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Editorial on the Research Topic

Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design

Pharmaceutical research and development (R&D) has faced outstanding challenges as scientific
breakthroughs achieved in the past two decades have revolutionized the field. Important
approaches such as high-throughput screening (HTS) have increasingly been used in combination
with emerging strategies relying on genomics, chemical biology and molecular modeling (Jones
and Bunnage, 2017). These forefront approaches have promoted substantial progress in our
understanding of key biological processes, in addition to fostering critical advances in the
armamentarium available for drug R&D (Liu et al., 2017). Along with synthetic strategies
such as combinatorial chemistry, which has supported a consistent expansion of the chemical
space explored in drug discovery, these state-of-the-art technologies are shaping the future of
pharmaceutical industry. The integration of these methodologies to the drug discovery enterprise
has led to an exponential growth of chemical and biological data, in addition to a sharp increase in
the complexity of the R&D process. As a result, current players in drug discovery have invested
unprecedentedly in the development of computational methods to extract meaning from these
data and simulate critical phenomena related to drug efficacy, pharmacokinetics (PK) and toxicity
(Macalino et al., 2015). The value of using in silico strategies has been demonstrated by the
increasing number of publications reporting campaigns that have resulted in the discovery of
promising lead compounds; many of them undergoing clinical development and reaching the
market.

Usually, these computer-assisted efforts integrate ligand- and structure-based drug design
strategies (LBDD and SBDD, respectively) with a combination of experimental techniques
(Ferreira et al., 2015). Broadly used SBDD approaches, molecular docking, homology modeling,
molecular dynamics and structure-based virtual screening have provided relevant insights into
ligand-receptor interactions (Wang et al., 2016). Equally important, LBDD methods such as
pharmacophore modeling, quantitative structure-activity relationships (QSAR) and ligand-based
virtual screening have been actively used to explore small-molecule databases and produce
correlations between chemical features and pharmacological activity (Lavecchia, 2015). Also a
hot-topic in LBDD, quantitative structure-property relationship (QSPR) models are central for
predicting PK and toxicity-related characteristics (Tao et al., 2015).

Including original and review articles, this research topic (RT) connects recent applications
of LBDD and SBDD with the study of drug activity, as well as drug absorption, distribution,
metabolism, excretion (ADME) and toxicity. We were able to collect 31 articles connecting
more than 200 scientists from all around the world. Molecular modeling strategies for different

6
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conditions such as cancer, leishmaniasis, malaria, coronary heart
disease, diabetes, and Alzheimer’s disease are addressed. A broad
variety of topics including the development of scoring functions,
nuclear magnetic resonance (NMR)-assisted molecular docking,
and the interplay between molecular docking and molecular
dynamics are covered. In addition, this RT highlights the
use of natural products as inhibitors of molecular targets
such as the epidermal growth factor receptor (EGFR) and
tumor necrosis factors (TNFs). New ligands targeting protein
arginine methyltransferases, Kirsten rat sarcoma viral oncogene
homolog (KRAS), G protein-coupled receptors (GPCRs), matrix
metalloproteinases, heat shock proteins (HSPs), and mammalian
Disheveled, are also considered. The design and implementation
of online platforms for the prediction of in vivo toxicity,
off-target interactions, and PK properties are described. The
use of chemical proteomic approaches to profile molecular
targets, force-fields for accessing compound-solvent interactions,

and algorithms that consider synthetic accessibility for lead
optimization are also reported.

It is our aim that the high-quality material
enclosed in this RT contributes to the dissemination
of outstanding science across the worldwide research
community dedicated to the fascinating universe of drug
discovery.
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Leishmaniasis is a fatal neglected tropical disease (NTD) that is caused by more than 20
species of Leishmania parasites. The disease kills approximately 20,000 people each
year and more than 1 billion are susceptible to infection. Although counting on a few
compounds, the therapeutic arsenal faces some drawbacks such as drug resistance,
toxicity issues, high treatment costs, and accessibility problems, which highlight the
need for novel treatment options. Worldwide efforts have been made to that aim and,
as well as in other therapeutic areas, chemoinformatics have contributed significantly
to leishmaniasis drug discovery. Breakthrough advances in the comprehension of
the parasites’ molecular biology have enabled the design of high-affinity ligands for
a number of macromolecular targets. In addition, the use of chemoinformatics has
allowed highly accurate predictions of biological activity and physicochemical and
pharmacokinetics properties of novel antileishmanial compounds. This review puts into
perspective the current context of leishmaniasis drug discovery and focuses on the use
of chemoinformatics to develop better therapies for this life-threatening condition.

Keywords: medicinal chemistry, ligand-based drug design, structure-based drug design, neglected tropical
diseases, molecular modeling, leishmania

CURRENT PANORAMA OF LEISHMANIASIS

Leishmaniasis is a neglected tropical disease (NTD) that causes approximately 20,000 deaths each
year. Nearly 300,000 new cases of the disease are registered annually, and over 1 billion people
are exposed to the risk of infection1. The disease is caused by more than 20 species of Leishmania
protozoan parasites that are transmitted to humans through the bites of female Phlebotomus and
Lutzomyia sandflies. Leishmaniasis occurs in 98 tropical and subtropical countries encompassing
the Mediterranean Basin, South-East Asia, Afro-Eurasia, East Africa, and the Americas. People who
are exposed to adverse socioeconomic circumstances, malnutrition, poor housing, and unsanitary
conditions are the main target of leishmaniasis (Hailu et al., 2016).

Although leishmaniasis is a curable condition, treatment depends on a variety of factors,
including geographic region, clinical form of the disease and parasite species. The available
chemotherapy consists of drugs that cause serious side effects, such as renal, pancreatic and hepatic
toxicity, teratogenicity, and cardiac and gastrointestinal problems (Copeland and Aronson, 2015).
The need for hospitalization, long-term and costly treatment, and drug resistance are additional
drawbacks. To this list, one may add the difficulties in implementing the widespread use of
the 2014-approved drug miltefosine due to problems of affordability and limited availability and
accessibility (Sunyoto et al., 2018). Another current concern in endemic regions is the contingent
of patients with leishmaniasis who are coinfected with the HIV virus. Lower cure rates are achieved

1http://www.who.int/leishmaniasis/en/
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in these patients because both pathogens attack the immune
system. Furthermore, this group is more vulnerable to the
drug-associated adverse effects, which contribute to higher
death rates (Abongomera et al., 2018). These drawbacks have
driven the creation of robust worldwide efforts to pursue novel
therapeutic options. This article provides a perspective on these
efforts, focusing on recent advances that involve the use of
chemoinformatics.

FROM TRIAL-AND-ERROR TO
KNOWLEDGE-BASED DRUG DESIGN

Similar to most early NTD-focused research programs, drug
discovery for leishmaniasis relied on trial-and-error strategies
that were based solely on phenotypic screenings. This paradigm
reflected the lack of a reasonable understanding of the
molecular aspects of the Leishmania biology and the cellular
processes involved in parasite–host interaction (Gilbert, 2013).
This setting began to change when the outstanding findings
from genome projects in the mid-2000s started to open an
array of new opportunities in leishmaniasis drug discovery
(Reguera et al., 2014). Simultaneously, novel collaborative
networks were settled, incorporating pharmaceutical companies,
and not-for-profit organizations, which, along with research
and academic institutions, have brought previously unavailable
technological and scientific developments to the field (Preston
and Gasser, 2018). Since then, genomics, proteomics, and
structural biology data have been made available via open-
access NTD-focused databases, which have been essential to the
use of chemoinformatics in leishmaniasis research. The Sanger
Institute’s GeneDB, for example, organizes the data of several
Leishmania species and is a useful tool for searching particular
gene sequences and investigating gene similarity and function
(Logan-Klumpler et al., 2012). Another important virtual
platform, the WHO’s TDR Targets Database, is a chemogenomics
resource that is focused on NTDs and connects information from
diverse protein and small-molecule libraries (Magariños et al.,
2012). In doing so, the TDR Targets Database algorithm generates
privileged combinations of molecular targets and compounds to
be considered for experimental studies. To this list, one may add
LmSmdB, which is a database that simulates metabolic networks
(Patel et al., 2016), and LeishMicrosatDB, which is a search engine
for microsatellite sequences in Leishmania genomes (Dikhit et al.,
2014). Resulting from these advances, more than 340 protein
structures from Leishmania spp. are currently registered in the
Protein Data Bank (PDB) (Berman et al., 2000). These data have
been key to understanding the parasite’s molecular machinery
and interspecies variability, which are fundamental aspects to
developing broad-spectrum drugs.

Taking advantage of this progress, researchers have
increasingly engaged in research and development (R&D)
organizational models that are characterized by well-structured
worldwide collaboration networks, which are referred to as
public-private-partnerships (PPPs) (Preston and Gasser, 2018).
These initiatives have been pivotal to enhancing the research
infrastructure of NTDs by providing state-of-the-art facilities

and technologies, high-quality compound libraries for screening
and highly qualified human resources. One noteworthy example
is the Drugs for Neglected Diseases Initiative’s (DNDi) Lead
Optimization Latin America (LOLA) consortium, which
focuses on preclinical in vitro and in vivo efficacy, safety and
pharmacokinetics assessment2. Experimental evaluation is
routinely followed by chemoinformatics studies to identify
structure-activity and structure-property relationships that guide
the design of optimized compounds. The value of this type of
initiative has been demonstrated by the successful development
of several candidates that are currently undergoing advanced
preclinical trials for leishmaniasis3.

STRUCTURE- AND LIGAND-BASED
STRATEGIES IN LEISHMANIASIS DRUG
DISCOVERY

Technologies such as combinatorial chemistry and high-
throughput screening (HTS) have enabled tests on large
compound libraries that encompass a significant chemical
diversity in short time scales (Folmer, 2016; Liu et al., 2017).
Although these highly impactful approaches have enhanced
the potential of the pharmaceutical industry to deliver better
drugs in all therapeutic areas, they contributed to scale up
the complexity of drug R&D. In this context, in which the
outstanding demands for innovation are constantly challenged
by significant attrition rates, the industry has put intensive effort
into the integration of computational tools into the research
pipeline (Rognan, 2017). Being cost-effective mainly in the early
stages of discovery, this R&D setting is especially suited to
clinical conditions, such as leishmaniasis, which have limited
resources compared with mainstream therapeutic areas. Hence,
given the ability of chemoinformatics to rapidly estimate ligand-
receptor interactions and a number of physicochemical and
pharmacokinetics properties, this approach has steadily grown
as a key component of drug R&D (Ponder et al., 2014; Macalino
et al., 2015).

Notwithstanding their broad diversity, chemoinformatics
tools are generally classified into structure- and ligand-based
drug design (SBDD and LBDD, respectively) approaches. SBDD
methods consist of the use of the 3D coordinates of molecular
targets to investigate and optimize ligand-receptor interactions
(van Montfort and Workman, 2017). SBDD programs have
revealed the 3D architecture of a variety drug targets, mainly
by the use of techniques such as X-ray crystallography. By
uncovering binding site attributes, such as shape and electronic
distribution, SBDD efforts have been able to deliver ligands
with accurately designed properties to achieve high-affinity
interactions with their targets (Ferreira et al., 2015). This process
is generally assisted by methods such as molecular docking
and structure-based virtual screening (SBVS), whereby potential
ligands can be evaluated as to their binding mode and energetics

2https://www.dndi.org/2013/media-centre/news-views-stories/news/first-early-
stage-research-latin-america/
3https://www.dndi.org/diseases-projects/portfolio/
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(Figure 1A). By examining these data along with experimental
results, structure-activity relationships (SAR) can be derived
and then used to optimize ligand-receptor affinity and other
properties (dos Santos et al., 2018).

Some promising macromolecular targets have been
investigated in leishmaniasis drug discovery. The most relevant
are topoisomerases and proteases (mainly cysteine-proteases)
(Ansari et al., 2017). Other important targets are tubulin, proteins
of the folate metabolic route, kinases, phosphodiesterases, and
enzymes that are involved in the trypanothione and purine
salvage pathways (Ansari et al., 2017). Ligands belonging to a
broad variety of chemical classes have been identified for these
targets, providing high-quality data for drug design.

Ligand-based drug design studies can be performed
without the receptor 3D structure. Instead, they require
information on the structure, activity, and molecular properties
of small molecules (Chen, 2013). These data are used to
construct chemometric models that correlate molecular
properties (molecular descriptors) with pharmacodynamics

and pharmacokinetics parameters (target properties). In doing
so, quantitative structure-activity and structure-property
relationships (QSAR and QSPR, respectively) can be derived
to identify molecular descriptors that are directly associated
with the target property (Yousefinejad and Hemmateenejad,
2015). By providing this type of information, these models are
useful for evaluating the target property and guiding the design
of new compounds that have improved profiles (Figure 1B).
Today, many free-access and commercial software programs
that include well-validated QSAR and QSPR models are available
for predicting a number of properties. They vary from online
platforms that are very straightforward to use to packages that
require local license installation.

The use of SBDD and LBDD methods in leishmaniasis
drug discovery is an encouraging strategy that has advanced
alongside the progress made in the NTD field (Njogu et al.,
2016). Chemoinformatics studies have incorporated different
SBDD workflows that focus on established and newly discovered
molecular targets. On the other hand, the use of QSAR

FIGURE 1 | Chemoinformatics strategies. (A) SBDD approaches using virtual screening and molecular docking. These methods are useful for revealing phenomena
associated with intermolecular interactions and for improving parameters, such as ligand-receptor affinity. Active molecules can have their binding mode
experimentally determined by techniques such as X-ray crystallography. (B) LBDD and the development of QSARs and QSPRs. These are broadly used for the
design of novel compounds and for the prediction of pharmacodynamics and pharmacokinetics properties. The experimental data gathered from newly designed
compounds can be added to the dataset to generate enriched models.
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and QSPR models for predicting key pharmacodynamics
and pharmacokinetics properties has also been noteworthy.
The manipulation of this information, including genomics,
metabolomics, structural, and small-molecule data, has been
particularly useful for running metabolic network predictions for
prospecting novel molecular targets and promising compounds
and for proposing likely mechanisms of action. The next sections
bring a perspective on a few recent cases using chemoinformatics,
focusing on their contribution to the progress of leishmaniasis
drug R&D.

Structure-Based Studies
Structure-based drug design efforts have prominently
contributed to uncovering novel ligands for both well-established
and newly discovered drug targets in Leishmania spp. One
example is pteridine reductase 1 (PTR1), which is an enzyme
involved in the pteridine salvage pathway and folate metabolism
and a validated target in leishmaniasis drug discovery (Ong et al.,
2011). This enzyme was explored in a study that reported on
an SBDD strategy for designing novel inhibitors that combine
the features of dihydropyrimidine and chalcone derivatives
(Rashid et al., 2016). By using the crystallographic structure

of L. major PTR1, the authors proposed a series of analogs to
achieve high-affinity interactions with the catalytic site of the
enzyme. Molecular docking-guided structural modifications on
the dihydropyrimidine and chalcone moieties and a reduction in
the number of rotatable bonds led to the most active compounds
against L. major. For example, compound 1 proved to be highly
active against both L. major and L. donovani promastigotes,
exhibiting a half-maximum inhibition concentration (IC50) of
948 nM and 3 µM, respectively (Figure 2A). The predicted
ligand-receptor binding energies were consistent with the
in vitro antileishmanial activity values. These results demonstrate
the suitability of these substituted dihydropyrimidines to be
further investigated as potential agents against both visceral and
cutaneous leishmaniasis.

Among Leishmania cysteine proteases, type B enzymes (CPB)
have been recognized as key virulence factors whose activity
is essential for parasite survival and the invasion of host cells
(Casgrain et al., 2016). Within this group, the cathepsin-L-like
endopeptidase CPB2.8 has emerged as a promising drug target
in leishmaniasis. An article by De Luca et al. (2018) reported
the discovery of a series of substituted benzimidazole derivatives
that feature nanomolar affinity for L. mexicana CPB2.8 (K i values

FIGURE 2 | SBDD in leishmaniasis drug discovery. (A) An SBDD approach using molecular docking on pteridine reductase 1 (PTR1) that led to the discovery of
dihydropyrimidine 1 as a novel antileishmanial agent. (B) The design of the L. infantum cysteine-protease type 2 (CPB2.8) inhibitor 2 having antileishmanial activity.
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ranging from 150 to 690 nM). A few analogs displayed interesting
activity on L. infantum intracellular amastigotes, with the most
potent one (2) yielding an IC50 of 6.8 µM (Figure 2B). Molecular
docking studies were run to examine the binding mode of the
compounds within the catalytic site of CPB2.8 and to rationalize
the enzyme kinetics data. The administration, distribution,
metabolism, excretion and toxicity (ADMET) were predicted to
evaluate the drug-likeness of the series and hence, its suitability
for further development. Compound 2 demonstrated a good
bioavailability profile, which, along with the biochemical and
biological results, rendered it a good candidate for future drug
design efforts.

Type 2 NADH dehydrogenase (NDH2), a mitochondrial
enzyme that catalyzes the electron transfer from NADH to
ubiquinone, is an emerging drug target in leishmaniasis drug
discovery (Marreiros et al., 2017). By constructing a homology
model of the enzyme, Stevanović et al. (2018) conducted a
pharmacophore-based virtual screening to find novel L. infantum
NDH2 inhibitors. A group of 23 virtual hits were selected and

screened against the recombinant enzyme and subsequently
tested for their activity on L. infantum whole cells. Out of
this set, a 6-methoxy-quinalidine derivative (3, Figure 3A)
proved to be the best NDH2 inhibitor (K i = 8.9 µM). In
addition, this compound exhibited nanomolar activity against
both L. infantum axenic amastigotes (IC50 = 200 nM) and
promastigotes (IC50 = 30 nM). These remarkable results make
this novel quinalidine derivative a promising starting point
for molecular optimization and in vivo studies for visceral
leishmaniasis.

Ochoa et al. (2016) reported the use of the IBM World
Community Grid to run an SBVS campaign on 53 different
Leishmania proteins. First, molecular dynamics simulations were
performed for this entire set, and then, distinct conformational
states of each structure were selected for the SBVS effort.
Approximately 2,000 conformations were selected and used to
screen a database of 600,000 drug-like compounds, resulting in
1 billion protein-ligand complexes. A group of four proteins were
observed engaging in high–affinity interactions with the database

FIGURE 3 | Structure-based drug design (SBDD) strategies using virtual screening and molecular dynamics. (A) An SBDD workflow targeting type 2 NADH
dehydrogenase (NDH2) resulting in the identification of compound 3, a remarkably potent antileishmanial agent. (B) An SBDD strategy targeting diverse Leishmania
proteins that led to the discovery of 4, a novel compound having promising antileishmanial activity.
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compounds, and the most favorable binding energy occurred
in L. major dihydroorotate dehydrogenase (LmDHODH). This
enzyme catalyzes the oxidation of dihydroorotate, a key reaction
in the pyrimidine synthesis pathway (Cordeiro et al., 2012). Ten
top-scoring LmDHODH inhibitors were selected and evaluated
for their in vitro antileishmanial activity. Four molecules were
active against L. panamensis intracellular amastigotes, with
the most active one (4, Figure 3B) yielding a half maximal
effective concentration (EC50) of 1.42 µM, which is a value
that is comparable to that of the reference drug amphotericin
B. Furthermore, this compound showed no toxicity in human
macrophages. This compound is a promising candidate for
further development, and future investigations are expected to
assess its efficacy in reducing in vivo parasite burden.

The enzyme topoisomerase 1 from L. donovani (LdTop1) was
selected as the molecular target in an SBDD study by Mamidala
and coworkers (Mamidala et al., 2016). The enzyme catalyzes

single-strand breaks in DNA, which enables the topological
changes that are required during fundamental cellular processes
such as gene replication and transcription (Pommier et al.,
2016). The authors reported the discovery of a series of
LdTop1 inhibitors by using scaffold hopping and bioisosteric
manipulations. The structure of known Top1 inhibitors such as
camptothecin and edotecarin were used as the starting points for
the molecular design. The outline of the compounds was guided
by molecular docking runs using the X-ray structures of LdTop1
and the human ortholog. Six compounds showed selective
activity against LdTop1 over the human enzyme, yielding EC50
values from 1 to 30 µM (5–10, Figure 4). The best inhibitor (5,
EC50 = 3.51 µM) exhibited interesting biological activity against
L. donovani promastigotes (IC50 = 4.21 µM) and no toxicity
against mammalian cells. The structure of the ternary complex
5-LdTop1-DNA, which was predicted by molecular docking,
revealed key structural features to the design of novel analogs.

FIGURE 4 | Structure-based drug design approach to the discovery of a series of L. donovani topoisomerase 1 (LdTop1) inhibitors. The strategy employing
molecular docking led to the identification of compound 5 which shows suitable in vitro antiparasitic activity.
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FIGURE 5 | Structure-based virtual screening that resulted in the first report of
a series of non-covalent L. major tryparedoxin peroxidase I inhibitors. The
molecular docking approach led to the identification of aliphatic adamantyl
derivative 11 which shows suitable activity against the enzyme.

FIGURE 6 | Ligand-based approach to classify compounds according to their
mechanism of action. The effects of the dataset compounds on Leishmania
metabolism were analyzed by capillary electrophoresis–mass spectrometry,
and the data were used in a principal component analysis (PCA). The PCA
was able to cluster compounds according to the perturbation they caused in
the parasite’s metabolic network.

Considering the suitable antileishmanial activity and the lack of
cytotoxicity, further studies on compound 5 would be useful for
assessing other aspects, such as its pharmacokinetics profile.

Brindisi et al. (2015) reported for the first time the discovery of
non-covalent tryparedoxin peroxidase inhibitors. Tryparedoxin
peroxidase has been considered as a molecular target in SBDD
studies since it reduces hydroperoxides produced by infected
macrophages. This mechanism of detoxification is particularly
attractive for drug design since it is unique to the parasite and
essential for its survival (Fiorillo et al., 2012). By using the
X-ray structure of Leishmania major tryparedoxin peroxidase I
(LmTXNPx), the authors run a molecular docking effort and
selected a set of hits for experimental profiling. The docking

conformations were used for the design of a series of N,N-
disubstituted 3-aminomethyl quinolones and some of them
displayed activity against LmTXNPx. Forming a number of
hydrogen bonds and hydrophobic contacts with the enzyme,
the most potent compound (11, Figure 5), which has a bulky
aliphatic adamantyl system, showed activity in the micromolar
range (Kd = 39 µM). Calculation of physicochemical parameters
demonstrated the drug-likeness of the designed series. In view of
the activity and the drug-like properties of quinolone derivative
11, this compound represents a suitable starting point for further
studies aiming the development of novel drug candidates against
leishmaniasis.

Ligand-Based Studies
A variety of LBDD approaches have been recently reported
in leishmaniasis drug discovery. These studies are frequently
conducted in combination with experimental protocols and
SBDD methods. The main goals include the use of QSAR and
QSPR models to predict activity and ADMET parameters and the
search for novel compounds via ligand-based virtual screening
(LBVS). One of these studies reports an approach to pursuing
novel compounds based on their effects on cell metabolism
(Armitage et al., 2018). A collection of structurally diverse
compounds, including those enclosed in the Leishmania box (a
set of 592 compounds identified in HTS campaigns at GSK) (Peña
et al., 2015) was evaluated in axenic L. donovani amastigotes,
and the resulting metabolic changes were examined by capillary
electrophoresis–mass spectrometry (Figure 6). Next, a principal
component analysis (PCA) was applied to generate a model that
assorts these compounds according to their putative mode of
action. The authors demonstrated structural patterns involved in
the modulation of different metabolic pathways and additionally,
the role of physicochemical properties in the stimulation of
individual biochemical routes. The study is very interesting, as
it enables the classification of compound databases according to
the most likely mechanism of action and biological outcomes. It
also provides a way to run mechanistic studies of compounds that
are known to be active against Leishmania species, thus offering a
guide for downstream experimental profiling.

With the aid of QSAR modeling, Bhagat and coauthors
described the synthesis and in vitro evaluation of 26
aminophosphonate derivatives (Bhagat et al., 2014). Six
compounds (12–17, Figure 7A) displayed activity on L. donovani
promastigotes in the low micromolar range (IC50 from 7.10 to
8.95 µM) and cytotoxicity on J774 macrophages comparable
to that of amphotericin B. The authors took the gathered data
for the whole compound series to build Comparative Molecular
Field Analysis (CoMFA) models that have high predictive ability
(r2

pred = 0.87) (Cramer et al., 1988). The models provided useful
insights for future efforts on the optimization of this series. The
CoMFA contour maps indicated that adding an electronegative
group at the para position and a bulky electropositive substituent
at the meta position in ring A would improve biological activity.
Additionally, replacing ring B with substituted heterocyclic
systems was stressed to be a worthwhile strategy for achieving
more potent α-aminophosphonates as novel antileishmanial
agents.
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FIGURE 7 | (A) A series of aminophosphonate derivatives as novel compounds featuring antiparasitic activity against L. donovani promastigotes. The QSAR models
assigned rings A and B as the most relevant sites for molecular modification. (B) Triazole and thiosemicarbazone hybrids 18 and 19 showed promising activity
against L. major promastigotes and amastigotes.

In a recent study, Temraz et al. (2018) reported the
design of 1,2,3-triazole and thiosemicarbazone hybrids as novel
antileishmanial compounds and the calculation of their ADMET
profile. Out of the 17 evaluated molecules, most of them exhibited
biological activity that is comparable or superior to that of the
reference drug miltefosine. The most promising analogs, 18 and
19, exhibited IC50 values of 227.4 and 140.3 nM, respectively,
on L. major promastigotes (Figure 7B). On amastigotes, IC50
values of 1.4 and 1 µM were obtained for compounds 18 and
19, respectively. The folate pathway was proposed as the target
metabolic route, since folic acid reversed the antiparasitic activity.
Toxicity data on VERO cells showed a selectivity profile that
was superior to that of miltefosine (SI > 3000). Additionally,
compounds 18 and 19 demonstrated no acute toxicity in mice
at doses up to 125 mg/kg (oral) and 75 mg/kg (parenteral).
Calculation of ADMET parameters demonstrated the drug-
likeness of these compounds and their agreement with Lipinski’s

rule of five. Considering the activity, selectivity, physicochemical
and ADMET data, these triazole and thiosemicarbazone hybrids
consist of promising lead compounds to be further investigated.

Tetrahydro-β-carboline derivatives have recently been
reported to have antileishmanial activity. In an investigation
by Ashok et al. (2016) 16 analogs were designed, and most
of them showed promising activity against L. infantum
promastigotes (IC50 from 1.99 to 20.69 µM) and amastigotes
(IC50 from 0.67 to 4.16 µM). Compound 20, the most potent one
(IC50 = 0.67 µM for amastigotes), showed activity comparable to
that of amphotericin B (IC50 = 0.32 µM) and a selectivity index
(SI) that is superior to 298 for the parasite over mammalian
cells (Figure 8A). All compounds underwent QSPR studies
for physicochemical profiling. Most analogs, including 20,
showed no violation of the Lipinski’s rule of five, demonstrating
that they are likely to have good bioavailability. Given the
gathered activity, selectivity and physicochemical data, this series
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FIGURE 8 | (A) The synthesis of a series of 16 tetrahydro-β-carboline derivatives led to compound 20 having promising in vitro activity against L. infantum
promastigotes and amastigotes. (B) Cholesterol and deoxycholic acid derivatives 21 and 22 feature suitable activity against several Leishmania species.

consists of appropriate starting points for further investigation.
Additional studies would be highly desirable for evaluating the
in vivo reduction in parasite burden and hence, the potential of
this series as novel drug candidates for leishmaniasis.

Steroid derivatives were described as novel antileishmanial
agents in a recent report by da Trindade Granato et al. (2018).
Out of the 16 synthesized analogs, cholesterol derivative 21 and
some deoxycholic acid (DOA) derivatives proved active against
Leishmania promastigotes (Figure 8B). Most DOAs were active
against L. amazonensis intracellular amastigotes and displayed
low toxic effects to macrophages. DOA 22 showed the best
antiparasitic activity (IC50 = 15.34 µM) against amastigotes,
which led to the investigation of its mechanism of action.
Treatment of L. amazonensis with 22 led to the depolarization of
the mitochondrial membrane potential and augmented reactive
oxygen species (ROS) concentration, resulting in the arrest
of the cell cycle. Estimation of ADMET properties revealed
the suitability of 22 for oral administration. Additionally, the
predictions indicated that this compound would have good
blood-brain barrier permeation and would be susceptible to
metabolic clearance by CYP3A4 enzymes. Further efforts to

improve the in vitro activity of 22 and evaluate its in vivo efficacy
would be worthwhile.

CONCLUSION

A number of drug candidates are undergoing lead optimization
studies and advanced in vivo preclinical profiling for
leishmaniasis. Some of them could reach the clinical
development phase, which have recently been filled by
evaluations of different treatment regimens and combinations
of previously approved drugs. Despite these advances and
outcomes, it is prudent to adopt a conservative mindset
given the long path that these compounds will have to take
until potential approval and the high attrition rates that
characterize pharmaceutical research. In this context, long-
lasting efforts will be required to support state-of-the-art
research programs that focus on the discovery of novel lead
compounds for leishmaniasis. Such programs do exist today and
have taken major advantage of the plentiful availability of data on
Leishmania, as they move from trial-and-error to rational drug

Frontiers in Pharmacology | www.frontiersin.org November 2018 | Volume 9 | Article 127816

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01278 October 30, 2018 Time: 15:20 # 10

Ferreira and Andricopulo Chemoinformatics and Leishmaniasis Drug Design

design. Current SBDD and LBDD campaigns have steadily
contributed to rationalizing experimental data, thus providing
effective insights into the design of optimized compounds. An
important advance would be the validation of a higher number of
molecular targets. Opportunely, some research centers have put
intense efforts into this issue by developing large-scale chemical
genomics and target deconvolution expertise. Regardless of the
challenges ahead, chemoinformatics have been an important
tool to prospect and profile promising compounds. This is
corroborated by the findings discussed herein, which illustrate
the rewarding integration of computational and experimental
strategies in leishmaniasis drug R&D.
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Many drug discovery projects rely on commercial compounds to discover active leads.

However, current commercial libraries, with mostly synthetic compounds, access a small

fraction of the possible chemical diversity. Natural products, in contrast, possess a vast

structural diversity and have proven to be an outstanding source of new drugs. Several

chemoinformatic analyses of natural products have demonstrated their diversity and

structural complexity. However, to our knowledge, the scaffold content and structural

diversity of fungal secondary metabolites have never been studied. Herein, the scaffold

diversity of 223 fungal metabolites was measured and compared to the diversity of

approved drugs and commercial libraries for HTS containing natural, synthetic, and

semi-synthetic compounds. In addition, the global diversity of the fungal isolates was

assessed and compared to other reference data sets using Consensus Diversity Plots,

a chemoinformatic tool recently developed. It was concluded that fungal secondary

metabolites are cyclic systems with few ramifications and more diverse than the

commercial libraries with natural products and semi-synthetic compounds. The fungal

metabolites data set was one of the most structurally diverse, containing a large

proportion of different and unique scaffolds not found in the other compound data sets

including ChEMBL. Therefore, fungal metabolites offer a rich source of molecules suited

for identifying diverse candidates for drug discovery.

Keywords: chemical space, cheminformatics, consensus diversity plots, generative topographic mapping,

molecular diversity, natural products, fungal metabolites

INTRODUCTION

With a dramatic increase in commercially available compounds and the accessibility to high
throughput screening (HTS), many current drug discovery projects rely on commercial libraries
to uncover novel active compounds against different molecular targets (Roy et al., 2010). However,
numerous analyses have revealed that libraries with poor diversity undermine HTS productivity,
thus reducing the probability to find active compounds. Many research groups are investing in
enhancing their collections by adding compounds with different chemotypes rather than simply
increasing the size of their compound libraries (Macarron et al., 2011). Although, a highly diverse
compound library would be considered the most profitable starting point to find new leads, the
term diversity generates constant debate since the optimum composition of a library depends
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on the research objectives. Nonetheless, it has been shown that
a diverse compound library is directly linked to a higher hit
discovery rate than a similar sized combinatorial library with
limited structural variation (Harper et al., 2004).

Natural products have a vast diversity and are rich sources of
bioactive compounds (Hong, 2011). Several studies have shown
that natural products and drugs approved by the United States
Food and Drug Administration (FDA) share regions of chemical
space and have similar molecular properties (Gu et al., 2013).
Moreover, natural products have novel and complex chemotypes
(Yongye et al., 2012) and new chemical structures from natural
origin are constantly being discovered (Rosen et al., 2009).
Therefore, natural products offer an excellent opportunity to
enrich chemical libraries (Gu et al., 2013).

Specifically, natural products derived from fungi have been
the source of many important approved drugs with diverse
mechanisms of action (Pearce, 1997; Pearce et al., 2009). Fungi
are widely found in nature and are able to generate novel
structures with chemical diversity from simple starting materials
including organic acids, sugars, amino acids, terpenes, and
bases such as purines and pyrimidines. Gene sequencing has
demonstrated there are multiple “silent” biosynthetic pathways,
meaning there is genetic information that encodes for the
synthesis of new products that have not been studied. Taken
together with the vast number of unstudied fungal species in
the world (Hawksworth and Rossman, 1997), fungi are a highly
promising source for new medicines.

The number of in silico analyses of fungal metabolites is still
limited but the interest in this area is increasing. El-Elimat et al.
(2012) studied the chemical space of 105 compounds isolated
from filamentous fungi using nine molecular descriptors, and
compared them to other natural products and FDA-approved
anticancer drugs. In that work it was concluded that fungal
metabolites had a high overlap with the chemical space of
anticancer drugs, which was an encouraging finding for the
ongoing efforts to discover active anticancer compounds of
fungal origin (Kinghorn et al., 2016). Gonzalez-Medina et al.
(2016) analyzed a larger data set with 207 fungal isolates,
adding more information on structural complexity and diversity
of the fungal metabolites. In that work fungal metabolites
were demonstrated to be more complex than approved drugs
and commercial libraries, and as complex as compounds used
in the food industry, Generally Recognized as Safe (GRAS).
Those results suggested that fungal metabolites could be
selective and have an appropriate toxicity profile. Furthermore,
fungal metabolites had drug-like properties and covered similar

Abbreviations: AUC, area under the curve; CDP, Consensus Diversity Plot; CSR

curves, cyclic system retrieval curves; FDA, Food and Drug Administration;

FEMA, Flavor and Extract Manufacturers Association; GRAS, Generally

Recognized as Safe; GTM, Generative Topographic Mapping; HBA, hydrogen

bond acceptors; HBD, hydrogen bond donors; HTS, high throughput screening;

Log P, the octanol/water partition coefficient; MACCS, Molecular ACCess System;

MEQI, Molecular Equivalent Indices; MOE, Molecular Operating Environment;

MW, molecular weight; N, number of chemotypes: Nsing, number of singletons;

PCA, Principal Component Analysis; RBF, Radial Basis Function; RTB, number

of rotatable bonds; SE, Shannon entropy; SSE, scaled Shannon Entropy; TPSA,

topological polar surface area.

chemical space of approved drugs as well as unexplored areas.
However, the scaffold composition and diversity of fungal
metabolites has not been studied in a systematic and quantitative
manner.

The goal of this work was to measure the scaffold
content and diversity of an in-house library with 223 fungal
metabolites. Five data sets were used as reference: non-
anticancer drugs approved by the FDA, anticancer drugs
approved by the FDA, compounds based on the Flavor and
Extract Manufacturers Association of the United States (FEMA),
and two commercial libraries containing natural products
and semi-synthetic compounds. Additional criteria, including
molecular properties and fingerprints were used to obtain a
complete scaffold analysis and to compare datasets of different
size containing cyclic and acyclic compounds. Consensus
Diversity Plot (CDP) (González-Medina et al., 2016), a novel
chemoinformatic tool developed to analyze the global diversity of
compound data sets, was employed to compare the total diversity
of fungal metabolites with other reference collections.

METHODS

Data Sets
The chemotype diversity was analyzed for a unique in-house
library of 223 fungal metabolites (El-Elimat et al., 2012;
Gonzalez-Medina et al., 2016). For reference, five data sets
containing between 76 and 2,500 compounds were included
in the analysis: compounds based on the FEMA GRAS list
(hereafter referred to as GRAS; Burdock et al., 2006; Medina-
Franco et al., 2012); FDA approved drugs obtained from
DrugBank, version 4.0 (Wishart et al., 2006; Law et al.,
2014) subdivided into: anticancer and non-anticancer drugs;
and two datasets from a commercial vendor (http://www.ac-
discovery.com) containing mostly natural products derived from
plants (MEGx) and semi-synthetic compounds (NATx). Table 1
summarizes all data sets used, including source and number
of unique compounds after data curation. Duplicates in each
data set were removed using Molecular Operating Environment
(MOE), version 2014.0 (MOE, 2016). The complete data set of
fungal metabolites is available upon request, the other data sets

TABLE 1 | Compound data sets analyzed in this work.

Data set Unique

compounds

Sources

Fungal metabolites 223 El-Elimat et al., 2012

Natural products screening

compounds (MEGx)

2,500 http://www.ac-discovery.com

Semi-synthetic screening

compounds (NATx)

2,500 http://www.ac-discovery.com

Generally Recognized as

Safe (GRAS)

2,249 Burdock et al., 2006;

Medina-Franco et al., 2012

Anticancer drugs from

DrugBank

76 Wishart et al., 2006; Law et al.,

2014

Non-anticancer drugs from

DrugBank

1,399 Wishart et al., 2006; Law et al.,

2014
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and the compounds information can be downloaded from the
supporting information (Data Sheet 2).

Scaffold Definition and Acyclic Molecules
The term scaffold is now used extensively to describe the core
structure of a molecule. Different ways to obtain the scaffold of
a molecule have been reviewed elsewhere (Brown and Jacoby,
2006; Yan et al., 2009). In this work the scaffolds were derived
with the methodology previously described by Johnson and Xu
(Xu and Johnson, 2002). Chemotypes were calculated with the
program Molecular Equivalent Indices (MEQI; Xu and Johnson,
2001, 2002) resulting in a code of five characters assigned to
each chemotype using a unique naming algorithm (Figure 1).
For this work, both acyclic and cyclic systems (hereafter
referred to as chemotypes) were used to compare the structural
diversity.

Chemotype Diversity
For each data set the number of unique chemotypes was recorded
as well as the number of chemotypes containing only one
compound. The fraction of chemotypes and singletons relative
to the number of molecules in the data set were analyzed.

Cyclic system retrieval (CSR) curves were computed for each
data set to analyze the distribution of chemotypes (Lipkus et al.,
2008). To generate the CSR curves, the fraction of chemotypes
was plotted on the X-axis and the fraction of compounds that
contain those chemotypes was plotted on the Y-axis. Information
such as the fraction of chemotypes required to retrieve a certain
percentage of the molecules in the database and the area under
the curve (AUC) can be obtained from these curves. For this
work CSR curves were characterized calculating the AUC and the
fraction of chemotypes required to retrieve 50% of the molecules
(F50). The F50 metric has been used as a measure of scaffold
diversity (Krier et al., 2006; Lipkus et al., 2008; Medina-Franco
et al., 2009; Yongye et al., 2012).

As previously reported, the concept of Shannon entropy
(SE) (Godden and Bajorath, 2007) was used to determine the
distribution of compounds in the n most populated chemotypes
based on histogram representations (Medina-Franco et al., 2009).
The SE of a population of P compounds in n systems is defined
as:

SE = −

∑n

i= 1
pilog2pi (1)

pi =
ci

P
(2)

where pi is the estimated probability, or frequency, of the
occurrence of a specific chemotype i in a population of P
compounds containing a total of n chemotypes and ci is the
number of molecules containing a particular chemotype. The
value of SE ranges from 0, when all the compounds have the same
chemotype, and it takes its maximum value when SE equals to
log2 n, meaning that all the compounds are evenly distributed
among the n chemotypes representing a highly diverse data set.

To normalize SE by the different most populated chemotypes
n, the scaled Shannon entropy (SSE) is defined as:

SSE =
SE

log2n
(3)

SSE values range from 0, when all the molecules in the data set
contain only one chemotype, to 1 indicating high diversity within
the n chemotypes. Here, different numbers of n (from 5 to 70)
were analyzed.

Fingerprints and Molecular Properties
The inter- and intra-molecular properties diversity for each data
set was analyzed based on structural fingerprints and molecular
properties. Molecular ACCess System (MACCS) keys (166-
bits) fingerprints were computed with MayaChem Tools (Sud,
2016) and R Studio scripts (Team, 2015). To compare the data
sets, six properties of pharmaceutical relevance were calculated

FIGURE 1 | Definition of scaffold used in this work. The cyclic system was obtained after iteratively removing the side chains of the entire molecule. Acyclic and

cyclic systems were considered for this work and were defined by a code of five characters.
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with MOE software: hydrogen bond donors (HBD), hydrogen
bond acceptors (HBA), the octanol/water partition coefficient
(LogP), molecular weight (MW), topological polar surface area
(TPSA), and number of rotatable bonds (RTB). These molecular
descriptors have been used previously to measure molecular
properties diversity (Gonzalez-Medina et al., 2016).

Similarity Coefficients
There are many ways in which the similarities between pairs
of molecules can be calculated. Here, we used two well-
known measures to compare discrete and continuous variables.
The Soergel distance function is a complement of Tanimoto
similarity coefficient (Owen et al., 2011), widely used for binary
fingerprints.

Tanimoto (x, y) = (
x.yT

x.xT + y.yT − x.yT
) (4)

Soergel (x, y) = 1− tanimoto (x, y) (5)

The similarity coefficient between data sets (duv) was calculated
with a Soergel-based inter-data set distance function, previously
described by Owen et al. (2011).

duv =
1

NuNv

∑Nu

i= 1

∑Nv

j= 1
soergel (xui , x

v
j ) (6)

where Nu and Nv are the number of molecules in data sets
Du and Dv, and xui and xvj are the fingerprint vectors from the

compounds i or j of the fingerprint array for the data sets Du or
Dv, respectively. The diversity of the molecules within a single
data set (du) was calculated rearranging the Equation 6:

du =
2

N2
u

∑Nu−1

i= 1

∑Nu

j= i+ 1
soergel (xui , x

u
j ) (7)

The distance (or dissimilarity) between any two data sets, Du

andDv, was computed using the Euclidean distance (Perez, 2005;
Karthikeyan and Vyas, 2014), Equation (8), as follows. Let xi be
the N-dimensional vector of molecular properties for molecule
i in data set Du; similarly, let yi be the N-dimensional vector
of molecular properties for molecule j in data set Dv. (For the
analyses in this article, 6 molecular properties where used, so N
= 6). Let the number of molecules in data sets Du and Dv be U
andV, respectively. Then the inter-data set distance between data
sets Du and Dv, was computed as introduced in Equation (9):

Euclidean (Xi, Yj) =

√

∑N

k= 1
(Xik − Yjk)

2 (8)

Iuv =
1

UV

∑U

i= 1

∑V

j= 1
euclidean (Xi,Yj) (9)

Global Diversity Analysis with Consensus
Diversity Plots (CDPs)
CDPs have been designed to compare the diversity of compound
data sets analyzing, in two dimensions, four criteria of diversity
(González-Medina et al., 2016). Herein, we employed two

metrics to quantify structural diversity: MACCs keys/Soergel-
based distance, plotted on the X axis, and AUC, on the Y axis. The
third property analyzed in the CDPs was themolecular properties
intra-data set distance, calculated with Euclidean distance. This
property is represented in the plot by the color of each data
point: data sets in red had the highest Euclidean distances, i.e.,
are themost diverse, data sets in orange/brown have intermediate
diversity values and data sets in green are the least diverse. The
fourth property represented on this plot was the size of the data
sets. This property is represented by the relative size of the data
point representing each set; bigger data points correspond to data
sets with more compounds. Four regions, in different colors, can
be distinguished on the plot: the region in red contains the most
diverse data sets, i.e., this data sets are diverse either by their
scaffold content or if features of the entire molecule are analyzed
and compared using fingerprints; the white region shows the least
diverse data sets, i.e., these data sets were the least diverse by
scaffold content and fingerprints/similarity; blue, all data sets in
this region contain either acyclic compounds which are diverse if
the entire molecule is compared (i.e., using fingerprints) or data
sets containing cyclic systems for which side chains contribute
significantly to their diversity; yellow, this fourth region contains
data sets diverse by the number of different scaffolds with few
ramifications. To set the four regions on the plots we chose a
threshold for each axis: a value of 0.75 was chosen as the threshold
for the y axis, considering that the lowest AUC value a data set
could have is 0.5, if it is highly diverse by scaffolds, and the highest
AUC value it could have is 1; the threshold for the x axis was
the median of the Soergel intra-data set distance obtained from
MACCS keys fingerprints for each set, therefore this threshold is
specifically for the data sets analyzed in this work. As previously
discussed, other thresholds can be set up to define the quadrants
of the CDPs (González-Medina et al., 2016).

Visual Representation of the Chemical
Space
Two approaches were used to cluster and visualize the molecules
in the data sets based on their molecular properties and structural
features: Principal Component Analysis (PCA) (Jolliffe, 2002)
and Generative Topographic Mapping (GTM) (Osolodkin et al.,
2015). PCA is a technique often used to emphasize variation
and find patterns in a data set. The main disadvantage of PCA
is that it is a linear mapping technique and is unable to map
non-linear data. GTM is a nonlinear method that trains a Radial
Basis Function (RBF) neuronal network to produce a mapping
from an n-dimensional data space to a two dimensional latent
space (Owen et al., 2011; Gaspar et al., 2013). For further
explanation on each model, the reader is referred to the cited
papers (Gaspar et al., 2013, 2015). To represent the chemical
space using molecular fingerprints, a fingerprint array was
assembled from the MACCS key fingerprint results, consisting
of 166 bits in which each element is either 0 or 1 to indicate the
absence or presence, respectively, of structural elements in the
corresponding molecular structure. The six molecular properties
of pharmaceutical relevance (HBD, HBA, LogP, MW, TPSA, and
RTB) were arranged in a similar way and were used as the data
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set for the models. GTM and PCA were used as dimensionality
reduction techniques to encode all the molecular properties and
fingerprints into two-dimensional spaces that could be visualized
easily. All the models and visualizations were implemented using
the Matlab toolbox Netlab (Nabney, 2002).

RESULTS AND DISCUSSION

The scaffold diversity of the fungal metabolites was compared
to data sets with biological relevance like approved drugs
and commercial libraries available for HTS. In this work the
chemotypes were calculated with the program MEQI (Xu and
Johnson, 2001, 2002), as described in the Section Materials
and Methods. Table S1 shows the most frequent chemotypes
found in the fungal metabolites data set, along with their
chemotype identifier. Interestingly, it was found that this library
has several unique scaffolds not found in the reference data
sets. To further explore the uniqueness of the scaffolds of
the fungal metabolites, we compared the scaffolds from this
data set with the scaffolds of all the compounds found in
ChEMBL, version 22 (Bento et al., 2014; Davies et al., 2015). An
exceptional finding was that out of the 130 different scaffolds
in the fungal metabolites set, 26 were not found in ChEMBL
or any other data set studied in this work. Figure 2 shows

representative scaffolds in the fungal metabolites data set not
found in other data sets. Most of these compounds have been
shown to have cytotoxicity against a variety of human tumor
cell lines. For example, the chemotype TBEMM corresponds
to the cytotoxic compounds Acremonidin C and Acremonidin
A, reported by Ayers et al. (2012). The scaffolds with the
chemotype V7D6X and YVGCT correspond to Palmarumycin
CP3 and Palmarumycin CP4, whose cytotoxic activity has
not been reported. However, their structural similarity with
Palmarumycin CP1 could indicate that the compounds in the
fungal metabolites data set with these scaffolds could have
antibacterial, antifungal and antitumoral activities (Kornienko
et al., 2015). The scaffolds with the codes 8MY2X and ROFC5
belong to new secondary metabolites isolated from Eupenicillium
brefeldianum and Aspergillus fumigatus, respectively, and their
biological activity has not been reported. Figure 2 exemplifies
the considerable structural variation among substances that have
been isolated and characterized from filamentous fungi.

Counts
Table 2 summarizes the number of chemotypes (N) in each
database, the fraction of chemotypes relative to the number of
molecules in each data set (N/M), and the number and fraction
of singletons (Nsing). Based on N/M values, the set of fungal

FIGURE 2 | Unique scaffolds of fungal origin.
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metabolites, containing 223 compounds, has an intermediate
chemotype diversity (N/M = 0.587), similar to the proportion of
chemotypes in the non-anticancer drugs library, containing 1,399
compounds (N/M= 0.572). The set of anticancer drugs has fewer
compounds but the largest proportion of chemotypes relative
to the number of molecules (N/M = 0.921) and the largest
proportion of singletons relative to the number of molecules
(Nsing/M = 0.855). In contrast, GRAS, NATx, and MEGx data
sets with more compounds (Table 1) have the lowest scaffold
diversity with a smaller proportion of chemotypes and singletons.

CSR Curves
CSR curves represent the fraction of compounds in the data set
(y-axis) contained in a fraction of chemotypes (x-axis). A data
set with maximum diversity would contain a different chemotype
for each molecule in the library and the CSR curve would be a
diagonal with an AUC of 0.5. Figure 3 shows the CSR curves
calculated using the chemotypes of all the data sets analyzed in
this study.

The CSR curve for the fungal metabolites indicates this data
set contains more different scaffolds than MEGx, NATx, GRAS,
and the non-anticancer drugs. All these data sets contain at least
six times more compounds than the set with fungal metabolites
(Table 1). The CSR curve for the anticancer drugs is closer to a
diagonal indicating large diversity, while the curves for GRAS
undergoes a sudden increase on its slope indicating this data
set has the lowest chemotype diversity. AUC and the fraction of
chemotypes that contains 50% of the molecules in the data set
(F50) were used to compare the curves for each set quantitatively
(Table 2). An AUC value closer to one indicates low chemotype
diversity and higher F50 values indicate higher diversity. Based on
thesemetrics, the fungalmetabolites aremore diverse thanMEGx
and NATx, commercial data sets with 2,500 natural products and
semi-synthetic compounds and approved non-anticancer drugs,
with an AUC of 0.644 and a F50 = 0.244. As expected, anticancer
drugs showed the lowest AUC and the largest F50 values (0.537
and 0.457, respectively). In agreement with other metrics of
scaffold diversity (i.e., N/M), the GRAS and MEGx libraries had
the highest AUC and lowest F50 values, respectively, indicating
low diversity.

TABLE 2 | Results of different chemotypes diversity analyses on the data

sets.

Database N N/M Nsing Nsing/N Nsing/M AUC F50

Fungal

metabolites

131 0.587 87 0.664 0.390 0.664 0.244

MEGx 935 0.374 642 0.687 0.257 0.781 0.072

NATx 799 0.320 400 0.501 0.160 0.768 0.116

GRAS 238 0.106 150 0.630 0.067 0.926 0.004

Anticancer

drugs

70 0.921 65 0.929 0.855 0.537 0.457

Non-

anticancer

drugs

844 0.572 686 0.813 0.465 0.699 0.157

N, number of chemotypes; M, number of molecules; Nsing, number of singletons; AUC,

area under the curve; F50, fraction of chemotypes that contains 50% of the data set.

Scaled Shannon Entropy (SSE)
SSE was computed to get an idea of the compound distribution
in themost populated chemotypes. For this approach, a SSE value
closer to 1 indicates that compounds are evenly distributed in the
different chemotypes and a low SSE value (i.e., closer to 0) means
all the compounds share the same chemotype. SSE will have its
maximum value only when all chemotypes contain the same
number of compounds, or when each chemotype contains only
one compound. Table 3 summarizes the SSE for the first 70 most
populated chemotypes in each library. The chemotype diversity
of the fungal metabolites is higher (SSE values ranging from
0.942 to 0.967) compared to the non-anticancer drugs and the

FIGURE 3 | Cyclic system retrieval (CSR) curves for the data sets

studied in this work. The curve for the anticancer drugs indicates large

chemotype diversity. In contrast, the curve for GRAS, MEGx, and NATx

suggest less diversity. The curves can be characterized quantitatively by the

area under the curve (AUC) and the fraction of chemotypes required to retrieve

50% of the compounds in the data sets F50 (see Table 2).

TABLE 3 | Scaled Shannon entropy (SSE) results for the first 70

chemotypes and the fraction of compounds contained in the top most

populated chemotypes for the data sets.

Database SSE5 SSE10 SSE20 SSE30 SSE40 SSE50 SSE60 SSE70

Fungal

metabolites

0.967 0.959 0.954 0.954 0.956 0.947 0.943 0.942

MEGx 0.883 0.873 0.869 0.858 0.858 0.858 0.857 0.856

NATx 0.916 0.931 0.938 0.939 0.939 0.938 0.938 0.936

GRAS 0.617 0.57 0.541 0.526 0.517 0.512 0.507 0.501

Anticancer

drugs

0.991 0.964 0.974 0.981 0.986 0.989 0.991 0.992

Non-

anticancer

drugs

0.769 0.750 0.762 0.777 0.789 0.799 0.803 0.809
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commercial libraries NATx and MEGx, which represent larger
data sets containing natural products. Compounds in the library
with anticancer drugs are more evenly distributed among the
chemotypes studied (SSE values higher than 0.960). The least
diverse set is GRAS (SSE values ranging from 0.502 to 0.617).
Of note, the most diverse data sets, the fungal metabolites and
the anticancer drugs, are also the smallest data sets containing
only 223 and 76 compounds, respectively (Table 1). Overall, the
SSE values vary for the rest of the libraries, indicating that that
scaffold diversity decreases in this order: anticancer drugs, fungal
metabolites, NATx, MEGx, non-anticancer drugs, and GRAS.
Interestingly, if the most populated chemotypes in NATx and

MEGx are analyzed, these sets are more diverse than that of the
non-anticancer drugs.

Figure 4 shows the distribution and SSE values of compounds
in the top 70 most populated chemotypes of representative data
sets. Data sets with higher SSE are colored dark red and data
sets with lower SSE are light red. The chemotypes for the fungal
metabolites, Figure 4B, are more evenly distributed after the
top 10 most populated chemotypes and is the second most
diverse data set. Figure 4A shows that anticancer drugs take its
maximum SSE value when all the chemotypes are considered,
indicating there is almost one different chemotype for each
molecule in this data set. MEGx (Figure 4C) has SSE values

FIGURE 4 | Distribution of compounds in the top 70 most populated chemotypes. Values of SSE70 close to 1.0 are dark red and indicate large chemotype

diversity, smaller SSE values are in light red indicating less diversity. (A) Anticancer drugs, (B) fungal metabolites, (C) MEGx, (D) GRAS.
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between 0.883 and 0.856; for this library the first most populated
chemotype contains 195 compounds and the scaffolds are more
evenly distributed after the first 20 most populated chemotypes.
This is also the case with GRAS (Figure 4D), the least diverse set,
measured with SSE, for which the most populated chemotype
contains 1,055 compounds, nearly half of the data set. The
distribution of the compounds in each chemotype and the SSE70
value for the other data sets are shown in Figure S1.

Inter- and Intra-Library Similarities Using
MACCS Keys and Molecular Properties
As stated in the Methods, the inter- and intra- library similarity
was computed using MACCS keys/Soergel-based distance and
molecular properties/Euclidean distance. Figures 5A,B show the
corresponding distance matrices computed with MACCS keys
and molecular properties, respectively. Values along the diagonal
in red represent the intra-library diversity, i.e., the diversity
within the compounds contained in a data set: the least diverse
libraries are in light red while the most diverse libraries are in
dark red. The values in blue represent the inter-library diversity,
i.e., the diversity between the compounds in all the data sets:
the least diverse libraries are in light blue while the most diverse
libraries are in dark blue.

MACCS Keys—Structural Features
In Figure 5A the inter-library similarity matrix, in blue, shows
that the fungal metabolites are structurally different to approved
drugs, with a distance of 0.62 to the anticancer drugs and
a distance of 0.63 to the non-anticancer drugs. Of note, the
fungal metabolites and MEGx have similar structural features,
but both libraries are structurally different to the semi-synthetic
compounds in NATx. NATx is the data set most similar to
approved drugs. This suggests that semi-synthetic compounds
have been modified to be structurally similar to approved drugs,
decreasing their structural similarity to natural products.

In Figure 5A the intra-library similarity in the red diagonal
shows that GRAS and non-anticancer drugs are the most diverse
data sets using MACCs keys (with intra-set distance of 0.61
and 0.63, respectively). In contrast, GRAS is the set with the
lowest scaffold diversity. The reason for this is that 65% of GRAS
molecules are classified into two chemotypes, namely, non-
cyclic structure (49%; 00000), and benzene ring (16.3%; RYLFV).
Nonetheless, having the same chemotype does not imply that
molecules should present the same chemical features, especially
with very common/simple chemotypes as in this case. This is
a good example of how diversity analysis should be conducted
usingmultiple metrics (Singh et al., 2009; Gonzalez-Medina et al.,
2016).

Molecular Properties
According to the distance scores of the molecular properties, the
fungal metabolites intra-library molecular properties, Figure 5B
red diagonal, are more diverse than the properties of non-
anticancer drugs, GRAS and NATx, with a Euclidian distance
equal to 2.73. Comparing the fungal metabolites inter-library
distances to the lowest inter and intra-library distances obtained
for other data sets, e.g., GRAS intra-library similarity with

FIGURE 5 | Intra and inter-library similarity. The diagonal in red depicts

intra-library comparisons, i.e., the similarity between the compounds in a data

set. Dark red scores indicate large distance or low similarity, while light red

colors indicate small distance or high similarity. The matrix in blue depicts

inter-library similarity comparisons, i.e., the similarity between the compounds

in the data sets. Dark blue scores indicate large distance or low similarity, while

white or light blue colors indicate small distance or high similarity. (A) Soergel

distance using MACCS keys (166-bit) fingerprints. (B) Euclidean distance

function using molecular properties.

a value of 1.00 or NATx and non-anticancer drugs with an
inter-library similarity of 1.90, the fungal metabolites have
diverse molecular properties compared to the other data
sets. Of note, the inter-library results, in a blue scale, show
that the fungal metabolites have the largest dissimilarity with
GRAS, which has been previously demonstrated to contain
smaller compounds with less HBD, HBA, MW, and TPSA
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than the fungal metabolites (Gonzalez-Medina et al., 2016).
Table S2 contains the statistics of each property for all the
data sets. Figure 5B also shows that NATx has the lowest
inter-data set distance (more similar) to the rest of the
data sets studied and GRAS is the least similar (i.e., the
most distant) to the other libraries. Interestingly, approved
anticancer drugs and GRAS present the largest distance to the
other data sets, with an added distance of 28.72 and 27.37,
respectively. As previously discussed (Gonzalez-Medina et al.,
2016), compounds in the data set containing approved anticancer
drugs show the largest distance (dissimilarity) to the non-
anticancer drugs.

Global Diversity Analysis with Consensus
Diversity Plots (CDPs)
Figure 6 shows a CDP, which compares the global structural
diversity of all data sets, by plotting MACCs keys/Soergel-
based distance in the x axis and AUC in the y axis. The
size of the data points represents the relative size of each
data set (Table 1) and the color of each data point represents
the molecular properties diversity (Figure 5B). Remarkably,
the fungal metabolites, a data set with 223 compounds, had
more different scaffolds than data sets with 2,500 compounds,
such as MEGx and NATx; the fungal metabolite dataset is
on average, more structurally diverse than MEGx and more
diverse than NATx when considering molecular properties. The
fungal metabolites and the anticancer drugs are located in
the yellow quadrant, indicating high scaffold diversity but low
structure (fingerprint-based) diversity. Furthermore, the data
point in red, representing the fungal metabolites, indicates this
data has diverse molecular properties. Overall, non-anticancer
drugs, in the red quadrant, are the most structurally diverse
(with a Soergel-based distance of 0.63 and an AUC of 0.699).
However, non-anticancer drugs in orange/brown are less diverse
by molecular properties than the fungal isolates. GRAS, in the
blue quadrant, is themost diverse library when structural features
are taken into account, but the compounds in this data set
have low molecular properties diversity. Compared to the other
data sets, MEGx, in the white quadrant, is the least structural
diverse. The molecular properties diversity is independent of
the structural diversity or the size of the libraries, that is,
small data sets can be both structurally diverse and diverse by
their molecular properties, or structurally diverse but with low
molecular properties diversity.

Visual Representation of the Chemical
Space
Figure 7 depicts the visual representation of the six data sets
generated with GTM using the structural features MACCS keys.
The fungal metabolites occupy similar areas of the structural
space of MEGx, which is in agreement with the results observed
on Figure 5A. The clusters of compounds in the structural
space of the fungal metabolites are in different areas of the
space of most of the approved drugs, and particularly, from
the approved anticancer drugs. This is also in line with the
results on Figure 5A and could give the notion that different

FIGURE 6 | Consensus Diversity Plot comparing the diversity of six

data sets. The structural diversity was defined with MACCs keys

fingerprints/Soergel-based distance and area under curve (AUC). The

quadrants color codes are as follows: red, indicates the library is diverse

considering its scaffolds and/or side chains; white, the library is not diverse;

blue, the library is diverse if the chemical features of the entire molecule are

considered and/or side chains contribute significantly to the diversity; yellow,

the scaffolds of the molecules are the main factor contributing to the diversity

and/or this set contains mostly rings with few side chains. Data points are

colored by the diversity of the physicochemical properties of the data set as

measured by the Euclidean distance of six properties of pharmaceutical

relevance. The distance is represented with a continuous color scale from red

(more diverse), to orange/brown (intermediate diversity) to green (less diverse).

The relative size of the data set is represented with the size of the data point:

smaller data points indicate compound data sets with fewer molecules.

A value of 0.75 for AUC and the median value of the MACCs keys

fingerprints/Soergel-based distance were used to set the quadrants.

structural features found in the fungal metabolites are not
found in the approved drugs. Interestingly, semi-synthetic
compounds (NATx) are in different areas of the structural space
of natural products, compared with the fungal metabolites and
MEGx. Approved non-anticancer drugs and MEGx are the
most dispersed, whereas GRAS seems to be more clustered
in a high-density region that contains some compounds from
MEGx.

Figure S2 depicts the visual representation of the chemical
space generated with GTM using physicochemical properties.
The fungal metabolites form small clusters and occupy similar
areas of the physicochemical space ofMEGx, NATx, and the non-
anticancer drugs, with a few exceptions found on the bottom left
of the fungal metabolites plot, but occupy different areas than
the anticancer drugs. NATx and GRAS are less distributed in the
chemical space. This result is in agreement with Figure 5B.
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FIGURE 7 | Visual representation of the chemical space of the six data sets generated with Generative Topographic Mapping (GTM) using MACCS

keys fingerprints.

The visualization generated with PCA using MACCS keys
fingerprints (Figure S3) generated clusters of molecules easier
to interpret. The results obtained with this representation
were in line with the results obtained with GTM. Based on
the structural features encoded by MACCS keys, some fungal
metabolites are in the same region as the approved anticancer

and non-anticancer drugs. However, most of the molecules in
the data sets containing natural products, MEGx and the fungal
metabolites, are clustered together in a region separated from
the other data sets. Figure S4 depicts the visualization of the six
molecular properties (described in the Materials and Methods
Section) using PCA: the fungal metabolites are in similar regions
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as the non-anticancer drugs, with a few compounds dispersed
similarly to MEGx. Anticancer drugs are the most spread (more
diverse), while GRAS is more constrained in to specific areas
of the chemical space. These results are also in agreement with
results derived from Figure 5B.

CONCLUSIONS

Using computational-driven approaches, this work reports the
structural diversity and scaffold content of a set of 223 fungal
metabolites isolated and characterized in discovery projects
funded by the USA National Cancer Institute and the Mexican
National Research Council of Science and Technology. Generally
speaking, most of these compounds were isolated while pursuing
new anticancer drug leads. The structural diversity of the
fungal metabolites was quantified using three complementary
approaches: Cyclic Systems Retrieval curves, Shannon entropy,
and molecular fingerprints. The dataset of fungal metabolites was
compared to datasets that represent synthetic, semi-synthetic,
and natural products commercially available for HTS and
approved drugs. It was concluded that most of the chemical
structures of the fungal metabolites are cyclic compounds with
few side chains. The diversity analysis showed that the set of
fungal secondary metabolites herein studied is more diverse than
commercial libraries with natural products and semi-synthetic
compounds despite the fact that the reference collections
are expected to be diverse and contain more compounds.
Moreover, the fungal dataset was developed mostly via pursuing
leads that were cytotoxic to cancer cell lines; if the diversity
of the targets were to be expanded, the resultant chemical
diversity may expand as well. Moreover, the fungal metabolites
have a large proportion of different and unique scaffolds
not found in the other reference sets, including ChEMBL.
Additionally, visualizations of the chemical space, based both
on molecular fingerprints and molecular properties, revealed
that the fungal metabolites cover different areas of chemical

space when compared to that of approved drugs, offering the
possibility to expand the medicinally-relevant chemical space.
For example, this diverse data set could be used for HTS to
find new hits with new scaffolds and diverse properties. The
high and unique scaffold diversity of fungal metabolites revealed
in this work, in addition to the high structural complexity
and balanced molecular properties revealed in previous studies
(Greve et al., 2010; El-Elimat et al., 2012; Cragg and Newman,
2013; Gonzalez-Medina et al., 2016), further supports fungal
metabolites as a promising sources of novel compounds for drug
discovery.
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The parasite Plasmodium falciparum is the most lethal species of Plasmodium to

cause serious malaria infection in humans, and with resistance developing rapidly novel

treatment modalities are currently being sought, one of which being combinations

of existing compounds. The discovery of combinations of antimalarial drugs that act

synergistically with one another is hence of great importance; however an exhaustive

experimental screen of large drug space in a pairwise manner is not an option. In

this study we apply our machine learning approach, Combination Synergy Estimation

(CoSynE), which can predict novel synergistic drug interactions using only prior

experimental combination screening data and knowledge of compound molecular

structures, to a dataset of 1,540 antimalarial drug combinations in which 22.2% were

synergistic. Cross validation of our model showed that synergistic CoSynE predictions

are enriched 2.74× compared to random selection when both compounds in a predicted

combination are known from other combinations among the training data, 2.36× when

only one compound is known from the training data, and 1.5× for entirely novel

combinations. We prospectively validated our model by making predictions for 185

combinations of 23 entirely novel compounds. CoSynE predicted 20 combinations to be

synergistic, which was experimentally validated for nine of them (45%), corresponding to

an enrichment of 1.70× compared to random selection from this prospective data set.

Such enrichment corresponds to a 41% reduction in experimental effort. Interestingly,

we found that pairwise screening of the compounds CoSynE individually predicted to

be synergistic would result in an enrichment of 1.36× compared to random selection,

indicating that synergy among compound combinations is not a random event. The

nine novel and correctly predicted synergistic compound combinations mainly (where

sufficient bioactivity information is available) consist of efflux or transporter inhibitors (such

as hydroxyzine), combined with compounds exhibiting antimalarial activity alone (such as

sorafenib, apicidin, or dihydroergotamine). However, not all compound synergies could

be rationalized easily in this way. Overall, this study highlights the potential for predictive

modeling to expedite the discovery of novel drug combinations in fight against antimalarial

resistance, while the underlying approach is also generally applicable.

Keywords: synergy, combinations, malaria, plasmodium falciparum, artificial intelligence, modeling
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INTRODUCTION

Malaria is a deadly and worldwide disease, with an estimated
445,000 deaths globally in 2016, of which 91% are estimated
to have occurred in Africa (World Health Organisation, 2017).
Despite global mortality rates declining by 62% between 2000
and 2015, this disease remains a major killer for children under
5 years, with a young life being taken every 2min (World Health
Organisation, 2017).

When exposed to antimalarial compounds, the malaria-
causing parasite Plasmodium falciparum can over time develop
resistance to different therapies and via a number of distinct
mechanisms (Mita and Tanabe, 2012). This tendency has
rendered many antimalarial therapies ineffective in the past, and
continues to threaten the current standards of care. In order
to combat resistance, options include the design or discovery
of new antimalarial compound classes or analogs that offer
increased efficacy over those with prior use. However, in the
present time, and in absence of these novel discoveries, the
current World Health Organization (WHO) guidelines state that
combinations of at least two effective antimalarial medicines
with different modes of action need to be administered in order
to help protect against resistance (World Health Organisation,
2015). At present, the standard of care listed by WHO
includes artemisinin-based combination therapies (ACT), such
as artemether with lumefantrine, artesunate with amodiaquine,
and dihydroartemisinin with piperaquine (Figure 1). Resistance
to artemisinins has arisen more recently in South East Asia
(World Health Organisation, 2017), raising concern on the future
effectiveness of ACTs since resistance to the ACT partner drug
significantly decreases the clinical efficacy of the combination
therapy (Bacon et al., 2007). Alarmingly, this concern has recently
been confirmed in Cambodia, in the form of resistance to
the first line treatment dihydroartemisinin-piperaquine by P.
falciparum strain PfPailin (Imwong et al., 2017). The evolution
and spread of multidrug resistant organisms renders the selection
of novel drug combinations only a viable medium-term option,
and there is continued effort to map ACT partner drugs by
the World Wide Antimalarial Resistance Network (World Wide
Antimalarial Resistance Network, 2014).

The combined properties resulting from a mixture of drugs
is not always equivalent to the sum of their parts. Drug
combinations are well-known to result in an increase or decrease
in measured therapeutic efficacy (synergy or antagonism,
respectively), result in no difference in effectiveness (additivity),
or present an increase or decrease in the number of side effects
experienced (drug-drug interactions, which would then also
possibly represent synergy, albeit of undesired effects; Lehár
et al., 2009; Tatonetti et al., 2012). In the case of malaria (and
probably many other diseases one wants to treat), the desired
effect sought after is usually synergy, i.e., a drug combination
for which the antimalarial effect is greater than that observed by
each compound alone, and greater than what would be expected
by assuming solely additivity of compound effect (Sucher, 2014).
In this case lower doses of each individual compound would be
required, thereby potentially achieving the desired efficacy with
in many cases reduced side-effects (Csermely et al., 2005).

FIGURE 1 | Artemether and Lumefantrine, Artesunate and Amodiaquine, and

Dihydroartemisinin and Piperaquine are antimalarial combinations

recommended by the WHO as the current standard of care to help protect

against drug resistance in P. falciparum.

Antimalarial drug combinations can be either novel, or
represent the repurposing of drugs used previously for other
purposes, such as in the use of tricyclic antidepressants in
chloroquine-resistant strains of P. falciparum (Bitonti et al.,
1988). High throughput screening for antimalarial compound
combinations is one mechanism by which discovery of novel
combinations may be found faster (Mott et al., 2015). However,
the discovery of synergistic combinations is experimentally
challenging: As the number of compounds increases, very quickly
too does the number of potential combinations, in particular
when considering multiple replicates, the requirement of
screening concentration matrices, and possibly against different
strains of the pathogen. For example, 100 compounds screened
pairwise results in 4,950 compound combinations, and testing
for synergy in a 6 × 6 dose-response matrix altogether requires
178,200 data points (with numbers increasing further when
taking into account replicates, different strains, etc.; Cokol et al.,
2014). Increasing the search space by the addition of just 25 more
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compounds would require over 100,000 further data points, due
to combinatorial explosion.

Computational approaches have been investigated as a
means to predict the synergistic interaction of compounds
previously, with methods that utilize networks of pathways
and simulation (Lehár et al., 2007; Nelander et al., 2008;
Miller et al., 2013; Huang et al., 2014; Patel et al., 2014;
Zhang et al., 2014), relationships between physicochemical
properties (Yilancioglu et al., 2014), chemogenomics approaches
(Bansal et al., 2014; Wildenhain et al., 2015; KalantarMotamedi
et al., 2018), and single agent efficacies (Gayvert et al.,
2017) and/or combinations (Menden et al., 2018) measured
across multiple cell lines (for recent reviews of compound
combination modeling and perspectives, see Bulusu et al.,
2016; Weinstein et al., 2017; Tsigelny, 2018). A disadvantage
to many of these approaches is that they often require
experimental knowledge of underlying biological interactions
between drugs and disease, or chemogenomic or phenotypic
readouts (Jansen et al., 2009; Bansal et al., 2014; Wildenhain
et al., 2015; Menden et al., 2018). This data may be
difficult to obtain, non-existent, or expensive to collect
enough to create a predictive model from. In addition, the
prediction of novel combinations themselves will rely on the
same experimental descriptors being available for each new
compound.

In order to address these problems, we have developed
CoSynE (Combination Synergy Estimation; Mason et al., 2017).
CoSynE constructs predictive models from existing combination
screening data, and utilizes only the known structures of
compounds that have been part of these screens. As such,
CoSynE requires only two pieces of information, namely a list
of compounds together with their structural representations, and
a list of compound combinations together with a label whether

the action of each combination was found to be synergistic,
antagonistic, or additive (depending on the criteria for those
categories one finds appropriate in a particular case). The
compounds are transformed into two classes of representation
by CoSynE: Firstly, a compound structure fingerprint (SFP; a
2048-bit Morgan Fingerprint), and secondly a predicted target
fingerprint representing bioactivity spectra [TFP; 1,080 predicted
protein target binding probabilities above a training cut-off,
using PIDGIN (Mervin et al., 2015)]. This hence yields three
classes of models: SFP, TFP, and STFP (a concatenation of
the SFP and TFP fingerprints). These fingerprints are used as
input to machine learning models that make inferences between
a particular representation and the experimentally observed
synergy. A number of models are optimized for the prediction
of synergistic combinations, and the best-performing final model
is selected following a rigorous cross-validation procedure, where
either both compounds are known to the model, one compound
is unknown, or both are unknown, such that the ability of CoSynE
to extrapolate to novel chemical spacemay be inferred (Figure 2).

We have previously applied CoSynE to the prediction of novel
antibiotic combinations effective against E. coli (Mason et al.,
2017). In this initial study, CoSynE was trained upon 156 pairs
of 18 compounds using the SFP representation of combinations
(since in preliminary studies other types of descriptors were
found to lead to inferior performance), which was then
used to pre-screen a set of 123 combinations, comprising
compounds that were known and/or unknown to the model.
After prospective validation, 10 novel synergistic combinations
were confirmed from a list of 12 that were highlighted by
CoSynE. The results from our previous study correspond to a
2.8-fold enrichment in the discovery of synergistic combinations
vs. that expected by random selection from the same set of
compounds.

FIGURE 2 | Three different rounds of cross-validation (CV) were employed to test model performance prior to making final predictions. Numbers on axes represent

compound IDs in a compound combination training dataset. K-fold randomly selects a 1/K fraction of combinations to remove from the training data and predict in

each round; Leave One Compound Out (LOCO) chooses pairs to remove based upon one compound in each round, and Leave One Pair Out chooses pairs to

remove based upon a choice of two compounds in each round. Green; training combinations; blue; test combinations, red; held-out combinations, black; self-self

crosses (not included in training data).
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In the present study, we were starting with a much
larger training dataset consisting of 1,540 combinations of 56
compounds tested against P. falciparum (Mott et al., 2015).
Next, CoSynE was used to pre-screen a library of 23 compounds
unknown to the model (see Methods section for compound
selection process) by predicting which combinations of those
compounds are likely to exhibit novel antimalarial synergy.

These predictions were prospectively validated by carrying
out a full pairwise experimental screen of all 23 compounds
the model could have chosen from (in order to also provide
a negative control, i.e., testing of compound combinations
not predicted to be synergistic by the model). This validation
represents making predictions in entirely novel compound space,
where both compounds have not been seen by the model before,
which is a very tough challenge, compared to our previous study
(and many other studies) which mostly included compounds
that were previously known to the model. However, prospective
validation in the present study showed CoSynE predictions
to be enriched with 1.70 times more synergistic combinations
than expected by random selection (over an already rather
high baseline synergy level, see details below), and hence also
predictions in novel chemical space are enriched over random.

RESULTS AND DISCUSSION

Similarity of Training and Validation Sets
Clustered hierarchical similarities are shown for whole and
scaffold structures in Supplementary Figure 1. In general, there
is little structural similarity between compounds in the training
data compared to the prospectively tested data. Compounds
which formed the top five most synergistic combinations in both
the training and validation datasets are shown in dimensionally-
reduced chemical space in Figure 3. The lack of a clear clustering
between the top synergistic compound structures in either
datasets demonstrates the difficulty in selection of compounds
to screen simply via structural similarity alone. In addition
to the observation that synergy is more commonly observed
for drugs targeting the same processes (Brochado et al., 2018),
the relationship between compound structure-related properties
and synergistic interaction has been shown previously [such as
lipophilicity and synergy in the case of anti-fungals (Yilancioglu
et al., 2014)]. Overall, the inference of complex relationships,
such as these on a scale that may quickly explode to intractable
proportions is a task highly applicable to machine learning.

Dataset Composition and Model
Performance During Cross-Validation on
Training Set
The number of high quality (HQ) training combinations per
dataset (see Methods section for definition) and synergy type
is shown in Table 1. The Dd2 dataset contains the greatest
number of HQ combinations (1,245), followed by 3d7 (1,194),
and then Hb3 (1,159). This was reflected in the results of the
5-fold leave-one-compound-out (LOCO) and leave-one-pair-
out (LOPO) cross-validation routines (Supplementary Table 1),
which showed the Dd2 model to outperform 3d7 and Hb3.

The mean average Matthews Correlation Coefficient (MCC)
score for each strain (i.e., across all fingerprint type and all CV
routines) were 0.19 (Dd2), 0.18 (3d7), and 0.11 (Hb3). Although
these MCC scores are not particularly high in absolute terms
(particularly since the more difficult CV routines bring the scores
down, while considering that a score of 0 is equivalent to random
selection), the Dd2 dataset was chosen for use in the remainder of
the study due to the expectation of relatively greater performance
in a prospective validation, in addition to the greater number of
high quality data points upon which the model is trained upon.

The Dd2 dataset model was further examined in terms of
the performance for each of the descriptor types, the results
of which are displayed in Table 2. During 5-fold CV (where a
random subset of 20% of the training data is held out to test
upon), each descriptor type for Dd2 showed similar performance,
with a cross-descriptor average MCC of 0.46 and a cross-
descriptor average 2.78-fold enrichment (compared to random
selection) of synergistic combinations correctly predicted by the
model. However, for the more challenging leave-one-compound-
out (LOCO) CV, the SFP model significantly outperformed
the others, with MCC scores of 0.27 (SFP), 0.03 (TFP), and
0.03 (STFP). Moving on to the most difficult leave-one-pair-
out (LOPO) CV routine, the performance was still greatest
for the SFP model with a precision of 0.33 and recall of 0.01
(corresponding to an MCC of 0.02). Although recall (number
of synergistic compounds in the test data that were identified
correctly) is very low, the precision (number of synergistic
combinations correctly identified in all that were predicted to be
synergistic) is greater at 0.33. This is still useful in practice since
it suggests we are only likely to find the minority of all synergistic
combinations in a dataset, but 33% of those combinations predicted
to be synergistic will indeed turn out to be synergistic combinations.
Compared to our previous study where CoSynE was applied
to antibiotic combinations (Mason et al., 2017), the LOPO CV
performance was qualitatively similar with a high precision and
low recall (1.0 and 0.2, respectively) for a SFP fingerprint on the
training data. Since the coverage of chemical space in this dataset
overall is quite low it is likely that the model has not been exposed
to enough diversity to make confident predictions about many of
the compounds, and so the recall score is low as a result.

A possible reason behind the low performance of the TFP
descriptor models is that the protein targets from PIDGIN are of
human origin, and are unlikely to provide a useful representation
of target interactions in P. falciparum. However, it is the case
that orthologous proteins exist between Homo sapiens and P.
falciparum, and it has previously been shown that the number
of conflicting bioactivities between human and ortholog targets
in public databases is comparatively low (Mervin et al., 2018),
which supports the use of human targets as bioactivity spectra
in this indirect manner. It has also been shown that bioactivity
spectra can be used more generally as a descriptor that captures
biologically relevant information, and can outperform chemical
descriptors in the identification of compounds with similar
bioactivities [see Petrone et al. (Petrone et al., 2012) Bender et al.
(Bender et al., 2006), Kauvar et al. (Kauvar et al., 1995), Riniker
et al. (Riniker et al., 2014), and Paricharak et al. (Paricharak et al.,
2016)]. These, together with the lack of predictive modeling tools
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FIGURE 3 | Multi-Dimensional Scaling (MDS) plot of chemical space for all compounds used in this study, based upon pairwise similarity of radius 2, 2,048-bit

Morgan fingerprints. Compounds that comprise the top five synergistic combinations in the training (red dots) and prospective validation (green dots) datasets are

highlighted, together with their synergistic connection. The lack of a clear clustering suggests that pairs of synergistic compounds do not always arise from those in

distinct or well-defined chemical space. Out of these predictions in green, none were predicted by CoSynE, but paroxetine + guanethidine would be discovered

following the indirect route described in the Results section, and is the second-most synergistic combination in the validation dataset. Structures for validation and

training compounds are included in Supplementary Tables 5, 7, respectively.

available to predict potential P. falciparum targets from a given
compound structure, provided the reasoning behind our choice
of entire bioactivity spectra against proteins as a descriptor type.

Since we are carrying out the toughest validation possible
for our model by exploring novel areas of chemical space
(i.e., the compounds to be prospectively validated in this study
are not present in the training data), the most-challenging
LOPO scenario represents the predictions we wish to make.
The CV performance results suggest that by using the SFP
descriptor model, we may expect an approximate 1.5-fold
enrichment of synergistic combinations in those predicted from
our novel compounds compared to random selection (although
this enrichment appears low, note that there is already a high
baseline of synergy within the dataset which this suggests could
be increased further and that the prediction of synergy for
entirely unseen data is the most difficult test of a predictive model
possible). The SFP descriptor model was therefore selected as
the most suitable candidate for this study, which is the same
class of descriptor used in our previous study which successfully
identified antibacterial combinations (Mason et al., 2017).

Prospective Validation of CoSynE
Predictions
The library of 23 compounds that were selected for
prospective validation resulted from predictions generated
by a developmental version of CoSynE that had previously
virtually screened 21 million DrugBank combinations using
the same training data, alongside a different approach that was
developed in parallel to CoSynE (KalantarMotamedi et al., 2018;
see Experimental section for details). From this library of 23
compounds (and a possible 253 combinations), a total of 20
combinations comprising 12 distinct individual compounds
were predicted to be synergistic, and these were submitted for
prospective experimental validation. The prospective validation
found that 9 of these 20 combinations (i.e., 45%) exhibited
antimalarial synergy (defined in this study as γ ≤ 0.96). These
predicted synergistic combinations are shown in Table 3 where
the range of γ is 0.917–0.958 (compared to the full prospective
screen shown in Supplementary Table 2, where the range of
γ is 0.88–0.959). The nine synergistic combinations that were
correctly predicted comprise only seven compounds of the 23
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TABLE 1 | Dataset statistics.

Strain Synergistic combinations Additive combinations Antagonistic combinations Total

TRAINING COMBINATIONS (HQ)

3d7 264 (22.1%) 762 (63.8%) 168 (14.1%) 1,194

Dd2 277 (22.2%) 817 (65.6%) 151 (12.1%) 1,245

Hb3 242 (20.9%) 767 (66.2%) 150 (12.9%) 1,159

PROSPECTIVELY VALIDATED COMBINATIONS (HQ)

3d7 18 (15.1%) 100 (84%) 1 (0.8%) 119

Dd2 49 (26.5%) 134 (72.4%) 2 (1.1%) 185

Hb3 29 (35.8%) 52 (64.2%) 0 81

Counts for the number of synergistic, additive, and antagonistic compounds in each of the datasets available for the current study, after filtering for high quality (HQ) data. The Dd2

training dataset had the highest number of HQ datapoints, which was reflected during cross validation (CV). The Dd2 dataset also contained the highest number of HQ datapoints in

the prospectively validated dataset.

TABLE 2 | Dd2 training performance.

CV Descriptor MCC F1 AUC Pr Re Ac Ef Rank

5-Fold SFP 0.45 0.56 0.84 0.61 0.53 0.82 2.74 2

TFP 0.44 0.55 0.83 0.60 0.51 0.81 2.69 3

STFP 0.47 0.57 0.84 0.64 0.52 0.83 2.89 1

Cross-descriptor average 0.46 0.56 0.84 0.62 0.52 0.82 2.78

LOCO SFP 0.27 0.31 0.81 0.52 0.33 0.77 2.36 1

TFP 0.03 0.08 0.58 0.07 0.11 0.76 0.31 3

STFP 0.03 0.32 0.55 0.23 0.89 0.31 1.04 2

Cross-descriptor average 0.11 0.23 0.64 0.28 0.44 0.61 1.24

LOPO SFP 0.02 0.01 0.44 0.33 0.01 0.78 1.50 1

TFP −0.02 0.10 0.49 0.20 0.07 0.73 0.89 3

STFP 0.02 0.36 0.47 0.23 0.82 0.34 1.02 2

Cross-descriptor average 0.01 0.16 0.47 0.25 0.30 0.62 1.14

The results from three increasingly difficult rounds of cross validation (CV); shuffled and stratified 5-fold CV, leave one compound out (LOCO), and leave one pair out (LOPO), for each

model type (SFP, structural fingerprint; TFP, target fingerprint; and STFP, combined structure-target fingerprint). Since the current study concerns the prediction of novel compound

combinations, our chosen model followed the expected performance of the SFP model during LOPO CV, since this is the most challenging test of the model. AUC, area under receiver

operating curve; Pr, precision; Re, recall; Ac, accuracy; Ef, enrichment factor. The “cross descriptor average” is the average score for each metric across each cross validation routine.

that were provided to CoSynE. These seven compounds were
further investigated using the literature, in order to identify
a biological rationale for their selection, and are depicted
in Table 4. It should be noted that five out of these seven
compounds were found to also have self-self Èvalues that would
be classed as synergistic by the threshold that was trained upon,
instead of additive (as one would expect). Inclusion of this
observation in a predictive model would additionally include the
experimental data for self-self crosses for all compounds, which
may not be feasible. Instead, this highlights a current limitation of
synergy quantification based upon experimental dose-response
matrices, whereby the underlying metric should include these
crosses as an additional parameter (see Experimental for details).
In the present study however, the model has successfully
predicted combinations of drugs that produced Èvalues below a
cutoff at a rate of 45%, demonstrating the ability to reduce search
space significantly.

