by researchers to the data they collect from
their own studies, as well as data collected across research
programs. By federating data from multiple sources and data
types, Brain-CODE provides researchers with unprecedented

16www.ibm.com/analytics/information-server
17www.elastic.co

tools for combining, accessing and analyzing data in novel and
powerful ways.

Linkages With External Databases
To augment and complement data in Brain-CODE for enriched
analysis and enhanced data outcomes, the system is also used
to support linkages with data holdings external to Brain-CODE,
such as public data repositories, health administration data
holdings, electronic medical records, and legacy databases (see
Figure 4). For example, a federation of clinical and neuroimaging
data has recently been implemented between the Brain-CODE
and the LORIS database hosted at McGill University (Das et al.,
2012), initially to support data exchange between the OBI-
funded Ontario Neurodegeneration Disease Research Initiative
program18 and the Canadian Consortium on Neurodegeneration
in Aging19. The aim of this project is to ensure that researchers
using both platforms can exchange data in an interoperable
fashion, with minimal interference to their workflows. This has
also laid the groundwork for a recently funded Brain Canada
Platform Support Grant, the Canadian Open Neuroscience
Platform (CONP), designed to bring together existing Canadian
neuroscience platforms, initiatives and networks, and allow them
to link, leverage, enhance and expand to form an integrated
network. Both LORIS and Brain-CODE platforms will be actively
involved in the creation of the CONP. In addition, the system
is being extended to enable linkages with other partners,
including linking of single-subject data with administrative
health data holdings at the Institute for Clinical Evaluative
Sciences (Institute for Clinical and Evaluative Services [ICES],
2017), and at the cohort-level with the National Institute of
Mental Health Data Archive (Ontario Brain Institute [OBI],
2015).

Other Brain-CODE Deployments
Where possible, Brain-CODE infrastructure was built using
open-source tools, which lends itself to replication at other
institutions. As discussed elsewhere in this special issue
(Rotenberg et al., in review)20, the Brain-CODE infrastructure has
been installed as the central informatics platform for servicing the
Krembil Centre for Neuroinformatics at the Centre for Addiction
and Mental Health (CAMH). With common software packages
installed and similar standardization procedures in place, the
groundwork has been laid for other institutions to benefit from
this integrative data analytics approach.

DATA CENTER

The computational infrastructure for Brain-CODE is provided
and maintained by the Centre for Advanced Computing (CAC) at
Queen’s University, in Kingston, Canada21. CAC is a member of

18www.ondri.ca
19ccna-ccnv.ca
20Rotenberg, D., Chang, Q., Potapova, N., Wang, A., Hon, M., Sanches, M.,
et al., The CAMH Neuroinformatics Platform: a hospital-focused Brain-CODE
implementation. Submitted to Frontiers in Neuroinformatics.
21https://cac.queensu.ca
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the regional Compute Ontario consortium, and affiliated with the
Compute Canada national network. The CAC currently supports
over 800 research teams across Canada, including academic and
industry organizations. Reliable high-speed connectivity with
major computing and academic centers is enabled regionally by
redundant CAC links to the Ontario Research and Innovation
Optical Network (ORION) private fiber optic network, and
nationally and internationally through the CANARIE high-
speed national backbone. Security best practices including
administrative, technical and physical safeguards, and rigorous
enforcement of information security policies and procedures,
ensure that the platform can satisfy the most stringent regulatory
requirements pertaining to the storage and use of sensitive
data.

The Brain-CODE deployment at CAC provides a robust,
scalable, high performance computing platform that can satisfy
long-term processing and storage requirements of multiple large
scale research programs, while enabling secure and seamless
open access data sharing and analysis, which includes a
combined processing performance of 5 TFLOPS (Gee et al.,
2010). As usage and requirements of Brain-CODE grow,
additional hardware resources can be allocated for increased
data storage, specialized data processing, added demand for
federation, and intensive concurrent analytical tasks. Brain-
CODE public-facing applications and internal systems, including
databases, pipelines, and various data handling services, are all
deployed with containerization and virtualization technologies
(e.g., Docker), allowing optimal use of processor and memory
resources while streamlining system maintenance, and enabling
the platform to be readily scaled or redeployed into new
environments.

DISCUSSION

Ontario Brain Institute supports multidisciplinary collaborative
research networks from across Canada focusing on various
brain conditions. These programs generate large volumes of
data that are integrated within Brain-CODE to support scientific
inquiry and analytics across multiple brain disorders and
modalities, including clinical, imaging, and ‘omics data. By
providing access to very large datasets on patients with different
neurological disorders and enabling linkages to provincial,
national and international databases, Brain-CODE will generate
new hypotheses about brain disorders and underlying causes,
and ultimately promote new discoveries to improve patient care.
As of March 18, 2018, Brain-CODE supports the acquisition,
storage and analysis of multi-dimensional data from over 40
Canadian institutions, supporting more than 600 users in over
100 studies and contains data from more than 17,000 study
participants and 1,500 animal subjects22 (see Figure 6). These
research programs are continually adding data and new programs
are being added.

In addition to OBI-supported programs, Brain-CODE also
supports the collection, storage and sharing of data from

22www.braincode.ca

other studies as well. Depending on the requirements of the
programs, these data can be collected within the current instance
of Brain-CODE with appropriate access control provided
to the researchers. Alternately, a Brain-CODE instance can
be located within separate servers at the CAC or installed
within a separate data center altogether, as is the case with
the CAMH instance of Brain-CODE. To facilitate sharing
of these data with OBI-sponsored programs, all studies are
encouraged to incorporate Brain-CODE CDEs into their
protocols, which are made publically available on the Brain-
CODE portal23. Furthermore, as many granting agencies and
journals now require that research data be available for re-
use by others, Brain-CODE also provides the infrastructure
to support the upload and sharing of data collected outside
of Brain-CODE, which can be made publically available or
with restricted access to specified persons. Although Brain-
CODE does not currently support “regulatory-compliant”
clinical trials, plans are well underway to ensure that both
the infrastructure and processes are in place to support
regulatory-complaint clinical trials, including support of 21-
CRF Part 11 compliant EDC systems (i.e., OpenClinica
Enterprise) and development and adherence to Standard
Operating Procedures, which have been adopted from N2
Network of Networks24.

One of the key goals of OBI is to support a collaborative
approach to neuroscience as a mechanism to bring researchers
together to maximize their collective impact (Stuss, 2015; Stuss
et al., 2015). To help track the impact of OBI-supported
initiatives in fostering collaborations among Ontario’s
neuroscience community, an “Atlas of Ontario Neuroscience”
was developed to explore the growing collaborations both
at the individual and institutional level25. For example, the
“People Connection Map” shows collaborations OBI has fostered
through Brain-CODE and other OBI-supported initiatives.
It is expected that Brain-CODE, as a centralized informatics
platform that supports the management, federation, sharing
and analysis of multidimensional neuroscience data, will
continue to strengthen and expand these collaborations not only
within Ontario but also across the international neuroscience
community.
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Investigations of mental illness have been enriched by the advent and maturation of
neuroimaging technologies and the rapid pace and increased affordability of molecular
sequencing techniques, however, the increased volume, variety and velocity of research
data, presents a considerable technical and analytic challenge to curate, federate
and interpret. Aggregation of high-dimensional datasets across brain disorders can
increase sample sizes and may help identify underlying causes of brain dysfunction,
however, additional barriers exist for effective data harmonization and integration for
their combined use in research. To help realize the potential of multi-modal data
integration for the study of mental illness, the Centre for Addiction and Mental
Health (CAMH) constructed a centralized data capture, visualization and analytics
environment—the CAMH Neuroinformatics Platform—based on the Ontario Brain
Institute (OBI) Brain-CODE architecture, towards the curation of a standardized,
consolidated psychiatric hospital-wide research dataset, directly coupled to high
performance computing resources.

Keywords: neuroinformatics, collaborative brain science, medical informatics, XNAT, LabKey

INTRODUCTION

Mental illness affects one in three individuals in their lifetimes (Smetanin et al., 2011), and is the
leading cause of disability in Canada (Lim et al., 2008; Mental Health Commission of Canada,
2014; Whiteford et al., 2015) exerting an economic burden estimated at $51 billion per year,
including health care costs, lost productivity and reductions in health-related quality of life (Lim
et al., 2008; Smetanin et al., 2011). Investigations of mental illness have been enriched by the
advent andmaturation of neuroimaging technologies and the rapid pace and increased affordability
of molecular sequencing techniques (Lynch, 2003; Linden, 2012; Factors Study, 2013; Fu and
Costafreda, 2013; Schreiber et al., 2013; Mayberg, 2014; Etkin, 2014; Power et al., 2016; Altman
et al., 2016).

While these tools can independently provide powerful insights into the brain’s structure
and function, directed integration of complementary information holds considerable promise to
accelerate discovery and identify cross-modal biomarkers for stratification, diagnosis and treatment
of mental illness (Potkin et al., 2014; Mufford et al., 2017).
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This increased volume, variety and velocity (Bellazzi, 2014;
Lee and Yoon, 2017) of research data, presents a considerable
technical and analytic challenge to curate, federate and interpret,
requiring the adoption of clear standardizations and aligned
infrastructure to coordinate data within and across studies.
Neuroinformatics has emerged as a discipline in response to
these needs and the progressive evolution of computational
psychiatry.

To help realize the potential of multi-modal data towards
the study of mental illness, the Center for Addiction and
Mental Health (CAMH) constructed a centralized data
capture, visualization and analytics environment—the CAMH
Neuroinformatics Platform—based on the Ontario Brain
Institute’s (OBI) Brain-CODE platform, enabling the curation of
a standardized, consolidated psychiatric hospital-wide research
dataset, directly connected to high performance computing
resources.

The CAMH Neuroinformatics platform was developed to
support core capabilities for institutional researchers:

• Provide a research data management platform that can
accommodate and federate the varied research data collected
at an academic teaching hospital.
• Provide value to researchers through data visualization, quality

reports and intuitive query interfaces.
• Accelerate analytics, by bringing organized data structures and

compute power together in an integrated environment.
• Establish a standardized framework, to facilitate cross-

institutional data integration.

This article centers on the recent implementation of the
CAMH Neuroinformatics Platform, a hospital-focused adoption
of the OBI’s Brain-CODE model to enable organization of
site-wide multi-modal research data to accelerate discovery
in mental health. The manuscript addresses the utility and
flexibility of Brain-CODE as applied to a hospital environment,
and the extensibility of the model, as demonstrated by further
developments, including the federation of anonymized clinical
records and coupling to unified compute resources.

MATERIALS AND METHODS

To develop a centralized data management and analytics
environment, CAMH approached the OBI to review the design
elements of the Brain-CODE platform for large-scale multi-
dimensional provincial data management, guided by the FAIR
data principles (Jeanson et al., 2014, 2016; Wilkinson et al.,
2016; Vaccarino et al., 2018). The Brain-CODE model met
core criteria appropriate for translation to a research hospital
environment.

Flexible
Brain-CODE adopted data capture and organization systems
to support the vast array of data types found in brain
science. This was essential to meet the requirements posed
by the considerable variety of research data collected
at CAMH, including magnetic resonance imaging (MRI),
positron emission tomography (PET), computed tomography
(CT), electroencephalography (EEG), genetics, epigenetics and

proteomics. The systems were also extensible to adapt custom
data types and structures. This flexibility extended through the
choice of technologies, each of which allow for considerable
customization, and open integration with other systems,
including the addition of other databases, such as in the
case of electronic medical record (eMR) datasets (CERNER),
administrative data (such as the Institute for clinical evaluate
sciences, ICES), population health and economics data.

Scalable
The Brain-CODE platform was demonstrated to be highly
scalable as applied to province-wide neuroscience studies
supported through the OBI. This scalability met the
requirements to aggregate data across hospital research
programs and to facilitate national and international multi-site
studies. The platform needed to be capable of handling the
hundreds of active studies CAMH supports and the thousands
of closed/archived projects of historical data.

Secure
Brain-CODE was developed with a ‘‘privacy by design’’
approach, embedding security into each layer of
implementation based on the 10 Canadian Standards
Association (CSA) Privacy Principles1. This aligned with
the requirements of a hospital environment, where security
of research and clinical data are paramount. Granular and
defined access levels, built around the structure of research
endeavors, provided a solid framework for secure access.

Accessible
The individual applications and interfaces are highly accessible
to the research community. The web-based tools are intuitive
and well-suited for data collection in each domain (imaging,
molecular, clinical), and require limited training to reach a
sufficient level of comfort for systems adoption and can be
made accessible securely within the hospital network, through
centralized two-factor authentication.

Research Domain Databases
The Neuroinformatics Platform consists of open-source
domain-specific database systems, federated through a DB2
back-end to provide subject-by-subject records. Each database
interface is designed for a particular data-type, e.g., imaging,
molecular, clinical, allowing for intuitive data entry and handling
(Figure 1).

REDCap2 is used to capture behavioral and clinical
assessments, including harmonized common data elements
(CDEs) and self-report surveys (Harris et al., 2009). The CAMH
instance of REDCap was validated in collaboration with the
internal research ethics board (REB) and IT Security teams,
to enable usage in regulated clinical trials in compliance with
Health Canada.

XNAT3 (adapted as SPReD4) is used to store and organize
medical imaging data, including MRI, CT/PET and EEG. MRI

1https://www.csagroup.org/codes-standards/health-safety/
2http://project-redcap.org
3http://www.xnat.org
4https://sites.google.com/a/research.baycrest.org/informatics/spred
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FIGURE 1 | Overview of the Center for Addiction and Mental Health (CAMH) Neuroinformatics Platform. Data sources include XNAT (imaging), LabKey (molecular),
REDCap (electronic case report forms, eCRFs) and case of electronic medical record (eMR) case of electronic medical record (eMR) datasets (CERNER; electronic
health records, eHRs) which are federated into a central DB2 database. Federated datasets are available to compute resources (compute and Hadoop clusters) and
easily accessible through dashboards and software notebooks through the Neuroinformatics Portal.

data are stored in both their original DICOM and derived
formats, including NiFTI, MINC and ANALYZE, automatically
generated through pre-processing pipelines.

LabKey5 is used for the coordination and storage of biological
specimens and molecular data, including genetics, epigenetics
and proteomics. This system supports both raw data storage and
direct tabularization of results.

The databases support both original source data, derived
values (e.g., quality assessments and final results) and
pre-processed datasets (e.g., artifact correction).

All subject data are collected with informed consent,
under a study-specific REB protocol. Authentication has been
harmonized through the hospital-wide active directory system
and within each sub-system, rights are limited depending on
user-role to maintain security and to separate projects based
on REB study protocol. All changes to user access require
submission of an auditable electronic form, which requires
principle investigator sign-off. This extends to visualization
dashboards and individual table access for analytics (Clinical data
access has additional constraints, described in the section specific
to clinical record data).

5https://www.labkey.com

In the current phase, external access can be provided to
researchers who are named collaborators on the REB study
protocol. Access requires confidentiality agreements and a
centrally administered institutional account.

Data Federation
Multi-modal datasets are federated using the IBM InfoSphere
Federation Server6, which provides a thin, virtual data definition
layer that allows seamless communication with data sources.
A flexible API backend utilizes this federation capability to
provide subject-oriented, de-normalized mart-like data tables,
within a DB2 database environment. Data are linked, by unique
standardized research participant IDs, across each source system,
to generate a subject-level, profile for each individual.

Visualization and Query Interface
Visualization and federated query interfaces are provided
through TIBCO Spotfire7. Dynamic dashboards, refreshed daily,
provide federated data views across data sources. These data
views are served to specific research teams, defined by their study
protocols and data requirements.

6http://www-03.ibm.com/software/products/en/ibminfofedeserv
7http://spotfire.tibco.com/
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Dashboards provide visualizations that can be constructed
from any data or metadata in the source systems (XNAT,
REDCap, LabKey and CERNER). Filters can be applied directly
through interactive selection, or a variable-by-variable query
interface, to refine cohorts for data export to compute cluster
environments or local processing centers.

Statistical packages included with the dashboard
implementation allow for clustering, regression and stratification
of datasets, presenting an initial layer of rapid exploration and
visualization, prior to offloading to dedicated compute resources
for further investigation.

Neuroinformatics Portal
Access to each of the data entry tools, dashboards and analytics
applications are coordinated through a central Neuroinformatics
Portal (Figure 2). This primarily web-based design of the
Neuroinformatics Platform provides a consolidated gateway for
CAMH researchers to interact with their data.

Central Subject Registry
A central ledger of all participants entered into the platform
is supported by the Subject Registry (Vaccarino et al., 2018).
As a core component of this tool, medical record numbers
(MRNs) or health card numbers can be encrypted on entry,
allowing for the identification of common participants across
studies. As participants can be identified across studies, visits and
encounters, the subject registry facilitates longitudinal dataset
linkages and simplified hospital-wide research participant review
and oversight.

The Neuroinformatics Platform operates based upon
informed participant consent, meaning that institutional REB
approvals and associated informed consents govern what
data can be collected, uploaded, de-identified and shared.

This information is tracked in an Ethics Tracking Database,
(supported through a validated REDCap instance) which
contains information on the sensitivity of datasets and sharing
permissions. The information in the Ethics Tracking Database
is linked to each participant via the Subject Registry which
allows the tracking and management of data permissions on a
participant-by-participant basis.

Quality Assurance
Prompt and reproducible metrics of data quality are essential to
ensuring the integrity of research data. This is supported through
the Neuroinformatics Platform in the implementation of quality
control and quality assurance (QC/QA) scripts launched for new
data entry into data collection systems, and the presentation of
data quality dashboards.

QC scripts and summary dashboards are a core component
of the XNAT implementation. Automated QC scripts are
initiated on a nightly basis, with computation coordinated
through the CAMH compute cluster. These include naming
convention checkers, scan protocol checkers and both human
and phantom QC/QA. Functional MRI data quality is assessed
using phantom and human implementations of the fBIRN
pipeline from the Biomedical Informatics Research Network
(Friedman and Glover, 2006; Glover et al., 2012). Structural data,
specifically T1 scans are evaluated through an MRI registration
pipeline that automatically registers (non-linear warping with
ANTS8 every new high-resolution T1 MRI structural scan to a
template and then automatically measures signal-to-noise (SNR)
and contrast-to-noise (CNR) in gray matter. The pipeline also
includes white matter measures and automatically measures
volumes of interest using the MNI152 registration template and
the LPBA40 segmentation atlas (Shattuck et al., 2008).

8https://sourceforge.net/projects/advants/

FIGURE 2 | CAMH Neuroinformatics Portal landing page (Left), Dashboard view for multi-modal dataset (Right). The filter function for data query is illustrated for the
Dashboard view.
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FIGURE 3 | Example, “global” longitudinal quality assurance and quality control (QA/QC) dashboard for functional MRI (fMRI) data.

The reports generated by these scripts are captured and
associated with the subject/imaging sessions in XNAT, and are
further aggregated into interactive dashboards visible to each
research group, with both cross-sectional and longitudinal views
across the study (Figure 3).

A ‘‘global’’ imaging data quality dashboard also provides a full
view of all data entered into the Neuroinformatics platform. This
assists with the evaluation of overall site performance, long-term
trending and detection of outlier data.

Any number of pipelines can be added to these workflows to
support additional QC or pre-processing steps on neuroimaging
datasets that can be executed on secure local compute resources.

XNAT—Anonymization
In additional to anonymization of clinical data discussed in
the following sections, de-identification of imaging data is also
handled through automated pipelines (Li, 2011). A DICOM

header de-identification pipeline is applied to remove or replace
fields within the DICOM files. The fields to be modified are
configurable and are evaluated on a project-by-project basis,
dependent on REB protocol and in co-ordination with the
CAMH privacy office. High-resolution structural MRI scans
have been demonstrated to allow for the reconstruction of
facial features and identification of individuals (Schimke et al.,
2011). To support anonymization of imaging data a defacing
pipeline based on the MRI_deface tool (FreeSurfer; Bischoff-
Grethe et al., 2007) can be applied to data to remove facial
features from T1 images. In combination these pipelines can
reduce the likelihood of re-identification of imaging datasets.

Clinical Datasets
Electronic Medical Health Records
CAMH is a ‘‘HIMMS EMRAM Stage 7’’ hospital with
highly coordinated electronic medical health records
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FIGURE 4 | High-level schematic overview of data flow from the eMHR
system (CERNER) to the Neuroinformatics Platform database: (1) Electronic
Medical Health Care Data are collected as part of clinical care and from clinical
trials/translational clinical research; (2) Extract Transform and Load (ETL)
scripts extract data from the electronic medical health record system to a
curated intermediary database; (3) The NI extraction scripts are run, pulling
only the agreed upon variables and anonymous Research IDs. These data,
including an up-to-date schema are transferred to a secure location;
(4) Anonymization scripts (sdcMicro; Templ et al., 2015) are run to determine
whether the new extract fulfills anonymization criteria. If not, data flow ceases
and the data are triaged. The extract is revised, until the thresholds are
appropriately met; (5) Once the anonymization thresholds are successful, data
are transferred to the DB2 database, incorporating updated schemas;
(6) Accesses to these data are provided securely to research teams, with prior
research ethics approvals only.

systems (CERNER) deployed to clinicians as I-CARE9.
These records are of significant interest to researchers, both
as independent sources of information related to patient
prognosis, progression and outcomes, as well as when combined
with research data, such as medical imaging and molecular
expression.

Clinical datasets are provisioned to researchers through two
methods: (1) anonymized aggregate data for review by internal
researchers; and (2) data cuts specific to a REB approved study,
including retrospective chart review, restricted only to those
named members on the study protocol and in agreement with
identifiers included when and if allowed by the REB.

Coordinated data extracts of the hospital electronic medical
health record system, are staged through the federation
server, and then imported into the DB2 data-lake (Figure 4).
These records, including demographics, laboratory results and
pharmacological information, are linked to extended research
datasets, securely bridging clinical and research domains.

Anonymization
The capability to ensure anonymization is essential to the use of
clinical data in a research environment. Three primary methods
are applied to clinical data prior to exposure to research systems:
direct identifier removal, k-anonymity and l-diversity (using the
sdcMicro software package; Templ et al., 2015).

Direct identifiers, such as name, address, phone number, date
of birth, as well as IDs (such as medical record and health card
numbers) are isolated and removed. These variables are masked
(i.e., cells are nullified or the columns are removed entirely

9www.cerner.com

from the table) in the standard extract for the Neuroinformatics
Platform.

Anonymous ‘‘Research IDs,’’ following the CAMH research
naming convention, are generated in-place of other internal IDs
tied to identifiable information. The clinical team retains secure
mappings, to recover information if re-identification is required.

Variables that pose an identification risk, alone or in
combination with others, including Gender, Age Group, Local
Health Integration Network (LHIN) and Major Program are
considered Key Variables. To enforce k-anonymity (Samarati
and Sweeney, 1998; El Emam et al., 2009) the datasets are
processed for unique values or unique combinations of up to
three variables, which if identified are nulled.

Confidentiality is breached if a set of subjects with the same
combination of (up to 3) key variables has the same diagnosis.
In these cases subjects have their key variables nulled, to enforce
l-diversity, while guaranteeing a minimum loss of information
(Machanavajjhala et al., 2007).

After the application of k-anonymity and l-diversity
algorithms, risk measures related to the probability of
identification are calculated, to help ensure low risk of disclosure
and monitor the disclosure risk changes over time.

These metrics are calculated for each subject in two ways:
(i) ‘‘Disclosure Risk’’ for a given subject is calculated as 1 divided
by the number of subjects with the same combination of key
variables. It will be 1 if the subject has a unique combination
of key variables, considered unacceptable; and (ii) ‘‘Sample
Frequency on Subsets,’’ is calculated using the Special Unique
Detection Algorithm (SUDA2). A Data Intrusion Simulation
(DIS) score is derived for each subject based on considerations
of how unique the combination of key variables is (with higher
weight for combination of fewer variables).

The output of this process is an anonymized dataset and a
report that highlights the changes made to the original data and
summaries of the risk measures of anonymity.

If the risk probability for re-identification exceeds established
thresholds, further processing will cease and the data will remain
in the staging area. The dataset is adjusted in coordination with
clinical teams until the re-identification risk is reduced to within
the set parameters.

Cohort Explorer
The anonymized medical record data are utilized to provide a
cohort explorer for study feasibility evaluation and statistical
power calculations (Figure 5). This follows a similar model
to Informatics for Integrating Biology and the Bedside (i2b2;
Murphy et al., 2006), by providing a layer of access to explore
cohorts across the breadth of the clinical records systems.
The clinical data can be further combined with research
data from the other source databases through the common
DB2 backend.

As the anonymization process can reduce the amount of
information available, the aggregate cohort explorer is intended
primarily as an overview to identify study feasibility. Further
variables do continue to be added to the aggregate clinical extract,
to make these data more valuable for analysis. Where further
information is required, detailed extracts are provisioned in
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FIGURE 5 | Example clinical data cohort explorer dashboard, with visualizations of diagnosis, age, gender and average encounter (filterable by diagnosis). QC data
and full table views are also made available.

alignment with a specific REB protocol, and are anonymized as
far as possible, to limit identifiers to those prescribed by the REB.

Analytics
Compute Cluster
The scale and complexity of medical imaging and molecular
datasets necessitates substantial compute capabilities for
the pre-processing, QC measures and post-processing. The
Neuroinformatics Platform was designed with full connectivity
to a local high-performance compute cluster to handle
computationally demanding tasks (Figure 6).

Automated scripts initiated from the source databases
(e.g., XNAT and LabKey) are issued to the local compute
infrastructure, on dedicated secure queues.

Researchers are able to access their datasets, via queries
and data pointers directly from the compute clusters. The

architecture adopted, minimizes data transfers, and includes
a tightly connected network on a unified VLAN, at 10 GB
bandwidth, between all Neuroinformatics platform resources.

Hadoop Analytics Environment
To enable analysis of increasingly large datasets, otherwise
intractable to conventional approaches, the Neuroinformatics
Platform was implemented alongside dedicated Hadoop
infrastructure10. The DB2 database is imported in full to a HIVE
2.011 framework, utilizing SQOOP12, with secured permissions
enforced on a column-by-column level. Researcher’s datasets are
directly accessible to the active workspace to apply pipelines and
processing frameworks.

10http://hadoop.apache.org
11http://hive.apache.org/
12https://hortonworks.com/apache/sqoop/
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FIGURE 6 | Illustration of the CAMH Compute Cluster architecture.

Notebook Interfaces
To further the accessibility and web-based design of Brain-
CODE, notebooks for Python (Jupyter13) and R (RStudio14),
common languages in computational psychiatry, are accessible
through the central Neuroinformatics Portal. These notebooks
can process code on either a classical compute cluster,
or dedicated Hadoop environment, leveraging SparkR15 and
PySpark16 to seamlessly execute pre-developed code, without
recoding in native MapReduce.

Data Center
The infrastructure to support the functions of the
Neuroinformatics Platform is maintained locally at CAMH
across three secure data centers. The Neuroinformatics Platform
adopted a design philosophy to ensure no ‘‘single point of
failure.’’ Each server includes redundant components, network
connections, RAID storage configurations and hot-spares.

Each database application (XNAT, LabKey, Spotfire and DB2)
is provisioned with a dedicated development and production

13http://jupyter.org/
14https://www.rstudio.com/
15https://spark.apache.org/docs/latest/sparkr.html
16http://spark.apache.org/docs/2.1.0/api/python/pyspark.html

server, physically separated between the primary data centers for
high availability and disaster recovery purposes.

Similar to the OBI, CAMHhas adopted a primarily virtualized
architecture, using Oracle VM (OVM17). While there are some
limitations in performance as a result of virtualization, this
approach provides substantial operational benefits, notably:
(a) flexible deployment; (b) efficient snapshots for backup; and
(c) simplified fail-over procedures to initialize replicated VMs.
The virtual machines are distributed to a cluster of computers,
through OVM, such that they can be dynamically deployed/re-
deployed as required in case of hardware failure (Figure 7).

Data storage and backup functions are supported through
a 1.9 PB high performance storage system. Replication at the
file-level is conducted on an hourly basis, between the primary
and secondary storage sites, maintaining concurrent mirrors of
all raw and processed data (MRI, EEG, PET, etc.). Point-in-time
snapshots are taken each day, and retained up to 1-month, such
that accidental deletions or modifications can be rolled back
for up to 30-days. Daily extracts of system configurations are
included in the file-level replication.

17http://www.oracle.com/technetwork/server-
storage/virtualbox/overview/index.html
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FIGURE 7 | Overview of the Neuroinformatics Platform architecture that leverages high performance storage system replication and virtual machines, to support high
availability, redundancy and robust failover.

The Neuroinformatics platform virtual machines are stored
on a separate file system, accessed via Internet Small Computer
Systems Interface (iSCSI), on the central storage system. This
allows for block-level replication of the entire virtual machine
environment between primary and secondary sites. Automated
scripts allow for the preparation and launch of replicated virtual
machines, (either the production or development frameworks),
which can resume access of the research data from the file-level
replica. Both replication channels are further accelerated using
specialized hardware, and encrypted point-to-point.

The research storage systems, Neuroinformatics platform and
high performance compute environments are interconnected
by 10 GB optical fiber, under a single harmonized research
VLAN. This interconnect provides high bandwidth and low
latency to synchronize research data across applications and
analytics systems. The compute infrastructure includes a Hadoop
deployment (HortonWorks), a GPU node for machine learning
applications, and 45 high memory (128–256 GB RAM) compute
nodes, providing over 1,000 available processing cores.

This implementation of the Brain-CODE model on new
hardware architecture demonstrates the flexibility of the design,
and that it can be deployed under differing data center
conditions.

RESULTS

The Neuroinformatics platform has provided a key component
of technological infrastructure that affords researchers with a
standardized framework for data organization and analytics,
accessible through a centralized portal. The system, based on
the OBI Brain-CODE framework, has been able to support and
federate the varied research data types collected at CAMH.

At the time of writing, the CAMH Neuroinformatics
Platform supports 38 distinct research projects, spanning each
of the hospital’s primary research programs, with 3,61,777 total
participant records (including medical records), and anticipated
growth of 30,000 records per year (Table 1A). The total datasets
span 20 TB and adoption across the hospital has been strong,
with the web-based access model allowing for simplified study
management and data transfer.

Supported studies range multiple disorders and cross-lifespan
populations including, Pediatric, Geriatric, Neurodegenerative
(Alzheimer’s, Parkinson’s), Depression, Bipolar Disorder,

TABLE 1 | Summary table of data currently stored in the Center for Addiction and
Mental Health (CAMH) Neuroinformatics platform.
(A) Neuroinformatics platform data summaries.

Primary database Number of Participants

XNAT—Medical Imaging 2,878
REDCap—Assessments 13,514
LabKey—Molecular 15,385
eMHR—Clinical 330,000

Total 361,777

(B) Neuroimaging summary.

Modality Scans

DTI 2277
EEG 1837
T1 2600
T2 4322
fMRI 22108

Total 33144

Number of primary records stored in each database, XNAT, REDCap, LabKey and
from clinical records, Summary of Neuroimaging data types currently stored in
XNAT.

Psychosis, Autism, Schizophrenia and Addictions (Alcohol,
Nicotine). Data types include MRI: Functional, Structural and
Diffusion (Table 1B), PET, EEG, Whole Genome Sequencing,
Methylation, Chip Sequencing, MicroArray Sequencing and
RNA Sequencing.

Each study varies in the data types that are required for
collection and management. While not all studies include data
across each domain (e.g., studies with molecular and assessment
data, or imaging data only), several studies collect extensive
phenotypic data incorporating medical imaging, molecular,
assessment and clinical data for each participant.

In particular, the Social Processes Initiative in Neurobiology
of the Schizophrenia(s) (SPINS18; d = 109) and Preventing
Alzheimer’s Dementia With Cognitive Remediation Plus
Transcranial Direct Current Stimulation in Mild Cognitive
Impairment and Depression (PACt-MD19). These studies collect
biological samples, neuroimaging data (with the inclusion of EEG
data for PACt-MD) and extensive clinical and assessment data.
The complex data collected by these studies are well supported

18http://camhstudies.ca/cgi-bin/ver2/findCAMHstudy_study.php?
19https://sunnybrook.ca/research/content/?page = sri-groups-nppc-proj-7
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by the CAMH Neuroinformatics platform as the system can
accommodate the diverse data types and combine records
through federation: SPINS (LabKey—274, REDCap—174,
XNAT—319), PACt-MD (LabKey—230, REDCap—212,
XNATtextemdash217).

Tight coupling with computing environments supporting
classic parallel clusters and Hadoop frameworks, avoids
intermediary data transfer and storage, staging an environment
for rapid data exploration at-scale. The analytics environments
supporting the platform have run a total of 2,50,000 parallel
jobs, spanning QC, pre and post-processing workloads. The
use of web-based ‘‘notebook’’ interfaces has simplified access to
computational resources and abstracted complexities of queue
management from the user.

Federated records can be served securely to researchers
through interactive dashboards, functionally refined to suit the
requirements of each study. Dynamic query and filter functions
embedded within the platform have enabled researchers to
quickly identify cohorts and data sub-sets, greatly enhancing
data accessibility, and shifting time spent on ‘‘collating data’’ to
scientific interpretation.

The development of the Neuroinformatics platform
establishes the first phase of hospital-wide data integration
by providing a consistent framework for data organization and
management.

DISCUSSION

Sophisticated systems are required to handle the increasing
variety and scale of neuropsychiatric research data. These
challenges are well-known to the neuroscience community,
which have driven the development of several concurrent
approaches to manage complex datasets including, FBIRN FIRE,
COINS, LORIS, NeuroLOG, i2b2 and the Human Brain Project
Medical Informatics Platform (Amorim et al., 2016).

Comparisons to Similar Approaches
The Function Biomedical Informatics Research Network
(FBRIN) and Federated Informatics Research Environment
(FIRE; Keator et al., 2015) are a set of open-source integrated
tools for multi-side or multi-study neuroimaging studies
that includes many critical components such as central
authentication, online clinical data entry forms and the
Human Imaging Database20 for data management. FIRE also
includes the FBIRN image processing stream21. This is a valuable
open-source resource for functional MRI studies and shares
several similarities with the CAMH deployment, including
imaging and clinical assessment data collection, a centralized
database and coupling to compute for processing pipelines (both
including components of FBIRN QA). The two systems also
share querying interfaces with URLs pointing to image data
for staging downstream analyses. The Brain-CODE instance
includes additional data sources, and has been extended for use
with other neuroimaging data types, such as DTI.

20www.nitrc.org/projects/hid
21http://www.nmr.mgh.harvard.edu/∼greve/fbirn/fips/

The Collaborative Informatics and Neuroimaging Suite
COINS22 (Scott et al., 2011) is based on an open-source model
that includes web-based tools to manage studies, subjects,
imaging, clinical data, and other assessments, including a
standard metadata model and powerful query interface. It acts
as an institutional data repository that enables secure data
sharing with a focus on PHI considerations. While there are
advantages to the COINS deployment, as compared to XNAT as
a standalone implementation, such as longitudinal tracking and
standardized meta-data and data structures, the Brain-CODE
model incorporates strict standardization, including naming
conventions for longitudinal studies and enhanced query
through the federation system.

The Longitudinal Online Research and Imaging System
(LORIS; Das et al., 2016) is an extensible web-based data
management system that supports multiple data types, including
imaging, clinical, behavior and genetics. The system includes
capabilities to store, process and disseminate datasets and is used
for a variety of multi-site studies with instances used worldwide.

It shares many conceptual components of Brain-CODE and
the CAMH implementations, and provides valuable insight
into the challenges of managing longitudinal research data.
Compatibility between Brain-CODE and LORIS (Vaccarino
et al., 2018) using the underlying federation model has been
achieved to bridge these two systems towards data integration for
specific studies.

NeuroLOG (Batrancourt et al., 2014) provides a middleware
data management layer, to share heterogeneous and
distributed neuroimaging data using a federated approach.
Shared information can be captured through a multi-layer
ontology and federation schema to harmonize heterogeneous
data. This shares some components of the federation
approach used in Brain-CODE, through standardization
approaches and centralized federate schema. The challenge
of combining retrospective heterogeneous datasets from
legacy databases, still presents a challenge that may be
addressed through the use of mappable data models and
semantic database frameworks, discussed in relation to future
work.

i2b2 is an open-source system developed to provide tools
for clinical investigators to integrate medical records and
clinical research data (Murphy et al., 2010). This provides
similar functionality to the eMHR and research data integration
provided through the CAMH instance of Brain-CODE, including
a query tool to search applicable datasets, and are access
restricted based on REB review. The i2b2 implementation also
has two primary methods of exposure of medical record data:
an anonymized dataset of researcher review and restricted
matched sets of patients and controls based on study-
specific requirements. The i2b2 platform uses ontologies to
standardize data, and can link to diverse databases to access
other data streams and connections to compute resources are
supported. This system does lack the visualization capabilities
afforded by Spotfire, and would rely on the source systems
for QC.

22http://coins.mrn.org
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The Human Brain Projects’ Medical Informatics Platform
can provide support for hospital clinical data to be uploaded
and maintained locally for analysis (without leaving the
originating institution), and also view aggregated data
for large-scale analyses of clinical data across hospitals
(Galili et al., 2014). The CAMH Neuroinformatics platform
approach is more similar to the i2b2 model, with data not
yet federated in aggregate with other institutions. Secure
aggregates are made available for internal use, however,
the inclusion of data models and ontologies, coupled with
anonymization, can allow for more broad clinical data
integration.

In the context of the current environment of
Neuroinformatics approaches, the Brain-CODE model as
implemented at CAMH and its extension through local resources
represents a unique application with several advantages suited to
the hospital-focused use-case.

The Brain-CODE model utilizes open-source databases for
imaging, molecular data and assessment data, leveraging the
specialization of those tools to their data type(s). This supports
a highly diverse range of modalities, as required by CAMH
research programs. This also allows for new systems to be
added, or replaced, as the Neuroinformatics field evolves. The
underlying federation model has also been demonstrated to be
flexible combining data from multiple internal and external data
sources, such as eMHR data at CAMH.

The Neuroinformatics platform combines many of the key
components of comparable systems, with flexibility to extend
additional capabilities, to enrich the existing datasets and move
towards institutional data integration.

Limitations
There are several limitations to the implemented system, from a
user perspective, repository perspective and the data federation
approach.

Development of QC and pre-processing pipelines still
requires substantial coding and subject matter expertise.
Technical teams are available to assist researchers in
implementing their pipelines under the existing frameworks
(XNAT, LabKey), however, considerable knowledge of coding is
still required to ensure that these analyses work seamlessly.

Work was done to allow for direct data download after
querying federated study records. While this has been
successfully implemented for imaging data from XNAT,
the system can only provide tabularized molecular data from
LabKey and has not yet been built to pull raw data in bulk
through the query interface.

Many scripts and tools rely on standardized naming
conventions for MRI scans, which have been shown to
vary considerably between studies. While re-naming can be
performed during data import, and look-up tables established
to accommodate cases where re-naming is not possible, further
effort is required to generalize the system to better handle
varied conventions, particularly when considering inclusion of
externals sources. The authors are also aware of the importance of
provenance andmaintaining full information about the sequence
that was performed for data generation, which may preclude

re-naming. Additional efforts are underway institutionally to
standardize acquisitions.

As discussed in sections ‘‘Electronic Medical Health Records’’
and ‘‘Cohort Explorer’’ there are two methods that clinical data
extracts can be made available: (a) as an anonymized aggregate;
(b) amore complete extract dependent on REB approval for chart
review. The anonymization framework for the clinical data is by
design, conservative and results in a reduction of information
available in the output records that make these data less useful to
investigators. Ongoing efforts include adding additional variables
to the aggregated extracts to provide further information of
interest, while maintaining anonymization criteria.

A primary limitation of the current iteration of the
Neuroinformatics platform is that while data are federated on a
subject-by-subject level, they are not ‘‘integrated’’ across studies.
These limitations exist for legal, ethical and technical reasons.
Foremost patient consent and approved REB protocols are
not generalized for data sharing. There are further technical
limitations imposed by the initial federation software layer.
It is a key component of current and future directions to
implement an interoperability system, through Blue Brain
Nexus23) supporting permutable data models and detailed
provenance. Blue Brain Nexus was designed to fully support
the FAIR data model, and is currently being implemented
within the Neuroinformatics Platform to allow for findability,
interoperability, accessibility and reproducibility. Through the
development of standardized and consistent data model(s) that
incorporate data sharing options and the technology of Nexus,
will support the aggregation of different data sources for the
purpose to increase study sample sizes and enrich a growing
institutional dataset.

CONCLUSION

The CAMH Neuroinformatics Platform represents a unique
application of the Brain-CODE model in a hospital setting,
enabling data management and federation between research and
clinical domains, in support of treatment units and study centers.

The CAMH Neuroinformatics Platform supports individual
study data management and lays the foundations to facilitate
hospital-wide dataset federation, through the application of data
standardization and CDEs24. Maximizing statistical power is
challenging in individual studies, however, integration of related
data through participatory consortia such as, ENIGMA (Kelly
et al., 2018), ADNI (Yao et al., 2017), HCP (Van Essen et al.,
2013), bioCADDIE (Cohen et al., 2017) demonstrate that more
expansive datasets can be established for analysis. Thorough data
integration requires the adoption of data models, ontologies and
semantic description frameworks, to map between existing data
and optimally coordinate future data collection and institutional
developments of harmonized consent models. These capabilities
are critical to the development of large-scale datasets from
across diverse studies and the formulation of longitudinal
datasets. The extensibility of the OBI Brain-CODE model allows

23https://github.com/BlueBrain/nexus
24https://www.braincode.ca/content/getting-started#toc-2
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these developments to be applied effectively at the individual
domain-database level and the intermediary and federation
layers.

Further expansion of the Neuroinformatics Platform will be
focused on establishing a core integration layer that will ensure
data remain ‘‘live,’’ in a searchable, accessible and interconnected
format, under the FAIR data principles. Provenance will also be
a cornerstone of future initiatives, embedded into the platform,
to provide clear descriptors of data origins, processing pipelines
and derivations, and to coordinate authorship in accordance with
applicable data trajectories.

