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Some molecules or conditions 
are exclusively toxic to biological 
systems and classified as being 
non-essential; others are 
essential for life. Nevertheless, 
above certain threshold even 
the essential will become toxic. 
Tightly controlled homeostatic 
control mechanisms are thus vital 
drivers of well being, longevity 

and survival. The identification and characterization of these intricate pathways form the 
foundations of Toxicogenomics. 

The initiation, and indeed completion, of numerous non-mammalian genome-sequencing 
projects, has driven the exponential growth of available genetic sequences. Collating this 
vast amount of data into functional and mechanistically meaningful units will provide novel 
insights into pathogenesis, new methods of risk assessment, genetic risk-modifications 
in preventative medicine and new therapeutic targets for pharmaceutical and biological 
medicines. 

This Research Topic issue will explore the current knowledgebase pertaining to the multitude 
of genomic and toxicological tools within non-mammalian organisms. The encyclopaedic 
coverage will span the full taxonomic breadth ranging from simple unicellular bacteria 
and yeast to complex creatures such as birds and fish. The resulting collection of unique, 
complimentary or indeed contrasting approaches, tools and technologies (which are 
defined by the availability and feasibility for each organism to study genomics of xenobiotic 
or stress biology) will not only foster cross-phyla awareness but expand the horizon of 
Toxicogenomics. 
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In October 2004, the Organisation for Economic Co-operation
and Development (OECD) and the International Programme
on Chemical Safety (IPCS) organized a workshop in Kyoto
Japan to outline the fundamental aspects and future direc-
tions of the then emerging science of “Toxicogenomics.” The
output of this three-day meeting was summarized in the
Report of the OECD/IPCS workshop on Toxicogenomics (OECD
Series on Testing and Assessment, Number 50, http://www.who.
int/ipcs/methods/oecd_report.pdf). In essence, Toxicogenomics
was defined as any study that investigates the response of a
genome to hazardous substances by means of (1) genomic-
scale mRNA expression analyses (Transcriptomics), (2) cell
and tissue wide protein expression techniques (Proteomics), or
(3) cell and tissue wide metabolite profiling (Metabolomics).
These “omic” datasets typically require intricate in silico anal-
yses (Bioinformatics) to integrate the results and by doing so
provide insights into mechanistic toxicology and biomarkers of
exposure.

Since 2004, the initiation, and indeed completion, of
numerous whole genome-sequencing projects has driven
the exponential growth of available genetic informa-
tion. Collating this vast amount of data into functional
and mechanistically meaningful units is providing novel
insights into pathogenesis, new methods of risk assess-
ment, genetic risk-modifications in preventative medicine,
and new therapeutic targets for pharmaceutical and bio-
logical medicines. Most toxicogenomic responses, however,
are multi-dimensional due to the facts that toxicants usual
affect multiple intra-and extra-cellular targets and occur as
complex mixtures, which are inherently difficult to deci-
pher. Some molecules or conditions are exclusively toxic
to biological systems and classified as being non-essential,
while others are essential for life. According to Paracelsus,
above certain threshold even the essential will become toxic.
Thus, tightly controlled homeostatic control mechanisms
are vital drivers of well-being, longevity, and survival. The
identification and characterization of these mechanisms

and the cognate regulatory pathways form the foundations of
Toxicogenomics.

This Research Topic issue explores our current knowledge
pertaining to the multitude of genomic and toxicological tools
within non-mammalian organisms, arguably an underdeveloped
niche. This e-book begins with five seminal reviews on (1) the
yeast system, which focusses on genome-wide responses to chem-
ical stressors linked to Environmental Health, Pharmacology,
and Biotechnology (dos Santos et al., 2012); (2) the fruit fly
Drosophila melanogaster, as a model for lead neurotoxicology
and Toxicogenomics (Hirsch et al., 2012); (3) the nematode
Caenorhabditis elegans, to investigate the genome-wide response
to metal exposure (Caito et al., 2012); (4) next generation
sequencing approaches in fish Toxicogenomics (Mehinto et al.,
2012); and (5) the application of Toxicogenomics in amphib-
ians (Helbing, 2012). These reviews set the stage for five
research articles that describe how genomic tools have aided
in uncovering target mechanisms of (eco)toxicological impor-
tance. These comprise transcript meta-analyses in C. elegans
to pinpoint humic acid, quercetin, and tannic acid-mediated
effectors of stress and aging (Pietsch et al., 2012 and Menzel
et al., 2012); the assessment of a municipal landfill soil via a
functional environmental genomic approach using the spring-
tail Folsomia candida (Roelofs et al., 2012); a bioinformatic
approach to model genotoxic chemical mutations in Drosophila
melanogaster (Cingolani et al., 2012); and a study that inves-
tigates the influence of nitrate and nitrite on targeted gene
expression in the tadpole Rana catesbeiana (Hinther et al.,
2012).

By spanning a wide taxonomic breadth, this encyclopaedic
coverage results in a collection of unique approaches, tools and
technologies, which are currently defined by the availability and
feasibility for each organism to study the genomics of xenobi-
otic or stress biology. We anticipate that this information will
not only foster cross-phyla awareness, but also expand the hori-
zon of Toxicogenomics. We hope you enjoy this eclectic mix of
papers.
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The emerging transdisciplinary field of Toxicogenomics aims to study the cell response to
a given toxicant at the genome, transcriptome, proteome, and metabolome levels. This
approach is expected to provide earlier and more sensitive biomarkers of toxicological
responses and help in the delineation of regulatory risk assessment. The use of model
organisms to gather such genomic information, through the exploitation of Omics and
Bioinformatics approaches and tools, together with more focused molecular and cellular
biology studies are rapidly increasing our understanding and providing an integrative view
on how cells interact with their environment. The use of the model eukaryote Saccha-
romyces cerevisiae in the field of Toxicogenomics is discussed in this review. Despite the
limitations intrinsic to the use of such a simple single cell experimental model, S. cerevisiae
appears to be very useful as a first screening tool, limiting the use of animal models. More-
over, it is also one of the most interesting systems to obtain a truly global understanding of
the toxicological response and resistance mechanisms, being in the frontline of systems
biology research and developments. The impact of the knowledge gathered in the yeast
model, through the use of Toxicogenomics approaches, is highlighted here by its use in
prediction of toxicological outcomes of exposure to pesticides and pharmaceutical drugs,
but also by its impact in biotechnology, namely in the development of more robust crops
and in the improvement of yeast strains as cell factories.

Keywords: yeast model, toxicogenomics, molecular systems biology, genome-wide approaches, response to stress,

toxicity mechanisms, predictive toxicology

YEAST TOXICOGENOMICS: GENOME-WIDE APPROACHES TO
ELUCIDATE TOXICITY MECHANISMS AND GLOBAL STRESS
RESPONSES IN YEAST
The transdisciplinary field of Toxicogenomics is defined as the
merging of Omics approaches with toxicology to elucidate the
response at the genome level to environmental stressors, drugs,
and other toxicants (Hamadeh et al., 2002; Gomase and Tagore,
2008; North and Vulpe, 2010). The coupling of such approaches
with classical toxicology studies combined with bioinformatics has
the potential to provide a more comprehensive knowledge of the
molecular and cellular effects of chemicals in biological systems
than more traditional approaches. Understanding these complex
responses is of paramount importance in fields ranging from Envi-
ronmental Health to Pharmacology and drug development and to
Biotechnology in general (Hamadeh et al., 2002; Guerreiro et al.,
2003; Teixeira et al., 2007). Toxicity testing using animal models
has a number of limitations that make it difficult to deal with
the increasingly large number of potentially toxic compounds
found in the environment and in the pharmaceutical industry
for which toxicity data available is scarce (North and Vulpe, 2010).
Mechanism-centered analysis represents an alternative approach

to animal testing and, in this context, the yeast Saccharomyces
cerevisiae can be an invaluable asset.

SACCHAROMYCES CEREVISIAE AS AN EXPERIMENTAL MODEL IN
TOXICOGENOMICS
S. cerevisiae is a thoroughly established and widely used eukaryotic
model for molecular and cellular biology studies. Yeast also plays
a significant role in biotechnology, where it is used as a cell fac-
tory with diverse applications (Botstein and Fink, 2011). There
are several inherent features that make yeast such a proficient
model system: (1) it is a unicellular non-pathogenic microor-
ganism with rapid and inexpensive growth, (2) it is amenable to
genetic manipulation, (3) genome-wide analyses are easily imple-
mented, with a vast array of experimental tools and biological
material readily available, (4) it possesses a strikingly high-level
of functional conservation within the human genome and other
higher eukaryotes, and (5) it has the unique advantage of pos-
sessing functional information available for nearly every gene.
The paradigm of research using S. cerevisiae changed with the
publication of its genome sequence more than 15 years ago (Gof-
feau et al., 1996). A wealth of biological information has been
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gathered over several years of post-genomic research facilitated by
easy access to public databases (Saccharomyces Genome Database,
SGD1; andYEASTRACT2,among others). Research on S. cerevisiae
pioneered the development of several post-genomic experimental
approaches and computational tools, changing the field of yeast
research with the application of innovative methodologies in func-
tional genomics and proteomics (Mager and Winderickx, 2005;
Smith et al., 2010; Botstein and Fink, 2011). In summary, yeast
is a robust and inexpensive experimental platform where mol-
ecular studies difficult to carry out in more complex and less
accessible eukaryotes are deeply facilitated (Wuster and Madan
Babu, 2008; Smith et al., 2010; Botstein and Fink, 2011). More-
over, although many cytotoxic compounds act on their target
organisms via physiological mechanisms that do not exist in yeast,
many of the basic mechanisms underlying toxicity, adaptation, and

1www.yeastgenome.com
2http://www.yeastract.com

resistance to chemical and environmental stresses are apparently
conserved between yeast and phylogenetically distant organisms
(Foury, 1997; Hohmann and Mager, 1997; Parsons et al., 2003;
Mager and Winderickx, 2005).

In this review we will focus on the field of yeast toxicogenomics
and how it can be exploited to obtain mechanistic insights into
the action of drugs or toxicants with relevance in environmental
health and agriculture (pesticides and environmental pollutants),
medicinal and biomedical research (drugs used in the treatment
of cancer, malaria, bacterial infections, etc.), and biotechnology
(wine, beer, and other alcoholic fermentation processes, including
the production of bio-ethanol, etc.; Figure 1), with a particular
emphasis on the contribution of our research group to the field.

OMICS TOOLS APPLIED TO YEAST TOXICOGENOMICS
Variations in gene and protein expression or metabolite levels
following exposure to a toxicant can contribute to identify the
cellular components and pathways that are most relevant to a

FIGURE 1 | Predicted contribution of Omics approaches applied in the yeast Saccharomyces cerevisiae to obtain toxicological mechanistic insights

with application in environmental health, agriculture, drug development, and biotechnology.
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toxicological response (Hamadeh et al., 2002; North and Vulpe,
2010). S. cerevisiae provides a privileged experimental system for
obtaining an integrated assessment and genome-wide perspec-
tive of toxicity mechanisms (Figure 1), through the combination
of transcriptomics and quantitative proteomics, for the evalu-
ation of genome-wide expression changes occurring as part of
the yeast response to environmental toxicants, metabonomics, for
the study of the cell’s small-molecule metabolite profile as the
ultimate response to the toxicant, and chemogenomics, for the
identification of cellular toxicity molecular targets (Figure 1). It
is noteworthy that, as stand-alone, these analyses are not expected
to provide decisive insights into the role of genes or proteins in a
toxicological response, and should instead be integrated and cou-
pled with suitable bioinformatics tools. Future research in the field
will require the development of computational tools aiming the
integration of high-throughput data and the collaborative activity
of multidisciplinary teams with expertise in biological sciences,
functional and comparative genomics, and bioinformatics.

A considerable amount of toxicity assessment data is available
from yeast DNA microarrays. Upon toxicant exposure, yeast cells
reprogram mRNA expression in order to adapt to the new envi-
ronmental conditions, which produces a gene expression pattern
(or “signature”) characteristic of the compound (Simmons and
Portier, 2002; Schwartz et al., 2004). These transcriptional sig-
natures are shared by compounds with similar modes of action
and can be used to infer mechanisms of action and predict tox-
icological outcomes of uncharacterized toxicants (Marton et al.,
1998; Lamb et al., 2006; Teixeira et al., 2007). In fact, alterations of
global gene expression can occur almost immediately after expo-
sure, and the assessment of these changes could potentially provide
an earlier and more sensitive biomarker of a toxic response than
traditional toxicological methods (Hamadeh et al., 2002; Simmons
and Portier, 2002). However, gene expression alone is not adequate
to fully understand a toxicant’s action and the resulting outcome
(Hamadeh et al., 2002), since abnormalities in protein production
and/or function are also expected to occur. As such, proteomics
approaches are employed to identify the protein alterations asso-
ciated with toxicant exposure (Teixeira et al., 2005, 2009b; Santos
et al., 2009; Sa-Correia and Teixeira, 2010). Finally, genomic and
proteomics methods do not address how the cell’s dynamic meta-
bolic status is affected by exposure to a toxicant. Metabonomics is
an approach that allows the study of metabolic profiles based on
the premise that toxicant-induced alterations will provide infor-
mation on chemical toxicity (Nicholson et al., 2002). Data in yeast
are still scarce, however it has already contributed to increase the
current understanding of weak acid toxicity (Hasunuma et al.,
2011; Lourenço et al., 2011).

FUNCTIONAL TOXICOGENOMICS USING YEAST GENE DELETION
COLLECTIONS
Functional toxicogenomics is defined as the global study of the
biological function of genes regarding the toxic effect of a com-
pound or environmental stress, providing a direct link between
gene and toxicant (Hamadeh et al., 2002; North and Vulpe, 2010).
In this context, a major breakthrough with respect to studies on
the mechanism of action and one of the main advantages of
using yeast bioassays for toxicity assessment was the generation

of heterozygous/homozygous diploid and haploid gene deletion
collections (Figure 2; Scherens and Goffeau, 2004). Fitness is the
primary phenotypic descriptor for yeast studies, and these collec-
tions enable comprehensive and systematic genetic screens that
provide direct links between a specific gene and the requirement
for that gene product function in the cellular response to a partic-
ular condition (Auerbach et al., 2005; Hoon et al., 2008b; Wuster
and Madan Babu, 2008). The different types of fitness-based assays
that can be used to identify toxicant-induced phenotypes include
homozygous (knock-out deletion, gene dosage = 0%), haploin-
sufficiency (heterozygous deletion strains, gene dosage = 50%)
and multicopy- and overexpression (gene dosage > 100%) screens
(Figure 2; Hoon et al., 2008b). In homozygous profiling, each non-
essential gene is knocked-out leading to complete loss-of-function.
These screens are often used to identify genes that are important
for conferring stress resistance, for example by genetic interaction
with the toxicant’s target. It is also applied to identify biologi-
cal functions that are affected by a given stress, and infer from
those the mechanisms of toxicological action. Finally, it is possible
to screen for deletions that confer resistance to a compound in
conditions that are deleterious to the wild-type strain. The deleted
genes can be direct targets, or be involved in modifications or path-
ways that enable the compound’s cytotoxic action. Naturally, one
obvious downside of homozygous or haploid gene deletion strains
is that only non-essential genes can be deleted, but the mechanism
of action of many toxicants might target essential gene products.
On the other hand, haploinsufficiency screens are based on the
premise that lowering the gene dosage of the molecular target
increases susceptibility, and thus enables direct identification of a
toxicant’s cellular target (see Hoon et al., 2008b; Wuster and Madan
Babu, 2008). Libraries of double mutants have also been generated
to uncover interactions between genes through synthetic lethality,
which can be integrated with functional screens data to elucidate
toxicity mechanisms and modes of action (Costanzo et al., 2010).
Many bioinformatics tools are available to facilitate interpretation
of the results. For example, Gene Ontology (GO) annotation and
GO-based resources such as GOToolBox3 (Martin et al., 2004)
allow the identification of biological functions that are enriched
within datasets, thus creating a “functional fingerprint” compara-
ble to transcriptional signatures by expression profiling. These can
be used to identify responses and pathways that are common to
different classes of toxicants.

Our current literature survey found at least 80 publications
that have used yeast deletion collections in the context of toxic-
ity testing, in which hundreds of different stresses were explored
and phenotypes were attributed to over 90% of all yeast genes
(see Table 1 for an overview). Remarkably, although many of
these conditions had been previously scrutinized using classical
methodologies or even DNA microarrays, many of the genes iden-
tified using deletion collections had not been known to be involved
in the toxicological pathways investigated. One major contribution
arising from the use of homozygous and heterozygous yeast dele-
tion collections was the so-called “chemical genomic portrait of
yeast”(Hillenmeyer et al., 2008). The authors carried out over 1100

3http://genome.crg.es/GOToolBox/
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FIGURE 2 | Construction and screening of yeast collections.

Schematic representation of methodologies and cell libraries available for
chemogenomics testing in S. cerevisiae (homozygous or haploid
deletion – gene dosage 0%, heterozygous deletion – gene dosage 50%,
and overexpression – gene dosage > 100%; see Section “Functional
Toxicogenomics using Yeast Gene Deletion Collections”; Auerbach et al.,
2005; Hoon et al., 2008b; Wuster and Madan Babu, 2008; North and
Vulpe, 2010; Smith et al., 2010). The fitness of strains upon chemical
treatment is usually assessed in non-competitive arrays or in competitive

bar-coded pools. In the first case, the toxicant can be added to a well plate
and each mutant occupies a separate well; the effects are observed
directly by comparison with wild-type strain fitness. In the second case,
the screen is executed in a pooled format where uniquely tagged
(“bar-coded”) strains are grown together in the presence of a toxicant.
Fitness is assessed by determining the abundance of the different mutant
strains using microarrays coupled with a PCR strategy that amplifies the
molecular bar-codes associated with each mutant. Strain depletion in the
toxicant-treated pool indicates chemical hypersensitivity.

assays in the presence of chemical or environmental stress condi-
tions, ranging from approved therapeutic drugs to compounds
with uncertain activity. Functional enrichment analysis led to the
identification of several biological functions that were required
for growth in at least 20% of the assays performed, in particular
endosome transport, vacuolar degradation, and transcription, a
coordinated system that is conserved from yeast to humans (Hil-
lenmeyer et al., 2008). The remarkable amount of data generated
can be applied, for example, to predict toxicological modes of
action for the compounds tested and other structurally related, or
to predict the effects of synergies between some of these stresses.
Other important contributions using yeast deletion collections
will be described throughout this review.

INTEGRATION OF GENOME-WIDE DATA TO IDENTIFY MECHANISMS OF
TOXICITY
To achieve a more complete understanding of the mechanisms
of action and toxicological response, it is necessary to intersect
and integrate the genome-wide data coming from the different
approaches (Figure 1). Interestingly, several studies have now
shown that the previous belief that genes that are up-regulated
under a given stress are also required for growth under those condi-
tions is often false (Giaever et al., 2002; Mettetal et al., 2008; Batova
et al., 2010; Landstetter et al., 2010; dos Santos and Sá-Correia,
2011). Although this seems to suggest that deletion collections
provide a better assessment of genes required for the response
to a toxicant treatment, an integrated approach can lead to other
important insights, for example the identification of key regulators
of stress response. In yeast, the identification of the transcription
factors predicted to underlie the transcriptomic response to stress

is facilitated by freely accessible databases and computational tools
such as YEASTRACT, a database focused on the delineation of
yeast transcription regulatory networks, at a genomic scale (Teix-
eira et al., 2006b; Abdulrehman et al., 2011). Comprising more
than 48,000 documented regulatory associations between yeast
transcription factors and target genes (Abdulrehman et al., 2011),
YEASTRACT offers one of the best platforms for the study and
understanding of genomic regulation in an integrative perspective.
The growing use of mathematical descriptions of the dynamical
behavior of such networks (Teixeira et al., 2010a) is now allow-
ing the prediction of the possible behaviors of biological systems
under the action of pollutants, pesticides, drugs, and other chem-
ical stresses, emphasizing the outstanding position of the yeast
model in the field of toxicogenomics. Moreover, yeast toxicoge-
nomics data can be integrated with studies from other sources,
such as toxicological results obtained in the toxicant’s target organ-
ism when appropriate, to obtain a view of a compound’s toxicity
at the systems level. This raises the potential of yeast toxicoge-
nomics very high but poses additional challenges to the tasks of
data integration and usage.

YEAST TOXICOGENOMICS APPLIED TO ENVIRONMENTAL
POLLUTANTS AND XENOBIOTIC COMPOUNDS WIDELY USED
IN AGRICULTURE
GENOME-WIDE RESPONSES TO ENVIRONMENTAL POLLUTANTS
The toxicological outcome of sudden or chronic exposure to
environmental pollutants (e.g., metal ions or organic solvents,
including benzene, or phenol derived compounds), is scarcely
understood at the molecular and cellular levels. However the
genome-wide yeast response to toxic concentrations of metal ions,
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Table 1 | Selected publications in yeast toxicogenomics studies using deletion mutant collections.

Assay Result Reference

Quinine Identification of 279 mutants that display hypersensitivity and 62 mutants that

display resistance to quinine

dos Santos and Sá-Correia

(2011)

Identification of 43 quinine-sensitive strains and tryptophan uptake as a target of

quinine toxicity

Khozoie et al. (2009)

214 psychoactive drugs Identification of off-target effects Ericson et al. (2008)

78 compounds with therapeutic

activity

Identification of lanosterol synthase as a target of the antianginal drug

molsidomine, and identification of rRNA processing exosome was identified as a

potential target of the growth inhibitor 5-fluorouracil

Lum et al. (2004)

Imatinib mesylate Identification of V-ATPase activity and vacuolar function as potential new imatinib

targets

dos Santos and Sá-Correia

(2009)

Antifungal agents Identification of 20 strains displaying increased caspofungin sensitivity Markovich et al. (2004)

12 bioactive compounds Identification of multidrug sensitivity in yeast mutants lacking a functional

V-ATPase

Parsons et al. (2004)

DNA-damaging anticancer agents Identification of 231 mutants that display hypersensitivity and five mutants that

display resistance to bleomycin

Aouida et al. (2004)

Role of V-ATPase and cytosolic acidification in sensitivity to DNA-damaging

agents such as cisplatin

Liao et al. (2007)

Identification of 117 and 73 genes whose deletion results in increased or

decreased resistance to tirapazamine

Hellauer et al. (2005)

Identification of gene ERK5 as susceptible to cisplatin, methyl methane sulfonate

and 5-fluorouracil, confirmed in human studies

Sletta et al. (2011)

Antimicrobials No deletion strains are sensitive to amoxicillin, penicillin G, rifampin, or

vancomycin. Two strains are sensitive to tetracycline sensitive and four to

oxytetracycline

Blackburn and Avery (2003)

Dermaseptin induces programmed cell death Morton et al. (2007)

10 small therapeutic molecules Identification of a chemical core structure shared among three compounds that

inhibit the ERG24 deletion strain

Giaever et al. (2004)

Nitrogen-containing

bisphosphonates

Identification of tubulin cofactor B as a new target and DBF4 as a key player in

cytotoxicity

Bivi et al. (2009)

Introduction of human Huntingtin or

α-synuclein fragments

Identification of 52 strains sensitive to mutant Huntingtin, 86 that are sensitive to

α-synuclein, and one mutant sensitive to both

Willingham et al. (2003)

Library of 188 novel synthetic

chemical compounds

Identification of potential targets and structure–activity relationships Hoon et al. (2008a)

Endoplasmic reticulum stress Identification of MAPK signaling pathways Chen et al. (2005)

Fitness profiling under non-optimal

growth conditions

Identification of genes required for growth in the presence of high salt or sorbitol

or [60] galactose, or at pH8, or in minimal medium, or following nystatin treatment

Giaever et al. (2002)

High glucose Identification of 44 susceptible strains Teixeira et al. (2010b)

Ethanol Identification of 250 determinants of resistance to ethanol and of gene FPS1 Teixeira et al. (2009a)

Weak acids Identification of 650 determinants of resistance to acetic acid Mira et al. (2010b)

Identification of vacuolar function and of the RIM101 pathway in propionic acid

resistance

Mira et al. (2009)

Oxidative stress Identification of 394 strains sensitive to hydrogen peroxide and/or menadione Tucker and Fields (2004)

Identification of 456 mutants sensitive to at least one of five different types of

oxidant

Thorpe et al. (2004)

Multiple environmental stresses

and small molecules (1154 assays)

“A chemical genomic portrait of yeast: uncovering a phenotype for all genes” Hillenmeyer et al. (2008)

Benzene Confirmation by RNAi in human cells Zhang et al. (2010)

Metals Identification of determinants of resistance to cadmium, nickel, mercury, zinc,

cobalt, and iron

Ruotolo et al. (2008)

Identification of a regulatory crosstalk of iron and zinc regulons Landstetter et al. (2010)

Identification of mRNA mistranslation as a primary cause of cellular chromium

toxicity

Holland et al. (2007)

(Continued)
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Table 1 | Continued

Assay Result Reference

Fungicides Identification of 286 determinants of resistance to mancozeb Dias et al. (2010)

Identification of intracellular superoxide production and oxidative stress as a

mode of action of CTBT

Batova et al. (2010)

Killer toxin HM1 Identification of eight resistant strains including high-osmolarity glycerol

pathways HOG1 and FPS1

Miyamoto et al. (2011)

Toxicants inducing Parkinson’s

disease

Identification of the multivesicular body pathway as an element of toxicity

induced by MPP and paraquat

Doostzadeh et al. (2007)

such as nickel, cadmium, copper, chromium, arsenic, cobalt, man-
ganese, and zinc has been studied by exploring chemogenomics
and transcriptomics approaches. These studies led to the identifi-
cation of several functional groups that are important in the yeast
response to all or to part of the metal ions tested, mostly involved in
sulfur amino acid and iron metabolism, oxidative stress response,
vacuolar function, protein modification, transport and degrada-
tion, enzyme inactivation, cation and transition metal transport,
mRNA decay, and DNA metabolism (Momose and Iwahashi, 2001;
Jin et al., 2008; Ruotolo et al., 2008; Serero et al., 2008; Yasokawa
et al., 2008; Takumi et al., 2010; Bleackley et al., 2011). The tox-
icological outcome of the exposure to agrochemicals, including
herbicides and agricultural fungicides, is difficult to predict, since
many times it takes years to develop. Genome-wide analyses in
yeast have been successfully used to identify the genes responsi-
ble for response and resistance to stresses induced by pesticides of
agricultural interest (Cabrito et al., 2009, 2011). These pesticides
include the herbicide sulfometuron methyl (Jia et al., 2000), the
dithiocarbamate fungicides mancozeb (Santos et al., 2009; Dias
et al., 2010), thiuram, zineb and maneb (Kitagawa et al., 2003),
the benzimidazole fungicide benomyl (Lucau-Danila et al., 2005),
the pesticide lindane (Parveen et al., 2003), the herbicide 2,4-D
(Teixeira et al., 2005, 2006a, 2007), and the herbicides paraquat
and cyperquat (1-methyl-4-phenylpyridinium – MPP+; Doost-
zadeh et al., 2007). Toxicogenomics approaches have been applied
to define and predict new toxicological outcomes of exposure to
pesticides, including the agricultural fungicide mancozeb (Santos
et al., 2009; Dias et al., 2010) and the herbicide 2,4-D (Teixeira
et al., 2005, 2006a). A review of the main results of these two case
studies follows.

TOXICOGENOMIC STUDIES FOCUSED ON THE AGRICULTURAL
FUNGICIDE MANCOZEB
Mancozeb, a mixture of manganese- and zinc-ethylene-bis-
dithiocarbamate (Mn:Zn, 9:1), is an agricultural fungicide with
a broad spectrum of action and multiple cell targets, widely
used against phytopathogenic fungi in several crops and vine-
yards (Maroni et al., 2000; Ballantyne, 2004). This compound
displays low acute toxicity, however, in recent years, mounting
evidence suggests that chronic exposure to this fungicide increases
the probability of developing Parkinson’s disease and certain forms
of cancer (Belpoggi et al., 2002; Zhou et al., 2004; Calviello et al.,
2006).

The early global response to mancozeb and the genome-wide
resistance mechanisms established by S. cerevisiae were analyzed

by expression proteomics (Santos et al., 2009) and chemogenomics
(Dias et al., 2010; see Figure 3 for a schematic representation of
the main findings obtained in these studies with mancozeb). Inter-
estingly, 70% of the proteins differently expressed in cells exposed
to mancozeb (Santos et al., 2009) and 53% of the determinants
of yeast resistance to the fungicide (Dias et al., 2010) have human
orthologs. This is the case for proteins involved in V-ATPase func-
tion (Vma4 and Vma13), protein synthesis, folding (e.g., Kar2),
protein degradation/proteasome sub-units (e.g., Pre3, Pre7, Pre8,
Pre9, Nas2, Sem1, and Ubp6), and in the oxidative stress and anti-
oxidant response (e.g., Tsa1, Tsa2, Glr1, Gsh1, Gsh2, Sod1, Sod2,
and Yap1). Interestingly, V-ATPases are overexpressed in several
metastatic cancers (Sennoune et al., 2004) and the overexpression
of proteasome sub-units leads to increased survival rate of human
cell lines following oxidative stress, due to a higher proteasome
degradation of oxidized modified protein (Chondrogianni et al.,
2005). Other human orthologs related with the oxidative stress
response (PRDX2, PRDX3, GSR, GCLC, GSS, SOD1, and SOD2),
have been involved in the onset and progression of neurodegen-
erative diseases, namely Parkinson’s disease, by protecting the cell,
acting as anti-oxidant agents and neuroprotectors (Chang et al.,
2004; Ihara et al., 2005; Cumming et al., 2007). Besides, PAK1,
MAP2K1, and LCP1, three other genes described as being involved
in tumor development and invasiveness (Wang et al., 2006a,b),
are orthologs of yeast determinants of mancozeb resistance CLA4,
PBS2, and SAC6 (Dias et al., 2010).

Using the YEASTRACT database, more than 90% of the genes
that encode proteins up-regulated under mancozeb imposed stress
were found to be known targets of Yap1 (Santos et al., 2009), the
major oxidative stress regulator in yeast. Yap1 was also found,
based on a chemogenomics study (Dias et al., 2010), to be a deter-
minant of yeast resistance to the fungicide, and also to control the
regulatory network underlying the up-regulation of the multidrug
transporter encoding gene FLR1 (Teixeira et al., 2010a; Monteiro
et al., 2011). Remarkably, the human orthologs of Yap1, Jun, and
Jdp2, are activated during acute and chronic phases of several
neurodegenerative diseases (Shaulian and Karin, 2002), establish-
ing a possible link between the predicted response to mancozeb
toxicity and neurodegenerative disease progression through the
Yap1/Jun/Jdp2 regulators. Although mancozeb was reported to
induce reactive oxygen species (ROS) production as a consequence
of mitochondrial dysfunction in mesencephalic cells (Domico
et al., 2007), Dias et al. (2010) registered no increase in ROS pro-
duction in yeast in response to the fungicide, probably due to the
fact that in glucose fermenting yeast the level of mitochondrial
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FIGURE 3 | Proposed model for the action of mancozeb in S.

cerevisiae cells. This model results from the integration of yeast
chemogenomics (Dias et al., 2010) and proteomics (Santos et al.,
2009) approaches. The complex mancozeb-induced expression
changes and mancozeb determinants of yeast resistance, were found

to be related to oxidative stress, V-ATPase function, protein
translation initiation and protein folding, disassembling of protein
aggregates and degradation of damaged proteins, lipid and ergosterol
biosynthesis, mitochondrial function, cell wall remodeling, and
multidrug resistance transporters.

respiration is reduced. In the absence of mitochondrial electron
leakage, which masks other aspects of mancozeb toxicity, a direct
role of mancozeb in protein damage, as a thiol-reactive compound,
was thus identified in the yeast model, with a possible parallel in
human cells (Dias et al., 2010).

TOXICOGENOMIC STUDIES FOCUSED ON THE HERBICIDE 2,4-D
The herbicide 2,4-D is the most commonly used member of the
auxin-like herbicide family. Although being considered relatively
safe, exposure to 2,4-D has been linked to the development of non-
Hodgkin lymphoma and sarcoma (Ibrahim et al., 1991). Further-
more, several cases of 2,4-D resistant weeds have been described4,
raising the need to increase herbicidal application rates, with the
risk of reaching environmental toxic levels.

S. cerevisiae genome-wide approaches, including transcrip-
tomics (Teixeira et al., 2006a) and expression proteomics (Teixeira
et al., 2005), were used to gain insights into the mechanisms
of response and resistance to 2,4-D. The results obtained in
yeast have been used to guide studies on the molecular mecha-
nisms underlying 2,4-D toxicity and response in plants and other
higher eukaryotes. Interestingly, the quantification of the relative
toxicity of 2,4-D compared to other herbicides measuring elec-
trophysiological parameters and vitality of an animal nervous
system (the frog’s sciatic nerve) was comparable to the results
obtained when yeast growth inhibition due the same herbicides

4www.weedscience.org

was tested (Papaefthimiou et al., 2004). The early transcriptional
response of yeast to 2,4-D includes the up-regulation of sev-
eral genes involved in oxidative stress and anti-oxidant response
(Teixeira et al., 2006a), which correlates with the increase in
hydroxyl radicals and lipid peroxidation levels registered as a con-
sequence of acute 2,4-D stress in yeast (Teixeira et al., 2004).
Significantly, 2,4-D was found to induce fatty acid β-oxidation
and also electron leakage from the mitochondrial respiration
and catalase activity in rat cells (Bradberry et al., 2000, 2004).
Given the fact that oxidative stress is associated with neurologi-
cal diseases, aging, and cancer, these results can give clues on the
effect of massive or repeated human exposure to the herbicide.
In parallel to the implications of these studies in environmen-
tal health, results of herbicide resistance obtained in the yeast
model have also proven useful to study herbicide toxicity mech-
anisms in plants, with expected impact in agriculture and plant
biotechnology (Cabrito et al., 2009; Cabrito et al., unpublished
results).

In acidified growth medium, yeast cells challenged with the
herbicide 2,4-D suffer a strong reduction in their cytosolic and
vacuolar pH (Fernandes et al., 2003; Simões et al., 2003), which is
counteracted by the activation of the plasma and vacuolar mem-
brane H+-ATPases (Fernandes et al., 2003; Teixeira et al., 2005). In
fact, auxins, similar to 2,4-D, were also shown to induce the activ-
ity of the model plant Arabidopsis plasma membrane H+-ATPase,
contributing to maintain the intracellular pH in plant roots (Shen
et al., 2006).
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Both the microarray and the proteomic analyses carried out
indicated the up-regulation of a large number of genes involved
in carbon and nutrient source metabolism and amino acid home-
ostasis in response to 2,4-D (Teixeira et al., 2005, 2006a), which
can be a response to the damaging effects of the herbicide on
the plasma membrane lipid and sterol organization and perme-
ability, with consequences in terms of nutrient uptake. Teixeira
et al. (2007) suggested that the auxin-like herbicide 2,4-D exerts
a repressing effect over the TOR (target of rapamycin) pathway,
recognized as a central controller of cell growth in all eukary-
otes, which control the balance between protein synthesis and
degradation in response to nutrient availability and quality (Cre-
spo and Hall, 2002). Interestingly, in plants, namely Arabidopsis
thaliana, the existence of a functional TOR kinase pathway has
been reported and linked to cell proliferation and growth regula-
tion, auxin being suggested as a possible signaling molecule in the
pathway (Berkowitz et al., 2008).

Additionally, several other mechanisms of yeast resistance to
the herbicide are similar to processes described in plants, namely
those involved in cytosolic detoxification (Smart and Fleming,
1996; Teixeira and Sá-Correia, 2002; Ito and Gray, 2006; Teixeira
et al., 2006a; Cabrito et al., 2009). Exposure to the herbicide leads
to the up-regulation of several genes encoding MDR transporters
in yeast (Teixeira et al., 2006a). The MDR transporters Tpo1, Pdr5,
and Pdr18 were confirmed as determinants of yeast resistance to
2,4-D (Teixeira et al., 2004; Cabrito et al., 2011). 2,4-D induces
the expression of PDR5 orthologs, SpTUR2, in the aquaphyte
Spirodela polyrrhiza, and AtPDR9, in the model plant A. thaliana,
the latter catalyzing 2,4-D extrusion from root cells (Smart and
Fleming, 1996; Ito and Gray, 2006). Recently, Tpo1 homologs
encoding putative plasma membrane MFS transporters from A.
thaliana were analyzed by Cabrito et al. (2009) for a possible role
in 2,4-D resistance. At5g13750/ZIFL1 transcript levels were found
to increase in 2,4-D stressed plants. The functional heterologous
expression of AtZIFL1 in yeast was found to confer increased resis-
tance to the herbicide in wild-type and Δtpo1 cells, through the
reduction of the intracellular concentration of 2,4-D counter-ion
(Cabrito et al., 2009). Interestingly, Zifl1 was the first eukaryotic
transporter of the MFS identified as a multidrug resistance deter-
minant, opening an entirely new field of research with promising
repercussions in medicine, biotechnology, and agriculture.

These case studies highlight the similarities of toxicological
effects of these pesticides from yeast to higher eukaryotes, such
as humans and plants. Hence, the use of the yeast model sys-
tem is expected to continue to contribute to the understanding of
the molecular mechanisms underlying pesticide toxicity in more
complex and less easily accessible eukaryotes.

YEAST TOXICOGENOMICS IN BIOMEDICAL AND MEDICINAL
RESEARCH
YEAST IN DRUG DEVELOPMENT AND PHARMACOLOGICAL RESEARCH
The use of yeast as a eukaryotic model is particularly important
in the field of medicinal research and drug discovery (Simon and
Bedalov, 2004; Mager and Winderickx, 2005; Menacho-Marquez
and Murguia, 2007; Hoon et al., 2008b). Approximately 17% of
all yeast genes are members of orthologous gene families associ-
ated with human disease, and for the majority of these genes their

mammalian homolog is functional in yeast and complements the
yeast deletion mutant (Foury, 1997; Heinicke et al., 2007). Mod-
ern medicine faces the challenge of developing safer and more
effective therapies to treat human diseases; toxicogenomics repre-
sents a new paradigm in drug development and risk assessment,
particularly in mechanistic and predictive toxicology as well as in
biomarker discovery (Guerreiro et al., 2003; Gomase and Tagore,
2008). To better evaluate drug-associated adverse effects, the drug’s
specific mode of action needs to be elucidated first. However, the
successful identification of drug targets and mechanisms of action
requires a prior understanding of the high-level functional interac-
tion between the key components of cells and systems (Guerreiro
et al., 2003; North and Vulpe, 2010).

The primary advantage of yeast in drug discovery is the contri-
bution to identify the mechanisms of action of compounds when
they are unknown. Moreover, yeast is currently the only system
where it is possible to assess all targets in the cell simultaneously
and in vivo (Smith et al., 2010). These strategies are important
not only to identify new drugs for further development, but also
to find new uses for already approved drugs. The contribution of
yeast toxicogenomics to this field takes on a pharmacogenomics
perspective. This emerging post-genomic discipline is character-
ized by having a genome-wide perspective on the action of drugs,
making use of global approaches to identify candidate drug targets
and off-target effects (Swen et al., 2007; Wang and Weinshilboum,
2008; Ruderfer et al., 2009). Off-target effects are more difficult
to detect and are often the cause of deleterious side effects. Such
effects can arise, for example, when the direct binding interaction
between one protein and a target results in an interaction with
a second protein (Parsons et al., 2006; Ericson et al., 2008; West
et al., 2010). In recent years, yeast fitness screens and other Omics
approaches have been employed to search for new targets and
elucidate the mode of action of different compounds, including
anticancer drugs, antimalarials, antimicrobials, and other bioac-
tive compounds (see Table 1). Yeast methodologies have also been
used to study human disease genes and model human disorders
(Steinmetz et al., 2002; Outeiro and Lindquist, 2003; Willingham
et al., 2003; Gammie et al., 2007; Yuen et al., 2007), screen for new
drugs to treat cancer, obesity, prion disease, etc. (Hammonds et al.,
1998; Bach et al., 2003; Tribouillard et al., 2006; Marjanovic et al.,
2010), and predict drug responses in relation to indicators such
as genotype and expression levels (Perlstein et al., 2007; Ruderfer
et al., 2009; Chen et al., 2010).

In an illustrative example, Ericson et al. (2008) identified 81
psychoactive drugs that affected yeast fitness at the level of evo-
lutionarily conserved cellular processes such as secretion, pro-
tein folding, RNA processing, and chromatin structure. These
processes might constitute secondary drug targets and point to
additional, previously uncharacterized mechanisms of action for
these drugs in humans. Information of this nature can be used
to guide the rational design of new compound derivatives with
fewer side effects and for tailoring drug treatment to individ-
ual patient genotypes, in a personalized medicine perspective. In
another interesting study, yeast was applied to identify secondary
targets of nitrogen-containing bisphosphonates, drugs commonly
used to treat bone-related disorders including cancer (Bivi et al.,
2009). The only known target of these compounds was farnesyl
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pyrophosphate synthase, but the authors showed that the action
of this drug in yeast involves additional mechanisms, predomi-
nantly at the level of DNA damage, and cytoskeleton dynamics.
The dataset obtained from the yeast screen was validated in a
mammalian system, and confirmed the involvement of new bio-
logical processes and specific genes that represent potential new
targets for compounds with antitumor activity (Bivi et al., 2009).
Genome-wide expression patterns were applied for target vali-
dation and identification of secondary drug targets of FK506,
an immunosuppressant drug known to inhibit the protein phos-
phatase calcineurin (Marton et al., 1998). The authors identified a
transcriptional signature of FK506 and found that it closely resem-
bled that of the calcineurin null mutant. However, an increase
of the drug dosage resulted in a different expression profile,
suggesting that targets other than calcineurin mediated FK506
effects. Using a similar approach, Hughes et al. (2000) compared
the transcriptomes of 13 compounds with those of 286 deletion
mutants representing a variety of functional classes, identifying
novel targets and off-targets for several drugs.

Yeast deletion mutants have also been used to identify targets
for 78 compounds with diverse chemical structures and thera-
peutic relevance (Lum et al., 2004), resulting in identification
of a lanosterol synthase in the sterol biosynthetic pathway as a
target of the antianginal drug molsidomine, while the rRNA pro-
cessing exosome was singled-out as a potential target of the cell
growth inhibitor 5-fluorouracil. A similar study screened 10 dif-
ferent compounds (including anticancer and antifungal agents)
against a deletion collection in 80 competitive pool assays (Giaever
et al., 2004) and identified a chemical core structure that is shared
by three compounds that inhibit the ERG24 deletion strain, sug-
gesting that cells respond similarly to compounds of related struc-
ture. Several compounds with in vivo activity against yeast and
mammalian prions were identified in a yeast-based screen (Tri-
bouillard et al., 2006), establishing this method as an economic
and efficient high-throughput approach to identify novel prion
inhibitors or to carry out comprehensive structure-activity stud-
ies for already isolated anti-mammalian prion drugs. The results
also seem to highlight the extensive conservation of biochemical
pathways controlling prion formation and/or maintenance from
yeast to human.

GENOME-WIDE RESPONSES AND DETERMINANTS OF RESISTANCE TO
ANTIMALARIAL DRUGS
A comprehensive example of yeast toxicogenomics is its appli-
cation to the study of the antimalarial quinine. It was the first
effective treatment against malaria and is still the drug of choice
for chloroquine-resistant or severe malaria (WHO, 2006; Alkadi,
2007), but the molecular mechanism of action and toxicity of
quinine in the Plasmodium parasite are still a topic of debate
(Fitch, 2004). In a clear demonstration of the merging of toxicoge-
nomics with pharmacogenomics, Khozoie et al. (2009) screened
a yeast deletion collection to address the mode of action of
quinine and its adverse side effects. The authors observed an
enrichment of genes involved in tryptophan biosynthesis, and
additional assays seemed to demonstrate that quinine causes tryp-
tophan starvation and that dietary tryptophan supplements could
help to avert the toxic effects of quinine (Khozoie et al., 2009).

Another chemogenomics-based analysis identified for the first
time several genes encoding ribosome protein sub-units whose
deletion leads to increased quinine resistance (dos Santos and
Sá-Correia, 2011). The particular involvement of phosphate sig-
naling and transport in quinine tolerance was also studied, with
indications that phosphate-starvation responsive genes are acti-
vated in response to quinine. P. falciparum homology searches
identified several relevant functional homologs in the parasite,
suggesting that the quinine targets identified in the yeast model
are good candidates to be transposed and explored in a par-
asitic context (Figure 4A). The transcriptomic analysis of the
yeast early response to quinine unveiled glucose de-repression
reprogramming (Figure 4A; dos Santos et al., 2009). Moreover,
quinine was shown to inhibit the uptake of glucose into yeast
cells following a competitive inhibition kinetic model. These find-
ings have an important parallel in the malaria parasite, where
glucose uptake is vital and mediated by PfHT1, a single-copy trans-
porter homologous to yeast’s hexose HXT transporters (Woodrow
et al., 1999; Saliba et al., 2004). The mechanism by which qui-
nine enters and accumulates in the parasitic cell is not clear, but
it is believed that a carrier-mediated import system is involved
(Sanchez et al., 2008). The yeast results suggested PfHT1 as
a quinine target, possibly involved in quinine uptake into the
cell and depriving the parasite of glucose (dos Santos et al.,
2009).

Yeast has also been used as model for mechanistic studies with
other antimalarial drugs, namely mefloquine (Delling et al., 1998),
chloroquine (Emerson et al., 2002), artemisinins (Li et al., 2005;
Alenquer et al., 2006), and quinidine (Delling et al., 1998; Nunes
et al., 2001; Felder et al., 2002; Tenreiro et al., 2002; Vargas et al.,
2004).