The following seven compounds were part of the
nine combinations that were prospectively validated as

being synergistic; dihydroergotamine (in four of the
combinations), apicidin (three combinations), hydroxyzine
(three combinations), trifluoperazine (three combinations),
sorafenib (two combinations), virginiamycin factor S1 (two
combinations), and guanethidine (one combination). The
Tanimoto similarity of each compound vs. the training
compounds is shown in Supplementary Figure 2, which
shows apicidin has the greatest similarity among validation
compounds to the training compounds at 39.1% (to gramicidin).
Virginiamycin factor S1 is the next-closest compound to the
training data, with a 30.7% similarity to gramicidin, followed
by hydroxyzine (26.2% to piperaquine), trifluoperazine (24.6%
to piperaquine), dihydroergotamine (23.5% to gramicidin),
sorafenib (19.8% to nilotinib), and guanethidine (15.9% to
pyronaridine). Overall, these greatest similarities to the training
compounds are on the more-similar end of the distribution
curve, but the overall similarity is still quite low. Compounds
that form both the validation and training compounds are listed
in Supplementary Tables 5, 7.
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TABLE 3 | Dd2 SFP predictions.

Combination ID Drug1 name (PubChem ID) Drug2 name (PubChem ID) Predicted probability

of being synergistic

Prospectively derived γ

(synergy ≤0.96)

NCGC00167488

NCGC00021152

Sorafenib (216239) Hydroxyzine (3658) 0.4 0.917

NCGC00263624

NCGC00017400

Apicidin (6918328) Dihydroergotamine (10531) 0.42 0.924

NCGC00016272

NCGC00013226

Guanethidine (3518) Trifluoperazine (5566) 0.36 0.926

NCGC00021152

NCGC00017400

Hydroxyzine (3658) Dihydroergotamine (10531) 0.4 0.932

NCGC00167488

NCGC00013226

Sorafenib (216239) Trifluoperazine (5566) 0.43 0.937

NCGC00181117

NCGC00017400

Virginiamycin s1 (46937022) Dihydroergotamine (10531) 0.49 0.941

NCGC00263624

NCGC00021152

Apicidin (6918328) Hydroxyzine (3658) 0.47 0.952

NCGC00263624

NCGC00181117

Apicidin (6918328) Virginiamycin s1 (46937022) 0.62 0.957

NCGC00017400

NCGC00013226

Dihydroergotamine (10531) Trifluoperazine (5566) 0.43 0.958

The 9 combinations out of 20 predicted by CoSynE, which were prospectively validated to be synergistic, which cover a total of 7 unique compounds. The probability of being synergistic

that was assigned by CoSynE is shown, which does not correlate with the experimentally quantified degree of synergy.

Out of the nine true positive synergistic predictions,
four combinations involved one compound (namely, either
hydroxyzine or guanethidine) known as a drug efflux pump
inhibitor in other species (further details given below), which
may also facilitate accumulation of a respective antimalarial
partner drug in P. falciparum. Drug efflux pump inhibition has
previously been suggested as attractive in combating resistance,
whereby the intracellular concentration of an active compound
is otherwise strongly restricted by the microorganism (Alibert-
Franco et al., 2009). Firstly, hydroxyzine is a compound with
antihistamine and central nervous system (CNS) properties that
has been shown to act as an efflux pump inhibitor in bacteria,
and also affects Quorum Sensing (QS) (Aybey et al., 2014). QS is
a system of stimulus and coordination among microorganisms,
which P. falciparum may use to detect conditions of the external
environment (Wu et al., 2016), such as overcrowding, in order
to keep the parasite population under control in the host (Mutai
and Waitumbi, 2010). Hydroxyzine was correctly predicted
to be synergistic in combination with sorafenib, apicidin, or
dihydroergotamine. Sorafenib is a tyrosine kinase inhibitor
used in the treatment of cancer that inhibits parasite egress
from the host cell (Gaji et al., 2014), and is annotated with
activity against both 3D7 and Dd2 strains of P. falciparum
in PubChem (Pathak et al., 2015; Kim et al., 2016). Apicidin
is a potent inhibitor of histone deacetylase [HDA; of which
the P. falciparum ortholog PfHDA2 exists (Coleman et al.,
2014)] and this mechanism of inhibition is responsible for the
antiprotozoal properties of the drug (Darkin-Rattray et al., 1996;
Engel et al., 2015). Dihydroergotamine is a known inhibitor
of P. falciparum (Weisman et al., 2006), which may target a
serotonin 5-HT1a-like receptor in the parasite thought to be
a nutrient channel critical for parasite development (Hanoun

et al., 2003; Locher et al., 2003). Ergotamine, the structural
analog of dihydroergotamine was one compound involved in
a docking study looking for competitive inhibitors for the
enzyme P. falciparum lactate dehydrogenase (PfLDH), upon
which the parasite is dependent for energy production where
it achieved a reasonably good docking score (Penna-Coutinho
et al., 2011). The combination of these active compounds
with the hydroxyzine efflux pump inhibition and QS action
may be responsible for the observed synergy in these cases.
Secondly, guanethidine is annotated as active against human
multidrug resistance protein 1 (MDR-1) in a screen for
compounds that compete for this transporter as a means to
increase accumulation of active compounds in cells (AID:377).
A plasmodium ortholog of MDR-1, PfMDR1 exists (Hyde,
2007), and if guanethidine competes for PfMDR1, this may
explain a potential mechanism for synergy, since PfMDR1
is important for transporting substrates from the cytoplasm
into the lysosomal-like parasite digestive vacuole (Reiling and
Rohrbach, 2015). Guanethidine alone does not show activity
against P. falciparum (Chong et al., 2006), but was correctly
predicted to show synergy in combination with trifluoperazine.
Trifluoperazine is an antipsychotic drug and a potent inhibitor
of P. falciparum calcium-dependent protein kinase 4 (PfCDPK4)
(Cavagnino et al., 2011), and so would represent the anti-malarial
compound in this combination. To the authors’ knowledge, these
may be novel modes of action for the use of hydroxyzine and
guanethidine in context of P. falciparum. Since the training
dataset did not include compounds explicitly annotated as
targeting P. falciparum efflux pumps [with the exception of
primaquine, which exhibits synergy with chloroquine through
inhibiting the P. falciparumChloroquine Resistance Transporter;
PfCRT (Bray et al., 2005)]. Further experimental validation
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TABLE 4 | Synergistic drugs correctly predicted by CoSynE.

Drug name Depiction Notes

Apicidin Known to target histone deacetylase and has

previously shown activity against P. falciparum

via inhibition of apicomplexan histone

deacetylase (HDA) (Darkin-Rattray et al., 1996).

Dihydroergotamine An inhibitor of P. falciparum (Weisman et al.,

2006), and is annotated in PubChem as being

active in several assays. May target a serotonin

5-HT1a-like receptor in the parasite thought to

be a nutrient channel (Hanoun et al., 2003;

Locher et al., 2003). Structural analog

ergotamine achieved reasonably good docking

score in a study searching for competitive

inhibitors for PfLDH (Penna-Coutinho et al.,

2011).

Guanethidine Annotated in PubChem as having an

inconclusive potency against P. falciparum of

5.72 uM (AID:504834). Also annotated as

active against MDR-1 (AID:377); the P.

falciparum analog of which (pfmdr1) is involved

in resistance and guanethidine may therefore

play a role in preventing drug efflux (Hyde,

2007)

Hydroxyzine Shown to act as an efflux pump inhibitor in

bacteria (Aybey et al., 2014). Also affects

Quorum Sensing in microorganisms (Aybey

et al., 2014).

(Continued)
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TABLE 4 | Continued

Drug name Depiction Notes

Sorafenib tosylate Tyrosine kinase inhibitor that exhibits

antimalarial properties, and has been shown to

inhibit the function of calcium-dependent

protein kinase 3 in P. falciparum (PfCDPK1),

which affects parasite egress from the host cell

(Gaji et al., 2014). Sorafenib is an antitumor

drug annotated in PubChem with activity

against both 3D7 and DD2 strains, as well as

RKL9, MRC2, and 7G8 with IC50s of

1.66–2.64 uM (Pathak et al., 2015). This

compound was also tested in combination with

artesunate in the study, however the mode of

action was found to be antagonistic, while for

another tyrosine kinase inhibitor, imatinib,

combination with artesunate demonstrated

synergy.

Trifluoperazine Calmodulin inhibitor, and a potent

antiplasmodial inhibitor of calcium-dependent

protein kinase 4 (PfCDPK4) (Cavagnino et al.,

2011).

Virginiamycin s1 An antibiotic that is annotated as targeting 60S

Ribosomal Protein L37 in PubChem. Similar in

structure to azithromycin (which is known to

target apicoplast 50S ribosomal subunit and

inhibit P. falciparum).

Depiction and description of the seven compounds that were part of combinations predicted to be synergistic by CoSynE.

would be required to confirm this mechanistic hypothesis of the
synergies observed experimentally.

Three of the remaining five combinations that were
correctly predicted involve a combination of the previously
detailed compounds that were the “active” partner
drugs to those with expected efflux pump inhibitors
(apicidin-dihydroergotamine, trifluoperazine-sorafenib, and

trifluoperazine-dihydroergotamine). The observed synergy in
these may exert their synergistic effect through their differing
mechanisms.

The final two correctly predicted combinations involve
virginiamycin factor S1, a macrolide antibiotic annotated as
active against P. falciparum proliferation (AID:504749), with
either apicidin or dihydroergotamine. Antibiotics may exhibit
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antimalarial properties, albeit slow-acting, by targeting the
apicoplast during development (Dahl et al., 2006; Barthel
et al., 2008; Chakraborty, 2016). Macrolides are known for
their effectiveness in treatment of uncomplicated malaria in
combination with quinine, where the main mechanism of
action involves binding to ribosomal proteins, but suffer due
to poor pharmacological properties (Gaillard et al., 2016). The
combination of virginiamycin S1 targeting the apicoplast, and
apicidin targeting plasmodium orthologs of histone deacetylase,
such as PfHDA2 (Darkin-Rattray et al., 1996; Coleman et al.,
2014; Engel et al., 2015) suggests that this combination puts
pressure on the developmental and growth stages of the parasite.
The combination of potential nutrient channel and energy
inhibition properties of dihydroergotamine (Hanoun et al.,
2003; Locher et al., 2003; Penna-Coutinho et al., 2011) with
the apicoplast-targeting mechanism of virginiamycin S1 also
suggests pressure being put on the developmental and growth
stages. However, since this work used asynchrous parasite
cultures to assess compound efficacy, and given that apicoplast-
targeting molecules don’t typically affect the first replication
cycle upon drug pressure [where they are instead exhibiting
a “delayed death” phenotype (Dahl and Rosenthal, 2007)],
this apicoplast-targeting mechanism is unlikely to have been
observed. Unfortunately, the combination of macrolides and
dihydroergotamine has been reported to produce clinically
significant adverse drug reactions (Horowitz et al., 1996), which
means this particular combination would not be suitable as a
potential treatment.

Full Pairwise Synergy Screen of 23
Compounds
A subsequent full pairwise experimental screen of all 23
compounds was also carried out (Supplementary Table 3),
in order to assess the performance of CoSynE for the
prediction of completely novel combinations of compounds
acting synergistically. Comparison of the overall number of
synergistic combinations that were found (49 out of 185, or
26%, see Table 1), compared to the number that was present
among those predicted by CoSynE (9 out of 20, or 45%)
showed that we achieved a 1.70-fold enrichment (0.45/0.265);
approximately that which was expected from our LOPO CV
performance. This level of enrichment is significant in the search
for antimalarial compound combinations in practical terms,
where a 41% reduction [1 – (1/1.70)] in the total number of
measurements required is a very attractive prospect in terms
of both time and cost. Although this performance is attractive,
the model is still far from ideal and requires further refinement
to increase both the precision (0.45) and recall (0.18) seen in
Table 5. On the other hand it should be noted that the baseline
of obtaining synergy in 26.5% of cases is a rather high baseline,
which the model was able to increase further to nearly half of
all synergistic predictions being true positives (more precisely, to
45% of all combinations).

Potential for Indirect Discovery of
Synergistic Combinations
We next investigated the hypothetical scenario where all
compounds that are part of combinations predicted to be

synergistic by CoSynE were screened in a fully pairwise manner,
to see whether CoSynE could indirectly expand the discovery
of novel combinations. Interpreted differently, we investigated
whether synergy between compounds is “clustered”—and
whether the knowledge that a compound has shown synergy
before increases the chances that it will show synergy also
in combination with other compounds (with the limitation of
our validation being the limited sampling of chemical space,
which may or may not generalize to “all” chemical space).
Each combination in the prospective validation dataset for
Dd2 involving any of the 12 compounds that were part of a
combination predicted to be synergistic was extracted, yielding
a total of 61 combinations, out of which 36% were found
to be synergistic (22 combinations in Supplementary Table 4).
This proportion of synergistic combinations is hence higher
(by 9.5% in absolute terms, and 36% in relative terms) than
the 26.5% found in all of the 185 HQ validation combinations,
which corresponds to an enrichment of 1.36× compared to
random selection. However, to some extent this enrichment
may be slightly inflated due to CoSynE having identified drug
efflux pump inhibitors in the model. Among the synergistic
combinations in this subset indirectly found through CoSynE
is guanethidine (antiplasmodial and active against MDR1)
and paroxetine (annotated in DrugBank as targeting MDR1,
antibacterial activity via efflux pump and QS inhibition Aybey
et al., 2014, and antiplasmodial activity Chong et al., 2006
including AID:524790–524796), with a Èscore of 0.889. This
combination is more synergistic than all those directly predicted
by CoSynE, and is the second-most synergistic combination
among all HQ combinations in the validation dataset. This
suggests that by not only screening compound combinations
predicted to be synergistic by CoSynE, but all combinations
of the compounds predicted to be part of any combination
predicted to be synergistic will still increase the likelihood of
identifying further synergistic combinations. This also is in line
with previous studies, which have found that while synergy to
an extent depends on the properties of both compounds in a
combination, there is still a significant bias in chemical space,
with some parts of it being significantly more frequently part
of synergistic compounds combinations than others (Weinstein
et al., 2017).

Along these lines, we believe that an iterative screening
procedure could be followed in an industrial setting, whereby
predictions are made, screened, and then fed back into CoSynE
for training before further predictions are made. Such iterative
approaches have been investigated in the literature (Paricharak
et al., 2016), and could enable gradual expansion of chemical
and/or biological space, in particular with current improvements
in cherry picking compounds in such iterative screening settings.

CONCLUSION

In this work, we describe the application of our compound
combination prediction method, CoSynE, to a recently published
compound combination screening dataset for P. falciparum,
and the results to a prospective validation of our predictions.
When we used our final CoSynE model to predict synergistic
combinations (γ ≤ 0.96) from a library of compounds previously
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TABLE 5 | Dd2 SFP Performance.

Descriptor Predicted synergistic combinations Experimentally validated as synergistic MCC F1 AUC Pr Re Ac Ef

SFP 20 9 0.15 0.26 0.63 0.45 0.18 0.72 1.70

Overall performance of the Dd2 SFP model, after the full pairwise screen of prospective compounds was carried out. Overall, the precision and recall for the prediction of novel synergistic

combinations, however this still provides greater enrichment of synergistic combinations than expected by random selection (1.70-fold) from the prospectively validated dataset. AUC,

area under receiver operating curve; Pr, precision; Re, recall; Ac, accuracy; Ef, enrichment factor.

unknown to the model for P. falciparum Dd2, 45% of the
predicted combinations (9 out of 20) were experimentally
confirmed as being synergistic, corresponding to a 1.70-fold
enrichment of synergistic combinations than that expected
by randomly selection from the validation dataset. This is
of practical significance when combinatorial explosion and
experimental cost for combination screening is taken into
account. Furthermore, a 2.36-fold enrichment was observed
during cross validation when one compound is unknown, and
2.74-fold when both compounds are known to the model (but
only in different combinations). In addition, it was found
that screening only compounds part of combinations CoSynE
predicted to be synergistic would yield 9.5% more synergistic
combinations in absolute terms (and 36% in relative terms) than
expected by random selection alone.

The combinations that were prospectively validated from our
predictions mainly involve one compound with antimalarial
activity coupled to another targeting potential drug efflux or
substrate transport mechanisms in P. falciparum. These results
in particular suggest that the approach we describe can capture
meaningful information that enables the prediction of synergy,
which is corroborated by our previous study involving antibiotic
combinations.

CoSynE offers an advantage over similar methods that require
data, such as differential gene expression analysis, or single
agent efficacies across multiple cell lines related to the target,
in that the only information required to make new predictions
is the provision of chemical structure information. The use
of CoSynE to make predictions for other therapeutic areas
requires only a dataset of combination screening results together
with compound structural information, and may also predict
for higher orders of combinations (e.g., combinations of 3, 4,
and above), should training data with a meaningful measure
of synergy be made available. Our approach may be employed
to prioritize screening of new combinations, thus reducing the
potential burden and cost of combinatorial explosion in the
search for future antimalarial compound combinations that
exhibit synergy.

EXPERIMENTAL

Experimental Screening of Compound
Combinations
Training data was obtained from a publicly available dataset
of antimalarial compound combinations from a high-
throughput screen against 3D7, Dd2, and HB3 strains of P.
falciparum (assay IDs 1463, 1464 and 1465, which can be

found at https://tripod.nih.gov/matrix-client/?p=183; Mott
et al., 2015). Compounds were acoustically dispensed and
read at 72 h as previously described (Mott et al., 2015).
Matrix combination response was calculated based upon
relative SYBRGreen intensity values, compared to controls
(Mott et al., 2015). The prospective validation data was
screened using the same method as the training data. This
validation dataset includes both single-agent and combination
responses, and can be found at https://tripod.nih.gov/matrix-
client/?p=1261. The 23 compounds that comprised the
validation dataset are listed in Supplementary Table 5, the
experimental data used to validate the Dd2 model is listed in
Supplementary Table 3, and reproducibility of assay results is
detailed in Supplementary Table 6.

Compound Combination Datasets and
Synergy
The training data used in this study consisted of 1,540
combinations of 56 antimalarial compounds that exhibit different
modes of action, which were screened against the 3D7, Dd2, and
HB3 strains of P. falciparum. The 56 compounds that formed
this screen are listed in Supplementary Table 7. Synergy metrics
and data quality (QC) were pre-determined from a 6 × 6 dose-
response matrix of each combination, where inhibition of the
parasite in infected red blood cells was measured. The QC score
for a combination was precomputed from a set of heuristics
described in Mott et al. (2015), that takes in to account the
quality of the single agent dose response, DMSO activity and
the smoothness of the dose combination response matrix. This
yields a value between 0 and 18, where lower values indicate
higher quality. Only high quality (HQ) experimental readouts
were kept that have a QC score ≤3, which provided 1,194 HQ
combinations for 3D7, 1,245 for Dd2, and 1,159 for HB3 (Table 1;
training dataset). For the validation dataset, the same filtering
rules applied to 209 combinations of 23 compounds provided
119 for 3D7, 185 for Dd2, and 81 for HB3 (Table 1; validation
dataset).

The metric used to interpret synergy in our modeling
approach was gamma (È), which is a combination of the
Highest Single Agent (HSA; also known as Gaddum’s non-
interaction model) and Bliss independence. Based upon a 6 ×

6 dose-response matrix of compound A and compound B at
concentration x and y vs. inhibition of P. falciparum, the variable
Èis computed to minimize the following function (Cokol et al.,
2014).

6
[

f
(

A[x] + B[y]
)

− γ × max
{

f
(

A[x]

)

, f
(

B[y]
)}]2

(1)
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This yields a positive value, where synergy is characterized as
<1, additivity as =1, and antagonism as >1. In order to classify
each of the combination readouts, we set a maximum Ècutoff for
synergy of 0.96, and minimum cutoff for antagonism of 1.04,
with the remainder assigned as additive. This cutoff value was
empirically chosen to provide a degree of separation between
antagonism and synergy in the training data, while aiming to
keep the balance of each class similar across strains. Although
not explicitly investigated during the study, we expect that
making the Ècutoff larger may lead to an increased enrichment of
synergistic combinations being predicted, whilemaking it smaller
may affect the model robustness by decreasing the number of
synergistic training datapoints further.

One limitation with regard to the pre-processing of
experimental combination responses during our study is that
measurement of self-crosses using the Bliss model component of
Èmay in fact produce values which are classed as synergistic. For
example, apicidin in combination with itself in the validation
dataset shows a Èvalue of 0.895, whereas our cut-off for the
training data was 0.96. In other words, this self-cross should be
labeled as “synergistic” according to our criteria, whereas self-
interaction should be additive; this is a well-known phenomenon
among synergy measures, where a generalizable and robust
model is yet to be identified (Bulusu et al., 2016). We chose to
apply the cut-off of 0.96 that was used for the training data to
enable our assessment of validation predictions “in the eyes of the
model” with respect to training criteria, yielding 49 synergistic
combinations in the Dd2 validation dataset. Compounds with
self-cross Èvalues lower than our training data cut-off include
trifluoperazine, raloxifene, guanethidine, hydroxyzine, megestrol
acetate, FK-506, fulvestrant, sorafenib, apicidin, and ingenol
mebutate. Since these cover five out of the seven compounds in
Table 3, any future investigation into combinations involving
these compounds based solely upon Èvalues should bear this in
mind (i.e., eight out of our nine predictions in Table 3). Although
it is not clear precisely how to overcome this limitation, future
models that additionally train upon the validation dataset might
take these self-crosses into account more explicitly by lowering
synergistic cut-offs on a per-combination basis, or seek to find a
way of incorporating this into the synergy metric itself. All self-
crosses for the validation data may be found at https://tripod.nih.
gov/matrix-client/?p=1261, and minimum significance ratios
for the validation compounds that were screened are detailed in
Supplementary Table 6.

Prior Selection of Validation Compounds
The selection of compound combinations for screening and
validation of our models were based upon a version of CoSynE
much earlier in development. Several CoSynE models were
trained upon the same dataset as described in this report,
except the range of additivity for Èwas narrower at 0.975–
1.025 (opposed to 0.96–1.04). The resulting models were used to
predict enumerated combinations of approved, investigational,
and experimental compounds in DrugBank (Wishart et al.,
2006), which amounted to around 21 million combinations for
prediction. Of these, approximately 1.2 million combinations
were predicted to be synergistic, and 10 combinations needed

to be selected for the prospective validation. This selection was
achieved by manually reviewing the top-ranked combinations
(sorted by the probability of being synergistic that was assigned
to each combination by CoSynE), and taking into consideration
the prevalence of each compound throughout the list of
combination predictions, followed by examining the literature
co-occurrence of each predicted combination’s compounds
together with mention of P. falciparum in PubMed. These
10 chosen combinations comprised 18 compounds, and were
submitted for testing together with an additional 10 selected from
a different approach developed in parallel by KalantarMotamedi
et al. (2018).

Out of the total number of compounds among the 20
combinations primarily suggested for testing, only the 23
compounds shown in Supplementary Table 5 were available for
purchase at the time, which meant few original predictions
could be prospectively validated. The decision was made to
instead use a more recent version of CoSynE to predict which
combinations of these 23 compounds were synergistic, finally
yielding the dataset in this study. Interestingly, Table 1 shows
that the number of antagonistic combinations observed in the
validation dataset is significantly lower compared to the training
dataset, while at the same time the number classed as additive
or synergistic has increased. This reduction in the number of
antagonistic combinations as a result of virtually screening a
library of intractable size suggests that the approach taken by
CoSynE, together with the process of manually reviewing the top
predictions, aids the discovery of synergistic combinations.

Comparison to a Similar Study Conducted
in Parallel
The approach by KalantarMotamedi et al. (2018) differs from
that described in this work primarily by the usage of gene
expression data. Firstly, differential gene expression profiles of
mild vs. severe malaria patient peripheral blood samples were
used to predict potentially active single antimalarial agents by
comparison of drug gene perturbations through a modified
Gene Set Enrichment Analysis (GSEA) approach (Subramanian
et al., 2005) applied to the Library of INtegrated Cellular
Signatures (LINCS) Phase I database (Subramanian et al., 2017).
Secondly, a Random Forest model was trained on the same
dataset of 1,540 combinations from NCATS as in the present
study, and human target predictions and pathway annotations
were used to infer which drug combinations may interact
synergistically. Finally, the single agents identified by the GSEA
approach to human blood samples were enumerated as pairs
and predicted by the Random Forest model as synergistic/non-
synergistic. These predicted combinations were ranked based
upon the predicted probability of being synergistic, and the
top 17 compound combinations were selected for prospective
experimental testing (covering a total of 14 single agents).
This approach reported an overall average precision of 0.488
and recall of 0.755 (F1 = 0.593) for experiments across
the three strains of P. falciparum where drug combinations
were predicted to be synergistic at a cutoff for synergy of
γ ≤ 0.975. Among the 14 single agents in 17 combinations
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Kalantar-Motamedi et al. selected for prospective validation were
seven that overlapped with the 12 drugs in 20 combinations
CoSynE predicted for prospective validation; ciprofloxacin,
wortmannin, paroxetine, raloxifene, apicidin, trifluoperazine,
and hydroxyzine. The only combination of these overlapping
compounds that was correctly predicted to be synergistic in
both CoSynE and the method described by Kalantar-Motamedi
et al. was apicidin-hydroxyzine. Since CoSynE is not constrained
to compounds that are only present in the Connectivity-Map
(Lamb et al., 2006) or LINCS databases (instead needing only
knowledge of compound structure) it is difficult to draw a direct
and fair comparison of overall performance. However, for the
same experimental γ cutoff applied to the total pool of 185
prospective combinations in the current study that denotes a
synergistic combination, CoSynE achieved precision of 0.45 and
recall of 0.18 (F1 = 0.26). While the precision of CoSynE for
the prospectively validated combinations is close to that reported
by Kalantar-Motamedi et al. recall in this instance is much
lower. However, it should be noted this overall performance
still represents greater enrichment of synergistic combinations
being discovered than by random selection (see Table 5), and
CoSynE is not limited by the requirement for gene expression
data to be made available for the compounds that are to be
predicted.

Combination Descriptors
We represented each compound combination as an array of
features in three ways. A Structural Fingerprint (SFP) descriptor
based upon the molecular structure of each compound in
a combination, a Target Fingerprint (TFP) descriptor based
upon probabilistic combination of predicted target affinity
probabilities per compound, and a concatenation of these two
previous descriptors (Structure-Target; STFP). This provided
three descriptor sets for which models were trained.

Structural fingerprints were generated by first obtaining
SMILES representation PubChem (Kim et al., 2016) for each
compound that was screened in the training data, before
standardizing this representation with ChemAxon JChem
Standardizer (ChemAxon, 2014) according to the protocol
defined by PIDGIN (Mervin et al., 2015). Standardized SMILES
were then loaded into RDKit v20151 and 2,048-bit Morgan
fingerprints with radius 2 were generated, yielding arrays of 2,048
integer features. A given combination of two compounds was
represented as the bitwise average of these features, yielding
possible values of 0, 0.5, and 1 per feature, which formed
the SFP descriptor. A Morgan fingerprint was chosen for this
study due to generally outperforming the MACCS fingerprint
in this dataset [however the MACCS fingerprint was found to
outperformMorgan when CoSynE was used to predict antibiotic
combinations (Mason et al., 2017)]. The SMILES representation
was also used as input for PIDGIN (Mervin et al., 2015), where
the probability of binding below the training cut-off of 10µM for
each compound vs. 1,080 human protein targets was predicted,
yielding arrays of 1,080 floating point value features between 0
and 1. A given combination considered the probability of binding
to each protein target by each compound from the following
function, such that the maximum affinity a combination of

1Landrum, G. RDKit: Open-Source Cheminformatics. Available online at: http://

www.rdkit.org

compounds may have is 100% [i.e., a value of 1.0; Equation (2)],
which formed the TFP descriptor. The rationale behind the use of
this function for TFP was that the probability of a protein being
inhibited cannot be more than 100%, but the more compounds
in a single combination that are predicted to target the protein,
the more this is likely to be the case.

p
(

Combination, TargetN
)

= 1−
(

1− p
(

Compound1, TargetN
))

× (1− p
(

Compound2, TargetN
)

) (2)

Model Construction and Performance
Testing
Model settings were optimized prior to construction of the final
models, and all machine learning capabilities were carried out
using SciKit-Learn v0.17 (Pedregosa et al., 2011).

The 1,245 Dd2 compound combinations that formed our
training data each has either between 1,080, 2,048, or 3,128
features per combination (depending on the descriptor used),
meaning that the feature space is larger than the number of
combinations. It is therefore necessary to remove any features
that are not useful for training prior to constructing the final
models. Training data was scaled to unit variance with a
zero-centered mean, and starting from N = 1, the top N
percentile of features within the training data [as determined
by ANOVA F-classifier score in SciKit-Learn v0.17 (Pedregosa
et al., 2011)] was selected to train upon using a Support Vector
Machine Classifier (SVC, optimization parameters detailed in
Supplementary Methods), together with the synergy type labels
per combination, to construct a classifier. This classifier then
predicted the synergy label for test data that has had the same
features selected, and the outcome of this test was scored
using the Matthews Correlation Coefficient [MCC, Equation (3)]
with respect to the ability for correctly predicting a synergistic
combination. Due to the consideration of all possible outcomes of
a classification problem (true positive; TP, false positive; FP, true
negative; TN, false negative; FN), the MCC score offers benefit
over performance metrics, such as the Area Under Receiver
Operating Curve (AU-ROC) and Accuracy, which ignore TN and
TN, and FP and FN predictions, respectively.

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3)

This process was repeated 10 times per N, by stratified and
shuffled 5-fold cross validation, to finally yield 99 averaged MCC
scores. These top N selected features that resulted in the highest
MCC score overall were subsequently used by CoSynE in the
final model training round, in order to test model performance
in different scenarios. The top N selected features per model are
detailed in Supplementary Methods. While CoSynE will label
predicted combinations as synergistic, additive, or antagonistic,
during model optimization only the prediction of synergistic
combinations is carried out.

The second round that results in selection of the final
model involved construction of a number of different classifiers
[Bernoulli Naïve Bayes, Support Vector Machine, Random
Forest, Extra Trees, and Decision Tree, SciKit-Learn v0.17
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(Pedregosa et al., 2011)], which were subject to grid search
parameter optimization (optimization parameters detailed in
Supplementary Methods). The selection of the best model
parameters was based upon 10 repeats of stratified and shuffled
5-fold cross validation, which represents a scenario where the
training data has prior knowledge of both compounds per
combination (Figure 3). Eachmodel with a new set of parameters
was then subjected to two further rounds of validation of
increasing difficulty; Leave One Compound Out (LOCO; in
which one compound in a combination is made unknown
to the model), and Leave One Pair Out (LOPO; in which
both compounds are made unknown to the model). This
provided a view on model performance when looking to
extend the compounds used in combination with those already
known (LOCO) or, in the toughest case, searching for novel
combinations of unknown compounds (LOPO). The choice of
final model settings was based upon performance in terms of the
MCC score for the prediction of synergistic combinations in each
of these scenarios.

In each test and train split of the data, feature selection and
scaling were based solely upon the training data to ensure that no

information from the test set was used in the model generation
step. Final model settings are detailed in Supplementary Table 7.
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Malaria is a life-threatening infectious disease caused by parasites of the genus
Plasmodium, affecting more than 200 million people worldwide every year and leading
to about a half million deaths. Malaria parasites of humans have evolved resistance
to all current antimalarial drugs, urging for the discovery of new effective compounds.
Given that the inhibition of deoxyuridine triphosphatase of Plasmodium falciparum
(PfdUTPase) induces wrong insertions in plasmodial DNA and consequently leading
the parasite to death, this enzyme is considered an attractive antimalarial drug target.
Using a combi-QSAR (quantitative structure-activity relationship) approach followed by
virtual screening and in vitro experimental evaluation, we report herein the discovery
of novel chemical scaffolds with in vitro potency against asexual blood stages of
both P. falciparum multidrug-resistant and sensitive strains and against sporogonic
development of P. berghei. We developed 2D- and 3D-QSAR models using a series
of nucleosides reported in the literature as PfdUTPase inhibitors. The best models
were combined in a consensus approach and used for virtual screening of the
ChemBridge database, leading to the identification of five new virtual PfdUTPase
inhibitors. Further in vitro testing on P. falciparum multidrug-resistant (W2) and sensitive
(3D7) parasites showed that compounds LabMol-144 and LabMol-146 demonstrated
fair activity against both strains and presented good selectivity versus mammalian cells.
In addition, LabMol-144 showed good in vitro inhibition of P. berghei ookinete formation,
demonstrating that hit-to-lead optimization based on this compound may also lead to
new antimalarials with transmission blocking activity.

Keywords: malaria, virtual screening, QSAR, Plasmodium falciparum, dUTPase, transmission blocker
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INTRODUCTION

Malaria is an infectious disease caused by protozoans of the
genus Plasmodium and transmitted through the bite of insect
vectors of the genus Anopheles. Plasmodium falciparum is the
most prevalent and lethal species infecting humans in the African
continent, being responsible for 99% of all malaria-attributed
deaths (World Health Organization [WHO], 2016). Despite
the fact that integrated control interventions have achieved
significant progress in the reducing malaria cases and related
mortality in recent years, malaria still causes 429,000 deaths every
year, being endemic in 91 countries and territories of sub-Saharan
Africa, South-East Asia, Latin America, and the Middle East
(World Health Organization [WHO], 2016).

When compared to viruses and bacteria, these eukaryotic
protozoans present a larger genome, have multiple stages in their
life cycle, and a complex biology, which hinder the development
of vaccines (Hoffman et al., 2015). Consequently, malaria control
strategies largely rely on drug-dependent case management.
Currently, artemisinin-based combination therapy (ACT) is the
recommended official treatment for malaria. However, resistance
to artemisinins has been detected in five countries in the
Greater Mekong sub region of South-east Asia, endangering the
future of P. falciparum elimination (Vogel, 2014; World Health
Organization [WHO], 2016; Thu et al., 2017). Therefore, there
is an urgent need for the discovery and development of new
antimalarial therapies.

The enzyme 2′-deoxyuridine 5′-triphosphate nucleotide
hydrolase (dUTPase) has emerged as a promising biological
target in P. falciparum, and it is responsible for the hydrolytic
cleavage of dUTP (deoxyuridine triphosphate) in dUMP
(deoxyuridine monophosphate) and pyrophosphate (Nyman,
2001). The inhibition of dUTPase may cause dUTP accumulation
and erroneous incorporation of uracil into DNA, leading to
parasite death. Although another enzyme, DNA glycosylase,
could repair the erroneous insertions, the excessive number
of repairs would result in a fatal break of DNA strand
(Whittingham et al., 2005). Given that DNA replication in
Plasmodium takes place in all distinct stages of the parasite
life cycle and given the importance of the enzyme dUTPase
in this process, this enzyme is expressed in both asexual
and sexual stages of the parasite (ring, trophozoite, schizont,
gametocyte, and ookinete), as demonstrated in previous studies
on P. falciparum 3D7 and P. berghei (López-Barragán et al.,
2011; Otto et al., 2014). Thus, dUTPase inhibitors might not only
act against blood-stage parasites, but also could block parasite
transmission/development in mosquitoes. Experimental findings
categorize dUTPase as essential for various organisms, such as
Escherichia coli, Saccharomyces cerevisiae, and Mycobacterium
smegmatis (El-hajj et al., 1988; Gadsden et al., 1993; Pecsi
et al., 2012). The dUTPase of P. falciparum (Pf dUTPase) is an
attractive target for the development of selective inhibitors since
it presents relatively low sequence similarity with its human
ortholog HsdUTPase (28.4% identity) (Whittingham et al., 2005).

Due to the importance of dUTPase in the parasite’s DNA
repair, we decided to use computer-aided drug design (CADD)
approaches for discovering new dUTPase inhibitors. In the last

several decades, CADD approaches have been widely applied in
early stages of drug discovery, making the process faster and more
financially viable (Leelananda and Lindert, 2016). Among these
approaches, quantitative structure-activity relationships (QSARs)
have been extensively used for lead optimization and virtual
screening (Verma et al., 2010). Different QSAR approaches have
been used by our group for identification of new promising hits
for infectious diseases (Melo-Filho et al., 2016; Neves et al., 2016;
Gomes et al., 2017).

In this work, we applied a combi-QSAR approach, combining
2D- and 3D-QSAR models, in a virtual screening campaign of
the ChemBridge database for selection of new antimalarial virtual
hits. Finally, we performed in vitro experimental evaluation
of the potential Pf dUTPase inhibitors against chloroquine-
sensitive and multidrug-resistant strains of P. falciparum, and
in gametocyte to ookinete conversion of P. berghei, aiming to
identify new potential and selective antimalarial hits.

MATERIALS AND METHODS

The steps of the modeling study are briefly presented in
Figure 1. The workflow encompasses the following steps: (i)
data compilation and integration; (ii) data curation; (iii) model
generation; (iv) virtual screening and (v) experimental validation.
Our workflow was built following the best practices of QSAR
modeling and CADD (Tropsha, 2010; Cherkasov et al., 2014).

Dataset Preparation
2D and 3D QSAR models were built using a series of Pf dUTPase
inhibitors reported in the literature (Supplementary Table S1)
(Nguyen et al., 2005, 2006; Whittingham et al., 2005; McCarthy
et al., 2009; Baragaña et al., 2011; Hampton et al., 2011; Ruda
et al., 2011). The data set was prepared and curated according
to the protocol described by Fourches et al. (2010, 2015,
2016). Counterions were removed as chemotypes, and specific
and nitroaromatic groups were standardized using Standardizer
(v. 6.1, ChemAxon, Budapest, Hungary1). Duplicates were
identified using ISIDA Duplicates program (Varnek et al.,
2008) and HiTQSAR (Kuz’min et al., 2008). If values of
properties of identical compounds were equal, one of these
compounds was kept in the data set. However, if properties were
significantly different, all records were removed. After curation,
127 compounds (Supplementary Table S1) with activity against
Pf dUTPase were kept for molecular modeling. The activity
against both Plasmodium and human enzymes was available only
for 45 compounds and used for calculation of selectivity (S)
(Eq. 1). The activity was represented as K i (inhibition constant)
and converted to the corresponding pK i (−logK i). In a similar
approach, selectivity was converted to the logarithmic scale:

S = log
HsdUTPase Ki
PfdUTPase Ki

(1)

Values of S greater than zero indicate selective compounds while
values below zero indicate compounds with poor selectivity.

1http://www.chemaxon.com
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FIGURE 1 | General workflow of the computer-aided design and discovery of new antimalarial hits using Combi-QSAR models for virtual screening followed by
experimental validation. Briefly, the following steps were performed: (1) data integration and compilation; (2) data curation; (3) QSAR models generation and
validation; (4) virtual screening of the ChemBridge database and selection of the compounds with higher predicted potency and selectivity; (5) experimental validation
against P. falciparum asexual blood stages, P. berghei sexual stage, and mammalian COS7 cells; (6) identification of novel antimalarial hits; (7) molecular docking of
the most promising antimalarial hit in plasmodial and human dUTPase.

The data sets were divided into training and test sets using
the Hierarchical Cluster Analysis method (HCA) available in
the SYBYL v.1.2 (SYBYL-X 1.2, Tripos International, St. Louis,
MO, United States). Molecules representing each cluster were
manually selected for test set to maximize the coverage across
the entire range of inhibition activity and selectivity. The final
proportion between training and test set compounds was 3:1.

HQSAR
Hologram QSAR (HQSAR), available on SYBYL-X v.1.2
(SYBYL-X 1.2, Tripos International, St. Louis, MO, United States;
TRIPOS, 2010a), was used to build 2D QSAR models. Holograms
were generated using six distinct fragment sizes (2–5, 3–6, 4–
7, 5–8, 6–9, 7–10 atoms) over a series of hologram lengths
(53–997). Different combinations of fragment distinction were
also considered, such as atoms (A), bonds (B), connectivity
(C), hydrogen atoms (H), chirality (Ch), and hydrogen bond
donor/acceptor (DA).

Conformer Generation and Atomic
Charges Assignment
The structures were converted into 3D format, and initial
conformations were generated using the OMEGA v.2.5.1.4
(Hawkins et al., 2010; OMEGA 2.5.1.4: OpenEye Scientific
Software, Santa Fe, NM, United States2). Two different
methods were used for the calculation of the partial atomic
charges: the empirical method of Gasteiger-Hückel available
on SYBYL-X v.1.2 (SYBYL-X 1.2, Tripos International, St.
Louis, MO, United States) and the semi-empirical AM1-BCC
(Jakalian et al., 1999, 2002) implemented in QUACPAC v.1.6.3.1
(QUACPAC 1.6.3.1: OpenEye Scientific Software, Santa Fe, NM,
United States2). The protonation state of the molecules were
performed at pH 7.4, using QUACPAC 1.6.3 (QUACPAC 1.6.3.1:
OpenEye Scientific Software, Santa Fe, NM, United States2).

2http://www.eyesopen.com
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Molecular Alignment
Compounds were submitted to three different molecular
alignments: (i) alignment based on the morphological similarity
function implemented in Surflex-Sim, accessible in SYBYL-X
1.2 (SYBYL-X 1.2, Tripos International, St. Louis, MO,
United States); (ii) shape-based alignment from ROCS 3.2.1.4
software (Hawkins et al., 2007; ROCS 3.2.1.4: OpenEye
Scientific Software, Santa Fe, NM, United States2); and (iii)
alignment by molecular docking of molecules on Pf dUTPase,
using OEDocking 3.0.1 software (OEDocking 3.2.0.2: OpenEye
Scientific Software, Santa Fe, NM, United States2). For the last
alignment, X-ray crystal structure of Pf dUTPase complexed with
the inhibitor 2′,5′-dideoxy-5′-[(diphenylmethyl)amino]uridine
(PDB ID: 3T64) (Hampton et al., 2011) was imported to Maestro
v. 9.3 (Epik version 3.0, Schrödinger, LLC, New York, NY,
United States, 2014.) and prepared using Protein Preparation
Wizard, where hydrogen atoms were added according to Epik
v. 2.7 (Epik version 3.0, Schrödinger, LLC, New York, NY,
United States, 2014.; Shelley et al., 2007) (pH 7.4 ± 0.5),
and minimized using the OPLS-2005 force field (Banks et al.,
2005). On Make Receptor tool, available on OEDocking 3.0.1
(OEDocking 3.2.0.2: OpenEye Scientific Software, Santa Fe,
NM, United States2), the receptor grid was generated with
dimensions 22.34 Å × 19.65 Å × 25.24 Å and volume
of 11,078 Å3. All compounds of the data set were docked
and the best pose for each molecule was selected for
alignment.

3D-QSAR
Comparative Molecular Field Analysis (CoMFA) and
Comparative Molecular Similarity Indices Analysis (CoMSIA),
available in SYBYL-X v.1.2 (SYBYL-X 1.2, Tripos International,
St. Louis, MO, United States; TRIPOS, 2010b), were used to build
3D QSAR models for Pf dUTPase inhibitors.

CoMFA
The aligned training set molecules were placed in a 3D lattice box
with grid spacing of 2 Å. Then, CoMFA steric and electrostatic
fields were calculated at each grid point with the Tripos force
field using a carbon atom probe with sp3 hybridization (Csp3)
and charge +1.0. The energy cutoff was set to 30 kcal/mol. The
standard deviation coefficient method (SDC) was used for region
focusing with values varying from 0.3 to 1.5.

CoMSIA
The models were generated using the same molecular
alignments used for CoMFA. The aligned compounds
were placed in the 3D lattice box with grid spacing of 2
Å. The steric, electrostatic, hydrophobic, hydrogen bond
donor and acceptor descriptors were calculated at each
grid point. A probe carbon atom with radius of 1.0 Å and
charge +1.0, was used to obtain the similarity indices.
A Gaussian function was used to describe the energy terms
according to the distance between the probe atom and aligned
molecules. The attenuation factor (α) was used on default
value of 0.3.

Generation and Validation of QSAR
Models
Partial least squares regression (PLS) was used for development of
statistical models (Lindberg et al., 1983). The internal validation
of QSAR models was performed using the full cross-validation r2

(q2) leave-one-out (LOO) method. The predictive ability of the
models was assessed by Q2

ext (Tropsha et al., 2003) estimated on
external set compounds that were not used for model building or
selection. The consensus models were obtained by combination
of three QSAR models (HQSAR + CoMFA + CoMSIA). The
models were built and used separately for predictions. The
predicted activity of each compound by the consensus model
was the result of the arithmetic mean of individual models
predictions. The external validation of these models was done
using the same metrics as for individual models.

Virtual Screening
The virtual screening of new potential Pf dUTPase inhibitors
was performed on Hit2Lead library of the ChemBridge database
(ChemBridge Online Chemical Store, 2017). All compounds were
prepared using the same protocol and software used in the
preparation of the modeling dataset. The methods of alignment
and partial charges calculation were the same used in the
best individual CoMFA and CoMSIA models. Then compounds
had their activity and selectivity predicted by the consensus
QSAR models. Two criteria were used for selection of virtual
hits: (i) compounds should have the highest predicted potency
against Pf dUTPase (predicted pK i); (ii) the predicted selectivity
(S) should be greater than zero. Furthermore, some ADMET
properties were predicted for the best virtual hits, such as
physicochemical properties (logP and logS)3), acute oral toxicity
by GUSAR4 (Filimonov et al., 2004; Lagunin et al., 2009, 2011),
carcinogenicity using admetSAR5 (Cheng et al., 2012), and hERG
K+ channel blockage using Pred-hERG6) (Alves et al., 2014;
Braga et al., 2014, 2015).

Molecular Docking
The selected virtual hits were submitted to molecular docking
in Glide (Friesner et al., 2004), available on Maestro v. 9.3.5, to
predict their binding mode in Pf dUTPase and human dUTPase
(HsdUTPase). Ligands were prepared on LigPrep module of
Maestro software, the correct protonation states and energy
minimization were performed on Epik v. 2.7 (pH 7.4 ± 2.0)
using OPLS-2005 force field. The previously prepared structure
of Pf dUTPase, used for docking-based alignment, was used
here. The search space was defined as a box with 10 x 10 x
10 Å3. The box was centered on the geometrical center of co-
crystallized ligand (−7.7431 Å × 27.0662 Å × −3.9483 Å, x, y
and z axes, respectively). The structure of HsdUTPase (PDB ID:
3ARA, resolution of 1.7 Å) (Miyakoshi et al., 2012) was prepared
using the same protocol described for plasmodial enzyme. The
grid was defined with dimensions 10 × 10 × 10 Å3 and was

3http://www.hit2lead.com/
4http://cactus.nci.nih.gov/chemical/apps/cap
5https://omictools.com/admetsar-tool
6http://labmol.com.br/predherg/
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centered on the co-crystallized ligand at 6.3901 Å × 11.1138
Å × −17.3607 Å, x, y and z coordinates. After docking, the
poses of each virtual hit were submitted to rescoring using
the Molecular Mechanics/Generalized Born Surface Area (MM-
GBSA) approach, available on Prime v.3.1 (Prime version 3.1,
Schrödinger, LLC, New York, NY, United States, 2014), using
default conditions.

Experimental Evaluation
Plasmodium Culture
Chloroquine-sensitive (3D7) and multidrug-resistant (W2)
strains were cultured in RPMI 1640 medium supplemented with
0.05 mg/mL gentamycin, 38.4 mM HEPES, 0.2% sodium
bicarbonate, and 10% O+ human serum, as previously
described in a standardized protocol (Trager and Jensen,
1976). Then, erythrocytes were added to the culture to
obtain a 5% hematocrit, and incubated at 37◦C under
5% CO2 atmosphere, with daily exchange of medium.
The parasitemia was monitored daily in smears stained
with Giemsa. Synchronic cultures in the ring stage were
obtained by two consecutive treatments at 48 h intervals
with a 5% solution of D-sorbitol (Lambros and Vanderberg,
1979).

Determination of Growth Inhibition by SYBR Green I
Parasites synchronized at the ring stage, with 0.5% parasitemia
and 2% hematocrit were distributed in each well, separately.
The compounds were tested in triplicates, using 12 point of
concentration, prepared in two-fold dilution (40 µM – ∼0.019
µM) over 72 h. Chloroquine and pyrimethamine were used
as control. Subsequently, the in vitro susceptibility of parasite
to tested drugs was measured by SYBR Green according to
Hartwig et al. (2013). Briefly, 100 µL of lysis buffer (20 mM
Tris, 5 mM EDTA, 0.008% wt/vol saponin, 0.08% vol/vol
Triton X-100, and 0.4 µL/mL of SYBR Green) were added
in each well of a new black 96-well plate and 100 µL
of parasite culture incubated with drugs were added. After
homogenization, the plates were incubated for 1 h in the
dark. Fluorescence was measured at 490 nm excitation and
540 nm emission (CLARIOstar, Labtech BMG). The IC50 was
calculated by plotting the Log doses vs. Inhibition (expressed
as a percentage relative to the control) in Prism 6 (GraphPad
Software Inc.).

Cytotoxicity Assay
Cytotoxicity assays used COS7 cells (fibroblast-like cell lines
derived from monkey kidney tissue), grown in DMEM medium
supplemented with 10% fetal bovine serum and 0.05 mg/mL
gentamicin in atmosphere containing 5% CO2 at 37◦C. Drug
cytotoxicity in COS7 cells was determined in duplicate, using
12 point of concentration, prepared in two-fold dilution (200
µM – ∼ 0.097 µM). After the incubation period (72 h), the
cell viability analysis were done by the MMT reduction method
(3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium chloride
(Mosmann, 1983). The optical density was determined at
570 nm (CLARIOstar, Labtech BMG) and the 50% cytotoxicity
concentrations (CC50) was expressed as the percent viability

relative to the control. The selectivity index of the compounds
was determined by the following expression:

S =
COS7 CC50

Pf IC50
(2)

Where COS7 CC50 corresponds to the 50% cytotoxic
concentration on COS7 cells and Pf IC50 is the 50 % inhibitory
concentration on P. falciparum (3D7).

Ookinete Assay
All animal procedures were carried out in accordance to
the Brazilian College of Animal Experimentation (COBEA).
This research protocol was approved by the Ethics Committee
of the Institute of Biomedical Sciences – University of Sao
Paulo, protocol number 132/2014-CEUA. C57BL/6 mice received
an intraperitoneal injection of P. berghei ANKA infected
erythrocytes, and four days after infection, a mouse with
parasitemia between 4 and 6% and gametocytemia > 0.4% was
selected as blood donor for cardiac puncture. Four microliters of
the infected blood was dispensed in 80 µl of ookinete medium
(Blagborough et al., 2012) at 21◦C with DMSO control or with 10
µM of the tested compounds. The assay was incubated at 21◦C
for 24 h and 2 µl of the blood at the bottom of the tubes was
spread onto a glass slide, stained with Giemsa and analyzed under
a direct light microscope. The total number of formed ookinetes
were counted in each slide (triplicate for each condition), and
inhibition was calculated in relation to the total ookinetes formed
in the control condition.

RESULTS AND DISCUSSION

QSAR Modeling
Various combinations of hologram length, fragment size, and
fragment distinction were tested with an aim to build robust
and predictive HQSAR models. The original data set was divided
into training and test sets in a ratio of approximately 3:1
using the HCA method. The three best HQSAR models for
Pf dUTPase inhibition are shown in Supplementary Table S2.
The models displayed very similar statistical features, but the
model with fragment distinction A/C (Supplementary Table S2)
performed slightly better than others in terms of robustness
(q2

LOO = 0.70) and external predictivity (Q2
ext = 0.71). In

addition, the best model presented a Durbin-Watson metric
(Savin and White, 1977) (d) closest to the ideal value (d = 1.99),
indicating that this model is less biased. The Durbin-Watson test
is useful to evaluate the presence or absence of autocorrelation
of residuals from regression analysis. The values range from 0
to 4. Values of d near or equal to 2 indicate no autocorrelation
of residuals. Values of d < 2 or d > 2 indicate that residuals
are positively or negatively auto correlated and predictions are
more biased (Savin and White, 1977). The best HQSAR models
for selectivity (using human dUTPase data) are also presented
in Supplementary Table S2. The best model, with fragment
distinction B/C (Supplementary Table S2), showed good external
predictivity (Q2

ext = 0.83), with d-value close to the reference
value (d = 2.02). The plots comparing the experimental and
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predicted biological activity for the best HQSAR models are
shown in Supplementary Figures S1A,D. These plots demonstrate
a good agreement between experimental data and predictions
from the models.

The HQSAR contribution maps are useful to highlight
the relationships between specific structural fragments and
the biological property/activity. Colors close to the red end
(red, red orange, and orange) indicate fragments with negative
contribution, while colors in the green region (yellow, green
blue, and green) indicate fragments with positive contribution to
biological activity. The common substructure is represented in
cyan (Figure 2).

The contribution maps of the most potent (4) and least potent
inhibitors (127) and of the most selective (20) and least selective
inhibitor (87) are presented in Figure 2. As one can see, the trityl
ring has a positive contribution for both inhibition and selectivity
(compounds 4 and 20, Figure 2). Additionally, the absence of
the trityl group results in drastic decrease in activity against
Pf dUTPase, as observed in compounds 4 and 127 (Figures 2A,B,
respectively), and a clear decrease in selectivity, when we compare
compounds 20 and 87 (Figures 2C,D, respectively). These
observations corroborate previous studies (Whittingham et al.,
2005; McCarthy et al., 2009; Baragaña et al., 2011; Hampton
et al., 2011; Recio et al., 2011; Ruda et al., 2011; Ojha and Roy,
2013), indicating that two of the three phenyl rings from the
trityl group have significant interactions with the hydrophobic
pocket formed by residues Phe46 and Ile117 from Pf dUTPase
(Hampton et al., 2011). In contrast, in the human enzyme, such
residues are replaced by hydrophilic residues Val42 and Gly87.
Therefore, there is no corresponding hydrophobic pocket in
HsdUTPase (Whittingham et al., 2005; Hampton et al., 2011).
In a previous study by Ojha and Roy (2013), some nucleoside
inhibitors were used for QSAR studies and pharmacophore

mapping of Pf dUTPase inhibitors. The results revealed that two
phenyl rings from the trityl group are responsible for stablishing
important hydrophobic interactions and one phenyl ring may
form a π–π stacking interaction with the amino acid residue
Phe46 from Pf dUTPase (Ojha and Roy, 2013).

Two steps are critical for the development of CoMFA and
CoMSIA models: the partial atomic charge assignment and
structural alignment (Doweyko, 2004; Melo-Filho et al., 2014).
In this study, two different charges (Gasteiger-Hückel and
AM1-BCC) and three different molecular alignment approaches
(morphological similarity function on Surflex-Sim, shape-based
superposition on ROCS and alignment accessed by molecular
docking) were evaluated. The Surflex-Sim alignment was
performed using the most potent inhibitors of the data set
(compounds 1 and 2) as templates, which were used for the
flexible alignment of the remaining compounds of the data
set. The shape-based alignment was executed with previously
generated conformers. These conformers were superimposed
to compound 3, which is the co-crystallized inhibitor of
Pf dUTPase, available at Protein Data Bank (PDB code: 3T64)
(Hampton et al., 2011). The superposition was evaluated
by the TanimotoCombo score (Hawkins et al., 2010). Based
on this score, the best conformation of each compound
was selected. In the docking-based alignment, the previously
generated conformers were docked and classified using the
Chemgauss4 score function (McGann, 2011). The best conformer
for each compound was selected based on the Chemgauss4
score. Additionally, conformers were visually inspected for
selection of those with better superposition to the co-crystallized
inhibitor.

The results of the best CoMFA and CoMSIA models are
available at Supplementary Tables S3 and S4, respectively. The
plots comparing the experimental and predicted biological

FIGURE 2 | HQSAR contribution maps for the most potent PfdUTPase inhibitor of the dataset (A, Cpd. 4) and the less potent compound (B, Cpd. 127). The most
selective (C, Cpd. 20) and less selective (D, Cpd. 87) compounds are also displayed. The uracil ring, which is the common substructure, is highlighted in cyan.
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activity for the best COMFA and CoMSIA models are
shown in Supplementary Figures S1B,C,E,F. The best CoMFA
models for inhibition and selectivity presented good robustness
(q2

LOO = 0.63 and 0.86, respectively) and good external
predictivity (Q2

ext = 0.75 and 0.61). Furthermore, presented
good d values, indicating a low probability of biased predictions
(d = 1.86 and 1.99, respectively). In general, for CoMFA models,
the shape-based and Surflex-Sim alignments performed better
than the docking-based alignment (Supplementary Table S3).
The best CoMSIA models were obtained using shape-based
alignment and AM1-BCC charges (Supplementary Table S4).
The best CoMSIA model for Pf dUTPase inhibition presented
good robustness and external predictivity (q2

LOO = 0.68;
Q2

ext = 0.78, Supplementary Table S4). The best CoMSIA
model for selectivity, despite its lower internal consistence
(q2

LOO = 0.59), presented an acceptable external predictivity
(Q2

ext = 0.63), as demonstrated on Supplementary Table
S4.

The best CoMFA and CoMSIA models were used to generate
contour maps by using STDEV∗COEFF field type and the
function “contour by actual.” These maps could be useful for
designing new potent and selective Pf dUTPase inhibitors as
they indicate regions in the molecules where certain types of
interactions are favorable and unfavorable for biological activity.
The contour maps from the best CoMFA and CoMSIA models,
for both inhibition and selectivity, are presented in Figures 3, 4,
respectively.

The obtained contour maps show that bulky and hydrophobic
groups in the trityl group region are favorable for both

Pf dUTPase inhibition and selectivity (Figures 3A,C, 4A,C,D).
These results corroborate with the HQSAR contribution maps
and other studies highlighting the importance of the trytil
hydrophobic group for inhibition and selectivity. The trytil
group interacts with the hydrophobic pocket formed by
residues Phe46 and Ile117 which are missing in the human
dUTPase (Hampton et al., 2011). Thus, structural modifications
in trytil group should be further explored in order to
improve the interactions with the hydrophobic pocket and,
consequently, to help the design of novel potent and selective
Pf dUTPase inhibitors. The CoMFA and CoMSIA electrostatic
contour maps also show that electropositive groups in sugar
moiety and uracil group are favorable for inhibition and
selectivity (Figures 3D, 4B,E). Additionally, these maps show
that electronegative groups near the region of the oxygen
atom of the pentose sugar are favorable for Pf dUTPase
selectivity (Figure 4B), while electronegative groups near
the linker between the trityl group and the sugar moiety
(Figures 3B,D, 4E) are unfavorable for both inhibition and
selectivity.

The best individual HQSAR, CoMFA, and CoMSIA models
were combined in a consensus approach (Supplementary
Table S5). Thus, one consensus model for inhibition of
Pf dUTPase and another for selectivity were built. The external
validation of the consensus models was performed using the same
external evaluation set and metrics used for individual QSAR
models. The statistical characteristics of the consensus models
are presented in Table 1. Both models showed good external
predictivity (Q2

ext = 0.85 and 0.75; RMSEP= 0.40).

FIGURE 3 | Contour maps of the best CoMFA and CoMSIA models for PfdUTPase inhibition surrounding the most potent inhibitor (cpd. 1); (A,B) CoMFA steric and
electrostatic contour maps; (C,D) CoMSIA electrostatic and hydrophobic contour maps. Steric fields: green contours indicate regions where bulky groups are
favorable to biological activity; electrostatic fields: red contours indicate regions where electronegative groups are favorable for biological activity, while blue contours
indicate regions where electronegative groups are unfavorable; hydrophobic fields: cyan contours indicate regions where hydrophobic groups are favorable to
biological activity.
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FIGURE 4 | Contour maps of the best CoMFA and CoMSIA models for selectivity surrounding one of the most selective inhibitors (cpd. 20); (A,B) CoMFA steric and
electrostatic contour maps; (C–E) CoMSIA steric, hydrophobic and electrostatic contour maps. Steric fields: green contours indicate regions where bulky groups are
favorable to selectivity; electrostatic fields: red contours indicate regions where electronegative groups are favorable to selectivity, while blue contours indicate
regions where electronegative groups are unfavorable; hydrophobic fields: cyan contours indicate regions where hydrophobic groups are favorable to selectivity.

TABLE 1 | Statistical characteristics of consensus QSAR models for PfdUTPase
inhibition and selectivity.

Model Q2
ext RMSEP

Consensus – PfdUTPase Inhibition∗ 0.85 0.40

Consensus – Selectivity∗ 0.75 0.40

∗Consensus of the best individual HQSAR, CoMFA and CoMSIA models; Q2
ext:

determination coefficient for external set; RMSEP, root mean-square error of
prediction.

Virtual Screening
The virtual screening of new potential Pf dUTPase inhibitors
was performed on Hit2Lead library of ChemBridge database by
prediction of activity and selectivity of the compounds through
the developed and validated consensus QSAR models. Each
consensus prediction was obtained by the arithmetic mean of
the predictions from the best individual HQSAR, CoMFA, and
CoMSIA models (Supplementary Table S6). All duplicates or
compounds used to generate the models were excluded. Finally,
the following criteria were used for selection of the virtual hits:
(i) compounds should have the highest predicted potency against
Pf dUTPase (predicted pK i) and (ii) the predicted selectivity (S)
should be greater than zero. At the end of this process, five virtual
hits were chosen for experimental evaluation.

Inadequate ADMET properties contribute to high failure rates
in late stages of drug development. The early prediction and
optimization of such properties can help the reduction of late-
stage failures and expenses (van de Waterbeemd and Gifford,
2003; Sanders et al., 2017). In this study, the five virtual hits

were evaluated by predicting/analyzing a panel of properties
including logP and logS, oral acute toxicity in rodents (Filimonov
et al., 2004; Lagunin et al., 2009, 2011), carcinogenicity (Cheng
et al., 2012), and binding affinity to hERG (Braga et al., 2015)
(Table 2). All molecules were predicted as non-carcinogenic and
non-blockers of hERG channel. Only LabMol-143 and LabMol-
146 were predicted as positive for acute oral toxicity. LabMol-142
presented a high calculated logP (7.3), while the remaining hits
presented logP below or slightly above 5.

Experimental Evaluation of Selected
Compounds on P. falciparum
Multi-Drug-Resistant and Sensitive
Strains, and on P. berghei Sexual Stages
The five virtual hits selected were evaluated in vitro against
asexual blood-stages of P. falciparum multi-drug-resistant (W2)
and sensitive (3D7) strains. The half maximal inhibitory
concentrations (IC50) for each compound (Table 3) indicate that
three compounds (LabMol-144, LabMol-145, and LabMol-146)
were more potent at inhibiting parasite growth, showing activity
in submicromolar range against both 3D7 and W2 strains.
Furthermore, the cytotoxicity was measured in mammalian
COS7 cells. LabMol-144 and LabMol-146 showed promising
results in terms of selectivity (SI = 11.7 and 6.7, respectively;
Table 3).

The five compounds were also tested against P. berghei sexual
stages using in vitro gametocyte to ookinete conversion assays
(Table 3). LabMol-144, a promising selected compound in terms
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TABLE 2 | Chemical structures, predicted potency against PfdUTPase, predicted selectivity, and some calculated ADMET properties of the virtual hits.

Cpd ID Structure PfdUTPase
inhibition (pKi)a

Selectivity (S)b clogP logS Acute oral
toxicityc

Carcinogenicityd hERGe

LabMol-142 5.68 1.03 7.3 −8.42 No No Non-blocker

LabMol-143 5.52 1.59 5.87 −6.6 Yes No Non-blocker

LabMol-144 5.81 2.64 2.69 −5.36 No No Non-blocker

LabMol-145 5.10 1.14 5.23 −6.74 No No Non-blocker

LabMol-146 5.61 2.31 2.43 −5.04 Yes No Non-blocker

aPrediction based on consensus QSAR model for dUTPase inhibition; bPrediction based on consensus QSAR model for selectivity; logP and logS were extracted from
Hit2Lead library; cAcute oral toxicity predicted using GUSAR; dCarcinogenicity predicted in admetSAR software (Cheng et al., 2012); ePrediction of hERG channel
blockage in Pred-hERG web app (Alves et al., 2014; Braga et al., 2014, 2015).

of IC50 and SI against asexual stages and mammalian cells,
showed inhibition of 44.6% of ookinete formation relative to
control. Although the IC50 range of LabMol-144 and LabMol-
146 are still far from that of chloroquine and pyrimethamine
(Table 3), these compounds represent good starting points
for further optimization studies and development of new
antimalarial drugs. In addition, drug development based on
LabMol-144 may also lead to new antimalarials with transmission
blocking activity and new mechanism of action.

The two most promising compounds, LabMol-144 and
LabMol-146, are similar to the most potent compound from the
training set (cpd. 1) used for developing QSAR models (Tc of
0.72 and 0.84, respectively, Supplementary Table S6). However,
LabMol-144 presents some differences in relation to compound 1.
As demonstrated on Figures 2–4, and based on previous reports
on literature, the presence of hydrophobic groups on trytil region
is favorable for both activity and selectivity against Pf dUTPase
(Whittingham et al., 2005; Hampton et al., 2011; Ojha and Roy,
2013). Thus, LabMol-144 can be a potent and selective inhibitor
of Pf dUTPase due to the addition of two methoxy substituents
on trytil group, which can contribute for improved affinity to the
hydrophobic binding pocket of the enzyme. Other modifications
in LabMol-144 in comparison to compound 1 are the presence
of the oxazolidine ring between the sugar moiety and uracil ring,
and the substitution of nitrogen by oxygen on the linker between
the sugar moiety and the trytil group.

LabMol-144 has higher similarity to the most potent inhibitors
of Pf dUTPase from the training set (compounds 1 to 6, Figure 5)
Tc = 0.58–0.72, and it has a very low similarity to the currently
used antimalarial drugs, Tc = 0.23–0.54 (Figure 5). Added
to the fact that LabMol-144 showed similar activity against
sensitive and multidrug resistant strains of P. falciparum, this
further suggests that the mode of action of nucleosides and
their derivatives is different from current antimalarials. This is
particularly important considering parasite resistance in natural
settings. Therefore, inhibitors of Pf dUTPase, a target different

from the other test antimalarials, could overcome cross-resistance
phenomena, and are very promising scaffolds to be explored
as new antimalarial drugs. Certainly, the activity of compounds
could be caused not only by Pf dUTPase inhibition but by
different mechanisms of action. However, to explore this, further
in vitro enzymatic studies should be performed. Exploring other
mechanisms of action is out of the scope of this paper and should
be considered in the next steps of the project.

Molecular Docking
The most promising compound (LabMol-144, IC50 = 4.23 µM
against W2 strain, and highest predicted pIC50 = 5.81 against
the parasite enzyme) was docked in Pf dUTPase and HsdUTPase
in order to compare the binding modes and to analyze how
differences between the human and parasite enzymes can be
explored for the design of selective inhibitors. The docking
studies suggested a higher affinity of LabMol-144 to Pf dUTPase.
The Glide Score on Pf dUTPase was −7.38 kcal/mol (Figure 6A)
and −6.26 kcal/mol on HsdUTPase (Figure 6C). After the
docking, we performed MM-GBSA calculations to obtain the
free energy of binding, in order to compare the affinities of
the compounds. The results are available on Supplementary
Table S7. These results suggested that LabMol-144 has a
higher affinity to Pf dUTPase, with a twice higher affinity
toward the parasitic enzyme in comparison to the human
ortholog (estimated 1G of binding of −107.8 and −52.8,
respectively).”

As demonstrated on Figures 6A,B, the parasitic enzyme has
the amino acid residues Phe46 and Ile117 in the hydrophobic
region of the active site, while the human counterpart has Val65
and Gly110, respectively (Figures 6C,D). The presence of Phe46
in Pf dUTPase is responsible for an additional π–π stacking
interaction with one ring from trytil group, while Ile117 can
perform two hydrogen bonds with uracil and oxazolidine rings.
These two hydrogen bonds contribute to the exposure of a
hydroxyl group to Tyr112, allowing the molecule to stablish
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TABLE 3 | In vitro evaluation of selected hits against asexual blood stage of P. falciparum 3D7 and W2 strains, cytotoxicity on mammalian cells (COS7), selectivity index,
and inhibition of ookinete stage of P. berghei.

Cpd ID IC50 3D7 (µM) IC50 W2 (µM) CC50 COS7 (µM) SI % conversion inhibition (10 µM)

LabMol-142 >40 >40 >100 ND 10.2 ± 11.9

LabMol-143 >40 >40 >200 ND 0

LabMol-144 7.1 ± 2.53 4.23 ± 1.18 81.7 ± 25.7 11.7 44.6 ± 2.4

LabMol-145 17.1 ± 16.2 15.3 ± 3.29 46.0 ± 13.4 2.7 13.2 ± 24.0

LabMol-146 6.1 ± 1.95 3.20 ± 2.12 52.0 ± 16.4 6.7 7.3 ± 7.3

Chloroquine 0.011 ± 0.0006 0.181 ± 0.027 – – –

Pyrimethamine 0.044 ± 0.009 14.7 ± 3.94 – – –

IC50 3D7: half maximal inhibitory concentration on 3D7 strain; IC50 W2: half maximal inhibitory concentration on W2 strain; CC50 COS7: half maximal cytotoxic
concentration on COS7 cells; SI, selectivity index calculated between CC50 on COS7 and IC50 in 3D7 strain. The data are expressed as mean ± SD of three independent
assays.

FIGURE 5 | Radial plot showing the similarity of the most promising compound discovered (LabMol-144) compared to known antimalarial drugs (red) and six of the
most potent inhibitors of PfdUTPase from the dataset used for QSAR modeling (green). The similarity was calculated using Tanimoto coefficient (Tc) and MACCS
structural key fingerprints.

an additional hydrogen bond with this residue (Figure 6A).
The absence of Phe46 and Ile117 on the human enzyme
(Figure 6C) results in a weaker affinity for Labmol-144. In
HsdUTPase, there are no interactions with Val65 and Gly110,
and consequently, no hydrogen bond with Tyr105. The main

interactions with HsdUTPase are the hydrogen bonds with Gly99
and two structural water molecules (Figures 6C,D).

These results corroborate with our QSAR contribution and
contour maps and also with previous studies (Whittingham et al.,
2005; Hampton et al., 2011; Ojha and Roy, 2013), highlighting
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FIGURE 6 | Molecular docking of LabMol-144 in dUTPase of P. falciparum (A,B) and human (C,D). In 3D representation (A,C), hydrogen bonds are presented as
yellow dashed lines. In 2D interaction diagrams (B,C), hydrogen bonds are presented as magenta arrows and hydrophobic interactions as red lines.

the differences between human and parasite enzymes, and the
importance of hydrophobic interactions with trytil group for
increased potency and selectivity. In future studies, we aim
to perform enzymatic assays against human and plasmodial
enzymes aiming to confirm the findings observed here.
Furthermore, the in vitro results against multi-drug and sensitive
P. falciparum strains and inhibition of P. berghei ookinete
formation are indicative that LabMol-144 is an attractive scaffold
for further hit-to-lead optimization studies for the development
of new antimalarials with transmission blocking activity.

CONCLUSION

In this work, we developed robust and externally predictive
consensus QSAR models, merging 2D- (HQSAR) and 3D-QSAR
(CoMFA and CoMSIA) models for prediction of inhibition and
selectivity against Pf dUTPase. The QSAR models were applied
for virtual screening of the ChemBridge database and allowed the
selection of five new potential selective inhibitors of Pf dUTPase.
The virtual hits were tested in vitro against sensitive (3D7)
and multidrug-resistant (W2) strains of P. falciparum. Two
compounds, LabMol-144 and LabMol-146, showed promising

activity against both strains of P. falciparum and present
chemical scaffolds very dissimilar from current antimalarial
drugs. Thus, inhibitors of Pf dUTPase could be a good alternative
for antimalarial drug combination. In addition, compound
LabMol-144 showed potent in vitro inhibition of P. berghei
ookinete formation, demonstrating that this compound is active
against multiple parasite stages and, therefore, optimization
based on this compound may also lead to new antimalarials
with transmission blocking activity. In future studies, we aim to
perform enzymatic assays against parasite and human enzymes.
Furthermore, we aim to perform hit-to-lead optimization
through structural modifications on the discovered scaffolds,
based on the information gathered from the QSAR contribution
and contour maps, aiming at designing new antimalarial drugs
with transmission-blocking activity.
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Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia, 7Burnet Institute, Melbourne, VIC,

Australia

Burkholderia ambifaria is an opportunistic respiratory pathogen belonging to the

Burkholderia cepacia complex, a collection of species responsible for the rapidly fatal

cepacia syndrome in cystic fibrosis patients. A fucose-binding lectin identified in the

B. ambifaria genome, BambL, is able to adhere to lung tissue, and may play a role in

respiratory infection. X-ray crystallography has revealed the bound complex structures

for four fucosylated human blood group epitopes (blood group B, H type 1, H type

2, and Lex determinants). The present study employed computational approaches,

including docking and molecular dynamics (MD), to extend the structural analysis of

BambL-oligosaccharide complexes to include four additional blood group saccharides

(A, Lea, Leb, and Ley) and a library of blood-group-related carbohydrates. Carbohydrate

recognition is dominated by interactions with fucose via a hydrogen-bonding network

involving Arg15, Glu26, Ala38, and Trp79 and a stacking interaction with Trp74.

Additional hydrogen bonds to non-fucose residues are formed with Asp30, Tyr35, Thr36,

and Trp74. BambL recognition is dominated by interactions with fucose, but also features

interactions with other parts of the ligands that may modulate specificity or affinity.

The detailed computational characterization of the BambL carbohydrate-binding site

provides guidelines for the future design of lectin inhibitors.
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INTRODUCTION

Cystic fibrosis morbidity is mostly due to respiratory infection
by opportunistic pathogens (Lyczak et al., 2002; O’Sullivan
and Freedman, 2009; Ciofu et al., 2013; Caverly et al.,
2015). Burkholderia cepacia is one of the most dangerous
pathogens isolated from cystic fibrosis patients; 20% of infected
individuals succumb to a rapidly fatal pneumonia termed
“cepacia syndrome” (Zahariadis et al., 2003; Blackburn et al.,
2004; Lynch, 2009). Isolated B. cepacia strains have been
classified into a steadily increasing number of species, referred
to collectively as the B. cepacia complex (currently consisting
of 20 species Vandamme et al., 1997; De Smet et al., 2015;
Martinucci et al., 2016). Most members of the complex are
resistant to multiple clinically used antibiotics, making the search
for new therapeutics more urgent (Zhou et al., 2007; Loutet and
Valvano, 2011; Podnecky et al., 2015). Burkholderia ambifaria,
a member of the B. cepacia complex, has been isolated from
both clinical and environmental samples (Coenye et al., 2001).
In addition to infecting human respiratory tissue, B. ambifaria
can colonize plant rhizospheres, where it promotes growth and
protects against invading fungi (Li et al., 2002; Lee et al., 2006;
Parra-Cota et al., 2014).

Previously, a carbohydrate-binding protein (named “BambL”)
was identified in the B. ambifaria genome; binding studies using
human tissues suggest it may play a role in infection (Audfray
et al., 2012). Opportunistic bacteria often adhere to tissues by
binding to host carbohydrates using carbohydrate-recognizing
proteins (lectins) displayed at the bacterial surface (Bavington
and Page, 2005; Imberty and Varrot, 2008; Pieters, 2011; Audfray
et al., 2013). Among the many carbohydrates present on
human cells, fucose-bearing blood group determinants are often
recognized by bacterial lectins (Lindén et al., 2008; Anstee,
2010; Holmner et al., 2010). In the cystic fibrosis respiratory
epithelium, cell-surface carbohydrates, present on glycolipids,
N-glycoproteins, and mucins, are more fucosylated than in
healthy tissue (Rhim et al., 2001; Venkatakrishnan et al., 2015).
This increased fucosylation may promote adhesion by fucose-
recognizing pathogens (Stoykova and Scanlin, 2008; Audfray
et al., 2013). Known cystic fibrosis pathogens Pseudomonas

aeruginosa, Burkholderia cenocepacia and Aspergillus fumigatus,
all have lectins that bind to fucosylated human blood group
carbohydrates (Mitchell et al., 2002; Imberty et al., 2004; Sulak
et al., 2010, 2011; Houser et al., 2013, 2015). Significantly, the P.
aeruginosa lectins are strongly associated with respiratory tissue
damage and bacterial load in a mouse model of lung injury,
and treatment with monosaccharides, able to specifically inhibit
lectin binding, reduces infection (Chemani et al., 2009). Similar
effects have been reported in a human P. aeruginosa infection
case study (von Bismarck et al., 2001) suggesting that interfering
with lectin-carbohydrate interactions may offer a new frontier in
anti-infective treatment (Sharon, 2006; Pera and Peters, 2014).
Lectin inhibitor design begins with a thorough understanding

Abbreviations: BambL, Burkholderia ambifaria lectin; H1, H type 1; H2, H type

2; Lea, Lewis a; Leb, Lewis b; Lex, Lewis x; Ley, Lewis y; MD, Molecular Dynamics;

PDB, Protein Data Bank; vdW, van der Waals; RMSD, root mean square deviation

of the role of each functional group in the natively recognized
carbohydrate (Ernst and Magnani, 2009).

The crystallographic structure of BambL has been solved,
revealing a six-bladed β-propeller fold formed by three separate
protomers (Audfray et al., 2012). Each subunit contains a
single carbohydrate-binding site; upon oligomerization, three
additional binding sites are formed at the interfaces between
protomers, for a total of six binding sites in the β-propeller
fold. The intra- and inter-protomeric sites have similar
architectures and (for most blood group carbohydrates) similar
binding properties. For this reason, the present work addresses
interactions within the intra-protomeric site only. Crystal
structures of BambL have also been obtained bound to multiple
fucosylated human blood group tetrasaccharides: H type 1, H
type 2, B type 2, and Lex (PDB IDs: 3ZW2, 3ZZV, 3ZWE, and
3ZW1; Audfray et al., 2012; Topin et al., 2013; Figure 1). In
each case, the carbohydrate is bound via a buried fucose residue,
which participates in a network of hydrogen bonds within a
tight fucose-binding pocket. Blood group carbohydrate binding
specificity has also been determined by glycan array and affinity
quantified by titration microcalorimetry: strongest affinity is for
H type 2 tetrasaccharide (KD 7.5 µM) and Ley pentasaccharide
(KD 11.1 µM; Audfray et al., 2012). This binding preference
indicates that BambL is more selective for blood and tissue
carbohydrate determinants containing the type 2 epitope Fucα1-
2Galβ1-4GlcNAc. Several of the blood group and tissue antigens
recognized by BambL have not been structurally characterized
in complex with the lectin (e.g., Ley, Leb, and A). Additionally,
while existing crystal structures describe static recognition, the
dynamic behavior of BambL complexes has not been described.
The relative contributions of individual binding interactions to
saccharide recognition is also unknown. Extending the structural
analysis of BambL-blood group complexes to probe these aspects
of recognition will enhance understanding of carbohydrate
recognition and facilitate inhibitor design.

The goal of this computational study was to characterize
BambL-saccharide binding modes and to inform future in silico
or structure-based design of inhibitors for this bacterial lectin.
We were interested in identifying lectin residues that are critical
for ligand recognition and thus could be used as constraints
in prospective virtual screening. In particular, we investigated
whether the BambL binding site is restricted to recognizing
fucose or is capable of engaging non-fucose saccharides using
additional interactions. We first used docking and site mapping
to study binding modes in complexes featuring A, B, O (H), and
Lewis fucosylated carbohydrates and a library of blood-group-
related saccharides. The dynamic behavior of these systems
was then explored by molecular dynamics (MD) simulations.
The recognition of fucose-containing saccharides by BambL is
accomplished by a hydrogen-bonding network between fucose
and Arg15, Glu26, Trp79, and to a lesser extent Ala38. A
hydrophobic contact is made between the fucose non-polar face
and the Trp79 imidazole. Additional hydrogen bonds outside the
fucose-binding pocket to Asp30, Thr36, Trp74, and Tyr35 are
formed in complex with multiple blood group and blood-group-
related saccharides. Residues involved in these interactions
are consistently engaged by blood-group-related saccharides,

Frontiers in Pharmacology | www.frontiersin.org June 2017 | Volume 8 | Article 39361

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Dingjan et al. Molecular Simulations of BambL-Carbohydrate Recognition

FIGURE 1 | BambL subunit shown with blood group and tissue antigen saccharides (A, B, H, Lea, Leb, Lex, and Ley ) used for simulation. BambL structure from PDB

ID: 3ZZV, with the intra-protomeric binding site and ligand shown.
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suggesting they may be valuable interaction targets for BambL
inhibitors.

MATERIALS AND METHODS

A single BambL subunit containing an intra-protomeric
(Audfray et al., 2012) binding site was used in the below
computational studies.

Blood-Group and Blood-Group-Related
Carbohydrate Structure Generation
Low energy blood-group and blood-group-related carbohydrate
structures were generated and simulation parameters produced
using the GLYCAM web portal (Woods, 2005; Kirschner et al.,
2008). The A and B determinants were modeled as trisaccharides
for comparison to previous binding data for the soluble type
A determinant (Audfray et al., 2012). The H type 1, H type
2, Lea and Lex determinants were modeled as tetrasaccharides
for consistency to previously determined binding data (Audfray
et al., 2012) and the Leb and Ley determinants were modeled
as tetrasaccharides to encompass the entire epitope. The library
of blood-group-related structures is shown in Supplementary
Figure 1.

Docking
Docking experiments were performed using the docking
program Glide 6.8 (Friesner et al., 2004, 2006; Halgren
et al., 2004; Schrödinger, 2014a) available within the molecular
modeling package Maestro (Schrödinger, 2014a,b). The BambL
crystallographic complexes were downloaded from the Protein
Data Bank, PDB (Berman et al., 2000), and the protein
structures prepared using the Protein Preparation Wizard tool
(Madhavi Sastry et al., 2013; Schrödinger, 2014b). During this
step, structural details required for the docking calculation
were specified. Double bond orders were applied for backbone
carbonyl and aromatic side chain moieties, hydrogen atoms
were added to the structure, water molecules removed, and
disulfide bonds created between cysteine side chain sulfur atoms
in close proximity. Missing atoms and side chains were added
based on the protein’s primary sequence using the Prime tool
(Schrödinger, 2014c). To remove steric clashes between added
hydrogen atoms, a minimization step was then conducted on
hydrogen atoms only, using the OPLS2005 forcefield (Banks
et al., 2005). A receptor grid was generated using default settings,
with the binding site box centered on the crystallographic ligand.
Ligands were docked into the receptor grid using Standard
Precision mode with default settings. All carbohydrate atoms
were treated flexibly during docking, including all glycosidic
linkages and exocyclic groups. The lowest-energy docked poses
were retained for MD simulation. Docked poses were filtered
by glycosidic dihedral angle to exclude unfavorable high energy
carbohydrate conformations. Cutoff values for dihedral filtering
were chosen for each glycosidic linkage based on isoenergy
contours previously calculated with the MM3 force field from
Imberty et al. (1995). Conformations with dihedrals in the
following ranges were removed from the analysis: Fucα1-2Gal
ϕ < −130◦ & 180◦ < ψ < 360◦; GalNAcα1-3Gal ϕ > 240◦;

Galβ1-3GlcNAc ϕ > 0◦ & 180◦ < ψ < −60◦. Thus, we have
used energy maps to post-filter docked poses as a means of
retaining reasonable conformations. These energy maps have
been commonly used to evaluate carbohydrate conformations
obtained from simulations and experimental work [for example
Jackson et al. (2014) and Tempel et al. (2002)]. Hydrogen bonds
and contacts were tallied using MDAnalysis (Michaud-Agrawal
et al., 2011; distance= 3.0 Å, angle= 120).

Site Mapping
All BambL-blood group carbohydrate complexes were examined
using LigPlot (Wallace et al., 1995; Laskowski and Swindells,
2011). Only poses that passed the glycosidic torsion filter
requirements (see above), were used for site mapping, following a
previously developed method (Yuriev et al., 2001; Agostino et al.,
2009b, 2011, 2013; Dingjan et al., 2015a). In brief, each individual
hydrogen bond made by a particular BambL residue was counted
toward the hydrogen-bond tally. Non-polar vdW interactions
between a specific BambL residue and a carbohydrate residue
were counted as a single interaction toward the tally. The tallies
were normalized to percentages of the total number of hydrogen
bond or vdW interactions. Site maps were generated using
residue inclusion cutoff values for lectin-carbohydrate complexes
of 90% for hydrogen bonds, 0% for vdW interactions (Agostino
et al., 2013). Site map images were rendered using PyMOL
(Schrödinger, 2014d).