The implemented model of primarily open-source tools
represents a crucial component of research infrastructure, which
can be replicated at institutions of varying size to approach ‘‘Big
Data’’ and multi-modal investigations. The Neuroinformatics
Platform at CAMH will continue to accumulate multi-
dimensional medical imaging, molecular and clinical data to
further expand a rich dataset for large-scale studies to further
our understanding of the etiology, progression and treatment of
psychiatric illness.
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APPIAN is an automated pipeline for user-friendly and reproducible analysis of positron
emission tomography (PET) images with the aim of automating all processing steps up
to the statistical analysis of measures derived from the final output images. The three
primary processing steps are coregistration of PET images to T1-weighted magnetic
resonance (MR) images, partial-volume correction (PVC), and quantification with tracer
kinetic modeling. While there are alternate open-source PET pipelines, none offers all
of the features necessary for making automated PET analysis as reliably, flexibly and
easily extendible as possible. To this end, a novel method for automated quality control
(QC) has been designed to facilitate reliable, reproducible research by helping users
verify that each processing stage has been performed as expected. Additionally, a
web browser-based GUI has been implemented to allow both the 3D visualization of
the output images, as well as plots describing the quantitative results of the analyses
performed by the pipeline. APPIAN also uses flexible region of interest (ROI) definition—
with both volumetric and, optionally, surface-based ROI—to allow users to analyze data
from a wide variety of experimental paradigms, e.g., longitudinal lesion studies, large
cross-sectional population studies, multi-factorial experimental designs, etc. Finally,
APPIAN is designed to be modular so that users can easily test new algorithms for
PVC or quantification or add entirely new analyses to the basic pipeline. We validate the
accuracy of APPIAN against the Monte-Carlo simulated SORTEO database and show
that, after PVC, APPIAN recovers radiotracer concentrations within 93–100% accuracy.

Keywords: open science, automation, pipeline, software, quality control, PET

INTRODUCTION

The increasing availability of large brain imaging data sets makes automated analysis essential. Not
only is automated analysis important for saving time, but it also increases the reproducibility of
research. No existing post-reconstruction positron emission tomography (PET) software package
satisfies all the needs of researchers, specifically code that is free, open-source, language agnostic,
easily extendible, deployable on web platforms as well as locally, and including all necessary
processing steps prior to statistical analysis. We therefore present APPIAN (Automated Pipeline
for PET Image Analysis) a new open-source pipeline based on NiPype (Gorgolewski et al., 2011) for
performing automated PET data analysis. The starting point for APPIAN are reconstructed PET
images on which all necessary processing steps are performed to obtain quantitative measures from
the original PET images (Figure 1). In conjunction with the reconstructed PET image, APPIAN
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FIGURE 1 | APPIAN performs all processing steps necessary to obtain
quantitative parameters from reconstructed PET images. Flexible definition of
ROI allows use of APPIAN for a wide variety of experimental designs.
Integrated QC helps ensure that the pipeline performs as expected.

uses T1-weighted MR images to define regions of interest (ROI)
that are used at multiple processing stages. Briefly, APPIAN (1)
coregisters the T1 MR image with the PET image, (2) defines
ROI necessary for later processing steps, (3) performs partial-
volume correction (PVC), (4) calculates quantitative parameters,
(5) produces a report of the results, and finally, (6) performs
QC on the results (see Figure 1 for a schema of APPIAN, and
Discussion section for a detailed description of the pipeline,
complete with flowchart).

MATERIALS AND METHODS

Pipeline Overview
Coregistration
Positron emission tomography images are coregistered to the
corresponding non-uniformity corrected (Sled et al., 1998) T1
MR-images using a six parameter linear fitting algorithm that
minimizes normalized mutual information. The algorithm is
based on minctracc1 and proceeds hierarchically by performing
iterative coregistration at progressively finer spatial scales
(Collins et al., 1994). Coregistration is performed in two stages,
the first using a binary mask for the PET and the T1 MR images,
respectively, to obtain a coarse coregistration. This is followed by
a second registration step to refine the initial fit between the PET
and T1 MR images without the use of the binary images.

MR Image Processing
T1 structural preprocessing is performed if the user does not
provide a binary brain mask volume and a transformation file
that maps the T1 MR image into stereotaxic space. If these inputs
are not provided, APPIAN will automatically coregister the T1
MR image to stereotaxic space. By default, the stereotaxic space
is defined on the ICBM 152 6th generation non-linear brain

1https://github.com/BIC-MNI/minc-toolkit-v2

atlas (Mazziotta et al., 2001), but users can provide their own
stereotaxic template if desired. Coregistration is performed using
an iterative implementation of minctracc (Collins et al., 1994).
Brain tissue extraction is performed in stereotaxic space using
BEaST (Eskildsen et al., 2012). In addition, tissue segmentation
can also be performed on the normalized T1 MR image.
Currently, only ANTs Atropos package (Avants et al., 2011) has
been implemented for T1 tissue segmentation but this can be
extended based on user needs.

Regions of Interest
Regions of interest have an important role in three of the
processing steps in APPIAN: PVC, quantification, and reporting
of results. ROIs are used in PVC algorithms to define anatomical
constraints. When no arterial input is available for quantification,
a reference ROI is placed in a brain region devoid of specific
tracer binding. Finally, when reporting results from APPIAN,
ROIs are needed to define the brain areas from which average
parameters are calculated for final statistical analysis. ROIs for
each of these processing steps can be defined from one of three
sources. The simplest ROI are those derived from a classification
of the T1 MR image, e.g., using ANIMAL (Mazziotta et al., 2001),
prior to using APPIAN. Users can also use tissue classification
software implemented in APPIAN to classify their T1 MR images,
thereby eliminating the need to run a strictly MR image-based
pipeline prior to using APPIAN.

Regions of interest can also be defined on a stereotaxic atlas,
e.g., AAL (Tzourio-Mazoyer et al., 2002), with a corresponding
template image. In this case, the template image is non-
linearly coregistered to the T1 MR image in native space, and
subsequently aligned to the native PET space of the subject.
Finally, it is frequently necessary to manually define ROI on each
individual MR image, for instance when segmenting focal brain
pathologies such as a tumor or ischemic infarct. This option is
also implemented in APPIAN.

Partial-Volume Correction
In PET, partial-volume effects result from the presence of
multiple tissue types within a single voxel and the blurring
of the true radiotracer concentrations. PVC of PET images
is thus necessary to accurately recover the true radiotracer
distribution and, for example, differentiate between true neuronal
loss from cortical thinning. Several methods have been proposed
to perform PVC, many of which are implemented in PETPVC
(Thomas et al., 2016). In addition, we have also implemented
idSURF (Funck et al., 2014), a voxel-wise iterative deconvolution
that uses anatomically constrained smoothing to control for noise
amplification while limiting the amount of spill-over between
distinct anatomical regions. APPIAN thus allows the user to
select the appropriate PVC method based on their needs and
their data. If the desired PVC method is not implemented in
APPIAN, it can be easily included in the pipeline by creating a
file describing the inputs and outputs of the method.

Quantification
In PET images, quantitative biological or physiological
parameters—such as non-displaceable binding potential or
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cerebral blood flow—are often calculated from the measured
temporal change of tissue radiotracer concentration, so-called
time activity curves (TACs), within voxels or ROIs. Many models
exist for performing quantification depending on the type of
radiotracer, parameter of interest, and time frames acquired.
The quantification methods available in APPIAN are from
the Turku PET Centre tools (Oikonen, 2017). Currently, the
implemented models are: the Logan Plot (Logan et al., 1990),
Patlak–Gjedde Plot (Gjedde, 1982; Patlak et al., 1983), Simplified
Reference Tissue Model (Gunn et al., 1997), and standardized
uptake value (Sokoloff et al., 1977). APPIAN implements both
voxel-based and ROI-based quantification methods. It can
also process arterial input functions as well as input functions
from reference regions devoid of specific binding. Arterial
inputs are in the “.dft” format described by the Turku PET
Centre2.

Results Report
The ROI defined in “MR Image Processing” section are used to
calculate regional mean values for the parameter of interest from
the output images after coregistration, PVC and quantification
processing steps. Additionally, if cortical surface meshes are
provided by the user, the output images can be interpolated
on these meshes and be used to derive surface-based parameter
estimates. Regional mean parameter values are saved in wide
format ‘.csv’ files in the so-called ‘vertical format’ (i.e., the output
measure from each subject and each region is saved in a single
column). This standardized data format simplifies subsequent
analysis with statistical software, such as R (R Core Team, 2016)
or scikit-learn (Pedregosa et al., 2001).

APPIAN also calculates group-level descriptive statistics
obtained from the output images. The group-level statistics that
are provided exploit the BIDS naming convention which requires
that file names include the subject ID, the task or condition, and
the scanning session. APPIAN thus provides users with summary
statistics for the subjects, tasks, and sessions. Descriptive statistics
are plotted and displayed in a web browser-based GUI to allow
simple and easy visualization of the results.

Quality Control and Visualization
APPIAN includes both visual and automated quality control.
Visual quality control is facilitated by the incorporation of
BrainBrowser–a 3D/4D brain volume viewer (Sherif et al., 2015)–
in the web browser-based GUI (Figure 2). This makes it possible
to visualize the output images of the coregistration, PVC and
quantification processing stages without the need for additional
software.

While visual inspection remains the gold-standard method
for verifying the accuracy of PET coregistration (Ge et al., 1994;
Andersson et al., 1995; Alpert et al., 1996; Mutic et al., 2001;
DeLorenzo et al., 2009), automated QC can be useful in guiding
the user to potentially failed processing steps. The first stage
of the automated QC is to define a QC metric that quantifies
the performance of a given processing step. For example, in the
case of PET-MRI coregistration the relevant QC metric is the

2http://www.turkupetcentre.net/petanalysis/format_tpc_dft.html

similarity metric that quantifies the joint-dependence of spatial
signal intensity distribution of the PET and MR images. By itself
a single metric is insufficient to determine whether the processing
step has been performed correctly. However, by calculating the
distribution of several QC metrics for all subjects, it is possible to
identify potential anomalies. Kernel density estimation is used to
calculate the probability of observing a given QC metric under the
empirical distribution of the entire set of QC metrics. The results
are displayed in an interactive plot in the web browser-based
dashboard (Figure 3).

File Formats
Input files for APPIAN are organized following the Brain Imaging
Data Structure (BIDS) specifications (Gorgolewski et al., 2016),
which uses the Nifti format. In addition, APPIAN also supports
input files in the MINC file format (Vincent et al., 2016), which
are also organized according to the BIDS specifications but with
the MINC file extension.

High Performance Computing
APPIAN is optimized for high performance computing in two
ways. APPIAN is distributed in a Docker container3 that contains
all the software necessary to run APPIAN on any computing
platform supporting such containers (i.e., where Docker or
Singularity has been installed). APPIAN can therefore be run
identically across a wide variety of computing environments.
This not only facilitates the reproducibility of results, but also
allows APPIAN to be deployed simultaneously across multiple
computing nodes to analyze subjects in parallel. Additionally,
APPIAN supports multithread processing via NiPype and can
therefore be run in parallel on multiple CPUs on a given
computing platform, e.g., a personal workstation or a processing
node on a server.

APPIAN also follows the specification of the BIDS apps in
being capable of running subject-level and group-level analyses
independently. This means that an instance of APPIAN can be
run for each subject in parallel across the available computing
resources. Once the individual processing steps have been
completed and stored in the same location, the group-level
analyses can then be run, e.g., automated QC and reporting
of group-level descriptive statistics. Thus, a given data set can
be processed with APPIAN at different times and on different
computing platforms.

The ability to process large data sets in an easy, fast, and
reproducible manner is essential, particularly in cases where
parameters for a given algorithm need to be optimized or where
the performance of different algorithms at a given processing
stage is being compared.

Accuracy of APPIAN
The accuracy of the APPIAN pipeline was evaluated using the
SORTEO Monte-Carlo simulated PET data set (Reilhac et al.,
2005). These data consist of 15 subjects with a real T1 MR
image segmented into anatomical defined ROIs derived from
these images. From each of these anatomically segmented images,

3https://www.docker.com/
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FIGURE 2 | Output images produced by APPIAN can be viewed via a web browser-based dashboard. Visual QC for the coregistration stage can be performed by
viewing the MRI, PET, and the fusion images of the two.

three sets of simulated PET images were produced by assigning
empirically derived TACs of radiotracer concentrations of [11-
C]-raclopride (RCL), [18-F]-fluorodeoxyglucose (FDG), and [18-
F]-fluorodopa (FDOPA) into each segmented ROI. The PET
images were simulated using the SORTEO Monte-Carlo PET
simulator for the Siemens ECAT HR+ scanner (Adam et al.,
1997).

Magnetic resonance images were processed using CIVET.
CIVET uses the non-parametric N3 method to correct MR
field non-uniformity (Sled et al., 1998). The MR image is then
transformed to MNI stereotaxic space of the ICBM 152 6th
generation non-linear brain atlas (Mazziotta et al., 2001), using a
12 parameter affine transformation (Collins et al., 1994). Spatially
normalized images are then segmented into gross anatomical
regions with ANIMAL (Collins and Evans, 1997). Thus all ROI
images used in the subsequent analysis were derived using CIVET
prior to running APPIAN.

The accuracy of the APPIAN was verified by comparing the
results of the three central processing stages (coregistration, PVC,
quantification) to the true radiotracer concentration TACs or
the parametric values derived from them. For the coregistration
and PVC stages, the integral of the TAC recovered from the
processed images was compared to the integral of the true
radiotracer concentration TACs. Parameter values were obtained
by calculating the Ki, BPnd, and SUVR for the FDOPA, RCL,
and FDG images, respectively, and compared to the same values
calculated from the true radiotracer concentration TACs.

The accuracy for each processing stage was calculated by
dividing the results from APPIAN by the true radiotracer
concentration or parametric values. This calculation was
performed for a specific ROI for each radiotracer: cortical
GM for FDG, the putamen for FDOPA, and the caudate
nucleus for RCL. PVC was performed using the GTM
method with a point spread function of 6.5 mm full-width
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FIGURE 3 | Output from automated quality control (QC) allows users to assess the performance of major processing steps at a glance. Here the automated QC
metrics for the coregistration processing stage are shown: CC, cross-correlation; MI, mutual information; FSE, feature-space entropy.

TABLE 1 | Accuracy is measured as the ratio of recovered to true radiotracer concentration or parameter value. APPIAN accurately recovers radiotracer concentrations
and tracer kinetic parameters from the SORTEO simulated PET images.

Radiotracer ROI PVE Analysis Metric Accuracy

FDG GM Uncorrected Coregistration integral 0.66 ± 0.006

FDG GM Corrected PVC integral 0.93 ± 0.025

FDG GM Corrected Quantification SUVR 0.94 ± 0.048

FDOPA Putamen Uncorrected Coregistration integral 0.69 ± 0.03

FDOPA Putamen Corrected PVC integral 1 ± 0.055

FDOPA Putamen Corrected Quantification Ki 0.83 ± 0.238

RCL Caudate Nucleus Uncorrected Coregistration integral 0.77 ± 0.016

RCL Caudate Nucleus Corrected PVC integral 1.05 ± 0.035

RCL Caudate Nucleus Corrected Quantification BPnd 1.03 ± 0.042

half-maximum (Rousset et al., 1998). The cerebellum was used as
a reference region for the calculation of parametric values in the
quantification stage.

RESULTS

APPIAN was able to recover accurate values at each major
processing stage (Table 1), see Figure 4 for illustrative example
from one subject. The recovered values for the coregistration
and PVC were the integral of the regional TACs. For the
quantification stage the recovered values were the parametric

values as described in section “Accuracy of APPIAN”. The
accuracy of the coregistration stage was between 0.66 and
0.77, which represented an underestimation of the radiotracer
distribution due to partial-volume effects. The accuracy was
significantly improved by PVC, ranging between 0.93 and
1.05. The effect of PVC on the uncorrected radioactivity
concentration for each radiotracer is shown in Figure 5. The
PVC led to a slight overestimation in the caudate nucleus
with RCL, but near perfect accuracy in the putamen with
FDOPA. The final output parametric values were very accurate
for RCL (1.02) and FDG (0.94), and lower in the case of
FDOPA (0.83).
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FIGURE 4 | Illustrative example of the image volumes produced by APPIAN
for the three major processing stages for FDG, FDOPA, and RCL.

DISCUSSION

Accuracy of APPIAN
APPIAN recovered accurate values for each of the three major
processing steps on the SORTEO simulated PET data set. Not
surprisingly, the accuracy of the recovered parameters was
initially low (0.65–0.77), because of partial-volume effects. This
improved significantly after PVC with the GTM method (0.93–
1.05). For RCL and FDG, the parametric values resulting from
the quantification processing stage maintained a similar level
of accuracy to that of the PVC radiotracer concentrations.
This was not the case with FDOPA where the accuracy
decreased from 1 to 0.83. The decrease in accuracy was

due to noise in the radiotracer concentrations that were
measured in the caudate nucleus, which led to errors in the
calculation of the integrals used by the Patlak plot to determine
Ki.

For each radiotracer, the validation of APPIAN’s accuracy was
performed with differing ROI and using different methods for
calculating parametric values. These differences mean that it is
not possible to quantitatively compare APPIAN’s accuracy for
each radiotracer. The choice of ROI and algorithms for deriving
parametric values were chosen to reflect analysis procedures
that are widely used by researchers for each of the three
radiotracers. It should be noted that the cerebellum is not
typically used as a reference region for calculating SUVR or Ki
for FDG and FDOPA, respectively. However, while the specific
location of the reference region is of utmost importance when
performing true PET quantification, it is not relevant for verifying
the computational accuracy of the algorithms in the APPIAN
pipeline.

Comparison to Existing Pipelines
Several PET processing pipelines have been presented in recent
years. We here briefly describe them to highlight their relative
strengths (Table 2) and discuss how APPIAN compares to these.
There are other PET pipelines that carry out at least three of the
six steps performed by APPIAN, they are: PMOD (Mikolajczyk
et al., 1998), CapAIBL (Bourgeat et al., 2015), MIAKAT (Gunn
et al., 2016), Pypes (Savio et al., 2017), and NiftyPET (Markiewicz
et al., 2017).

PMOD
PMOD (Mikolajczyk et al., 1998) is the gold-standard software
for quantification of PET images and is distributed in modules
that perform specific aspects of PET analysis. PKIN includes
an exhaustive list of quantification models and preprocessing
methods for blood and plasma activity curves for analyzing
regional PET data, while PXMOD performs the same analyses
at the pixel level. PMOD also has modules that perform
analysis and PVC (PBAS), and image registration (PFUS). All
these modules can be used interactively using a graphical user

FIGURE 5 | Time-activity curves for each subject and each radiotracer. Blue points indicate the uncorrected PET radioactivity concentration after PET-MRI
coregistration and green points show radioactivity concentration after PVC with the GTM method. PVC corrects for spill-over of radiotracer distribution and increases
the measured radioactivity concentration.
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TABLE 2 | Many different PET processing software exist with various features.

Feature MIAKAT PMOD Pypes CapAIBL NiftyPET APPIAN

Cost Free 2,970–14,850$ Free Free Free Free

Open-source Yes No Yes No Yes Yes

Language MATLAB Java Agnostic∗ C++ Python Agnostic∗

Quantification Yes Yes No SUVR No Yes

PVC No No Yes No Yes Yes

Structural imaging Yes Optional Yes No Yes Required

Cloud-based processing No DICOM server No Yes Maybe Yes

Local processing Yes Yes Yes No Yes Yes

Visualization GUI GUI Result plots 3D surfaces No Dashboard

Surface-based No No No Yes No Yes

Reconstruction No No No No Yes No

APPIAN attempts to provide all post-reconstruction tools needed for PET research. ∗Agnostic: these packages are written in Python but support software written in any
language as long as it can run on the command line. Here, some of the most established and more recent pipelines are compared to APPIAN.

interface (GUI) but can also be linked together in a pipeline
to automate the analysis of large data sets. A particularly
useful feature is the option to add a QC step after each
processing stage. PMOD thus includes all the preprocessing
and analysis methods needed for automated PET analysis.
As a commercial software solution however, the PMOD
code is not open-source and thus imposes limitations on
the user community with respect to flexible development
and implementation of new image processing and analytical
methods.

CapAIBL
CapAIBL (Bourgeat et al., 2015) is a surface-based PET
processing pipeline that is available through an online platform.
It spatially normalizes PET images to cortical surface templates
for the surface-based analysis and visualization of PET data
without the need for structural imaging. Cortical surfaces are
derived from a standardized template, thus subcortical structures
such as the basal ganglia are not included in the analysis.
A purely surface-based approach is also limited to images from
structurally intact brains and may thus be difficult to apply to
datasets with focal brain lesions. Nonetheless, CapAIBL provides
a highly original method for performing automated PET analysis
that is useful for the study of the cerebral cortex in cases
where no structural image has been acquired alongside the PET
image. Dore et al. (2016) have shown a close correspondence
in PET quantification across a wide range of radiotracers with
coregistered PET and MR images and using CapAIBL, i.e.,
without coregistration.

Pypes
A recent multi-modal pipeline, Pypes (Savio et al., 2017),
combines PET analysis with structural, diffusion, and functional
MR images. This pipeline is free, open-source, and it is
also written using NiPype (Gorgolewski et al., 2011). Pypes
leverages several brain imaging software packages–including
SPM12 (Ashburner, 2012), FSL (Jenkinson et al., 2012), and AFNI
(Cox, 2012)–to provide multi-modal workflows. While Pypes
does incorporate PVC, it does not incorporate tracer kinetic
analysis, flexible ROI definition, or automated QC.

MIAKAT
MIAKAT (Mikolajczyk et al., 1998) is the most complete, open-
source PET processing pipeline. In addition to featuring many
tracer-kinetic models, MIAKAT also includes motion-correction;
a feature that is not currently implemented in APPIAN. One
of MIAKAT’s most important features is its user-friendly GUI.
This makes MIAKAT easy to use for users not familiar with the
command-line interface. In addition to analyzing PET images,
MIAKAT also includes the option to include structural images
which are used to define regions of interest (ROI). MIAKAT has
been recently extended for use on non-brain PET image analysis
and for application to species other than humans (Searle and
Gunn, 2017).

One limitation of MIAKAT is that it does not include PVC,
although this could potentially be added to the pipeline. More
importantly, it is built using MATLAB, which restricts MIAKAT
to a single, proprietary language with licensing restrictions.

NiftyPET
NiftyPET is another open-source, Python-based PET processing
pipeline that implements Graphical Processing Unit-processing
for massively parallel processing (Markiewicz et al., 2017). It
is the only PET processing pipeline to reconstruct PET images
from sinograms and to perform PVC (Yang et al., 1995).
It should be noted that the authors of NiftyPET use the
term “quantification” to refer to quantification of radioactivity
concentrations, whereas this term is here used to refer to
the quantification of underlying biological or physiological
parameters. NiftyPET therefore does not include parametric
quantification.

APPIAN
There are a wide variety of PET pipelines presently available, each
satisfying a different niche. APPIAN provides a highly flexible
framework for processing large PET data sets, see Figure 6
for a detailed flowchart of APPIAN. One important feature is
that APPIAN allows the user to define ROI from a variety
of sources and is therefore compatible with a wide variety of
experimental designs. Whereas lesion studies frequently use a
binary lesion image defined on each subject’s respective structural
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FIGURE 6 | Flowchart of the modules implemented in APPIAN. Green boxes indicate mandatory inputs, blue boxes indicate optional inputs, and tan boxes indicate
the primary quantitative outputs of the pipeline.

image in its native coordinate space, it may be necessary for
some studies (e.g., investigating lesion effects on functional
systems as in aphasia post stroke) to use a common brain
atlas in MNI-space. On the other hand, PET studies of, e.g.,
microglial inflammation may identify ROI based on the subjects’
respective tracer binding pattern in PET images in their native
space. Quantification of PET images also requires users to be
able to use either ROI to define a reference region without
specific binding of the radiotracer or TAC measured from arterial
blood samples. APPIAN is therefore suited for a wide variety
of experimental contexts because of its flexible system for ROI
definition.

APPIAN is also modular and easily extendable so that users
can either test new algorithms, e.g., a new PVC method, or
add entirely new analyses to the pipeline. Moreover APPIAN,
like Pypes, is written with NiPype and can thus use any
program that can be run in a Bash shell environment. Users
therefore do not need to rewrite their software in, e.g., Python
if they wish to implement it in APPIAN. Also, given that

descriptive statistics for ROI are automatically generated in
the reporting stage, it is easy to extend APPIAN to perform
sophisticated group-wise analyses. For example, investigators
interested in implementing graph theoretical analyses can append
their analysis to the group-level processing and input the
descriptive statistics that are collected at the reports stage to their
analysis.

Finally, APPIAN implements automated and visual QC to
facilitate the analysis of large data sets. This is essential because as
multiple processing stages are linked together into increasingly
sophisticated pipelines, it is important that users be able to
easily and reliably confirm that each processing stage has been
performed correctly.

Using APPIAN
APPIAN is available for both local use and cloud-based use. The
source code for APPIAN is freely available4. While the code-base

4www.github.com/APPIAN-PET/APPIAN
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will be maintained by the authors, we hope to create a community
of developers to support the project in the long-term. Changes
to APPIAN will be validated against the open CIMBI PET data5

(Knudsen et al., 2016). APPIAN is provided via a Docker (see
footnote 3) image and can be easily downloaded from Docker hub
under tffunck/appian:latest. Cloud-based APPIAN is available via
the CBRAIN platform6.

CONCLUSION

APPIAN is a novel PET processing pipeline that seeks to
automate the processing of reconstructed PET images for a
wide variety of experimental designs. It is therefore flexible
and easily extendable. In order to ensure that each processing
step is performed as expected, visual and automated QC
are implemented. Our results on Monte-Carlo simulated PET
data have shown that APPIAN accurately recovers radiotracer
concentration and parametric values. Future work will focus on

5 https://openneuro.org/datasets/ds001421
6 portal.cbrain.mcgill.ca

increasing the sensitivity of the automated QC and implementing
more algorithms for coregistration, PVC, and quantification.
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Lesion analyses are critical for drawing insights about stroke injury and recovery, and
their importance is underscored by growing efforts to collect and combine stroke
neuroimaging data across research sites. However, while there are numerous processing
pipelines for neuroimaging data in general, few can be smoothly applied to stroke data
due to complications analyzing the lesioned region. As researchers often use their own
tools or manual methods for stroke MRI analysis, this could lead to greater errors and
difficulty replicating findings over time and across sites. Rigorous analysis protocols
and quality control pipelines are thus urgently needed for stroke neuroimaging. To this
end, we created the Pipeline for Analyzing Lesions after Stroke (PALS; DOI: https://
doi.org/10.5281/zenodo.1266980), a scalable and user-friendly toolbox to facilitate
and ensure quality in stroke research specifically using T1-weighted MRIs. The PALS
toolbox offers four modules integrated into a single pipeline, including (1) reorientation
to radiological convention, (2) lesion correction for healthy white matter voxels, (3)
lesion load calculation, and (4) visual quality control. In the present paper, we discuss
each module and provide validation and example cases of our toolbox using multi-
site data. Importantly, we also show that lesion correction with PALS significantly
improves similarity between manual lesion segmentations by different tracers (z = 3.43,
p = 0.0018). PALS can be found online at https://github.com/npnl/PALS. Future work
will expand the PALS capabilities to include multimodal stroke imaging. We hope PALS
will be a useful tool for the stroke neuroimaging community and foster new clinical
insights.

Keywords: stroke, big data, lesion analysis, lesion load, MRI imaging, neuroimaging, stroke recovery

INTRODUCTION

Characterizing the relationship between brain structure and function is an important step in
identifying and targeting biomarkers of recovery after stroke (Dimyan and Cohen, 2011). As
stroke is heterogeneous in both its anatomical and clinical presentation, it is often difficult to
draw generalizable inferences with typical sample sizes. Moreover, many stroke research groups
have traditionally operated in silos (Hachinski et al., 2010). This poses a problem for scientific
reproducibility, as different research groups have various in-house analytic processes and pipelines
that are often not transparent (Gorgolewski and Poldrack, 2016). In recent years, big data
approaches have emerged and been embraced in the neuroimaging field (Milham, 2012). This
offers new hope for discovery of otherwise difficult-to-detect neural patterns that hold promise for
promoting advanced therapeutic techniques (Feldmann and Liebeskind, 2014; Huang et al., 2016).
While promising in their potential to overcome the problem of heterogeneity in stroke research, big
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data approaches to research come with their own challenges,
especially with respect to combining data across sites, and
managing and analyzing such large quantities of data (Van Horn
and Toga, 2014). Particularly for the analysis of data from
persons with stroke, there is a pressing need for the development
of reproducible image processing and analysis pipelines that
properly incorporate the lesion to promote collaborative efforts
in the analysis of large stroke datasets.

The semiautomatic brain region extraction (SABRE) pipeline
is one such example of an image processing pipeline for lesion
analysis that has been made open-source (Dade et al., 2004). The
SABRE pipeline integrates currently existing software, such as
FSL and ANTs to allow for volumetric profile of regionalized
tissue and lesion classes, while emphasizing quality control
(Avants et al., 2009; Jenkinson et al., 2012). However, the SABRE
pipeline was not specifically developed for stroke MRIs, and
requires multi-modal inputs, which are not commonly available
for research on chronic stroke.

To this end, we created the Pipeline for Analyzing Lesions after
Stroke (PALS; DOI: https://doi.org/10.5281/zenodo.1266980), an
open-source analysis pipeline with a graphical user interface
(GUI) to facilitate reproducible analyses across stroke research
sites using a single modality—a T1-weighted MRI, which is
the most commonly available for chronic stroke research. Our
goal is to improve the standardization and analysis of stroke
lesions and to encourage collaboration across stroke research
groups by creating a flexible, scalable, user-friendly toolbox for
researchers. PALS has four modules integrated into a single
analysis pipeline (Figure 1, bolded text): (1) reorientation of
image files to the standard radiological convention, (2) lesion
correction for healthy white matter, which removes voxels in the
lesion mask that are within a normal intensity range of white
matter, (3) lesion load calculation, which calculates the number
of voxels that are overlapping between the lesion and a specified
region of interest, and (4), visual quality control (QC), which
creates HTML pages with screenshots of lesion segmentations
and intermediary outputs to promote visual inspection of data
at each analysis step. Notably, researchers should use a method
of their choice to generate the initial lesion masks for their
dataset before using PALS. We provide a comprehensive review
of all existing automated lesion segmentation methods (Ito, Kim,
and Liew, under review), and note that the gold standard is
still manual lesion segmentation. However, once lesion masks
are generated, whether through automated or manual methods,
the PALS pipeline will facilitate quality control and additional
analyses using the lesion masks.

The rationale for each step was informed by both existing
literature as well as current attempts to combine stroke data
collected across multiple sites (Liew et al., 2018). In this report,
we will first review the rationale for each of these features, then
discuss the implementation of the features, and finally present
results from using the toolbox on multi-site data. The compiled
toolbox, source code, and instructions can be freely accessed at
our Github repository1.

1https://github.com/npnl/PALS

MAIN FEATURES: RATIONALE

PALS features a GUI-based navigation system for ease of
use (Figure 2). Any combinations of the four modules
(reorientation to radiological convention, lesion correction,
lesion load calculation, and visual quality control) can be selected
and the entire pipeline will run automatically.

Reorientation to Radiological Convention
Inconsistent orientation of images within a dataset is a
common and serious issue in image processing. Neurological
and radiological orientations are both widely used conventions
for storing image information (Brett et al., 2017). Whereas the
neurological convention stores a patient’s left side on the left
part of the image, the radiological convention stores left side
information on the right side of the image. The convention in
which image information is stored can vary between scanners
or even acquisition parameters, such that some images are
stored in the radiological convention, and others are stored
in the neurological convention. Moreover, commonly used
neuroimaging processing tools display and store information in
different ways, which can lead to orientation inconsistencies.
For example, FSL and FSLeyes by default displays images in
radiological convention (Jenkinson et al., 2012), the SPM display
utility by default displays images in neurological convention
(Penny et al., 2011), and MRIcron allows users to switch between
the orientations (Rorden and Brett, 2000). If image labels are
inconsistent or incorrect, analyses may be negatively impacted
since one may be incorrectly flipping the two sides of the
brain (Duff, 2015). This is particularly problematic for stroke
neuroimaging research, as one may mislabel the hemisphere
of the stroke lesion. As such, image orientation needs to be
carefully considered especially for large collaborative efforts,
when data has been collected from multiple sites. We thus built
a simple, optional module to convert all image inputs to the
radiological convention prior to performing any subsequent step
to harmonize data across sites. We recommend use of this module
with all datasets.

Lesion Correction for Healthy White
Matter Voxels
While many automated approaches have been developed for
lesion segmentation, manual segmentation remains the gold
standard for tissue labeling and continues to be the benchmark
for automated approaches (Fiez et al., 2000; Maier et al., 2017).
Yet, depending on the size and location of the lesion, manual
lesion segmentation could be a highly time- and labor-intensive
process. This becomes particularly challenging for large, multi-
site collaborative efforts, as having larger datasets places an
increasing demand on skilled manual labor. As such, multiple
individuals are often trained to perform lesion segmentations to
distribute the heavy labor demands. However, the wide variability
in lesion characteristics as well as inter-subjective differences
in the way that lesions are defined may introduce potential
inconsistencies in the manual lesion segmentation process (Fiez
et al., 2000). Lesion correction for healthy white matter voxels
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FIGURE 1 | Analysis pipeline. PALS takes in a minimum of two inputs (in blue): a T1-weighted MRI and a lesion mask file and has four main modules: (1)
reorientation to radiological convention, (2) lesion correction, (3) lesion load calculation, and (4) visual QC. Users can choose to perform any or all of the main
modules. White boxes indicate processing steps used in the pipeline. Green “QC” circles indicate that PALS will create a quality control page for that processing
step. ROIs, regions of interest.

FIGURE 2 | PALS Interface. PALS has a simple and intuitive graphical user interface (GUI) which allows back and forth navigation and easy selection of modules.
Additionally, the interface has tool tip icons (indicated by small black diamonds with question marks), which provide a brief helper text about each function when the
user hovers over the tool tip icon.

is one method proposed to decrease subjective differences in
the manual definition of lesions (Riley et al., 2011). The lesion
correction aims to correct for intact white matter voxels that
may have been inadvertently included in a manually segmented
lesion mask. This is done by removing voxels in the lesion
mask that were within the intensity range of a healthy white
matter mask. We previously created a semi-automated toolbox
to address this (SRQL toolbox; Ito et al., 2017). However, it

required manual delineation of a white matter mask for each
subject. Here, we integrated an updated version of the SRQL
toolbox as an optional lesion correction module that improves
on the SRQL toolbox by taking advantage of automated white
matter segmentation in FSL. We note that we recommend use
of the lesion correction module only on manually segmented
lesions, and not on automated segmentations, as evidenced in our
validation work below. Furthermore, careful visual inspection of
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white matter segmentation masks should be completed prior to
using this module.

Lesion Load Calculation
Currently, one of the main goals of stroke research is to
identify biomarkers for recovery, which can help identify patient
subgroups and predict which treatments would be most beneficial
for different patient subgroups (González, 2006; Cramer, 2010;
Stinear, 2017). Studying the anatomy and precise location of
stroke lesions is one potential avenue for drawing clinically
meaningful inferences about recovery. Specifically, the structural
integrity of white matter motor pathways, which has been
measured as the overlap of the lesion with a corticospinal (CST)
tract template, has been associated with motor performance
(Zhu et al., 2010; Riley et al., 2011; Stinear, 2017), and it has
been suggested that good recovery of motor function is largely
reflective of spontaneous processes that involve the ipsilesional
motor pathway (Byblow et al., 2015). In fact, it has been
shown that both initial motor impairment and long-term motor
outcome are dependent on the extent of CST damage, and the
extent of white matter damage had greater predictive value than
lesion volume (Puig et al., 2011; Feng et al., 2015). The extent of
CST damage has been developed into an imaging biomarker as
the weighted CST lesion load, which is calculated by overlaying
lesion maps from anatomical MRIs with a canonical, atlas-based
CST tract (Riley et al., 2011). Here, we built a module to calculate
the CST lesion load using T1w MRIs, and validate use of our
module against a similar lesion load calculator (Riley et al.,
2011). However, as it is likely that other motor and non-motor
regions in the brain may also be predictive of motor or cognitive
recovery (Crafton et al., 2003; Rondina et al., 2017), we have
extended the lesion load module to analyze lesion overlap with
corticospinal tract or other cortical and subcortical structures and
tracts, based on regions of interest from the FreeSurfer software
and sensorimotor area tract template (S-MATT; Archer et al.,
2017) packages, respectively.

Visual Quality Control
To analyze large quantities of data efficiently, most neuroimaging
processing steps are now automated. Yet the presence of a
stroke lesion substantially increases the susceptibility to image
preprocessing errors (Andersen et al., 2010; Siegel et al.,
2017). The accuracy of each image processing step, including
but not limited to lesion segmentation, brain extraction, and
normalization, could impact subsequent downstream processing
and analyses. Therefore, visual inspection of automated output is
imperative for lesion analyses. To this end, we encourage visual
inspection of data for quality data assurance by integrating the
creation of quality control review pages for each preprocessing
step that PALS requires. PALS is designed to pause after each
intermediary step and ask the user to inspect the data and
provide manual input on whether each subject’s output passes
visual inspection (which can be marked in a checkbox under
each individual). From there, PALS will only perform subsequent
analyses on subjects that pass the visual inspection. If, however,
users wish to run all subjects through the entire pipeline without

pausing, they are given the option to do so, but are highly
encouraged to visually inspect all analyses steps after completion.

For users who simply wish to efficiently visualize lesion masks
and do not wish to run other modules, PALS also offers the visual
quality control feature as a stand-alone tool.

BASIC STRUCTURE OF PALS
DIRECTORIES

PALS requires the user to specify the path to an Input Directory
and an empty Output Directory (Figure 3).

Inputs
The Input Directory must contain separate Subject Directories for
each subject. Each Subject Directory must at minimum contain:
the subject’s T1-weighted anatomical image in NifTI format, and
one or more corresponding lesion masks, also in NifTI format.
Importantly, all inputs should be in valid NifTI format and have
the same image dimensions within each subject. T1 anatomical
images for all subjects must contain the same T1 image
identifier (e.g., T1 images for the first and second subject should
be subj1_T1.nii.gz and subj2_T1.nii.gz, respectively); similarly
lesion masks for all subjects must contain the same lesion mask
identifier (e.g., subj1_Lesion.nii.gz and subj2_Lesion.nii.gz). If
any subject has multiple lesions, each additional lesion mask must
contain the lesion identifier, appended by the index, beginning
with one for each additional lesion (e.g., subj1_Lesion1.nii.gz; see
blue boxes in Figure 3).

Additionally, if the user chooses to run the Lesion Correction
and/or Lesion Load Calculation modules, they are given the
option to include the following files in each Subject Directory:
a brain mask file (NifTI) and a white matter segmentation
file (NifTI). If these steps have already been performed, brain
extraction and white matter segmentation can be skipped during
subsequent analyses. One caveat of this is that the same option
must be implemented for all subjects in a given analysis pipeline.
That is, the user cannot choose to skip brain extraction for only
one subject; they would have to skip the step and provide their
own brain mask files for all subjects.

If the user has already performed FreeSurfer cortical and
subcortical segmentation for each subject, they may use subject-
specific ROIs derived from FreeSurfer for lesion load calculation.
If so, the user will be required to provide a (1) T1.mgz and
(2) aparc + aseg.mgz parcellation and segmentation volume file
from FreeSurfer outputs in each Subject Directory. The same
caveat of pursuing the same option for all subjects applies.

Outputs
To encourage reproducible analysis, PALS also automatically
creates time-stamped log files indicating selected options, inputs,
and all processing steps each time it is run. These log files can be
found in the source directory for PALS under the logs directory.
This directory will only be created after the first run of PALS.

The general structure of the Output Directory will look
similar to that of the Input Directory, with a separate directory
created for each subject. Each new Subject Directory will contain
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FIGURE 3 | PALS data structure. The user is expected to provide an input directory with subdirectories as shown above. Files in blue boxes are necessary inputs.
The user is also expected to provide the path to an output directory, and PALS will create all other directories and files under the output directory.

the final outputs of the selected modules (e.g., white matter
intensity adjusted lesion masks for the lesion correction module),
and a subdirectory called Intermediate_Files, in which outputs
from intermediary processing steps will be stored. Within the
Intermediate_Files directory will be an Original_Files directory,
which will contain a copy of all input files for the subject. Please
see our github page2 for a detailed description of each output file.

The Output Directory will additionally contain separate
QC directories for each intermediary step taken (e.g.,
QC_BrainExtractions for the brain extraction step). These
QC files will contain screenshots for each subject, and a single
HTML page for manual visual control.

Finally, if the lesion correction and/or lesion load modules
are selected, the Output Directory will also contain CSV files
with information on the lesion (e.g., number of voxels removed
during lesion correction, and percentage of lesion-ROI overlap
per subject).

IMPLEMENTATION

Dependencies
PALS was built in Mac OSX on Python 2.7 and requires pre-
installation of FSL. Separate installation of FSLeyes is necessary
only if a version of FSL older than 5.0.10 is installed. FreeSurfer
installation is necessary only if the user desires to use subject-
specific FreeSurfer segmentations for the lesion load calculation
module (see more information on lesion load calculation below).

PALS is compatible with Unix and Mac OS operating systems.
For first-time users, PALS will ask users for the directory path to

2https://github.com/npnl/PALS

FSL binaries. While we note that only 9 MB of space is needed
for PALS installation (not including its dependencies), the total
amount of space used for outputs created by the program will
vary widely depending on the operations and number of subjects
selected. Minimally, we recommend that 54 MB is allocated
per subject, assuming only one ROI is selected for lesion load
calculation, to run all operations.

Modules
Reorienting to Radiological Convention
The purpose of the reorient to radiological module is to make sure
that lesion masks are in the same convention as the anatomical
brain file, since some software used to create lesion masks may
flip the orientation of the lesion file. Additionally, this module
attempts to homogenize the orientation of files across subjects,
especially when combining data across sites. Importantly, this
module assumes that the conversion from DICOM to NifTI
format was performed correctly. There should be no errors in
data storage and no missing information in the NifTI header.

The reorientation module first checks the orientation of the
T1 anatomical and lesion mask images. If they are already in
the radiological convention as indicated by the image header,
the image convention is conserved. If both T1 and lesion mask
images are found to be in the neurological convention, the
image data and image header for both the T1 anatomical image
and associated lesion masks are changed to the radiological
convention, using FSL commands fslswapdim and fslorient,
respectively3. If, however, the T1 and lesion masks are not in the
same convention, PALS flags the subject and does not perform

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained
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subsequent analyses on that subject. We recommend that the user
perform a thorough check of all flagged subjects to verify that
image orientations are correct by running FSL command fslorient
on flagged images.

If the user has also provided additional optional inputs, such
as a skull-stripped brain and/or white matter mask, those images
are also reoriented to the radiological convention if they are not
already. Finally, the FSL command fslreorient2std is applied on all
images to reorient images to match the orientation of a standard
T1-weighted template image (MNI152).

Lesion Correction for Healthy White Matter Voxels
The basic steps that SRQL, the original toolbox we created for
lesion correction, implements for white matter lesion correction
are outlined elsewhere (Ito et al., 2017). However, as several steps
have been modified and updated for PALS, we describe the steps
in detail here.