GENOME-WIDE RESPONSES AND DETERMINANTS OF RESISTANCE TO
ANTICANCER DRUGS
Anticancer drugs have been the subject of several yeast phar-
macogenomics studies. For example, at least three genome-wide
screens for cisplatin susceptibility have been performed using
yeast deletion collections (Wu et al., 2004; Huang et al., 2005;
Liao et al., 2007). The vacuolar H+-ATPase (V-ATPase) and its
action in cytoplasmic pH maintenance was shown to have an
important role in sensitivity to this drug (Liao et al., 2007), an
important result given how cisplatin cytotoxicity is potentiated
by synergistic treatment with a V-ATPase inhibitor in human cell
lines (Murakami et al., 2001). In a demonstration of how results
obtained in the yeast model can be extended to human cells,
Schenk et al. (2001, 2002) identified SKY1 as a cisplatin sensitiv-
ity gene whose disruption conferred cisplatin resistance in yeast;
later work in human ovarian carcinoma cell lines showed that
inactivation of its human homolog, SRPK1, induces cisplatin resis-
tance as well. The paradigmatic anticancer drug imatinib mesylate
(Glivec, Novartis) was also studied in yeast. Imatinib is a selec-
tive tyrosine kinase inhibitor used in chronic myeloid leukemia
with outstanding results, but drug resistance is an arising prob-
lem (Quintás-Cardama et al., 2009; Volpe et al., 2009). Fifty-one
genes emerged as determinants of resistance to imatinib from the
screening of a yeast deletion mutant collection, including 83%
human homologs (dos Santos and Sá-Correia, 2009). Imatinib
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was also shown to act as a potent inhibitor of the highly conserved
yeast V-ATPase, both in vivo and in vitro (dos Santos and Sá-
Correia, 2009; dos Santos and Sá-Correia, unpublished results),
suggesting that vacuolar function is a novel imatinib target. In
fact, V-ATPase activity has been shown to be necessary to limit
the deleterious effects of several drugs in yeast, namely the geno-
toxic tirapazamine and cisplatin, weak acids, mancozeb, toxins,
and others (Parsons et al., 2004; Hellauer et al., 2005; Liao et al.,
2007; Mira et al., 2009; Dias et al., 2010). However, in none of
these studies vacuolar acidification was affected directly, which
is in striking contrast with imatinib, where a clear loss of vac-
uolar acidification in cells treated with this drug was reported
(dos Santos and Sá-Correia, 2009). Quantitative- and phospho-
proteomic analyses identified 18 proteins altered at the content
level or displaying imatinib-repressed phosphorylation (dos San-
tos and Sá-Correia, unpublished results). All these proteins have
human homologs and are mainly involved in glycolytic pathways,
translation, and protein folding. A role for HSP70 proteins in the
response to imatinib in yeast, as well as decreased glycolysis as a
metabolic marker of imatinib action were suggested, consistent
with findings from studies in human cell lines (Nowicki et al.,
2003; Ferrari et al., 2007; Pocaly et al., 2008; Kominsky et al.,
2009). The previously proposed effect of imatinib as an inhibitor
of V-ATPase function was supported by the identification of an
under-expressed subunit of this complex in imatinib-stressed yeast
cells (Figure 4B).

YEAST TOXICOGENOMICS TOOLS APPLIED TO OVERCOME
FERMENTATION-RELATED STRESSES RELEVANT IN
INDUSTRIAL BIOTECHNOLOGY
S. cerevisiae has been used for millennia in fermentation processes
behind wine, beer, and spirits production. Its remarkable capabil-
ity of carrying out alcoholic fermentation very efficiently, leading
to the production of very high ethanol titers, has also launched S.
cerevisiae as a preferable host for the production of bio-ethanol,
as a renewable biofuel. Furthermore, genetic engineering and
synthetic biology methods have allowed the development of S.
cerevisiae strains to be used as cell factories for the production of a
number of interesting biomolecules, of biotechnological and phar-
maceutical interest. In all these industrial processes, yeast cells have
to cope with stressful environmental conditions, including chemi-
cal stress coming from the raw material composition, and from the
accumulation of ethanol, weak acids, and other toxic byproducts
of the yeast metabolism (Teixeira et al., 2011).

Toxicogenomics tools have been used with success to character-
ize the toxicological outcome of yeast exposure to fermentation-
related chemical stress inducers. Such an approach has the poten-
tial to elucidate the mechanisms of yeast tolerance to fermentation
stressors, thus providing clues on how to improve process con-
ditions and to engineer yeast strains to increase fermentation
yield. A particularly good example of the use of such an approach
can be found in the efforts to improve bio-ethanol production
process whose efficiency is compromised by several stress factors
throughout fermentation. First generation bio-ethanol produc-
tion relies on the use of very high gravity (VHG) media, highly
enriched in fermentable carbon sources, which induce osmotic
stress in the beginning of the fermentation process. In recent

years, the interest in the production of bio-ethanol from agri-
cultural lignocellulosic residues, the so-called second-generation
bio-ethanol, has gained strength. These residues appear to be
preferable for a sustainable large-scale production of bio-ethanol
since they are largely available and do not compete with food
resources (van Maris et al., 2006). However, in lignocellulosic
hydrolysate fermentations, the first phase of the process is hin-
dered by the presence of toxic concentrations of inhibitory side-
products of the raw material hydrolysis process, including acetic
acid, furfural, and vanillin. During the later stages of alcoholic fer-
mentation for first or second-generation bio-ethanol production,
the accumulation of toxic concentrations of ethanol and weak
organic acids are responsible for lower fermentation productivity
and, eventually, for fermentation arrest, limiting the final ethanol
concentration achieved. Having this in mind, transcriptomics,
expression proteomics, and metabolomics approaches have been
used to study the expression and metabolic profile of yeast cells
exposed to sudden stress induced by ethanol (Alexandre et al.,
2001; Hirasawa et al., 2007; Stanley et al., 2010), weak acids
(Mira et al., 2009, 2010a; Hasunuma et al., 2011), high sugar con-
centrations (Erasmus et al., 2003; Pham et al., 2006), but also
throughout industrial or industrial-like fermentation processes
(Devantier et al., 2005; Marks et al., 2008; Ding et al., 2009; Li
et al., 2010). Using such toxicogenomics tools, the involvement
of three signaling pathways mediated by the transcription fac-
tors War1 (Schüller et al., 2004), Haa1 (Mira et al., 2010a), and
Rim101 (Mira et al., 2009) in the yeast response to weak acids
was recently characterized. Weak acid toxicity mechanisms are
additionally interesting in this context, given that they are widely
used as food-preservatives against spoilage yeasts and molds and
because S. cerevisiae is arising as an interesting alternative host
for the industrial production of carboxylic acids, being more
tolerant to their toxicity than currently used bacterial systems
(Abbott et al., 2009). In this context, the use of transcriptomic
and chemogenomic (Mollapour et al., 2004; Schüller et al., 2004)
screenings focused on the food preservative sorbate has further
highlighted the importance of vacuolar acidification and redox
homeostasis for weak acid stress resistance. Clues on the mech-
anisms of weak acid toxicity have also come from metabolomics
approaches (Hasunuma et al., 2011; Lourenço et al., 2011). For
example, in a S. cerevisiae strain, modified through metabolic
engineering tools to be able to ferment xylose, metabolomics
data revealed that metabolites involved in the pentose phosphate
pathway (PPP) were significantly accumulated by the addition of
acetate during xylose fermentation, suggesting that acetic acid
slows down the flux of the pathway (Hasunuma et al., 2011).
Based on this result, a gene encoding a PPP-related enzyme was
overexpressed in the xylose-fermenting yeast, conferring increased
ethanol productivity in the presence of acetic acid (Hasunuma
et al., 2011).

A particularly successful approach, in this context, has proven
to be the use of the yeast deletion mutant collections to identify the
determinants of yeast resistance to all these stresses, individually,or
in combination. This chemogenomics strategy was used to unveil
the global mechanisms and determinants of yeast resistance to
stresses occurring during alcoholic fermentation, in particular to
high ethanol (Fujita et al., 2006; van Voorst et al., 2006; Teixeira
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FIGURE 4 | Proposed model for the action of (A) quinine and (B) imatinib

in S. cerevisiae cells. These models result from the integration of
chemogenomics, transcriptomics and proteomics approaches (dos Santos
and Sá-Correia, 2009; dos Santos et al., 2009; dos Santos and Sá-Correia,
2011; dos Santos and Sá-Correia, unpublished results), suggesting new
targets and modes of action for quinine and imatinib that possess extensive

functional conservation in the organisms of interest, Plasmodium falciparum,
and human cells, respectively. The most important results are the
identification of PfHT1 as a potential target of quinine, as well as the vacuolar
H+-ATPase (V-ATPase) as a target of imatinib (see Genome-wide Responses
and Determinants of Resistance to Antimalarial Drugs and Genome-wide
Responses and Determinants of Resistance to Anticancer Drugs).

www.frontiersin.org April 2012 | Volume 3 | Article 63 | 16

http://www.frontiersin.org
http://www.frontiersin.org/Toxicogenomics/archive


dos Santos et al. Yeast toxicogenomics

et al., 2009a; Yoshikawa et al., 2009), high glucose (Teixeira et al.,
2010b), and acetic acid (Mira et al., 2010b) concentrations. Based
on these results, the aquaglyceroporin Fps1 was proposed as a
major determinant of yeast resistance to ethanol and shown to
play a role in reducing intracellular ethanol accumulation. The
manipulation of FPS1 expression levels was found to result in
an increase of the final concentration of ethanol produced under
conditions close to high gravity industrial fermentation (Teix-
eira et al., 2009a). The chemogenomics analysis of acetic acid
stress resistance has further highlighted, among other things, the
importance the potassium concentration in this process, suggest-
ing that the control of potassium levels in the fermentation broth
may be crucial to increase fermentation performance (Mira et al.,
2010b).

Since it is the combination of all fermentation stresses, and
not their individual effect, that affects yeast fermentative capac-
ity, a recent study (Pereira et al., 2011) focused on the integration
of several chemogenomics studies to identify the few genes that
are able to increase yeast tolerance to: (1) ethanol (Fujita et al.,
2006; van Voorst et al., 2006; Teixeira et al., 2009a; Yoshikawa
et al., 2009), acetate (Mira et al., 2010b), and high glucose (Teixeira
et al., 2010b) concentrations, (2) ethanol (Fujita et al., 2006; van
Voorst et al., 2006; Teixeira et al., 2009a; Yoshikawa et al., 2009),
acetate (Mira et al., 2010b), and vanillin (Endo et al., 2008), and (3)
ethanol (Fujita et al., 2006; van Voorst et al., 2006; Teixeira et al.,
2009a; Yoshikawa et al., 2009), acetate (Mira et al., 2010b), and
furfural (Gorsich et al., 2006). The effect of the deletion of these
genes in VHG or biomass fermentation performance, respectively,
was evaluated. The identified genes, including BUD31, HPR1,
PHO85, VRP1, and YGL024w, found to contribute to improved
performances in VHG, and ERG2, PRS3, RAV1, RPB4, and VMA8,
required for improved performance in wheat straw hydrolysate fer-
mentations, stand as preferential targets for genetic engineering
in order to generate more robust industrial yeast strains, bet-
ter suited for industrial bio-ethanol production (Pereira et al.,
2011).

CONCLUDING REMARKS
Functional genomics approaches applied to the simple single cell
model S. cerevisiae have deeply modified the understanding of
drug/chemical stress resistance and response mechanisms. The
gathered data reinforces the idea that observations made in yeast
are very likely to have a parallel in more complex eukaryotes, vali-
dating the use of this model organism in the context of toxicoge-
nomics. The extrapolation of these results to higher eukaryotes,
which has been so far carried out with relative success, is obviously
of paramount importance.

This article emphasizes how yeast toxicogenomics enables a
rapid and reproducible assessment of the mechanisms of toxicity
of, and resistance to, many chemicals, requiring small amounts of
growth medium and compound under testing, leading to reduced
costs and reduced toxic wastes, effectively contributing to reduce,
refine, and replace (3R) the use of animals in toxicological testing
of pesticides (Gad, 1990). However, and in spite of these numer-
ous advantages, yeast is not without its drawbacks. The simplicity
of yeast is a disadvantage, since unicellularity is not conducive to

study complex phenomena and cannot provide data on organ or
tissue-specific toxicity. Moreover, studies in yeast do not provide
accurate indicators for determination of toxic doses of a com-
pound, since S. cerevisiae is usually much more tolerant to high
doses of toxicants than higher eukaryotic cells. This is likely due
to the barrier presented by the cell wall as well as the expression of
numerous active efflux pumps and detoxification mechanisms that
are highly abundant in yeast cells, who together make it virtually
impossible to know the real concentration that is acting on the tox-
icant targets (Sá-Correia et al., 2009; Smith et al., 2010). Another
important limitation is the possible absence of adequate molecu-
lar targets in yeast, since many cytotoxic compounds act in their
target organisms via physiological mechanisms that do not exist
in yeast (Foury, 1997; Hohmann and Mager, 1997; Parsons et al.,
2003; Mager and Winderickx, 2005). Furthermore, the finding of
homology between yeast and human genes does not necessarily
imply that they are orthologs (Foury, 1997; Heinicke et al., 2007),
demanding experimental verification of which (if any) is the true
homolog of interest.

Nonetheless, the exploitation of high-throughput technologies
and the global molecular analyses of the effects of drugs and
other chemicals using the yeast model are revealing previously
unsuspected on unknown molecular targets or adverse effects. It
has proven a valuable first platform for the screening and pre-
diction of the toxicological outcome of new or still unstudied
drugs/chemicals and for the study of toxicity mechanisms. These
first analyses are very much facilitated by the exploitation of the
yeast model, given that signaling and regulatory pathways are
highly conserved and may uncover the interactions of a chem-
ical with its expected and unexpected gene/protein/metabolite
targets. The use of yeast, together with other model organisms,
and cross-species comparison of important genes/proteins in the
toxicological response will facilitate the understanding of the
response of an organism to toxic insults at a systems level. This
strategy is expected to allow the description of all toxicological
interactions occurring in a living system under chemical stress
and the prediction of action of similar compounds in other
species.

In conclusion, and based on the results reviewed in this paper,
we believe that yeast stands out as an unavoidable and preferen-
tial system for toxicogenomics studies, through a combination of
large-scale experimental approaches and expertise with biological
and computational tools.
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Drosophila melanogaster is an excellent model animal for studying the neurotoxicology
of lead. It has been known since ancient Roman times that long-term exposure to low
levels of lead results in behavioral abnormalities, such as what is now known as atten-
tion deficit hyperactivity disorder (ADHD). Because lead alters mechanisms that underlie
developmental neuronal plasticity, chronic exposure of children, even at blood lead levels
below the current CDC community action level (10 μg/dl), can result in reduced cogni-
tive ability, increased likelihood of delinquency, behaviors associated with ADHD, changes
in activity level, altered sensory function, delayed onset of sexual maturity in girls, and
changes in immune function. In order to better understand how lead affects neuronal plas-
ticity, we will describe recent findings from a Drosophila behavioral genetics laboratory, a
Drosophila neurophysiology laboratory, and a Drosophila quantitative genetics laboratory
who have joined forces to study the effects of lead on the Drosophila nervous system.
Studying the effects of lead on Drosophila nervous system development will give us a
better understanding of the mechanisms of Pb neurotoxicity in the developing human
nervous system.

Keywords: Drosophila, toxicology, toxicogenomics, behavioral toxicology

PART 1: QTL MAPPING: BEHAVIORS AND TOXINS
BEHAVIOR AS A QTL ENDPOINT FOR TOXICOLOGY STUDIES
There are two main reasons why behavioral assays are so useful in
detecting effects of toxins. First is their richness. Behavior can be
described as an ongoing, generally complex, spatio-temporal pat-
tern; subtle changes in that pattern can signal the action of very low
doses of a toxin well before there are dramatic changes in organ
systems: in children overt clinical encephalopathy is associated
with blood lead levels of 80–100 μg/dl, while changes in intelli-
gence quotient (IQ) and learning occur at or below a tenth of that
dose (UNEP, 2010). Second is that even subtle toxin-dependent
changes in behavior can have consequences for well-being which
makes them meaningful and relevant.

Since chronic developmental exposure to toxins affects assem-
bly of the neuronal and hormonal systems mediating adult
behavior, their effects are generally more pronounced than
that following acute adult exposure. Developmental exposure
to sub-lethal and sub-teratogenic levels of toxins may alter or
degrade physiological and behavioral mechanisms in a quanti-
tative manner. Examples include effects of low doses of lead on
behavior in fruit flies (Hirsch et al., 2003), cognitive effects of
polychlorobiphenyls in people (Faroon et al., 2000), lead effects
on cognitive function in people (Counter et al., 1998), and
the effects of aluminum on adult behavior and developmental
rate of their offspring in mice (Abu-Taweel et al., 2012). Once

toxin-dependent behavioral changes are observed, the next steps
may include study of their underlying physiological effects, for
example, effects of lead on synaptic function in fruit fly larvae (He
et al., 2009).

The bulk of what is known about the effects of various toxins is
based on studies focusing on a single toxin; combinations of toxins
can have additive, protective, or synergistic effects (Rai et al., 2010;
Singh et al., 2010).

DROSOPHILA BEHAVIORAL QTLs
Quantitative trait locus (QTL) mapping is used for unbiased
genome-wide screens to identify genetic loci causing variation in
a trait, but they are most efficient when large numbers of individ-
ual genomes can be assayed. The large sample sizes required for
precise QTL analysis favors model organisms that can be bred in
the lab easily and inexpensively, and traits that are simple to assay
yet rich in their information content and thus provide sensitive
measures of effects of toxins are especially desirable.

Drosophila is an ideal model organism for both efficiency and
genetic analysis, since they are easy and relatively inexpensive
to breed and maintain in large numbers, and have a surprising
degree of genetic homology to mammals (Mackay and Anholt,
2006). Because of the small physical size of Drosophila many phe-
notypic traits can be difficult to assay rapidly or quantitatively.
Exceptions include very simple traits such as bristle number, or
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those easy to quantify such as number of offspring; others may
be easy to automate given an investment in the required technical
support.

Automated phenotypic assays in Drosophila tend to favor either
gene expression during embryogenesis, where molecular marker
extraction and detection can be automated, or locomotor behavior
which, by using Drosophila Activity Monitors (DAMs), can be
recorded relatively easily for large numbers of flies over periods
of many days (Figure 1A; TriKinetics Inc., Waltham, MA, USA;
Rosato and Kyriacou, 2006; Rosato et al., 2006).

The richness of the data gathered using DAMs makes it an ideal
automated assay for genetic analysis of toxins. DAM data always
provides, at a minimum, an estimate of mean locomotor activity
level for the duration of the experiment. However, by measuring
locomotor activity under the influence of a controlled light–dark
cycle the photosensitivity pattern of activity can be analyzed. Using
regulated light–dark cycles allows for determining the distribution
of activity between the two phases of the photoperiod; the effect
of light–dark cycle length other than 24 h; the amplitude of “daily”
activity rhythms, the percentage of flies that show significant daily
rhythms; and the timing, length, and distribution of sleep periods
(Shaw et al., 2000).

Finally, by replacing light–dark cycles with constant darkness
the free-running circadian period can be estimated. This provides
a direct measure of the output of the biological circadian pace-
maker driving the activity rhythm. Toxins that alter the circadian
periodicity pattern of locomotor activity are likely, therefore, to
perturb the circadian synchronization of many different biological
functions regulated by a common central circadian clock. Tempo-
ral analysis of behavioral effects of toxins could also suggest the
presence of daily rhythms in sensitivity to specific toxins, or in the
manifestation of toxic effects. In humans, certain forms of cancer
chemotherapy are more effective when administered at specific
times of day (Levi et al., 2010; Li et al., 2010); other toxins may
also vary in their effects during the rhythm of daytime sunlight
and nighttime darkness.

In short, DAMs allow for analysis of toxic effects on both the
level of locomotor activity per se and on its temporal pattern of
expression (von Mayersbach, 1975; Mayersbach, 1976).

DROSOPHILA ACTIVITY MONITORS AND ACTIVITY ASSAYS
Behavioral toxicogenetic analysis is a relatively new application
of DAM technology. DAMs were originally devised for genetic
analysis of the circadian oscillator controlling locomotor activ-
ity. Locomotor activity in fruit flies, similar to running wheel
activity in rodents, is an excellent reporter phenotype for under-
lying circadian clock function (Takahashi et al., 2008). Since
precise analysis of circadian rhythms require frequent, continuous
long-term data sampling for time-series estimation of periodic
oscillations in the 24-h range, DAMs are designed to produce
a data-rich profile of the locomotor activity of individual fruit
flies. Flies are housed, usually singly, in a 5 mm × 60 mm
transparent tube with enough food to last for approximately
2 weeks. A single monitor holds 32 tubes, and a photo-
beam in the center of each tube tracks locomotor activity as
numbers of beam-crossing per unit of time, usually 10-min
intervals.

FIGURE 1 | (A) Drosophila Activity Monitor with glass tubes containing one
adult fly, food at the far end and a cotton plug visible on the other end of
each tube. (B) A behavioral QTL at region 30AB of Drosophila melanogaster
chromosome two, for changes in activity level induced by developmental
exposure to lead.

Drosophila Activity Monitors permit a variety of experimen-
tal designs. It is relatively easy to assay developmental effects of
toxins by adding them to the fly culture food during egg, lar-
val, or pupal development, and then monitoring adults. Effects
of toxins can also be assayed acutely by adding them to the food
in the activity monitor tubes. A single DAM, approximately 5′′
long, 4′′ high, and 3′′ deep holds 32 flies so one refrigerator-
sized incubator can house thousands of flies per experiment.
The efficiency of DAMs facilitates experimental analysis of sex
differences, dose–response curves, sensitive periods during devel-
opment, interaction among multiple toxins, trans-generational
effects, and various types of genetic analysis including behavioral
QTL. It is also just as easy to monitor survival time of individual
flies to the minute in assays of lethal toxic effects and degrees of
resistance to them.

BEHAVIORAL QTL ANALYSIS OF DEVELOPMENTAL
EXPOSURE TO TOXINS
We have identified a toxin-induced behavioral QTL by assaying
locomotor activity levels for a set of recombinant inbred (RI) fly
lines raised on medium containing 250 μM lead acetate or control
medium made with 250 μM sodium acetate. The variation among
the RI fly lines in the difference in mean activity level per line
between the two treatments indicated a behavioral QTL in the

Frontiers in Genetics | Toxicogenomics May 2012 | Volume 3 | Article 68 | 24

http://www.frontiersin.org/Toxicogenomics_/
http://www.frontiersin.org/Toxicogenomics_/archive


“fgene-03-00068” — 2012/5/2 — 13:18 — page 3 — #3

Hirsch et al. Drosophila as a model for toxicogenomics

30AB region of the second Drosophila chromosome (Figure 1B;
Hirsch et al., 2009). This QTL was independently identified as
the site of an expression QTL (eQTL) in response to the same
lead treatment in the same set of RI lines (RILs). Using the gene
expression assay, we further showed the 30AB eQTL to function
as a master modulatory regulator of approximately 70 additional
eQTLs throughout the genome in response to developmental lead
exposure (Ruden et al., 2009). Current research underway in our
labs will map these behavioral QTLs in response to developmental
lead exposure more precisely.

PART 2: SYNAPSES AND Ca2+ REGULATION
IN DROSOPHILA
Early findings suggested that chronic Pb2+ exposure could pro-
duce its behavioral effects by altering synaptic development.
Mammalian studies reported a variety of alterations in synaptic
morphology and physiology in the brains of animals exposed to
Pb2+ during development (Petit and LeBoutillier, 1979; Kiraly
and Jones, 1982; Altmann et al., 1993). Today, the synapse remains
a focus for studying the effects of toxins on brain develop-
ment. Here the Drosophila larval neuromuscular junction (NMJ)
offers a distinct advantage since one can compare the same,
identified synapse in controls and treated animals (Figure 2).
Note that this neuromuscular system is unique even amongst
invertebrates because there is a stereotypic pattern of neuromus-
cular connections where both the presynaptic (motor neuron)
and postsynaptic cells (muscle fiber) can be uniquely identi-
fied (Keshishian et al., 1996). These neuromuscular synapses have
been used to demonstrate the effects of second messengers, cell-
adhesion molecules and their modulators, and impulse activity on
synaptic development (Budnik, 1996; Budnik et al., 1996; Davis
et al., 1996).

We found that indeed one could detect synaptic abnormal-
ities resulting from chronic Pb2+ exposure at the Drosophila
larval NMJ. Initial studies found that the motor terminal formed

by motoneuron RP3 on Muscle Fiber 6 (MF6) showed greater
variability in size for animals raised in media containing Pb2+
compared to controls (Morley et al., 2003). One could imagine
that increasing the variability of synaptic size could result in a loss
of fine-tuning of synaptic function; this effect, if seen in the brain,
would likely be detrimental to circuit dynamics and behavior. It
is noteworthy that this synaptic change was subtle and it likely
would have been difficult to detect when making comparisons
among a large population of synapses in the mammalian brain.
Given that the behavioral effects of toxins, such as Pb2+, can be
subtle, it seems reasonable that the effects on synapses might also
be small.

Pb2+ affects proteins that bind Ca2+ including those that regu-
late the intracellular Ca2+ concentration ([Ca2+]i), such as Ca2+
channels and Ca2+ pumps. Changes in Ca2+ regulation could
be particularly important for the synapse since [Ca2+]i controls
multiple steps in synaptic development; e.g., growth cone guid-
ance (Jin et al., 2005), synapse formation (Xu et al., 2009), and
synapse elimination and stabilization (Pratt et al., 2003; Lohmann
and Bonhoeffer, 2008). In addition, altered Ca2+ regulation could
influence transmitter release (Zucker, 1996) and both long-term
and short-term forms of synaptic plasticity at the mature synapse
(Zucker and Regehr, 2002; MacDonald et al., 2006).

Acute Pb2+ exposure blocks Ca2+ channels. This has been
demonstrated for a variety of voltage-dependent Ca2+ channels
in both invertebrates (Audesirk and Audesirk, 1989) and mam-
mals (Evans et al., 1991). The acute application of micromolar
concentrations of Pb2+ can reduce the activity of the plasma mem-
brane Ca2+ ATPase (PMCA) in humans and rats (Mas-Oliva, 1989;
Sandhir and Gill, 1994a,b); however the PMCA can be stimulated
by low Pb2+ concentrations (Mas-Oliva, 1989; Campagna et al.,
2000). In addition, chronic in vivo Pb2+ exposure has been found
to produce a persistent inhibition of PMCA activity in human ery-
throcytes (Campagna et al., 2000) and rat synaptosomes (Sandhir
and Gill, 1994a,b).

FIGURE 2 | Ca2+ transients recorded from identified synaptic

terminals in control and Pb2+-exposed animals. (Left) The RP3 motor
terminals on MF6 were filled with OGB-1 in control larvae and in those
exposed to Pb2+. The arrows point to two typical synaptic boutons
where Ca2+ transients were measured. (Right) Typical Ca2+ transients
produced by single action potentials (AP) and AP trains for control and

Pb2+-exposed boutons. For single APs, the Ca2+ transients were
similar for control and Pb2+-exposed synaptic boutons; however, the
Ca2+ transients produced by AP trains were larger and decayed more
slowly in Pb2+-exposed boutons compared to controls. Calibration:
single Ap – 20% �F/F, 0.4 s; AP train – 20% �F/F, 2 s. Adapted from
He et al. (2009).
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We studied the effect of chronic Pb2+ exposure on presynaptic
Ca2+ regulation at the RP3-to-MF6 synapse in Drosophila lar-
vae (He et al., 2009). Ca2+ indicators were loaded in these motor
terminals and we measured the changes in [Ca2+]i produced by
single action potentials and action potential trains (Figure 2). We
found that chronic exposure to Pb2+ resulted in a greater increase
in [Ca2+]i during trains of action potentials and a slower decay
of postsynaptic [Ca2+]i at the end of the train. This is likely due
to a decrease in the activity of the PMCA and it provides an inter-
esting parallel to the effect of Pb2+ exposure on the PMCA in
mammals. The direct effect of this large increase in [Ca]i was
that the Pb2+-exposed animals showed greater synaptic facili-
tation. This was consistent with the residual Ca2+ model for
synaptic facilitation (Zucker and Regehr, 2002) and with mam-
malian studies showing that knocking down expression of the
PMCA resulted in enhanced synaptic facilitation (Empson et al.,
2007). In that study, reduced PMCA expression also produced
changes in neuronal structure (Empson et al., 2007) and it may
be that the Pb2+-induced changes in the structure of the lar-
val NMJ resulted from reduced PMCA activity and altered Ca2+
regulation.

In summary, identified NMJs in Drosophila larvae allow for
the detection of subtle changes in synaptic structure and function
resulting from developmental exposure to toxins. Our evidence
suggests that chronic Pb2+ exposure produces parallel synaptic
changes in Drosophila and mammals; this would not be sur-
prising given that chemical synapses found in vertebrates and
invertebrates are very similar.

PART 3: GENETICAL GENOMICS STUDIES
IN DROSOPHILA
Developmental neurotoxicology research requires an approach
that reduces the candidate toxin-regulated genes to a manage-
able number. Fortunately, a new multi-dimensional strategy has
been developed, called genetical genomics, which identifies master
modulatory loci that regulate the expression of hundreds of other
genes (Jansen and Nap, 2001; Broman, 2005; de Koning and Haley,
2005; Li and Burmeister, 2005; Rockman and Kruglyak, 2006).
Genetical genomics combines two methodologies, microarray-
based whole transcriptome analyses and extracting QTLs by using
RILs. Global gene expression levels are determined for each RIL,
and then QTL mapping software (e.g., R/QTL; Broman et al., 2003)
is used to find above-threshold statistical associations between
specific chromosomal loci and transcript levels for all the genes
measured on the microarrays. With QTL analysis, we can iden-
tify the specific chromosomal loci that regulate genes, which
are referred to as eQTLs (Mueller et al., 2006; West et al., 2007;
Majewski and Pastinen, 2011; Zhang et al., 2012).

Our research is the first that combines genetical genomics
with toxicogenomics, an experimental approach we call “genet-
ical toxicogenomics” (Ruden et al., 2009). Li et al. (2008) showed
that adding environmental perturbations in genetical genomics
studies, as we did in our study (Ruden et al., 2009), allows
toxin-response genes to be identified. We believe that this
genetical toxicogenomics approach will drive the field of tox-
icology and aid in understanding the effects of toxins such
as lead.

Expression QTL analyses were performed for all ∼18,000 genes
and other microarray features by treating the expression level of
each gene as a quantitative trait. The genetics of gene expression
in RILs can be mapped as eQTLs. Flies from each of 75 RILs
were fed, from egg to adult, either control food or lead-treated
food (made with 250 μM lead acetate). RNA expression anal-
yses of whole adult male flies (5–10 days old) were performed
with Affymetrix Dros2 whole genome arrays (18,952 probe sets).
Loci that are linked to a gene are called locally acting or cis-
eQTL, whereas loci that are distantly acting are called trans-eQTLs
(Broman, 2005).

The first genetical genomics study to identify genes with sig-
nificant GxE interactions was done in Caenorhabditis elegans;
the authors identified a group of genes with trans-eQTL that
are induced by heat shock, which they called plastic QTL (Li
et al., 2006). Smith and Kruglyak (2008) recently performed a
detailed analysis of GxE-eQTL in yeast (which they call “gxeQTL”)
grown in either glucose or ethanol as the sole carbon source.
Others have identified GxE interactions in which the environ-
ment is a different tissue (e.g., brain vs. liver; Hovatta et al.,
2007). In our studies, among the 1,389 genes with cis-eQTL,
there were 405 genes unique to control flies and 544 genes unique
to lead-treated ones (440 genes had the same cis-eQTLs in both
samples).

There were 2,396 genes with trans-eQTL that mapped to 12
major hotspots that met statistical significance (p < 0.05, chi-
squared test, based on permutation analyses, on 5-cM windows).
Unexpectedly, we identified two hotspots, one located on the sec-
ond chromosome (polytene region 30AB) and one on the third
chromosome (polytene region 73D), which co-regulate 33 genes,
all of which are induced by lead (Figure 3). We have shown by QTL
analysis that marker locus 30AB contributes to lead-dependent
changes in locomotion, which suggests that the genes in the 30AB
hotspot can be used as a functional test to identify both the lead-
dependent trans-regulatory factor and the common cis-regulatory
motifs (Hirsch et al., 2009). We propose that a trans-regulator
located at 73D increases expression of its target genes when it binds
lead, regardless of the genotype of the 73D hotspot. In contrast,
a second trans-regulator located at 30AB increases expression of
the co-regulated target genes only when it has the ORE genotype
(Figure 3).

This model can explain the data, but other explanations are
possible. For example, the putative trans-regulator could increase
the stability of the mRNA of the target genes, or there could be
an indirect effect on steady-state mRNA levels. MEME (Multiple
Em for Motif Elicitation) analyses of the genes regulated by the
30AB and 73D trans-regulators identified both conserved proxi-
mal promoter and 3′-untranslated region (UTR) sequences (data
not shown). Fine-mapping of the genes that underlie the QTLs and
molecular and biochemical analyses should enable us to determine
the mechanism involved.

FUTURE STUDIES IN DROSOPHILA
NEUROTOXICOLOGY
In this review, we describe recent results from several laborato-
ries that are collaborating on studying the effects of lead on the
developing Drosophila nervous system. The Possidente and Hirsch
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FIGURE 3 | Genetical genomics results of Drosophila recombinant

inbred lines with developmental lead exposure. (A) The x -axis is the
chromosome locations of the cis- and trans-eQTLs in centimorgans (cM).
The y -axis is the location of the transcript in mega-base pairs (Mbp). The
eQTLs in control (red) and the eQTLs treated (black) are indicated as dots
and crosses, respectively. The locations of the control trans-eQTL are
shown on top in red and the lead-treated trans-eQTL locations are shown in
black letters. Many of the eQTL at 70D in the control flies shift to 30AB in
the lead-treated flies (red arrow at top). (B) The trans-activator encoded by
the 73D hotspot is required for basal transcription of the 33 genes
co-regulated by both 73D and 30AB master modulatory genes. (C) In the
presence of lead, the trans-regulator encoded by the 73D hotspot further
increases steady-state mRNA levels when it has either the ORE or 2B
genotype. However, the trans-regulator encoded by the 30AB hotspot
further increases steady-state mRNA levels for the 33 target genes only
when it has the ORE genotype. Adapted from Ruden et al. (2009).

laboratories study the effects of lead on behavioral quantitative
traits. The Lnenicka laboratory studies the effects of lead on the
NMJ in the larvae. The Ruden, Lu, and Garfinkel laboratories study
the effects of lead on gene expression using quantitative genetics
techniques.

Further innovations to the field of genetical genomics will
make use of next-generation RNA sequencing (RNA-seq) rather
than gene expression microarrays. RNA-seq will allow us not
only to accurately determine gene expression levels, but also to
analyze alternative splicing products of genes, thereby adding a
new dimension to these studies. Since over 90% of human genes
and a similar percentage of Drosophila genes are alternatively
spliced, RNA-seq could provide some exciting and novel findings
about environmental regulation of alternative mRNA splicing.
The potential for RNA-seq to supplant microarrays requires, how-
ever, the development of robust statistical tools for analyzing the
resulting huge datasets.

Adding metabolomics profiling to these studies will allow us
to identify metabolite QTL (mQTL) that are specific for lead. To
our knowledge mQTL analyses have never been conducted in any
organism, although genome-wide association studies combined
with metabolic profiling were conducted in a recent human study
(Prakash, 2011; Suhre et al., 2011). The human study identified 37
genetic loci associated with blood metabolite concentrations, of
which 25 showed effect sizes of 10–60% which is extraordinarily
high for genome-wide association studies (Prakash, 2011; Suhre
et al., 2011).

We are now entering the stage of understanding the complex
genetic pathways that are affected by developmental lead exposure.
The sophisticated genetic analyses that are possible in Drosophila
will soon allow us to manipulate these pathways to better under-
stand how they are affected by lead. The sequencing of several
Drosophila strains and studying the effects of lead on neurode-
velopment in these strains will allow us to better understand the
evolution of lead-sensitive pathways. Together, these studies will
provide a better understanding of the health effects of lead in
humans.

ACKNOWLEDGMENTS
This work was supported by NIH R01 grants ES012933 to Douglas
M. Ruden, and DK071073 to Xiangyi Lu.

REFERENCES
Abu-Taweel, G. M., Ajarem, J. S., and

Ahmad, M. (2012). Neurobehavioral
toxic effects of perinatal oral exposure
to aluminum on the developmen-
tal motor reflexes, learning, mem-
ory and brain neurotransmitters of
mice offspring. Pharmacol. Biochem.
Behav. 101, 49–56.

Altmann, L., Weinsberg, F., Sveins-
son, K., Lilienthal, H., Wiegand, H.,
and Winneke, G. (1993). Impairment
of long-term potentiation and learn-
ing following chronic lead exposure.
Toxicol. Lett. 66, 105–112.

Audesirk, G., and Audesirk, T.
(1989). Effects of in vitro lead

exposure on voltage-sensitive cal-
cium channels differ among cell
types in central neurons of Lym-
naea stagnalis. Neurotoxicology 10,
659–669.

Broman, K. W. (2005). Mapping expres-
sion in randomized rodent genomes.
Nat. Genet. 37, 209–210. [see com-
ments].

Broman, K. W., Wu, H., Sen, S., and
Churchill, G. A. (2003). R/qtl: QTL
mapping in experimental crosses.
Bioinformatics 19, 889–890.

Budnik, V. (1996). Synapse matu-
ration and structural plasticity at
Drosophila neuromuscular junctions.
Curr. Opin. Neurobiol. 6, 858–867.

Budnik, V., Koh, Y. H., Guan, B.,
Hartmann, B., Hough, C., Woods,
D., and Gorczyca, M. (1996). Reg-
ulation of synapse structure and
function by the Drosophila tumor
suppressor gene dlg. Neuron 17,
627–640.

Campagna, D., Huel, G., Hellier, G.,
Girard, F., Sahuquillo, J., Fagot-
Campagna, A., Godin, J., and
Blot, P. (2000). Negative relation-
ships between erythrocyte Ca-pump
activity and lead levels in moth-
ers and newborns. Life Sci. 68,
203–215.

Counter, S. A., Buchanan, L. H.,
Rosas, H. D., and Ortega, F. (1998).

Neurocognitive effects of chronic
lead intoxication in Andean children.
J. Neurol. Sci. 160, 47–53.

Davis, G. W., Schuster, C. M., and
Goodman, C. S. (1996). Genetic dis-
section of structural and functional
components of synaptic plasticity.
III. CREB is necessary for presynap-
tic functional plasticity. Neuron 17,
669–679.

de Koning, D. J., and Haley, C. S. (2005).
Genetical genomics in humans and
model organisms. Trends Genet. 21,
377–381.

Empson, R. M., Garside, M. L., and
Knopfel, T. (2007). Plasma mem-
brane Ca2+ ATPase 2 contributes

www.frontiersin.org May 2012 | Volume 3 | Article 68 | 27

http://www.frontiersin.org/
http://www.frontiersin.org/Toxicogenomics_/archive


“fgene-03-00068” — 2012/5/2 — 13:18 — page 6 — #6

Hirsch et al. Drosophila as a model for toxicogenomics

to short-term synapse plasticity at
the parallel fiber to Purkinje neuron
synapse. J. Neurosci. 27, 3753–3758.

Evans, M. L., Busselberg, D., and Car-
penter, D. O. (1991). Pb2+ blocks
calcium currents of cultured dorsal
root ganglion cells. Neurosci. Lett.
129, 103–106.

Faroon, O., Jones, D., and de Rosa,
C. (2000). Effects of polychlori-
nated biphenyls on the nervous
system. Toxicol. Ind. Health 16,
305–333.

He, T., Hirsch, H. V. B., Ruden, D.
M., and Lnenicka, G. A. (2009).
Chronic lead exposure alters presy-
naptic calcium regulation and synap-
tic facilitation in Drosophila larvae.
Neurotoxicology 30, 777–784.

Hirsch, H. V., Mercer, J., Sambazio-
tis, H., Huber, M., Stark, D. T.,
Torno-Morley, T., Hollocher, K.,
Ghiradella, H., and Ruden, D. M.
(2003). Behavioral effects of chronic
exposure to low levels of lead in
Drosophila melanogaster. Neurotoxi-
cology 24, 435–442.

Hirsch, H. V. B., Possidente, D., Aver-
ill, S., Despain, T. P., Buytkins,
J., Thomas, V., Goebel, W. P.,
Shipp-Hilts, A., Wilson, D., Hol-
locher, K., Possidente, B., Lnenicka,
G., and Ruden, D. M. (2009).
Variations at a quantitative trait
locus (QTL) affect development of
behavior in lead-exposed Drosophila
melanogaster. Neurotoxicology 30,
305–311.

Hovatta, I., Zapala, M. A., Broide,
R. S., Schadt, E. E., Libiger,
O., Schork, N. J., Lockhart, D.
J., and Barlow, C. (2007). DNA
variation and brain region-specific
expression profiles exhibit differ-
ent relationships between inbred
mouse strains: implications for
eQTL mapping studies. Genome Biol.
8, R25.

Jansen, R. C., and Nap, J. P. (2001).
Genetical genomics: the added value
from segregation. Trends Genet. 17,
388–391.

Jin, M., Guan, C.-B., Jiang, Y.-A., Chen,
G., Zhao, C.-T., Cui, K., Song, Y.-
Q., Wu, C.-P., Poo, M.-M., and Yuan,
X.-B. (2005). Ca2+-dependent regu-
lation of rho GTPases triggers turning
of nerve growth cones. J. Neurosci. 25,
2338–2347.

Keshishian, H., Broadie, K., Chiba, A.,
and Bate, M. (1996). The Drosophila
neuromuscular junction: a model
system for studying synaptic devel-
opment and function. Annu. Rev.
Neurosci. 19, 545–575.

Kiraly, E., and Jones, D. G. (1982).
Dendritic spine changes in rat
hippocampal pyramidal cells after

postnatal lead treatment: a Golgi
study. Exp. Neurol. 77, 236–239.

Levi, F., Okyar, A., Dulong, S., Innom-
inato, P. F., and Clairambault, J.
(2010). Circadian timing in cancer
treatments. Annu. Rev. Pharmacol.
Toxicol. 50, 377–421.

Li, J., and Burmeister, M. (2005). Genet-
ical genomics: combining genetics
with gene expression analysis. Hum.
Mol. Genet. 14, R163–R169.

Li, X. M., Delaunay, F., Dulong, S.,
Claustrat, B., Zampera, S., Fujii,
Y., Teboul, M., Beau, J., and
Lévi, F. (2010). Cancer inhibition
through circadian reprogramming of
tumor transcriptome with meal tim-
ing. Cancer Res. 70, 3351–3360.

Li, Y., Álvarez, O. A., Gutteling, E. W.,
Tijsterman, M., Fu, J., Riksen, J. A.
G., Hazendonk, E., Prins, P., Plasterk,
R. H. A., Jansen, R. C., Breitling, R.,
and Kammenga, J. E. (2006). Map-
ping determinants of gene expression
plasticity by genetical genomics in C.
elegans. PLoS Genet. 2, e222. doi:
10.1371/journal.pgen.0020222

Li, Y., Breitling, R., and Jansen, R.
C. (2008). Generalizing genetical
genomics: getting added value from
environmental perturbation. Trends
Genet. 24, 518–524.

Lohmann, C., and Bonhoeffer, T.
(2008). A role for local calcium sig-
naling in rapid synaptic partner selec-
tion by dendritic filopodia. Neuron
59, 253–260.

MacDonald, J. F., Jackson, M. F.,
and Beazely, M. A. (2006). Hip-
pocampal long-term synaptic plastic-
ity and signal amplification of NMDA
receptors. Crit. Rev. Neurobiol. 18,
71–84.

Mackay, T. F. C., and Anholt, R. R. H.
(2006). Of flies and man: Drosophila
as a model for human complex traits.
Annu. Rev. Genomics Hum. Genet. 7,
339–367.

Majewski, J., and Pastinen, T. (2011).
The study of eQTL variations by
RNA-seq: from SNPs to phenotypes.
Trends Genet. 27, 72–79.

Mas-Oliva, J. (1989). Effect of lead
on the erythrocyte (Ca2+, Mg2+)-
ATPase activity. Calmodulin involve-
ment. Mol. Cell. Biochem. 89, 87–93.

Mayersbach, H. (1976). Time – a key in
experimental and practical medicine.
Arch. Toxicol. 36, 185–216.

Morley, E. J., Hirsch, H. V., Hol-
locher, K., and Lnenicka, G. A.
(2003). Effects of chronic lead expo-
sure on the neuromuscular junction
in Drosophila larvae. Neurotoxicology
24, 35–41.

Mueller, M., Goel, A., Thimma,
M., Dickens, N. J., Aitman, T.
J., and Mangion, J. (2006). eQTL

Explorer: integrated mining of com-
bined genetic linkage and expres-
sion experiments. Bioinformatics 22,
509–511.

Petit, T. L., and LeBoutillier, J. C. (1979).
Effects of lead exposure during devel-
opment on neocortical dendritic and
synaptic structure. Exp. Neurol. 64,
482–492.

Prakash, S. (2011). Human metabolic
individuality in biomedical and
pharmaceutical research. Circ. Car-
diovasc. Genet. 4, 714–715.

Pratt, K. G., Watt, A. J., Griffith, L.
C., Nelson, S. B., and Turrigiano,
G. G. (2003). Activity-dependent
remodeling of presynaptic inputs by
postsynaptic expression of activated
CaMKII. Neuron 39, 269–281.

Rai, A., Maurya, S. K., Khare, P., Sri-
vastava, A., and Bandyopadhyay, S.
(2010). Characterization of devel-
opmental neurotoxicity of As, Cd,
and Pb mixture: synergistic action of
metal mixture in glial and neuronal
functions. Toxicol. Sci. 118, 586–601.

Rockman, M. V., and Kruglyak, L.
(2006). Genetics of global gene
expression. Nat. Rev. Genet. 7,
862–872.

Rosato, E., and Kyriacou, C. P.
(2006). Analysis of locomotor activ-
ity rhythms in Drosophila. Nat. Pro-
toc. 1, 559–568.

Rosato, E., Tauber, E., and Kyriacou, C.
P. (2006). Molecular genetics of the
fruit-fly circadian clock. Eur. J. Hum.
Genet. 14, 729–738.

Ruden, D. M., Chen, L., Possidente, D.,
Possidente, B., Rasouli, P., Wang, L.,
Lu, X., Garfinkel, M. D., Hirsch, H.
V., and Page, G. P. (2009). Genetical
toxicogenomics in Drosophila identi-
fies master-modulatory loci that are
regulated by developmental exposure
to lead. Neurotoxicology 30, 898–914.

Sandhir, R., and Gill, K. D. (1994a).
Lead perturbs calmodulin dependent
cyclic AMP metabolism in rat central
nervous system. Biochem. Mol. Biol.
Int. 33, 729–742.

Sandhir, R., and Gill, K. D. (1994b).
Alterations in calcium homeostasis
on lead exposure in rat synapto-
somes. Mol. Cell. Biochem. 131,
25–33.

Shaw, P. J., Cirelli, C., Greenspan,
R. J., and Tononi, G. (2000).
Correlates of sleep and waking in
Drosophila melanogaster. Science 287,
1834–1837.

Singh, M. P., Ram, K. R., Mishra, M.,
Shrivastava, M., Saxena, D. K., and
Chowdhuri, D. K. (2010). Effects of
co-exposure of benzene, toluene and
xylene to Drosophila melanogaster:
alteration in hsp70, hsp60, hsp83,
hsp26, ROS generation and oxidative

stress markers. Chemosphere 79,
577–587.