Molecular Dynamics
MD simulations were performed using Gromacs 5.0.4
(Berendsen et al., 1995; Van Der Spoel et al., 2005; Hess et al.,
2008; Pronk et al., 2013). Proteins were parameterized using
the AMBER99SB-ILDN (Lindorff-Larsen et al., 2010) forcefield.
Carbohydrate topologies were generated using the GLYCAM06
(Kirschner et al., 2008) force field via the glycam.org web portal.
The resulting AMBER-formatted topology was converted to
GROMACS format using the “acpype” tool (Sousa da Silva and
Vranken, 2012). The correctly formatted carbohydrate topology
was then combined with the protein topology to describe
the entire protein-carbohydrate system. Protein-carbohydrate
docked complexes were placed in a rhombic dodecahedral box
with a 10 Å minimum distance between solute and box wall,
and subsequently solvated using the TIP3P water model. To
maintain electrostatic neutrality, Na+ and Cl− counterions
were added by the genion module. To remove steric clashes
between nearby atoms, the system contents were minimized
using the steepest descent algorithm (maximum steps: 50,000).
The positions and velocities of the solvent molecules and ions
were then equilibrated at constant volume and temperature
(NVT ensemble) using three restraint settings: with all protein
heavy atoms restrained for 100 ps, then with only backbone
atoms restrained for 100 ps (both at 10K), followed by a 100 ps
equilibration without restraints at 300K. Finally, the pressure
of the system was equilibrated for 300 ps without restraints
at constant atmospheric pressure (NPT ensemble) at 310K.
During all equilibration steps, positional restraints were applied
to protein residues using LINCS (Hess, 2007). The coordinates
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from the final equilibration step were used to begin production
simulation, which was conducted for 400 ns.

For all MD simulations in the NPT ensemble, temperature
was kept constant using the velocity rescaling thermostat coupled
with a time constant of 0.1 ps. Pressure was held constant at
1 bar using the Parrinello-Rahman barometer, coupled with
a time constant of 2 ps. Equations of motion were integrated
using a leap-frog integrator with a 2 fs timestep. Long-range
electrostatics were evaluated using the Particle Mesh Ewald
method. Cutoff values for Coulomb and vdW interactions were
set to 1.0 nm. Complexes with blood group carbohydrate ligands
were simulated in triplicate, complexes with blood-group-
related carbohydrate ligands were simulated in singlicate. Each
replicate was commenced using randomized velocities, resulting
in independent simulations with different initial velocities.

Analysis of MD Simulations
Hydrogen bonds in MD simulations were analyzed using the
Baker-Hubbardmethod implemented in theMDTraj (McGibbon
et al., 2015) software library. An occupancy value was assigned
to each hydrogen bond by calculating the percentage of
simulation frames in which the bond was present. Glycosidic
dihedral angles were measured using MDTraj and compared
to calculated isoenergy contours (see above). Carbohydrate
ring conformations were analyzed using Best Four-Member
Plane method from GLYCAM (Makeneni et al., 2014). CH-π
interactions were represented by measuring a shortest distance
from either of the fucose atoms C3, C4, C5, or C6 to atoms
of the indole ring of Trp74. Atom labeling corresponds to the
conventions of the PDB exchange dictionary (Berman et al.,
2003).

RESULTS

Generation of BambL-Blood Group
Complexes by Docking
To decide which of the crystallographic BambL receptor
structures to use in this study, we compared complex structures
predicted by re-docking with respective crystallographic
complexes. The results of these cognate and cross-docking
experiments are shown in Table 1, Figure 2. The Lex

tetrasaccharide was poorly docked (RMSD > 2 Å) into all
BambL structures. However, all four lectin structures afforded
approximately equal performance when used as a receptor for
the other three carbohydrate ligands: overall RMSD values of
1.09–2.62 and 0.14–0.56 Å for the buried fucose (Fucα1-2Gal)
were observed. The crystallographic BambL structure from the
PDB ID: 3ZZV complex was used as the receptor structure for
site mapping and MD with all carbohydrates shown in Figure 1.

In a second step, all blood group saccharides were docked in
BambL (PDB ID: 3ZZV) and the top docked poses were analyzed
for structural features relevant to recognition (Table 2). In all
cases except Lex, the majority of binding interactions were made
via a single buried fucose residue (Figure 3). The difucosylated
Leb and Ley possess two fucose residues (Fucα1-2Gal and Fucα1-
4GlcNAc in Leb or Fucα1-3GlcNAc in Ley) and therefore may
occupy the fucose-binding pocket in two ways. Of the docked Leb

TABLE 1 | Top scoring docked pose characterization for BambL-blood group

saccharide complexes.

RMSD of top docked pose to crystal structure (Å)a

Ligand 3ZWE (1.75 Å) 3ZW2 (1.60 Å) 3ZZV (1.68 Å) 3ZW1 (1.60 Å)

Bb 1.68 (0.42)c 2.04 (0.25) 2.13 (0.36) 2.62 (0.28)

H1 1.80 (0.47) 1.09 (0.29)c 1.47 (0.14) 2.02 (0.27)

H2b 1.90 (0.39) 2.42 (0.39) 1.56 (0.25)c 1.52 (0.56)

Lex 9.47 (7.95) 4.61 (0.58) 6.94 (10.31) 7.01 (0.32)c

aThe experimental resolution of each crystallographic BambL complex is shown in

brackets beneath the PDB ID. RMSD values compare the ligand portion common between

the docked and crystallographic ligand; RMSD values in brackets compare the fucose

portion of the docked ligand to the fucose portion of the crystallographic ligand.
bCross-docking performed using the ligands used in site mapping and molecular

dynamics (Figure 1). Cognate docking performed using the ligand length present in the

crystallographic complex.
cValues shown in bold indicate cognate docking experiments.

FIGURE 2 | Blood group carbohydrates docked into the BambL binding site

of PDB ID: 3ZZV (orange), compared to their respective experimentally

determined poses (green). The PDB IDs for experimental poses are indicated.

For clarity, all carbohydrates are shown as the non-reducing-end trisaccharide

without hydrogen atoms.

poses produced here, only the Fucα1-2Gal residue was predicted
in the binding pocket. As for the docked Ley poses, all of the top
20 ranked poses positioned the Fucα1-2Gal residue in the pocket,
with the exception of poses at rank 5 and 6 that predicted the
Fucα1-3GlcNAc residue in the fucose binding pocket.

As expected, recognition of the buried fucose (Fucα1-2Gal)
was governed by a conserved hydrogen-bonding network and a
single hydrophobic stacking interaction (Supplementary Table 1).
Rather than interacting via a buried fucose, the Lex top docked
pose was placed “back-to-front” with the reducing end galactose
in the fucose-binding pocket, and the fucose directed away from
the protein.

Frontiers in Pharmacology | www.frontiersin.org June 2017 | Volume 8 | Article 39364

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Dingjan et al. Molecular Simulations of BambL-Carbohydrate Recognition

TABLE 2 | Top scoring docked pose characterization for BambL-blood group saccharide complexes.

Ligand Fucose RMSD (Å)a Glycosidic dihedral anglesb Hydrogen bondsc Docking score (kcal/mol)

ϕ ψ ϕ ψ ϕ ψ

A tri 0.53 Fucα1-2Gal GalNAcα1-3Gal GalNAc2-H6O...Asp30-OD1 −5.848

−106.8 55.9 81.3 76.8 GalNAc2-O4...Trp8-HE1

B tri 0.24 Fucα1-2Gal Galα1-3Gal Gla3-H6O...Asp30-OD1 −5.890

−107.9 63.9 49.5 45.8 Gla3-O3...Trp74-HE1

H1 0.43 Fucα1-2Gal Galβ1-3GlcNAc GlcNAcβ1-3Gal GlcNAc2-H4O...Asp30-OD2 −6.879

−116.2 −129.6 −42.2 146.6 −106.1 159.2 GlcNAc2-O2N...Trp74-HE1

H2 0.38 Fucα1-2Gal Galβ1-4GlcNAc GlcNAcβ1-3Gal Gal1-H3O...Tyr35-O −6.597

−106.0 −88.0 −42.2 −91.8 −81.8 101.0 Gal1-H6O...Asp77-OD2

GlcNAc2-H6O...Gly76-O

Lea 0.30 Fucα1-4GlcNAc Galβ1-3GlcNAc GlcNAcβ1-3Gal Gal4-H2O...Asp30-OD2 −5.706

−138.3 −147.3 −64.8 138.7 −68.1 96.6

Lex 10.22 Fucα1-3GlcNAc Galβ1-4GlcNAc GlcNAcβ1-3Gal Gal1-O5...Ala38-H −5.786

−76.4 151.5 −72.6 −112.7 −66.5 89.6 Gal1-O6...Trp79-HE1

Gal1-H6O...Glu26-OE1

Gal1-O4...Arg15-HH21

Gal1-H4O...Tyr35-OH

Fuc4-H2O...Asp30-OD2

Fuc4-H3O...Asp30-O

Gal3-H2O...Ser55-O

Gal3-O6...Thr11-HG1

Gal3-H6O...Ser13-OG

Leb 0.38 Fucα1-2Gal Fucα1-4GlcNAc Galβ1-3GlcNAc Fuc2-H2O...Asp30-OD1 −7.065

−83.6 −98.8 −70.3 96.5 −39.5 166.6 Fuc2-O3...Trp8-HE1

GlcNAc1-O6...Trp74-HE1

GlcNAc1-H6O...Val57-O

GlcNAc1-HO1...Gly76-O

Ley 0.33 Fucα1-2Gal Fucα1-3GlcNAc Galβ1-4GlcNAc Fuc2-H2O...Asp30-OD2 −7.007

−105.3 −138.3 −83.8 −51.3 −56.0 −103.7 GlcNAc1-H2N...Asp30-OD1

GlcNAc1-O1...Trp8-HE1

GlcNAc1-O6...Trp74-HE1

aCalculated for buried fucose residue heavy atoms between crystallographic saccharide (PDB ID: 3ZZV) and docked ligand.
bDihedral angles defined as: ϕ, O5-C1-O1-Cx ; ψ , C1-O1-Cx-Cx+1.
cExcluding hydrogen bonds involving the buried fucose residue.

Apart from interactions with the buried fucose residue,
additional hydrogen bonds are made between non-fucose
residues and amino acids in the four β-turn loops surrounding
the fucose-binding pocket (Table 2). The most frequently
participating residue, Asp30, interacts with non-fucose portions
of multiple saccharides (B, H1, Lea, Leb, and Ley). The imidazole
side-chain of Trp74 (which stacks against the buried fucose)
also donates a hydrogen bond to non-fucose residues in several
cases. In each case, the hydrogen bond is accepted by atoms in
a similar location: two residues away from the buried fucose,
at the GlcNAc 6-position (Leb, Ley), Gal/GalNAc 3-position (A,
B), or GlcNAc 2-position (H1). The presence of hydrogen bonds
between non-fucose portions and loop residues suggests that
BambL recognition may not rely solely on interactions with a
single buried fucose.

Glycosidic dihedral angles in top docked poses lie close to
global or secondary minima in previously calculated (Imberty

et al., 1995) energy maps (see Supplementary Figures 2, 3).
An exception is the Fucα1-2Gal linkage, which is positioned in
between minima in the H type 1, H type 2, Leb and Ley top poses.
In the A and B trisaccharide complexes, the Fucα1-2Gal linkage
adopted the lowest energy conformation. These results agree with
earlier BambL-blood group docking by Topin et al. (2013) in
which top docked pose glycosidic linkages also occupied a range
of energetic minima.

Site Mapping of BambL-Blood Group
Complexes
Site mapping reveals binding site residues that are frequently
involved in interactions throughout an ensemble of docked
poses. Site maps for BambL-blood group complexes are shown
in Figure 4. These maps are based on docking results for all
carbohydrates shown in Figure 1. The BambL site maps agree
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FIGURE 3 | Binding site interactions involving fucose in BambL-blood group

saccharide docked poses. Hydrogen bonds shown as yellow dashes,

hydrophobic interactions shown as teal dashes. Non-polar hydrogens omitted

for clarity.

FIGURE 4 | Site maps of a BambL subunit showing binding site residues

involved in docked pose interactions. Residues involved in 5% or fewer

interactions are colored white; residues involved in 20% or greater interactions

are colored red (for hydrogen bonding) or blue (for van der Waals). Residues

with intermediate involvement are shaded according to the color scale.

with crystallographic complexes, identifying multiple residues
in the fucose binding pocket known to interact with fucose
in crystallographic structures (PDB IDs: 3ZW2, 3ZZV, 3ZWE,
and 3ZW1; Audfray et al., 2012; Topin et al., 2013). Across the
docked pose ensemble, hydrogen bonds were frequently formed
to Arg15 (27.9%), Ala38 (11.6%), and Glu26 (13.7%), all located
within the fucose-binding pocket. Surprisingly, Trp79 (4.9%),
also in the crystallographic fucose pocket, was not often involved
throughout the docked pose ensemble. van der Waals (vdW)
interactions were frequently made with Trp74 (14.6%) in the

fucose pocket, in close agreement with crystallographic bound
complexes. Site maps also revealed new interactions not seen in
crystal structures, identifying hydrogen bonding to Asp30 (7.1%)
and vdW interaction with Tyr35 (11.1%) as regularly occurring
across all docked poses.

Molecular Dynamics Simulations of
BambL-Blood Group Complexes
To investigate the dynamic behavior of BambL-blood group
complexes, the lowest-energy poses generated by docking were
simulated in explicit solvent. For difucosylated Leb and Ley, the
lowest-energy poses with the Fucα1-2Gal residue in the fucose-
binding pocket were used. The poorly docked Lex complex was
also simulated, but quickly dissociated from the protein or was
unstable in the binding site (see Supplementary Figure 4). To
probe the dynamic behavior of the Lex binding interactions, the
crystallographic complex was used instead (PDB ID: 3ZW1).

During MD simulations, all fucose-anchored blood group
saccharides (A, B, H type 1, H type 2, Lea, Leb, Ley) remained
bound to BambL without dissociation for the entire duration
(400 ns). Structural fluctuations in ligand RMSD were below 2 Å
in all bound complexes, reflecting relatively small changes in
ligand positions and geometries during the MD simulations (see
Supplementary Figure 5). Carbohydrate ring conformations were
found to generally adopt one of the two chair conformations
(1C4 or 4C1), while the GlcNAc rings in the H type 2, Lea, and
Lex exhibited some variation (see Supplementary Figure 6). A
similar hydrogen-bonding pattern was observed across all blood
group simulations (Figures 5, 6), featuring interactions between
the buried fucose residue and the fucose-binding pocket: Glu26
acidic group to O3 and O4 hydroxyl protons, Arg15 guanidinium
to O4 and O5 oxygen atoms, and Trp79 indole to O3 oxygen
atom. These hydrogen bonds were highly occupied (between
60 and 90% of simulation frames), with the exception of the
Glu26 hydrogen bonds in the Leb complex (50–60%). The high
occupancy of these hydrogen bonds indicates the dominant role
played by fucose in BambL-carbohydrate binding.

In addition to the above interactions, a low-occupancy (up
to 30% of simulation frames) hydrogen bond was observed
between the Ala38 backbone amide proton and the buried
fucose 2-position hydroxyl oxygen atom. In contrast to the
highly occupied hydrogen bonds, this interaction engages a
backbone proton rather than a side-chain; combined with the
low occupancy, this suggests a less significant contribution
by this hydrogen bond to carbohydrate binding. Alongside
hydrogen-bonding interactions, stacking of the fucose C3-C4-
C5-C6 hydrophobic face against the Trp74 indole ring was
consistently maintained during simulation (see Supplementary
Figure 7).

Hydrogen bonds to non-fucose portions of the carbohydrate
ligands were formed at low to moderate occupancies (20–50%)
with fucose-binding residue Trp74 (Ley: 44%, Lea: 23%, Lex: 22%)
and surface residue Asp30 (B: 37%, H type 1: 44%, Leb: 24%, Ley:
31%).

Glycosidic linkage conformations explored during MD
simulations occupy global, and occasionally secondary, minima
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FIGURE 5 | Hydrogen bond interactions in BambL-saccharide complexes during MD simulations shown for A trisaccharide, B trisaccharide, H type 1 and H type 2

blood groups. Atoms are named to the conventions of the PDB exchange dictionary. Grid cells are colored and labeled by average occupancy from three replicate

simulations. Occupancy values were calculated by dividing the number of frames in which the hydrogen bond exists by the total number of simulation frames.

(Figure 7). As observed in docking, the Fucα1-2Gal linkage is
again an exception, adopting a position intermediate between
the two minima for the entire duration of simulation in the
H type 1, H type 2, Leb and Ley complexes. In the H type
1 and Leb complexes, this linkage explores a narrower range
of higher-energy conformations compared to H type 2 and
Ley. It is possible that this difference between the calculated
energetic minima and the conformations observed in simulation

is due to the presence of the protein. Force field-based energy
contours describe the energetic behavior of each linkage as an
unbound disaccharide in vacuum (Imberty et al., 1995), while
simulation of the bound complex introduces protein, water, and
other saccharide units within the tri- or tetrasaccharide, all of
which influence conformational behavior. A recent example of
the influence of protein binding on carbohydrate conformation
is the Lex saccharide, which occupies well-characterized “closed”
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FIGURE 6 | Hydrogen bond interactions in BambL-saccharide complexes during MD simulations shown for Lewis group saccharides. Atoms are named to the

conventions of the PDB exchange dictionary. Grid cells are colored and labeled by average occupancy from three replicate simulations. Occupancy values were

calculated by dividing the number of frames in which the hydrogen bond exists by the total number of simulation frames.

conformations in solution and “open” conformations when
bound to the RSL lectin (Topin et al., 2016; defined by the relative
positions of the fucose and galactose rings). In the present study,
the Lex saccharide maintained an open conformation duringMD
simulation, corresponding to shapes “Open V” and “Open II”
in the scheme defined by Topin et al. (2016) consistent with its
continuous occupation of the binding site during simulation (see
Supplementary Figure 8).

In the A and B trisaccharide simulations, the N-
acetylgalactosamine and non-reducing end galactose move
more freely than the saccharide occupying the same position in
the other ligands. The Fucα1-2Gal glycosidic linkage in these two
saccharides occupies two conformations, defined by variation
in the ψ-angle between −60◦ and +100◦. The A trisaccharide
explores both, while the B trisaccharide only occupies the former
conformation (Figure 7).
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FIGURE 7 | Glycosidic dihedral angles in BambL-blood group saccharide complexes during MD simulations. Dihedrals are defined as: ϕ, O5-C1-O1-Cx ;

ψ, C1-O1-Cx-Cx+1. Contour plots color coding: gray, calculated energy landscapes of constituting linkages; brown, A; light blue B; green H1; dark blue, H2; cyan

Lea; pink, Leb; orange Lex; red Ley. Contour plot lines mark intervals of 1 kcal/mol.

Docking and MD Simulations of Complexes
with Blood-Group-Related Carbohydrates
Interactions between BambL and blood group/tissue
carbohydrates was mediated mainly via the single buried
fucose, with occasional hydrogen bonds formed between non-
fucose atoms and residues on loops surrounding the binding
pocket. Identifying these non-fucose binding interactions may
provide opportunities to improve inhibitor affinity for BambL
beyond the current fucose-based inhibitors.

The potential for non-fucose binding interactions to form
in BambL-saccharide complexes was explored by simulating
complexes of 36 blood-group-related carbohydrates to the
protein (i.e., a focused carbohydrate library). The related
carbohydrates ranged in size from di- to heptasaccharides
and were composed of fragments of blood group and
tissue determinant carbohydrates and elongated versions of
blood group carbohydrates bearing additional saccharides (for
structures of all library members, see Supplementary Figure 1).
Most of these structures contain fucose moieties and were
expected to interact with BambL via the fucose-dominated mode
observed in crystallographic structures. To explore how non-
fucose residues (such as galactose and N-acetylgalactosamine)
might occupy the fucose-binding site, a selection of di- and
trisaccharides lacking fucose were also evaluated. Complexes
with BambL were assembled by docking and simulated in explicit
solvent for 400 ns.

Of the 36 complexes simulated, 28 remained stably engaged
without dissociation of the ligand into bulk solvent. Multiple

binding modes were observed among the stable complexes,
exhibiting different hydrogen-bonding patterns (Figure 8). In
some complexes (2, 6, 34, 30), very few hydrogen bonds were
formed and were observed for only up to 30% of MD runs.
These binding modes, while stable, did not feature significant
hydrogen-bonding interactions with BambL.

In four cases (5, 19, 18, 20), the ligand was found to interact
with the fucose-binding pocket via a non-fucose saccharide
(galactose or N-acetylgalactosamine). While these non-fucose
binding modes do include hydrogen bonds to the three fucose
pocket residues (Arg15, Glu26, and Trp79), these interactions
are not as highly occupied as those made by fucose-containing
saccharides (10, 9, 1, 17). In non-fucose binding modes,
hydrogen-bond occupancies over 70% were observed for only
one or two interactions per ligand; for fucose-mediated binding,
all three pocket residues are engaged more than 70% of the time.

The remaining 20 carbohydrates bound in a fucose-

dominated manner, forming hydrogen bonds at over 70%

occupancy between a fucose and all three residues of the

fucose-binding pocket. In most cases, additional hydrogen bonds

were formed with loop residues outside the fucose-binding

pocket, with occupancies ranging from 10 to 90%. The highly
stable (>70% occupancy) non-fucose hydrogen bonds involved
residues Asp30 and Thr36, located on loop 4. The acidic
sidechain of Asp30 projects toward the fucose-binding pocket,
accepting hydrogen bonds from saccharides not directly bonded
to the buried fucose. Thr36 is located further away from the
fucose-binding pocket, and accepts hydrogen bonds via the
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FIGURE 8 | Hydrogen bonding occupancy of blood-group-related saccharides during MD simulations. Saccharide names indicate the ligand moieties interacting with

BambL during simulation.

backbone carbonyl oxygen atom. A less-occupied hydrogen bond
(up to 67%) is formed to the indole nitrogen of Trp74, concurrent
with hydrophobic stacking against a buried fucose. Finally, Tyr35
donates a hydrogen bond via the phenolic hydroxyl to compound
28 and 33 (and additionally to the non-fucose compound 5). The
fucose-dominated binding modes featuring highest occupancy of
non-fucose hydrogen bonds involved carbohydrates 21 and 33,
illustrated in Supplementary Figure 9.

Combining all the BambL residues involved in hydrogen
bonds to fucose and non-fucose saccharides presents a
perspective of the target site that incorporates a wider view of
BambL-saccharide recognition, considering multiple interaction
points across the protein surface (Figure 9). This view of the
BambL binding site presents opportunities for future inhibitor
design to consider regions outside the fucose-binding pocket.

DISCUSSION

We have investigated the molecular aspects of carbohydrate
recognition of the B. ambifaria lectin by computational methods:
docking, site mapping, and MD. Molecular docking has been
shown to be extremely useful for structural predictions, if not
affinity calculations (Yuriev et al., 2015). However, docking
carbohydrate ligands presents a number of challenges stemming

from their extreme flexibility, a large number of hydroxyl
groups, leading to the formation of (often) extensive hydrogen-
bonding networks, and the formation of crucial CH/π stacking
interactions between the C-H bonds of the carbohydrates (on
their hydrophobic faces) and aromatic side chains of the protein
(Agostino et al., 2009a, 2012a). Also, carbohydrate ligands are

modular, and different residues (e.g., galactose vs. glucose) are

able to establish highly similar interactions with the binding

site. We have previously validated Glide and tested a range of

other docking programs for structural prediction of carbohydrate
complexes with antibodies (Agostino et al., 2009a, 2012b) and
lectins (Agostino et al., 2011). We have demonstrated that, as the
result of all the above-mentioned challenges, docking programs
and scoring functions are not always able to predict the native
binding pose faithfully as the top docked pose. To overcome
this shortcoming and to harness the recognition information
embedded in the docking output, we have developed a site
mapping methodology that takes into account an ensemble
of docked poses and identifies binding site residues critically
involved in recognition of a ligand or ligand family (Yuriev et al.,
2001, 2002; Agostino et al., 2013; Dingjan et al., 2015a).

In this study, docking with Glide produced reasonable top
poses for a range of BambL complexes with blood group
carbohydrates (Table 2). Using the BambL structure from PDB
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FIGURE 9 | BambL binding site showing residues implicated in saccharide binding. Purple: Residues which form hydrogen bonds with the buried fucose saccharide.

Orange: Residues which form hydrogen bonds with non-fucose saccharides. Green: Residues which participate in both hydrophobic and hydrogen bonding

interactions.

ID: 3ZZV gave accurate complex prediction for the B, H type
1 and H type 2 saccharides and accurate fucose placement for
the A, Lea, Leb, and Ley determinants. All these complexes
featured a buried fucose residue (Fucα1-2Gal), providing the
majority of hydrogen-bonding interactions, and conformational
ranges reflective of predicted energetic minima (Imberty et al.,
1995) and relevant experimental structures (Yuriev et al., 2005;
Dingjan et al., 2015b). Notably, the distances between fucose
carbon atoms and the geometric centers of the imidazole phenyl
and pyrrole component ring systems of Trp74 (Supplementary
Material, Table S1) are similar to reported geometries for fucose
CH/π dispersion interactions of a closely related lectin, RSL
(Wimmerova et al., 2012). As in the RSL-fucose complex, the
C6 atom interacts with the pyrrole part of the imidazole ring
(distance of 3.76 ± 0.3 Å), while C3 is further than 4 Å away.
Unlike the RSL complex, C5 also interacts with the pyrrole ring
(distance of 3.83 ± 0.1 Å), rather than the phenyl ring, which is
further than 4 Å from the entire non-polar plane.

Detailed elaboration of structural aspects of molecular
recognition requires expanding the single snapshot view afforded
by crystal structures or top docked poses. To that effect, we
have undertaken site mapping and MD investigations in order to
identify BambL residues critical for recognition of blood group
carbohydrates. The advantage of site mapping lies in its ability

to consider alternative binding modes while MD also explicitly
accounts for the role of water, mediating interactions of BambL
to carbohydrates.

We have identified the atomic scale binding interactions
that facilitate recognition of fucosylated human blood group
saccharides by BambL. A network of hydrogen bonds combined
with a single hydrophobic stacking interaction between the
buried fucose and amino acids in the fucose-binding pocket
account for the majority of binding interactions (Figure 3).
These structural features of the fucose-driven recognition closely
agree with experimental characterization of BambL-carbohydrate
binding profile by glycan array, which has demonstrated a
preference for short, fucose-bearing saccharides, with the fucose
monosaccharide among themost highly ranked binders (Audfray
et al., 2012). However, this fucose-driven recognition motif
does not explain the specificity profile of BambL compared to
other related fucose-binding lectins. Namely, the interactions
between BambL and fucosylated saccharides are highly similar
to those found in complexes featuring other six-bladed β-
propeller fucose-binding lectins: found in fungi [Aleuria aurantia
lectin, AAL (Fujihashi et al., 2003; Wimmerova et al., 2003);
Aspergillus fumigatus lectin, AFL (Houser et al., 2013);Aspergillus
oryzae lectin, AOL (Makyio et al., 2016)] and bacteria [Ralstonia
solanacearum lectin, RSL (Kostlánová et al., 2005)]. Members of
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this lectin family bind fucose via the same interactions: hydrogen
bonds between O2 and a backbone amide proton, O3 and indole
nitrogen, O3 and O4 to a shared carboxylate moiety, and O4 and
O5 to a shared guanidinium moiety. In a previous docking study
of RSL-fucose recognition by Mishra et al. (2012) the same suite
of interactions was reported.

Despite the common binding mode, these lectins prefer
different blood group determinants: AAL exhibits broad
specificity, while AFL prefers Ley, and RSL prefers saccharides
featuring Fucα1-2 and Fucα1-6 moieties (blood group A,
B, and H and core of N-glycans). Varied blood group
specificity has been proposed to arise from steric hindrance
around the fucose-binding pocket, preventing strong binding
to most branched carbohydrate structures (Fujihashi et al.,
2003). Glycan array screening shows generally decreased
binding to branched carbohydrates compared to mono- and
disaccharides for these lectins, emphasizing the importance
of steric effects (Houser et al., 2013). Additionally, the non-
selective AAL lacks steric hindrance around the fucose-binding
pocket: in a bound complex featuring the disaccharide Fucα1-
6GlcNAcβ1-OMe, transferred NOE experiments confirmed
conformational flexibility around the glycosidic linkage (Weimar
and Peters, 1994). However, steric hindrance alone does not
fully explain blood group selectivity in this lectin family.
AFL binds the difucosylated Ley more strongly than the
corresponding monofucosylated saccharide, H-type 2, despite
similar steric complementarity to the binding site (Houser
et al., 2013). We suggest that stabilizing interactions outside the
fucose-binding pocket (as observed in simulations of BambL
complexed with blood-group-related saccharides) play a role in
saccharide binding in the 6-bladed β-propeller lectin family more
generally.

Interactions with non-fucose residues are not as highly
occupied as interactions with the fucose. However, they
contribute to a wider view of BambL-carbohydrate recognition,
considering multiple interaction points across the protein
surface. They include hydrogen bonding to Asp30, Tyr35, Thr36,
and Trp74 and hydrophobic contacts with Tyr35 (Figure 9).
These contacts outside the fucose-binding pocket could be
employed in future inhibitor design for BambL to address issues
of opportunistic infections.

CONCLUSION

In summary, the present work details the recognition of
fucosylated human blood group determinants by BambL,
quantifies the occupancy of hydrogen bonding interactions,
and identifies opportunities for targeting residues outside
the fucose-binding pocket. Recognition mainly involves the

fucose monosaccharide through a network of highly occupied
hydrogen-bonding interactions to Arg15, Glu26, and Trp79, and
a lower occupancy interaction with Ala38. An additional stacking
interaction between the fucose hydrophobic face and Trp74 is
also highly occupied in MD simulations. Hydrogen bonds to
non-fucose saccharides were formed in complexes with Ley, Leb,
Lea, H1, H2, and B trisaccharide and in multiple complexes
involving blood-group-related saccharides. The most occupied
interactions involved Asp30, Thr36, Trp74, and to a lesser
degree Tyr35. Carbohydrate recognition by BambL is therefore
proposed to be driven by interactions in the fucose-binding
site and further stabilized by satellite interactions between non-
fucose saccharides and surface residues outside the fucose-
binding pocket. The analysis of carbohydrate recognition by
BambL presented in this study lays the foundation for the
development of fucomimetic molecules able to bind to BambL.
Such molecules have potential as anti-adhesives for the treatment
of B. ambifaria infection in cystic fibrosis patients.
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KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is an oncogenic driver
with mutations in 30% of non-small cell lung cancer (NSCLC). However, there is no
effective clinical drug even though it has been identified as an oncogene for 30 years.
In this study, we identified a small molecule inhibitor compound 0375-0604 targeting
KRAS by using molecular docking based virtual screening approach. Compound 0375-
0604 had a good binding affinity to KRAS in vitro and exhibited cytotoxicity in oncogenic
KRAS expressing NSCLC cell lines. Further mechanism study showed that compound
0375-0604 can block the formation of the complex of guanosine triphosphate (GTP) and
KRAS in vitro. In addition, compound 0375-0604 inhibited KRAS downstream signaling
pathway RAF/MEK/ERK and RAF/PI3K/AKT. Finally, we also found that this compound
can inhibit the cell growth through G2/M cell cycle arrest and induce apoptosis on
the NSCLC cell lines harboring KRAS mutation. Therefore, compound 0375-0604 may
be considered as a potential KRAS inhibitor for treatment of NSCLC carrying KRAS
oncogene.

Keywords: KRAS, NSCLC, small molecule inhibitor, molecular docking

INTRODUCTION

In lung cancer, NSCLC is the majority category and accounts for 85% (Ettinger et al., 2017). The
overall survival of patients with advanced or metastatic NSCLC is still dismal (Shima et al., 2015;
Lazo and Sharlow, 2016). With the development of modern sequencing technology, NSCLC was
further classified into different subtypes according to the frequency of gene mutation, such as
EGFR, ALK, MET, ROS-1, KRAS (Chen et al., 2014). Mutated KRAS genes are frequently found in
human cancers, especially in approximately 30% of lung cancer. Ninety seven percent of mutated
KRAS occurs in exon 2 and 3, including amino acid G12, G13, and Q61 (Karachaliou et al., 2013).
Due to high morbidity and mortality, a great deal of attention has been paid to study NSCLC with
KRAS mutations. However, there is still no direct and effective drug for clinical use (Jancik et al.,
2010; Gysin et al., 2011; Vasan et al., 2014; Papke and Der, 2017).

KRAS plays an important role in normal cell development, such as proliferation and
differentiation (Pylayeva-Gupta et al., 2011; Santarpia et al., 2012). As a small GTPase, KRAS
normally cycles between inactive GDP-bound state and active GTP-bound state, which are tightly
regulated by GTPase-activating proteins (GAPs) and Guanine nucleotide exchange factors (GEFs),
respectively (Maurer et al., 2012; Burns et al., 2014; Leshchiner et al., 2015). However, mutant
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KRAS impairs its GAPs activity, which locks KRAS at the active
state (Smith et al., 2013; Clausen et al., 2015). Thereby mutant
KRAS promotes its interaction with a variety of effector proteins
and activates downstream signaling events, and finally results in
tumor formation (Bos et al., 2007; Zimmermann et al., 2013; Lito
et al., 2016). Therefore, it is urgently needed to find effective
inhibitors to target and inhibit oncogenic KRAS in cancers.

To date, there are mainly three strategies for the discovery
of potent KRAS inhibitors: (1) to inhibit KRAS membrane
targeting (Laheru et al., 2012; Prakash and Gorfe, 2013; Chavan
et al., 2015; Cox et al., 2015); (2) to directly target KRAS
(Wang et al., 2012; Cromm et al., 2015; Leshchiner et al., 2015;
Brock et al., 2016; Trinh et al., 2016); (3) to inhibit interaction
between KRAS and its downstream effectors (Athuluri-Divakar
et al., 2016; Upadhyaya et al., 2016; Keeton et al., 2017).
However, there are multiple escape pathways by process of post-
translation for inhibiting KRAS membrane targeting (Rowinsky
et al., 1999; Van Cutsem et al., 2004). Inhibitor lonafarnib
and tipifarnib showed effective inhibition to KRAS mutations
through blocking prenylation of RAS, but failed in clinical trial,
as the geranylgeranylation could be in replacement of prenylation
when the farnesyltransferase was inhibited by these two inhibitors
(Berndt et al., 2011). Additionally, it may be not a good choice to
inhibit interaction between KRAS and its downstream effectors
for developing KRAS inhibitors. Firstly, there are a lot of
downstream effector proteins of KRAS involving in multiple
signaling pathways, such as RAF (MAP kinase pathway), PI3K
(AKT/mTOR pathway), and RalGDS (Ral pathway). Secondly,
these effectors are not only highly complex but also regulating
multiple pathways (Downward, 2003). Arguably, designing a
small molecule inhibitor directly targeting KRAS may be one
of the most effective ways. However, the biggest challenges to
develop direct KRAS inhibitor are the high binding affinity
between KRAS and GDP/GTP in the picomolar range and the
relatively flat surface without deep hydrophobic pockets in KRAS
protein (Ledford, 2015; Vo et al., 2016). Notably, in recent
years, several reported works have shown the novel transient
pockets on KRAS protein surfaces, which recover the hope in
the development of KRAS inhibitors (Prakash and Gorfe, 2013;
Wang et al., 2014).

In this study, we aimed to identify effective and potential
KRAS inhibitors by directly targeting KRAS to prevent cell
growth of NSCLC harboring KRAS mutation. We performed a
molecular docking-based virtual screening from a small molecule
database to screen KRAS inhibitors. A potential inhibitor
compound 0375-0604 was found to bind to KRAS and exhibit the
effective cytotoxicity to KRAS mutant NSCLC cell lines.

RESULTS

The Binding Mode between Compound
0375-0604 and KRAS
To discover potential small molecules targeting KRAS, virtual
screening based on molecular docking was performed on
Chemdiv library with about 1.36 million compounds. The
most promising compound 0375-0604 (Figure 1A) was selected

for further study. It was shown that the benzothiazole ring
of 0375-0604 inserted into the binding pocket of KRAS
with the linker sulfur atom exposed to solvent environment
(Figures 1B,C). The amino group of compound 0375-0604
formed H-bond interactions with the backbone of Met67 and
the side chain of Glu37, locating in switch I and II regions of
KRASG12D, respectively. At the same time, 0375-0604 formed
polar contacts and hydrophobic contacts with the surrounding
residues. 0375-0604 bound to KRASG12C with a similar manner
(Figure 1D) as KRASG12D, except for the orientation of
chlorobenzene rings. The orientation of benzothiazole ring
and chlorobenzene rings of 0375-0604 switched in KRASQ61H

(Figure 1E). Docking score of 0375-0604 in various systems was
shown in Figure 1F.

The Binding Affinity of Compound
0375-0604 with KRAS
To determine the binding affinity of this small molecule with
KRAS, we used biolayer interferometry assay (BLI) (Rich and
Myszka, 2007), a label-free technology, to measure biomolecular
interactions. Different concentration of compound 0375-0604
was measured in real time by association with both-labeled
KRAS protein, which was immobilized on the streptavidin (SA)
biosensors. All the association/dissociation binding curves was
shown in Figure 2A, and we further performed the steady-state
analysis (Figure 2B) with ForteìBio data analysis software to
obtain the binding affinity with KD value of 92 µM (Figure 2C),
which demonstrated their direct and reversible interaction with
KRAS.

Compound 0375-0604 Decreased Cell
Viability of NSCLC Cells with KRAS
Mutations
Since compound 0375-0604 bound to KRAS in vitro, we further
determined its cytotoxicity in NSCLC cell lines harboring mutant
KRAS by using MTT assay, including H2122 (KRASG12C),
H358 (KRASG12C) and H460 (KRASQ61H) cell lines. Cells were
incubated with a range of compound 0375-0604 concentrations
(0, 25, 50, 100 µM) for 24, 48, and 72 h. As shown in Figure 3,
compound 0375-0604 inhibited three NSCLC cell lines in a dose-
and time-dependent manner, but not in normal lung fibroblast
cell line CCD-19Lu. Importantly, we found that the IC50 value
of compound 0375-0604 in H2122, H358 and H460 cells were
up to 6-fold less than that of CCD-19Lu cells, which suggested
that compound 0375-0604 showed strong inhibition selectivity in
NSCLC cells.

Compound 0375-0604 Blocked
GTP-KRAS Formation in NSCLC Cells
Actually, mutant KRAS would interfere the balance between
GEFs and GAPs, resulting in locking in the active GTP-bound
KRAS state and aberrant stimulation of its downstream signaling.
Hence, KRAS inhibitors should reduce the formation of GTP-
KRAS to disrupt the mutant KRAS function.

In order to know whether compound 0375-0604 could inhibit
activation of KRAS, we performed RAS activation assay to
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FIGURE 1 | The structural analysis between KRAS protein and 0375-0604. (A) The chemical structure of 0375-0604. (B) Structure of 0375-0604 binds to
GDP-KRASG12D. The switch I and II region are colored in yellow and purple, respectively, while 0375-0604 and GDP are colored in blue and magenta, respectively.
(C–E) Binding mode of 0375-0604 with KRASG12D, KRASG12C and KRASQ61H, respectively. (F) Docking score of 0375-0604 in various systems.

examine the formation of GTP-bound KRAS after treatment
with a range of concentrations of compound 0375-0604
in H2122, H358 and H460 cells at 24 h. As shown in
Figure 4, the formation of GTP-KRAS was inhibited in KRAS

mutant NSCLC by compound 0375-0604 treatment, compared
to total amount of KRAS, suggesting this small molecule
could partially rescue this unbalance resulted from mutant
KRAS.
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FIGURE 2 | The binding affinity of compound 0375-0604 with KRAS was determined by interferometry studies. (A) Binding curves of varying concentrations of
compound 0375-0604 to the immobilized KRAS protein. (B) Steady-state analysis of the binding curves. (C) The binding affinity (KD) of KRAS for compound
0375-0604 was determined. Experimental data for association and dissociation are represented as shown.

FIGURE 3 | The cytotoxic effects of compound 0375-0604 on NSCLC cell
lines were determined by MTT assay.

Compound 0375-0604 Inhibited the
Activation of KRAS Downstream
Signaling Pathway
Active KRAS stimulates downstream signaling pathways,
especially for RAF/MEK/ERK and RAF/PI3K/AKT pathway, and

FIGURE 4 | The inhibition of compound 0375-0604 on active KRAS. KRAS
mutant cells (H2122, H358 and H460) were treated with compound
0375-0604 for 24 h. The level of active KRAS (GTP-KRAS) was determined by
a RAS activation assay and immunoblotted with a KRAS-specific antibody.

then induces cell proliferation. Therefore, to investigate the effect
of compound 0375-0604, we examined the phosphorylation
levels of CRAF, AKT and ERK in NSCLC cell lines to monitor
the impact of KRAS signaling by treatment with this compound
for 48 h. As expected, compound 0375-0604 reduced the levels
of phosphorylation of CRAF and AKT in a dose-dependent
manner in all three NSCLC cell lines (Figure 5), which
indicated that compound 0375-0604 may block oncogenic
KRAS function through inhibiting its downstream signaling
pathways.
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FIGURE 5 | The inhibitive effect of compound 0375-0604 on the KRAS signaling pathways in different NSCLC cell lines. Three NCSLC cell lines were treated with
compound 0375-0604 for 48 h. The levels of phospho(p)-CRAF, p-ERK, p-AKT, CRAF, AKT, ERK and GAPDH were determined by western blot analysis. Untreated
cells were used as a control. A representative of at least three independent experiments for each cell line is showed.

Compound 0375-0604 Induced Cell Cycle
Arrest and Apoptosis in NSCLC
Since compound 0375-0604 significantly inhibited cell viability
of NSCLC cells with KRAS mutation, we examined whether
compound 0375-0604 exhibited cytotoxicity by cell cycle arrest
or apoptotic effect in H2122, H358 and H460 cells. Cells
were treated with the indicated concentrations of compound
0375-0604 for 24, 48, and 72 h. Flow cytometric analysis showed
that after 24 h treatment, the percentage of cells significantly
decreased in G0/G1 phase while remarkably increased in G2/M
phase (Figure 6A). In addition, compound 0375-0604 induced
a significantly increased apoptosis for 48h in NSCLC cell lines
(Figure 6B). These result suggested that compound 0375-0604
may block cell proliferation and cause cell death via induction
of G2/M cell cycle arrest or/and apoptosis in H2122, H358, and
H460 cells.

DISCUSSION

In this study, we identified and characterized a small-molecule
compound 0375-0604 as a new KRAS inhibitor. By using
molecular docking approach, we found that compound 0375-
0604 bound to the switch regions (switch I and II) of KRAS.
KRAS conformation changes and its downstream signals are
activated when its switch regions, either switch I or switch II,
interact with GTP. A remarkable feature of compound 0375-0604
is that it formed two hydrogen bonds interaction with the
backbone of Met67 and the side chain of Glu37, which are located
in switch I and switch II, respectively. These two key hydrogen
bonds could partially stabilize the interaction of KRAS and

0375-0604. The docking calculation indicated compound 0375-
0604 exhibited potent binding affinity with KRAS. In addition,
the chemical structure of this inhibitor has more potential to
be modified and achieve more potent and effective inhibition
to oncogenic KRAS NSCLC. Based on the docking result, the
binding affinity of compound 0375-0604 with KRAS protein was
further determined by using BLI and KD value was 92 µM,
which suggested that 0375-0604 could bind to KRAS with good
performance.

There are two most extensively RAS-mediated pathways:
PI3K/AKT/mTOR and RAF/MEK/ERK pathway (Papke and Der,
2017). The PI3K/AKT/mTOR pathway represents an important
intracellular signaling pathway, which involved in transition
of cell cycle. It is directly related to cell proliferation, cancer
progress and longevity (Bryant et al., 2014). The RAF/MEK/ERK
pathway is a chain of proteins in cell that communicates a
signal from a receptor on the surface of cell to the DNA
in the nucleus of cell. The RAF serine/threonine kinases
(ARAF, BRAF and CRAF) are arguably the most important
effectors of mutant RAS-dependent cancer growth, as they
have a key driver role in RAS-mediated oncogenesis. In our
study, we found that compound 0375-0604 could reduce
the activation levels of AKT, CRAF and ERK and block
the activation of KRAS downstream signaling pathways in
NSCLC.

KRAS binds to GTP in its active state and then influences
the expression of downstream genes involved in crucial pathways
on regulating cell growth, differentiation and apoptosis (Lu
et al., 2016). Compound 0375-0604 showed a strong anti-cancer
activity by inhibiting the activation of KRAS proteins, and caused
G2/M cell cycle arrest at the early stage and induced apoptosis
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FIGURE 6 | Cell cycle arrest and apoptosis were induced by compound 0375-0604 in three NSCLC cell lines (H2122, H358 and H460). (A) Flow cytometric analysis
of cell cycle arrest with compound 0375-0604 at different concentrations (0, 25, 50, 100 µM) was examined for 24 h. (B) Flow cytometric analysis of cell apoptosis
with different concentrations (0, 25, 50, 100 µM) of compound 0375-0604 for 48 h was determined.

at the later stage in H2122, H358 and H460 cell lines harboring
KRAS oncogene.

In summary, we identified a new small molecule compound
0375-0604 that bound to KRASG12D, KRASG12C and KRASQ61H

protein with a moderate binding affinity of −5.38, −5.41, and
−3.97 kcal/mol, respectively. In addition, 0375-0604 selectively
inhibited the proliferation of NSCLC cells with KRAS mutation
but not normal lung cells. Compound 0375-0604 also blocked the
formation of GTP-KRAS and downstream activation of KRAS
in vivo. Besides, compound 0375-0604 inhibited the growth of
cancer cells by causing G2/M cell cycle arrest and inducing
apoptosis. Regardless, our study provides further evidence for
targeting to KRAS protein, which may contribute to the future
study for lung cancer therapy.

MATERIALS AND METHODS

Molecular Docking
The KRASG12D structure (PDB code: 4DSU) complexed with
GDP and a compound benzimidazole (BZIM) was used for the
modeling of possible binding modes between KRAS and 0375-
0604. The crystal structure with GDP was prepared in the Prep
Wiz module of Maestro (Version 9.1, Schrodinger) and water
molecules within 5 Å of het groups were kept. Subsequently,
the residues of D12 and Q61 were mutated into C12 and H61
using the BioLuminate module of Maestro, respectively. A grid

file was generated based on the position of compound BZIM
in the Grid Generation wizard. Then, 0375-0604 was prepared
to assign atomic charges and generate alternative conformations
chemical rings. Finally, the docking process was employed in the
Glide Docking module based on the previous obtained grid file
using an extra precision (XP) protocol followed by a post-docking
minimization using MM-GBSA method.

Biotinylation
KRAS (Abcam, ab96817; 200 µg/ml) was biotinylated using the
EZ-Link NHS-LC-LC-biotin (Thermo) in H2O using a 3:1 molar
ratio of biotin reagent: protein for 30 min at room temperature
following the FortéBio suggested protocol. Biotinylated KRAS
was separated from the biotinylation reaction reagents by Zeba
desalying spin columns (Thermo). Streptavidin biosensors (SA)
tips (ForteìBio, Inc., Menlo Park, CA, United States) were
prewetted with PBS to establish a baseline before immobilization.

Biolayer Interferometry Analysis
A FortéBio Octet Red instrument was used in this assay.
All the assays were performed at 96-well plate (Greiner Bio-
One, PN:655209) and all the final volume for all the solutions
was 200 µl/well. Biotinylated KRAS was immobilized onto SA
tips. The experiments comprised three steps: (1) baseline, (2)
association, (3) dissociation. The association and dissociation
plot and kinetic constants were obtained with ForteìBio data
analysis software. For measurement the interaction between
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compound 0375-0604 and KRAS, seven concentrations of
compound 0375-0604 (20, 40, 60, 80, 100, 120, 140, 160 µM) were
used for association step.

3-(4, 5-Dimethylthiazol-2-yl)-2,
5-Diphenyltetrazolium Bromide (MTT)
Assay
H2122, H460 and H358 were purchased from ATCC and
cultivated with RPMI 1640 medium supplemented with 10% fetal
bovine serum (FBS), 100 units/mL penicillin and 100 µg/mL
streptomycin. All the cells were cultivated at 37◦C with 5%
CO2 incubator. Cells were seeded on a 96-well microplate with
3000, 4000, or 5000 cells/well, and were cultured overnight for
cell adhesion. After add a range of compound 0375-0604 the
microplates put back into incubator and incubated for 24, 48,
or 72 h. Each dosage was repeated as triplicate. 10 µL MTT
(5 mg/mL) solutions were added to each well. After incubated
4 h 100 µL DMSO was added to each well. After 15 min shake
absorbance of the plate was measured at 570 nm (absorbance)
and 650 nm (reference) by a microplate reader (Tecan).

Pull Down Assay
RAS activity was determined using RAS activation assay kit
(EMD Millipore, 17–218). Briefly, lysates were incubated with
glutathione S-transferase fusion of the Ras binding domain
(RBD) of Raf1 along with glutathione agarose for 1 h. Agarose
beads were collected by centrifugation and washed three times
with Mg2+ lysis buffer. Each sample were resuspended and boiled
for 5 min. Finally, samples were subjected to western blotting as
previously described and blots probed using anti-KRAS antibody
(Santa, sc-30).

Western Blot Analysis
After 48 h treatment with compound 0375-0604, RIPA lysis
buffer (150 mM NaCl, 50 mM Tris pH 7.4, 1 mM EDTA,
0.25% sodium deoxycholate, 1% NP-40) containing protease
(Roche) and phosphatase (Roche) inhibitors was added to extract
the total whole cell protein. Bio-Rad DCTM protein assay kit
was used to quantify the concentration of extract protein.
Thirty microgram protein lysate was loaded and separated by
10% SDS-polyacrylamide gel electrophoresis and transferred
to a nitrocellulose (Millipore) membrane. The membrane was
incubated with the primary antibody (1:2000) and then with a

fluorescence-conjugated secondary antibody (1:10000). GAPDH
was used as the loading control and for normalization. The signal
of the membranes was scanned with a LI-COR Odyssey Scanner
(Belfast).

Cell Cycle and Apoptosis Assay Using
Flow Cytometry
H2122, H358 and H460 cells were plated on a 6-well plate with
1.5 × 105 cells/well and cultured overnight for attachment. After
treatment with compound 0375-0604 at 0, 25, 50, 100 µM for
24, 48, and 72 h, all cells were harvested and collected. For cell
cycle analysis, cells pellets were re-suspended in 70% ethanol
and fixation at 4◦C for 30 min. Each cell pellet was stained
in 300 µL propodium iodide (PI) (50 µg/ml) staining solution
at 37◦C for 30 min in dark. Then, cells were washed twice
with PBS. Finally, cells were re-suspended in 300 µL PBS and
transferred to the flow cytometer (FACSCalibur, BD Biosciences).
For apoptosis analysis, cells will re-suspended with 100 µL
annexin-binding buffer, stained with annexin V and PI staining
solution and incubated 15 min at room temperature protect from
light. Finally, cells were diluted in 300 µL annexin-binding buffer
and quantitatively measured using flow cytometer (FACSCalibur,
BD Biosciences).

Statistical Analysis
Descriptive analytical data are presented as means ± SD.
Statistical analysis was conducted using Graph Prim 5.0.
Significant differences between datasets were assessed by one-way
analysis of variance (ANOVA).
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Background: Overexpression of epidermal growth factor receptor (EGFR) has been
reported to be implicated in the pathogenesis of non-small cell lung cancer (NSCLC).
Several EGFR inhibitors have been used in clinical treatment of NSCLC, but the
emergence of EGFRL858R/T790M resistant mutation has reduced the efficacy of the
clinical used EGFR inhibitors. There is an urgent need to develop novel EGFRL858R/T790M

inhibitors for better NSCLC treatment.

Methods: By screening a natural product library, we have identified gossypol as a novel
potent inhibitor targeting EGFRL858R/T790M. The activity of gossypol on NSCLC cells was
evaluated by cell proliferation, cell apoptosis and cell migration assays. Kinase activity
inhibition assay and molecular docking were used to study the inhibition mechanism of
gossypol to EGFRL858R/T790M. Western blotting was performed to study the molecular
mechanism of gossypol inhibiting the downstream pathways of EGFR.

Results: Gossypol inhibited the cell proliferation and cell migration of NSCLC cells,
and induced caspase-dependent cell apoptosis of NSCLC cells by upregulating the
expression of pro-apoptotic protein BAD. Molecular docking revealed that gossypol
could bind to the kinase domain of EGFRL858R/T790M with good binding affinity through
hydrogen bonds and hydrophobic interactions. Gossypol inhibited the kinase activity of
EGFRL858R/T790M with EC50 of 150.1 nM. Western blotting analysis demonstrated that
gossypol inhibited the phosphorylation of EGFR and its downstream signal pathways in
a dose-dependent manner.

Conclusion: Gossypol inhibited cell proliferation and induced apoptosis of NSCLC
cells by targeting EGFRL858R/T790M. Our findings provided a basis for developing novel
EGFRL858R/T790M inhibitors for treatment of NSCLC.

Keywords: gossypol, molecular docking, NSCLC, EGFR, TKI

INTRODUCTION

Non-small cell lung cancer (NSCLC) accounts for approximately 85-90% of lung cancers, which
has proven to be difficult to be treated due to poorly understood the pathogenesis (Oyewumi
et al., 2014; Siegel et al., 2017). Conventional treatment strategies are used for NSCLC including
surgical operation, radiotherapy and chemotherapy (Scott et al., 2007; Onishi et al., 2011;
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Uzel and Abacıoğlu, 2015). In addition, tyrosine kinase-based
inhibitors (TKIs) molecular-targeted therapy are also employed
to the treatment of NSCLC patients with EGFR mutations.
Overexpression of EGFR has been reported and implicated in
the pathogenesis of NSCLC, which account for more than 60% of
NSCLC (Ohsaki et al., 2000). Therefore, it is increasing in clinic
application as molecular targets for NSCLC patients with EGFR
mutation.

The role of aberrant activation of the EGFR in NSCLC
is well-documented (Sordella et al., 2004; Tracy et al., 2004;
Gazdar and Minna, 2005; Sharma and Settleman, 2007; Sharma
et al., 2007). The most common activating mutations, including
point mutation L858R in exon 21 and deletions within exon
19 (del746-750) (Riely et al., 2006; Sharma et al., 2007),
promote EGFR-driven cell proliferation and survival. Both
first and second generation EGFR-targeted TKIs (gefitinib
and erlotinib) targeting those activating mutants have been
demonstrated to have a remarkable clinical response in the
treatment of EGFR-mutated NSCLC (Lynch et al., 2004; Paez
et al., 2004; Jackman et al., 2009; Rosell et al., 2009; Sequist
et al., 2010). Although the early clinical results of first-
generation EGFR inhibitors are impressive, unfortunately, most
NSCLC patients with activating mutations eventually develop
acquired resistance to EGFR inhibitors within several months.
The most common mechanism of acquired resistance is the
secondary T790M (gatekeeper residue Thr790 to methionine
within the EGFR kinase domain) point mutation in exon
20 that occurs with an EGFR mutation (e.g., L858R), which
accounts for approximately 60% in these acquired resistances
(Balak et al., 2006; Kosaka et al., 2006; Yu et al., 2013).
To overcome the acquired resistance to first-generation TKIs,
several second- and third-generation EGFR TKIs [such as EKB-
569 (Kwak et al., 2005), BIBW2992 (Li et al., 2008) and
PF00299804 (Engelman et al., 2007)] have been developed.
However, these agents still display limited clinical benefit
for NSCLC patients with T790M mutation owing to dose-
limiting toxicities (Oxnard et al., 2011; Miller et al., 2012).
Recently, third-generation covalent EGFR inhibitor osimertinib
(Ward et al., 2013; Cross et al., 2014) has been developed
as mutant-selective EGFR inhibitor that specifically targeting
EGFRL858R/T790M mutation. However, the effective treatment
of patients that harbor the EGFR T790M drug resistance
mutation with osimertinib is limited by the emergence of
new drug resistances to the tyrosine kinase inhibitor therapy
(Thress et al., 2015; Büttner et al., 2017). C797S mutation
was reported to be a major mechanism for resistance to third
generation EGFR TKIs (Yu et al., 2015). In addition to C797S
mutation, other rare tertiary EGFR mutations have also been
reported, including novel solvent front mutations (G796S/R),
hinge pocket mutations of the leucine residue at position 792
(L792F/H), binding interference at position 798 (L798I), and
steric hindrance at position 718 (L718Q) (Bersanelli et al.,
2016; Chabon et al., 2016; Chen et al., 2017; Ou Q. et al.,
2017; Ou S.-H.I. et al., 2017). With the emergence of resistance
mechanisms, there is an urgent need to discover a novel
class of EGFR inhibitors that effectively inhibits drug-resistant
EGFRL858R/T790M mutation.

Natural products have been widely regarded as a pivotal source
of leading compounds for drug development, recently, several
natural products have been identified targeting EGFRL858R/T790M

to overcome resistance. (Jung et al., 2015; Xiao et al., 2016). In
our previous studies, we have successfully identified several small
molecules from natural products library that could inhibit the
growth of gefitinib resistant NSCLC via different mechanisms.
(Fan et al., 2015; Li et al., 2017). These compounds demonstrated
significant anti-proliferative effects on a variety of NSCLC cell
lines, including those with T790M and L858R/T790M mutations.
In this study, we identified a small molecule gossypol from
cottonseed, as a potent inhibitor targeting EGFRL858R/T790M.
Gossypol and its derivatives exert antitumor effects on different
cancer types in vitro and in vivo, including breast cancer
(Xiong et al., 2017), colon cancer (Lan et al., 2015), chronic
myeloid leukemia (Goff et al., 2013) and prostate cancer
(Volate et al., 2010) by targeting MDM2, VEGFR, Bcl-2 and
p53. Herein, the results from our work proved that gossypol
could inhibit the proliferation of NSCLC cells by targeting
EGFRL858R/T790M. Gossypol also inhibited the phosphorylation
of EGFR and suppressed the phosphorylation of extracellular
signal–regulated protein kinase (ERK) and AKT. These results
indicated that gossypol could be developed as a new potent
EGFRL858R/T790M inhibitor and could inhibit the proliferation of
NSCLC.

RESULTS AND DISCUSSION

Gossypol Inhibits Cell Proliferation in
NSCLC Cells
To identify potent small molecule inhibitor of EGFRL858R/T790M,
we screened a natural products library with 235 compounds.
We evaluated the anti-proliferative effect of each compound
on H1975 cell line harboring EGFRL858R/T790M. Gossypol was
identified and chosen for further mechanistic investigation due
to its significantly anti-proliferative ability. H1975 cells were
treated with an increasing concentration of gossypol for 72 h,
and then cell viability was determined based on standard
MTT assay protocol. As shown in Figure 1, the growth of
H1975 cells were obviously inhibited by the treatment of
gossypol in a dose-dependent manner, with 50% inhibition
concentration (IC50) of 10.89 ± 0.84 µM. In addition, we have
tested the cytotoxicity effect of gossypol on human normal
lung fibroblast cell line CCD19 (IC50 is 14.89 ± 1.12 µM)
and human NSCLC cell line H358 with EGFRWT (IC50 is
35.26 ± 1.09 µM) (the corresponding results can be seen in
Supplementary Figure S1). Afatinib was used as positive control
(IC50 = 170.4 ± 1.1 nM). The structure and corresponding
cytotoxicity of gossypol were showed in Figure 1. We also
examined the effect of gossypol on cell colony formation
(Figure 2A), in accordance with the cell cytotoxicity, gossypol
significantly inhibited the colony formation capacity in a dose-
dependent manner in H1975 cell line. Collectively, these results
suggested that gossypol could inhibit the proliferation of H1975
cell line.
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FIGURE 1 | Cytotoxicity effect of gossypol on EGFR mutant cell line. (A) The structure of gossypol. (B) Evaluation of cell proliferation by gossypol in H1975 cells.

FIGURE 2 | Effect of gossypol on H1975 cell line. (A) Colony formation of H1975 cells was monitored after gossypol (0–5 µM) treatment for 14 days, and
photomicrographs of crystal violet stained colonies were depicted. (B) H1975 cells were treated with 0, 5, 10, and 20 µM for 24 h, and were analyzed for wound
healing.

Gossypol Induces Cell Apoptosis in
NSCLC Cells
To investigate whether the induction of apoptosis also
contributed to gossypol-mediated growth inhibition of H1975
cells, Annexin V-FITC/PI staining assay was employed to analyze
the number of apoptotic cells after treatment with gossypol using
a flow cytometer. As shown in Figures 3A,B, gossypol induced
cell apoptosis on H1975 cell line with a concentration-dependent
manner.

Bcl-2 family members play key roles in the regulation
of apoptotic progress. To understand how gossypol induced
apoptosis, we next examined whether gossypol could alter the
expression of apoptotic proteins in H1975 cells. As shown
in Figure 3C and Supplementary Figure S4, treatment with
gossypol for 24 h remarkably upregulated the expression level

of proapoptotic protein Bad in a concentration-dependent
manner. Moreover, we also observed that gossypol induced
PARP cleavage, a hallmark of caspase-dependent apoptosis,
in accordance with the expression level of cleaved caspase-3.
Therefore, these results suggested that gossypol induced caspase-
dependent apoptotic cell death by upregulating the expression of
pro-apoptotic protein Bad in NSCLC cells.

Gossypol Inhibits the Cell Migration of
H1975 Cell Line
The effect of gossypol on H1975 cell migration capability was
estimated by a wound-healing assay. In the wound-healing
assay (see Figure 2B), cells treated with gossypol reduced the
rate of wound healing along with the increasing of treatment
concentration, which was significantly lower than the untreated
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FIGURE 3 | Apoptosis effect of Gossypol on H1975 cells. Flow cytometric analysis of cell apoptosis with gossypol at different concentrations (0, 5, 10, and 20 µM)
for 24 h was determined. (A) Flow cytometry analysis of the apoptosis levels of h1975 cells after treatment with gossypol for 24 h. (B) Data from (A) were statistically
analyzed. Mean ± SE. ∗∗P < 0.01. (C) Western blot analysis of apoptotic markers of H1975 cells after treatment of gossypol for 24 h.

cells following incubation. These results demonstrated that
gossypol inhibited the migration ability of H1975 cell lines in a
dose-dependent manner.

Gossypol Inhibits the Activity of Tyrosine
Kinase
To assess the kinase inhibition activities of gossypol, we
performed a kinase inhibition profile assay of gossypol against
recombinant human EGFRL858R/T790M. The selected compound
gossypol exhibited inhibitory activity, which effectively inhibited
the enzymatic activity of EGFRL858R/T790M with an EC50 value
of 150 ± 30.7 nM (see Supplementary Figure S2). Besides,
gossypol also inhibited the enzymatic activity of EGFRWT with
an EC50 value of 252.9 ± 26.9 nM, higher than that to
EGFRL858R/T790M (the corresponding results can be seen in
Supplementary Figure S2). Afatinib was used as positive control
(EC50 = 9.6 ± 2.9 nM). The effect of gossypol on cells is very
complicated, and it is still difficult to distinguish which part
is caused by EGFR targeting. To ensure the consistency of the
experimental results, we conducted the entire ELISA enzyme
inhibiting assay at the same time. Therefore, EGFRWT could be
used as control to compare with EGFRL858R/T790M.

Molecular Docking Predicts the Potential
Binding of Gossypol to EGFR
Molecular docking calculation was performed to gain insight
into the binding mode between gossypol and EGFRL858R/T790M.
The molecular docking results (see Figure 4 and Supplementary

Figure S3) proved that gossypol could be docked into the kinase
domain mainly composed of hydrophobic residues of C-helix
and A-loop with a docking score of −6.42 ± 0.24 kcal/mol.
Five hydrogen bonds were formed between gossypol and the
carbonyl group of Q791, amino group of M793, hydroxyl group
of T854 and amino group of K875. In addition, the hydrophobic
contacts formed between gossypol and surrounded residues,
including L718, M790, F723, F858, L792, L844, and M793,
which also contributed to the interaction between gossypol and
EGFRL858R/T790M. Therefore, the above results suggested that
gossypol could bind to EGFRL858R/T790M.

Gossypol Effectively Suppresses
Phosphorylation of EGFR as Well as Its
Downstream Signaling Pathway
To determine whether gossypol could inhibit the expression
level of EGFR in cells, we investigated the effect of gossypol
on the phosphorylation of EGFR in NSCLC cells. H1975
cells were treated with gossypol (0–20 µM) for 24 h.
Western blot analysis showed that gossypol inhibited the
phosphorylation of EGFR (Tyr 1068) in a concentration
dependent manner (see Figure 5). To explore the detailed
anti-cancer mechanism of gossypol, we further evaluated the
downstream pathways of EGFR, including ERK and AKT
signaling pathways. Treatment with gossypol also inhibited the
phosphorylation of AKT and ERK in a concentration-dependent
manner, consistent with the tendency of phosphorylation
level of EGFR. Thus, our results indicated that gossypol
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FIGURE 4 | The binding mode between gossypol and EGFRL858R/T790M protein. (A) The 3D structure of EGFRL858R/T790M. (B) Gossypol was docked into the EGFR
kinase domain, showing interactions between gossypol and key residues. (C) A two-dimensional interaction map of gossypol and EGFR. (D) The hydrophobic
surface of EGFRL858R/T790M.

could suppress the phosphorylation of EGFR and its
downstream AKT and ERK signaling pathways, resulting in
induction of apoptosis and proliferation inhibition of H1975
cells.

CONCLUSION

In this study, by screening a natural products library, we
have identified that gossypol was a potential anticancer
agent targeting EGFRL858R/T790M. Our results proved that
gossypol inhibited the proliferation and induced apoptosis
of human NSCLC cell line harboring EGFRL858R/T790M.
Moreover, gossypol decreased the phosphorylation level of
EGFR and its downstream signaling pathways AKT and
ERK. Overall, our findings indicate that gossypol is a novel
potent EGFRL858R/T790M inhibitor, which may serve as a useful
therapeutic agent against NSCLC harboring EGFRL858R/T790M

mutation.

MATERIALS AND METHODS

Reagents
Gossypol was purchased from Selleck Ltd., which was dissolved
in dimethyl sulfoxide (DMSO) to form a 20 mM stock solution.
Fetal bovine serum (FBS), antibiotics and RPMI medium were
purchased from Gibco (Carlsbad, CA, United States). RIPA lysis
buffer and antibodies Bad, Bcl-XL, PARP, Cleaved Caspase-3,
anti-p-EGFR (1068), anti-p-extracellular signal-regulated kinase
1/2 (Erk1/2) (Thr202/Tyr204), anti-p-Akt (Ser473), anti-Erk1/2,
anti-Akt, anti-PERK, and anti-EGFR were purchased from
Cell Signaling Technology (Beverly, MA, United States).
Anti-GAPDH was purchased from Santa Cruz (Dallas, TX,
United States).

Cell Culture
The human NSCLC cell line H1975 was purchased from the
American Type Culture Collection (ATCC) (Manassas, VA,
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FIGURE 5 | Immunoblot analysis of p-EGFR, EGFR, p-AKT, AKT, p-ERK, and
ERK in H1975 cell after treatment with gossypol for 24 h. GAPDH was used
as a loading control.

United States). Cells were cultured in RPMI1640 medium
supplemented with 10% FBS, 100 U/ml penicillin and 100 µg/ml
streptomycin. All the cells were cultured at 37◦C in a humidified
atmosphere containing 5% CO2.

Cell Proliferation Assay
Cell viability was evaluated by using the standard 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT
assay. Briefly, 3 × 103 cells per well were plated in 96-well
plates and cultured overnight for cell adhesion. The cells were
treated with DMSO or various concentrations of gossypol for
72 h. Subsequently, 10 µL MTT was added into each well and
incubated for 4 h, and then the dark blue crystals were dissolved
with 100 µl of the resolved solution (99% DMSO). Finally,
the absorbance at 570 nm was measured by microplate reader
(Tecan, Morrisville, NC, United States). The cell viability was
calculated relative to controls, with results based on at least three
independent experiments. Cells treated with the vehicle (DMSO)
alone served as a control.

Colony Formation Assay
Briefly, H1975 cells were seeded in 6-well plates (1000 cells/well),
after attachment overnight, cells were exposed to various
concentration of gossypol with medium changes every 3 days
until visible colonies formed. The colonies were washed with cold
PBS, then fixed in 4% paraformaldehyde (PFA) for 15 min, and
then stained with 0.5% crystal violet (1% PFA, 0.5% crystal violet,
and 20% methanol in ddH2O) for 20 min. The colonies were
photographed.

Apoptosis Analysis Assay
NSCLC cells were plated on 6-well plate with cell density of
2 × 105 cells per well and cultured overnight for adhesion.
Subsequently, the cells were treated with different concentrations
of gossypol for 24 h. After treatment, the cells were harvested
by trypsin digestion and washed twice with ice-cold PBS, and
resuspended in 100 µl 1 × binding buffer. Next, 4 µl of
propidium iodide (PI, 1 mg/ml) and 1 µl Annexin-V fluorescein

dye were added to the solution and mixed well at room
temperature in the dark for 15 min. After that, the cells were
resuspended in 300 µl of 1× binding buffer from BD Biosciences
(San Jose, CA, United States). The percentage of apoptotic cells
was quantitatively measured using a BD FACSAria III flow
cytometer from BD Bioscience (San Jose, CA, United States).

Enzyme-Linked Immunosorbent Assay
(ELISA)
The kinase activity was evaluated with ELISA assay based on
the kinase domain of dual-mutant EGFR (EGFRL858R/T790M)
recombinant human protein (Peng et al., 2014). Briefly, 20 µg/mL
Poly (Glu, Tyr) 4:1 (Sigma, St. Louis, MO, United States) was
precoated in 96-well plates as substrate. Active kinases were
added and incubated with indicated gossypol in 1 × reaction
buffer containing 5 µmol/L ATP at 37◦C for 1 h. Then, the
wells were washed with PBS and then incubated with an anti-
phosphotyrosine (PY99) antibody (Santa Cruz Biotechnology,
Santa Cruz, CA, United States) followed by a horseradish
peroxidase (HRP)-conjugated secondary antibody. The wells
were read with a multiwell spectrophotometer (VERSAmaxTM,
Molecular Devices, Sunnyvale, CA, United States) at 492 nm. The
inhibitory rate (%) was calculated with the following formula:
[1–(A492 treated/A492 control)] × 100%, and responding EC50
values were calculated from the fitting inhibitory curves.

Molecular Docking
The X-ray structure of EGFRL858R/T790M with a resolution
of 2.5 Å complexed with diaminopyrimidine derivative was
retrieved from the Protein Data Bank [PDB ID code 4RJ8
(Hanan et al., 2014)] for docking with gossypol. Molecular
structures were prepared using the standard procedure from
the Protein Preparation Wizard module in Schrödinger 2015.
The docking grid box was defined using the Receptor Grid
Generation tool in Glide by centering on native ligand in
the EGFRL858R/T790M structure. The structure of gossypol was
derived from the PubChem database1, which was imported to the
LigPrep module (Version 2.3, Schrödinger, LLC, New York, NY,
United States) based on OPLS-2005 force field (Kaminski et al.,
2001). The ionized state was assigned by using Epik (Version 2.0,
Schrödinger, LLC, New York, NY, United States) at a pH value
of 7.0 ± 2.0. Gossypol was docked into the kinase domain of
the EGFRL858R/T790M using the Glide (Version 5.5, Schrödinger,
LLC, New York, NY, United States) with the extra precision (XP)
scoring mode. In the process of molecular docking, 5000 poses
were generated during the initial phase of the docking calculation.
The best binding pose for Gossypol was conserved for the further
analysis.

Western Blot Analysis
Preparation of whole-cell protein lysates for western blot analysis
was conducted as follows. After treatment, cells were lysed in
RIPA lysis buffer (150 mmol/L NaCl, 50 mmol/L Tris–HCl,
pH 8.0,1% Triton X-100, 0.1% SDS, and 1% deoxycholate)

1http://pubchem.ncbi.nlm.nih.gov
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containing protease inhibitor cocktail from Roche (Basel, Lewes,
United Kingdom) for 15 min on ice and then boiled for
10 min. The concentration of total protein was determined with
a Bio-Rad DCTM Protein Assay Kit (Bio-Rad, Hercules, CA,
United States). Equal amounts of total protein (30 µg) protein
lysate were loaded and separated by 10% SDS–polyacrylamide
gel electrophoresis and then transferred to a nitrocellulose (NC)
membrane from Millipore (Billerica, MA, United States). The
membranes were blocked with 5% milk without fat in 1 ×
TBST for 2 h at room temperature, and then incubated with
various primary antibodies, including phospho-AKT, phospho-
ERK, t-AKT, t-ERK, phospho-EGFR (Tyr1068), t-EGFR at 1:1000
dilutions and anti-GADPH antibody at a 1:800 dilution overnight
at 4◦C. After washing the membranes in TBST three times (5 min
per time), secondary fluorescent antibodies, either anti-rabbit or
anti-mouse secondary antibodies depending on the source of the
primary anti-bodies, were added to the membrane at 1:10,000
dilutions at room temperature for 2 h. GAPDH was used as the
loading control and for normalization. The signal intensity of
the membranes was detected using an LI-COR Odessy scanner
(Belfast, ME, United States).

Statistical Analysis
The results were expressed as mean values ± standard error
(mean ± SE). Statistical analysis was performed using one-way

ANOVA followed by Bonferroni’s post-tests. Significance was
accepted at P < 0.05.
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Uzel, E. K., and Abacıoğlu, U. (2015). Treatment of early stage non-small cell lung
cancer: surgery or stereotactic ablative radiotherapy? Balkan Med. J. 32, 8–16.
doi: 10.5152/balkanmedj.2015.15553

Volate, S. R., Kawasaki, B. T., Hurt, E. M., Milner, J. A., Kim, Y. S., White, J.,
et al. (2010). Gossypol induces apoptosis by activating p53 in prostate cancer
cells and prostate tumor-initiating cells. Mol. Cancer Ther. 9, 461–470. doi:
10.1158/1535-7163.MCT-09-0507

Ward, R. A., Anderton, M. J., Ashton, S., Bethel, P. A., Box, M., Butterworth, S.,
et al. (2013). Structure- and reactivity-based development of covalent inhibitors
of the activating and gatekeeper mutant forms of the epidermal growth factor
receptor (EGFR). J. Med. Chem. 56, 7025–7048. doi: 10.1021/jm400822z

Xiao, X., He, Z., Cao, W., Cai, F., Zhang, L., Huang, Q., et al. (2016). Oridonin
inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-
12 and CIP2A/Akt signaling pathways. Int. J. Oncol. 48, 2608–2618. doi: 10.
3892/ijo.2016.3488

Xiong, J., Li, J., Yang, Q., Wang, J., Su, T., and Zhou, S. (2017). Gossypol has anti-
cancer effects by dual-targeting MDM2 and VEGF in human breast cancer.
Breast Cancer Res. 19:27. doi: 10.1186/s13058-017-0818-5

Yu, H. A., Arcila, M. E., Rekhtman, N., Sima, C. S., Zakowski, M. F., Pao, W., et al.
(2013). Analysis of tumor specimens at the time of acquired resistance to EGFR-
TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res.
19, 2240–22407. doi: 10.1158/1078-0432.CCR-12-2246

Yu, H. A., Tian, S. K., Drilon, A. E., Borsu, L., Riely, G. J., Arcila, M. E., et al.
(2015). Acquired resistance of egfr-mutant lung cancer to a t790m-specific egfr
inhibitor: emergence of a third mutation (c797s) in the egfr tyrosine kinase
domain. JAMA Oncology 1, 982–984. doi: 10.1001/jamaoncol.2015.1066

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Wang, Lai, Fan, Luo, Duan, Jiang, Wang, Leung, Liu and Yao.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org July 2018 | Volume 9 | Article 72891

https://doi.org/10.1038/onc.2008.109
https://doi.org/10.1038/onc.2008.109
https://doi.org/10.1016/j.phrs.2016.11.011
https://doi.org/10.1056/NEJMoa040938
https://doi.org/10.1016/S1470-2045(12)70087-6
https://doi.org/10.3892/or.7.3.603
https://doi.org/10.1016/j.ijrobp.2009.07.1751
https://doi.org/10.1016/j.lungcan.2017.04.003
https://doi.org/10.1158/1078-0432.CCR-10-2571
https://doi.org/10.1155/2014/236246
https://doi.org/10.1155/2014/236246
https://doi.org/10.1126/science.1099314
https://doi.org/10.1038/aps.2014.33
https://doi.org/10.1038/aps.2014.33
https://doi.org/10.1158/1078-0432.CCR-06-0658
https://doi.org/10.1056/NEJMoa0904554
https://doi.org/10.1378/chest.07-1378
https://doi.org/10.1200/JCO.2009.27.9414
https://doi.org/10.1038/nrc2088
https://doi.org/10.1101/gad.1609907
https://doi.org/10.1101/gad.1609907
https://doi.org/10.3322/caac.21387
https://doi.org/10.1126/science.1101637
https://doi.org/10.1038/nm.3854
https://doi.org/10.1158/0008-5472.CAN-04-1905
https://doi.org/10.1158/0008-5472.CAN-04-1905
https://doi.org/10.5152/balkanmedj.2015.15553
https://doi.org/10.1158/1535-7163.MCT-09-0507
https://doi.org/10.1158/1535-7163.MCT-09-0507
https://doi.org/10.1021/jm400822z
https://doi.org/10.3892/ijo.2016.3488
https://doi.org/10.3892/ijo.2016.3488
https://doi.org/10.1186/s13058-017-0818-5
https://doi.org/10.1158/1078-0432.CCR-12-2246
https://doi.org/10.1001/jamaoncol.2015.1066
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00173 February 27, 2018 Time: 15:52 # 1

ORIGINAL RESEARCH
published: 01 March 2018

doi: 10.3389/fphar.2018.00173

Edited by:
Adriano D. Andricopulo,

University of São Paulo, Brazil

Reviewed by:
Chiara Bianca Maria Platania,

Università degli Studi di Catania, Italy
Matthew Brook,

University of Edinburgh,
United Kingdom

*Correspondence:
Liang Liu

lliu@must.edu.mo
Elaine Lai Han Leung

lhleung@must.edu.mo
Xiaojun Yao

xjyao@must.edu.mo

†These authors have contributed
equally to this work.

Specialty section:
This article was submitted to

Experimental Pharmacology and Drug
Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 31 October 2017
Accepted: 15 February 2018

Published: 01 March 2018

Citation:
Wang Q, Xu J, Li Y, Huang J,

Jiang Z, Wang Y, Liu L, Leung ELH
and Yao X (2018) Identification of a

Novel Protein Arginine
Methyltransferase 5 Inhibitor

in Non-small Cell Lung Cancer by
Structure-Based Virtual Screening.

Front. Pharmacol. 9:173.
doi: 10.3389/fphar.2018.00173

Identification of a Novel Protein
Arginine Methyltransferase 5
Inhibitor in Non-small Cell Lung
Cancer by Structure-Based Virtual
Screening
Qianqian Wang1†, Jiahui Xu1†, Ying Li1, Jumin Huang1, Zebo Jiang1, Yuwei Wang1,
Liang Liu1* , Elaine Lai Han Leung1,2,3* and Xiaojun Yao1,4*

1 State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and
Health, Macau University of Science and Technology, Taipa, Macau, 2 State Key Laboratory of Respiratory Diseases,
Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China,
3 Department of Respiratory Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China, 4 State Key Laboratory of
Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China

Protein arginine methyltransferase 5 (PRMT5) is able to regulate gene transcription by
catalyzing the symmetrical dimethylation of arginine residue of histone, which plays a
key role in tumorigenesis. Many efforts have been taken in discovering small-molecular
inhibitors against PRMT5, but very few were reported and most of them were
SAM-competitive. EPZ015666 is a recently reported PRMT5 inhibitor with a new binding
site, which is different from S-adenosylmethionine (SAM)-binding pocket. This new
binding site provides a new clue for the design and discovery of potent and specific
PRMT5 inhibitors. In this study, the structure-based virtual screening targeting this site
was firstly performed to identify potential PRMT5 inhibitors. Then, the bioactivity of
the candidate compound was studied. MTT results showed that compound T1551
decreased cell viability of A549 and H460 non-small cell lung cancer cell lines. By
inhibiting the methyltransferase activity of PRMT5, T1551 reduced the global level of
H4R3 symmetric dimethylation (H4R3me2s). T1551 also downregulated the expression
of oncogene FGFR3 and eIF4E, and disturbed the activation of related PI3K/AKT/mTOR
and ERK signaling in A549 cell. Finally, we investigated the conformational spaces and
identified collective motions important for description of T1551/PRMT5 complex by
using molecular dynamics simulation and normal mode analysis methods. This study
provides a novel non-SAM-competitive hit compound for developing small molecules
targeting PRMT5 in non-small cell lung cancer.

Keywords: protein arginine methyltransferase 5, non-small cell lung cancer, T1551, virtual screening, molecular
dynamics simulation

INTRODUCTION

Protein arginine methyltransferases (PRMTs) are a class of enzymes that transfer a methyl
group from the cofactor S-adenosylmethionine (SAM) to arginine omega nitrogen of substrate
protein. Based on product specificity, PRMTs can be divided into three subclasses: type I, II,
and III, which asymmetrically dimethylate, symmetrically dimethylate, and monomethylate their
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substrates, respectively (Bedford and Clarke, 2009). Protein
arginine methyltransferase 5 (PRMT5), as a type II PRMT,
is responsible for catalyzing the symmetrical dimethylation
of arginine residue of substrate proteins, which has been
implicated in diverse cellular and biological processes including
transcriptional regulation, RNA metabolism and ribosome
biogenesis (Liu et al., 2011; Shilo et al., 2013; Wei et al., 2013;
Yang and Bedford, 2013; Deuker and McMahon, 2014; Stopa
et al., 2015). An increasing number of studies emphasized
that PRMT5 was upregulated in lymphomas, breast cancer,
lung cancer, colorectal cancer, and glioblastoma (Ibrahim et al.,
2014; Yan et al., 2014; Li et al., 2015; Sheng and Wang,
2016). For instance, Ibrahim et al. (2014) demonstrated that
a high cytoplasmic expression of PRMT5 was closely related
to high-grade subtypes of primary lung adenocarcinomas and
a poor prognosis. Sheng and Wang (2016) pointed out that
PRMT5 could regulate multiple signaling pathways to promote
lung cancer cell proliferation. All of these suggest that PRMT5
is a promising therapeutic target in lung cancer. However,
although many efforts have been made in discovering PRMT5
inhibitors, very few were reported (Alinari et al., 2015; Smil
et al., 2015; Mao et al., 2017), and they either occupied SAM-
binding site or mimicked SAM. Recently, EPZ015666 has been
shown to exhibit remarkably antitumor activity by inhibiting
PRMT5, and the pre-clinical studies have also showed that both
cell lines and xenograft models of mantle cell lymphoma were
sensitive to EPZ015666 (Chan-Penebre et al., 2015). Importantly,
the resolved PRMT5-SAM-EPZ015666 crystal complex shows
that EPZ015666 does not compete with SAM, but locates in a
new pocket (different from SAM-binding site) of PRMT5. This
binding site in PRMT5 provides us a new way to discovery and
development of more potent and specific PRMT5 inhibitors.

Structure-based virtual screening using molecular docking
has become a powerful tool in the drug discovery for rapidly
enriching hits from large pools of compound databases.
Nowadays, it has been successfully applied to discover novel
inhibitors of epigenetic targets, such as SET7, KDM4B, and
SIRT2 (Chu et al., 2014; Meng et al., 2015; Huang et al.,
2017). The successful use of structure-based virtual screening
in the above mentioned epigenetic targets inspires us to
identify the novel inhibitor against the non-SAM-binding site
of PRMT5. The activity of the identified inhibitors will be
further studied on their effects of the biological functions
of cancer cells, histone substrate methylation, target gene
expression and related signaling pathway. Here, 158 candidate
compounds were firstly obtained by the structure-based virtual
screening method. MTT assay results showed that among
them T1551 had strongest cytotoxicity on A549 non-small
cell lung cancer cell line. In addition to inhibiting PRMT5
methyltransferase activity, a series of functional assays showed
that T1551 reduced symmetric dimethylation level of H4R3,
downregulated the protein expressions of two target genes
of PRMT5, FGFR3, and eIF4E, and inhibited the activation
of PI3K/AKT/mTOR and ERK signaling. Finally, molecular
dynamics simulations and normal mode analysis were performed
to study the detailed binding mode and conformational space
of T1551/PRMT5 complex. The identification of this novel

PRMT5 inhibitor T1551 and its inhibitory mechanism study
will be helpful for the development of PRMT5-targeting cancer
treatment.

MATERIALS AND METHODS

Molecular Docking-Based Virtual
Screening
Molecular docking-based virtual screening was carried out with
Schrödinger software package (Schrödinger, LLC, New York,
NY, United States; Schrödinger, 2015). The crystal structure of
PRMT5 complexed with cofactor SAM and inhibitor EPZ015666
was derived from Protein Data Bank (PDB ID: 4X61). The
protein was first prepared in Protein Preparation Wizard
module, including adding hydrogens, refining loop region and
minimization. Grid box was generated on the size and center
of EPZ015666. Previously, SAM was proved to form crucial
cation–π interactions with EPZ015666 and contribute to the
binding affinity of PRMT5 inhibitors (Chan-Penebre et al., 2015).
Here, to test the role of SAM in docking, enrichment factors
(EFs) of virtual screening for PRMT5-EPZ015666 with and
without SAM were calculated and compared. Firstly, 16 active
derivatives of EPZ015666 were collected from the published
paper (Duncan et al., 2015). Eight hundred decoys were then
generated at a ratio of 1:50 with DUD-E (Mysinger et al.,
2012). All the actives and decoys were docked into EPZ015666
binding site of PRMT5 with and without SAM, respectively.
Finally, the 1 and 10% EFs for PRMT5-EPZ015666 and
PRMT5-EPZ015666-SAM models were calculated, respectively.
For the ligands, prior to virtual screening, a total of 1,671,908
compounds from Chemdiv, Specs and TargetMol databases
were filtered by pan-assay interference structures (PAINS)
(Baell and Holloway, 2010) and “Lipinski’s rule of five” to
remove those with false positivity, function group and poor
absorption/permeability. Then, the obtained compounds were
prepared with Ligand Preparation module. Three-level (HTVS,
SP, and XP) molecular docking-based virtual screening was
successively performed using Glide module. The top 10% (1,706)
compounds ranked by glide score were clustered into 200 groups.
By visually inspecting the binding poses of PRMT5-inhibitor,
158 compounds were selected for experimental validation.
All compounds were purchased from Topscience company
(Shanghai, China).