First, the intensity of each subject’s T1 structural image is
scaled to a range within 0 to 255 (intensity normalization).
Skull stripping using FSL’s Brain Extraction Toolbox (BET) and
automated white matter segmentation using FSL’s Automated
Segmentation Tool (FAST) are then performed (Smith, 2002).
The user is given an option to skip the skull-stripping and
segmentation steps if he or she specifies that these steps have
already been performed. If skull-stripping and/or white matter
segmentation are performed, PALS will create a quality control
page and the program will pause for the user to perform a visual
inspection of each brain extraction/white matter segmentation.

Next, intensity normalized values from the T1 image
(step 1) are projected onto the white matter segmentation
as well as the binarized lesion mask, and the mean white
matter intensity value is calculated from the white matter
segmentation.

To calculate the upper and lower bounds for white matter
intensity removal, the percent intensity for removal is first
specified by the user. A default value of 5% is built into the
toolbox. The specified percentage for removal is then converted
to a 0 to 255 scale and divided by 2. This value is added to
and subtracted from the mean white matter intensity value, such
that:

Intensity values to be removed = mean±
(255∗specified percentage %)

2

Following this calculation, any voxels with intensity values within
this range in the T1-projected lesion mask are removed, thereby
removing voxels in the lesion mask that are within the specified
intensity range of healthy white matter for that individual. As the
last step, the white matter adjusted lesion mask file is binarized as
a final lesion mask.

After lesion correction has been completed for all subjects,
a CSV file containing information about the number of voxels
removed for each subject’s corrected lesion is created along with
a quality control page for visual inspection of the effect of lesion
correction on the lesion. The impact of using the lesion correction
module is reported in validation (section IV), where we show
that lesion correction decreases inter-individual variability on

manual segmentations, but does not improve upon automated
segmentations.

Lesion Load Calculation
The lesion load calculation module computes the amount of
lesion-ROI overlap with minimal input from the user. Notably,
the user does not need to register or reslice regions of interest
(ROI) to native space prior to using the lesion load module
in PALS—PALS automatically normalizes all native space lesion
masks and anatomical files to match that of the ROI. We offer
several options for selecting ROIs in calculating lesion load based
on commonly-used conventions for ROI analysis (Poldrack,
2007). (1) PALS comes with a set of default anatomical ROIs,
all of which have been converted to standard 2 mm MNI152
space, including bilateral corticospinal tract ROIs (Riley et al.,
2011), FreeSurfer subcortical and cortical ROIs (Fischl, 2012),
and sensorimotor area tract ROIs (S-MATT; Archer et al., 2017).
(2) We also allow calculation of lesion load using subject-specific
FreeSurfer cortical and subcortical segmentations, if the user
indicates that they have already performed FreeSurfer and have
FreeSurfer-derived aparc + aseg.mgz and T1.mgz files for each
subject. (3) Lastly, we give users the option of providing their own
regions of interest to calculate lesion load. This option requires
that the user also provides the standard space template of the
regions of interest so that PALS can convert subject files to the
ROI space.

After the ROIs are specified by the user, all ROIs are binarized,
and lesion masks and T1 images are registered to the ROI space,
whether it is MNI152 (default ROIs), FreeSurfer space, or user-
defined. At this point, the program will pause again and have the
user perform a visual inspection of the registrations to confirm
that the normalization looks appropriate. Lesion masks are also
binarized (such that only voxels within the lesions have a value
of 1 and all other voxels have a value of 0), and summed with
the voxel values of each binarized ROI mask using the FSL
command fslmaths, so that regions that are overlapping between
the lesion and ROI have a value of 2. Next, to obtain the mask of
the lesion-ROI overlap, a threshold is applied to the combined
lesion-ROI mask, such that anything below a value of 2 is
zeroed. Finally, the lesion-ROI overlap mask is used to calculate
the total percentage of overlap between the lesion and ROI,
calculated as:

Percentage overlap =
(overlap volume between lesion and ROI)

ROI volume

The percentage overlap between the lesion and ROI is then saved
into a CSV file containing lesion load information for all subjects,
and a quality control page is created for visual inspection of lesion
load performance.

Quality Control Webpages
PALS uses the FSL module fsleyes4 to render screenshots of
each subject’s brain extraction overlaid on its corresponding T1-
weighted image. The screenshots will display the overlays along
the three orthogonal planes. These screenshots are concatenated

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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FIGURE 4 | Example of quality control page. The QC page shown above was used to assess the quality of CST lesion load calculations in the test dataset. Each
subject’s screenshot is displayed with a checkbox below for flagging subjects that do not pass visual inspection. Left, prior to performing QC; right, after correcting
brain extraction. The first subject in particular demonstrates the vast difference that quality inspection makes. Brown shows the CST ROI; blue shows the lesion
mask of each subject.

into a single HTML page for review. Below each screenshot is
a checkbox for the user to indicate whether the subject’s brain
extraction passes visual inspection.

The same process was used to create quality control pages
for each subject’s white matter segmentation mask and registered
brain masks. For lesion masks, both the final white matter
adjusted mask as well as the original manually traced lesion mask
were overlaid onto the T1-image for comparison of lesions before
and after lesion correction. For lesion load calculations, the lesion
mask is overlaid on the selected region of interest for calculating
the lesion load (see Figure 4).

VALIDATION

Reorient to Radiological
Here, we validated that this tool performs each function
correctly. For this evaluation, we simply wanted to test as
many cases as possible, and used a combined dataset of
355 MRIs and lesion masks from 12 research sites [11 from
the Anatomical Tracings of Lesions after Stroke (ATLAS)
database, and one additional from a collaborator; Liew et al.,
2018]. We checked that PALS correctly flagged all 30 subjects
whose lesion mask and anatomical T1 files had mismatching
orientations. For all other images that were not flagged,
the module corrected identified images in the neurological
orientation and transformed them to radiological orientation (see
Supplementary Table S1).

We next simulated cases to confirm that PALS also correctly
identified subjects with mismatched orientations in optional
inputs (e.g., where a brain mask and/or white matter mask file
are provided by the user in addition to the necessary T1 and
lesion mask files). Additionally, we created a case in which all but
one subject contained the additional optional inputs. We checked
that PALS was able to correctly identify when orientations of
inputs were mismatched for any subjects, and overrides the user
input to skip brain extraction and/or white matter segmentation
if a subject is missing those inputs (Table 1). For additional
simulation cases, see Supplementary Tables S2–S4.

Lesion Correction for Healthy White
Matter Voxels
Inter-Rater Reliability
For this module, we tested whether PALS could improve
inter-rater reliability on five manually segmented lesion masks
(Figure 5). Ten trained research assistants manually traced stroke
lesions from five separate brains with lesions of different sizes
(Liew et al., 2018). For each stroke brain, we calculated a
dice correlation coefficient (DC) for each pair among manual
tracings by 10 different trained individuals to evaluate agreement
between all raters. The dice correlation coefficient is a measure of
similarity between two images, and is defined as:

DC = 2 ∗
|X ∩ Y|
|X| + |Y|
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TABLE 1 | Validation for reorient to radiological module.

Cases Input orientations Output
orientations

Case 1 Lesion: neurological Radiological

T1: neurological Radiological

Brain: neurological Radiological

WM: neurological Radiological

Case 2 Lesion: radiological Radiological

T1: radiological Radiological

Brain: radiological Radiological

WM: radiological Radiological

Case 3 Lesion: neurological Flagged

T1: neurological

Brain: radiological

WM: neurological

Case 4 Lesion: neurological Flagged

T1: neurological

Brain: radiological

WM: radiological

Case 5 Lesion: neurological Flagged

T1: radiological

Brain: radiological

WM: radiological

Case 6: Optional Lesion: neurological Radiological

input missing T1: neurological Radiological

Brain: missing Brain extraction set
to run on all
subjects

WM: missing WM segmentation
set to run for all
subjects

Simulated cases including subjects with T1, lesion mask (Lesion), brain mask
(Brain), and white matter segmentation (WM) inputs with varying orientations. PALS
correctly flagged cases in which orientations of input files were mismatched.

where DC ranges between 0 (no overlap) and 1 (complete
overlap), and X represents voxels in the first lesion volume,
and Y represents voxels in the second lesion volume. For each
stroke brain, the average of all DC values from all 45 pairwise
comparisons of manual segmentations was calculated as a mean
inter-rater DC score, and then mean inter-rater DC scores across
the five stroke brains was again averaged for an overall inter-
rater DC score. We then ran both SRQL, our previous version
of lesion correction, and PALS-lesion correction on all manual
segmentations, using the default value of 5% lesion white matter
intensity removal, to compare which performed better, and
recalculated the overall inter-rater dice coefficient score on white
matter adjusted lesion masks (Table 2).

We next performed a one-way repeated measures ANOVA on
the mean inter-rater DC scores averaged over the five lesions
to determine whether there were any differences between inter-
rater scores without any correction, with lesion correction from
SRQL, and with the new PALS lesion correction. Mauchly’s test
indicated that the assumption of sphericity had been violated
(p < 0.001), therefore Greenhouse–Geisser corrected tests are
reported (ε = 0.514). We found a significant difference among

the inter-rater DC scores (F = 5.91, p = 0.0183); Tukey
post hoc comparisons with Bonferroni correction showed that
inter-rater DC scores, the average number of voxels overlapping
between manual segmentations of the tracers (see above for
description), were significantly higher after lesion correction
with PALS compared to lesion masks without any adjustment
(z = 3.43, p = 0.0018); other pairwise comparisons did not reach
significance (p > 0.18). In other words, the lesion correction
module in PALS significantly improved the similarity between
manual tracings across the 10 tracers. We thus recommend using
the PALS lesion correction module when analyzing manually
traced lesions.

Automated vs. Manual Lesion Segmentations
We were also interested in assessing whether lesion correction
could improve similarity between automated segmentations and
manual segmentations, the latter considered the gold standard
for lesion segmentation. For this evaluation, we used 90 stroke
T1-weighted MRIs from the publicly-available ATLAS database
(Liew et al., 2018). The ATLAS database consists of chronic
stroke (>6 months) MRIs obtained across 11 research groups
worldwide, and also includes manually segmented lesion masks
for each MRI, created by a team of trained individuals (for further
information on the full lesion dataset and labeling protocol, see
Liew et al., 2018). The 90 brains included for this evaluation
consisted of 34 cortical, 54 subcortical, and 2 cerebellar lesions on
both left (n = 36) and right (n = 54) hemispheres. Lesion volume
ranged from 386 to 164,300 mm3 (M = 31,578.41, SD = 38,582.13)
based on manual segmentations.

We used the manually segmented lesions included in the
ATLAS database as our gold standard of manually traced lesion
masks. We then used the lesion identification with neighborhood
data analysis (LINDA) approach to automatically segment the
90 stroke T1-weighted MRIs (Pustina et al., 2016). Finally, we
calculated the dice DC between each automated segmentation
and manually traced lesion and obtained an average DC of
0.58± 0.25 (range 0.006 to 0.88).

We note that a DC value of 0.58 is relatively low considering
that DC ranges between 0 and 1. However, given that limitations
still exist with performance of automated lesion segmentation
algorithms, particularly for single-modality data and for data that
have been pooled together from different sites, such as the ATLAS
database, an average DC of 0.58 is fairly standard (Ito, Kim, and
Liew, under review; for a representative example, see Figure 6).

Removing White Matter FromManual Tracings
We next performed lesion correction on manually traced lesions,
using the default 5% white matter intensity removal, and re-
calculated DC to determine whether lesion correction improved
similarity between the manual and automated segmentations.
We found that lesion correction on manual lesions made no
difference on similarity between manual and automated lesions
(average DC before and after correction: 0.58 ± 0.24; t = 1.59,
p = 0.11).

Removing White Matter From Automated Segmentations
Finally, we assessed whether lesion correction on automated
segmentations could improve similarity to manually traced
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FIGURE 5 | Inter-tracer heat maps of five stroke lesions with and without lesion correction. Brighter colors indicate greater overlap between tracers; as shown above
in regions with less bright colors and greater dark red, PALS improves similarity between inter-rater tracings, particularly when lesion correction is included.

TABLE 2 | Inter-rater Dice Correlation Coefficient values with and without lesion correction.

Lesion A Lesion B Lesion C Lesion D Lesion E Average

No correction 0.84 ± 0.006 0.62 ± 0.03 0.66 ± 0.02 0.93 ± 0.002 0.81 ± 0.01 0.77 ± 0.009

SRQL 0.87 ± 0.006 0.63 ± 0.03 0.69 ± 0.01 0.93 ± 0.002 0.82 ± 0.01 0.79 ± 0.009

PALS-LesionCorr 0.87 ± 0.006 0.65 ± 0.03 0.72 ± 0.014 0.94 ± 0.002 0.84 ± 0.009 0.80 ± 0.009

Average dice coefficient values (mean ± standard deviation) for manual tracings across 10 trained individuals. 1, perfectly overlapping; 0, no overlap. PALS-Lesion
correction consistently improved the dice coefficient across all lesions compared to no correction or the earlier SRQL toolbox.

lesions. We thus applied lesion correction using default values
on lesions automatically segmented using LINDA, and calculated
DC between manual segmentations (without lesion correction)
and white matter corrected automated segmentations for the
90 brain lesions. Here, we found that lesion corrections did
not improve similarity between manual and automated lesions
and actually significantly decreased similarity by a small amount

(average DC before: 0.58 ± 0.03; average DC after correction:
0.57± 0.24; t = 2.58, p = 0.01).

Lesion Load Calculation and Quality
Control
We validated our lesion load calculation module with a CST
lesion load calculation tool implemented by a separate research
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FIGURE 6 | Representative case of automated versus manual lesion segmentation. Left, an individual’s T1w anatomical MRI; Right, the manual lesion mask in blue
overlaid on automated lesion mask produced by the LINDA algorithm, in red (Pustina et al., 2016). DC, 0.57 for this lesion.

group (Riley et al., 2011). As their group divided up their CST
ROI into 16 longitudinal strings to obtain the lesion-to-CST
percentage overlap (see Riley et al., 2011 for methods), we also
tested the PALS lesion load calculation module with identical ROI
input, courtesy of Riley et al. (2011).

For this evaluation, we implemented both lesion load
calculation tools on 122 brains from the ATLAS dataset. These
brains were made up of 40 cortical, 67 subcortical, 12 brainstem,
and 3 cerebellar strokes. To validate that the lesion load tool
correctly assesses the hemisphere of the lesion, we included both
left (n = 70) and right (n = 40) hemisphere lesions (and 12
brainstem lesions). Lesion volume ranged from 27 to 62,460 mm3

(M = 7,391.48 mm3, SD = 9,060.82 mm3).
We used the left CST ROI, and found a strong significant

correlation between the PALS method and the previously
described method from Riley et al. (2011) (PALS average CST
lesion load percentage: 44.96 ± 44.70%; Riley CST lesion load:
43.75 ± 44.30%; r = 0.87, p < 0.0001). We also verified that
the CST lesion load percentage was equal to 0% on all right
hemisphere lesions. However, the correlation was lower than
expected. Using our QC tool, we visually inspected the quality
of the intermediary outputs created by PALS and identified seven
cortical stroke brains that performed poorly on brain extraction
and registration. We cleaned up the brain extractions using
additional features in FSL’s BET (e.g., bias field and neck cleanup),
and reran these brains through the PALS pipeline, feeding in
the cleaned-up brain extractions (Figure 4). As expected, this
substantially improved registration. We then re-calculated the
CST lesion load as well as the correlation between the values
obtained through PALS and the method described above from
Riley et al. (2011). Doing so resulted in a stronger correlation
between the two lesion load calculation tools (PALS average CST
lesion load percentage: 47.33± 45.24%; r = 0.96, p < 0.0001). This

demonstrates the importance of performing a thorough quality
inspection on each processing step and overall confirms that
our tool accurately calculates lesion overlap in accordance with
previous work.

We additionally assessed whether the accuracy of lesion load
calculation differed between cortical and subcortical lesions. As
such, we split these 122 validation cases by category (40 cortical,
67 subcortical, excluding brainstem and cerebellar lesions). We
then calculated the Pearson’s correlation coefficient by stroke
category, to assess how well the PALS method compares to the
method implemented by Riley et al. (2011). For cortical strokes,
we obtained a correlation coefficient of r = 0.73, p < 0.0001; 95%
CI [0.54, 0.85]. However, after correcting for image processing
errors that occurred for the seven brains mentioned above, we
obtained the following values for cortical strokes: r = 0.98,
p < 0.0001; 95% CI [0.97, 0.99]. For subcortical strokes, we
obtained a correlation coefficient of r = 0.95, p < 0.0001; 95% CI
[0.93, 0.97]. Again, this demonstrates the susceptibility of larger,
cortical strokes to image processing errors and highlights the
importance of quality control.

DISCUSSION

Despite the recent surge of interest in big data neuroimaging,
the infrastructure and image processing pipelines necessary to
support it, particularly for stroke lesion analysis, are still severely
lacking. To this end, we created an open-source toolbox with
a user-friendly GUI to help standardize stringent stroke lesion
analyses. A detailed manual and source code can be downloaded
from our github repository5.

5https://github.com/npnl/PALS
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To demonstrate some of the key features of the toolbox,
we validated use with multi-site data. We demonstrated that
PALS successfully harmonizes data to be in the same orientation
convention across sites. We also showed that PALS increases
inter-rater reliability of manual tracings: applying the lesion
correction module in PALS significantly increased similarity
between manually segmented lesions compared to no lesion
correction and our previous version of lesion correction from
the SRQL toolbox. However, we found that similarity between
manual segmentations and automated segmentations, in cases
where groups might try to use manual segmentations for a
subset of the data and automated segmentation in another
subset of data, did not improve when applying PALS lesion
correction on either the manual segmentations or the automated
segmentations. A likely explanation for this is that the automated
segmentations algorithm we used (LINDA; Pustina et al., 2016)
already included a tissue classification step in the derivation of
features, which would prevent white matter voxels to be classified
as lesion tissue. We thus recommend that research groups do
not mix different lesion segmentation methods (e.g., a subset
manually and a subset with an automated algorithm) for the PALS
lesion correction module, but rather use lesion correction only
for datasets with all manual lesion segmentations. This is because
applying white matter intensity removal to human errors in
manual segmentations would provide a systematic way to remove
voxels within the designated healthy white matter intensity range
that might be missed due to human bias (Riley et al., 2011).
Finally, we also showed that PALS lesion load calculation module
is comparable to another CST lesion load calculator implemented
by a different research group.

Limitations and Future Directions
PALS was created to respond to the need for reliable
image processing pipelines for collaborative efforts in stroke
neuroimaging. PALS integrates multiple functions into a single
analysis pipeline to facilitate lesion analysis and quality control.
However, the PALS toolbox has a few limitations. First, as PALS
was created to address the need for lesion analysis software that
takes a single modality, we have only tested the toolbox on T1w
MRI data. We hope to expand these tools for other types of
multimodal stroke imaging, such as T2 or FLAIR sequences, in
the future. However, we will plan to retain the option for using

a single channel input so that users will not be required to have
multi-modal data to use PALS. Additionally, in the reorient to
radiological module, the PALS toolbox makes the assumption
that the input files are in valid NifTI format, which requires
proper user input.

We plan to continue to refine our software in the future based
on feedback and comments from users6, and hope to expand
these tools for other multimodal stroke imaging data types. We
hope our toolbox will be useful to clinicians and researchers,
and foster greater collaboration leading to the discovery of new
clinical insights.
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Brain imaging with diffusion-weighted MRI (dMRI) is sensitive to microstructural white
matter (WM) changes associated with brain aging and neurodegeneration. In its
third phase, the Alzheimer’s Disease Neuroimaging Initiative (ADNI3) is collecting data
across multiple sites and scanners using different dMRI acquisition protocols, to better
understand disease effects. It is vital to understand when data can be pooled across
scanners, and how the choice of dMRI protocol affects the sensitivity of extracted
measures to differences in clinical impairment. Here, we analyzed ADNI3 data from
317 participants (mean age: 75.4 ± 7.9 years; 143 men/174 women), who were each
scanned at one of 47 sites with one of six dMRI protocols using scanners from three
different manufacturers. We computed four standard diffusion tensor imaging (DTI)
indices including fractional anisotropy (FADTI) and mean, radial, and axial diffusivity,
and one FA index based on the tensor distribution function (FATDF), in 24 bilaterally
averaged WM regions of interest. We found that protocol differences significantly affected
dMRI indices, in particular FADTI. We ranked the diffusion indices for their strength
of association with four clinical assessments. In addition to diagnosis, we evaluated
cognitive impairment as indexed by three commonly used screening tools for detecting
dementia and AD: the AD Assessment Scale (ADAS-cog), the Mini-Mental State
Examination (MMSE), and the Clinical Dementia Rating scale sum-of-boxes (CDR-sob).
Using a nested random-effects regression model to account for protocol and site, we
found that across all dMRI indices and clinical measures, the hippocampal-cingulum and
fornix (crus)/stria terminalis regions most consistently showed strong associations with
clinical impairment. Overall, the greatest effect sizes were detected in the hippocampal-
cingulum (CGH) and uncinate fasciculus (UNC) for associations between axial or
mean diffusivity and CDR-sob. FATDF detected robust widespread associations with
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clinical measures, while FADTI was the weakest of the five indices for detecting
associations. Ultimately, we were able to successfully pool dMRI data from multiple
acquisition protocols from ADNI3 and detect consistent and robust associations with
clinical impairment and age.

Keywords: Alzheimer’s disease, ADNI3, white matter, DTI, multi-site, harmonization, TDF, ComBat

INTRODUCTION

Alzheimer’s disease (AD) is the most common type of dementia,
affecting approximately 10% of the population over age 65
(Alzheimer’s Association, 2018). As life expectancy increases,
there is an ever-increasing need for sensitive biomarkers of
AD—to better understand the disease, and to serve as surrogate
markers of disease burden for use in treatment and prevention
trials. The Alzheimer’s Disease Neuroimaging Initiatve (ADNI)
is an ongoing large-scale, multi-center, longitudinal study
designed to improve methods for clinical trials by identifying
brain imaging, clinical, cognitive, and molecular biomarkers
of AD and aging. Now in its third phase (ADNI3), ADNI
continues to incorporate newer technologies as they become
established (Jack et al., 2015); data from ADNI, collected at
participating sites across the U.S. and Canada, is publicly
available and has been used in a diverse range of publications
(Veitch et al., 2019).

ADNI’s second phase (ADNI2) introduced to the initiative
the use of diffusion-weighted MRI (dMRI) as an additional
approach for tracking AD progression (Jack et al., 2015). dMRI
has since been used in numerous studies to understand the
effects of AD on white matter (WM) microstructure and brain
connectivity (Daianu et al., 2013a,b; Nir et al., 2013; Prasad
et al., 2013). Some of these approaches use scalar dMRI measures
to evaluate microstructural WM changes not detectable with
anatomical T1-weighted images (Giulietti et al., 2018), while
others use tractography and graph-theory analysis to study
abnormalities in structural brain networks (Nir et al., 2015;
Hu et al., 2016; Maggipinto et al., 2017; Sulaimany et al.,
2017; Powell et al., 2018; Sanchez-Rodriguez et al., 2018). In
aggregate, these studies point to WM abnormalities in AD,
which may play a key role in early pathogenesis and diagnosis
(Sachdev et al., 2013).

ADNI2 acquired dMRI data with one acquisition protocol
from approximately one third of enrolled participants at the
subset of ADNI sites that used 3 tesla General Electric (GE)
scanners. To ensure that dMRI could be collected from all
enrolled participants, ADNI3 developed new dMRI protocols
for all GE, Siemens and Philips scanners used across ADNI
sites. Now, data is being acquired with seven different dMRI
acquisition protocols (see ‘‘Materials and Methods’’ section
for details1). ADNI3 began in October 2016, and has already
acquired data from over 300 participants. dMRI spatial resolution
was improved between ADNI2 and ADNI3 by reducing the
voxel size from 2.7 × 2.7 × 2.7 mm to 2.0 × 2.0 × 2.0 mm.

1http://adni.loni.usc.edu/methods/documents/mri-protocols/

While voxel size (i.e., spatial resolution) remains consistent
across all seven ADNI3 protocols, angular resolution (the
number of gradient directions) varies across protocols to
accommodate scanner restrictions and to ensure that the multi-
modal scanning session is completed in under 60 min. Although
many large-scale multi-site DTI studies have obtained consistent
results even when acquisition protocols across sites are not
harmonized in advance (Jahanshad et al., 2013; Kochunov et al.,
2014; Acheson et al., 2017; Kelly et al., 2018), differences in
dMRI acquisition parameters, including vendor, voxel size, and
angular resolution, are known to affect derived dMRI measures
(Alexander et al., 2001; Cercignani et al., 2003; Zhan et al.,
2010; Zhu et al., 2011). As a result, improved harmonization
of multi-site diffusion data is of great interest (Grech-Sollars
et al., 2015; Pohl et al., 2016; Palacios et al., 2017). For
example, ComBat—originally developed to model and remove
batch effects from genomic microarray data (Johnson et al.,
2007)—was one of the most effective methods for harmonizing
DTI measures in a recent comparison of such techniques
(Fortin et al., 2017).

Here, we tested whether standard diffusion tensor imaging
(DTI)-derived anisotropy and diffusivity indices, calculated
from multiple imaging protocols in ADNI3, can be pooled
and harmonized to show robust associations with age
and four clinical assessments. In addition to diagnosis,
cognitive impairment was assessed with three commonly
used screening tools for detecting dementia and AD: the
Alzheimer’s Disease Assessment Scale (ADAS-cog; Rosen
et al., 1984), the Mini-Mental State Examination (MMSE;
Folstein et al., 1975), and the Clinical Dementia Rating
scale sum-of-boxes (CDR-sob; Berg, 1988). For the rest of
the article we refer to these tools as ‘‘cognitive measures’’.
In addition to standard DTI indices—fractional anisotropy
(FADTI), mean diffusivity (MDDTI), radial diffusivity (RDDTI),
and axial diffusivity (AxDDTI)—we also evaluated a modified
measure of FA, derived from the tensor distribution function
(FATDF; Leow et al., 2009) which can be more sensitive to
neurodegenerative disease-related WM abnormalities than
FADTI across high- and low-angular resolution dMRI (Nir
et al., 2017). The TDF model addresses well-established
limitations of the standard single-tensor diffusion model—which
cannot resolve complex profiles of WM architecture such
as crossing or mixing fibers, present in up to 90% of WM
voxels (Tournier et al., 2004; Descoteaux et al., 2007, 2009;
Jeurissen et al., 2013).

In 24 WM regions of interest (ROIs), we ranked these five
anisotropy and diffusivity indices, in terms of their strength
of association with key clinical measures, to identify dMRI
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indices that may help understand and track AD progression.
We hypothesized that the diffusion indices from ADNI2 (Nir
et al., 2013, 2017) would still be associated with clinical
measures of disease burden in ADNI3—despite the variation in
protocols. We hypothesized that when data were pooled across
ADNI3 protocols: (1) higher diffusivity and lower anisotropy
in the temporal lobe WM would be most sensitive to cognitive
impairment, with highest effect sizes for associations with CDR-
sob; and (2) FATDF would detect associations with clinical
impairment with larger effect sizes than FADTI.

MATERIALS AND METHODS

ADNI Participants
Baseline MRI, DTI, diagnosis, demographics, and cognitive
measures were downloaded from the ADNI database2. This
analysis was performed when data collection for ADNI3 was
still ongoing (May 2018), and reflects the data available on
April 30, 2018. Of the 381 participants scanned to date, 55 were
excluded after quality assurance: this included ensuring complete
clinical and demographic information, and image-level quality
control (removing scans with severe motion, missing volumes,
or corrupt files). To ensure sufficient statistical power to
assess differences in data collected with different protocols, we
evaluated only those protocols with complete available data for
at least 10 participants at the time of download; we did not assess
protocol GE36, for which scans from 9 of 12 participants passed
quality assurance. Details on excluded participants are outlined
in Supplementary Table S1.

Three-hundred and seventeen remaining participants—from
47 scanning sites—were included in the analysis (mean age:
75.4± 7.9 years; 143 men, 174 women; Table 1): 211 were elderly
cognitively normal (CN) controls (mean age: 74.5 ± 7.3 years;
84 men, 127 women), 84 were diagnosed with mild cognitive
impairment (MCI); mean age: 76.3 ± 8.1 years; 48 men,
36 women), and 22 were diagnosed with AD (mean age:
80.6 ± 10.5 years; 11 men, 11 women). We note that two of
the ADNI2 diagnostic categories—CN and significant memory
concern (SMC)—are combined and identified as CN in ADNI3.

2https://ida.loni.usc.edu/

ADNI2’s early and late MCI categories are combined and
identified as MCI in ADNI3.

Clinical Assessments
In addition to diagnosis, we indexed cognitive impairment using
total scores from commonly used screening tools for detecting
dementia and AD (Table 1): the Alzheimer’s Disease Assessment
Scale 13 (ADAS-cog), the Mini-Mental Status Examination
(MMSE), and the Clinical Dementia Rating scale sum-of-boxes
(CDR-sob). We refer to these tools as ‘‘cognitive measures’’,
but recognize the limitations of these assessments as proxy
measures of specific cognitive abilities (Balsis et al., 2015). The
ADAS-cog is frequently used in pharmaceutical trials, with scores
ranging from 0 to 70; higher scores represent more severe
cognitive dysfunction (Rosen et al., 1984). MMSE is more often
used by clinicians and researchers in assessing cognitive aging.
Scores for MMSE range from 0 to 30; lower scores typically
indicate greater cognitive dysfunction (Folstein et al., 1975).
CDR-sob is used primarily in clinical trials and in clinical
practice for evaluating disease severity including the mild and
early symptomatic stages of dementia. It is calculated based on
the sum of severity ratings in six domains (‘‘boxes’’)—memory,
orientation, judgment and problem solving, community affairs,
home and hobbies, and personal care. Scores range from
0 (no dementia) to 3 (severe dementia; Berg, 1988). These
evaluations are among the measures used in diagnosing ADNI
participants. Not all cognitive measures were available for
every participant (MMSE, N = 315; CDR-sob, N = 316, and
ADAS-cog, N = 278; Supplementary Table S2 lists these
by protocol).

Diffusion MRI Acquisition Protocols
ADNI3 incorporated dMRI protocols for 3 tesla Siemens,
Philips, and GE scanners. ADNI2, the first phase of ADNI
to include diffusion MRI, only prescribed dMRI protocols
for GE scanners. The available scanners span a wide range
of software capabilities, such as support (or the lack of
it) for custom diffusion gradient tables and/or simultaneous
multi-slice acceleration. Including additional scanners while
staying in a 7–10-min scan duration resulted in data acquired
with seven different acquisition protocols—of which six had

TABLE 1 | Demographic and clinical measures for participants in Alzheimer’s Disease Neuroimaging Initiative (ADNI3), subdivided by diffusion-weighted MRI (dMRI)
protocol.

Protocols Demographics Clinical assessments

Diagnosis Cognitive measures+

Name Total N Sites Age (years) Male CN MCI AD MMSE∗ CDR-sob∗ ADAS-cog∗

GE54 65 8 76.7 ± 7.3 32 (49.2%) 45 16 4 28.50 ± 3.26 0.78 ± 1.81 11.75 ± 6.81
P33 24 3 78.1 ± 7.1 13 (54.2%) 17 4 3 28.75 ± 2.03 1.31 ± 2.84 13.32 ± 6.76
P36 19 4 75.3 ± 6.6 7 (36.8%) 12 7 0 28.21 ± 2.39 0.76 ± 1.35 12.63 ± 5.12
S31 36 9 72.8 ± 8.6 15 (41.7%) 21 10 5 28.31 ± 2.77 0.79 ± 1.35 11.54 ± 5.25
S55 153 18 75.0 ± 8.4 66 (43.1%) 100 43 10 27.94 ± 3.28 0.95 ± 2.05 11.96 ± 5.65
S127 20 5 75.3 ± 5.4 10 (50.0%) 16 4 0 28.80 ± 1.70 0.33 ± 0.75 10.27 ± 2.83
TOTAL 317 47 75.4 ± 7.9 143 (45.1%) 211 84 22 28.23 ± 3.01 0.87 ± 1.91 11.89 ± 5.78

We report the average age, Mini-Mental State Examination (MMSE), Clinical Dementia Rating scale sum-of-boxes (CDR-sob), and AD Assessment scale 13 (ADAS-cog) measures,
and their standard deviations. ∗Data not available for all participants: MMSE N = 315; CDR-sob N = 316 and ADAS-cog N = 278. +We recognize the limitations of these assessments
as proxy measures of specific cognitive abilities (Balsis et al., 2015).
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TABLE 2 | ADNI diffusion MRI acquisition protocols.

Name Scanner Protocol b0 volumes DWI volumes Total
volumes

Time (min) Total N

ADNI3 GE36 GE Basic Widebore 25x 4 b = 0 s/mm2 32 b = 1,000 s/mm2 36 9:52 −

GE54 GE Basic 25x 6 b = 0 s/mm2 48 b = 1,000 s/mm2 54 7:09 65
P33 Philips Basic Widebore 1 b = 0 s/mm2 32 b = 1,000 s/mm2 33 7:32 24
P36 Philips Basic Widebore R3 1 b = 0 s/mm2

3 b = 2 s/mm2
32 b = 1,000 s/mm2 36 6:54 19

P54 Philips Basic R5 1 b = 0 s/mm2

5 b = 2 s/mm2
48 b = 1,000 s/mm2 54 8:05 −

S31 Siemens Basic VB17 1 b = 0 s/mm2 30 b = 1,000 s/mm2 31 7:02 36
S55 Siemens Basic Skyra E11 and Prisma D13 7 b = 0 s/mm2 48 b = 1,000 s/mm2 55 9:18 153
S127 Siemens Advanced Prisma VE11C 13 b = 0 s/mm2 48 b = 1,000 s/mm2 61 7:25∗ 20

ADNI2 G46 GE Discovery MR750 and MR750w, Signa HDx and HDxt 5 b = 0 s/mm2 41 b = 1,000 s/mm2 46 7:00–10:00 59

∗Reflects the time to acquire the full multi-shell protocol (127 volumes), not the single-shell subset.

sufficient sample sizes to be evaluated here. Protocols varied
in the number of diffusion weighted imaging (DWI) directions
(i.e., angular resolution), and the number of non-diffusion
sensitized gradients (b0 images), which serve as a reference
to assess diffusion-related decay of the MR signal. Voxel size
across all ADNI3 protocols was 2.0 × 2.0 × 2.0 mm and
2.7 × 2.7 × 2.7 mm in ADNI2. Table 2 summarizes the
different protocols.

There is currently one multi-shell multiband protocol for
Siemens Advanced Prisma scanners (S127). As ADNI3 is still
in its early stages, GE and Philips protocols for multi-shell
acquisition have not yet been finalized, so only 20 multi-shell
scans were available for analysis at the time of writing. Here our
goal was to evaluate single-shell dMRI indices across protocols,
so we used a subsample of the 127 DWI volumes from the
S127 multi-shell protocol to include only 13 b = 0 and 48
b = 1,000 s/mm2 DWI volumes (removing 6 b = 500 s/mm2 and
60 b = 2,000 s/mm2 volumes).

The Philips Basic Widebore R3 protocol (P36) included three
b = 2 s/mm2 volumes and one b = 0 s/mm2, because Philips
scanners cannot acquire more than one b = 0 s/mm2. The Philips
Basic Widebore (P33) was not a prescribed protocol, but rather
acquired from Philips sites with a software version less than
5.0 that could not acquire the b = 2 s/mm2 volumes.

dMRI Preprocessing and Scalar Indices
All DWI were preprocessed using the ADNI2 DTI analysis
protocol as in Nir et al. (2013). Briefly, we corrected for head
motion and eddy current distortion, removed extra-cerebral
tissue, and registered each participant’s DWI to the respective
T1-weighted brain to correct for echo planar imaging (EPI)
distortion. Details of the preprocessing steps may be found here3.
All DWI and T1-weighted images were visually checked for
quality assurance.

Scalar dMRI indices were derived from two reconstruction
models: the single-tensor model (DTI; Basser et al., 1994) and the
tensor distribution function (TDF; Leow et al., 2009). From the
single-tensor model, FADTI, AxDDTI, MDDTI, and RDDTI scalar
maps were generated. In contrast to DTI, the TDF represents

3https://adni.bitbucket.io/reference/docs/DTIROI/DTI-ADNI_Methods-
Thompson-Oct2012.pdf

the diffusion profile as a probabilistic mixture of tensors that
optimally explain the observed diffusion data, allowing for the
reconstruction of multiple underlying fibers per voxel, together
with a distribution of weights, from which the TDF-derived form
of FA (FATDF) was calculated (Nir et al., 2017).

White Matter Tract Atlas ROI Summary
Measures
ROI measures were generated as reported previously (Nir et al.,
2013). Briefly, the FA image from the Johns Hopkins University
single-subject Eve atlas (JHU-DTI-SS4) was registered to each
participant’s corrected FA image using an inverse consistent
mutual information based registration (Leow et al., 2007); the
transformation was then applied to the atlas WM parcellation
map (WMPM) ROI labels (Mori et al., 2008) using nearest
neighbor interpolation. Mean anisotropy and diffusivity indices
were extracted from 24 WM ROIs total (Table 3): 22 ROIs
averaged bilaterally, the full corpus callosum, and a summary
across all ROIs (full WM).

Comparing the ADNI2 and
ADNI3 Protocols in Cognitively Normal
Participants
Sample Sizes for the ADNI2 and ADNI3 Cognitively
Normal Participants
We evaluated the six ADNI3 protocols and the ADNI2 protocol
using scans from CN participants only. Of 85 CN participants
in ADNI2 with dMRI, 30 rolled over to ADNI3. To avoid
duplication, and boost the number of scans available for each
protocol, we did not include all these roll-over participants in
the ADNI3 group. Twenty-six CN roll-over participants were
included in the ADNI3 group. Four CN roll-over participants
were scanned with the S55 protocol, and due to the larger
sample size already available for that protocol (N = 156), we
included these four in the ADNI2 group. In total, 59 out of
85 ADNI2 CN participants were included in the ADNI2 group
and the remaining 26 were kept in the ADNI3 group for a total
of 207 ADNI3 CN participants (see Supplementary Table S3 for
CN demographics by ADNI phase and protocol).

4http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/AtlasExplanation2.htm
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TABLE 3 | The following 24 regions of interest (ROIs) from the Johns Hopkins University (JHU) atlas (Mori et al., 2008) were analyzed.

CST Corticospinal tract SLF Superior longitudinal fasciculus
CP Cerebral peduncle SFO Superior fronto-occipital fasciculus
ALIC Anterior limb of internal capsule IFO Inferior fronto-occipital fasciculus
PLIC Posterior limb of internal capsule SS Sagittal stratum
RLIC Retrolenticular part of internal capsule EC External capsule
PTR Posterior thalamic radiation UNC Uncinate fasciculus
ACR Anterior corona radiata GCC Genu of corpus callosum
SCR Superior corona radiata BCC Body of corpus callosum
PCR Posterior corona radiata SCC Splenium of corpus callosum
CGC Cingulum (cingulate gyrus) CC Full corpus callosum
CGH Cingulum (hippocampal bundle) TAP Tapetum
Fx/ST Fornix (crus) / stria terminalis Full WM Full white matter

Assessing Age Effects
In CN participants, multivariate random-effects linear
regressions were used to assess whether dMRI indices from
each ADNI protocol individually were associated with age,
controlling for sex and age∗sex interactions as fixed variables,
and acquisition site as a random variable. dMRI indices for the
CN group were subsequently pooled across ADNI3 protocols
(N = 207), or ADNI3 and ADNI2 protocols (N = 266) and tested
for associations with age using an analogous model, but with
protocol and acquisition site as nested random variables (e.g.,
eight sites used protocol GE54, and three sites used protocol
P33, so the acquisition site grouping variable is nested within
the protocol grouping variable). We used the false discovery rate
(FDR) procedure to correct for multiple comparisons (q = 0.05;
Benjamini and Hochberg, 1995) across the 24 ROIs assessed
for each dMRI index. Regions that survive a more stringent
Bonferroni correction at an alpha of 0.05 (p ≤ 0.05/24 = 0.0021)
are also shown in the Supplements.

Effect of Protocol on dMRI Indices
In CN participants, we tested for significant differences in dMRI
indices between the seven ADNI protocols using analyses of
covariance (ANCOVAs), adjusting for age, sex, and age∗sex
interactions as fixed variables, and acquisition site as a random
variable. For each dMRI index, we used FDR to correct for
multiple comparisons across the 24 ROIs assessed. Pairwise tests
were performed to directly compare protocols. In total, there
were 504 tests per dMRI index: 24 ROIs ∗ 21 pairs of protocol
comparisons (protocol 1 vs. 2, protocol 1 vs. 3, etc). As before, we
used FDR to account for multiple comparisons.

dMRI Harmonization With ComBat
ComBat uses an empirical Bayes framework to reduce unwanted
variation in multi-site data due to differences in acquisition
protocol, while preserving the desired biological variation in the
data (Fortin et al., 2017). In the CN participants fromADNI2 and
ADNI3, we ran ComBat on each of the dMRI indices, including
age, sex, age∗sex, and information from all 24 ROIs to inform
the statistical properties of the protocol effects. Random-effects
regressions tested for dMRI microstructural associations with
age, covarying for sex and age∗sex as fixed variables and site
as a random variable; ANCOVAs and pairwise tests of dMRI
differences between protocols were repeated for the harmonized
ROI data.

Clinical Assessments and Their Relation to
Pooled ADNI3 Diffusion Indices
Multivariate random-effects linear regressions were used to test
associations between five dMRI indices in each of the 24 WM
ROIs and the three cognitive measures (ADAS, MMSE, CDR-
sob), and with diagnosis. Due to the limited available sample size
of AD participants (N = 22), and their uneven distribution across
the acquisition protocols tested here, we compared only groups
of people with CN and MCI diagnoses. Age, sex, and age∗sex
interactions were controlled for as fixed effects, and the protocol
and acquisition site were modeled as nested random variables.
FDR was again used to correct for 24 ROI tests (q = 0.05;
Benjamini and Hochberg, 1995). Bonferroni corrections (p ≤
0.05/24 = 0.0021) are available in the Supplements. Effect sizes
for associations were determined using the d-value standardized
coefficient (Rosenthal and Rosnow, 1991).

d =
(2 ∗ Tvalue)√

Degrees of Freedom

RESULTS

ADNI2 and ADNI3 Protocols in Cognitively
Normal Participants
Age Effects in Cognitively Normal Participants From
ADNI2 and ADNI3 Protocols
When data were pooled across ADNI2 and ADNI3, significant
associations with age were detected throughout the WM.
Figure 1A shows effect sizes for ROIs significantly associated
with age after FDR multiple comparisons correction (tabulated
results and more stringent Bonferroni thresholds are shown in
Supplementary Table S4). Lower FATDF and higher diffusivity
indices were significantly associated with older age in all 24 ROIs.
For FADTI, 22 ROIs were significantly associated with age.
The largest effect size was detected with FATDF in the fornix
(crus)/stria terminalis (Fx/ST; d = −1.459; p = 5.07 × 10−21).
The Fx/ST, genu of corpus callosum (GCC) and full WM
consistently showed one of the 10 largest effect sizes across
dMRI indices.