Smith, E. N., and Kruglyak, L. (2008).
Gene-environment interaction in
yeast gene expression. PLoS Biol.
6, e83. doi: 10.1371/journal.pbio.
0060083

Suhre, K., Shin, S.-Y., Petersen, A.-K.,
Mohney, R. P., Meredith, D., Wägele,
B., A.-K., Altmaier, E., CARDIo-
GRAM, Deloukas, P., Erdmann,
J., Grundberg, E., Hammond, C.
J., Hrabé de Angelis, M., Kasten-
müller, G., Köttgen, A., Kronen-
berg, F., Mangino, M., Meisinger,
C., Meitinger, T., Mewes, H.-W.,
Milburn, M. V., Prehn, C., Raffler,
J., Ried, J. S., Römisch-Margl, W.,
Samani, N. J., Small, K. S., Wich-
mann, H.-E., Zhai, G., Illig, T.,
Spector, T. D., Adamski, J., Soranzo,
N., and Gieger, C. (2011). Human
metabolic individuality in biomed-
ical and pharmaceutical research.
Nature 477, 54–60.

Takahashi, J. S., Shimomura, K., and
Kumar, V. (2008). Searching for
genes underlying behavior: lessons
from circadian rhythms. Science 322,
909–912.

UNEP. (2010). Lead Exposure and
Human Health. Nairobi: Chemicals
Branch, Division of Technology,
Industry and Economics, United
Nations Environment Program.
Available at: www.chem.unep.ch/
pops/pdf/lead/leadexp.pdf [accessed
January 3, 2012].

von Mayersbach, H. (1975). Pro-
ceedings: Time – a key in exper-
imental and practical medicine.
Naunyn Schmiedebergs Arch. Phar-
macol. 287(Suppl.), R107.

West, M. A., Kim, K., Kliebenstein,
D. J., van Leeuwen, H., Michel-
more, R. W., Doerge, R. W., and
St. Clair, D. A. (2007). Global eQTL
mapping reveals the complex genetic
architecture of transcript-level vari-
ation in Arabidopsis. Genetics 175,
1441–1450.

Xu, F., Hennessy, D. A., Lee, T.
K. M., and Syed, N. I. (2009).
Trophic factor-induced intracellular
calcium oscillations are required for
the expression of postsynaptic acetyl-
choline receptors during synapse for-
mation between Lymnaea neurons. J.
Neurosci. 29, 2167–2176.

Zhang, X., Huang, S., Sun, W.,
and Wang, W. (2012). Rapid and
robust resampling-based multiple
testing correction with application in
genome-wide eQTL study. Genetics.
doi: 10.1534/genetics.111.137737

Zucker, R. S. (1996). Exocytosis: a
molecular and physiological perspec-
tive. Neuron 17, 1049–1055.

Frontiers in Genetics | Toxicogenomics May 2012 | Volume 3 | Article 68 | 28

http://www.frontiersin.org/Toxicogenomics_/
http://www.frontiersin.org/Toxicogenomics_/archive


“fgene-03-00068” — 2012/5/2 — 13:18 — page 7 — #7

Hirsch et al. Drosophila as a model for toxicogenomics

Zucker, R. S., and Regehr, W. G. (2002).
Short-term synaptic plasticity. Annu.
Rev. Physiol. 64, 355–405.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that

could be construed as a potential con-
flict of interest.

Received: 29 February 2012; paper pend-
ing published: 19 March 2012; accepted:
09 April 2012; published online: 04 May
2012.
Citation: Hirsch HVB, Lnenicka G,
Possidente D, Possidente B, Garfinkel

MD, Wang L, Lu X and Ruden,
DM. (2012) Drosophila melanogaster
as a model for lead neurotoxicology
and toxicogenomics research. Front.
Gene. 3:68. doi: 10.3389/fgene.2012.
00068
This article was submitted to Frontiers in
Toxicogenomics, a specialty of Frontiers
in Genetics.

Copyright © 2012 Hirsch, Lnenicka, Pos-
sidente, Possidente, Garfinkel, Wang,
Lu and Ruden. This is an open-access
article distributed under the terms of
the Creative Commons Attribution Non
Commercial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the
original authors and source are credited.

www.frontiersin.org May 2012 | Volume 3 | Article 68 | 29

http://dx.doi.org/10.3389/fgene.2012.00068
http://dx.doi.org/10.3389/fgene.2012.00068
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Toxicogenomics_/archive


REVIEW ARTICLE
published: 10 April 2012

doi: 10.3389/fgene.2012.00052

Genome-wide analyses of metal responsive genes in
Caenorhabditis elegans
Samuel Caito1,2, Stephanie Fretham1, Ebany Martinez-Finley 1,2, Sudipta Chakraborty 2,3, Daiana Avila4,

Pan Chen1 and Michael Aschner 1,2,3,5*

1 Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
2 Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA
3 Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, TN, USA
4 Biochemistry Graduate Program, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
5 The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA

Edited by:

Stephen Sturzenbaum, King’s College
London, UK

Reviewed by:

Jonathan Freedman, National Institute
of Health, USA
Suresh Chandra Swain, Aberystwyth
University, UK

*Correspondence:

Michael Aschner , Division of Pediatric
Toxicology, Vanderbilt University
Medical Center, 11425 MRB IV,
2215-B Garland Avenue, Nashville, TN
37232-0414, USA.
e-mail: michael.aschner@
vanderbilt.edu

Metals are major contaminants that influence human health. Many metals have phys-
iologic roles, but excessive levels can be harmful. Advances in technology have made
toxicogenomic analyses possible to characterize the effects of metal exposure on the entire
genome. Much of what is known about cellular responses to metals has come from mam-
malian systems; however the use of non-mammalian species is gaining wider attention.
Caenorhabditis elegans is a small round worm whose genome has been fully sequenced
and its development from egg to adult is well characterized. It is an attractive model for high
throughput screens due to its short lifespan, ease of genetic mutability, low cost, and high
homology with humans. Research performed in C. elegans has led to insights in apoptosis,
gene expression, and neurodegeneration, all of which can be altered by metal exposure.
Additionally, by using worms one can potentially study mechanisms that underline differ-
ential responses to metals in nematodes and humans, allowing for identification of novel
pathways and therapeutic targets. In this review, toxicogenomic studies performed in C.
elegans exposed to various metals will be discussed, highlighting how this non-mammalian
system can be utilized to study cellular processes and pathways induced by metals. Recent
work focusing on neurodegeneration in Parkinson’s disease will be discussed as an exam-
ple of the usefulness of genetic screens in C. elegans and the novel findings that can be
produced.

Keywords: metals, gene expression, C. elegans, apoptosis, neurodegeneration

INTRODUCTION
Metals are persistent environmental contaminants that have been
associated with developmental and behavioral deficits and neu-
rodegeneration (Kordas, 2010; Koyashiki et al., 2010; Neal and
Guilarte, 2010). Several metals, such as Zn, Mn, and Fe, are essen-
tial for cell viability and function; however excessive levels of
metals can be deleterious. Metals can generate free radicals and
reactive oxygen species (ROS) through Fenton chemistry, leading
to protein and DNA oxidation and lipid peroxidation. Oxidation
of macromolecules can damage cellular organelles and generate
additional ROS, thus creating a vicious cycle. Exposure to metals
can range in their clinical symptoms, but similar cellular effects
are observed, such as oxidative stress. With the advent of com-
plete genome sequencing and genome-wide mapping, it is now

Abbreviations: AD,Alzheimer’s disease; AO, acridine orange; C. elegans, Caenorhab-
ditis elegans; DAergic, dopaminergic; DTT, dichlorodiphenylchloroethane; eIF2α,
eukaryotic translation initiation factor; ER, endoplasmic reticulum; ERAD, ER-
associated degradation; HD, Huntington’s disease; HSP, heat shock protein; LRRK2,
leucine-rich repeat kinase 2; Nrf2, nuclear factor (erythoid-derived 2)-like 2; PD,
Parkinson’s disease; PINK1, PTEN-induced novel kinase 1; PTEN, phosphatase and
tensin homolog; SNpc, substantia nigra pars compacta; ROS, reactive oxygen species;
UPR, unfolded protein response.

possible to identify novel genes involved in metal homeostasis,
detoxification, and involved in response to toxic exposures. One
important consideration in performing a toxicogenomic screen is
the choice of model organism. Traditional mammalian models,
such as rats and mice have provided vital information about metal
exposures. However rodents are complex organisms where subtle,
yet important, changes may not be observed due to the numerous
cell types and their relative abundance in the tissue examined.
Non-mammalian model organisms provide an alternative, less
complex system to perform these screens while maintaining high
homology to mammals.

Caenorhabditis elegans is an attractive model for studying
effects of metals on gene expression. C. elegans are small
(∼1.5 mm) round worms with a short lifespan of 3 weeks and
a life cycle of 3 days, that can be maintained cheaply in a humid
environment containing atmospheric oxygen and bacteria grown
on agar as a food source. A single adult hermaphrodite is capable
of producing ∼300 progeny. Upon hatching (L1 phase), worms
proceed through three subsequent larval stages (L2 after 12 h, L3
after 8 h, and L4 after 10 h). As an adult, an hermaphrodite is
able to self-fertilize, or may be used for mating with an adult
male, a rare sex with a frequency of 0.5%, allowing for crossing

www.frontiersin.org April 2012 | Volume 3 | Article 52 | 30

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/people/SamuelCaito/47369
http://www.frontiersin.org/people/SudiptaChakraborty/49164
http://www.frontiersin.org/people/PanChen/47665
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MichaelAschner&UID=28533
mailto:michael.aschner@{\penalty -\@M }vanderbilt.edu
http://www.frontiersin.org
http://www.frontiersin.org/Toxicogenomics/archive
http://www.frontiersin.org/Toxicogenomics/10.3389/fgene.2012.00052/abstract


Caito et al. Worm toxicogenomic analysis of metals

worms of different genotypes. Importantly, worms contain many
of the transporters and stress response genes critical for xenobi-
otic and metal detoxification, including metallothioneins (MTs),
transporters involved in metal homeostasis, heat shock proteins
(HSPs), and genes involved in glutathione homeostasis.

Because of the short lifespan and ease of manipulability, C.
elegans are a perfect model for high throughput toxicogenomic
screens. C. elegans’ body comprises less than 1000 cells, allowing
for the mapping of every cell’s development and lineage (Sul-
ston and Horvitz, 1977). This allows one to investigate not only
general overall toxicity, but neurotoxicity, reproductive toxicity,
muscular toxicity, toxicity to the GI track, and developmental
toxicity. The C. elegans genome is fully sequenced and shows 60–
80% homology with mammals (Kaletta and Hengartner, 2006;
McDonald et al., 2006). The genetic architecture of C. elegans
genes is well characterized and there are standardized proto-
cols for knocking down genes through RNAi and introducing
DNA through injections, allowing for the creation of numerous
strains of knockout alleles and transgenic overexpression alleles.
These advantages allow for quick but informative investigations
in signaling pathways and gene–environment interactions that
may be more difficult in more complex systems. It is possible
that genes induced by metal exposure in C. elegans may differ
from mammals, but this may provide insight into pathways and
protective genes that can be investigated as therapeutic targets.
In this review, we highlight recent toxicogenomic screens in C.
elegans, including screens in various worm lines, RNAi feeding
screens, and microarray analyses, to characterize genes and path-
ways altered by metal exposure. Additionally we discuss novel
findings from studies in C. elegans of metal-induced neurodegen-
eration in Parkinson’s disease (PD) as an application of toxicoge-
nomic screens in studying human disease in a non-mammalian
system.

DNA DAMAGE, GENE EXPRESSION, EPIGENETICS
Various metals damage DNA, change gene expression profiles, and
epigenetically modify DNA, consequences which can contribute
to the toxicity of metal exposure. Many of these alterations have
been identified and characterized using mammalian systems (Bal
and Kasprzak, 2002; Beyersmann and Hartwig, 2008; Salnikow
and Zhitkovich, 2008; Robinson et al., 2010), however there are
novel genetic screens in C. elegans that can be utilized to examine
metal-induced genetic changes.

A survey for naturally occurring single base substitutions
assayed the entire genomes of 10, mutation accumulation C.
elegans strains generated by bottlenecking individual wildtype ani-
mals for many generations (Denver et al., 2009). High throughput
synthesis- and pyro-DNA sequencing revealed more base sub-
stitutions than previous studies and found that G:C → A:T and
G:C → T:A mutations occurred at higher than expected rates,
indicative of oxidative DNA damage. While this study did not
directly examine metal exposure, it suggests that, as in mammalian
systems, oxidative stress resulting from metals likely causes DNA
damage in C. elegans (Bal and Kasprzak, 2002). DNA strand breaks
are another form of DNA damage induced by exposure to metals
such as Cd, Cu, and Zn in C. kiiensis invertebrate larvae (Al-Shami
et al., 2012). This single cell assay has not been applied specifically

to metal toxicity in C. elegans, however it has been used to examine
nicotine genotoxicity (Sobkowiak and Lesicki, 2009).

Microarray-technology alone and in combination with other
techniques, has demonstrated changes in gene expression follow-
ing Ag and Cd exposure C. elegans. Whole genome microarray
identified altered expression of 1632 genes after exposure to Ag
nanoparticles and ions, including genes involved in oxidative stress
and metabolism (Roh et al., 2009). In addition, this study com-
bined genetic changes with in vivo toxicological outcomes of sur-
vival, growth, and reproduction. Another study identified altered
expression of 290 genes using whole genome microarray follow-
ing Cd exposure (Cui et al., 2007). Many of the Cd-altered genes
had previously known functions including metabolism, proteol-
ysis, fatty acid, and lipid metabolism, although the majority of
identified genes were novel. RNAi against 92 of the most signif-
icantly altered genes was used to screen for interactions between
gene function and growth and reproductive phenotypes associated
with Cd exposure (Cui et al., 2007).

The short lifespan of C. elegans, presence of epigenetic machin-
ery, and heritability of epigenetic alterations (Greer et al., 2011;
Wenzel et al., 2011) make it possible to examine epigenetic contri-
butions to metal toxicity in the worm. One recent study combined
several genomic assays including microarray, ChIP-seq with his-
tone modification specific antibodies, and RT-PCR to assess global
genomic differences between adults that had experienced Dauer
and those that had not (Hall et al., 2010). Such an approach
has not yet been applied to the toxicogenomic consequences of
metal exposure, but would be highly informative particularly for
non-lethal and latent toxicity.

ANTIOXIDANT RESPONSE TO METAL EXPOSURE
Another way in which metals damage cells is through oxidative
stress. There are several C. elegans mutants that are hypersensitive
to oxidative stress including mev-1, mev-3, gas-1, rad-8, skn-1, and
nnt-1 (Ishii et al., 1990;Yamamoto et al., 1996; Hartman et al., 2001;
Kayser et al., 2001; An and Blackwell, 2003; Arkblad et al., 2005),
with nnt-1, and skn-1 primarily involved in antioxidant defense.
Many genes are involved in generation of ROS, Fujii et al. (2009)
screened for C. elegans mutants that showed increased sensitiv-
ity to oxidative stress, and isolated a novel mutant, oxy-4(qa5001)
(Fujii et al., 2009). This mutant showed an increased sensitivity
to a high concentration of oxygen, and decreased longevity that is
temperature-dependent. Genetic analysis showed that oxy-4 had
a mutation in an [FeFe]-hydrogenase-like gene, responsible for
catalyzing the formation and the splitting of molecular hydro-
gen (H2 ↔ 2H+ + 2e−), and functioning in anaerobic respiration
but whose properties are less characterized in aerobic eukaryotes.
Results from this study suggest that [FeFe]-hydrogenase-like genes
are involved in the regulation of sensitivity to oxygen in C. elegans
(Fujii et al., 2009).

The daf-2 insulin-like signaling pathway plays a major role in C.
elegans longevity by controlling the expression of a large number of
genes, including free radical detoxifying genes (Honda and Honda,
1999). Samuelson and colleagues performed a genome-wide RNAi
screen to identify genes necessary for the extended lifespan of daf-
2 mutants and identified ∼159 gene inactivations responsible for
shortening the lifespan. Endocytosis and vesicular trafficking to
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lysosomes made up a majority of the genes identified for lifes-
pan extension in the daf-2 mutant. Decreased daf-2 signaling
causes nuclear localization of DAF-16 and results in upregulation
of manganese superoxide dismutase (SOD-3), whose function is to
protect cells from oxidative stress. Thirty-four gene inactivations
were identified that suppressed the induction of SOD-3 expression
in non-neuronal cells (Samuelson et al., 2007).

Toxicogenomic studies have described the utility of C. elegans
as an environmental monitor and biosensor. Chu et al. (2005)
tested a number of mutant strains defective in genes controlling
ROS response for enhanced sensitivity to metals. A double mutant
daf-16 unc-75 strain was identified as most sensitive, exhibiting a
sixfold increase in sensitivity to Cd, threefold increase in sensitivity
to Cu, and twofold increase in sensitivity to Zn compared to wild-
type worms. Roh et al. (2006) investigated the toxicity of Cd, Pb,
Cr, and As using a transgenic C. elegans model. Cd led to a more
than threefold increase in HSP 16.2, HSP 70, metallothionein 2,
cytochrome P450 family protein 35A2, glutathione-S-transferase
4, superoxide dismutase 1, catalase 2, C. elegans p53-like protein
1, and apoptosis enhancer 1 genes compared to controls. The Pb-
, Cr-, and As-exposed nematodes showed little change in gene
expression showing that Cd has a higher tolerance level com-
pared to the other metals tested. Cd- and Cr-exposed worms also
exhibited alterations in growth and reproduction. This study illus-
trated that stress responses must be measured following exposure
to several different metals (Roh et al., 2006). The DNA microar-
ray experiments of Cui et al. (2007) examined the toxicogenomic
response to Cd and identified 237 up-regulated and 53 down-
regulated genes that significantly changed following either 4 or
24 h exposure. Early response genes were those that regulate the
localization and transport of various metals and are important for
ion homeostasis. Cd exposure resulted in the overexpression of
25 biotransformation genes, proteolysis genes, and expression of
four ABC transporters, pgp-1, pgp-8, pgp-9, and mrp-3. Fatty acid
and cellular lipid metabolism and cell wall catabolism pathways
represented a significant portion of the downregulated gene set
(Cui et al., 2007).

Caenorhabditis elegans’ SKN-1 [mammalian nuclear factor
(erythoid-derived 2)-like 2, Nrf2] is critical for oxidative stress
resistance. Wang et al. (2009) conducted a genome-scale RNAi
screen to identify mechanisms that prevent inappropriate skn-1
target gene expression under non-stressed conditions (Wang et al.,
2009). They identified 41 genes that if knocked down lead to acti-
vation of a SKN-1 target gene, gcs-1. These genes represent many
cellular processes, including mRNA translation. Results suggest
that SKN-1 acts as a monitor of many metabolic and regulatory
processes.

HEAT SHOCK PROTEINS AND ER STRESS
Cellular functions are greatly dependent upon efficient and accu-
rate cooperation between different proteins, relying on efficient
protein synthesis, processing, trafficking, and degradation. Thus,
it is not surprising that cells have evolved several defense mech-
anisms to address misfolded and damaged proteins. Molecu-
lar chaperone proteins are highly conserved and ubiquitously
expressed in all subcellular compartments and are essential for the
stability of the proteome under normal and stressful conditions

(Frydman, 2001). The expression of many molecular chaperones
is regulated by different forms of environmental and physiological
stresses that can interfere with folding stability, thus leading to a
flux of misfolded proteins. Stress responsive molecular chaperones
are referred to as HSPs and classified by gene families according
to their molecular mass. HSPs exert their physiological effect by
assisting in the formation of new proteins as well as by preserving
existing structures. However, they also display major functions in
pathological conditions, especially through structural rectification
of denatured proteins and solubilization of protein aggregates car-
rying them on to the proteasome system (Soti et al., 2005; Powers
et al., 2010).

Despite the robust nature of the heat shock response and the
capacity of chaperones to recognize misfolded proteins, chronic
exposure to metals even at low doses, or acute toxicity at high doses
may result in the accumulation of misfolded and damaged pro-
teins. The accumulation of alternate folded states and toxic species
overburdens and functionally depletes the proteostasis machinery,
which in turn amplifies protein damage (Gidalevitz et al., 2006,
2009). This suggests that the regulation of the protein quality con-
trol system is essential for proteostasis to monitor the state of the
proteome throughout the lifetime of an organism. Hence, HSP
expression has emerged as an indicator of cellular stress in animals
exposed to metals at sub-toxic and toxic doses.

Toxicogenomics has helped in elucidating whether HSP lev-
els are altered by metals exposure. HSP levels vary after metal
exposure depending on the metal, type of cell or organ studied,
and type of chaperone evaluated (Cheng et al., 2003; Qian et al.,
2005; Rodella et al., 2008; Escobar Mdel et al., 2009). Some metals
such as Pb, Cd, Al, and Hg can directly inhibit protein folding or
inhibit their expression, thus causing accumulation of unfolded
proteins and endoplasmic reticulum (ER) stress (Rodella et al.,
2008; Sharma et al., 2008; Aremu et al., 2011). There are sev-
eral diseases associated with long-term metal exposure, increased
misfolded protein aggregation, and disturbance in the ubiqui-
tin/proteasome system including Alzheimer’s disease (AD), PD,
and polyglutamine diseases, such as Huntington’s disease (HD;
Imaizumi et al., 2001; Gitler et al., 2009; Squitti, 2012). Once
proteins are misfolded, they can aggregate and damage the cell.
Metal-induced oxidative stress has been shown to promote pro-
tein aggregation (Santner and Uversky, 2010; Dudzik et al., 2011).
Additionally, metals can also perform aberrant interactions with
proteins such as beta-amyloid, α-synuclein, and prion proteins
(Santner and Uversky, 2010; Hong and Simon, 2011). For instance,
Zn and Al strongly stimulate the aggregation/fibrillogenesis of
variations of ataxin-3, a protein involved in the polyglutamine dis-
ease ataxia (Ricchelli et al., 2007). In addition, a series of mono, di,
and trivalent metal ions such as Li, Mn, Zn, Cu, Al can cause signif-
icant acceleration of α-synuclein fibril formation in vitro (Santner
and Uversky, 2010). These processes trigger HSP activation and
consequently, a defense response in order to detoxify and protect
the cell against the oxidative injury and alterations in the pro-
teostasis caused by the pro-oxidant (Stefani and Dobson, 2003;
Dudzik et al., 2011; Hong and Simon, 2011). Several studies using
toxicogenomics have demonstrated that HSP levels are elevated
following metal exposure in different animal models. In C. ele-
gans, Anbalagan et al. demonstrated that Cd, Cu, Zn, and both
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organic MeHg and inorganic Hg exposure induced the heat shock
genes, HSP-16.1, HSP-16.2, HSP-6, HSP-60 were at least twofold
increased, using transgenic GFP strains (Helmcke and Aschner,
2010; Anbalagan et al., 2012). Currently, there is little data unrav-
eling the mechanisms that underlie metal detoxification via HSP,
and toxicogenomics will be an important tool in this research.

The ER serves as the major organelle for protein synthesis, mod-
ification, folding, and transportation. Disruption of normal ER
function results in accumulation of unfolded or misfolded pro-
teins inside ER lumen, known as ER stress, triggering the unfolded
protein response (UPR), in order to decrease protein synthesis,
enhance protein folding, and degradation. The molecular chap-
erone GRP78/BiP (immunoglobulin-binding protein) serves as a
sensor in this signaling pathway. When ER functions normally,
BiP binds to three ER transmembrane proteins, including an
endoribonuclease IRE1, protein kinase PERK, and a transcription
factor ATF6. Upon ER stress, BiP dissociates from these proteins
and binds to unfolded protein to improve folding, thus releasing
these three proteins from ER membrane and activating subse-
quent signaling pathways. These three transmembrane proteins
are corresponding to three distinct UPR signaling branches. The
transmembrane kinase PERK phosphorylates its downstream tar-
get, eukaryotic translation initiation factor (eIF2α), through which
the protein synthesis is shut down. IRE1 cleaves a transcription
factor xbp-1 pre-mRNA, which then gets translated and translo-
cated into nucleus to activate genes for protein degradation, such
as ER-associated degradation (ERAD) complex. ATF6 dissociates
from ER membrane, travels to Golgi apparatus and gets C-terminal
cleaved, releasing the N-terminal cytosolic fragment to enter the
nucleus, and activate targets genes. These genes are mainly ER res-
ident chaperones (such as BiP and protein disulfide isomerase),
upregulation of which enhances protein folding in the ER. Activa-
tion of three UPR branches would alleviate the stress, thus restore
ER protein homeostasis; on the other hand, if the stress remains
unsolved, apoptosis is activated to kill these cells. To date, ER stress
has been found in many human neurological disorder diseases,
including early-onset torsion dystonia (Chen et al., 2010), AD
(Hoozemans et al., 2005, 2009), PD (Jiang et al., 2010; Calì et al.,
2011), amyotrophic lateral sclerosis (Atkin et al., 2008; Nishitoh
et al., 2008; Mori et al., 2011), and HD (Reijonen et al., 2008).

Recently heavy metal exposure has been associated with ER
stress. Gardarin et al. (2010) found that ER was the major target of
Cd exposure in yeast Saccharomyces cerevisiae. Upon 50 μM of Cd
treatment, splicing of HAC1 (yeast xbp-1) mRNA was observed,
Δire1 and Δhac1 strains showed hypersensitive to Cd, similar to
ER stress inducer tunicamycin and dichlorodiphenylchloroethane
(DTT; Gardarin et al., 2010). In addition, 14 out of 16 mutants in
MAPK signaling pathway, which is important for tolerance of ER
stress, is also sensitive to Cd treatment (Gardarin et al., 2010). Fau-
chon et al. (2002) noticed activation ER chaperones PDI, FKB2,
LHS1, and JEM1 and UPR components upon Cd treatment. MeHg
has been shown to induce hermetic changes in GRP78 levels,
with low acute doses increasing GRP78 expression but high doses
decreased its expression, suggesting that low level MeHg exposure
induces cytoprotective ER stress pathway (Zhang et al., 2011). In
mammalian cell culture, Pb (Qian et al., 2001; Shinkai et al., 2010),
Mn (Chun et al., 2001), Hg (Qian et al., 2001), Ni (Hiramatsu

et al., 2007), Co (Hiramatsu et al., 2007), and Cd (Hiramatsu et al.,
2007) also caused ER stress and activated UPR by upregulating
BiP expression. In transgenic mice administered with Cd2+, rapid
and transient ER stress was induced in liver and kidney predom-
inantly, but not obvious in other tissues (Hiramatsu et al., 2007).
Although it remains unclear whether these heavy metals directly
or indirectly interfere with ER functions, restoration of ER home-
ostasis could be a treatment of these metal exposures. Induction
of ER stress has not been reported in C. elegans in response to
metal exposure, however there is potential to investigate ER stress
in transgenic strains for genes associated with diseases where ER
stress has been observed.

METAL-INDUCED APOPTOSIS
Despite the existence of multiple protective pathways, cellular
damage in response to metal exposure may at times be too severe.
Exposure to heavy metals has been shown to induce programmed
cell death or apoptosis, by influencing various components of sev-
eral apoptotic pathways (Rana, 2008). However, most of these
studies have been in vitro and they do not seem to recapitulate
the effects in live animals. Consequently, the C. elegans model
system has become a favorable biosensor in studies on the induc-
tion of apoptotic pathways in vivo following exposure to various
types of toxicants with most studies focusing on germline apop-
tosis in the nematodes (Wu et al., 2006; Leung et al., 2008). In
addition to the physiologically requisite germline apoptosis that
occurs in nematodes, stress-induced apoptosis can occur through
multiple signaling transduction pathways. Genotoxic insults have
been shown to mediate apoptosis through a pathway involving
the checkpoint protein HUS-1, the p53 homolog CED-9, and the
necessary apoptotic CED-3 caspase (Derry et al., 2001; Hofmann
et al., 2002; Conradt and Xue, 2005). However, other stressors can
lead to the induction of p53-dependent or independent pathways
that require MAPK-related signaling transduction in order for
germline apoptosis to occur (Salinas et al., 2006; Rutkowski et al.,
2011). The conservation of these pathways in C. elegans allows for
the validation on their role in mammalian in vivo metal-induced
apoptotic mechanisms (Caffrey et al., 1999).

The C. elegans germline is composed of two U-shaped gonad
arms that join proximally at the uterus of the nematode. Both
physiologically relevant and stress-induced germline apoptosis
occurs at the loop of the gonad (Gartner et al., 2008). A common
germline apoptosis assay that can be used in C. elegans involves
staining worms with the fluorescent dye acridine orange (AO)
that labels the characteristic, highly fragmented DNA of apoptotic
cells (Kelly et al., 2000). For example, C. elegans studies found
that Ni exposure can induce germline apoptosis in a dose- and
time-dependent manner (Kezhou et al., 2010). This increase in
Ni-induced germ cell corpses is independent of the ERK pathway
as shown in C. elegans knockout strains for the MAPKKK (lin-
45), MAPKK (mek-2), and MAPK (mpk-1) homologs. Moreover,
mutant worms lacking cep-1 (homolog for the tumor suppres-
sor p53), hus-1, and egl-1 (involved in DNA damage checkpoints)
show increased germline apoptosis upon Ni exposure, and are
not required for Ni-induced germline apoptosis when compared
to wildtype Ni-exposed worms. However, Ni-induced germline
apoptosis is decreased in mutant homologs of the JNK (jkk-1,
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mek-1, jnk-1, and mkk-4 loss-of-function strains) and p38 MAPK
(nsy-1, sek-1, pmk-1, and pmk-3 loss-of-function strains) signal-
ing cascades, indicating the significance of these two pathways in
Ni-induced apoptosis in C. elegans (Kezhou et al., 2010). Simi-
larly, Cd exposure in C. elegans also induces germline apoptosis in
a manner dependent upon the JNK and p38 MAPK pathways,
as indicated by the blockage of apoptosis in Cd-exposed JNK
and p38 MAPK pathway homolog knockouts (except in loss-of-
function pmk-3 mutants; Wang et al., 2008). Also analogous to
Ni-induced apoptotic pathways, both cep-1 and hus-1 play non-
essential roles in germline apoptosis in warms exposed to 50 μM
Cd (Wang et al., 2008), suggesting the lack of involvement of the
DNA damage response in mediating metal-induced apoptosis in
C. elegans. However, another gene expression profiling study in
C. elegans has found that cep-1 and ape-1 (apoptosis enhancer
1) mRNA is up-regulated upon exposure to 0.85 mg/L Cd (Roh
et al., 2006). Such a discrepancy illustrates the complex control
of these apoptotic pathways that may be highly dose-dependent.
Interestingly, a separate study found that cobalt exposure mimic-
ked the same apoptotic pathways delineated in the above studies:
DNA damage-independent, but JNK- and p38 MAPK-dependent
mechanisms (Chong et al., 2009). These studies indicate consis-
tently shared signaling cascades that mediate apoptosis caused by
a variety of metals.

Moreover, metal exposure also mediates apoptosis through
increased oxidative stress. For example, Cu induces its toxicity via
ROS generation that damage DNA, lipids, and proteins (Jomova
and Valko, 2011). This is thought to via a Fenton-type of reac-
tion (Held et al., 1996). However, the exact pathways involved in
Cu-induced apoptosis are not clearly understood. Using C. elegans
model, Wang et al. (2009) established that Cu induces germline
apoptosis in analogous fashion to Ni and Cd. Similar to Ni- and
Cd-induced apoptosis, Cu-induced germline apoptosis does not
rely on DNA checkpoint genes, as hus-1, clk-1, ced-9, and egl-1
knockouts do not prevent Cu-induced apoptosis. Similar to the
other metals, Cu-induced apoptosis does not depend on CEP-
1/ p53, as these knockouts caused a significant increase in germline
apoptosis upon Cu exposure. However, knockouts of the caspase
ced-3 gene, Apaf-1 homolog ced-4 gene, ERK pathway homologs
(lin-45, mek-2, and mpk-1), JNK pathway homologs (nsy-1, 3mek-
1, jkk-1, mkk-4, jnk-1), and some p38 MAPK homologs (sek-1,
pmk-1, but not pmk-3) are all essential for Cu-induced germline
apoptosis (Wang et al., 2009). The involvement of multiple MAPK
signaling cascades suggests that the cell requires more effort to
manage the encompassing effects of Cu toxicity, potentially due
to its highly reactive nature in generating ROS in mitochondria to
initiate the caspase cascade. However, the DNA damage response
remains non-essential in mediating this apoptosis.

APPLICATION OF TOXICOGENOMIC SCREENS IN
NEURODEGENERATIVE DISEASES
Caenorhabditis elegans have been used to investigate several neuro-
logical disorders primarily due to its simple and well characterized
nervous system. With its short lifespan and ease of genetic mutabil-
ity, toxicogenomic screens may be quickly and easily performed to
identify genes involved in metal-induced neurotoxicity. For exam-
ple, C. elegans possess only eight dopaminergic (DAergic) neurons,

which are easily counted in transgenic worms expressing GFP
driven by the dopamine transporter, dat-1, promoter. Dopamine
controls specific, measurable behaviors in worms, including food
searching behavior, defecation, and egg laying (Sulston et al., 1975;
Weinshenker et al., 1995), which are easily measured for loss of
DAergic functioning. Herein, we discuss the application of tox-
igenomic screens in C. elegans to examine the role of metals
in PD.

PARKINSON’S DISEASE
Parkinson’s disease is the second most common neurodegen-
erative disease, afflicting ∼2% of the US population (Bushnell
and Martin, 1999). It is characterized by the selective loss of
DAergic cells in the substantia nigra pars compacta (SNpc) and
locus coeruleus regions of the brain (Wilson et al., 1996). The
mechanisms underlying the selective degeneration of the DAergic
neurons are poorly understood; however genetic factors and envi-
ronmental and endogenous toxins have been implicated (Dauer
and Przedborski, 2003). Epidemiological studies suggest that PD
is more common in rural areas, where the increased prevalence
is associated with the use of pesticides, herbicides, and heavy
metals (Gorell et al., 2004). Observable symptoms in patients
with PD include emotional and cognitive decline, bradykinesia,
rigidity, tremors, and postural instability (Lees et al., 2009). In
addition to cell loss, proteinaceous intracellular inclusions called
Lewy bodies are observed in postmortem brains. The majority of
PD cases are sporadic, while 10–20% of cases have a genetic com-
ponent. Familial PD may be due to autosomal dominant genes for
α-synuclein and leucine-rich repeat kinase 2 (LRRK2) or autoso-
mal recessive genes for parkin, DJ-1, and phosphatase and tensin
homolog (PTEN)-induced novel kinase 1 (PINK1), all of which
have orthologs in worms, such as pdr-1 (Parkin), djr-1 (DJ-1),
lrk-1 (LRRK2), pink-1 (PINK1), but not α-synuclein. Proteina-
ceous inclusions can be induced in C. elegans by overexpression
of either wildtype of mutant α-synuclein under the dopamine
transporter (dat-1) promoter (Kuwahara et al., 2006). Interest-
ingly, mammalian models of α-synuclein overexpression have not
been successful in causing selective DAergic neurodegeneration,
which makes C. elegans an invaluable tool.

In addition to genetic predisposition to PD, environmental
exposures contribute to the disease development as well. Expo-
sure to Mn, either from the environment or in occupational
settings, can produce Parkinsonian-like symptoms. These symp-
toms include rigidity, tremor, gait disturbances, and hypokinesia,
and are attributed to selective interaction of Mn with the basal
ganglia downstream of the nigrostriatal DAergic projection, which
are areas that readily accumulate Mn (Aschner et al., 2007). Mn
has been shown oxidize DA to a highly toxic reactive metabo-
lite leukoaminochrome o-semiquinone (Graumann et al., 2002).
MeHg exposure has also been implicated in PD. MeHg poison-
ing causes severe neurological deficits due to brain lesions and the
disruption of neurotransmitter systems (Aschner and Syversen,
2005). Both PD and MeHg poisoning present resting tremors and
alterations in motor functioning (Biernat et al., 1999; Kaur et al.,
2007). MeHg exposure occurs through seafood consumption, due
to the global cycling, and accumulation of Hg from industries that
reaches the aquatic environment (Fitzgerald and Clarkson, 1991).
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Several studies have shown an association between PD and fish
consumption or occupational exposure to Hg (Biernat et al., 1999;
Kirkey et al., 2001; Fabrizio et al., 2007; Petersen et al., 2008a,b).
Serum levels of Hg have been shown to increase post-PD diagno-
sis, and low serum Hg levels have been associated with decreased
risk for development of PD (Gellein et al., 2008).

Toxicogenomic screens have been performed in C. elegans
knockdown strains exposed to Mn to identify genes that are
involved in Mn toxicity. Benedetto et al. (2010) found that Mn
exposure induces a dose-dependent degeneration in DAergic neu-
rons in C. elegans, which required the presence of the reup-
take transporter, DAT-1, as neurodegeneration was not observed
in dat-1 knockdown worms. Using various strains of C. ele-
gans, Benedetto et al. (2010) also found that toxicity was pre-
vented by the loss of tyrosine hydroxylase (TH)/CAT-2 function
in the double knockout strain, cat-2(e1112);dat-1(ok157) and
knockdown of vesicular monoamine transporter (VMAT2)/CAT-
1 in cat-1(e1111) mutants, in which DAergic neurons were
unable to release DA at the synaptic cleft. As in mammals, Mn
enters DAergic neurons in C. elegans through NRAMP/divalent
metal transporters, as deletion of the NRAMP ortholog smf-1
or smf-3 gene attenuated Mn induced DAergic neurodegener-
ation and increased survival (Au et al., 2009; Settivari et al.,
2009).

The use of C. elegans has also facilitated identification of genes
that are involved in the cellular response to Mn exposure. Met-
als cause oxidative stress through the generation of ROS through
Fenton chemistry. Cells respond to increased ROS through upreg-
ulation of antioxidant molecules and enzymes via activation of
the Nrf2 transcription factor. Benedetto et al. (2010) found that
loss-of-function mutants for skn-1, the worm ortholog to Nrf2,
had increased sensitivity to Mn toxicity, whereas wildtype worms
expressing SKN-1::GFP showed activation of the transcription fac-
tor after Mn exposure. Cells can also produce ROS as a defense
mechanism using specific enzymatic pathways. Loss-of-function
of bli-3 gene, a dual oxidase involved in pathogen-induced ROS
production, caused increased resistance to Mn toxicity and sur-
prisingly had no increase in ROS production from Mn exposures,
implying that BLI-3 is required for ROS-mediated effects in Mn

exposure (Benedetto et al., 2010). It is unknown if dual oxidases
are involved in mammalian responses to Mn.

Although MeHg exposure causes several toxic effects in C.
elegans, including decreased survival, developmental delay, and
decreased pharyngeal pumping, MeHg exposure did not cause
neurodegeneration (Helmcke et al., 2009; Helmcke and Aschner,
2010). This suggests the presence of protective mechanisms in
C. elegans’ neurons. MeHg exposure causes oxidative stress in
C. elegans through alterations in GSH levels, increased expres-
sion of HSPs, and glutathione-S-transferase (GST; Helmcke et al.,
2009; Helmcke and Aschner, 2010). GST levels are controlled by
Nrf2, which is activated by MeHg in mammalian glial cells (Ni
et al., 2010). Knockdown of the skn-1 gene led to DAergic neu-
ron degeneration in 30% of the worms exposed to 1 mM MeHg,
whereas no degeneration was observed in wildtype animals (Van-
duyn et al., 2010). Further studies are necessary to understand how
C. elegans DAergic neurons are protected from MeHg induced
neurodegeneration.

CONCLUSION
Many of the pathways and cellular processes affected by metals
in humans are also present in C. elegans. This combined with
the ease of genetic manipulability and inexpensive cost make
toxicogenomic studies in the worm an attractive alternative to
mammalian systems. The C. elegans model has proved to be an
invaluable tool in studying metal-induced gene expression, DNA
damage, and apoptosis. The short lifespan has proved useful in
performing genetic screens for xenobiotics and the large RNAi
libraries available have been utilized to find novel proteins and pro-
tein interactions involved in cellular responses to metal exposure.
Through the high homology between human and worm genomes
novel targets for therapeutic intervention may become apparent
through further large scale toxicogenomic studies in the nematode.
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The new technologies for next-generation sequencing (NGS) and global gene expression
analyses that are widely used in molecular medicine are increasingly applied to the field
of fish biology. This has facilitated new directions to address research areas that could not
be previously considered due to the lack of molecular information for ecologically relevant
species. Over the past decade, the cost of NGS has decreased significantly, making it pos-
sible to use non-model fish species to investigate emerging environmental issues. NGS
technologies have permitted researchers to obtain large amounts of raw data in short peri-
ods of time. There have also been significant improvements in bioinformatics to assemble
the sequences and annotate the genes, thus facilitating the management of these large
datasets.The combination of DNA sequencing and bioinformatics has improved our abilities
to design custom microarrays and study the genome and transcriptome of a wide variety
of organisms. Despite the promising results obtained using these techniques in fish stud-
ies, NGS technologies are currently underused in ecotoxicogenomics and few studies have
employed these methods. These issues should be addressed in order to exploit the full
potential of NGS in ecotoxicological studies and expand our understanding of the biology
of non-model organisms.

Keywords: toxicogenomics, non-model fish, next-generation sequencing, bioinformatics, pathway analysis

INTRODUCTION
Research in fish physiology, genetics, evolution, immunol-
ogy, and endocrinology using non-model species has seen a
marked increase in the utilization of genomic information over
the last decade. Traditionally, obtaining genomic information
was achieved through Sanger sequencing methods which uti-
lizes fluorescent dye-labeled dideoxynucleotide triphosphates as
DNA chain terminators. However, Sanger sequencing is limiting
because of the high cost and labor intensity. The develop-
ment of next-generation sequencing (NGS) technologies has
facilitated the collection of large amounts of nucleotide infor-
mation in sequence read-length from 30 to 1,500 nucleotides
(nt) for hundreds of thousands to millions of DNA molecules
simultaneously. In parallel, the bioinformatics tools required to
analyze these large datasets and identify unique gene sequences
have also significantly improved. The different steps involved
in NGS studies are illustrated in Figure 1. NGS technolo-
gies are already considered revolutionary tools in the fields of
eukaryotic microorganism (Nowrousian, 2010), plant (Bräutigam
and Gowik, 2010), animal, and human genomics (Pareek et al.,
2011) and their application has demonstrated great potential
to study genome evolution (Holt et al., 2008), gene expres-
sion profiling (Wang et al., 2008), and gene regulation (e.g.,
DNA methylation; Pomraning et al., 2009). With regard to
fish studies, the number of publications using NGS technolo-
gies has increased approximately 10-fold in the last 3 years
(Figure 2).

Researchers in fish biology stand to gain a great deal of
insight using NGS to learn more about genome-wide and
transcriptome-wide control of biological processes, discover
novel biomarkers for ecotoxicological applications, character-
ize toxicity pathways, and investigate evolutionary questions
to a greater degree of resolution than previously provided by
using more traditional population genetic markers such as DNA
microsatellites. In ecotoxicogenomics, gene expression profil-
ing using techniques such as microarrays plays a key role for
biomarkers characterization and discovery of toxicity pathways
(Denslow et al., 2007; Ju et al., 2007). But research in this field
often requires the analysis of complex genomic events using
extensive time course and dose response studies in multiple
tissues of teleost fish, which can be difficult due to logistics
and cost. Fortunately the cost of sequencing is now decreas-
ing, permitting the analysis of many biological replicates (i.e.,
multiple individual genomes) in a single study. The applica-
tion of NGS technologies will permit to better link knowl-
edge of individual genotype to phenotype and transcriptomic
responses under varying environmental conditions and experi-
mental paradigms.

This review describes the latest NGS platforms available and
bioinformatics tools that can be employed to examine the tran-
scriptome of non-model fish species. Specifically, we aim to
discuss the possible factors involved in platform selection for
researchers working with non-model fish species. Studies that
have utilized NGS technologies using fish species are also reviewed
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FIGURE 1 | Flowchart of the different steps involved in NGS based studies in fish ecotoxicology. AOPs, adverse outcome pathways; GO, gene ontology;
GSEA, gene set enrichment analysis; IPA, ingenuity pathway analysis; PTA, paracel transcript assembler; SNPs, single nucleotide polymorphism.

with the conclusion that NGS data can contribute significantly
to our understanding of the detrimental effects of aquatic
pollution.

PLATFORMS AND TECHNOLOGY
There are five leading instruments that can be classified as part of
the NGS technologies: the 454 GS FLX, the Ion Torrent, the SOLiD,
the Illumina, and the more recently released PacBio instrument.
These can be distinguished from each other based on the chemistry
employed for sequencing, the amount of sequence information
produced, the length of each sequence read, and the overall price
per nt. While next-generation sequencers are reviewed for gen-
eral purposes elsewhere (e.g., Mardis, 2008), we provide a brief
description of the various technologies followed by a discussion
of the relative advantages of each platform for fish toxicogenomics
research.

454 GENOME SEQUENCER-FLXTM

The 454 pyrosequencer, manufactured by Roche1, is the NGS
instrument most utilized in fish genomics research (Table 1). This
platform operates on a principle referred to as “pyrosequencing,”
a method of detecting single nucleotide addition by capturing the
emission of light produced from the release of the by-product

1www.454.com

pyrophosphate during the polymerization of the DNA molecule
(Droege and Hill, 2008; Rothberg and Leamon, 2008). During 454
sequencing, DNA is fragmented and ligated to sepharose beads
with one DNA fragment per bead, optimally. This DNA library is
then amplified using a process called emulsion PCR (emPCR),pro-
ducing many copies of a unique single-stranded template on each
bead. Following amplification, a single DNA bead and enzyme
beads (sulfurylase, luciferase) are deposited in each well of a
picotiter plate where as many as one million sequencing reac-
tions – one per bead – occur in parallel. For each nucleotide
added during the polymerization reaction, inorganic pyrophos-
phate and proton by-products are released, which interact with the
luciferase to produce a pulse of light that is read by a high-density
camera.

ION TORRENT SEMICONDUCTOR SEQUENCER
The Ion Torrent is a modified version of the 454 pyrosequencing
approach and operates based on the same sequencing chemistry,
except that it makes use of the H+ that is released with every
nucleotide incorporated, instead of the pyrophosphate (Rothberg
et al., 2011). To detect the H+ released, the picotiter plate sits
on top of a massively parallel semiconductor-sensing device or
ion chip. The integrated circuits take advantage of metal-oxide
semiconductor technology, which significantly reduces the cost of
sequencing since luciferase and other costly enzymes and scanners
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FIGURE 2 | Number of publications using next-generation sequencing

(NGS) with non-model fish species in the last 4 years. Keywords used
for PubMed query include: fish, next-gen sequencing, high throughput
sequencing, and toxicology.

are not needed. To date, this instrument can sequence about 100 nt
but it should soon be able to read sequence lengths up to 200 nt
(Ion Torrent System, Inc.2). Modifications of this technology to
increase the length of the sequences produced will likely increase
the use of the Ion Torrent in fish ecotoxicology.