Cell Culture and Cytotoxicity Assay
A549 and H460 cells (two non-small cell lung cancer cell
lines) were purchased from ATCC, cultivated in RPMI 1640
medium supplemented with 10% FBS (Gibco Products, Big
Cabin, OK, United States), 1% penicillin-streptomycin solution,
and maintained at 37◦C in a CO2 incubator with 5% CO2.
One hundred and fifty-eight compounds from virtual screening
were dissolved in DMSO and stored at −40◦C. To rapidly
identify the compounds with strong inhibitory activity, 20 µM
concentration for each compound was firstly used to treat
A549 cell line for 72 h. During the MTT assay test, cells were
firstly seeded on a 96-well microplate with 3,000 cells/well,
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cultured overnight for cell adhesion, and treated with DMSO
(10.0 µM) or various concentrations (2.5, 5.0, and 10.0 µM) of
the studied compound for 24, 48, and 72 h. Then, each well
was added 10 µL MTT (5 mg/mL) and incubated for 4 h at
3◦C, followed by adding 100 µL acidic isopropanol (10% SDS
and 0.01 mol/L HCl). Finally, the absorbance at 570 nm was
measured by a Microplate Reader (Tecan US, Inc., Morrisville,
NC, United States). Cell viability was calculated relative to
untreated controls, and the results were based on at least three
independent experiments.

In Vitro Enzymatic Assays
PRMT5 enzymatic assay was carried out by Shanghai
ChemPartner Company (998 Halei Road, Pudong New Area,
Shanghai, 201203, China), as did previously by Ji et al. (2017).
To obtain the specific IC50 value, T1551 was diluted into
10 concentrations. PRMT5 protein was purchased from BPS
bioscience (Cat. No. 51045), and SAM/SAH were purchased from
Sigma. Inc. (Cat. No. A7007-100MG and No. A9384-25MG).
T1551 was prepared as 10 mM stock in DMSO and diluted to
the final concentration in DMSO. PRMT5 and substrates were
incubated with indicated concentrations of T1551 in a 384-well
plate for 60 min at room temperature. Then, acceptor and donor
solutions were added to label the residual substrates of PRMT5.
The labeling process was lasting for 60 min at room temperature,
followed by reading endpoint with EnSpire with Alpha mode.
In the in vitro enzymatic assays, 1% DMSO was used as vehicle
control for normalization.

Western Blot Analysis
Cells were washed twice with cold PBS, and lysed in RIPA
lysis buffer containing protease and phosphatase inhibitors to
extract total protein. Cell lysates were centrifuged for 5 min
(12,000 g, 4◦C), and the supernatant was collected. Protein
concentrations were determined by Bio-Rad protein Assay kit
(Bio-Rad, Philadelphia, PA, United States). Equal amounts of
protein (50 µg) were separated on a 10% SDS–PAGE gel, and
transferred to a nitrocellulose (NC) membrane at 300 mA and
4◦C for 1 h. The membrane was incubated with primary antibody
(1:1000), and then with a fluorescence-conjugated secondary
antibody (1:10000). The primary antibody against PRMT5 was
purchased from Merck Millipore Ltd., (Germany); antibodies
against H4R3me2s and H4 were purchased from Abcam
(Cambridge, MA, United States); antibodies against FGFR3
and eIF4E were purchased from Santa Cruz Biotechnology
(Dallas, TX, United States); antibodies against total/phospho-
AKT, total/phospho-ERK and total/phospho-mTOR were
purchased from Cell Signaling Technology (Danvers, MA,
United States). GAPDH was used as the loading control and
for normalization. The signal intensity of the membranes
was detected with a LI-COR Odyssey Scanner (Belfast, ME,
United States).

Molecular Dynamics Simulation
To reveal the interaction features of T1551 and PRMT5,
molecular dynamics (MD) simulations were used for sampling
the conformational spaces of PRMT5-T1551 complex. Normal

mode analysis was used for identifying important collective
motions for the complex. All MD simulations were performed
with Amber 16 software (Case et al., 2017). The Amber ff14SB
force field (Maier et al., 2015) was used for PRMT5, and general
amber force field (Wang et al., 2004) was utilized to parameterize
inhibitors with their charges assigned by restrained electrostatic
potential partial charges. TIP3P water was used to solvate the
complex systems, with the solute 12 Å away from water box
boundary. Chloride ions were added to neutralize the system.
Then, 150 mM NaCl was added to mimic the physiological
conditions. After minimization, heating and equilibration, 100 ns
production run was carried out without any restraints in NPT
ensemble. System temperature and pressure were regulated with
Langevin thermostat and Berendsen barostat, respectively. All
the bonds involving hydrogen were constrained by SHAKE
algorithm allowing an integration time step of 2 fs. Particle mesh
Ewald method (Linse and Linse, 2014) was used to calculate
long-range electrostatic interactions. The binding free energy of
inhibitors and PRMT5 was calculated by molecular mechanics
generalized-born surface area (MM-GBSA) method (Hou et al.,
2010; Platania et al., 2015; Wang et al., 2017). A single trajectory
and three time-frames protocols were adopted here. Specifically,
a total of 500 snapshots were extracted from the last 10, 20,
and 40 ns trajectory, respectively. The normal mode analysis was
performed to identify the collection motions of PRMT5-inhibitor
complex during MD simulation, by using cpptraj in Amber 16
and Normal Mode Wizard plugin in VMD 1.9.

Statistical Analysis
Descriptive analytical data were presented as mean ± SEM.
Multiple comparisons were evaluated by one-way analysis of
variance (ANOVA) using Graph Prim 5.0. P < 0.05 was
considered statistically significant.

RESULTS

The Selection of Candidate Compounds
by Virtual Screening
In this study, we aim to find the non-SAM mimics, so
EPZ015666-binding site, not SAM-binding site, was targeted in
our virtual screening. Enrichment factor calculations showed that
the 1 and 10% EFs for PRMT5-EPZ015666-SAM model were 44.6
and 8.7, higher than that (38.3 and 6.8) for PRMT5-EPZ015666
model. The area under receiver operating characteristic curve
(AUC) for the former (0.96) was also higher than that for the
latter (0.92). Both of two parameters suggested that SAM was
helpful for enriching active compounds in the compound library.
Therefore, SAM was remained as a part of the receptor in the
screening.

By three-level (HTVS, SP, and XP) screenings, the top-
1706 compounds ranked by glide score were remained and
then clustered into 200 groups using k-means clustering
protocol integrated in Canvas 2.4. When selecting the candidate
compounds, the following criteria was considered: (1) choosing
one compound at most in a group to retain structural
diversity; (2) occupying the binding pocket with molecular
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FIGURE 1 | Cytotoxic effects of (A) T1551, (B) 3039-0164, (C) T2002, and (D) T1090 on A549 cell, as analyzed by MTT assay. A549 cell was treated with each
inhibitor for 72 h, respectively. Results were presented as mean ± SEM (n = 4). Glide score represented the docking score of inhibitor and PRMT5, and 1GMMGBSA

represented the post-docking rescore of inhibitor and PRMT5.

FIGURE 2 | Cytotoxic effects of T1551 on (A) A549 and (B) H460 cells by MTT assay. (C) IC50 values of T1551 on A549 and H460 cell lines. Cells were treated with
each inhibitor for 24, 48, and 72 h, respectively. Data was presented as mean ± SEM (n = 4).

size neither too big nor too small; (3) choosing the one with
smaller molecular weight or/and lower MM/GBSA score if
compounds are similar; (4) forming the reported interactions

with the key residues of PRMT5 (Chan-Penebre et al., 2015).
For instance, Phe327 forms π–π interactions with THIQ
ring of EPZ015666; THIQ forms cation–π interactions
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FIGURE 3 | (A) Inhibition of T1551 on PRMT5 methyltransferase activity. (B) Protein expression levels of H4R3me2s in A549 cell treated with T1551 at different
concentrations (0, 2.5, 5.0, and 10.0 µM). (C) Densitometric analysis of band intensities of H4R3me2s. Western blot analysis was performed for 24 h, with at least
three independent experiments. Data was presented as mean ± SEM (n = 3), with ∗∗p < 0.01 for comparison between control group (DMSO-treated group) and
T1551-treated group.

FIGURE 4 | (A) Protein expression levels of oncogene FGFR3 and eIF4E in A549 cell treated with T1551 at different concentrations (0, 2.5, 5.0, and 10.0 µM).
(B) Densitometric analysis of band intensities of PRMT5, FGFR3, and eIF4E proteins. Western blot analysis was performed for 24 h, with at least three independent
experiments. Data was presented as mean ± SEM (n = 3), with ∗p < 0.05 for comparison between control group (DMSO-treated group) and T1551-treated group.

with methyl group of SAM; EPZ015666 interacts with the
backbone -NH of Phe580 and side chains of Glu444. Based
on these, 158 candidates were selected and purchased at
last.

T1551 Decreases Cell Viability of A549
Cell
The obtained 158 candidate compounds were then tested
for MTT assay to determine their inhibitory activity. Many

recent studies have showed that PRMT5 is upregulated in
A549 non-small cell lung cancer cell line (Gu et al., 2012;
Wei et al., 2012; Lim et al., 2014). A549 cell line was thus
used here. To rapidly identify the compounds with the strong
inhibitory activity, 20 µM concentration for each compound was
firstly used to treat A549 cell for 72 h. The result showed that
among 158 compounds there were four compounds exhibiting
the >50% inhibitory percentage on A549 cell at 20 µM. Since
T1551 had the strongest inhibitory activity (72 h, 50% inhibition
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concentration IC50 = 5.8 ± 1.0 µM) (Figure 1) and was
chosen as the hit, a range of T1551 concentrations (0, 2.5,
5.0, and 10.0 µM) for 24, 48, and 72 h were then used to
treat A549 to calculate its IC50 values. As shown in Figure 2,
T1551 exhibited significant anti-proliferation on A549 cell at
24 h in a concentration-dependent manner, with the IC50 value
of 11.2 ± 2.5 µM. The cytotoxic effects of T1551 were also
verified using H460 cell, another NSCLC cell line with PRMT5
overexpression (Figures 2B,C).

T1551 Inhibits PRMT5 Methyltransferase
Activity and Decreases Symmetric
Dimethylation Level of Histone 4
AlphaLISA assay was carried out to investigate the influence of
T1551 on enzymatic activity of PRMT5. As shown in Figure 3A,
T1551 inhibited PRMT5 enzyme activity in a dose-dependent
manner. The corresponding IC50 value was 34.1 ± 2.8 µM,
suggesting that T1551 directly inhibited the methyltransferase
function of PRMT5. PRMT5-driven methylation of arginine
residues can lead to symmetric dimethylation of arginine residue
3 of histone 4 (H4R3me2s), which in turn alters chromatin
structure to promote transcriptional repression (Branscombe
et al., 2001; Zhao et al., 2009; Chen et al., 2017). To investigate
the effect of T1551 on PRMT5 catalytic substrate, we measured
the expression level of H4R3me2s protein with and without
T1551 in A549 cell. The total H4 was used as loading control.
From Figures 3B,C, we observed that after the treatment
with T1551 for 24 h, the global level of H4R3me2s was
notably decreased. Therefore, from the perspective of histone
substrate, T1551 indeed inhibited the catalytic ability of PRMT5
methyltransferase.

T1551 Downregulates the Expression of
PRMT5 Target Genes
PRMT5 exerts its function by regulating the expression of
target genes, such as oncogene FGFR3 and eIF4E (Zhang et al.,
2015). FGFR3 and eIF4E were previously reported to frequently
overexpress in lung cancer, myeloma, and ovarian cancers (van
Rhijn et al., 2001; De Benedetti and Graff, 2004; Culjkovic-
Kraljacic et al., 2012), thus playing an important role in tumor
occurrence and development. Especially, according to several
studies (Desai and Adjei, 2016; Babina and Turner, 2017) recently
published, FGFR signaling has been considered as a promising
target for lung cancer therapy. As can be seen from Figure 4,
FGFR3 and eIF4E expressions were significantly decreased in
A549 cell treated with 10.0 µM T1551. This reflects that T1551
may reduce FGFR3 and eIF4E expression by inhibiting PRMT5.

T1551 Suppresses the Activation of AKT,
ERK, and mTOR
As mentioned above, FGFR3 signaling is an important target
for lung cancer treatment. In this FGFR3 pathway, PRMT5
participates in regulating FGFR3 downstream targets such as
AKT, ERK, and mTOR (Wei et al., 2012). From the previous
study, silencing PRMT5 could reduce FGFR3 expression, leading
to the repression of AKT and ERK and subsequent inhibition
of mTOR through AKT/mTOR or ERK pathway (Zhang et al.,
2015).

To gain further insight into the molecular mechanism
underlying PRMT5-dependent regulation of FGFR3, we
examined whether T1551 could regulate the activation
of AKT, ERK, and mTOR through inhibiting PRMT5.
From Figures 5A,B, we observed that the protein levels of

FIGURE 5 | (A) Protein expression levels of p/T-AKT, p/T-ERK, and p/T-mTOR in A549 cell treated with T1551 at different concentrations (0, 2.5, 5.0, and 10.0 µM).
(B) Densitometric analysis of band intensities of p/T-AKT, p/T-ERK, and p/T-mTOR. Western blot analysis was performed for 24 h, with at least three independent
experiments. Data was presented as mean ± SEM (n = 3), with ∗p < 0.05 and ∗∗p < 0.01 for comparison between control group (DMSO-treated group) and
T1551-treated group.
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FIGURE 6 | (a) Time series of RMSDs of protein CA atoms during the 100 ns simulation in PRMT5-SAM-T1551 and PRMT5-SAM-EPZ015666 systems. (b) Crystal
structure of PRMT5-SAM-EPZ015666 (PDBID: 4X61). The binding modes of PRMT5 with (c) T1551 and (d) EPZ015666. Both two complex structures were
extracted from the last equilibrated 20 ns trajectory by clustering analysis.

phosphorylated AKT and ERK were significantly reduced,
especially at the 10 µM T1551 concentration, implying that
T1551 suppressed the activation of PI3K/AKT/mTOR and ERK
signaling mediated by PRMT5.

Inhibition Mechanism of T1551 Inhibitor
for PRMT5 Protein
To investigate the detailed binding modes of PRMT5-inhibitors
and compare the interaction features of T1551 and EPZ015666
with PRMT5, a single 100 ns MD simulations for PRMT5-SAM-
T1551 and PRMT5-SAM-EPZ015666 systems were performed,
respectively. Based on the obtained trajectory, with respect to
the initial structure, the root-mean-square deviations (RMSDs)
of protein CA atoms in PRMT5-SAM-T1551 and PRMT5-
SAM-EPZ015666 systems were monitored to assess the overall
stability of simulations. From Figure 6a, RMSDs of each system
almost remained stable from 60 ns, indicating the convergence

of the simulated trajectory. By calculating the binding free
energies of PRMT5 with T1551 and EPZ015666, we can identify
the energy origin of inhibitors binding to PRMT5. Here,
considering the large size of PRMT5 and inhibitor complex
(more than 600 residues, Figure 6b), entropic contribution
was neglected. The predicted 1GGB for PRMT5-T1551 was
higher than that of PRMT5-EPZ015666 (e.g., −32.11 ± 0.14 vs.
−40.09± 0.18 kcal/mol in last 10 ns) in three replicas, exhibiting
a consistent ranking with experimental results (Table 1; Chan-
Penebre et al., 2015). Among the individual energy parts, van
der Waals interaction (1Evdw) predominated the total energy
in two systems, while non-polar solvation part (1Gsol_np_GB)
contributed marginally to inhibitor binding. Therefore, the
energetic origin of T1551/EPZ015666 inhibiting PRMT5 is
mainly derived from 1Evdw.

Clustering analysis was used to extract representative
structures in simulations. Comparing the binding modes of
T1551 and EPZ015666 with PRMT5 (Figures 6c,d), we could see

TABLE 1 | The calculated binding free energy and its components (kcal/mol) of PRMT5 with T1551 and EPZ015666 complexes based on the last 10, 20, and 40 ns MD
trajectory.

1Evdw 1Eele 1Gsol_np_GB 1Gsol_polar_GB 1GGB

PRMT5-T1551

Last 10 ns −40.98 ± 0.13 −29.73 ± 0.18 −5.49 ± 0.01 44.08 ± 0.13 −32.11 ± 0.14

Last 20 ns −41.69 ± 0.12 −29.89 ± 0.16 −5.57 ± 0.01 44.64 ± 0.12 −32.50 ± 0.14

Last 40 ns −41.80 ± 0.12 −30.89 ± 0.19 −5.65 ± 0.01 45.32 ± 0.11 −33.02 ± 0.15

PRMT5-EPZ015666

Last 10 ns −49.72 ± 0.15 −43.09 ± 0.50 −6.96 ± 0.01 59.67 ± 0.39 −40.09 ± 0.18

Last 20 ns −48.98 ± 0.15 −43.72 ± 0.48 −6.94 ± 0.01 58.51 ± 0.38 −41.13 ± 0.17

Last 40 ns −49.66 ± 0.17 −49.51 ± 0.59 −7.12 ± 0.01 64.17 ± 0.46 −42.12 ± 0.19

1G was estimated from gas-phase energy and solvation free energy. The former contains an electrostatic term (1Eele) and a van der Waals term (1Evdw). The latter is
decomposed into polar (1Gsol_polar) and non-polar solvation energy (1Gsol_np).
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FIGURE 7 | Comparison of effects of (a) T1551 and (b) EPZ015666 on the collective motion of PRMT5 in the simulation. The mode was obtained by normal mode
analysis with Amber16 software and VMD NMWiz plugin. Only the normal modes of T1551 binding domain (10 Å around T1551) were shown here for clarity.

that both inhibitors located in a hydrophobic pocket composed
of Tyr304, Phe327, Ser578, and Phe580 when interacting with
PRMT5. For EPZ015666, Figure 6d showed that its THIQ
group formed strong cation–π interactions with partial positively
charged methyl group of SAM. Actually, this feature has been
reported as a key factor for EPZ015666’s efficiency in the previous
study (Chan-Penebre et al., 2015). Compared with EPZ015666,
although T1551 was lack of THIQ group, its phenyl ring in indole
scaffold also formed cation–π interactions with SAM, explaining
the inhibitory activity of T1551 against PRMT5 to some extent.
Meanwhile, the pyrrole ring of indole group in T1551 formed
π–π interactions with Phe327. T1551 also formed a hydrogen
bond with the main-chain oxygen atom of Ser578. These together
fasten the interactions of T1551 with PRMT5.

Finally, in order to see the effect of inhibitors on
conformational space of PRMT5, normal mode analysis
was carried out. For clear visualization, only the normal modes
of T1551 binding domain (10 Å around T1551) were shown here.
From Figure 7, it could be observed that the partial collective
motion of EPZ015666 was opposite to that of T1551 during
the simulation. As for PRMT5, the obvious differences in two
complexes were reflected from helix residues 310–319 and loop
residues 290–299. In the PRMT5-EPZ015666 system (Figure 7b),
the helix and loop vibrated in the face–face direction, which
seemed like to tighten the binding pocket and thus stabilize
EPZ015666 into it. From Figure 7b, we also observed that
the obviously higher amplitude motion of loop domain made
major contributions in it. Nevertheless, in the PRMT5-T1551
system (Figure 7a), the helix and loop moved in the back–back
direction, which led the pocket not as compact as that in
PRMT5-EPZ015666 system. It may be closely associated with
that EPZ015666 has better biological activity for PRMT5 than
T1551.

DISCUSSION

PRMT5, as currently the only known type II PRMT, is also a
member with the few inhibitors reported in PRMT family. As the

relationship of PRMT5 and lung cancer is constantly revealed, it
is urgent to search for effective inhibitors targeting PRMT5 for
lung cancer therapy. SAM, as the natural substrate of PRMT5,
is responsible for providing the methyl group in the process of
methyl transfer. To date, most of PRMT5 inhibitors reported
were aimed for SAM-binding site and designed to disturb the
interaction of SAM and PRMT5 (Alinari et al., 2015; Smil et al.,
2015; Mao et al., 2017). However, due to their native binding state,
it is difficult to find small molecules with the inhibitory activity
stronger than SAM. Fortunately, the discovery of EPZ015666 and
its new binding site provides a new clue for developing non-SAM
competitive inhibitors.

In this study, we identified T1551 as a non-SAM competitive
PRMT5 inhibitor by virtual screening method. Subsequently,
the anticancer activity of T1551 against NSCLC was studied
from three aspects, namely PRMT5 methyltransferase activity,
expression of target genes and signaling pathway mediated by
target genes. For the former, the “on-target” and direct inhibitory
effect of T1551 was reflected from the low PRMT5 enzymatic
activity, and indirect effect was from the low expression level of
PRMT5’s histone marker (H4R3me2s), which together suggested
that T1551 inhibited PRMT5 methyltransferase activity.

For the latter, FGFR3 and eIF4E are two target genes of
PRMT5 we focused here. We know that PI3K/AKT/mTOR
pathway is a prototypic survival pathway in cancers, whose
activation is closely related to cellular proliferation, growth,
and mobility. FGFR3 promotes the survival of cancer cells
just by stimulating the downstream PI3K/AKT/mTOR pathway
(Kang et al., 2007; Hafner et al., 2010). Using RNA interference
technology, Zhang et al. (2015) revealed that silencing PRMT5
could significantly downregulate FGFR3 and eIF4E expression.
In our study, via inhibiting PRMT5, the identified T1551 was
also shown to reduce the protein expressions of oncogene
FGFR3 and eIF4E. Despite that the change of phosphorylated
mTOR was not significant possibly due to the amplification
effect of a signaling cascade, the concurrent reducing of
phosphorylated AKT and ERK indicated that T1551 blocked the
activation of PI3K/AKT/mTOR and ERK pathways in NSCLC cell
line.
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Previous studies emphasized that cation–π interaction
between the tetrahydroisoquinoline group of EPZ015666 and
partial positively charged methyl group of SAM was essential for
EPZ015666’s higher competitive ability for PRMT5 relative to
histone substrate (Chan-Penebre et al., 2015; Duncan et al., 2015).
Replacing SAM with SAH, the binding affinity of EPZ015666
and PRMT5 could be decreased more than 100 times. Due to
the importance of this feature, in the subsequently structural
optimization of EPZ015666, cation–π has always been retained
as a crucial interaction (Duncan et al., 2015). By comparing the
binding modes of T1551 and EPZ015666 with PRMT5-SAM, we
observed that the conformation of T1551 in PRMT5 new pocket
was similar to that of EPZ015666. Importantly, the benzene ring
of T1551 indole scaffold also formed strong cation–π interactions
with the methyl group of SAM. This explains the inhibitory
source of T1551 for PRMT5 to some extent.

In summary, a novel PRMT5 inhibitor T1551 with the
indole scaffold was identified in this study, whose functional
influence on PRMT5 was verified by a series of biological assays

and theoretical inhibitory basis on PRMT5 was revealed by
molecular dynamic simulation method. These results provide
a lead compound for the further design of PRMT5 inhibitors,
and contribute to the development of PRMT5-targeting cancer
treatment.

AUTHOR CONTRIBUTIONS

XY, EL, and LL conceived the project. XY, EL, and QW designed
the experiments. QW, JX, YL, JH, ZJ, and YW carried out the
research and data analysis. XY, EL, LL, and QW wrote the paper.

FUNDING

This work was supported by Macao Science and Technology
Development Fund (Project Nos: 046/2016/A2, 086/2015/A3,
and 005/2014/AMJ).

REFERENCES
Alinari, L., Mahasenan, K. V., Yan, F., Karkhanis, V., Chung, J. H., Smith, E. M.,

et al. (2015). Selective inhibition of protein arginine methyltransferase 5 blocks
initiation and maintenance of B-cell transformation. Blood 125, 2530–2543.
doi: 10.1182/blood-2014-12-619783

Babina, I. S., and Turner, N. C. (2017). Advances and challenges in targeting FGFR
signalling in cancer. Nat. Rev. Cancer 17, 318–332. doi: 10.1038/nrc.2017.8

Baell, J. B., and Holloway, G. A. (2010). New substructure filters for removal of
pan assay interference compounds (PAINS) from screening libraries and for
their exclusion in bioassays. J. Med. Chem. 53, 2719–2740. doi: 10.1021/jm90
1137j

Bedford, M. T., and Clarke, S. G. (2009). Protein arginine methylation in mammals:
who, what, and why. Mol. Cell 33, 1–13. doi: 10.1016/j.molcel.2008.12.013

Branscombe, T. L., Frankel, A., Lee, J. H., Cook, J. R., Yang, Z. H., Pestka, S.,
et al. (2001). PRMT5 (Janus kinase-binding protein 1) catalyzes the formation
of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276,
32971–32976. doi: 10.1074/jbc.M105412200

Case, D. A., Cerutti, D. S., Cheathamiii, T. E., Darden, T. A., Duke, R. E., Giese,
T. J., et al. (2017). AMBER 16. San Francisco, CA: University of California.

Chan-Penebre, E., Kuplast, K. G., Majer, C. R., Boriack-Sjodin, P. A., Wigle, T. J.,
Johnston, L. D., et al. (2015). A selective inhibitor of PRMT5 with in vivo and
in vitro potency in MCL models. Nat. Chem. Biol. 11, 432–437. doi: 10.1038/
nchembio.1810

Chen, H., Lorton, B., Gupta, V., and Shechter, D. (2017). A TGFβ-PRMT5-
MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine
methylation coupled transcriptional activation and repression. Oncogene 36,
373–386. doi: 10.1038/onc.2016.205

Chu, C. H., Wang, L. Y., Hsu, K. C., Chen, C. C., Cheng, H. H., Wang, S. M.,
et al. (2014). KDM4B as a target for prostate cancer: structural analysis and
selective inhibition by a novel inhibitor. J. Med. Chem. 57, 5975–5985. doi:
10.1021/jm500249n

Culjkovic-Kraljacic, B., Baguet, A., Volpon, L., Amri, A., and Borden, K. L. (2012).
The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA
export and oncogenic transformation. Cell Rep. 2, 207–215. doi: 10.1016/j.
celrep.2012.07.007

De Benedetti, A., and Graff, J. R. (2004). eIF-4E expression and its role in
malignancies and metastases. Oncogene 23, 3189–3199. doi: 10.1038/sj.onc.
1207545

Desai, A., and Adjei, A. A. (2016). FGFR signaling as a target for lung cancer
therapy. J. Thorac. Oncol. 11, 9–20. doi: 10.1016/j.jtho.2015.08.003

Deuker, M. M., and McMahon, M. (2014). Methylation matters in KRAS
oncogenesis. Nature 510, 225–226. doi: 10.1038/nature13343

Duncan, K. W., Rioux, N., Boriack-Sjodin, P. A., Munchhof, M. J., Reiter, L. A.,
Majer, C. R., et al. (2015). Structure and property guided design in the
identification of PRMT5 tool compound EPZ015666. ACS Med. Chem. Lett. 7,
162–166. doi: 10.1021/acsmedchemlett.5b00380

Gu, Z., Gao, S., Zhang, F., Wang, Z., Ma, W., Davis, R. E., et al. (2012). Protein
arginine methyltransferase 5 is essential for growth of lung cancer cells.
Biochem. J. 446, 235–241. doi: 10.1042/BJ20120768

Hafner, C., Di Martino, E., Pitt, E., Stempfl, T., Tomlinson, D., Hartmann, A.,
et al. (2010). FGFR3 mutation affects cell growth, apoptosis and attachment in
keratinocytes. Exp. Cell Res. 316, 2008–2016. doi: 10.1016/j.yexcr.2010.04.021

Hou, T., Wang, J., Li, Y., and Wang, W. (2010). Assessing the performance of the
MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy
calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51,
69–82. doi: 10.1021/ci100275a

Huang, S., Song, C., Wang, X., Zhang, G., Wang, Y., Jiang, X., et al. (2017).
Discovery of new SIRT2 inhibitors by utilizing a consensus docking/scoring
strategy and structure-activity relationship analysis. J. Chem. Inf. Model. 57,
669–679. doi: 10.1021/acs.jcim.6b00714

Ibrahim, R., Matsubara, D., Osman, W., Morikawa, T., Goto, A., Morita, S., et al.
(2014). Expression of PRMT5 in lung adenocarcinoma and its significance in
epithelial-mesenchymal transition. Hum. Pathol. 45, 1397–1405. doi: 10.1016/j.
humpath.2014.02.013

Ji, S., Ma, S., Wang, W. J., Huang, S. Z., Wang, T. Q., Xiang, R., et al. (2017).
Discovery of selective protein arginine methyltransferase 5 inhibitors and
biological evaluations. Chem. Biol. Drug Des. 89, 585–598. doi: 10.1111/cbdd.
12881

Kang, S., Dong, S., Gu, T. L., Guo, A., Cohen, M. S., Lonial, S., et al. (2007). FGFR3
activates RSK2 to mediate hematopoietic transformation through tyrosine
phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell
12, 201–214. doi: 10.1016/j.ccr.2007.08.003

Li, Y., Chitnis, N., Nakagawa, H., Kita, Y., Natsugoe, S., Yang, Y., et al. (2015).
PRMT5 is required for lymphomagenesis triggered by multiple oncogenic
drivers. Cancer Discov. 5, 288–303. doi: 10.1158/2159-8290.CD-14-0625

Lim, J. H., Lee, Y. M., Lee, G., Choi, Y. J., Lim, B. O., Kim, Y. J., et al. (2014). PRMT5
is essential for the eIF4E-mediated 5’-cap dependent translation. Biochem.
Biophys. Res. Commun. 452, 1016–1021. doi: 10.1016/j.bbrc.2014.09.033

Linse, B., and Linse, P. (2014). Tuning the smooth particle mesh Ewald sum:
application on ionic solutions and dipolar fluids. J. Chem. Phys 141:184114.
doi: 10.1063/1.4901119

Liu, F., Zhao, X., Perna, F., Wang, L., Koppikar, P., and Abdel-Wahab, O.
(2011). JAK2V617F-mediated phosphorylation of PRMT5 downregulates its
methyltransferase activity and promotes myeloproliferation. Cancer Cell 19,
283–294. doi: 10.1016/j.ccr.2010.12.020

Frontiers in Pharmacology | www.frontiersin.org March 2018 | Volume 9 | Article 173100

https://doi.org/10.1182/blood-2014-12-619783
https://doi.org/10.1038/nrc.2017.8
https://doi.org/10.1021/jm901137j
https://doi.org/10.1021/jm901137j
https://doi.org/10.1016/j.molcel.2008.12.013
https://doi.org/10.1074/jbc.M105412200
https://doi.org/10.1038/nchembio.1810
https://doi.org/10.1038/nchembio.1810
https://doi.org/10.1038/onc.2016.205
https://doi.org/10.1021/jm500249n
https://doi.org/10.1021/jm500249n
https://doi.org/10.1016/j.celrep.2012.07.007
https://doi.org/10.1016/j.celrep.2012.07.007
https://doi.org/10.1038/sj.onc.1207545
https://doi.org/10.1038/sj.onc.1207545
https://doi.org/10.1016/j.jtho.2015.08.003
https://doi.org/10.1038/nature13343
https://doi.org/10.1021/acsmedchemlett.5b00380
https://doi.org/10.1042/BJ20120768
https://doi.org/10.1016/j.yexcr.2010.04.021
https://doi.org/10.1021/ci100275a
https://doi.org/10.1021/acs.jcim.6b00714
https://doi.org/10.1016/j.humpath.2014.02.013
https://doi.org/10.1016/j.humpath.2014.02.013
https://doi.org/10.1111/cbdd.12881
https://doi.org/10.1111/cbdd.12881
https://doi.org/10.1016/j.ccr.2007.08.003
https://doi.org/10.1158/2159-8290.CD-14-0625
https://doi.org/10.1016/j.bbrc.2014.09.033
https://doi.org/10.1063/1.4901119
https://doi.org/10.1016/j.ccr.2010.12.020
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00173 February 27, 2018 Time: 15:52 # 10

Wang et al. PRMT5 Inhibitor in Lung Cancer

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and
Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain
and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713.
doi: 10.1021/acs.jctc.5b00255

Mao, R., Shao, J., Zhu, K., Zhang, Y., Ding, H., Zhang, C., et al. (2017).
Potent, selective, and cell active protein arginine methyltransferase 5 (PRMT5)
inhibitor developed by structure-based virtual screening and hit optimization.
J. Med. Chem. 60, 6289–6304. doi: 10.1021/acs.jmedchem.7b00587

Meng, F., Cheng, S., Ding, H., Liu, S., Liu, Y., Zhu, K., et al. (2015). Discovery
and optimization of novel, selective histone methyltransferase SET7 inhibitors
by pharmacophore-and docking-based virtual screening. J. Med. Chem. 58,
8166–8181. doi: 10.1021/acs.jmedchem.5b01154

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory
of useful decoys, enhanced (DUD-E): better ligands and decoys for better
benchmarking. J. Med. Chem. 55, 6582–6594. doi: 10.1021/jm300687e

Platania, C. B., Di Paola, L., Leggio, G. M., Romano, G. L., Drago, F.,
Salomone, S., et al. (2015). Molecular features of interaction between VEGFA
and anti-angiogenic drugs used in retinal diseases: a computational approach.
Front. Pharmacol. 6:248. doi: 10.3389/fphar.2015.00248

Schrödinger (2015). Maestro Version 10.2. New York, NY: Schrödinger.
Sheng, X., and Wang, Z. (2016). Protein arginine methyltransferase 5 regulates

multiple signaling pathways to promote lung cancer cell proliferation. BMC
Cancer 16:567. doi: 10.1186/s12885-016-2632-3

Shilo, K., Wu, X., Sharma, S., Welliver, M., Duan, W., Villalona-Calero, M., et al.
(2013). Cellular localization of protein arginine methyltransferase-5 correlates
with grade of lung tumors. Diagn. Pathol. 8:201. doi: 10.1186/1746-1596-8-201

Smil, D., Eram, M. S., Li, F., Kennedy, S., Szewczyk, M. M., Brown, P. J., et al.
(2015). Discovery of a dual PRMT5–PRMT7 inhibitor. ACSMed. Chem. Lett. 6,
408–412. doi: 10.1021/ml500467h

Stopa, N., Krebs, J. E., and Shechter, D. (2015). The PRMT5 arginine
methyltransferase: many roles in development, cancer and beyond. Cell. Mol.
Life Sci. 72, 2041–2059. doi: 10.1007/s00018-015-1847-9

van Rhijn, B. W., Lurkin, I., Radvanyi, F., Kirkels, W. J., Van Der Kwast, T. H.,
and Zwarthoff, E. C. (2001). The fibroblast growth factor receptor 3 (FGFR3)
mutation is a strong indicator of superficial bladder cancer with low recurrence
rate. Cancer Res. 61, 1265–1268.

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004).
Development and testing of a general amber force field. J. Comput. Chem. 25,
1157–1174. doi: 10.1002/jcc.20035

Wang, Q., Li, Y., Xu, J., Wang, Y., Leung, E. L. H., Liu, L., et al. (2017). Selective
inhibition mechanism of RVX-208 to the second bromodomain of bromo
and extraterminal proteins: insight from microsecond molecular dynamics
simulations. Sci. Rep. 7:8857. doi: 10.1038/s41598-017-08909-8

Wei, H., Wang, B., Miyagi, M., She, Y., Gopalan, B., Huang, D. B., et al. (2013).
PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proc. Natl. Acad.
Sci. U.S.A. 110, 13516–13521. doi: 10.1073/pnas.1311784110

Wei, T. Y. W., Juan, C. C., Hisa, J. Y., Su, L. J., Lee, Y. C. G., Chou, H. Y., et al.
(2012). Protein arginine methyltransferase 5 is a potential oncoprotein that
upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-
kinase/AKT signaling cascade. Cancer Sci. 103, 1640–1650. doi: 10.1111/j.1349-
7006.2012.02367.x

Yan, F., Alinari, L., Lustberg, M. E., Martin, L. K., Cordero-Nieves, H. M.,
Banasavadi-Siddegowda, Y., et al. (2014). Genetic validation of the protein
arginine methyltransferase PRMT5 as a candidate therapeutic target in
glioblastoma. Cancer Res. 74, 1752–1765. doi: 10.1158/0008-5472.CAN-13-
0884

Yang, Y., and Bedford, M. T. (2013). Protein arginine methyltransferases and
cancer. Nat. Rev. Cancer 13, 37–50. doi: 10.1038/nrc3409

Zhang, B., Dong, S., Zhu, R., Hu, C., Hou, J., Li, Y., et al. (2015). Targeting protein
arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing
arginine methylation of eIF4E and FGFR3. Oncotarget 6, 22799–22811. doi:
10.18632/oncotarget.4332

Zhao, Q., Rank, G., Tan, Y. T., Li, H., Moritz, R. L., Simpson, R. J., et al. (2009).
PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling
histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16,
304–311. doi: 10.1038/nsmb.1568

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018Wang, Xu, Li, Huang, Jiang, Wang, Liu, Leung and Yao. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Pharmacology | www.frontiersin.org March 2018 | Volume 9 | Article 173101

https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1021/acs.jmedchem.7b00587
https://doi.org/10.1021/acs.jmedchem.5b01154
https://doi.org/10.1021/jm300687e
https://doi.org/10.3389/fphar.2015.00248
https://doi.org/10.1186/s12885-016-2632-3
https://doi.org/10.1186/1746-1596-8-201
https://doi.org/10.1021/ml500467h
https://doi.org/10.1007/s00018-015-1847-9
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1038/s41598-017-08909-8
https://doi.org/10.1073/pnas.1311784110
https://doi.org/10.1111/j.1349-7006.2012.02367.x
https://doi.org/10.1111/j.1349-7006.2012.02367.x
https://doi.org/10.1158/0008-5472.CAN-13-0884
https://doi.org/10.1158/0008-5472.CAN-13-0884
https://doi.org/10.1038/nrc3409
https://doi.org/10.18632/oncotarget.4332
https://doi.org/10.18632/oncotarget.4332
https://doi.org/10.1038/nsmb.1568
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00983 September 4, 2018 Time: 9:5 # 1

ORIGINAL RESEARCH
published: 05 September 2018
doi: 10.3389/fphar.2018.00983

Edited by:
Leonardo G. Ferreira,

Universidade de São Paulo, Brazil

Reviewed by:
Takuma Sugi,

Shiga University of Medical Science,
Japan

Matthieu Sainlos,
CNRS UMR 5297/University

of Bordeaux, France

*Correspondence:
Hidekazu Hiroaki

hiroaki.hidekazu@
f.mbox.nagoya-u.ac.jp

Specialty section:
This article was submitted to
Experimental Pharmacology

and Drug Discovery,
a section of the journal

Frontiers in Pharmacology

Received: 29 April 2018
Accepted: 10 August 2018

Published: 05 September 2018

Citation:
Hori K, Ajioka K, Goda N, Shindo A,
Takagishi M, Tenno T and Hiroaki H

(2018) Discovery of Potent
Disheveled/Dvl Inhibitors Using Virtual

Screening Optimized With
NMR-Based Docking Performance

Index. Front. Pharmacol. 9:983.
doi: 10.3389/fphar.2018.00983

Discovery of Potent Disheveled/Dvl
Inhibitors Using Virtual Screening
Optimized With NMR-Based Docking
Performance Index
Kiminori Hori1, Kasumi Ajioka2, Natsuko Goda1, Asako Shindo3, Maki Takagishi4,
Takeshi Tenno1,5 and Hidekazu Hiroaki1,2,5*

1 Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University,
Nagoya, Japan, 2 Department of Biological Science, School of Science, Nagoya University, Nagoya, Japan, 3 Division
of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan, 4 Department of Pathology, Graduate
School of Medicine, Nagoya University, Nagoya, Japan, 5 BeCellBar LLC, Business Incubation Center, Nagoya University,
Nagoya, Japan

Most solid tumors have their own cancer stem cells (CSCs), which are resistant to
standard chemo-therapies. Recent reports have described that Wnt pathway plays
a key role in self-renewal and tumorigenesis of CSCs. Regarding the Wnt/β-catenin
pathway, Dvl (mammalian Disheveled) is an attractive target of drug discovery. After
analyzing the PDZ domain of human Dvl1 (Dvl1-PDZ) using NMR, we subjected it to
preliminary NMR titration studies with 17 potential PDZ-binding molecules including
CalBioChem-322338, a commercially available Dvl PDZ domain inhibitor. Next, we
performed virtual screening (VS) using the program GOLD with nine parameter sets.
Results were evaluated using the NMR-derived docking performance index (NMR-
DPI). One parameter set of GOLD docking showing the best NMR-DPI was selected
and used for the second VS against 5,135 compounds. The second docking trial
identified more than 1,700 compounds that exhibited higher scores than CalBioChem-
322338. Subsequent NMR titration experiments with five new candidate molecules
(NPL-4001, 4004, 4011, 4012, and 4013), Dvl1-PDZ revealed larger chemical shift
changes than those of CalBioChem-322338. Finally, these compounds showed partial
proliferation inhibition activity against BT-20, a triple negative breast cancer (TNBC) cell.
These compounds are promising Wnt pathway inhibitors that are potentially useful for
anti-TNBC therapy.

Keywords: Wnt signaling, protein–protein interaction inhibitor, NMR-derived docking performance index, virtual
screening, triple negative breast cancer

INTRODUCTION

Poor therapeutic outcomes of chemotherapy against several solid tumors pose a challenge to anti-
tumor drug discovery and development. Cancer stem cells (CSCs) are believed to have a pivotal role
in malignancy, survival against chemotherapy, and self-renewal of those tumors (Tannishtha et al.,
2001). Consequently, CSCs are attractive targets for cancer chemotherapy development (Visvader
and Lindeman, 2008). The Wnt/β-catenin pathway, along with Notch and Hedgehog pathways, are
important in several CSCs (Reya and Clevers, 2005). In fact, the Wnt pathway has been commonly
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regarded as the key signaling pathway of self-renewal and
anti-differentiation of normal tissue stem cells. Accordingly,
proliferation and self-renewal of several CSCs have been
demonstrated as dependent on the Wnt pathway. For that reason,
Wnt pathway is an attractive target for anti-CSC chemotherapy
(Takebe et al., 2011; Holland et al., 2013).

The Wnt/β-catenin pathway is activated by Wnt ligands.
Frizzled (Fzd)/LRP co-receptors coordinately bind Wnt, and
transduce the signal to cytosolic downstream components
including Axin, APC, GSK3β, and CK1. Accordingly, a
transcription factor β-catenin is accumulated to induce target
gene expression. This signaling system is carried out by a
constitutive process of proteasomal degradation of β-catenin
at the “Wnt-off” state. Specifically, β-catenin degradation is
initiated by phosphorylation by GSK3β. At “Wnt-on” state,
then the interaction between Dvl, and Axin inhibits GSK3β,
thereby accumulating β-catenin in the cytoplasm and the
nucleus. Dvl, a 75 kD multi-domain adaptor protein with
Disheveled-aXin (DIX), Post synaptic density-95, Disc large, and
Zonular occludens-1 (PDZ), and Disheveled-Egl10-Pleckstrin
(DEP) domains (Figure 2A), plays a central role in both
canonical (β-catenin-dependent) and non-canonical (β-catenin-
independent) pathways of Wnt signaling (Gao and Chen, 2010).
There are three mammalian Disheveled orthologs, Dvl-1, 2, and
3, in human genome, with functional redundancy. The PDZ
domain of Dvl (Dvl-PDZ) specifically interacts to the C-terminus
of Fzd (Wong et al., 2003) upon Wnt binding to the extracellular
domain of Fzd. Accordingly, Dvl-PDZ is an attractive target
for exploring small molecule inhibitors (Figure 2B), and has
been characterized extensively. For instance, the binding mode
of the tripeptides VVV and VWV against Dvl-PDZ has been
reported (Lee et al., 2009a). The complex structure of peptide-
derived inhibitors and Dvl2-PDZ has also been reported (Zhang
et al., 2009). In addition, several reports have described Dvl-PDZ
inhibitors, including a peptide-mimic compounds NSC668036
(Shan et al., 2005), 1H-indole-5-carboxylic acid derivative FJ9
(Fujii et al., 2007), sulindac (Lee et al., 2009b), N-benzoyl-
2-amino-benzoic acid derivative CalBioChem-322338 (Grandy
et al., 2009), and phenoxyacetic acid analogs (Choi et al., 2016).
The present study specifically examines N-benzoyl-2-amino-
benzoic acid analogs including CalBioChem-322338 because 2-
amino-benzoic acid moiety is independently proposed as a key
moiety of group-specific inhibitors against several PDZ domains.
Therefore, it represents a potential pharmacophore (Tenno et al.,
2013). During our research exploring new inhibitors against
Zonular Occludens-1 PDZ1 domain (Umetsu et al., 2011), we
obtained several N-substituted-2-amino-benzoic acid analogs
that are chemically similar to CalBioChem-322338 (Figure 3
and Supplementary Figure S1). The present study evaluates the
affinities of those compounds against human Dvl1 PDZ domain
(hDvl1-PDZ) using solution NMR experiments (Figure 2D).

Virtual screening (VS) of drug candidates, known as
high-throughput protein–ligand docking, is a powerful
approach. Commercial applications are widely used, such
as Glide (Friesner et al., 2004), FRED (McGann, 2011),
MOE/ASEDock (Goto et al., 2008), and GOLD (Verdonk et al.,
2003), as well as academic applications such as AutoDock

(Goodsell et al., 1996), AutoDock-VINA (Trott and Olson,
2010), and Sievegene (Fukunishi et al., 2005). According their
increasing convenience and availability, another practical issue
has arisen: VS experiments with different algorithms, different
parameter settings, and different target 3D structures might
produce disparate results. Consequently, the benchmarking of
docking algorithms has come to represent an important issue
(McGaughey et al., 2007; Lindh et al., 2015). For the present
study, we decided to use GOLD because GOLD is recognized
as having acceptably high performance in comprehensive
benchmarking throughout several VS programs (Wang
et al., 2016). Moreover, results have demonstrated that the
experimental tuning of parameter sets and/or the selection of
target model structures might greatly improve performance and
provide higher accuracy of prediction (Huang and Wong, 2016).
Encouraged by that idea proposed by Huang et al., we introduced
the idea into our project as a simplified index for evaluating nine
docking scoring functions of GOLD. For this study, the index
is designated as the NMR-based docking performance index
(NMR-DPI).

First, 17 potential PDZ-binding molecules as well as
CalBioChem-322338, all of which are N-substituted-2-amino-
benzoic acid analogs, were analyzed using NMR chemical shift
perturbation (CSP) experiments. We believe that the NMR-
CSP experiment is among the easiest and most robust assay
methods to compare the affinities of a series of compounds
against 15N-labeled small protein (Williamson, 2013). Second,
these 17 potential PDZ-binding molecules were docked against
hDvl2-PDZ using GOLD with nine different scoring functions.
Third, out of the nine scoring functions, we identified the one that
is most consistent to the CSP experiments of the 17 compounds.
This optimized scoring function was used for a new VS with
our in-house focused library, which is a subset of the library
LIGANDBOX (Kawabata et al., 2013) containing commercially
available 5,135 N-substituted-2-amino-benzoic acid analogs.
From the top hit compounds after the new VS experiment, 13 new
molecules were purchased: NPL-4001 – NPL-4007, and NPL-
4011 – NPL-4016 (Figure 1). Our seven original compounds
induced markedly larger chemical shift changes upon hDvl1-PDZ
than those induced by CalBioChem-322338. The compounds
were evaluated further by the cell-based assays as potential Wnt
pathway inhibitors. The validity and possible limitations of NMR-
DPI were also assessed.

MATERIALS AND METHODS

Preparation of Protein Samples
The expression vector for the recombinant GST-tagged form
of prototype hDvl1-PDZ∗ domain (residues 244–342) was
constructed using the PRESAT-vector methodology (Goda et al.,
2004). The vector for the GST-tagged hDvl1-PDZ domain
(residues 246–340, four amino acids shorter construct) was then
produced using the standard PCR cloning technique with pGEX-
6P3 plasmid (GE Healthcare, Little Chalfont, United Kingdom).
The GST-tagged hDvl2-PDZ domain (residues 262–356) was
constructed similarly. Two PDZ domains, residues Cys-Trp near
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FIGURE 1 | Schematic overview of optimization of the GOLD scoring function by using NMR-DPI and the subsequent virtual screening of Dvl inhibitors.

the C-termini (residues 338–339 and 354–355, respectively, for
hDvl1, and hDvl2) were substituted to Ala-Thr to increase
protein stability. Since the position of these residues was
opposite side to the ligand binding site, we assumed that the
mutations affected to neither its affinity nor binding mode to
the inhibitors. Isotopically labeled proteins for NMR experiments
were generated, respectively, in E. coli BL21 (DE3) grown in 1 L
M9 minimal medium culture at 37◦C in the presence of [15N]-
NH4Cl and [13C]-glucose (if needed) as the sole nitrogen and
carbon sources. The protein expression was induced by addition
of final 1 mM of isopropyl-β-D-galactoside, with immediate
lowering of the temperature to 20◦C. The cells were harvested
20 h after IPTG induction. The harvested cells were then re-
suspended in lysis buffer (50 mM Tris–HCl, pH 7.2, and 150 mM
NaCl), disrupted by sonication, and clarified by centrifugation.
The supernatant was applied to a DEAE–SepharoseTM Fast Flow
(GE Healthcare) column. It was then affinity-purified using
resin (GST-AcceptTM; Nacalai Tesque Inc., Kyoto, Japan). The
GST tag was removed by PreScission protease on beads. The
protein solution was loaded on a Superdex 75 HR 26/60 column
(GE Healthcare) equilibrated with 50 mM Tris–HCl (pH 7.2)
and 150 mM NaCl. The purified proteins were concentrated
to 0.1 mM (for NMR titration experiment) and were dialyzed
against 100 mM potassium phosphate buffer (pH 7.4) containing
0.5 mM EDTA supplemented with 10% D2O and 5% d6-
dimethyl sulfoxide. After comparing 1H-15N HSQC spectra of
hDvl1 and hDvl2 PDZ domains, we decided to continue further

study of hDvl1-PDZ because of its sharp and well-dispersed
HSQC signals. For triple resonance experiments, 0.65 mM
of 15N /13C-labeled hDvl1-PDZ was solubilized into 90 mM
potassium phosphate buffer (pH 7.4) containing 0.45 mM EDTA
supplemented with 10% D2O. 15N-labeled mouse ZO-1 first PDZ
domain (residues 18–110, mZO1-PDZ1) was prepared according
to an earlier report (Umetsu et al., 2011).

NMR Experiments
For this study, NMR experiments were conducted using NMR
spectrometer (600 MHz, Bruker Avance III; Bruker Analytik
GmbH, Karlsruhe, Germany) equipped with a cryogenic triple-
resonance probe. For assignment of backbone 1H, 13C, and
15N resonances, HNCA, HNCACB, CBCA (CO) NH, HNCO,
HN (CA) CO, and 3D 15N-edited-NOESY-HSQC spectra were
recorded. For NMR titration experiments, 0.1 mM PDZ domain
sample was dissolved in 250 µL of 85 mM potassium phosphate
buffer (pH 7.4) containing 0.42 mM EDTA supplemented with
10% D2O and 5% d6-dimethyl sulfoxide (DMSO). Then the
1H–15N HSQC spectra were obtained with and without ligands.
In each titration experiment, the final concentration of the
compound at 0.2 mM was added to the proteins. All NMR
spectra were recorded at 298 K. All spectra were processed
using NMRPipe (Delaglio et al., 1995) and were analyzed using
the program Sparky 3.114 (Goddard and Kneller, 2004). All
chemical shift changes in the 1H–15N HSQC spectra were
calculated as 1δnormalized = {1δ(1H)2

+ [1δ(15N)/6]2}1/2. The
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FIGURE 2 | PDZ domain of Dvl as a drug target for Wnt pathway. (A) Domain architecture of three human Disheveled orthologs. DIX, DIsheveled-aXin domain, PDZ,
Post synaptic density-95, Disc large and Zonular occludens-1domain, DEP, Disheveled-Egl10-Pleckstrin domain. (B) Ribbon representation of PDZ domain of Dvl2
(PDB code: 3CBY). A green ellipsoid indicates the position of Fzd binding cleft. (C) Multiple sequence alignment of the core region of PDZ domain of human Dvl1
(residues 251–323) and Dvl2 (residues 267–339). Identical amino acids are represented by asterisks. (D) A portion of the 1H–15N HSQC spectrum of hDvl1-PDZ
illustrating a number of the assigned backbone amide resonances.
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FIGURE 3 | Selected compounds that may bind PDZ domains. Diclofenac and flufenamic acid bind several PDZ domains. CalBioChem-322338 is an example of
Dvl-PDZ inhibitors. NPL-1010, 1011, and 3009 are an example of potential hDvl1-PDZ binding compounds.

chemical shift changes were then mapped onto the corresponding
residues of the structure of hDvl2-PDZ using PyMol graphic
software (Schrödinger, 2015). 1δave is the sum of 1δnormalized
divided by the total residue number with their residue-specific
assignment except the residues with broadened-out signals. After
Signals showing marked chemical shift changes were selected,
the normalized chemical shift changes were calculated. Non-
linear least-squares fitting was applied to estimate the dissociation
constant KD as

∆δnormalized =∆δsaturated × (([R]total + [L]total + KD)−

sqrt(([R]total + [L]total + KD)
2
− 4[R]total

[L]total))/2[L]total (1)

where 1δsaturated represents the normalized chemical shifts at
the saturated point. In addition, [R]total and [L]total, respectively,
denote the concentrations of PDZ domain and the compound.
KD and1δsaturated values for the selected residues were optimized
simultaneously by using SOLVER function in Microsoft Excel
(Microsoft Corp.).

Docking and Virtual Screening
Experiments
Prior to the VS experiments, a focused library was constructed
by filtering compounds with carboxylic acid moieties, which
play a crucially important role in canonical peptide recognition

by many PDZ domains. A focused library was constructed as
a subset of the compound database (LIGANDBOX ver. 1306)
(Kawabata et al., 2013) based on our earlier observation that
diclofenac and flufenamic acid bound several PDZ domains in
a group-specific manner (Tenno et al., 2013). We selected and
pooled 5,135 compounds of N-substituted 2-amino-benzoic acid
and N-substituted 2-amino-benzeneacetic acid. Subsequently,
software GOLD suite (ver. 5.32) (Verdonk et al., 2003) was
used for molecular docking of the compounds into the structure
of hDvl2-PDZ [PDB entry 3CBY (Zhang et al., 2009)]. The
GOLD software is based on a genetic algorithm for generating
configurations of ligands with the two scoring modes, “simple
scoring” and “consensus scoring.” Simple scoring uses just a
single function out of the four fitness functions. Consensus
scoring combines two of four scoring functions, respectively, for
initial docking and re-scoring. The present study examined the
three scoring functions of ChemScore (CS), GoldScore (GS), and
ChemPLP, in the simple scoring mode and the consensus scoring
mode, thereby examining nine scoring methods.

Cell-Based Viability Assay
The newly found Dvl-PDZ inhibitors were tested to assess their
effectiveness against TNBC cell lines (BT-20) on cell proliferation
and viability. For that purpose, luciferase-expressing stable cell
lines were chosen, although we did not perform luciferase-based
biochemical experiment in this report. The TNBC cell lines
BT-20 (BT-20/CMV-Luc, JCRB-1438) were obtained from the
JCRB Cell Bank, National Institute of Biomedical Innovation,
Health, and Nutrition (Osaka, Japan). The cells were grown in
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Minimum Essential Medium Eagle (Earle’s salts containing with
L-glutamine and sodium bicarbonate; Sigma-Aldrich Corp.),
supplemented with 10% fetal bovine serum (FBS) (Biosera,
Boussens, France), and 1% Penicillin/Streptomycin antibiotics
(Gibco, Grand Island, NY, United States). Cell lines were
cultured in a 37◦C incubator with a humidified atmosphere
of 5% CO2. Cells were seeded at 15,000 cells/well into 96-well
plates. After overnight incubation, cells were treated with d6-
DMSO or 100 µM of each Dvl-PDZ inhibitor (CalBioChem-
322338, NPL-4001, 4002, 4007, and 4011–4013) for 96 h.
During culture, the media with or without corresponding
inhibitors was refreshed every 48 h. After 4 days of culture
with the compounds, the cell growth rate was ascertained using
WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)-2H-tetrazolium] colorimetric assay with a kit
(Cell Counting Kit-8 R©; Dojindo Molecular Technologies Inc.,
Kumamoto, Japan) according to the manufacturer’s instructions.
Cell viability was also ascertained after 4 days (Cytotoxicity LDH
Assay Kit-WST; Dojindo Molecular Technologies Inc., Japan).
The sample absorbance was measured using a microplate reader
(EnSpire; PerkinElmer Inc., Waltham, MA, United States). All
experiments were performed in triplicate. Each measurement was
repeated twice. Statistical tests were performed using Microsoft
Office R© Excel program.

RESULTS

NMR Analysis of hDvl1-PDZ With
Prototype N-Substituted
2-Amino-Benzoic Acid Compounds
Before analyzing the interaction between hDvl1-PDZ and the
compounds, we completed assignment of the backbone amide
signals of hDvl1-PDZ because few signal assignments for hDvl1-
PDZ have been published or deposited in the public NMR
database (BioMagResBank). The backbone signal assignment
was done according to the standard method (Ikura et al.,
1990) using software MARS (Jung and Zweckstetter, 2004). The
assignment was further confirmed using several inversely 14N-
labeled samples (Hiroaki et al., 2011). Out of the 98 residues, 79
residues (81%) were assigned, although seven NH signals at the
loop between β1 and β2 strands were missing, probably because
of intermediate dynamic motion in the solution. The assignments
were labeled on the HSQC spectra (Figure 2D).

Subsequently, we performed NMR titration experiments using
17 prototypical N-substituted 2-amino-benzoic acid compounds
(NPL-1010, 1011, and 3001–3015) (Figure 3). In an earlier
study, we found from bioinformatics prediction of the eF-seek
analysis of all PDZ domains in human genome (Kinoshita et al.,
2007; Motono et al., 2011), that flufenamic acid and diclofenac
bound several PDZ domains (Tenno et al., 2013). Moreover, we
identified the structure of the mouse Zonula ocludens-1 (ZO1)-
PDZ1 domain (Umetsu et al., 2011) (PDB: 2RRM) and mouse
ligand of numb X1 (LNX1)-PDZ2 domain (PDB: 3VQG, 3VGF,
manuscript in preparation). These structures were subjected
to VS using GOLD and LIGANDBOX to discover novel PDZ

TABLE 1 | Normalized total CSPs of hDvl1-PDZ induced by 2.0 equations of the
prototypical Dvl1-PDZ binding compounds.

Compound ID (NPL-) 1δave/ppm Compound ID (NPL-) 1δave/ppm

1010 0.022 3008 0.032

1011 0.022 3009 0.044

3001 0.021 3010 0.027

3002 0.007 3011 0.022

3003 0.003 3012 0.021

3004 0.012 3013 0.022

3005 0.023 3014 0.015

3006 0.019 3015 0.017

3007 0.022 CalBioChem-322338 0.018

domain inhibitors. During that study, we identified the first
two prototypical mLNX1-PDZ2 binders (NPL-1010 and 1011),
for which direct binding to mLNX1-PDZ2 was confirmed using
NMR experiments (manuscript in preparation). Surprisingly,
the chemical structure of NPL-1010 closely resembled that
of CalBioChem-322338 (Figure 3). Accordingly, we proceeded
to collect 15 related compounds (NPL-3001–3015) to analyze
affinities against both mLNX1-PDZ2 and mZO1-PDZ1 by the
combined use of VS and solution NMR. Subsequently, our
collected N-substituted 2-amino-benzoic acid compounds (NPL-
1010, 1011, and 3001–3015) were examined to elucidate whether
they bind directly to hDvl1-PDZ, or not. Finally, we found that 12
of 17 compounds tested in this study showed substantial chemical
shift changes of amide protons of hDvl1-PDZ larger than that of
CalBioChem-322338. All results of chemical shift changes were
normalized and were averaged per residue. They are presented in
Table 1 according to descending order of the CSPs. Examples of
the chemical shift perturbations are presented in Figure 4.

Introduction and Calculation of
NMR-Derived Docking Performance
Index
Greatly inspired by the idea of fine-tuning of VS parameters and
setting them with experimental data to improve VS performance
(Huang and Wong, 2016), we modified that original idea to fit the
use of our experimental data of NMR titration (CSP) study. For
this purpose, we designed a strategy to tune VS parameters with
our original NMR-derived docking performance index (NMR-
DPI, Figure 1). First, NMR titration experiments of hDvl1-PDZ
were performed with all 18 compounds as described above.
Second, we docked all the 17 N-substituted 2-amino-benzoic acid
compounds to the hDvl2-PDZ structure (PDB: 3CBY) using the
GOLD software. Note that the core region of PDZ domains of
human Dvl1 and Dvl2 are 92% identical in amino acid sequences
(Figure 2C). At that time, the nine docking scoring methods
were tested with different combinations of scoring functions,
as presented in Table in Figure 5A. In our experience, these
GOLD scoring functions mutually differ to a great degree. For
that reason, it is difficult to determine one of them robustly
for any new VS project. Third, the final fitness score of each
scoring method was normalized to a value between 0 and 1 as the
docking score D(i, j), where i is the index of the scoring methods
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FIGURE 4 | Examples of NMR titration of PDZ domains with compounds (A,C) and their normalized chemical shift changes (B,D). (A,B) NPL-3009. (C,D)
NPL-3003. (A,C) each overlaid spectrum was derived from 0.1 mM hDvl1-PDZ with (red) and without (black) the 0.2 mM of compound. The signals with markedly
large CSPs were boxed and indicated with the residue numbers. (B,D) normalized chemical shift changes 1δ is plotted against residue numbers. Gray residues are
missing or unassigned residues, and white residues indicate Pro. The secondary structure of hDvl1-PDZ is shown at the top of the figures, whereas α2 and β2 are
shown in black.

and j is the name of the compounds. Similarly, the averaged
normalized NMR chemical shift change, N(j), was calculated.
Finally, NMR-DPI was defined as

NMR_DPI(i) = sqrt

 j∑(
D
(
i, j
)
−N

(
j
))2

 (2)

The heat map representation of all docking scores of the
17 compounds with nine scoring functions in GOLD and
the normalized averaged NMR chemical shift change for 18
compounds is shown in Figure 5B. A bar graph of NMR_DPI is
portrayed in Figure 5C. The lowest NMR_DPI, which represents
the best correlation between the docking score and the NMR
CSP experiments, was achieved when the consensus scoring of
GS followed by CS was selected.

Advanced Virtual Screening of
hDvl1-PDZ Domain Inhibitors
Consensus scoring GS-CS in this order was chosen to perform
the advanced VS experiment with GOLD and the specified

library, including approximately 5,135 N-substituted-2-amino-
benzoic acid compounds. We obtained a list containing 1,770
compounds with scores higher than that of CalBioChem-322338
(score = 59.9). After the selected compounds were purchased
(Figure 6), they were assessed using NMR-CSP experiments
to ascertain whether they were able to bind hDvl1-PDZ.
Among them, nine compounds (NPL-4001, 4002, 4004, 4007,
and 4011–4016) induced substantial chemical shift changes
when added to hDvl1-PDZ: 7 out of 13 (69%) compounds
had reasonable affinity against hDvl1-PDZ (Supplementary
Table S1). Some HSQC spectra are presented in Supplementary
Figure S2 with their chemical structures. The hit rate (69%) is
remarkably high, emphasizing the benefit of introducing NMR-
DPI combined with VS.

Assessing Physicochemical Properties
of the Most Potent hDvl1-PDZ Inhibitor:
NPL-4011
Among the 13 newly examined compounds, four (NPL-
4007, 4011, 4012, and 4013) possessed a common molecular
architecture, with two 2-amino-benzoic acid moieties connected
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FIGURE 5 | Full list of GOLD scoring functions used in this study (A), a heat map representation of the corresponding GOLD docking scores of NPL-30XX
compounds (B), and their NMR-DPIs (C). Similarity and difference are represented as a heat map. Each normalized score of NMR chemical shift perturbation (CSP)
and GOLD scoring functions (a–f, same as in (A) are colored with red (score = 1.0) to navy (score = 0.0). The GOLD scoring functions are in the order of similarity.

at the 5-position directly or with a single methylene linker
(Figure 6). NPL-4011 showed a large GOLD VS docking score
as well as CSP. Therefore, we determined its KD further against
hDvl1-PDZ using NMR titration experiments (Figure 7A and
Supplementary Figure S3A). First we selected the residues
surrounding the ligand binding pocket: D315, V318, L321, R322,
and V325. The normalized chemical shift changes of these
residues were subjected to non-linear curve fitting to find KD

(Figure 7B), which was 34.5 ± 6.6 µM. Then we compared
this value to the commercially available control compound
CalBioChem-322338 under the same condition and obtained
the value of 954 ± 403 µM (Supplementary Figures S3C,D).
This KD value of CalBioChem-322338 is larger than its reported
value for mouse Dvl1-PDZ (10.6 ± 1.7 µM) (Grandy et al.,
2009) for reasons that remain unknown. Results show that
NPL-4011 is a stronger inhibitor than CalBioChem-322338
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FIGURE 6 | Chemical structure of newly found Dvl-PDZ inhibitor candidates.

when compared under identical conditions using hDvl1-
PDZ.

Next, we carefully assessed the docking model of NPL-4011
and Dvl-PDZ generated by GOLD (Figure 7C). In the model,
the crescent-shaped molecule NPL-4011 is well suited to the
long shallow cleft of the ligand binding site of Dvl-PDZ. The
residues of hDvl2-PDZ which contact to NPL-4011 are consistent

with the residues that showed substantial CSPs at the NMR
titration experiments (Figure 7D). We examined this binding
model further. The lower half part of the symmetrical NPL-4011
molecule fits to the lower half part of the ligand binding cleft
of Dvl-PDZ, which corresponds to the “canonical” C-terminal
binding pocket common for all other PDZ domains. The upper
half part of NPL-4011 also fits to the cleft between two loops:
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FIGURE 7 | NMR titration experiment of hDvl1-PDZ with NPL-4011. (A) Expanded region of 1H–15N HSQC spectra of hDvl1-PDZ with 0 equation. (black), 0.25
equation. (pink), 0.5 equation. (navy), 0.75 equation. (green), 1.0 equation. (orange), 1.2 equation. (yellow), and 2.0 equation. (red) of NPL-4011 were overlaid. The
assignments of the signal series are labeled. (B) Normalized chemical shift changes of the selected hDvl1-PDZ residues upon titration with NPL-4011. Solid lines
indicate the non-linear fitting curves of each signals based on the single-site binding model. (C) Example of docking models of hDvl2-PDZ with NPL-4011 predicted
by GOLD. The Dvl-PDZ unique cleft is boxed and colored yellow (inset). (D) CSPs induced by NPL-4011 binding are mapped on the surface structure of hDvl2-PDZ.
(E,F) Surface representations of hDvl2-PDZ (E) and mouse ZO-1 PDZ1 (F) clipped by a front plane. The clipping size is 13.5 Å and the clipped position is 6.5 Å.
Many PDZ domains do not possess the groove corresponding to Dvl-PDZ unique cleft which was clearly seen in (E).

β1–β2 loop and α2-β6 loop. This upper cleft is unique to Dvl-
PDZ domain (Figures 7D,E), which might accommodate binding
to “non-canonical” ligands such as the cytosolic regions of Fzd,
the physiological partner of Dvl. Figure 7F is an example of
a close-up view of the representative “canonical” class-III PDZ
domain, the first PDZ domain of mouse ZO-1 (mZO1-PDZ1,

PDB:2RRM). The domain does not possess the cleft above the
canonical ligand binding pocket because the loop between β1–β2
bends upon and contacts to the end of α2-helix.

This structural difference between Dvl-PDZ and mZO1-PDZ1
invites our speculation that, because of steric crash between the
half part of the ligand and the bended β1–β2 loop, NPL-4011
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FIGURE 8 | Cell proliferation inhibition of BT-20 triple negative breast cancer cell with indicated compounds, NPL-40XX and CalBioChem-322338. The cells were
incubated with 100 µM indicated compounds including final 0.1% d6-DMSO. Control cells was incubated with the medium containing 0.1% d6-DMSO. NPL-4011
was examined in the presence of 0.19% d6-DMSO. The results of normalized absorbance of WST-8 assay with standard deviation were indicated. ∗∗∗p < 0.001 vs.
comtrol (0.1 or 0.19% DMSO), ##p < 0.01 vs. CalBioCHem-322338, and #p < 0.05 vs. CalBioCHem-322338, respectively.

(and probably its related molecules, NPL-4007, 4012, and 4013)
might not bind mZO1-PDZ1. Instead, the smaller prototype
Dvl-PDZ inhibitor CalBioChem-322338 can bind mZO1-PDZ1
because it might only occupy the canonical ligand binding pocket
of mZO1-PDZ1 without steric stress. In other words, NPL-
4011 is among the more Dvl-specific PDZ domain inhibitors.
In order to confirm this speculation, we further performed
additional NMR-CSP experiments of mZO1-PDZ1 titrated with
NPL-4011 and CalBioChem-322338 (Supplementary Figure S4).
Assignment of backbone signals were taken from our previous
study (Umetsu et al., 2007). In the presence of two equivalent
of NPL-4011, mZO1-PDZ1 did not show any chemical shift
changes. In contrast, the signals from the residues surrounding
the canonical binding site of mZO1-PDZ1 showed substantial
CSP upon CalBioChem-322338. Thus, the unique molecular
shape of NPL-4011 confined its binding to Dvl-PDZ in more
specific manner.

Assessment of Biological Activities of
NPL-40XX Compounds
We assessed the inhibitory activity of the selected NPL-40XX
compounds toward Wnt signaling pathways in the cultured-cell-
based assay. For this purpose, we used BT-20 cell, a triple negative
breast cancer (TNBC) cell line. Activation of Wnt signaling
pathway is often observed in many cancers. Therefore, Wnt
pathway inhibition is a potential therapeutic strategy (Polakis,
2012). Reportedly, activation of Wnt/β-catenin pathway has been
observed in TNBC (Geyer et al., 2011; King et al., 2012a,b). For
BT-20 cell, overexpression of Fzd 7 (Fzd7) has been reported;
shRNA against Fzd7 suppresses the proliferation of BT-20
efficiently (Yang et al., 2011).

We applied cell-based proliferation inhibition assay to
concentrations of 100 µM of the compounds, including
NPL-4001, 4002, 4004, 4007, 4011–4013, and the control

compounds CalBioChem-322338 (Figure 8 and Supplementary
Figure S5). After 4 days of culture with 100 µM of the
compounds, NPL-4001 and NPL-4004 showed approximately
80% inhibition of BT-20 cell proliferation, although NPL-4002,
4007, 4012, and 4013 showed no remarkable inhibitory activity.
The stronger inhibitor NPL-4011 showed only 60% inhibition,
which is less potent to 4001 and 4004. In this condition,
the positive control CalBioChem-322338 showed better
proliferation inhibitory activity, as 90% inhibition. The results
demonstrated that our compound NPL-4011 must provide
further improvement in terms of cell-based anticancer activity,
although affinity against the target domain was highly optimized.

DISCUSSION

Experimental Aspect of the NMR-Derived
Docking Performance Index (NMR-DPI)
for Dvl-PDZ Domain Inhibitor Screening
A common tradeoff that arises is that between accurate prediction
of binding free energy 1G in VS and the speed of calculation.
Researchers must always confront the dilemmas of “rapidity–
inaccuracy” and “sluggishness–accuracy” to process as many
compounds as possible during a given period, simplified scoring
functions should be chosen rather than the first principle-based
force field in simulations between the target protein and ligands.
In doing so, although such simplified scoring functions might
all be equally inaccurate, eventually some scoring function can
be expected to behave better than another for the specified
library of the specified compounds. This study demonstrated an
experimental strategy to select a better scoring function from the
options presented by the GOLD program suite.

For this study, we used the averaged normalized chemical
shift changes, 1δave, instead of KD for each of 17 training set
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molecules: 89% (15/17) of them bound to hDvl1-PDZ. According
to theory, the maximum value of CSP should be recorded at
the saturation point of titration by compounds. At that time,
the maximum CSP might vary depending on the chemical
structure of ligands. For example, aromatic rings in the ligand
might induce larger CSPs upon binding because of the ring
current effect. Another important shortcoming of CSP is that it
is sensitive to the allosteric conformational changes of the target
protein upon ligand binding. Consequently, generally, it is not
recommended to use 1δave (or other CSP-derived parameters)
as an indication of KD. Irrespective of those shortcomings
of CSP, however, we used 1δave for this study based on the
following two criteria. (1) Only compounds with similar chemical
structure were analyzed and compared using 1δave. (2) Under
the experimental conditions we used, the affinity of most ligands
was weak. Moreover, they did not saturate to bind against hDvl1-
PDZ at 1:2 molecular equivalence. We carefully assessed our
experimental system using these two criteria. Finally, we inferred
that if the criteria are satisfied, then the use of 1δave as an
indication of KD is convenient. Note that it was not feasible to
use thermal shift assay to infer the affinity of the compounds
in our case because many PDZ domains including hDvl1-PDZ
showed no sharp Tm transition curve. In addition, although the
CSP experiment requires stable-isotope labeling, the experiment
is less troublesome than those of the surface plasmon resonance
experiment because it is unnecessary to immobilize the protein to
the chip. Accordingly, information of amide NMR signals enables
us to discern specific binding from non-specific binding.

Comparison of Biological Activities of
NPL-40XX Compounds
Results show that NPL-4011 has stronger affinity against hDvl1-
PDZ in vitro, but it was a less potent cell growth inhibitor against
BT-20 cell than CalBioChem-322338 was. To elucidate this
observation in terms of bioavailability, we compared Lipinski’s
drug-likeness parameters (Lipinski, 2000). The molecular weight
of NPL-4011 (580.593) is greater than that of CalBioChem-
322338 (373.388). The numbers of H-bond donors are equal (2),
although the number of H-bond acceptors of NPL-4011 (8) is
double that of CalBioChem-322338 (4). These two parameters
violate Lipinski’s rule of five. Although the calculated logP-value
(1.53 for NPL-4011 and 2.59 for CalBioChem-322338) is the only
merit of NPL-4011, it did not contribute to overcoming the other
shortcoming. Therefore, we infer that the poor biological activity
of NPL-4011 is attributable to its bioavailability. This assumption
is partially supported by our other observation. As described
above, NPL-4001 and 4004 showed comparable growth inhibition
activity to CalBioChem-322338. They are better than NPL-4011.
Their Lipinski parameters are, respectively, 402.224 and 403.414
(MW), 1.75, and 2.05 (logP), 2 and 2 (H-bond donors), and 4 and
5 (H-bond acceptors). The numbers of donors and acceptors of
H-bond are known to be crucially important to infer biological
activity from the cell-based assay.

By contrast, NPL-4011 is expected to be more selective for
Dvl-PDZ than the other PDZ domains in human cells because
the crescent-shaped molecule fits to the unique cleft of Dvl-PDZ

domains. The PDZ domain is the most abundant modular
domain in human cell cytosol. Therefore, design of highly specific
molecules to one specified PDZ domain might become crucially
important. To satisfy both the specificity and the biological
activity in terms of bioavailability, a good starting point is our
new pharmacophore: bis-benzoic acid moiety. Screening smaller
analogs such as NPL-4007 as the seed is better to improve the
biological activity of this group of compounds. By contrast, a
prodrug strategy starting from NPL-4011 is not recommended
because it has already exceeded the drug-likeness parameters.

CONCLUSION

In conclusion, we demonstrated a series of new class of
compounds with higher affinity against hDvl1-PDZ. We
proposed NMR-DPI as a useful experimental indication to
optimize VS in the early stages of drug discovery.
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Estimation of interaction of drug-like compounds with antitargets is important for
the assessment of possible toxic effects during drug development. Publicly available
online databases provide data on the experimental results of chemical interactions
with antitargets, which can be used for the creation of (Q)SAR models. The structures
and experimental Ki and IC50 values for compounds tested on the inhibition of 30
antitargets from the ChEMBL 20 database were used. Data sets with Ki and IC50

values including more than 100 compounds were created for each antitarget. The
(Q)SAR models were created by GUSAR software using quantitative neighborhoods of
atoms (QNA), multilevel neighborhoods of atoms (MNA) descriptors, and self-consistent
regression. The accuracy of (Q)SAR models was validated by the fivefold cross-
validation procedure. The balanced accuracy was higher for qualitative SAR models
(0.80 and 0.81 for Ki and IC50 values, respectively) than for quantitative QSAR models
(0.73 and 0.76 for Ki and IC50 values, respectively). In most cases, sensitivity was higher
for SAR models than for QSAR models, but specificity was higher for QSAR models.
The mean R2 and RMSE were 0.64 and 0.77 for Ki values and 0.59 and 0.73 for IC50

values, respectively. The number of compounds falling within the applicability domain
was higher for SAR models than for the test sets.

Keywords: QSAR, antitarget, inhibition, adverse drug reactions, Ki, IC50, GUSAR, ChEMBL

INTRODUCTION

Adverse drug reactions (ADRs) are one of the main problems in drug discovery and clinical
practice (Böhm and Cascorbi, 2016). According to some estimates, ADR is one of the leading
causes of hospitalization and death in developed countries (Starfield, 2000; Kochanek et al., 2016),
the second most common cause of drug attrition in later stages of clinical trials and the major
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reason for drug withdrawal from the market (Hornberg et al.,
2014). This situation is largely due to disadvantages of traditional
animal toxicological experiments and clinical trials that cannot
detect all serious ADRs because of inter-species differences
and their idiosyncratic nature. Therefore, additional methods
including in vitro and in silico approaches are currently being
developed. In silico approaches are usually based on machine
learning techniques and network analyses to link several chemical
and biological features of approved and withdrawn drugs to
ADRs, which include molecular descriptors, known or predicted
drug targets, drug-induced gene expression profiles and cell
phenotypic features (Ivanov et al., 2016). These approaches allow
predict dangerous ADRs in the early stages of drug development
and provide insights into potential toxic mechanisms of drug
candidates. It is currently accepted that the most ADRs are the
consequence of unintended interactions of drugs with human
protein targets and are not related to a therapeutic mechanism
of action. For example, blocking HERG potassium channels
in the heart causes life-threatening arrhythmias (Siramshetty
et al., 2016). There are dozens of human proteins that have
known relationships to ADRs, and corresponding information
has accumulated in public databases (Ji et al., 2003; Zhang et al.,
2007) and been described in some publications (Whitebread
et al., 2005; Bowes et al., 2012). These proteins are called
“antitargets” because to avoid dangerous ADRs, they should
not interact with drugs. Many pharmaceutical companies use
in vitro assays to measure interactions of lead compounds with
“antitargets” and select the least promiscuous ones for further
development. To avoid performing hundreds of experiments,
such interactions can also be predicted using ligand-based
structure-activity relationship analysis or docking (Ivanov et al.,
2016; Simões et al., 2018). Due to accumulation of data on
chemical-protein interactions and three-dimensional protein
structures in public databases such as ChEMBL (Gaulton et al.,
2017), PubChem (Wang et al., 2017), and PDB (Berman et al.,
2000), it has become possible to predict interactions with many
hundreds of human proteins, including “antitargets.” There are
plenty of published (Q)SAR models (Poroikov et al., 2007; Filz
et al., 2008; García-Sosa and Maran, 2014; Ivanov et al., 2016)
and free available web-services (Zakharov et al., 2012; Braga
et al., 2015) that may perform such predictions; however, no
study was found with a comparison between the accuracy of
classification (SAR) and quantitative (QSAR) models created
based on the same data, descriptors and mathematical algorithm.
The aim of this work is the creation, validation, and accuracy
estimation of SAR and QSAR models for the prediction of the
inhibition of 30 antitargets using GUSAR software and data on
structures and Ki and IC50 values of tested compounds from
the ChEMBL 20 database. Earlier, we published a study on the
creation of reasonable QSAR models by GUSAR software and
the appropriate web service1 for the prediction of interaction
between drug-like compounds and 18 antitargets (Zakharov et al.,
2012). In this paper, we have significantly expanded the list
of covered “antitargets” and significantly increased the volumes
and diversity of training samples, which allowed us to expand

1http://www.way2drug.com/gusar/antitargets.html

the range of applicability of models and to obtain valuable
results.

MATERIALS AND METHODS

Data Sets
Structures and experimental Ki and IC50 values of compounds
tested on the inhibition of 30 antitargets were extracted from
the ChEMBL 20 database. The data sets with Ki and IC50 values
including more than 100 compounds were created for each
antitarget (Table 1). Only the records with Ki or IC50 values
in nM and symbol “ = ” in the field “Relation” were extracted
from ChEMBL database. During the creation of data sets of
compounds interacting with receptors, we included records
with compounds studied as truly antagonists and records with
compounds studied on biding affinity because of we could
not divided them. In spite of Ki and IC50 values indicate the
affinity of a compound by a given receptor, and they do not
necessarily provide functional information related with agonism
or antagonism of a compound to such target we decided to
include such data because antagonism of receptors may be related
with Ki and IC50 values, whereas agonism to receptors are usually
represented by EC50 values. Ki or IC50 values were transformed
in pIC50 = −log10(IC50(M)) and pKi = −log10(Ki(M)) values.
Table 1 also shows the known relations between the inhibition of
antitargets and ADRs. The number of compounds with Ki values
was approximately 1.5 times higher than that for IC50 values
(46830 and 29678, respectively). The sets included structures of
single electroneutral small (molecular weight in range from 50
to 1250 Da) organic molecules. In general, such representation
of structure corresponds to the best QSAR practice (Fourches
et al., 2016) implemented in the GUSAR software, which was
used in our study (see below). If a compound had several
experimental values for the parameter, then a median value was
used. Such median values were calculated because the reference
compounds usually had several experimental values, since they
were tested in many experiments. Deleting such compounds
reduces an important part of chemical space and significantly
restricts the applicability domain of the global QSAR models.
In several publications related to the creation of global QSAR
models based on heterogeneous data, authors used average
values (Politi et al., 2014; Cortes-Ciriano and Bender, 2015). The
median value was used because it better characterizes the set
of values for strongly skewed distributions. Zip file including
SD files related with the appropriate target (the gene name
of targets is used in a file name), and endpoint is provided
in Supplementary Materials. Each SD file includes structures,
ChEMBL_ID, and experimental values. For classification models
and comparison of prediction results between the SAR and
QSAR models, 1 µM was used as a threshold between active
and inactive compounds. The sets were sorted by the ascending
mode of the appropriate values. Then, successively, a number
from 1 to 5 was assigned for each structure from a set. After
that, the sets were divided into five unique parts according
to the assigned number of structures. These parts were used
for the fivefold cross-validation (fivefold CV) procedure, when
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TABLE 1 | Data related with antitargets and the number of compounds with Ki and IC50 values in data sets.