The mean ages of the CN participants assessed in the
two phases of ADNI were significantly different (p = 0.049;
ADNI2 mean age: 72.4 ± 6.6 years; ADNI3 mean age:
74.5 ± 7.4 years; demographics in Supplementary Table S3).
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FIGURE 1 | (A) For each diffusion-weighted MRI (dMRI) index, the absolute values of effect sizes (d-value) are plotted for regional white matter (WM) microstructural
associations with age when all ADNI3 dMRI data are pooled, adjusting for any site or protocol effects. For each test, we note the number of significant regions of
interest (ROIs), as indicated by filled shapes, and the corresponding false discovery rate (FDR) significance p-value threshold (q = 0.05). See Supplementary Table
S4 for complete tabulated results. (B) Here, we plot the residuals of diffusivity and anisotropy indices in the full WM (y-axis) against age (x-axis) after regressing out
the effects of sex in cognitively normal (CN) participants from each protocol separately. Individual level residuals from each protocol are plotted with a different color.
Despite protocol differences, age effects are evident across protocols.

Pairwise tests comparing the mean age of CN participants
scanned with each protocol also showed significant differences
between those scanned with S31 and two other protocols:
GE54 and S31 (p = 0.026); P33 and S31 (p = 0.0037). Due
to differences in age and sample size between protocols and
phases, effect sizes could not be directly compared (Button
et al., 2013), but the directions of associations with age were
largely consistent for ADNI2 and ADNI3 phases separately,
and each ADNI3 protocol (Figures 1, 2). Each ADNI protocol
showed directionally consistent associations in more than 89%

of tests (24 ROIs ∗ 5 dMRI indices), except for P36 which
was consistent in 81%, but had the smallest sample size
(N = 12; Figure 2B; Supplementary Tables S5–S11). FATDF

and all three diffusivity indices were consistent in ≥96% of
tests (24 ROIs ∗ 8 protocols/phases), while FADTI was only
consistent in 88% of tests. Most of the associations detected
in the unexpected direction for each protocol were driven by
FADTI. None of the associations in the unexpected direction
were significant after multiple comparisons correction, and only
two had a p ≤ 0.05.
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FIGURE 2 | (A) Effect sizes (d-value) for each ADNI protocol and phase show the direction of dMRI associations with age in the full WM are consistent. Due to
differences in age and sample size between protocols and phases, effect sizes could not be directly compared. (B) For each protocol and phase, the number of
ROIs (out of 24), that show the expected association direction, regardless of significance, are reported for each dMRI index; consistent associations were detected
across tests, except for protocol P36 which had the smallest sample size, and FADTI, which showed the smallest effect sizes and fewest significant associations
across protocols when pooled.

Figure 2 shows consistent associations in the full WM by
protocol. As demographic and sample size variability between
protocols affect detected effect sizes, we also evaluated full
WM dMRI associations with age in an age- and sex-matched
subset of 12 participants from each protocol (total N = 84;
demographics in Supplementary Table S3). A comparison of the
effect sizes between protocols suggests that the protocols with
greatest total number of diffusion-weighted (b = 1,000 s/mm2)
and non-diffusion sensitized (b0) gradients may detect larger
effects (S127 followed by S55; Supplementary Figure S1).

Effect of Protocol on dMRI Indices From Cognitively
Normal Controls
The influence of dMRI acquisition protocol on mean values of
the diffusion indices is evident in boxplots of dMRI indices in
the full WM for each protocol (Figure 3). When modeling the
mean full WM values for each diffusion index, the residuals of
the statistical model become closer to 0 after fitting the effect
of protocol and site (nested as a random variable with age, sex,

and age∗sex interactions as fixed effects) than when we plot the
residuals of just age, sex, and age∗sex interactions (Figure 3).

ANCOVAs and pairwise tests for each ROI suggest there are
significant differences between protocols for all 5 dMRI indices
across most ROIs (Figure 4). ANCOVAs revealed significant
protocol differences for 22 ROIs for FADTI and FATDF, with
the highest overall effect size detected in the anterior limb of
the internal capsule (ALIC) and the external capsule (EC) for
FADTI (ALIC: d = 0.648; EC: d = 0.652). AxDDTI had the smallest
effect size, overall, in the splenium of the corpus callosum
(SCC; d = 0.106), and only 13 ROIs showed significant AxDDTI

differences between protocols.
In pairwise analyses, AxDDTI was the most stable index across

protocols, as significant protocol differences were detected in
only 20.6% of pairwise tests (24 ROIs ∗ 21 pairwise tests),
compared to FADTI, the most variable index, which showed
significant protocol differences in 81.9% of tests (Figure 4B).
ADNI2 was the most divergent protocol across dMRI indices,
showing differences in 36.3% of tests.
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FIGURE 3 | Full WM mean (A) AxDDTI, MDDTI, and RDDTI and (B) FADTI and FATDF residuals for each protocol, after fitting effects of age, sex, and age∗sex
interactions, are plotted here in the top rows (red). Protocol has an effect on anisotropy and diffusivity measures. The lower panels (blue) show residuals after
additionally fitting protocol and site as nested random-effects, after which the residuals across protocols are closer to 0.

Diffusion MRI Harmonization With ComBat
After using ComBat to harmonize dMRI indices across
protocols, ANCOVAs revealed that significant protocol
differences in dMRI indices were all but eliminated across
ROIs (Supplementary Figure S2A); significant protocol
differences were detected only in the CST, for each of the dMRI
indices. The number of pairwise tests for which each protocol
showed significant differences in dMRI indices decreased by
93.8% with ComBat (Supplementary Figure S2B).

After harmonization, we still detected significant associations
between age and dMRI indices from ADNI2 and ADNI3 pooled
in the same number of ROIs (Supplementary Table S12).
ComBat correction did not significantly change effect sizes, while
correcting for effects of protocol (Supplementary Figure S3). In

Figure 5 we show effect sizes before and after harmonization
with ComBat in the full WM, Fx/ST, and GCC, the three
ROIs that consistently showed one of the 10 largest effect
sizes for associations with age across all five diffusion
indices (for changes by protocol see Supplementary Figures
S4–S6). As harmonization with ComBat did not improve or
change results found with random-effect linear regressions, we
proceeded to test clinical associations without applying the
ComBat transformation.

Cognitive Measure Associations With
Pooled ADNI3 dMRI Indices
Pooling data across ADNI3, we detected significant associations
between all three cognitive measures and regional dMRI
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FIGURE 4 | (A) d-values from the analyses of covariance (ANCOVAs) assessing differences in dMRI indices between protocols, for each of the 24 ROIs; FADTI

showed the greatest significant differences (largest d-values; dark red) between protocols and AxDDTI the fewest (dark green). (B) We report the number of times
each protocol and each dMRI index showed significant differences in pairwise tests between protocols (out of 504 tests per index and 720 tests per protocol);
AxDDTI was the most stable dMRI index across protocols, while FADTI was the least stable.

indices throughout the WM. Greater cognitive impairment
was associated with lower anisotropy and higher diffusivity.
Figures 6A–C shows effect sizes for ROIs significantly associated
with each cognitive measure after FDR multiple comparisons
correction (for tabulated results and more stringent Bonferroni
corrections, please see Supplementary Tables S13–S15). Across
tests (5 dMRI indices ∗ 3 cognitive measures), the hippocampal-
cingulum (CGH), fornix (crus)/stria terminalis region (Fx/ST),
and the full WM consistently showed one of the 10 largest
effect sizes (see Supplementary Figures S7–S9 for associations
with indices in the CGH, Fx/ST, and full WM, by protocol).

In 14 of 15 tests, the CGH consistently showed one of the top
two largest effect sizes (CGH FADTI association with CDR-sob
was the third largest), along with the uncinate fasciculus (UNC),
which was top two in 12 of 15 tests (while significant, cognitive
associations with UNC FADTI never showed one of the largest
effect sizes).

FADTI showed significant associations in the fewest ROIs:
55 out of 72 tests (76.4%; 24 ROIs ∗ 3 cognitive measures)
were significant. FATDF showed more widespread associations
with cognitive measures throughout WM ROIs: 69 out of
72 tests (94.4%) were significant. Effect sizes were consistently

Frontiers in Neuroinformatics | www.frontiersin.org February 2019 | Volume 13 | Article 2120

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Zavaliangos-Petropulu et al. Diffusion MRI in ADNI3

FIGURE 5 | Beta-values and error bars representing standard error from the association between each diffusion index and age in CN participants, before and after
ComBat harmonization. We show the three ROIs that consistently showed one of the 10 largest effect sizes for associations with age across all five diffusion indices
(see Supplementary Figure S3 for all ROIs). Compared to pre-ComBat analyses, effect sizes are marginally different across indices, but still within the standard
error.

lower for FADTI than for the other dMRI indices, across all
three cognitive measures; the largest FADTI effect sizes were most
consistently found in the Fx/ST, followed by the CGH or the
GCC. The strongest FADTI association overall was in the Fx/ST
with CDR-sob (d = −0.681, p = 7.01 × 10−8). Compared to
FADTI, FATDF showed larger effect sizes; across cognitive tests,
the strongest FATDF associations were detected in the UNC with
CDR-sob (d = −1.244; p = 1.39 × 10−20), followed by the CGH
(d = −1.213; p = 8.86 × 10−20). CDR-sob effect sizes for FADTI

and FATDF in the CGH, UNC, Fx/ST, and full WM are depicted
by protocol in Supplementary Figure S10, revealing consistently
larger effect sizes for FATDF across protocols.

Cognitive associations with all of the diffusivity indices were
widespread: significant associations were detected in 207 out of
216 tests (95.8%; 24 ROIs ∗ 3 cognitive measures ∗ 3 diffusivity
indices). Regional measures of AxDDTI consistently showed the

largest effect sizes across all cognitive measures (CDR-sob and
the UNC: d = 1.344, p = 3.13 × 10−23; MMSE and the CGH:
d =−1.178, p = 7.87× 10−19; ADAS-cog and the UNC: d = 1.048,
p = 1.09× 10−13).

Of the three cognitive measures, CDR-sob associations
showed the largest effect sizes across dMRI indices (in the UNC
followed by the CGH for all indices except FADTI); the largest
effect sizes across all tests were detected with AxDDTI (UNC:
d = 1.344) and MDDTI (UNC: d = 1.342, p = 3.47 × 10−23).
Figure 7 shows the distribution of the effect sizes for CDR-sob
throughout the brain. Temporal lobe regions (UNC, CGH,
IFO, SS) frequently showed greatest effect sizes (for ADAS-cog
and MMSE figures, see Supplementary Figures S11, S12).
Effect size was not correlated with ROI size (Supplementary
Figure S13), consistent with prior studies of other disorders
(Kelly et al., 2018).
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FIGURE 6 | For each dMRI index, the absolute values of effect sizes (d-value) are plotted for regional WM microstructural associations with clinical measures. Lower
anisotropy and higher diffusivity were significantly associated with (A) higher CDR-sob, (B) lower MMSE, (C) higher ADAS-cog, and (D) an MCI diagnosis, when all
ADNI3 dMRI data are pooled, adjusting for any site or protocol effects. For each test, we note the number of significant ROIs, as indicated by filled shapes, and the
corresponding FDR significance p-value threshold (q = 0.05). See Supplementary Tables S13–S16 for complete tabulated results.

CN vs. MCI Diagnosis Associations With
Pooled ADNI3 dMRI Indices
For each diffusion index, Figure 6D shows the significant
regional effect sizes for differences between CN and MCI
participants. Widespread diffusivity differences were detected,
with significantly higher diffusivity in MCI participants in 21 out
of 24 ROIs (Supplementary Table S16 and Supplementary
Figure S14). Only three regions showed significantly
lower FADTI in MCI participants—Fx/ST (d = −0.460;
p = 3.89 × 10−4), CGH (d = −0.410; p = 1.53 × 10−3), and the
posterior thalamic radiation (PTR; d = 0.367; p = 4.55 × 10−3).
On the other hand, FATDF was significant in 20 out of 24 ROIs,
similar to diffusivity indices. FATDF and diffusivity indices in the
CGH showed the largest effect sizes overall (AxDDTI d = 0.681;
p = 2.26 × 10−7, MDDTI d = 0.700; p = 1.15 × 10−7; RDDTI

d = 0.679; p = 2.41× 10−7; FATDF d =−0.622; p = 2.00× 10−6).
For all three cognitive measures, and in the comparison

between CN and MCI participants, the CGH and Fx/ST were
the only regions that survived multiple comparisons correction

across all dMRI indices. The Fx/ST always had the largest
effect size in FADTI tests. The UNC showed either the first
or second largest effect size (alternating with CGH) across
diffusivity indices and FATDF tests, but was significant only for
cognitive measure associations with FADTI (i.e., three of four
clinical tests).

DISCUSSION

This study has three main findings: (1) when data were pooled
from the six available diffusion MRI protocols used in ADNI3,
anisotropy and diffusivity indices showed robust associations
withMCI diagnosis, and with three common cognitive measures:
MMSE, ADAS-cog, and CDR-sob; (2) when using a higher-order
diffusion model, the derived measure of anisotropy (FATDF)
showed stronger and more widespread associations with clinical
impairment than the standard DTI anisotropy measure (FADTI);
and (3) despite significant differences in protocols, for each
dMRI index, we were able to detect consistent associations with
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FIGURE 7 | Effect size (absolute d-value) maps of WM regions that show significant associations with CDR-sob—the cognitive measure with the largest effect
sizes—reveal widespread associations throughout the WM, with particularly strong associations in the temporal lobes (SS, IFO, UNC, and CGH; light green regions
show the largest effect sizes). As expected, positive associations were detected between CDR-sob and (A) AxDDTI (FDR critical threshold p = 1.78 × 10−4; B) MDDTI

(FDR critical threshold p = 3.64 × 10−4) and (C) RDDTI (FDR critical threshold p = 6.92 × 10−3); higher diffusivity was associated with greater cognitive impairment.
Lower (D) FADTI (FDR critical threshold p = 0.025) and (E) FATDF (FDR critical threshold p = 7.73 × 10−3) were also associated with greater impairment, but FADTI

associations were detected in fewer regions with weaker effect sizes compared to FATDF.

clinical measures in ADNI3 participants, and age in ADNI2 and
ADNI3 CN participants.

Accumulation of amyloid plaques and neurofibrillary tangles
(NFTs) in the brain (Braak and Braak, 1991, 1996; Frank
et al., 2003; Shaw et al., 2007) can directly impact WM (Lee
et al., 2004; Roth et al., 2005), promoting myelin degeneration
and axonal loss (Braak and Braak, 1996; Kneynsberg et al.,
2017). While many factors drive anisotropy and diffusivity
measures from DTI, higher anisotropy values may indicate,
in part, more coherent intact axons, while lower anisotropy
and higher diffusivity may reflect factors such as axonal injury
and demyelination, among other factors (Beaulieu, 2002; Song
et al., 2003, 2005; Harsan et al., 2006; Le Bihan and Johansen-
Berg, 2012; Kantarci et al., 2017; Moore et al., 2018). In this
article, lower anisotropy values and higher diffusivity values
were correlated with clinical impairment most strongly in the
hippocampal-cingulum and uncinate. Along with the full WM,
reflecting global WM effects, the largest effect sizes were most
frequently detected in the hippocampal-cingulum and fornix
(crus)/stria terminalis, WM bundles connecting hippocampal
and parahippocampal regions to the rest of the brain, consistent
with patterns of AD pathology. The histopathological validity
of these findings has been supported, specifically in a recent
study that compared NFT stages in ante-mortem MRI and post-
mortem tissue; elevated MDDTI and lower FADTI significantly
correlated with higher postmortem NFT stage, particularly in the

crus of the fornix, the ventral cingulum tracts, the precuneus, and
entorhinal WM (Kantarci et al., 2017).

The participants recruited for ADNI3 tend to be younger
and healthier, on average, than those in ADNI2, as they were
recruited with the intention of studying the transition from CN
to AD (Jack et al., 2015). With few AD patients enrolled so far
in ADNI3, the primary focus of this article was to assess three
cognitive assessments (ADAS-cog, CDR-sob, and MMSE), and
to compare CN to MCI participants. MCI is now the focus of
intense research; it is essential to find ways to clinically categorize
the transitional stages between normal aging and AD to evaluate
targeted treatments, as pathophysiological mechanisms may
differ or change throughout the course of AD (Mueller et al.,
2005). As in our prior analysis of ADNI2 (Nir et al., 2013), FADTI

was the least sensitive DTI measure. In ADNI3, AxDDTI and
MDDTI showed the largest effect sizes. Lower FADTI and higher
MDDTI are most frequently reported in studies of AD (Kavcic
et al., 2008; Clerx et al., 2012; Nir et al., 2013; Maggipinto et al.,
2017; Mayo et al., 2017), but AxDDTI may be more sensitive
to unspecific microscopic cellular loss earlier in the disease
(O’Dwyer et al., 2011), perhaps making it more sensitive in the
healthier participants of the ADNI3 dataset. Similarly, in ADNI2,
AxDDTI was the most sensitive to differences between CN and
MCI diagnosis (Nir et al., 2013).

Among the three cognitive assessments, CDR-sob showed
the strongest correlations with dMRI indices, in line with prior
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ADNI brain imaging studies (Hua et al., 2009; Nir et al., 2013).
The largest of these effects were found in temporal WM tracts
including the hippocampal-cingulum, uncinate, sagittal stratum,
and inferior fronto-occipital fasciculus. These are all regions
that show early degenerative changes in MCI and AD (Mielke
et al., 2009; Nir et al., 2013; Maggipinto et al., 2017; Powell
et al., 2018). While associations with clinical impairment were
detected throughout the WM, the region that most frequently
showed the lowest effect sizes and was significant in only 3 of
the 20 clinical tests, was the corticospinal tract (CST). However,
the CST ROI from the JHU WMPM atlas is limited to a small
region in the inferior portion of the brain and has been shown
to be the least reliable and reproducible ROI (Jahanshad et al.,
2013; Acheson et al., 2017), suggesting alternate approaches,
such as tractography-based evaluations (Jin et al., 2017), or the
use of the probabilistic JHU atlas (Hua et al., 2008), may be
more appropriate for studying the CST. Our analysis focused on
WM microstructure, but future work assessing tract geometry
and properties of anatomical brain networks using tractography
may reveal more detailed information. The validation and
harmonization of tractography methods and derived network
metrics is a vast field of research with active ongoing work
(Maier-Hein et al., 2017).

DTI is widely recognized as a useful tool for studying
neurodegenerative disorders such as AD (Oishi et al., 2011;
Müller and Kassubek, 2013; Abhinav et al., 2014; Acosta-
Cabronero and Nestor, 2014; Maggipinto et al., 2017). However,
at the spatial resolutions now used, a single voxel typically
captures partial volumes of different tissue compartments–e.g.,
the intra- and extra-cellular compartments, the vascular
compartment, the CSF and myelin; each affects water diffusion
and the MR signal. The DTI model cannot differentiate these
components or even crossing fibers (Tuch et al., 2002; Jbabdi
et al., 2010), which are estimated to occur in up to 90% of WM
voxels at the typical dMRI resolution (Descoteaux et al., 2009;
Jeurissen et al., 2013). In healthy tissue with crossing fibers,
the DTI model may show low FA. FADTI may paradoxically
appear to increase in regions where crossing fibers deteriorate
in neurodegenerative diseases such as AD (Douaud et al.,
2011). FATDF addresses this limitation even in low angular
resolution data (Nir et al., 2017). Here, compared to FADTI,
FATDF showed more widespread associations with cognitive
measures and diagnosis throughout WM ROIs: FATDF was
significant in 89 of the 96 tests (92.7%; 24 ROIs ∗ 4 clinical tests),
while FADTI was only significant in 58 (60.4%). The greatest
difference was seen for diagnostic associations (CN vs. MCI):
FATDF was significant in 20 out of 24 ROIs while FADTI was
only significant in three. FATDF also showed stronger effect
sizes across the protocols, suggesting that tensor limitations
have likely confounded previous diffusion studies of cognitive
decline that have found little or no effects with FA (Acosta-
Cabronero et al., 2010). Recently proposed biophysical models
of brain tissue may help to relate diffusion signals directly to
underlying microstructure and different tissue compartments
(Harms et al., 2017). We may be able to further disentangle
questions of orientation coherence (dispersing and ‘‘kissing’’
fibers), fiber diameter, fiber density, membrane permeability, and

myelination, which all influence classic anisotropy and diffusivity
measures derived from DTI. Several AD studies have already
used multi-shell protocols to compute diffusion indices from
models that do not assume mono-exponential decay, such as
diffusion kurtosis imaging (DKI; Jensen et al., 2005; Chen et al.,
2017; Cheng et al., 2018; Wang M.-L. et al., 2018), and multi-
compartment models such as neurite orientation dispersion and
density imaging (NODDI; Zhang et al., 2012; Colgan et al., 2016;
Slattery et al., 2017; Parker et al., 2018). To date, approximately
20 participants in ADNI have been scanned with multi-shell
diffusion protocols; in a future report, we will relate multi-shell
measures to those examined here.

Large-scale, multi-site neuroimaging studies can increase the
power of statistical analyses and establish greater confidence
and generalizability for findings. Most multi-site neuroimaging
studies are susceptible to variability across sites. Variability in
dMRI studies is due in part to heterogeneity in acquisition
protocols, scanning parameters, and scanner manufacturers
(Zhu et al., 2009, 2011, 2018). Anisotropy and diffusivity maps
are affected by angular and spatial resolution (Alexander et al.,
2001; Kim et al., 2006; Zhan et al., 2010), the number of DWI
directions (Giannelli et al., 2009), and the number of acquired
b-values (Correia et al., 2009). All five dMRI indices were
significantly different between protocols; AxDDTI was the most
stable index, while FADTI was the least stable, reflective of their
performance in detecting associations with cognitive measures.
ADNI2 was the most divergent protocol across dMRI indices,
perhaps due to the larger voxel size in ADNI2 (2.7 mm3 vs.
2.0 mm3 isotropic voxels used in ADNI3). This is consistent with
the notion that DTI measures vary with voxel size due to partial
voluming (Zhan et al., 2013). Despite differences in protocols, the
directions of associations were consistent across protocols.

ADNI3 extends dMRI acquisitions across scanner
manufacturers and platforms to maximize the number of
participants scanned with dMRI; this makes it necessary
to account for site-related heterogeneities and confounds
in analytical models where data are pooled. Multi-site
dMRI studies are becoming increasingly common, and
new data harmonization methods to adjust for site and
acquisition protocol are being developed and tested. A thorough
investigation of dMRI harmonization methods is now possible
with ADNI3, one of the few publicly available multi-site datasets
acquired with multiple protocols. As regional dMRI measures
are available for download as part of the ADNI database, we
highlight two ways that the data may be pooled across sites:
(1) performing statistical analyses with nested random-effects
models to account for site and acquisition protocol differences;
and (2) harmonizing the derived regional measures before
aggregating the data across sites. In a preliminary analysis, we
showed that one harmonization method performed on these
regional measures, ComBat, reduced cross-site differences in
dMRI indices, while preserving biological relationships with age
in CN controls. The only region where differences remained after
ComBat, was the CST, the ROI with the weakest associations
with clinical measures, and previously identified as least reliable
(Acheson et al., 2017). In Fortin et al. (2017), compared to
other harmonization methods, ComBat increased the number
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of voxels where significant associations between age and FADTI

or MDDTI were detected. Here, the number of significant ROIs
and the magnitude of effect sizes were comparable for ComBat
and nested random-effects model approaches. This discrepancy
between our findings and that of Fortin et al. (2017), may be
due to several differences between studies: (1) ADNI3 includes
more sites and protocols; (2) in contrast to the number of
voxels, the number of ROIs is far less than the number of
participants; and (3) the age effects in the elderly populations
tested here are stronger than the effects tested in adolescents
in Fortin et al. (2017). When effects are more readily detected,
one harmonization approach may not be more advantageous
than others. In addition to exploring additional harmonization
techniques, future work should evaluate voxel-wise ComBat
approaches and the effects of harmonization beyond CN
participants (i.e., across the entire ADNI cohort).

In addition to ComBat, a number of harmonization
approaches have recently been proposed at various stages of
analysis (Tax et al., 2018; Zhu et al., 2018). Site differences can
be accounted for at the time of overall group inference, such as
with the random-effects regression level correction used here,
or by using a meta-analysis approach in lieu of pooling data
(Thompson et al., 2014). The data may also be transformed
prior to multi-site group-level statistics. Some methods, such as
ComBat and RAVEL, use the distribution of derived features,
such as diffusivity and anisotropy measures (Fortin et al., 2016,
2017). Alternatively, several proposed methods use information
from the raw image to adjust for acquisition variability (Zhu
et al., 2018). For example, Kochunov et al. (2018) calculated
the signal to noise ratio for each protocol and include it in
their regression models. Mirzaalian et al. (2018) use voxel-wise
spherical harmonic residual networks to derive local correction
parameters. Finding the best method to harmonize dMRI data
is an active topic at ‘‘hackathons’’ and technical challenges; in
2017 and 2018, the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI)
hosted a computational diffusion MRI challenge to explore
approaches for data harmonization. With so many available
approaches, the preliminary random-effects regression and
ComBat results from this article serve as a first step towards
future work establishing robust approaches for combining data
in ADNI3 and other multi-site studies.

The current study is limited in that the sample sizes
and sample demographics available for each protocol vary,
complicating direct comparison of the protocols (Button et al.,
2013). A matched comparison might be possible if a group of
participants or a phantom were scanned using every protocol.
Even so, separating protocol differences from differences in
scanner manufacturer is difficult. We also could not directly
compare all diagnostic groups in ADNI3, as few participants with
AD were scanned.

A more complete picture of brain changes in aging and
AD would include imaging metrics from other modalities,
such as perfusion imaging, resting state functional MRI
(Wang et al., 2017), and radiotracer methods such as FDG-PET
(Popuri et al., 2018), or amyloid- and tau-sensitive PET (Grothe
et al., 2017; Phillips et al., 2018). Genetic and other ‘‘omics’’

data could be analyzed as well, and may help to predict
diagnostic classification and brain aging, when combined with
other neuroimaging markers (Ding et al., 2018; Kauppi et al.,
2018). While these data are all being collected as part of
ADNI3 and other studies of brain aging, our focus here was
on the variety of available dMRI measures, calculated using
different protocols. With this in mind, the optimal dMRI indices
to include in a multimodal study may be those that contribute
the greatest independent information beyond that available
from anatomical MRI and other standard imaging modalities.
Multivariate methods—such as machine learning (Zhou et al.,
2017; Wang X. et al., 2018) and even deep learning (Liu et al.,
2017)—may also help to extract and capitalize on features that
predict clinical decline beyond those studied here.

In addition to providing a roadmap for the new ADNI3 dMRI
data, these preliminary analyses show that despite differences
in the updated dMRI protocols, diffusion indices can be pooled
to detect WM microstructural differences associated with aging
and AD.
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Objective: Brain imaging communities focusing on different diseases have increasingly

started to collaborate and to pool data to perform well-powered meta- and

mega-analyses. Some methodologists claim that a one-stage individual-participant data

(IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis,

since more detailed computations can be performed in a mega-analysis. Before definitive

conclusions regarding the performance of either method can be drawn, it is necessary to

critically evaluate themethodology of, and results obtained by, meta- andmega-analyses.

Methods: Here, we compare the inverse variance weighted random-effect

meta-analysis model with a multiple linear regression mega-analysis model, as well as

with a linear mixed-effects random-intercept mega-analysis model, using data from 38

cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the

effect sizes and standard errors, and the fit of the models, to evaluate the performance

of the different methods.

Results: The mega-analytical models showed lower standard errors and narrower

confidence intervals than the meta-analysis. Similar standard errors and confidence

intervals were found for the linear regression and linear mixed-effects random-intercept

models. Moreover, the linear mixed-effects random-intercept models showed better fit

indices compared to linear regression mega-analytical models.

Conclusions: Our findings indicate that results obtained by meta- and mega-analysis

differ, in favor of the latter. In multi-center studies with a moderate amount of variation

between cohorts, a linear mixed-effects random-intercept mega-analytical framework

appears to be the better approach to investigate structural neuroimaging data.

Keywords: neuroimaging, MRI, IPD meta-analysis, mega-analysis, linear mixed-effect models

Frontiers in Neuroinformatics | www.frontiersin.org January 2019 | Volume 12 | Article 102131

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Boedhoe et al. An Emperical Comparison of Meta- and Mega-Analysis

INTRODUCTION

Data pooling across individual studies has the potential to
significantly accelerate progress in brain imaging (Van Horn
et al., 2001), as demonstrated by large-scale neuroimaging
initiatives, such as the ENIGMA (Enhanced NeuroImaging
Genetics through Meta-Analysis) consortium (Thompson et al.,
2014). The most immediate advantage of data pooling is
increased power due to the larger number of subjects available
for analysis. Data pooling across multiple centers worldwide can
also lead to a more heterogeneous and potentially representative
participant sample. Large-scale studies are well-powered to
distinguish consistent, generalizable findings from false positives
that emerge from smaller-sampled studies. The participation of
many experts may also lead to a more balanced interpretation,
wider endorsement of the conclusions by others, and greater
dissemination of results (Stewart, 1995).

An aggregate data meta-analysis is the most conventional
approach, where summary results, such as effect size estimates,
standard errors, and confidence intervals, are extracted from
primary published studies and then synthesized to estimate the
overall effect for all the studies combined (de Bakker et al., 2008).
This approach is relatively quick and inexpensive, but often prone
to selective reporting in primary studies, publication bias, low
power to detect interaction effects and lack of harmonization
of data processing and analysis methods among the included
studies. To overcome these issues, collaborative groups are
increasingly collating individual-participant data (IPD) from
multiple studies to jointly analyze the individual-level data in a
meta-analysis of IPD (Stewart, 1995). The IPD approach allows
standardization of processing protocols and statistical analyses,
culminating in study results not provided by the individual
publications. This approach also allows modeling of interaction
effects within the studies. Given these advantages, the IPD
approach is currently the gold standard.

There are two competing statistical approaches for IPD
meta-analysis: a two-stage or a one-stage approach (Thomas
et al., 2014). In the two-stage approach, the first step includes
analyzing the IPD from each study separately, to obtain aggregate
(summary) data (e.g., effect size estimates and confidence

intervals). The second step includes using standard meta-
analytical techniques, such as a random effects meta-analysis
model. The alternative one-stage approach analyzes all IPD in
one statistical model while accounting for clustering among
patients in the same study, to estimate an overall effect.
Throughout this manuscript, the one-stage IPD approach is
referred to as mega-analysis, while the two-stage approach is
referred to asmeta-analysis.

Some methodologists claim that a mega-analysis can be
superior to meta-analysis. The comprehensive evaluation of
missing data and greater flexibility in the control of confounders
at the level of individual patients and specific studies are
significant advantages of a mega-analytical approach. Mega-
analyses have also been recommended as they avoid the
assumptions of within-study normality and known within-study
variances, which are especially problematic with smaller samples
(Debray et al., 2013). Despite these advantages, mega-analysis

requires homogeneous data sets and the establishment of a
common centralized database. The latter criterion is time-
consuming since cleaning, checking, and re-formatting the
various data sets adds to the time and costs of performing mega-
analyses. Obtaining IPD may also be challenging and limited
by the terms of the informed consent or other data sharing
constraints within each study. These are the main reasons why
researchers often prefer meta-analysis using summary statistics.
Additionally, meta-analysis allows for analyses of individual
studies to account for local population substructure and study-
specific covariates that may be better dealt with within each
study.While eachmethod has its own advantages and limitations,
researchers still debate which method is superior for tackling
different types of questions [see (Stewart and Tierney, 2002;
Burke et al., 2017) for reviews on advantages and disadvantages
of each approach].

Brain imaging communities focusing on different diseases
have started collaborating to perform well-powered meta- and
mega-analyses. In the largest studies to date on the neural
correlates of OCD, the authors of the ENIGMA-OCD consortium
(Boedhoe et al., 2017a, 2018) conducted a mega-analysis, pooling
individual participant-level data from more than 25 research
institutes worldwide, as well as a meta-analysis by combining
summary statistic results from the independent sites. The meta-
and mega-analyses revealed comparable findings of subcortical
abnormalities in OCD (Boedhoe et al., 2017a), but the mega-
analytical approach seemed more sensitive for detecting subtle
cortical abnormalities (Boedhoe et al., 2018). Before definitive
conclusions regarding the performance of either method can be
drawn, it is necessary to critically evaluate the results obtained by
various approaches for meta- and mega-analyses.

Herein, we use data from the ENIGMA-OCD consortium
to compare results obtained by meta- and mega-analyses.
Specifically, we applied the inverse variance weighted random-
effect meta-analysis model and the multiple linear regression
mega-analysis model as used in the aforementioned studies
(Boedhoe et al., 2017a, 2018). In addition, we compared findings
from these models to those detected with a linear mixed-
effects random-intercept mega-analytical model. Effect sizes and
standard error estimates, and (where possible) model fit were
used to evaluate which of the methods performs best.

METHODS

Samples
The ENIGMA-OCDworking group includes 38 data sets from 27
international research institutes with neuroimaging and clinical
data from OCD patients and typically developing healthy control
subjects, including both children and adults (Boedhoe et al.,
2018). We defined adults as individuals aged ≥18 years and
children as individuals aged <18 years. The split at the age of
18 followed from a natural selection of the age ranges used in
these samples, as most samples used the age of 18 years as a cut-
off for inclusion. Because our previous findings and the literature
suggest differential effects between pediatric and adult samples,
we performed separate analyses for adult and pediatric data [for
demographics and further details on the samples, see (Boedhoe
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et al., 2018)]. In total, we analyzed data from 3,665 participants
including 1,905 OCD patients (407 children and 1,498 adults)
and 1,760 control participants (324 children and 1,436 adults). All
local institutional review boards permitted the use of measures
extracted from the coded data for analyses.

Image Acquisition and Processing
Structural T1-weighted brain MRI scans were acquired and
processed locally. For image acquisition parameters of each
site, please see (Boedhoe et al., 2018). All cortical parcellations
were performed with the fully automated segmentation software
FreeSurfer, version 5.3 (Fischl, 2012), following standardized
ENIGMA protocols to harmonize analyses and quality control
procedures across multiple sites (see http://enigma.usc.edu/
protocols/imaging-protocols/). Segmentations of 68 (34 left and
34 right) cortical gray matter regions based on the Desikan-
Killiany atlas (Desikan et al., 2006) and two whole-hemisphere
measures were visually inspected and statistically evaluated for
outliers [see (Boedhoe et al., 2018) for further details on quality
checking].

Statistical Framework
We examined differences between OCD patients and controls
across samples by performing (1) an inverse variance weighted
random-effects meta-analysis model; (2) a multiple linear
regression mega-analysis model; and (3) a linear mixed-effects
random-intercept mega-analysis model. Each of the 70 cortical
regions of interest (68 regions and two whole-hemisphere
averages) served as the outcome measure and a binary indicator
of diagnosis as the predictor of interest. In the meta-analysis,
all cortical thickness models were adjusted for age and sex (Im
et al., 2008; Westlye et al., 2010), and all cortical surface area
models were corrected for age, sex, and intracranial volume
(Barnes et al., 2010; Ikram et al., 2012). In the mega-analysis
all models were also adjusted for scanning center (cohort). The
two mega-analytical frameworks are similar, but the models
account differently for clustering of data within cohorts; linear
regression with a dummy variable for each cohort and linear
mixed-effects models (more efficiently) with only one variance
parameter. Finally, all models were fit using the restricted
maximum likelihood method [REML (Harville, 1977)].

The meta- and mega-analysis encompass intrinsically
different statistics, including differences in approaches for
dealing with missing data. E.g., the mega-analysis estimates one
restricted maximum likelihood over the entire data set. This
estimation contains information of each of the other cohorts.
The first stage of the meta-analysis includes the estimation
of a restricted maximum likelihood per cohort, making this
method more vulnerable to missing outcome data. Therefore,
we descriptively compared the meta- and mega-analyses
by examining the confidence intervals and standard error
estimates for the effect sizes assessed. In addition, the Bayesian
information criterion (BIC) were used to evaluate which of the
mega-analytical models performs better. A lower BIC indicates
a better model fit. Throughout the manuscript, we report p <

0.001.

Meta-Analysis
We analyzed the IPD from each study to obtain aggregated
summary data. Effect size estimates were calculated using Cohen’s
d, computed from the t-statistic of the diagnosis indicator
variable from the regression models [(Nakagawa and Cuthill,
2007), equation 10]. All regression models and effect size
estimates were fitted at each site separately. A final Cohen’s
d effect size estimate was obtained using an inverse variance-
weighted random-effect meta-analysis model in R (metafor
package, version 1.9-118). This meta-analytic framework enabled
us to combine data from multiple sites and take the sample size
of each cohort into account by weighing individual effect size
estimates for the inverse variance per cohort.

Mega-Analysis
We pooled all IPD in one statistical model to perform mega-
analyses and fitted the following models:

Linear Regression
The linear regression model included cohorts as dummy
variables. Effect size estimates were calculated using the Cohen’s
d metric computed from the t-statistic of the diagnosis indicator
variable from the regression models [(Nakagawa and Cuthill,
2007), equation 10].

Linear Mixed-Effects Model – Random-Intercept
Linear mixed-effects models are extensions of linear regression
models and efficiently account for clustering of data within
cohorts. By adding a random-intercept for cohort, the adjustment
for the clustering of data within cohorts is performed with
only one (variance) parameter, which reduces the number of
estimated parameters (rather than estimating the intercept of
each dummy variable separately as in the linear regression model
described above). We used lme4 (linear mixed-effects analysis)
package in R to perform the analyses. Effect size estimates were
calculated using the Cohen’s dmetric computed from the t-values
from the mixed-effects model [(Nakagawa and Cuthill, 2007),
equation 22].

RESULTS

The results of the meta-analysis and linear regression mega-
analysis have been published previously (Boedhoe et al., 2018).
In this paper, we added the linearmixed-effects random-intercept
mega-analysis and statistically compared the various approaches.

Meta-Analysis
No significant differences (p < 0.001) in cortical thickness
were observed in adult OCD patients (N = 1,498) compared
to healthy controls (N = 1,436) (Supplementary Table S1).
The meta-analysis did reveal a lower surface area of the
transverse temporal cortex (Cohen’s d −0.17) in OCD patients
(Supplementary Table S2). No group differences in cortical
thickness or surface area were observed in children with
OCD (N = 407) compared to control children (N = 324)
(Supplementary Tables S3, S4).
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Mega-Analysis
Both the linear regression (Cohen’s d −0.14) and the linear
mixed-effects random-intercept (Cohen’s d −0.11) models
revealed significantly lower cortical thickness in bilateral inferior
parietal cortices in adult OCD patients (N = 1,498) compared
to healthy controls (N = 1,436) (Supplementary Table S5). Both
models also showed significantly lower surface area (Cohen’s d
−0.16) in the left transverse temporal cortex in OCD patients
(Supplementary Table S6).

Both the linear regression (Cohen’s d between −0.24
and −0.31) and the linear mixed-effects random-intercept
(Cohen’s d between −0.20 and −0.28) models revealed
significantly thinner cortices in pediatric OCD patients (N
= 407) compared with control children (N = 324) in the
right superior parietal, left inferior parietal, and left lateral
occipital cortices (Supplementary Tables S7). Neither model
revealed significant group differences in cortical surface area
(Supplementary Tables S8).

Comparing Meta- and Mega-Analysis
Effect Sizes
When looking at the magnitude and order of effect
sizes we see the same pattern resulting from the meta-
analysis and linear regression mega-analysis in both
the pediatric (Supplementary Tables S3, S7) and adult
(Supplementary Tables S1, S5) datasets, i.e., the magnitude
and direction of effect of the effect sizes derived from the meta-
analysis and linear regression mega-analysis were highly similar.
The linear mixed-effects random-intercept mega-analysis also
showed a similar pattern of results, but slightly smaller effect
sizes (Table 1 and Supplementary Tables S5, S7).

Standard Error and 95% Confidence Intervals
Overall, linear regression and linear mixed-effects random-
intercept models showed lower standard errors and
narrower confidence intervals than the meta-analysis.
Similar standard errors and confidence intervals were
found for the different mega-analysis models (Table 1 and
Supplementary Tables S1–S8).

Goodness-of-Fit
The linear mixed-effects random-intercept models showed lower
BIC values compared to the linear regression mega-analysis
(Table 1 and Supplementary Tables S9–S12).

DISCUSSION

The aim of this study was to evaluate different statistical
methods for large-scale multi-center neuroimaging analyses. We
empirically evaluated whether a meta-analysis provides results
comparable to a mega-analysis and which analytical framework
performs better. Clinical interpretation of the results can be
found elsewhere (Boedhoe et al., 2017b, 2018). Although effect
sizes were similar for the meta-analysis and linear regression
mega-analysis, lower standard errors and narrower confidence
intervals of both mega-analytical approaches compared to the
meta-analysis suggest better performance of the mega-analytical

approach over the meta-analytical approach. While the meta-
analysis failed to detect cortical thickness differences in both
the adult and pediatric samples, it did support the findings of
the mega-analyses at a less stringent significance threshold (p <

0.05 uncorrected). As a second aim, we investigated which mega-
analytical framework was superior. The BIC values indicated
a better model fit of the linear mixed-effects random-intercept
model compared to the linear regression mega-analytical model.

Whereas, the linear regressionmodel showed similar standard
errors and confidence intervals to the linear mixed-effects
random-intercept model, the latter fitted the data better. The
effect sizes of the linear regression model appeared to be higher
than those of the linear mixed-effects models, possibly indicating
an overestimation of the effect of diagnosis. Indeed fixed-effects
analyses (comparable to the linear regression models in our case)
are reported to produce biased estimates or inflated type I error
rates when pooled data includes cohorts with a small number of
patients (Agresti and Hartzel, 2000; Kahan and Morris, 2012).
Mathew and Nordstorm (2010) also suggested that a mega-
analysis (one-stage approach) with a random intercept term
might be slightly more precise than a meta-analysis (two-stage
approach), which has a distinct intercept term per study (Mathew
and Nordstorm, 2010). Taken together, our results suggest that
the linear mixed-effects random-intercept mega-analysis model
is the better approach for analyzing cortical gray matter data in a
multi-center neuroimaging study.