SOLiDTM SYSTEM
The SOLiD genome sequencer from Applied Biosystems uses an
emPCR process similar to 454, but parallel DNA sequencing is
achieved by repeatedly ligating two-nucleotide probes instead of
a sequencing reaction catalyzed by DNA polymerase (Morozova
and Marra, 2008). The two-nucleotide probes are used to query
adjacent bases on the DNA fragment, therefore each nucleotide is
actually probed twice. This system is designed to make sequence
calls on two signals per base, rather than one, resulting in a lower
error rate (for more information on this process, see Morozova
and Marra, 2008; Rusk and Kiermer, 2008). Originally, SOLiD
technology could only read approximately 35 nucleotides (Moro-
zova and Marra, 2008), but current versions of the instrument
have increased the read-length to about 50 nucleotides (Applied
Biosystems3).

ILLUMINA GENOME ANALYZER
The Illumina/Solexa technology is the second most utilized in
fish genomics research (Table 1). This sequencing platform differs
from 454 and SOLiD in terms of its amplification strategy. Rather
than amplifying DNA-covered beads by emPCR, the Illumina tech-
nology amplifies clusters of DNA fragments that are affixed to a
glass slide using a strategy called bridge amplification. The parallel
sequencing process uses dye-labeled nucleotides (one fluorophore
per base) that are added simultaneously, rather than sequentially

2www.iontorrent.com
3www.appliedbiosystems.com

as in the 454 process. The DNA clusters are then subjected to laser
excitation that cleaves the dye and permits the addition of the next
nucleotide. In 2008, Illumina sequencer projects reported reads of
25–50 nt. Base-calling algorithms have been improving to increase
read-length and base-calling confidence (Rougemont et al., 2008;
Smith et al., 2008). Currently, the Illumina sequencer can produce
longer reads of 100 nt (Illumina, Inc.4).

PacBio RS
The PacBio is a single-molecule sequencing approach that has
been developed to further reduce the cost and time required to
obtain the sequence of a genome or transcriptome. It is thought
of as a “third generation” sequencing platform. This instrument
has recently become commercially available and only a few institu-
tions have used it. The PacBio works based on a nanophotonic tool
called zero-mode waveguide (ZMW; Levene et al., 2003). ZMW
technology allows for a DNA polymerase to work in real time
using fluorescently labeled nucleotides and tracks synthesis of a
single molecule per DNA fragment (Eid et al., 2009). Like the 454
and Illumina instruments, the PacBio sequences by measuring the
burst of light produced when the pyrophosphate and fluorescent
label are released during the polymerization reaction. This instru-
ment is able to sequence single molecules up to 1500 nt long,
but the error rate (around 15%) is still relatively high (Pacific
Biosciences5). However, pairing this instrument with other more
robust sequencers can be a real advantage for non-model species,
as one can get a relatively long intact scaffold against which
to build and assemble genomes or transcriptomes for species
of interest.

ADVANTAGES AND DISADVANTAGES OF
SEQUENCING PLATFORMS
The instruments described above use different technologies and
each approach has its advantages and disadvantages. Currently,
Illumina sequencing produces short reads of about 100 nt in length
but has the ability to do this from each end of the DNA molecule
when paired ends are used. The SOLiD likewise produces reads of
approximately 35–60 nt in length. The short sequences yielded by
Illumina and SOLiD platforms have proven useful for the detec-
tion of miRNA (small RNA molecules of about 22 nt; Chi et al.,
2011; Johansen et al., 2011) and comparative genome analysis of
different fish populations (Chi et al., 2011). They could also be
useful to design microarrays probes for a variety of non-model
fish species. However the use of short sequence reads can be chal-
lenging for de novo sequencing, sequence assembly and accurate
annotation of the genes. It must be noted that the Illumina and
SOLiD are working toward increasing the number of base pairs
reads and this will improve in the future.

The DNA sequencing techniques employed in Illumina and
SOLiD technologies are effective to assess genetic variations in fish
at individual (i.e., single nucleotide polymorphisms, SNPs) and
population level (Liu et al., 2011). Indeed, while the 454 pyrose-
quencer determines the length of homopolymers in one step based
on the intensity of the light signal (Morozova and Marra, 2008),

4www.illumina.com
5www.pacificbiosciences.com
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the Illumina reads all nucleotides individually. In addition, the
SOLiD sequencing system can more reliably distinguish between
true sequence polymorphisms and sequencing errors. In SOLiD
sequencing, each base is probed twice in two independent ligation
reactions, rather than one synthesis reaction. If one of the two lig-
ation reactions gives an unexpected nucleotide, this is recognized
as an error. If a consistent result is found for both ligation reac-
tions, it is recognized as a polymorphism (Morozova and Marra,
2008). This distinction is paramount for fish genetics studies due
to the increased polymorphic loci resulting from genome dupli-
cation events. It should also be mentioned that the newer SOLiD
instrument is organized in such a way that individual lanes can
be run, without having to fill an entire plate which may improve
accessibility for smaller projects in non-model fish.

The new Ion Torrent instrument is relatively inexpensive and
will allow individual researchers to have one in their laboratories,
much like they do for qPCR. However this instrument also pro-
duces relatively short reads. The 454 pyrosequencer and the PacBio
are superior in term of read-length and are capable of producing
up to 700 and 1,500 nt per read respectively, making them ideal
techniques for de novo sequencing of fish species as a scaffold is
required. The 454 pyrosequencing technology has already shown
great potential for whole transcriptome analysis using non-model
fish (Garcia-Reyero et al., 2008; Jeukens et al., 2010). We should
point out that the PacBio is still in its infancy and the platform still
requires a lot of care. With improvements, this instrument will
surely become a mainstay for de novo sequencing of non-model
fish species.

Researchers should consider carefully each sequencing plat-
form based on the aims of the project (i.e., assessment of genetic
variation, de novo sequencing or transcriptome sequencing). In
toxicogenomics studies with non-model fish species, it may be
more beneficial to use a hybrid sequencing strategy. For exam-
ple, combining the short pair-ends reads of the Illumina with the
longer single-end reads of the 454 will likely enhance sequence
assembly and gene annotation. This was demonstrated recently by
Jiang et al. (2011). The authors used Illumina and 454 sequenc-
ing to investigate the genome of the channel catfish (Ictalurus
punctatus), and demonstrated that sequencing data from two
NGS platforms improved the sequencing depth and increased the
number of contigs assembled.

BIOINFORMATICS: EXTRACTING INFORMATIVE
TOXICOLOGICAL INFORMATION FROM NGS
BASED STUDIES IN NON-MODEL FISH
Next-generation sequencing technologies produce massive
amounts of data that need to be processed, annotated, and aligned
to the genome before expression analysis (Garber et al., 2011).
This is a significant obstacle for ecotoxicogenomics because many
researchers are using non-model fish species to study the impacts
of aquatic pollutants. Therefore, the advances in DNA sequencing
technologies require corresponding improvements in bioinfor-
matics approaches to better manage and interpret genomic and
transcriptomics data. There are new algorithms, such as GENE-
counter (Cumbie et al., 2011) that can assist with processing and
managing the data but these methods have not been tested with
non-model fish species. The process to align reads in NGS will not

be covered here and there are a number of pipelines for obtaining
meaningful sequencing data in order to quantitate transcriptome
data (Goncalves et al., 2011). Although some algorithms incorpo-
rate splicing events of transcripts into the analysis, the detection of
splice variants could be more challenging in teleosts because there
are multiple copies of genes. For example, in some teleost species
there are four gene variants of the estrogen receptor that show
differences in ontogeny and sex expression (Boyce-Derricott et al.,
2010). The ER isoforms show high conservation in the DNA and
ligand binding domains and are more variable in other regions.
Sequencing a gene with multiples isoforms in the conserved region
by chance could make interpretation and quantitation difficult,
especially when counting differentially expressed tags in RNA-seq
studies.

In recent years, there has been a movement away from single
gene characterization and toward the integration and quantifi-
cation of high-throughput sequencing data in ecotoxicology. To
supplement and enhance biologically relevant observations made
from gene expression analysis using NGS, bioinformatics algo-
rithms have been developed to consider all affected genes, many
of which appear functionally unrelated, and to identify cellu-
lar processes and molecular functions perturbed by toxicants.
This approach circumvents concerns with multiple hypotheses
testing of both microarray and RNA-Seq data which severely
restrict expression data because genes are grouped into larger cate-
gories resulting in fewer comparisons. Bioinformatics approaches
implemented for fish ecotoxicogenomics experiments include
functional enrichment, gene set enrichment, pathway analysis, and
reverse engineering. We provide some brief examples of their use
in ecotoxicology.

GENE ONTOLOGY
Gene ontology (GO) is a manually curated database of genes using
a standardized vocabulary that includes biological process, molec-
ular function, and cellular component. Using NCBI PubMed for
a literature search, more than 40 scientific publications investi-
gating the impact of aquatic pollutants in fish have characterized
differentially expressed transcripts using GO to identify function-
ally enriched biological processes. As an example, there has been
valuable insight obtained into the effects of endocrine disrupt-
ing chemicals that mimic estrogens. Many studies with different
experimental paradigms reported common biological processes
and molecular functions affected by environmental estrogens,
despite the variety of genes that were differentially regulated.
These include electron transport, amino acid synthesis, pri-
mary metabolism, cell communication and signaling, steroid
binding, and steroid metabolism (Martyniuk et al., 2007; Ben-
ninghoff and Williams, 2008; Hoffmann et al., 2008; Garcia-
Reyero et al., 2009).

GENE SET ENRICHMENT ANALYSIS
In contrast to functional enrichment that utilizes a user defined
gene list based on predetermined criteria (i.e., fold change or p-
value cutoff), Gene set enrichment analysis (GSEA) considers the
entire list of genes in the analysis (Subramanian et al., 2005) and
can be used for microarray and RNA-seq data. GSEA is a compu-
tational method that determines whether an a priori defined set

www.frontiersin.org April 2012 | Volume 3 | Article 62 | 43

http://www.frontiersin.org/
http://www.frontiersin.org/Toxicogenomics/archive


“fgene-03-00062” — 2012/4/23 — 21:25 — page 6 — #6

Mehinto et al. Fish toxicogenomics

of genes shows statistical differences in rank order in a list based
on differential gene expression. The advantage of GSEA is that it
identifies pathways and cell processes more robustly by reducing
the signal-to-noise ratio in a dataset, and there is higher resolution
and ability to identify regulated gene groups. GSEA has been uti-
lized in toxicogenomics, for example to study the neurotoxic effects
of aquatic pollutants such as fluoxetine, venlafaxine, and carba-
mazepine (Thomas et al., 2012). In this study, GSEA identified
central nervous system development, axonogenesis, brain devel-
opment, and neurogenesis as the main biological pathways altered
in fathead minnows exposed to these three neuroactive contami-
nants. Until now, GSEA has had limited use in fish transcriptomics
studies but it promises to be an important bioinformatics method-
ology to characterize adverse outcome pathways (AOPs). Another
enrichment analysis method called sub-network enrichment anal-
ysis (SNEA) can be used in fish transcriptomics studies (Trudeau
et al., 2012), but it is not yet widely utilized in fish ecotoxicol-
ogy. This approach identifies gene regulatory pathways underlying
chemical perturbation and one can construct informative gene
networks in a method similar to pathway analysis (outline below)
but the networks are constructed in a post hoc fashion. GSEA
and SNEA have shown high potential to characterize biological
pathways affected by contaminants but their application remains
limited for examining NGS data in fish toxicology as they require
high quality gene annotation.

PATHWAY ANALYSIS
Biochemical pathways are important for characterizing AOPs in
toxicogenomics. A number of bioinformatics tools are available
to link transcriptomics data to pathway categories such as dis-
ease progression, drug effects, and biochemical processes among
others. These tools include the Database for Annotation, Visual-
ization and Integrated Discovery (DAVID6), Connectivity Map7,
and the Kyoto Encyclopedia of Genes and Genomes (KEGG8). Of
interest to ecotoxicogenomics, KEGG MAPPER and Babelomics
can be used to integrate metagenomic and transcriptomics with
chemical and pathway information (Kawashima et al., 2008; Med-
ina et al., 2010; Kanehisa et al., 2012). Other programs used for
pathway analysis in fish ecotoxicology studies include Ingenuity
Pathways Analysis (Ingenuity� Systems) and Pathway Studio�

(Nikitin et al., 2003; Ariadne Genomics). Networks are built
based upon relationships extracted from primary literature and
algorithm searches for entity connections based on regulation,
interaction, and binding between proteins or cell processes. In
ecotoxicology studies, pathway analysis has been used with success
to explore relationships among genes that are impacted by aquatic
pollutants. Gene interaction pathways have been constructed after
exposure to pollutants of concern such as ethinylestradiol, 17β-
trenbolone, and fipronil in the hypothalamic–pituitary–gonadal
axis of zebrafish (Wang et al., 2010), the pesticide methoxychlor
in largemouth bass liver (Martyniuk et al., 2011) and environ-
mental estrogens in fathead minnow ovary (Garcia-Reyero et al.,
2009). NGS approaches in ecotoxicogenomics will benefit from

6http://david.abcc.ncifcrf.gov/
7www.broadinstitute.org/cmap/
8www.genome.jp/kegg/

these bioinformatics tools to integrate both DNA and transcrip-
tomics data and better predict the adverse effects in non-target
aquatic organisms.

The successes of building meaningful interaction pathways in
fish toxicology reported in the literature are impressive as genomics
information is limited for non-model fish species. Researchers
using fish model in genomics studies have to consider the fact that
many gene–gene interaction pathways are based on mammalian
literature. Therefore, to extract significant functional gene infor-
mation for pathway analysis, mammalian homologs for fish genes
must be retrieved. Fish specific databases for model fishes such as
the zebrafish, are currently under development and will include
gene information not found in mammals.

REVERSE ENGINEERING
Reverse engineering offers a new way of characterizing AOPs in
fish toxicology (Perkins et al., 2011). The theory behind reverse
engineering and the potential applications in ecotoxicology are
well described by Garcia-Reyero and Perkins (2011). Generally,
the process of reverse engineering, borrowed from computing
sciences and engineering, is to identify the working parts of
a system in order to better understand how it functions. This
methodology increases the potential to study this system in a dif-
ferent context. In toxicogenomics, multiple Omics datasets can
be statistically evaluated to identify key nodes (genes or proteins)
that regulate gene networks. A framework for reverse engineer-
ing of AOPs in ecotoxicology has been introduced by Perkins
et al. (2011). This framework consists of building and integrat-
ing gene networks, interrogating the networks with chemical
perturbations, defining the AOPs, and predicting phenotypic con-
sequences to the perturbation. The authors provide an example
using an impressive 868 microarray datasets from female fat-
head minnow ovary to investigate environmental contaminants
able to disrupt the hypothalamic–pituitary–gonadal axis. The
analysis permitted to identify gene networks affected by the anti-
androgen flutamide, which were composed of several signaling
and receptor genes (both estrogen and androgen responsive) and
associated with cell regeneration, development, and antioxidant
response. Some of the network nodes included activin A receptor
(type 1), aryl hydrocarbon receptor (AHR) interacting protein,
and Wnt1 inducible signaling pathway protein 1. This approach
offers unique biological perspective on the regulatory pathways
affected by flutamide.

Some challenges for reverse engineering, and other meth-
ods such as SNEA, have been addressed over a decade ago
in the early stages of transcriptomics and network analysis
(Szallasi, 1999). These include the stochastic nature of the
transcriptome (or variation in the time sequences of gene acti-
vation/inhibition), the effective size of the network (i.e., how
many interacting entities comprise a “network”), the compart-
mentalization of genetic networks (e.g., a highly compartmen-
talized gene network will have few regulators and may be more
“buffered” from environmental perturbations), and informa-
tion content of gene expression matrices (i.e., what information
is present on a temporal scale about variation in gene–gene
or gene–protein relationships). Despite these challenges, there
have been great strides in adopting reverse engineering into
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aquatic toxicology. It should also be noted that many of the
algorithms described above depend upon, by definition, the
annotations and curated gene descriptions available. Never-
theless, fish ecotoxicogenomics studies using high-throughput
transcript sequencing have benefited tremendously from these
bioinformatics approaches and they have been extremely use-
ful for characterizing genes and pathways altered by aquatic
pollutants.

RESEARCH IN NON-MODEL FISH SPECIES USING
NEXT-GENERATION SEQUENCING
Over the last few years, NGS has been used to examine DNA
and RNA from over 20 fish species including Atlantic salmon
(Salmo salar), bighead carp (Hypophthalmichthys nobilis), Euro-
pean seabass (Dicentrarchus labrax), lake sturgeon (Acipenser
fulvescens), mangrove killifish (Kryptolebias marmoratus), pygmy
perch (Nannoperca spp.), and spotted gar (Lepisosteus oculatus;
Table 1). Most fish sequencing projects have employed the 454
pyrosequencer and have been successful using multiple tissue types
(e.g., liver, gonad, kidney, brain) as well as different life stages (e.g.,
adult versus embryo). This demonstrates that NGS platforms are
versatile and can be used to address a range of biological questions
in fish. To date, only a few studies have used NGS technologies
to research the impact of environmental contaminants in aquatic
organisms. Below, we discuss the application and advantages of
these methodologies in fish toxicogenomics.

NGS IN FISH TRANSCRIPTOMIC ANALYSES
Next-generation sequencing has already started to have a pos-
itive impact in the field of fish transcriptomics. Microarrays
are frequently used in the field of fish ecotoxicology (Douglas,
2006; Falciani et al., 2008; Garcia-Reyero et al., 2009; Villeneuve
et al., 2010; Gust et al., 2011; Sellin Jeffries et al., 2012). Typi-
cally microarray probes were designed based on cDNA contigs
produced by suppressive subtractive hybridization (SHH) and
cDNA libraries (Blum et al., 2004; Williams et al., 2006; Larkin
et al., 2007; Cairns et al., 2008; Katsiadaki et al., 2010). However,
a few studies have applied NGS technology to produce oligonu-
cleotide microarrays. Because NGS platforms can generate high
numbers of reads, the resulting sequences are often extended
which increases the chance to find matching reads and correctly
annotate them. Garcia-Reyero et al. (2008) used 454 pyrosequenc-
ing technologies to build a 44,000-oligonucleotide microarray for
largemouth bass (Micropterus salmoides). This approach resulted
in obtaining 31,391 unique sequences, which were compiled with
sequences from SHH to produce nearly 16,000 gene sequences
(half of them were annotated). The custom-designed microarray
was then tested by assessing the impact of 17β-estradiol expo-
sure on endocrine disruption and hormone signaling in adult
largemouth bass. The combination of NGS and microarray anal-
yses permitted characterizing several pathways perturbed by the
estrogenic compound including gonad development, sex differen-
tiation, signal transduction, and cell communication. In another
study, Mirbahai et al. (2011) used NGS technology in combination
with methylated DNA immunoprecipitation to design a 14,919-
oligonucleotide microarray. This permitted to examine hepatic
DNA methylation changes in common Dab (Limanda limanda)

living in polluted environments and to correlate methylation levels
with gene expression levels.

Recently, RNA-seq analyses are increasingly used (Xiang et al.,
2010; Fraser et al., 2011) and the results suggest that this method
could replace array-based technology in toxicogenomics research.
Indeed, RNA-seq presents the advantage to quantify directly the
expression level of mRNAs across the transcriptome from the
number of reads for a particular cDNA contig in a sequencing
run, allowing for the quantification of low-expressed transcripts.
While currently cost-prohibitive, RNA-seq analysis can potentially
provide a greater degree of resolution than microarrays and help
to identify splice variants. Oleksiak et al. (2011) utilized this tech-
nique in supplement to a microarray experiment to determine the
genomic differences between a polychlorinated biphenyl (PCB)
sensitive and a PCB resistant population of Atlantic killifish (Fun-
dulus heteroclitus). Using 454 pyrosequencing technology, they
demonstrated that NGS data can be used to extend the length
of array probes, which helped to find new matching sequences
and to annotate previously unannotated probes. The RNA-seq
study corroborated most of the microarray results and suggested
that AHR regulatory pathway may be responsible for the PCB
resistance of one of the killifish population. In another study,
Whitehead et al. (2011) applied similar techniques to examine the
effects of the Deepwater Horizon oil spill on Gulf killifish. RNA
sequencing data was acquired using the Illumina platform and
over 6000 unique EST sequences were obtained. Both microar-
ray and RNA-seq analyses identified zona pellucida, choriogenin,
and vitellogenin as PCB-responsive genes. These early studies
provide strong evidence that RNA-seq methods are suitable to
investigate the adverse effects of pollutants present in the aquatic
environment.

The usefulness of this approach was further demonstrated by
Pierron et al. (2011) who conducted RNA-seq to examine the
effects of chronic metal exposure in four wild populations of yel-
low perch. NGS data generated from the yellow perch yielded
over 9,000 gene sequences among which 6,000 were annotated. As
mentioned previously, annotating EST sequences from non-model
fish species is one of the main challenges for fish biologists and
NGS technologies could facilitate this task. Pierron et al. (2011)
were able to establish relationships between the hepatic expres-
sion levels of specific transcripts and the concentrations of copper
and cadmium measured in the fish as well as to identify poten-
tial adverse effects. In general, these studies have successfully
shown that NGS is a powerful technique to study the ecotoxi-
cological responses of non-model fish species living in polluted
environments.

NGS IN FISH EVOLUTION AND PHYSIOLOGY
Interestingly, most of the research published on the application of
NGS in fish has focused on different aspects of fish evolution such
as genome evolution (Hale et al., 2010; Amores et al., 2011), phe-
notypic evolution (Elmer et al., 2010; Goetz et al., 2010; Jeukens
et al., 2010), and evolution of immune system (Star et al., 2011;
Zhang et al., 2011a). This subject area is outside of the scope of
this article, but a few of these studies are reviewed below.

Next-generation sequencing technologies have had a significant
impact in the field of ecological divergence and have contributed
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in elucidating the links between genetic and environmental fac-
tors leading to species evolution (Elmer et al., 2010). Most of
the research in this field used the 454 GS FLX pyrosequencer
for RNA-seq analyses to uncover the molecular basis for the
phenotypic and ecological divergences between endemic species.
For example, Jeukens et al. (2010) employed this methodology
to investigate the genomic differences behind the phenotypic
divergence of two populations of lake whitefish (Coreons clu-
peaformis spp.). The authors discovered that dwarf fish had an
over-representation of genes linked to immunity, DNA replica-
tion and repair while normal fish over-expressed genes linked to
protein synthesis. Elmer et al. (2010) used the same approach to
correlate the genomic and phenotypic differences between crater
lake cichlids: the benthic species Amphilophus astorquii and the
limnetic species Amphilophus zaliosus. Their study revealed that
a number of transcripts associated with development, biosynthe-
sis, and metabolic processes were differentially expressed between
the two species. Other studies have employed NGS technologies
to characterize fish immune system and its evolution. All these
studies have concluded that NGS technologies provide a greater
scope of understanding of the genetic events that preceded natural
selection and fish species evolution. The significant advance-
ment made in these disciplines may provide valuable genetic
insights to facilitate ecotoxicogenomic analyses. For example,
studies on the Atlantic killifish (Oleksiak et al., 2011) combined
principles in ecotoxicology and evolution to better understand
adaptation of fish in polluted environments. Combining data on
both genetic variation (SNPs) in fish genomes and transcriptomic
responses will lead to the characterization of expression quan-
titative trait loci (eQTL) and genetic architecture that underlies
adaptation.

CONCLUSION
There is great promise for toxicogenomics in non-model fish
species. Fish offer unique challenges compared to mammals due to
genome duplication events and the presence of multiple isoforms
for many genes. Nevertheless, teleost fish are important model
organisms for assessing the impact of anthropogenic pollutants
in the environment as well as studying certain human diseases
(Albertson et al., 2009; Zhang et al., 2010). As the costs for DNA
and RNA sequencing decrease, the combination of several NGS
platforms should facilitate whole genome sequencing projects and
expand our knowledge of ecologically relevant species. Under-
standing the relationships between environmental chemical expo-
sure and gene expression will provide valuable data for environ-
mental risk assessments (ERA). In 2011, Piña and Barata reviewed
the potential for ecotoxicogenomics studies to improve the tests
necessary for ERA by discovering biological assays and biomark-
ers relevant to environmental conditions (Piña and Barata, 2011).
Thus, the development of ecotoxicogenomics and bioinformatics
tools will greatly benefit the assessment of the impacts of environ-
mental pollutants. In the future, it will be necessary to integrate
the extensive genomic data gathered from transcriptomics, gene
regulation, and evolutionary biology into a working framework in
order to propose new hypotheses in fish research.
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Amphibians are important vertebrates in toxicology often representing both aquatic and
terrestrial forms within the life history of the same species. Of the thousands of species,
only two have substantial genomics resources: the recently published genome of the Pipid,
Xenopus (Silurana) tropicalis, and transcript information (and ongoing genome sequencing
project) of Xenopus laevis. However, many more species representative of regional eco-
logical niches and life strategies are used in toxicology worldwide. Since Xenopus species
diverged from the most populous frog family, the Ranidae, ∼200 million years ago, there
are notable differences between them and the even more distant Caudates (salamanders)
and Caecilians. These differences include genome size, gene composition, and extent of
polyploidization. Application of toxicogenomics to amphibians requires the mobilization of
resources and expertise to develop de novo sequence assemblies and analysis strate-
gies for a broader range of amphibian species. The present mini-review will present the
advances in toxicogenomics as pertains to amphibians with particular emphasis upon the
development and use of genomic techniques (inclusive of transcriptomics, proteomics,
and metabolomics) and the challenges inherent therein.

Keywords: amphibian, frog, molecular techniques, polyploid, endocrine disruptor, estrogen, thyroid hormone,

toxicogenomics

Amphibians have an undeniable, yet understated, role in toxicol-
ogy. They diverged from other vertebrates 360 million years ago
(Frost et al., 2006) and, currently, over 60% of the >6,900 known
species are threatened or declining in numbers (AmphibiaWeb,
2012). Recent amphibians are comprised of three orders: Anura
(frogs and toads), Caudata (salamanders), and Gymnophiona
(caecilians; Dubois, 2004; Frost et al., 2006), of which ∼90% of
species are Anura. Toxicological studies are primarily on anurans
with some studies on caudates. Caecilian representation is lacking.
In contrast to the limited ranges of caudate and caecilians, anurans
are found on every continent except Antarctica (AmphibiaWeb,
2012).

Amphibians represent the only vertebrate group where a large
majority of its members exhibit a life history that includes distinct
independent aquatic larval and terrestrial juvenile/adult phases.
The transition between the larval and juvenile phases requires sub-
stantial or complete remodeling of the organism (metamorphosis)
in anticipation of a terrestrial lifestyle. Thus this places amphib-
ians in a unique position for the assessment of toxicological effects
in both aquatic and terrestrial environments. Over 10,000 study
records on amphibians are currently available on the US Environ-
mental Protection Agency’s ECOTOX database (US EPA, 2012).
Ninety percent of records represent aquatic exposures and these
are biased toward a single species (Xenopus laevis). The remaining
10% of records comprise terrestrial exposures of frog, toad, and
salamander species (US EPA, 2012). Less than 300 records include
any mRNA expression data.

The exquisite sensitivity of frogs to hormones fostered the
launching of several initiatives to develop standardized test-
ing methods. Environment Canada is developing a frog tadpole

exposure assay that uses native species (Rana catesbeiana and pip-
iens) and a combination of molecular and morphological criteria
(Veldhoen et al., 2006c). The Organization for Economic Coop-
eration and Development (OECD, 2009) has recently established
guidelines for a standardized assay for evaluating thyroid hor-
mone (TH) active chemicals using a X. laevis metamorphosis
assay (XEMA) and is in the process of evaluating a multigener-
ational reproductive assay in X. tropicalis. The XEMA assay has
been adapted for X. tropicalis (Mitsui et al., 2006) and served as a
template for the development of some native frog metamorpho-
sis assays for R. rugosa (Oka et al., 2009), Bombina orientalis (Park
et al., 2010), and Pseudacris regilla (Marlatt et al., submitted). How-
ever, the recommended XEMA assay relies upon morphological
criteria and the input of toxicogenomic endpoints is not standard
practice. Nevertheless, movement toward inclusion of molecular
endpoints to reduce assay time and provide greater information
regarding test chemical mode of action is evident in the literature
(Table 1).

Amphibians are used in two general ways in the context of
toxicology: in laboratory exposure settings where individual chem-
icals or complex mixtures are tested and in the field setting.
Although availability of appropriate life stages is year round for
some species (e.g., Xenopus tadpoles can be bred on demand, R.
catesbeiana tadpoles can be collected from the wild and housed
in aquatics facilities year round), many have limited availabil-
ity throughout the year. Moreover, field sampling of threatened
or endangered species necessitates the development of non-lethal
sampling methods (fin biopsies) combined with molecular analy-
ses (Veldhoen and Helbing, 2005). Efforts have also been made
to combine transcript analysis with cultured tail fin biopsies
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Table 1 | Representative studies using amphibian toxicogenomics.

Approach Method Species Representative publicationsa

Transcriptomics Microarray Rana catesbeiana Veldhoen et al. (2006b)

Xenopus laevis Helbing et al. (2007), Heimeier et al. (2009), Gohin

et al. (2010), Searcy et al. (2012)

QPCR Andrias japonicusb Katsu et al. (2006)

Pleurodeles waltl Ko et al. (2008)

Pseudacris regilla Veldhoen et al. (2006a), Marlatt et al. (submitted)

Rana catesbeiana Gunderson et al. (2011)

Rana pipiens Howe et al. (2004), Duarte-Guterman and Trudeau

(2010), Langlois et al. (2010)

Rana rugosa Suda et al. (2011)

Rana temporaria Mortensen et al. (2006)

Xenopus tropicalis Langlois et al. (2011)

Xenopus laevis Zhang et al. (2006), Oka et al. (2008), Zimmermann

et al. (2008), Baba et al. (2009), Rossi et al. (2009),

Massari et al. (2010), Qin et al. (2010), Urbatzka et al.

(2010), Zaya et al. (2011)

Proteomics Two dimensional polyacrylamide gel

electrophoresis followed by liquid

chromatography and tandem mass

spectrometry (2D-PAGE; LC-MS/MS)

Rana catesbeiana Domanski and Helbing (2007), Serrano et al. (2010)

Xenopus laevis

Isobaric tags for relative and absolute

quantitation (iTRAQ)

Rana catesbeiana Domanski and Helbing (2007), Serrano et al. (2010)
Xenopus laevis

Metabolomics Ultra performance liquid chromatography Mass

Spectrometry (UPLC-MS)

Rana catesbeiana Helbing et al. (2010)

Inductively coupled plasma mass spectrometry

(ICP-MS)

Xenopus laevis Tietge et al. (2010)

aDue to space constraints, the author regrets that all studies could not be included. She has provided selected references representative of key laboratories active in

the area and encourages the interested reader to consult the literature for additional published works by the highlighted laboratories.
bDue to the paucity of publications for salamanders, this work was included in the table even though this study used gel-based quantitation methods for PCR products.

for rapid screening of chemicals and effluents (Hinther et al.,
2010).

Toxicogenomics are best suited for identifying and evaluating
factors categorized as sublethal deleterious effects that influence
survival and recruitment; the primary factors contributing to
amphibian population declines (Hayes et al., 2010). Such fac-
tors include: stress, susceptibility to disease, climate change, and
environmental pollutants. Typically, molecular responses precede
morphological endpoints giving early indications of response
and modes of action. To date, application of toxicogenomics to
amphibians has been extremely limited due to restrictions in
resources/expertise and the difficulty in obtaining consensus on
which toxicologically important species to develop large-scale
genomics resources for. Approaches for transcriptomics, pro-
teomics, and metabolomics pertaining to frogs has been previously
reviewed elsewhere (Helbing et al., 2010). Research efforts have
largely focused on the evaluation of endocrine disruption in frogs,
primarily with respect to xenoestrogens and TH-active chemi-
cals, including hormonal cross-talk and their complex interactions
with environmental factors (Table 1). Sex reversal and/or intersex

conditions in response to chemical exposures have been reported
and some laboratories have begun to examine their molecular
basis (Table 1). The absolute dependence of frog tadpoles upon
TH during metamorphosis into a juvenile frog (Shi, 2000) pro-
vides for the most comprehensive and drastic response known to
the hormone; although all vertebrates require THs for develop-
ment, nervous system function, and metabolism (Oppenheimer,
1999). Indeed, the use of frog tadpoles as surrogate species for TH
disruption in mammals has been explored at the molecular level
(Searcy et al., 2012).

Even where more resources are available (for, e.g., commer-
cially available Xenopus oligo microarrays), restrictions in cost
and lack of utility across species platforms (Helbing et al., 2010)
have greatly limited application of toxicogenomics tools beyond
quantitative real time polymerase chain reaction (QPCR; Table 1).
It is notable that very few relevant studies have been performed
using salamanders and none with caecilians (Table 1). For labs
having the necessary expertise, efforts have concentrated upon the
production of transcript-based biomarkers (although some data
on proteomics and metabolomics have been published; Table 1),
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definition of baseline responses to model hormones, identification
of appropriate sampling times for molecular biomarker use, and
determination of natural variation (Table 1).

Most of the toxicogenomic studies that have been published
so far are laboratory-based using X. laevis strains that are akin
to the white mouse of the frog world. Xenopus are Pipidae; one
of 38 families within the Anura (Frost et al., 2006). Pipidae are
distantly related to most Anura and diverged from the largest
family, the Ranidae (the true frogs), ∼200 million years ago (Sum-
ida et al., 2004). Marked differences in life histories (for, e.g.,
Xenopus remain aquatic after metamorphosis, whereas Ranids
become terrestrial), species sensitivities (Relyea and Jones, 2009),
and genome compositions (discussed below) have prompted a call
for developing toxicogenomics tools and approaches applicable to
environmentally relevant species (Denslow et al., 2007).

Amphibian toxicogenomics has largely been driven through
the adoption of tools made available through disciplines out-
side of toxicology, namely developmental, cell, and molecular
biology. This provided, firstly, gene information from X. laevis,
and, subsequently, a genome from X. (Silurana) tropicalis. How-
ever, this has not been without difficulty. X. laevis has been the
most-used amphibian toxicological model due to the ease of hus-
bandry in laboratory settings. However, genetically, X. laevis is
pseudotetraploid, derived from an ancient tetraploid lineage with
incomplete diploidization across a large portion of the genome
(Mable et al., 2011). In fact, Pipidae have the highest number
of polyploid species identified within amphibians (Mable et al.,
2011). This created significant problems in initiating a genome
sequencing project for this species due to the bioinformatic chal-
lenge of assembling a tetraploid genome de novo. Fortunately, a
diploid Xenopus species did exist with similar husbandry benefits
in this family. Thus the sequencing of the first frog genome was
performed on X. tropicalis and completed in 2010 (Hellsten et al.,
2010). The problem for toxicology is that the availability of the X.
tropicalis genome information is now driving scientists to use this
as a test species for use in toxicogenomics. Although an enormous
opportunity, it is not clear how suitable this species will be as a
representative of native frog species or amphibians in general.

Amphibians present a wide range of species diversity. They
contain keystone species within a plethora of ecosystems through-
out the world. They are important food sources for humans and
wildlife, instrumental in pest control, and serve as sensitive indi-
cators within a variety of ecosystems. With the exception of R.
catesbeiana which is distributed worldwide, amphibians tend to
have regional representation. Therefore, toxicological evaluations
have often tended toward regionalism as well [for example, com-
mon frog ecotox species are R. rugosa (Japan), R. temporaria
(Europe), and R. pipiens (North America)]. Moreover, amphib-
ians have representatives of different sex determination systems
(e.g., XX/XY, ZW/ZZ; Eggert, 2004) that could influence sensitivity
to environmental contaminants. Genome organization is simi-
lar within amphibian subgroups, but varies substantially between
subgroups. In addition to polyploidy in a few amphibian species,
the genome sizes of amphibians span four orders of magnitude
from one-quarter of the human genome (0.9 Gb, Limnodynastes
ornatus = ornate burrowing frog) to among the largest known in
animals (118 Gb, Necturus lewisi = gulf coast waterdog; Gregory,

2012). The estimated genome sizes and chromosome numbers of
commonly used amphibian species in toxicology are presented in
Table 2. Thus, coupling toxicological demands with genetics result
in logistical and bioinformatic challenges. These have hampered
building consensus and concerted effort to further genomics tools.

Despite this, current efforts are focused upon addressing the
dearth in (1) application of available toxicogenomics resources
to amphibians, and (2) genome sequence information repre-
senting amphibian species beyond Xenopus. Access to genome

Table 2 | Estimated genome sizesa of representative amphibians.

Species (common name) Genome

size (Gb)

Chromosome

number

ANURA

Bombina orientalis (oriental fire-bellied toad) 8.0 24

Bufo americanus (American toad) 5.1 22

Bufo bufo (common toad) 6.6 22

Bufo marinus (cane toad) 4.8 22

Hyla arborea (European tree frog) 4.7 24

Hyla versicolor (gray tree frog) 9.6 48

Pelobates fuscus (European spadefoot toad) 4.4 26

Pseudacris regilla (Pacific tree frog) 3.7 24

Rana aurora (red-legged frog) 9.0 26

Rana catesbeiana (North American bullfrog) 7.4 26

Rana clamitans (green frog) 6.7 26

Rana esculenta (edible frog) 6.8 26

Rana japonica (Japanese reddish frog) 5.7 26

Rana pipiens (northern leopard frog) 6.7 26

Rana rugosa (wrinkled frog) 8.0 26

Rana sylvatica (wood frog) 5.8 26

Rana temporaria (common European frog) 4.2 26

Spea hammondii (Western spadefoot toad) 1.6 26

Xenopus laevis (South African clawed frog) 3.2 36

Xenopus tropicalis (Western clawed frog) 1.7 20

CAUDATA

Ambystoma maculatum (spotted salamander) 32.3 28

Ambystoma mexicanum (Mexican axolotl) 34.0 28

Ambystoma tigrinum (tiger salamander) 31.0 28

Andrias japonicus (Japanese giant salamander) 45.5 60

Dicamptodon ensatus (Pacific giant salamander) 55.6 28

Necturus maculosus (mudpuppy) 84.1 38

Notophthalmus viridescens (red spotted newt) 36.9 22

Pleurodeles waltl (Spanish ribbed newt) 20.0 24

Triturus vulgaris (common newt) 24.9 24

GYMNOPHIONA

Geotrypetes seraphini (Gaboon caecilian) 4.6 38

Gymnopis multiplicata (Purple caecilian) 3.6 24–26

Siphonops annulatus (caecilian) 13.6 ?

Adapted from Gregory (2012).
aGenome sizes presented are the average of C-values from the Animal Genome

Size database for a given species. C-values represent the haploid DNA amount

in a gametic nucleus. The term is used interchangeably with genome size for

diploids. However, when an organism is polyploid, the C-value may represent

multiple genomes within the nucleus and may not represent the true haploid

DNA amount.

www.frontiersin.org March 2012 | Volume 3 | Article 37 | 51

http://www.frontiersin.org
http://www.frontiersin.org/Toxicogenomics/archive


Helbing Toxicogenomics of amphibians

FIGURE 1 | Cartoon depiction of RNA-seq results from the liver of

premetamorphic Xenopus laevis and Rana catesbeiana tadpoles

focusing upon arginine and proline metabolism including the urea

cycle. Tadpoles were exposed to 10 nM 3,5,3′-triiodothyronine (a thyroid
hormone) or NaOH vehicle control for 48 h. The animals were treated and
maintained in accordance with the guidelines of the Canadian Council on
Animal Care. The liver transcriptomes were subjected to RNA-seq using
75 base HiSeq of paired end tagged (PET) libraries. The derived sequence
information was assembled using the X. tropicalis genome as a scaffold
and the contig identities were determined by a Blastx search against the
X. tropicalis genome. The number of read counts (∼400 million) was
normalized between samples and the relative count frequencies of the
indicated pathway components were compared based upon the X.
tropicalis arginine and proline metabolism KEGG pathway (xtr00330;
www.genome.jp/kegg). The results are depicted as a bipartite rectangle

beside the name of the enzymes corresponding with measured
transcripts in the RNA-seq experiment that were identified in the KEGG
pathway. The left side represents the relative change in transcript
abundance levels of Rana (R) and the right side mRNA levels of Xenopus
(X) where red is increased, black is no change, and blue is decreased
relative to control animals. Non-detected transcript is depicted by a
crossed-out white box. Use of the X. tropicalis genome as an assembly
scaffold had limited utility since X. laevis and R. catesbeiana sequences
aligned imperfectly to the X. tropicalis genome with R. catesbeiana, not
surprisingly, having the least benefit of alignment. Nevertheless, some
transcript identities linked to count frequencies were positively
confirmed and the data obtained for the urea cycle enzymes, for
example, matched well with previous observations (Helbing et al., 1992;
Xu et al., 1993; Iwase et al., 1995). This validates the method for
transcripts that are identifiable and quantifiable in this way.

and transcriptome sequence information is critical for the key
toxicogenomics approaches today such as microarrays, QPCR,

and proteomics techniques. The increasingly recognized role
of epigenetic factors in toxicology necessitates the means for
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analyzing genomes (Bilesimo et al., 2011). De novo high through-
put sequencing of transcriptomes (RNA-seq) provides an unprece-
dented opportunity to obtain sequence and expression informa-
tion of literally thousands of gene transcripts within a tissue
(Martin and Wang, 2011). Access to resources such as Xen-
base (www.xenbase.org) and deposition of amphibian expressed
sequence tags (ESTs) and individually cloned sequences on pub-
licly accessible databases have made it possible to garner limited
information from RNA-seq experiments (Figure 1). However,
accurate assembly and bioinformatics evaluation of RNA-seq data
requires a genome sequence for the species of interest.

We will see more use of X. tropicalis for toxicogenomics; but
we must be very careful not to let the genomics drive the tox-
icology and put resources and effort into developing appropri-
ate tools for a wider range of toxicologically relevant species.

Of the greatest urgency is obtaining genome sequence informa-
tion from the Ranids, since they represent the largest group of
amphibians worldwide, and the Caudata due to their unique
genome structure. Now more than ever, we need the scaffolds and
platforms for more amphibian species to move toxicogenomics
forward.

ACKNOWLEDGMENTS
The author gratefully acknowledges grant support from the
Natural Sciences and Engineering Research Council of Canada
(NSERC) and Genome British Columbia. Thanks to N. Veldhoen
for assistance in manuscript preparation, A. Carew and G. Taylor
(Michael Smith Genome Sciences Centre,Vancouver, BC, Canada)
for technical assistance, and N. Veldhoen, S. Maher, A. Carew, and
P. Wojnarowicz for helpful discussions.

REFERENCES
AmphibiaWeb. (2012). AmphibiaWeb:

Information on Amphibian Biol-
ogy and Conservation. Available
at: www.amphibiaweb.org [accessed
January 12].

Baba, K., Okada, K., Kinoshita, T., and
Imaoka, S. (2009). Bisphenol A dis-
rupts Notch signaling by inhibiting
gamma-secretase activity and causes
eye dysplasia of Xenopus laevis. Tox-
icol. Sci. 108, 344–355.

Bilesimo, P., Jolivet, P., Alfama, G.,
Buisine, N., Le Mevel, S., Havis,
E., Demeneix, B. A., and Sachs, L.
M. (2011). Specific histone lysine
4 methylation patterns define TR-
binding capacity and differentiate
direct T3 responses. Mol. Endocrinol.
25, 225–237.

Denslow, N. D., Colbourne, J. K., Dix,
D., Freedman, J. H., Helbing, C.
C., Kennedy, S., and Williams, P. L.
(2007). “Selection of surrogate ani-
mal species for comparative toxi-
cogenomics,” in Genomic Approaches
for Cross-Species Extrapolation in
Toxicology, eds W. Benson and R. Di
Giulio (Pensacola, FL: SETAC and
CRC Press), 33–75.

Domanski, D., and Helbing, C. C.
(2007). Analysis of the Rana cates-
beiana tadpole tail fin proteome
and phosphoproteome during T3-
induced apoptosis: identification of
a novel type I keratin. BMC Dev. Biol.
7, 94. doi:10.1186/1471-213X-7-94

Duarte-Guterman, P., and Trudeau,
V. L. (2010). Regulation of thy-
roid hormone-, oestrogen-
and androgen-related genes by
triiodothyronine in the brain of Sil-
urana tropicalis. J. Neuroendocrinol.
22, 1023–1031.

Dubois, A. (2004). The higher nomen-
clature of recent amphibians. Alytes
22, 1–14.

Eggert, C. (2004). Sex determination:
the amphibian models. Reprod. Nutr.
Dev. 44, 539–549.

Frost, D. R., Grant, T., Faivovich, J., Bain,
R. H., Haas, A., Haddad, C. F. B.,
De Sa, R. O., Channing, A., Wilkin-
son, M., Donnellan, S. C., Raxwor-
thy, C. J., Campbell, J. A., Blotto, B. L.,
Moler, P., Drewes, R. C., Nussbaum,
R. A., Lynch, J. D., Green, D. M., and
Wheeler, W. C. (2006). The amphib-
ian tree of life. Bull. Am. Mus. Nat.
Hist. 297, 8–370.

Gohin, M., Bobe, J., and Chesnel,
F. (2010). Comparative transcrip-
tomic analysis of follicle-enclosed
oocyte maturational and devel-
opmental competence acquisition
in two non-mammalian verte-
brates. BMC Genomics 11, 18.
doi:10.1186/1471-2164-11-18

Gregory, T. (2012). Animal Genome
Size Database. Available at:
www.genomesize.com [accessed
January 12].

Gunderson, M. P., Veldhoen, N., Skir-
row, R. C., Macnab, M. K., Ding,
W., van Aggelen, G., and Helbing,
C. C. (2011). Effect of low dose
exposure to the herbicide atrazine
and its metabolite on cytochrome
P450 aromatase and steroidogenic
factor-1 mRNA levels in the brain of
premetamorphic bullfrog tadpoles
(Rana catesbeiana). Aquat. Toxicol.
102, 31–38.

Hayes, T. B., Falso, P., Gallipeau, S., and
Stice, M. (2010). The cause of global
amphibian declines: a developmen-
tal endocrinologist’s perspective. J.
Exp. Biol. 213, 921–933.

Heimeier, R. A., Das, B., Buchholz, D. R.,
and Shi, Y. B. (2009). The xenoestro-
gen bisphenol A inhibits postem-
bryonic vertebrate development by
antagonizing gene regulation by thy-
roid hormone. Endocrinology 150,
2964–2973.

Helbing, C., Bailey, C., Ji, L., Gun-
derson, M. P., Zhang, F., Veld-
hoen, N., Skirrow, R. C., Mu, R.,
Lesperance, M., Holcombe, G. W.,
Kosian, P. A., Tietge, J., Korte, J.