Target UniProt ID Chembl Target ID Ki IC50 Effects at antagonism or inhibition

Acetylcholinesterase P22303 CHEMBL220 272 2573 ↓ BP; ↓ HR; ↑ GI motility (↓ at high doses); bronchoconstriction; ↑ respiratory
secretions; anaphylaxis; anorexiant; arrhythmogenic; asystole; colic; diarrhea;
emetic; gastrointestinal hemorrhage; headache; hypotension; muscle
weakness; nausea; neurotoxic; nightmare; respiratory failure; sialorrhea;
sweating; ulcer, gastric; urticaria

Adenosine receptor A2a P29274 CHEMBL251 3258 213 Platelet aggregation; ↑ BP; nervousness (tremors, agitation); arousal; insomnia

Alpha-1A adrenergic
receptor

P35348 CHEMBL229 942 100 ↓ smooth muscle tone; orthostatic hypotension and ↑ HR; dizziness; impact on
various aspects of sexual function; flushing; hypotension; impotence; nasal
congestion; postural (orthostatic) hypotension; tachycardia; weakness

Alpha-2A adrenergic
receptor

P08913 CHEMBL1867 557 201 ↑ GI motility; ↑ insulin secretion; hypertension exacerbates heart failure; anxiety;
depression

Beta-1 adrenergic receptor P08588 CHEMBL213 278 512 ↓ BP; ↓ HR; ↓ cardiac output; cardiotoxicity; heart failure

Beta-2 adrenergic receptor P07550 CHEMBL210 352 472 ↓ BP; increased bronchospasm

Androgen receptor P10275 CHEMBL1871 631 1054 ↓ spermatogenesis; impotence; gynecomastia, mastodynia; ↑ in breast
carcinoma

Muscarinic acetylcholine
receptor M1

P11229 CHEMBL216 635 544 ↓ cognitive function; ↓ gastric acid secretion; blurred vision

Muscarinic acetylcholine
receptor M2

P08172 CHEMBL211 799 422 Tachycardia; bronchoconstriction; tremors

Muscarinic acetylcholine
receptor M3

P20309 CHEMBL245 644 606 Constipation; blurred vision; pupil dilation; dry mouth

Cannabinoid receptor 1 P21554 CHEMBL218 1998 904 ↑ weight loss; emesis; depression

Cannabinoid receptor 2 P34972 CHEMBL253 2375 592 ↑ inflammation; ↓ bone mass

D(1A) dopamine receptor P21728 CHEMBL2056 681 106 Dyskinesia; parkinsonian symptoms (tremors); anti-emetic effects; depression;
anxiety; suicidal intent

D(2) dopamine receptor P14416 CHEMBL217 3946 431 Orthostatic hypotension; drowsiness; ↑ GI motility; dyskinesia; extrapyramidal
effect; sedative

Endothelin-1 receptor P25101 CHEMBL252 155 894 Teratogenicity

Histamine H1 receptor P35367 CHEMBL231 753 264 Sedation; ↓ allergic responses; ↑ body weight; dizziness; extrapyramidal effect;
hypnotic; hypotension; lassitude; tinnitus; xerostomia

5-hydroxytryptamine
receptor 1A

P08908 CHEMBL214 2505 432 Anxiogenic

5-hydroxytryptamine
receptor 1B

P28222 CHEMBL1898 662 266 ↑ aggression

5-hydroxytryptamine
receptor 2A

P28223 CHEMBL224 1768 659 hypnotic; sedative

5-hydroxytryptamine
receptor 2B

P41595 CHEMBL1833 705 248 Possible cardiac effects, especially during embryonic development

Potassium voltage-gated
channel subfamily H
member 2

Q12809 CHEMBL240 935 4078 Prolongation of QT interval of ECG

Tyrosine-protein kinase Lck P06239 CHEMBL258 364 1322 T cell inhibition; SCID-like immunodeficiency

Amine oxidase
[flavin-containing] A

P21397 CHEMBL1951 342 1031 ↑ BP when combined with amines such as tyramine; drug–drug interaction
potential; dizziness; sleep disturbances; nausea

Neuropeptide Y receptor
type 1

P25929 CHEMBL4777 321 304 Anxiogenic

Glucocorticoid receptor P04150 CHEMBL2034 632 1086 Hypoglycemia

Delta-type opioid receptor P41143 CHEMBL236 1603 534 ↑ BP; ↑ cardiac contractility

Mu-type opioid receptor P35372 CHEMBL233 1816 663 ↑ GI motility; dyspepsia; flatulence

Sodium-dependent
noradrenaline transporter

P23975 CHEMBL222 1346 1371 ↑ HR; ↑ BP; ↑ locomotor activity; constipation; abuse potential

Sodium-dependent
dopamine transporter

Q01959 SLC6A3 1195 1183 Addictive psychostimulation; dopaminergic hyperactivity; depression;
parkinsonism; attention deficit–hyperactivity disorder; psychotic disorders;
seizures; dystonia; dyskinesia; acne

Sodium-dependent
serotonin transporter

P31645 CHEMBL228 1868 1938 ↑ GI motility; ↓ upper GI transit; ↓ plasma renin; ↑ other serotonin-mediated
effects; insomnia; anxiety; nausea; sexual dysfunction

BP, blood pressure; ECG, electrocardiogram; GI, gastrointestinal; HR, heart rate; SCID, severe-combined immunodeficiency.
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each unique part was used as an external test set, and the
remaining parts were used as a training set. As a result, different
five training and five external test sets for Ki data and five
training and five external test sets for IC50 data, including both
quantitative and qualitative descriptions, were created for each
antitarget.

GUSAR Software
The (Q)SAR models were created by GUSAR software2,
which used quantitative neighbourhoods of atoms (QNA),
multilevel neighbourhoods of atom (MNA), and whole-molecule
descriptors with self-consistent regression (Lagunin et al., 2007;
Filimonov et al., 2009; Lagunin et al., 2011). QNA descriptors are
calculated by two functions, P and Q. The values for P and Q for
each atom i are calculated as:

Pi = Bi
∑

k

(Exp(−
1
2

C))ikBk,

Qi = Bi
∑

k

(Exp(−
1
2

C))ikBkAk,

where k is all other atoms in the molecule and

Ak =
1
2 (IPk + EAk), Bk = (IPk − EAk)

−
1
2

Here, IP is the ionization potential, EA is the electron affinity
for each atom, and C is the connectivity matrix for the
molecule. QNA descriptors describe each particular atom of a
molecule; at the same time, each P or Q value depends on
the total molecule composition and structure. Two-dimensional
Chebyshev polynomials are used for approximating the functions
P and Q over all atoms of the molecule. A detailed description of
QNA descriptors is represented in the publication of Filimonov
et al. (2009).

MNA descriptors (Filimonov et al., 1999) are based on the
molecular structure representation, which includes hydrogens
according to the valences and partial charges of other atoms
and does not specify the types of bonds. MNA descriptors are
generated as a recursively defined sequence:

• zero-level MNA descriptor for each atom is the mark A of
the atom itself;
• any next-level MNA descriptor for the atom is the sub-

structure notation A (D1D2...Di...),

where Di is the previous-level MNA descriptor for i–th
immediate neighbor of the atom A.

The mark of the atom may include not only the atomic
type but also any additional information about the atom. In
particular, if the atom is not included in the ring, it is marked
by “−”. The neighbor descriptors D1D2...Di... are arranged
in a unique manner, for example, in lexicographic order.
The iterative process of MNA descriptors generation can be
continued covering first, second, and so on, neighborhoods of
each atom.

2http://www.way2drug.com/gusar/index.html

For regression analysis, this molecule structure representation
was transformed using the original PASS (Prediction of Activity
Spectra for Substances) algorithm (Lagunin et al., 2011). This
algorithm estimates the biological activity profiles for chemical
compounds using MNA descriptors as input parameters.
Therefore, we used the results of PASS prediction as independent
variables for regression analysis. The results of PASS prediction
are given as a list of biological activities, for which the difference
between probabilities of being active (Pa) and inactive (Pi) was
calculated. The activities from the list of predicted biological
activities were randomly selected as input independent variables
for regression analysis. This allows obtaining different QSAR
models. GUSAR incorporates a PASS version that predicts
4130 types of biological activity. This version of PASS has
a mean prediction accuracy of approximately 95% calculated
by leave-one-out cross-validation procedure (Filimonov et al.,
2014). The list of predictable biological activities currently
includes 501 pharmacotherapeutic effects (e.g., antihypertensive,
hepatoprotectant, and nootropic), 3295 mechanisms of action
(e.g., 5-hydroxytryptamine antagonist, acetylcholine M1 receptor
agonist, and cyclooxygenase inhibitor), 57 adverse and toxic
effects (e.g., carcinogenic, mutagenic, and hematotoxic), 199
metabolic terms (e.g., CYP1A inducer, CYP1A1 inhibitor, and
CYP3A4 substrate), 49 transporter proteins (e.g., P-glycoprotein
3 inhibitor, nucleoside transporters inhibitors, and proline
transporter inhibitor), and 29 activities related to gene expression
(e.g., TH expression enhancer, TNF expression inhibitor, and
VEGF expression inhibitor). Therefore, the maximum number of
independent variables for the creation of MNA models is 4130.
The detailed description of realization of PASS in GUSAR is
represented in the publication of Lagunin et al. (2011).

QNA and MNA descriptors do not provide information on
the shape and volume of a molecule, although this information
may be important for determination of structure-activity
relationships. Therefore, these parameters, which are called
whole-molecule descriptors, are also used in GUSAR. The whole-
molecule descriptors used in GUSAR are: topological length,
topological volume, lipophilicity, number of positive charges,
number of negative charges, number of hydrogen bond acceptors,
number of aromatic atoms, molecular weight, and number of
halogen atoms. GUSAR uses estimation of the applicability
domain based on different types of structural similarity using
calculation of QNA and MNA descriptors (Zakharov et al., 2016).

GUSAR may provide an equation of any single (Q)SAR
model (Lagunin et al., 2011). But because we used consensus
(Q)SAR models from dozens or even hundreds of single (Q)SAR
models, it is not possible to provide a general equation describing
all selected variables. By this reason, the created consensus
(Q)SAR models could not provide information about positive
and negatively influencing descriptors. Instead that GUSAR
shows positive and negative impact of each atom of the structure
in the predicted value (Khayrullina et al., 2015). Analysis of the
influence of atoms on the predicted value and the search for
general relationships between the structures of active compounds
interacting with antitargets is a separate task (because of each
structure in the set should be analyzed), and it is beyond the scope
of this publication.
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FIGURE 1 | Plots of predicted and experimental values for the best and worst QSAR models by RMSE values calculated during fivefold cross-validation procedure.
(A) QSAR model for prediction of pIC50 values of compounds interacting with glucocorticoid receptor (the best QSAR model for IC50 values). (B) QSAR model for
prediction of pIC50 values of compounds interacting with D(2) dopamine receptor (the worst QSAR model for IC50 values). (C) QSAR model for prediction of pKi

values of compounds interacting with HERG channel (Potassium voltage-gated channel subfamily H member 2) (the best QSAR model for Ki values). (D) QSAR
model for prediction of pKi values of compounds interacting with Beta-2 adrenergic receptor (the worst QSAR model for Ki values).

Evaluation of Prediction Accuracy
The following statistical parameters were calculated for
estimating the accuracy of prediction:

(1) Sensitivity (Sens):
Sensitivity = TP

FN+TP , where TP is true positive, and FN is
false negative numbers.

(2) Specificity (Spec):
Specificity = TN

TN+FP , where TN is true negative, and FP is
false positive numbers.

(3) Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

(4) Balanced accuracy (BA): balance between sensitivity and
specificity:

BA =
Sensitivity+ Specificity

2

(5) Root mean square error (RMSE):

RMSE =

√∑
(yexp − ypred)2

n

(6) R-squared, coefficient of determination:

R2
= 1−

∑
(yexp − ypred)

2∑
(yexp − ymean)2 ,

where yexp – experimental value, ypred – predicted value, and
ymean – average value of experimental values in a training set.

Y-Randomization Procedure
Y-Randomization procedure is included in GUSAR software
and allows to be ensuring that the developed continues
QSAR models are robust and do not have the over
fitting (Wold and Eriksson, 1995). In this procedure, the
dependent-variable vector, Y vector (Ki or IC50 values in
our case), is randomly shuffled and a new QSAR model is
developed using the original independent variable matrix.

Frontiers in Pharmacology | www.frontiersin.org October 2018 | Volume 9 | Article 1136120

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01136 October 8, 2018 Time: 15:43 # 6

Lagunin et al. (Q)SAR Modeling of Antitarget Inhibitors

FIGURE 2 | Comparison of parameters of accuracy of prediction for SAR and QSAR models calculated by the fivefold cross-validation procedure for all antitargets.
(A) Comparison of Accuracy (Acc.) and Balanced Accuracy (Bal. Acc.) between SAR and QSAR models for Ki data. (B) Comparison of Sensitivity (Sens.) and
Specificity (Spec.) between SAR and QSAR models for Ki data. (C) Comparison of Accuracy (Acc.) and Balanced Accuracy (Bal. Acc.) between SAR and QSAR
models for IC50 data. (D) Comparison of Sensitivity (Sens.) and Specificity (Spec.) between SAR and QSAR models for IC50 data.

It is expected that the resulting models should generally
have low Q2 values. This procedure was repeated five
times for each model, and then the average Q2 value was
calculated.

RESULTS AND DISCUSSION

Three hundred twenty SAR and 320 QSAR models with
modified calculation of descriptors and regression coefficients
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FIGURE 3 | Correlation of accuracy of prediction between SAR and QSAR models for all antitargets. (A) Correlation of Accuracy between SAR and QSAR models
for Ki data. (B) Correlation of Balanced Accuracy (BA) between SAR and QSAR models for Ki data. (C) Correlation of Accuracy between SAR and QSAR models for
IC50 data. (D) Correlation of Balanced Accuracy (BA) between SAR and QSAR models for IC50 data.

were created by GUSAR software for each from five training
sets (five training sets with qualitative and quantitative data
for Ki or IC50 values for each target) with internal validation
(five times 20% from the training set was randomly used
as an internal test set; this procedure is included into
GUSAR). As a result, one consensus SAR model and one
consensus QSAR model were created for each training set
based on the appropriate single (Q)SAR model with R2

train
and Q2

train and average R2 calculated for internal validation
sets more than 0.5. If R2 of internal validation for (Q)SAR
model was less than 0.5, then the model was excluded
from the final consensus model [excluding QSAR models
for D(1A) and D(2) dopamine receptors, histamine H1 and
5-hydroxytryptamine 2B receptors created on the basis of
IC50 data]. The final predicted values for tested compounds
were calculated using a weighted average of the predictions
from the obtained (Q)SAR models. Each model is based
on a different set of descriptors, and its predictions for
each compound were weighted according to the similarity

value that was calculated during the applicability domain
assessment.

After SAR and QSAR consensus models were created based
on a training set, they were used for prediction of inhibition of
the antitarget by compounds from the appropriate external test
set. It was repeated for five training sets with Ki values and five
training sets with IC50 values for each antitarget (fivefold CV
procedure). The average characteristics of the created (Q)SAR
models including average results of Y-randomization procedure
(Q2

Y−rand) are represented in Supplementary Tables S1, S2.
It was appeared that all Q2

Y−rand values for all QSAR models
were less 0.15. The average Q2

Y−rand values were from 0.026
to 0.06 and from 0.026 to 0.078 for QSAR models created
based on Ki and IC50 data, respectively. It is significant less
in comparison with Q2 values calculated based on original
data of the training sets and displays robustness of the given
models.

The plots between predicted and experimental values
for the best and worst QSAR models by RMSE values
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FIGURE 4 | Comparison of quality of (Q)SAR models for Ki and IC50 data for all antitargets. (A) Comparison of the percent of compounds in applicability domain
(AD) for SAR and QSAR models; (B) Comparison of R2 and RMSE values of QSAR models.

calculated by fivefold cross-validation are displayed in
Figure 1. The relations between predicted and experimental
values for others QSAR models are within these extreme
cases.

The statistical parameters describing accuracy of prediction
and mentioned in the section “Materials and Methods”
were calculated based on the prediction results given
during the fivefold CV procedure for both SAR and QSAR
models. To compare the accuracy of prediction of QSAR
and SAR models, the quantitative results of prediction
were transformed into qualitative ones according to the
threshold mentioned in the section “Materials and Methods.”
Statistical parameters of accuracy of prediction for SAR and
QSAR models created based on Ki and IC50 data for all
antitargets are represented in Supplementary Tables S3, S4,
respectively. The graphical representation of statistical
parameters of accuracy and their comparison are represented in
Figures 2–4.

Figures 2A,B show a comparison of the accuracy between
SAR and QSAR models created based on Ki values. Figures 2C,D
show the results given based on IC50 values. The accuracy of
the QSAR models was higher in most cases than the accuracy
of SAR models for both Ki and IC50 values (Figures 2A,
1C). The mean accuracy of prediction for Ki values was
0.84 and 0.87 for SAR and QSAR models, respectively. This
is statistically significant difference (p < 0.05). The mean
accuracy of prediction for IC50 values was 0.82 and 0.83
for SAR and QSAR models, respectively. This is statistically
insignificant difference (p = 0.285). The reverse result was
observed for balanced accuracy (SAR models: Ki data – 0.80,
IC50 data – 0.81; QSAR models: Ki data – 0.73, IC50 data –
0.76). The difference in balanced accuracy between SAR and
QSAR models is statistically significant in both cases, for Ki
and for IC50 values (p < 0.05). Specificity and sensitivity were
similar for SAR and QSAR models (Figures 2B, 1D). The
mean value of specificity was higher for QSAR models for
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both Ki and IC50 data (SAR models: Ki data – 0.76, IC50
data – 0.79; QSAR models: Ki data – 0.95, IC50 data – 0.90).
The mean value of sensitivity was higher for SAR models
for both Ki and IC50 data (SAR models: Ki data – 0.84,
IC50 data – 0.82; QSAR models: Ki data – 0.50, IC50 data –
0.61).

The analysis of values of accuracy and balanced accuracy
of SAR and QSAR models (Supplementary Tables S1, S2)
shows that there is a correlation between them. Figures 3A,B
show a correlation between accuracy and balanced accuracy
for both SAR and QSAR models created based on Ki data.
Figures 3C,D show a correlation between accuracy and balanced
accuracy for SAR and QSAR models created based on IC50
data. One may see that in the both cases, the correlation
between accuracy of SAR and QSAR models was higher than
for balanced accuracy (Figure 3). If the values correlate, it
means that there is no preference between SAR and QSAR
models for the appropriate criterion of accuracy. But similar
accuracy is achieved by different ways in the most cases
(high sensitivity or high specificity, see Figures 2B,D). One
can decide what is more important in the study: find as
many as possible active compounds (the models with highest
sensitivity should be selected) or reduce the number of false
positive prediction (the models with highest specificity should
be selected). The absence of correlation between the studied
parameters shows that one of methods has preference. The
values above the line show that QSAR models better than
SAR ones. The values below the line show that SAR models
better than QSAR ones. All cases excluding one which is
displayed in Figure 3C (Correlation of Accuracy between SAR
and QSAR models for IC50 data) had statistically significant
difference between the values of SAR and QSAR models
(p < 0.05). The values of balanced accuracy is the most
important criterion for estimation of accuracy of prediction
because of many used datasets were unbalanced (the number
of active and inactive compounds is significant different).
Therefore, the given results showed that SAR models are the
more preferable for the use of prediction of drug adverse
reactions.

The other parameters of SAR and QSAR models are
represented in Figure 4. Figure 4A shows the percent
of compounds in applicability domain (AD) of SAR and
QSAR models. The number of compounds in AD was 100%
approximately for all SAR models. At the same time, the
number of compounds in AD approximately for all QSAR
models was less 100%. The mean value of percent of compound
in AD for SAR and QSAR models was 99.9% and 98.6%,
respectively. The highest present of compounds in applicability
domain displays advantage and better predictive power for SAR
models in comparison with QSAR models. Figure 4B shows
the comparison of RMSE and R2 values for QSAR models
created on Ki and IC50 data. Clear features of distribution
of these characteristics cannot be seen, but in general, the
mean value of R2 for QSAR models based on Ki data was
higher than one for IC50 data (0.64 and 0.57, respectively).
The mean RMSE value for QSAR models based on IC50 data
was less than one for Ki data (0.73 and 0.77, respectively).

However, if we delete the RMSE value for the QSAR model
created based on Ki data for the beta-2 adrenergic receptor,
the mean RMSE value also became 0.73 for the other QSAR
models created based on Ki data. It means that both Ki
and IC50 values can be reliably used to predict interactions
with antitargets. We may compare (Q)SAR models based on
Ki and IC50 values only in general view because of they
were created on different number of compounds and different
structures. Nevertheless, we may reveal some features of the
created models. The plots with comparison of Specificity and
Sensitivity of (Q)SAR models created based on Ki and IC50
data are shown on Supplementary Figure S1. These plots
display that SAR models based on IC50 values have Specificity
better than SAR models based on Ki data for approximately
half of antitargets. The biggest difference is shown for Mu-
type opioid receptor (0.34 for Ki data and 0.97 for IC50 data).
SAR models based on Ki data for others antitargets have
better values of Specificity. The same picture we can see for
Sensitivity of SAR models. Analysis of QSAR models revealed
that majority of QSAR models based on Ki data had better
Specificity value, whereas majority of QSAR models based on
IC50 data had better Sensitivity value. High value of Sensitivity
is more important for revealing possible adverse drug reaction
than high value of Sensitivity. Analysis of Accuracy and Balanced
Accuracy of (Q)SAR based on IC50 and Ki data (Supplementary
Figure S2) show that the most (Q)SAR models based on
Ki values have better values, whereas the values of Balanced
Accuracy are higher at the most of QSAR models based on IC50
values.

CONCLUSION

The creation of SAR and QSAR models based on the same
data of compounds tested as inhibitors of 30 antitargets revealed
some features related to the use of qualitative and quantitative
data. They are valid to (Q)SAR models related to both Ki
and IC50 values. SAR models tended to have more balanced
prediction results when specificity and sensitivity have the
closest values in comparison with QSAR models (Figure 2).
High values of specificity and low values of sensitivity in
QSAR models may be explained by the fact that at the given
R2 values (0.64 and 0.59), prediction results tended to lie
closer to the average values of Ki or IC50 in the training
set. If a threshold of 1 µM divided the training set into
different proportions of active and inactive compounds, then
a difference between specificity and sensitivity may occur.
At the same time, despite the difference of specificity and
sensitivity between SAR and QSAR models, the values of
accuracy and balanced accuracy for SAR correlated with those
of QSAR models (Figure 3). This indicated that the prediction
results of SAR and QSAR models would complement each
other and that the use of both approaches would improve
the quality of assessment of interaction between ligands and
antitargets.

Another conclusion is that SAR models had advantages in the
applicability domain. It may be related to the fact that the use of
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qualitative data gives SAR models less sensitivity to experimental
errors in Ki and IC50 values.

In this study, we also displayed that the modern experimental
data and methods of (Q)SAR modeling allow for the creation of
rather reasonable (Q)SAR models for prediction of interaction
between compounds and dozens of antitargets. The used
approaches may be applied to the creation of in silico panels
for estimation of “ligand-antitarget” interactions during the drug
design process.
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Virtual screening (VS) has emerged in drug discovery as a powerful computational
approach to screen large libraries of small molecules for new hits with desired properties
that can then be tested experimentally. Similar to other computational approaches, VS
intention is not to replace in vitro or in vivo assays, but to speed up the discovery
process, to reduce the number of candidates to be tested experimentally, and to
rationalize their choice. Moreover, VS has become very popular in pharmaceutical
companies and academic organizations due to its time-, cost-, resources-, and labor-
saving. Among the VS approaches, quantitative structure–activity relationship (QSAR)
analysis is the most powerful method due to its high and fast throughput and
good hit rate. As the first preliminary step of a QSAR model development, relevant
chemogenomics data are collected from databases and the literature. Then, chemical
descriptors are calculated on different levels of representation of molecular structure,
ranging from 1D to nD, and then correlated with the biological property using machine
learning techniques. Once developed and validated, QSAR models are applied to
predict the biological property of novel compounds. Although the experimental testing
of computational hits is not an inherent part of QSAR methodology, it is highly desired
and should be performed as an ultimate validation of developed models. In this mini-
review, we summarize and critically analyze the recent trends of QSAR-based VS
in drug discovery and demonstrate successful applications in identifying perspective
compounds with desired properties. Moreover, we provide some recommendations
about the best practices for QSAR-based VS along with the future perspectives of this
approach.

Keywords: cheminformatics, machine learning, molecular descriptors, computer-assisted drug design, virtual
screening

INTRODUCTION

Quantitative structure–activity relationship (QSAR) analysis is a ligand-based drug design method
developed more than 50 years ago by Hansch and Fujita (1964). Since then and until now, QSAR
remains an efficient method for building mathematical models, which attempts to find a statistically
significant correlation between the chemical structure and continuous (pIC50, pEC50, Ki, etc.) or
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categorical/binary (active, inactive, toxic, nontoxic, etc.)
biological/toxicological property using regression and
classification techniques, respectively (Cherkasov et al.,
2014). In the last decades, QSAR has undergone several
transformations, ranging from the dimensionality of the
molecular descriptors (from 1D to nD) and different methods
for finding a correlation between the chemical structures and
the biological property. Initially, QSAR modeling was limited
to small series of congeneric compounds and simple regression
methods. Nowadays, QSAR modeling has grown, diversified, and
evolved to the modeling and virtual screening (VS) of very large
data sets comprising thousands of diverse chemical structures
and using a wide variety of machine learning techniques
(Cherkasov et al., 2014; Mitchell, 2014; Ekins et al., 2015; Goh
et al., 2017).

This review is devoted to (i) critical analysis of advantages
and disadvantages of QSAR-based VS in drug discovery; (ii)
demonstration of several successful QSAR-based discoveries of
compounds with desired properties; (iii) description of best
practices for the QSAR-based VS; and (iv) discussion of future
perspectives of this approach.

BEST PRACTICES IN QSAR MODELING
AND VALIDATION

High-throughput screening (HTS) technologies resulted in the
explosion of amount of data suitable for QSAR modeling. As
a result, data quality problem became one of the fundamental
questions in cheminformatics. As obvious as it seems, various
errors in both chemical structure and experimental results are
considered as major obstacle to building predictive models
(Young et al., 2008; Southan et al., 2009; Williams and Ekins,
2011).

Considering these limitations, Fourches et al. (2010; 2015;
2016) developed the guidelines for chemical and biological
data curation as a first and mandatory step of the predictive
QSAR modeling. Organized into a solid functional process,
these guidelines allow the identification, correction, or, if
needed, removal of structural and biological errors in large
data sets. Data curation procedures include the removal
of organometallics, counterions, mixtures, and inorganics, as
well as the normalization of specific chemotypes, structural
cleaning (e.g., detection of valence violations), standardization of
tautomeric forms, and ring aromatization. Additional curation
elements include averaging, aggregating, or removal of duplicates
to produce a single bioactivity result. Detailed discussion of
aforementioned data curation procedures can be found elsewhere
(Fourches et al., 2010, 2015, 2016).

The Organization for Economic Cooperation and
Development (OECD) developed a set of guidelines that the
researchers should follow to achieve the regulatory acceptance
of QSAR models. According to these principles, QSAR models
should be associated with (i) defined end point, (ii) unambiguous
algorithm, (iii) defined domain of applicability, (iv) appropriate
measures of goodness-of-fit, robustness, and predictivity, and
(v) if possible, mechanistic interpretation (OECD, 2004). In our

opinion, the additional rule requesting thorough data curation as
a mandatory preliminary step to model development should be
added there.

CONTINUING IMPORTANCE OF QSAR
AS VIRTUAL SCREENING TOOL

The current pipeline to discover hit compounds in early stages
of drug discovery is a data-driven process, which relies on
bioactivity data obtained from HTS campaigns (Nantasenamat
and Prachayasittikul, 2015). Since the cost of obtaining new
hit compounds in HTS platforms is rather high, QSAR
modeling has been playing a pivotal role in prioritizing
compounds for synthesis and/or biological evaluation. The QSAR
models can be used for both hits identification and hit-to-
lead optimization. In the latter, a favorable balance between
potency, selectivity, and pharmacokinetic and toxicological
parameters, which is required to develop a new, safe, and
effective drug, could be achieved through several optimization
cycles. As no compound need to be synthesized or tested
before computational evaluation, QSAR represents a labor-, time-
, and cost-effective method to obtain compounds with desired
biological properties. Consequently, QSAR is widely practiced in
industries, universities, and research centers around the world
(Cherkasov et al., 2014).

The general scheme of QSAR-based VS approach is
shown in Figure 1. Initially, the data sets collected from
external sources are curated and integrated to remove or
correct inconsistent data. Using these data, QSAR models
are developed and validated following OECD guidelines
and best practices of modeling. Then, QSAR models are
used to identify chemical compounds predicted to be active
against selected endpoints from large chemical libraries
(Cherkasov et al., 2014). In principle, VS is often compared
to a funnel, where a large chemical library (i.e., 105 to
107 chemical structures) is reduced by QSAR models to a
smaller number of compounds, which then will be tested
experimentally (i.e., 101 to 103 chemical structures) (Kar and
Roy, 2013; Tanrikulu et al., 2013). However, it is important
to mention that modern VS workflows incorporate additional
filtering steps, including: (i) sets of empirical rules [e.g.,
Lipinski’s (Lipinski et al., 1997) rules], (ii) chemical similarity
cutoffs, (iii) other QSAR-based filters (e.g., toxicological and
pharmacokinetic endpoints), and (iv) chemical feasibility
and/or purchasability (Cherkasov et al., 2014). Although the
experimental validation of computational hits does not represent
part of the QSAR methodology, this should be performed
as the final important step. After experimental validation, a
multi-parameter optimization (MPO) with QSAR predictions
of potency, selectivity, and pharmacokinetic parameters
can be conducted. This information will be crucial during
hit-to lead and lead optimization design of the compound
series, to find the properties balance (potency, selectivity, and
PK) related with the effect of different decoration patterns
to establish a new series of target compounds for in vivo
evaluation.
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FIGURE 1 | QSAR-based virtual screening workflow.

QSAR-BASED VIRTUAL SCREENING vs.
HIGH-THROUGHPUT SCREENING

High-throughput screening can rapidly identify large subsets of
molecules with desired activity from large screening collections
of compounds (105–106 compounds) using automated plate-
based experimental assays (Mueller et al., 2012). However, the
hit rate of HTS ranges between 0.01% and 0.1% and this
highlights the frequently encountered limitation that most of the
screened compounds are routinely reported as inactive toward
the desired bioactivity (Thorne et al., 2010). Consequently, the
drug discovery cost increases according to the number of tested
compounds (Butkiewicz et al., 2013). On the other hand, typical
hit rates from a validated VS method, including QSAR-based,
typically range between 1% and 40%. Thus, VS campaigns are
found to have a higher rate of biologically active compounds and
at a lower cost than HTS.

In this perspective, we show that QSAR-based VS could be
used to enrich hit rates of HTS campaigns. For example, Mueller
et al. (2010) employed both HTS and QSAR models to search
novel positive allosteric modulators for mGlu5, a G-protein
coupled receptor involved in disorders like schizophrenia and

Parkinson’s disease. First, the HTS of approximately 144,000
compounds resulted in a total of 1,356 hits, with a hit rate
of 0.94%. Then, this dataset was used to build continuous
QSAR models (combining physicochemical descriptors and
neural networks), which were subsequently applied to screen
a database of approximately 450,000 compounds. Finally, 824
compounds were acquired for biological testing and 232 were
confirmed as active (hit rate of 28.2%) (Mueller et al., 2010). In
another study, Rodriguez et al. (2010) screened approximately
160,000 compounds to identify 624 antagonists of mGlu5.
Further, these data were used to develop QSAR models and,
then, applied to screen near 700,000 compounds from ChemDiv
database. Among them, 88 of acquired compounds were active,
corresponding to a hit rate of 3.6% while the HTS had a hit rate
of 0.2% (Mueller et al., 2012).

PRACTICAL APPLICATIONS OF
QSAR-BASED VIRTUAL SCREENING

Despite its obvious advantages, QSAR modeling remains
underestimated as a VS tool. Unfortunately, QSAR is still seen
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as a complementary analysis to studies of synthesis and biological
evaluation, often introduced in the study without any justification
or additional perspective. Despite the small number of VS
applications available in the literature, most of them led to
the discovery of promising hits and lead candidates. Below, we
discuss some successful applications of QSAR-based VS for the
discovery of new hits and hit-to-lead optimization.

Malaria
Malaria is an infectious disease caused by five different species
of Plasmodium parasites and transmitted to humans through
the bite of infected female mosquitoes of the genus Anopheles.
The most lethal species is P. falciparum, which can lead to
severe illness and death (Phillips et al., 2017). Malaria is
a widespread disease; 91 countries and areas have ongoing
transmission. According to World Health Organization (WHO),
about 216 million cases and 445,000 deaths from malaria were
reported in 2016 (WHO, 2018c). Furthermore, the resistance
to antimalarial drugs is a common and growing issue and
constitutes a substantial threat for populations in endemic
regions (Gorobets et al., 2017; Menard and Dondorp, 2017). In
a study reported by Zhang et al. (2013), a data set of 3,133
compounds reported as active or inactive against P. falciparum
chloroquine susceptible strain (3D7) was used to develop QSAR
models. The models were built using Dragon descriptors (0D,
1D, and 2D), ISIDA-2D fragments descriptors and support
vector machines (SVM) method. During QSAR modeling and
validation, the data set was randomly divided into modeling
and external evaluation set. Additionally, the modeling set was
divided multiple times in training and test sets using the Sphere
Exclusion algorithm. Then, by using a consensus approach,
the QSAR models were applied for VS of the ChemBridge
database. After VS, 176 potential antimalarial compounds were
identified and submitted to experimental validation along with 42
putative inactive compounds, used as negative controls. Twenty-
five compounds presented antimalarial activity in P. falciparum
growth inhibition assays and low cytotoxicity in mammalian
cells. All 42 compounds predicted as inactives by the models were
confirmed experimentally (Zhang et al., 2013). The confirmed
experimental hits presented new chemical scaffolds against
P. falciparum and could be promising starting points for the
development of new optimized antimalarial agents.

Schistosomiasis
Schistosomiasis is a disease caused by flatworms of the genus
Schistosoma that affects 206 million of people worldwide (WHO,
2018d). The current reliance on only one drug, praziquantel,
for treatment and control of this disease calls for the urgent
discovery of novel anti-schistosomal drugs (Colley et al., 2014).
Aiming at discovering new drugs, our group developed binary
QSAR models for Schistosoma mansoni thioredoxin glutathione
reductase (SmTGR), a validated target for schistosomiasis (Kuntz
et al., 2007), to find new structurally dissimilar compounds with
antischistosomal activity (Neves et al., 2016). To achieve this goal,
we designed a study with the following steps: (i) curation of the
largest possible data set of SmTGR inhibitors, (ii) development
of rigorously validated and mechanistically interpretable models,

and (iii) application of generated models for VS of ChemBridge
library. Using the QSAR models, we prioritized 29 compounds
for further experimental evaluation. As a result, we found
that the QSAR models were efficient for discovery of six
novel hit compounds active against schistosomula and three
hits active against adult worms (hit rate of 20.6%). Among
them, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine
and 2-(benzylsulfonyl)-1,3-benzothiazole, two compounds
representing new chemical scaffolds have activity against
schistosomula and adult worms at low micromolar
concentrations and therefore represent promising
antischistosomal hits for further hit-to-lead optimization
(Neves et al., 2016).

In another study, we developed continuous QSAR models
for a data set of oxadiazoles inhibitors of smTGR (Melo-
Filho et al., 2016). Using a combi-QSAR approach, we built
a consensus model combining the predictions of individual
2D- and 3D-QSAR models. Then, the model was used for VS
of ChemBridge database and the 10 top ranked compounds
were further evaluated in vitro against schistosomula and adult
worms. Additionally, we applied five highly predictive in-house
QSAR models for prediction of important pharmacokinetics
and toxicity properties of the new hits. The experimental
results showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-
pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-
3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds
containing new chemical scaffolds (hit rate of 20.6%), were highly
active in both life stages of the parasite at low micromolar
concentrations (Melo-Filho et al., 2016).

Tuberculosis
Mycobacterium tuberculosis, the causative agent of tuberculosis
(TB), kills about 1.6 million people every year (WHO, 2018e).
The current treatment of this disease takes approximately
9 months, which normally leads to noncompliance and, hence,
the emergence of multidrug-resistant bacteria (AlMatar et al.,
2017). Aiming the design of new anti-TB agents, our group
used QSAR models to design new series of chalcone (1,3-
diaryl-2-propen-1-ones) derivatives. Initially, we retrieved from
the literature all chalcone compounds with in vitro inhibition
data against M. tuberculosis H37Rv strain. After rigorous data
curation, these chalcones were subject to structure–activity
relationships (SAR) analysis. Based on SAR rules, bioisosteric
replacements were employed to design new chalcone derivatives
with optimized anti-TB activity. In parallel, binary QSAR models
were generated using several machine learning methods and
molecular fingerprints. The fivefold external cross-validation
procedure confirmed the high predictive power of the developed
models. Using these models, we prioritized series of chalcone
derivatives for synthesis and biological evaluation (Gomes et al.,
2017). As a result, five 5-nitro-substituted heteroaryl chalcones
were found to exhibit MICs at nanomolar concentrations
against replicating mycobacteria, as well as low micromolar
activity against nonreplicating bacteria. In addition, four of these
compounds were more potent than standard drug isoniazid.
The series also showed low cytotoxicity against commensal
bacteria and mammalian cells. These results suggest that designed
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heteroaryl chalcones, identified with the help of QSAR models,
are promising anti-TB lead candidates (Gomes et al., 2017).

Viral Infections
Yearly, influenza epidemics can seriously affect all populations
in the world. These annual epidemics are estimated to result
in about 5 million cases and 650,000 deaths (WHO, 2018b).
Influenza virus is mutating constantly, resulting in novel resistant
strains, and hence, the development of new anti-influenza
drugs active against these new strains is important to prevent
pandemics (Laborda et al., 2016). Aiming the discovery of
new anti-influenza A drugs, Lian et al. (2015) built binary
QSAR models, using SVM and Naïve Bayesian methods, to
predict neuraminidase inhibition, a validated protein target
for influenza. Then, four different combinations of machine
learning methods and molecular descriptors were applied to
screen 15,600 compounds from an in-house database, among
which 60 compounds were selected to experimental evaluation
on neuraminidase activity. Nine inhibitors were identified,
five of which were oseltamivir derivatives exhibiting potent
neuraminidase inhibition at nanomolar concentrations. Other
four active compounds belonged to novel scaffolds, with potent
inhibition at low micromolar concentrations (Lian et al.,
2015).

According to WHO, approximately 35 million people are
infected with HIV (WHO, 2018a). The treatment for HIV
infections requires a lifelong antiretroviral therapy, targeting
different stages of HIV replication cycle. Consequently, because
of the emergence of resistance and the lack of tolerability,
development of novel anti-HIV drugs is of high demand (Cihlar
and Fordyce, 2016; Garbelli et al., 2017). With the purpose
of discovering new anti-HIV-1 drugs, Kurczyk et al. (2015)
developed a two-step VS approach to prioritize compounds
against HIV integrase, an important target to viral replication
cycle. The first step was based on binary QSAR models,
and the second on privileged fragments. Then, 1.5 million
of commercially available compounds were screened, and 13
compounds were selected to be tested in vitro for inhibiting HIV-
1 replication. Among them, two novel chemotypes with moderate
anti-HIV-1 potencies were identified, and therefore, represent
new starting points for prospective structural optimization
studies.

Mood and Anxiety Disorders
The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has
been an attractive target for treating mood and anxiety disorders
such as schizophrenia (Nichols and Nichols, 2008; Lacivita
et al., 2012). However, the currently marketed drugs targeting
5-HT1A receptor possess severe side effects. To address this,
Luo et al. (2014) developed a QSAR-based VS workflow to find
new hit compounds targeting 5-HT1A receptor. First, binary
QSAR models were generated using Dragon descriptors and
several machine learning methods. Then, developed QSAR
models were rigorously validated and applied in consensus for
VS four commercial chemical databases. Fifteen compounds
were selected for experimental testing, and nine of them have
proven to be active at low nanomolar concentrations. One

of the confirmed hits, [(8α)-6-methyl-9,10-didehydroergolin-8-
yl]methanol), showed very high binding affinity (Ki) of 2.3 nM
against 5-HT1A receptor.

Future Directions and Conclusion
To summarize, we would like to emphasize that QSAR modeling
represents a time-, labor-, and cost-effective tool to discover
hit compounds and lead candidates in the early stages of drug
discovery process. Analyzing the examples of QSAR-based VS
available in the literature, one can see that many of them led to
the identification of promising lead candidates. However, along
with success stories, many QSAR projects fail on the model
building stage. This is caused by the lack of understanding
that QSAR is highly interdisciplinary and application field as
well as general ignorance of the best practices in the field
(Tropsha, 2010; Ban et al., 2017). Earlier, we have explained this
by the undesirably high population of “button pushers,” that
is, researchers who conduct modeling without understanding
and analyzing the data and modeling process itself (Muratov
et al., 2012). This was also explained by the elusive ease of
obtaining computational model and making even advanced
calculations without understanding of the sense and limitations
of the approach (Bajorath, 2012). In addition to this, a lot of
even experienced researchers target their efforts to a “vicious
statistical cycle,” which main goal is to validate models using
as many metrics as possible. In this case, the QSAR modeling
is restricted to a single simple question: “What is the best
metrics or the best statistical method”? Although we recognize
that the right choice of statistical approach and especially
rigorous external validation are necessary and represent an
essential step in any computer-aided drug discovery study,
we want to reinforce that QSAR modeling is useful only
if it is applied for the solution of a formulated problem
and results in development of new compounds with desired
properties.

As future directions, we would like to point out that
the era of big data has just started, and it is still in the
chemical/biological data accumulation stage. Therefore, to avoid
the situation that the number of assayed compounds available
on literature exceeds the modeling capability, the development,
and implementation of new machine learning algorithms
and data curation methods capable of handling millions of
compounds are urgently needed. Finally, the overall success
of any QSAR-based VS project depends on the ability of a
scientist to think critically and prioritize the most promising
hits according to his experience. Moreover, the success rate of
collaborative drug discovery projects, where the final selection
of computational hits is done by both a modeler and an
expert in a given field, is much higher than success rate of
the projects driven solely by computational or experimental
scientists.
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Medicinal chemistry projects involve some steps aiming to develop a new drug, such
as the analysis of biological targets related to a given disease, the discovery and the
development of drug candidates for these targets, performing parallel biological tests
to validate the drug effectiveness and side effects. Approaches as quantitative study
of activity-structure relationships (QSAR) involve the construction of predictive models
that relate a set of descriptors of a chemical compound series and its biological activities
with respect to one or more targets in the human body. Datasets used to perform QSAR
analyses are generally characterized by a small number of samples and this makes them
more complex to build accurate predictive models. In this context, transfer and multi-
task learning techniques are very suitable since they take information from other QSAR
models to the same biological target, reducing efforts and costs for generating new
chemical compounds. Therefore, this review will present the main features of transfer
and multi-task learning studies, as well as some applications and its potentiality in drug
design projects.

Keywords: drug design, medicinal chemistry, QSAR, machine learning, transfer learning, multi-task learning

INTRODUCTION

The drug design process, since the discovery/identification of bioactive compounds until the
approval of its clinical use by a regulatory agency, is very complex and demands time and financial
support (Tufts Center for the Study of Drug Development [CSDD], 2014). There are several well-
known bottlenecks in this process, such as finding out a suitable and validated molecular target,
designing and/or discovering of a lead compound, pharmacokinetic and toxicity optimization,
besides commercial reasons, efficacy and clinical safety (Khanna, 2012; Medina-Franco et al., 2013).
In this scenario, the use of computational techniques in drug discovery is rapidly increasing.

Computer-aided drug design (CADD) techniques are broadly employed in order to reduce costs
and time involved in drug design. Among the important CADD techniques, molecular docking,
similarity search and QSAR studies could be highlighted. Molecular docking and virtual screening
are considered structure-based drug design (SBDD) strategies since it requires 3D structure of a
molecular target and consists of predicting a binding mode of molecules and its binding energy
(Walters et al., 1998; Shoichet, 2004; Andricopulo et al., 2008). As the docking simulations
consider both structures (ligands and targets), its calculations are more computationally expensive.
Considering these aspects, similarity searches and pharmacophore modeling are alternatives
to faster calculations (Brogi et al., 2009; Tresadern et al., 2009) and are defined as ligand-
based drug design (LBDD) strategies since they do not require the biological target structure
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(Turki et al., 2017). Figure 1 illustrates the main steps in a drug
design process, including the use of computational tools.

Another LBDD strategy is known as quantitative structure-
activity relationships (QSAR) and it has been widely employed
in drug design, mainly aiming to predict the biological activity
of a compound set against a specific target to optimize the
binding affinity (Du et al., 2008; Gertrudes et al., 2012). QSAR
models provide accurate predictions of measured endpoints
instead of an independent ranking of biological activity. These
quantitative approaches have also been used in other tasks,
such as optimization of pharmacokinetics and toxicity profile
(Maltarollo et al., 2015; Egeghy et al., 2016; Chemi et al., 2017)
and virtual screening (Brogi et al., 2013; Melo-Filho et al., 2016;
Neves et al., 2016; Zaccagnini et al., 2017).

Several important QSAR studies can be found in literature,
which include the description of successful computational
methods and algorithms (Sliwoski et al., 2014; Raies and Bajic,
2016), validation techniques (Gramatica and Sangion, 2016),
applications (Cherkasov et al., 2014; Fang and Xiao, 2016) as
well-challenges and how those have been addressed (Cronin and
Schultz, 2003; Arthur, 2008; Dearden et al., 2009; Scior et al.,
2009; Wang et al., 2015; Ponzoni et al., 2017).

In many recent studies, machine learning (ML) methods
have been largely applied to QSAR analyses. This growth
has been mainly motivated by the increasing availability of
data in public repositories, the use of numerous and diverse
chemical descriptors and the proposal of accurate predictive
algorithms, such as support vector machines (SVMs) and
artificial neural networks (Gertrudes et al., 2012; Maltarollo
et al., 2013; Mitchell, 2014; Lima et al., 2016). A common
application of ML techniques in CADD refers to forecast
new compound class labels (e.g., “active” versus “inactive”)
using models previously derived from available training sets
(Lavecchia, 2015). In such specific situation, ML techniques
are said to perform a classification learning task. In addition,
other sort of learning tasks can also be considered in
CADD, such as clustering and ranking (Agarwal et al.,
2010).

Despite of the widespread use of ML methods in QSAR
modeling, the success of such approaches critically depends
on the availability of a great amount of data, which remains
challenging in drug discovery. This problem is strongly related
to issues involving the quality of public data sources, including
imprecise representation of chemical structures and inaccurate
activity information (Zhao et al., 2017). Furthermore, the nature
of different experimental protocols can usually lead to data
belonging to different probability distributions, which makes the
use of traditional ML techniques impracticable.

The data sets available in public repositories are usually
obtained from single structure-activity relationship (SAR)
campaigns. This explains the several particular and linear sets of
compounds that are commonly used to generate only specialized
QSAR models. In most of cases, biological activities of two
datasets are measured under different experimental conditions,
making the link among chemical spaces difficult to be analyzed
(Richter and Ecker, 2015). Furthermore, a large chemical space
has activity cliffs naturally: regions in a structure/activity surface

where there is a discontinuous SAR (Cruz-Monteagudo et al.,
2014).

In 2014, a review on QSAR (Cherkasov et al., 2014) stated
that the transferability of QSAR models is one of the challenges
in QSAR modeling, since the traditional approaches have been
typically designed for each target property individually. Aiming
to take advantage of diverse but related available experimental
data, transfer and multi-task learning techniques have been
recently developed. The novelty behind these approaches is
related to their ability to exploit knowledge from other related
tasks to improve the learning performance, especially when a
small data set is available for training.

TRANSFER AND MULTI-TASK LEARNING

For QSAR purposes, the data space under analysis is
characterized by biological and chemical properties. In such
scenario, changes in the distribution of data force the model to be
rebuilt, implying to collect new training data. However, in many
real-world applications, it is expensive or impossible to recollect
data required to reconstruct these models. In such situations,
transfer learning (or knowledge transfer) among related domains
would be desirable (Pan and Yang, 2010).

Transfer learning can be defined as the ability of a system
to recognize and apply the knowledge learned in previous
(source) tasks for the solution of new (target) problems. The
development of such approach was motivated by the fact that
one can apply the knowledge acquired previously to solve new
problems more quickly and with better solutions. The goal
here relies on extracting the knowledge obtained by a model
from one or more source tasks and to apply it to a target
task. However, one of the premises for using transfer learning
technique is that the source and the destination domains must
be related. In this sense, Tan et al. (2015) suggest that such
relationship can be expressed by instances (Bickel et al., 2009)
or characteristics (Satpal and Sarawagi, 2007). If no direct
relationship is found, the forced transfer will not work, resulting
in no improvement or even degenerating the performance in
the target domain (Fitzgerald and Thomaz, 2015). Multi-task
learning is closely related to knowledge transfer, but they have
also a clear distinction. In multi-task approaches, a number of
tasks are learned simultaneously, without involving designated
source and target tasks. Figure 2 illustrates the overall schemes
for transfer and multi-task learning.

The methods used for transfer learning can be summarized
into four categories, depending on which aspect of knowledge will
be transferred, i.e., “what to transfer” (Pan and Yang, 2010). The
first category refers to instance-based transfer learning, which
assumes that some data from the source set can be selected for
training in the target set by re-weighting. Importance sampling
and instance reweighting are the two most commonly techniques
used (Dai et al., 2007). The second category refers to transfer
learning methods by feature representation, which focuses on
encoding the structural information carried by molecules into
a numerical representation that can be effectively exploited
by learning processes in other related problems. In this case,
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the intuitive idea consists in learning a suitable representation
of characteristics for use in the target set, i.e., the transfer
learning is coded in the representation of the new characteristics
(Raina et al., 2007). The third category refers to the transfer
learning techniques by parameters (Lawrence and Platt, 2004),
in which it is assumed that the source and the target tasks share
some parameters or prior distributions of the hyper-parameters
of the respective QSAR models. In this case, knowledge can
be transferred between the tasks by discovering these shared
parameters or priors. The last category consists of methods that
deal with the problem of relational knowledge transfer, which
refers to transfer learning in related domains (Mihalkova et al.,
2007). In this condition, the knowledge can be transferred by
mapping the data from the source set to the destination one. The
statistical methods of relational learning are the most applied in
this case (Mihalkova et al., 2007; Davis and Domingos, 2009).
A scheme illustrating how the transfer learning approaches can
be applied to obtain predictive models is presented in Figure 3.

To apply transfer learning techniques, it is assumed that two
sets of related data are available and the knowledge will be
transferred from the dataset with the largest volume to the set
with the least amount of available data. However, this assumption
in the chemical datasets is not always sufficient, requiring the
opinion of an expert to define the source datasets. To overcome
this limitation, Girschick et al. (2012) proposed an approach to
select a source dataset in a repository containing target-related
sets by following a data-driven methodology. The main idea
behind such proposal is based on calculating a measure for
the activity overlap between the target set and each related set
available in PubChem database. As result, a ranking of all related
sets according to their similarity to the target set is obtained.
In order to find the similarity values, Tanimoto coefficient is
calculated using the categorization of the chemical compounds
(active/inactive) in each dataset. Therefore, the objective is to
select the set that has the distribution of instances (compounds)
closest to the distribution (number of instances categorized as
active and inactive) of the target set.

One can find out many situations where transfer learning adds
benefits, for example, molecules could be classified as active or
inactive according to a biological data for a defined endpoint
(e.g., IC50 values). For this classification task, it is initially
necessary to collect several experimentally tested samples and,
next, to train a classifier for the collected data with their respective
labels. Since the probability distribution of the comments on
other endpoints can be very different, a new classifier has to
be trained to each dataset in order to maintain a satisfactory
performance. To reduce this effort, it would be desirable to
use the knowledge from a classification model that is already
trained on some related endpoints to improve the classification
performance of other tasks with small samples or datasets (Turki
et al., 2017). Table 1 illustrates examples of transfer learning in
drug design.

In general, transfer learning approaches have shown to be
promising for combining the knowledge previously obtained
in related tasks into a single predictive model, whether for
classification, regression, or grouping (Pan and Yang, 2010). In
particular, researches in medicinal chemistry with focus in drug
discovery have been benefited with the use of transfer learning, as
can be seen in previous studies (Girschick et al., 2012; Rosenbaum
et al., 2013; Saha et al., 2016). Next, applications of transfer
and multi-task learning in medicinal chemistry studies will be
presented.

SOME APPLICATIONS OF TRANSFER
AND MULTI-TASK LEARNING

Many machine learning methods are based on the assumption
that similar drugs may share the same side effects, but measuring
the similarity of these drugs is still a challenge. However,
the use of data from various sources (similar drugs) provides
important information for the analysis of side effects and should
be integrated for obtaining a highly accurate prediction. Zhang
et al. (2016) discussed the problem of predicting side effects

FIGURE 1 | Main steps involved in drug design, highlighting the use of computational approaches.
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FIGURE 2 | General framework used to plan a study using (A) transfer learning techniques and (B) multi-task learning.

caused by drugs through linear neighbor approaches and the
integration of data from various sources. The authors argued
that auxiliary data can bring additional and diverse information
(such as drug substructures, drug targets, drug transporters, drug
enzymes, drug pathways) that should be integrated to the side-
effect prediction, aiming at improving its performance. Analyses
on multi-label classification showed that the proposed transfer
learning approaches achieved better performance than state-of-
art-methods (Pauwels et al., 2011; Liu et al., 2012; Cheng et al.,
2013) applied to benchmark datasets.

The task of relating chemical structure to biological activity
in QSAR studies is usually based on the notion of chemical
similarity to predict the molecular behavior of close compounds.
So, techniques that provide similarity measures among chemical
compounds are increasingly important (Floris et al., 2014).
Lately, relevant solutions have been proposed, which comprise
distance learning (Biehl et al., 2014) and inductive transfer
(Garcke and Vanck, 2014) methods. Distance learning aims
at learning an appropriate distance measure to reflect the
underlying relationship between instances in the training set,
while inductive transfer refers to the process of transferring
knowledge learned from one task into another related task.
Girschick et al. (2012) presented an adapted transfer approach,
which combines distance learning and inductive transfer by
learning the distances on a related task and then transferring
them to the target learning task. Additionally, the authors

FIGURE 3 | Schemes used for applying transfer learning approaches.

developed a method for selecting a related task that can be used
as source task for transfer learning. This technique consists in
applying an activity overlap similarity measure to two datasets to
find out a suitable source task. This approach was evaluated on
five distinct datasets found in PubChem BioAssay (Wang et al.,
2009) repository. The results showed that both proposals worked
well for large and small amounts of training data.

The multi-task learning approach (Caruana, 1998) is
considered to be closely related to transfer learning, since it
attempts to learn multiple tasks simultaneously even when they

TABLE 1 | Examples of potential applications of transfer learning methods in drug design.

Transfer learning approach Concept Application in drug design

Instance-based Uses the same ML technique for modeling but apply some
changes to the parameters of the target model.

Source and target datasets have the same endpoint (e.g.,
same molecular target) but the training data can be colleted
at different experimental conditions.

Feature representation Based on some mathematical transformations of data. Source and target datasets have different but related
endpoints, e.g., same classes of molecular target (kinases,
nuclear receptors, proteases, etc.).

Parameters It is assumed that both datasets share some properties. Source and target datasets have the same or related
endpoints.

Relational knowledge transfer Based on technique for mapping the data in the target domain. The endpoints of the source and target datasets are
different but the domains (the independent variable in QSAR
models) are related; e.g., cellular permeability and log P.
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are different. Rosenbaum et al. (2013) introduced two multi-
task methods and evaluated the performance of such approaches
by inferring multi-target QSAR models on a subset of human
kinome. The authors assumed that the taxonomical relationship
of the kinase targets should correspond to the relatedness of
the QSAR problems on these targets. The multi-task techniques
were compared to SVMs models independently trained for each
target and an SVM model that assumed all targets to be identical.
The results demonstrated that the multi-target learning can over
perform baseline (pure SVM) methods if knowledge can be
transferred from a target with a lot of data to a similar target with
little domain knowledge.

Varnek et al. (2009) applied different inductive transfer and
multi-task learning approaches to model tissue-air partition
coefficients. The authors found that these techniques improved
the prediction accuracy of the obtained models when compared
to single task learning. Finally, this study indicated that inductive
transfer learning is very suitable when single modeling is unable
to generate reliable QSAR models using diverse data sets and with
small amount of samples.

Brown et al. (2014) presented some challenges involved with
chemogenomic data, since high-throughput assays give us a
large number of information from multi-ligand and multi-target
data (Pereira and Williams, 2007). So, the authors assert that
computational techniques, in particular inductive transfer and
explicit learning, can help to construct more robust models when
compared to target-specific (classical) QSAR ones.

The study of Zhang et al. (2013) discussed the use of single-
and multi-task learning to construct QSAR models for predicting
the binding affinity of a compound database by estrogen receptors
(ERs), which are involved with endocrine disruption by chemicals
and the construction of predictive models can contribute to
design safer substances. The authors concluded that multi-task
learning provided better results for a small dataset (ERβ ligands)
than single learning, indicating that this approach can be
considered as a good tool to understand the action mechanism of
endocrine disruption and to predict the ER activity of unknown
compounds as endocrine disrupting chemicals.

Another interesting application of multi-task techniques was
performed by Liu et al. (2011), which used multi-task learning
to construct multi-target QSAR models employing three human
immunodeficiency virus (HIV) inhibitor datasets together with
other six subsets containing two hepatitis C virus (HCV)
inhibitors. The main conclusions of this study included the fact
that the integration of all databases (HIV and HCV) improved
the rate of the discovery of lead HIV-HCV inhibitors, helping
the design of new co-inhibitors for these important infections.
Other achievement is related to the successful use (considering
efficiency in convergence speed and learning accuracy) of a
multi-task learning technique to construct multi-target QSAR
models.

DISCUSSION

The main issue of transfer and multi-task learning approaches
is to employ the knowledge generated (e.g., features, subset of

variables, weights of equations) from available ML models and
other datasets in the construction of models for related endpoints.
In this sense, it is possible to use different datasets with the
same biological activities but measured at different experimental
conditions. Other important consequence of applying transfer
and multi-task learning is the decrease on computational costs
related to the faster convergence obtained by using the knowledge
derived from a model previously built from a related endpoint.

From a literature review taking into to account the transfer
learning applications on medicinal chemistry, one can note
that there is still a great potentiality to be explored in this
sense. Other emerging approaches as deep learning methods
(Zhang et al., 2017), which basically use complex neural networks
architectures, also have promising applications in the era of big
data.

Among the main challenges on applying transfer and multi-
task learning methods is that they require an artificial intelligence
expert to code them since there are no chemical and/or
pharmaceutical packages with a graphical user interface. Depend
on the source data and on the learning method, transfer and
multi-task learning could be also considered as “black-boxes,”
making the interpretability of QSAR models difficult. And,
finally, the transfer of knowledge could be inappropriately
employed if the assumption of “equivalent” endpoints is not valid.

CONCLUSION

Nowadays one can observe increasing number of applications
of transfer and multi-task learning in medicinal studies.
There are also current challenges in the QSAR field that
comprise the integration of different datasets (even from
different experiments) aiming the same or similar endpoints
(Maltarollo et al., 2017) and the development of universal
QSAR models using very large datasets (Alves et al., 2017).
Therefore, good examples of dataset that could be benefited
from transfer and multi-task learning are: (i) compounds
with same endpoint measured under different experimental
conditions; (ii) antimicrobial activities against genetically similar
microorganisms; (iii) compounds with the same mechanism of
action in homologous targets and high degree of similarity in the
binding pocket; (iv) non-specific endpoints as toxicity against a
cell line or permeability rates determined by different models.
In this complex scenario, transfer and multi-task learning
techniques can be considered powerful tools for drug design.
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In silico methods are increasingly being used for assessing the chemical safety
of substances, as a part of integrated approaches involving in vitro and in vivo
experiments. A paradigmatic example of these strategies is the eTOX project
http://www.etoxproject.eu, funded by the European Innovative Medicines Initiative (IMI),
which aimed at producing high quality predictions of in vivo toxicity of drug candidates
and resulted in generating about 200 models for diverse endpoints of toxicological
interest. In an industry-oriented project like eTOX, apart from the predictive quality,
the models need to meet other quality parameters related to the procedures for
their generation and their intended use. For example, when the models are used for
predicting the properties of drug candidates, the prediction system must guarantee the
complete confidentiality of the compound structures. The interface of the system must
be designed to provide non-expert users all the information required to choose the
models and appropriately interpret the results. Moreover, procedures like installation,
maintenance, documentation, validation and versioning, which are common in software
development, must be also implemented for the models and for the prediction platform
in which they are implemented. In this article we describe our experience in the eTOX
project and the lessons learned after 7 years of close collaboration between industrial
and academic partners. We believe that some of the solutions found and the tools
developed could be useful for supporting similar initiatives in the future.

Keywords: in silico toxicology, computational toxicology, predictive models, chemical safety, drug safety,
industrial environments, public-private partnership, machine learning

INTRODUCTION

In silico methods are increasingly being used in the assessment of the chemical safety of chemicals as
a part of integrated approaches, in which computational tools are used to synergically complement
the experimental methods, with the aim of generating better and more efficient predictions of
the potential toxicological liabilities of the compounds under study (Luechtefeld et al., 2018).
Recent advances in machine learning and deep learning methodologies are demonstrating their
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effectiveness in this respect (Lenselink et al., 2017; Liu et al.,
2017). Moreover, ambitious collaborative initiatives in this
field have been set up with the aim of increasing the
availability of relevant data frameworks and developing the
aforementioned integrative approaches on top of those data.
Among these initiatives, EU-ToxRisk (Daneshian et al., 2016),
HESS (Sakuratani et al., 2013), TransQST (Maldonado et al.,
2017), iPiE (Bravo et al., 2016) and eTOX (Cases et al., 2014; Sanz
et al., 2017; Steger-Hartmann and Pognan, 2018) deserve to be
highlighted.

In particular, the eTOX project, funded by the Innovative
Medicines Initiative, constituted a pioneering exercise of
extracting and integrating in vivo data from legacy resources at
the pharmaceutical industry, and exploiting such data for read-
across and the development of predictive models, since one of the
aims of the eTOX project was to set up an integrated system for
the prediction of toxicological endpoints, with a focus on organ
and in vivo endpoints. The project faced many challenges, some
of which have been described in previous publications (Cases
et al., 2014; Sanz et al., 2015, 2017; Steger-Hartmann and Pognan,
2018). Here we wish to share our experiences in an aspect that is
often overlooked in this kind of projects, which is how to translate
predictive models generated by academia or by Small-Medium
Enterprises (SMEs) into a production environment where they
can be routinely applied. Irrespectively of the scientific quality
of a model, it must meet several requirements to make it
amenable for being used by the pharmaceutical industry. This
requires building a common understanding between academic
and industrial partners, identifying the end-user needs, and
making significant efforts to incorporate into the models and the
predictive system features that, in spite of their low scientific
interest, make the difference between usable and not usable
models. In the present article we describe the most significant
lessons learned in eTOX, describing some of the problems
we identified and describing the solutions applied to solve or
mitigate them. Most of these solutions are the result of long hours
of discussion, where we learned to understand each other’s points
of view.

RESULTS

Developing a computational model for predicting a biological
endpoint is a complex task. In the case of QSAR-like models, their
development involves (at least) the curation of the training series,
the selection of appropriate molecular descriptors and machine
learning methods, building, validation, and interpretation of the
model. However, when the aim is to produce a model that can
be used by people outside of the modeler’s laboratory, the work
has not finished with the generation of the model. There is an
additional difficulty if we intend to use the models in industrial
environments, particularly if the structures of the compounds
should be treated as confidential.

In the following sections we will discuss issues related with the
model development and implementation, the need of a standard
modeling framework for supporting model development and
maintenance, as well as the model documentation and validation.

In the last section we will discuss also the problems related
with the confidentiality of the structures for model training and
application.

Platform for Model Development and
Production
Most of the eTOX models were developed by academic
partners and SMEs, located in different European countries.
Therefore, the architecture of the system to be developed should
support independent and concurrent model development, while
model prototypes should be made accessible to the end users
(pharmaceutical companies) for early testing. This software
platform, designed to increase the model development efficiency,
should be compatible with the local deployment of the final
system. The final version must be installed physically at the
computational resources of the pharmaceutical companies, since
the end users considered that only an installation behind the
company firewalls guarantees that they could be used on highly
confidential compounds corresponding to drug candidates under
development.

These requirements made necessary the adoption of technical
solutions that facilitate the remote access to the models
and the portability of its software implementation, which
consisted of two layers of containerization. The outer layer
consisted in a self-contained virtual machine (VM), configured
to expose a REpresentational State Transfer (REST) web
service (Fielding, 2000) to predict the properties of query
compounds. VMs were installed at the partners facilities,
thus making possible that models developed at remote sites
were immediately accessible through a centralized web server
which shows all available models through a single graphical
interface (see Figure 1). The physical location of the server
running the computations was completely transparent to the end
user.

Figure 2 shows a schematic representation of the setup that
was adopted for the development and production of the eTOX
models.

The eTOX development setup has the inconvenience that
it cannot guarantee an appropriate level of confidentiality on
the query structures. These are sent over the Internet, and the
computations are carried out in academic servers, some of which
do not comply with the strict security requirements necessary to
protect confidential structures. For this reason, the testing of the
models was carried out using only non-confidential structures
and the user interface shows a disclaimer informing of the
security risks.

The final version of the system, as mentioned before,
was installed locally at the computational facilities of the
EFPIA partners (Figure 2). The deployment of the system was
facilitated by the use of VMs, which can run in heterogeneous
computational environments (i.e., diverse operative systems and
hardware configurations). The VMs were relatively compact
(between 4 and 5 Gb each) and did not have high computational
needs (recommended settings were 1 CPU and 2 Gb RAM
per VM). The whole system can be accommodated in low-
end computational clusters or even in an isolated server with
multiple CPUs.
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FIGURE 1 | Graphic User Interface (GUI) of eTOXsys for using the eTOX models.

FIGURE 2 | Scheme of the eTOX development and production setup.

In the same way that the VMs provided a layer of
standardization for the external access to the models, we had
the need of developing an ad hoc modeling framework, called
eTOXlab (Carrió et al., 2015), which supports modelers in their
task of implementing and maintaining the predictive models
within the VMs. Essentially, each VM contains an instance
of eTOXlab, which can manage multiple models and exposes
them as web services using a standard Application Programming
Interface (API), as shown in Figure 3. All the model inputs and
outputs are redirected trough the web services. Therefore, as far
as the models are correctly implemented within eTOXlab, they

are perfectly integrated into the project predictive platform and
visible in the common interface shown in Figure 1.

Model Development and Maintenance
Apart from connecting the individual models to the eTOXsys
prediction system, eTOXlab provides additional support for
the model development, maintenance, and documentation.
Regarding model development by diverse teams of modelers, it
is important to make use of common tools providing consistent
solutions for tasks that need to be carried out by the different
models. An example of this is the structure normalization,
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FIGURE 3 | Scheme of eTOXlab location within the virtual machines (VMs), storing multiple models and serving them as web services.

FIGURE 4 | Scheme of eTOXlab workflow (A). Query compounds can be submitted to multiple models (M1–M3), obtaining multiple predictions (B).

since the end user expects that the input structure is internally
normalized and processed in the same way by all the models
to which it is submitted. The use of a common modeling
framework allows employing a common workflow for the
building of all the models and for carrying out predictions with
them, where the same software tools are used at each step,
thus guaranteeing that the results are consistent; an example
is structure normalization. Classically, 2D structures of the
molecules are entered by the end user using SMILES or SDFiles
formats. Before these structures can be processed, they need
to be submitted to a normalization protocol that takes care
of removing counterions, saturating and ionizing the molecule
to a certain pH and, in some cases, generating 3D structures.
Ideally, query molecules must be submitted to the same protocol
that was applied to the structures of the training series used
for developing the models. When the same query molecule is
submitted to multiple models at the same time, the protocols
must also be consistent. This requirement is easily met by

using the eTOXlab modeling framework. Models implemented
in eTOXlab make use of a consistent workflow (Figure 4), which
processes input molecules in sequential order, submitting them
to a normalization tool, an ionization tool and a 3D conversion
tool. The tools applied, and the precise parameters used can be
customized for each model and are adequately documented, thus
guaranteeing a fully consistent treatment in the model training
and prediction.

The use of eTOXlab also allowed developing specific
components for common tasks. An example of this is ADAN
(Carrió et al., 2014), a method specifically developed for assessing
the applicability domain of the predictive models developed
in eTOX, which is able to generate robust reliability scorings
for the predictions. In summary, the ADAN method is based
on assessing how far is a query compound from the model
applicability domain and, based on this, provide reliability
indexes to the predictions. The reliability is translated to pseudo
95% Confidence Interval (CI), thus facilitating the appraisal of
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FIGURE 5 | Life cycle of the eTOX models.

the prediction obtained. The ADAN methodology can also be
applied to non-QSAR models (Capoferri et al., 2015).

Another task that can be facilitated by the use of a modeling
framework like eTOXlab is the maintenance of the models. Given
that models are not static entities, once they are developed, they
should evolve along the time by incorporating new compounds to
the training series, updating of the software used at the different
steps or refining the modeling workflow. In any case, every
improvement produces a new version of the original model (see
Figure 5).

In production environments, where important decisions can
be based on model results, it is important to maintain a well-
ordered inventory of all models and versions developed and use
unique identifiers for each of them. As a minimum, the system
must allow to reproduce predictions made by any model version.

In eTOX, every model was documented in a central repository,
called eTOXvault, where it was assigned a unique public identifier
and version number. For models developed within eTOXlab,
two circuits of versioning were used. When a model was in
development, all the files were stored in a specific development
environment (so called “sandbox”). Only models that meet
certain quality criteria were copied into a permanent storage
space and assigned an internal, sequential version number.
Initially these identifiers and version numbers were internal, as
they were not exposed to anybody except to the model developer.
Once the models were properly documented and verified (as
described below), they were assigned an official identifier and
version number and they were published as a web service visible
to all consortium partners.

Model Documentation and Validation
It is widely accepted that models must be documented. However,
we learned that different actors have different expectations and
very diverse needs regarding model documentation. Most end
users require simple documentation describing, in a concise
and non-technical language, what is the precise meaning of
the model predictions and how reliable are those. On the
other hand, modelers need to document the models at a
more detailed level to allow reproducing the models and to
facilitate the model maintenance. Potential future uses of the
model results for regulatory purposes, recommend following

widely recognized standards, such as the Organization for
Economic Co-operation and Development (OECD) guidance
document about QSAR modeling (Organisation for Economic
Co-operation and Development, 2007), the guidance on the
development, evaluation, and application of environmental
models published by the US Environmental Protection Agency
(EPA) (Environmental Protection Agency, 2009), or the
requirements of the European REACH (Benfenati et al., 2011), or
the recent efforts from the pharmaceutical industry (Myatt et al.,
2018). In eTOX, models were documented following the OECD
guidelines, but the sections of the document were reorganized in
a way that allow to obtain summary extractions, as we described
in a previous paper (Sanz et al., 2015).

To validate a model means to determine if the model is “fit-
for-purpose.” This task is highly dependent of the use context
and cannot be carried out in a general manner for all models. In
eTOX the model validation was replaced by a systematic model
verification methodology, which guarantees that the model
produces the results described in the documentation (Hewitt
et al., 2015).

Structure Confidentiality
The eTOX project was a collaborative effort involving several
major pharmaceutical companies, which contributed data
generated and stored in-house for the training of predictive
models. Sharing this information posed a major problem,
in particular when it involved the structure of confidential
compounds. Predictive models should ideally be built using
all available structures and biological annotations available,
irrespectively of the partner who contributed this information.
Unfortunately, the data protection policies of the different
industrial partners imposed obvious limitations, difficult to
overcome.

At the beginning of the project we hoped to be able to develop
and implement new structure-masking algorithms able to hash
the structures into representations usable for building models,
but resilient to any effort to reverse-engineer the algorithm
and guess the original chemical structure. Our hope was not
unfounded, and different similar methods have been published
in the past (Tetko et al., 2005; Masek et al., 2008). For this
particular purpose, we obtained excellent results using a simple
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random permutation of the molecular descriptors generated by
methods like GRIND or GRIND2 (Pastor et al., 2000; Durán
et al., 2008). The permuted vector of descriptors does not allow
guessing the original structure, since the permutation destroyed
any link between the value of the variables and their physico-
chemical interpretation. Moreover, this approach is resistant
to brute-force methods (Faulon et al., 2005; Filimonov and
Poroikov, 2005), since these methods require the application of
the same algorithm to a comprehensive database of structures,
and a key element of the hashing algorithm (the random seed
of the permutation) is never shared or revealed. The robustness
of the algorithm was carefully tested and further demonstrated
by code-breaking challenges at the project consortium level,
where the hashed representation resisted any effort to identify the
original structure. In these exercises, we also demonstrated that
the hashed representation preserved all the information existing
in the original molecular descriptors, and the models derived
from them had equivalent quality.

Unfortunately, in these exercises we found that, beyond the
robustness of our masking algorithm, it was impossible to
convince the pharmaceutical companies to implement it in the
eTOX project since, given the high corporate sensitiveness on
the issue, such implementation would require costly external
audits that we could not afford. For this reason, we adopted an
alternative approach: if the confidential data cannot be taken
out of the companies’ internal repositories, we can move the
whole model building system to the companies, so the models
can be built there. Indeed, we took advantage that the eTOXlab-
VM containers are already portable model building engines.
Without any modification, they can be used to develop fully
functional models behind the companies’ firewalls. Furthermore,
this approach could be even better if the models obtained could be
shared without compromising the confidentiality of the training
series. In order to make this possible, eTOXlab implements a
“safe mode” for building models in a special way, which retains
no information at all about the structures or identities of the
training series. When configured in this way, the eTOXlab model
consists in a small text file, with the values of the coefficients that
must be applied to the molecular descriptors computed for future
query compounds to estimate their biological activity. This small
file can be exported to other partners without any risk since it
is easy to audit to guarantee that no sensitive information at all
is exported even using an unsecure means (e.g., e-mail, portable
USB device).

DISCUSSION

Some of the solutions applied in eTOX for generating a
predictive system usable in production environments involve
the use of specific software, wrapping the scientific work
developed by SMEs and academic partners into a “package”
easier to deploy and integrate in corporate settings. The use
of this kind of software, which is described in this article
as a “modeling framework,” adds further advantages, like
facilitating the consortium-wide adoption of standard modeling
components, and simplifying key steps of the model life cycle, like
the model retraining and maintenance. In eTOX, a new modeling
framework was developed ad hoc for the project (eTOXlab). This
software has been released as open source under GNU GPL v3.0
(GNU GPL v3, 2007). The source code of eTOXlab is accessible
at https://github.com/phi-grib/eTOXlab. A fully configured VM
including eTOXlab is also accessible at http://phi.upf.edu/envoy/.
Hence, future projects aiming to develop similar predictive
systems have now the option of reusing these resources, either
as they are or customizing them to meet specific project needs.

We consider that these resources have value on their own,
but they have an additional value as a proof-of-concept, since
they demonstrate that they are helpful for making software tools
developed by academic and SMEs usable by pharmaceutical
companies. Table 1 lists some of the key features that, in our
opinion, such kind of frameworks must incorporate.

Another key element required is the definition and
consortium-wide adoption of protocols for labeling,
documenting and verifying the models. These are important
aspects, which must be negotiated with the end-users for
providing fit-for-purpose solutions. In this dialog, the expected
use of the predictive system must be identified as soon as possible,
since a modeling system aiming to prioritize lead compounds has
completely different requirements, in terms of documentation
and verification, than a system supporting decisions that could be
communicated to regulatory agencies. This consideration should
not be interpreted as a justification for considering optional
the complete model documentation or the quantification of the
prediction uncertainty; however, the standards used in either case
are different. For this reason, the requirements derived from all
intended model uses must be identified with the help of the end
users, clearly defined and translated into system specifications.

One of the most complex aspects in the development of the
aforementioned prediction systems is the internal adoption of the

TABLE 1 | Features required for the building of a predictive system usable in production environments.

Predictive system component Feature Importance

Framework Support for model development at the academic/SMEs Must

Support for model deployment at the end-user site Must

Flexible enough to accommodate all modeling methodologies Must

Easy model maintenance and retraining Must

Pluggable components Optional

Protocols Model documentation Must

Prediction uncertainty Must

Use of international standards (QMRF/QPRF) Depends on intended use
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models by the end-users. The procedures vary from company to
company, although they typically involve the validation of the
system by comparing the prediction results with other in silico
or experimental methods. As the structures being used in this
comparison are often confidential, in the vast majority of cases
the results of such validations are not made public. This is
understandable but unfortunate, because this behavior results in
a lack of feedback about the final usefulness of the predictive
system. A published example of this kind of internal validations
was the one carried out by Sanofi on the eTOX QT prolongation
model using 434 drug candidates (Amberg et al., 2016).

Another aspect, briefly discussed in this article, is the potential
use of portable modeling environments for building and sharing
predictive models in which confidential structures are used. In
eTOX, this was considered the only acceptable option, while
solutions attempting to obfuscate, mask or encrypt the structures
(or the molecular descriptors) were considered by the partners
too risky to be used in practice. eTOXlab was configured for
producing shareable models, which can be safely shared and
exported because they contain no trace of the original structures.
Similar features can also be easily implemented in other modeling
frameworks. Here we want to emphasize the conceptual value
of the aforementioned strategy consisting in building the models
within the companies and exporting only the model coefficients.
The implementation of this strategy only requires the use, across
the collaborating partners, of a common modeling framework
facilitating the import and export of the model coefficients.

Many of the eTOX partners have continued their collaboration
and now participate in a new IMI project (eTRANSAFE)1, which
shares with eTOX the aim to develop predictive systems. The
ideas and principles described in this article are being applied,
extending and adapting them to meet the objectives of this
new project. One part of this effort is the development of a
new modeling framework (called Flame), inspired on the same
principles of eTOXlab but technologically more advanced. The
source code of this software, still in development, is distributed
under GNU GPL v3.0 (GNU GPL v3, 2007) and can be accessed
at https://github.com/phi-grib/flame.

Finally, a limited version of eTOXsys, including the modeling
system described here and a few selected models has been made
open to the scientific community and can be accessed at http:
//etoxsys.eu/.
1 http://etransafe.eu

CONCLUSION

Beyond the concrete database, predictive models and integrated
computational system that have been developed, the eTOX
project has demonstrated that the successful completion of
ambitious industry-oriented collaborative projects requires not
only the development and implementation of state-of-the-art
scientific approaches, but also the careful implementation of
adequate technical and organizational solutions. Among them,
the adoption of adequate standards and protocols is a key
component. The efforts done in eTOX in this respect are being
extended to the new IMI eTRANSAFE project1, which will jointly
exploit preclinical data and clinical safety information for a better
prediction of potential human safety liabilities (Sanz et al., 2017).

We hope this paper will contribute to save the readers’ time
and effort in similar public-private projects, as well as to improve
the efficiency in the collaboration between the pharmaceutical
industry and external parties in the development and application
of computational tools supporting the drug discovery and
development pipeline.
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In drug development, early assessments of pharmacokinetic and toxic properties are

important stepping stones to avoid costly and unnecessary failures. Considerable

progress has recently been made in the development of computer-based (in silico)

models to estimate such properties. Nonetheless, such models can be further improved

in terms of their ability to make predictions more rapidly, easily, and with greater

reliability. To address this issue, we have used our vNN method to develop 15

absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction models.

These models quickly assess some of the most important properties of potential

drug candidates, including their cytotoxicity, mutagenicity, cardiotoxicity, drug-drug

interactions, microsomal stability, and likelihood of causing drug-induced liver injury. Here

we summarize the ability of each of these models to predict such properties and discuss

their overall performance. All of these ADMET models are publically available on our

website (https://vnnadmet.bhsai.org/), which also offers the capability of using the vNN

method to customize and build new models.

Keywords: ADME, toxicology, QSAR, machine learning, applicability domain, online web platform, open access

INTRODUCTION

Drug discovery is a risky, lengthy, and resource-intensive process with high attrition rates. In
recent years, the development of assays and computer-based (in silico) models to assess absorption,
distribution, metabolism, and excretion (ADME) properties has greatly reduced the attrition rate
(Waring et al., 2015). The ability to predict these properties quickly and reliably facilitates the
exclusion of compounds with potential ADME issues, and thereby helps investigators prioritize
which compounds to synthesize and evaluate. However, toxicity remains a hurdle, with an attrition
rate of 40% among new compounds identified in the drug discovery phase (Waring et al., 2015).
This necessitates careful selection of compounds during drug development to avoid late-stage
attrition. As such, there is an urgent need for in silico methods that make fast, easy, and reliable
predictions of ADME and toxicity (ADMET) properties, which has resulted in several online tools
and web-platforms for ADMET predictions (Walker et al., 2010; Sushko et al., 2011; Cheng et al.,
2012; Maunz et al., 2013; Manganaro et al., 2016; Daina et al., 2017).

Here we provide an overview of our versatile variable nearest neighbor (vNN) method
(Liu et al., 2012) and the 15 models we constructed using this method to predict
the ADMET properties of potential target compounds. The vNN method has several
advantages over existing in silico methods. First, it calculates the similarity distance between
molecules in terms of their structure, and uses a distance threshold to define a domain of
applicability (i.e., all nearest neighbors that meet a minimum similarity threshold constraint).
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This applicability domain, while limiting vNN-based models
to making predictions only for molecules that are similar
to the reference molecules, ensures that the predictions they
generate are reliable. Second, vNN-based models can be built
within minutes and require no re-training when new assay
information becomes available—an important feature when
keeping quantitative structure—activity relationship (QSAR)
models up-to-date to maintain their performance levels. Finally,
as we show throughout this work, the performance characteristics
of our vNN-based models are comparable, and often superior, to
those of other more elaborate model constructs.

We have developed a publically available vNN website
(https://vnnadmet.bhsai.org/). This website provides users with
ADMET prediction models that we have developed, as well as a
platform for using their own experimental data to update these
models or build new ones from scratch. Although we use the vNN
method here for predicting ADMET properties, the vNN website
can be used to build a variety of classification or regression
models.

MATERIALS AND METHODS

The vNN Method
The k-nearest neighbor (k-NN) method is widely used to
develop QSAR models (Zheng and Tropsha, 2000). This method
rests on the premise that compounds with similar structures
have similar activities. The simplest form of the k-NN method
takes the average property values of the k nearest neighbors
as the predicted value. However, because structurally similar
compounds tend to show similar biological activity, it is
reasonable to weight the contributions of neighbors so that closer
neighbors contribute more to the predicted value. One notable
feature of the k-NN method is that it always gives a prediction
for a compound, based on a constant number, k, of nearest
neighbors nomatter how structurally dissimilar they are from the
compound. An alternative approach is to use a predetermined
similarity criterion. We developed the aforementioned vNN
method, which uses all nearest neighbors that meet a structural
similarity criterion to define the model’s applicability domain
(Liu et al., 2012, 2015; Liu and Wallqvist, 2014). When no
nearest neighbor meets the criterion, the vNN method makes no
prediction.

One of the most widely used measures of the similarity
distance between two small molecules is the Tanimoto distance,
d, which is defined as:

d = 1−
n(P ∩ Q)

n (P) + n (Q) − n(P ∩ Q)
, (1)

where n(P ∩ Q) is the number of features common to molecules
p and q, and n(P) and n(Q) are the total numbers of features
for molecules p and q, respectively. The features used to
calculate molecular similarity are often based on atom type
(connectivity and chemical properties), such as element, charge,
donor, acceptor, and aromatic, but they can also be based on

Abbreviations: Pgp, permeability glycoprotein; MDR, multidrug resistance.

holistic molecular properties, such as molecular weight and
partition coefficient (LogP). The predicted biological activity y
is then given by a weighted average across structurally similar
neighbors:

y =

∑ν
i= 1 yie

−(
di
h
)
2

∑ν
i= 1 e

−(
di
h
)
2
, di ≤ d0 (2)

where di denotes the Tanimoto distance between a query
molecule for which a prediction is made and a molecule i of
the training set; yi is the experimentally measured activity of
molecule i; h is a smoothing factor, which dampens the distance
penalty; d0 is a Tanimoto-distance threshold, beyond which two
molecules are no longer considered to be sufficiently similar to
be included in the average; and v denotes the total number of
molecules in the training set that satisfy the condition di ≤ d0.
The values of h and d0 are determined from cross-validation
studies.

To identify structurally similar compounds, we used Accelrys
extended-connectivity fingerprints with a diameter of four
chemical bonds (ECFP4) (Rogers and Hahn, 2010). For the vNN
website, we chose ECFP4 fingerprints, which have previously
been reported to show satisfactory overall performance in
retrieving the active compounds of diverse datasets (Hert et al.,
2004; Duan et al., 2010; Schyman et al., 2016). We emphasize that
h and d0 are unique, and need to be optimized for each set of
fingerprints and training set.

Model Validation
We used the 10-fold cross-validation (CV) procedure to validate
the model and determine the values of h and d0. We randomly
divided the data into 10 sets, 9 of which we used to develop
the model and the 10th to validate the model. We repeated this
process 10 times, leaving each set of molecules out once. In
the next section, we report averages of the 10-fold CV as the
performance measures.

Performance Measures
We used the following metrics to assess the quality of the
classification models:

sensitivity =
TP

TP + FN
(3)

specificity =
TN

FP + TN
(4)

accuracy =
TP + TN

TP + TN + FP + FN
(5)

kappa =
accuracy − Pr (e)

1 − Pr (e)
(6)

where TP, TN, FP, and FN denote the numbers of true
positives, true negatives, false positives, and false negatives,
respectively. The metric kappa assesses the quality of binary
classifiers (Dunn and Everitt, 1995). Pr(e) is an estimate
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FIGURE 1 | The vNN-ADMET main page. From this page, users can run ADMET models or build their own models.

of the probability of a correct prediction by chance. It is
calculated as:

Pr (e) =
(TP + FN) (TP + FP) + (FP + TN)(TN + FN)

(TP + FN + FP + TN)2

(7)
The sensitivity measures a model’s ability to correctly detect
true positives, whereas the specificity measures its ability to
detect true negatives. Kappa compares the probability of correct
predictions to the probability of correct predictions by chance.
Its value ranges from +1 (perfect agreement between model
prediction and experiment) to−1 (complete disagreement), with
0 indicating no agreement beyond that expected by chance.

The performance measure for regression models is given by
the Pearson’s correlation coefficient (Adler and Parmryd, 2010):

R =

∑n
i= 1 (xi − x̄)(yi − ȳ)

√

∑n
i= 1 (xi − x̄)2

√

∑n
i= 1 (yi − ȳ)2

(8)

where n is the sample size, xi and yi are samples, and x and y are
sample means. The correlation coefficient provides a measure of
the interrelatedness of numeric properties. Its value ranges from
−1 (highly anticorrelated) to +1 (highly correlated), and is 0
when uncorrelated.

We also calculated the coverage, which we define as the
proportion of test molecules with at least one nearest neighbor
that meets the similarity criterion. For all other molecules that
do not meet the criterion, we do not make any predictions. In
this case, the coverage is a measure of the size of the applicability
domain of a prediction model.

RESULTS

The vNN Platform
The main purpose of the vNN-based platform is to provide
users with a tool to make ADMET predictions and a user-
friendly environment to build new models. Hence, the platform
offers users two main capabilities that are accessible from the
main webpage (https://vnnadmet.bhsai.org/) (Figure 1): (1) to
run prebuilt ADMETmodels and (2) to build and run customized
models.