We also explored (data not shown) a linear mixed-effects
random-intercept and random-slope mega-analytical approach,
since the various cohorts might have shown differences in
effects of diagnosis related to clinical heterogeneity between
patient samples. However, for most of the regions of interest
the model did not converge. These computational difficulties
and convergence problems have been reported before (Debray
et al., 2013). As a result, effect sizes, confidence intervals, standard
errors, and BIC values could not be estimated accurately.
Indeed previous literature has demonstrated that mega-analyses
may produce downwardly biased coefficient estimates when an
incorrect model is specified, for instance when random effects are
wrongly assumed (Dutton, 2010). Note that including a random
slope in the linear mixed-effects model might be valuable when
large variance is present in the data between cohorts. Therefore,
we recommend the following strategy: (1) run a mixed-effects
model with a random-intercept to correct for clustering of
participants within cohorts; (2) add a random-slope to correct
for potential variance in effects between cohorts; (3) and perform
a likelihood-ratio test to statistically compare both models. If the
likelihood-ratio test is significant i.e., there is a better fit of the
random-intercept random-slope model, this model is preferred
over the random-intercept only model. If the likelihood-ratio test
is not significant i.e., there is a better fit of the random-intercept
only model, this model is preferred over the random-intercept
random-slope model.

Olkin and Sampson (1998) showed that for comparing
treatments with respect to a continuous outcome in clinical trials,
meta-analysis is equivalent to mega-analysis if the treatment
effects and error variances are constant across trials. The
equivalence has been extended even if the error variances
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TABLE 1 | Effect size, confidence interval, and standard error estimates, and BIC values of the main findings.

Cohen’s d Standard Error 95% CI BIC

ADULT

Left inferior parietal cortex meta-analysis −0.13 0.053 −0.237 to −0.029 –

mega-analysis LR* −0.14 0.038 −0.211 to −0.063 9,693

cortical thickness mega-analysis LMEri* −0.11 0.038 −0.214 to −0.065 9,638

Right inferior parietal cortex meta-analysis −0.13 0.046 −0.221 to −0.042 –

mega-analysis LR* −0.14 0.038 −0.211 to −0.064 9,799

mega-analysis LMEri* −0.10 0.038 −0.213 to −0.066 9,750

Left transverse temporal cortex cortical surface area meta-analysis* −0.17 0.038 −0.243 to −0.095 –

mega-analysis LR* −0.16 0.037 −0.238 to −0.092 33,368

mega-analysis LMEri* −0.16 0.037 −0.240 to −0.095 33,263

PEDIATRIC

Right superior parietal cortex meta-analysis −0.27 0.138 −0.540 to −0.001 –

mega-analysis LR* −0.27 0.075 −0.416 to −0.121 2,645

mega-analysis LMEri* −0.21 0.075 −0.415 to −0.119 2,634

Left inferior parietal cortex cortical thickness meta-analysis −0.31 0.144 −0.593 to −0.027 –

mega-analysis LR* −0.31 0.077 −0.457 to −0.154 2,634

mega-analysis LMEri* −0.28 0.077 −0.455 to −0.151 2,610

Left lateral occipital cortex meta-analysis −0.26 0.095 −0.445 to −0.071 –

mega-analysis LR* −0.26 0.075 −0.404 to −0.109 2,464

mega-analysis LMEri* −0.23 0.075 −0.401 to −0.106 2,444

LR, linear regression; LMEri, linear mixed-effects random-intercept model; CI, confidence interval; BIC= Bayesian information criterion.

*Indicates significant group difference at a threshold of p < 0.001.

are different across trials (Mathew and Nordstrom, 1999).
Lin and Zeng theoretically and empirically showed asymptotic
equivalence between meta- and mega-analyses when the effect
sizes are the same for all studies (Lin and Zeng, 2010a,b). The
different cohorts in our study did not all show similar effect sizes
and error variances, possibly explaining why we did not find
the meta- and mega-analyses to be equivalent. In practice, effect
sizes and error variances vary across studies more often than
not. Moreover, these authors (Lin and Zeng, 2010a) focused on
a fixed-effects meta-analysis rather than a random-effects meta-
analysis which is carried out in the current study. A fixed-effect
model only takes into account the random error within cohorts,
whereas the random-effect model also takes into account the
random error between cohorts (Borenstein et al., 2010). Not
taking into account the random error between different cohorts
in neuroimaging data, for example, may lead to potentially

misleading conclusions. More comprehensive simulation studies
may be performed to assess theoretical differences in the
results of meta- and mega-analyses. Such simulation studies
covering various scenarios regarding varying effect sizes and
error variances would strengthen our findings.

Conclusions of meta-analyses are often used to guide health
care policy and to make decisions regarding the management
of individual patients. Thus, it is important that the conclusions
of meta-analyses are valid. Although the two approaches (meta-
and mega-analysis) often produce similar results, sometimes
clinical and/or statistical conclusions are affected (Burke et al.,
2017). We agree with Burke et al. (2017) and Debray et al.
(2013) that when planning IPD analyses in a multi-center

setting, the choice and implementation of a mega-analysis (one-
stage approach) or meta-analysis (two-stage approach) method
should be pre-specified, as occasionally they lead to different
conclusions. Standardized statistical guidelines addressing the
best approach, such as those mentioned in Burke et al. (2017),
would be beneficial in this area. For example, meta-analysis (two-
stage approach) or mega-analysis (one-stage approach) may be
more suitable, depending on outcome types (continuous, binary
of time-to-event). In a multi-center study including multiple
small sample cohorts, a mega-analysis (one-stage approach) is
preferred, as it avoids the use of approximate normal sampling
distributions, known within-study variances, and continuity
corrections that plague mega-analysis (two-stage approach)
with an inverse variance weighting. Additionally, any mega-
analysis (one-stage approach) should account for the clustering
of participants within cohorts, ideally by including a random-

intercept term for cohort. If the effect sizes of the separate studies
are expected to vary greatly, it should be investigated whether
adding a random-slope to the model is beneficial. For further
details about choosing an appropriate method for a multi-center
study we recommend Burke et al. (2017).

To our knowledge, this is the first report investigating the
utility of meta- vs. mega-analyses for multi-center structural
neuroimaging data. The validity of our findings is limited
to cortical gray matter measures. Therefore, they may not
be generalized to all other brain measures. Nevertheless, our
findings show that in the case of cross-sectional structural
neuroimaging data a mega-analysis performs better than a
meta-analysis. In a multi-center study with a moderate amount
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of variation between cohorts, a linear mixed-effects random-
intercept mega-analytical framework seems to be the better
approach to investigate structural neuroimaging data. We urge
researchers worldwide to join forces by sharing data with the goal
of elucidating biomedical problems that no group could address
alone.
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Packages in Neuroimaging Data
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Elliot L. Hong 1†, Xu Chen 3, Bhim Adhikari 1, Neda Jahanshad 4, Paul M. Thompson 4,
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Dorret I. Boomsma 5, Hilleke E. Hulshoff Pol 6, Greig I. de Zubicaray 7, Katie L. McMahon 8,
Nicholas G. Martin 9, Margaret J. Wright 9,10 and Thomas E. Nichols 11

1Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore,
MD, United States, 2Department of Statistics, University of Oxford, Oxford, United Kingdom, 3Department of Cognitive
Neuroscience, Maastricht University, Maastricht, Netherlands, 4Imaging Genetics Center, Keck School of Medicine of USC,
Marina del Rey, CA, United States, 5Department of Biological Psychology, VU University, Amsterdam, Netherlands, 6Brain
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Australia, 8Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia, 9QIMR Berghofer Medical
Research Institute, Brisbane, QLD, Australia, 10Queensland Brain Institute, University of Queensland, Brisbane, QLD,
Australia, 11Big Data Institute, University of Oxford, Oxford, United Kingdom

Imaging genetic analyses use heritability calculations to measure the fraction
of phenotypic variance attributable to additive genetic factors. We tested the
agreement between heritability estimates provided by four methods that are used
for heritability estimates in neuroimaging traits. SOLAR-Eclipse and OpenMx use
iterative maximum likelihood estimation (MLE) methods. Accelerated Permutation
inference for ACE (APACE) and fast permutation heritability inference (FPHI), employ
fast, non-iterative approximation-based methods. We performed this evaluation
in a simulated twin-sibling pedigree and phenotypes and in diffusion tensor
imaging (DTI) data from three twin-sibling cohorts, the human connectome project
(HCP), netherlands twin register (NTR) and BrainSCALE projects provided as a
part of the enhancing neuro imaging genetics analysis (ENIGMA) consortium.
We observed that heritability estimate may differ depending on the underlying
method and dataset. The heritability estimates from the two MLE approaches
provided excellent agreement in both simulated and imaging data. The heritability
estimates for two approximation approaches showed reduced heritability estimates
in datasets with deviations from data normality. We propose a data homogenization
approach (implemented in solar-eclipse; www.solar-eclipse-genetics.org) to improve the
convergence of heritability estimates across different methods. The homogenization
steps include consistent regression of any nuisance covariates and enforcing normality
on the trait data using inverse Gaussian transformation. Under these conditions,
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the heritability estimates for simulated and DTI phenotypes produced converging
heritability estimates regardless of the method. Thus, using these simple suggestions
may help new heritability studies to provide outcomes that are comparable regardless of
software package.

Keywords: DTI, heritability, imaging genetics, reproducability, genetics, population, computational methods

INTRODUCTION

Reproducibility is the cornerstone of scientific research.
Recent reports on low reproducibility in biomedical research
are raising concerns that have to be addressed within the
scientific community (Ioannidis, 2014). The emerging field
of imaging genetics is not immune to these challenges1.
Imaging genetics applies modern statistical genetics methods
to quantitative phenotypes extracted from high dimensional
neuroimaging modalities and has to address replication
challenges in both imaging and genetic domains (Thompson
et al., 2010). Challenges in replication include low statistical
power, complexity of analysis, large number of dependent
variables, statistical complexity, and differences in the analysis
approaches and software (Meyer-Lindenberg et al., 2008; Collins
and Tabak, 2014). All these challenges apply to imaging genetics
studies. Imaging genetic studies look for factors that typically
explain a small proportion of variance (<1%) and may require
a large sample sizes (N = 1,000–100,000) to be statistically
powerful (Thompson et al., 2014). Imaging genetic studies
employ complex analyses involving both imaging and genetic
specialized analysis software (Meyer-Lindenberg et al., 2008).
We tested the agreement between heritability estimates provided
by four methods that are used for heritability estimates in
neuroimaging traits. We demonstrated that the heritability
estimates may vary by method and sample and propose a way to
homogenize the outcomes.

The incomplete description of methods and low statistical
power are the two chief factors that are likely contributing to
the lack of reproducibility in imaging genetics studies (Collins
and Tabak, 2014). Imaging genetic studies combine methods
from both imaging and genetic disciplines. These studies require
software for extraction of imaging phenotypes and software
for genetic analyses of imaging traits, each having individual
operating characteristics. For example, the outputs of imaging
and genetic software may differ between versions of the same
analysis software and even with the same version of software on
different operating systems (Gronenschild et al., 2012). Imaging
genetic analyses may also suffer from low power because the
contribution from common variations in genome to phenotypic
variability is typically small (∼0.1%), thus requiring large samples
to achieve significance and obtain reproducible results (Flint and
Munafò, 2013). This further underscores the need for a careful
study of the potential biases among different software analysis
tools. These methodological biases may lead to challenges to
replicate imaging genetic findings if in-kind imaging or genetic
software is used during replication.

1http://www.biorxiv.org/content/early/2017/02/20/107987

To address method-related biases, large consortia such as
enhancing neuro imaging genetic meta analyses (ENIGMA)
have developed standardized multi-site phenotype extraction
and genetic analyses pipelines. In this manuscript, we consider
the impact of analysis method for the estimation of heritability.
We compared four approaches: two commonly used genetic
analysis packages (SOLAR-Eclipse and OpenMx), and two
recently developed accelerated heritability estimation methods
[accelerated permutation inference for ACE (APACE), and
fast permutation heritability inference (FPHI)]. These packages
use the same variance component model and definition of
heritability, but use different numerical methods and data
preprocessing steps to calculate the proportion of variance
attributed to additive genetic factors. We performed this study to
(A) analyze if heritability estimates derived by the four packages’
analyses are comparable to one another and; (B) develop a
homogenization approach that minimizes the variability in
heritability estimates across the four packages.

We performed these analyses using two datasets: a
simulated—with known additive genetic contribution and
an experimental—consisting of fractional anisotropy (FA)
measurements collected in twins and siblings by three
independent studies. FA is the most commonly analyzed
scalar parameter extracted from diffusion tensor imaging (DTI;
Basser et al., 1994; Basser and Pierpaoli, 1996) and is a sensitive
index of fiber coherence, myelination levels, and axonal integrity
(Thomason and Thompson, 2011). FA values are under a strong
genetic control (Geng et al., 2012; Jahanshad et al., 2013; Shen
et al., 2014). Individual differences in FA values are predictive
of cognitive performance (Kochunov et al., 2016, 2017) and
it is a promising phenotype for multiple neuropsychological
disorder including schizophrenia (Friedman et al., 2008; Perez-
Iglesias et al., 2010; Alba-Ferrara and de Erausquin, 2013;
Kochunov et al., 2013; Mandl et al., 2013; Nazeri et al., 2013).
All experimental data were processed using the harmonization
protocol previously developed by ENIGMA and provided on-line
at http://enigma.ini.usc.edu/ongoing/dti-working-group/). This
included the use of the ENIGMA protocol for following the
QA/QC steps for each site, registration to the ENIGMA-DTI
target, extraction of white matter skeleton, followed by extraction
of tract-average FA values.

MATERIALS AND METHODS

Heritability Estimation Methods
We evaluated the agreement in quantification of the Additive
genetic and Environmental, AE, components of the phenotypic
variance in simulated and imaging genetic datasets among

Frontiers in Neuroinformatics | www.frontiersin.org March 2019 | Volume 13 | Article 16139

http://www.biorxiv.org/content/early/2017/02/20/107987
http://enigma.ini.usc.edu/ongoing/dti-working-group/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Kochunov et al. Homogenizing Cross-Method Heritiability Estimations

four heritability calculation methods. SOLAR-Eclipse2 and
OpenMx3 use the iterative maximum likelihood estimation
(MLE) approach to fit quantitative genetics variance components
models. The iterative MLE approach is used to determine
the parameters that maximize the compatibility between the
fitted model and the data. It is a versatile computational
approach that produces estimates that are optimally precise
asymptotically (Almasy and Blangero, 1998; Blangero et al.,
2001). SOLAR-Eclipse is an extensive and flexible imaging
genetics analysis software package. SOLAR-Eclipse functions
include calculation of heritability, genetic correlation, linkage
and genome-wide association analysis (Almasy and Blangero,
1998; Blangero et al., 2001). SOLAR-Eclipse polygenic function
uses MLE to perform genetic analyses in the pedigrees of
arbitrary size and complexity, including twin-siblings and
complex multigenerational family designs. SOLAR-Eclipse is
frequently used in imaging genetic studies especially in the
multi-site analyses that aggregate measurements across multiple
datasets using meta and mega-analyses (Jahanshad et al., 2013;
Kochunov et al., 2014, 2015). OpenMx is an extensive and
flexible structural equation modeling and path analysis library
for [R] software (Boker et al., 2011). OpenMX is frequently
used by imaging genetic studies to calculate heritability
and genetic correlation in twin-siblings pedigrees (Jahanshad
et al., 2010; Bootsman et al., 2016). Like SOLAR-Eclipse,
OpenMx uses an iterative MLE method for calculation of
heritability parameters.

APACE model and FPHI use statistical approximations to
estimate heritability values. APACE uses a regression approach
based on the squared differences of twin pairs, a variant of
a U-statistic (Chen et al., 2013; Chen, 2014), while FPHI
starts with the same likelihood as used in SOLAR-Eclipse but
uses a single-step, rather than iterative, optimization (Ganjgahi
et al., 2015). This overcomes the main limitation of the
MLE-based software: long computational times. The iterative
MLE heritability calculations in SOLAR-Eclipse and OpenMx
can take ∼1 s per trait in a pedigree of 1,000 subjects.
Therefore,MLE-based heritability analyses require access to large
computational clusters to perform imaging genetic analyses that
involve 104–106 voxel-wise traits. The non-iterative estimates
from APACE and FPHI offer appreciable (∼103) gains in
computational efficiency. This allows performing voxel-wise
heritability analyses on a single workstation. While APACE is
only intended for twin or twin-plus-sibling designs, FPHI can use
any kinship structure, like SOLAR-Eclipse.

The four software packages were used to compare additive
genetic contribution (heritability) in simulated and experimental
data using twin family study designs. For experimental data
we used DTI acquisitions from three different studies. The
human connectome project (HCP; Van Essen et al., 2012), is
a large-scale international collaboration aimed at elucidating
the genetic and environmental sources of normal variability
within the structural and functional connections of the human
brain. The other two twin and sibling datasets were drawn

2www.solar-eclipse-genetics.org
3openmx.ssri.psu.edu

from the ENIGMA project, specifically from the ENIGMA-DTI
workgroup whose focus is the analysis of DTI data. The first
of these is the netherlands twin register (NTR) that collected
DTI data in normally developing adolescent twins and siblings.
And the other ENIGMA-DTI source is the Brain Structure and
Cognition: an Adolescent Longitudinal Twin Study into Genetic
Etiology (BrainSCALE). The BrainSCALE dataset collected DTI
data in young adult twins and siblings. Subjects for NTR and
BrainSCALE datasets were recruited from the same twin register
in Netherlands.

We compare heritability estimates for tract-wise average FA
values using ENIGMA-DTI, HCP, and simulated data. FA is a
widely used quantitative measure of white matter microstructure
(Basser et al., 1994; Basser and Pierpaoli, 1996) calculated
from the diffusion tensor model of water diffusion (Thomason
and Thompson, 2011). Studies suggest FA is an important
biomarker in clinical studies, since it is a sensitive index of
white matter integrity in Alzheimer’s disease (Clerx et al., 2012;
Teipel et al., 2012), general cognitive function (Penke et al.,
2010a,b), and several neurological and psychiatric disorders
(Sprooten et al., 2011; Barysheva et al., 2012; Carballedo et al.,
2012; Kochunov et al., 2013; Mandl et al., 2013). Overall,
our goal was to determine if additive genetic contribution
(heritability) is comparable between software packages regardless
of the variation in the twin-sibling cohort data. Our hypothesis
was that estimates of heritability would be consistent amongst
the cohorts, irrespective of the variability in cohort data and
software package.

Simulated Data
A simulated N = 1,000 person twin-sibling pedigree with
250 monozygotic (MZ) twins, 250 dizygotic (DZ) twins,
and 500 founders (not included in the phenotype file) was
created using SOLAR-Eclipse simulate function. SOLAR-Eclipse
simulation functionality was also used to produce a data set of
10,000 traits with heritability estimates varied uniformly between
0 and 100%. All simulated traits had normal distribution and did
not include effects of covariates.

Experimental Data
Human Connectome Project (HCP)
• Subjects: the cohort contained 481 (194/287 M/F; average age

29.1± 3.5) healthy participants of theHCP for whom the scans
and data were released in June 2014 (humanconnectome.org)
after passing the HCP quality control and assurance
standards (Marcus et al., 2013). The participants in the
HCP study were recruited from the Missouri Family and
Twin Registry, a large population-based study (Van Essen
et al., 2012). This release included 117 twin pairs (57 MZ
and 60 DZ pairs), and 246 of their siblings. The full set
of inclusion and exclusion criteria is detailed elsewhere
(Van Essen et al., 2012).
• Imaging: diffusion data was collected at Washington

University in St. Louis using a customized Siemens Magnetom
Connectome 3-Tesla scanner with a 100 mT/m maximum
gradient strength and a 32-channel head coil. Details on the
scanner, image acquisition and reconstruction are provided
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in Ugurbil et al. (2013)4. Diffusion data were collected
using a single-shot, single refocusing spin-echo, echo-planar
imaging sequence with 1.25 mm isotropic spatial resolution
(TE/TR = 89.5/5520 ms, FOV = 210 × 180 mm). Three
gradient tables of 90 diffusion-weighted directions and six
b = 0 images each, were collected with right-to-left and
left-to-right phase encoding polarities for each of the three
diffusion weightings (b = 1,000, 2,000, and 3,000 s/mm2).
The total imaging time for collection of diffusion data was
approximately 1 h.

Netherlands Twin Register (NTR)
• Subjects: the cohort consisted of 246 adults (93/153 M/F;

average age 33.9 ± 10.1, range 19–57), recruited from
the NTR and consisted of 72 MZ pairs, 48 DZ pairs,
and six siblings. Exclusion criteria consisted of having
any metal material in the head, having a pacemaker, a
history of any major medical conditions or psychiatric illness
(den Braber et al., 2008, 2011, 2012).
• Imaging: DTI data were collected on a 3-Tesla Philips

Intera MR scanner (32 diffusion-weighted volumes
with different non-collinear diffusion directions with b-
factor = 1,000 s/mm2 and one b-factor = 0 s/mm2 image,
flip angle = 90 degrees; 38 axial slices of 3.0 mm; no slice
gap; voxel size, 2.0 × 2.0 × 3.0 mm; FOV = 230 mm;
TE = 94 ms; TR = 4,863 ms; no cardiac gating; and total scan
duration = 185 s).

Brain Structure and Cognition: An Adolescent
Longitudinal Twin Study into Genetic Etiology
(BrainSCALE)
• Subjects: the sample comprised of 199 children (100M/99F;

average age 9.2 ± 0.1, range 9.0–9.6). It included 42 MZ
and 57 DZ twin pairs that were recruited from families
participating in the BrainSCALE cohort (van Soelen et al.,
2012) that were recruited from the NTR (van Beijsterveldt
et al., 2013). Exclusion criteria consisted of having any
metal material in the head, having a pacemaker, a known
history of any major medical condition or psychiatric illness.
Zygosity was determined based on DNA polymorphisms,
using 8–11 highly polymorphic di-, tri- and tetranucleotide
genetic markers and confirmed by genome-wide single
nucleotide polymorphism data.
• Imaging: DTI data were collected on a 1.5 Philips

Achieva MR scanner (32 diffusion-weighted volumes
with different non-collinear diffusion directions with b-
factor = 1,000 s/mm2 and eight diffusion-unweighted volumes
with b-factor = 0 s/mm2; parallel imaging SENSE factor = 2.5;
flip angle = 90 degrees; 60 slices of 2.5 mm; no slice gap;
96 × 96 acquisition matrix; reconstruction matrix 128 × 128;
FOV = 240 mm; TE = 88 ms; TR = 9,822 ms; two repetitions;
no cardiac gating; and total scan duration = 296 s). More
information may be found in Brouwer et al. (2010, 2012).

4https://www.humanconnectome.org/documentation/S500/HCP_S500_
Release_Reference_Manual.pdf

ENIGMA-DTI Processing
We used ENIGMA-DTI protocol to extract whole-brain and
tract-wise average FA values for experimental datasets. These
protocols are detailed elsewhere (Jahanshad et al., 2013) and
are available online at http://enigma.ini.usc.edu/protocols/dti-
protocols/. In brief, FA images from all subjects were
non-linearly registered to the ENIGMA-DTI target FA image
using FSL’s FNIRT (Smith et al., 2006). This target was created
as a minimal deformation target based on images from the
participating studies as previously described (Kochunov et al.,
2002; Jahanshad et al., 2013). The data were then processed using
FSL’s tract-based spatial statistics (TBSS) analytic method (Smith
et al., 2006) modified to project individual FA values onto the
ENIGMA-DTI skeleton mask. After extracting the skeletonized
white matter and the projection of individual FA values,
ENIGMA tract-wise regions of interest (ROIs), derived from the
Johns Hopkins University (JHU) white matter parcellation atlas
available as a part of FSL, were transferred to extract the mean
FA across the full skeleton and average FA values for major white
matter tracts. The protocol, target brain, ENIGMA-DTI skeleton
mask, source code and executables are all publicly available5. This
protocol was shown to provide highly replicable measurements
based on test-rest analyses in human subjects (Acheson et al.,
2017; McGuire et al., 2017).

Inverse Normal Transformation
Multivariate quantitative trait models are sensitive to
outliers, skewness, kurtosis and other deviations from normal
distribution. Therefore, we consider the use of a rank-based
inverse normal transformation to ensure the normal distribution
in quantitative traits. For each phenotype, rank values are
replaced with the expected ranked values of a standard normal
distribution with the same number of observations. While it
cannot ensure multivariate normality, it does ensure that each
univariate distribution is normal and thus reduces the impact
of outliers; for more discussion on this transformation see
(Beasley et al., 2009). We implemented inverse normalization
in SOLAR-Eclipse as the ‘‘polyclass_normalize’’ functions. This
function produces inverse normalized residuals for the trait after
regression of all covariates. The output from this function was
used for the secondary analyses of the imaging data where we
first analyze the raw data and then compare our results after
the application of the inverse normal transformation to the
residual data.

Heritability Analysis
Heritability analyses were performed in the simulated and FA
traits. Heritability (h2) is the proportion of the total phenotypic
variance (σ2P) that can be explained by the genetic effects of
genes (σ2g),

h2 = s2g/s
2
P (1)

MLE Based Analysis
SOLAR-Eclipse and OpenMX employ MLE based variance
decomposition approach that is an extension of the strategy

5https://www.nitrc.org/projects/enigma_dti

Frontiers in Neuroinformatics | www.frontiersin.org March 2019 | Volume 13 | Article 16141

http://www.humanconnectome.org/documentation/S500/HCP_S500_Release_Reference_Manual.pdf
http://www.humanconnectome.org/documentation/S500/HCP_S500_Release_Reference_Manual.pdf
http://enigma.ini.usc.edu/protocols/dti-protocols/
http://enigma.ini.usc.edu/protocols/dti-protocols/
http://www.nitrc.org/projects/enigma_dti
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Kochunov et al. Homogenizing Cross-Method Heritiability Estimations

developed by Amos (1994). The multivariate normal covariance
matrix� for a pedigree of individuals is given by

� = 2 ·8 · s2g + I · s2e (2)

where8 is the kinship matrix representing the pair-wise kinship
coefficients among related individuals, σ2e is the variance due
to individual-specific environmental effects, and I is an identity
matrix (under the assumption that all environmental effects are
uncorrelated among family members). Narrow sense heritability
is defined as the fraction of phenotypic variance σ2P attributable
to additive genetic factors. In twin designs a third variance
parameter is can be identified and may be added to the model,
σ2c , for the common environment shared by twins and siblings
growing up in the same family. This three-parameter model
is known as the ACE model, while the two-parameter model
(Equation 2) is referred to as the AE model.

The variance parameters are estimated by comparing the
observed phenotypic covariance matrix with the covariance
matrix predicted by kinship (Almasy and Blangero, 1998).
Significance of heritability is tested by comparing the likelihood
of the model in which σ2g is constrained to zero with that of a
model in which σ2g is estimated. Twice the difference between the
loge likelihoods of these models yields a test statistic, which is
asymptotically distributed as a 1/2:1/2 mixture of a X2 variable
with 1 degree-of-freedom and a point mass at zero.

The Accelerated Permutation for the ACE Model
(APACE)
APACE6 uses an approximation technique developed originally
for animal genetics studies (Grimes and Harvey, 1980) and
is based on the result that squared differences of pair’s
of subjects’ data reflect their covariance. Thus, the squared
differences among the DZ, MZ and unrelated subjects can be
entered into a linear regression model to estimate the variance
parameters (Grimes and Harvey, 1980). The speed advantage
of APACE over MLE approaches allows a permutation analysis
to compute familywise error corrected P-values for voxel-wise
imaging measures.

Fast Permutation Heritability Inference (FPHI)
SOLAR-Eclipse’s iterative MLE approach is accelerated by the
use of a data transformation based on the eigenvectors of the
kinship matrix 8 (Blangero et al., 2013). This transformation
converts the dependent data from related subjects into data that
is independent but has heterogeneous-variance. SOLAR-Eclipse
uses this simplifiedmodel to obtain iterativeMLE estimates using
linear regressions. The FPHI approach uses the same likelihood
and data transformation, but then performs just a single step
estimation to produce an asymptotically unbiased estimate
(Ganjgahi et al., 2015). The FPNI technique is implemented
SOLAR-Eclipse as the CPU and graphics processing unit (GPU)
functions. The CPU version of FPHI provides a significant
(103) computational acceleration relative to the iterative MLE
estimation in SOLAR-Eclipse, while the graphics processing unit
(GPU) version further improves this performance (∼106) vs.
iterative MLE approach.

6http://warwick.ac.uk/tenichols/software/APACE

All analyses with imaging data were conducted with age, sex,
age2, age× sex, and age2 × sex included as covariates.

RESULTS

Heritability Analyses—Simulated
Figure 1 shows the scatter plots of four methods using a
simulated dataset of heritability values distributed between 0 and
1. The two ML-based methods (SOLAR-Eclipse and OpenMX)
showed an excellent agreement (r = 0.999, slope = 1.000,
intercept = 0.000) with the expected heritability values and
with each other (Figure 1). We quantified bias as estimated h2

minus true h2 and ‘‘average spread’’ as the absolute bias divided
by true value (i.e., |estimated − true|/true). In the simulated
dataset, the two ML-based methods show zero bias (absolute
value bias<10−6) and the average spread in heritability estimates
of 1.2%. The APACE and FPHI methods showed excellent
overall agreement with expected values (APACE: absolute value
of bias = 10−5, r = 0.997, slope = 0.997, intercept = 0.005;
FPHI: absolute value of bias = 10−6, r = 0.998, slope = 0.999,
intercept = 0.001). APACE showed significantly higher average
spread than the FPHI method: 3.7 vs. 2.2% (p = 10−10).

Heritability Analyses—Diffusion Data
The heritability analyses were performed in FA data for
49 tracts in HCP, NTR and BrainScale cohorts using age,
sex, age2, age × sex, and age2 × sex as covariates. The two
ML-based method showed excellent agreement in all three
datasets (Figure 2). The best agreement was observed in
BrainScale data (r = 0.99, slope = 0.99, intercept = 0.001). The
least agreement (∼5% average spread) between two ML-based
approaches was observed in HCP (r = 0.95, slope = 1.05,
intercept = 0.121). Intermediate results were observed in the
NTR dataset (r = 0.98, slope = 0.98, intercept = 0.055). Hence,
we averaged the heritability values produced by the two ML
methods to create a ‘‘ground truth’’ reference for the two
approximation methods.

The heritability estimates provided by the approximation
approaches were more variable among three cohorts (Figure 2).
The FPHI showed better accuracy in variance in slopes
(β = 0.97–1.04) and intercepts (α = 0.01–0.26) vs. APACE
(β = 0.61–0.73 and intercepts α=−0.07–0.34; Figure 2). Both
FPNI and APACE showed a modest negative bias. The highest
bias was seen for the HCP cohort (−0.08 and −0.04 for APACE
and FPNI, respectively). The bias in NTR and BrainSCALE
cohorts was small (−0.01 and −0.02). The spread for FPHI
was about half that for APACE (6% vs. 12% for FPHI and
APACE, respectively).

Heritability Analyses—Normalized
Diffusion Data
Next, heritability estimates were calculated on the residual
data after inverse normal transformation (Figure 3). Trait
normalization improved agreement among the ML-based
methods (r = 0.96–0.99, slope = 0.99–1.00, intercept = 0.00–0.02;
Figure 3).
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FIGURE 1 | The scatter plot of heritability estimates for 10,000 simulated traits are shown for two ML-based approaches (left). Heritability estimates by two
approximation approaches: accelerated permutation inference for ACE (APACE; center) and fast permutation heritability inference (FPHI; right) were plotted vs. the
average maximum likelihood estimation (MLE) based values.

FIGURE 2 | The scatter plot of heritability estimates for 49-regional fractional anisotropy (FA) values calculated by the enhancing neuro imaging genetics analysis
(ENIGMA)-diffusion tensor imaging (DTI) pipeline. Heritability estimates for two approximation approaches were plotted vs. the average estimate obtained for two
ML-based methods: SOLAR-Eclipse and OpenMX. The lines represent linear regression fit vs. ML-based estimates with slope (β), intercept (α) and Pearson
correlation values (r).
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FIGURE 3 | The scatter plot of heritability estimates for 49-regional FA values calculated by ENIGMA-DTI pipeline and then normalized using the trait normalization
function in SOLAR-Eclipse. Heritability estimates for two approximation approaches were plotted vs. the average estimate obtained for two ML-based methods:
SOLAR-Eclipse and OpenMX. The lines represent linear regression fit vs. ML-based estimates with slope (β), intercept (α) and Pearson correlation values (r).

Trait normalization brought improvements in the agreement
between the estimates by two approximation approaches and
the average ML-based estimation (Figure 3). APACE method
showed improvements in slope (β = 0.75–1.01), intercept
(α = −0.05–0.23) and correlation coefficients (r = 0.76–0.95), in
all three cohorts. For FPHI, the improvements were more subtle
and were mainly observed as decrease in bias and spread. The
bias for APACE increased for NTR cohort (from −0.01 to 0.08).
Both approximation methods showed a 50% improvement in the
percentage spread vs. the average ML-based estimate, yet, the %
spread for FPHI remained about half that for APACE (4% vs.
7.6% for FPHI and APACE, respectively).

Analysis of the Disagreement
We tested the normality of the distribution of the neuroimaging
traits using the Shapiro–Wilk method, focusing on the HCP
dataset because it had the largest number of subjects. We
observed that four traits: the anterior limb of internal capsule-left
(ALIC-L), uncinate fasciculus-right (UNC-R), external capsule-
right (EC-R) and superior corona radiate-left (CR-L), failed the

null hypothesis for normal distribution (W > 0.94, p < 0.05;
Figure 2). However, there was no significant correlation between
the deviation from normality or the heritability values for any
of the four methods (all r < 0.20, all p > 0.4). Furthermore,
some traits that visibly contributed to dispersion of heritability
values, for example the inferior fronto-occipital tract-left (IFO-L)
and superior corona-radiata-right (SCR-L; Figure 2), passed
the Shapiro–Wilk test (p > 0.10). The histograms for SLF-L
and SCR-L showed only modest kurtosis (kurtosis = −0.2 and
0.15 for SLF-L and SCR-L), but visibly varied from the normal
distribution (Figure 4). The histograms for IFO-L varied visibly
from a normal distribution despite having low kurtosis (0.13),
while EC-R had high kurtosis (7.7; Figure 4).

DISCUSSION

We conducted a careful evaluation of four quantitative genetic
approaches used by imaging genetic studies to measure
heritability—the proportion of variance attributable to the
additive genetic factors. Two of the methods (SOLAR-Eclipse
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FIGURE 4 | Histograms for the dataset that showed reduced heritability
estimates for fast vs. MLE based heritability estimation approaches. APACE
showed reduced heritability estimates in superior corona-radiata-right
(SCR-L) and SLF-L tracts in the human connectome project (HCP) cohort
due to deviations from normal distribution (top panel). FPHI showed reduced
heritability estimates in the external capsule-right (EC-R) and inferior
fronto-occipital tract-left (IFO-L) tracts in the HCP cohort due to the high
kurtosis and non-Gaussian shape of the histograms for EC-R and IFO-L,
respectively.

and OpenMX) used an iterative MLE approach. Two methods
(APCE and FPNI) were developed specifically to accelerate
(by 103–6) voxel-wise imaging genetics analyses using fast
approximation approaches. We performed the evaluation in a
simulated dataset and imaging data from three independent
datasets. In the simulated data, we observed an excellent
agreement between all heritability estimate approaches. The two
MLE approaches accurately replicated the expected heritability
values, with the unity slope and near zero intercept and
measurement bias. The two approximation techniques likewise
showed excellent agreement in the simulated data, with only
slight spread (2.2% and 3.7% for FPNI and APACE, respectively).
In neuroimaging data, the two MLE approaches produced
consistent estimates of heritability for all cohorts. We used
the average MLE as the reference measures for approximation
techniques because the true additive genetic contribution is
unknown (Parisi et al., 2014). In the neuroimaging data, the
approximation methods showed deviations from MLE values
that varied by the dataset and method. The approximation
methods showed the best consistency for NTR and the lowest
consistency in the HCP data. Post hoc analyses attempted to
identify the sources of the dispersion based on the underlying
distribution in imaging data. The heritability values were not
significantly correlated with Shapiro-Wilk’s W-value for any

method or dataset (all r < 0.2). However, the traits with
high dispersion in heritability estimates did show deviations
from normality in the underlying dataset. The heritability
estimates produced by the FPHI approach were generally
closest to that produced by MLE estimates. The agreement
among all methods was significantly improved following data
normalization approach that ensured normality for quantitative
traits. This data normalization approach is now available as a part
of SOLAR-Eclipse distribution.

Imaging genetics is a field that combines imaging and
genetics—the two disciplines that have greatly advanced
neuroscience in recent years. The replication challenges are not
unique to this new field and require concerted efforts to address
them. The main replication challenges that imaging genetics
faces are the complexity of the methods and the low statistical
power (Meyer-Lindenberg et al., 2008; Collins and Tabak, 2014).
Genetic factors may explain a small proportion of variance
that require a sample sizes that are challenging to collect in
a single study (N = 1,000–100,000; Stein et al., 2010, 2012;
Thompson et al., 2014). Yet, imaging genetics approaches have
many advantages that should help in overcoming this challenge.
ModernMRI offers phenotypic measurements that provide more
detailed and quantitative descriptions than disorder diagnostic
status or clinical symptoms. Modern MRI phenotypes offer high
precision and reproducibility with the inter-session, scan-rescan
variability of many common imaging measurements in the range
of 1%–5% (Agartz et al., 2001; Kim et al., 2005; Lerch and Evans,
2005; Kochunov and Duff Davis, 2009; Acheson et al., 2017).
Therefore, the solution to statistical power is meta-analyses that
combine data across multiple studies.

ENIGMA, Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) and other multi-study
initiatives aim to overcome the challenge of limited power
by performing meta-analytical analyses. In these initiatives,
phenotypic and genetic analyses are performed by individual
sites and meta-analytical aggregation is used to derive the overall
estimates of genetic effects. The main challenge in this approach
is overcoming the diversity and complexity of analytical and
statistical approaches that may lead to variance in phenotype
extractions and estimation of effect sizes (Meyer-Lindenberg
et al., 2008; Collins and Tabak, 2014). This complexity exists
on both imaging and genetic sides where the difference in
analysis software and even versions of software may lead to
varying results (Gronenschild et al., 2012). On the phenotype
extraction side, ENIGMA provides the standardized pipeline for
extraction of homogenized neuroimaging phenotypes across the
sites (Jahanshad et al., 2013). Here, we demonstrate the need
of homogenized treatments of the traits to avoid erroneous
variances at the meta-analytical state.

In our evaluations, we observed excellent agreement between
estimates produced by the two MLE-based approaches that
were the corner stone of imaging genetic research in the
past. The main disadvantage of MLE approaches is the long
calculation times associated with the iterative maximization of
the likelihood. In imaging genetic studies, up to a million voxel-
based imaging traits may be analyzed (Stein et al., 2011), making
MLE approaches less practical. Voxel-wise analyses require a
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permutation-based correction for multiple comparisons because
standard multiple comparison approaches are deemed to be too
conservative for voxel-wise traits (Nichols and Hayasaka, 2003).
Therefore, there is a need for fast and accurate methods to
estimate genetic variance where the calculations can be repeated
with 105–6 permutations to derive cluster-based significance on
the voxel-wise levels. We measured the performance of two such
methods (APACE and FPNI) that use approximation to obtain
fast inference of genetic variance.

APACE and FPNI use data transformation and
approximation fits to accelerate the calculation of genetic
parameters. APACE uses a squared difference in phenotype
values between pairs of related and unrelated subjects to derive
the fraction of variance contributable to the additive genetic
variance. This approach is appropriate for twins and siblings
pedigree. FPNI uses the eigenvalue decomposition followed
by a single step approximation to calculate genetic variance in
pedigrees of any complexities. The approximation approaches
demonstrated an excellent performance in the simulated dataset
where the trait data was normally distributed. However, their
performance in the imaging data was less uniform, likely due to
sensitivity to noise and violations of the normality assumption.

The two MLE approaches appeared to provide more
stable estimates of heritability in datasets with noise and
the non-normally distributed traits, while these deviations
had a greater impact on the heritability estimates produced
by the approximation approaches. In the cases where the
trait’s distribution deviated from normality, the heritability
values calculated by the approximation techniques deviated
from those calculated by ML-based approaches. However,
the correlation between heritability values and the deviation
of normality (Shapiro-Wilk’s W) was not significant. We
explored four cases of visible outliers. Some traits (ALIC-L,
UNC-R, EC-R and CR-L) failed assumptions for normality,
but other outliers passed normality according to Shapiro-
Wilk’s test. We concluded that approximation approaches
may be more sensitive to the noise and deviation from
data normality and may produce biased heritability estimates
even in traits whose distributions pass the standard tests
for normality.

We found that the use of inverse normal transformation
improved the agreement between ML and approximation-
based approaches and resolved the outlier heritability
estimates observed in uncorrected data. The inverse normal
transformation did not alter the pattern of ML-based estimates:
high correlation (r > 0.95) was observed for averaged
ML-estimates before and after inverse normal transformation.
Enforcing normality upon data reduced the dispersion in h2

values and improved the average spread for the approximation
approaches. This was especially noticeable for FPNI approach
where the correlations withML-estimates became high (r> 0.97)
for all cohorts.

LIMITATION

The ML estimations were used as the reference to compare
the performance of approximation-based approaches

in the simulated and imaging data. The two ML
approaches produced convergent heritability estimates
in both simulated and imaging datasets. However, this
does not constitute the ‘‘ground truth’’ especially in
imaging datasets where ML approaches may be biased
despite convergence.

CONCLUSION

We have conducted a careful comparison of four heritability
estimation methods for imaging data. Based on ‘‘ground-
truth’’ simulations, four packages can produce low-
bias, low-variance heritability estimates, with ML-based
methods understandably performing slightly better than the
approximation methods. In real data, the approximation
methods exhibit more variability relative to the ML-based
methods, but this variability was reduced with the use of
a rank-based inverse normal transformation, suggesting
that this may be an important tool to maximize inter-
method reliability.
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In the field of neuroimaging, there is a growing interest in developing collaborative

frameworks that enable researchers to address challenging questions about the human

brain by leveraging data across multiple sites all over the world. Additionally, efforts

are also being directed at developing algorithms that enable collaborative analysis

and feature learning from multiple sites without requiring the often large data to

be centrally located. In this paper, we propose two new decentralized algorithms:

(1) A decentralized regression algorithm for performing a voxel-based morphometry

analysis on structural magnetic resonance imaging (MRI) data and, (2) A decentralized

dynamic functional network connectivity algorithm which includes decentralized group

ICA and sliding-window analysis of functional MRI data. We compare results against

those obtained from their pooled (or centralized) counterparts on the same data i.e.,

as if they are at one site. Results produced by the decentralized algorithms are

similar to the pooled-case and showcase the potential of performing multi-voxel and

multivariate analyses of data located at multiple sites. Such approaches enable many

more collaborative and comparative analysis in the context of large-scale neuroimaging

studies.