J., and Degitz, S. J. (2007). Iden-
tification of gene expression indi-
cators for thyroid axis disruption
in a Xenopus laevis metamorpho-
sis screening assay Part 1: effects
on the brain. Aquat. Toxicol. 82,
227–241.

Helbing, C., Gergely, G., and Atkin-
son, B. G. (1992). Sequential
up-regulation of thyroid hor-
mone beta receptor, ornithine
transcarbamylase, and carbamyl
phosphate synthetase mRNAs
in the liver of Rana catesbeiana
tadpoles during spontaneous
and thyroid hormone-induced
metamorphosis. Dev. Genet. 13,
289–301.

Helbing, C. C., Maher, S. K., Han, J.,
Gunderson, M. P., and Borchers,
C. (2010). Peering into molec-
ular mechanisms of action with
frogSCOPE. Gen. Comp. Endocrinol.
168, 190–198.

Hellsten, U., Harland, R. M., Gilchrist,
M. J., Hendrix, D., Jurka, J.,
Kapitonov, V., Ovcharenko, I., Put-
nam, N. H., Shu, S., Taher, L.,
Blitz, I. L., Blumberg, B., Dich-
mann, D. S., Dubchak, I., Amaya,
E., Detter, J. C., Fletcher, R., Ger-
hard, D. S., Goodstein, D., Graves,
T., Grigoriev, I. V., Grimwood, J.,
Kawashima, T., Lindquist, E., Lucas,
S. M., Mead, P. E., Mitros, T., Ogino,
H., Ohta, Y., Poliakov, A. V., Pollet,
N., Robert, J., Salamov, A., Sater, A.
K., Schmutz, J., Terry, A., Vize, P.
D., Warren, W. C., Wells, D., Wills,
A., Wilson, R. K., Zimmerman, L.
B., Zorn, A. M., Grainger, R., Gram-
mer, T., Khokha, M. K., Richardson,
P. M., and Rokhsar, D. S. (2010).
The genome of the Western clawed
frog Xenopus tropicalis. Science 328,
633–636.

Hinther, A., Domanski, D., Vawda, S.,
and Helbing, C. C. (2010). C-fin:
a cultured frog tadpole tail fin
biopsy approach for detection of

thyroid hormone-disrupting chem-
icals. Environ. Toxicol. Chem. 29,
380–388.

Howe, C. M., Berrill, M., Pauli, B.
D., Helbing, C. C., Werry, K.,
and Veldhoen, N. (2004). Tox-
icity of glyphosate-based pesti-
cides to four North American frog
species. Environ. Toxicol. Chem. 23,
1928–1938.

Iwase, K.,Yamauchi, K., and Ishikawa, K.
(1995). Cloning of cDNAs encoding
argininosuccinate lyase and arginase
from Rana catesbeiana liver and
regulation of their mRNAs during
spontaneous and thyroid hormone-
induced metamorphosis. Biochim.
Biophys. Acta 25, 139–146.

Katsu, Y., Kohno, S., Oka, T., Mit-
sui, N., Tooi, O., Santo, N., Urushi-
tani, H., Fukumoto, Y., Kuwabara,
K., Ashikaga, K., Minami, S., Kato,
S., Ohta, Y., Guillette, L. J. Jr., and
Iguchi, T. (2006). Molecular cloning
of estrogen receptor alpha (ERalpha;
ESR1) of the Japanese giant sala-
mander, Andrias japonicus. Mol. Cell.
Endocrinol. 257–258, 84–94.

Ko, C. I., Chesnel, A., Mazerbourg, S.,
Kuntz, S., Flament, S., and Chardard,
D. (2008). Female-enriched expres-
sion of ERalpha during gonad dif-
ferentiation of the urodele amphib-
ian Pleurodeles waltl. Gen. Comp.
Endocrinol. 156, 234–245.

Langlois, V. S., Carew, A. C., Pauli, B.
D., Wade, M. G., Cooke, G. M., and
Trudeau, V. L. (2010). Low levels of
the herbicide atrazine alter sex ratios
and reduce metamorphic success in
Rana pipiens tadpoles raised in out-
door mesocosms. Environ. Health
Perspect. 118, 552–557.

Langlois, V. S., Duarte-Guterman,
P., and Trudeau, V. L. (2011).
Expression profiles of reproduction-
and thyroid hormone-related tran-
scripts in the brains of chemically-
induced intersex frogs. Sex Dev. 5,
26–32.

www.frontiersin.org March 2012 | Volume 3 | Article 37 | 53

http://www.xenbase.org
http://www.amphibiaweb.org
http://dx.doi.org/10.1186/1471-213X-7-94
http://dx.doi.org/10.1186/1471-2164-11-18
http://www.genomesize.com
http://www.frontiersin.org
http://www.frontiersin.org/Toxicogenomics/archive


Helbing Toxicogenomics of amphibians

Mable, B. K., Alexandrou, M. A., and
Taylor, M. I. (2011). Genome dupli-
cation in amphibians and fish: an
extended synthesis. J. Zool. 284,
151–182.

Martin, J. A., and Wang, Z. (2011). Next-
generation transcriptome assembly.
Nat. Rev. Genet. 12, 671–682.

Massari, A., Urbatzka, R., Cevasco, A.,
Canesi, L., Lanza, C., Scarabelli,
L., Kloas, W., and Mandich, A.
(2010). Aromatase mRNA expres-
sion in the brain of adult Xeno-
pus laevis exposed to Lambro river
water and endocrine disrupting
compounds. Gen. Comp. Endocrinol.
168, 262–268.

Mitsui, N., Fujii, T., Miyahara, M.,
Oka, T., Kashiwagi, A., Kashiwagi,
K., Hanada, H., Urushitani, H.,
Santo, N., Tooi, O., and Iguchi, T.
(2006). Development of metamor-
phosis assay using Silurana tropi-
calis for the detection of thyroid
system-disrupting chemicals. Eco-
toxicol. Environ. Saf. 64, 281–287.

Mortensen, A. S., Kortner, T. M.,
and Arukwe, A. (2006). Thy-
roid hormone-dependent gene
expression as a biomarker of
short-term 1,1-dichloro-2,2-bis(p-
chlorophenyl)ethylene (DDE)
exposure in European common
frog (Rana temporaria) tadpoles.
Biomarkers 11, 524–537.

Oka, T., Miyahara, M., Yamamoto, J.,
Mitsui, N., Fujii, T., Tooi, O., Kashi-
wagi, K., Takase, M., Kashiwagi,
A., and Iguchi, T. (2009). Applica-
tion of metamorphosis assay to a
native Japanese amphibian species,
Rana rugosa, for assessing effects
of thyroid system affecting chem-
icals. Ecotoxicol. Environ. Saf. 72,
1400–1405.

Oka, T., Tooi, O., Mitsui, N., Miyahara,
M., Ohnishi, Y., Takase, M., Kashi-
wagi, A., Shinkai, T., Santo, N., and
Iguchi, T. (2008). Effect of atrazine
on metamorphosis and sexual dif-
ferentiation in Xenopus laevis. Aquat.
Toxicol. 87, 215–226.

Oppenheimer, J. (1999). Evolving con-
cepts of thyroid hormone action.
Biochimie 81, 539–543.

Organization for Economic Cooper-
ation and Development (OECD).
(2009). OECD Guideline for the
(Testing ) of Chemicals Test No. 231:
The Amphibian Metamorphosis Assay
(Paris: OECD).

Park, C. J., Kang, H. S., and Gye, M.
C. (2010). Effects of nonylphenol
on early embryonic develop-
ment, pigmentation and 3,5,3’-
triiodothyronine-induced meta-
morphosis in Bombina orientalis
(Amphibia: Anura). Chemosphere
81, 1292–1300.

Qin, X., Xia, X., Yang, Z., Yan, S., Zhao,
Y., Wei, R., Li, Y., Tian, M., Zhao,
X., Qin, Z., and Xu, X. (2010).
Thyroid disruption by technical
decabromodiphenyl ether (DE-83R)
at low concentrations in Xenopus
laevis. J. Environ. Sci. (China) 22,
744–751.

Relyea, R. A., and Jones, D. K. (2009).
The toxicity of roundup original
max (R) to 13 species of larval
amphibians. Environ. Toxicol. Chem.
28, 2004–2008.

Rossi, F., Bernardini, G., Bonfanti, P.,
Colombo, A., Prati, M., and Gor-
nati, R. (2009). Effects of TCDD
on spermatogenesis related factor-2
(SRF-2): gene expression in Xenopus.
Toxicol. Lett. 191, 189–194.

Searcy, B. T., Beckstrom-Sternberg,
S. M., Beckstrom-Sternberg, J. S.,
Stafford, P., Schwendiman, A. L.,
Soto-Pena, J., Owen, M. C., Ramirez,
C., Phillips, J.,Veldhoen, N., Helbing,
C. C., and Propper, C. R. (2012).
Thyroid hormone-dependent devel-
opment in Xenopus laevis: a sen-
sitive screen of thyroid hormone
signaling disruption by munic-
ipal wastewater treatment plant
effluent. Gen. Comp. Endocrinol.
doi:10.1016/j.ygcen.2011.12.036

Serrano, J., Higgins, L., Witthuhn, B.
A., Anderson, L. B., Markowski,
T., Holcombe, G. W., Kosian, P.
A., Korte, J. J., Tietge, J. E., and
Degitz, S. J. (2010). In vivo assess-
ment and potential diagnosis of
xenobiotics that perturb the thy-
roid pathway: proteomic analy-
sis of Xenopus laevis brain tissue
following exposure to model T4
inhibitors. Comp. Biochem. Phys-
iol. Part D Genomics Proteomics 5,
138–150.

Shi, Y.-B. (2000). Amphibian Metamor-
phosis: From Morphology to Molecu-
lar Biology. New York: Wiley-Liss.

Suda, M., Kodama, M., Oshima,
Y., Yamamoto, K., Nakamura,
Y., Tanaka, S., Kikuyama, S.,
and Nakamura, M. (2011). Up-
regulation of FSHR expression

during gonadal sex determination
in the frog Rana rugosa. Gen. Comp.
Endocrinol. 172, 475–486.

Sumida, M., Kato, Y., and Kurabayashi,
A. (2004). Sequencing and analysis
of the internal transcribed spacers
(ITSs) and coding regions in the
EcoR I fragment of the ribosomal
DNA of the Japanese pond frog Rana
nigromaculata. Genes Genet. Syst. 79,
105–118.

Tietge, J. E., Butterworth, B. C., Hasel-
man, J. T., Holcombe, G. W., Hor-
nung, M. W., Korte, J. J., Kosian, P. A.,
Wolfe, M., and Degitz, S. J. (2010).
Early temporal effects of three thy-
roid hormone synthesis inhibitors in
Xenopus laevis. Aquat. Toxicol. 98,
44–50.

United States Environmental Protection
Agency (US EPA). (2012). ECO-
TOX Database. Available at: http://
cfpub.epa.gov/ecotox/quick_query.
htm [accessed January 12].

Urbatzka, R., Lorenz, C., Lutz, I., and
Kloas, W. (2010). Expression pro-
files of LHbeta, FSHbeta and their
gonadal receptor mRNAs during
sexual differentiation of Xenopus lae-
vis tadpoles. Gen. Comp. Endocrinol.
168, 239–244.

Veldhoen, N., Boggs, A., Walzak, K., and
Helbing, C. C. (2006a). Exposure to
tetrabromobisphenol-A alters TH-
associated gene expression and tad-
pole metamorphosis in the Pacific
Tree Frog Pseudacris regilla. Aquat.
Toxicol. 78, 292–302.

Veldhoen, N., Skirrow, R., Ji, L., Doman-
ski, D., Bonfield, E. R., Bailey, C.
M., and Helbing, C. C. (2006b).
Use of heterologous cDNA arrays
and organ culture in the detec-
tion of thyroid hormone-dependent
responses in a sentinel frog, Rana
catesbeiana. Comp. Biochem. Phys-
iol. Part D Genomics Proteomics 1,
187–199.

Veldhoen, N., Skirrow, R., Osachoff, H.,
Wigmore, H., Clapson, D. J., Gun-
derson, M. P., Van Aggelen, G., and
Helbing, C. C. (2006c). The bac-
tericidal agent Triclosan modulates
thyroid hormone-associated gene
expression and disrupts postembry-
onic anuran development. Aquat.
Toxicol. 80, 217–227.

Veldhoen, N., and Helbing, C. C.
(2005). “Monitoring gene expres-
sion in Rana catesbeiana tadpoles
using a tail fin biopsy technique and

its application to the detection of
environmental endocrine disruptor
effects in wildlife species,” in Tech-
niques in Aquatic Toxicology, Vol. 2,
ed. G. K. Ostrander (Boca Raton:
CRC Press), 315–327.

Xu,Q.,Baker,B. S., and Tata, J. R. (1993).
Developmental and hormonal reg-
ulation of the Xenopus liver-type
arginase gene. Eur. J. Biochem. 211,
891–898.

Zaya, R. M., Amini, Z., Whitaker, A. S.,
and Ide, C. F. (2011). Exposure to
atrazine affects the expression of key
genes in metabolic pathways integral
to energy homeostasis in Xenopus
laevis tadpoles. Aquat. Toxicol. 104,
254–262.

Zhang, F., Degitz, S. J., Holcombe,
G. W., Kosian, P. A., Tietge, J.,
Veldhoen, N., and Helbing, C. C.
(2006). Evaluation of gene expres-
sion endpoints in the context of
a Xenopus laevis metamorphosis-
based bioassay to detect thyroid hor-
mone disruptors. Aquat. Toxicol. 76,
24–36.

Zimmermann, A. L., King, E. A., Den-
gler, E., Scogin, S. R., and Powell,
W. H. (2008). An aryl hydrocar-
bon receptor repressor from Xeno-
pus laevis: function, expression, and
role in dioxin responsiveness during
frog development. Toxicol. Sci. 104,
124–134.

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 31 January 2012; accepted:
27 February 2012; published online: 14
March 2012.
Citation: Helbing CC (2012) The
metamorphosis of amphibian toxi-
cogenomics. Front. Gene. 3:37. doi:
10.3389/fgene.2012.00037
This article was submitted to Frontiers in
Toxicogenomics, a specialty of Frontiers
in Genetics.
Copyright © 2012 Helbing . This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

Frontiers in Genetics | Toxicogenomics March 2012 | Volume 3 | Article 37 | 54

http://dx.doi.org/10.1016/j.ygcen.2011.12.036
http://cfpub.epa.gov/ecotox/quick_query.htm
http://dx.doi.org/10.3389/fgene.2012.00037
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Toxicogenomics
http://www.frontiersin.org/Toxicogenomics/archive


ORIGINAL RESEARCH ARTICLE
published: 05 April 2012

doi: 10.3389/fgene.2012.00048

Meta-analysis of global transcriptomics suggests that
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Recent research has highlighted that the polyphenols Quercetin andTannic acid are capable
of extending the lifespan of Caenorhabditis elegans. To gain a deep understanding of the
underlying molecular genetics, we analyzed the global transcriptional patterns of nema-
todes exposed to three concentrations of Quercetin orTannic acid, respectively. By means
of an intricate meta-analysis it was possible to compare the transcriptomes of polyphenol
exposure to recently published datasets derived from (i) longevity mutants or (ii) infection.
This detailed comparative in silico analysis facilitated the identification of compound specific
and overlapping transcriptional profiles and allowed the prediction of putative mechanis-
tic models of Quercetin and Tannic acid mediated longevity. Lifespan extension due to
Quercetin was predominantly driven by the metabolome, TGF-beta signaling, Insulin-like
signaling, and the p38 MAPK pathway andTannic acid’s impact involved, in part, the amino
acid metabolism and was modulated by the TGF-beta and the p38 MAPK pathways. DAF-
12, which integrates TGF-beta and Insulin-like downstream signaling, and genetic players
of the p38 MAPK pathway therefore seem to be crucial regulators for both polyphenols.
Taken together, this study underlines how meta-analyses can provide an insight of mol-
ecular events that go beyond the traditional categorization into gene ontology-terms and
Kyoto encyclopedia of genes and genomes-pathways. It also supports the call to expand
the generation of comparative and integrative databases, an effort that is currently still in
its infancy.

Keywords: Quercetin,Tannic acid,TGF-beta, ILS, DAF-12, p38 MAPK, C. elegans

INTRODUCTION
Although numerous molecules of herbal origin have been hailed
as powerful decelerators of aging, few studies have focused on
the precise physiological and genetic mechanisms that drive this
process. The nematode Caenorhabditis elegans is ideally suited
for biogerontological research, not only because of its short life
cycle (Gami and Wolkow, 2006; Gill, 2006; Kaletta and Hen-
gartner, 2006) but also due to the considerable conservation of
basic cellular and molecular principles (The C. elegans Sequencing
Consortium, 1998).

Of the many bioactive polyphenols (PPs) previously shown to
extend the lifespan of C. elegans we selected two well characterized

compounds, namely Quercetin (Q; work in C. elegans: Kampköt-
ter et al., 2007a,b, 2008; Saul et al., 2008; Pietsch et al., 2009, 2011;
Surco-Laos et al., 2011; Grünz et al., 2012; for a detailed review
about general beneficial effects of Q, tested in vivo and ex vivo,
be referred to Boots et al., 2008) and Tannic acid (TA; work in C.
elegans: Saul et al., 2010, 2011; Lublin et al., 2011; for a detailed
review be referred to Koleckar et al., 2008). Both PPs are character-
ized by inverted J-shaped concentration–response curves, typical
for a hormetic effect (Calabrese and Baldwin, 2001). Moreover,
the exposure to PPs enhances the oxidative and thermal stress
resistance. Both PPs exert no major negative impact on the repro-
ductive output but result in a reduction of body length and fat
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content, two phenotypes that align well with the disposable soma
patterns described by Kirkwood (1977, 1988). Utilizing various
nematode mutant strains, preliminary genetic analyses identi-
fied daf-2, age-1, sek-1, and unc-43 as mediators of Q induced
longevity and stress resistance (Pietsch et al., 2009) and sek-1 was
shown to be important for TA mediated extension of lifespan
(Saul et al., 2010). Notwithstanding these differences, some of
the data obtained suggests that Q and TA induce longevity by
similar genetic mechanisms, e.g., the involvement of sek-1, alter-
ing the fat metabolism, or hormesis-based dose–responses. An
overview of results from previous studies can be found in Table S1
in Supplementary Material 1.

To pinpoint molecular genetic pathways, we performed
genome-wide DNA microarray experiments spanning different
concentrations of Q and TA, including at least two lifespan pro-
longing concentrations for each PP. In addition, we tested a
low dose of Q (50 μM) because (i) the limitation of solubil-
ity precluded the use of doses above 200 μM Q and (ii) this
concentration was shown to enhance thermal tolerance (unpub-
lished data) possibly indicative of elevated stress resistance. For
TA we included a post-effective, in single trials already toxic (Saul
et al., 2010) concentration. Initially, this identified differentially
expressed genes (DEGs), which were found to be significantly
up- or down-regulated in response to Q and/or TA, many dis-
played a concentration dependent change in expression. A second
layer of analysis included gene ontology (GO), Kyoto encyclo-
pedia of genes and genomes (KEGG) pathways, as well as gene
expression mountain algorithms (as introduced by Kim et al.,
2001). By analyzing the overlapping transcripts identified in the
respective lifespan prolonging concentrations of each PP (Q 100
and 200 μM = Qlongevity; TA 100 and 200 μM = TAlongevity), we
were able to predict putative master regulators involved in PP
mediated longevity. A final meta-analysis compared these core-
genes with recently published transcriptional profile data linked to
age-related gene expression, the genetic background of longevity
mutants or infection. The alignment of common (condition-
overlapping) DEGs facilitated the identification of genes and
associated pathways that may act as master switches of longevity.

The primary goal of this study was to highlight that the meta-
analysis of large datasets is not restricted to complement a simplis-
tic database evaluation but has the potential to uncover compound
overlapping molecular switches.

MATERIALS AND METHODS
STRAINS AND SAMPLE GENERATION
N2 wild type C. elegans were maintained on nematode growth
medium (NGM) plates using Escherichia coli OP50 as food source
(Brenner, 1974; Sulston and Hodgkin, 1988; Lewis and Fleming,
1995). Untreated nematodes (the P0 generation) were chunked
onto control and treatment plates (50, 100, and 200 μM Q; 100,
200, and 300 μM TA) and incubated at 20˚C for 4 days. A syn-
chronous culture was generated through egg preparation (Strange
et al., 2007) with sodium hypochlorite (Sigma, Germany). Eggs
were rotated over night (20 rpm) and the resultant hatched L1s
subsequently transferred to plates containing the respective doses
of Q or TA. Worms were grown to the young (pre-reproductive)
adult stage, harvested by rinsing off with M9 buffer, washed at least

three times with M9, shock frozen in liquid nitrogen and stored at
−80˚C. For each condition, samples were cultivated in triplicate.

RNA PREPARATION
RNA was isolated following the standard procedures as defined by
the Trizol protocol (Invitrogen, Germany) but modified to include
a homogenization step with 0.5 mm glass beads to maximize cell
breakage. The resultant RNA was further processed by means
of a RNeasy purification followed by DNase digestion (Qiagen,
Germany). All samples were stored at −80˚C until further use.

RNA AMPLIFICATION, BIOTIN LABELING, AND DNA MICROARRAY
ANALYSIS
RNA was processed with the MessageAMP™Premier RNA Ampli-
fication Kit (Ambion, Austin, TX, USA) which relies on the T7
in vitro transcription (IVT) amplification technology (Van Gelder
et al., 1990). First- and second-strand cDNA synthesis, cRNA syn-
thesis, labeling, fragmentation, GeneChip hybridization, and scan-
ning were performed according to the manufacturer’s specifica-
tions (Affymetrix,Santa Clara,CA,USA). We utilized the C. elegans
array chip (Affymetrix) which covers the whole genome (22,548
transcripts). Triplicate chips were run for each condition (desig-
nated as Q0, Q50, Q100, Q200 and TA0, TA100, TA200, TA300).
Whole RNA, cDNA, and cRNA qualities and quantities were
assessed at each step using capillary electrophoresis (Bioanalyzer,
Agilent Technologies, UK) and micro volume spectrophotometry
(NanoDrop1000, Thermo Scientific, UK).

DATA INTERPRETATION AND STATISTICAL ANALYSIS
Processing of global transcription expression values (DNA
microarray)
Pre-processing of raw microarray data included probe-specific
background correction, summation of probe set values, and nor-
malization using the GCRMA algorithm with CARMAweb 1.4,
an R- and Bioconductor-based web service for microarray data
analysis1 (Rainer et al., 2006). The quality of normalization was
assessed by box plot and MA-graph analyses. Differences between
treatments were visualized by principal component analysis (PCA)
plotting with multiexperiment viewer (MeV)2 (Saeed et al., 2003).
Data was initially filtered for missing values and then subjected
to a CLEAR-test that combines differential expression and vari-
ability using the GEPAS web server3 (Tárraga et al., 2008). An
unpaired t -test was followed by a significance analysis of microar-
ray (SAM) test including a calculation that estimates the false
discovery rate (FDR). The FDR was set to a non-stringent level
of <12.5%. DEGs showing a fold change of at least 1.25 were
analyzed for their molecular functions, biological processes, and
cellular components using the software packages GoMiner (Zee-
berg et al., 2005) and DAVID4. Due to the sound technical and
experimental quality of the data, which returned strong statis-
tically significant signal intensities, the chosen fold-cut-off values
were deemed to be biologically meaningful and aligned to previous
data analyses (Grigoryev et al., 2004; McCarthy and Smyth, 2009).

1https://carmaweb.genome.tugraz.at/carma
2http://www.tm4.org/mev
3http://www.gepas.org
4http://david.abcc.ncifcrf.gov/
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Comparison of datasets to screen for significant overlaps:
representation factor
The overlap between differing conditions (e.g. PPs and gene
expression mountains, gene classes, or datasets taken from the lit-
erature) was determined by computing the representation factors
(RFs). The RFs define the fold enrichment between gene lists (Kim
et al., 2001; Evans et al., 2008). The choice of N (genome) was based
on the values recommended by the authors. Intersection p-values
were calculated from the hypergeometric distribution. RFs were
considered significant when RF >1 and ∗p < 0.05, ∗∗p < 0.005 or
∗∗∗p < 0.001.

RESULTS
THE RELATIONSHIP BETWEEN EXPOSURE TO Q OR TA, LIFESPAN
EXTENSION AND THE OUTPUT OF TRANSCRIPTIONAL RESPONSES
Previous reports have stated that, whilst 50 μM of Q evoked no
significant change in lifespan, 100 and 200 μM Q prolonged the
mean lifespan by 11 and 10%, respectively (Pietsch et al., 2009,
2011). However, at 250 μM of Q the lifespan was reduced by
−7% (see Table S1 in Supplementary Material 1) and there-
fore can be considered to be a toxic concentration. In addition,
because concentrations above 200 μM of Q did not dissolve com-
pletely in the agar and the bacteria, we refrained from using
doses above 200 μM Q for the microarray experiment. Thus,
for Q, we utilized two lifespan prolonging concentrations (100
and 200 μM), and a non-effective (50 μM) pre-longevity dose for
global transcriptomics.

For TA, the most effective concentration was 100 μM, which
resulted in an increase in mean lifespan of 18%, an effect that
was still significant but notably less pronounced at 200 μM
(8%) and was absent at 300 μM (Saul et al., 2010; see Table
S1 in Supplementary Material 1). Hence, we used two life-
extending concentrations (100 and 200 μM of TA), and in addi-
tion one post-effective (borderline toxic) concentration (300 μM
TA).

We chose this test design to cover a large dose-range: from pre-
effective to effective in the case of Q (Q0, Q50, Q100, Q200), and
from effective to post-effective/toxic for TA (TA0, TA100, TA200,
TA300; Note: the numerical identifiers represent the concentration
in micromolar). Pre-processing of raw microarray data included
probe-specific background correction, summation of probe set
values, and normalization using the GCRMA algorithm with 93
CARMAweb 1.4, an R- and Bioconductor-based web service for
microarray data analysis (see text footnote 1) (Rainer et al., 2006).
The CARMAweb reports can be viewed in Supplementary Material
2 and 3.

Venn diagrams (Figure 1) were compiled to summarize
the level of overlap between doses (statistics for significant
DEGs can be found in Supplementary Material 4: sheet “Sta-
tistics”; full genome fold change (FC-) values are listed in
Supplementary Material 5). Investigating the transcriptional
response of Q treatment (Figure 1A), revealed that the num-
ber of DEGs increased markedly at the lifespan modulating
doses of Q100 and Q200 (3.3- and 3.8-fold compared to
the non-longevity dose Q50). Interestingly, more genes were
up-regulated than down-regulated at Q50, but the opposite
was observed at Q100 and Q200. It is worthy of note that

FIGURE 1 | Venn diagrams of DEGs. Overview of significant DEGs (fold
change >1.25 or <0.8) in response to Q50, Q100, Q200 or TA100, TA200,
TA300. Shown is the overlap of either up- or down-regulated genes in Q (A)

or TA (B) treated nematodes. (C) Displays the overlap of significantly up-
and down-regulated genes in Qlongevity and TAlongevity. The bracketed numbers
in the intersections display significant overrepresented RFs, ∗∗∗p < 0.001.

the majority of DEGs overlapped in Q100 and Q200 expo-
sures, thus suggesting the presence of common response path-
ways.

As with Q, exposure to TA resulted in a dose dependent increase
in DEGs which was most pronounced at the highest dose tested.
More genes were up-regulated than down-regulated in the lifespan
prolonging conditions TA100 and TA200, a ratio that was reversed
at TA300 where more genes were down-regulated (Figure 1B).
Striking was the proportion of DEGs that responded exclusively
to TA300 (61%), a substantial proportion compared to TA100
(2%) or TA200 (6%).
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By taking the intersection of DEGs shared by the lifespan pro-
longing concentrations of each PP, it was possible to extract gene
lists for Qlongevity (Q100 and Q200 overlap), TAlongevity (T100 and
T200 overlap) and Q&TAlongevity (overlap of all four groups). A
Venn diagram that incorporates Qlongevity and TAlongevity identified
a significant overlap (Figure 1C). As our main focus was the iden-
tification of mechanisms involved in PP triggered lifespan exten-
sion, downstream data processing focused primarily on Qlongevity

and TAlongevity gene lists, however, individual GO-, KEGG-, gene
expression mountains-, and gene class-analyses are provided for
all concentrations in the Supplementary Material 4.

OVERREPRESENTED GO-TERMS
The summary results of the GO-cluster analysis with DEGs from
the Qlongevity, TAlongevity, and Q&TAlongevity gene lists are presented
in Table S2 in Supplementary Material 1. The complete analyses for
all single concentrations are provided in the Supplementary Mate-
rial 4: sheet “GO-Analysis.” The Qlongevity analysis returned, due
to the large input list of DEGs, more overrepresented GO-terms
than the equivalent analysis with TAlongevity. Overrepresented
GO-terms derived from the up-regulated transcripts in Qlongevity

included chromatin assembly, lipid metabolic process, monooxy-
genase activity, and nucleosome. GO-terms from down-regulated
genes included, besides others, nervous system development, regu-
lation of multicellular organism growth, Dauer entry, regulation -of
transcription, -of response to stimulus, -of cell communication, -of
biological quality, -of locomotion, and -of programmed cell death. In
TAlongevity, significant GO-terms were linked to muscle contraction,
neurotransmitter transporter activity and cytoskeleton, embryonic
development ending in birth or egg hatching, positive regulation of
biological process, and chromatin. GO-terms in Q&TAlongevity were
restricted to Cellular Components (pseudopodium).

Scrutinizing the GO-analysis of single concentrations (Supple-
mentary Material 4: sheet “GO-Analysis”) revealed, for example,
that the GO-terms in the pre-lifespan extending concentration
Q50 (lysozyme activity and oxidoreductase activity acting on the
CH–CH group of donors) may reflect an early onset of induced
immunity and stress resistance. In contrast, a striking accumula-
tion of overrepresented GO-terms were observed in TA300, which
included numerous categories indicative of an unfavorable con-
dition (DNA damage response, signal transduction, mismatch DNA
binding, cell death, and others).

OVERREPRESENTED KEGGs
Whilst the assignment of GO-terms is defined by auto-
matic/electronic annotation that is based on sequence homology,
KEGG-pathways are manually curated from the literature. As with
the GO-ontology,KEGG-analysis on the Q treatment lists returned
a multitude of pathways (Table 1). For further details about regu-
lated genes in the respective KEGG-terms see Table S3 in Supple-
mentary Material 1 for Qlongevity and TAlongevity, and Supplemen-
tary Material 4: sheet “KEGG-Analysis” for single concentrations.
Overrepresented KEGGs in Q50 included pathways involved in
the metabolism of amino acids, glutathione, and xenobiotics as
well as fatty acid elongation. At higher exposures seven (Q100)
and eight (Q200) KEGG-pathways were found to be overrepre-
sented, notably most (six) were present at both concentrations

(see Qlongevity, Table 1) with an analogous mode/direction of
regulation, i.e., either repressed or induced (Table S3 in Supple-
mentary Material 1). Pathways include metabolism of amino acids,
xenobiotics or drugs, transport processes (Lysosome), and signal
transduction processing (Wnt and TGF-beta signaling ). Whilst
DEGs from amino acid metabolism and the lysosome displayed
heterogeneous expression levels, transcripts belonging to the sig-
naling pathways were predominantly repressed, whereas almost all
genes associated with drug/xenobiotic metabolism were found to be
induced.

The dynamic response patterns of Q exposure were not mir-
rored by the TA treatments. No KEGG-pathways could be linked to
the most potent lifespan extending concentration, TA100; hence,
none were assigned to TAlongevity. For TA200 only two KEGG-
pathways were found to be overrepresented, both derived from
amino acid metabolism. Analysis of the TA300 gene list returned
six KEGG-pathways, notably DNA replication, mismatch repair,
and Ubiquitin-mediated proteolysis.

META-ANALYSIS: COMPARISON OF GLOBAL TRANSCRIPTIONAL
PATTERNS IN QLONGEVITY AND TALONGEVITY TO SELECTED DATASETS IN
THE LITERATURE
To date, several microarray studies have identified age-related tran-
scriptional changes in the nematode C. elegans (summarized in
Golden and Melov, 2007). To investigate if a systematic com-
parison would reveal common age-related pathways, we corre-
lated our datasets with the published expression profiles obtained
from long-lived daf-12(rh273) (Fisher and Lithgow, 2006), daf-2
mutants (Evans et al., 2008), TGF-beta mutants (Shaw et al., 2007),
and immune-responsive Pseudomonas aeruginosa infected nema-
todes (Evans et al., 2008). The dataset from Evans et al. (2008)
includes a meta-analysis of different daf-2 alleles (Murphy et al.,
2003; McElwee et al., 2004) and immune-challenged nematodes
(Shapira et al., 2006; Troemel et al., 2006).

The meta-analysis aimed to indentify similar molecular mech-
anisms of longevity in Qlongevity, as well as TAlongevity and define
(if possible) the correlation to long-living mutants. Datasets were
analyzed by focusing on (i) overrepresented gene expression
mountains (according to Kim et al., 2001), which characterize
the global patterns of a transcriptional response and (ii) DEGs,
to identify new target genes. The significance of overlap between
two gene lists were assigned by calculating the RF, and significances
were determined by hypergeometric probability scoring. Supple-
mentary Material 5 provides Gene Expression Mountains, Gene
Classes and Groups, and further studies in a table. By using the fil-
ter function in Excel, all results that are described in the following
sections can be reconstructed.

Overrepresented expression mountains
Kim et al. (2001) assembled data from several hundred C. elegans
DNA microarray experiments. This allowed a three-dimensional
gene expression map to be computed consisting of 44 co-regulated
gene-groups (mountains), 30 of which could be assigned to
specific gene classes and therefore to a potential physiological
importance.

Figure 2 displays all gene expression mountains, in which DEGs
of Qlongevity and/or TAlongevity (Figures 2A,B) are overrepresented
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Table 1 | Overview of significant KEGG-pathways (seeTable S3 in Supplementary Material 1 for pooled groups and Supplementary Material 4:

sheet “KEGG-Analysis” for genes with FC-values).

KEGG-pathway No. DEGs/listed genes p-Value

Q50 cel00330: arginine and proline metabolism 6/30 0.002

cel00062: fatty acid elongation in mitochondria 4/13 0.007

cel00480: glutathione metabolism 5/35 0.022

cel00270: cysteine and methionine metabolism 4/25 0.041

cel00980: metabolism of xenobiotics by cytochrome P450 4/26 0.045

Q100 cel04142: lysosome 15/68 0.000

cel04350: TGF-beta signaling pathway 11/36 0.001

cel00600: sphingolipid metabolism 8/20 0.001

cel04310: Wnt signaling pathway 14/60 0.001

cel00980: metabolism of xenobiotics by cytochrome P450 8/26 0.005

cel00982: drug metabolism 8/29 0.009

cel00330: arginine and proline metabolism 8/30 0.011

Q200 cel04350: TGF-beta signaling pathway 13/36 0.000

cel04310: Wnt signaling pathway 15/60 0.001

cel00982: drug metabolism 9/29 0.005

cel00480: glutathione metabolism 9/35 0.015

cel00330: arginine and proline metabolism 8/30 0.020

cel04142: lysosome 14/68 0.026

cel00980: metabolism of xenobiotics by cytochrome P450 7/26 0.033

cel00340: histidine metabolism 3/9 0.048

Qlongevity cel00330: arginine and proline metabolism 9/30 0.000

cel04350: TGF-beta signaling pathway 9/36 0.001

cel04310: Wnt signaling pathway 11/60 0.004

cel00982: drug metabolism 7/29 0.008

cel04142: lysosome 11/68 0.009

cel00980: metabolism of xenobiotics by cytochrome P450 6/26 0.022

TA100 x x x

TA200 cel00450: selenoamino acid metabolism 6/20 0.006

cel00270: cysteine and methionine metabolism 6/25 0.015

TA300 cel04914: progesterone-mediated oocyte maturation 15/38 0.004

cel04120: ubiquitin-mediated proteolysis 26/86 0.006

cel00534: heparan sulfate biosynthesis 7/8 0.006

cel03430: mismatch repair 9/18 0.008

cel03030: DNA replication 13/33 0.008

cel00500: starch and sucrose metabolism 9/24 0.050

TAlongevity x x x

Q&TAlongevity x x x

(additional RF values for single concentrations in all 44 gene
expression mountains can be found in Supplementary Material
4: sheet “Gene Expression Mountains” and “Gene Classes and
Groups”). DEGs from Qlongevity and TAlongevity could both be
assigned to mounts 4 (sperm-enriched genes, protein kinases
and phosphatases, MSPs), 8 (enriched for intestine-, protease-,
carboxylesterase-, lipase-genes, antibacterial proteins and UGTs),
19 (enriched for genes from amino acid and lipid metabo-
lism and CYPs), 22 (collagen enriched), and 24 (also enriched
for amino acid and lipid metabolism genes, as well as fatty
acid oxidation). In addition, Qlongevity was significantly linked
to mounts 1 (enriched for muscle, neuronal, and PDZ genes),
14 and 35 (enriched for collagen), 15 (no specific gene-groups),
21 (enriched for lipid metabolism genes), and 32 (enriched

for nucleosomal histones). Comparing the direction of regula-
tion, it was noticeable that in TAlongevity the majority of DEGs
in the respective mounts were up-regulated, whereas no trend
was observed in the Qlongevity gene list (with the exception of
mountain 4).

The comparison of PP treatments to overrepresented mounts
from experiments with long-lived mutants and P. aeruginosa
infected nematodes (Figure 2C; Supplementary Material 4:
sheet “Gene Expression Mountains”) revealed large overlaps. For
example, Fisher and Lithgow (2006) reported for daf-12(rh273)
an enrichment of induced DEGs in mount 4, a finding that
matches well with both PPs tested. Further differentially regulated
mounts in daf-12(rh273) are also overrepresented in Qlongevity

and TAlongevity, suggesting parallels in molecular mechanisms to
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FIGURE 2 | Overrepresented gene expression mountains.

Identification of overrepresented gene expression mountains (based on
Kim et al., 2001) from Qlongevity (A) and TAlongevity (B), as well as from
datasets of longevity mutants and P. aeruginosa infected C. elegans
(Fisher and Lithgow, 2006; Shaw et al., 2007; Evans et al., 2008) (C).
Depicted are only RFs from mounts which were significantly affected by
at least either Qlongevity or TAlongevity. ∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.001.
(The complete dataset and RFs for all 44 gene expression mountains in
each and pooled PP concentrations, as well as RFs for previously
published datasets can be found in Supplementary Material 4: sheet
“Gene Expression Mountains”; results can be reconstructed using the
filter function in Supplementary Material 5.)

daf-12(rh273) and possibly DAF-12’s involvement in Q and TA
mediated longevity.

Similarly, distinct mounts of Qlongevity are highly similar to daf-
2 (Evans et al., 2008) and TGF-beta mutants (Shaw et al., 2007), as
well as P. aeruginosa infected nematodes (Evans et al., 2008). The

pattern of overrepresented mounts in TAlongevity best resembles the
results from adult TGF-beta mutants (Shaw et al., 2007), but also
overlaps to some extent with the other conditions. These marked
similarities will be probed in more detail in the next section.

Overlapping DEGs from selected microarray studies in C. elegans
Figure 3 demonstrates the relationship between Qlongevity (left
section), TAlongevity (right section), and Q&TAlongevity (middle
section) to daf-12(rh273) mutants (Figure 3A), daf-2 mutants
(Figure 3B), adult TGF-beta mutants (Figure 3C), and P. aerug-
inosa infected nematodes, respectively. [A comparison to fur-
ther microarray studies (Hill et al., 2000; Wang and Kim, 2003;
Viswanathan et al., 2005) and single concentration results can
be found in Supplementary Material 4: sheet “Meta-Analysis.”]
To gain a deep functional insight into aging-related genes, sig-
nificantly overlapping DEGs were examined further with a GO-
and InterPro-cluster analysis (Table S4 in Supplementary Material
1).

A comparison to daf-12(rh273). The RFs for overlapping genes
(both up- and down-regulated) of Qlongevity and daf-12(rh273)
were significantly enriched (Figure 3A), suggesting that they share
similar genetic mechanisms. Interestingly, eight DEGs (bre-1, clec-
4, clec-66, dod-22, F35E12.5, F55G11.5, M02F4.7, pho-1) were
down-regulated in both conditions, transcripts which were also
repressed in daf-2 and previously thought to be down-regulated
in several longevity backgrounds (Fisher and Lithgow, 2006). The
downstream analysis revealed one prominent cluster in each inter-
section (major sperm protein for commonly up-regulated genes
and C-type lectin-like for commonly down-regulated genes). It is
however noteworthy that a group of eight genes of the CUB-like
region proteins were up-regulated in Qlongevity but down-regulated
in daf-12(rh273) mutants.

In TAlongevity, the overlap with daf-12(rh273) was significant
for common up-regulated DEGs and also the category “up in
TAlongevity/down in daf-12” (Figure 3A). Cluster analyses for
these intersections returned transcripts involved in major sperm
protein and hydrolase activity, respectively. Comparing DEGs of
Q&TAlongevity and daf-12(rh273) revealed a strong overrepre-
sentation of common up- and down-regulated transcripts. All
up-regulated genes, 18 in total, assign to the gene-groups msp,
cell structure, and/or sperm- and male enriched (notably 17 are
members of gene expression mountain 4).

A comparison to daf-2. Qlongevity and daf-2 mutants share a sig-
nificant proportion of DEGs (Figure 3B). The GO- and InterPro-
cluster analyses of the intersection of up-regulated genes revealed
five statistically significant clusters, including determination of
adult lifespan, lipid metabolic process, and oxidoreductase activity
(Table S4 in Supplementary Material 1). The intersection of down-
regulated transcripts returned four clusters, again determination
of adult lifespan and UDP-glycosyltransferase activity. In contrast,
TAlongevity differs from Qlongevity when compared to daf-2 mutants;
only the section “up in TAlongevity/down in daf-2” revealed an
overrepresentation (Figure 3B).

Since a substantial part of the category “up in TAlongevity/down
in daf-2” are also up-regulated in TGF-beta mutants (17 genes)
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FIGURE 3 | Comparison of DEGs derived from Qlongevity,TAlongevity, and

daf-12(rh273) mutants (Fisher and Lithgow, 2006) (A); daf-2 mutants

(Evans et al., 2008) (B);TGF-beta adults (Shaw et al., 2007) (C); and P.

aeruginosa challenged C. elegans (Evans et al., 2008) (D). Significant
overlap is indicated by RF values in brackets. The middle section represents
the overlap of pooled DEGs in Q&TAlongevity and respective conditions. Arrow
colors define the mode of regulation, where red defines intersections
containing jointly up-regulated DEGs, green down-regulated DEGs and blue

DEGs that are regulated in opposite directions. The overlap is significant
where RF values (numbers in brackets) are shown. ∗p < 0.05, ∗∗p < 0.005,
∗∗∗p < 0.001. (Additional information about all RF values in single PP
concentrations and published data can be found in Supplementary Material 4:
sheet “Meta-Analysis.” A GO- and InterPro-cluster analysis of overlapping
DEGs in respective intersections can be found in Table S4 in Supplementary
Material 1. All results can be reconstructed using the filter function in
Supplementary Material 5.)
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and in P. aeruginosa infected nematodes (18 genes), suggests that
a network of DEGs are present in all three conditions. Four clus-
ters emerge from this intersection, notably as in Qlongevity, the
term lipid metabolic process like stands out. The fact, that no gene
of this GO-term was present in the intersection Qlongevity/daf-2
confirms that both PPs modulate lipid metabolism, but via differ-
ing routes. Overall, Q&TAlongevity and daf-2 share 11 up-regulated
genes and two down-regulated genes (Figure 3B, middle) but 13
genes are expressed in opposite direction (two CUB-like genes
(F53C11.1, K10D11.5), two belonging to the defense response cat-
egory (C49C3.9, T19D12.4) and two coding for proteins with a
von Willebrand factor type A (vWA) domain).

A comparison to adult TGF-beta mutants. The overlap between
the gene lists for Qlongevity and TGF-beta mutants is signifi-
cant both in the up-regulated section and the section “Qlongevity

down/TGF-beta mutants up” (Figure 3C). The cluster analy-
sis revealed, e.g., the terms catalytic activity, active transmem-
brane transporter activity, and peptidase 28, carbohydrate meta-
bolic process, respectively (Table S4 in Supplementary Material
1). Indeed, 45 genes of the “Qlongevity down/TGF-beta mutants
up” section are also down-regulated in daf-2, suggesting that
some overlap of TGF-beta and ILS signaling prevails, albeit with
contrasting regulation patterns.

The comparison of TAlongevity and TGF-beta mutants
(Figure 3C) revealed that approximately 25% of the DEGs over-
lapped. The cluster analysis highlighted two clusters for each
intersection: peptidase 28 and lipid metabolic process in the section
comprising induced DEGs and chromatin organization and embry-
onic development ending in birth or egg hatching in the group of
repressed DEGs. Comparing DEGs from Q&TAlongevity and TGF-
beta mutants (Figure 3C, middle) returned only 12 genes that
were marginally overrepresented in the up-regulated intersection
which were also up-regulated in daf-2 mutants.

A comparison to P. aeruginosa infected nematodes. Qlongevity

or TAlongevity were compared to the transcriptional response
induced by the infection with the pathogenic bacteria P. aerug-
inosa (Shapira et al., 2006; Troemel et al., 2006; summarized in
Evans et al., 2008). Venn diagrams (Figure 3D) illustrate the
presence of significant intersections of DEGs in Qlongevity and
immune-challenged nematodes (both up; up in Qlongevity/down
in infection; both down; up in infection/down in Qlongevity). The
cluster analysis revealed a common up-regulation in, for exam-
ple, lipid metabolic processes, monooxygenase activity, and genes
coding for UDP-glucuronosyl/UDP-glucosyltransferase as well as a
concurrent down-regulation in particular parts of catalytic activ-
ity. The intersections of oppositely responding DEGs contain
genes coding for oxidoreductases and serine-type peptidase activ-
ity (Qlongevity up/infection down) and for structural constitutes
of cuticle (Qlongevity down/infection up), respectively. A large pro-
portion of DEGs from the intersection “up in infection/down in
Qlongevity”is down-regulated in TGF-beta, daf-2 and daf-12(rh273)
(for exact numbers and genes see Supplementary Material 5 in
respective filter condition), and 21 genes of “up in Qlongevity/down
in infection” are up-regulated in TGF-beta mutants.

TAlongevity shares highly significant patterns with the list of up-
regulated DEGs from infected nematodes. The cluster analysis

returned only one term, genes with a CUB-like region, however,
interestingly, CUB-like genes were previously found to be acti-
vated in the induced immune response pathway modulated by
PMK-1 (Troemel et al., 2006).