To use prebuilt ADMET models, users need only provide one
ormore querymolecules as the input (Figure 2). They can do this
either by drawing the molecule, entering the molecular SMILES
string (Weininger, 1988) directly on the website, or uploading
a text file (csv or txt format) with query molecules in SMILES
format. The text file should contain column headers labeled as
NAME and SMILES. Once users upload the query molecules,
they can submit the job. The application will then automatically
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FIGURE 2 | Submit ADMET predictions. On the Run ADMET Models page (top) users can upload a list of query compounds in SMILES format (lower left) or
manually enter compounds by using the draw structure feature (lower right).

run all ADMET prediction models. The output will be displayed
once all predictions are completed and a temporary link to the
result page will be sent to the user’s e-mail address. The results
can be downloaded as a table to the user’s computer (Figure 3).
By default, the user will see the ADMET results for our models,
which use a restricted applicability domain. However, there is an
option to include the results for the remaining compounds, using
our unrestricted applicability domain models. The time required
to run 100 query compounds is ∼5min on the server. However,
this may vary depending on the size of themolecules and whether
or not the job has been queued.

Users can build their own models by either selecting Build
Classification Model or Build Regression Model on the main
webpage (Figure 1). On the Build Classification Model page
(Figure 4), users are asked to upload a list of molecules in
SMILES format and the property of interest, with column headers
labeled as NAME, SMILES, and PROPERTY. The value of the

property should be set to 1 or 0 for classification models and
real numbers for regression models. The vNN platform will then
automatically run 10-fold CV by varying the Tanimoto distance
(d) from 0.1 to 1.0 in increments of 0.1, and the smoothing factor
(h) from 0.1 to 1.0 at each value of d. Once the calculations
are completed, a temporary link to the result page will be sent
to the user’s e-mail address. The results will be displayed on an
interactive webpage where users can select the values for d and
h (Equation 2), depending on the optimal performance measures
and coverage (Figure 4). The time required to build a model with
a dataset of 1,000 compounds is∼10min.

Users can then select the Run Custom Model option to predict
the activity of new test molecules (Figure 5), using the previously
selected values for the Tanimoto Distance and Smoothing Factor,
and add the same molecules as those used to train the model
in the Upload Compounds with Property data field. They then
need to add the new query molecule(s) in SMILES format in the
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FIGURE 3 | The ADMET predictions result page. The 15 ADMET predictions for each query molecule are presented on a separate row. Predictions based on models

using a restricted applicability domain are shown in solid colors and those based on models using an unrestricted applicability domain are shown in striped colors.

Users can download the results from the website into a single file.

Upload Query Compounds field. The result will be displayed on a
new webpage, and a temporary link to that page will also be sent
to the user’s e-mail address (Figure 5).

Available ADMET Predictions
The available ADMET prediction models, including their
performance measures for the restricted applicability domain
model, are summarized in Table 1. The performance measures
for the models using an unrestricted applicability domain are
presented in Table S1 in the Supplementary Material and on
our website (https://vnnadmet.bhsai.org/). The 15 models cover
a diverse set of ADMET endpoints. We will briefly describe these
models and their performance measures, as well as the sources
from which we retrieved the data. All datasets are available in
SMILES format on the vNN web server or in Structure Data
Format (SDF) in the Supplementary Material (Datasheet 1).

Some of the models have already been published (Liu et al., 2012,
2015; Liu and Wallqvist, 2014; Schyman et al., 2016). We also
present several new models here for the first time.

Blood-Brain Barrier
The blood-brain barrier (BBB) is a highly selective barrier that
separates the circulating blood from the central nervous system
(CNS) (Abbott et al., 2006). It allows the passage of water
molecules and water-soluble lipid molecules, as well as the
selective transport of glucose and amino acids. The benefit of
predicting BBB-permeable compounds is two-fold: (1) to identify
toxicants that could harm the brain, and (2) to design drug
molecules that can pass the BBB and reach their target in the CNS.

We developed a vNN-based BBB model, using 353
compounds whose BBB permeability values (log BB) were
obtained from the literature (Muehlbacher et al., 2011; Naef,
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FIGURE 4 | Build a classification model. On the Build Classification Model page (top), users can upload their training data and/or draw structures. On the Build

Classification Model Results page (bottom), users can interactively select/deselect different smoothing factors for comparison. The graph shows accuracy of

performance on the 10-fold cross validation test at different Tanimoto distances, where smoothing factors 0.2 and 1.0 are highlighted in green and blue, respectively

(strikethrough smoothing factors indicate deselected values). The coverage is shown in gray. The red circle indicates the “best” model performance based on

accuracy and coverage, where the black arrows show the corresponding Tanimoto-distance threshold (d0 = 0.7) and smoothing factor (h = 0.2). Although the

accuracy is reduced to 88 from 90% at d0 = 0.6, the number of compounds predicted increases from 60 to 75%, which may be worth the loss in accuracy.
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FIGURE 5 | Run a customized model. The first step to run a customized model is to upload the training dataset, as well as the selected Tanimoto distance and

smoothing factor from Figure 4. The second step is to upload query compounds. The results can be downloaded from the Run Custom Model Results page (bottom).
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TABLE 1 | Performance measures of vNN models in 10-fold cross validation, using a restricted applicability domain.

Model Dataa d0
b hc Accuracy Sensitivity Specificity Kappa Rd Coverage

DILI 1,427 0.60 0.50 0.71 0.70 0.73 0.42 0.66

Cytotox (hep2g) 6,097 0.40 0.20 0.84 0.88 0.76 0.64 0.89

HLM 3,219 0.40 0.20 0.81 0.72 0.87 0.59 0.91

CYP 1A2 7,558 0.50 0.20 0.90 0.70 0.95 0.66 0.75

CYP 2C9 8,072 0.50 0.20 0.91 0.55 0.96 0.54 0.76

CYP 2C19 8,155 0.50 0.20 0.87 0.64 0.93 0.58 0.76

CYP 3A4 10,373 0.50 0.20 0.88 0.76 0.92 0.68 0.78

CYP 2D6 7,805 0.50 0.20 0.89 0.61 0.94 0.57 0.75

BBB 353 0.60 0.20 0.90 0.94 0.86 0.80 0.61

Pgp Substrate 822 0.60 0.20 0.79 0.80 0.79 0.58 0.66

Pgp Inhibitor 2,304 0.50 0.20 0.85 0.91 0.73 0.66 0.76

hERG 685 0.70 0.70 0.84 0.84 0.83 0.68 0.80

MMP 6,261 0.50 0.40 0.89 0.64 0.94 0.61 0.69

AMES 6,512 0.50 0.40 0.82 0.86 0.75 0.62 0.79

MRTDe 1,184 0.60 0.20 0.79 0.69

aNumber of compounds in the dataset; bTanimoto-distance threshold value; cSmoothing factor; dPearson’s correlation coefficient; eRegression model.

2015). We classified compounds with log BB values of <−0.3
and >+0.3 as BBB non-permeable and permeable, respectively.
To calculate performance measures, we classified BBB permeable
and BBB non-permeable compounds as positives and negatives,
respectively.

The model predicted whether or not a given compound would
pass the BBB, but only for compounds within the applicability
domain defined by the training set. The performance measures
in Table 1 were calculated from 10-fold CV. The model showed
a high overall accuracy of 90% and a kappa value of 0.80, with a
coverage of 61%. The size of the dataset limited the applicability
domain of the model. However, if new data become available,
they can easily be added to the model to increase the applicability
domain.

The model performed on par with the best of the BBB models
published thus far. Most of the latter models, which used small
datasets, are global models applied to any molecule. However, all
models have a finite applicability domain (Cherkasov et al., 2014).
Indeed, modeling BBB permeability is complicated because
there are different possible routes across the barrier, via passive
diffusion or protein transport, and no model singlehandedly
accounts for all factors associated with this property. Our
vNN model only makes predictions for compounds that are
structurally similar enough to the test set molecules to ensure that
they have the same type of transport mechanism. Thus, our vNN
method accounts for multiple transport routes.

MMP Disruption (Mitochondrial Toxicity)
Given the fundamental role of mitochondria in cellular energetics
and oxidative stress, mitochondrial dysfunction has been
implicated in cancer, diabetes, neurodegenerative disorders,
and cardiovascular diseases (Pieczenik and Neustadt, 2007).
Many pharmaceuticals and environmental toxicants cause
mitochondrial dysfunction (Meyer et al., 2013). Therefore, the
ability to predict the impact of chemicals on mitochondrial

function would be useful. However, predicting mitochondrial
toxicants is complicated because mitochondrial dysfunction can
result from impairing any of the following: (1) the electron
transport chain (ETC), (2) the mitochondrial transport pathway,
(3) fatty acid oxidation, (4) the citric acid cycle, (5) mtDNA
replication, (6) and mitochondrial protein synthesis.

There are several common experimental techniques to
measure mitochondrial function. We used the largest dataset of
chemical-induced changes in mitochondrial membrane potential
(MMP), based on the assumption that a compound that causes
mitochondrial dysfunction is also likely to reduce the MMP.
We developed a vNN-based MMP prediction model, using
6,261 compounds collected from a previous study that screened
a library of 10,000 compounds (∼8,300 unique chemicals) at
15 concentrations, each in triplicate, to measure changes in
the MMP in HepG2 cells (Attene-Ramos et al., 2015). The
study found that 913 compounds decreased the MMP, whereas
5,395 compounds had no effect. We classified compounds that
decreased the MMP as positives and those that did not affect the
MMP as negatives.

Our MMP model predicted whether a given compound had
the potential to affect the MMP and thereby cause mitochondrial
dysfunction. It made predictions for compounds that were well
represented in the applicability domain, but not for any other
compound. The model showed a high overall accuracy of 89%
and a kappa value of 0.61, with a coverage of 69% (Table 1).

Cytotoxicity (HepG2)
Cytotoxicity is the degree to which a chemical causes damage to
cells. Cytotoxicity assays are widely used to screen compounds
for unwanted cell damage, and to identify compounds that could
be used, for example, to kill cancer cells. As such, the ability to
identify cytotoxic compounds is highly desirable.

We developed a cytotoxicity prediction model, using a
training dataset of in vitro toxicity against HepG2 cells for
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TABLE 2 | Performance measures of vNN DILI models compared with deep

learning.

NCTRa NCTRa Greena Xua Combineda

10-fold CV Test Test Test 10-fold CV

Accuracy (%) 87 (81) 75 (70) 61 (65) 60 (62) 85 (85)b

Sensitivity (%) 65 (70) 64 (80) 51 (75) 52 (62) 83 (84)b

Specificity (%) 95 (88) 86 (60) 75 (46) 70 (62) 88 (85)b

Coverage (%) 40 50 46 41 67

No of Compounds 190 185 320 236 475

aValues in parentheses are the deep learning results from Xu et al. (2015).
bValues averaged over 60 runs of 10-fold CV.

6,097 structurally diverse compounds, which we collected from
Chemical European Biology Laboratory (ChEMBL) (Bento et al.,
2014). In developing our model, we considered compounds with
an IC50 of 10µM or less in the in vitro assay as cytotoxic.
We classified cytotoxic compounds as positives and non-toxic
compounds as negatives.

The cytotoxicity model performed well, with an overall
accuracy of 84% and a kappa value of 0.64 (Table 1). Because
compounds in the dataset achieved only sparse coverage of
the chemical space, the model only predicted compounds that
were well represented in the dataset. It did not give predictions
for other compounds, and thereby avoided misleading results.
When using 10-fold CV, the model reliably predicted 89% of the
compounds in our dataset.

Drug-Induced Liver Injury
Over the last 50 years, drug-induced liver injury (DILI) has been
the most commonly cited reason for drug withdrawals from
the market (Assis and Navarro, 2009). As a result, current drug
development efforts are devoted to identifying and eliminating
potential DILI compounds. Therefore, a model that predicts at
an early stage whether a compound causes liver injury would
be highly desirable. However, the mechanisms of DILI are
complicated and diverse, making toxicology studies difficult.
For example, compounds that cause DILI in humans do not
necessarily induce clear liver injury in animal studies.

We collected DILI data from four sources used by Xu et al.
(2015): (1) the U.S. FDA’s National Center for Toxicological
Research (NCTR dataset) (Chen M. et al., 2011), as well as the
datasets of (2) Greene (Greene et al., 2010), (3) Xu (Xu et al.,
2008), and (4) Liew (Liew et al., 2011). In the first three datasets,
which included pharmaceuticals, we classified a compound as
causing DILI if it was associated with a high risk of DILI and not
if there was no such risk. We excluded low-risk DILI compounds.
In the Liew dataset, which contained both pharmaceuticals
and non-pharmaceuticals, we classified a compound as causing
DILI if it was associated with any adverse liver effect. DILI-
associated compounds were classified as positives and non-DILI
compounds as negatives.

The performance measures of the vNN model, using 10-
fold CV of the entire dataset excluding duplicated compounds,
showed an overall accuracy of 71% and a coverage of 66%
(Table 1). We also used the same datasets and compared our

models with some previously published deep learning models
(Xu et al., 2015; Table 2). Considering the complexity and
computational time investment involved in training these deep
learning models, our vNNmodels performed relatively well; they
performed on-par with the deep learning models, albeit with a
coverage ranging from 40 to 65%.

Cytochrome P450 Inhibition (Drug-Drug Interaction)
Cytochrome P450 enzymes (CYPs) constitute a superfamily of
proteins that play an important role in the metabolism and
detoxification of xenobiotics (Brown et al., 2008). A drug should
not be rapidly metabolized by CYPs if it is to maintain an
effective concentration. In addition, it should not inhibit drug-
metabolizing CYPs, because such an effect could elevate the
concentration of a co-administered drug and potentially lead
to drug overdose—an effect known as a drug-drug interaction
(Murray, 2006). In drug development, in vitro assays are
routinely used to assess interactions between drug candidates
and CYPs. However, there is a need for in silico models that
assess potential interactions with CYPs in the early stages of drug
development.

We collected data for five main drug-metabolizing CYPs:
1A2, 2D6, 2C9, 2C19, and 3A4. We retrieved CYP inhibitors
from ChEMBL (Bento et al., 2014) and classified them as
inhibitors if the IC50 was below 10µM. We removed from the
dataset any duplicates or compounds tested multiple times with
contradicting results, in which the reported IC50 values were
below and above the 10µM threshold value. For all CYPs, we
classified inhibitors and non-inhibitors as positives and negatives,
respectively.

The performance measures for the five CYP models are
presented in Table 1. All models achieved high accuracy (87–
91%) and kappa values (0.54–0.68) while maintaining high
coverage (75–78%).

hERG Blockers
The human ether-à-go-go-related gene (hERG) codes for
a potassium ion channel involved in the normal cardiac
repolarization activity of the heart (Sanguinetti and Tristani-
Firouzi, 2006). Drug-induced blockade of hERG function can
cause long QT syndrome, which may result in arrhythmia and
death (De Ponti et al., 2001). For this reason, hERG liability is
one of the toxicology screens that drug candidates must pass
during early pre-clinical studies. Therefore, in silico models that
identify hERG blockers in the early stages of drug design are of
considerable interest.

We retrieved 282 known hERG blockers from the literature
and classified compounds with an IC50 cutoff value of 10µM or
less as blockers (Wang et al., 2012). We also collected a set of
404 compounds with IC50 values >10µM from ChEMBL (Bento
et al., 2014) and classified them as non-blockers (Czodrowski,
2013).We classified hERG blockers and non-blockers as positives
and negatives, respectively.

The hERG model performed with an overall accuracy of
84%, well-balanced sensitivity and specificity values (84 and
83%, respectively), and a kappa value of 0.68 (Table 1). The
model reliably predicted 80% of the compounds in our dataset
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when using 10-fold CV. However, the coverage of chemical
space by the non-hERG blockers in the dataset was sparse, and
only compounds well represented in the dataset were predicted
with confidence. Because the model did not give predictions for
other compounds, it avoided misleading results. Therefore, users
should use this model to flag potential hERG blockers rather than
to identify non-hERG blockers.

Pgp Substrates and Inhibitors
P-glycoprotein (Pgp) is an essential cell membrane protein that
extracts many foreign substances from the cell (Ambudkar et al.,
2003). As such, it is a critical determinant of the pharmacokinetic
properties of drugs. Cancer cells often overexpress Pgp, which
increases the efflux of chemotherapeutic agents from the cell
and prevents treatment by reducing the effective intracellular
concentrations of such agents—a phenomenon known as
multidrug resistance (Borst and Elferink, 2002). For this reason,
identifying compounds that can either be transported out of the
cell by Pgp (substrates) or impair Pgp function (inhibitors) is of
great interest. Therefore, using the vNN method, we developed
models to predict both Pgp substrates and Pgp inhibitors.

The Pgp substrate dataset was collected by Hou and co-
workers (Li et al., 2014). This dataset included measurements
for 422 substrates and 400 non-substrates. To generate a large
Pgp inhibitor dataset, we combined two datasets (Broccatelli
et al., 2011; Chen L. et al., 2011), and removed duplicates
to form a combined dataset consisting of a training set of
1,319 inhibitors and 937 non-inhibitors. We classified the Pgp
inhibitors (substrates) and non-inhibitors (non-substrates) as
positives and negatives, respectively.

The vNNmodels for identifying Pgp substrates and inhibitors
gave accurate and reliable results, showing overall accuracies
of 79 and 85%, respectively, when using 10-fold CV, with
corresponding kappa values of 0.58 and 0.66. These models
reliably predicted 65 and 76% of the compounds in their
datasets to be Pgp substrates and inhibitors, respectively. The
performance characteristics of these models were comparable, or
at times superior, to those of other model constructs (Schyman
et al., 2016).

Chemical Mutagenicity (AMES Test)
Mutagens are chemicals that cause abnormal genetic mutations
leading to cancer. A common way to assess a chemical’s
mutagenicity is the Ames test (Ames et al., 1973). This test has
become the standard for assessing the safety of chemicals and
drugs, and has been used to test thousands of molecules. We
examined whether the vNNmethod could effectively use existing
data to predict mutagenicity.

We retrieved an Ames mutagenicity dataset consisting of
6,512 compounds, of which 3,503 were Ames-positive (Hansen
et al., 2009), and developed a vNNAmes mutagenicity prediction
model. The model performed well, with an overall accuracy of
82%; sensitivity and specificity values of 86 and 75%, respectively;
and a high kappa value of 0.62 (Table 1). The model also reliably
predicted 79% of the compounds in the Ames dataset when
using 10-fold CV. Further details of the model and its prediction
performance can be found elsewhere (Liu and Wallqvist, 2014).

Maximum Recommended Therapeutic Dose
A basic principle of toxicology is that “the dose makes the
poison.” For most drugs, the therapeutic dose is limited by
toxicity, and the maximum recommended therapeutic dose
(MRTD) is an estimated upper daily dose that is safe (Contrera
et al., 2004). Investigators carry out toxicological experiments on
animals to determine the toxic effects of a drug and the initial
dose for human clinical trials. Unfortunately, there is a lack of
correlation between animal and human toxicity data. Therefore,
we investigated whether the vNN method could predict the
MRTD values of new compounds based on known humanMRTD
data. If so, the values could be used to estimate the starting dose
in phase I clinical trials, while significantly reducing the number
of animals used in preliminary toxicology studies.

We obtained a dataset of MRTD values publically disclosed
by the FDA, mostly of single-day oral doses for an average adult
with a body weight of 60 kg, for 1,220 compounds (most of which
are small organic drugs). For modeling purposes we converted
the MRTD unit from mg/kg-body weight/day to mol/kg-body
weight/day via the molecular weight of the compound. However,
the predicted values on the website are reported in mg/day
based upon an average adult weighing 60 kg. We excluded
organometallics, high-molecular weight polymers (>5,000 Da),
nonorganic chemicals, mixtures of chemicals, and very small
molecules (<100 Da). We used an external test set of 160
compounds, which was collected by the FDA for validation. The
total dataset for our model contained 1,184 compounds (Liu
et al., 2012).

The MRTD model reliably predicted 69% of the FDA MRTD
dataset, with a Pearson’s correlation coefficient (R) of 0.79
between the predicted and measured log(MRTD) values, and
a mean deviation (mDev) of 0.56 log units, using 40-fold CV
(Liu et al., 2012). For comparison, we used two popular QSAR
regression methods—the partial least square (PLS) and support
vector machine (SVM) methods—to develop two global models
to fit the training dataset. We evaluated the model performance,
using 40-fold CV of the training set. The best PLSmodel achieved
an R-value of 0.50 and an mDev of 0.79. The results for the SVM
model were at best comparable to those of the best PLS model,
with an R-value of 0.53 and an mDev of 0.63. For further details
of the model, we refer the reader to our previous paper (Liu et al.,
2012).

Human Liver Microsomal Stability
The human liver is the most important organ for drug
metabolism. For a drug to achieve effective therapeutic
concentrations in the body, it cannot be metabolized too rapidly
by the liver. Otherwise, it would need to be administered
at high doses, which are associated with high toxicity. To
identify and exclude rapidly metabolized compounds (Di et al.,
2003), pharmaceutical companies commonly use the human
liver microsomal (HLM) stability assay. This has led to the
accumulation of a substantial body of HLM stability data in
publicly accessible databases.

However, our knowledge of how enzymes in the HLM assay
metabolize drugs remains fragmentary. Therefore, we examined
whether the vNN method could effectively predict drugs that are
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TABLE 3 | Tox21 assays with PubChem assay identification number.

Assay ID Assay PubChem
AID

AhR Aryl hydrocarbon receptor 743122

Aromatase Aromatase 743139

AR Androgen receptor 743040

AR-LBD Androgen receptor LBD 743053

ER Estrogen receptor alpha 743079

ER-LBD Estrogen receptor alpha LBD 743077

PPAR-g Peroxisome proliferator-activated receptor gamma 743140

ARE Nuclear factor antioxidant responsive element 743219

ATAD5 ATAD5 720516

HSE Heat shock factor response element 743228

MMP Mitochondrial membrane potential 720637

p53 p53 720552

rapidly metabolized by the liver. We retrieved HLM data from
the ChEMBL database (Bento et al., 2014), manually curated the
data, and classified compounds as stable or unstable based on the
reported half-life [T1/2> 30min was considered stable, and T1/2
< 30min unstable (Liu et al., 2015)]. The final dataset contained
3,219 compounds. Of these, we classified 2,047 as stable and 1,166
as unstable.

The HLM model performed with an overall accuracy of 81%;
sensitivity and specificity values of 71 and 87%, respectively; and
a high kappa value of 0.60 (Table 1). The HLM model reliably
predicted 91% of the compounds in the HLM dataset when using
10-fold CV. We refer the reader to our original paper for further
details of the model and its prediction performance (Liu et al.,
2015).

Implementation Aspects
The vNN-ADMET web-application is hosted on an Apache
Tomcat Web server that is accessible via a secure service over
Hypertext Transfer Protocol Secure (https). We developed the
application on the basis of a three-tiered architecture, composed
of a backend database, controller, and presentation tiers. The
first tier consists of a PostgreSQL 9.5.7 database that stores user
account information, uploaded files, constructed models, and
model predictions. The second (controller) tier provides access to
the prediction engine and implements the functionality required
to create and manage multiple predictions. We implemented
this tier, using Pipeline Pilot protocols hosted on a local
Pipeline Pilot server. The third (presentation) tier provides for
visualization of the results, with plotting capabilities for multiple
predictions. The controller and presentation tiers were developed
using Java Platform, Enterprise Edition 7, Spring Framework
4.2.2, JavaServer Faces 2.2, PrimeFaces 6.0, and BootsFaces
1.0.2. The graphical user interface in the presentation tier uses
Web standards supported by modern Web browsers, including
Microsoft Edge 38, Chrome version 58, and Firefox version 53,
without any need for plugins.

To use the system, the user must register for an account at
https://vnnadmet.bhsai.org/. Once logged in, the user can build
custom models, and run pre-built ADMET and custom models.

The data corresponding to a user (login credentials, compounds,
models, results, etc.) are not shared with any other user within
or outside the system. The uploaded compounds, constructed
models, and model predictions are purged from the system every
2 weeks.

DISCUSSION

We have presented a web-based vNN prediction platform, with
which a user can build and test models as well as predict the
ADMET properties of a compound by using our existing tools.

All vNN models performed well with accuracies of >71% (see
Table 1 for further details). On average, themodels predicted 75%
of the compounds in their datasets, using 10-fold CV.

Achieving fair comparisons between a new model and a
competing model is always difficult because such comparisons
require the same training data, validation data, and performance
measures. An important advantage of our platform is that it offers
an opportunity for developers to compare their methods with our
vNN method, using their training and validation data.

For demonstrative purposes, we quantitatively compared our
vNN method with the winning method of the Tox21 challenge
(Huang et al., 2016). This challenge was issued in 2014 by the
U.S. Toxicology in the twenty-first Century (Tox21) program,
which aims to improve toxicity prediction methods. The Tox 21
consortium solicitedmodels that could best predict the toxicity of
10,000 compounds it had tested in 12 different assays (Table 3).
It used a final evaluation dataset that was concealed to determine
the winners.

Table 4 shows the area under the curve for the receiver
operating characteristic (AUC-ROC) of the 18 leading research
teams with their best-performing model for each of the 12 assays.
To compare our models with those in Table 4, we set d to
1.0 so that we could predict all compounds. The vNN method
performed reasonably well in predicting most of the Tox21
assays. We note that the grand challenge winner used data from
PubChem (Wang et al., 2009) and ChEMBL (Bento et al., 2014),
in addition to the Tox21 data, which makes it impossible for us
to directly compare our results with their results.

The MMP data we used for our mitochondrial dysfunction
model were the same as those used in the Tox21 challenge
(Attene-Ramos et al., 2015; Huang et al., 2016). Our MMPmodel
was the seventh best performing model, with an AUC-ROC value
of 0.882 (with h = 0.3 and d = 1.0). This was comparable to the
values of more elaborate and computationally time-consuming
methods, such as deep learning (Table 4).

Some QSAR methods do not use an applicability domain to
determine whether their predictions are reliable. This could lead
to the misperception that a model can predict the activity of any
molecule. The applicability domain is vital to the vNN method.
The user of our platform can adjust it by varying the Tanimoto
distance threshold value. Although this could be set to 1 so
that the model predicts the activity of any molecule, no model
is likely to have an unlimited applicability domain (Liu et al.,
2015).

A more reasonable approach to improve a vNN-based model
is to increase the applicability domain by adding more reference
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TABLE 4 | AUC-ROCs of vNN models and the best 18 models on the final evaluation test of the Tox21 Challenge.

Team AhR AR AR-LBD ARE Aromatase ATAD5 ER ER-LBD HSE MMP p53 PPARg

GrandWinner 0.928 0.807 0.879 0.840 0.834 0.793 0.810 0.814 0.865 0.942 0.862 0.861

AMAZIZ 0.913 0.770 0.846 0.805 0.819 0.828 0.806 0.806 0.842 0.95 0.843 0.830

dmlab 0.781 0.828 0.819 0.768 0.838 0.800 0.766 0.772 0.855 0.946 0.880 0.831

T 0.913 0.676 0.848 0.801 0.825 0.814 0.784 0.805 0.811 0.937 0.847 0.822

Microsomes 0.901 – – 0.804 – 0.812 0.785 0.827 – – 0.826 0.717

FilipsPL 0.893 0.736 0.743 0.758 0.776 – 0.771 – 0.766 0.928 0.815 –

Charite 0.896 0.688 0.789 0.739 0.781 0.751 0.707 0.798 0.852 0.880 0.834 0.7

RCC 0.872 0.763 0.747 0.761 0.792 0.673 0.781 0.762 0.755 0.920 0.795 0.637

Frozenarm 0.865 0.744 0.722 0.700 0.740 0.726 0.745 0.790 0.752 0.859 0.803 0.803

ToxFit 0.862 0.744 0.757 0.697 0.738 0.729 0.729 0.752 0.689 0.862 0.803 0.791

CGL 0.866 0.742 0.566 0.747 0.749 0.737 0.759 0.727 0.775 0.880 0.817 0.738

SuperToX 0.854 – 0.560 0.711 0.742 – – – – 0.862 0.732 –

Kibutz 0.865 0.750 0.694 0.708 0.729 0.737 0.757 0.779 0.587 0.838 0.787 0.666

MML 0.871 0.693 0.660 0.701 0.709 0.749 0.750 0.710 0.647 0.854 0.815 0.645

NCI 0.812 0.628 0.592 0.783 0.698 0.714 0.483 0.703 0.858 0.851 0.747 0.736

VIF 0.827 0.797 0.610 0.636 0.671 0.656 0.732 0.735 0.723 0.796 0.648 0.666

Toxic Avg 0.715 0.721 0.611 0.633 0.671 0.593 0.646 0.640 0.465 0.732 0.614 0.682

Swamidass 0.353 0.571 0.748 0.372 0.274 0.391 0.680 0.738 0.711 0.828 0.661 0.585

vNN 0.883 0.716 0.626 0.727 0.786 0.699 0.738 0.770 0.793 0.882 0.808 0.690

vNN rank 7 12 13 11 6 13 12 9 7 7 10 11

The vNN parameters were set to h = 0.3 and d0 = 1.0. Gray cells indicate models showing performance inferior to the vNN models.

compounds. A good test of the power of a model to generate
prospective predictions is time-split validation, which divides the
data into “old” and “new” data and uses the former to train
the model and the latter “new” data for validation (Sheridan,
2013; Liu et al., 2015). We have previously shown in a time-split
validation that, whereas the accuracy of a vNN model is roughly
maintained, the number of “new” compounds that it can predict
is significantly reduced. However, by simply adding a few “new”
compounds, the coverage increases significantly (Liu et al., 2015).

The lack of training data poses an important limitation to
the vNN approach. When a dataset is too small, there is a high
probability that a target molecule will have no qualified near
neighbors in the dataset, and hence a high-quality prediction
cannot be made. However, the lack of training data is a limitation
for all machine learning methods. The difference is that most
such methods build a model no matter how small the training
dataset, and will always make a prediction for any input molecule
without considering the reliability of the predicted result. In our
view, it is better not to give a prediction at all if it is unreliable.
This also alerts users to use alternative methods, including
experimental measurements, to derive a reliable answer. As more
experimental data become available over time, the performance
of the vNN method will improve without retraining. This
is in contrast to most other machine learning methods,
which cannot take advantage of new data without retraining
a model.

This finding is especially significant for drug discovery labs
because the chemical space is restricted by the target candidates
they are investigating. For example, when exploring a new drug
target, it is crucial to continuously update the model with new
data to ensure that the applicability domain is relevant for the

new target. In a vNN-based model, this can be done easily
by adding the SMILES strings of the new compounds to the
reference dataset. For this reason, we believe that our web-
based vNN platform has the potential to greatly accelerate the
development of drugs.

AUTHOR CONTRIBUTIONS

PS, RL, and AW developed the method, analyzed the data, and
wrote the manuscript. VD designed and implemented the web
server.

FUNDING

The authors were supported by the U.S. Army Medical Research
and Materiel Command (Fort Detrick, MD), and the Defense
Threat Reduction Agency grant CBCall14-CBS-05-2-0007.

ACKNOWLEDGMENTS

The opinions and assertions contained herein are the private
views of the authors and are not to be construed as official or as
reflecting the views of the U.S. Army or of the U.S. Department
of Defense. This paper has been approved for public release with
unlimited distribution.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphar.
2017.00889/full#supplementary-material

Frontiers in Pharmacology | www.frontiersin.org December 2017 | Volume 8 | Article 889160

https://www.frontiersin.org/articles/10.3389/fphar.2017.00889/full#supplementary-material
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Schyman et al. vNN-ADMET Web Server

REFERENCES

Abbott, N. J., Rönnbäck, L., and Hansson, E. (2006). Astrocyte-endothelial

interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53.

doi: 10.1038/nrn1824

Adler, J., and Parmryd, I. (2010). Quantifying colocalization by correlation: the

Pearson correlation coefficient is superior to the Mander’s overlap coefficient.

Cytometry A 77, 733–742. doi: 10.1002/cyto.a.20896

Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E., and Gottesman, M. M. (2003).

P-glycoprotein: from genomics to mechanism. Oncogene 22, 7468–7485.

doi: 10.1038/sj.onc.1206948

Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D. (1973). Carcinogens

are mutagens: a simple test system combining liver homogenates for activation

and bacteria for detection. Proc. Natl. Acad. Sci. U.S.A. 70, 2281–2285.

doi: 10.1073/pnas.70.8.2281

Assis, D. N., and Navarro, V. J. (2009). Human drug hepatotoxicity: a

contemporary clinical perspective. Expert Opin. Drug Metab. Toxicol. 5,

463–473. doi: 10.1517/17425250902927386

Attene-Ramos, M. S., Huang, R., Michael, S., Witt, K. L., Richard, A., Tice, R.

R., et al. (2015). Profiling of the Tox21 chemical collection for mitochondrial

function to identify compounds that acutely decreasemitochondrial membrane

potential. Environ. Health Perspect. 123, 49–56. doi: 10.1289/ehp.1408642

Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., et al.

(2014). The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42,

D1083–D1090. doi: 10.1093/nar/gkt1031

Borst, P., and Elferink, R. O. (2002). Mammalian ABC transporters

in health and disease. Annu. Rev. Biochem. 71, 537–592.

doi: 10.1146/annurev.biochem.71.102301.093055

Broccatelli, F., Carosati, E., Neri, A., Frosini, M., Goracci, L., Oprea, T. I.,

et al. (2011). A novel approach for predicting P-glycoprotein (ABCB1)

inhibition using molecular interaction fields. J. Med. Chem. 54, 1740–1751.

doi: 10.1021/jm101421d

Brown, C. M., Reisfeld, B., and Mayeno, A. N. (2008). Cytochromes P450:

a structure-based summary of biotransformations using representative

substrates. Drug Metab. Rev. 40, 1–100. doi: 10.1080/036025307018

36662

Chen, L., Li, Y., Zhao, Q., Peng, H., and Hou, T. (2011). ADME evaluation in

drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive

partitioning and naive Bayesian classification techniques. Mol. Pharm. 8,

889–900. doi: 10.1021/mp100465q

Chen, M., Vijay, V., Shi, Q., Liu, Z., Fang, H., and Tong, W. (2011). FDA-approved

drug labeling for the study of drug-induced liver injury.Drug Discov. Today 16,

697–703. doi: 10.1016/j.drudis.2011.05.007

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., et al. (2012). admetSAR:

a comprehensive source and free tool for assessment of chemical ADMET

properties. J. Chem. Inf. Model. 52, 3099–3105. doi: 10.1021/ci300367a

Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M.,

et al. (2014). QSAR modeling: where have you been? Where are you going to?

J. Med. Chem. 57, 4977–5010. doi: 10.1021/jm4004285

Contrera, J. F., Matthews, E. J., Kruhlak, N. L., and Benz, R. D. (2004). Estimating

the safe starting dose in phase I clinical trials and no observed effect level based

on QSAR modeling of the human maximum recommended daily dose. Regul.

Toxicol. Pharmacol. 40, 185–206. doi: 10.1016/j.yrtph.2004.08.004

Czodrowski, P. (2013). hERG me out. J. Chem. Inf. Model. 53, 2240–2251.

doi: 10.1021/ci400308z

Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: a free web tool to

evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness

of small molecules. Sci. Rep. 7:42717. doi: 10.1038/srep42717

De Ponti, F., Poluzzi, E., and Montanaro, N. (2001). Organising evidence

on QT prolongation and occurrence of Torsades de Pointes with non-

antiarrhythmic drugs: a call for consensus. Eur. J. Clin. Pharmacol. 57, 185–209.

doi: 10.1007/s002280100290

Di, L., Kerns, E. H., Hong, Y., Kleintop, T. A., McConnell, O. J., and Huryn, D.

M. (2003). Optimization of a higher throughput microsomal stability screening

assay for profiling drug discovery candidates. J. Biomol. Screen. 8, 453–462.

doi: 10.1177/1087057103255988

Duan, J., Dixon, S. L., Lowrie, J. F., and Sherman, W. (2010). Analysis and

comparison of 2D fingerprints: insights into database screening performance

using eight fingerprint methods. J. Mol. Graph. Model. 29, 157–170.

doi: 10.1016/j.jmgm.2010.05.008

Dunn, G., and Everitt, B. (1995). Clinical Biostatistics: An Introduction to Evidence-

based Medicine. London: E. Arnold.

Greene, N., Fisk, L., Naven, R. T., Note, R. R., Patel, M. L., and Pelletier, D. J. (2010).

Developing structure–activity relationships for the prediction of hepatotoxicity.

Chem. Res. Toxicol. 23, 1215–1222. doi: 10.1021/tx1000865

Hansen, K., Mika, S., Schroeter, T., Sutter, A., ter Laak, A., Steger-Hartmann, T.,

et al. (2009). Benchmark data set for in silico prediction of Ames mutagenicity.

J. Chem. Inf. Model. 49, 2077–2081. doi: 10.1021/ci900161g

Hert, J., Willett, P., Wilton, D. J., Acklin, P., Azzaoui, K., Jacoby, E., et al. (2004).

Comparison of topological descriptors for similarity-based virtual screening

using multiple bioactive reference structures.Org. Biomol. Chem. 2, 3256–3266.

doi: 10.1039/b409865j

Huang, R., Xia, M., Nguyen, D.-T., Zhao, T., Sakamuru, S., Zhao, J., et al. (2016).

Tox21Challenge to build predictive models of nuclear receptor and stress

response pathways as mediated by exposure to environmental chemicals and

drugs. Front. Environ. Sci. 3:85. doi: 10.3389/fenvs.2015.00085

Li, D., Chen, L., Li, Y., Tian, S., Sun, H., and Hou, T. (2014). ADMET evaluation

in drug discovery. 13. Development of in silico prediction models for P-

glycoprotein substrates.Mol. Pharm. 11, 716–726. doi: 10.1021/mp400450m

Liew, C. Y., Lim, Y. C., and Yap, C. W. (2011). Mixed learning algorithms and

features ensemble in hepatotoxicity prediction. J. Comput. Aided Mol. Des. 25,

855. doi: 10.1007/s10822-011-9468-3

Liu, R., Schyman, P., and Wallqvist, A. (2015). Critically assessing the predictive

power of QSAR models for human liver microsomal stability. J. Chem. Inf.

Model. 55, 1566–1575. doi: 10.1021/acs.jcim.5b00255

Liu, R., Tawa, G., and Wallqvist, A. (2012). Locally weighted learning methods

for predicting dose-dependent toxicity with application to the human

maximum recommended daily dose. Chem. Res. Toxicol. 25, 2216–2226.

doi: 10.1021/tx300279f

Liu, R., and Wallqvist, A. (2014). Merging applicability domains for in silico

assessment of chemical mutagenicity. J. Chem. Inf. Model. 54, 793–800.

doi: 10.1021/ci500016v

Manganaro, A., Pizzo, F., Lombardo, A., Pogliaghi, A., and Benfenati, E. (2016).

Predicting persistence in the sediment compartment with a new automatic

software based on the k-Nearest Neighbor (k-NN) algorithm.Chemosphere 144,

1624–1630. doi: 10.1016/j.chemosphere.2015.10.054

Maunz, A., Gütlein, M., Rautenberg, M., Vorgrimmler, D., Gebele, D., and Helma,

C. (2013). lazar: a modular predictive toxicology framework. Front. Pharmacol.

4:38. doi: 10.3389/fphar.2013.00038

Meyer, J. N., Leung, M. C., Rooney, J. P., Sendoel, A., Hengartner, M. O., Kisby, G.

E., et al. (2013). Mitochondria as a target of environmental toxicants. Toxicol.

Sci. 134, 1–17. doi: 10.1093/toxsci/kft102

Muehlbacher, M., Spitzer, G. M., Liedl, K. R., and Kornhuber, J. (2011). Qualitative

prediction of blood–brain barrier permeability on a large and refined dataset. J.

Comput. Aided Mol. Des. 25, 1095–1106. doi: 10.1007/s10822-011-9478-1

Murray, M. (2006). Role of CYP pharmacogenetics and drug-drug interactions

in the efficacy and safety of atypical and other antipsychotic agents. J. Pharm.

Pharmacol. 58, 871–885. doi: 10.1211/jpp.58.7.0001

Naef, R. (2015). A generally applicable computer algorithm based on the group

additivity method for the calculation of seven molecular descriptors: heat

of combustion, logPO/W, logS, refractivity, polarizability, toxicity and logBB

of crganic compounds; scope and limits of applicability. Molecules 20:18279.

doi: 10.3390/molecules201018279

Pieczenik, S. R., and Neustadt, J. (2007). Mitochondrial dysfunction

and molecular pathways of disease. Exp. Mol. Pathol. 83, 84–92.

doi: 10.1016/j.yexmp.2006.09.008

Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf.

Model. 50, 742–754. doi: 10.1021/ci100050t

Sanguinetti, M. C., and Tristani-Firouzi, M. (2006). hERG potassium channels and

cardiac arrhythmia. Nature 440, 463–469. doi: 10.1038/nature04710

Schyman, P., Liu, R., andWallqvist, A. (2016). Using the variable-nearest neighbor

method to identify P-glycoprotein substrates and inhibitors. ACS Omega 1,

923–929. doi: 10.1021/acsomega.6b00247

Sheridan, R. P. (2013). Time-split cross-validation as a method for estimating

the goodness of prospective prediction. J. Chem. Inf. Model. 53, 783–790.

doi: 10.1021/ci400084k

Frontiers in Pharmacology | www.frontiersin.org December 2017 | Volume 8 | Article 889161

https://doi.org/10.1038/nrn1824
https://doi.org/10.1002/cyto.a.20896
https://doi.org/10.1038/sj.onc.1206948
https://doi.org/10.1073/pnas.70.8.2281
https://doi.org/10.1517/17425250902927386
https://doi.org/10.1289/ehp.1408642
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1146/annurev.biochem.71.102301.093055
https://doi.org/10.1021/jm101421d
https://doi.org/10.1080/03602530701836662
https://doi.org/10.1021/mp100465q
https://doi.org/10.1016/j.drudis.2011.05.007
https://doi.org/10.1021/ci300367a
https://doi.org/10.1021/jm4004285
https://doi.org/10.1016/j.yrtph.2004.08.004
https://doi.org/10.1021/ci400308z
https://doi.org/10.1038/srep42717
https://doi.org/10.1007/s002280100290
https://doi.org/10.1177/1087057103255988
https://doi.org/10.1016/j.jmgm.2010.05.008
https://doi.org/10.1021/tx1000865
https://doi.org/10.1021/ci900161g
https://doi.org/10.1039/b409865j
https://doi.org/10.3389/fenvs.2015.00085
https://doi.org/10.1021/mp400450m
https://doi.org/10.1007/s10822-011-9468-3
https://doi.org/10.1021/acs.jcim.5b00255
https://doi.org/10.1021/tx300279f
https://doi.org/10.1021/ci500016v
https://doi.org/10.1016/j.chemosphere.2015.10.054
https://doi.org/10.3389/fphar.2013.00038
https://doi.org/10.1093/toxsci/kft102
https://doi.org/10.1007/s10822-011-9478-1
https://doi.org/10.1211/jpp.58.7.0001
https://doi.org/10.3390/molecules201018279
https://doi.org/10.1016/j.yexmp.2006.09.008
https://doi.org/10.1021/ci100050t
https://doi.org/10.1038/nature04710
https://doi.org/10.1021/acsomega.6b00247
https://doi.org/10.1021/ci400084k
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Schyman et al. vNN-ADMET Web Server

Sushko, I., Novotarskyi, S., Körner, R., Pandey, A. K., Rupp, M., Teetz, W., et al.

(2011). Online chemical modeling environment (OCHEM): web platform for

data storage, model development and publishing of chemical information. J.

Comput. Aided Mol. Des. 25, 533–554. doi: 10.1007/s10822-011-9440-2

Walker, T., Grulke, C. M., Pozefsky, D., and Tropsha, A. (2010).

Chembench: a cheminformatics workbench. Bioinformatics 26, 3000–3001.

doi: 10.1093/bioinformatics/btq556

Wang, S., Li, Y., Wang, J., Chen, L., Zhang, L., Yu, H., et al. (2012). ADMET

evaluation in drug discovery. 12. Development of binary classification models

for prediction of hERG potassium channel blockage.Mol. Pharm. 9, 996–1010.

doi: 10.1021/mp300023x

Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., and Bryant, S. H. (2009).

PubChem: a public information system for analyzing bioactivities of small

molecules. Nucleic Acids Res. 37, W623–W633. doi: 10.1093/nar/gkp456

Waring, M. J., Arrowsmith, J., Leach, A. R., Leeson, P. D., Mandrell, S., Owen,

R. M., et al. (2015). An analysis of the attrition of drug candidates from

four major pharmaceutical companies. Nat. Rev. Drug Discov. 14, 475–486.

doi: 10.1038/nrd4609

Weininger, D. (1988). SMILES, a chemical language and information system. 1.

Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28,

31–36. doi: 10.1021/ci00057a005

Xu, J. J., Henstock, P. V., Dunn, M. C., Smith, A. R., Chabot, J. R., and de Graaf,

D. (2008). Cellular Imaging predictions of clinical drug-induced liver injury.

Toxicol. Sci. 105, 97–105. doi: 10.1093/toxsci/kfn109

Xu, Y., Dai, Z., Chen, F., Gao, S., Pei, J., and Lai, L. (2015). Deep

learning for drug-induced liver injury. J. Chem. Inf. Model. 55, 2085–2093.

doi: 10.1021/acs.jcim.5b00238

Zheng, W., and Tropsha, A. (2000). Novel variable selection quantitative

structure–property relationship approach based on the k-nearest-

neighbor principle. J. Chem. Inf. Comput. Sci. 40, 185–194. doi: 10.1021/

ci980033m

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Schyman, Liu, Desai and Wallqvist. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org December 2017 | Volume 8 | Article 889162

https://doi.org/10.1007/s10822-011-9440-2
https://doi.org/10.1093/bioinformatics/btq556
https://doi.org/10.1021/mp300023x
https://doi.org/10.1093/nar/gkp456
https://doi.org/10.1038/nrd4609
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1093/toxsci/kfn109
https://doi.org/10.1021/acs.jcim.5b00238
https://doi.org/10.1021/ci980033m
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


ORIGINAL RESEARCH
published: 06 November 2018
doi: 10.3389/fphar.2018.01256

Frontiers in Pharmacology | www.frontiersin.org November 2018 | Volume 9 | Article 1256

Edited by:

Leonardo L. G. Ferreira,

Universidade de São Paulo, Brazil

Reviewed by:

Philip Day,

University of Manchester,

United Kingdom

Alan Talevi,

National University of La Plata,

Argentina

*Correspondence:

Ola Spjuth

ola.spjuth@farmbio.uu.se

Specialty section:

This article was submitted to

Experimental Pharmacology and Drug

Discovery,

a section of the journal

Frontiers in Pharmacology

Received: 02 July 2018

Accepted: 15 October 2018

Published: 06 November 2018

Citation:

Lampa S, Alvarsson J, Arvidsson Mc

Shane S, Berg A, Ahlberg E and

Spjuth O (2018) Predicting Off-Target

Binding Profiles With Confidence

Using Conformal Prediction.

Front. Pharmacol. 9:1256.

doi: 10.3389/fphar.2018.01256

Predicting Off-Target Binding Profiles
With Confidence Using Conformal
Prediction
Samuel Lampa 1, Jonathan Alvarsson 1, Staffan Arvidsson Mc Shane 1, Arvid Berg 1,

Ernst Ahlberg 2 and Ola Spjuth 1*

1 Pharmaceutical Bioinformatics Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden,
2 Predictive Compound ADME and Safety, Drug Safety and Metabolism, AstraZeneca IMED Biotech Unit, Mölndal, Sweden

Ligand-based models can be used in drug discovery to obtain an early indication

of potential off-target interactions that could be linked to adverse effects. Another

application is to combine such models into a panel, allowing to compare and search

for compounds with similar profiles. Most contemporary methods and implementations

however lack valid measures of confidence in their predictions, and only provide

point predictions. We here describe a methodology that uses Conformal Prediction for

predicting off-target interactions, with models trained on data from 31 targets in the

ExCAPE-DB dataset selected for their utility in broad early hazard assessment. Chemicals

were represented by the signature molecular descriptor and support vector machines

were used as the underlying machine learning method. By using conformal prediction,

the results from predictions come in the form of confidence p-values for each class. The

full pre-processing and model training process is openly available as scientific workflows

on GitHub, rendering it fully reproducible. We illustrate the usefulness of the developed

methodology on a set of compounds extracted from DrugBank. The resulting models are

published online and are available via a graphical web interface and an OpenAPI interface

for programmatic access.

Keywords: target profiles, predictive modeling, conformal prediction, machine learning, off-target, adverse

effects, workflow

1. INTRODUCTION

Drug-target interactions are central to the drug discovery process (Yildirim et al., 2007), and is
the subject of study for the field of chemogenomics (Bredel and Jacoby, 2004), which has emerged
and grown over the last few decades. Drugs commonly interact with multiple targets (Hopkins,
2008), and off-target pharmacology as well as polypharmacology have important implications
for drug efficacy and safety (Peters, 2013; Ravikumar and Aittokallio, 2018). Organizations
involved in drug discovery, such as pharmaceutical companies and academic institutions, use many
types of experimental techniques and assays to determine target interactions, including in vitro
pharmacological profiling (Bowes et al., 2012). However, an attractive complementary method is to
use computational (in silico) profiling of binding profiles for ligands (Cereto-Massagué et al., 2015),
which also opens the possibility to predict hypothetical compounds. A common approach to the
target prediction problem is to use a panel of structure-activity relationship (QSAR) models, with
one model per target (Hansch, 1969), where chemicals in a knowledge base with known interaction
values (numerical or categorical) are described numerically by descriptors, and a statistical learning
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model is trained to predict numerical values (regression) or
categorical values (classification) for new compounds. The
recent increase in the number of available SAR data points
in interaction databases such as ChEMBL (Gaulton et al.,
2017) and PubChem (Wang et al., 2017) makes it feasible to
use ligand-based models to predict not only targets but also
panels of targets. Several methods and tools are available for
target prediction and for constructing and using target profiles.
Bender et al. use a Bayesian approach to train models for 70
selected targets and use these for target profiling to classify
adverse drug reactions (Bender et al., 2007). Chembench is a web-
based portal, which, founded in 2008 is one of the first publicly
available integrated cheminformatics web portals. It integrates a
number of commercial as well as open source tools for dataset
creation, validation, modeling and validation. It also supports
building ensembles of models, for multiple targets (Walker et al.,
2010; Capuzzi et al., 2017). The Online chemical modeling
environment (OCHEM), is a web-based platform that intends to
serve as multi-tool platform where users can select among the
many available alternatives in terms of tools and methods, for all
of the steps of creating a predictive model, such as data search,
selection of descriptors and machine learning model, as well as
assessment of the resulting model. OCHEM also encourages tool
authors to contribute with their own tools to be integrated in
the platform (Sushko et al., 2011). Yu et al. use Random Forest
(RF) and Support Vector Machines (SVM) to predict drug-
target interactions from heterogeneous biological data (Yu et al.,
2012). TargetHunter (Wang et al., 2013) is another online tool
that uses chemical similarity to predict targets for ligands, and
show how training models on ChEMBL data can enable useful
predictions on examples taken from PubChem bioassays. Yao
et al. describe TargetNet (Yao et al., 2016), a web service for multi-
target QSARmodels; an online service that uses Naïve Bayes. The
polypharmacology browser (Awale and Reymond, 2017) is a web-
based target prediction tool that queries ChEMBL bioactivity data
using multiple fingerprints.

We observe three important shortcomings among previous
works. Primarily, available methods for ligand-based target
profiling often do not offer valid measures of confidence in
predictions, leaving the user uncertain about the usefulness of
predictions. Secondly, the majority of the web tools lack an open
and standardized API, meaning that it is not straightforward
(and in most cases not possible at all) to consume the services
programmatically, e.g., from a script or a scientific workflow tool
such as KNIME (Mazanetz et al., 2012). Thirdly, previous works
do not publish the pre-processing and modeling workflows in
reproducible formats, rendering it hard to update the models
as data changes, and limits the portability of methods. In fact,
most implementations are only accessible from a website without
the underlying implementations being openly available for

Abbreviations: A, Active; ACP, Aggregated Conformal Predictor; CAOF, Class-

Averaged Observed Fuzziness; CP, Conformal Prediction; JAR, Java Archive

(A file format); MC, M Criterion (Fraction of multi-label predictions); N,

Non-active; OF, Observed Fuzziness; QSAR, Quantitative Structure-Activity

Relationship; RF, Random Forest; SMILES, Simplified molecular-input line-entry

system (A text-based representation of chemical structures); SVM, Support Vector

Machines.

inspection, which limits both the reproducibility (Stodden et al.,
2016), and verifiability (Hinsen, 2018) of their implementation.

We here present an approach for ligand-based target
profiling using a confidence framework, delivering target
profiles with confidence scores for the predictions of whether a
query compound interacts with each target. The confidence
scores were calculated using the Conformal Prediction
methodology (CP) (Vovk et al., 2005), which has been
successfully demonstrated in several recent studies (Norinder
et al., 2014, 2016; Cortés-Ciriano et al., 2015; Forreryd
et al., 2018). For readers new to the CP methodology, we
recommend (Gammerman and Vovk, 2007) for a good and
gentle general overview, and Norinder et al. (2014) for a good
introduction to CP for cheminformatics. The goal of this study
was to create an automated and reproducible approach for
generating a predicted target profile based on QSAR binding
models, with the models making up the profile published online
as microservices and the profile accessible from a web page.
Although the models give a confidence measure we also set out
to evaluate them on a test set to see how well they performed
on representative data. We exemplified the process by creating
a profile for the targets for broad early hazard assessment as
suggested by Bowes et al. (2012).

2. METHODS

2.1. Training Data
We based this study upon data from the ExCAPE-DB
dataset (Sun et al., 2017b). The reason for this is that ExCAPE-
DB combines data about ligand-target binding from ChEMBL
with similar data from PubChem, where importantly, PubChem
contains many true non-actives, which has been shown earlier to
result in better models than by using random compounds as non-
actives (Mervin et al., 2015). The data in ExCAPE-DB has also
gone through extensive filtering and pre-processing, specifically
to make it more useful as a starting point for QSAR studies. For
more details on the data filtering and processing done in the
ExCAPE-DB dataset, we refer to Sun et al. (2017b).

A scientific workflow was constructed to automate the full
data pre-processing pipeline. The first step comprises extracting
data on binding association between ligands and targets from
the ExCAPE-DB dataset (Sun et al., 2017b), more specifically
the columns Gene symbol, Original entry ID (PubChem CID or
CHEMBL ID), SMILES and Activity flag. This was performed
early in the workflow to make subsequent data transformation
steps less time-consuming, given the relatively large size of
the uncompressed ExCAPE-DB data file (18 GB). From the
extracted dataset, all rows for which there existed rows with a
conflicting activity value for the same target (gene symbol) and
SMILES string, were completely removed. Also, all duplicates in
terms of the extracted information (Original entry ID, SMILES,
and Activity flag) were replaced by a single entry, and thus
deduplicated. Note that deduplication on InChI level was already
done in for the ExCAPE-DB dataset in Sun et al. (2017b), but
since the signatures descriptor is based on SMILES, which is a
less specific chemical format than InChI (certain compounds that
are unique in InChI might not be unique in SMILES) this turns

Frontiers in Pharmacology | www.frontiersin.org November 2018 | Volume 9 | Article 1256164

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Lampa et al. Predicting Off-Target Binding Profiles

out to have resulted in some duplicate and conflicting rows in
terms of SMILES still appearing in the dataset. Since this is a
potential problem in particular if the exact same SMILES end
up in both the training and calibration or test set, we performed
this additional deduplication, on the SMILES level1. For full
information about the pre-processing done by the ExCAPE-DB
authors, see Sun et al. (2017b). As a help to the reader we note
that the activity flag is – in the ExCAPE-DB dataset—set to active
(or “A”) if the dose-response value in the binding assays was lower
than 10 µM and non-active (or “N”) otherwise.

A subset of the panel of 44 binding targets as suggested in
Bowes et al. (2012) was selected for inclusion in the study. The
selection was based on the criteria that targets should have at least
100 active and at least 100 non-active compounds. In addition
some targets were excluded for which data was not found in
ExCAPE-DB. This is described in detail below. Some of the
gene symbols used in Bowes et al. (2012) were not found in
their exact form in the ExCAPE-DB dataset. To resolve this,
PubMed was consulted to find synonymous gene symbols with
the following replacements being done:KCNE1was replaced with
MINK1 which is present in ExCAPE-DB. CHRNA1 (coding for
the α1 sub-unit of the Acetylcholine receptor) was excluded, as
it is not present in the dataset (CHRNA4, coding for the α4
sub-unit of the Acetylcholine receptor, is present in the dataset).
We note though, that both MINK1 and CHRNA4 were removed
in the filtering step mentioned above, since the dataset did not
contain more than 100 active and 100 non-active compounds
for MINK1 nor CHRNA. However, since one aim of the study
is to present and publish an automated and reproducible data
processing workflow, these targets could potentially be included
in subsequent runs on later versions of the database with
additional data available.

The resulting dataset (named Dataset1) consists of 31 targets
(marked as “included” in Table 1). For 21 of these targets, the
dataset contained less than 10,000 non-active compounds, which
makes them stand out from the other datasets, and where some of
them contain a problematically low amount of non-actives. These
21 targets are referred to as Dataset2, and their respective target
datasets were expanded with randomly selected examples from
the ExCAPE-DB dataset which were not reported to be active for
the target, thus being “assumed non-active.” These target datasets
aremarked with aX in the “Assumed non-actives added” column
of Table 1. The number of new examples was chosen such that
the total number of non-actives and assumed non-actives added
up to twice the number of actives, for each target, respectively.
The compounds for the remaining 10 targets, which were not
extended with assumed non-actives, were named Dataset3.

In order to validate the predictive ability of the trainedmodels,
a new dataset was created (Dataset4) by withholding 1,000
compounds from the ExCAPE-DB dataset, to form an external
validation dataset. The compounds chosen to be withheld were
the following: (i) all small molecules in DrugBank (version
5.0.11) with status “withdrawn,” for which we could find either
a PubChem ID or a CHEMBL ID, (ii) a randomly selected subset
of the remaining compounds in DrugBank 5.0.11, with status

1https://github.com/pharmbio/ptp-project/blob/c529cf/exp/20180426-wo-

drugbank/wo_drugbank_wf.go#L239-L246

“approved,” for which we could also find PubChem or CHEMBL
IDs, until a total number of 1,000 compounds was reached. No
regard was paid to other drug statuses in DrugBank such as
“investigational.”

The relation of the mentioned datasets Dataset1-4 are shown
in a graphical overview of how they were created in Figure 1,
and in Table 2, which summarizes in words how each dataset was
created.

The Conformal Prediction methodology, in particular with
the Mondrian approach, can handle differing sizes of the datasets
well (Norinder and Boyer, 2017), and so we see no reason to stick
to the exact same number of compounds as the actives. Instead
we use an active:non-active ratio of 1:2 between the classes. The
justification for this is that the assumed non-actives likely have
chemistry coming from a larger chemical space compared to the
known compounds, thus by adding more of the assumed non-
actives we can hopefully increase the number of examples in the
regions of chemical space that are of interest for separating the
two classes.

All the targets, with details about their respective number of
active and non-active compounds, and whether they are included
or not, are summarized in Table 1.

2.2. Conformal Prediction
Conformal Prediction (CP) (Vovk et al., 2005) provides a layer
on top of existing machine learning methods and produces valid
prediction regions for test objects. This contrasts to standard
machine learning that delivers point estimates. In CP a prediction
region contains the true value with probability equal to 1 − ǫ,
where ǫ is the selected significance level. Such a prediction region
can be obtained under the assumption that the observed data
is exchangeable. An important consequence is that the size of
this region directly relates to the strangeness of the test example,
and is an alternative to the concept of a model’s applicability
domain (Norinder et al., 2014). For the classification case a
prediction is given as set of conformal p-values2, one for each
class, which represent a ranking for the test object. The p-values
together with the user decided ǫ produces the final prediction set.
Conformal Predictors are Mondrian, meaning that they handle
the classes independently, which has previously been shown to
work very well for imbalanced datasets and remove the need for
under/oversampling, boosting or similar techniques (Norinder
and Boyer, 2017; Sun et al., 2017a).

Conformal Prediction as originally invented, was described
for the online transductive setting, meaning that the underlying
learningmodel had to be retrained for every new test object. Later
it was adapted for the off-line inductive setting too, where the
underlying model is trained only once for a batch of training
examples. The Inductive Conformal Predictor (ICP), which is
used in this study, require far less computational resources,
but has the disadvantage that a part of the training set must
be set aside as a calibration set. The remaining data, called
proper training set, is used to train the learning model. As the
partitioning of data into a calibration set and proper training set
can have a large influence on the performance of the predictor,

2The term “p-values” in Conformal Prediction does not have the same definition

as in statistical hypothesis testing.
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TABLE 1 | The panel of targets used in this study, identified by gene symbol.

Non-actives Non-actives

(before adding (after adding

assumed non-actives assumed non-actives Assumed non-

Gene symbol Actives and deduplication) and deduplication) actives added Remarks

IN
C
L
U
D
E
D

ACHE 3,160 1,152 5,824 X

ADORA2A 5,275 593 10,092 X

ADRB1 1,306 149 2,544 X

ADRB2 1,955 342,282 341,925

AR 2,593 4,725 4,866 X

AVPR1A 1,055 321,406 321,098

CCKAR 1,249 132 2,458 X

CHRM1 2,776 417,549 358,330

CHRM2 1,817 152 3,440 X

CHRM3 1,676 144 3,234 X

CNR1 5,336 400 10,220 X

CNR2 4,583 402 8,676 X

DRD1 1,732 356,201 355,909

DRD2 8,323 343,206 342,958

EDNRA 2,129 124 4,050 X

HTR1A 6,555 64,578 64,468

HTR2A 4,160 359,962 359,663

KCNH2 5,330 350,773 350,452

LCK 2,662 283 5,246 X

MAOA 1,260 1,083 2,452 X

NR3C1 2,525 4,382 4,804 X

OPRD1 5,350 826 9,580 X

OPRK1 3,672 303,335 303,111

OPRM1 5,837 2,872 11,252 X

PDE3A 197 110 392 X

PTGS1 849 729 1,634 X

PTGS2 2,862 827 5,162 X

SCN5A 316 119 624 X

SLC6A2 3,879 218 7,498 X

SLC6A3 5,017 106,819 106,594

SLC6A4 7,228 382 13,660 X

N
O
T
IN
C
L
U
D
E
D

ADRA1A 1,782 24

ADRA2A 839 39

CACNA1C 166 20

CHRNA1 – – Not in ExCAPE-DB

CHRNA4 256 17

GABRA1 112 5

GRIN1 555 92

HRH1 1,218 65

HRH2 394 56

HTR1B 1,262 86

HTR2B 1,159 66

HTR3A 584 65

KCNQ1 37 303,466

MINK1 929 8 Synonym to KCNE1

PDE4D 484 98

Actives and non-actives refer to the number of ligand interactions marked as active and non-active in ExCAPE-DB. The labels “included” and “not included” to the left, for the two row

ranges, indicate whether targets did pass the filtering criteria of at least 100 actives and 100 non-actives, to be included.
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FIGURE 1 | Graphical overview over how the raw datasets used in this study were created. The blue funnel symbol and text represent filtering steps, while the barrel

and document symbols represent datasets. The criteria for the filtering steps are shown with blue text. “A” represents “Actives,” and “N” represents “Non-actives.”

TABLE 2 | Summary of datasets discussed.

Name Description

Dataset0 SAR data points for all 44 targets in Bowes et al. (2012)

which are available in ExCAPE-DB.

Dataset1 SAR data points for the 31 targets in Dataset0 for which

there were at least 100 actives and 100 non-actives.

Dataset2 SAR data points for targets with least 10,000

non-actives.

Dataset3 SAR data points for targets which had less than 10,000

non-actives, thus the same as Dataset1 with Dataset2

excluded.

Dataset4 SAR points making up the external test, by extracting

rows from ExCAPE-DB for a selected set of 1,000

compounds in DrugBank (All withdrawn, and randomly

sampled approved, drugs, until reaching 1,000 drugs).

See also Figure 1 for a graphical overview of how each dataset was created.

it is common to redo this split multiple times and train an
ICP for each such split. This results in a so called Aggregated
Conformal Predictor (ACP) that aggregates the predictions for
each individual ICP.

In this study we used the Mondrian ACP implementation
in the software CPSign (Arvidsson, 2016), leveraging the
LIBLINEAR SVM implementation (Fan et al., 2008) together
with the signatures molecular descriptor (Faulon et al., 2003).
This descriptor is based on the neighboring of atoms in
a molecule and has been shown to work well for QSAR
studies (Alvarsson et al., 2016; Lapins et al., 2018) and for ligand-
based target prediction (Alvarsson et al., 2014). Signatures were

generated with height 1-3, which means that molecular sub-
graphs including all atoms of distance 1, 2, or 3 from initial atoms,
are generated. Support vector machines is a machine learning
algorithm which is commonly used in QSAR studies (Norinder,
2003; Zhou et al., 2011) together with molecular signatures and
similar molecular descriptors, e.g., the extended connectivity
fingerprints (Rogers and Hahn, 2010). As nonconformity
measure we used the distance between the classifier’s decision
surface and the test object, as previously described by Eklund
et al. (2015). In order to not use the assumed non-active
compounds in Dataset2 in the calibration set of the ICPs, these
additional compounds were treated separately, by providing
them to the CPSign software with the --proper-train

parameter, see the CPSign documentation (Arvidsson, 2016).
By using this parameter the additional compounds are only
added to the proper training set, thus being used for training
the underlying SVM model, but not for the calibration of the
predictions. This ensures that potentially non-typical chemistry
in the additional assumed non-active compounds does not affect
the calibration of the predictions in a negative way.

2.3. Hyper-Parameter Tuning
For each of the 31 targets in Dataset1, a parameter sweep
was run to find the optimal value of the cost parameter of
LIBLINEAR, optimizing modeling efficiency using 10-fold cross
validation. The training approach used an Aggregated Conformal
Predictor (ACP) with 10 aggregated models. The parameter
sweep evaluated three values for the cost parameter for each
target; 1, 10, and 100. The efficiency measure used for the
evaluation was the observed fuzziness (OF) score described
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in Vovk et al. (2016) as:

OF =
1

m

m
∑

i= 1

∑

yi 6=y

p
y
i , (1)

where p
y
i is the p-value of the ith test case for class y, andm is the

number of test examples, or in our case with only two classes:

OF =

∑

i, yi=A

pNi +
∑

i, yi=N

pAi

mA +mN
(2)

where pNi is the ith p-value for class N, pAi is the ith p-value for
class A andmA andmN is the number of test examples in class A
and N, respectively. OF is basically an average of the p-values for
the wrong class, i.e., lower fuzziness means better prediction.

To study the effect of imbalanced datasets on efficiency, we
also implemented a modified version of OF, due to the fact
that OF is influenced more by values in the larger class in case
of imbalanced datasets, referred to as class-averaged observed
fuzziness (CAOF) as:

CAOF =

∑

i, yi=A

pNi

mA
+

∑

i, yi=N

pAi

mN
(3)

with the same variable conventions as above. Where OF is only
an average for the p-values in the test set, CAOF averages the
contribution from each class separately, meaning that for very
imbalanced cases OF is mostly affected by the larger class, while
for CAOF, both classes contribute equally much, regardless of
their respective number of p-values. CAOF was not used for cost
selection, but is provided for information in the results from the
workflow.

A commonly used efficiency measure in CP is the size of
the prediction region or set given by the predictor. In the
classification setting, this is expressed as the fraction of multi-
label predictions. This measure is denoted as the M criterion
(MC) and described in Vovk et al. (2016):

M criterion =
1

m

m
∑

i= 1

1{|Ŵi|>1} (4)

where 1E denotes the indicator function of event E, returning the
value 1 if E occurs and 0 otherwise, and Ŵi denotes the prediction
set for test example i. A smaller value is preferable.

2.4. Modeling Workflow
Before the training, the CPSign precompute command was
run, in order to generate a sparse representation of each target’s
dataset. ACPs consisting of 10 models were then trained for
each target using the CPSign train command. The cost value
used was the one obtained from the hyper-parameter tuning.
The observations added as “assumed non-actives” were not
included in the calibration set to avoid biasing the evaluation. The
computational workflows for orchestrating the extraction of data,
model building, and the collection of results for summarizing

and plotting were implemented in the Go programming language
using the SciPipe workflow library that is available as open
source software at scipipe.org (Lampa et al., 2018b). The cost
values for each target are stored in the workflow code, available
on GitHub (PTP, 2018). A graphical overview of the modeling
workflow is shown in Figure 2. More detailed workflow graphs
are available in Supplementary Data Sheet 1, Figures S4, S5.

2.5. Model Validation
Themodels built were validated by predicting the binding activity
against each of the 31 targets for all compounds for which
there existed known binding data for a particular target in
ExCAPE-DB. The validation was done with CPSign’s validate
command, predicting values at confidence levels 0.8 and 0.9.

3. RESULTS

3.1. Published Models
Models for all targets in Dataset1 were produced in the form
of portable Java Archive (JAR) files, which were also built into
similarly portable Docker containers, for easy publication as
microservices. The model JAR files, together with audit log files
produced by SciPipe, containing execution traces of the workflow
(all the shell commands and parameters) used to produce them,
are available for download at Lampa et al. (2018a). The models
can be run if obtaining a copy of the CPSign software and a
license, from Genetta Soft AB.

3.2. Validity of Models
To check that the Conformal Prediction models are valid
(i.e., that they predict with an error rate in accordance
to the selected significance level), calibration plots were
generated in the cross validation step of the workflow. Three
example plots, for three representative targets (the smallest,
the median-sized and the largest, in terms of compounds in
ExCAPE-DB) can be seen in Figure 3, while calibration plots
for all targets can be found in the Supplementary Data Sheet 1

(Figure S1). From these calibration plots we conclude
that all models produce valid results over all significance
levels.

3.3. Efficiency of Models
The efficiency metrics OF, CAOF and MC for Dataset2 (without
adding assumed non-actives) are shown in Figure 4A. In
Figure 4B, the same metrics are shown for when all target
datasets in Dataset2 have been extended with assumed non-
actives, to compensate for these datasets’ relative low number
of non-actives. We observe that by adding assumed non-actives
for datasets with few non-actives, we improve the efficiency of
models trained on these datasets. Thus, this strategy of extending
the “small” target datasets in Dataset2 was chosen for the
subsequent analysis workflows.

3.4. External Validation
In Figure 5 predicted vs. observed labels for Dataset4 is shown,
for confidence levels 0.8 and 0.9, respectively. See the methods
section and in particular Figures 1, 2, for information about
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FIGURE 2 | Schematic directed graph of processes and their data dependencies in the modeling workflow used in the experiments in this study. Boxes represent

processes, while edges represent data dependencies between processes. The direction of the edges show in which direction data is being passed between

processes. The order of execution is here from top to bottom, of the graph. Each experiment contains additions and modifications to the workflow, but the workflow

shown here, exemplifies the basic structure, common among most of the workflows. For more detailed workflow plots, see

Supplementary Data Sheet 1, Figures S4, S5.

how Dataset4 was created. “A” denotes active compounds and
“N” denotes non-active ones. It can be seen how the number
of prediction of “Both” labels increase when the confidence level
increases from 0.8 to 0.9. This is as expected, as this means that
fewer compounds could be predicted to only one label, with
the higher confidence level. The number of “Null” predictions
decreases at the higher confidence, which is also as expected.
The reason is that with a higher confidence, the predictor must
consider less probable (in the Conformal Prediction ranking

sense) predictions to be part of the prediction region. This
behavior might seem backwards, but at a higher confidence the
predictor has to include less likely predictions in order to reach
the specified confidence level, which leads to larger prediction
sets. For predicted vs. observed labels for each target individually,
see Supplementary Data Sheet 1, Figures S2, S3. Because of the
fact that CP produces sets of predicted labels, including Null,
and Both in this case, the common sensitivity and specificity
measures do not have clear definitions in this context. Because
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FIGURE 3 | Three representative calibration plots, for models PDE3A (A), SLC6A2 (B), and HTR2A (C), based on the smallest, the median, and the largest target

data sets in terms of total number of compounds. The plots show accuracy vs. confidence, for the confidence values between 0.05 and 0.95 with a step size of 0.05.

FIGURE 4 | Efficiency metrics (M Criterion, Observed Fuzziness and Class-Averaged Observed Fuzziness) for Dataset1, Dataset2, and Dataset3. (A) Dataset2

without extending with assumed non-actives. Circles show individual results from the three replicate runs that were run, while the lines show the median value from the

individual replicate results. Targets are here sorted by number of active compounds. (B) Dataset2 after extending with assumed non-actives. Circles show individual

results from the three replicate runs that were run, while the lines show the median value from the individual replicate results. Targets are here sorted by number of

active compounds. (C) Dataset3, the 10 largest target datasets, which were not extended with assumed non-actives. Targets are here sorted by total number of

compounds.

of this, we have not included calculated values for them but
have instead included compound counts for the predicted label
sets in Figure 5 summarized for all targets, and as CSV files in
Supplementary Data Sheet 2 (for 0.8 confidence) and 3 (for 0.9
confidence), for each target specifically.

3.5. Target Profile-as-a-Service
All models based on Dataset2 were published as microservices
with REST APIs publicly made available using the OpenAPI
specification (Ope, 2018a) on an OpenShift (Ope, 2018b) cluster.
A web page aggregating all the models was also created. The
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FIGURE 5 | Predicted vs. observed labels, for all targets, for the prediction data, at confidence level 0.8 (A) and 0.9 (B). “A” denotes active compounds, and “N”

denotes non-active compounds. The x-axis show observed labels (as found in ExCAPE-DB), while the y-axis show the set of predicted labels. The areas of the circles

are proportional to the number of SAR data points for each observed label/predicted label combination. For predicted vs. observed labels for each target individually,

see Supplementary Data Sheet 1, Figures S2, S3.

FIGURE 6 | The prediction profile for Terbutaline, a known selective beta-2 adrenergic agonist used as a bronchodilator and tocolytic. (A) The profile as seen on the

web page (on the right hand in the figure). To show the profile, the user draws a molecule and selects a confidence level, whereafter the profile will update underneath.

The profile is shown as a bar plot with two bars for each target: A purple bar, pointing in the upward direction, indicating the size of the p-value of the “Active” label,

and a green bar, pointing downwards, indicating the size of the p-value for the “Non-active” label. (B) Coloring of which parts of the molecule contributed the most to

the prediction for ADBR2. Red color indicates the centers of molecular fragments (of height 1–3) that contributed most to the larger class, while blue color indicates

center of fragments contributing most to the smaller class. In this case the larger class is “Active,” which can be seen in the size of the p-values in the bottom left of

the figure (p[A] = 0.481 >p[N] = 0.001).

OpenAPI specification is a standardization for how REST APIs
are described, meaning that there is a common way for looking
up how to use the REST API of a web service and that greatly
simplifies the process of tying multiple different web services
together. It simplifies calling the services from scripts as well

as from other web pages, such as the web page (Figure 6) that
generates a profile image out of the multiple QSAR models. At
the top of the web page (see Figure 6) is an instance of the JSME
editor (Bienfait and Ertl, 2013) in which the user can draw a
molecule. As the user draws the molecule, the web page extracts
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FIGURE 7 | Profiles for a few of the removed drugs using the validation models, i.e., these molecules are not in the training sets for the models. The profiles are shown

as bar plots with two bars for each target: A purple bar pointing in the upward direction, indicating the size of the p-value of the “Active” label, and a green bar pointing

downwards, indicating the size of the p-value for the “Non-active” label. (A) The profile for Tacrine, a centrally acting anticholinesterase, with a distinct peak for the

ACHE gene. (B) The profile for Pilocarpine, a muscarinic acetylcholine receptor M1 agonist, with only two moderately higher peaks for active prediction, CHRM1 and

LCK. (C) The profile for Pergolide, a DRD1, DRD2, HTR1A, and HTR2A agonist, which is reflected by the four highest p-values for an active prediction.

the SMILES from the editor and sends it to the individual model
services to get predictions based on all available models. The user
can set a threshold for the confidence and get visual feedback on
whether the models predict the drawn molecule as active or non-
active for each of the targets, at the chosen confidence level. In
Figure 6 on the right side is a graphical profile in the form of
a bar plot where confidence of the active label is drawn in the
upward direction and the confidence for non-active is drawn in
the downward direction. Hovering over a bar in the plot will give
information about which model the bar corresponds to. The web
page can be accessed at http://ptp.service.pharmb.io/.

3.6. Example Predictions
Using the models built without the external validation dataset
(Dataset4), target profiles were predicted for three molecules
from the test set (Figure 7), i.e., the profiles were made for drugs
that the models have not seen before. Figure 7A shows the target
profile for Tacrine, a centrally acting anticholinesterase, with a
distinct peak for the ACHE gene, as expected. Further, we note
that most other targets are predicted as non-active with high p-
values (green color) or predicted as active with relatively low
p-values (purple color). Figure 7B shows the target profile for
Pilocarpine, a muscarinic acetylcholine receptorM1 agonist, with
a target profile consisting of mostly non-active predictions, and
only two mildly active targets (CHRM1 and LCK). We note
that LCK has a similar p-value for active and non-active. For

a conformal prediction in the binary classification setting, the
confidence of a prediction is defined as 1 − p2 where p2 is the
lower p-value of the two (Saunders et al., 1999). This means
that even if a prediction has one high p-value, its confidence
and hence usefulness in a decision setting might still be low.
Figure 7C shows the target profile for Pergolide, an agonist for
DRD1, DRD2, HTR1A, and HTR2A which shows up as the four
highest active predictions in the profile.

4. DISCUSSION

We have presented a reproducible workflow for building profiles
of predictive models for target-binding. We have exemplified our
approach on data from ExCAPE-DB about 31 targets associated
with adverse effects and made these models available both
via a graphical web interface via an OpenAPI interface for
programmatic access andmade them available for download. The
Conformal Prediction methodology guarantees validity of the
models under the exchangeability assumption. We have further
showed that our models are indeed valid, with the calibration
plots in Figure 3.

Based on the efficiency metrics shown in Figures 4B,C we
see that the efficiency, after adding assumed non-actives to the
datasets with very few (under 10,000) non-actives, is clearly
improved. Based on the external test set, Dataset4, though,
especially based on the plots in Figure 5, we see that there is a
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somewhat higher fraction of observed non-actives (“N”) correctly
predicted as non-actives, than the fraction of observed actives
(“A”) correctly predicted as active.

The use of workflows to automate pre-processing and
model training and make it completely reproducible has several
implications. Primarily, the entire process can be repeated as
data change, e.g., when new data is made available or data is
curated. In our case, the pre-processing can be re-run when a
new version of ExCAPE-DB is released, and new models trained
on up-to-date data can be deployed and published without delay.
The components of the pre-processing workflow are however
general, and can be re-used in other settings as well. Further,
a user can select the specific targets that will be pre-processed,
and focus the analysis on smaller subsets without having to pre-
process and train models on all targets, which could be resource-
demanding. With a modular workflow it is also easy to replace
specific components, such as evaluating different strategies and
modeling methods.

The packaging of models as JAR-files and Docker containers
makes them portable and easy to transfer and deploy on different
systems, including servers or laptops on public and private
networks without cumbersome dependency management. We
chose to deploy our services inside the RedHat OpenShift
container orchestration system, which has the benefit of
providing a resilient and scalable service, but any readily available
infrastructure provider is sufficient. The use of OpenAPI for
deploying an interoperable service API means that the service
is simple to integrate and consume in many different ways,
including being called from a web page, (such as our reference
page on http://ptp.service.pharmb.io/) but also into third party
applications and workflow systems. With the flexibility to
consume models on individual level comes the power to put
together custom profiles (panels) of targets. In this work we have
selected targets based on usefulness in a drug safety setting, but
it is easy to envision other types of panels for other purposes.
While there has been some previous research on the use of
predicted target profiles (Yao et al., 2016; Awale and Reymond,
2017), further research is needed to maximize their usefulness
and to integrate with other types of in vitro and in silicomeasures.
Ourmethodology and implementation facilitates such large-scale
and integrative studies, and paves the way for target predictions
that can be integrated in different stages of the drug discovery
process.

5. CONCLUSION

We developed a methodology and implementation of target
prediction profiles, with fully automated and reproducible

data pre-processing and model training workflows to build
them. Models are packaged as portable Java Archive (JAR)
files, and as Docker containers that can be deployed on
any system. We trained data on 31 targets related to drug
safety, from the ExCAPE-DB dataset and published these as
a predictive profile, using Conformal Prediction to deliver
prediction intervals for each target. The example profile
is deployed as an online service with an interoperable
API.
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In silico protein target deconvolution is frequently used for mechanism-of-action
investigations; however existing protocols usually do not predict compound functional
effects, such as activation or inhibition, upon binding to their protein counterparts.
This study is hence concerned with including functional effects in target prediction. To
this end, we assimilated a bioactivity training set for 332 targets, comprising 817,239
active data points with unknown functional effect (binding data) and 20,761,260 inactive
compounds, along with 226,045 activating and 1,032,439 inhibiting data points from
functional screens. Chemical space analysis of the data first showed some separation
between compound sets (binding and inhibiting compounds were more similar to
each other than both binding and activating or activating and inhibiting compounds),
providing a rationale for implementing functional prediction models. We employed three
different architectures to predict functional response, ranging from simplistic random
forest models (‘Arch1’) to cascaded models which use separate binding and functional
effect classification steps (‘Arch2’ and ‘Arch3’), differing in the way training sets were
generated. Fivefold stratified cross-validation outlined cascading predictions provides
superior precision and recall based on an internal test set. We next prospectively
validated the architectures using a temporal set of 153,467 of in-house data points
(after a 4-month interim from initial data extraction). Results outlined Arch3 performed
with the highest target class averaged precision and recall scores of 71% and 53%,
which we attribute to the use of inactive background sets. Distance-based applicability
domain (AD) analysis outlined that Arch3 provides superior extrapolation into novel areas
of chemical space, and thus based on the results presented here, propose as the
most suitable architecture for the functional effect prediction of small molecules. We
finally conclude including functional effects could provide vital insight in future studies,
to annotate cases of unanticipated functional changeover, as outlined by our CHRM1
case study.

Keywords: target prediction, activation, inhibition, cheminformatics, functional effects, mechanism-of-action,
chemical space, AD-AUC
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INTRODUCTION

Target deconvolution is an important step in the subsequent
analysis of data gleaned from phenotypic screenings, to identify
the modulated targets of active compounds and enable the
continued dissection of the biological processes involved in a
system of interest (Terstappen et al., 2007; Raida, 2011; Kotz,
2012; Lee and Bogyo, 2013). One important additional parameter
of consideration is the functional modulation of targets, since
its activation or inhibition (in the simplest case of allowing only
for two types of functional effects) may positively or negatively
modulate a pathway, which in turn may relate in different ways to
an observed phenotype (Parker et al., 1993; Bauer-Mehren et al.,
2009; Dosa and Amin, 2016).

One example of this is Bone morphogenetic protein 1 (BMP1),
which was identified as a key target linked to cytostaticity
from a screening cascade discerning the cytotoxic and cytostatic
tendencies of compounds (Mervin et al., 2016). In the absence
of functional information for the respective target, and since
activation of BMP signaling in prostate carcinoma cells is known
to be cytostatic (hence its inactivation would not explain the
observed phenotype) (Wahdan-Alaswad et al., 2012), the authors
were forced to hypothesize that cytostatic agents may activate
BMP1. Another study rationalized the polypharmacology of
sleep-inducing compounds in rat, (which, without functional
annotation) were forced to stipulate that bioactive compounds
with multi-target activity may elicit their synergistic sleep
parameter activity through inhibition of Histamine Receptor H1
(HRH1) and activation of Cholinergic Receptor Muscarinic 4
(CHRM4) (since the biological evidence at hand for both targets
advocates this rationalization) (Drakakis et al., 2017). Sertindole,
a withdrawn approved drug, was also experimentally determined
within the study to changeover functional activity. Despite
profiles linked to prolonged sleep bouts, the compound was
linked to hyperactivity, not inhibition, at key targets implicated
with increased bouts of sleep, which further demonstrates
how the functional behavior of compounds needs to be
considered to understand phenotypic response in biological
systems.

One approach to target deconvolution is in silico target
deconvolution, which is a well-established computational
technique capable of inferring compound MOA by utilizing
known bioactivity information (Koutsoukas et al., 2011; Wang
et al., 2013; Lavecchia and Cerchia, 2016). This technique
is well established in the areas for the deconvolution of
phenotypic screens (Poroikov et al., 2001; Geronikaki et al.,
2004; Liggi et al., 2014) and the identification of compound-
side effects via bioactivity profiling of off-targets (Lounkine
et al., 2012; Barton and Riley, 2016). The characterization
of the functional effects of compounds is often a principle
shortcoming for current in silico methods, since many protocols
only provide probability for compound affinity at a target
(Drakakis et al., 2013; Koutsoukas et al., 2013; Mervin et al.,
2015).

Existing protocols, such as the Similarity Ensemble
Approach (SEA) (Keiser et al., 2007) and Prediction of
Activity Spectra for Substances (PASS) (Lagunin et al., 2000),

provide functional annotation by training on a compound
set extracted from the MDL Drug Data Report [MDDR]
(2006). These implementations however only utilize active
bioactivity data (experimentally validated negative bioactivity
data are disregarded), which has been shown to hinder
performance. Additional problems with MDDR are inconsistent
annotation, since many activity classes are not on the target
level (for example the activity class ‘anti-helminthic activity’)
and relatively small numbers of compound-target pairs are
available for modeling, compared to other current databases
(Lagunin et al., 2000). Other cheminformatics approaches
discriminate between agonist from antagonist classifications
of ligands at nuclear receptors across targets simultaneously
(within a single-model architecture) (Lagarde et al., 2017).
This architecture could negatively affect performance due
to the imbalance between the functional data and the
requirement to assign probability scores across all target
proteins.