Keywords: decentralized algorithms, COINSTAC, VBM, dFNC, multi-shot

1. INTRODUCTION

In the current times, innovation and discovery are often underpinned by the size of data at one’s
disposal and this has led to a paradigm shift in scientific research increasing the emphasis on
collaborative data-sharing (Cragin et al., 2010; Tenopir et al., 2011). This growing significance of
data-sharing is more evident in the field of neuroscience where, in the past few years, there has been
a proliferation of efforts (Poldrack et al., 2013) toward enabling researchers to leverage data across

multiple sites. In part, this is due to the fact that collecting neuroimaging data is expensive as well as
time consuming (Landis et al., 2016) and aggregating or sharing data across various sites provides
researchers with an opportunity to uncover important findings that are beyond the scope of the
original study (Poldrack et al., 2013). In addition to making predictions more certain by increasing
the sample size (Button et al., 2013), sharing data ensures reliability and validity of the results, and
safeguards against data fabrication and falsification (Tenopir et al., 2011; Ming et al., 2017).
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As mentioned previously, data-specific collaborative efforts
include either aggregating the data via a centralized data sharing
repository or sharing data via agreement based collaborations,
or data usage agreement (DUA) in other words (Thompson
et al., 2014, 2017). However, each methodology has its own set
of barriers. For example, policy or proprietary restrictions or
data re-identification concerns (Sweeney, 2002; Shringarpure and
Bustamante, 2015) might hinder data sharing whereas DUAs
might take months to complete and even if one comes through,
there is no guarantee of the utility of the data until the planned
analysis is performed (Baker et al., 2015; Ming et al., 2017). Other
significant challenges include the storage and computational
resources needed which could prove costly as the volume of the
data shared goes up.

Frameworks such as ENIGMA (Thompson et al., 2014, 2017)
to some extent bypass the need for DUAs by performing a
centrally coordinated analysis at each local site. This enables
potentially large data at each local site to stay put allowing a
greater level of control as well as privacy. Another framework
called ViPAR (Carter et al., 2015) tries to go one step further
by, relying on open-source technologies, completely isolating
the data at the local site but only pooling them via transfer to
perform automated statistical analyses. This repeated pooling
of data becomes cumbersome as the number of sites or the
size of the data at each site goes up and ENIGMA (Thompson
et al., 2014, 2017; Hibar et al., 2015; van Erp et al., 2016)
addresses this issue by pooling local statistical results for
further analysis, also known as, meta-analysis (Adams et al.,
2016). However, the heterogeneity among the local analyses
caused by adopting various data collection mechanisms or
preprocessing methods can lead to inaccurate meta-analysis
findings.

Plis et al. (2016), proposed a web-based framework titled
Collaborative Informatics and Neuroimaging Suite Toolkit
for Anonymous Computation (COINSTAC) to address the
aforementioned issues. COINSTAC provides a platform to
analyze data stored locally across multiple organizations without
the need for pooling the data at any point during the analysis.
It is intended to be an ultimate one-stop shop by which
researchers can build any statistical or machine learning model
collaboratively in a decentralized fashion. This framework
implements a message passing infrastructure that will allow large
scale analysis of decentralized data with results on par with those
that would have been obtained if the data were in one place.
Since, there is no pooling of data it also preserves the privacy of
individual datasets.

Some of the decentralized computations discussed in the
literature so far include decentralized regression (Plis et al.,
2016), joint independent component analysis (Baker et al.,
2015), decentralized independent vector analysis (Wojtalewicz
et al., 2017), decentralized neural networks (Lewis et al., 2017),
decentralized stochastic neighbor embedding (Saha et al., 2017)
and many more. To our knowledge, most of these algorithms
have been tested on synthetic data. In this work we present two
new decentralized algorithms that are widely used in a centralized
manner in the imaging community and demonstrate their utility
on real world brain imaging data.

Regression, is widely used in neuroimaging studies as it
enables one to regress certain covariates, for example- age,
diagnosis, gender or treatment response, to study their effects
on the structure and function of various brain regions. Some
examples of regression related studies in this field include
(Fennema-Notestine et al., 2007) where regression was used
as a validity test in examining the aggregation of structural
imaging across different datasets. In addition, the very successful
ENIGMA studies are mostly using regression analyses for a
small number of variables. Roshchupkin et al. (2016) presented a
framework titled HASE (high-dimensional association analyses)
that is capable of analyzing high-dimensional data at full
resolution, yielding exact association statistics. While singleshot
and multishot regression have been presented previously (Plis
et al., 2016), their treatment was cursory in nature without any
actual consideration of the appropriate gradient descent scheme
or the validity of the methods on real datasets both of which have
been presented in this work.

In this paper, in addition to improving the single-shot
and multi-shot regression we also present a new variant of
decentralized regression- “decentralized regression with normal
equation” and extend this work to operate on voxels in an
MRI image, in order to implement a voxel-based morphometry
(VBM) study in a decentralized framework (Ashburner and
Friston, 2000). We implement and evaluate the proposed
decentralized VBM approach on the publicly available MIND
Clinical Imaging Consortium (MCIC) dataset (available via the
COINS data exchange at https://coins.mrn.org and contrast the
results obtained with those from pooled/centralized regression to
validate the proof-of-concept.

Another widely utilized method in neuroimaging analysis
is dynamic functional network connectivity (dFNC) (Sakoglu
et al., 2010; Allen et al., 2014). dFNC is an analysis pipeline
for functional magnetic resonance imaging (fMRI) data, which
allows for the identification and analysis of networks of co-
activating brain states. In contrast to static approaches (Smith
et al., 2009), which take the mean connectivity over time-
points, dFNC uses clustering of time varying connectivity
estimates computed from sliding-windows taken over subject
time-courses, thus becoming desirable in experiments where
network connectivity is highly dynamic in the time dimension,
for example in experiments which utilize resting-state fMRI
(Deco et al., 2013; Damaraju et al., 2014).

Importantly, dFNC is focused on time-courses of networks
extracted from a group independent component analysis (ICA),
which is a widely used approach for estimating functional brain
networks (Calhoun and Adali, 2012) and as such to implement
dFNC we needed to also implement a decentralized group ICA
approach.

For collaborative neuroimaging applications, a decentralized
version of dFNC is desirable for many of the same reasons
as regression, and currently, no such decentralized version
exists. Unlike regression, however, the dFNC pipeline consists
of multiple, distinct stages, all of which require decentralization.
In this paper, we present an initial version of decentralized
dFNC by providing decentralized approaches to both the group
spatial independent component analysis (ICA) and K-Means
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clustering steps in the pipeline, which, along with additional
preprocessing steps including sliding window correlation, can
be implemented together to perform decentralized dFNC. Our
resulting methods, dgICA, and ddFNC via dK-Means, provide
dynamic connectivity results consistent with established pooled
approaches in the literature, thus representing an important step
toward more exhaustive analysis of the decentralized approaches
to the dFNC pipeline. Our contributions in this paper can thus be
summarized as follows.

1. Development of decentralized regression with normal
equation, improvement of single-shot and multi-shot
regression and their validation on structural MRI data

2. Presentation of a decentralized dynamic functional network
connectivity analysis pipeline and its evaluation on functional
MRI data

2. METHODS

2.1. Decentralized VBM (i.e., Voxelwise
Decentralized Regression)
Statistical analysis plays a key role in the field of neuroimaging
studies. Researchers would often want to characterize the effect of
various factors such as age, gender, disease condition, etc., on the
composition of brain tissue at various regions of the brain. Voxel-
based morphometry (VBM) (Ashburner and Friston, 2000) is
one such approach that facilitates a comprehensive comparison,
via generalized linear modeling, of voxel-wise gray matter
concentration between different groups, for example. To enable
such statistical assessment on data present at various sites, it is
important to develop decentralized tools. In this section, we first
provide a brief overview of decentralized regression algorithms
(the building blocks of decentralized VBM which is essentially
voxel-wise regression) along with some notation.

The goal of decentralized regression is to fit a linear equation
(given by Equation 1) relating the covariates at S different sites to
the corresponding responses. Assume each site j has data setDj =

{(xi, yi) : i ∈ {1, 2, . . . , sj}} where xi,j ∈ Rd is a d-dimensional
vector of real-values features, and yj ∈ is a response. We consider
fitting the model in Equation 2 where w is given as [w; b] and x

as [x; 1]

y ≈ w⊤x+ b (1)

y ≈ w⊤x (2)

The vector of regression parameters/weights w is found by
minimizing the sum of the squared error given in Equation (3)

F(w) =

S
∑

j=1

sj
∑

i=1

(yi − w⊤xi,j)
2 (3)

The regression objective function is a linearly separable function,
that can be written as sum of a local objective function calculated
at each local site as follows:

F(w) =

S
∑

j=1

Fj(w) (4)

where

Fj(w) =

sj
∑

i=1

(yi − w⊤xi,j) (5)

A central aggregator (AGG) is assumed whose role is to compute
the global minimizer ŵ of F(w).

2.1.1. Single-Shot Regression
In one approach to solve the decentralized regression problem,
termed the single-shot regression (Plis et al., 2016), each site
j finds the minimizer ŵj of the local objective function Fj(w).
This is the same as solving the regression problem at each
local site. Once the regression model at each site is fit, the
weights are sent to the central aggregator (AGG) where they
are aggregated (weighted average) to find the global minimizer
or can be used separately to perform a meta-analysis similar to
those performed in ENIGMA (using a manual spreadsheet-based
approach however) (Turner et al., 2013; van Erp et al., 2016). The
pseudocode to perform single-shot decentralized regression (Plis
et al., 2016), with a slight modification, is presented here again for
completeness.

Algorithm 1 Single-shot Regression

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
1: for j = 1 to S do
2: ŵj = argminwFj(w).
3: Node j sends ŵj to AGG.
4: end for

5: AGG computes ŵ = 1
∑S

j=1 sj

∑S
j=1 sjŵj and return ŵ

2.1.2. Decentralized Regression With Normal

Equation
One limitation of single-shot regression is that the “site” level
covariates cannot be included at each local site as this leads
to collinearity issues. This issue can be offset by utilizing a
decentralized version of the analytical solution to the linear
regression problem. For a standard regression problem of the
form given in Equation (2), the analytical solution is given as

ŵ = (x⊤x)−1x⊤y (6)

Assuming that the augmented data matrix x is made up of data
from different local sites, i.e.,

x =







x1
...
xS






(7)
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it’s easy to see that ŵ can be written as

ŵ =







[

x⊤1 · · · x
⊤

S

]







x1
...
xS













−1

×

[

x⊤1 · · · x
⊤

S

]







y1
...
ys






(8)

ŵ =





S
∑

j=1

xTj xj





−1

×





S
∑

j=1

xTj yj



 (9)

The above variant of the analytical solution to a regression model
shows that even if the data resides in different locations, fitting a
global model in the presence of site covariates delivers results that
are exactly similar to the pooled case.

Algorithm 2 Decentralized Regression with Normal Equation

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
1: for j = 1 to S do
2: Compute Cov(Xj) = x⊤j xj

3: Compute x⊤j yj

4: Node j sends Cov(Xj) and x⊤j yj to AGG.
5: end for

6: AGG computes

ŵ ←
(

∑S
j=1 Cov(Xj)

)

−1 (

∑S
j=1 x

⊤

j yj

)

and return

ŵ

2.1.3. Multi-Shot Regression
Decentralized regression with a normal equation is a nice
mathematical formulation which produces results that are exactly
the same as those from the pooled regression. However, one
of the biggest drawback of the analytical form of regression is
it becomes computationally expensive to evaluate the inverse
of x⊤x as the number of features in the dataset (D) increases.
While in a neuroimaging setting there might not be as many
covariates to make it computationally expensive, it is indeed a
challenge while working with datasets where the cardinality of the
feature set is usually large (especially in machine learning). One
can overcome this drawback by implementing an optimization
method in a way that entails the local sites and AGG having to
communicate iteratively. This is a type of distributed gradient
descent and such a regression is termed “multi-shot” regression
(Plis et al., 2016).

For a regression model of the form given in Equation 5, the
gradient update equation (given a learning rate η) is given as

ŵt+1 = ŵt − η · ▽Fj(ŵ) (10)

Algorithm 3Multi-shot Regression

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
Require: Step size η (Suggested default: 0.001)
Require: β1,β2 ∈ [0, 1): Exponential decay rates for themoment

estimates (Suggested defaults: 0.9 and 0.999, respectively)
Require: Small constant δ used for numerical stabilization

(Suggested default: 10−8)
Require: ŵt−1 ← 0 (Initial parameter vector), m0 ← 0

(Initialize 1st moment vector), v0 ← 0 (Initialize 2nd

moment vector), t ← 0 (Initialize timestep), tolerance Tol
⊲ at AGG

1: while True do

2: for j = 1 to S do
3: AGG sends ŵt−1 to node j
4: Node j computes ▽Fj(ŵt−1)
5: Node j sends ▽Fj(ŵt−1) to AGG.
6: end for

7: AGG computes ▽Fc ←
∑S

j=1 ▽Fj(ŵt−1) ⊲ aggregate

gradient
8: mt ← β1 ·mt−1 + (1− β1) · ▽Fc ⊲ update biased first

moment estimate
9: vt ← β2 · vt−1 + (1− β2) · ▽F

2
c ⊲ update biased second

moment estimate
10: m̂t ← mt/(1− β t

1) ⊲ Compute bias-corrected first
moment estimate

11: v̂t ← vt/(1− β t
2) ⊲ Compute bias-corrected second

moment estimate
12: AGG computes ŵt ← ŵt−1 − η · m̂t/(

√

v̂t + δ) ⊲

Update parameters
13: if ||ŵt − ŵt−1||2 ≤ Tol then

14: break

15: end if

16: ŵt−1 ← ŵt

17: end while

18: return ŵt as ŵ ⊲ Resulting parameters

where

▽Fj(ŵ) =

sj
∑

i=1

(yi − ŵ⊤xi,j)xi,j (11)

In multi-shot regression, at every time step the AGG sends the
value of ˆwt−1 to each of the local sites which then compute their
local gradients ▽Fj(wt) and send them back to the AGG where it
sums up all the local gradients in order to update the parameter
vector ŵt . The need to sum up all the local gradients is explained
as follows:

From Equation (4), F(ŵ) =
∑S

j=1 Fj(ŵ)

∴ ▽F(ŵ) =
∑S

j=1 ▽Fj(ŵ) (12)

To illustrate this using an example, suppose there are 3 sites
(S = 3) with s1, s2 and s3 number of samples, respectively, at
each site. The global objective function F(ŵ) can be easily written
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as the sum of objective functions from each site (this because the
objective function is linear) as follows:

F(ŵ) =

s1+s2+s3
∑

j=1

(yj − ŵ⊤xj)
2

=

s1
∑

j=1

(yj − ŵ⊤xj)
2
+

s2
∑

j=1

(yj − ŵ⊤xj)
2

+

s3
∑

j=1

(yj − ŵ⊤xj)
2

=

s1
∑

j=1

F1(ŵ)+

s2
∑

j=1

F2(ŵ)+

s3
∑

j=1

F3(ŵ)

∴ ▽F(ŵ) =

s1
∑

j=1

▽F1(ŵ)+

s2
∑

j=1

▽F2(ŵ)+

s3
∑

j=1

▽F3(ŵ) (13)

From Equation (13), it should be easy to see that the aggregated
gradient is just a sum of the gradients from each site. On the
other hand, if the mean sum of squared errors is preferred i.e.,
F(ŵ) = 1

m

∑m
j=1(yj− ŵ

⊤xj)
2, which mathematically has the same

minimizer as
∑m

j=1(yj − ŵ⊤xj)
2 since F(ŵ) is convex, it can be

shown that the aggregated gradient is a weighted average of the
gradients from the local sites:

F(ŵ) =
1

s1 + s2 + s3

s1+s2+s3
∑

j=1

Fj(ŵ)

=

1

s1 + s2 + s3
(
s1

s1

s1
∑

j=1

Fj(ŵ)+
s2

s2

s2
∑

j=1

Fj(ŵ)

+

s3

s3

s3
∑

j=1

Fj(ŵ))

=

1

s1 + s2 + s3
(s1F1(ŵ)+ s2F2(ŵ)+ s3F3(ŵ))

∴ ▽F(ŵ) =
1

s1 + s2 + s3
(s1▽Fj(ŵ)+ s2▽Fj(ŵ)+ s3▽Fj(ŵ))

(14)

Algorithm 3 shows the steps involved in multi-shot regression.
In order to update the parameters (here, ŵ), any off-the-shelf
optimization scheme, for example, gradient descent, adagrad
(Duchi et al., 2011), adadelta (Zeiler, 2012), momentum gradient
descent (Rumelhart et al., 1986), nesterov accelerated gradient
descent (Nesterov et al., 1983), Adam (Kingma and Ba, 2014)
could have been used. The choice of scheme adopted could
depend on the data being analyzed, Moreover, additional
considerations have to be given to the stopping criterion
tolerance, the number of iterations, the choice of learning rate
and any other additional hyper-parameters depending on the
scheme utilized. In some cases, the choice of optimization scheme
can result in an analysis which could take minutes, days or years
to arrive. In our tests, we found out that the Adam optimization

scheme performs extremely well on the real dataset and hence has
been adopted to perform the multi-shot regression.

2.1.4. Other Statistics
In addition to generating the weights of the covariates (regression
parameters), one would also be interested in determining the
overall model performance given by goodness-of-fit or the
coefficient of determination (R2) as well as the statistical
significance of each weight parameter (t-value or p-value).

As demonstrated in Algorithm 4 (Ming et al., 2017),
determining R2 entails calculating the sum-square-of-errors
(SSE) as well as total sum of squares (SST) which are evaluated at

each local site and then aggregated at the global site to evaluate R2

given by 1−SSE/SST. An intermediary step before the calculation
of SST is the calculation of the global ȳ which is determined by
taking a weighted average of the local ȳj weighted on the size of
data at each local site.

Algorithm 4 Decentralized R2 calculation

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
1: AGG sends ŵ to each local site.
2: for j = 1 to S do

3: Node j computes ȳj =
1
sj

∑sj
i=1 yi

4: Node j sends ȳj and sj to AGG.
5: end for

6: AGG computes ȳ =

∑S
j=1(sj·ȳj)
∑S

j=1 sj
⊲ global mean

7: AGG sends ȳ to local sites
8: for j = 1 to S do

9: SSTj =
∑sj

i=1(yi − ȳ)2

10: ŷj = ŵ · xj

11: SSEj =
∑sj

i=1(yi − ŷj)
2

12: Node j sends SSTj and SSEj to AGG
13: end for

14: AGG computes SST ←
∑S

j=1 SSTj,

SSE←
∑S

j=1 SSEj,

R2 ← 1− SSE
SST

15: return R2

Algorithm 5 (Ming et al., 2017) details the steps involved
in calculating the t-values (and therefore p-values) of each
regression parameter. Assuming the weight vector has been
calculated using either the single-shot or multi-shot regression,
the global weight vector (ŵ) is sent to each of the local sites
where the local covariance matrix as well as the sum-square-of-
errors is calculated and sent back along with the data size to
the aggregator (AGG) which then utilizes that information to
calculate the t-values for each parameter (or coefficient). Once,
the t-values have been calculated, the corresponding two-tailed
p-values can be deduced using any publicly available distributions
library.
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Algorithm 5 Decentralized t-value calculation

Require: Data Dj at site j for sites j = 1, 2, . . . , S, where |Dj| =

sj∀j
1: AGG sends ŵ to each local site.
2: for j = 1 to S do
3: ŷj = ŵ · xj

4: SSEj =
∑sj

i=1(yi − ŷj)
2

5: Cov(xj) = x⊤j xj
6: Node j sends SSEj, Cov(Xj) and sj to AGG.
7: end for

8: AGG computes Cov(x)←
∑S

j=1 Cov(xj),

MSE← 1
∑S

j=1 sj

∑S
j=1 SSEj,

SE(W)←
√

diag(MSE · Cov(x)−1),
t← ŵ/SE(W))

9: return t

2.1.5. Bandwidth and Complexity
For singleshot regression, each site communicates a local weight
vector ŵj of size (d + 1) to the aggregator in addition to the
cardinality of the dataset at each site |Dj| = sj, a scalar. Once
all the information is aggregated, a weighted average of the local
ŵjs with the weights being sj performed to get the global weight
vector ŵ. Assuming sj > d and that the normal equation is used
to get the local weight vectors ŵjs, the computational complexity
is O(d2sj) whereas the computational complexity of calculating
the weighted average at the AGG isO(d).

In the case of decentralized regression with normal equation,
the first step (at each site) includes the calculation of x⊤x (at
O(d2sj)) and x⊤y (at O(dsj)) with an overall complexity of

O(d2sj). A total information of
∑S

j=1{sj× [(d+ 1)2+ (d+ 1)]} is

communicated to the AGG where they are aggregated (as shown
in Algorithm 2) to obtain the global weight vector ŵ atO(d3).

Contrary to where the computation starts in the case of
singleshot or DRNE, the computation/communication starts
from the AGG in multishot regression. The AGG initializes the
ŵ and communicates the (d + 1)-sized vector to each of the S
sites. At every iteration, each site j then calculates the gradient
vector (O(d)) and sends it back to the AGG which again means
the communication S × (d + 1) accounting for S sites. At the
AGG, steps 7 though 12 (refer to Algorithm 3) are performed at
an order of O(d) which are again sent back to each of the local
sites, implying a communication of S × d, for the next iteration
of the gradient descent.

The above treatment of communication bandwidth and
complexity is subject to certain considerations viz., the number of
covariates, the number of samples at each site, the optimization
scheme used in the calculation of x⊤x, the stopping criterion, etc.

2.2. Decentralized dFNC
In this section, we briefly present our initial work toward
performing dynamic functional network connectivity (dFNC)
analysis in a decentralized framework. As mentioned earlier,
dFNC is a multi-step pipeline finds common states in subject
fMRI time-courses (TCs), and is often done by clustering a

sliding window over subject time-courses, as is done (e.g., Allen
et al., 2014; Damaraju et al., 2014). Thus, we present methods
for decentralized spatial ICA along with decentralized K-Means
clustering. Our presentation here is by no means a rigorous take
on dFNC which we save for future work.

2.2.1. Decentralized Group Spatial ICA
Following preprocessing, the first step in the dFNC pipeline
includes group ICA (Calhoun et al., 2001). Since we are dealing
with fMRI data, suppose that we now have dataX ∈ R

d×N , where
d is the voxel-space of the data (in brain voxels), and N is the
total number of time-points across all subjects in the network. In
linear spatial ICA, we model each individual subject as a mixture
of r many statistically independent spatial maps, A ∈ R

d×r , and
their time-courses, S ∈ R

r×Ni , where Ni is the length of the time-
course belonging to subject i. In the decentralized case, we can
model the global data set X as the column-wise concatenation of
s sites in the temporal dimension, where each site is modeled as a
set of subjects concatenated in the temporal dimension:

X = [A1S1 A2S2 · · · AsSs] ∈ R
d×N .

Our goal is to learn a global unmixing matrix, W, such
that XW ≈ Â, where Â ∈ R

d×r is a set of unmixed
spatially independent components. To this end, we perform a
decentralized group independent component analysis (dgICA).
Ourmethod consists first of the two-stageGlobalPCA procedure
utilized in Baker et al. (2015). In this procedure, each site first
performs subject-specific LocalPCA dimension-reduction and
whitening to a common k principal components in the temporal
dimension. A decentralized, second stage, then produces a global
set of r spatial eigenvectors, V ∈ R

r×d. As outlined in Baker
et al. (2015), this second stage has sites pass locally-reduced
eigenvectors to other sites in a peer-to-peer scheme, where
upon receiving a set of eigenvectors, a site then stacks them
in the column dimension, and performs a further reduction of
the stacked matrix, which is then passed to the next peer in
the network. This process iterates until the global eigenvectors
reach some aggregator (AGG), or otherwise terminal site in the
network.

Algorithm 6 Decentralized group ICA algorithm (dgICA)

Require: s sites with data {Xi ∈ R
d×Ni : i = 1, 2, . . . , s}, intended

final rank r, local site rank k2 ≥ r, local subject rank k1.
1: for all sites i = 1, 2, . . . , s do
2: Perform LocalPCA (Baker et al., 2015) on each site→

k1 eigen-vectors for each subject.
3: Perform LocalPCA (Baker et al., 2015) on concatenated

subjects→ k2 eigenvectors at each site.
4: Reduce local data set to Xi,red ∈ R

d×k2

5: end for

6: Perform GlobalPCA (Baker et al., 2015) to obtain r global
eigenvectors, V, at the aggregator.

7: On the aggregator, perform ICA to obtain global unmixing
matrix,W.
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The aggregator site then performs whitening on these
resulting eigenvectors, and runs a local ICA algorithm, such
as infomax ICA (Bell and Sejnowski, 1995), to produce the
spatial unmixing matrix, W. The global spatial eigenvectors,
V, are then unmixed to produce Â by computing Â ≈ VW,
which is shared across the decentralized network. Each site then
uses this unmixing matrix to produce individual time-courses
for each i-th subject by computing Ai ≈ XT

i S. Each site can
then perform spatio-temporal regression back reconstruction
approach (Calhoun et al., 2001; Erhardt et al., 2011) to produce
subject-specific spatial maps.

2.2.2. Decentralized Clustering
In order to perform dFNC in a decentralized paradigm, we
first require a notion of decentralized clustering. Following
the precedent of previous work in dFNC, we focus first on
decentralized K-Means optimization, for which there exist a
number of pre-established methods for decentralization. A
number of methods utilize some manner of weighted centroid
averaging, where each site in the network broadcasts updated
centroids to an aggregator node which then computes themerged
centroids, and rebroadcasts them to the local sites (Forman and
Zhang, 2000; Dhillon andModha, 2000; Jagannathan andWright,
2005), though completely peer-to-peer approaches have also been
proposed (Datta et al., 2006, 2009), as well as methods robust to
asynchronous updates (Di Fatta et al., 2013). Though we have
not found any methods which do this, methods which compute
K-Means via gradient descent (Bottou, 2010) are also amenable
to decentralization (Yuan et al., 2016). For simplicity’s sake, we
take the approach of centroid-averaging outlined in Dhillon and
Modha (2000), and leave rigorous presentation and comparison
of the remaining methods as future work.

To perform clustering for distributed dFNC, we first have
each site separate its subjects into sliding-window time-courses,
where the window length is fixed across the decentralized
network. Additionally, initial clustering was performed on a
subset of windows from each subject, corresponding to windows
of maximal variability in correlation across component pairs. To
obtain these exemplars, each site computes variance of dynamic

Algorithm 7 Decentralized dFNC algorithm (ddFNC)

Require: s sites with data {Xi ∈ R
d×Ni : i = 1, 2, . . . , s}, win-size

t, number of clusters k.
1: dgICA→W, global unmixing matrix, broadcast to sites.
2: for all sites = i = 1, 2, . . . , s do
3: Back-reconstruct subject TCs
4: Using sliding window of size t, obtain r × r covariance

matrices.
5: Obtain exemplar covariance matrices (Damaraju et al.,

2014).
6: end for

7: Run K-Means on exemplar covariance matrices to obtain k
initial centroids, C0.

8: Run K-Means with initial clusters C0 to obtain k centroids C,
and clustering assignment for each instance, L.

connectivity across all pairs of components at each window.
We then select windows corresponding to local maxima in this
variance time-course. This resulted in an average of 8 exemplar
windows per subject. We then perform decentralized K-Means
on the exemplars to obtain a set of centroids, which are shared
across the decentralized network, which we feed into a second
stage of K-Means clustering.

For the second stage of decentralized clustering, at each
iteration, each site computes updated centroids according to
Dhillon and Modha (2000), which corresponds to a local K-
Means update. These local centroids are then sent to the
aggregator node, which computes the weighted average of
these updated centroids, and re-broadcasts the updated global
centroids until convergence.

2.2.3. Bandwidth and Complexity
To compute the communication and complexity for ddFNC, we
separately analyse the novel component algorithms of dgICA and
dK-Means.

For decentralized group ICA, the communication of the
algorithm is closely related to the communication ofGlobalPCA.
In the GlobalPCA algorithm given in Baker et al. (2015),
each site communicates a d × r matrix of eigenvectors to
the subsequent site until the aggregator is reached. After the
aggregator performs ICA to obtain the global unmixing matrix,
W, this matrix is broadcast to all other sites in the network.
Thus, for a single, non-aggregator site, the total communication
for dgICA is exactly d × r + r2. At the aggregator, the total
communication is exactly d × r + r2 × s if the unmixing matrix
is broadcast directly to each node. Of course, this cost could be
mitigated by following a peer to peer communication scheme,
and having other non-aggregator sites broadcast the unmixing
matrix as well.

Next, we can compute the overall complexity of dgICA as the
total complexity of local site operations. Consider an individual
site, i, with m subjects, where the concatenated matrix is given
as Xi ∈ R

d×Ni . In general, the complexity of SVD on the
Ni×Ni covariance matrix isO(N3

i ), though this can be improved
upon by using iterative methods, such as the MATLAB svds
function. Thus, the complexity for the two-stage LocalPCA

computation on one site is O(2N3
i ). The per-site complexity for

GlobalPCAis given as the complexity of a SVD computed on a
d×d covariance matrix, which is created by concatenating the k2
eigenvectors from the previous site; i.e., the per-site complexity
forGlobalPCA isO(d3). Finally, the complexity of ICA is exactly
equal to the number of ICA iterations, J , which depends heavily
on the choice of ICA algorithm, and hyper-parameter selection
(see Bell and Sejnowski, 1995 for more details on the complexity
of Infomax, for example). Thus, the total per-site complexity for
dgICA is O(N3

i + d3i ) for non-aggregator nodes, and O(N3
i +

d3i +J ) on the aggregator node. The overall runtime of dgICA is
thus dependent on the computational resources available at each
site, as well as the computational resources and ICA parameters
chosen by the aggregator site.

Prior to performing K-Means, each site i computes Ni,j − w
windowed time-courses of length w on each subject j, computing
the rank r covariance matrix for those windows. Thus, if there are
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mi subjects at site i, the local complexity is O(mi(N − w)r3) for
this operation. No inter-site communication occurs during this
process.

For decentralized K-Means, the communication between sites
depends on the number of “K-Means Iterations,” J , i.e., the
number of iterations required for the centroids to stabilize. J
depends heavily on the initial centroids, the distance metric used,
the distribution of the global data set, and other factors which
make it difficult to compute exactly for arbitrary data. In each
iteration of decentralized K-Means, we communicate k many

centroids of size Rr2 , for an average communication of r2 · k · J
from the sites to the aggregator. The aggregator, then, performs
a total of r2 · k · J · s communication (Dhillon and Modha,
2000), which again, could be mitigated by passing centroids to
intermediate sites, provided those sites can be trusted with the
centroid information.

The time complexity of decentralized K-Means is described
in Dhillon and Modha (2000). At each site, the distance
and centroid recalculation computations come out to per-site
complexity of O((3kr2 + Mik + Mir

2
+ kr2) · J ) (Dhillon and

Modha, 2000), where Mi is the number of instances at site i.
The total number of computations consists of the sum of these
site-wise complexities, and the centroid-averaging step with a
complexity ofO(kr2), for a total ofO((3kr2+Mk+Mr2+kr2)·J ),
whereM is the total number of data instances in the decentralized
network.

Since dK-Means is computed twice for full ddFNC, once on
the exemplars, and once on the global set of subject windows, the
complete complexity of the clustering stage of the algorithm is
given as the dK-Means complexity for M =

∑

Ei added to the
dK-Means complexity for M =

∑

mi, i.e., O((3kr2 + (
∑

Ei +
∑

mi)(k+ r2)+ kr2) · J + kr2).
The overall site-wise complexity and communication for

ddFNC is just the sum of the site-wise communication and
complexities for each of the stages described here. In the
paradigm described here, the communication and complexity
on the aggregator is generally more demanding than that on
the individual sites, which makes sense for cases where the
aggregator has sufficient and reliable network and hardware
resources. In cases where this is not necessarily true, some
of the aggregation tasks can be distributed to other sites in
the network, thus reducing communication and complexity on
the final aggregator. In the dgICA algorithm, performing ICA
on the aggregator may become a bottleneck if the aggregator
does not have sufficient computational resources to perform a
standard run of ICA; however, this problem could be mitigated
by performing a hardware check on sites in the consortium,
and assigning the role of aggregator dynamically based on
availability of computational resources. For more discussion of
the particularities of network communication and other issues
which may arise in decentralized frameworks like the one used
for ddFNC, see Plis et al. (2016).

3. DATA

3.1. Structural MRI for Decentralized VBM
As part of validating the proof-of-concept, we applied
decentralized VBM to brain structure data collected on

chronic schizophrenic patients and healthy controls. Specifically,
the data comes from the Mind Clinical Imaging Consortium
(MCIC) collection- a publicly accessible, on-line data repository
containing curated anatomical and functional MRI, in addition
to other data, collected from individuals with and without
a schizophrenia spectrum disorder (Gollub et al., 2013) and
available via the COINS data exchange https://coins.mrn.org
(Scott et al., 2011).

Although more information about the MCIC can be found in
Gollub et al. (2013), here we will report numbers for the final
data used in this study as some subjects were excluded during the
preprocessing phase. The final cohort for whom data are available
includes 146 patients and 160 controls with site distribution
as follows: Site B (IA) 40 patients/67 controls; Site D (MGH)
32/23; Site C (UMN) 32/26; Site A (UNM) 42/44, respectively.
All subjects provided informed consent to participate in the study
that was approved by the human research committees at each of
the sites.

Briefly, T1-weighted structural MRI (sMRI) images were
acquired with the following scan parameters: TR = 2, 530ms for
3 T, TR = 12ms for 1.5 T; TE = 3.79ms for 3 T, TE = 4.76ms for
1.5 T; FA = 7◦ for 3 T, FA = 20◦ for 1.5 T; TI = 1100ms for 3 T;
Bandwidth = 181 for 3 T, Bandwidth = 110 for 1.5 T; voxelsize =
0.625× 0.625mm; slice thickness 1.5 mm; FOV = 16− 18cm.

The T1-weighted sMRI data were preprocessed using
the Statistical Parametric Mapping software using unified
segmentation (Ashburner and Friston, 2005), in which image
registration, bias correction and tissue classification were
performed using a single integrated algorithm resulting in
individual brains segmented into gray matter, white matter and
cerebrospinal fluid and nonlinearly warped to the Montreal
Neurological Institute (MNI) standard space. The resulting gray
matter concentration (GMC) images were re-sliced to 2 × 2 ×
2mm, resulting in 91 × 109 × 91 voxels. Although one can
obtain both modulated (Jacobian corrected) and unmodulated
gray matter segmentations, in this study, we use unmodulated
GMCmaps to test our regression models.

To test the decentralized regression on the MCIC data
described in the previous paragraph, we regress the age,
diagnosis, gender and the site covariates on the voxel intensities
(∼600,000 voxels). All the decentralized computations discussed
here have been performed on a single machine.

3.2. Functional MRI for dFNC
To evaluate ddFNC , we utilize imaging data from Damaraju
et al. (2014) collected from 163 healthy controls (117 males, 46
females; mean age: 36.9 years) and 151 age- and gender matched
patients with schizophrenia (114 males, 37 females; mean age:
37.8 years), for a total of 314 subjects.

The scans were collected during an eyes closed resting fMRI
protocol at 7 different sites across United States and pass data
quality control (see Supplementary Material). Informed and
written consent was obtained from each participant prior to
scanning in accordance with the Internal Review Boards of
corresponding institutions (Keator et al., 2016). A total of 162
brain-volumes of echo planar imaging BOLD fMRI data were
collected with a temporal resolution of 2 s on 3-Tesla scanners.
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Imaging data for six of the seven sites was collected on a 3T
Siemens Tim Trio System and on a 3T General Electric Discovery
MR750 scanner at one site. Resting state fMRI scans were
acquired using a standard gradient-echo echo planar imaging
paradigm: FOV of 220 × 220 mm (64 × 64 matrix), TR = 2
s, TE = 30 ms, FA = 770, 162 volumes, 32 sequential ascending
axial slices of 4 mm thickness and 1 mm skip. Subjects had their
eyes closed during the resting state scan. Data preprocessing for
dgICA was performed according to the preprocessing steps in
Damaraju et al. (2014).

3.3. ddFNC Experimental Parameters
We verify that ddFNC can generate sensible dFNC clusters by
replicating the centroids produced in Damaraju et al. (2014). We
run both pooled and decentralized versions of our algorithm,
and compare our results directly with the results provided by
the authors of Damaraju et al. (2014). We thus closely follow the
experimental procedure in Damaraju et al. (2014), with some of
the additional post-processing omitted for simplicity. To evaluate

the success of our pipeline, we run a simple experiment where
we implement the ddFNC pipeline end-to-end on the data,
simulating 314 subjects being evenly shared over 2 decentralized
sites.

We set a window-length of 22 time-points (44 s), for a total
of 140 windows per subject. For dgICA, we first estimate 120
subject-specific principal components locally, and reduce each
subject to 120 points in the temporal dimension. Subjects are
then concatenated temporally on each site, and we use the
GlobalPCA algorithm in Baker et al. (2015) to estimate 100

TABLE 1 | Correlation between SSE from pooled, single-shot and multi-shot

regression.

Pooled Single-shot Multi-shot

Pooled 1.000000 0.992905 1.000000

Single-shot 0.992905 1.000000 0.992905

Multi-shot 1.000000 0.992905 1.000000

FIGURE 1 | Pairwise plot of Sum Square of Errors (SSE) from pooled, single-shot and multi-shot regression. Although the distribution plot looks similar across the three

regressions, the pooled regression vs. multi-shot regression scatter plot demonstrates how identical they are to each other.The scatter plot of pooled regression vs.

single-shot regression demonstrates that the SSE values obtained from singles-shot regression are on the higher side compared to the values from pooled regression.
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spatial components, and perform whitening. We then use local
infomax ICA (Bell and Sejnowski, 1995) on the aggregator to
estimate the unmixing matrix W, and estimate 100 spatially
independent components, Â. We then broadcast Â back to the
local sites, and each site computes subject-specific time-courses.

After spatial ICA, we have each site perform a set of
additional post-processing steps prior to decentralized dFNC.
First, we select 47 components from the initial 100, by
computing components which are most highly correlated with
the components from Damaraju et al. (2014). We then have each
site drop the first 2 points from each subject, regress subject
head movement parameters with 6 rigid body estimates, their
derivatives and squares (total of 24 parameters). Additionally,
any spikes identified are interpolated using 3rd order spline
fits to good neighboring data, where spikes are defined as any
points exceeding mean (FD) + 2.5 *std(FD) , where FD is
framewise displacement [interpolating 0 to 9 points (mean, sd:
3, 1.76)].

For clustering, we forgo a separate elbow-criterion estimation,
and use the optimal number of clusters from Damaraju et al.
(2014), setting k = 5. For the exemplar stage of clustering,
we evaluate 200 runs where we initialize centroids uniformly
randomly from local data, and then run dK-Means using the
cluster averaging strategy in Dhillon and Modha (2000). For
our distance measure, we use scikit-learn (Pedregosa et al.,
2011) to compute the correlation distance between covariance
matrices following the methods in Damaraju et al. (2014). To
keep our implementation simple, unlike Damaraju et al. (2014),
we do not utilize graphical LASSO to estimate the covariance
matrix, and thus do not optimize for any regularization

parameters. Additionally, we do not perform additional Fisher-
Z transformations or perform additional regularization using a
previously computed static dFNC result. Future implementations
may also utilize a decentralized static functional network
connectivity (sFNC) algorithm as preprocessing, as is done for
the pooled case in Damaraju et al. (2014). Finally, for the second
stage of dK-Means, we initialize using the centroids from the
run with the highest silhouette score, computed using the scikit-
learn python toolbox (Pedregosa et al., 2011), again running dK-
Means to convergence. After computing the centroids, we use
the correlation distance and the Hungarian matching algorithm
(Kuhn, 1955) to match both plotted spatial components from
dgICA and the resulting centroids from dK-Means.

4. RESULTS

4.1. Decentralized VBM Results
For starters, in order to compare the efficacy of each regression
(single-shot and multi-shot) against the pooled case, we present
a simple pairwise plot of the SSE of the regression performed on
every voxel, Figure 1. In mathematical terms, the SSE represents
lowest objective function value that could be attained from the
regression model. It can be seen from Figure 1 that the SSE
from multi-shot and pooled/centralized regression lie perfectly
along a diagonal indicating the parameters obtained from them
are identical. This can also be verified from Table 1 showing the
correlation between the different SSEs. Please note that results
from the decentralized regression with normal equation were not
presented as it has been mathematically shown to be equivalent
to that of a pooled regression.

FIGURE 2 | Violin plot of Sum Square of Error differences between every pair of regression. The plot of differences in SSE from pooled regression and multi-shot

regression (P-MS) centered around 0 demonstrates how identical the results from the two regressions are. On the other hand, the SSE values from single-shot

regression are higher compared to those from the pooled regression.
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It can be seen that the correlation between SSE from the
centralized regression and multi-shot is 1. On the other hand,
it can also be noticed that the SSE correlations between single-
shot and pooled or single-shot and multi-shot are slightly
lower than perfect correlation. The single-shot approach can be
considered to be similar to a meta-analysis, whereas the multi-
shot approach is basically a mega-analysis (i.e., equivalent to the
pooled analysis).

Figure 2 shows a violin (distribution) plot of the difference
in SSE from every pair of regression. Evidently, the differences
in SSE between pooled and multi-shot regression are centered
around 0. To reinforce our notion that the multi-shot is superior
to single-shot we take a look at the R2 values from the different
regressions and compare. It can be seen from Figure 3 that the
R2 values from multi-shot and pooled regression align perfectly
along a diagonal (correlation= 1, refer toTable 2) or have exactly

the same distribution, whereas those from single-shot are all over
the place.

As noted earlier, in addition to evaluating the regression
model parameters, researchers will also be interested in
understanding the statistical significance of the various
parameter estimates. Figures 4–6 show the statistical significance
of each covariate (age, diagnosis and gender), from both

TABLE 2 | Correlation between R2 from pooled, single-shot and multi-shot

regression.