Only five genes are regulated in Q&TAlongevity as well as in
nematodes infected with P. aeruginosa (up-regulated: C15A11.7,
far-7 and srr-4; down-regulated: dhs-25, sur-5). Of the 15 com-
mon up-regulated DEGs in“TAlongevity and P. aeruginosa infection
and down-regulated in Qlongevity,” 11 are also down-regulated
in daf-2 mutants, including two C-type lectins (clec-4, clec-
67 ), two genes coding for proteins with a CUB-like region
(F53C11.1, K10D11.5) and two defense response genes (C49C3.9,
T19D12.4).

Finally, we evaluated the overlap of DEGs in Q and TA
treated nematodes with the DEGs regulated by PMK-1 (Troemel
et al., 2006; Supplementary Material 4: sheet “Meta-Analysis”) and
found a significant overlap for Qlongevity and TAlongevity in the up-
regulated intersection and the “down-regulated by PP/up due to
PMK-1.” These results underline the involvement of the p38 MAP
kinase pathway in both PP actions.

DISCUSSION
Polyphenols transform the transcriptional output and thereby
alter the physiological status of an animal. By performing DNA
microarray experiments and comparing the resulting data with
previously published gene expression screens, we revealed an inter-
laced interplay of genetic pathways affected by Q and TA. More-
over, our findings support results from previous studies (Pietsch
et al., 2009, 2011; Saul et al., 2010).

CONCENTRATION DEPENDENT VARIATIONS IN GLOBAL
TRANSCRIPTIONAL RESPONSES
Low concentrations of Quercetin (Q50) modulate processes which
may contribute to the wellbeing of the nematode (e.g. the gene
classes gst s, peroxidases, lysozymes; GO-terms: oxidoreductase
activity ; KEGG-analysis: glutathione metabolism and metabolism
of xenobiotics by cytochrome P450), but not sufficiently to signif-
icantly extend lifespan (Pietsch et al., 2011). In contrast, Q100
and Q200 impact significantly on the global transcriptome which
manifests itself in a strong longevity phenotype. This effect is, at
least in part, driven by transcriptional repression mechanisms as
indicated by the high number of down-regulated genes. As shown
recently, increasing the concentration to Q250 reverts the benefi-
cial effects on longevity (Pietsch et al., 2011). High dose toxicity
is particularly apparent at, for example, TA300 (GO-terms: DNA
repair, DNA damage response, response to stress, and cell death and
KEGG-analysis: Ubiquitin-mediated proteolysis, mismatch repair,
DNA replication).

GENETIC BASIS OF QLONGEVITY AND TALONGEVITY

Qlongevity shares transcriptional patterns with long-lived daf-
12(rh273), daf-2 mutants, TGF-beta mutants, as well as P. aerug-
inosa challenged nematodes (as identified by the meta-analysis
and overlapping gene expression mountains). These results sug-
gest that Q operates through a complex network of interlinked
pathways. Combining the microarray analysis with lifespan data
from Q exposed nematode mutants (Pietsch et al., 2009) allowed
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FIGURE 4 | Hypothetical model of Q’s (A) andTA’s (B) mode of action.

the construction of a hypothetical model that describes the mode
of action of Q induced longevity (Figure 4A).

The overlap between TAlongevity and the conditions assessed as
part of the meta-analysis revealed a less pronounced, yet still sig-
nificant correlation. Beside activation of amino acid metabolism
pathways, the strongest overlap was with data from the TGF-beta
mutants. This suggests that the TGF-beta pathway plays a promi-
nent role in the TA mediated life extension which is summarized
in Figure 4B.

It is intriguing to note that TA treatment has, compared to Q
treatment, a lesser effect on the transcriptome (as defined by the
number of significant DEGs) but a more marked life-extending
property. It is currently not known if this is an indirect effect or
whether transcriptional changes diminish/suppress the positive
output of Q action. Notwithstanding the observed differences in
genetic action modes, TGF-beta and p38 MAPK pathways, as well
as the nuclear hormone receptor DAF-12 seem to be involved in
both PPs. DAF-12, which is downstream of the TGF-beta- and ILS
pathways, is a member of the steroid hormone receptor superfam-
ily. It is linked to Dauer formation and, together with DAF-16,
also influences gonad-dependent adult longevity. Given that nei-
ther Blueberry polyphenols (Wilson et al., 2006), Caffeic acid nor
Rosmarinic acid (Pietsch et al., 2011) could extend the lifespan of
sek-1 mutants (sek-1 is a genetic player in the p38 MAPK path-
way) suggests that the innate immunity may act as a prominent
downstream effector of PPs.

Based on the meta-analysis with Q&TAlongevity and relevant
microarray studies (Hill et al., 2000; Wang and Kim, 2003;
Viswanathan et al., 2005; Fisher and Lithgow, 2006; Shaw et al.,
2007; Evans et al., 2008), we were able to identify a subset of
transcripts that are possibly relevant for aging (see Table S5 in
Supplementary Material 1). Clearly further investigations into
their aging-modulating activities are warranted. Likewise, we call
for further experimentation to establish the regulatory interlink
between TGF-beta signaling and DAF-12, as well as p38 MAPK.

CONCLUSION
The meta-analysis displayed an extensive overlap between PP
treatment and numerous mutants as well as immunity challeng-
ing conditions, however, frequently the mode of regulation was
in opposite direction. This strongly suggests the presence of a
complex regulatory interplay between the input and multiple
downstream targets. Clearly, PPs action cannot be reduced to
the activation or inhibition of single genes and pathways; nev-
ertheless it is apparent that TGF-beta, ILS, and p38 MAPK play
a prominent role in PPs’ mode of action. Furthermore, we were
able to demonstrate that an extensive comparison with data from
the literature can provide a deep insight into the transcriptome
to a level that goes beyond a simple GO- and KEGG-analysis.
Given the convolution observed with single gene knockout alle-
les and exposures to pure compounds, one can envisage the
complexity that will arise with multidimensional mixture toxic-
ity experiments. The development of comparative databases and
most importantly powerful, yet intuitive, bioinformatic tools will
undoubtedly aid in the streamlining of large datasets. Overall,
our results strengthen the notion that both PPs act in con-
served genetic pathways that overlap, or at least correlate, with the
longevity phenotypes and transcriptional fingerprints of certain
mutant strains. Clearly, further future tests are needed to con-
firm single genetic players and specify the interplay of conserved
pathways.
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Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF) prolonged the
lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis
elegans. However, growth was impaired and reproduction delayed, effects which have also
been identified in response to other polyphenolic monomers, including Tannic acid, Ros-
marinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases
its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain
a deep insight into the molecular basis of these effects, we performed global transcrip-
tomics on young adult (3 days) and old adult (11 days) nematodes exposed to two different
concentrations of HF. We also studied several C. elegans mutant strains in respect to HF
derived longevity and compared all results with data obtained for the chemically modified
HF. The gene expression pattern of young HF-treated nematodes displayed a significant
overlap to other conditions known to provoke longevity, including various plant polyphenol
monomers. Besides the regulation of parts of the metabolism, transforming growth factor-
beta signaling, and Insulin-like signaling, lysosomal activities seem to contribute most to
HF’s and modified HF’s lifespan prolonging action. These results support the notion that
the phenolic/quinonoid moieties of humic substances are major building blocks that drive
the physiological effects observed in C. elegans.

Keywords: humic substances, hydroxybenzene, gene expression, aging, longevity, stress,TGF-beta, Caenorhabditis

elegans

INTRODUCTION
Several studies with different model organisms have demonstrated
that mild chemical stress trains cellular stress response pathways,
e.g., biotransformation and antioxidant systems, which can ulti-
mately result in lifespan extension; for a review see Kourtis and
Tavernarakis (2011). Recently, we were able to show that expo-
sure to a specific humic substance preparation, HuminFeed® (HF),
significantly extends the lifespan of the nematode Caenorhabditis
elegans (Steinberg et al., 2007). HF is weathered leonardite humic
material characterized by high functional group content (Meinelt
et al., 2007). By analogy it has been concluded that the effective
building blocks may be hydroxybenzene groups. To confirm the
biological impact of these structures, HF was chemically modi-
fied by increasing the concentrations of phenolic and quinonoid
functional groups (Menzel et al., 2011). This chemical modifica-
tion boosted the antioxidant properties of HF both in vitro and
in vivo. Moreover, modified HF caused a significantly increased
tolerance toward thermal stress in C. elegans and extended its
lifespan (Menzel et al., 2011). In contrast, HF and the modified
substances delayed the onset of reproduction and caused a reduc-
tion in overall body length. The underlying molecular basis of
these HF mediated effects is, to date, unknown.

To define the transcriptional responses of HF exposure, we
conducted global gene expression analyses using the Affymetrix®
whole genome DNA microarray platform. Nematodes were
exposed to two different concentrations of HF over a 3- or 11-days
incubation period. We also assessed the effect of Huminfeed–
Hydroquinone (HF-HQ), a HF derivate chemically enriched with
hydroquinone.

Initially, we defined the differently expressed genes (DEGs),
many of which displayed concentration dependent changes in
expression. Selected results were confirmed by quantitative real-
time RT-PCR. Subsequent investigations included gene ontology
(GO; Ashburner et al., 2000) and Kyoto encyclopedia of genes
and genomes (KEGG; Kanehisa, 2002) pathway analyses. More-
over, over-represented gene expression mountains and gene classes
were evaluated according to Kim et al. (2001). In doing so, we
were able to identify gene classes and pathways that returned a
significant over-representation in HF or HF-HQ treated nema-
todes. A meta-analysis compared our findings with recently pub-
lished data specific to either age-related gene expression, the
genetic background of longevity mutants, the transcriptional
profile of polyphenol treated nematodes or infection/immunity-
related gene expression. This allowed us to pinpoint genes and

www.frontiersin.org April 2012 | Volume 3 | Article 50 | 66

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RalphMenzel&UID=47590
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SureshSwain&UID=47614
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KerstinPietsch&UID=48330
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=StephenSturzenbaum&UID=32385
http://www.frontiersin.org/people/ChristianSteinberg/51191
mailto:ralph.menzel@biologie.{\penalty -\@M }hu-berlin.de
http://www.frontiersin.org
http://www.frontiersin.org/Toxicogenomics/archive
http://www.frontiersin.org/Toxicogenomics/10.3389/fgene.2012.00050/abstract
http://community.frontiersin.org/people/J�rdisWitczak/51684


Menzel et al. Humic substances induced gene expression

associated pathways predicted to be key players in HF mediated
longevity.

To substantiate the importance of these genes and pathways,
loss of function mutants were tested for their ability to extend
the lifespan in response to HF or HF-HQ exposure. In summary,
this study provides new evidence that specific humic substances
induce a complex mode of action. Moreover, humic substances
are not limited (as previously thought) to act indirectly, e.g., via
the unspecific binding to organic and inorganic compounds or
the shuttling of electrons in microbial redox reactions, but rather
extends the lifespan of C. elegans by means of regulatory and stress
response pathways.

MATERIALS AND METHODS
NEMATODES
Maintenance of large synchronous cultures of old nematodes is
challenging due to the offspring generated during the onset of
reproductive output. Rather than using fluorodeoxyuridine to
inhibit embryonic development, which has recently been shown
to affect the worm (Aitlhadj and Stürzenbaum, 2010; Davies et al.,
2012), this study utilized the C. elegans mutant strain GE24, pha-
1(e2123), a putative transcriptional regulator of the pharyngeal
precursor cells (Granato et al., 1994a). The mutant allele pha-
1(e2123) is temperature sensitive; reproduction resembles wild
type at 15˚C, but is 100% embryonic lethal at 25˚C. At the restric-
tive temperature, pharyngeal tissues of mutant embryos fail to
undergo terminal differentiation and morphogenesis. After pass-
ing embryogenesis at the permissive temperature, however, a
temperature shift does not affect pharyngeal functionality. Previ-
ously introduced as a selectable genetic marker (Granato et al.,
1994b), we used pha-1(e2123) to maintain and follow a bulk
preparation of synchronized nematodes. For reasons of compar-
ison, we used the wild type strain Bristol N2 for all qRT-PCR
experiments.

The lifespan assay included, besides N2 and pha-1(e2123),
the following mutant strains: asah-1(tm495); RB1855, cyp-
34A9(ok2401); DA465, eat-2(ad465); TK22, mev-1(kn1); AM1,
osr-1(rm1); AU1, sek-1(ag1); VC199, sir-2.1(ok434); and MT2605,
unc-43(n498n1186). All nematode strains were maintained on
nematode growth medium (NGM) plates using Escherichia coli
OP50 as food source according to standard procedures (Brenner,
1974; Sulston and Hodgkin, 1988).

HUMIC MATERIALS
HuminFeed® (HF; Humintech GmbH, Düsseldorf, Germany) was
made by an alkaline extraction process of highly oxidized lig-
nite (for a detailed and comparative physicochemical analysis see
Meinelt et al., 2007). Our experiments used the same HF batch
as previously chemically characterized. Moreover, we utilized a
formaldehyde polycondensation product between HF and hydro-
quinone, namely HF-HQ, as described in Menzel et al. (2011).
HF was used solely for practical reasons; it does not constitute an
advertisement for this product.

CULTIVATION FOR THE GENE EXPRESSION SCREEN
Untreated nematodes were chunked onto control plates (no HF)
and treatment plates [0.2 and 2.0 mM dissolved organic carbon

(DOC) of HF and HF-HQ, respectively] and incubated at 15˚C
for 5 days. Then, a synchronous culture was generated by filter-
ing worms through a 10-μm membrane (SM 16510/11, Sartorius,
Germany), a pore size that retains all but first stage juveniles (L1).
For each individual experiment, 15,000 larvae were distributed to
three freshly prepared plates (∅ = 94 mm) and cultivated at 25˚C
to the young adult stage (3 days) or an older adult stage (11 days).
Nematodes were fed every third day by replenishing the bacterial
suspension and supplemented with a fresh preparation of humic
substances. Following the respective exposures, nematodes were
harvested by rinsing off with M9 buffer, rewashed twice, frozen in
liquid nitrogen, and stored at −80˚C until use. Each condition was
cultivated in triplicate.

RNA PREPARATION
Total RNA of each individual condition (n = 3) was isolated using
an innuSPEED Tissue RNA Kit (AnalytikJena, Jena, Germany),
which included an improved homogenization step with a Speed-
Mill (AnalytikJena, Jena, Germany) and the removal of genomic
DNA through an initial spin filter column step. The RNA qual-
ity and quantity was analyzed both spectroscopically (NanoDrop
1000, ThermoScientific, UK) and by means of Agilent’s Bioana-
lyzer 2100 equipped with a RNA 6000 Nano kit (Agilent Technolo-
gies, Santa Clara, CA, USA). All RNA-samples showed no signs of
degradation as indicated by Agilent’s RNA integrity numbers of 9
or 10.

DNA MICROARRAYS
Procedure
The processing of each RNA sample, the first- and second-strand
cDNA synthesis as well as cRNA synthesis, labeling, and fragmen-
tation was performed with a MessageAmp™Premier RNA Ampli-
fication Kit (Ambion, Austin, TX, USA). We used the GeneChip®
C. elegans genome platform (Affymetrix, Santa Clara, CA, USA),
representing 22,548 different transcripts. To conduct the microar-
ray hybridization experiments, we followed the specifications from
Affymetrix’s GeneChip® hybridization, wash, and stain kit. The
automated washing steps were performed in a GeneChip® flu-
idics station 450 (Affymetrix), and scans conducted by means of a
GeneChip® scanner 3000 7G (Affymetrix). Triplicate GeneChips®
were run for each condition.

Data interpretation and statistical analysis
Pre-processing of DNA microarray raw data included probe-
specific background correction, summarization of probe set val-
ues, and normalization using the GCRMA algorithm with CAR-
MAweb 1.4, an R- and Bioconductor-based web service for
microarray data analysis (Rainer et al., 2006)1. Then, the data were
initially filtered for missing values and subjected to a CLEAR-
test that combines differential expression and variability using
the GEPAS software (Herrero et al., 2003)2. For selection of
DEGs, an unpaired t -test was performed followed by a signifi-
cance analysis of microarray (SAM) test including a calculation
that estimates the false discovery rate (FDR). FDR, reducing on

1https://carmaweb.genome.tugraz.at/carma/
2http://www.gepas.org
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the one hand type I errors for null associations, was set to a
non-stringent level of <12.5%, mainly to guard from an increase
of type II error (Swain et al., 2010) and also based on findings
by Levine et al. (2011), which described 12.5% as most accept-
able optimum level of FDR, representing the 90th percentile of
the normal distribution curve. DEGs exceeding a fold change of
1.25 were further analyzed with respect to their functional clus-
tering. We chose this fold-cut-off to allow an interpretation that
is biologically meaningful, akin to the notion that data of sound
technical and experimental quality which returns strong, statis-
tically significant, absolute signal intensities is sufficiently robust
to justify a fold-cut-off of >1.2 (Grigoryev et al., 2004; McCarthy
and Smyth, 2009). This analysis was conducted using the func-
tional annotation clustering tool of the Database for Annotation,
Visualization, and Integrated Discovery (DAVID; Huang et al.,
2007)3. This tool identified annotation categories including, e.g.,
GO terms and bio-pathways that are significantly enriched within
the gene list, followed by a multiple sample correction (Ben-
jamini and Hochberg, 1995). The resultant annotation clusters
were ranked according to the statistical significance of cluster
enrichment.

Representation factor
To assess the level of overlap between different conditions we cal-
culated the representation factor (RF) in order to explore the fold
enrichment. The RF identifies the level of enrichment (of individ-
ual transcripts) between gene lists (Kim et al., 2001; Evans et al.,
2008). The choice of N(genome) was based on the values recom-
mended by the authors. Intersection P-values were calculated from
the hypergeometric distribution. RF were considered significant
when RF > 1.

VALIDATION OF DNA MICROARRAY DATA BY qRT-PCR
qRT-PCR analyses were conducted with samples from control
and 2.0 mM DOC HF as well as HF-HQ exposed N2 wild type
nematodes. The cultivation conditions of N2 wild type and pha-
1(e2123) were identical. β-Actin (act-1) was used as reference gene,
which did not change significantly in the DNA microarray data.
A total of 1 μg RNA was reverse transcribed into cDNA (Menzel
et al., 2005). Quantitative real-time amplification was performed
in a MyiQ single color qPCR detection system (BIO-RAD, Ger-
many) using the double-stranded DNA intercalating fluorescent
agent EvaGreen for amplicon detection. Each reaction consisted
of the qPCR Green Core Kit (Jena Bioscience, Germany), 200 nM
of each primer pair, and cDNA template equivalent to 5 ng RNA
starting material. The relative expression of the target genes was
calculated by means of the comparative 2−ΔΔCt method (Livak
and Schmittgen, 2001). All experiments for each selected gene
were performed in duplicate; RT-negatives were also run for each
sample and gene to confirm the absence of DNA contamination.
The list of primers with their corresponding PCR-efficiencies (91–
100%) is given in Table S1 in Supplementary Material; at least one
primer of each pair spanned an intron to avoid amplification of
genomic DNA.

3http://david.abcc.ncifcrf.gov/

LIFESPAN ASSAY AND STATISTICAL EVALUATION
The lifespan of C. elegans was investigated as previously described
(Pietsch et al., 2009) using synchronized L4 larvae and a growth
temperature of 20˚C. However, pha-1(e2123) was pre-cultured at
15˚C until the L4 state, and then maintained at 20˚C. The concen-
trations of HF and HF-HQ were 0 and 0.4 mM DOC, respectively,
mixed both into the agar and to the bacterial lawn. The first day of
adulthood was defined as day 1. We performed three independent
trials, each comprising 10 small agar plates (∅ = 35 mm) and 150
nematodes per trial. Animals were scored daily for survival until
all worms had died. Median and mean lifespan and percentage
changes (compared to controls) were determined. The statisti-
cal significance of alterations in the mean lifespan was calculated
using the log-rank test (Azen et al., 1977), available online from
the Bioinformatics group at the Walter and Eliza Hall Institute of
Medical Research (Melbourne, Australia)4. Blinding of studies was
not possible due to the color of humic material, which also stains
the NGM agar.

RESULTS
TRANSCRIPT PROFILING BY WHOLE GENOME MICROARRAY
FOLLOWING HF AND HF-HQ TREATMENT
The Venn diagrams in Figure 1 present an overview of the number
of genes that were significantly up- or down-regulated in response
to the humic substances and the respective overlap between the two
concentrations, 0.2 and 2.0 mM DOC. Due to the low threshold
(a minimum fold change in gene expression of 1.25), many genes
were classed as DEGs, especially in young adults exposed to HF.
However, the extended incubation time of 11 days was character-
ized by a substantial decline in the number of DEGs, in particular
down-regulated genes. The HF-HQ derived data resemble the
results from young adults exposed to HF, albeit overall less DEGs
were identified. The intersection between HF-HQ and HF at 0.2
and 2.0 mM DOC comprised of 174 and 532 DEGs, respectively.
An extensive overlap was observed between the two concentrations
per HF condition (Figure 1). The complete data can be viewed
in the National Center for Biotechnology Information’s (NCBI)
Gene Expression Omnibus (GEO) database (accession number
GSE35360) and are also given in Table S2 in Supplementary Mate-
rial, including expression values, statistics, and gene annotations.

VALIDATION OF TRANSCRIPT PROFILES OF SELECTED GENES AND
CONDITIONS BY qRT-PCR
A validation of the microarray experiment was deemed to be
important to (i) allow a comparison between the pha-1(e2123)
strain (used for microarray experiments) and the N2 wild type
(used for qRT-PCR), and (ii) evaluate the expression levels at
reduced exposure times (24 and 48 h as well as 72 h). Sam-
ples generated for qRT-PCR originated from worms exposed to
2.0 mM DOC of HF or HF-HQ, respectively. Overall, both meth-
ods (microarray and qPCR) and genotypes [pha-1(e2123) and
wild type] returned analogous expression profiles at 72 h exposure
in 9 of 10 genes tested; only F15E11.13 could not be confirmed
(Table 1). This suggests that pha-1(e2123) and wild type are

4http://bioinf.wehi.edu.au/software/russell/logrank
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FIGURE 1 | Over-represented genes. The Venn diagrams show the
overlap of significantly up- or down-regulated genes (fold change >1.25
or <0.8) per concentration in nematodes exposed for 3 days to HF

(center), HF-HQ (left), and for 11 days to HF (right). The gray colored
numbers given in italics represent the overlap between HF and HF-HQ
derived DEG lists.

Table 1 | Quantitative PCR of 10 HF-responsive genes identified by DNA microarray.

Gene Expression level

qRT-PCR
N2 wild type

DNA microarray
pha-1(e2123)

24 h 48 h 72 h 72 h

2.0 mM DOC� HF HF-HQ HF-HQ HF-HQ HF-HQHF HF HF

asah-1

ctl-3

cyp-34A9

F15E11.13

gst-24

lys-7

sek-1

skn-1

sod-4

sodh-1

Fold change: <0.3, 0.3–0.7, 0.7–1.5, 1.5–3.0, >3.0.

essentially interchangeable. The inclusion of further time points
revealed that the majority of the selected genes did not respond

rapidly to the exposure, exceptions to this were F15E11.13 and, to
some extent, cyp-34A9 and skn-1.
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EVALUATION OF TRANSCRIPT PROFILES BASED ON ANNOTATION
ENRICHMENT ANALYSES
The transcriptional profiles were subjected to detailed analyses to
identify pathways linked to the mode of actions of HF and HF-
HQ. The principal approach applied an annotation enrichment
analysis within the different DEG sets, sub-divided in up- and
down-regulated genes.

First, DEGs were assigned to KEGG pathways and mapped to
known molecular interaction networks, such as metabolic path-
ways or environmental information processes (Table S3 in Sup-
plementary Material). The analysis of the two HF derived lists for
young adults (3 days) identified 10 KEGG pathways for 0.2 and 16
KEGG pathways for 2.0 mM DOC (Table 2, left part). DEG lists
of 3-days-old HF-HQ treated nematodes returned 3 and 12 path-
ways for the low and the high concentration, respectively (Table 2).
Despite some individual differences between both conditions (e.g.,
the down-regulation of spliceosome specific genes by HF),the over-
all overlap between concentrations and conditions was significant.
Particularly noticeable was the induction of fatty acid metabolism,
in particular arachidonic acid (AA) and sphingolipid metabo-
lism, as well as the up-regulation of lysosome related genes. In the
11-days-old HF exposed worms, only four significantly enriched
KEGG pathways were modulated, which were restricted to the
lower concentration of HF (0.2 mM DOC). Besides the persistent
induction of the AA metabolism, HF (0.2 mM DOC) was marked
by a distinct up-regulation of the biotransformation machinery,
which includes glutathione and cytochrome P450 (CYP) pathways.
It should be noted that HF (2 mM DOC) also induced biotrans-
formation associated genes, however, because of the large number
of DEGs, they were not found to be significantly enriched.

Second, DEGs were classified using GO terms to obtain fur-
ther functional insights into gene expression responses. The GO
analysis produced a multitude of significantly enriched terms,
many represented by the same genes across and within the
three GO domains (biological process, cellular component, and
molecular function). Redundancy was removed by applying the
“GOTERM_XX_ALL” option in DAVID 3.0, a functional annota-
tion clustering tool. Table S4 in Supplementary Material lists GO
terms represented by the largest number of genes within indi-
vidual functional clusters. A further selection of the 25 most
striking terms are given in Table 2 (right part). Again, results
from young adult nematodes, exposed either to HF or HF-HQ,
were more consistent compared to their older counterparts. As
before, lysosomal processes, defense response as well as lipid
and fatty acid metabolism were found to be enriched in the
group of up-regulated genes. Moreover, humic substances induced
the expression of genes coding for constituents of the cuticle
and cytoskeleton. The persistent strong induction of the cellular
components pseudopodium and extracellular region is caused by
a comprehensive up-regulation of various major sperm proteins
(MSP). Oxidative/reductive processes, determinants of adult life
span, and neuropeptide signaling were found to be more enriched
in response to the chemically modified HF-HQ. Both HF prepa-
rations seem to slow down the reproductive development of C.
elegans (also cell cycle and gamete production) following a short
term exposure of 3 days, a process which was seen to be reverted
in older nematodes exposed for 11 days.

In a third step, we compared the DEG lists to a library of 59
different gene classes or functionally related groups of genes (for
the complete comparison see Table S5 in Supplementary Mate-
rial), which were assembled into a gene expression map (Kim
et al., 2001). Table 3 (left part) shows a selection of the 15 most
relevant gene groups in which at least one dataset displays an
over-representation. As before, genes coding for determinants
of cell structure, lipid metabolism, glutathione transferases, and
MSPs were significantly enriched. Lysozyme and protease encod-
ing genes were found to be predominantly up-regulated after
3 days of exposure but down-regulated in 11-days-old HF-treated
nematodes.

META-ANALYSIS: COMPARISON OF TRANSCRIPT PROFILES WITH
SELECTED DATASETS TAKEN FROM THE LITERATURE
Datasets from HF and HF-HQ treated nematodes were com-
pared to expression profiles obtained from long-lived mutants,
dauer larvae, worms treated with lifespan-extending polyphenols
and immunity challenged nematodes. As a control, the analysis
included studies addressing the gene expression changes dur-
ing the C. elegans life-cycle. Table S6 in Supplementary Material
summarizes the results of the complete analysis comprising 40
individual data sets. Table 3 (right part) reduces the meta-analysis
to the 15 most overlapping data sets. The transcriptional profiles of
HF and HF-HQ are closest to the results from Tannic acid treated
nematodes and mutants of the transforming growth factor-beta
(TGF-β) pathway. In contrast, significant overlaps were limited to
up-regulated DEGs in long-lived daf-2(e1370) and daf-12(rh273),
as well as nematodes infected with Pseudomonas aeruginosa or
exposed to another polyphenol, the flavonoid Quercetin. A signif-
icant proportion of genes up-regulated after 3 days were shown to
be down-regulated after 11 days. This result demonstrates the level
of dynamic transcriptional changes during the HF mediated aging
process.

HF and HF-HQ derived transcriptional profiles were also ana-
lyzed by assigning DEGs to gene expression mountains originally
assembled from 553 different C. elegans DNA microarray exper-
iments (Kim et al. (2001). Table S7 in Supplementary Material
displays the overlap of all gene expression mountains with the
HF and HF-HQ derived datasets, respectively, as calculated by
RFs. A summary is presented in Figure 2 and includes a graph-
ical overview of the data obtained for 14 mounts, distinguishing
between up- and down-regulated genes as well as a summary from
selected published data sets. Young adult nematodes exposed to the
lower concentration of HF-HQ (Figure 2A, left side), and both HF
concentrations (Figure 2B) resembled the gene expression mount
map characteristic for Tannic acid exposed nematodes or mutants
of the TGF-β pathway. The higher concentration of HF-HQ on
the other hand seems to overlap, in part, with the gene expres-
sion patterns following P. aeruginosa infection (Figure 2A, right
side). No clear categorization was possible for old adults exposed
to HF.

A stringent GO term analysis on genes belonging to each of
the significantly overlapping sections made it possible to focus
on similarities within and between HF, HF-HQ, and long-lived
mutant strains. Only gene lists derived from TGF-β mutants as
well as daf-2(e1370) mutants produced significant results. Figure 3
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FIGURE 2 | Over-represented gene expression mountains. Identification of
over-represented gene expression mountains of (A) HF-HQ (3 days), (B) HF
(3 days), and (C) HF (11 days) treated nematodes; 0.2 mM DOC data are
shown on the left, 2.0 mM data on the right. Only mounts which are
significantly affected by at least one HS treatment are presented, red labels
represent up-, green labels down-regulated genes. *P < 0.05, **P < 0.01,
***P < 0.001. (D) Presents the associated term names on the left and a

comparison to selected published datasets on the right (only mounts relevant
to HS are shown). Note the short graphical overview in the right upper corner
of each diagram. The complete dataset (gene numbers and RFs for all 44
gene expression mountains of all six HS conditions as well as RFs for
previously published datasets) can be found in Table S7 in Supplementary
Material. 1Shaw et al. (2007), 2Evans et al. (2008), 3Fisher and Lithgow (2006),
4Troemel et al. (2006), 5Viswanathan et al. (2005), 6Pietsch et al. (2012).

shows the Venn diagrams describing the overlap between TGF-β
mutants and 0.2 mM (Figure 3A) as well as 2.0 mM (Figure 3B)

HF or HF-HQ treated nematodes. The overlap between the profiles
of daf-2(e1370), and 2.0 mM HF or HF-HQ treated nematodes
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FIGURE 3 | Overlap of similarly regulated genes. Shown are
comparisons of DNA microarray data sets of HF (right) and HF-HQ (left)
treatments with the data set derived from TGF-β adults (Shaw et al.,
2007) – 0.2 mM DOC HS (A) and 2.0 mM DOC HS (B) – as well as from
daf-2(e1370) mutants (Evans et al., 2008) (C). The RF values in brackets
indicate a significant overlap between the data sets. The middle section
represents the overlap of DEGs in both HF, HF-HQ, and the comparative

condition, shown are significantly over-represented GO terms (Biological
process), the associated number of genes, and the individual names of
all genes which are part of the GO term “Determination of adult life
span.” Red arrows/boxes are intersections of commonly up-regulated
transcripts; blue arrows/boxes are intersections derived from genes with
opposite transcriptional responses. *P < 0.05. **P < 0.005.
***P < 0.001

is given in Figure 3C. All three analyses returned the term
“Determination of adult life span,” moreover, common transport
processes were identified. Some of these genes act downstream
of DAF-16 (Murphy et al., 2003) and/or thought to be involved
in lysosomal metabolism (e.g., asah-1, encoding a putative n-
acylsphingosine amidohydrolase) or a potential drug metabo-
lizer (e.g., cyp-34A9, a cytochrome P450 monooxygenase). Both
mutant strains were selected for lifespan assays as described
below.

IDENTIFICATION OF GENES REQUIRED FOR HF/HF-HQ MEDIATED
LONGEVITY
To substantiate the importance of stress response genes and
genes relevant to aging, nine C. elegans mutants were tested for
their ability to trigger longevity during humic substance expo-
sure (Figure 4A). HF or HF-HQ exposure led to a significant
increase in mean lifespan of N2 wild type and the pha-1(e2123)
mutant strain, confirming that pha-1 was a suitable test strain
for this analysis. In addition, cyp-34A9(ok2401), eat-2(ad465),
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FIGURE 4 | Genetic modulators. (A) Lifespan alterations in nine mutant
strains following the treatment with either 0.4 mM DOC HF (light gray) or
0.4 mM DOC HF-HQ (dark gray). Shown are the mean lifespan variations
compared to the respective untreated control. Error bars represent SEM,
**P < 0.01, ***P < 0.001. (B) provides a graphical comparison of

previously published datasets on polyphenols. Crosses mark
combinations where no significant extension of lifespan was observed;
gray shaded boxes are untested combinations. 1Wilson et al. (2006),
2Pietsch et al. (2011), 3Saul et al. (2009), 4Pietsch et al. (2009), 5Saul et al.
(2010).

and unc-43(n498n1186) responded to the exposure to HF or
HF-HQ with an increase in lifespan. HF-HQ was seemingly a
more effective trigger of longevity than the unmodified HF, a fact
which may explain why osr-1(rm1) responded only to HF-HQ,
but not to HF. No lifespan extension was observed in sek-1(ag1)
and sir-2.1(ok434) and was even reduced in asah-1(tm495) and
mev-1(kn1) (Figure 4A). An overview of comparative data from
similar experiments testing the impact of individual polyphe-
nols and one fruit extract suggest that the HF/HF-HQ medi-
ated longevity align well with the key mechanisms identified for
Caffeic acid and Rosmarinic acid as well as blueberry polyphe-
nols. The overlap to Tannic acid treated nematodes was limited
to sek-1, a frequently encountered effector in aging pathways
(Figure 4B).

DISCUSSION
Caenorhabditis elegans exposed to the humic substance HF were
shown to live longer and to be more stress resistant, but were
impaired in their reproductive performance and growth (Menzel
et al., 2011). Therefore, HF’s impact resembles other polyphenol
monomers, such as Quercetin (Kampkötter et al., 2008; Pietsch
et al., 2009) and Tannic acid (Saul et al., 2010). Indeed, HF was
found to be rich in functional group content, with possibly hydrox-
ybenzenes as effective building blocks (Meinelt et al., 2007). First
experimental evidence was offered by Menzel et al. (2011) who
were able to demonstrate that a chemical modification of HF
(an enrichment in phenolic and quinonoid functional groups)
resulted in the amplification of the biological effects. The cur-
rent study aimed to extend this knowledgebase by applying global
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transcriptomics to compare the impact of HF and a modified HF
(HF-HQ).

QUANTITATIVE ANALYSIS OF TRANSCRIPT PROFILES AND VALIDATION
BY qRT-PCR
Exposure to HF or HF-HQ had a profound impact on global gene
expression patterns. Clearly, the return of over 1000 DEGs can
be attributed, in part, to the non-stringent cut-off value of 1.25-
fold, which was purposefully chosen to facilitate a comprehensive
secondary analysis. The overlap between the HF and the HF-
HQ DEGs-lists is considerable, even though HF returned more
DEGs than HF-HQ. A 10-fold increase in concentration (from 0.2
to 2.0 mM DOC) amplified the number of DEGs approximately
twofold for HF and threefold for HF-HQ. Moreover, at least for
HF exposure, it was apparent that the transcriptome was more
responsive in young adults than old adults. This finding together
with the observed delay in reproduction and the retarded growth
(Menzel et al., 2011) suggests that the reproductive development is
a target following HF exposure. The high level of overlap between
the two concentrations in young adults was not observed in old
adults, indicating a shift in gene expression dynamics, which in
accordance with Van Straalen and Feder (2012) is separated by
effects (concentration/dose) rather than different exposures (com-
pounds). Given that the primary objective of this work was to
distinguish between the two preparations of HF and compare the
results to the genomics literature, the scenario “exposure” is more
relevant. Therefore we focused on the 3-days derived data.

The Affymetrix DNA microarray system is a robust, reliable,
and well established system (Dalma-Weiszhausz et al., 2006).
Nonetheless, we analyzed the expression level of 10 genes by qRT-
PCR, however in the N2 wild type rather than pha-1(e2123) which
was used for the microarray experiments. By doing so, we were
able to confirm the microarray data but also the validity of the
mutant strain, which was required for the production of a large
population of age-synchronized old adults. The addition of two
additional time points, namely shorter exposure times of 24 and
48 h, revealed complex time resolved differences in transcription.
Many genes were initially repressed or transcriptionally inactive
but induced at 72 h. In contrast, skn-1 was induced at 24 h but
returned to base line levels thereafter. Interestingly, skn-1 encodes
a longevity-promoting transcription factor and is positioned in the
p38 MAPK pathway. Its expression has been shown to be enhanced
under conditions of stress (An and Blackwell, 2003) or reduced
DAF-2 signaling.

QUALITATIVE ANALYSIS OF TRANSCRIPT PROFILES BY ABUNDANCE
SCREENS
The generation of a dataset that describes quantitative changes in
gene expression upon a certain condition, e.g., exposure to a chem-
ical compound, is less challenging than the interpretation of its
relevance, significance, and contribution to the physiology of the
organism. Statistical methods aid in the identification of over- or
under-represented transcripts which can be aligned to biological
processes or functions via KEGG- and GO-term screens.

The over-representation of DEGs related to lipid metabolism
and biotransformation in HF and HF-HQ derived transcript pro-
files suggests the presence of enhanced catabolism, possibly of

toxic intermediates. This may contribute to the lifespan extension
which, according to the green theory of aging, is due to the invest-
ment in cellular waste disposal and protein conservation (Gems
and McElwee, 2005). The induction of several signaling pathways
(MAPK, Wnt, TGF-β, neuropeptide) might reflect transcriptional
changes of downstream targets. However, changes in heat shock
protein (HSP) gene expression were not observed. Clearly, other
transcripts responded to the HF/HF-HQ challenge, some are pos-
sibly involved in the observed longevity phenotype. For example
the pronounced over-representation of lysosome specific genes
may be linked to the process of autophagy, which mediates the
degradation of cellular components, including whole organelles
and protein aggregates. The importance of an efficient lysoso-
mal activity is indicated by the finding that long-lived C. elegans
mutants frequently display increased autophagy (Melendez et al.,
2003; Hars et al., 2007).

The down-regulation of the GO terms “reproductive develop-
mental process,” “gamete generation,” and “cell cycle” corroborate
the notion that the reproductive development slows down in
HF/HF-HQ exposed nematodes. Interestingly, this process seems
to be dynamic in nature as “gamete generation” and “cell cycle”
appear to be up-regulated (at least in 2.0 mM DOC HF) in old
adults. In contrast, transcripts involved in the constitution of
the cuticle (also the gene class “cell structure”) or active in the
extracellular region and the pseudopodium (here in particular
MSPs) are consistently up-regulated. The cuticle of C. elegans
can differ in layer numbers, relative thickness, and composition
during development (particularly in larvae) and changing envi-
ronmental conditions. Indeed, genes encoding for cuticle colla-
gens were found to be induced in response to several bacterial
species (Coolon et al., 2009) and under oxidative stress (Shin
et al., 2011). In aging research, studies identified a large num-
ber of collagens as age regulated genes (Halaschek-Wiener et al.,
2005; Budovskaya et al., 2008). These data suggest that cuti-
cle collagens may be differentially regulated indirectly in defense
against environmental perturbations and potentially in longevity.
A comparable up-regulation of msp-genes were observed in the
long-lived daf-12(rh273) mutant (Fisher and Lithgow, 2006), but
also in Quercetin or Tannic acid exposed wild type worms (Pietsch
et al., 2012).

The HF and HF-HQ derived data were remarkably similar.
However, only HF-HQ returned an up-regulation of the Biological
processes “oxidation/reduction activity” possibly due to the previ-
ously observed increase in oxidoreductive activity (Menzel et al.,
2011).

QUALITATIVE ANALYSIS OF TRANSCRIPT PROFILES BY LITERATURE
COMPARISON
The main problem of abundance screens (e.g., GO-term profiling)
is the incomplete gene annotation of genomes and the risk of over-
interpretation, as enrichment values can occur by chance (Rhee
et al., 2008). The application of appropriate statistical tools mini-
mizes, but cannot exclude, the frequency of false-positives. To offer
a more independent verification, we conducted a meta-analysis to
include published data and searched for overlapping gene clusters
via the gene expression mount map created by Kim et al. (2001).
This revealed that Tannic acid exposed wild type worms (Pietsch
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et al., 2012), TGF-β mutants (Shaw et al., 2007), and worms sub-
jected to humic substances produce similar expression pattern
mountains. The comparison of DEGs-lists of either up- or down-
regulated genes confirmed this result. The overlap to worms with
a challenged immunity in response to an infection with P. aerugi-
nosa, Quercetin treated nematodes as well as long-lived and more
stress-resistant mutants [daf-2(e1370) and daf-12(rh273)] was, at
large, restricted to the section of up-regulated DEGs. Both HF
preparations and TGF-β mutants (and daf-2 for 2.0 mM DOC)
shared GO terms, suggesting that the negative regulation of the
TGF-β pathway and, less pronounced, the insulin-like signaling
(ILS) pathway, play prominent roles in the lifespan extension due
to HF/HF-HQ. Both signaling cascades control, by responding
to environmental conditions, whether C. elegans larvae grow to
adults or to long-lived and stress-resistant dauer larvae. Based on
our results, it seems that HF preparations are able to modulate
these pathways, thereby facilitating the observed increase in stress
resistance and longevity.

GENETIC PLAYERS THAT PROMOTE HF-DEPENDENT LONGEVITY
HF or HF-HQ treatment was not able to prolong the lifespan of
the C. elegans mutants sek-1, sir-2.1, mev-1, asah-1 and (in the case
of HF only) osr-1. SEK-1, a MAP2K, is part of the p38 MAP kinase
pathway and acts downstream of TIR-1 (toll and interleukin recep-
tor) and NSY-1 (MAP3K). It phosphorylates the MAP kinases
JNK-1 and PMK-1 (Tanaka-Hino et al., 2002), the latter results in
an elevated immune response to pathogen infection (Kim et al.,
2002) and also functions via SKN-1 to control resistance against
metals, such as arsenic (An and Blackwell, 2003). OSR-1 is cou-
pled to SEK-1 (through UNC-43) and regulates the osmotic stress
response and survival in hyper-osmotic environments, where via-
bility depends on activity of the CaMKII pathway (Solomon et al.,
2004). Both sek-1 and osr-1 were shown to be essential for the blue-
berry polyphenol induced longevity (Wilson et al., 2006) as well as
the Caffeic acid and Rosmarinic acid (Pietsch et al., 2011) medi-
ated longevity. Surprisingly, unc-43 was not found to be essential
for the longevity effect by HF or HF-HQ.

A genetic analysis suggested that sir-2.1 (which encodes the
NAD+-dependent deacetylase) extends lifespan via the ILS path-
way and requires daf-16 (Tissenbaum and Guarente, 2001).
Berdichevsky et al. (2006) proposed the existence of a stress-
dependent pathway in which SIR-2.1 acts in parallel to the ILS
pathway, but still via an activation of DAF-16. Likewise, Caffeic
acid, Rosmarinic acid, and Resveratrol mediated lifespan exten-
sion were all shown to be dependent on SIR-2.1. Viswanathan et al.
(2005) described the involvement of sir-2.1 in the up-regulation
of stress response genes (especially abu-11), a mechanism which is
thought to aid protein folding in the endoplasmic reticulum. SIR-
2.1’s involvement in stress response pathways during aging and
HF/HF-HQ challenge may thus promote longevity and is possibly
linked to the ILS-signaling cascades.

To further examine whether HF preparations could protect
against acute oxidative stress, we examined mev-1(kn1), a nema-
tode which harbors a mutation in the cytochrome b large subunit
of mitochondrial complex II (Ishii et al., 1998). The mutation
causes an overproduction of superoxide and increased oxida-
tive stress, resulting in accelerated aging and a reduced lifespan

(Hosokawa et al., 1994; Senoo-Matsuda et al., 2001). Neither
HF/HF-HQ, blueberry polyphenol (Wilson et al., 2006) nor Cat-
echin (Saul et al., 2009) treatment were able to revert or pro-
tect against the oxidative stress encountered by the mev-1(kn1)
mutants. The pro-oxidant properties, as described for different
polyphenols by Akagawa et al. (2003) and Wiegant et al. (2009),
may explain this result. Indeed, HF-HQ induced antioxidant
enzymes, such as catalases (ctl-2, ctl-3) and a superoxide dismutase
(sod-3).

The asah-1 gene encodes a putative acid ceramidase,a lysosomal
enzyme which catalyses the hydrolysis of ceramide to sphingosine
and free fatty acid. Although the annotation data for asah-1 is
patchy, it is thought to act downstream from DAF-16 (Murphy
et al., 2003), has been assigned to the GO-term “Determina-
tion of adult life span,” and leads to Farber lipogranulomato-
sis, when mutated in humans. In affected individuals, harmful
amounts of lipids accumulate in cells and tissues throughout
the body (Mao and Obeid, 2008). Because several gene clus-
ters coding for lysosome components, ceramidases, and sphin-
golipid metabolizing enzymes were found to be up-regulated
by HF/HF-HQ, these processes may be essential for the effec-
tiveness of humic substances, a hypothesis that requires further
investigation.

CONCLUSION
The humic substance preparation HF significantly extends the
lifespan of the nematode C. elegans. Here we were able to show
that HF’s mode of action resembles other polyphenol monomers:
(i) the transcript profiles of HF are very similar to Tannic acid and,
but less pronounced, to Quercetin; (ii) the enrichment of HF with
hydroquinones (HF-HQ) enhances its phenotypic effects (Menzel
et al., 2011) and returns a more streamlined transcript profile (i.e.,
HF-HQ and HF affected common gene clusters, even though the
total number of DEGs was lower in the HF-HQ sample); and (iii)
HF/HF-HQ and polyphenols induce similar effects on key mutant
nematodes.

Despite these similarities, the mode of action of HF is complex
(Figure 5) and is heavily influenced by the negative regulation of
TGF-β- and ILS signaling as well as increased lysosomal activity.
Longevity, according to Kirkwood and Austad (2000), is driven by
an organism’s ability to cope with extrinsic or intrinsic stressors.
Clearly stress response pathways do not function in isolation but
act, in concert,within a stress network where multiple hubs serve as
coordinators of various modules (Kourtis and Tavernarakis, 2011).
The process of aging both influences and is influenced by this stress
network. Mild environmental stress, as triggered by low concentra-
tions of polyphenols or polyphenol-containing humic substances,
primes response pathways which in turn increase stress resistance
and longevity. These mechanisms are multidimensional but one
of the prime candidates involved in the impact of polyphenols and
humic substances is, at least in the nematode C. elegans, sir-2.1.
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We investigated the toxicity of soil samples derived from a former municipal landfill site
in the South of the Netherlands, where a bioremediation project is running aiming at
reusing the site for recreation. Both an organic soil extract and the original soil sample was
investigated using the ISO standardized Folsomia soil ecotoxicological testing and gene
expression analysis. The 28 day survival/reproduction test revealed that the ecologically
more relevant original soil sample was more toxic than the organic soil extract. Microar-
ray analysis showed that the more toxic soil samples induced gene regulatory changes in
twice as less genes compared to the soil extract. Consequently gene regulatory changes
were highly dependent on sample type, and were to a lesser extent caused by exposure
level. An important biological process shared among the two sample types was the detox-
ification pathway for xenobiotics (biotransformation I, II, and III) suggesting a link between
compound type and observed adverse effects. Finally, we were able to retrieve a selected
group of genes that show highly significant dose-dependent gene expression and thus
were tightly linked with adverse effects on reproduction. Expression of four cytochrome
P450 genes showed highest correlation values with reproduction, and maybe promising
genetic markers for soil quality. However, a more elaborate set of environmental soil sam-
ples is needed to validate the correlation between gene expression induction and adverse
phenotypic effects.