We have in this work explored various cascaded approaches
to predict the functional effects of orphan compounds and
contrasted these with a single-model architecture (similar to
previous approaches). To this end, we have assimilated a
dataset of 22,836,983 compound-target annotations available
in the Chemistry Connect (Muresan et al., 2011) repository
across a range of G-protein-coupled receptors (GPCRs), Nuclear
Hormone Receptors (NHRs), ion channels and transporters.
The dataset comprises 817,239 binders (unknown if activating
or inhibiting) and 20,761,260 non-binding compounds from
binding assays, as well as 226,045 activating and 1,032,439
inhibiting compounds from functional assays, spanning a total
of 332 protein targets.

This work explores three different in silico architectures for
functional target prediction which are summarized in Figure 1.
Figure 1A outlines Architecture 1 (Arch1), a Random Forest
(RF) algorithm trained with all functional labels across all targets
within a single model [hence, an approach using only active
(functional) data], which serves as a baseline to compare the
cascaded, and hence more complex, architectures. Architecture
2 (Arch2), outlined in Figure 1B, is the first of two cascaded
approaches, combining stage 1 target prediction with subsequent
stage 2 functional prediction, which we rationalize could improve
performance due to the cascaded nature of models. Stage 2 of
Arch2 includes a single RF model trained on both activating
and inhibiting compounds during stage 2. In comparison,
Figure 1C depicts Architecture 3 (Arch3), which is based
on an ensemble of two independent RFs trained on either
activating or inhibiting compounds separately versus an inactive
background set.

To establish the optimal model architecture, we conducted
fivefold stratified cross validation for the three different modeling
approaches. Models were also prospectively validated using an
external testing set of 153,467 compounds, spanning 306 targets
extracted from all functional in-house AstraZeneca data after a
4-month interim from initial training set extraction. The cross
validation and time-split performance of the approaches has
provided guidance into the choice of architecture to be deployed
in-house for future triage processes.
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FIGURE 1 | Different architectures employed for functional target prediction in this work. (A) Architecture 1 (Arch1). A single random forest (RF) algorithm is trained
with the activating and inhibiting compounds across all targets. Model output is a list of functional predictions across all targets, ranked by probability for a target and
corresponding functional label, ‘p(target_outcome)’. A probability threshold is employed to generate activating and inhibiting predictions. The functional label with the
highest probability is selected if a compound is predicted as both activating and inhibiting, i.e., ‘Target 2’ (line b) is assigned the activating label if using a probability
cut-off of 0.092. (B) Architecture 2 (Arch2). Stage 1 target prediction utilizes RF target prediction models trained using active (activating, inhibiting or binding only)
and inactive compounds on a per target basis. Compounds predicted inactive during Stage 1 (line a) are removed from further cascading and annotated as inactive.
Compounds predicted to be active during Stage 1 are subsequently profiled using Stage 2 functional prediction (line b), comprising RF models trained on the
activating and inhibiting compounds on a per-target basis. Compounds are annotated as ‘activating’ (line c) if the probability of activation is greater than inhibition
(line c), or ‘inhibiting’ if the probability of inhibition is greater than activation (line d). (C) Architecture 3 (Arch3). Stage 1 target prediction is employed in the same
manner as Arch2. Compounds predicted to be active (line b) are subsequently profiled at Stage 2 using two independent RF models, trained using either activating
or inhibiting compounds and an inactive compound set, and which are Platt scaled to ensure they are directly comparable. The probabilities of activation or inhibition
generated by the two models and compared to deduce a functional prediction. A compound is annotated as ‘activating’ if the likelihood of activation is greater than
inhibition (line c), or as ‘inhibiting’ if the probability of inhibition is greater than activation (line d). Although Arch2 and Arch3 enforce functional prediction in cases of
both low activating and inhibiting probabilities, this is preferred for this study rather than the addition of an extra label (e.g., predicted binding only).
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MATERIALS AND METHODS

Sources of Compound Training Data
AstraZeneca bioactivity data from Chemistry Connect (Muresan
et al., 2011) was mined for functional data with bioactivities
(IC50 and EC50) better than or equal to 10 µM and annotated
with functional terms based on BioAssay Ontology (BAO) assay
classifications (Vempati et al., 2012; Abeyruwan et al., 2014).
The resulting dataset was filtered for the GPCR, NHR, ion
channel and transporter targets, since they are considered to
have the highest functional annotation accuracy (in-house) and
encompass large numbers of activators which are not given in the
case of enzymes.

The full complement of functional annotations includes
various mechanisms, such as ‘activation,’ ‘antagonism,’ ‘inverse
agonism,’ ‘opening,’ ‘closing’ and ‘modulation’ (full list shown in
Table 1), which were chosen by BAO as the appropriate units to
describe what each assay measures from assay endpoints. As a
simple example, the unit EC50 was linked to ‘activation,’ whilst
IC50 was annotated with ‘inhibition.’ More complex endpoints
were assigned such that the measured activity of NHRs, GPCRs
and ligand-gated ion channel mechanism-of-action (MOAs)
were annotated as ‘agonist,’ ‘antagonist,’ or ‘partial antagonist,’
whilst voltage-gated ion channel MOAs were assigned ‘opening’
or ‘closing’ annotations.

In this study, we classified all compounds into the more
simplified binary labels of ‘activating’ or ‘inhibiting’ endpoints
using an internal mapping scheme (Table 1). Although imposing
only two (activation and inhibition) functional labels may be
an over-simplification, this is preferred to the complex situation
resulting from the original complex BAO labeling, since it reduces
training data into a binary problem per protein target, ensures
larger numbers of compounds are retrained within each MOA,
and that generated predictions are easily compared between the
complete spectra of functional predictions between targets. It is
also less algorithmically difficult to build classification models
compared to regression, thereby usually improving performance.

Compounds with conflicting activating and inhibiting
annotations were removed from the training data. The resulting
functional data set provided 226,045 activating and 1,032,439
inhibiting compounds spanning 320 different targets, the

TABLE 1 | Functional mapping schema employed in this study.

Original BAO label Simplified label

Activation Activator

Agonism Activator

Antagonism Inhibitor

Blocking Inhibitor

Closing Inhibitor

Inhibition Inhibitor

Inverse agonism Inhibitor

Opening Activator

The functional labels of biological screens were reduced into the binary
classifications of ‘activating’ or ‘inhibiting’ to reduce the complexity of the modeling
in this study.

FIGURE 2 | Distribution of training data across individual models in the four
target protein classes modeled. (A) Number of targets modeled. (B) Ratio
between inhibiting and activating compound-target data points.
(C) Distribution of activating and inhibiting compounds available for training.

distribution of which is shown in Figure 2A, with a median of
186± 1,526 activating-target compound pairs and 1,190± 5,123
inhibiting-target compound pairs per target. The distribution
of ratios between the functional labels (overall median ratio of
5.0 ± 27.4 inhibiting:activating compounds) and distribution
of functional set sizes (overall median of 163 ± 1,462 and
948± 4,955 for the activating and inhibiting classes, respectively)
are shown in Figures 2B,C.

Bioactivity data was also extracted from the same database, for
compounds with binding activity (Ki or Kd) better than or equal
to 10 µM, as a supplementary source of training data for cascaded
Stage 1 target prediction (Arch1 does not cascade predictions
and so does not utilize binding information). The resulting data
provided 817,239 binding compound-target pairs spanning 300
different targets, comprising a median and standard deviation of
752± 4,954 active compounds per target.

Non-binding (inactive) compounds were extracted from
PubChem in a same manner as described in Mervin et al.
(2015) which involved mapping to NCBI Gene IDs (GIDs) and
Protein IDs (PIDs) to the Bioactivity Assay IDs (AIDs) held in
the PubChem BioAssay repository for compounds annotated as
‘inactive’ in deposited bioactivity screens, using the PubChem
REST (Kim et al., 2016) and PubChem PUG resources (NCBI,
2007). AstraZeneca high-throughput screens deposited in the
HTS DataMart (an internal database of HTS information) were
also mined for non-binding compounds from bioactivity screens
with bioactivities (Ki, Kd, IC50, and EC50) greater than 10 µM.
Compounds with conflicting non-binding annotations were
removed from the training data.

To compile additional non-binding compounds for proteins
not covered in the internal database or PubChem (hence, for
cases where insufficient numbers of confirmed negatives were
available), additional putative inactive compounds were sampled
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from PubChem using a sphere exclusion algorithm. In this
protocol, compounds with a Tanimoto similarity coefficient
(Tc) value of less than or equal to 0.4 are sampled as a
background of putative inactive chemical space. Although sphere
exclusion selection leads to artificially inflated performance,
this is a necessary step to ensure the existence of a putative
negative bioactivity class with sufficient coverage of inactive
space to conduct target prediction. The resulting dataset includes
20,761,260 non-binders with a median of 32,320 ± 84,491 non-
binding compound-target pairs per protein target.

Training compounds were subjected to pre-processing and
filtered to retain targets with a minimum 10 activating and
inhibiting compounds, to ensure only targets encompassing
sufficient functional chemical space are retained for training.
Although not essential for Stage 2 model training, binding data
was also filtered for five or more compounds, to ensure the
minimum number of binding data is equal to the number of folds
used for cross validation. Supplementary Figure 1 shows a Venn
diagram of the bioactivity data available for training, comprising
332 models. Overall, the training set includes 20,761,260 non-
binding compounds, 817,239 binders, 226,045 activating and
1,032,439 inhibiting data points.

Compound Pre-processing and
Fingerprint Generation
RDKit (Landrum, 2006) (Version 2016.09.1) was employed to
remove structures not containing carbon from the dataset, and
to retain only compounds with atomic numbers between 21–32,
36–52, and greater than 53, as well as with a molecular weight
between 100 and 1000 Da, to retain a more ‘drug-like’ (in the
widest sense) chemical space. Compounds were standardized
using an in-house (OEChem Toolkits, 2017) script, and RDKit
was used to generate 2,048-bit (circular) Morgan fingerprints
(Morgan, 1965), with the radius set to 2.

In Silico Modeling
Single Model Functional Prediction (Arch1)
The first model architecture, Arch1 (shown in Figure 1A), utilizes
a single RF trained using the activating and inhibiting data across
all available targets, which is intended to serve as a baseline
comparison against similar online web-based approaches such as
SEA and PASS, which do not necessarily consider (non-)binding
information or consider multiple functional labels within one
model.

A RF classifier of 100 trees, with the number of features
set to ‘auto’ and max depth set to ‘20,’ was implemented
in Scikit-learn (Pedregosa et al., 2011), and trained using
the binary matrix of activating and inhibiting compound
fingerprints across all targets. The single-model provides a
RF (class) probability (computed as the mean predicted class
probabilities of the trees in the forest) of activating or inhibiting
a target on an individual compound basis, when considering
all other functional predictions for available targets. Generated
probabilities are subsequently converted into binary predictions
based on a probability cut-off [for example above 0.2 (line a)
and 0.09 (line b) in Figure 1A], which is described in-depth

throughout the next paragraph. The functional label with the
highest probability is selected in situations when a target is
considered both activating and inhibiting labels. For example,
Target 2 would be considered activated when using a cut-off of
0.092 (as indicated by line ‘b’ in Figure 1A).

In order to compare Arch1 to the cascaded methods, a
probability cut-off was applied to generate a final set of functional
predictions from the probabilities generated. This threshold
was defined as the probability providing the optimal F1-score
performance (i.e., target or class performance averaged across
the inactive, activating and inhibiting labels) from one percentile
increments across the distribution of all scores obtained during
cross validation and prospective validation, in a similar procedure
to Perezgonzalez (2015). This is an important step since a robust
method to fairly compare the different approaches is required, a
topic which will be discussed in more detail in the section entitled
“Precision and recall versus. BEDROC and PR-AUC.”

Stage 1 Target Prediction (Arch2 and Arch3)
Both Arch2 and Arch3 use Stage 1 target prediction. Here, input
compounds are subjected to Stage 1 prediction and predicted as
binding (or otherwise non-binding) based on the condition that
the output probability of binding is greater than non-binding.
Compounds predicted non-binding at this point are removed
from the further cascaded profiling, whilst compounds predicted
to bind are retained for Stage 2 functional prediction.

Stage 1 target prediction employs a similar target prediction
protocol to the one described previously by Mervin et al.
(2016) utilizing large scale inactive chemical space and active
compounds from binding and functional assays. A RF classifier
of 100 trees, with the number of features and max depth set to
‘auto’ and the ‘class_weight’ set to ‘balanced’ was implemented
in Scikit-learn. The RF was trained using the binary matrix of
inactive and active compound fingerprints on a per target bases,
whilst supplying the ‘sample_weight’ parameter within the ‘fit’
method with the ratio of active and inactive training compounds.
The implementation of stage 1 target prediction does not differ
between Arch2 and Arch3.

Stage 2 prediction (Arch2)
Stage 2 prediction is employed in two different way between
the different model architectures of Arch2 and Arch3. Both
techniques aim to assign an activating or inhibiting functional
prediction to input compounds predicted as active for a particular
target during stage 1 prediction.

As visualized in Figure 1B, Arch2 employed two cascaded
RF models overall (one RF for Stage 1 and one RF for Stage 2).
The RF for Stage 2 used the same hyper-parameters as Stage 1,
and was trained using the activating and inhibiting compound
fingerprints on a per-target basis. This RF was calibrated using
Platt Scaling using the Scikit-learn ‘calibrate_classification_cv’
method, with the number of calibration and validation folds set
to ‘3’. Thus, the predictions generated by the Stage 2 RF can be
directly interpreted as a likelihood that an input compound is an
activator or inhibitor.

A functional prediction is made for the functional label
with the largest probability output from the second cascaded
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model, i.e., if the probability of activation is higher than that
for inhibition, then the compound is classified as an activator
(and vice-versa). Thus, this procedure does not distinguish for
instances when no confident prediction can be made for the
second cascaded prediction. This behavior is preferred for the
purpose of this study, since enforcing a prediction for the highest
label regardless of confidence ensures the output between Arch1,
Arch2, and Arch3 can be compared within this study.

Stage 2 prediction (Arch3)
Figure 1C illustrates Arch3, which employed three RF models
overall (one for Stage 1 and two independent RF models for Stage
2). Both Stage 2 RFs utilize the same parameters as in Stage 1, and
are trained separately for activating and inhibiting compounds,
respectively, versus a set of inactive compounds. Probabilities
generated by both algorithms were calibrated using Platt Scaling
via the Scikit-learn ‘calibrate_classification_cv’ method, with the
number of calibration and validation folds set to ‘3’. Scaling the
independent probabilities in this manner enables the comparison
between the activating and inhibiting probabilities from both
algorithms, even though the two are distinct models. Functional
predictions are made for input compounds by selecting the
activating or inhibiting label with the largest probability.

Performance Measures: Precision and
Recall versus BEDROC and PR-AUC
Although the Boltzmann-Enhanced Discrimination of the
Receiver Operating Characteristic (BEDROC) (Truchon and
Bayly, 2007) and Precision-Recall Area Under the Curve (PR-
AUC) scores are frequently used to describe virtual screening
performance, this is not an appropriate metric to compare the
outputs between all the models benchmarked in this study.
Such metrics are based on the distribution of probabilities for
the classes for each method; however these are not comparable
between the three architectures explored, since they are on
different scales, represent different likelihoods, and are processed
to generate an overall functional prediction in different ways.

For example, Arch1 is a single model with multiple labels
hence the generated scores are low, since they are distributed
over all 664 target-function effects which overall must sum to
‘1.0’. In comparison, Arch2 uses a binary classifier on a per-target
basis for Stage 2, with hence only two probabilities are produced
for activating or inhibiting, whose output sum to ‘1.0’. Thus,
these values comprise comparatively higher values since they are
shared between two output labels. Furthermore, Arch3 uses two
different binary classifiers to deduce a final prediction in Stage
2, using the activating and inhibiting labels normalized with a
background of inactive compounds. Thus, the probabilities of
these activating and inhibiting labels do not sum to ‘1.0’, since
they are distinct models. Therefore, we considered that precision,
recall and F1-score (i.e., the actual output expected from the
deployed models) are the most suitable and robust metrics to
compare the performance of methods in the current situation.

Cross Validation Methodology
Fivefold stratified cross validation was employed in Scikit-learn
using the ‘StratifiedKFold’ method, ensuring training data is

randomly shuffled and seeded. In this procedure, the non-
binding and binding (only available for Arch2 and Arch3), and
activating and inhibiting training data is split into five folds,
whilst maintaining the ratio between compounds with different
labels in each split. Each fold is used as a test and train set for
cascaded Stage 1 and Stage 2 training and prediction. Binding
data is only utilized within training sets for Stage 1 in the cascaded
approaches, since it is only used to supplement Stage 1 training
data and not employed during Stage 2.

The ranked list of functional compound predictions is used
to calculate the optimal threshold for Arch1 (as discussed
above) and used to generate precision, recall, and F1-score for
Arch1, whilst the predicted outcome for the activating and
inhibiting compounds from each test set is used to calculate the
corresponding performance of the cascaded models. Figure 2
gives details into the size of targets in terms of the data points
available for modeling and ratio of inhibiting to activating
compounds, which is known to influence the predictivity of target
prediction models (Koutsoukas et al., 2013).

Prospective Validation Data Set
AstraZeneca bioactivity data was mined in the same manner as
described above after a 4-month interim (exactly the 4 months
after extracting training data) to obtain an external dataset of
compounds to prospectively validate the models. Compounds
with affinities better or equal to 10 µM were extracted and
employed for cascaded Stage 1 and Stage 2 prediction. The
dataset includes a total of 63,640 activating and 89,827 inhibiting
compounds for 306 targets (with the number of compounds per
target classification shown in Supplementary Table 1), spanning
both similar and dissimilar chemical space compared to the
training set (prospective validation chemical space analysis
shown in Supplementary Figure 2), with overall median Tc
values of 0.51 ± 0.21 and 0.62 ± 0.19, respectively. Class-
averaged precision, recall and F1-score were calculated for
each architecture during temporal validation, since some targets
comprise only very few test set compounds, which would hence
produce unreliable performance metrics.

RESULTS

Functional Data Available in AstraZeneca
We first analyzed the nearest-neighbor similarity distribution
per-target for each classification, to explore the chemical space
of the functional dataset and to rationalize to what extent the
different sets of compounds can be distinguished in chemical
similarity space and thus a rationale for implementing and
evaluating functional target prediction models.

Figure 3 shows the results of the nearest-neighbor similarity
distribution per-target for each classification. The overall
distributions highlight that binding (active) and inhibiting
compounds (“B-I”) are more similar to each other (median of
0.958) than both binding and activating (“B-A”) and activating
and inhibiting (“A-I”) compounds (median similarities of 0.841
and 0.835, respectively). Overall, this analysis indicated there is
some separation between the activating and inhibiting classes

Frontiers in Pharmacology | www.frontiersin.org June 2018 | Volume 9 | Article 613181

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00613 June 7, 2018 Time: 17:38 # 7

Mervin et al. Target Prediction Including Functional Effects

FIGURE 3 | Nearest-neighbor Tanimoto similarity of active, activating and inhibiting compounds. ECFP_4 fingerprint similarity of the compounds to compare the
three different bioactivity types, including comparison between activating versus inhibiting compounds (A-I), ligand binding-only (active) versus activating (B-A) and
binding-only (active) versus inhibiting (B-I). The most similar compound was retained per-compound, per-target to indicate the nearest neighbor similarity. The overall
distribution indicates that inhibiting compounds are more similar to their binding counterparts (B-I), in comparison to the other A-B and B-A comparisons.

of compounds in chemical space, giving us a rationale for
implementing and evaluating functional target prediction models
(statistical analysis of chemical similarity between the target
classes shown in Supplementary Table 2).

The GPCR class comprises the highest median NN similarity
between the activating and inhibiting compounds of 0.905 (and
an overall median of 0.923 between the three sets), a finding that
is corroborated in literature since small structural modifications
to GPCR-targeted ligands are known to convey major changes in
their functional activity, converting agonists into antagonists and
vice-versa (Dosa and Amin, 2016). Changes in certain moieties
are shown to affect binding outcome more than others; for
example, one study highlighted that steric modifications near
a basic nitrogen, methylation of indoles, and aniline nitrogen
substitutions appeared to play important roles in determining
functional activity while keeping overall structure (as captured
in the fingerprints employed in the current work) rather similar
(Dosa and Amin, 2016). The close proximity between functional
labels may be reflected in the performance of the models, since the
overlap of features present in both sets confounds the separation
between labels (Koutsoukas et al., 2013).

Nuclear hormone receptors are ranked as the second most
similar target class based on the NN similarity between
activating and inhibiting compounds, with a median Tc of 0.883.
A range of ligand modifications can inter-convert functional
activity due to changes in the directions in which these ligand
R-groups are positioned within the ligand-binding domains
(LBDs) of NHR cores (Huang et al., 2010). For example, one
study explicitly outlined which ring system extensions alter
the functional effects of activating compounds at the NHR
estrogen receptor (ER), due to the protrusion of additional
groups displacing the agonist conformation of α-helices in

the LBD (Parker et al., 1993). In comparison, ion channels
and transporters comprise comparatively dissimilar chemistry
between compound sets, with median Tanimoto similarities
of 0.774 and 0.779, respectively, between the activating and
inhibiting compounds, giving rise to the expectation of better
classification performance for those datasets.

Cross Validation Results
We next performed stratified fivefold cross-validation (as
described in the section “Materials and Methods”) and calculated
precision, recall and F1-score metrics for 332 targets averaged
over the fivefolds. Overall performance for each of the
architectures was next calculated using the class-average
precision and recall for the three functional labels (namely non-
binding, inhibiting and activating) obtained over the 332 targets,
the results of which are shown in Table 2.

It can be seen that the Arch1 architecture optimized for
F1-score performed with overall class-averaged precision and
recall performance of 84.5 ± 12.1 and 68.7 ± 17.5, respectively,
which provides a baseline performance for what we expected
to be superior (or certainly more complex) model architectures.
This was indeed found to be the case, since Arch2 and
Arch3 performed with target averaged precision and recall
scores of 89.4 ± 9.8 and 79.2 ± 11.4, and 92.0 ± 9.1 and
82.9 ± 11.6, respectively (using a cut-off for the label with the
largest probabilities as described in the section “Materials and
Methods”).

In order to understand the performance distribution across
different protein class labels, we next averaged precision, recall
and F1-scores across the three functional labels for each of the
GPCR, NHR, Ion Channel and NHR target classifications, as
illustrated in the second row of Table 2. Overall, results from
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TABLE 2 | Target-averaged and class-averaged performance across the inactive, activating and inhibiting labels.

Arch1 (optimal F1-score cut-off) Arch2 Arch3

Precision Recall Precision Recall Precision Recall

Cross validation Target averaged 84.5 ± 12.1 68.7 ± 17.5 89.4 ± 9.8 79.2 ± 11.4 92.0 ± 9.1 82.9 ± 11.6

Class averaged 76.1 ± 0.2 68.6 ± 0.9 89.3 ± 1.9 79.5 ± 2.7 91.9 ± 1.7 82.9 ± 3.4

Prospective validation Class averaged 59.5 ± 3.2 48.1 ± 1.3 70.9 ± 4.0 52.9 ± 3.6 70.8 ± 3.5 53.1 ± 3.6

Class averaged
(Correct at Stage 1)

– – 72.4 ± 3.3 71.0 ± 2.0 72.3 ± 2.8 71.3 ± 2.5

Performance metrics are calculated by averaging the scores obtained over all targets or classes, for each of the three labels (inactive, activating, inhibiting), which are then
averaged.

FIGURE 4 | Inhibiting and activating class averaged performance of the three
architectures during cross validation. The inactive, activating and inhibiting
label performance for Arch1 (red), Arch2 (yellow) and Arch3 (blue) are shown.
The performance profile of the three models illustrate that the two cascaded
models outperform the single-model architecture. Arch3 is also shown to
outperform Arch2, which is particularly evident for the activating recall and
precision labels. Arch1 performance was calculated using the threshold
comprising the highest overall F1-score.

this analysis outlined that the baseline model performed with the
lowest class averaged precision and recall scores of 76.1± 0.2 and
68.6 ± 0.9, whilst Arch2 performed with target class averaged
precision and recall of 89.3 ± 1.9 and 79.5 ± 2.7, and Arch3
performed with the best scores of 91.9 ± 1.7 and 82.9 ± 3.4,
respectively.

A detailed breakdown of the protein target class averaged
performance for the activating and inhibiting labels is shown
in Figure 4. Overall, the inhibiting (more often majority) label
performed with an overall class-averaged precision and recall of
75.5 and 67.3 for Arch1, 89.5 and 72.0 for Arch2 and 91.0 and 74.5
for Arch3. In comparison, the activating (more often minority)
label performed with precision and recall scores of 84.2 and 65.8
for Arch1, 79.6 and 66.7 for Arch2, and 86.1 and 74.4 for Arch3,
respectively. Hence, we conclude that Arch3 provides the optimal
performance across the architectures assessed here.

Our results indicate models frequently perform with higher
precision than recall (i.e., they are more certain about positive

predictions they do make, than being able to identify compounds
with the respective label across all of chemical space). Although
Arch2 and Arch3 provide overall superior performance profiles,
Arch1 exhibits superior activating precision (84.2) over Arch2
(79.6). We attribute this to the fact that Arch1 relies solely on
activating or inhibiting compounds, and hence a more simplistic
input space compared to Arch 2 and Arch3, which results in
a larger number of incorrectly predicted activating compounds
with fewer positive predictions with a greater propensity to be
correct.

Arch2 and Arch3 also exhibit lower recall compared to
precision, which is a consequence of the two-stage functional
prediction, when false-negative binding predictions from Stage
1 are not used as input for Stage 2 prediction. Our findings
also indicate that Arch3 can best handle the imbalance between
inhibiting and activating labels compared to Arch2, to obtain
higher activating recall and precision performance, a trend which
will be discussed in more detail in the following.

In order to test if the activating and inhibiting performance
of Arch3 models lie above that of the Arch2 approach (and
hence there is statistical value in normalizing the models using a
background of inactive compounds when cascading predictions),
we next conducted a two-sample Kolmogorov–Smirnov (KS) test
for the precision, recall and F1-score values obtained for Arch2
and Arch3 (overall results are summarized in the following, more
detailed results are shown in Supplementary Table 3). The KS test
produces p-values less than 0.05 (5% confidence threshold) for
the activating precision, recall and F1-score (3.96E−04, 7.90E−05,
and 1.95E−05, respectively) and inhibiting F1-score (4.93E−03),
indicating that Arch3 performance is statistically improved for
these performance parameters, compared to the Arch2 model
architecture.

Overall, ∼50% (166) of the Arch2 and ∼64% (214) of the
Arch3 models performed with precision and recall values greater
than or equal to 0.8, as shown in Figure 5. Thus, functional effects
of compounds can be predicted with respectable performance for
over half the target modeled. Conversely, only ∼40% (133) of
the Arch1 models performed with equivalent precision and recall
values above 0.8, as shown by the lower distribution of scores.

In total, eight targets failed to predict activating or inhibiting
molecules using Arch2 and hence received precision and recall
values of ‘0’ (shown as outliers in Figure 5). Seven of the
eight targets were assigned such scores since no predictions
were generated for the activating label, with five of these targets
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FIGURE 5 | Pairwise distribution of the relationship between precision and
recall scores for each architecture. Subplot grids in the upper right and lower
left cells visualize a scatter plot of the relationship between recall and precision
along with F1-score boundaries (f ). Diagonal plots in upper left and lower right
show stacked histograms of the precision or recall scores achieved by the
Arch1 (red), Arch2 (yellow), and Arch3 (blue) architecture. Our results show
that Arch3 provides the highest performance, for models with both high
precision and recall, with a higher distribution of scores above the F1-score
0.9 boundary line.

comprising fewer than 25 activating training instances and
an average of 92.7 inhibiting compounds for every activating
compound (92.7:1 ratio). In comparison, there was an equivalent
ratio of 15.6:1 for the models that worked, with F1-score above
0.8. Hence, we conclude here that the poor performance in these
situations was due to the domination of the inhibition class
and lack of sufficient data points for the minority (activating)
class, and conclude that datasets comprising 25 compounds
constitute the minimum to generate bioactivity models with the
architectures employed here.

We next analyzed how the Arch3 architecture handles
class imbalance with superior class averaged precision, recall
and F1-score performance, which is shown in Supplementary
Figure 3. It can be seen that this architecture performs with
superior performance than Arch2 and Arch1, with all models
comprising one or more inhibiting predictions, and only one
model with relatively few activators (18) failing to predict any
activating molecules. Since this observation is likely a result of the
independent comparison of activating or inhibiting compounds
with an inactive background set and the subsequent comparison
of Platt scaled probabilities, our most likely explanation is that
this, combined with the Platt scaling, enables the minority (more
often activating) class to assign higher confidence to predictions
to surpass the majority (more often inhibiting) functional label
predictions.

We next sought to identify the performance of the activating
and inhibiting labels for the Arch2 and Arch3 architectures
separated by the individual target classifications, as shown
in Supplementary Figure 4. Our results demonstrate that the
distribution of performance differs between classes, where the

high performance of the GPCRs and NHRs (averaged median
F1-scores of 86.8 and 84.3, respectively) can be contrasted
with transporters, and comparatively poorly performing ion
channels (with averaged median F1-scores of 77.5). Although
the poor performance for ion channels and transporters may be
unexpected due to the overall rather high separation in chemical
space between activating and inhibiting training compounds
(Figure 3), the large imbalance between the labels (as previously
outlined by the median activating versus inhibiting ratios of 6.95
and 6.58, highlighted in Figure 2B) is likely one reason for the
poor performance of these classes, particularly when considering
activating label performance.

In order to identify further factors influencing performance of
the predictivity of models, we next explored the impact of training
set size of data points with functional annotations, the similarity
of the five nearest intra-target neighbors and overall cross-
validation F1-score performance as depicted in Supplementary
Figure 5. The figure demonstrates both increasing nearest-
neighbor similarity within activating and inhibiting compounds
and overall model size are shown to improve model performance,
with a large proportion of data points clustered toward the top
right hand corner of the 3D plot. The intra-target similarity of
the models is shown to increase in accordance with training set
size, with increased likelihood to cover similar compounds in the
train and test set (which hence leads to increased performance).
In comparison, small models (with fewer than 100 compounds)
perform with more diverse performance (standard deviation of
18), due to the decreased chance of retaining similar compounds
throughout the cross validation.

The models also exhibit higher variance in nearest neighbor
similarity due to the reduced coverage of chemical space (as
previously shown in Supplementary Figures). Smaller target
models below 100 compounds with similar nearest neighbors
(Tanimoto similarity above 0.6) are shown to perform better,
supporting the view that targets with few activating or inhibiting
compounds can be reliably utilized in functional target prediction
models, providing similar chemistry to the compounds which
predictions are made for is represented within the training set.
These findings are at least partly due to the nature of cross-
validation, and the fact that data is comprised from a single source
and that in larger classes there is greater chance to have analogs
(which are then easier to predict).

This analysis (Supplementary Figure 5) also highlights the
influence of the modeling approach on the cross validated
performance of the models, with blue and red markers denoting
the Arch2 and Arch3 approaches, respectively. 97 (∼30%) of
the cascaded models have an F1-score greater than 0.95, with
63 (∼65%) of these originating from the Arch3 approach,
illustrating the superior performance of this method compared
to the Arch2 method. The figure illustrates both Arch2 and Arch3
approaches perform erratically in situations with low intra-target
similarity and small size.

Prospective Validation
The performance of the functional prediction protocols was next
analyzed using an external data set extracted from functional
screens available at AstraZeneca after a 4-month intermission
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from the initial date of training data mining. The overall class
averaged precision and recall results for the non-binding, binding
and inhibiting labels achieved during prospective validation
are shown in Table 2. Arch1 performed with a class-averaged
precision and recall of 59.5 ± 3.2 and 48.1 ± 1.3. In agreement
with cross-validation results, the cascaded models performed
with superior precision and recall, where Arch2 achieved a
precision and recall of 70.9 ± 4.0 and 52.9 ± 3.6, whilst
Arch3 performed with values of 70.8 ± 3.5 and 53.1 ± 3.6,
respectively. Therefore, a cascaded model architecture produces
more predictive models both during cross validation, as well as
when applied to a prospective data set comprising novel areas of
chemical space (Supplementary Figure 2).

The class-averaged precision, recall and F1-score performance
split between functional labels for prospective validation is
shown in Figure 6. Our findings show that although the Arch1
architecture outperforms Arch2 and Arch3 based on activating
precision (by a margin of ∼0.90 and ∼0.12 respectively), the
cascaded models far outperform the inhibiting precision score
obtained by Arch1, by a margin of ∼0.35 for both architectures.
The inhibiting and activating recall are also higher for the Arch2
and Arch3 models, and hence produce higher F1-scores for both
cascaded architectures compared to Arch1, with scores of ∼0.19
and ∼0.26 for the activating label and ∼0.47 and ∼0.46 for
the inhibiting compounds, respectively. These findings are likely
due to the single model architecture of Arch1, since the single-
model architecture creates many false inhibiting predictions due
many large classes with inhibiting data, which hence dominate
the model with higher probabilities.

In comparison to cross validation, the difference in Arch2 and
Arch3 precision, recall and F1-score performance is narrowed
for prospective validation. For example, cross validation results
showed a margin of ∼0.40 and ∼0.51 between activating and
inhibiting target class averaged precision and recall values, which
are reduced to ∼0.19 and ∼0.20 during external validation
testing.

The cascaded models have fewer compounds for Stage 1,
with hence less chemical space, and hence more false negatives.
This is shown via the striking distribution of poor Arch2 and
Arch3 recall, particularly for the activating compounds, where
87 targets (∼59% of these belong to the GPCR class) failed to
predict true-positive active compounds (i.e., ‘predicted to bind’)
during Stage 1 target prediction. The removal of testing instances
are consequently assigned recall scores of ‘0’. This problem is
further exacerbated by the imbalance of the external testing set
between functional compounds, as indicated by the ratio between
prospective validation compounds, which is applied to already
imbalanced models.

Given this observation, we next assessed only the fraction of
active compounds predicted to be positives at Stage 1 for Arch2 and
Arch3 (according to the protocol outlined in Figure 1), to give
a better indication for the benchmarked performance between
the two different cascaded methods of Stage 2 prediction (i.e.,
only compounds predicted active at line b in Figures 1B,C were
considered for this part of the analysis). As shown in Table 2,
this analysis produces class averaged recall scores for Arch2
and Arch3 of 72.4 ± 3.3 and 71.0 ± 2.0 versus 72.3 ± 2.8

FIGURE 6 | Inhibiting and activating class averaged performance during
prospective validation. Arch1 (red) generates a distinct performance profile
separate from the cascaded architectures, where Arch2 (yellow) and Arch3
(blue) exhibit significantly reduced class averaged inhibiting precision (and
hence markedly lower F1-score these labels). This is likely due the inability of
the single model architecture to counter for the imbalance between the
majority (inhibiting) and minority (activating) labels, since Arch1 is forced to
consider all functional labels across all targets at once. This factor ranks
inhibiting labels higher within the ranked list of predictions, producing higher
numbers of false positive inhibiting predictions, and thus reduces the precision
of the inhibiting label for this architecture.

and 71.3 ± 2.5, respectively, indicating the recall and F1-
score performance of is higher for Arch3 than Arch2 when
benchmarking cascaded Stage 2 performance by considering only
true positives from Stage 1 predictions.

To further explore in more detail the performance of different
target classifications between Arch2 and Arch3, we analyzed
the distribution of F1-score prospective validation performance
when only active compounds predicted to be positives at Stage 1
are considered. Supplementary Figure 7 also shows, in a similar
trend to cross validation, that the ion channels and transporter
class have a distribution of activating scores lower than the GPCR
and NHR classes due to the imbalance between the activating and
inhibiting compounds also represented in the external testing set,
whilst there is higher performance for the inhibiting classification
of compounds due to the domination of this label.

We finally assessed the applicability domain (AD) of all model
architectures using ‘distance to the training set’ as a method
(Gadaleta et al., 2016; Hanser et al., 2016), the results of which are
shown in Figure 7. The averaged five nearest neighbors (k= 5) in
the training set and the true positive rate (TPR) (defined by the
frequency of correct predictions within activating and inhibiting
testing compounds) are shown for Arch1, Arch2 and Arch3.
We see that the TPR decreases in accordance with increasing
dissimilarity from the nearest compound in the respective label
of training data across all architectures, as expected, with Arch3
performing with the highest area under the applicability domain
curve (AD-AUC) of 0.30. This analysis enables us to assign
confidence to novel predictions as follows; for example, an input
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FIGURE 7 | Prospective validation distance-based applicability domain (AD)
analysis. AD curves are shown for Arch1 (red), along with Arch2 (yellow) and
Arch3 (red). Each line performs with AUC scores of 0.22, 0.29, 0.30,
respectively, indicating that Arch3 performs with overall superior AUC when
considering the true positive rate achieved and increasing distance between
training and prospective validation compounds. The Arch1 architecture
produces similar true positive rates to the cascaded architectures for
distances beyond 0.6, indicating that all three model architectures have
difficulty in extrapolating into novel areas of the chemical space. True positive
rate is defined as the recall of the activating and inhibiting data points for each
distance bin.

compound with a near neighbor similarity between 0.8 and 0.85
would have an anticipated true-positive rate of ∼35% for Arch1,
∼78% for Arch2 and ∼81% for Arch3. We can also see that
although Arch1 performs with a comparatively low AD-AUC
of 0.22, all architectures obtain comparatively similar TPR rates
throughout increasing dissimilarity scores from 0.6 onward, and
hence models are unable to extrapolate into these dissimilar areas
of chemical space.

In a final case study, we analyzed the aforementioned study
of Drakakis et al. (2017), to illustrate a scenario where functional
prediction would have added value to a computational study. In
this work, target prediction profiles were related to prolonged
sleep bouts, where changing functional effects on receptors was
related to the change on the sleep effect of compounds. Contrary
to the reasoning gained from the in silico mechanism-of-action
analysis, Sertindole, which was expected to increase sleep bouts,
actually increased wakefulness by 44.9 min. In the absence
of functional prediction, the authors hypothesized that the
compound switched functional activity at one of the key receptors
(CHRM1), compared to the other sleep inducing compounds
(Alcaftadine, Ecopipam, Cyproheptadine, and Clopenthixol),
leading to hyperactivity and promoted wakefulness. We hence
suggest that our method could improve similar analyses by
providing vital insight into cases of unanticipated functional
changeover.

To illustrate this, we profiled the functional activity of
Sertindole at the CHRM1 receptor using Arch1, Arch2, and

Arch3. Arch2 and Arch3 predictions both indicate target specific
activation of CHRM1, compared to the four sleep inducing
compounds above. Arch1 however, did not predict CHRM1
activation or inhibition, and thus would not have predicted any
functional activity against the CHRM1 receptor.

We conclude that this case study highlights how cascaded
functional models provide vital insight into this previous work,
and that the unanticipated functional activity could have helped
to direct resources toward the experimental functional testing of
CHRM1, which was not conducted in the original study.

DISCUSSION

In this study, we present an in-depth analysis of functional
bioactivity data available in-house. We first analyzed the chemical
space of functional data, to rationalize whether the functional sets
of compounds can be distinguished using chemical similarity.
Binding and inhibiting compounds were more similar to each
other [median Tanimoto Similarity (Tc) of 0.958] than both
binding and activating or activating and inhibiting compounds
(median Tc of 0.841 and 0.835, respectively). There was
separation between functional sets giving us a rationale for
implementing and evaluating functional prediction models. We
first generated Architecture 1 (Arch1), which uses a simplistic
RF similar to existing approaches, and contrasted this with
two forms of cascaded models, namely Arch2; comprising a
Stage 2 model trained directly on the activating and inhibiting
compounds, and Arch3; comprising two independent Stage 2
models trained on either activating or inhibiting compounds,
and a set of inactive compounds, respectively. Fivefold cross
validation and temporal validation was performed using data
available at AstraZeneca after a 4-month interim. Cross validation
highlighted Arch3 achieved the highest precision, recall and
F1-scores, which we attributed to the independent comparison
of activating or inhibiting compounds with the inactive
background sets, and the subsequent comparison of Platt scaled
probabilities. In comparison, Arch1 had the lowest precision
and recall performance which we attributed to the single-model
architecture. Prospective validation indicated that Arch2 and
Arch3 outperform the Arch1 overall and hence outlined there
is benefit in cascading predictions using a more complex model
architecture. Distance-based applicability domain (AD) analysis
outlined Arch3 achieved superior AD-AUC (area under the
AD curve) and hence superior extrapolation into novel areas
of chemical space. Models will be deployed in-house to aid
with future phenotypic screening analyses. We conclude that
predicting functional effects could provide vital insight for future
studies, to annotate cases of unanticipated functional changeover,
as outlined by our CHRM1 case study.
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The treatment of Type 2 Diabetes Mellitus (T2DM) consists primarily of oral antidiabetic
drugs (OADs) that stimulate insulin secretion, such as sulfonylureas (SUs) and reduce
hepatic glucose production (e.g., biguanides), among others. The marked inter-
individual differences among T2DM patients’ response to these drugs have become
an issue on prescribing and dosing efficiently. In this study, fourteen polymorphisms
selected from Genome-wide association studies (GWAS) were screened in 495 T2DM
Mexican patients previously treated with OADs to find the relationship between the
presence of these polymorphisms and response to the OADs. Then, a novel association
screening method, based on global probabilities, was used to globally characterize
important relationships between the drug response to OADs and genetic and clinical
parameters, including polymorphisms, patient information, and type of treatment.
Two polymorphisms, ABCC8-Ala1369Ser and KCNJ11-Glu23Lys, showed a significant
impact on response to SUs. Heterozygous ABCC8-Ala1369Ser variant (A/C) carriers
exhibited a higher response to SUs compared to homozygous ABCC8-Ala1369Ser
variant (A/A) carriers (p-value = 0.029) and to homozygous wild-type genotypes (C/C)
(p-value = 0.012). The homozygous KCNJ11-Glu23Lys variant (C/C) and wild-type (T/T)
genotypes had a lower response to SUs compared to heterozygous (C/T) carriers (p-
value = 0.039). The screening of OADs response related genetic and clinical factors
could help improve the prescribing and dosing of OADs for T2DM patients and thus
contribute to the design of personalized treatments.

Keywords: pharmacogenetics, pharmacogenomics, diabetes, sulfonylureas, biguanides, Mexican, direct
coupling analysis, direct information
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INTRODUCTION

Type 2 Diabetes Mellitus (T2DM) is the most common
form of diabetes in adults. T2DM is associated with multiple
complications, such as blindness, lower limb amputation, and
premature death (Marchetti et al., 2009; Barquera et al., 2013).
According to the International Diabetes Federation (IDF),
China, India, United States, Brazil, Russia, and Mexico are the
countries with the highest incidence. It is estimated that life
expectancy is reduced in diabetic individuals by 5–10 years,
mainly due to lack of early treatment. In Mexico, the average
age for death by diabetes or its complications was 66.7 in
2010, compared with the lifespan of 76 years of non-diabetic
individuals (Agudelo-Botero and Davila-Cervantes, 2015). The
average annual economic cost from 2006 to 2010 of T2DM
patients in Mexico was $941,345,886 USD of direct cost,
$177,220,390 USD of indirect cost, and $27,969,427 USD from
its complications. This immense cost, coupled with the issues
of inequity and access to healthcare in Mexico, where 51%
of the cost comes from household income, represents a huge
social burden (Arredondo and De Icaza, 2011; Barquera et al.,
2013).

Several classes of oral antidiabetic drugs (OADs) are currently
available and primarily include agents that stimulate insulin
secretion (sulfonylureas), reduce hepatic glucose production
(biguanides), delay the digestion and absorption of intestinal
carbohydrate (alpha-glucosidase inhibitors), or improve insulin
function (thiazolidinediones) (Krentz and Bailey, 2005; Nathan
et al., 2009). Additionally, OADs include other classes of drugs
such as meglitinides, glucagon-like peptide-1 (GLP-1) agonists,
dipeptidylpeptidase-4 (DPP-4) inhibitors, dopamine-2 agonists,
and amylin analogs (Inzucchi et al., 2012). There is a wide
variability in adverse events and glucose-lowering response to
OADs among different patients, which may be attributed to
factors like age, sex, and body weight, but also to genetic variation
related to pharmacokinetic and pharmacodynamic properties
of the OADs (Becker et al., 2013; Emami-Riedmaier et al.,
2015).

Biguanide, especially metformin, which is the only one
available OAD in some countries, is recommended as
the first-choice therapy for T2DM (Inzucchi et al., 2012).
Metformin inhibits the activity of mitochondrial respiratory-
chain complex I, resulting in decreased ATP synthesis and an
accumulation of AMP leading to the activation of AMP-activated
protein kinase (AMPK) and the subsequent suppression of
hepatic gluconeogenesis (Foretz et al., 2010). Pharmacokinetic
studies suggest that metformin is actively absorbed from
the gut and is excreted unchanged in the urine (Zhou et al.,
2009). The organic cation transporter 1 (OCT1), encoded
by SLC22A1 gene, is expressed in the basolateral membrane
of hepatocytes and mediates the metformin uptake, while
OCT2 (encoded by SCL22A2), expressed in the basolateral
membrane of kidney tubular cells, facilitates almost 80% of
metformin excretion (Pearson, 2009; Pernicova and Korbonits,
2014). Associations of intronic variants in SLC22A1 and
SLC22A2 with glucose-lowering response to metformin
in T2DM patients have been previously reported (Tkac

et al., 2013). SLC22A1 gene is highly polymorphic, with
common function-reducing polymorphisms such as Arg61Cys
(rs12208357), Gly401Ser (rs34130495), and Gly465Arg
(rs34059508), which having been associated with decreased
transportation and therefore the reduced therapeutic effect of
metformin (Distefano and Watanabe, 2010). In vitro studies have
shown that all three polymorphisms might be associated with
reduced metformin uptake (van Dam et al., 2005). However,
in vivo studies show controversial results (Tzvetkov et al.,
2009).

Sulfonylureas (SUs) target an ATP-dependent potassium
(K-ATP) channel present in pancreatic β-cells. K-ATP channels
are hetero-octamers composed of Kir6.2 pore subunit encoded
by the gene KCNJ11, and the SUR1 receptor subunit encoded
by the gene ABCC8. SUs lower glycemia by enhancing insulin
secretion from pancreatic β-cells by inducing K-ATP channel
closure (Tkac, 2015). SUs, such as tolbutamide, glimepiride, and
glipizide, are mainly metabolized by the enzyme cytochrome
P450 encoded by the CYP2C9 isoform gene. Several SNPs
have been related to their effect on insulin secretion enhancing
(Holstein et al., 2005). Reduced drug-metabolizing activity
has been reported in individuals carrying two allelic variants
namely CYP2C9∗2 (rs1799853) leading to a missense amino
acid polymorphism Arg144Cys, and CYP2C9∗3 (rs1057910)
leading to the missense amino acid polymorphism Ile359Leu
(Huang and Florez, 2011). The Ile359Leu polymorphism has
a more profound effect (Ragia et al., 2014). These alleles
encode proteins with a diminished enzymatic activity and
are correlated with elevated serum levels of SUs (Ragia
et al., 2009). However, CYP2C9-Arg144Cys polymorphism
is not associated with diabetes susceptibility (Semiz et al.,
2010).

Regarding SUs target (K-ATP channels), most studies
researched two linked non-synonymous common variants in
both ABCC8 and KCNJ11 genes. KCNJ11 variants are implicated
in glycemic progression to either prediabetes or T2DM. One
of the most common KCNJ11 polymorphisms is Glu23Lys
(rs5219). The functional effects of the Glu23Lys variant on
insulin secretion and sensitivity yield controversial results,
even though recent larger studies demonstrate a significantly
reduced insulin secretion, lower insulin levels, and improved
insulin sensitivity, consistent with the enhanced K-ATP channels
activity in pancreatic β-cells (Villareal et al., 2009). More
recently, the associations of the Glu23Lys variant and a different
KCNJ11 variant, Ile1337Val (rs5215), with T2DM have been
confirmed in several genome-wide association studies (GWAS),
rekindling the interest in its potential role as a genetic marker for
T2DM development (Cheung et al., 2011). On the other hand,
the ABCC8-Ala1369Ser (rs757110) polymorphism has been
associated with a reduction of glycated hemoglobin (HbA1c) in
the Chinese population with SUs treatment (Feng et al., 2008;
Sokolova et al., 2015).

In addition to pharmacogenetic factors, the response to OADs
is conditional on different phenotypic or clinical aspects. With
the accessibility of cohorts of this T2DM patient information,
various statistical approaches can be used to determine the
contributing factors affecting response to OADs. Traditional
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statistical tools are used to measure the co-occurrence of factor
variable and treatment response at a time (Turner et al.,
2009; Stransky et al., 2015). However, the human trait factors
may internally relate or function together to affect the drug
response. Although these tests provide real statistical connections
among variables in patient data, these relationships tend to be
composed with both strong and weak correlations making it
difficult to disentangle direct effects that explain the influence
of some variables over a factor of interest. Therefore, important
efforts have been dedicated to the development of statistical
models to better describe relationship networks related to
human disease. In the field of pharmacogenomics, a variety of
statistical models have been built, such as Bayesian networks
and Elastic net regression (Barretina et al., 2012), which have
exhibited great performance on finding genes highly connected
to drug response. Recently, a global statistical model, direct
coupling analysis (DCA), also has been demonstrated to be
applicable in pharmacogenetic data (Jiang et al., 2017). DCA
efficiently computes estimates of a joint probability distribution
of multivariate patient profiles constructed with clinical data.
The parameters of such distribution estimated by DCA are
used to quantify with high success the degree of connectivity
of variables in the model. The ability to disentangle direct
couplings from indirect couplings has been successful in the
field of structural biology where directly coupled residue pairs
have been used to predict co-evolution of amino acids (dos
Santos et al., 2015), predict the structure of proteins (Sulkowska
et al., 2012) with an accuracy not seen before as well as
predict the molecular plasticity and complexes (Morcos et al.,
2013; dos Santos et al., 2015). Recently, we have used this
framework to study protein expression level–based protein–
protein interactions and in a pharmacogenomics approach
to infer gene–drug interactions in cancer tissues and cell
lines where information on drug sensitivity is available (Jiang
et al., 2017). This is the first time that direct information
(DI) is used as a metric of correlation in high throughput
profiling data. It not only captures the connections between
well-known drug response predictors, including some drug
targets for certain anti-cancer agents, but also predicts some
potential biomarkers and generates gene–drug networks. DCA
is used in this study to find highly coupled factors for
response to OADs and to construct a network for the patient
cohort data. A metric called DI is computed to evaluate the
association intensity of two variables, including the connections
between two potential factors and between factors and drug
response.

In addition to genetic variations traits containing
pharmacogenetic data, the phenotypic traits of patients,
such as age, sex, health status, have been suggested to have
influences on the outcome of OADs treatment for T2DM. Thus,
a T2DM patient database including genetic data and patient
phenotypic data is advantageous. This study collects 495 T2DM
patients with information about age, origin, sex, body index,
health status, history of OADs treatment, polymorphisms,
and results of glycated hemoglobin (HbA1c) tests. HbA1c is
a recognized target for diabetes control used in international
guidelines and is the most suitable parameter to be studied in

pharmacogenetic studies (Lo et al., 2012). Here, we propose a new
structure-learning approach for Bayesian network construction
by using direct information and Chow-Liu trees. Chow-Liu
algorithm is commonly used to learn Bayesian network structure
(Almudevar, 2010), and mutual information is used by this
algorithm to estimate the dependence of two variables (Chen
et al., 2008). Due to the better performance of DI on measuring
direct associations when compared to mutual information, we
integrated DI and the Chow-Liu algorithm to recover global
connections between clinical factors for T2DM patients.

Genetic variations or patient phenotypic data affecting the
drug responses to T2DM treatments often lead to the necessity
of treatment changes and adjustments, resulting in higher
expenses for the patients. The aim of this study was to
establish an association between patient clinical data, such as
habits, treatment history, polymorphisms, and variability in the
response to OAD treatments in a Mexican population. Therefore,
biomarkers could help prescribe the right drug and its dosage,
for better control of the disease and its consequences, including
treatment savings and reduced impact in productivity.

MATERIALS AND METHODS

Design
A cross-sectional and retrospective study with convenience
sampling was carried out in T2DM patients treated with OADs,
in monotherapy or in combination for at least 6 months,
to determine possible association between patient data, gene
variants, and drug response assessed by HbA1c values. This study
was conducted according to Good Clinical Practice standards
and guidelines of the Declarations of Helsinki and Tokyo.
Furthermore, the protocol was approved by the Ethics and
Research Committee from the Medical School of the Universidad
Autonoma de Nuevo León (IRB00005579).

Patients
We recruited male and female patients with T2DM from
northeastern Mexico who attended the Clinic of Diabetes of
the Endocrinology Service at the Dr. José Eleuterio González
Hospital in Monterrey, Mexico. The recruitment period lasted
12 months. The inclusion criteria were: patients over 18 years
old with T2DM and treated with oral antihyperglycemic agents or
OADs, in monotherapy or in combination for at least 6 months.
The exclusion criteria were: diabetes type 1, gestational diabetes,
other non-T2DM types of diabetes, active cancer, heart failure,
co-treatment with corticosteroids or estrogens, conditions that
can cause hyperglycemia, addiction to alcohol or illegal drugs,
and dementia or severe psychiatric disorders. The co-treatments
with corticosteroids and estrogens were excluded. The disease
status was confirmed using the American Diabetes Association
criteria and a physical examination. Blood pressure, body height,
and body weight measurement were done. The body mass index
(BMI) was calculated from anthropometric measurements.

All patients were apprised about the aims of the study,
and a written informed consent was obtained. In addition,
information on the history of diabetes and the presence of
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arterial hypertension, hyperlipidemia, and chronic-degenerative
diseases, smoking status, and other medications was obtained
from the medical records and from the interview for inclusion
in the study.

Definition of Response
A fasting blood sample was drawn for the determination of
HbA1c. HbA1c was measured at least 3 months after drug
prescription and determined using Tina-quant R© HbA1C Gen. 3
(Cobas-Mira Roche). The approach taken for the treatment of the
patients was “treat to target,” defined as failure to reach levels of
HbA1c ≤ 7%. The initial HbA1c of each patient was at least 7%.

DNA Isolation
Peripheral blood from patients was extracted in a tube with EDTA
and genomic DNA was isolated with Wizard Genomic DNA
Purification Kit (Promega, Madison, WI, United States). Protocol
was followed according to manufacturer’s instructions. Genomic
DNA was quantified by UV absorbance using Nanodrop
(Thermo Scientific, Wilmington, DE, United States). The quality
of DNA was measured with the A260/280 ratio, a value of 1.8–2
was considered of good quality. Samples were kept at −20◦C in
small working aliquots until analysis to avoid recurrent cycles of
freezing and thawing to minimize degradation.

Pharmacogenetic Tests (Genotyping)
A total of 14 single nucleotide polymorphisms distributed
in 5 different genes associated with response to anti-diabetic
treatments were genotyped by Real-Time PCR system using
validated Genotyping Assays (Applied Biosystems, Foster City,
CA, United States) according to the manufacturer’s instructions.
Two additional polymorphisms in SLC22A1 gene (Met61Val
and Met420Del) were included in the study and analyzed in
50 responders and 50 non-responder patients. These additional
polymorphisms were determined by nucleotide sequencing
method in a Genetic Analyzer 3100 (Applied Biosystems). As
a quality control measure, genotyping for the polymorphisms
were required to pass three tests for inclusion in subsequent
association studies: the genotype call rate (> 0.90 completeness
to obtain 99.8% accuracy), the Hardy-Weinberg equilibrium
(HWE) test (p-value > 0.05), and the minor allele frequency
(MAF) criterion (> 0.01).

Analysis of Statistical Significance
Standard descriptive and comparative analyses were performed.
The responder’s phenotypes classification was made using Hb1Ac
parameter applied a cut-off ≤ 7 for responder’s and > 7
for non-responder’s [including first-line therapy (FLT), second-
line therapy (SLT), third-line therapy (TLT), monotherapy,
and combination therapy]. The HWE was determined by
comparing the genotype frequencies with the expected values
using the maximum likelihood method. To detect significant
differences between two groups, Student’s t-test or the Mann–
Whitney U-test were used for parametric or non-parametric
distributions, respectively. Differences between more than two
groups were assessed by one-way ANOVA and the Kruskal–
Wallis H-test for parametric or non-parametric distributions,

respectively. Post hoc tests (LSD and Tamhane’s T2) were used for
pairwise comparisons. Possible associations between genotypes
and phenotypes were assessed using contingency tables X2

statistics and Fisher’s exact tests. The association was evaluated
under four different models (dominant, over dominant, recessive,
and additive). Odds ratios were estimated with 95% confidence
intervals. Aforementioned analyses were performed with SPSS
for Windows, V.20 (IBM Corp., Armonk, NY, United States).
All p-values were two-tailed. The corrected P (Pc)-values were
adjusted by using Bonferroni’s correction. A p-value ≤ 0.05 was
considered statistically significant.

Computational Modeling: Direct
Coupling Analysis
To study the association between diabetes-related SNPs, patient
data and antidiabetic drug response, we have developed a metric
called DI, which is derived from the inference framework DCA
(Morcos et al., 2011). DCA is a statistical method that infers
efficiently the parameters of probability distributions with a
large set of variables. DCA can be computed efficiently and is
able to capture and evaluate direct pairwise correlations among
potentially thousands of variable connections. The probability
distribution of large sets of data is modeled with the following
Boltzmann-like distribution:

P(dat) =
1
Z

exp{
∑

eij +
∑

hi}

where dat represents a profile with L variables that are indexed
by i and j and Z is a normalization constant. The parameters
of this distribution are all possible eij and hi for i, j ≤ L and
contain information about pairwise direct connectivity (eij) of the
variables in the dataset. They are typically hard to be calculated
exactly, but can be estimated using DCA. Once the parameters
have been estimated, we can use them to compute pairwise
probabilities. The following expression shows the form of DI
based on the probabilities computed using the parameters, eij and
hi.

DIij =
∑
xi,xj

Pij(xi, xj)log
Pij(xi, xj)
fi(xi)fj(xj)

Here xi is the quantized value of the clinical variable in the profile.
The values of theDIij pairs tell us how connected are two variables
in the distribution.

Analysis on T2DM Patient Data
The DCA was applied to the complete cohort of data as described
in Figure 1. The responder’s phenotypes classification was made
at a cut-off 7 as defined before. Patient’s body indexes, such as
weight, height, BMI, age, duration of diabetes, systolic pressure,
diastolic pressure, are classified based on decade spans. To find
the influential factors for response to OADs, a matrix containing
all patient phenotypic informatics, 14 polymorphisms, HbA1c
test result is generated as the input for DCA algorithm (Morcos
et al., 2011). The T2DM database consists of patient profiles from
495 patients, including basic information, first, second, third line
therapy information, 14 polymorphisms, health conditions, and
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FIGURE 1 | Workflow of global probabilistic modeling on T2DM patient data. Strategy of using T2DM patient datasets to compute the direct information metric
between patient genetic or clinical factors and the drug response of OAD treatments. After DI values were calculated, they were used in the Chow-Liu tree for a
structural learning for Bayesian network.

the HbA1c test result estimating the glucose-lowering effect of
OADs. The patient profile columns also include the 21 OADs
separately, representing the usage and doses of a specific OAD
for certain patients. All of those profiles data are classified and
organized in an input matrix for DCA. DI is computed from DCA
as a metric of connectivity strength for pairwise variables. The
higher DI values, the stronger the correlation between these two
variables. DI has been successfully applied to model molecular
interactions in protein folds (Morcos et al., 2011, 2014; dos Santos
et al., 2015; Boyd et al., 2016) as well as to identify drug-gene
connections in cancer datasets (Jiang et al., 2017). Then, DI
values for each variable pair is computed by DCA algorithm and
then is used to find a complete network by using a minimum
spanning tree approach and then a Bayesian network is built with
undirected edges.

Predictive Model for OAD Treatment
Response
The direct connectivity (eij) estimates the strength of couplings
between two variables at certain states. The summation of eij over
all of patient profile factors with drug response provides a score
to evaluate each patient’s glucose lowering response after taking
OADs under his specific genetic and clinical profiles.

When summing all the eij with the j defined as the HbA1c
level ≤ 7%, the Score represents how likely the patient is
responding to the current OAD treatment based on his/her body
indexes, treatment strategy, polymorphisms, health condition.

ScoreRes =
∑
i

eij(xi,Res)

where i denotes a genetic or clinical factor of patient, and xi
represents the class of the factor belongs to. Additionally, the
score for a patient’s inert responses to the OAD is calculated based

on the eij with j representing HbA1c level> 7%.

ScoreNonRes =
∑
i

eij(xi,NonRes)

The two scores for each patient are compared and the treatment
response is predicted based on which score is larger. The leave one
out cross-validation is conducted to evaluate the performance of
this predictive model.

RESULTS

Descriptive Statistics and Phenotype
Classification
A total of 495 patients treated with hypoglycemic drugs were
included in this study. The subjects were Mexican, mainly
from northeastern of Mexico. The average age of patients was
56.30 ± 12.16 for males and 56.41 ± 11.45 for females. No
significant differences were found for the age of diagnosis,
diabetes duration, and HbA1c values between males and females.
However, the BMI was statistically higher in females (Table 1).
Regarding to co-morbidities, the most frequent co-morbidity was
hypertension with 24.4%, followed by hypertension-dyslipidemia
with 13.1%, only dyslipidemia (7.5%), hypothyroidism (6.3%),
and hypertension-hypothyroidism (4.6%).

The phenotype classification based on HbA1c values (Table 1)
was significantly different between the responder’s and non-
responder’s (p = 6.29 × 10−68). More than half of the
patients (353) did not respond to any type of therapy
(HbA1c> 7%), failing in 71.3% of the cases, and the treatment
was effective (HbA1c ≤ 7%) in 142 individuals. The average
diagnosis age of non-responders showed significant lower
values (p = 4.25 × 10−4) compared to responder’s, but
showed statistically significant higher values of diabetes duration
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TABLE 1 | Demographic and clinical data of patients.

Patients N Age Diagnosis age Diabetes duration BMI HbA1c

Males 156 (31.5%) 56.30 ± 12.16 45.12 ± 12.013 11.45 ± 8.03 28.90 ± 4.46£ 8.69 ± 2.24

Females 339 (68.5%) 56.41 ± 11.45 45.32 ± 10.705 10.95 ± 8.63 30.66 ± 6.78 8.45 ± 2.10

Non-responders 353 (71.3%) 56.30 ± 11.51 44.14 ± 11.001,U 12.14 ± 8.25¶ 29.83 ± 5.95 9.40 ± 1.92£,§

MT non-responders 332(67.1%) 56.47 ± 11.48 44.39 ± 10.95 11.00 ± 8.26 30.00 ± 6.07 9.33 ± 1.94

CT non-responders 30 (6.1%) 55.27 ± 11.51 42.53 ± 11.23 13.07 ± 8.28 28.50 ± 4.80 9.6 ± 1.81

Responders (any type) 142 (28.7%) 56.56 ± 12.09 48.02 ± 10.98 8.54 ± 8.39 30.79 ± 6.72 6.34 ± 0.47

MT responders 127 (25.7%) 55.88 ± 12.08 47.92 ± 11.36 8.06 ± 7.88 30.91 ± 6.72 6.32 ± 0.43

CT responders 7 (1.4%) 65.29 ± 13.16 49.29 ± 6.90 15.43 ± 14.26 25.83 ± 3.78 5.97 ± 0.79

FLT responders 93 (18.8%) 56.61 ± 11.11 49.68 ± 10.83i 6.92 ± 6.89 31.46 ± 6.85 6.30 ± 0.50

SLT responders 39 (7.9%) 56.77 ± 12.98 46.62 ± 10.33 10.19 ± 8.79 30.13 ± 6.15 6.43 ± 0.41

TLT Responders 10 (2.0%) 55.20 ± 17.69 38.10 ± 9.67 17.10 ± 13.07 27.13 ± 6.88 6.40 ± 0.44

Data presented as mean ± SD. BMI: body mass index; HbA1c: hemoglobin A1c; MT: monotherapy; CT: combined therapy; FLT: first-line therapy; SLT: second-line
therapy; TLT: third-line therapy. εp = 0.025 (male vs. female), 1P = 4.25 × 10−4 (non-responders vs. responders), ¶p = 2.5 × 10−7 (non-responders vs. responders),
£p = 6.29 × 10−68 (non-responders vs. responders), Up = 1.41 × 10−4 (non-responders vs. FLT), ÞP = 0.025 (FLT vs. TLT), p ≤ 0.049 (FLT vs. non-responders, SLT,
and TLT), and §p ≤ 6.84 × 10−8 (non-responders vs. FLT, SLT, TLT).

(p = 2.5 × 10−7). A total of 93 patients (18.8%) responded to
FLT, and they showed higher values of diagnosis age (p = 0.025),
although for lower values of diabetes duration (p ≤ 0.049),
compared to responder’s to TLT. None other therapies had a
significant difference.

The drug most commonly used for the FLT was metformin
in monotherapy (46.7%). The second most used drug in FLT
was a SU in combination with metformin (34.6%). For SLT and
TLT, metformin was also very commonly used (16.7 and 8.0%,
respectively). For FLT, SLT, and TLT, the third most common
option was SU in monotherapy (9.3, 13.3, and 5.3%, respectively).
Insulin was the most common treatment choice in SLT and TLT
(55.2 and 69.3%, respectively), although it was the fifth option in
FLT (2.2%) (Table 2).

Pharmacogenetic Findings by Standard
Statistical Methods
The polymorphisms M165I and R400C in SLC22A2 gene were
not in HWE equilibrium. The SNPs G401S and R465G in
SLC22A1 gene, and K432Q in SLC22A2 gene, had a Minor Allele
Frequency (MAF) < 0.01. The polymorphisms were excluded
from subsequent analyses. As a result a total of 9 SNPs remained
for statistical analysis. Two polymorphisms, Ala1369Ser in gene
ABCC8 and Glu23Lys in gene KCNJ11, showed a significant
impact on response to SUs.

The effect of ABCC8-Ala1369Ser polymorphism on Hb1Ac
under SU treatment was statistically significant. Heterozygous
variant (C/T) carriers had lower HbA1c values compared to
homozygous wild-type (A/A) carriers (p = 0.029) and compared
to homozygous wild-type and variant (A/A+C/C) carriers
(p = 0.012). The genotypes resulting from the KCNJ11-Glu23Lys
polymorphism also had a significant impact on HbA1c under
SU treatment. First, the homozygous wild-type and variant
(C/C+T/T) carriers had higher HbA1c values (p = 0.039) as
compared to heterozygous carrier (C/T). None of the other
7 polymorphisms tested had a significant impact on clinical
parameters (Table 3).

The association was evaluated under genetic models for only
nine polymorphisms that had passed a quality control. We found
that two of the nine polymorphisms were associated with the
responder phenotype. The A/C genotype of ABCC8-Ala1369Ser
and the C/T genotype of KCNJ11-Glu23Lys were significantly
associated with responder phenotype using over dominant
model. This association remained statistically significant after
adjusting using Bonferroni’s correction (p< 0.05) (Table 4).

Pharmacogenetic and Clinical
Parametric Findings From T2DM Patient
Profiles by Direct Coupling Analysis
The DCA finds factor-drug response connections from a global
statistical model computed from an estimate of the joint
probability distribution of all clinical variables in the study.
Figure 1 shows the classification process that the patient clinical
and genetic data undergoes to form the input discrete matrix
for DCA algorithm. The outcome is a set of pairs with DI
values. To uncover the minimal set of relevant connections
between those factors, a Bayesian network is constructed by
using the Chow-Liu algorithm as shown in Figure 1. However,
this study refines Chow-Liu algorithm by replacing the typical
use of mutual information with DI from DCA to calculate the
Kullback–Leibler distance. This is a novel approach to generate
the Bayesian network. Some factors cluster together and are
connected showing previously known relationships, such as the
connections between weight, height, BMI, and gender. These
known associations of factors can be seen as validation of the links
found by the algorithm. The time lengths of treatment (first line
and second line), age, age of diagnosis, and diabetes diagnosis
span are clustered; however, the treatment history for the third
line therapy is more likely to be associated with weight.

In agreement with the pharmacogenomics finding that
KCNJ11 Glu23Lys affects the response to SUs, while KCNJ11
Glu23Lys is generally connected to response to OADs. However,
the ABCC8 Ala1369Ser variant is not connected to any drug
in this network and is linked to KCNJ11 Ile1337Val variant.
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TABLE 2 | Scheme for the treatment of T2DM.

First-line therapy Second-line therapy Third-line therapy

Drug N Percent N Percent N Percent

Metformin 231 46.7 45 16.7 6 8

Metformin/Sulfonylurea 171 34.6 3 1.1 1 1.3

Sulfonylurea 46 9.3 40 14.8 5 6.8

Other 36 7.2 33 12.2 11 14.6

Insulin 11 2.2 149 55.2 52 69.3

Total 495 100 270 100 75 100

TABLE 3 | Association values between gene polymorphisms and clinical parameters.

Polymorphism N BMI Diagnosis age HbA1c

ABCC8-Ala1369Ser

A/A 180 30.74 ± 6.84 46.23 ± 11.37 8.69 ± 2.071

A/C 241 29.84 ± 5.93 45.16 ± 11.34 8.34 ± 2.21

C/C 74 29.44 ± 5.26 43.20 ± 9.52 8.74 ± 2.09

A/A+C/C 254 30.36 ± 6.44 45.35 ± 10.93 8.70 ± 2.07¶

CYP2C9-Arg144Cys

C/C 423 30.07 ± 6.26 45.41 ± 11.03 8.49 ± 2.17

C/T 67 30.30 ± 6.04 44.69 ± 11.40 8.67 ± 2.00

T/T 5 30.17 ± 2.09 40.00 ± 16.33 9.60 ± 2.13

CYP2C9-Ile359Leu

A/A 460 30.06 ± 6.01 45.35 ± 10.96 8.52 ± 2.13

C/A 35 30.67 ± 8.28 44.06 ± 13.24 8.55 ± 2.34

KCNJ11-Glu23Lys

C/C 179 30.70 ± 6.87 46.26 ± 11.56 8.64 ± 2.08

C/T 246 29.91 ± 5.96 44.95 ± 11.25 8.37 ± 2.19

T/T 70 29.26 ± 5.01 43.79 ± 9.28 8.75 ± 2.13

C/C+T/T 249 30.29 ± 6.42 45.56 ± 11.00 8.67 ± 2.09£

KCNJ11-Ile1337Val

C/C 71 29.36 ± 5.05 43.75 ± 9.22 8.74 ± 2.12

C/T 247 29.97 ± 6.17 44.91 ± 11.34 8.38 ± 2.20

T/T 177 30.59 ± 6.62 46.34 ± 11.46 8.64 ± 2.07

SLC22A1-Arg61Cys

C/C 475 30.05 ± 6.21 45.40 ± 11.03 8.53 ± 2.16

C/T 20 31.43 ± 5.83 41.90 ± 13.02 8.51 ± 1.77

SLC22A1-Met61Val

G/G 92 30.77 ± 6.22 46.41 ± 9.96 8.18 ± 2.04

A/G 26 29.74 ± 4.45 45.58 ± 14.77 8.14 ± 1.74

A/A 6 28.66 ± 4.03 43.67 ± 10.65 8.15 ± 1.83

SLC22A2-Ala270Ser

A/C 58 30.04 ± 6.35 46.03 ± 11.17 8.04 ± 1.56

C/C 437 30.11 ± 6.18 45.15 ± 11.12 8.59 ± 2.20

SLC22A2-Met420Del

ATG/ATG 52 30.56 ± 6.30 44.65 ± 9.87 8.35 ± 2.09

ATG/delTGA 49 30.72 ± 5.77 48.10 ± 12.73 8.05 ± 2.00

delGAT/delGAT 23 29.61 ± 4.78 45.13 ± 9.59 8.02 ± 1.56

Data presented as mean ± SD. BMI: body mass index; HbA1c: hemoglobin A1c. 1P = 0.029 (A/A vs. A/C), ¶p = 0.012 (A/A+C/C vs. A/C), and £p = 0.039 (C/C+T/T vs.
C/T).

Polymorphisms in the SLC22A2 gene have been identified and
shown to cause inter-patient variability in the pharmacokinetic
and pharmacodynamic profile of metformin. Three gene
variants, M165I (rs8177507), Ala270Ser (rs316019), and R400C

(rs8177516), of the SLC22A2 gene were reported with reduced
uptake of OCT2 substrate, whereas a fourth one, K432Q
(rs8177517), showed an increased uptake activity compared to
the wild-type allele. However, attempts to translate those findings
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TABLE 4 | Association values between genotypes and response using dominant, over-dominant, and additive models.

Gene Polymorphism Model OR (95% CI) p-value Pc-value

ABCC8 Ala1369Ser Over-dominant
(A/A+C/C vs. A/C)

A/A+C/C = 1.33
(1.11–1.59)

0.03 0.04∗

A/C = 0.736
(0.59–0.92)

KCNJ11 Glu23Lys Over-dominant
(C/C+T/T vs. C/T)

C/C+T/T = 1.27
(1.06–1.51)

0.013 0.018∗

C/T = 0.77
(0.62–0.96)

OR: odds ratio; CI: confidence interval; Pc: P-values adjusted by using Bonferroni’s correction for multiple comparisons; ∗p ≤ 0.05.

FIGURE 2 | Bayesian network of OADs and factors built from direct information. Hexagonal shapes indicate OADs and ovals denote clinical parameters or
polymorphisms.

into altered response to metformin of diabetic patients in several
populations have not been successful (Meyer zu Schwabedissen
et al., 2010). As shown in Figure 2, 3 out of 4 polymorphisms
in SLC22A2 have connections to metformin in combination
with other drugs. The genetic variants of SLC22A2 identified
in a Korean population appear to have a significant impact on
the disposition of metformin. As expected from the primary
distribution of OCT2 in the kidney, the tubular excretion
was influenced mainly by the M165I, Ala270Ser, and R400C
variants of SLC22A2, leading to an increase in plasma metformin
concentrations in subjects with these variants (Song et al., 2008).
MET is connected to FLT cluster and SLT cluster, being consistent
with the fact that MET is the most commonly used drug in FLT
and the second common drug in SLT. Two SU drugs, GLIB and
GLIM, are connected together.

To systematically investigate the connection between blood
glucose lowering outcome and other factors, we studied the
couplings between those factors and the drug response HbA1c
test results. In the input matrix, the values in columns for
each drug identify their presence or absence in the treatment.
The overall ranking of each drug response connection is shown
in the heatmap of Figure 3A. Treatment time and doses are
highly associated with HbA1c results. Age and place of origin
appear to be strongly influential. The administration of GLIB
or MET in monotherapy is also highly connected to HbA1c
results, partially corresponding with the fact that Metformin
is the most commonly used treatment for T2DM. Among
the body indexes parameter, weight and BMI still have high
rankings, which suggests that in prediction of treatment outcome
those two factors are worthy of consideration. The rankings of
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FIGURE 3 | (A) Heat map for the ranking of each factors and HbA1c test result among all the pairwise pool. The lower value of the ranking indicates stronger
connectivity. (B) A predictive model for patient’s drug response to OAD treatments.

polymorphisms have the highest influence at KCNJ11 Glu23Lys,
which is observed to be correlated with drug response to SUs in
both the statistical significance study and the DI-based Bayesian
network.

In order to predict the glucose-lowering efficacy of each OADs
and determine a better therapy strategy based on a given profile
of patient, we develop a predictive model on DI (Figure 3B). DI
is a metric of direct coupling among variables but it does not
reveal the directionality of this connection. It is possible to use the
parameters of the global joint distribution, to quantify how a large
number of factors account for a possible outcome, i.e., responsive
or non-responsive treatment. This additive model uses the
eij(xi,xj) estimates connecting factors to response with the aims
to distinguish between the responder and non-responder group.
We conducted a leave one out cross-validation on the 495 T2DM
patients dataset, and reached an average of prediction rate at 0.70,
with the maximum response vs. non-response prediction rate
at 0.76.

DISCUSSION

Association Between Gene
Polymorphisms and Clinical Parameters
From the nine analyzed pharamcogentic polymorphisms seeking
to explain the relationship between diverse genotypes of
diabetic patients and their response to different OADs, only
two polymorphisms, ABCC8-Ala1369Ser and KCNJ11-Glu23Lys,
showed a significant impact on response on the reduction
of Hb1Ac with SU treatment. None of the other seven
polymorphisms tested had a significant impact on clinical
parameters. These results confirm the association of ABCC8-
Ala1369Ser polymorphism and reduction of HbA1c level in

the Chinese population with SU treatment (Feng et al., 2008).
Nevertheless, studies in Caucasian populations showed no
association of KCNJ11-Glu23Lys with Hb1Ac reduction in
response to SUs (Ragia et al., 2012).

The CYP2C9 polymorphisms included in this study,
Arg144Cys and I1359L, showed no significant differences in
response to SUs in comparison with studies carried on Caucasian
population in which they described a higher sensitivity to SUs
for Ile359Leu and Arg144Cys variant carriers (Becker et al.,
2008; Ragia et al., 2014). The KCNJ11-I337 polymorphism
showed no evidence of being related in the response to SUs as
a study carried on Chinese population suggests (Cheung et al.,
2011). The SLC22A1 polymorphisms, Arg61Cys and Met61Val,
showed no significant evidence of being related in the response
to metformin in comparison with a study carried in Caucasian
population in which they found a significant reduction of Hb1Ac
after 6 months of metformin treatment (Tkac et al., 2013). The
SLC22A2 polymorphisms showed no evidence of being related in
the response to metformin, contrary of what has been suggested
(Avery et al., 2009).

Association Between Genotypes and
Phenotypes
Only the A/C nucleotide change from polymorphism
Ala1369Ser (gene ABCC8) and the C/T nucleotide change
from polymorphism Glu23Lys (gene KCNJ1) were significantly
associated with responder phenotype using an over dominant
model. KCNJ11 and ABCC8 encode for the subunits KIR6.2 and
SUR1, respectively, of the heteroctomer KATP channel (Emami-
Riedmaier et al., 2015). KATP channels regulate membrane K+
flux for various cell types including pancreatic β-cells, where
increased glucose metabolism results in the closure of the KATP
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channels leading to calcium influx and subsequent insulin
secretion (Nathan et al., 2009). Notably, KCNJ11 and ABCC8
genes lie close to each other on chromosome 11, with
strong linkage disequilibrium. In a Caucasian population study,
Ala1369Ser was correlated with Glu23Lys, where for every K
allele of KCNJ11 gene found there was A allele of ABCC8, thus
constituting a possible haplotype (Florez et al., 2004), whereas
several studies and meta-analyses showed the association of
KCNJ11, but not of ABCC8 polymorphisms, with susceptibility
to type 2 diabetes (van Dam et al., 2005; Gong et al., 2012).

We showed that it is possible to use patient data in
this comprehensive study to generate a model of the
global distribution of patient profiles. This model includes
phenotypic factors, health conditions, treatment information,
and polymorphisms with clinical treatment outcome variable.
Although we found agreement between the standard statistical
tests and the global pairwise DCA model about how KCNJ11-
Glu23Lys affects the efficacy of SUs drug, we also found novel
relationships when modeling the dataset with global techniques.
We uncover a network connecting OADs, gene polymorphisms,
and patient information. Connections with the HbA1c test and
metrics for the association between each pairwise variables can
inform better how a large set of factors interact during disease
progression.

A predictive model for OAD drug response is proposed
based on direct coupling parameters eij in this study and its
predictive performance has been validated by cross validation.
The overall prediction rate both for predicting as responding
or non-responding can be as high as 0.76. This model has the
potential to be used as a guide to modify factors to predict
higher response scores. This is a topic of further research
that can have applications in personalized therapies. With
increasing well-phenotyped cohorts and new methods, such
as Next Generation Sequencing and global statistical analyses,

the next few years promise a renewed interest in the use of
pharmacogenetics to unravel drug and disease mechanisms,
as well as the possibility to individualize T2DM therapy by
genotype.
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Virtual Screening (VS) is designed to prospectively help identifying potential hits, i.e.,

compounds capable of interacting with a given target and potentially modulate its

activity, out of large compound collections. Among the variety of methodologies, it is

crucial to select the protocol that is the most adapted to the query/target system under

study and that yields the most reliable output. To this aim, the performance of VS

methods is commonly evaluated and compared by computing their ability to retrieve

active compounds in benchmarking datasets. The benchmarking datasets contain a

subset of known active compounds together with a subset of decoys, i.e., assumed

non-active molecules. The composition of both the active and the decoy compounds

subsets is critical to limit the biases in the evaluation of the VS methods. In this review,

we focus on the selection of decoy compounds that has considerably changed over

the years, from randomly selected compounds to highly customized or experimentally

validated negative compounds. We first outline the evolution of decoys selection in

benchmarking databases as well as current benchmarking databases that tend to

minimize the introduction of biases, and secondly, we propose recommendations for

the selection and the design of benchmarking datasets.

Keywords: virtual screening, benchmarking databases, benchmarking, decoy, structure-based drug design,

ligand-based drug design

INTRODUCTION

Computer-aided drug design (CADD) is now a commonly integrated tool in drug discovery
processes (Sliwoski et al., 2014). It represents a way to predict ligands bioactivity in silico, and help
focusing the drug discovery efforts on a limited number of promising compounds, saving both time
and money in this very competitive field. Among these computational methods, Virtual Screening
(VS) is designed to prospectively help identifying potential hits, i.e., compounds able to interact
with the target and to modulate its activity, out of large compound collections (Tanrikulu et al.,
2013). VS approaches can be Ligand-Based (LBVS) when they rely only on the structure/properties
of known active compounds to retrieve promising molecules from compound collections (using
similarity search, QSAR or 2D/3D pharmacophore, etc.), or Structure-Based (SBVS) if the structural
information of the target is used (like in molecular docking studies).

The evaluation of VS methods is crucial prior to large library prospective screening to select
the appropriate methodology, and subsequently generate reliable outcome on real-life project.
Thus, software and workflows must be thoroughly evaluated retrospectively using benchmarking
datasets. Such datasets are composed of known active data together with inactive compounds
referred to as “decoys” (Irwin, 2008). Ideally, both active and inactive compounds should be
selected on the basis of experimental data. However, the documentation on inactive data is scarce,
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and putative inactive compounds are generally used instead.
Among the common metrics used to estimate the performance
of VS methods we find receiver operating characteristics (ROC)
curves, the area under the ROC curve (ROC AUC) (Triballeau
et al., 2005), Enrichment Curves (EC), Enrichment Factors (EF)
and predictiveness curves (Empereur-mot et al., 2015). While
conceptually different, they all share the same objective: assess the
ability of a given method to identify active compounds as such,
and discriminate them from the decoy compounds.

However, since the publication of the first benchmarking
database in the early 2000s, the composition in both active and
decoy compounds have been pointed out to crucially impact
VS methods evaluation; several biases have been shown to
incline VS assessment outcomes positively or negatively. The
difference between the two chemical spaces defined by the active
compounds on the one hand and the decoy compounds on
the other hand may lead to artificial overestimation of the
enrichment (Bissantz et al., 2000). On the contrary, the possible
presence of active compounds in the decoy compounds set
may introduce an artificial underestimation of the enrichment
(Verdonk et al., 2004; Good and Oprea, 2008) since decoys
are usually assumed to be inactive rather than proved to
be true inactive compounds (i.e., confirmed inactive through
experimental bioassays). New databases were designed to
minimize those biases (Rohrer and Baumann, 2009; Vogel et al.,
2011; Mysinger et al., 2012; Ibrahim et al., 2015a). Finally,
many studies pointed out that the VS performance depends
on the target and its structural properties (structural flexibility,
binding site physicochemical properties, etc.; Cummings et al.,
2005). Taking this into consideration, and despite the growing
number of protein families represented in databases, decoy
datasets generation tools were made publicly available in order
to allow any scientist to fine-tune target-dependant and reliable
benchmarking datasets (Mysinger et al., 2012; Ibrahim et al.,
2015a).

In this review, we first present how the notion of decoy
compounds evolved from randomly selected putative inactive
compounds to rationally selected putative inactive compounds
and finally true negative compounds. We develop the successive
benchmarking datasets that were published in the literature
and their basic to highly refined decoys selection workflows
together with the resulting positive or negative biases due to
their design. We then detail 5 benchmarking databases or decoy
sets generator tools along with their detailed decoy compounds
selection that represent the current state-of-the-art as of 2017:
their respective composition tend to minimize such biases.
Finally, we propose recommendations to select minimally biased
benchmarking datasets containing putative inactive compounds
as decoy compounds and introduce guidelines to design true
inactive compounds containing databases.

THE HISTORY OF DECOYS SELECTION

Randomly Selected Decoys
The first use of a benchmarking database to evaluate virtual
screening tools dates back to 2000, with the pioneering work of
Bissantz et al. (2000). The objective of their study was to evaluate
the ligands enrichment, i.e., the ability of docking programs

to associate active compounds with the best scores within a
compound collection. Three docking programs [Dock (Kuntz
et al., 1982), FlexX (Rarey et al., 1996), Gold (Jones et al., 1997)]
combined with 7 scoring functions [ChemScore (Eldridge et al.,
1997), Dock, FlexX, Fresno (Rognan et al., 1999), Gld, Pmf
(Muegge and Martin, 1999), Score (Wang et al., 1998)] were
evaluated on two different target proteins: Thymidine Kinase
(TK) and the ligand binding domain of the Estrogen Receptor
α subtype (ER α).

For each target, a dataset containing 10 known ligands
and 990 molecules assumed to be inactive (decoy compounds)
was created. The decoy compounds were selected following
a two-step scheme: (1) the Advanced Chemical Directory
(ACD v.2000-1, Molecular Design Limited, San Leandro) was
filtered to eliminate undesired compounds (chemical reagents,
inorganic compounds and molecules with unsuitable molecular
weights), (2) 990 molecules were randomly selected out of
the filtered dataset. The datasets were used to evaluate and
compare several docking and scoring schemes. The authors
eventually recommended a calibration of docking/consensus
scoring schemes on reduced data sets prior to large dataset
screens. Later on, Bissantz et al. (2003) applied the same protocol
to three human GPCRs to investigate whether their homology
models were suitable for virtual screening experiments.