Pooled Single-shot Multi-shot

Pooled 1.000000 0.906662 1.000000

Single-shot 0.906662 1.000000 0.906662

Multi-shot 1.000000 0.906662 1.000000

FIGURE 3 | Pairwise scatter plots of Coefficient of Determination R2 from the three types of regression. It can be seen again that the R2 values for the regressions

from multi-shot regression and pooled regression are exactly equal. The R2 values from single-shot regression are less than their corresponding values from pooled

regression or multi-shot regression because the model being fit in single-shot has fewer covariates (Note, one of the limitations of the single-shot is that the site

specific covariates could not be included as it introduces collinearity).
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FIGURE 4 | Rendered images of voxel-wise significance values (−log10p-value × sign(t)) for the covariate “Age” from pooled regression (Top) and single-shot

regression (Center), and multi-shot regression (Bottom) overlaid on MNI average template. One could see that the regions with expected gray matter decrease as

age increases are similar from all kinds of regression. Although the single-shot regression uses fewer covariates, the similarity of the rendered images with those of

pooled regression or multi-shot regression indicate the relative weight or orientation of the corresponding β coefficient will be similar to those from pooled/multi-shot

regression.

FIGURE 5 | Rendered images of voxel-wise significance values (−log10p-value × sign(t)) for the covariate “Diagnosis” from pooled regression (Top) and single-shot

regression (Center) and multi-shot regression (Bottom) overlaid on MNI average template. Regardless of the type of regression performed, the images indicate that

in the medial frontal and bilateral temporal lobe/insula there is a significant gray matter density reduction for schizophrenic patients compared to the same regions of

the healthy subjects.
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FIGURE 6 | Rendered images of voxel-wise significance values (−log10p-value × sign(t)) for the covariate “Gender” from pooled regression (Top) and single-shot

regression (Center) and multi-shot regression (Bottom) overlaid on MNI average template. It can be seen from all the three rendered images that there is a significant

amount of gray matter reduction in the sub-cortical regions for males. Since we are using unmodulated gray matter maps, these sex differences could be due to

changes in brain volumes.

FIGURE 7 | Flowchart of the ddFNC procedure e.g., with 2 sites. To perform dgICA, sites first locally compute subject-specific LocalPCA to reduce the temporal

dimension, and then use the GlobalPCA procedure from Baker et al. (2015) to compute global spatial eigenvectors, which are then sent to the aggregator. The

aggregator then performs ICA on the global spatial eigenvectors, using InfoMax ICA (Bell and Sejnowski, 1995) for example, and passes the resulting spatial

components back to local sites. The dK-Means procedure then iteratively computes global centroids using the procedure outlined in Dhillon and Modha (2000), first

computing centroids from subject exemplar dFNC windows, and then using these centroids to initialize clustering over all subject windows.
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centralized and decentralized regressions performed against
each voxel, plotted on an MNI brain template. Figure 4 shows
the brain images with the −(log10p-val × sign(t))-values for
the weight parameter corresponding to “Age.” It is notable
to see that the results from the multi-shot regression have a
perfect correlation to those from the pooled version. Moreover,
the observations show the expected decrease in gray matter
concentration as age increases. Figures 5, 6 show the rendered
images for −log10p-values for the “Diagnosis” and “Gender”
covariate, respectively.

4.2. ddFNC Results
A summary of the complete steps in the decentralized dFNC
pipeline is given in Figure 7. In Figure 8, we plot some examples
of the components estimated from decentralized spatial ICA
in comparison with the spatial components from Damaraju
et al. (2014), after performing Hungarian matching between
the estimated spatial maps. We also plot the correlation of the
components from our ICA implementation in comparison to the

components from Damaraju et al. (2014). Indeed, the estimated
components are highly correlated with the results fromDamaraju
et al. (2014), for all 100 estimated components, as well for the 47
selected neurological components from Damaraju et al. (2014),
indicating that dgICA is able to produce results comparable to
the pooled case. We include additional spatial maps for all 47
estimated spatial components in the Supplementary Material.

In Figure 9, we plot the centroids from Damaraju et al.
(2014) (Figure 9A), as well as the centroids estimated using
decentralized dFNC (Figure 9B). Indeed, the centroids found
using ddFNC prove similar to the centroids found in Damaraju
et al. (2014), with centroids 2 and 3 being the closest matches
under correlation distance.

5. DISCUSSION

The results described in the previous section demonstrate the
fidelity of decentralized regression and decentralized dynamic
function network connectivity in analyzing neuroimaging data.

FIGURE 8 | (A,B) Illustrate examples of matched spatial maps from dgICA and pooled ICA. (C,D) Show the correlation of the components between pooled spatial

ICA and dgICA after hungarian matching. (C) Shows correlation between all 100 components, and (D) Shows correlation between the 47 neurological components

selected in Damaraju et al. (2014).
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FIGURE 9 | The k = 5 centroids for pooled dFNC from Damaraju et al. (2014) (A), and the hungarian-matched centroids from ddFNC (B).

Although single-shot regression is simple and easy to
implement, it limits our ability to incorporate site covariates
and thus might not be extremely helpful. The decentralized
regression with normal equation and multi-shot regression are
superior to single-shot regression because not only do they
allow incorporating site related variables but also give exact
results as the pooled regression. The linearity and convexity of
the regression objective function made this possible and thus
are an excellent alternative to perform regression on multi-site
datasets.

In terms of the regression objective function, either the sum
of squared errors or mean sum of squared errors can be used in
practice. However, it’s mathematically convenient to use sum of
squared errors which subsequently entails (at the AGG) a simple
addition of the gradients (O(1)) instead of a weighted average
of the gradients (O(n)). Added to that, we also showed how the
sample size at the local sites has no bearing on the final results.

On a more practical note, the need for multi-shot regression
might not arise often in a neuroimaging setting where the
number of covariates is usally small. In such cases, the
decentralized regression with normal equation will suffice.
However, in decentralized settings where the number of
covariates is usually large (machine learning/big data) the multi-
shot regression comes to the fore. From a computational time
standpoint, and as discussed in the computational complexity
section, it should be obvious that the multi-shot regression takes
more time to complete than the decentralized regression with
normal equation as it involves iteratively passing the gradients
between the local nodes and theAGG. It is worthmentioning that
although the decentralized regression algorithms demonstrated
here pertain to a simple linear regression model, these algorithms
can easily be extended to more complex models with polynomial
terms or interaction terms as well as to ridge regression, lasso
regression, and elastic net regression.

Regarding ddFNC, we plan on performing a more robust
analysis, going into the future, as a stand-alone algorithm,

particularly with respect to different variations on the dK-Means

optimization and initialization, or with differing versions of ICA
on the aggregator (AGG) node, such as fastICA (Koldovský
et al., 2006), Entropy Bound Minimization (Li and Adali,
2010), and others. Additionally, the possibility of performing
a decentralized static FNC either as a preprocessing step to
ddFNC or a separate analysis is attractive. One other avenue
worth exploring with ddFNC is the flow of information across
the decentralized network. In particular, since the GlobalPCA

step in dgICA already makes the procedure partially peer-to-
peer, it makes sense to explore adding this functionality to
the dK-Means methods to preserve this peer-to-peer structure.
Finally, we plan to evaluate privacy-sensitive versions of ddFNC,
utilizing differential-privacy or other privacy measures as a way
to perform these analyses with some assurance of per-subject
privacy in the decentralized network.

Finally, we note that the decentralization of algorithms in
a neuroimaging setting emphasizes the importance of analysis
on data present at multiple sites, the decentralization discussed
herewith is no different from other decentralized algorithms
discussed elsewhere in literature. The AGG is not really a master
node per se but in fact one of the local sites itself. The term AGG
was introduced to separate all the other local sites from that site
where the results are accumulated.

6. CONCLUSION

In this paper, we presented a simple case study of how
voxel-based morphometry and dynamic functional network
connectivity analysis can be performed onmulti-site data without
the need for pooling data at a central site. The study shows
that both the decentralized voxel-based morphometry as well
as the decentralized dynamic functional network connectivity
yield results that are comparable to its pooled counterparts
guaranteeing a virtual pooled analysis effect by a chain of
computation and communication process. Other advantages
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of such a decentralized platform include data privacy and
support for large data. In conclusion, the results presented here
strongly encourage the use of decentralized algorithms in large
neuroimaging studies over systems that are optimized for large-
scale centralized data processing.
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Numerous neurological disorders are associated with atrophy of mesiotemporal lobe

structures, including the hippocampus (HP), amygdala (AM), and entorhinal cortex (EC).

Accurate segmentation of these structures is, therefore, necessary for understanding

the disease process and patient management. Recent multiple-template segmentation

algorithms have shown excellent performance in HP segmentation. Purely surface-based

methods precisely describe structural boundary but their performance likely depends

on a large template library, as segmentation suffers when the boundaries of template

and individual MRI are not well aligned while volume-based methods are less

dependent. So far only few algorithms attempted segmentation of entire mesiotemporal

structures including the parahippocampus. We compared performance of surface- and

volume-based approaches in segmenting the threemesiotemporal structures and assess

the effects of different environments (i.e., size of templates, under pathology). We also

proposed an algorithm that combined surface- with volume-derived similarity measures

for optimal template selection. To further improve the method, we introduced two new

modules: (1) a non-linear registration that is driven by volume-based intensities and

features sampled on deformable template surfaces; (2) a shape averaging based on

regional weighting using multi-scale global-to-local icosahedron sampling. Compared to

manual segmentations, our approach, namely HybridMulti showed high accuracy in 40

healthy controls (mean Dice index for HP/AM/EC = 89.7/89.3/82.9%) and 135 patients

with temporal lobe epilepsy (88.7/89.0/82.6%). This accuracy was comparable across

two different datasets of 1.5T and 3T MRI. It resulted in the best performance among

tested multi-template methods that were either based on volume or surface data alone in

terms of accuracy and sensitivity to detect atrophy related to epilepsy. Moreover, unlike

purely surface-based multi-template segmentation, HybridMulti could maintain accurate

performance even with a 50% template library size.

Keywords: label fusion, multiatlas segmentation, surface feature modeling, medial temporal lobe (MTL), epilepsy,

temporal Lobe
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INTRODUCTION

Mesiotemporal lobe (MTL) structures, such as the hippocampus
(HP), amygdala (AM), and entorhinal cortex (EC), undergo
marked morphological changes in numerous neurological and
neuropsychiatric conditions (Wang et al., 2010; Cavedo et al.,
2011; Bernhardt et al., 2013; Shi et al., 2013; Joo et al., 2014;
Maccotta et al., 2015; Arnone et al., 2016). MRI volumetry has
been the most commonly employed technique to assess MTL
pathology in vivo (Goncharova et al., 2001; Bernasconi et al.,
2003). In temporal lobe epilepsy (TLE), the most common
surgically-amenable epilepsy in adults, manual MRI volumetry
allows defining the side of mesiotemporal atrophy in up to 70–
90% of patients (Schramm and Clusmann, 2008), and thereby
help identifying the surgical target.

Manual MTL volumetry is a labor-intensive task with
high demands on neuroanatomical expertise. Although
existing automatic segmentation algorithms produce excellent
segmentation results for HP and AM in healthy controls
(Collins and Pruessner, 2010), their performance in TLE is
challenged by the combined effects of atrophy and positional
abnormalities (Kim et al., 2012a). Only a relatively small number
of studies have attempted segmentation of the entire MTL
regions including parahippocampal gyrus (PHG) (Heckemann
et al., 2006; Keihaninejad et al., 2012). A study (Hu et al., 2014)
specifically segmented the EC, a PHG subregion considered a
core epileptogenic zone in TLE (Bernasconi et al., 2003) with
suboptimal accuracy (Dice index=73%), likely due to challenges
imposed by its complex and variable shape.

Volume-based multi-template and label fusion approaches
have been designed to account for shape complexity and
anatomical variability by selecting a subset of templates from
a large library that best describes the target structure (Collins
and Pruessner, 2010; Khan et al., 2011). More recently,
our previously proposed surface-based SurfMulti method
automatically segmented HP using vertex-wise texture and
shape sampling (Kim et al., 2012b), demonstrating improved
performances compared to purely volumetric techniques (Collins
and Pruessner, 2010). However, performance of purely surface-
based approaches likely depends on the availability of a large
library, as it may be negatively impacted when the boundaries of
the template and individual MRI are not well aligned. The label
fusion in volume-based approaches has become sophisticated
using local weighted averaging (Artaechevarria et al., 2009;
Coupé et al., 2011; Eskildsen et al., 2012; Wang et al., 2013; Awate
and Whitaker, 2014). These approaches have demonstrated the
improvement of segmentation.

MICCAI Grand Challenge on Multiatlas Labeling (Landman
and Warfield, 2012) systemically evaluated various multi-
template approaches for the segmentation of numerous brain
structures but the parahippocampal gyrus. A total of 25
algorithms that were trained by 15 atlases were tested on
20 images. The performance for the hippocampus and the
amygdala ranged 82–87 and 75–83% in mean Dice similarity
index, respectively. Among the methods that were evaluated, the
ones that displayed higher accuracy were the joint label fusion
technique that used a joint probability of selected atlases to

correct for the bias due to the inclusion of similar atlases in the
template library or the training-set (Wang et al., 2013) and the
Non-Local STAPLE algorithm that combined Staple method with
the non-local means estimator (Asman and Landman, 2013).

The current work aimed at segmenting simultaneously HP,
AM, and EC using a large template library (n = 175) which
included shape and volume variants in relation to TLE (n =

135).We tested well-established volume-based and surface-based
approaches as well as looked for a possibility of the combined
approach. The proposed algorithm, HybridMulti, combined
surface-based with volume-based similarity measures for optimal
template selection. The SurfMulti was based on the linear
alignment between the template and individual MRI. Volume-
based approaches (Asman and Landman, 2013;Wang et al., 2013)
rely also on the accuracy of the linear and non-linear registration.
To improve alignment, we introduced a non-linear registration
step that incorporates a novel hybrid cost function based on
surface and volume. Our algorithm furthermore included a
new multi-level feature weighting for shape averaging. We
compared MTL segmentation of HybridMulti to our previous
SurfMulti (Kim et al., 2012b) and two volume-based approaches
with/without local weighted averaging (Collins and Pruessner,
2010; Wang et al., 2013); evaluations also took into account the
influence of template library size on segmentation performance.

METHODS

HybridMulti includes a “template library construction” where
the algorithm learns image features using a training-set and an
“automatic segmentation” step where the algorithm segments
MTL structures for an individual test MRI (Figure 1). Training
set consists of MR images and manual labels of controls
and patients (Figure 1A). Labels are converted into surface
meshes using spherical harmonics and point distribution
model (SPHARM-PDM) that ensure shape-inherent point-wise
correspondences across subjects (Styner et al., 2004, 2006b).
Each surface is mapped onto its corresponding MRI. In the
beginning of the segmentation step, the pair of each template
image and its MTL surface are mapped on the test image.
As the test image does not have its own surface, the surface
features extracted on the test image are from the surface of
each template. By comparing the features extracted from each
template and those from the test image, Surface- with volume-
derived similarity measures for optimal template selection are
then computed to select an optimal subset na (Figure 1B-1).
Next, a non-linear registration that is driven by volume-based
intensities and features sampled on evolving template surfaces is
performed to improve alignment between each template in the
subset na and the individual MRI (Figure 1B-2). The motivation
of using this hybrid registration was to improve the boundary
fitting by weighting the features extracted using deformable
surfaces as well as to use a consistent similarity measurement
in all the steps. After choosing a smaller subset nb, templates
are then averaged using adaptive weighting combined with local
averaging, which creates the final segmentation (Figure 1B-3,4).
The test image’s features are updated during the series of the
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FIGURE 1 | HybridMulti automatic hippocampal segmentation steps. Flowchart of the proposed algorithm (in A, steps 2 and 4 are illustrated only for the HP). The

segmentation procedure consists mainly of two: template library construction and automated segmentation of mesiotemporal structures. (A) Template library

construction. (B) Automatic segmentation of MTL structures.

steps including template selection, non-linear registration and
weighted averaging as the image and the surface deform. In this
manner, the similarity of the deformable surface and the target
MTL border is expected to increase and the surface gets a similar
shape to the true MTL boundary.

Template Library Construction (Figure 1A)
Prior to the subsequent procedures, all MR images in the
training-set and the test-set are spatially normalized by
registering them intoMNI ICBM 152 space.We create a template
library that aggregates surface-based regional texture models of
HP, AM, and EC as a joint representation of the three MTL
structures.

Manually delineated labels of each MTL structure [linearly
registered to MNI ICBM-152 space (Collins et al., 1994)]
are converted into surface meshes and parameterized using
the spherical harmonics and uniform icosahedron-subdivision
model (SPHARM-PDM) that guarantees shape-inherent vertex-
wise correspondence across subjects (Styner et al., 2006a). MTL
surfaces are treated as one concatenated surface, SMTL = [SHP,
SAM, SEC].

Each surface SMTL is mapped to its corresponding MRI. At a
given surface vertex v, we define three spherical neighborhoods
of 3, 5, and 7mm radius. These spheres are subdivided into
an inner region (IR) and outer region (OR) with respect to
the surface boundary, where we compute the following texture
features (Kim et al., 2012b): i) Normalized intensity (NI): the ratio
between mean intensity and intensity standard deviation for each
of IR/OR to capture regional tissue homogeneity. We defined
NIIR, i = µIR, i / SDIR, i and NIOR, i = µOR, j / SDOR, i.; ii) Relative

intensity (RI): the ratio of mean intensity between IR and OR to
assess the contrast between IR and OR voxels. RI was defined
as RI i = 2× (µOR, i - µIR i) / (µOR, i + µIR, i); iii) Intensity
gradient (IG): the 1st derivative of intensity along x-, y-, and z-
directions to capture edge information was summarized into the

magnitude as IG=

√

g2x + g2y + g2z =

√

∂I
∂x +

∂I
∂y +

∂I
∂z . [x y z] is a

voxel location and I is an image.
These texture features comprises a set of “true” feature vectors

(3 normalized intensity + 3 relatively intensity + 3 gradients
= 9 features), Fv ,j extracted at v-th vertex on the jth (1 . . . j
. . . N) surface template. Previously we demonstrated that each
feature almost equally contributed to the segmentation accuracy
and observed the optimal result using all the features. Notably, we
did not use the shape features proposed in our previous surface-
based framework (Kim et al., 2012b), which was used to constrain
the shape deformation in the Automatic segmentation step. The
deformation in the current study is instead governed directly by
a volume-based non-linear registration (see section Boundary-
Weighted Non-linear Registration of Template Subset to Test
MRI).

Automatic Segmentation (Figure 1B)
Initial Template Subset Selection
From the template library, we first select a subset of candidates
that are most similar to the test image. To that end, we
compute the hybrid similarityOtotal that combined surface-based
(Osurface) and volume-based (Ovolume) similarity term between
each template j and the test MRI i using:

Ototal,ij = Ovolume,ij + wsurfaceOsurface,ij (1)
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wsurface is a weighting constant. The surface-based similarity
Osurface is defined as:

Osurface,ij =−

∑

v

∥

∥

∥
Fv,j−F̂v,ij

∥

∥

∥

√

1
N

∑N
k=1

(

Fv,k−Fv
)2
, Fv=

1

N

∑N

k=1
Fv,k(2)

Osurface is calculated across all surface vertices v. It represents
a normalized similarity between true features extracted from
the jth (1 . . . j . . . N) template (Fv ,j) and estimated features

extracted from the test MRI i (F̂v,i). Ovolume can be any similarity
function including the cross-correlation or the normalized
mutual information (NMI) that quantifies statistical intensity
distribution dependency of two images A and B (Studholme
et al., 1999). The computation of cross-correlation is generally
faster while the NMI is more robust in similarity of multi-modal
images compared to each other. For computational efficiency, we
compute Ovolume within a mask defined by dilating the current
template label three times. The number of selected templates
(na) was empirically determined to maximize Ototal (see section
Parameter Selection).

Boundary-Weighted Non-linear Registration of

Template Subset to Test MRI
Each template MRI is non-linearly registered to the test MRI
to increase shape similarity. To estimate the deformation field
from a template T to the test MRI I, a “conventional” non-linear
registration iteratively matches intensity features by maximizing
a volume-based similarity function Ovol, reg . Accordingly, the
deformation field d is estimated as:

Ed = argmax
Ed

Ovo, reg(T+
Ed, I)+ Osmooth (3)

Osmooth is a smoothness term to constrain the estimated
deformation. We employed a type of freeform deformation
models defined in Collins et al. (1995). To improve the
registration accuracy, we increase the weight of voxels on
and nearby the target boundary by incorporating a similarity
measure derived from the template surface evolving during the
registration with the original volume similarity. Let SMTL, T be
the true template surface on the original MRI and SMTL, S an
estimated template mapped onto the test MRI. We define SMTL,

S by deforming SMTL, T using the deformation field estimated at
the current iteration. A surface-based feature similarity measure
between SMTL, T and SMTL, S is defined as:

Osurf , reg = −

∑

v
(Fv,T − Fv,T)(Fv, Ŝ − Fv, Ŝ)

√

∑

v
(Fv,T − Fv,T)

2
√

∑

v
(Fv, Ŝ − Fv, Ŝ)

2
,

Fv = (µv,OR − µv, IR)/(µv,OR + µv, IR) (4)

where v is a vertex on surfaces S; Fv is the relative intensity
defined in 2.1. Therefore, Osurf , reg is a correlation coefficient
between feature Fv,T extracted on SMTL, T and feature Fv, Ŝ

extracted on SMTL, Ŝ. To estimate the deformation field, we
redefine the Equation (3) as:

Ed = argmax
Ed

Ohybrid, reg(T+
Ed, I)+ Osmooth,

Ohybrid, reg = Ovol, reg + wsurf , regOsurf , reg (5)

Ovol, reg is the correlation coefficient over a volume of interest
(here, a geometric union of all MTL template labels in the library,
subsequently dilated 5 times for more extensive spatial coverage)
as in Collins and Pruessner (2010). A larger weight wsurf , reg

moves SMTL, S more rapidly to areas presenting with feature
characteristics similar to those on the surface of the template
image. Finally, Equation (5) is optimized using a derivative-
free 3D Nelder-Mead Simplex approach (Lagarias et al., 1998)
as also known as the simplex method, is a commonly applied
approach. This method is applied to non-linear optimization
problems for which derivatives may not be known and is robust
against the local minima problem. This function has been used as
the standard optimization method in the non-linear registration
algorithm (Collins et al., 1995) we adopted in the current paper.

Subset Restriction and Global Weighed Averaging
The non-linear registration in the previous section (Boundary-
weighted Non-linear Registration of Template Subset to Test
MRI) is applied to decrease shape variability and to increase
similarity between the template-subset and test image. From the
initially selected na template-subset (na < N), we choose an even
smaller subset of the nb most similar templates (nb < na < N)
based on Equation (1), increasing computational efficiency in
subsequent steps. We determine nb empirically, which will be
evaluated in the section Parameter Optimization.

Optimal global weights for these nb templates are calculated
using the similarity function Equation (2) as in Kim et al. (2012b).
Let wS and wF be nb× 1 weight vectors for optimal surfaces
and features. We then define S as the average surface of the nb
template-subset as:

Sglobal=
∑nb

j=1
wF,jFv,j; wF=

[

wF,1,wF,2, . . . ,
]

;

∑

wF,j=1(6)

Analogously, we define the weighted mean and SD of features at
a given vertex vi by:

Fv =

nb
∑

j=1

wF,j Fv,j; wF =

[

wF,1, wF,2, . . . ,wF,nb

]

;

∑

wF,j = 1;(7)

σF,v =

√

√

√

√

nb
∑

j=1

wF,j

(

Fv,j − Fv
)2

(8)

Similarity from Equation (2) can be formulated for the template-
subset nb:

Osubset = −

∑

v

∥

∥

∥
Fv − F̂v, s

∥

∥

∥

σF,v
(9)
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F̂v, s is the estimated feature-set computed on the averaged
surface S mapped on the test image. In the above formulas,
weights are determined by maximizing the similarity between the
nb template-subset and test image.

w = [ws wF] = argw maxOsubset (10)

We initialized all components of wS and wF to 1/n. The cost
function Osubset is optimized using the multivariate derivative-
free Nelder-Mead approach (Lagarias et al., 1998).

Multi-Level Local Weighted Averaging
To incorporate a local weighting to Equations (5–9), the resulting
surface S in Equation (10) is resampled through icosahedron-
subdivision (Styner et al., 2006b), first at the coarsest level l = l0.
We determine weights at each sampling vertex, and interpolate
these weights to vertices at the next finer level l1. Let wS l be
a nb � m weight matrix: m is the number of vertices at level l.
We compute w’S l, (a nb � V vector) by interpolating wS, l to
all vertices v [1, 2, ...,V] of the original surface [[Inline Image]]
(V > m). For interpolation, we use the Fast Spherical Linear
Interpolation (Shoemake, 1985). We define the locally weighted
average surface as:

−

S local,l =

nb
∑

j= 1

v
∑

v= 1

w
′

sl,jv,
−

S jv;

nb
∑

j= 1

v
∑

v= 1

w
′

sl,jv = V (11)

The similarity function at the level l was defined as:

Osubset,l =−

∑

i

∥

∥

∥
Fvi−F̂vi ,Slocal

∥

∥

∥

σF
; wS l = argmaxw Osubset (12)

To achieve the final segmentation of all three MTL structures, we
optimized wS l using the Nelder-Mead method while increasing
subdivision level l=[l | l0, l1,..., lmax]. The algorithm stops
when Equation (11) stops increasing or l reaches preset lmax to
prevent from an extensive computation. The proposed multi-
level approach using different subdivisions is mainly for coarse-
to-fine spatial fitting and the use of this strategy avoids the
introduction of a constraint term preventing from local minima
while the surface shape gets finer. In the current study, we set
the coarsest level (l0 = 2) where 42 equally distributed vertices
are sampled; the finest level lmax is determined empirically (See
section MRI Acquisition).

EXPERIMENTS AND RESULTS

Experiments
Subjects
Our training-set included 40 healthy controls (18 men; mean ±

SD age = 33 ± 12 years) and 135 drug-resistant TLE patients
(61 men; mean ± SD age = 37 ± 11 years). TLE diagnosis and
lateralization of the side of the seizure focus into left TLE (n =

65) and right TLE (n= 70) were determined by a comprehensive
evaluation including video-EEG recordings and MRI. The Ethics
Committee of the Montreal Neurological Institute and Hospital
approved the study and written informed consent was obtained
from all participants.

MRI Acquisition
MR images were acquired on a 1.5 Tesla Phillips Gyroscan
using a T1-weighted FFE sequence (TR = 18ms; TE = 10ms;
NEX = 1; flip angle = 30◦; matrix size = 256 � 256; FOV
= 256mm; slice thickness = 1mm), yielding 1 mm-isotropic
voxels. Images underwent intensity non-uniformity correction
(Sled et al., 1998). Intensities were normalized and images were
linearly registered to the MNI ICBM-152 template (Collins et al.,
1994). MTL structures were manually segmented by an expert
using the protocol described in Bernasconi et al. (2003). Based
on z-score normalization with respect to volumes in controls, 81
(60%) patients showed hippocampal atrophy (i.e., a z-score below
−2) ipsilateral to the seizure focus.

We also acquired 3T T1-weighted images on Siemens Trio
Tim scanner using a 32-channel phased-array head coil. T1-
weighted images were acquired using 3DMPRAGE with 1mm
isotropic voxels (TR = 3,000ms, TE = 4.32ms, TI = 1,500ms,
flip angle = 7◦, matrix size = 336×384, FOV = 201 × 229mm).
This data was used to evaluate whether the algorithm consistently
selected the same or similar parameter values for different
dataset. The 3T dataset included 39 healthy controls and 84 drug-
resistant TLE patients who were further classified into left TLE (n
= 38) and right TLE (n= 46).

Evaluation Metrics
To quantify the accuracy of automated segmentations, we
computed the Dice similarity index:D = 2xv(M ∩ A)/(v(M) +
v(A)), where M/A are the voxels comprising manual/automated
labels; “M n A” are voxels in the intersection of M and A; v (·) is
the volume operator.

Parameter Optimization
Based on maximal Dice overlap index between automated and
manual labels, the following parameters were chosen empirically:
weight of surface-based similarity wsurface to select the optimal
subset as in Equation (1); weight of surface-based similaritywsurf ,

reg used in non-linear registration; size of initial template-subset
na; size of final template-subset nb; and finest subdivision lmax

in local weighting. We validated HybridMulti using a three-fold
cross-validation where we subdivided our data into 3 sets with
an almost equal sized sample (n = 58,58,59) and merged two
sets among them to create a training-set and used the remaining
set as a test-set while we balanced the proportion of controls
(∼25%) and patients (∼75%) per set. The optimal parameters
that resulted in most accurate segmentation were selected for
each training-set. We segmented the test-set based on their
corresponding training-set and the parameters. We repeated this
process three times while all the three sets were tested.

Performance at Each Segmentation Stage
Segmentation accuracy was evaluated at the following stages: i)
initial na template-subset selection; ii) non-linear registration; iii)
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FIGURE 2 | Parameter optimization. All parameters were selected resulting in the best accuracy. The accuracy was measured using mean Dice index based on the

three mesiotemporal structures and on three different test-sets (black, red, green) using a three-fold cross validation.

final nb template-subset selection; iv) global and local weighted
averaging. We compared accuracy at each stage to that of the
previous stage using paired t-tests.

Comparison With State-of-the-Art Multi-Template

Approaches
We compared Dice indices between HybridMulti, and SurfMulti
(Kim et al., 2012b), or a volume-based multitemplate approach
(VolMulti) based on non-weighted averaging (Collins and
Pruessner, 2010) or a volume-based approach (JointFusion)
based on local-weighted averaging (Wang et al., 2013) in controls
and each patient group using Student’s t-tests. The parameters
for each algorithm were selected empirically (VolMulti: size of
subset = 15; JointFusion: search area rs = 3 x 3 x 3, patch size rp
= 3 x 3 x 3, β = 2) which resulted in the best accuracy using a
leave-one-out approach.

Detection of Mesiotemporal Atrophy Related to the

Epileptic Focus
We assessed the ability of each automatic algorithm to detect
each structure’s atrophy in TLE groups relative to controls by
computing Cohen’s d ([mean volume controls—mean volume
TLE] / pooled SD) that measures the effect size of a between-
group difference, and calculated the significance of the observed
effect using t-tests.

Impact of Template Library Size on Segmentation

Accuracy
Keeping proportions of controls and patients constant, we
randomly selected 40 subjects as a test-set. We then created the
template library by selecting randomly from the rest of data, with
various sizes: n = 88 (1/2), n = 58 (1/3), n = 44 (1/4), and n =

35 (1/5) of its original size. We repeated this process 20 times
to avoid a possible bias. We evaluated automated segmentation
accuracy at these smaller template library sizes.

Significances of all statistical tests were adjusted for multiple
comparisons using Bonferroni-correction.

Results
Parameter Selection
The parameters resulting in the best segmentation accuracy were
selected at very similar values between the 3 test-sets when using a
three-fold cross validation. The proposed HybridMulti achieved
maximal accuracy with the following parameters: wsurface = 3.1,

wsurf,reg = 1.1, na = 17, and nb = 8 (average between the 3
test-sets; Figure 2). Use of the cross-correlation or NMI as the
similarity function did not make a difference in segmentation
accuracy. We thus used the cross-correlation as it was faster
to compute. We also found that the local weighting using the
finest subdivision lmax larger than 5 (producing 252 sampling
vertices) maintained the segmentation accuracy without a further
improvement. Thus, we chose lmax = 5 as a larger lmax increased
the computational time. JointFusion yielded best results with
the following parameters: beta = 0.5; rp = 3; rs = 3. SurfMulti
used n = 10 for the optimal subset whereas VolMulti used
n = 14. All the algorithms were tested on a same computing
environment (Linux workstation, 1 CPU, 2.30 Ghz, 8 GB RAM).
Average computation times per individual hemisphere were
20 or 25min for HybridMulti (Ovolume = cross-correlation
or NMI, respectively; step-wise: initial subset selection: 1min;
non-linear registration: 10 [cross-correlation] or 15 [NMI]
min; smaller subset selection: 0.5min; global weighting: 3min;
Local weighting: 5.5min); 15min VolMulti; 15min JointFusion;
13min SurfMulti.

When performing the same evaluation on 3T dataset, we
found the parameters yielding the maximal accuracy were
selected at very similar values: wsurface = 3.2, wsurf ,reg = 1.2, na
= 17, nb = 8, and lmax = 6.

Segmentation Accuracy in Different Steps
Accuracy of HybridMulti was improved gradually from the initial
selection step and the highest accuracy was achieved at the final
local weighted averaging (Figure 3).

Highest improvement was found at the boundary-weighted
non-linear registration step for all structures (mean Dice
= +4.8%, p < 0.0001). Moreover, the proposed non-linear
registration that included a surface-term outperformed the
original volume-based registration (Collins et al., 1995) (+2.5%, p
< 0.001). Inclusion of local weighted averaging also significantly
improved segmentation of EC (0.7%) and (HP: 0.3%) compared
to the global weighting (p < 0.05).

Performance Comparison Between Algorithms
For all MTL structures, HybridMulti consistently outperformed
SurfMulti and VolMulti in patients and controls (p < 0.001,
Table 1), which was equally significant for 1.5T and 3T data
(Table 2). HybridMulti also showed a superior accuracy in
TLE patients compared to JointFusion as higher Dice indices
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FIGURE 3 | Performance of each processing stage in HybridMulti. The

Accuracy is evaluated using Dice index.

TABLE 1 | Segmentation accuracy using a three-fold cross validation (% mean ±

SD of Dice similarity index).

VolMulti SurfMulti JointFusion HybridMulti

CONTROLS

HP 84.4 ± 4.1* 86.8 ± 2.7* 89.5 ± 1.5 89.7 ± 2.1

AM 83.8 ± 4.3* 86.3 ± 3.6* 88.4 ± 2.8 89.3 ± 2.5

EC 75.8 ± 6.8* 79.3 ± 4.6* 78.4 ± 4.3* 82.9 ± 3.7

IPSILATERAL

HP 80.3 ± 5.4* 86.1 ± 3.4* 87.3 ± 3.8* 88.7 ± 2.5

AM 83.2 ± 4.2* 85.2 ± 3.9* 88.0 ± 2.9 89.0 ± 2.6

EC 75.2 ± 8.1* 77.7 ± 5.2* 78.0 ± 6.5* 82.6 ± 3.8

CONTRALATERAL

HP 84.0 ± 4.4* 86.9 ± 3.1* 88.8 ± 3.0 89.4 ± 2.3

AM 83.8 ± 4.2* 85.8 ± 3.7* 88.3 ± 2.8* 89.2 ± 2.7

EC 76.2 ± 7.4* 78.8 ± 5.4* 78.6 ± 4.8* 82.7 ± 4.1

Ipsilateral/Contralateral refers to the epileptogenic hemisphere. Decreased performance

relative to HybridMulti - *: significant after Bonfferoni correction (p < 0.05/36 = 0.0013).

were found in HP and EC ipsilaterally and in AM and EC
contralaterally (p < 0.05). HybridMulti also segmented EC in
healthy controls more accurately than JointFusion (p < 0.001).
This pattern of difference between HybridMulti and JointFusion
was similar in 3T data (Table 2).

For the 3T data, even using a smaller dataset, we found that
all the methods resulted in accuracy comparable to the larger
1.5T dataset, with generally decreased SDs. A separate test that
segmented 3T dataset using the 1.5T training-set showed the
result where we found overall a slight drop down in the accuracy
and a larger SD (Controls: HP = 89.5 ± 2.4; AM = 89.0 ±

2.9; EC = 82.8 ± 4.4; TLE-ipsilateral: HP = 88.5 ± 2.8; AM
= 89.1 ± 3.2; EC = 82.5 ± 4.9; TLE-contralateral: HP = 89.2
± 2.6; AM = 89.1 ± 2.8; EC = 82.5 ± 5.2) compared to when
using a smaller-set of the same field strength training data. This

TABLE 2 | Segmentation accuracy for a smaller set of 3T data (controls: n = 39;

TLE: n = 84) using a three-fold cross validation (% mean ± SD of Dice similarity

index).

VolMulti SurfMulti JointFusion HybridMulti

CONTROLS

HP 85.6 ± 3.6* 87.3 ± 2.5* 89.7 ± 1.4 89.8 ± 1.8

AM 84.3 ± 3.9* 86.4 ± 3.1* 88.5 ± 2.4 89.4 ± 2.3

EC 77.3 ± 6.4* 80.2 ± 4.6* 79.1 ± 4.1* 83.1 ± 3.3

IPSILATERAL

HP 82.3 ± 5.4* 86.1 ± 2.9* 87.0 ± 3.6* 88.4 ± 2.3

AM 83.2 ± 4.2* 84.9 ± 3.8* 87.6 ± 2.7* 88.9 ± 2.4

EC 76.4 ± 8.2* 78.1 ± 4.9* 78.8 ± 6.4* 82.6 ± 3.5

CONTRALATERAL

HP 84.2 ± 4.3* 87.7 ± 2.7* 88.8 ± 3.0 89.5 ± 1.9

AM 84.5 ± 4.2* 85.9 ± 3.4* 88.3 ± 2.8* 89.3 ± 2.3

EC 77.2 ± 7.1* 78.7 ± 5.1* 79.7 ± 4.7* 82.4 ± 4.2

Ipsilateral/Contralateral refers to the epileptogenic hemisphere. Decreased performance

relative to HybridMulti - *: significant after Bonfferoni correction (p < 0.05/36 = 0.0013).

suggests that using a lower field training-set to segment a higher
field strength data results in slightly decreased accuracy due to a
different tissue-contrast.

Examples for 1.5T are shown in Figure 4 and those for 3T in
Supplementary Figure 1.

Ability of Automated Methods to Detect Atrophy

Related to the Epileptic Focus
Group-wise comparisons identified hippocampal atrophy
ipsilateral to the seizure focus in TLE patients irrespective of the
method, i.e., manual or automated (p < 0.05, Table 3). The effect
sizes of atrophy detected using algorithms were all large (Cohen’s
d > 0.8). HybridMulti and JointFusion, nevertheless, detected
an effect size of atrophy closest to manual volumetry (Cohen’s d:
manual= 1.67; HybridMulti= 1.57; JointFusion= 1.56).

Manual and HybridMulti segmentation also detected a large
effect size of ipsilateral EC atrophy, which was significant
compared to controls (t > 3.2, p < 0.05).

Impact of Template Library Size on Segmentation

Accuracy
Reducing the template library size from N (n = 175) to
N/5 (n = 35) showed that the accuracy of EC segmentation
declined fastest compared to HP and AM, consistently in all
algorithms tested. Size of the library had a lower influence
on segmentation accuracy of HybridMulti, and volume-
based approaches (JointFusion, VolMulti) than SurfMulti.
Indeed linear model analysis of an interaction term between
“segmentation method” and “size of the library” revealed a faster
decline in Dice index for SurfMulti than for the other three
methods (p < 0.001). HybridMulti and JointFusion, on the
other hand, resulted in a similar accuracy when reducing the
template library size from N to N/4 across all MTL structures
(mean Dice decrease < 1%, p < 0.1, Figure 5). In HP and EC,
reducing the library size fromN/4 to N/5 influenced the accuracy
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FIGURE 4 | Segmentation of mesiotemporal lobe structures in a patient with atrophy. Shown are overlaps between two best algorithms (HybridMulti,

JointFusion—green) and manual label (red). (A) MRI (B) Segmentations overlaid on MRI and in 3D rendering.

TABLE 3 | Group differences between patients and controls.

Manual HybridMulti JointFusion SurfMulti Volmulti

HP

Ipsilateral −2.29 ± 1.85 (1.67) −2.09 ± 1.97 (1.58) −2.13 ± 2.37 (1.56) −1.69 ± 1.56 (1.39) −1.32 ± 1.62 (1.32)

Contralateral −0.51 ± 1.70 (0.33) −0.37 ± 1.53 (0.24) −0.28 ± 1.78

(0.19)

−0.08 ± 1.34 (0.05) −0.05 ± 1.45 (0.03)

AM

Ipsilateral −0.10 ± 1.45 (0.10) −0.11 ± 1.41 (0.11) 0.39 ± 1.43

(−0.18)

0.05 ± 1.26

(−0.01)

0.35 ± 1.84

(−0.13)

Contralateral 0.20 ± 1.32

(−0.15)

0.27 ± 1.25

(−0.16)

0.45 ± 1.38

(−0.22)

0.15 ± 1.11

(−0.08)

−0.05 ± 1.71

(−0.02)

EC

Ipsilateral −1.49 ± 1.19 (1.11) −0.98 ± 0.92 (0.82) −0.52 ± 0.94 (0.45) −0.65 ± 1.22 (0.46) −0.35 ± 2.06 (0.18)

Contralateral −0.69 ± 1.41 (0.52) −0.37 ± 0.91 (0.29) −0.18 ± 1.02

(0.16)

−0.15 ± 1.62

(0.09)

−0.05 ± 1.91 (0.03)

Mesiotemporal volume in mean z-scores ± SD and effect sizes for atrophy shown in brackets (Cohen’s d index; 0.2 indicates a small, 0.5 medium, and >0.8 large effect); group-wise

significances in volumes (bold) are adjusted for multiple comparisons using Bonferroni correction.

more significantly for HybridMulti than JointFusion (p < 0.01).
However, the accuracy of HybridMulti was higher than that of
JointFusion in all structures (mean Dice difference—HP: 0.3%;
AM: 0.1%; E: 1%).

DISCUSSION AND CONCLUSION

We propose HybridMulti, an algorithm that combines surface-
and volume-based similarity to automatically segment key
regions in the mesiotemporal lobe (i.e., HP, AM, and EC).
In controls and TLE patients alike, segmentation accuracy
was excellent, with Dice indices above 88% for HP and
AM and above 82% for EC. In particular, the proposed

method outperformed previous multi-template approaches in
pathological MTL structures, as its overlap to manual delineation
and its sensitivity to detect atrophy were superior. Reducing
template library showed that our method is reliable in even case
of a small size of training-set.

Our algorithm was compared to three recently proposed
multi-template approaches: volume-based approaches—
JointFusion (Wang et al., 2013), VolMulti (Collins and
Pruessner, 2010), and a purely surface-based framework—
SurfMulti (Kim et al., 2012b). Improved segmentation accuracy
of HybridMulti relative to these algorithms likely results from
modeling both volume- and surface-derived features to select
the optimal template subset and to improve the alignment
between these templates and the test MRI prior to surface-shape
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FIGURE 5 | Impact of template library size on automated segmentations. Reducing the template library size from N (n = 175) to N/5 (n = 35) showed that the

accuracy of EC segmentation declined fastest compared to HP and AM, consistently in all algorithms tested. Size of the library had a lower influence on segmentation

accuracy of HybridMulti, and volume-based approaches (JointFusion, VolMulti) than SurfMulti.

averaging. Noticeably, our approach did not only sequentially
apply a volumetric non-linear registration prior to the surface-
based segmentation; instead, surface features were integrated
with volume data-term into a unified cost function governing
the non-linear registration, an approach yielding additional
increases in accuracy.