Keywords: microarray, Folsomia candida, biotransformation, cytochrome P450

INTRODUCTION
The focus of ecotoxicological research is aimed at understanding
toxicological phenomena in a variety of biota (Fent, 2004). Much
emphasis is placed on lab-controlled testing of single compounds
to address regulatory issues of chemical registration. However,
testing the toxicity of complex environmental samples such as
fresh water, river sediments, and natural soils remains challenging
for several reasons. One of the major problems is that chemical
analysis of pollutants in ecosystems often reveals an extensive list
of toxicants that are potentially hazardous. Although legislation
is based on the concept of concentration thresholds that must
not be exceeded to ensure that the site is safe, such analysis can-
not provide evidence for the real toxicological consequences of
complicated mixtures. One of the valuable tools to assess ecotox-
icological consequences of complex environmental mixtures is to
apply bioassays. In such assays, survival and reproduction is stud-
ied of model organisms (validated in international standard tests),
exposed to samples from the environment under controlled con-
ditions. However, identification of the compound(s) causing the
adverse effects among the potential list of compounds in a mixture
is challenging, due to the fact that the endpoints survival, growth,
and reproduction are not specific to the type of stress exerted on
the test animals. Traditional bioassays do not allow conclusions on
the nature of the chemicals causing the effects.

Transcriptional profiling seems to have important advantages
over traditional bioassays. Several recent studies provided evidence
that transcriptome profiles bear a signature of the type of pollution
(Owen et al., 2008; Nota et al., 2010). If combined with tradi-
tional endpoints, genomics analysis of exposed animals can link
adverse effects at the organismal level to mechanistic explanation.
However, up to now this is only exemplified for single-compound
exposures (van Straalen and Roelofs, 2008).

To simulate more realistic ecotoxicological scenarios, some
recent studies have investigated toxic effects at the gene regulatory
level of compounds presented in binary mixtures. For instance,
trinitrotoluene (TNT) mixed with an additional explosive trini-
trotriazacyclohexane (RDX) radically altered the gene expression
profile of the ecotoxicological model organism Eisenia fetida when
compared to single TNT exposure (Gong et al., 2007). While TNT
alone regulated 321 genes, the mixture decreased the count to
only three genes. These results implied a strong antagonistic effect
of RDX on gene expression induced by TNT. In contrast, mix-
ture toxicity studies with compounds proposed to have compara-
ble modes of action should generate comparable transcriptional
responses. Indeed, when Daphnia magna was exposed to two poly-
cyclic aromatic hydrocarbons (fluoranthene and pyrene) no clear
distinction could be made between the compounds, suggesting
similar molecular modes of action (Vandenbrouck et al., 2010).
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Furthermore, cluster analysis with both the single compounds
and the binary mixture treatments resulted in a separation of
treatments based on differences in toxic ratios rather than com-
ponent differences. However, the results were highly dependent
on the composition of the binary mixture. In any case, these lab-
controlled experiments suggest that transcriptomics may prove
valuable in determining the most toxic substances among complex
environmental samples.

Only few studies (restricted to aquatic samples and river sedi-
ments) have addressed gene regulatory consequences of exposure
to complex environmental samples. Menzel et al. (2009) stud-
ied exposure of nematodes to polluted and clean river sediments
and showed that several biological processes, such as oxidative
phosphorylation, xenobiotics, and development in response to
exposure to the most polluted samples. This demonstrates that
ecotoxicogenomics can be used to distinguish pollution levels in
river sediments. To our knowledge, such an approach has not yet
been applied to assess soil quality.

In the present study we investigated the toxicity of soil samples
derived from a former municipal landfill site in the South of the
Netherlands, where a bioremediation project is running aiming at
reusing the site for recreation. Very recently, Legler et al. (2011)
investigated this complex environmental sample to study the sub-
stances that cause toxicity using effect-directed analysis. They
identified the presence of compounds (11H-benzo[b]fluorene,
9-methylacridine, 4-azapyrene, and 2-phenylquinoline) with pre-
viously unknown teratogenic toxicity in zebrafish. They concluded
that these compounds may have been missed by current soil
chemical quality assessment.

Here we present toxicogenomic data using the soil ecotoxico-
logical model organism Folsomia candida. We asked the question
whether an original soil sample exerts comparable toxic responses
in our soil ecotoxicological model when compared to the toxic
responses exerted upon exposure to the organic extract from that
soil (Legler et al., 2011). If this is the case, analysis of extracts will
have predictive power to estimate adverse effects in the field (Fent,
2004). To that end, the arthropods were exposed to an organic
soil extract and the original Vlagheide soil sample. Results from
a 28 day survival/reproduction test revealed differences in toxic-
ity between the organic extract and the ecologically more relevant
original soil sample. The more toxic soil samples induced gene
regulatory changes in twice as less genes compared to the soil
extract. Despite these differences several gene categories (biolog-
ical processes) were shared among the two samples. In addition,
a substantial number of genes were dependent on sample type
(soil or extract), potentially explaining the difference in toxicity.
Our results show that bioassays deploying functional genomics can
reveal crucial information on the nature of the toxicants. Further-
more, we argue that it is essential to include ecologically relevant
test organisms in order to properly assess the risk of environmental
samples.

MATERIALS AND METHODS
STUDY SITE
The Vlagheide municipal waste landfill site is located about
10 miles South-East from ‘s-Hertogenbosch, the Netherlands.
Haskoning B.V. sampled the site in October 2005 at depths varying

from 3 to 18 m. In total seven soil samples were taken and pooled,
sieved (mesh size 250 μm), homogenized, and freeze-dried to end
up as a composite sample of approximately 1 kg dry weight. In
order to retrieve an extract the sample was subjected to pres-
surized liquid extraction an accelerated solvent extraction (ASE)
apparatus (Dionex, ASE200, Sunnyvale, CA, USA) with a mixture
of acetone and dichloromethane in a 1:3 ratio. The extract was
then subjected to gel permeation chromatography (GPC) clean-
up with dichloromethane (Legler et al., 2011). An overview of
concentrations of persistent organic pollutants such as polychlo-
rinated biphenyls, polycyclic aromatic hydrocarbons, brominated
flame retardants, and organochlorine pesticides in the composite
sample have been published elsewhere (Legler et al., 2011). Sev-
eral metals were measured in three samples and were present at
variable levels depending on the depth of sampling. Mean concen-
trations of lead, cadmium, zinc, and copper were 1751, 29, 3060,
and 761 mg/kg soil respectively. A full overview of metal mea-
surements and soil parameters is given in datasheet Table S1 in
Supplementary Material.

ECOTOXICITY TEST
Treatments consisted of two separate dilution series, the first being
a series of diluted whole environmental Vlagheide soil, and the sec-
ond being a series of LUFA 2.2 reference soil spiked with the extract
derived from composite Vlagheide soil sample according to Droge
et al. (2006) using acetone as solvent.

For the 100% extract treatment, an extract derived from 100 g
(d.w.) Vlagheide soil was spiked-in 100 g (d.w.) LUFA 2.2 soil. For
the 100% soil treatment, we used sieved and freeze-driedVlagheide
soil. Using LUFA 2.2 soil for dilution, we employed a dilution fac-
tor of 2.5 to prepare five additional treatments within each series,
resulting in a 40, 16, 6.4, 2.56, and 0% dilution of both undiluted
extract and soil treatments. The control (0%) sample was 100%
LUFA 2.2 soil in case of the Soil sample dilution series, whereas the
control for the Extract dilutions was a solvent control consisting
of LUFA 2.2 soil including acetone (the solvent) in an identical
amount as was used for the extract dilution series. In this way
we were able to normalize for the effect of the solvent during the
spike-in procedure of the extract samples (Droge et al., 2006).

Preparation of the test soils and experimental set-up was done
following the standard ISO protocol 11267 (ISO, 1999), with four
biologically replicated test jars per treatment. The standard ISO
test procedure for inhibition of reproduction after 28 days was fol-
lowed. In parallel, we exposed 10 animals in each of four biological
replicate jars per treatment, for 4 days on top of a compressed layer
of test soil. These arthropods were snap frozen in liquid nitrogen
immediately after exposure so that total RNA could be isolated
(see below) for subsequent Microarray and QPCR analysis.

A logistic model was fitted to estimate toxicity end points no-
effect concentration (NOEC) and a significant sublethal decrease
in reproduction (DiR) for extract samples and soil samples of 50%
(further deduced as DiR).

RNA PREPARATION, AMPLIFICATION, LABELING, AND HYBRIDIZATION
Samples (Lufa control, NOEC; sublethal effects DiR) were sub-
jected to RNA extraction using the SV Total RNA Isolation System
(Promega) according to the manufacturer’s instructions. Agilent
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RNA Spike-In Kit (Agilent Technologies) was used to prepare Spike
A Mix and Spike B Mix in order to normalize the hybridiza-
tion measurements. Approximately, 50 ng input of total RNA
was used for amplification and labeling with Agilent’s Low Input
Quick Amp Labeling Kit. The RNA was reverse transcribed into
cDNA and treated with a T7 RNA polymerase to incorporate
cyanine 3- or cyanine 5-labeled CTPs in the synthesized cRNA,
which was purified with RNeasy (Qiagen) and quality controlled
using spectrophotometric measurements on a NanoDrop 2000
(Thermo scientific). Hybridization of 8 × 15 K format microar-
ray slides was performed with 300 ng cyanine 3-labeled cRNA and
300 ng cyanine 5-labeled cRNA according to manufacturer’s pro-
tocol (Agilent). The design of the microarray is described by Nota
et al. (2009) and details can be found under Gene Expression
Omnibus (GEO) platform number GPL7150. A replicate refer-
ence design was used (Figure 1) so that each treatment sample was
competitively hybridized against a control sample (Lufa 2.2). The
design included dye-swapped biological replicates. Two slides of
the 8 × 15 K Agilent microarray platform, containing 5069 unique
gene probes in triplicate, was used for soil samples and extract
samples (Figure 1). Hybridization was performed at 65˚C for 17 h
rotating at 10 rpm in an incubator. Following the hybridization,
the slides were washed using Gene Expression wash buffers and
scanned on an Agilent DNA Microarray Scanner. The microarray
scan images were preprocessed with Feature Extraction software
(version 10.5.1.1.) and the obtained Fold changes were subjected
to further statistical analyses. The data was submitted to NCBI’s
GEO and can be retrieved under accession number GSE37154.

MICROARRAY DATA ANALYSIS
Statistical analysis of microarray data was performed using the
Limma package in R environment (version 2.13.0, Wettenhall
and Smyth, 2004). The data were normalized to account for dye
bias with the global loess method and the significance of gene

FIGURE 1 | Hybridization scheme for gene expression analysis. On each
of the arrays, a test sample (NOEC or DiR) of either Soil or Extract is
hybridized against a control sample (Lufa 2.2 for Soils; acetone spiked-in
Lufa 2.2 for extracts). Green Cy-3, Red Cy-5.

expression was verified for each of the soil and extract dataset by a
modified t -test using Bayesian statistics two-way analysis of vari-
ance (ANOVA) with factors sample type and treatment as main
factors. All calculated probabilities were corrected for multiple
testing using Benjamini and Hochberg’s false discovery rate proce-
dure at the level of p < 0.05 (Benjamini and Hochberg, 1995). Each
probe was assigned a mean log2 expression ratio and an adjusted
p-value. Gene annotation was performed in R using a Blast2go
script. Subsequently, a GO term Enrichment Analysis was per-
formed by applying the TopGO algorithm on significant gene lists
(Alexa et al., 2006; de Boer et al., 2011a) to assess which biologi-
cal processes, molecular functions, and cellular components were
mostly affected. The TIGR MultiExperiment Viewer (TIGR Mev
version 4.6.2; Saeed et al., 2006) was used to perform cluster analy-
sis in order to define groups of genes that share common patterns
of expression. Hierarchical clustering was done using Euclidean
distance and average linkage method. Heat maps were used to
represent the data. A general linear model was used to investigate
the interaction between factors affecting the variability in the data
with the factors Sample type (Extract or Soil), treatment (NOEC
or DiR), and the Sample X Treatment interaction according to
de Boer et al. (2011a). Finally, a Principal Component Analysis
(PCA) in TIGR Mev allowed the identification of factors that most
contribute to the variability in the data.

QUANTITATIVE PCR ANALYSIS
Quantitative PCR (QPCR) was performed using a selected group
of genes according to de Boer et al. (2011b) on a Biomark HD sys-
tem (Fluidigm). Information on gene description and PCR primer
sequence can be found in Table 2 of the results section. Quan-
titative analyses of cycle threshold (C t) values were performed
with the software package Genex Light 4.3.5 (Multi ID analy-
sis) according to de Boer et al. (2011b). First, the three technical
replicates were averaged over each sample. Efficiency corrections
were applied on the mean C t values using PCR efficiency values
previously established and published by de Boer et al. (2011b).
Subsequently, gene expression values were assessed relative to an
internal reference by normalization with the geometric mean of
the housekeeping genes SDHA and YWAZ (de Boer et al., 2009).
Finally, the Log2 transformed normalized gene expression values
were subjected to statistical analysis in SPSS version 17 (IBM).
Linear regression was applied to assess dose-dependency. The
residuals were tested for normality using a Kolmogorov–Smirnov
test. A one-way ANOVA was applied to test whether expression
values were significantly different between sample type (Extract
or Soil).

RESULTS
ECOTOXICITY TEST
The effects of the original soil from the landfill and its extract on
reproduction of Folsomia candida were assessed in an ISO stan-
dardized 28 days toxicity test. Figure 2 shows the dose-response
curves resulting from exposure to Soil (blue) and Extract (red)
samples. The different shapes of the lines clearly indicate a differ-
ence in toxicity between the two kinds of samples. The original soil
samples show a clearer dose-dependence and appear to be more
toxic compared to the organic extracts.
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The NOEC and the 50% DiR were deduced for each sample
type and a spike-in concentration of 6.4% was taken as NOEC for
both Extract and Soil exposures. Furthermore, DiR was observed
at 100% spike-in Extract, whereas 16% of spiked-in Soil concen-
tration did not significantly deviate from the 50% DiR estimated
by the logistic model for Soil toxicity and was thus taken for further
investigations at the molecular level.

MICROARRAY ANALYSIS
Figure 3 shows the number of genes that were differentially
expressed in response to toxic exposure in Soil and Extract samples.
Regarding the Soil exposure 109 genes were significantly regulated
in response to both NOEC and DiR concentration, of which 76
were up-regulated and 33 were down-regulated. Moreover, 354
genes were only regulated at the NOEC level and 521 genes were
only regulated at the DiR level. Intriguingly, exposure to Extracts
caused differential expression of an increased amount of genes as
compared to Soil exposure. As much as 1581 genes were signifi-
cantly regulated in response to both NOEC and DiR, of which 747
were up-regulated and 834 down-regulated. Moreover, 613 genes

FIGURE 2 | Effect of soil and extract on reproduction of F. candida. Red
dots indicate the number of F. candida juveniles in the jars after 28 days
exposure to six dilutions of soil samples. Blue dots indicate the number of
juveniles retrieved after 28 days exposure to dilutions of extract samples.
The lines indicate the dose–response curves derived from a logistic model.
x -Axis, Log2 transformed spiked-in concentrations; y -axis, percentage
reproduction scaled to the control samples (set at 100%).

FIGURE 3 | Venn diagrams showing the number of genes responding

to NOEC and DiR levels of toxicants in the Soil exposure (A) and in

Extract exposure (B).

were only regulated at NOEC level and 536 exclusively regulated
at DiR level in the Extracts.

Subsequently, the two-way ANOVA with factors Sample type
(Extract or Soil) and Treatment (NOEC or DiR) was applied to
identify genes only affected by Sample type or Treatment, and to
assess whether genes exerted a Sample X Treatment interaction. In
total 1929 were affected onle by Sample type (Soil, Extract), while
396 genes were exclusively regulated by Treatment (NOEC, DiR).
In addition, 400 genes showed a significant Sample x Treatment
interaction. Heat maps of significantly regulated genes for these
three factors are represented in Supplementary data.

Table 1 shows the Gene Ontology terms for biological processes
enriched in the significant gene lists for treatment, sample type,
and the interaction.

Some of the biological processes that were differentially affected
by different treatments (low and high level of exposure) are
lipid metabolism, response to nutrient level, response to chem-
ical stimulus. The exposure to contaminated samples had a strong
impact on 368 genes in both kinds of samples (soil and extract).
Glucosyl glucuronosyl transferases (Fcc00734, biological process
“lipid metabolism”) and superoxide dismutase (Fcc01344, biolog-
ical process “response to nutrient level”), for example, were both
affected by the exposure, being differentially expressed in response
to different toxic levels.

On the other side, other biological processes were found to
be affected mainly by the difference in sample type: 1929 genes
showed different responses between soil and extract samples.
These genes are referable to biological processes such as RNA
processing, biosynthetic processes, translation, and translational
elongation. For instance, isopenicillin-N -synthetase (Fcc00057),
translation initiation factor (Fcc00062), and ribosomal proteins
(Fcc00498, Fcc00410) were differentially affected by the exposure
in soil and extract samples.

Figure 4 shows an acyclic graphs resulting from the enrichment
analysis referring to biological processes affected in the context of
the interaction between sample type and level of exposure. The
most significant ones are lipid metabolic processes (such as fatty
acid metabolism and fatty acid oxidation), cellular biosynthetic
processes, organic acid metabolic processes, regulation of body
fluid, vascular development, and response to wounding.

Some significant genes were found to respond to the toxic expo-
sure in either kind of sample type, at both high and low levels
of exposure. Up-regulation of heat-shock proteins (Fcc05793),
ubiquitins (Fcc02887), biotransformation enzymes (Fcc01651,
Fcc04073, Fcc5260), and components of the antibiotic biosyn-
thetic pathway (Fcc00057, Fcc00170, Fcc05968) was observed.
On the contrary, hedgehog, antimicrobial genes, and molecular
chaperones were down-regulated.

A PCA was then performed in order to explore how the two
factors affect each other and to identify prevalent expression pro-
files among samples. Figure 5 is the output of the PCA and shows
that the 58% of the variation in the data can be explained by the
two factors sample type and exposure level.

QUANTITATIVE PCR ANALYSIS
From the microarray analysis it became apparent that some
genes show a dose-dependent regulation in response to both soil
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Table 1 | Gene Ontology (GO) terms for biological processes that are over represented in the lists of significant transcripts and their P -values as

obtained using the R package topGO (Alexa et al., 2006).

GO ID GO term p Value # in GO term # Significant

TREATMENT

GO:0006629 Lipid metabolic process 1.78e-06 173 30

GO:0009605 Response to external stimulus 3.80e-07 103 23

GO:0009991 Response to extracellular stimulus 5.02e-07 36 13

GO:0031667 Response to nutrient level 9.71e-08 32 13

GO:0042221 Response to chemical stimulus 0.00052 207 28

GO:0007584 Response to nutrients 1.57e-06 23 10

SAMPLETYPE

GO:0006996 Organelle organization 0.150994 292 126

GO:0042254 Ribosome biogenesis 0.000193 56 36

GO:0006364 RNA processing 0.000367 38 26

GO:0009058 Biosynthetic process 0.002262 363 170

GO:0009059 Macromolecule biosynthetic process 0.003222 180 90

GO:0006412 Translation 4.86e-05 128 73

GO:0006414 Translational elongation 6.04e-06 28 23

INTERACTION

GO:0044249 Cellular biosynthetic process 0.001781 210 24

GO:0019395 Fatty acid oxidation 0.001658 15 5

GO:0006629 Lipid metabolic process 2.77e-05 173 25

GO:0001944 Vasculature development 0.000117 26 8

Treatment, No-Effect Concentration (NOEC) versus Decrease in Reproduction (DiR); Sample type, Extract versus Soil; Interaction, Treatment X Sample Type.

and extract. For instance, CYP6N4v1 (Fcc01651) transcription,
significantly increased two fold with increasing exposure level.
We therefore decided to assay this gene using a QPCR assay
in all extract- and soil sample concentrations (expression data
are provided in datasheet Table S2 in Supplementary Material).
Figure 6 shows CYP6N4v1 expression as all exposure levels in
extract (Figure 6A) and soil (Figure 6B) samples. The QPCR
profiles significantly correlated with the dose-dependent induc-
tion as observed in the microarray data (Spearman’s Rho 0.74,
p < 0.05). Linear regression analysis of expression level with expo-
sure showed a highly significant (p < 0.001) correlation between
CYP6N4v1 gene expression induction and increased exposure
level (extract R = 0.89; soil R = 0.92), while the residuals did not
significantly differ from normal distribution (data not shown).
Subsequently, we decided to assay more genes related to bio-
transformation, previously identified by de Boer et al. (2011b)
(expression data are provided in datasheet Table S2 in Supple-
mentary Material). They are summarized in Table 2. Interest-
ingly, transcriptional activation of three additional cytochrome
P450s (CYP6N3v1, CYP2P3, CYP9/6) showed highly significant
correlations with both extract and soil concentration. Particu-
larly, CYP6N3v1 gene activation showed the highest correlation
(R = 0.99, extract Figure 6C; R = 0.96, soil Figure 6D) with
increased exposure levels (Table 2), despite the fact that this gene
did not show dose-dependent transcriptional activation in the
microarray experiment. This was probably due to detection limi-
tations of the microarray technology, because the hybridization
intensities were not above background levels. Moreover, alco-
hol dehydrogenase, deoxynucleoside kinase, transcription factor
CCCTC-binding protein, phosphoserine amino transferase, and

haloacid dehalogenase-like hydrolase showed highly significant
dose-dependent transcriptional regulation (Table 2).

Finally we identified nine genes that showed a significant (one-
way ANOVA, p < 0.02) sample type effect. Among these, the gene
ubiquitin ligase E3 alpha (Fcc06380) indicated an increased gen-
eral stress–response in soil samples. Also, developmental processes
were increasingly affected due to the increased transcriptional acti-
vation of crossveinless-2 BMP binding protein (Fcc04834) and
LMBR1 domain containing 2 (Fcc03839, associated with hedgehog
transcriptional regulation). Although, direction of regulation (up-
or down-regulation) was in concordance between the QPCR data
and microarray data for most of the genes, we could be confirmed
significant sample type-specific regulation for LMBR1 domain
containing 2, ABC transporter (Fcc06002), Laminin A (Fcc00086).
To conclude, we were able to indentify and confirm treatment
specific and sample type specified gene expression assays by con-
sidering both (microarray and QPCR) gene expression analysis
platforms.

DISCUSSION
Here we presented a full ecotoxicogenomics assessment of a
complex environmental sample and identified large differences
between the unprocessed, ecologically more relevant, raw soil, and
an organic total extract. The extract samples showed a clearly
different level of toxicity when compared with the original soil
sample. As such, extract samples may have only weak predictive
power to estimate the actual toxicity status in the field. The soil
sample is highly contaminated with organic micropollutants such
as polychlorinated biphenyls, organochlorine pesticides, and one
brominated flame retardant (Legler et al., 2011). Heavy metals
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Roelofs et al. Transcriptomics of an environmental soil sample

FIGURE 4 | Acyclic graph resulting from the Enrichment Analysis and

showing the biological processes mostly affected by an interaction

between sample type (Soil, Extract) and treatment (NOEC, DiR).

Increasing coloring toward red represents increasing significance levels. Each
sphere contains GO ID, description, significance level, and ratio regulated:
total genes in GO ID.

are also elevated in the soil sample, including lead, copper, cad-
mium, and zinc. The exact chemical composition of the extract is
not known, however due to the nature of the organic extraction
procedure, metals are expected to be removed from the extract
(Hubert et al., 2000). Moreover, microarray analysis generated
important mechanistic information that can explain this discrep-
ancy in toxicological effects. In combination with the QPCR data,
we can conclude that developmental processes, fatty acid metab-
olism, and defense processes are adversely affected depending on
which sample type was analyzed. Indeed, most of the genes (1929)
were regulated in response to sample type. This is reflected in

the PCA graph (Figure 5) where the first principle component
explaining 42% of the variance divides the samples into either
Extract or Soil. As much as 395 genes showed treatment-specific-
regulation. Among them are genes (CYP6N4v1) that show a highly
significant dose-dependent transcriptional activation, which was
confirmed by QPCR analysis. Such genes may proof invaluable as
genetic markers for soil pollution assessment.

ECOLOGICAL RELEVANCE
The ISO standardized Folsomia test resulted in a consistent differ-
ence in toxicity between soil samples and organic extracts, with
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FIGURE 5 | Distribution of the samples in the space defined by

two main components (axis) resulting from a Principal

Component Analysis. The labels indicate the sample type;
ENOEC, extract no-effect concentration; SNOEC, soil no-effect

concentration; EDiR extract 50% decrease in reproduction; SDiR
soil 50% decrease in reproduction. The localization of the points in
the space suggests that these two factors are mainly responsible
for the distribution of the data.

the former being much more toxic than the latter. This confirms
the concern raised in earlier reports that toxicity tests based on
extracts may generate uncertain levels of protection due to the
fact that they do not address bioavailability of the original sample
(Fent, 2004). The reason for this result could lie in differences in
the availability of the toxic compounds between the original land-
fill soil and the natural soil spiked with the organic extracts, or in
the loss of some of these substances during the extraction proce-
dure. The extraction method using acetone/dichloromethane does
not remove all toxic compounds; therefore it is likely that part of
the soil toxicity is due to polar substances such as hydrophilic
xenobiotic compounds and/or heavy metals.

MOLECULAR MECHANISMS
A considerable difference was found between the two kinds of
samples, concerning the number of genes affected by the exposure.
This is in accordance with a recently published survey of ecotoxi-
cogenomics studies by Van Straalen and Feder (2012), who showed
that in most studies expression profiles at sublethal toxic effects of
10% DiR (EC10) and EC50 cluster together, while the main differ-
ences can be observed between sample type. Soil samples evoked
gene regulatory changes in more than one order of magnitude
fewer genes than the extract samples although we aimed to assess
the two sample types at similar toxicity levels (NOEC and DiR of
around 50% reduced reproduction). Due to the steepness of the
logistic model through the soil toxicity data we may have chosen
a soil sample that exerts more toxic effects than the DiR in Extact,
although DiR in Soil did not significantly deviate from 50% DiR
deduced from the logistic model. It is worth to mention that Nota
et al. (2009) studied the effects of phenanthrene on F. candida and

also found a smaller number of differentially expressed genes in
response to high toxic concentration. Very recently, we obtained a
similar result in a toxicogenomic study assessing stress–responses
in F. candida exposed to the anti inflammatory drug Diclofenac
(Roelofs et al. unpublished data). The explanation for this drop in
transcriptional regulation needs further investigation. We specu-
late that higher toxic levels induce intense detoxification responses
in the organisms, thus leaving less energy for other less essen-
tial processes, although Timmermans et al. (2009) showed that
increased desiccation stress strongly increased the number of up-
and down-regulated genes.

Some interesting biological processes were influenced by the
exposure to contaminated samples. The GO term “lipid metabolic
process” includes the chemical reaction and pathways involving
all kinds of lipids. It is the biological process most significantly
affected in this study. Within living systems, polar lipids have a
fundamental structural role, being the main constituents of bio-
logical membranes. Furthermore, apolar lipids act as a reserve of
energy. Lipid metabolism is regulated in order to ensure the correct
balance between degradation and synthesis of lipids, according to
the needs of the cells and of the whole organism. When facing
environmental stress, an organism will activate a series of stress–
response mechanisms in order to face the new conditions. These
processes require energy and this might explain the changes in
lipid metabolism suggested by the gene expression pattern. In fact,
within this GO term category, we found a series of significant genes
linked to lipid metabolism and transport. For example, Enoyl-CoA
hydratase was found to be up-regulated in response to toxicant
exposure: this enzyme is very efficient in metabolizing fatty acids
to produce acetyl CoA and energy (Agnihotri and Liu, 2003), so
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FIGURE 6 | Linear regression of gene expression as deduced from the

QPCR measurements. (A) CYP6N4v1 expression in response to Extracts; (B)

CYP6N4v1 expression in response to Soils; (C) CYP6N3v2 expression in

response to Extracts. (D) CYP6N3v2 expression in response to Soils. X-axis,
Log2 transformed spiked-in concentrations. Y-axis, Log2 normalized gene
expression.

it might be up-regulated in order to sustain the energy-requiring
processes. On the other side, fatty acid desaturase, that causes
increase of unsaturated bonds in fatty acids of membranes (Los
and Murata, 1998), was found to be down-regulated, probably
because the double bonds in fatty acids are a target of oxida-
tive stress. Another interesting biological process is “response to
wounding,” which includes any process resulting from a stimulus
indicating damage of the organism. Within this group we found,
for example, hedgehog, a developmentally active transcription fac-
tor that plays a vital role during early embryonic stages (Tabata and
Kornberg, 1994). The hedgehog signaling pathway is intimately
linked to cell growth and differentiation, so this protein could
also be involved in the healing response. Vascular development
is another significantly affected biological process. Springtails do
not have a vascular system; thus it is difficult to translate this
biological process to an invertebrate response. In fact, in this cat-
egory we find hypoxia-inducible factor, a transcription factor that
responds to changes in the level of available oxygen and medi-
ates responses to hypoxia (Jiang et al., 1996). Furthermore, matrix
metalloproteinase are represented in this category. This family of
enzymes hydrolyze components of the extracellular matrix and
play a central role in many biological processes, such as embryo-
genesis, normal tissue remodeling, wounding, etc (Nagase and
Woessner, 1999). When investigating the single genes that fall into

a GO term, it is interesting to notice that many of them are actu-
ally annotated to more than one term, and this in fact can be
seen as a reflection of the number of interconnections that exist
between different kinds of stress–responses. For example, within
the context of lipid metabolism, a series of genes are annotated that
are responding to different kinds of stress: glucosyl glucuronosyl
transferases (involved in phase II metabolism of xenobiotics), glu-
tathione S transferases, CYP450, catalases, dismutases, and other
gene products found,by other authors, to be associated to oxidative
stress or exposure to toxicants.

Some significant genes were found to both high and low levels
of exposure in either kind of sample, soil and extract. Heat-shock
proteins, that are part of the general stress–response and have
a chaperone function (Feder and Hofmann, 1999), were always
found to be up-regulated. A similar result was observed for ubiq-
uitins, regulatory proteins that are involved in the degradation
of damaged or unneeded proteins (Glickman and Ciechanover,
2002). An increase in expression of enzymes responsible for bio-
transformation and detoxification reactions was also observed
in all cases of exposure. Mono-oxygenases such as cytochrome
P450 for phase I, conjugation enzymes for phase II and ABC
transporters for phase III were all found to be significantly up-
regulated in contaminated samples compared to the control ones.
These enzymes are responsible for the detoxification of organic
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compounds, so their induction is expected in case of exposure to
organic xenobiotic substances (Xu et al., 2005). Interestingly, two
components of the antibiotic biosynthetic pathway were found
to be up-regulated in soil samples: aminoadipyl–cysteinyl–valine
synthetase and isopenicillin-N -synthetase. Cathepsins, a family of
proteases that break apart other proteins and might play a role
in apoptosis, also resulted overexpressed, in the extract samples.
Hedgehog was down-regulated following exposure to the envi-
ronmental samples, so the stress caused by toxic exposure is likely
to influence important signaling pathways and therefore the cor-
rect development of the organism. Some antimicrobial genes were
also found to be down-regulated after exposure, suggesting that
pollution might adversely affect the insect immune system and
increase its susceptibility to invading pathogens. Finally, down-
regulation of genes coding for proteins with a folding function is
likely to affect directly or indirectly important cellular structures
and functions.

In conclusion the microarray experiment shows that transcrip-
tomics data can add relevant information on the nature of the
compounds that cannot be recovered by traditional bioassays. We
showed this in a recent study on aged copper contamination in an
agricultural field (de boer et al., 2012). In this case, the patterns
of gene expression suggest that the adverse biological effect of
Vlagheide soil is partly due to organic compounds inducing xeno-
biotic metabolism. These compounds remain active after solvent
extraction and induce a similar set of genes compared to the intact
soil samples. However, the dose-dependence of the extracts is less
clear maybe due to altered bioavailability. In addition to organic
compounds, toxicity of the field soils is also due to polar com-
ponents. Heavy metals would be the most likely factor, because
elevated levels were measured at the Vlagheide site. However, we
did not recover gene expression profiles indicative of specific sin-
gle metals, as in the study of Nota et al. (2010). This might be

due to interactive effects of metal mixtures in field soils, as also
described by Nota et al. (2010). Finally our study illustrates that
it is essential to link transcriptomics bioassays to traditional eco-
toxicity tests, because only in this way can the exposure levels
applied in gene expression studies linked to defined phenotypic
effects.

Finally, we demonstrate that a number of QPCR assays exert
a wide dynamic range of transcript quantification activated in
a dose-dependent manner. This dynamic range can be observed
around important endpoint such as the NOEC and 50% DiR. This
opens the possibility to link gene expression levels to adverse effects
at the organismal level. Such molecular bioassays may become
very useful in future soil quality testing, because they are fast and
diagnostic for the type of toxicity. Future work will focus on thor-
ough validation of selected gene expression assays using a wide
range of environmental soil samples containing different classes
of compounds.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at:
http://www.frontiersin.org/Toxicogenomics_/10.3389/fgene.2012.
00085/abstract

Table S1 | Measurement of metals and soil parameters in three Vlagheide

samples.

Table S2 | Log2 normalized gene expression values from biological

replicates in the QPCR assays.

SampleTypeSign, heat map significant genes factor SampleType (extract

or soil).

TreatmentSign, heat map significant genes factor Exposure level (NOEC or

DiR).

InteractionSign, heat map significant genes SampleType ×Treatment

interaction.
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This paper describes a new program SnpSift for filtering differential DNA sequence variants
between two or more experimental genomes after genotoxic chemical exposure. Here, we
illustrate how SnpSift can be used to identify candidate phenotype-relevant variants includ-
ing single nucleotide polymorphisms, multiple nucleotide polymorphisms, insertions, and
deletions (InDels) in mutant strains isolated from genome-wide chemical mutagenesis
of Drosophila melanogaster. First, the genomes of two independently isolated mutant
fly strains that are allelic for a novel recessive male-sterile locus generated by genotoxic
chemical exposure were sequenced using the Illumina next-generation DNA sequencer to
obtain 20- to 29-fold coverage of the euchromatic sequences. The sequencing reads were
processed and variants were called using standard bioinformatic tools. Next, SnpEff was
used to annotate all sequence variants and their potential mutational effects on associated
genes. Then, SnpSift was used to filter and select differential variants that potentially dis-
rupt a common gene in the two allelic mutant strains.The potential causative DNA lesions
were partially validated by capillary sequencing of polymerase chain reaction-amplified DNA
in the genetic interval as defined by meiotic mapping and deletions that remove defined
regions of the chromosome. Of the five candidate genes located in the genetic interval,
the Pka-like gene CG12069 was found to carry a separate pre-mature stop codon muta-
tion in each of the two allelic mutants whereas the other four candidate genes within the
interval have wild-type sequences. The Pka-like gene is therefore a strong candidate gene
for the male-sterile locus. These results demonstrate that combining SnpEff and SnpSift
can expedite the identification of candidate phenotype-causative mutations in chemically
mutagenized Drosophila strains.This technique can also be used to characterize the variety
of mutations generated by genotoxic chemicals.

Keywords: personal genomes, Drosophila melanogaster, whole-genome SNP analysis, next-generation DNA

sequencing

INTRODUCTION
There are two types of chemicals that cause developmental abnor-
mities in organisms – genotoxic chemicals and non-genotoxic
chemicals. Genotoxic chemicals directly alkylate or oxidize the
DNA and cause inappropriate base pairing. This causes perma-
nent genetic mutations after exposing germline cells to geno-
toxic chemicals. Non-genotoxic chemicals are thought to cause
epigenetic changes in the DNA that cause developmental abnor-
malities. Most non-genotoxic chemicals only affect development
or the health of the organism exposed, but some non-genotoxic
chemicals such as the estrogenic chemical diethylstilbestrol (DES)
can cause developmental abnormalities and increased suscepti-
bility to cancer for several generations (reviewed in Ruden et al.,
2005).

Random mutagenesis such as chemical mutagenesis with the
genotoxic chemical ethyl methane sulfonate (EMS) is an incredibly
powerful tool for generating mutant strains of cells or organisms

for purposes of studying all types of biological processes. In
mutant bacteria or yeast, identification of the mutated genes is
often done by transforming wild-type DNA into the cells and
screening for rescue of the mutant phenotype. One could then
sequence the DNA that rescues the phenotype to find the gene
mutated. In Drosophila melanogaster, a causative DNA lesion for
an observable phenotype is traditionally done by meiotic mapping
of the mutant locus using a series of visible genetic markers that
span the chromosome (Anderson, 1992). Deficiencies that delete
defined regions of the chromosome, typically tens to hundreds
of kilobases long, can then be used to further refine the bound-
aries of the mutated gene locus (Parks et al., 2004; Ryder et al.,
2007). However, these positional cloning techniques are not only
labor-intensive and time consuming, but also without a guarantee
of success. This frequently leads to inevitable delays in molecular
and functional characterization of the gene involved, even in the
post genomic era.
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With the development of next-generation DNA sequencing
instruments, whole-genome sequencing is becoming feasible to
replace labor-intensive positional cloning methods. However, we
are limited by the capacity of the current bioinformatic programs
to rapidly and reliably process sequence variants including single
nucleotide polymorphisms (SNPs), multiple nucleotide polymor-
phisms (MNPs), insertions, and deletions (InDels) between the
wild-type control and the mutant genomes. This is especially the
case in dealing with mutant strains isolated from random chem-
ical mutagenesis that typically introduces quite large numbers of
background sequence variants and SNPs into the mutant genome,
only one of which is likely responsible for the mutant phenotype.

Furthermore, all current next-generation sequencers produce
frequent errors, especially when approaching the 3′-ends of each
short read. Using current technologies, a short read is typically
70–150 bp long. As the euchromatic genome of D. melanogaster
is 117 million base pairs (Mbp), machine-generated errors by
themselves are sufficient to produce thousands of false SNPs in
whole-genome sequencing data. To expedite the analyses of whole-
genome sequencing data and to reduce number of false positives,
we have developed the programs SnpEff (Pablo Cingolani and
Douglas M. Ruden; Fly, in press; Platts et al., 2009) and SnpSift.
These programs can categorize and filter thousands of variants
per second, based on their locations in the transcriptional unit
and potential mutational effects on transcription or translation.
By comparing several sequencing experiments, the number of false
positives can be reduced.

Whole-genome sequencing to identify a causative SNP has not
been established for D. melanogaster mutants (Hillier et al., 2008;
Wang et al., 2010). Here, we describe how SnpEff1 and SnpSift2

can be used together to identify causative gene candidate using just
two alleles of a male-sterile Drosophila locus. Both programs have
web based interfaces available via the Galaxy project3.

RESULTS
WHOLE-GENOME SEQUENCING OF MALE-STERILE MUTANTS
X1 AND X2
Two allelic male-sterile mutations, X1 and X2, were identified
in a F3 genetic screen (Yang et al., 2011). Briefly, males isogenic
for the third chromosome were fed the chemical mutagen ethyl
methane sulfonate (EMS) for 12 h (10 mM in 1% sucrose solu-
tion; Ruden et al., 1997) and then mated with virgin females of
the genotype w1118; TM2/TM6,Sb. Approximately 10,000 of the F1

males (w1118; ∗/TM2 or w1118: ∗/TM6, Sb; ∗ represents the mutag-
enized third chromosome) were then mated individually to w1118;
TM2/TM6,Sb virgin females to generate ∼6,000 lines, each car-
rying a mutagenized third chromosome. From the F3 flies, males
homozygous for the mutagenized chromosome (∗/∗) were tested
for low fertility by crossing to virgin females from a wild-type
stock (y1w1). From this genetic screen, approximately 50 lines were
saved that have low male fertility. They were placed into comple-
mentation groups by crossing to each other in ∼1,275 crosses (i.e.,
1,275 = N (N + 1)/2, where N = 50). The characterization of two

1snpeff.sourceforge.net
2snpeff.sourceforge.net/SnpSift.html
3www.galaxy.psu.edu

alleles of the same complementation group that we call X1 and
X2 are presented. Details of the other male-sterile mutations iso-
lated in the screen and phenotypic analyses of X1 and X2 will be
presented elsewhere.

Males homozygous for X1 and X2 were sequenced (see Materi-
als and Methods),producing over 90 million combined sequencing
reads (∼76 bp per read), ∼10% of which are of insufficient quality
and discarded. The remaining sequence reads represent approxi-
mately 20- to 29-fold coverage of the euchromatic DNA (Figure 1).
These unique sequence reads were aligned to the reference genome
(y1; cn1 bw1 sp1 strain, dm5.30), variant calls were performed, and
204,250 homozygous SNPs were found with a quality score greater
than 70 (Figure 2). There were also 97,574 heterozygous SNPs, but
they were not analyzed further because the sequenced genomic
DNA samples were purified from the X1/X1 and X2/X2 homozy-
gous flies. We found that greater than 99.99% of the homozygous
SNPs were identical for X1 and X2 and these have to be common
background variants because X1 and X2 were derived from the
same parental strain. The remaining SNPs differ between X1 and
X2 and they are associated with 141 genes, which were examined
further (Figure 3, see below).

FINDING PHENOTYPE-CAUSATIVE CANDIDATE SNPs IN X1 AND X2
Figure 3 shows a flowchart of how the causative SNPs in X1 and
X2 were identified. In order to identify the phenotype-causative
candidate SNPs, we first assumed that they change an amino acid,
splice site, reading frame, start or stop codon since these types of
SNPs potentially alter the activity of the protein produced (we call
these class 1 SNPs). Other types of SNPs such as intronic, inter-
genic, 5′UTR, 3′UTR, upstream, and downstream are less likely to
affect gene function and they are considered secondarily only if no
candidate genes could be identified from the first category of SNPs
(we call these class 2 SNPs). Second, we considered the differential
SNPs that are unique to either X1 or X2, but not common for
X1 and X2 (Figure 3A). The way that the male-sterile screen was
conducted ensured that X1 and X2 carried independently mutag-
enized chromosomes, so it is very unlikely that they have identical
phenotype-causative SNPs (see Materials and Methods). Out of
the 16,921 class 1 SNPs in X1 and X2, we found that 558 SNPs

FIGURE 1 | Mapping X1 to the reference genome. The reference genome
used was the latest FlyBase version (dm5.30). The quality score was
arbitrarily set at 70 and above for this table. The numbers indicate the
numbers of reads mapped to the indicated genomic region. U, unmapped
regions. Het, heterochromatic regions.

Frontiers in Genetics | Toxicogenomics March 2012 | Volume 3 | Article 35 | 93

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Toxicogenomics
http://www.frontiersin.org/Toxicogenomics/archive


Cingolani et al. Identifying recessive male-sterile mutations with SnpSift

are uniquely present in X1 and 447 SNPs are uniquely present in
X2 (Figure 3A). For this analysis, thresholds above a certain level,
such as 70, were not used because we did not want to eliminate
a candidate SNP because it fell below an arbitrary threshold. For
Figure 2, for illustrative purposes, we used a threshold score of
70, based on the quality score distribution for this sequencing run
(McCarthy, 2010). Quality score, is defined by SAMtools as the
probability of error in decibels, that is q = −10 log(p), where p
is the error probability and the logarithm is in base 10. Typically
range for quality scores is from 1 to 100 with the higher score hav-
ing a greater probability of being a real SNP and, therefore, not a
sequencing artifact (McCarthy, 2010).

Next, we analyzed only the class 1 SNPs on the chromosome 3
since the X1 and X2 mutant strains were generated by using the
third chromosome balancer (Figure 3B). As a general exercise, we

FIGURE 2 | Single nucleotide polymorphism calling for X1 SNPs with a

quality score greater than or equal to 70. We performed SNP calling
using Samtools, which produced 1,943,047 SNPs with a quality score > 1.
Out of these, 1,036,435 are homozygous SNPs. The low quality SNPs were
filtered out using an arbitrary threshold of 70 (the peak of the distribution)
leaving 204,205 homozygous SNPs. A summary of the remaining
homozygous SNPs found in each category is shown in the numbers above
the bars.

did not begin our analysis by focusing on the third chromosome
alone because this may not be applicable to other experimental
settings. Considering just the third chromosome, there are 81 class
1 SNPs associating with 81 genes in X1, and 68 class 1 SNPs in 68
genes in X2. Of most interest are the eight genes that are commonly
affected in both X1 and X2; i.e., the SNPs differ, but these SNPs
associate with the same eight genes. Since the male-sterile pheno-
types of X1 and X2 are presumably caused by two different SNPs
affecting the same gene, we focused on these eight genes, which
are Ank2, Hsromega, CG12069, prc, CG13826, Muc68Ca, Rgl, and
sls (Figure 3C; Table 1). However, CG12069 has SNPs with scores
of 102 in X1 and 66 in X2 (Table 1). The score of 66 can be consid-
ered significant and it is substantially higher than the scores for the
other seven candidate genes which have scores ranging from 1 to 36
with the majority having scores less than 5 (Table 1). CG12069 was
named as Pka-like in the Flybase because it encodes a protein with
51% amino acid identity to the adjacent Pka-C2 which encodes a
cAMP-dependent protein kinase A catalytic subunit (Figure 4A).

VALIDATING X1 AND X2 AS NONSENSE ALLELES OF CG12069
Further analysis of the two SNPs in CG12069 of X1 and X2
indicated that both of them are nonsense mutations causing pre-
mature translational termination at different amino acid residues
of the Pka-like protein. X1 contains a TGG/TGA SNP that con-
verts the tryptophan (W) residue 308 to a stop codon whereas X2
contains a CAG/TAG SNP that converts the glutamine (Q) residue
9 to a stop codon (Figure 4B). X1 will make the first 308 out of
356 amino acids of Pka-like. However, the Pka-like function is
likely diminished because the conserved region of Pka-like with
Drosophila virilis extends beyond amino acid 308. Also, the con-
served ATP-binding domain of Pka-like extends beyond amino
acid 308 (Figure 4C). X2 will only make the first eight amino
acids of Pka-like, but there is another in-frame ATG codon at
amino acid 10 that, if it supports translation initiation, would
make a functional protein. However, there is a poor match to
the Kozak consensus sequence, 5′-ACC-ATG-G-3′, flanking the
downstream ATG site, 5′-CAG-ATG-C-3′. Since a good match to

FIGURE 3 | Flowchart for finding the causative SNPs in X1 and X2.