In addition to absolute gain in segmentation accuracy,
the proposed HybridMulti algorithm demonstrated robust
segmentation for our two separate data-sets when the size of the
template library was reduced, an important challenge for purely
surface-based approaches as shown in our analysis. Indeed,
volume-based approaches were inclined to maintain its original
accuracy at the largest template library when reducing the size of
the library. At the smallest size that was tested in our study (n
= 35), the accuracy of JointFusion and HybridMulti was almost
equal in all MTL structures. This informs us to an interesting
aspect of feature modeling where local features modeled nearby
the structure’s boundary may be individually very specific and
become powerful with construction of a large training-set. On
the other hand, features collected within a “relatively large”
volume of interest may include redundant information in a large
database but may provide supplementary characteristics of the
target structure in case of using a limited size of template library.

In our hybrid approach, tuning of the weight between surface-
and volume-features according to the size of a given template
library can possibly improve the segmentation accuracy.

Our EC segmentation in the current work (>82%)
outperformed a previous study that reported a Dice index
of 73% (Hu et al., 2014), and another study that segmented the
whole parahippocampal gyrus with a similar degree of accuracy
(Heckemann et al., 2006). The performance of HybridMulti
was also superior to JointFusion and SurfMulti in the current
evaluation. Nevertheless, our EC segmentation accuracy was
still lower than that of HP and AM, which approached 90%. It
is likely that intensity-based segmentation is challenged by the
highly variable morphology of the collateral sulcus that defines
the border of EC. Also, the posterior end of EC is defined with an
external anatomical landmark. Use of a smaller size of template
library also showed a faster decline of accuracy in EC than
other MTL structures. In the literature (Bernasconi et al., 2001;
Pruessner et al., 2002), multiple landmarks were borrowed to
address for lack of intensity contrast when defining the border
of EC. For example, the medial and lateral boundaries, which
meet the same GM structures such as the subiculum of the
hippocampus and the collateral sulcus, cannot be defined by
the tissue contrast but by landmarks such as a location with a
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high angular shape. A human expert may intuitively identify
such landmarks whereas the features used in our algorithm
do not necessarily take into account them. The suboptimal
modeling of these landmarks in our approach is likely the
source of inaccuracy in segmentation. This faster decline in
accuracy was consistently observed in all algorithms tested.
Future works might, therefore, benefit from the incorporation
of sulco-gyral shape patterns such as sulcal depth, curvature or
spatial relationship with surrounding structures other than HP
and AM.

A new multi-scale weighting strategy improved EC and
HP segmentation. In particular, the improvement of EC
segmentation was higher. This was in line with a previous
finding that such a technique mainly improve the segmentation
of structures presenting highly variable morphology
(Artaechevarria et al., 2009).

The proposed algorithm and JointFusion detected largest
effect sizes of atrophy in HP ipsilateral to the epileptic focus
and resulted in the most sensitivity to detect hippocampal
atrophy among algorithms. Only HybridMulti identified
EC atrophy among algorithm even if the accuracy yet is
to reach human expert’s exquisiteness. Our results suggest
that the proposed approach may have the potential for
clinical utility in the presurgical evaluation of temporal lobe
epilepsy.

Varying the parameters for HybridMulti (i.e., the
weights for surface-term in the similarity measure and
the registration, and the number of templates in the
subset) yielded different segmentation accuracy. We
determined these parameters in empirical fashion for optimal
segmentation performance. We observed that almost same
parameter setting were determined for achievement of the
best results on both 1.5T and 3T. In a further analysis,
we found that these parameters did not differ between
segmentation of the three MTL structures. This suggests
that the parameters optimized in our study, albeit done
empirically, may be generally applicable to segmentation of
other datasets or other brain structures. A more thorough
analysis is demanded to establish the generalization of the
parameters.

For 3T dataset, all the methods resulted in accuracy
comparable to the larger 1.5T dataset, with generally
decreased SDs. This likely explains that reliable
segmentation can be achieved on 3T images where the
higher tissue contrast and clearer structural boundaries
seen.

As the initial selection was not optimal and we did not
like to miss templates which can be potentially useful, we
defined a relatively lager subset whereas we set a smaller sample
in the subsequent selection with a deformable registration.
Our empirical selection of parameters indeed found better
segmentation performance was obtained using a larger subset
in the initial selection (best performance at n = 17) and
a smaller set in the latter selection (n = 8). The vertex-
wise correspondence between individual surface templates
defined through SPHARM-PDM ensures the same topology
across templates. When we averaged the template shapes, we

performed a vertex-wise averaging method that averages the
location of a given vertex of the correspondence between
templates. The integrity of the topology was not corrupted
after this averaging as the same observation is found in a
similar process of shape averaging such as in construction of
cortical surface template (Styner et al., 2004; Lyttelton et al.,
2007).

To determine the number of templates with the best
performance, it would be ideal if we observed a plateau
occurring after the continuous hiking in Dice index value from
the minimum number of templates to test with (Figure 5).
However, no plateau with an on-going climbing pattern was
found in EC, which make difficult to determine when the best
performance takes place. The best performance might have
been identified if we tested with more templates. This is our
limitation as collecting a sufficiently large dataset is often a long-
term procedure in the inpatient epilepsy monitoring unit. Thus,
it was unrealistic for us to include more data in the study.
Alternatively, the very slow increase in Dice index observed
at the test with 90+ templates likely explains the increase of
the templates would not gain a very significant improvement
of the current method. There have been studies dealing
with the size of the template library using statistical models
(Awate et al., 2012; Awate and Whitaker, 2014).

We did not explore the possible selection of too many similar
templates in the subset. A previous study (Wang et al., 2013)
investigated this using a joint label fusion technique that address
for the covariance of the image appearance between any pair of
two templates in the training-set. Generalization of the proposed
method across different subcortical structures (e.g., ventricles,
striatum, or thalamic nucleus) would be also interesting to enable
their morphometry analysis, in particular with regard to size,
shape, and variability. We are also working on to extend our
current framework to segmentation of the subregions of MTL
structures such as hippocampal subfields. The deep learning
algorithm using convolutional neural networks (CNN) has been
more widely applied in recent works for the medical image
segmentation (Kamnitsas et al., 2017; Bao and Chung, 2018; Dolz
et al., 2018). Augmentation of our relatively large set of our
MRI data and manual annotations could meet the requirement
for the training of the CNNs, which can be a proper future
extension of our work. We are currently taking steps to make
our tools available, including obtaining proper institutional ethics
approval, with the plan to ultimately upload the software and
training set to a public domain, such as the Neuroimaging
Informatics Tools and Resources Clearinghouse (http://www.
nitrc.org/).
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Epilepsy is among the most common serious disabling disorders of the brain, and

the global burden of epilepsy exerts a tremendous cost to society. Most people with

epilepsy have acquired forms of the disorder, and the development of antiepileptogenic

interventions could potentially prevent or cure epilepsy in many of them. However, the

discovery of potential antiepileptogenic treatments and clinical validation would require

a means to identify populations of patients at very high risk for epilepsy after a potential

epileptogenic insult, to know when to treat and to document prevention or cure. A

fundamental challenge in discovering biomarkers of epileptogenesis is that this process

is likely multifactorial and crosses multiple modalities. Investigators must have access

to a large number of high quality, well-curated data points and study subjects for

biomarker signals to be detectable above the noise inherent in complex phenomena,

such as epileptogenesis, traumatic brain injury (TBI), and conditions of data collection.

Additionally, data generating and collecting sites are spread worldwide among different

laboratories, clinical sites, heterogeneous data types, formats, and across multi-center

preclinical trials. Before the data can even be analyzed, these data must be standardized.

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a multi-

center project with the overarching goal that epileptogenesis after TBI can be prevented

with specific treatments. The identification of relevant biomarkers and performance of

rigorous preclinical trials will permit the future design and performance of economically

feasible full-scale clinical trials of antiepileptogenic therapies. We have been analyzing

human data collected from UCLA and rat data collected from the University of

Eastern Finland, both centers collecting data for EpiBioS4Rx, to identify biomarkers of

epileptogenesis. Big data techniques and rigorous analysis are brought to longitudinal

data collected from humans and an animal model of TBI, epilepsy, and their interaction.
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The prolonged continuous data streams of intracranial, cortical surface, and scalp EEG

from humans and an animal model of epilepsy span months. By applying our innovative

mathematical tools via supervised and unsupervised learning methods, we are able

to subject a robust dataset to recently pioneered data analysis tools and visualize

multivariable interactions with novel graphical methods.

Keywords: MRI, EEG, epilepsy, epileptogenesis, informatics, neuroimaging, TBI, biomarker

INTRODUCTION

The goal of the Epilepsy Bioinformatics Study for
Antiepileptogenic Therapy (EpiBioS4Rx) is to identify
relevant biomarkers of epileptogenesis after traumatic brain
injury (TBI) and perform rigorous preclinical trials that
permit the future design and performance of economically
feasible full-scale clinical trials of antiepileptogenic therapies.
Discovering these biomarkers of epileptogenesis is challenging,
because this process is multifactorial and involves multiple
modalities. We have been collecting and analyzing multimodal
data, including neuroimaging, electrophysiology, and
molecular/serological/tissue. An informatics infrastructure
has been created to facilitate analysis and collaboration among
scientists from various centers around the world (Duncan et al.,
2018b). We have been developing innovative analytic tools to
be shared with the broader epilepsy research community so
that others may use our tools in addition to their own tools
to advance research in this field. By working on this difficult
problem collaboratively among researchers who possess different
areas of expertise, we expect to identify several biomarkers
of post-traumatic epileptogenesis from the multimodal data
collected as part of EpiBioS4Rx and validate those biomarkers.

Substantial research has been devoted to investigate imaging
biomarkers of epileptogenesis following TBI in an effort to
better understand, prevent, and potentially treat post-traumatic
epilepsy (PTE). Although incidence of PTE has been correlated
with various factors, these results have been gathered and
interpreted independently and are often drawn from models
of human temporal lobe epilepsy, animal models of induced
TBI via fluid percussion injury (FPI), and pilocarpine or
kainic acid-induced status epilepticus. There has been limited
investigation directly comparing these models to human cohort
studies of epileptogenesis following trauma, which is one
area in which our work extends on existing research on
PTE. Also, few multimodality studies have been conducted to
investigate interrelations among identified potential biomarkers,
which could assist in establishing a panel of non-invasive
epileptogenic biomarkers that consistently precedes and predicts
the development of PTE. EpiBioS4Rx is collecting large-scale
imaging data on TBI patients with subsequent seizure activity as
well as imaging data on a rodent model of TBI, allowing for a
multimodality and multi-species investigation.

Several reviews have summarized electrophysiological

(Worrell, 2011; Staba et al., 2014) and imaging (Mishra et al.,

2011; van Vliet et al., 2017; Pitkänen et al., 2018) biomarkers

identified in rat models and human patients in recent years.

Notably, high frequency oscillations (HFOs), standard frequency
between 80 and 600Hz (Staba et al., 2014), are consistently
produced by epileptic neural tissues (Bragin Engel et al., 1999;
Jacobs et al., 2012; Zijlmans et al., 2012) and have also been
reported in rats after administration of lateral FPI within or
adjacent to the injured tissue (Reid et al., 2016). In the same
FPI model, pathologic HFOs and repetitive HFOs and spikes
(rHFOSs) occurred within 2 weeks of insult only in rats that
would later develop seizures (Reid et al., 2016). However,
currently there are no validated electrophysiological biomarkers
of post-traumatic epileptogenesis (Perucca et al., 2018), so one of
our goals is to identify electrophysiological biomarkers that can
be validated. As many models of PTE involve continuous EEG
recordings, automated seizure detection programs have been
investigated to ease data analysis. Approximate entropy (ApEn),
in conjunction with neural networks, has been introduced as an
analytic tool to discriminate normal and ictal or pre-ictal EEG
from epileptic patients and healthy controls (Liang et al., 2010),
refining and enhancing seizure detection, which can ultimately
expedite the EEG analysis workflow.

Magnetic Resonance Imaging (MRI) and Diffusion Tensor
Imaging (DTI) have allowed for non-invasive analysis of
molecular and structural alterations of white matter and
other neural structures at high spatial resolution. MRI may
be used to identify specific abnormalities associated with
increased susceptibility to epileptogenesis, including focal lesions
(D’Alessandro et al., 1982; Dalessandro et al., 1988), intracerebral
hemorrhage (D’Alessandro et al., 1982), biparietal contusions
(Englander et al., 2003) and dural penetration from bone or
metal fragments (Englander et al., 2003). In a lateral FPI model,
diffusion tensor trace alterations in the hippocampus acquired 3
hours after injury were found to predict seizure susceptibility and
number of spikes 12 months later (Kharatishvili et al., 2007). A
follow up study confirmed that Dav (one third of the trace of the
diffusion tensor that is an orientation-independent measure of
water diffusion) at 23 days and 2 months and T1p (a longitudinal
relaxation in the rotating frame, which can be assumed to be
similar to T1 relaxation in the very low magnetic field, thus
probing interaction between water and macromolecules in the
tissue) at 9 days post insult could predict increased seizure
susceptibility following lateral FPI (Immonen et al., 2013).

Axonal damage, visualized with DTI, is seen across all
severities of TBI, although irreversible myelin damage, which
is correlated with worse cognitive prognoses, is more typically
caused by moderate and severe TBI (Kraus et al., 2007).
Decreased fractional anisotropy (FA) has been repeatedly found
in TBI patients compared with healthy controls (Bendlin et al.,

Frontiers in Neuroinformatics | www.frontiersin.org December 2018 | Volume 12 | Article 86179

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Duncan et al. Analytic Tools for Post-traumatic Epileptogenesis

2008; Sidaros et al., 2008; Irimia et al., 2014), which is especially
relevant considering FA ratios have been found to be significantly
reduced in TBI patients who developed late post-traumatic
seizures compared with non-epileptic TBI patients (Gupta et al.,
2005), and along temporal lobe white matter in benign mesial
TLE (Labate et al., 2015). Additionally, connectomic studies
and tract-based spatial statistics may assist in the understanding
of how white matter degeneration patterns lead to neural and
cognitive impairment (Irimia et al., 2014), so they may also
support a greater understanding in how degeneration patterns
specifically lead to PTE. We plan to use our pipelines for
connectomics to understand the development of PTE as well as
relate these imaging data to the electrophysiological data.

MRI also serves as a useful tool for morphometric analysis.
TBI varies significantly in the severity of insult and subsequent
lesion(s), so precise lesion quantification is necessary to compare
outcomes following stratified severity of injury. Voxel-based
morphometry analysis has indicated reduced hippocampal and
thalamic volumes in TLE patients (Labate et al., 2008). In a lateral
FPI model, Shultz et al. found that hippocampal surface shape
analysis (conducted via MRI-based large-deformation high-
dimensional mapping) at 1 week post-injury could be predictive
of PTE. Rats that later developed PTE showed increased lateral
regions while non-epileptic rats showed decreased medial and
ventral regions (Shultz et al., 2013). We have developed analysis
pipelines to analyze both animal and human imaging data to
relate these and explore the translational components of the
animal data.

Several supervised and unsupervised models of lesion
identification and quantification from T1, T2, and FLAIR images
acquired fromMRI have been introduced in an effort to automate
analysis of multiple sclerosis (Wetter et al., 2016), tumor (Guo
et al., 2015), chronic stroke (Pustina et al., 2016; Guo et al.,
2018), and TBI (Irimia et al., 2011). Automated quantification of
TBI lesions by normalizing and standardizing against standard
templates is challenging given that brain morphology is often
distorted due to insult (Kim et al., 2008), so our work aims to
quantify TBI lesions automatically while maintaining accuracy.

Transforming Research and Clinical Knowledge in TBI
(TRACK-TBI) was a study performed at the University of
California, San Francisco (main site) that proved the feasibility
of large-scale, multi-site analysis of imaging, blood, and clinical
data on nearly 3,000 TBI patients. Patient data gathered through
TRACK-TBI have been used to examine the relationship between
CT and MRI findings that are commonly assessed in emergency
trauma facilities and DTI, both of which have been reported as
potential biomarkers of epileptogenesis following TBI. In mild
TBI cases, FA is significantly reduced in CT/MRI-positive (acute
intracranial lesion, including epidural or subdural hematoma,
subarachnoid hemorrhage, contusion, axonal injury, or skull
fracture) and not reduced in CT/MRI-negative patients (Yuh
et al., 2014). DTI can detect alterations in microstructural white
matter with greater subtlety than MRI, and FA ratios have been
found to be significantly reduced in TBI patients who developed
late PTS compared with non-epileptic TBI patients (Gupta et al.,
2005). In another study, mild TBI patients with CT/MRI-positive
(defined as having any evidence of lesion) and CT/MRI-negative

(no lesions) showed distinct alterations of functional connectivity
in resting state fMRI analysis within days of injury that were
predictive of cognitive outcomes 6 months later (Palacios et al.,
2017).

The EpiBioS4Rx informatics infrastructure contains a
thorough and harmonized multimodal database, including
imaging and EEG data, which enables researchers to correlate
results from imaging analysis to longitudinal epileptiform
activity (Duncan et al., 2018b) from both humans and an
animal model. Recently, analysis of EpiBioS4Rx data found that
early post-traumatic seizures and subsequent development of
PTE following severe TBI are strongly correlated with lesions
localized to the temporal lobe (i.e., hemorrhagic temporal lobe
injury) but not general lesion severity (as measured by the
Glasgow Coma Scale) (Tubi et al., 2018).

DATA

The total amount of data that has been and will be collected in
the ongoing EpiBioS4Rx includes EEG and video-EEG (video
tape recording during EEG monitoring) from cohorts of animals
after TBI (using FPI) recorded continuously for 6 months, in
addition to prolonged continuous intensive care unit (ICU)
EEG recordings from 300 humans, including depth EEG from
100 patients, and intermittent sampling of brain images, blood,
and tissue data over 2 years. The collected rat MRI consist
of structural and diffusion weighted measures. Sprague-Dawley
control rats and TBI rats (left lateral fluid percussion injury)
were used with data collected using a Bruker BioSpin MRI
GmbH using a dtiEpiT SpinEcho sequence (Duncan et al.,
2018b). Patients admitted into the ICU after an acute moderate-
severe TBI involving a frontal and/or temporal lobe hemorrhagic
contusion are screened for the study. Although a number of sites
are collecting data for EpiBioS4Rx, we focus our preliminary
analysis on human data from the University of California, Los
Angeles (UCLA) and animal data from the University of Eastern
Finland, Kuopio.

ANALYSIS METHODS

We present a collection of analytic tools for this multimodal
dataset and present examples of some preliminary work on
sample data from EpiBioS4Rx as well as future directions for this
analysis.

Imaging Methods
We have developed a multimodal image analysis workflow
that includes lesion mapping and tractography reconstruction
of white matter pathways. Additionally, we have analyzed
paravascular spaces (PVS) in the MRI data to aid in our search
for post-traumatic epileptogenesis biomarkers.

Lesion Mapping
Lesions were mapped from fluid-attenuated inversion recovery
(FLAIR) images with an automated segmentation pipeline using
FMRIB Software Library (FSL) tools (Woolrich et al., 2009;
Jenkinson et al., 2012; Wetter et al., 2016). FLAIR suppresses
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the signal produced by cerebrospinal fluid (CSF) and is sensitive
to contrast for mapping lesions in TBI (Gentry et al., 1988;
Bigler, 2001; Narayana, 2017). The pipeline begins with skull
stripping, smoothing, and intensity normalization. Then lesions
are separated from brain tissue and CSF using a histogram-
based thresholding algorithm. Finally, lesions not overlapping
with white matter (WM) are discarded by registering aWMmask
from a standard space into the subject space (FSL-FNIRT is used
for the registration). An example is shown in Figure 1.

In order to separate periventricularWMhyperintensities from
the rest of the WM lesions, we performed a secondary analysis
on the T1-weighted (T1w) images. Structural T1w images are
less sensitive to periventricular lesions due to CSF partial volume
effect, yet they can visualize WM lesions across the brain. The
T1w images were analyzed through a similar pipeline as the
FLAIR images, and the lesions were mapped accordingly.

Tractography
We have developed diffusion MR image analysis pipelines for
quantitative analysis of WM microstructure and connectivity
across both rodent and human datasets. Tractography models
were created from the diffusion-weightedMRI (dMRI) data using
FSL (Jenkinson et al., 2012) and the Quantitative Imaging Toolkit
(QIT) (Cabeen et al., 2018). The dMRIs were first skull stripped
using FSL Brain Extraction Tool (BET) and then corrected for
motion and eddy current artifacts using FSL FMRIB’s Linear
Image Registration Tool (FLIRT). For this, each diffusion scan
was affinely registered to the baseline scan using the mutual
information metric, and the associated gradient orientations
were rotated to account for the registration. Diffusion tensor
models were then estimated from the dMRI using QIT, and the
following tensor parameters were extracted: fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD), and radial
diffusivity (RD). A study specific template was created using
Diffusion Tensor Imaging ToolKit (DTI-TK) (Zhang et al.,
2006), and the deformation field for each scan was used to
register the data to the Illinois Institute of Technology (IIT)
brain template (Zhang et al., 2011) to subject native space.
Tractography models of our bundles of interest, including
uncinate fasciculus, anterior thalamic radiation, corticospinal
tract, inferior longitudinal fasciculus, superior longitudinal
fasciculus, fornix, arcuate fasciculus, and five subdivisions of

the corpus callosum were created using a framework for
deterministic streamline integration (Cabeen et al., 2016). For
each bundle, seed, inclusion, and exclusion masks were manually
drawn in the IIT template (Wakana et al., 2007) in reference
to a white matter atlas (Catani and Thiebaut de Schotten,
2008). The template masks were then resampled in each subject’s
native space image to constrain tractography. Other tractography
parameters included a step size of 1.0mm, a maximum angle
of 45◦C, and a minimum FA of 0.15–25,000 seeds per bundle.
Bundle-specific metrics were then computed, including bundle
volume, track density, track length, and averages of DTI metrics
listed above. In addition to tractography analysis, the human
data were also analyzed using voxel-based analysis to obtain
diffusion MRI metrics in anatomical regions derived from the
Johns Hopkins white matter atlas (Mori et al., 2008; Cabeen et al.,
2017). This method applies to human data (Figure 2) as well as
rodent data (Figures 3, 4). We found that the data allowed multi-
fiber modeling to resolve partial volume effects and crossing fiber
configurations.

Paravascular Spaces
Many studies have shown that paravascular spaces (PVSs) may
play an important role in neuroinflammation: a strong post-
traumatic inflammatory reaction was documented in PVSs of
contused human brain tissue, suggesting that PVSs’ impairment
could explain the altered macrophage activity resulting in seizure
onset (Holmin et al., 1998; Bechmann et al., 2001; Corraliza, 2014;
Abiega et al., 2016). Also structural changes in PVSs may affect
their surrounding white matter networks (Taoka et al., 2017). We
investigate the role of paravascular spaces in TBI as a potential
biomarker for post-traumatic epilepsy.

Study population
We present some analysis performed on human data, focusing
on PVSs’ role as a potential biomarker of epileptogenesis after
TBI; we analyzed clinical data and MRI scans in a sample of 15
patients (12 males, 3 females, age range: 7–68 years old). MRI
scans were performed 14 days after trauma using a 3T MRI
scanner. PVSs were analyzed on 3D T2 Turbo Spin Echo (TSE)
sequences. Six healthy subjects (3 males, 3 females, age range: 12–
62 years old) were used as controls. Demographic characteristics
of TBI patients and healthy subjects are summarized in Table 1.

FIGURE 1 | A lesion map from FLAIR for one patient; the lesions are depicted in yellow.
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PVS analysis
PVSs were defined as tubular-linear or round-ovoid structures
with a CSF-like signal intensity (hyperintense on T2-weighted
images) and a diameter of <3mm. PVSs surround perforating
vessels in the brain, and the largest number of PVSs is usually

FIGURE 2 | Visualizations of diffusion MRI data from a single human subject.

The image shows an axial brain slice rendered with glyphs depicting the

underlying multi-compartment diffusion models. A tractography reconstruction

of the forceps minor is shown alongside a brain lesion. Through 3D modeling

and visualization, we are able to show the impact of the brain trauma on

structural connectivity of the frontal lobe.

found in the basal ganglia and centrum semiovale. The typical
shape, dimensions, and location were used to exclude other
possible differential diagnoses (e.g., lacunar infarcts). In this
study, we omitted PVS with a diameter of <0.5mm, because
their identification and measurement were not sufficiently
reliable.

Image processing on the 3D T2 TSE images was performed
in OsiriX Image Viewing Software (Ratib and Rosset, 2006) by
a reader blinded to subjects’ clinical data. In each subject, we
manually marked and counted all PVSs with a diameter between
0.5 and 3mm. The caliber of PVS was measured with the Ruler
Tool in OsiriX. Both the total number of PVSs and the caliber of
each PVS were systematically recorded. We categorized PVS by
location in the cerebral hemisphere (right and left) to assess the
distribution of PVS in the brain. Because of the possible inter-
individual variability in the total number of PVSs, we calculated
2 ratios (HRright and HRleft) between each hemisphere’s amount
of PVS (PVSright and PVSleft , respectively) and the sum of PVS in
the whole brain (PVStot) for each subject:

Two possible outcomes resulted from these ratios:

• Two equivalent values (HRright =HRleft = 0.5) if no difference
in the number of PVSs was found between the right and left
hemispheres;

• Two different values (HRright 6= HRleft) if the number of
PVSs was not the same in the 2 hemispheres. In this situation,
we defined HRminor and HRmajor to be the ratios obtained
from the hemisphere with less and more PVS compared to the
contralateral hemisphere, respectively. Consequently:

0.0 < HRminor < 0.5 and 0.5 > HRmajor > 1 (1)

Then we calculated the difference between HRminor and HRmajor

as an asymmetry index (AI):

FIGURE 3 | Visualizations of diffusion MRI from the rodent data. The images show diffusion models estimated in each voxel. (A) shows standard diffusion tensor

modeling, and (B) shows multi-compartment modeling that resolves complex anatomical features, such as crossing fibers.

Frontiers in Neuroinformatics | www.frontiersin.org December 2018 | Volume 12 | Article 86182

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Duncan et al. Analytic Tools for Post-traumatic Epileptogenesis

FIGURE 4 | Visualizations showing tractography-based modeling of rodent imaging data. Multi-fiber tractography was used to create geometric models depicting the

trajectory of white matter fiber bundles. The left panel shows results from whole brain tractography, and the right panel shows how whole brain results can be

decomposed into specific fiber bundles using virtual dissection.

TABLE 1 | Demographic characteristics of TBI patients and healthy subjects.

Characteristics TBI patients Healthy controls

Subjects (#) Total 15 6

Male 12 3

Female 3 3

Age at scan (years)

[Mean ± standard

deviation]

Total 34 ± 23 30 ± 17

Male 35 ± 22 23 ± 12

Female 30 ± 29 37 ± 22

AI = HRmajor−HRminor (2)

with 0≤AI≤1
The higher the AI value was, the more asymmetric the

distribution of PVS in the brain was. As a physiological right-
left asymmetry in the brain has been reported in previous studies
(Asgari et al., 2016; Feldman et al., 2018), and an unbalanced
distribution of PVS may be considered normal, we used a
threshold of AI ≥ 0.2 to define a significantly high asymmetry
in PVS distribution. This value means that one hemisphere has
more than 60% of the total number of PVSs.

Wemeasured the caliber of each marked PVS, and the average
of PVS caliber in the right and left hemispheres (Cright and Cleft ,
respectively) in all subjects. Then we calculated the difference
(|Cdiff |) between the mean PVS caliber in the two hemispheres:

|Cdiff| = Cright− Cleft (3)

Statistical analysis
A Student’s t-test was used to determine if there was a difference
in the total number and the mean distribution of PVSs between
the two cerebral hemispheres in the healthy controls and TBI
group. A difference of p < 0.05 was considered statistically
significant.

RESULTS

Total Number of PVSs
We evaluated the total number of PVSs in TBI patients and
healthy controls: the average was 77 ± 48 in the first group, and
80± 15 in the latter. No significant difference was found between
the two groups (p= 0.40).

In our population, we found a weak positive correlation
between age and the number of PVSs (Pearson’s ρ = 0.28, p =

0.11), as shown in Figure 5.

Asymmetry Analysis
Both TBI patients and healthy controls presented a different
number of PVSs in the two cerebral hemispheres. The HR range
was 0.29–0.71 in TBI patients and 0.43–0.54 in healthy controls;
in the patient group, the mean HRminor and HRmajor were 0.42
and 0.58, respectively, while in the control group, the values were
0.48 and 0.52, respectively (Figure 6). The degree of asymmetry
was significantly different in the two groups (p = 0.001): the
average AI was 0.17 in TBI patients and 0.04 in control subjects.

In the TBI group, we found six patients with a highly
asymmetric distribution of PVS (Figure 7) in the two cerebral
hemispheres (AI≥ 0.2). Five of these patients (83%) experienced
at least one seizure within the first six months after TBI (in four
cases, the seizure happened within the first month); in three
cases, Lateralized Periodic Discharges (LPDs) were detected in
the EEG, and in all cases, the affected hemisphere matched with
the hemisphere where less PVSs were identified. Furthermore,
in all nine TBI patients with intermediate- or high-grade PVS
asymmetry, the cerebral hemisphere that suffered the trauma
showed aminor number of PVSs compared with the contralateral
side.

PVS Caliber Analysis
The mean PVS caliber in TBI patients and healthy controls were
1.37 ± 0.23mm and 1.31 ± 0.26mm, respectively: the difference
in the two groups was not statistically significant (p = 0.39). We
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found a significant positive correlation between AI and |Cdiff |, as
illustrated in the scatter plot in Figure 8 (Pearson’s ρ = 0.41, p=
0.03).

Patients with a more asymmetric distribution of PVS in
the brain had a greater difference in the mean PVS caliber
between right and left hemispheres. In patients who had a post-
traumatic seizure, smaller PVSs were measured on the side
ipsilateral to LPDs and/or affected by the trauma, compared with
the contralateral hemisphere. In four patients, the difference in
the PVS caliber between the two hemispheres was statistically
significant (p-values were 0.031, 0.036, 0.034, and 0.049).
Thus, the evaluation of PVS distribution and quantification
may represent another potential non-invasive neuroimaging
biomarker to predict the development of epilepsy after TBI.

FIGURE 5 | Correlation between age and the number of PVSs in our sample

population.

EEG Methods
Various analytic tools were used to analyze both human and
rodent EEG. Notably, dimensionality reduction techniques,
including diffusion maps and Unsupervised Diffusion
Component Analysis (UDCA), were used to elucidate patterns
or abnormal activity within large data matrices that may be used
to potentially identify biomarkers of epileptogenesis after TBI.
Spectral analysis and measures of relationship, such as mutual
information, were also conducted. We present an overview of
a few analytic tools for EEG with some figures of examples of
preliminary results using EpiBioS4Rx data.

Spectral Analysis
As a first step, raw EEG data were imported via EEGLAB
in MATLAB (Delorme and Makeig, 2004). The Short Time
Fourier Transform (STFT) was applied to the raw, unfiltered
EEG data, seen in Figure 9, and spectrograms were formed to
visualize frequency changes over time. 3D spectrograms, such
as Figure 10, show the relationship among time, amplitude, and
power in addition to the power spectral density (PSD). These

FIGURE 6 | A box plot showing the distribution of HR in the two study groups,

TBI patients and healthy controls.

FIGURE 7 | A bar graph showing all AIs in the 15 TBI patients and 6 healthy controls.
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plots can be used for visualization purposes or for setting a
threshold to focus on a specific frequency range, for example, and
then quantifying changes over time.

Persyst Software Tools
We also use Persyst software (Sierra-Marcos et al., 2015) as a
tool for visualization of the EEG and for artifact removal, spike

detection, and epileptiform activity identification.

FIGURE 8 | The correlation between Cdiff and AI in our sample population.

Mutual Information
Another type of analysis that we perform considers measures of
relationship, such as mutual information (Duncan et al., 2013a),
to study how electrical activity from different areas of the brain
relate to each other and how those relationships change over
time. We plan to relate these measures of relationship in the EEG
to the resting state fMRI to determine if electrode contacts from
areas within resting state networks have higher values of mutual
information and if these networks differ between patients who
develop PTE and those who do not.

FIGURE 9 | The raw EEG from one channel of human scalp EEG data (200

samples/second).

FIGURE 10 | The 3D power spectral density (PSD), corresponding to the raw EEG data in Figure 9, displayed (in color) as well as the relationships among time,

frequency, and magnitude power for a one-channel, brief sample segment of EEG data (200 samples/second).

Frontiers in Neuroinformatics | www.frontiersin.org December 2018 | Volume 12 | Article 86185

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Duncan et al. Analytic Tools for Post-traumatic Epileptogenesis

FIGURE 11 | The mutual information between two channels calculated at 30-second windows of time for rodent EEG data.

FIGURE 12 | The raw EEG (with a sampling rate of 200 samples/second) of

one of five channels for an example patient with some epileptiform spike

activity seen at several time points.

Figure 11 shows an example of the mutual information
between two channels of rodent EEG. The mutual information
between the two channels was calculated for each consecutive
30-second window and plotted to visualize the relationship
between the two channels located in different parts of the
brain. This analysis allows us to study how this relationship
changes both over time and closer to the occurrence of a
seizure, which enables the study of networks in the brain
and if those play a role in post-traumatic epileptogenesis.
In Figure 11, we see a greater relationship between the two
electrode contacts chosen for the analysis over time and closer
to the seizure onset. Furthermore, we can compare these
networks in rats and humans to determine the extent of their
similarities.

Dimensionality Reduction
Besides analyzing EEG using spectral analysis, spike detection,
and measures of relationship, we can also use dimensionality
reduction techniques to analyse the data more extensively and
classify epileptiform activity. The EEG amounts to a very large
dataset due to the continuous long-term recordings over many
electrode contacts. All 300 patients receive 24 h continuous EEG
(cEEG) for 72 h minimum during the first 7 days after TBI. Scalp
cEEG monitoring is performed using a 16–21 channel bipolar
and referential composite montage implemented at each study
center based on their established ICU EEG protocols. A subset of
100 patients receive additional depth EEGmonitoring during the
first 7 days after TBI for higher resolution and pathologic HFOs
or repetitive HFOs and spikes detection. Furthermore, we have
continuous EEG recordings over 6 months frommany cohorts of
animals (Duncan et al., 2018b).

An algorithm that we have developed, UDCA (Duncan and
Strohmer, 2016; Duncan et al., 2018a), is an extension of
diffusion maps (Coifman and Lafon, 2006) and used to reduce
the dimensionality of this large amount of data as well as
identify patterns in the data that may predict post-traumatic
epileptogenesis.

The steps of this algorithm, UDCA, have been previously
described (Duncan et al., 2018a); here we briefly explain the steps.
The original, raw EEG data matrix (of any number of electrode
contacts and any length of time), for example, Figure 12, is
divided into smaller submatrices that are overlapped by 50%
for smoothing purposes. First, the cross-correlation between
segments is calculated to ensure minimal variance to ensure
similar behavior between the channels that were being analyzed.
Channels showing similar waveforms would be expected to have
decreased covariance. This is applied to all channels used in
the analysis (five channels in the example shown in Figure 13),
after being split into submatrices. The limit is defined as the
difference between the window size, the number of data points in
the predefined submatrices, and the window length, the number
of data points used to define the lag of the cross-correlation.
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FIGURE 13 | The embedding, corresponding to the data in Figure 12, with its average distance from the center of mass calculated for a 5-channel analysis. Color

represents time, and the dark blue points show a clear separation from the other points, indicating a method to identify epileptiform activity.

Then the time-based covariance matrix is calculated from the
covariance of the segment vectors. Singular value decomposition
(SVD) is then performed on the covariance matrices. The
Mahalanobis distance is applied to inverse covariance matrices
that are computed using the SVD to identify outliers; the
combination of the Mahalanobis distance and inverse covariance
matrices has previously been shown to be a successful tool for
denoising data (Talmon et al., 2012). The resulting matrices are
constructed from the outputs of the SVD by taking the complex
conjugate transpose of the product of the unitary matrix, the
inverse of the diagonal matrix, and the other unitary matrix.

The next steps of the algorithm involve constructing the
kernel, shown in Equation (3)

A = exp

(

−d

4 • ke

)

(4)

where d is the Mahalanobis distance (Equation 5), and ke is the
Gaussian kernel (value set to 10, based on the spread of the
original data points in the raw EEG data matrix) (Duncan and
Strohmer, 2016).

d =

[

dataM − datam
]

·

−1
∑

EEG

·

[

dataM − datam
]

(5)

in which dataM is the length of the ith row from the metric data
matrix, datam is the i+1 row, and

∑

−1
EEG

[

dataM − datam
]

is the
inverse covariance matrix (Duncan and Strohmer, 2016; Duncan
et al., 2018a).

Construction of the reference kernel is shown below in
Equation (5) using the inverse covariance and the natural
extension of AA’ (Duncan et al., 2013b, 2018a; Duncan and
Strohmer, 2016):

W1 = A∗

1A1 (6)

in which A1 is the quotient of A divided element-wise by a repeat
matrix of the square root of j1 with dimensions equal to that of

the length of dataM. W = A∗A, in which A∗ is the conjugate
transpose, andW is the product of A and its conjugate transpose.
Lastly, j1 =

∑

iW1,i (sum of the elements of W along its columns
for row vector) (Duncan et al., 2013b; Duncan and Strohmer,
2016).

W2 = A∗

2A2 (7)

Additionally, Equation (6) is computed in the same manner
as Equation (2), in which A2 (computed similarly to A1) with
element-wise division by a repeat matrix of the square root of j2.

The computation of the eigenvectors Equation (7) is
performed onW2, extracting the eigenvalues in a diagonal matrix
V and the eigenvectors in a matrix E, corresponding to the
eigenvalues, such that:

EV = W2V (8)

The corresponding eigenvectors are then sorted in a descending
order (Esrt, Vsrt). Corresponding point clouds are calculated from
Equation (8):

Vclds = DVsrt (9)
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in which D is a sparse n x n matrix with the dimensions equal to
the length of dataM, with values consisting of the square root of
one divided-by j2.

Extraction of the two largest eigenvectors was performed
according to Equations (9, 10):

ϕ1 = Vcldsi,1ϕ2 = Vcldsi,2 (10)

Computation of the extension utilized (Equation 11):

ω =

∑

i

A2i (11)

in which the column vector ω is the column-wise sum of A2.
Additionally, A2-norm (‖A2‖) is calculated by element-wise

division of A2 by a repeat matrix consisting of values from ω,
with dimensions equal to that of datam.

ψ̂ =

‖A2‖Vsrti
√

Esrti+1

(12)

Furthermore, ψ̂ (Equation 12), is calculated to be the product of
‖A2‖ andVsrti divided element-wise by the square root of the i-th
+ 1 value of Esrt .

Additionally, ψ (initialized as an empty array) is:

ψi = ψψ̂ (13)

Extended eigenvector extraction corresponding to the two largest
eigenvalues (Equations 14, 15):

ψ1 = ψi,1 (14)

ψ2 = ψi,2 (15)

in which ψ1 and ψ2 are tabulated using all values from the rows
and columns one and two, respectively.

Preliminary Results Using UDCA
All possible combinations of 3 eigenvectors are used to create
the 3D embeddings. Three dimensions were chosen due to this
number of dimensions being optimal for visualization, but any
number can be chosen and then determined which number of
dimensions results in the most important information about
the underlying brain activity being extracted, depending on the
original data. Embeddings that contained the first eigenvector
were excluded due to the normalization that occurs as a result
of the SVD analysis (Duncan and Strohmer, 2016). Furthermore,
some preliminary results indicated that the embeddings that
showed a more diffused spread of points with outliers could
be used to indicate preseizure activity in the subject. The
determination of the spread for each embedding was calculated
by finding each embedded point’s Euclidean distance from the
center of mass of the embedded points. Embeddings with the
largest mean Euclidean distance for each subject were used for
preseizure activity evaluation. This method of determining the

optimal embedding allows the algorithm to be automatic and
unsupervised, but the algorithm can also be used in a semi-
supervised manner as well.

The dark blue points in Figure 13 represent the time farthest
from the seizure in the selected epoch, while the yellow points
represent windows of time that are closest to the occurrence of
the seizure. Figure 12 shows an example subject with EEG data
from channel 4, in a 5-channel analysis, in which epileptiform
spike activity is apparent at several initial time points. The
outliers in the embedding shown could be used to correspond
with several of the epileptiform spikes in the raw EEG data.

UDCA is a promising method that can be used to
detect epileptiform activity that may be a predictor of post-
traumatic epileptogenesis. Quantitatively, the evaluation of each
embedding can be performed through a variety of methods, such
as evaluating the diffusivity in the embedding by calculating the
Euclidean distance of each point in the embedding to either the
origin or the center of mass of all embedded points or by setting
a threshold for the outlier points.

DISCUSSION

We have described some of our analytic tools, including lesion
mapping, tractography, PVS analysis, and various types of EEG
analysis, including spectral analysis, spike detection, mutual
information, and Unsupervised Diffusion Component Analysis,
that we are developing and using to analyze the rich, multimodal
data from different sites that are collecting data for EpiBioS4Rx.
Furthermore, the tools applied to imaging and EEG data are used
for both human and animal data so that we can first analyze them
separately and then compare the animal model to the human data
to determine what translational components exist.

With tractography, we plan to explore the use of a study-
specific template that may improve registration performance.We
also plan to use the lesion mapping obtained from FLAIR to add
lesion statistics to the array of obtained fiber bundle metrics.
Based on our analysis of PVS, our results show that PVS may
be a potential non-invasive neuroimaging biomarker of post-
traumatic epileptogenesis. Moreover, PVS structural analysis
combined with DTI analysis can help define the suspected seizure
onset area. Ultimately, these results may be of benefit for the
design of future clinical trials and for the evaluation of new
possible therapeutic targets.

We plan to analyze the EEG using mutual information and
compare those results with the resting state fMRI data to study
networks in the brain, how they change over time, and how they
differ between PTE and non-PTE. With UDCA, our goal is to
apply advanced statistical tools to the results of the embeddings to
reliably identify epileptiform and preseizure activity in the EEG
of humans and rodents.

CONCLUSIONS

As more data are collected in EpiBioS4Rx, we will continue to
extract features from neuroimaging and electrophysiologic data
as well as molecular, clinical, cognitive, and behavioral measures
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to identify candidate diagnostic biomarkers of epileptogenesis.
When we apply these methods to new data, we will be able
to modify and improve them so that they can be even more
effective in our search for biomarkers of epileptogenesis after
TBI. Our methods will be used to reveal processes, regions,
and stages in epileptogenesis correlated with specific anatomical
changes in imaging and changes in the electrical activity in
the brain. Furthermore, our tools will allow us and other
researchers to easily compare human and animal data to identify
their similarities and differences. Innovative statistical techniques
will be used to build models of epileptogenesis to predict the
probability of developing epilepsy based on biomarker inputs.
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