(A) SnpEeff identified 16,921 “class 1” SNPs (see text) with a quality
score > 1 in both X1 and X2 (zero quality scores are usually resulted from
reads mapping to multiple genomic regions). There are 558 SNPs that are only
present in X1 and 447 SNPs that are only present in X2. (B) Since we know
that X1 and X2 are on chromosome 3, we focused on the 141 strong SNPs on
chromosome 3 that are present in X1 or X2 but not both. There are only eight

genes that are commonly affected by unique SNPs in both X1 and X2 (note
that the eight genes have at least two SNPs at different bases). (C) List of the
eight genes with SNPs in both X1 and X2. SeeTable 1 for more details. (D)

Only one gene, CG12069/Pka-like, contained SNPs with scores > 60. These
SNPs were validated by capillary sequencing of PCR-amplified DNA from the
genetic interval of the male-sterile locus as defined by meiotic and deletion
mapping data (see text). ca.

www.frontiersin.org March 2012 | Volume 3 | Article 35 | 94

http://www.frontiersin.org
http://www.frontiersin.org/Toxicogenomics/archive


Cingolani et al. Identifying recessive male-sterile mutations with SnpSift

Table 1 | Gene candidates for X1 and X2.

Gene Name X1 SNPs Score X2 SNPs Score

Ank2 15 All < 5 14 All < 5

Hsromega 4 All < 5 4 All < 5

CG12069 (Pka-like) 1 102 (W308/*) 1 66 (Q9/*)

prc 2 1, 10 2 2, 21

CG13826 1 36 (I70/F) 1 30 (I70/L)

Muc68Ca 1 1 1 2

Rgl 1 30 (N8/T) 1 33 (N8/S)

sls 1 1 1 1

X1 SNPs and X2 SNPs, the number of SNPs in the indicated gene in X1 and X2. Score, the SNP quality score produced by the alignment and variant call software

(e.g., SamTools and BcfTools).

FIGURE 4 |The candidate gene mutated in X1 and X2 is CG12069/Pka-like. (A) Map of the CG12069/Pka-like region on chromosome 3R. The image is
adapted from the FlyBase genome browser. The genomic location (26,520 k) is indicated in kilobase pairs. (B) Location of X1 and X2 SNPs. (C) Conserved
domains in CG12069/Pka-like.
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the Kozak sequence is generally required for efficient translation,
(Kozak, 1987) it is possible that the downstream ATG is not
used for translation. We note that the correct translation start
sequence, 5′-GCA-ATG-C-3′, has a slightly better match to the
Kozak sequence.

Since the male-sterile phenotypes of X1 and X2 homozy-
gotes are nearly as strong as that of the males of the mutation
over Df(3R)Exel7378 that deletes CG12069, it is likely that the
pre-mature stop codon mutations in CG12069 are the causative
loss-of-function mutations. To confirm this, we crossed X1 or X2
with chromosomal deletions that overlap with Df(3R)Exel7378.
We found that the male-sterile phenotypes of X1 and X2
failed to complement Df(3R)Exel7378 (3R:26388946;26620677),
but complemented Df(3R)BSC504 (3R:26253789;26512985) and
Df(3R)Exel8194 (3R:26582117;26713967). These localize the
genetic boundary of X1 and X2 to a 69,132-bp of DNA inter-
val from 26,512,985 to 26,582,1174. The ∼69 kb of DNA encodes
10 annotated genes, of which five are highly expressed in the
testis, including CG12069. No SNPs were found in the remaining
four candidate genes expressed in the testes (CG12066, CG31010,
CG1340, CG15543), suggesting that CG12069 is a strong candidate
gene for the sperm storage defects of X1 and X2.

To further confirm the SNPs identified by SnpEff and SnpSift,
genomic DNA samples were isolated from X1 and X2 homozy-
gous mutant males and regions containing exons were amplified by
polymerase chain reaction (PCR), cloned into pGEMT (Promega),
and sequenced by capillary DNA sequencing (Applied Biosystems,
Inc.). Sequencing confirmed the presence of stop codon SNPs in
CG12069 in both X1 and X2 at the expected locations. Thus, we
conclude that the male-sterile alleles of X1 and X2 probably con-
tain mutations in the CG12069 gene. Complete validation will
require a CG12069 rescue transgene that is expressed in the male
testes. However, phenotypic rescue of the male-sterile and sperm
motility phenotypes of X1 and X2 is beyond the scope of this paper
and will be presented elsewhere.

DISCUSSION
In this paper, we show that SnpEff and SnpSift can be used to iden-
tify causative SNPs in EMS-generated alleles of a new male-sterile
mutant locus that we isolated from random chemical mutagen-
esis screens. We performed whole-genome shotgun sequencing
of the two non-complementing alleles, X1 and X2, and showed
that only a single gene, CG12069/Pka-like, was affected by SNPs at
two different places, generating two different truncated proteins.
The SNPs were confirmed by PCR amplification and capillary
sequencing and further genetic mapping of the mutant locus using
overlapping chromosomal deletions. From these, we conclude that
a single lane of next-generation sequencing on the GAIIx instru-
ment is probably sufficient for identifying homozygous causative
SNP candidates in Drosophila. It should be emphasized that, in this
case, we sequenced the DNA from homozygous flies. We were also
able to use this technique to identify heterozygous SNPs isolated
in a separate genetic screen (data not shown; Ruden et al., 1999).
It was lucky that X1 and X2 were both nonsense mutations that

4flystocks.bio.indiana.edu

designate strong SNPs and these occurred at two different codon
positions in the same gene. Nevertheless, SnpEff and SnpSift can
also analyze weak SNPs such as those located in the 5′ UTR or pro-
moter regions and it should be possible to use a similar strategy to
identify mutations that contain SNPs at regulatory regions of the
genes, such as in many examples of population studies.

Recently, the Bellen laboratory developed rapid meiotic map-
ping techniques to map a recessive-lethal mutation to within a few
kilobases to transposons containing easily visualized marker genes
such as mini-w+ or y+ (Zhai et al., 2003). Meiotic mapping can
be used to further delimit the regions of the genome and facilitate
identification of candidate genes by whole-genome sequencing
approach. We know of at least one other laboratory that has used
next-generation sequencing to identify chemically induced muta-
tions in Drosophila, but this was done with PCR-amplified DNA
fragment from the ∼1-Mbp region of interest (Wang et al., 2010).
Deficiencies, such as in the Exelixis and DrosDel collections that
have known breakpoints, (Parks et al., 2004; Ryder et al., 2007) can
be used to fine map the mutant locus further, often to a region
small enough to PCR amplify and sequence with conventional
capillary sequencing techniques.

Although we sequenced homozygous DNA, it is conceivable
that larger fold of sequence coverage should overcome com-
plication of data resulting from sequencing heterozygous DNA
when the mutation is lethal. Langley et al. (2011) have recently
shown that one can “circumvent heterozygosity” by sequencing
the genome of a single haploid D. melanogaster embryo. The
haploid embryo is gynogenetically produced by mating females
with males homozygous for the recessive male-sterile mutation
ms(3)K81, which jumps start embryogenesis without incorporat-
ing the sperm DNA in the developing embryo (Langley et al.,
2011). Another alternative method to circumvent heterozygosity
for recessive-lethal mutations is to use “green balancers” that carry,
for example, Kr-Gal4 driving GFP expression in the embryo and
thus allowing the enrichment of homozygous mutant embryos
prior DNA sequencing (Casso et al., 1999, 2000). The Blooming-
ton stock center has green balancer stocks for the X chromosome
(FM7 ), the second chromosome (CyO), and the third chromo-
some (TM3,Sb5). When a recessive-lethal allele is balanced with
a green balancer, one needs only to select for non-GFP express-
ing embryos to ensure that the flies are homozygous in genotypes
(Casso et al., 1999, 2000).

In summary, we describe a new tool, SnpSift that can be used
to help identify causative SNPs in mutants derived from random
chemical mutagenesis screens. This tool, along with SnpEff, has
currently set to analyze and identify SNPs associated with phe-
notypes of not only Drosophila mutant strains but also other
organisms including humans.

MATERIALS AND METHODS
PREPARING GENOMIC DNA LIBRARY FOR PAIRED-END SEQUENCING
Drosophila genomic DNA from the strains X1 and X2 was pre-
pared using an AutoPure LS (Qiagen) Kit. A genomic DNA library
was prepared from 5 μg purified Drosophila DNA according to

5www.flybase.org
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the standard protocol using a Paired-End Sample Prep Kit for the
GAIIx (Illumina). The DNA library was then used for cluster gen-
eration and sequencing analysis using the Genome Analyzer IIx
using Illumina standard protocols. Methods for DNA manipula-
tion, including sample preparation, formation of single-molecule
arrays, cluster growth, and sequencing were all done by the stan-
dard protocols from Illumina, Inc. All sequencing was performed
using two lanes (one for X1 and one for X2) in paired-end sequenc-
ing mode on an Illumina Genome Analyzer version 2 (GA2X) that
was equipped with a 1-megapixel camera. The Illumina sequenc-
ing kits used allowed for 76 base single-end reads. Each lane of
DNA sequencing had over 90 million reads.

Analysis software
Image analysis software was provided as part of the Genome
Analyzer analysis pipeline and configured for fully automatic para-
meter selection. Single-end reads were 76 bases in total length.
Quality control was performed using FastQC, showing overall low
error rates. The reference genome used was the latest FlyBase ver-
sion at the time (y1; cn1 bw1 sp1 strain, Dm5.30). The data was
aligned using the BWA algorithm (Li and Durbin, 2009). A total of
5,234,506 reads were NOT mapped to the genome (i.e., 10.01%).
This is usually due to low quality reads or reads have missing base
calling information (i.e., “B” in the quality stream). The rest of
the reads for X1 and X2 were mapped as indicated. Gap estima-
tion: according to the mapping software, the gap between pair-end
reads is 360 ± 20 bp. The distribution percentiles are 345 (25%),
360 (50%), and 375 (75%). The set of6 and to the NCBI’s map of
RefSeq and candidate Drosophila genes7.

Reads were filtered using a minimum mapping quality of 20
(MAPQ). Variant calling was performed using SamTools (Li et al.,
2009) and BcfTools. When using individual calls without base
alignment quality (BAQ) model, (Li, 2011) a total of 1,036,435
homozygous SNPs were detected. Using multi-sample calling
methods and BAQ model, (Li, 2011) the number of homozygous
SNPs was reduced to 204,250. Variant annotation and filtering
was performed using the software SnpEff (Cingolani et al., Fly,
in press) and SnpSift, described below.

SnpSift
Variant filtering was performed using an in-house development
tool set called SnpSift8. This tool set works almost exclusively on
variant call format (VCF) files according to the specification for
versions 4 or 4.1 (Danecek et al., 2011). The two main components
used in this work were “SnpSift caseControl” and “SnpSift filter.”
Frequently asked questions (FAQs) are addressed on our web site.

SnpSift caseControl
This tool counts the number of genotypes present in two user-
defined groups (“case” and “control”), and then it calculates
a p-value based on Fisher exact test. For each group, either
homozygous, heterozygous, or both kinds of variants can be used.

6ftp://ftp.flybase.net/genomes/dmel/dmel_r5.12_FB2008_09/gff/
7ftp://ftp.ncbi.nih.gov/genomes/Drosophila_melanogaster/mapview/seq_gene.
md.gz
8SnpEff.sourceforge.net/SnpSift.html

SnpSift filter
This module performs filtering based on arbitrary expressions.
In order to be able to parse arbitrary expressions, we created a
top-down recursive grammar [also known as LL(∗) grammar]
using ANTLR (Parr, 2007). Using the lexer and parser created
by ANTLR we are able to parse expressions by creating an abstract
syntax tree (AST) for the expression. An AST is a well-known
structure, very common in compiler design, that is used to rep-
resent the arbitrary input expressions from the user. The AST
tree is converted into an interpreter syntax tree (IST), which is
a tree composed of objects capable of interpreting conditions,
expressions, and functions. This means that the IST is like AST,
but it is also capable of performing expression evaluation. The
result of the filter expression is the value of the root node in the
IST.

There are well-known variables pre-defined according to the
VCF format specification. Other additional variables and their
respective data types are parsed from VCF meta-information in
the file header. As specified in the norm, INFO meta-information
lines define the type and the number of values (e.g., an array)
in each INFO sub-field. Automatic variable conversion is imple-
mented (e.g., INT is automatically converted to FLOAT whenever
required). Genotype fields are similarly parsed by using FORMAT
meta-information header lines.

Each VCF entry (i.e., each non-header line in a VCF file) is
converted into a set of “variable = value” tuples, which are feed
into the interpreter tree. The IST, created using the user expres-
sion, interprets the user-defined expression from top to bottom
trying to assign a Boolean value to the root node. If the result
from evaluating the IST is “true” then the VCF line is either
printed to standard output or marked as PASS in the FILTER
field; likewise, if it is “false,” the line is filtered out (i.e., not
printed) or marked as failed in the FILTER field. Table A1 in
Appendix shows a list of allowed operators used in SnpSift and
Table A2 in Appendix shows some functions commonly used in
SnpSift expressions. Language definition and examples are shown
in Appendix.

SnpSift is platform independent and available as an open source
as part of the SnpEff project9. A web based interface is available
via the Galaxy project (see text foot note 1).

DATA ACCESS
SnpEff and SnpSift Data can be accessed from the data file for X1
and X2 by contacting Douglas M. Ruden.
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APPENDIX
SnpSIFT FILTER: LANGUAGE DEFINITION
This section shows the language definition for SnpSift filter. Opera-
tors (see Table A1) and functions (see Table A2) can be used to cre-
ate arbitrary expressions that are evaluated using the information
in each VCF line.

SnpSIFT FILTER: LANGUAGE DEFINITION AND USAGE EXAMPLES
Using the SnpSift filter, arbitrary expressions can be evaluated.
Since an arbitrary number of conditions can be combined using
Boolean operators, the expressions can be complex, allowing
significant flexibility.
Some examples:
1-) Filter out variants with quality less than 30:

cat variants.vcf | java -jar SnpSift.jar " ( QUAL >= 30 )" >
filtered.vcf

2-)Filter out variants with quality less than 30 but keep InDels that
have quality 20 or more:

cat variants.vcf | java -jar SnpSift.jar "(( exists INDEL ) &
(QUAL >= 20)) | (QUAL >= 30 )" > filtered.vcf

3-)Same as example 2, but keeping also any homozygous variant
present in more than 3 samples:

Table A1 | Operators allowed in SnpSift filter.

Operand Description Data type Example

= Equality test FLOAT, INT or

STRING

(REF = ‘A’)

> Greater than FLOAT or INT (DP > 20)

≥ Greater or equal than FLOAT or INT (DP ≥ 20)

< Less than FLOAT or INT (DP < 20)

≤ Less or equal than FLOAT or INT (DP ≤ 20)

=∼ Match regular

expression

STRING (REL =∼ ‘AC’)

!∼ Does not match

regular expression

STRING (REL!∼ ‘AC’)

& AND operator Boolean (DP > 20) & (REF = ‘A’)

| OR operator Boolean (DP > 20) | (REF = ‘A’)

! NOT operator Boolean ! (DP > 20)

exists The variable exists

(not missing)

Any (exists INDEL)

Table A2 | Functions implemented in SnpSift filter.

Function Description Data type Example

countHom Count number of

homozygous genotypes

No

arguments

(countHom()

> 0)

countHet Count number of

heterozygous genotypes

No

arguments

(countHet()

> 2)

countVariant Count number of

genotypes that are variants

(i.e., not reference 0/0)

No

arguments

(countVariants

() > 5)

countRef Count number of

genotypes that are NOT

variants (i.e., reference 0/0)

No

arguments

(countRef()

< 1)

cat variants.vcf | java -jar SnpSift.jar "(countHom > 3) | (( exists
INDEL ) & (QUAL >= 20)) | (QUAL >= 30 )" > filtered.vcf

4-)Same as example 3, but keeping also heterozygous variants with
coverage 25 or more:

cat variants.vcf | java -jar SnpSift.jar "((countHet > 0) && (DP
>= 25)) | (countHom > 3) | (( exists INDEL ) & (QUAL >=
20)) | (QUAL >= 30 )" > filtered.vcf

SNPSIFT FILTER: VARIABLES
For each VCF entry, the variables are populated and made avail-
able in the analyzed expressions. The values used to populate the
variables are obtained from different fields of the VCF entry. There
are four main groups of variables:

• Fields: these are mandatory valued from the VCF specification
and are the first columns in a VCF file (“CHROM, POS, ID, REF,
ALT, QUAL, or FILTER”).

• INFO field: each value defined in the info field is made available
using the type specified according to the VCF meta-information
lines in the header section. Some“well-known”variables are pre-
defined and do not need corresponding header entries (see VCF
specification for a list of well-known INFO fields).

• Genotype fields: each genotype field is available using the
GEN[] array. Subfields of this array include all variables in
each genotype field. Types are casted according to the VCF
meta-information lines in the header section.

• Effect fields: the “EFF” sub-field from the INFO field (created
by SnpEff program) is further parsed and made available. This
is parsed as an array since one variant can be annotated with
more than one effect.

• Sets: expressions can test if a value belongs to a set. Sets are
defined in files having one value per line. This files are parsed
when using the “–set” command line option. Values from sets
can be used in expressions by using the “in” operator.

Fields
Available variable names are:“CHROM, POS, ID, REF,ALT, QUAL,
or FILTER.”
Examples:
1-) Any variant in chromosome 1:

"( CHROM = ’chr1’ )"

2-) Variants between two positions:

"( POS > 123456 ) & ( POS < 654321 )"

3-) Variants having an ID and it matches the regular expression
“rs”:

"(exists ID) & ( ID = ’rs’ )"

4-) Variants having reference “A”:

"( REF = ’A’ )"

5-) Variants having an alternative “T”:

"( ALT = ’T’ )"

6-) Variants having quality over 30:

"( QUAL > 30 )"

6-) Variants having Filter value is either “PASS” or it is missing:

"( na FILTER ) | (FILTER = ’PASS’)"
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INFO field
Variable names from INFO field. E.g., if the info field has
“DP=48;AF1=0;. . .” e.g.,:

( DP > 10 ) & ( AF1 = 0 )

Multiple value
Info field variables can have multiple values (comma separated).
These multiple valued fields are represented as an array. Individual
values can be accessed using an index. E.g., If the INFO field has
“CI95=0.04167,0.5417,” then the following expression is valid:

"( CI95[0] > 0.1 ) & (CI95[1] <= 0.3)"
An asterisk may be used to represent “ANY” variable index. So the
following example is “true” if any of the values in the CI95 field is
more than 0.1:

"( CI95[∗] > 0.1 )"

Genotype fields
Variables from genotype fields are represented as an array. The
individual values are accessed using an index (sample number)
followed by a variable name. E.g., If the genotypes are “GT:PL:GQ
1/1:255,66,0:63 0/1:245,0,255:99,” then the following expression is
“true”:

"( GEN[0].GQ > 60 ) & ( GEN[1].GQ > 90 )"
An asterisk may be used to represent “ANY” variable index

"( GEN[∗].GQ > 60 )"

Genotype having multiple fields
These are represented as arrays, so individual values can be
accessed using an index (sample number) followed by a variable
name and then another index. E.g., If the genotypes are“GT:PL:GQ
1/1:255,66,0:63 0/1:245,0,255:99,” then the following expression is
valid:

"( GEN[0].PL[2] = 0 )"
Also in this case, an asterisk may be used to represent “ANY”
variable index, e.g.,:

"( GEN[0].PL[∗] = 0 )"
And another asterisk may be used to represent “ANY” genotype
index, e.g.,:

"( GEN[∗].PL[∗] = 0 )"

Sets
are defined by the “-s” (or “–set”) command line option. Each file
must have one string per line. They are named based on the order
used in the command line (e.g., the first one is“SET[0],”the second
one is “SET[1],” etc.) An example of the set expression (assuming
your command line was “-s set1.txt -s set2.txt -s set3.txt”):

"( ID in SET[2] )"

Effect fields
Effect fields created by SnpEff are accessed using an index (effect
number) followed by a sub-field name. Available sub-field are:

• EFFECT: effect (e.g., SYNONYMOUS_CODING, NON_
SYNONYMOUS_CODING, FRAME_SHIFT, etc.)

• IMPACT: [ HIGH, MODERATE, LOW, MODIFIER ]
• FUNCLASS: [ NONE, SILENT, MISSENSE, NONSENSE ]
• CODON: codon change (e.g., “ggT/ggG”)
• AA: amino acid change (e.g., “G156”)
• GENE: gene name (e.g., “PSD3”)
• BIOTYPE: gene biotype, as described by the annotations (e.g.,

“protein_coding”)
• CODING: gene is [ CODING, NON_CODING ]
• TRID: transcript ID
• EXID: exon ID

Examples:
1-) The following expression is true if the first effect is
NON_SYNONYMOUS:

"( EFF[0].EFFECT = ’NON_SYNONYMOUS_CODING’ )"
2-) This expression is true if ANY effect is NON_SYNONYMOUS:

"( EFF[∗].EFFECT = ’NON_SYNONYMOUS_CODING’ )"
3-) This expression is true if ANY effect is NON_SYNONYMOUS
on gene TCF7L2:

"( EFF[∗].EFFECT = ’NON_SYNONYMOUS_CODING’ ) & (
EFF[∗].GENE = ’TCF7L2’ )"
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Nitrate and nitrite are common aqueous pollutants that are known to disrupt the thyroid
axis. In amphibians, thyroid hormone (TH)-dependent metamorphosis is affected, although
whether the effect is acceleration or deceleration of this developmental process varies from
study to study. One mechanism of action of these nitrogenous compounds is through
alteration ofTH synthesis. However, direct target tissue effects onTH signaling are hypoth-
esized. The present study uses the recently developed cultured tail fin biopsy (C-fin) assay
to study possible direct tissue effects of nitrate and nitrite. Tail biopsies obtained from
premetamorphic Rana catesbeiana tadpoles were exposed to 5 and 50 mg/L nitrate (NO3–
N) and 0.5 and 5 mg/L nitrite (NO2–N) in the absence and presence of 10 nM T3. Thyroid
hormone receptor β (TRβ) and Rana larval keratin type I (RLKI), both of which are TH-
responsive gene transcripts, were measured using quantitative real time polymerase chain
reaction.To assess cellular stress which could affectTH signaling and metamorphosis, heat
shock protein 30, and catalase (CAT) transcript levels were also measured. We found that
nitrate and nitrite did not significantly change the level of any of the four transcripts tested.
However, nitrate exposure significantly increased the heteroscedasticity in response of
TRβ and RLKI transcripts to T3. Alteration in population variation in such a way could con-
tribute to the previously observed alterations of metamorphosis in frog tadpoles, but may
not represent a major mechanism of action.

Keywords: nitrate, nitrite, frog, thyroid hormone, metamorphosis, C-fin, organ culture assay, quantitative real time

polymerase chain reaction

INTRODUCTION
Currently over 100,000 manufactured chemicals are produced
in the marketplace (European Union Commission, 2006). Many
of these chemicals have endocrine disrupting abilities and more
specifically, are disruptors of the thyroid axis. Most endocrine dis-
ruptors can be classified as plasticizers, pesticides, industrial chem-
icals, heavy metals, or plant and fungal compounds; however, ions
such as nitrate (NO−

3 ) and nitrite (NO−
2 ) have endocrine disrupt-

ing abilities as well (Crain, 2000; Sampat, 2000; Gray et al., 2001).
Environmental nitrate can come from many sources including
agricultural fertilizer, waste from animal production, and burning
fossil fuels, industrial effluent, and wastewater treatment plant dis-
charges (Rouse et al., 1999; Camargo et al., 2004; De Groef et al.,
2006).

In the US, the current public health maximal level for safe
drinking water is 10 mg/L nitrate (measured as NO3–N) and
1 mg/L nitrite (NO2–N; US EPA, 2006, 2009). In Canada, the Cana-
dian Council of Ministers of the Environment (CCME) guideline
for the protection of aquatic life has set the maximum level of
nitrate at 13 mg/L(NO−

3 /L) in freshwater and 16 mg/L (NO−
3 /L) in

marine water; the level for nitrite in freshwater is 60 μg/L (NO−
3 /L)

and there is no level set for marine water (CCME, 2007). Health

Canada has set the maximal allowable concentration in drinking
water at 10 mg/L nitrate (NO3–N) and 3.2 mg/L nitrite (NO2–N;
Health Canada, 2008). Nitrate concentrations have been found as
high as 25 mg/L NO3–N in surface waters and 100 mg/L NO3–N in
ground water, yet there is currently no guideline for the protection
of wildlife (Rouse et al., 1999; Camargo et al., 2004).

In aquatic environments, nitrogen exists in four forms in
descending order of toxicity: ammonium ion, ammonia, nitrite,
and nitrate. Although nitrate is the least toxic form of the four, it
is the most stable and therefore the most abundant. Under aerobic
conditions, ammonia and ammonium can be oxidized to nitrite
by Nitrosomonas bacteria, and then to nitrate by Nitrobacter and
Nitrospira bacteria (Sharma and Ahlert, 1977). When oxygen is
low, denitrifying bacteria can use nitrate as a terminal electron
acceptor and make nitrogen gas (N2; reviewed in Camargo et al.,
2005).

Aquatic animals are exposed to nitrate and nitrite through
ingestion or epithelial absorption across skin or gills (Onken et al.,
2003). High levels of these contaminants cause methemoglobine-
mia, also called “brown blood” disease in fish and amphibians and
“blue baby” syndrome in humans. Methemoglobin is formed from
nitrate/nitrite-induced oxidation of hemoglobin, which prevents

www.frontiersin.org April 2012 | Volume 3 | Article 51 | 101

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Toxicogenomics/10.3389/fgene.2012.00051/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AshleyHinther&UID=49422
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=CarenHelbing&UID=47362
mailto:chelbing@uvic.ca
http://www.frontiersin.org
http://www.frontiersin.org/Toxicogenomics/archive


Hinther et al. Nitrate/nitrite effects on tadpoles

normal oxygen binding and leads to hypoxia (Porter et al., 1999).
Toxicity of nitrite and nitrate depends on body size and develop-
mental stage, increases with increasing concentration and expo-
sure time, and decreases with water salinity and environmental
adaptation (Rouse et al., 1999; Camargo et al., 2004).

In addition to the toxic effects of nitrate and nitrite, exposure to
these chemicals adversely affects the thyroid axis in multiple ver-
tebrate species (reviewed in Edwards et al., 2006). For example,
high doses of nitrate caused goiter and depressed serum thy-
roxine (T4) and 3,5,3′-triiodothyronine (T3) in rats and sheep
(Zaki et al., 2004) and nitrite decreased serum T4 while T3 lev-
els were unchanged in the sea bream (Deane et al., 2007). Toad
and frog tadpoles exposed to nitrate exhibit altered metamor-
phic development; a TH-dependent process (Wyngaarden et al.,
1952, 1953; Xu and Oldham, 1997; Edwards et al., 2006; Ortiz-
Santaliestra and Sparling, 2007). Although these observations can
be explained, in part, by competition of nitrate and nitrite with
iodine uptake, transport, and retention in the thyroid gland that
impairs TH synthesis (Crow et al., 2001; Hampel and Zollner,
2004), the contribution of nitrate and nitrite to alteration of TH
signaling pathways at the cellular level in amphibian target tissues
is not known.

The present study uses the recently developed “C-fin” assay to
expose Rana catesbeiana premetamorphic tadpole tail fin biop-
sies to nitrate and nitrite with or without T3 to determine if
nitrate and nitrite affect TH-signaling within a TH-responsive
tissue directly. We assessed TH-signaling by quantifying the lev-
els of TH-responsive gene transcripts, thyroid hormone receptor
β (TRβ) and Rana larval type I keratin (RLKI ), as well as cel-
lular stress markers, heat shock protein (HSP30), and catalase
(CAT ). Alteration of the transcriptome is an essential compo-
nent in TH-mediated tadpole metamorphosis (Shi, 2000) and part
of the change in the tail transcriptome includes an increase in
TRβ transcripts and a decrease in RLKI transcripts (Domanski
and Helbing, 2007). There is considerable precedent linking TRβ

transcript levels to progression through TH-dependent metamor-
phosis where perturbations from expected levels are indicative of
altered postembryonic development (Crump et al., 2002; Opitz
et al., 2006; Veldhoen et al., 2006a; Zhang et al., 2006; Helbing
et al., 2007a,b; Ji et al., 2007; Skirrow et al., 2008).

MATERIALS AND METHODS
EXPERIMENTAL ANIMALS
Premetamorphic R. catesbeiana tadpoles were caught locally (Vic-
toria, BC, Canada) or purchased from Ward’s Natural Science
Ltd. (St. Catherines, ON, Canada). Taylor and Kollros (TK; Tay-
lor and Kollros, 1946) stage VI–VIII animals were used. Animals
were housed in the University of Victoria aquatics facility and
maintained in 100 gallon fiberglass tanks containing recirculating
water at 12˚C with exposure to natural daylight. Tadpoles were fed
daily with spirulina (Aquatic ELO-Systems, Inc., FL, USA). Ani-
mals used in this study were treated and maintained in accordance
with the guidelines of the Canadian Council on Animal Care.

ORGAN CULTURE OF TAIL FIN BIOPSIES
Preparation of the tail fin biopsy cultures was adapted from con-
ditions described previously (Veldhoen et al., 2006b; Ji et al.,

2007). Premetamorphic (TK stage VI–VIII; Taylor and Kollros,
1946) R. catesbeiana tadpoles were euthanized in 0.1% tricaine
methanesulfonate (Syndel Laboratories, Vancouver, BC, Canada)
in 25 mM sodium bicarbonate, and subsequently washed four
times in 125 mL per tadpole of sterile magnesium-free (MFM)
solution (7.5 mM Tris–HCl pH 7.6, 88 mM NaCl, 1 mM KCl,
2.4 mM NaHCO3, 0.88 mM CaCl2). Eight biopsies were obtained
per animal (n = 7–16 animals), from the dorsal and ventral tail fins
using a 6 mm dermal biopsy punch (Miltex, Inc., York, PA, USA),
to allow the assessment of eight treatments per animal. Sixteen
animals were used for each exposure.

Test chemicals were prepared in water as 1,000× concentrates
and stored at −20˚C. They were applied in equal volumes at
1 μL chemical stock/mL of media. Treatments included: a vehi-
cle control (NaOH), sodium gluconate control (Na-G, used as a
control for sodium; CAS S-2054, Sigma-Aldrich), sodium nitrate
(NaNO3; CAS BP360-500g, Fisher; measured as 5 and 50 mg/L
NO3–N), or sodium nitrite (NaNO2; CAS S2252-500g, >99.5%
purity, Sigma-Aldrich; measured as 0.5 and 5 mg/L NO2–N), in
the absence and presence of 10 nM T3 (prepared as a 10−5 M
stock in 400 μM NaOH), as well as a 10 nM T3 treatment alone.
Where treatments did not include T3, an equal volume of NaOH
vehicle was applied to a final concentration of 400 nM. This
concentration did not affect the medium pH. Biopsies were cul-
tured individually in 1 mL 70% strength Leibovitz’s L15 medium
(Gibco, Invitrogen) supplemented with 10 mM HEPES pH 7.5,
50 units/mL penicillin G sodium, 50 μg/mL streptomycin sulfate
(Gibco, Invitrogen), and 50 μg/mL neomycin (Sigma-Aldrich),
using 24-well culture plates (Primaria, BD Biosciences) at 25˚C
in air for 48 h.

The biopsies were pretreated with 0.5 mL of the appropriate
concentration of the test chemical or NaOH control in culture
media for 2 h prior to the addition of T3. After the 2 h incubation,
0.5 mL of the appropriate concentration of the test chemical plus
20 nM T3 (in 800 μM NaOH) were added into the wells giving
a final concentration of 10 nM T3 (in 400 nM NaOH). For the
wells not containing T3, 0.5 mL of the appropriate concentration
of the test chemical plus 800 μM NaOH (for a final concentration
of 400 nM NaOH) were added. At the end of the 48 h incuba-
tion period for each treatment, the biopsy was stored in 100 μL
of RNAlater (Ambion Inc., Austin, TX, USA) for 24 h at 4˚C and
then transferred to −20˚C until it was processed for RNA.

ISOLATION OF RNA AND QUANTIFICATION OF GENE EXPRESSION
RNA was isolated using TRIzol reagent as described previously
(Hinther et al., 2010a,b). cDNA was synthesized from 5 μL
(∼0.5 μg) total RNA as per manufacturer’s protocol using the
RevertAid H Minus First Strand cDNA Synthesis Kit (Fermentas)
as described in (Hinther et al., 2010b). The cDNA products were
diluted fivefold prior to PCR amplification and stored at −20˚C.

The levels of mRNAs encoding TRβ, RLKI, HSP30, CAT, and
ribosomal protein L8 (rpL8) were determined using a MX3005P
real time quantitative PCR system (Stratagene, La Jolla, CA, USA)
using gene-specific primers as described previously (Hinther et al.,
2010b). Expression profiles of the rpL8 transcript normalizer were
invariant (p = 0.998 and 0.950, nitrate and nitrite data sets, respec-
tively). The amplified DNA signals for all QPCR reactions were
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evaluated for specificity based upon their thermodenaturation
profiles. Data that failed to produce a profile indicative of gene
target-specific detection were removed before analysis. If a con-
trol condition did not pass the quality measure above for a given
animal, then the data for all conditions associated with that ani-
mal were removed for that gene transcript due to the repeated
measures nature of the data set.

STATISTICAL ANALYSES
Statistical analyses were performed using PASW 18.0 (Chicago, IL,
USA) software. The C-fin data were not normally distributed based
upon the Shapiro–Wilk test. We used the Friedman and paired
Wilcoxon tests since these data were generated from a repeated
measures type of experimental design. Homogeneity of variance
was determined using the Levene’s test. Correlation coefficients
were generated using Spearman’s rho.

The data were analyzed in two ways: First, the test chemical
results in the absence of T3 were examined relative to the vehi-
cle control. Second, the test chemicals in combination with T3

results were compared relative to T3 alone. In the latter case, the
response to a test chemical in the presence of T3 was expressed as
a fold change relative to the response to T3 alone for each indi-
vidual. This approach reduces the effect of inter-animal variation,
enabling us to better identify chemical-induced perturbations rel-
ative to each individual’s ability to respond to T3. Therefore the
T3 values in this comparison were given a value of one and the
graphs show the fold change relative to the T3-induced response.
Statistical significance was identified when p < 0.05.

RESULTS AND DISCUSSION
In order to validate the assay, we first examined the biopsy
responses to T3 treatment alone. Figure 1A shows the biolog-
ical variation of the controls and the relative variation in T3

response before taking repeated measures into account. Figure 1B
shows the data after normalizing the data to the individual ani-
mal’s baseline transcript levels into such that every control ani-
mal was assigned a value of 1. T3 treatment alone increased
the TRβ transcript levels by a median 7.7-fold (p = 0.0001,
Wilcoxon, n = 23; Figure 1), decreased RLKI transcript levels
by 2.9-fold (p = 0.0001, Wilcoxon, n = 26; Figure 1), increased
HSP30 transcript levels by 1.7-fold (p = 0.024, Wilcoxon, n = 31;
Figure 1), and reduced CAT transcript levels by a median 1.3-fold
(p = 0.024, Wilcoxon, n = 32; Figure 1). All transcript responses
were similar to previous observations (Hinther et al., 2010a,b,
2011).

The C-fin experimental design allows for the determination of
relationship between the individual animal’s baseline transcript
levels and the extent of change in transcript level in response
to chemical treatment. We examined the correlation between the
baseline (control) levels of each transcript to each other and to
the individual’s level of fold induction in response to T3 expo-
sure (Table 1). A strong negative correlation between baseline
transcript levels and the degree of fold response to T3 for all
four transcripts was observed (Table 1). This observation was
consistent with previously reported observations for TRβ and
RLKI transcripts (Hinther et al., 2010a). A strong negative cor-
relation was observed between the baseline levels of CAT and the

FIGURE 1 |The effect of application of repeated measures analysis on

QPCR data generated for thyroid hormone receptor β (TRβ), Rana larval

keratin I (RLKI ), heat shock protein 30 (HSP30), and catalase (CAT )

transcripts. Tail fin biopsies were exposed to vehicle control (C) or 10 nM
T3. The data (n = 23–32) are plotted as independent measures in (A) and
then as repeated measures in (B). Taking the individual’s baseline
expression levels greatly reduces overall variation and enables the
identification of perturbation of a response to T3 relative to each individual’s
normal T3 response. Box plots show medians ± first and third quartiles. The
whiskers indicate minimum and maximum values excluding outliers and
extreme values. Outlier (cases between 1.5 and 3.0 box lengths from the
upper or lower edge of the box) and extreme values (cases >3.0 box
lengths from the upper or lower edge of the box) are indicated by an open
circle and asterisk, respectively. Statistical significance is indicated with the
letter “a” for p < 0.05.

T3-dependent reduction of RLKI transcripts and RLKI and the
T3-dependent decrease of the CAT transcript (Table 1). A positive
correlation was observed between the baseline levels of HSP30 and
the T3-dependent increase of TRβ mRNAs (Table 1).

Exposure to 0.5 and 5 mg/L NO2–N (in the form of NaNO2)
for 48 h did not have any effect on the TH-responsive gene tran-
scripts, TRβ and RLKI, in the absence (p = 0.683 and 0.257,
respectively; Friedman) or presence of T3 (p = 0.282 and 0.751,
respectively, Friedman; Figure 2). Exposure to 5 mg/L sodium
gluconate (Na-G; as a control for sodium) also did not result
in a significant effect compared to the control (p = 0.300–0.875,
Wilcoxon; Figure 2).

Exposure to 5 and 50 mg/L NO3–N (in the form of NaNO3)
did not result in a change in TRβ and RLKI transcript levels
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Table 1 | Spearman’s rho correlation analysis comparing baseline

transcript levels with extent of (fold) induction in response toT3

treatment.

Fold induction byT3

TRβ RLKI HSP30 CAT

Baseline TRβ Correlation

coefficient

−0.645 −0.065 0.159 0.018

p Value 0.000* 0.396 0.240 0.468

N 23 19 22 23

RLKI Correlation

coefficient

0.058 −0.570 −0.124 −0.350

p Value 0.407 0.001* 0.278 0.040*

N 19 26 25 26

HSP30 Correlation

coefficient

0.452 −0.015 −0.552 0.025

p Value 0.017* 0.471 0.001* 0.448

N 22 25 31 31

CAT Correlation

coefficient

0.136 −0.465 −0.006 −0.618

p Value 0.267 0.008* 0.487 0.000*

N 23 26 31 32

Significance is indicated with an asterisk.

FIGURE 2 | QPCR analysis of thyroid hormone receptor β (TRβ) and

Rana larval keratin I (RLKI ) transcript levels in the C-fin assay after

exposure to nitrite in the absence or presence of 10 nMT3. Tail fin
biopsies were exposed to vehicle control (water; 0) and the indicated test
chemicals for 48 h in the presence of 400 nM NaOH or 10 nM T3 in 400 nM
NaOH solvent. Test chemical concentrations were 5 mg/L sodium control (in
the form of sodium gluconate, Na-G), 0.5 and 5 mg/L NO2–N (in the form of
NaNO2). The results are expressed as fold change relative to the vehicle
control (NaOH; upper panels) or to the vehicle +T3-induced levels (lower
panels) and represent QPCR data from n = 7–12 animals. Increasing
concentrations of test chemicals are represented by bevels. See Figure 1

legend for more details.

in the absence (p = 0.565 and 0.913, respectively, Friedman;
Figure 3) or presence of T3 (p = 0.066 and 0.529, respectively,

FIGURE 3 | QPCR analysis of thyroid hormone receptor β (TRβ) and

Rana larval keratin I (RLKI ) transcript levels in the C-fin assay after

exposure to nitrate in the absence or presence of 10 nMT3. Tail fin
biopsies were exposed to vehicle control (water; 0) and the indicated test
chemicals for 48 h in the presence of 400 nM NaOH or 10 nM T3 in 400 nM
NaOH solvent. Test chemical concentrations were 50 mg/L sodium control
(in the form of sodium gluconate, Na-G), 5 and 50 mg/L NO3–N (in the form
of NaNO3). The results are expressed as fold change relative to the vehicle
control (NaOH; upper panels) or to the vehicle +T3-induced levels (lower
panels) and represent QPCR data from n = 14–16 animals. Increasing
concentrations of test chemicals are represented by bevels. See Figure 1

legend for more details.

Friedman; Figure 3). The 50 mg/L sodium control (in the form of
sodium gluconate, Na-G) in this experiment had no effect as well
(p = 0.480–1.000, Wilcoxon; Figure 3).

Exposure to 0.5 and 5 mg/L NO2–N did not affect HSP30 and
CAT transcript levels in the absence (p = 0.444 and 0.185, respec-
tively, Friedman; Figure 4) or presence of T3 (p = 0.570 and 0.779,
respectively, Friedman; Figure 4). Exposure to 5 mg/L Na-G also
did not result in a significant effect (p = 0.438–0.717, Wilcoxon;
Figure 4).

Exposure to 5 and 50 mg/L NO3–N did not result in a change
in stress-responsive transcript levels in the absence (p = 0.282 and
0.819, HSP30 and CAT transcripts respectively, Friedman) or pres-
ence of T3 (p = 0.074 and 0.819, respectively, Friedman; Figure 5).
Exposure to 50 mg/L Na-G had no effect on the stress-responsive
transcripts (p = 0.796–1.000, Wilcoxon; Figure 5).

Changes in population variation have been associated with
endocrine disruptive events and exposure to pollutants (Orlando
and Guillette, 2001). An increase in variance is often found in
contaminant-exposed sites compared with reference site popula-
tions, in part, due to varying individual responses to the envi-
ronmental stressor. Since more individuals are at the perimeter
of a population range away from the more homogeneous cen-
tral part of the range, the contaminant-exposed population is less
able to adapt to environmental stress and may require additional
energy budget expenditures to survive (Orlando and Guillette,
2001). Thus, variation can represent an additional indicator of
population health not necessarily captured by measures of central
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FIGURE 4 | QPCR analysis of heat shock protein 30 (HSP30) and

catalase (CAT ) transcript levels in the C-fin assay after exposure to

nitrite in the absence or presence of 10 nMT3. Tail fin biopsies were
exposed to vehicle control (water; 0) and the indicated test chemicals for
48 h in the presence of 400 nM NaOH or 10 nM T3 in 400 nM NaOH solvent.
Test chemical concentrations were 5 mg/L sodium control (in the form of
sodium gluconate, Na-G), 0.5 and 5 mg/L NO2–N (in the form of NaNO2).
The results are expressed as fold change relative to the vehicle control
(NaOH; upper panels) or to the vehicle +T3-induced levels (lower panels)
and represent QPCR data from n = 15–16 animals. Increasing
concentrations of test chemicals are represented by bevels. See Figure 1

legend for more details.

tendency (Orlando and Guillette, 2001). No alterations in het-
eroscedasticity were observed for any transcripts between the Na-G
controls or the nitrite treatments (Table 2). This was also the
case for nitrate in the absence of hormone. However, when T3

was present, nitrate exposure affected the degree of heteroscedas-
ticity in both TRβ and RLKI mRNAs, but not HSP30 or CAT
transcripts (Table 2). A change in heteroscedasticity, as observed
with nitrate exposure, suggests an alteration in the response to
TH at the tissue level that is consistent with the conflicting accel-
eratory and inhibitory effects on TH-dependent processes that
have previously been observed (Xu and Oldham, 1997; Edwards
et al., 2006; Ortiz-Santaliestra and Sparling, 2007). The data in
the present study suggest that nitrate and nitrite differ in cellu-
lar effects on TH signaling while not eliciting stress responses in
the TH-responsive tail fin tissue. Moreover, direct cellular effects
of nitrate on peripheral tissues as a mechanism in influencing
metamorphosis still remains a possibility but that this effect is
not straightforward. Examination of additional time points would
be useful to evaluate whether TH-mediated response kinetics are
altered.

It has been postulated that nitrite and nitrate could act as
nitric oxide donors through a non-genomic mechanism (Guil-
lette and Edwards, 2005; Hannas et al., 2010). Nitric oxide donors
have been shown to mimic the ability of T4 to suppress cata-
lase enzyme activity associated with tail shortening and apoptosis
in vitro (Kashiwagi et al., 1999). However, a definitive connec-
tion between nitrate and nitrite and nitric oxide production in

FIGURE 5 | QPCR analysis of heat shock protein 30 (HSP30) and

catalase (CAT ) transcript levels in the C-fin assay after exposure to

nitrate in the absence or presence of 10 nMT3. Tail fin biopsies were
exposed to vehicle control (water; 0) and the indicated test chemicals for
48 h in the presence of 400 nM NaOH or 10 nM T3 in 400 nM NaOH solvent.
Test chemical concentrations were 50 mg/L sodium control (in the form of
sodium gluconate, Na-G), 5 and 50 mg/L NO3–N (in the form of NaNO3). The
results are expressed as fold change relative to the vehicle control (NaOH;
upper panels) or to the vehicle +T3-induced levels (lower panels) and
represent QPCR data from n = 16 animals. Increasing concentrations of test
chemicals are represented by bevels. See Figure 1 legend for more details.

Table 2 | Analysis of variation using Levine’s test.

Treatment Transcript Levene statistic p Value

NO2–N TRβ 0.484 0.624

RLKI 0.261 0.772

HSP30 0.563 0.574

CAT 0.526 0.595

NO3–N TRβ 0.183 0.834

RLKI 1.073 0.352

HSP30 2.891 0.066

CAT 0.348 0.708

NO2–N +T3 TRβ 2.786 0.088

RLKI 0.174 0.841

HSP30 1.698 0.196

CAT 0.205 0.815

NO3–N +T3 TRβ 3.449 0.041*

RLKI 7.542 0.002*

HSP30 1.254 0.296

CAT 0.102 0.903

Groups with significant heteroscedasticity are indicated with an asterisk.

amphibian tissues has not been established, although this rela-
tionship has been shown in Daphnia (Hannas et al., 2010). The
fact that nitrate elicited some response whereas nitrite did not
on cultured tail fin suggest that this influence could be limited.
Direct effects of nitrate and nitrite upon other amphibian tissues
(such as the thyroid gland) through genomic and/or non-genomic
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methods from tissue culture experiments and comparison to mol-
ecular responses elicited from whole animal exposures remain to
be determined.
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