A growing interest for virtual screening benchmarking
databases soon emerged from the community (Kellenberger et al.,
2004; Brozell et al., 2012; Neves et al., 2012; Repasky et al., 2012;
Spitzer and Jain, 2012). New databases were designed with an
increasing complexity in the decoys selection methodologies (see
section Benchmarking Databases). Nowadays, benchmarking
databases are widely used to evaluate various VS tools
(Kellenberger et al., 2004; Warren et al., 2006; McGaughey et al.,
2007; von Korff et al., 2009; Braga and Andrade, 2013; Ibrahim
et al., 2015a; Pei et al., 2015) and to support the identification
of hit/lead compounds using LBVS and SBVS (Allen et al., 2015;
Ruggeri et al., 2015).

Integration of Physicochemical Filters to
the Decoy Compounds Selection
In the early 2000s, Diller’s group incorporated filters in the decoys
selection to ensure that the discrimination they observed was
not solely based on the size of the decoy compounds (Diller
and Li, 2003). In addition to the 1,000 kinases inhibitors they
retrieved from the literature for 6 kinases (EGFr, VEGFr1,
PDGFrβ, FGFr1, SRC, and p38), 32,000 compounds were
randomly selected from a filtered version of the MDL Drug
Data Report (MDDR). The filters were designed to select decoy
compounds displaying similar polarity and molecular weight.
Similarly, in 2003, a benchmarking database derived from
the MDDR was constructed by McGovern et al. (McGovern
and Shoichet, 2003). Compounds with unwanted functional
groups were removed, leading to 95,000 compounds. The
targets of the MDDR for which at least 20 known ligands
were available constituted a target dataset (CA II, MMP-3,
NEP, PDF, and XO). The remaining compounds were used
as decoy compounds. The addition of rational filters was
a considerable step forward in the improvement of decoys
selection, but due to the commercial licensing of the MDDR,
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its use was limited (http://www.akosgmbh.de/accelrys/databases/
mddr.htm1).

The first benchmarking databases were composed as follows:
(1) true active compounds consisted in known ligands extracted
from the literature while (2) decoy compounds consisted in
putative inactive compounds randomly selected from large
databases possibly filtered to be compliant to specific criteria
(drug likeness, molecular weight, topological polar surface
area. . . ). Since the decoy compounds were pseudo-randomly
selected, they were assumed to be inactive on the defined targets.

Despite the use of the MDDR and the filtering of the decoy
compounds, these benchmarking databases displayed a major
drawback: the significant differences occurring between the
physicochemical properties of the active compounds and decoy
compounds led to obvious discrimination and then artificially
good enrichments (Verdonk et al., 2004; Huang et al., 2006).

In 2006, Irwin et al. proposed that the decoy compounds
should be similar to the known ligands regarding their
physicochemical properties to reduce the introduction of bias
while being structurally dissimilar to the known ligands to reduce
their probability to be active on the defined target. Following
these recommendations, they created the DUD database (Huang
et al., 2006) that was immediately considered as the gold standard
for the evaluation of VS methods.

The DUD database is composed of 2,950 ligands and 95,326
decoys for a total of 40 proteins from 6 classes (nuclear hormone
receptors, kinases, serine proteases, metalloenzymes, folate
enzymes and others). The decoy compounds were extracted
from the drug-like subset of the ZINC database (Irwin and
Shoichet, 2005). The 2D-similarity between known ligands and
decoy compounds was computed by calculating the Tanimoto
distance based on the CACTVS type 2 substructure keys and
5 physicochemical properties. For each active compound, the
36 molecules sharing the most similar properties while being
topologically dissimilar (Tanimoto < 0.9) were conserved. The
evaluation of the performance of DOCK (Meng et al., 1992;
Wei et al., 2002; Lorber and Shoichet, 2005; Huang et al., 2006)
confirmed that uncorrected databases such as the MDDR led
to over-optimistic enrichments compared to corrected databases
such as the DUD.

Benchmarking Database Biases
Despite the precautions taken to build the DUD database, several
remaining biases have been reported in the literature.

The “analogous bias” (Good and Oprea, 2008) lies in the
limited chemical space of active compounds that is restricted
to the chemical series that have been explored and referenced
in databases. The discrimination of the active compounds
from decoy compounds can be simplified since the decoy sets
would display a larger structural variability that could induce
an overestimation of the performance of VS methods. The
lack of diversity in the structures of known active compounds
limits the training and evaluation of LBVS methods to perform
scaffold-hopping, i.e., the identification of active hit compounds

1MDDR licensed by Molecular Design, Ltd., San Leandro, CA.

that structurally differ from reference molecules while retaining
similar activity.

The “complexity bias” (Stumpfe and Bajorath, 2011) or
“artificial enrichment bias”: active compounds and decoy
compounds often display differences in their respective
structural complexity since active compounds are often
optimized compounds extracted from large series in the
scientific and patent literature, which is not necessarily the
case for the structures of pseudo-randomly selected decoy
compounds.

The “false negative bias” (Vogel et al., 2011; Bauer et al.,
2013) lies in the presence of active compounds in the decoy
set. Unlike the analogous and complexity biases, it induces
an underestimation of the performance of the VS methods
that could be particularly dramatic for the evaluation of LBVS
methods (Irwin, 2008).

The need for less biased benchmarking databases to
objectively evaluate VS methods favored the emergence of new
strategies to eradicate or at least minimize those biases. Two
decoys selection strategies arose from benchmarking databases
improvement attempts: (1) the use of highly refined decoys
selection strategies and (2) the integration of true negative
compounds in the decoy set.

Highly Refined Putative Inactive
Compounds Selection
The reported biases pointed out that the composition of both
active compounds and decoy compounds sets has a huge impact
on the evaluation of the performance of VS methods (Verdonk
et al., 2004; Good and Oprea, 2008). Therefore, particular efforts
were performed in the selection strategies for active compounds
and decoy compounds.

To address analogous bias, a strategy consists in modifying
the receiver operating characteristics (ROC) curves (i.e., the
fraction of actives among the top fraction x of the data set)
(Triballeau et al., 2005) by weighting the rank of each active
compound with the size of its corresponding lead series (Clark
and Webster-Clark, 2008). This allows an equal contribution of
each active chemotype to the ROC curve (rather than each active
compound). Another widely used method is to fine-tune the
active compounds dataset prior to screen to ensure an intrinsic
structural diversity. To this aim, the MUV datasets (Rohrer
and Baumann, 2009) were designed using the Kennard Jones
algorithm to obtain an optimal spread of the active compounds
in the decoy compounds chemical space while ensuring a balance
between the active compounds self-similarity and separation
from the decoy compounds. Despite these observations, the most
used strategy in the literature still consists in clustering ligands
based on 2D descriptors and retain only cluster representatives
in the final dataset (Good and Oprea, 2008; Mysinger et al., 2012;
Bauer et al., 2013).

To reduce artificial enrichment, efforts were made to match as
much as possible the physicochemical properties of the decoys
to the physicochemical properties of the active compounds.
To this aim, the Maximum Unbiased Validation database
(MUV) (Rohrer and Baumann, 2009) was designed to ensure
embedding of active compounds in the decoy compounds
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chemical space based on an embedding confidence distance cut-
off calibrated on multiple drug-like compounds banks’ chemical
space. Active compounds that were poorly embedded in the
decoy set were discarded. A way to ensure the availability of
potential decoy compounds for any ligand is to generate decoys
that ignore synthetic feasibility (Wallach and Lilien, 2011).
Other databases select decoys that match active compounds
in a multiple physicochemical properties space. The DEKOIS
2.0 (Ibrahim et al., 2015a) proposed a workflow that used 8
physicochemical properties while the DUD-E added net charge
to the 5 physicochemical properties already considered in the
original DUD.

To address the risk of including false negatives in the decoy set,
a common strategy is to select decoy compounds topologically
different to any active compound. For this purpose, Bauer et al.
introduced the LADS score to guide decoys selection (Vogel
et al., 2011). In the DUD-E, potential false decoys are avoided by
applying a stringent FCFP_6 fingerprints Tanimoto-based filter.
It is important to note that since the evaluation of LBVS methods
requires that decoy compounds should not be discriminated
using basic 2D-based similarity tools, the use of 2D-based
dissimilarity filters to avoid false negatives in the decoy set
makes the concerned databases inappropriate for the evaluation
of the performance of LBVS methods. Therefore, Xia et al.
developed a method to select adequate decoys for both SBVS and
LBVS (Xia et al., 2014) by favoring physicochemical similarity
as well as topological similarity between active compounds and
decoy compounds that passed a primary topological dissimilarity
filter.

With these improvements, the notion of decoys remained
the same—putative inactive compounds—but their selection
critically evolved. Ever since, the main progress achieved in
the literature lies in the diversification of the protein targets
represented in benchmarking databases. The growing need for
datasets dedicated to a given target led to (1) an increasing
diversity of targets in benchmarking databases [the DUD-E
(Mysinger et al., 2012) contains datasets against 102 targets while
the previous DUD (Huang et al., 2006) contained datasets only
for 40 targets] and (2) highly specialized benchmarking databases
focused on a particular class of targets. Such specialized datasets
exist for GPCRs [GPCR ligand library (GLL)/Decoy Database
(GDD) (Gatica and Cavasotto, 2012)], histone deacetylases
[maximal unbiased benchmarking data sets for HDACs—
MUBD-HDACs (Xia et al., 2015)], or nuclear receptors [NRLiSt
BDB (Lagarde et al., 2014a)]. As a notice, DUD-E or DecoyFinder
(Cereto-Massagué et al., 2012) offer automated decoy set
generation tools based on the properties of active compounds,
enabling the community to easily design and tune their own
dataset for a particular target.

Toward True Negative Compounds
A common issue about decoys is the lack of data regarding their
potential bioactivity against the target. Most methods assume
that the absence of data means an absence of activity, which
may lead to include unknown active ligands into a decoy set.
To eliminate such false negatives from decoy sets, one solution
is to use referenced true negative compounds that can be

either true inactive or compounds displaying an undesirable
activity.

True inactive compounds, i.e., compounds that displayed
no experimental binding affinity against the target of interest,
can be used to identify binders. Inactive data is made available
in several public activity and/or affinity annotated compound
repositories and high throughput screening (HTS) initiatives
such as: ChEMBL (Bento et al., 2014), Drugbank (Wishart
et al., 2008) that provides annotations for approved drugs;
PDBBind (Wang et al., 2004, 2005), Binding MOAD (Benson
et al., 2008) and AffinDB (Block et al., 2006) that contain
binding affinity data for protein–ligand complexes available in
the Protein Data Bank (PDB) (Berman et al., 2000); PDSP
Ki database (Roth et al., 2000) that stores screening data
from the National Institute of Mental Health’s Psychoactive
Drug Screening Program; BRENDA (Placzek et al., 2017) that
provides binding constants for enzymes; IUPHAR (Southan
et al., 2016) that contains binding information for receptors
and ion channels; GLIDA (Okuno et al., 2006) and GPCRDB
(Munk et al., 2016) that contains binding data for G-protein-
coupled receptors; D3R datasets (Drug Design Data Resource2)
that have been provided by pharmaceutical companies and
academia and contain affinity data for 7 proteins together with
inactive compounds; ToxCastTM/Tox21 (Kavlock et al., 2012)
and PCBioAssay (Wang et al., 2017) that provide HTS data for
various targets.

As an example, the DUD-Enhanced (Mysinger et al., 2012)
(DUD-E) integrates some experimentally validated inactive
compounds extracted from ChEMBL in the decoy set in addition
to putative inactive compounds: an arbitrary 1µM cutoff is
used to classify ligands in the active set while molecules with
no measurable activity at 30µM or higher concentration were
classified into the decoy set. Similarly, the Maximum Unbiased
Validation (MUV) (Rohrer and Baumann, 2009) datasets are
composed of both active and inactive compounds collected from
the PubChem BioAssay annotated database.

Unwanted compounds, i.e., compounds that display
unwanted activity or binding, can also be used as negatives. For
instance, a recent study used ligands of the NRLiSt BDB (Lagarde
et al., 2014a) either as active compounds or decoy compounds,
depending on their activity for each nuclear receptor; antagonist
(or agonist) ligands of a given nuclear receptor were used as
decoys to evaluate agonistic (or antagonistic) pharmacophores
(Lagarde et al., 2016, 2017). This strategy has shown successful
results in the past: Guasch et al. (2012) focused on PPAR γ

partial agonists to avoid side effects accompanying full receptor
activation and built an anti-pharmacophore model with known
full agonist compounds to remove all potential full agonist
compounds from their initial set of 89,165 natural products and
natural product derivatives. The authors screened the remaining
compounds on a partial agonist pharmacophore model and
identified 135 compounds as potential PPARγ partial agonists
with good ADME properties among which 8 compounds with
new chemical scaffolds for PPARγ partial agonistic activity. After

2Available at: drugdesigndata.org
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biological tests, 5 compounds were confirmed to be PPAR γ

partial agonists.

SELECTED DATABASES

Maximum Unbiased Validation (MUV)
The MUV was designed to propose unbiased datasets in regard
to both artificial enrichment and analogous bias by proposing
a new approach gleaned from spatial statistics (Rohrer and
Baumann, 2009). The authors ensured homogeneity in actives-
actives similarity and actives-decoys dispersion in order to
reach a random-like distribution of active compounds and
decoy compounds in a physicochemical descriptors chemical
space. This implies that the molecular properties contained
no information about the bioactivities of active and decoy
compounds. Datasets were designed for 18 targets with a total
of 30 actives and 15,000 decoys for each target.

Initial Compounds Database
Potential active and decoy compounds were extracted from HTS
experiments available in PCBioAssay (June 2008) (PubChem
BioAssay3). In these assays, a primary screen was performed
in a large number of compounds (>50,000) and was followed
by a low throughput confirmatory screen. Compounds with an
experimental EC50 in the confirmatory screen were selected as
potential active compounds while inactive compounds from the
primary screen were selected as potential decoys.

Actives Selection
A two-step process was applied to rationally select final
active compounds for the MUV data sets. (1) Potential active
compounds were filtered to eliminate artifacts caused by
organic chemicals aggregation in aqueous buffers (“Hill slope
filter”), as well as off-targets, cytotoxic effects or interference
with optical detection methods [“frequency of hits filter”
and “autofluorescence (Simeonov et al., 2008) and luciferase
inhibition (Auld et al., 2008) filters”]. (2) A “chemical space
embedding filter” was applied to ensure that actives located in
regions of the chemical space devoid of decoys were eliminated
from the dataset (Figure 1). Subsets of 30 actives with the
maximum spread per target were generated using a Kennard-
Jones algorithm. Selected active compounds were exchanged with
remaining potential active compounds until all datasets were
adjusted to a common level of spread.

Decoys Selection
To carefully match active and decoys physicochemical properties,
Rohrer et al. proposed that the level of self-similarity within the
active compounds set [measured using the “nearest neighbor
function” G (t)] should be equal to the degree of separation
between the active compounds set and the decoy compounds
set [evaluated with the “empty space function” F (t)] (Figure 1).
Following guideline, the data clumping should be null, ensuring
a random-like distribution of decoy and active compounds in
the overall chemical space. The distances were computed based
on 1D molecular properties (counts of all atoms, heavy atoms,
boron, bromine, carbon, chlorine, fluorine, iodine, nitrogen,

3Available online at: http://pubchem.ncbi.nlm.nih.gov/sources#assay

oxygen, phosphorus, and sulfur atoms in each molecule as well
as the number of H-bond acceptors, H-bond donors, the logP,
the number of chiral centers, and the number of ring systems).
The level of separation between the decoy compounds and the
active compounds was adjusted to the same level of spread so that
the data clumping is null. In total, 500 decoys were selected per
selected active, resulting in 15,000 decoys per dataset.

The minimization of analog bias and artificial enrichment
makes the MUV datasets fitted for LBVS. The availability of
structures in the PDB (2008) for seven of the MUV targets makes
it suitable for SBVS as well (Löwer et al., 2011). Thus, the MUV
constituted the first dataset that enabled comparative evaluations
of SB and LBVS methods and protocols.

Demanding Evaluation Kits for Objective in

Silico Screening (DEKOIS)
In 2011, Vogel et al. proposed a new generator of decoy
compounds sets called Demanding Evaluation Kits for Objective
In Silico Screening (DEKOIS) (Vogel et al., 2011). The authors
designed their tool to avoid the introduction of well-known and
described biases into the decoy sets, i.e., analog bias and artificial
enrichment. A first step in their workflow is subsequently to
closely match physicochemical properties of both ligand and
decoys to limit the analog bias. Then, to deal with the risk of
including false negative compounds in the decoy compounds set,
a new concept is applied to the decoys selection process: the latent
actives in the decoy set (LADS). Finally, the structural diversity
of the active and decoy compounds structures into the sets is
evaluated and maximized, and the embedding of the actives into
the decoys chemical is assessed. The whole workflow was further
improved in 2013 to produce the current version of this tool,
DEKOIS 2.0 (Bauer et al., 2013), and 81 ready-to-use (active
and decoys) benchmarking datasets for 11 target classes are
currently available through the DEKOIS website (www.dekois.
com/, accessed 10/23/2017).

Initial Compounds Database
Decoy compounds from the DEKOIS 2.0 benchmarking datasets
are selected from a subset of the ZINC database of 15 million
molecules. Eight physicochemical properties are evaluated:
molecular weight, octanol–water partition coefficient, hydrogen
bonds acceptor and/or donor, number of rotatable bonds,
positive and negative charges, and the number of aromatic rings.
For each physicochemical property, bins are defined, and all
possible combinations of bins are used to split the database
compounds into cells. The initial bins are defined so that each
bin is equally populated, and each final cell is characterized
by a set of 8 physicochemical properties. Each user-provided
active compound is associated with the closest cell (in terms
of physicochemical properties), and 1,500 decoys are randomly
preselected from this parent cell, or from the direct neighbor cells
if the parent cell is not populated enough to provide 1,500 decoy
compounds (Figure 1).

Decoys Selection
The two criteria for the refinement steps are the structural
diversity and the low rate of latent active in decoy set (LADS).
A physicochemical similarity score (PSS) and a LADS score are
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FIGURE 1 | Decoys selection in MUV and DEKOIS 2.0. (A) For each active of the MUV, a distance to the 500th nearest neighbor from 100 random samples from

multiple drug-like compounds collections was computed. The 90th percentile was recorded as the confidence distance for a good embedding (dconf ). Active

compounds were accepted only if the 500th nearest neighbor from the decoy compounds (ddecoys) set was within the dconf . (B) Selected active compounds

datasets from the MUV were adjusted to the same level of spread (6G ≈ constant), and decoy compounds sets were, in turn, adjusted to this level of spread (6F ≈

6G). (C) The chemical space of both active and decoy compounds was divided into cells characterized by a set of 8 physicochemical properties. Each user-provided

compound is associated with its property matching cell, and 1,500 decoys are selected from the same cell, or direct neighboring cells if the parent cell is not

populated enough.

computed, normalized and combined to select the final 30 decoys
associated with each active ligand:

(1) The PSS score is the arithmetic mean of the normalized
distance between a decoy and the reference ligand, for each
physicochemical property.

(2) The avoidance of LADS relies on the fingerprints bit strings
shared by the active compounds: the fingerprint bit strings
of each preselected decoy compound is matched to the
fingerprint bit strings of all active compounds using the
following:

LADS score =

∑n
i=1

(

Ni(HeavyAtoms) · fi(FCFP6fragment)

)

NFCPC6fragments
,

with n the number of fingerprint bit strings shared by the
decoy and the active set, fi the frequency of fragment i in the
active set,Ni the number of heavy atoms into fragment i, and
N the total number of FCPC_6 fragments into the decoy.

The weighting of the LADS score by the frequency of the
bit string and the size of the corresponding fragment was

added in the second version of DEKOIS (Bauer et al., 2013)
to ensure that large bioactive substructures and substructures
frequently found exert a greater influence on LADS score
compared to smaller and rare functional groups.

(3) The LADS and PSS scores are normalized and combined
into a consensus score to sort decoy compounds. The
subsequently best 100 decoys are selected. Finally, the
fingerprints are used to select the 30 most dissimilar decoys
for each active.

Using this enhanced protocol, Bauer et al. showed an
improvement of the “deviation from optimal embedding
score” (DOE score) (Vogel et al., 2011; Bauer et al., 2013) for
DEKOIS 2.0 compared to DEKOIS, and found a good (<0.2)
DOE score for 89% out of the 81 targets considered.

Dud-Enhanced (DUD-E)
Despite the extensive use of the DUD, several studies pointed
out that some scaffolds were over-represented in the active
sets, that the charge was not considered in property-matching
for ligand selection, and that true ligands could be found
in the decoy sets (Good and Oprea, 2008; Hawkins et al.,
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FIGURE 2 | Example of Bemis-Murcko atomic frameworks clustering of Protein kinase C beta type (KPCB) ligands from the DUD-E.

2008; Irwin, 2008; Mysinger and Shoichet, 2010). Shoichet
et al. proposed the DUD-E (DUD-Enhanced) to address these
weaknesses in both the active and the decoy sets design in
the DUD, and extended the number of represented protein
families in the database. The DUD-E contains 102 proteins that
span diverse target classes. To address analogous bias, ligands
were clustered by their Bemis-Murcko atomic frameworks
(Bemis and Murcko, 1996) (Figure 2), and a topological
dissimilarity filter was applied to avoid active compounds in the
decoy sets.

Initial Compounds Database
Active compounds assigned to each target of the DUD-E were
collected from the ChEMBL09 database if their activity/affinity
(Ki, Kd, IC50, EC50, or associated logP) was ≤1µM (Gaulton
et al., 2012). Additionally, 9,219 experimental decoys displaying
no measurable affinity up to 30µM were included in the
decoy sets.

Active Set Preparation
Active compounds were clustered based on their Bemis-Murcko
atomic frameworks. When more than 100 frameworks were
represented, the highest energy ligand from each cluster
is considered, while when less than 100 frameworks are
represented, the numbered of considered ligands was raised to
obtain more than 100 molecules. Even if this selection protocol
could have been optimized for sets with low frameworks
diversity, it ensures sufficient diversity and quantity of
compounds for the other sets.

Decoys Selection
The decoy compounds were extracted from the ZINC
database (Irwin and Shoichet, 2005) and selected by
narrowing or widening windows around 6 physicochemical
properties: molecular weight, octanol-water partition

coefficient, rotatable bonds, hydrogen bonds acceptors,
hydrogen bonds donors, and the net charge. To avoid active
compounds in the decoy sets, a topological dissimilarity
filter was applied. Molecules were sorted according to
their Tanimoto distance to any ligands using CACTVS
fingerprints, and the 25% most dissimilar decoy molecules
were retained. Finally, up to 50 decoys were randomly selected
for each ligand and pooled with the 9,219 experimental
decoys.

An automated tool was made available online to generate
decoys from user-supplied ligands using the same protocol
(http://decoys.docking.org). The possibility to generate decoy
sets for any target has been revealed successful and is now widely
used by the scientific community (Lacroix et al., 2016; Nunes
et al., 2016; Allen et al., 2017; Meirson et al., 2017).

Despite the success of the DUD-E, some weaknesses should be
corrected in the DUD-E benchmarking database. The 102 targets
are defined as a UniProt gene prefix (such as DRD3) and not a
full gene_species (such as DRD3_HUMAN or P35462), which
can bias the actives selection when the binding site composition
differs between species. Additionally, only one single structure
was considered for each protein while many docking studies
pointed out that the structure selection is crucial for screening
and docking, particularly for proteins that accommodate ligands
with different binding modes (May and Zacharias, 2005; Ben
Nasr et al., 2013; Lionta et al., 2014). A recent study has shown
that the ligand pharmacological profile should be considered
for both the active set design and the structure selection
(Lagarde et al., 2017). For instance, nuclear receptors (NR)
can be inhibited by antagonists or activated by agonists that
differ in their structure and properties: agonists should be
considered in the active set if the screening is performed on an
agonist-bound structure while antagonists should be used in the
active set if the screening is performed on an antagonist-bound
structure.
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Nuclear Receptors Ligands and Structures
Benchmarking Database (NRLiSt BDB)
The NRLiSt BDB (Nuclear Receptors Ligands and Structures
Benchmarking DataBase) was created to address the lack
of annotation information and pharmacological profile
consideration in existing NR databases.

Ligands Preparation
The NRLiSt BDB is composed of 9,905 active molecules targeting
27 nuclear receptors (NRs). Active compounds are divided into
2 datasets per target according to their agonist or antagonist
profile. All active compounds were extracted from the ChEMBL
database and included in the NRLiSt after a manual inspection of
the corresponding ligands bioactivity data in the original papers.
All inverse-agonists, modulators, agonists/antagonists, weak to
partial agonists, weak to partial antagonists and ligands with
unknown pharmacological profile were discarded.

In addition 339 human holo structures extracted from the
PDB are provided, among which 266 are agonists-bound, 17
are antagonists-bound and 56 are others-bound. Valid active
compounds extracted from literature were clustered using
chemical fingerprints, and a Tanimoto cut-off of 0.5.

Decoys Selection
In total 458,981 decoys generated with the DUD-E online tool
were provided, with a mean ratio of 1/51 for each dataset.

In further studies, Lagarde et al. integrated the anti-
pharmacological profile ligands in the decoy set to orient the
screening toward the desired pharmacological profile (Lagarde
et al., 2014b). For instance, antagonists were considered as the
decoy compounds set for agonists screening research, while
agonists were considered as the decoy compounds set for
antagonists screening research. In agreement, the corresponding
agonist- and antagonist-bound structures were used for SBVS,
when available. Results showed that the enrichment is better
when the pharmacological profile is considered prior to screening
and should therefore be systematically considered to avoid
artificially bad ligands enrichment.

Maximal Unbiased Benchmarking Data
Sets for HDACs (MUBD-HDACs)
So far, most of the decoy datasets [such as DUD-E (Mysinger
et al., 2012) andDEKOIS (Vogel et al., 2011; Bauer et al., 2013)] or
decoys generator [such as DecoyFinder (Cereto-Massagué et al.,
2012) or the DUD-E generator server] are designed for SBVS
purpose. Few databases [i.e., MUV (Rohrer and Baumann, 2009),
NRLiSt BDB] are intended to propose benchmarking datasets
for LBVS. Xia et al. thus proposed a workflow to fulfill this
need, and built up decoy datasets for LBVS targeting the histone
deacetylases protein family (HDACs).

Ligands Preparation
Active compounds were retrieved from the ChEMBL18 database
(Gaulton et al., 2012), among molecules annotated with
quantitative data (i.e., IC50), manually checked, and filtered
(exclusion of salts, molecules with more than 20 rotatable bonds
or with a MW of 600 or more). Finally, ligands displaying

a Tanimoto coefficient greater than 0.75 based on MACCS
fingerprints were removed to exclude analog molecules, and
6 physicochemical properties (MW, logP, HBAs, HBDs, RBs
and net Formal Charge–nFC) were computed for all HDACs
inhibitors (HDACIs).

Decoys Selection
The “All-Purchasable Molecules” subset of the ZINC database
was used as the initial set of molecules before a two-step
filtering:

(1) Compounds outside of the bounds of the HDACIs
physicochemical properties were removed, as well as
molecules with a Tanimoto coefficient (“similarity in
structure” or sims) greater than 0.75 to any active compounds
to circumvent the introduction of potential active structures
(false negatives) into the decoy set.

(2) To retain only 39 decoys per HDACI, compounds were
further filtered to ensure similar physicochemical properties
and a random spatial distribution of the decoys around
the ligands. A specific metric was assigned to each step,
specifically the simp (“similarity in properties”) and the
simsdiff (“sims difference”). The simp is the Euclidian
distance of the physicochemical properties between a target
compound and a reference compound. The simsdiff between
a potential decoy and a query ligand is the average difference
between (a) the topological similarity sims between the
potential decoy and the remaining ligands and (b) the
topological similarity sims between the query ligands and
the remaining ligands. First, a cut-off is applied on the simp
to ensure properties similarity between ligands and decoy
compounds and second, the 39 lowest simsdiff decoys for
each ligand are selected.

Last, for each ligand, the PDB (Berman et al., 2000) structures
of the targeted HDAC isoform were prepared and provided for
SBVS data sets. Unlike DUD-E (Mysinger et al., 2012), only
Homo sapiens 3D-data were considered.

The MUBD-HDAC datasets for HDAC2 and HDAC8
isoforms were compared to DUD-E (Mysinger et al., 2012)
and DEKOIS 2.0 (Ibrahim et al., 2015a) datasets, in terms of
structural diversity [Bemis-Murcko atomic frameworks (Bemis
and Murcko, 1996)], property matching and ligand enrichment
in SB- and LB-VS approaches. The MUBD-HDAC displayed
similar to better results in terms of structural diversity and
property matching and was more challenging as measured
by ligand enrichment using GOLD (Jones et al., 1997) or
fingerprints similarity search, in agreement with a higher
structural similarity. Finally, the MUBD-HDACs sets displayed
small to great improvement in terms of nearer ligands bias (i.e.,
ligands that are more similar structurally to a ligand than to any
decoy), compared to DUD-E and DEKOIS 2.0, respectively. This
bias is known to produce artificially positive LBVS evaluation
outcomes (Cleves and Jain, 2008) and thus, should be minimized.

Of note, a similar work was done (Xia et al., 2014) on GPCRs
using the GLL/GDD database (Gatica and Cavasotto, 2012) as
ligands set, and also resulted in reduced artificial enrichment and
analog bias compared to the original GLL/GDD sets.
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DISCUSSION AND RECOMMENDATIONS

Ideal Benchmarking Database
The ideal VS benchmarking datasets composition should
mimic real-life cases, where a small number of diverse
active ligands is embedded into a much larger fraction of
inactive compounds. Moreover, both sets of molecules are
usually indistinguishable using simple descriptors like their
physicochemical properties and share common fragments or
functional chemical groups; such features should therefore be
transposed to benchmarking datasets design, so that the putative
inactive compounds constitute good “decoy” compounds in line
with the active compounds and ensure a robust evaluation of
the VS methods(Good and Oprea, 2008; Lagarde et al., 2015; Xia
et al., 2015).

Comparison of Decoys Selection Methods
for SBVS
Among the recent tools to help create benchmarking sets (MUV,
DEKOIS, DUD-E, andMUBD), themain difference resides in the
strategy used to achieve their respective objectives: the DUD-E
and DEKOIS data sets are designed for evaluating SBVS methods
while MUV and MUBD are conceived for benchmarking LBVS
approaches. Following this basic distinction, the respective
algorithms to generate decoy datasets differ significantly. In
the former case, the topological dissimilarity between ligand
compounds and decoy compounds is maximized to avoid
inclusion of active compounds into decoy datasets. In the latter
case, the proper embedding of decoy compounds into the ligands
chemical space is of primary importance.

For the DUD-E, the final decoys were randomly selected from
the 25% most topologically dissimilar molecules compared to
the ligands to ensure unbiased selection of decoy compounds.
However, several studies pointed out that bias are still present
into DUD-E data sets. For instance, Chaput et al. recently
evidenced that the performance of four VS programs (Glide,
Gold, FlexX and Surflex) is biased (over-estimated) using the
DUD-E. Good performance (as measure by BEDROC curves)
could be achieved for all programs when original DUD-E datasets
were used, while only Glide was considered successful when
chemical library biases (i.e., datasets whose decoys and active
compounds differ for nine physicochemical properties) were
removed. While the DUD-E was successfully used for numerous
studies, this observation clearly showed that there is still place for
improvements.

Boeckler’s group proposed a similar workflow in DEKOIS and
DEKOIS 2.0. A physicochemical similarity over eight properties
(and represented by the physicochemical similarity score PSS)
is used and the topological dissimilarity between the active
compounds and the future decoy compounds is computed as
in the DUD-E. However, two main differences have to be
noted: (1) the topological dissimilarity was computed using
the more elaborated weighted LADS score rather than a 2D
fingerprint based Tanimoto coefficient filter and (2) the LADS
score was combined with the PSS prior to final selection of
the decoys. Therefore, the final decoys selection was balanced
by both parameters (physicochemical similarity and topological

dissimilarity) rather than using successive arbitrary (even if
widely used) thresholds, and was successfully used by Hamza
et al. (2014) for drug repurposing. This balance may come
at a cost, as evidenced by Xia et al.: DEKOIS datasets for
HDAC2 and HDAC8 were shown to be less efficient in terms
of property matching between the active compounds and the
decoy compounds (Xia et al., 2015). However, the DUD-E and
DEKOIS sets perform similarly in enrichment using Gold and
DEKOIS perform significantly worse than DUD-E using 2D
based similarity search approaches.

Comparison of Decoys Selection Methods
for LBVS
Both DUD-E and DEKOIS databases share the same overall
decoy selection procedure by combining topological dissimilarity
and physicochemical properties similarity. While adapted to
SBVS, this approach may hinder the objective evaluation of
LBVS that is very sensitive to topological difference between
active and decoy compounds. The MUV datasets (Rohrer and
Baumann, 2009) was designed to overcome this specific weakness
of the benchmarking datasets. The authors introduced the
notion that decoy compounds and active compounds should
be homogeneously spread in the chemical space rather than
decoy compounds should be topologically dissimilar to the active
compounds (as in the DUD-E for instance). The authors tested 18
datasets and claimed that MUV benchmarking datasets displayed
neither analogous bias nor artificial enrichment. Furthermore,
they noticed that their data sets were SBVS compliant and
compared advantageously to the biased DUD sets, leading to a
potential broader use of their sets. MUV sets were applied to the
evaluation of VS tools (Tiikkainen et al., 2009; Abdo et al., 2010),
the training of new QSAR models (Marchese Robinson et al.,
2017) or molecular graph convolutions (Kearnes et al., 2016).

As highlighted by Xia et al. “MUV is restricted by the sufficient
experimental decoys (chemical space of decoys)” (Xia et al.,
2015). Indeed, MUV relies on the availability of experimental
data and is restricted to well-studied targets. The authors
subsequently proposed the Maximum Unbiased Benchmarking
Data sets (MUBD, see section Benchmarking Databases) that
was applied to GPCRs (Xia et al., 2014), HDACs (Xia et al.,
2015; Hu et al., 2017) and Toll-like receptor 8 (Pei et al., 2015).
The MUBD-DecoyMaker algorithm relies on both a minimal
and required topological dissimilarity (sims) between decoy and
active compounds, but makes use of an additional criterion that
minimizes the simsdiff parameter, i.e., ensures that decoy and
active compounds are as similar as possible.

One should note that this additional step (the decoy-
actives similarity check) yield datasets also suitable for SBVS;
they seemed even more challenging in SBVS (for HDAC2
and HDAC8) as they provided datasets with higher structural
similarity (Xia et al., 2015). Thus, these approaches are
particularly appealing as they provide benchmarking datasets
that (1) are adapted to LB and SB-VS approaches, (2)
subsequently allow comparative evaluations of the performance
of LB and SB-VS approaches, and (3) may be more challenging
for SBVS.
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Fine-Tuned Benchmarking Datasets
The quality of an evaluation lies in the consistency between
the retrospectively screened benchmarking datasets and the
prospectively screened compound collections as well as the target
binding site properties (Ben Nasr et al., 2013). The recent trend
to publish protein family-specific datasets or user-provided active
compounds dependent decoys generation tools paves the way for
a valuable and systematic use of benchmarking datasets prior to
prospective VS of large compound collections.

In SBVS, tuned datasets should be used to identify the
protocol, conformational sampling, and/or scoring methods that
induces the best enrichment in active compounds (Allen et al.,
2015, 2017; Lacroix et al., 2016; Li et al., 2016; Nunes et al.,
2016; Meirson et al., 2017). For instance, Allen et al. (2015, 2017)
evaluated different scoring schemes using DUD-E generated
decoys and successfully identified dual EFGR/BRD4 inhibitors.
In LBVS, the choice of the dataset is crucial to build a reliable
model that can be used to distinguish active compounds from
decoy compounds. For example, Ruggeri et al. (2015) used
DUD-E generated decoys to define and optimize pharmacophore
models that led to the identification of 2 dual competitive
inhibitors of P. Falciparum M1 (PfA-M1) and M17 (PfA-M17)
aminopeptidases.

Of note, when using automatic decoy datasets generation
tools, the provided active compounds should be carefully selected
to avoid the previously detailed biases.

Integration of True Inactive Compounds
Despite the open-data initiatives that should ease the access
to data in the near future, the low documentation about
negative data (inactive and/or non-binding) is still an open
issue. The inclusion of experimental data in a dataset requires
great attention since (1) publicly available databases may
present annotation errors that should be manually corrected
(Lagarde et al., 2014a), and (2) diversity in the type of
value and experimental conditions make some data barely
comparable. The selection and the use of negative compounds
(inactive and/or non-binding) in the evaluation/development
of methods is a delicate step that strongly influences the
quality of the resulting model. In agreement with Lagarde
et al. (2014a) and Kaserer et al. (2015), we recommend
that:

(1) Interaction data should be extracted from receptor binding
or enzymatic activity assays on isolated or recombinant
protein; cell-based assays should be avoided because of the
many factors that can influence the outcome of the assay
(non-specific binding. . . ).

(2) Low binders or high IC50/EC50 should not be included in
the active set and could be either classified as “inactive,” as
negative data or discarded.

(3) Experimental bias should be minimized by (a) considering
the measured affinity/activity confidence based on the
number of documented repeated assays and/or convergent
values in different studies and (b) filtering compounds
which measured activity/affinity may be an artifact caused by
organic chemicals aggregation in aqueous buffers, off-targets

effects, cytotoxic effects or interference with optical detection
methods (auto-fluorescence and luciferase inhibition).

(4) The origin of the protein used in the assay should be
considered, favoring 100% identity with the reference.

(5) Attention should be paid to the ligand binding-site,
particularly for proteins that possess more than one binding
site, and for multiple conformation binding sites.

One should note that the integration of inactive/non-binding
compounds comes with new basics for datasets design. This
case is particularly challenging since the inactive/non-binding
compounds are usually extracted from the same chemical
series as the active compounds. In this case, small fragments
modification can induce important bioactivity loss or gain,
thus, clustering active compounds to guarantee diversity and
minimize analogous bias would have no meaning. Since the
final objective of using such data is to harshly evaluate ability
of VS methods to discriminate active from inactive compounds
based on small signals, the proximity between active and
inactive compounds within a chemotype should be conserved,
as well as the similarity within the active compounds of
a chemotype. However the over representation of a given
chemotype could hinder the evaluation of VSmethod bymasking
the enrichment of low populated chemotypes. We suggest
that a work should be made to equally represent chemotypes
and/or to weight the resulting ROC curve (Ibrahim et al.,
2015b).

CONCLUSION

Benchmarking databases are widely used to evaluate virtual
screening methods. They are particularly important to compare
performance of virtual screening methods and therefore
to select appropriate protocol prior to large compounds
collections screening, and to estimate the reliability of the
results of a screening. The characterization of the weaknesses
of the first published databases helped designing improved
benchmarking datasets with minimized bias. The rational
selection of decoy compounds is particularly important to
avoid artificial enrichment in the evaluation of the different
methods. The diversification of public datasets gathering both
active and decoy compounds for a given protein family, and
the publication of online decoys generation tools contributed
to the democratization of the use of benchmarking studies to
help identifying protocols adapted for the query/target system
under study. Nowadays, experimental data are being integrated
in the decoy compounds set to look for a specific activity or to
identify methods fitted for highly similar binders/non binders
discrimination. Experimentally validated decoys selection
requires careful attention to minimize experimental biases that
may arise.
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Dark chemical matter compounds are small molecules that have been recently identified
as highly potent and selective hits. For this reason, they constitute a promising class
of possible candidates in the process of drug discovery and raise the interest of the
scientific community. To this purpose, Wassermann et al. (2015) have described the
application of 2D descriptors to characterize dark chemical matter. However, their
definition was based on the number of reported positive assays rather than the number
of known targets. As there might be multiple assays for one single target, the number
of assays does not fully describe target selectivity. Here, we propose an alternative
classification of active molecules that is based on the number of known targets. We
cluster molecules in four classes: black, gray, and white compounds are active on one,
two to four, and more than four targets respectively, whilst inactive compounds are found
to be inactive in the considered assays. In this study, black and inactive compounds are
found to have not only higher solubility, but also a higher number of chiral centers,
sp3 carbon atoms and aliphatic rings. On the contrary, white compounds contain a
higher number of double bonds and fused aromatic rings. Therefore, the design of
a screening compound library should consider these molecular properties in order to
achieve target selectivity or polypharmacology. Furthermore, analysis of four main target
classes (GPCRs, kinases, proteases, and ion channels) shows that GPCR ligands are
more selective than the other classes, as the number of black compounds is higher
in this target superfamily. On the other side, ligands that hit kinases, proteases, and
ion channels bind to GPCRs more likely than to other target classes. Consequently,
depending on the target protein family, appropriate screening libraries can be designed
in order to minimize the likelihood of unwanted side effects early in the drug discovery
process. Additionally, synergistic effects may be obtained by library design toward
polypharmacology.

Keywords: dark chemical matter, drug discovery, molecular descriptors, stereochemistry, chemical properties,
screening library design, off-targets, drug repurposing

INTRODUCTION

Drug discovery for a specific target is a long process that starts from hit finding: in the past
high throughput screening (HTS) of huge compound libraries was the most common process in
pharmaceutical companies. However, the chemical space that the HTS can reach is restricted to
the molecules that were previously synthesized and included in the screened library. This certainly
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precludes the discovery of new compounds, as the chemical space
is much wider and the use of limited knowledge makes the hit
discovery challenging (Dobson, 2004; Reymond, 2015).

To overcome these disadvantages, computational techniques
can be applied in order to speed up the process of drug
design and to perform de novo drug design. One of the most
popular methods is virtual screening, that is the identification
of possible candidates for assays by considering their molecular
properties (ligand-based) and/or their interactions with the
macromolecular binding partner (typically a protein) when
its structure is available (structure-based) (Kirchmair et al.,
2009; von Grafenstein et al., 2014; Kaserer et al., 2015;
Vuorinen and Schuster, 2015). Different virtual compound
libraries can be designed, depending on the target properties
and on the desired pharmacokinetics (Lionta et al., 2014).
Therefore, fragment-based and relatively small focused libraries
have found great success: a wider chemical space is covered
by virtually assembling many different building blocks as in
combinatorial synthesis (Chevillard and Kolb, 2015; Reymond,
2015) or by building compounds directly starting from the
structure complex with the first fragment (Srinivas Reddy et al.,
2013).

Furthermore, virtual libraries can be properly designed in
order to identify active compounds, which also exhibit suitable
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) properties (Gleeson, 2008). The Lipinski’s rule of five
(Lipinski, 2004) helps in identifying orally active compounds,
but does not fully describe all facets of druggability. For
instance, today the in silico assessment of molecular toxicity
is still challenging (Roncaglioni et al., 2013; Raies and Bajic,
2016), but at the same time necessary to establish early and in
silico if a molecule could cause toxic side effects, rather than
in the later preclinical phase by experimental assays, which
are expensive and time consuming (Peters et al., 2012). On
one side, it is undoubted that side effects take place when a
molecule is active on multiple targets and, hence, by definition
promiscuous (Wang and Greene, 2012). On the other side,
promiscuity can represent also an advantage, where the goal
of the drug development is to obtain a polypharmacological
effect, especially in the treatment of diseases that involve
multiple targets (Anighoro et al., 2014; Rastelli and Pinzi,
2015).

To this purpose, the computation of molecular properties
has been established not only to discriminate between inactive
and active, weak and potent compounds, but also between
promiscuous and selective ligands. For instance, Lovering et al.
(2009) showed that target selectivity increases with the number
of chiral centers and with higher molecular complexity, described
as fraction of carbon sp3 atoms. Moreover, the presence of
amines and high clogP values negatively affect target selectivity
(Lovering, 2013). Indeed, many promiscuous compounds are
positively charged at physiological pH, as emerged also from the
analysis of a Roche dataset (Peters et al., 2009).

With the recent identification of “dark chemical matter”
(DCM) as promising starting point for drug discovery
(Macarron, 2015; Wassermann et al., 2015), chemical properties
of this potentially highly selective compound species are in the

focus of interest. Wassermann et al. (2015) use descriptors based
on the two-dimensional (2D) compound structures and describe
subtle shifts in their distributions toward higher solubility (logS),
lower hydrophobicity (logP), smaller molecular weight (MW)
and lower amount of rings for DCM versus compounds that
are frequently active in HTS assays (Wassermann et al., 2015).
They define DCM as molecules that are inactive in at least 100
assays, presuming that these compounds would hit only few
possible targets. However, there are compounds, which are listed
as DCM, but they are active on many different targets. For
example, CID1048281 (Supplementary Figure 1) is considered
DCM because it is inactive in more than 650 assays, but it is also
active in other six assays in PubChem, which test the activity
on unrelated targets (RAR-related orphan receptor gamma,
aldehyde dehydrogenase, tyrosyl-DNA phosphodiesterase,
ATPase, bromodomain adjacent to zinc finger domain and shiga
toxin).

On the other side, many assays may be available for the
same target and the number of negative test outcomes does not
necessarily correctly depict target selectivity. For example, there
are 245 small-molecule bioassays reported on PubChem for the
adrenoreceptor beta 1 and more than 350 for the beta 2 subtype.
Moreover, most of these bioassays are not specific for a receptor
subtype or are simply confirmatory. In order to overcome this
pitfall, Wassermann et al. (2015) filtered the set of bioassays by
removing redundant readouts for the same target.

As shown, it is extremely hard to determine the target
selectivity of a molecule solely on the base of its assay positive
or negative outcomes. For this reason, we propose an alternative
classification of active molecules, on the base of the number of
targets they hit, in order to investigate target selectivity and/or
polypharmacology in the early phase of the drug discovery
process. In detail, we distinguish between molecules that are
selective toward one single protein and other compounds that are
active on multiple targets. In this way, it is possible to identify
which molecular properties enhance target selectivity and which
protein families are likely to constitute off-targets.

MATERIALS AND METHODS

Ligand Dataset Retrieval
We extracted the set of 139,352 DCM compounds from Novartis
and PubChem (Kim et al., 2015) as InChi (IUPAC International
Chemical Identifier) from the Supporting Information of
Wassermann et al. (2015) and downloaded the 3D coordinates of
139,328 molecules from the PubChem Compound database (Kim
et al., 2016).

The set of active compounds was extracted from PubChem
BioAssay (Wang et al., 2017) using the list of 459 bioassays
provided by Wassermann et al. (2015). Active compounds
(256,448) were extracted via their compound identifiers (CIDs),
downloaded as 3D coordinates (237,510) and pooled to a single
set of 376,838 compounds.

Furthermore, we performed a filtering step to remove
duplicates within the dataset. To this purpose we used the
RDKit (RDKit, 2015) chemoinformatics toolkit. Moreover, we
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removed the compounds that were active but without any
specified targets (14,464). Our final dataset included 341,599
molecules.

Computation of Molecular Descriptors
The PubChem coordinate files contained already precomputed
2D descriptors, including MW, number of heavy atoms,
defined and undefined stereocenters, H-bond donors
and acceptors, which were considered for our analysis as
provided.

Additionally, we calculated logS (Hou et al., 2004) and
logP(o/w) using the MOE (Molecular Operating Environment,
version 2015.1001) (MOE, 2016) molecular descriptor tools and
the atomic geometries with MOE’s Scientific Vector Language
(SVL) function “aGeometry” together with the SMARTS
matching function “sm_MatchAll.” In detail, aGeometry returns
the hybridization of an atom and sm_MatchAll searches for
specific SMARTS patterns, which we used to count non-ring and
non-terminal carbon atoms. For instance, sp3 carbon atoms are
counted by matching “CH2” SMARTS codes. In order to restrict
the count to non-ring and non-terminal atoms, we specified “!r”
and “!H3” respectively.

Furthermore, we used RDKit (RDKit, 2015) to count the
number of single and fused aromatic and aliphatic rings as well
as the number of carbon–carbon and carbon–nitrogen double
bonds based on SMILES codes.

Statistical analysis, including the two-sided Wilcoxon rank-
sum test and Kolmogorov–Smirnov test, was performed
using R (R Development Core Team, 2010) (Supplementary
Tables 2–4).

Target Retrieval and Analysis
Assay and target information for all compounds have been
retrieved from the PubChem database by querying the
compounds identifiers (CID) against the assay summary
webpage. Active targets with specified gene id were considered
for Uniprot (Bateman et al., 2015; The UniProt Consortium,
2017) retrieval, in order to convert the gene id to the associated
protein‘s Uniprot accession number.

We assigned the protein superfamily for every target, by
searching Uniprot accession numbers into lists of GPCRs,
kinases, proteases, and ion channels. We obtained the lists of
3,092 GPCRs, 1,365 kinases and 11,606 proteases from Uniprot,
and the list of 899 ion channels from ChEMBL (Bento et al., 2014)
and IUPHAR/BPS Guide to Pharmacology (Southan et al., 2016).

We counted the number of targets on which a molecule
is found to be active and clustered active ligands in three
classes: black compounds are active only on one single target,
gray compounds are active on two to four targets and white
compounds are active on more than four targets. We defined
these cut-off values in order to obtain a comparable number
of molecules in every subset: 73,383 black, 103,025 gray, 87,303
white, 77,888 inactive compounds (compound set provided
via SI).

Figures are generated by using MATLAB (MATLAB,
2012), R (R Development Core Team, 2010) and ChemDraw
(PerkinElmer Informatics, 1998–2015).

RESULTS

Molecular Descriptors
We analyzed the distributions of 2D molecular descriptors
within the compound sets (inactive, black, gray, and white).
We find that chirality enhances target selectivity. For instance,
molecules become more selective if they present at least one chiral
center: inactive and black compounds contain a higher number
of defined R/S stereocenters with respect to white molecules
(Figure 1A). On the contrary, the absence of a chiral center
enhances promiscuity, as described by the percentage of white
molecules (∼79% versus ∼62% in black ones) (Supplementary
Table 1).

On the opposite, if at least a carbon–carbon or carbon–
nitrogen double bond is present, molecules tend to be white and,
hence, more promiscuous (Figure 1B). Otherwise, if they do not
have any double bonds, they tend to be inactive or black (∼85%
versus ∼69% in white ones) (Supplementary Table 1).

These findings are also confirmed by the analysis of atomic
geometries: non-ring and non-terminal sp3 carbon atoms
enhance selectivity (Figure 1C); about 42% of white compounds
do not include any sp3 carbon atoms, with respect to ∼27% of
inactive and black ones (Supplementary Table 1).

We also computed the molecular descriptors that were
reported by Wassermann et al. (2015). However, our results show
that the MW is not able to properly describe target selectivity:
indeed, black compounds do not follow the expected trend,
as they show MWs which are comparable to those of white
molecules (Figure 1D). This finding disagrees with Wassermann
et al. (2015), because our dataset does not include all molecules
that were considered in the Novartis analysis, but only those
that were reported in the publication. As this descriptor appears
dataset dependent, we discarded it.

Additionally, the number of rings differs between these classes:
black compounds exhibit higher numbers of aliphatic rings
(∼36% of black molecules have one aliphatic ring, with respect to
30% of white ones) (Figure 1E). By constrast, white compounds
show higher numbers of fused aromatic rings (∼35% with
respect to 26% of inactive molecules) (Figure 1F). Indeed, more
than half of the selective molecules has at least one aliphatic
ring (∼53% of inactive and ∼51% of black compounds) and
no fused aromatic rings (∼71 of inactive and 62% of black
compounds).

Furthermore, inactive and black compounds exhibit higher
values of logS compared to gray and white compounds, especially
for logS in the range between −2 and −4 (Figure 2A). By
contrast, the opposite trend is observed for lower solubility: half
of white molecules shows a logS value lower than −5, whereas
only 20% of inactive and ∼30% of black compounds have similar
solubility (Supplementary Table 1).

Consequently, lipophilicity increases with the number of
targets: gray and white molecules show higher SlogP values than
inactive and black ones (Figure 2B). For instance, ∼36% of
white compounds show SlogP values that are higher than 4,
whereas selective molecules (∼33% of inactive and ∼29% of black
compounds) exhibit SlogP values which are in the range between
2 and 3.
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FIGURE 1 | Statistical analysis of molecular descriptors per ligand class (inactive, black, gray, and white). Data are represented as 3D bar plots, colored according to
the percentage values for each subset (see color bar). (A) The number of R/S stereocenters per molecule shows that most of white compounds have no chiral
centers, whereas inactive molecules show the highest percentage of compounds with one stereocenter. (B) The number of carbon–carbon or carbon–nitrogen
double bonds is higher for white ligands compared to the other classes, which normally have none. (C) Inactive and black sets exhibit higher content of non-ring and
non-terminal sp3 carbon atoms with respect to white compounds, which tend to be sp2 hybridized. (D) The molecular weight (MW) is similar for all subsets in the
range 300–500 Da, but shows different results for smaller and higher values. Indeed, inactive and white compounds exhibit higher percentages for values lower than
300 Da, with respect to black and gray sets. On the contrary, black compounds can be rather complex structures as their MW can be higher than 500 Da. The MW
axis is divided into different ranges and its labels represent the highest boundary. For instance, “350” indicates compounds with MW values between 300 and 350.
(E) Most of white molecules have no aliphatic rings, which characterize instead inactive and black datasets. (F) In contrast, a higher number of fused aromatic rings
is a chemical feature of white molecules.

Calculating these molecular descriptors, it is possible to
predict which building blocks characterize black compounds
and, therefore, can be used for synthesis of new selective drug
candidates.

Target Analysis
Our dataset includes ligands that bind to a variety of targets, 2,715
in total. For instance, 10.98% of the targets are represented by
G-protein coupled receptors (GPCRs), 13.41% by kinases, 10.68%

by ion channels and 5.78% by proteases (Figure 3). About 60%
of the targets comprise other enzymes, receptors or transcription
factors that do not fall into these four major target classes.

G-protein coupled receptor ligands are more selective than
other classes, as the number of black compounds is higher
(14.30%) with respect to other targets (5.80% ion channels,
6.25% ion channels, 9.21% kinases) (Figure 4). For example,
CID 2983576 is a ligand that binds to the human cholinergic
muscarinic receptor 4 and is inactive toward other muscarinic
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FIGURE 2 | Statistical analysis of molecular solubility (logS) and hydrophobicity (SlogP) per ligand class (inactive, black, gray, and white). Data are represented as 3D
bar plots, colored according to the percentage values for each subset (see color bar). The logS and SlogP axes are divided into different ranges and labels represent
the highest boundary of each range. (A) Molecular solubility, reported as logS, is higher for inactive and black compounds for values higher than –4. Whereas white
compounds have logS values lower than –4. (B) White compounds show SlogP values higher than 4. In contrast, inactive and black molecules have values lower
than 4.

FIGURE 3 | Statistical analysis of targets that are present in the entire dataset.
In total, we identified 2,715 different targets. GPCRs represent 10.98%,
kinases 13.41%, ion channels 10.68%, and proteases 5.78%. Other targets
include further enzymes, nuclear receptors, and transcription factors.

receptor subtypes (Figure 5). As many other black compounds,
it contains a chiral center, an aliphatic ring, several non-ring and
non-terminal sp3 carbon atoms (5) and has a low logP value (2.2).

Ligands that bind to ion channels and proteases tend to be
more promiscuous (Figure 4). This is particularly pronounced

FIGURE 4 | Distribution of black, gray, and white compounds in every target
class. The number of black compounds is higher for GPCR ligands (14.30%)
compared to other targets (5.80% ion channels, 6.25% ion channels, 9.21%
kinases). In contrast, ion channels and proteases have higher percentages of
white molecules.

for proteases, where 62% of ligands can bind to more than
four non-protease targets (Figure 6). For example, CID 646260
is active on caspase 3 and other non-protease targets, such as
GPCRs and other enzymes.
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In contrast, only 37% of GPCR ligands binds to other proteins
beyond GPCRs. For instance, only 13% of GPCR ligands bind to
kinases, 16% to proteases and 24% to ion channels.

Instead, kinase ligands are able to bind to many non-kinase
targets. For example, compound CID 1005278 binds not only
to kinases (such as RIPK), but also to potassium channels (such
as KCNQ1), dopamine receptors (D1 and D3), proteases and
other non-kinase targets. However, analysis of intra-class activity
shows that kinase ligands in general bind only to one kinase (for
example, CID 2283311 is a black molecule that is active only on
MAP3K3). This evidence is surprising, as kinases are known to be
promiscuous, especially toward other kinases (Davis et al., 2011).
However, the number of kinase ligands in our dataset is relatively
small (27,935) and we might miss information from unselective
ligands that were not included in the analysis.

Furthermore, ion channel, protease and kinase ligands exhibit
higher chances to bind to GPCRs: almost half of ion channel
(49%), 36.6% of protease and 35% of kinase ligands bind
to GPCRs as well. However, this trend cannot be observed
for proteases, kinases or ion channels, as they exhibit lower
probabilities to bind to these target classes (Supplementary
Figure 2).

DISCUSSION

The escape from flatland has already been described as a
valuable approach to improve clinical success (Lovering et al.,
2009) and the unique activity profiles of highly potent and
selective molecules might be the underlying principle. It
is chemically intuitive that more complex molecular shapes
restrict the diversity of binding partners and provide selectivity
gains (Mendez-Lucio and Medina-Franco, 2017). A criterion
favoring complex 3D shapes, with chiral centers and high
sp3 carbon contents, low number of double bonds and fused
aromatic rings, in candidate molecules might complement widely
accepted criteria for drug-likeness solely based on 2D molecular
properties, like solubility and MW (Lipinski, 2004; Leeson and
Springthorpe, 2007).

We also believe that these molecular properties highly affect
the target selectivity. Indeed, already Lovering et al. (2009) stated
that the degree of saturation is able to distinguish marketed drugs
from drug-like molecules. In detail, compounds that have success
through clinical trials are characterized by increased saturation
and the presence of chiral centers. For instance, our findings
confirm that the sp3 conformation is a key feature to obtain target
selectivity and in turn to improve clinical success in the process
of drug development.

These molecular descriptors, together with solubility and
lipophilicity, may be readily applied as an additional selection
criterion for promising starting points in early stage drug
discovery. Wassermann et al. (2015) have shown DCM is more
soluble than active molecules. Our results are in agreement with
their findings, as selective compounds are more soluble than
promiscuous ones.

In contrast, MW does not properly distinguish between
inactive and white molecules as shown in other datasets. For

FIGURE 5 | Ligands that represent the dataset. Compounds are labeled
according to the compound identifier (CID) from PubChem. CID 2983576 is a
selective GPCR ligand: its absolute stereochemistry is undefined in PubChem
and, hence, not shown here. CID 646260 is a protease ligand, which binds
also to other non-protease targets. CID 1005278 is a kinase ligand that binds
also to other non-kinase targets. CID 2283311 is a selective kinase ligand that
is active only on one target.

instance, promiscuity is enhanced by lower values of MW in a
dataset from Pfizer (Hopkins et al., 2006), but higher values in
datasets from Novartis (Azzaoui et al., 2007), Roche (Peters et al.,
2009) and Boehringer Ingelheim (Muegge and Mukherjee, 2016).

We also considered further molecular descriptors, such as
the number of hydrogen bond donors and acceptors, but they
do not allow to distinguish between selective and promiscuous
compounds (Supplementary Table 1), as also shown by Novartis
(Azzaoui et al., 2007) and Roche (Peters et al., 2009).

In our dataset many ligands are promiscuous and, hence,
can effectively hit off-targets, which are represented by all other
targets that a molecule can bind besides the intended target
(Rudmann, 2013).

However, in our dataset GPCR ligands are highly selective.
This evidence appears to be in contrast to previous knowledge,
as GPCRs are known to be promiscuous targets, especially if their
ligands are not peptidic or small molecules (Paolini et al., 2006).
For instance, our results may change by considering specialized
datasets, such as PDSP Ki database (Roth et al., 2000).

Additionally, our analysis shows that ligands from other
target protein families can easily bind GPCRs. Indeed, there are
great overlaps between all four target classes that we considered
(Supplementary Figure 2) and we do not know if these molecules
were developed firstly as GPCR ligands or not.
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FIGURE 6 | Number of targets hit by every ligand class (GPCRs, kinases, ion channels, and proteases). The first row shows if ligands can hit other targets that are
not included in their own target class: for instance, GPCR ligands might hit only GPCRs (indicated as “0 off-targets”) or also other non-GPCR targets (larger number
of off-targets). The following rows of pie charts show the number of ligands that hit a specific target class: for instance, GPCR ligands hit at least one GPCR,
whereas kinase or ion channel or protease ligands can hit GPCRs or not (indicated as “0 GPCRs”). The same is shown for all four target classes. Intra-class
selectivity is highlighted by colored boxes around the pie charts.

The identification of a GPCR as off-target is extremely
important, as the activity on specific GPCRs is also related to
severe side effects, e.g., cardiovascular diseases. Indeed, 5-HT2B
has been identified as cause of valvulopathy and led to the
withdrawal of drugs from the market (Huang et al., 2009).

Our results show that protease ligands can bind to many off-
targets: indeed, it can be difficult to achieve target selectivity
within related proteases (Drag and Salvesen, 2010) but strategies
to rationally improve the selectivity profiles of protease inhibitors
based on substrate peptide data and experimental 3D structures
have been described (Fuchs et al., 2013).

In our dataset, kinase ligands seem to be selective toward
only one kinase member rather than to more targets in the
same protein family. However, this unexpected outcome can be
explained by the relatively low amount of kinases ligands that is
present in the dataset. Kinase ligands are indeed generally known
to be promiscuous, but some of them exhibit higher selectivity,
especially if they bind to the pocket close to the ATP site and
prefer a specific conformation of the activation loop (Davis

et al., 2011). Moreover, in our dataset we identify even more
pronounced polypharmacology within and between other target
classes. For instance, ion channel ligands overlap with GPCR
ligands, as they frequently exhibit a common ligand scaffold,
which includes an amine linked to an aromatic ring by an alkylic
chain that is present in benzodiazepines or dihydropyridines. In
addition, ion channels constitute a common off-target, causing
cardiac adverse effects. Indeed, hERG potassium channels are
responsible of arrhythmias, in particular torsades de pointes, and
many antipsychotics and other drugs bind to these channels as
off-targets, increasing the risk of cardiovascular diseases (Silvestre
and Prous, 2007). As example, the antihistaminic terfenadine
was withdrawn from the market for its toxic adverse effect,
that was caused by this off-target activity (Monahan et al.,
1990).

This analysis bring us to ask if we can identify likely
off-targets in the early discovery process. Normally, in the
early steps, target selectivity is considered only among related
targets, which are proteins that belong to the same protein
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family, since high structure and ligand similarity is expected.
In this case, target selectivity can be rationalized, e.g., via X-ray
structures of targets and off-targets. However, several adverse
side effects are caused by distant or nearly unrelated targets. For
this reason, the prediction of ligand binding is still challenging
and the use of cheminformatics tools can guide the medicinal
chemists in identifying the chemical features that typically cause
promiscuity (Besnard et al., 2012). Nevertheless, the training of
virtual screening models is limited by the use of biased ligand
sets. Indeed, our analysis show that results highly depend on the
selected dataset, which affected the distribution of the physico-
chemical properties and target classes. Therefore we expect that
based on the desired target, specialized datasets can be used to
further improve the performance of in silico models.

In particular, screening libraries can be properly designed
by taking into account molecular properties, such as
stereochemistry, atomic geometries and rings, besides solubility
and lipophilicity. Many predesigned compound libraries are
already freely available online and could be easily filtered or
prioritized by using these 2D descriptors, without the need of
applying a time consuming and computationally demanding
generation of 3D conformers.

CONCLUSION

A good starting point for the design of a selective drug should
favor aliphatic over aromatic rings, alkylic chains containing sp3

carbon atoms over double bonds, and stereocenters over achiral
atoms. Even though the introduction of chiral centers can make
the synthesis more challenging, the gain in target selectivity may
be considerable.

On the other hand, polypharmacology could be achieved by
introducing flat chemical moieties, such as fused aromatic rings
and double bonds. However, this could bring not only additional
desired, but also undesired side effects.
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The objective of our present study is to develop novel inhibitors for MMP-2 for acute

cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives

were synthesized based on imidazole and thiazole scaffolds and then tested in a

screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of

imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in

comparison to the conventional hydroxamic acid derivatives of the same molecules.

Based on these results, a 568-membered focused library of imidazole and thiazole

compounds was generated in silico and then the library members were docked

to the 3D model of MMP-2 followed by an in vitro medium throughput screening

(MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether

45 compounds showed a docking score of >70, from which 30 compounds were

successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography,

7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected

to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the

most effective compound (MMPI-1154) significantly decreased infarct size when applied

at 1µM in an ex vivomodel for acute myocardial infarction. This is the first demonstration

that imidazole and thiazole carboxylic acid-based compounds are more efficacious

MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel

cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the

treatment of acute myocardial infarction.

Keywords: matrix metalloproteinase, MMP-2 inhibitor, heart, ischemia/reperfusion injury, cardioprotection, lead
candidate
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INTRODUCTION

Coronary heart disease (CHD) is the number one cause of
death globally (Alwan et al., 2010). Recent data show that
almost 18 million people died from CVDs in 2015, of which
an estimated 7.4 million were due to coronary heart disease
(Roth et al., 2017; WHO, 2017). The discovery of endogenous
cardioprotective mechanisms (Ischemic pre-, post-, and remote
pre- and perconditioning) has allowed for the exploration
of several molecular processes of cell injury and survival
mechanisms during ischemia/reperfusion (I/R) (Ferdinandy
et al., 2014). However, in spite of numerous promising
preclinical attempts aiming pharmacological triggering these
cardioprotective mechanisms, the dilemma of translation of
the results into clinical practice has remained unsolved
due to the presence of several additional factors including
cardiovascular co-morbidities (e.g., hyperlipidemia or diabetes
mellitus) (Ferdinandy et al., 2014). Thus, to improve clinical
outcomes, novel therapeutic strategies against myocardial I/R
injury are needed, which may preserve their protection even in
the presence of cardiovascular co-morbidities (Hausenloy et al.,
2017).

Matrix metalloproteinases (MMP) are zinc containing
peptidases classified into several subtypes. The gelatinase-type
MMP-2 occurs in the heart in physiological conditions and
is synthesized by cardiomyocytes, fibroblasts, and endothelial
cells (DeCoux et al., 2014). During I/R, MMP-2 is activated and
released from the injured myocardium (Cheung et al., 2000),
which may contribute to the degradation of contractile proteins
(Wang et al., 2002; Sawicki et al., 2005; Sung et al., 2007; Ali
et al., 2010), thereby leading to myocardial dysfunction, and in
the long run, to heart failure. Furthermore, in patients with ST-
elevation myocardial infarction (STEMI), a significant positive
correlation has been shown between the circulating levels of
MMP-2 measured before and 12 h after recanalization therapy,
and infarct size as determined by cardiac MR (D’Annunzio
et al., 2009). We have demonstrated that MMP-2 can be a
promising biomarker for patients with coronary artery disease
(Bencsik et al., 2015). We have previously also reported
that pharmacological inhibition of MMP-2 in rats evoked
cardioprotection that is equivalent to ischemic preconditioning
(Giricz et al., 2006; Bencsik et al., 2010). Our work has also shown
that although hyperlipidemia abolished the beneficial effect of
ischemic preconditioning, cardioprotection in the presence of
hyperlipidemia was preserved during pharmacological inhibition
of MMP-2 (Giricz et al., 2006). We can thus conclude that MMP-
2 inhibition is a promosing drug target since it works in the
presence of a significant cardiovascular co-morbidity, namely
hyperlipidemia (see for reviews Andreadou et al., 2017).

To date, several MMP inhibitors have been identified,
including hydroxamates, thiols, carbamoylphosphonates,
hydroxyureas, hydrazines, β-lactam, squaric acids, and
nitrogenous ligands (Durrant et al., 2011). Most of these
consist of a metal-coordinating function, called a zinc-binding
group (ZBG), which binds to the catalytic zinc ion of the
MMPs. Despite the promising features of these potent MMP
inhibitor compounds, only one compound has been approved

for clinical use by the U.S. Food and Drug Administration
Authority, which is Periostat R© (doxycycline hyclate), for the
treatment of periodontitis (Dormán et al., 2010). In spite of
much preclinical evidence about the involvement of MMP-2
in acute myocardial infarction (AMI), surprisingly, only one
failed clinical trial was conducted by the administration of a
non-selective, hydroxamate type MMP inhibitor, PG-116800, in
a relatively high dose (400mg/day) for 90 days for AMI patients
(Hudson et al., 2006).

Consequent research has been focused on the design of
selective compounds that can distinguish between different
members of the MMP family, thereby exploiting zinc-
binding groups other than the hydroxamate group (Fisher
and Mobashery, 2006). In addition, we have recently shown that
there is no need for complete inhibition of MMP-2 to achieve
cardioprotection since a moderate (∼20–25%) inhibition of
MMP-2 activity was sufficient to reduce infarct size in normo-
and hyperlipidemic isolated rat hearts (Giricz et al., 2006) and
also in an in vivo rat model of AMI (Bencsik et al., 2014).

Consequently, our aims were to develop novel MMP-2
inhibitors with potent anti-ischemic efficacy and moderate
MMP-2 selectivity among the MMP-subtypes. Preclinical studies
with MMPI’s revealed a severe adverse side-effect frequently,
referred to as musculoskeletal syndrome. This is primarily due
to MMP-1 inhibition (which is considered an anti-target within
theMMPs). Selectivity againstMMP-1may be important to avoid
such side effects of MMP inhibitors (Papp et al., 2007).

The significant differences in the structural features of the sub-
pockets of the binding/active sites allow for easy differentiation
and selectivity of the MMP inhibitors. S1’ and S2’ pockets are
responsible for the selectivity of the inhibitors and this can be
taken into consideration in the design of selective inhibitors to
tailor the occupation of the particular sub-pockets (Figure 1).
In the case of MMP-2, the S1’ pocket is mainly hydrophobic
and relatively large, while in MMP-1 it is short and shallow.
Increasing bulkiness at the S1’ pocket could change the activity
profile and allows for some selectivity over MMP-1. This trend
was clearly observed in the case of substituted thiazepine MMP
inhibitors (Almstead et al., 1999; Papp et al., 2007).

Therefore, we have designed a screening cascade to select
potent MMP-2 inhibitors with cardioprotective effects.

MATERIALS AND METHODS

Experimental Design-Screening Cascade
Our group applied a complex screening cascade to identify
candidates that may reduce acute cardiac I/R injury via
inhibition of MMP-2. During our complex screening protocol,
virtual screening was combined with docking calculations
followed by medium-throughput screening using MMP-2
catalytic domain. In the next stage, the inhibitory effect
was confirmed on full length MMP-2 enzyme isolated
from cardiac tissue. Finally, the cardioprotective effects
of selected molecules were tested in neonatal cardiac
myocytes that were subjected to simulated ischemia and
reoxygenation as well as on an isolated rat heart model of AMI
(Figure 2).
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FIGURE 1 | Selected MMP-2 inhibitors and their subpocket occupation leading to selectivity against MMP-1 (Corresponding IC50 values are shown).

FIGURE 2 | The screening cascade. Complex screening cascade to identify candidates that may reduce acute cardiac I/R injury via inhibition of MMP-2. (A) AMRI

Chemical Library contains ∼200,000 drug-like small molecules (<500 Da) as compound set. We intended to select zinc-binding motif holding molecules, similar to

hydroxamic acids. (B) For 2D substructure and similarity search. (C) Selection of free acids from the AMRI’s compound’s collection. (D) Further focus to compounds

holding various motifs around a central core, reflecting the typical MMP inhibitor architecture. (E) Selected acids screened in a fluorescent assay using a recombinant

human MMP-2 catalytic fragment and a synthetic peptide substrate. (F) The synthesis of the thiazole and the isosteric imidazole carboxylic acids. (G) The hydroxamic

acid pairs of the previously measured acids were tested. (H) The novel thiazole carboxylic acid chemotype was the starting point for further structure-based

optimization. A 568-membered focused library was in silico generated around the AMRI library hits including their bioisosters and some simplified analog. (I) Docking
studies: Genetic Optimization for Ligand Docking (GOLD) was used to build a 3D model based on the X-ray structure of human MMP-2 and MMP-9. (J) Thirty
compounds were successfully synthesized for screening combining the in silico hits and the additional designed compounds. (K) In vitro MMP-2 activity was

measured using a fluorometric assay. (L) Low throughput screening by gelatin zymography technique. (M) Cell viability experiments in isolated neonatal cadiac

myocytes subjected to simulated ischemia/reperfusion injury. (N) Myocardial infarct size was measured after ex vivo global ischemia experiments on isolated rat hearts.

Chemistry—MMP-2 Inhibitor Design
Design of Selective MMP-2 Inhibitors
We applied contemporary library design approaches
based on the structural features of the known MMP-
2 inhibitors (Figure 2). Our approach started from
a diverse 200k compound library and the multi-step
selection procedure consisted of a substructure search

for binding motifs of MMP-2 inhibitors and diversity
selection.

In Silico Chemisty Approach

Chemical library
The Albany Molecular Research Inc. (AMRI; Albany, NY)
Library contains ∼200,000 drug-like small molecules (<500
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Mwt) synthesized by solution phase parallel synthesis. The
compound set contained ∼300 medicinal chemistry relevant
chemotypes with diverse substitution patterns. The library
was succesfully involved in many exclusive drug discovery
projects.

2D chemoinformatics methods
According to the Similar Property Principle (Johnson and
Maggiora, 1990), molecules that are structurally similar are likely
to have similar properties. Applying simple 2D fingerprints
is often the method of choice, particularly when numerous
reference compounds and multimillion compound databases
are available not only “because of its computational efficiency
but also because of its demonstrated effectiveness in many
comparative studies” (Willett, 2006; Baig et al., 2016). Most
frequently the Tanimoto coefficient (Willett and Winterman,
1986) is used for measuring similarity, in spite of its marked
size-dependency.

In practice, determining the similarity between known
reference structures and each molecule in a database, followed
by ranking the database molecules according to the similarities
would lead to a potentially active compound set for in vitro
screening. Similarly, reoccurring (privileged) structural motifs
could also be identified and the compounds holding the motifs
could represent another screening library.

For 2D substructure and similarity search, we applied
standard chemical fingerprints as implemented into
InstantJChem software (ChemAxon Ltd. Budapest) in which
binary strings encode the presence or absence of substructures.

The physico-chemical parameters [Mwt, clogP, H-bond
donors/acceptors,—Lipinski’s Rule-5 (Lipinski et al., 2001);
rotatable bonds, and topological polar surface area] were
calculated by the calculation suit of InstantJChem (ChemAxon
Ltd. Budapest).

3D alignment methods
Novel 3D approaches consider not only the molecular topology,
but also deal with 3D coordinates of both the active and
the potential lead molecules for the similarity comparison and
estimate 3D shape similarity (Kalászi et al., 2014).

A rough estimation of the binding behavior of the compounds
is to assess their conformational flexibility and the overall
statistical representation of such conformational properties
would be presented as a 3D structure (ChemAxon Screen3D
software) (ChemAxon, 2013).

In flexible alignment, the conformations are created “on-the-
fly” during the alignment procedure. Flexible alignmentmethods,
such as used in the present study, have the advantage of not
requiring a pre-defined set of initial conformers to sample the
conformational space of the molecules. During the alignment
procedure we took specific atom-type information such as
pharmacophore sites into account. This information would be
capable of generating alignments where patterns (With similar
binding character) are oriented in a similar fashion as occurs
during the real binding to the active site. Therefore, it provides
a more realistic picture of the potential bioactive similarity of the
molecules.

3D modeling approaches
For docking studies, Genetic Optimization for Ligand Docking
(GOLD; version 4.0.1; Jones et al., 1997) was used to build a 3D
molecule model based on the X-ray structure of human MMP-
2. 1CK7 was the only full length 3D structure found in protein
databases but it contained a mutation (E404A). On the other
hand, the availability of the 3D structure of the collagenase-like
1-2 catalytic domain is sufficient for virtual screening targeting
MMP-2 inhibition, thus 1HOV (NMR), and 1QIB (X-Ray)
structures provided feasible alternatives.

Another option was 1EAK (X-Ray), which contains the
collagenase-like 1-2 domain together with connecting collagen
binding region (propeptides). Comparing the models 1EAK was
found to be the particularly reliable for virtual screening even
though it also contains the E404A mutation (Supplementary
Figure 1). The propeptide regions could be removed without
affecting the docking realiability.

The 3D structure of small molecules to be screened were
optimized and protonated before docking. The pH was set as 7.2.
For docking the standardGold parameters were used as described
in the actual User Guide (Centre, 2017).

The MMP-2 active site was defined containing all the atoms
around a sphere with 19 Å radius. We have chosen Zn-ion
coordination as octahedral. For all the small molecules 10
independent runs were conducted.

The 1EAK model was validated with three known MMP-2
inhibitors: SC-74020 (Supplementary Figure 2), PD 166793
(Figure 1), and ABT-518 (Figure 1).

Synthetic Methods
The hydroxamic acids (e.g., AMRI-101H, AMRI-102H, and
AMRI-103H) were prepared from the corresponding acids using
bromo-tris-pyrrolidino phosphoniumhexafluorophosphate
(PyBrOP) and polymer supported hydroxybenzotriazole as
activating agent before adding hydroxylamine hydrochloride
and a base (see Supplementary Figure 3). The isolated yields were
between 10 and 76%, while the purity was higher than 85%.

The synthesis of the thiazole and the isosteric imidazole
carboxylic acids were carried out according to standard
procedures and as described elsewhere (Ferdinandy et al., 2010).

In order to increase the solubility of the compounds, the
benzene ring was replaced with pyridine in various analogs
(MMPI-1248, MMPI-1260). Unfortunately, combination of
the pyridine ring with the imidazolyl core was synthetically
unsuccessful.

In Vitro Pharmacological Testing by MTS
Screening
In vitroMMP-2 activity was then measured, using a fluorometric
assay in a 384 well format. Human MMP-2 catalytic domain
(residues 110-221, 397-455) (Feng et al., 2000) was expressed
in E. coli in form of inclusion bodies. The protein was refolded
and then purified by means of Ni-NTA affinity and anion
exchange chromatography. Inhibition assays were carried out
in 50mM Tris, 5mM CaCl2, 300mM NaCl, 20µM ZnSO4,
pH = 7.5 buffer. For inhibition studies the catalytic domain
of the enzyme was pre-incubated with varying amount of
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inhibitor for 30min. Then MMP substrate (Mca-Pro-Leu-
Gly-Leu-Dpa-Ala-Arg-NH2) (Papp et al., 2007) was added
at 3µM final concentration. After 1 h incubation at 37◦C
the fluorescence was detected using a Wallac 1420 Victor2
microplate reader at 320 nm/405 nm Ex/Em wavelength. As
an alternative substrate we also used 5-FAM-Pro-Leu-Gly-Leu-
Dap(QXLTM 520)-Ala-Arg-NH2, where the fluorescence was
detected at 485 nm/520 nm. For each inhibitor candidate,
the percentage of inhibition was determined in duplicate
experiments at six inhibitor concentrations, chosen to observe
a 5–95% range of inhibition. For validation of the fluorometric
assay, Ilomastat [N-[(2R)-2-(Hydroxamidocarbonylmethyl)-4-
methylpentanoyl]-L-tryptophan Methylamide, (GM6001)], a
non-selective MMP inhibitor, was used as a positive control
inhibitor. The measured IC50 values varied between 0.3-1.0 nM
which is in line with previous literature data (Galardy et al., 1994;
Yamamoto et al., 1998).

Gelatin Zymography Assay to Screen the
Efficacy of MMP-Inhibitiors
Gelatin zymography was performed as described previously
(Kupai et al., 2010; Bencsik et al., 2017). MMP-2 was isolated
from rat heart homogenates as follows: 50 µg protein/lane were
loaded and separated by electrophoresis under non-reducing
conditions on an 8% SDS-polyacrylamide gels copolymerized
with 2mg/ml gelatin from porcine skin (Sigma-Aldrich; St. Louis,
MO). After electrophoresis, gels were washed in 2.5% Triton-
X 100 with gentle agitation and then incubated for 20 h at
37◦C in zymography development buffer (50mM Tris-HCl, pH
7.5, containing 5mM CaCl2, 200mM NaCl) in the presence or
abscence of the MMP inhibitor compounds. Zymographic gels
were stained in a 0.05% Coomassie Brilliant Blue R-250 solution
followed by destaining, and then zymograms were scanned.
MMP activity was detected as a colorless transparent zone on a
blue background and the clear bands in the gel were quantified
by densitometry using the Quantity One software (Bio-Rad,
Hercules, CA). The obtained density values were measured and
percentage of inhibition values were then calculated.

Cytoprotective Effect of MMP Inhibitor
Compounds in Neonatal Rat Cardiac
Myocytes Subjected to Simulated
Ischemia/Reperfusion (SI/R)
Simulated Ischemia/Reperfusion Injury Under

Hypoxic Cinditions
For our cell viability experiments, 3 day-old cardiomyocytes
plated onto 24-well plates were tested under normoxic condition
or subjected to simulated ischemia (SI). The normoxic
cardiomyocytes were kept under normoxic conditions, i.e.,
the growth medium was changed to a normoxic solution (in
mM: NaCl 125, KCl 5.4, NaH2PO4 1.2, MgCl2 0.5, HEPES
20, glucose 15, taurine 5, CaCl2 1, creatine 2.5, BSA 0.1%, pH
7.4, 310 mOsm/l) (Li et al., 2004) and the cells were incubated
under 95% air and 5% CO2 at 37◦C for 2.5 h. In the second
series of experiments, cardiac myocytes were subjected to SI
by incubating the cells in hypoxic solution (in mM: NaCl 119,

KCl 5.4, MgSO4 1.3, NaH2PO4 1.2, HEPES 5, MgCl2 0.5, CaCl2
0.9, Na-lactate 20, BSA 0.1%, 310 mOsm/l, pH = 6.4) (Li et al.,
2004) and placing the plates in a humidified 37◦C hypoxic
chamber exposed to a constant flow of a mixture of 95% N2 and
5% CO2 for 4 h. The cells were then subjected to the following
treatments during SI or normoxic protocol: vehicle control or
MMP inhibitors at different doses calculated according to IC
doses in vitro. Normoxic and SI treatments were followed by
2 h reoxygenation with growth medium with administration
of the same dose of compounds as during normoxia or SI and
superfusion with 95% air and 5% CO2 at 37

◦C (Figure 3).

Cell Viability Assay
Cell viability was assessed by a calcein and propidium iodine
assay performed in each group after 2 h reoxygenation. Briefly,
the growth medium was removed, the cells were then washed
with PBS twice and afterwards were incubated with calcein
(1µM) for 30min. Then the calcein solution was replaced
with fresh PBS and the fluorescence intensity of each well was
detected by a fluorescent plate reader (FluoStar Optima, BMG
Labtech, Ortenberg, Germany). Fluorescent intensity was then
measured in well scanning mode (scan matrix:10 × 10; scan
diameter: 10mm; bottom optic; no of flashes/scan point: 3;
temp: 37◦C; excitation wavelength: 490 nm; emission wavelength:
520 nm). Then the PBS was removed and the cells were incubated
with PI (50µM) and a digitonin (10−4 M) (Sigma-Aldrich;
St. Louis, MO) for 7min. Following that, the PI solution was
replaced with fresh PBS and fluorescent intensity was detected
using the same settings, excitation wavelength: 544 nm; emission
wavelength: 610 nm). Background fluorescent intensity (Cells
without staining) was subtracted from the calcein fluorescence
intensity (reflecting live cell population) and divided by PI

FIGURE 3 | Experimental protocol for cell culture studies and for the ex vivo

rat heart model of AMI. (A) Isolated neonatal rat cardiac myocytes were

subjected to 4 h of simulated ischemia followed by 2 h of simulated

reperfusion. At the end of the reperfusion, cell viability was determined by

using calcein flurescence. (B) Isolated adult rat hearts were perfused

according to Langendorff and a 30-min global, no-flow ischemia was applied

after a 20min equilibration period. Subsequently, 2 h reperfusion was applied

and then infarct size was determined. The hearts were perfused with

Krebs-Henseleit solution containing lead candidates or vehicle from 20min

prior to the global ischemia until the 60th min of reperfusion.
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fluorescence intensity (reflecting total cell count) and the average
intensity of each group was plotted. The cytoprotective effect
of different compounds was compared to simulated ischemic
control groups.

Myocardial Infarction in Isolated Rat Heart
Ex Vivo Global Ischemia/Reperfusion Injury
Our experiment conforms to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals (NIH Pub.
No. 85-23, Revised 1996) and also to the EU directive guideline
for the care and use of laboratory animals published by the
European Union (2010/63/EU) and was approved by the local
ethics committee of the University of Szeged. Eight to ten
week-old male Wistar rats weighing 300–350 g (Toxicoop Ltd.,
Budapest, Hungary) were anesthetized intraperitoneally with
60 mg/kg pentobarbital sodium (Euthasol, Produlab Pharma,
Raamsdonksveer, The Netherlands). After administration of 500
U/kg heparin through the femoral vein, the heart was isolated
and perfused according to Langendorff with oxygenated Krebs-
Henseleit buffer at 37◦C as previously described (Turan et al.,
2006). Briefly, hearts were subjected to 10min aerobic perfusion
for equilibration and stabilization of heart function and then
by 30-min global ischemia followed by 120min reperfusion.
Global ischemia was induced by setting a stopcock (B/Braun,
Melsungen, Germany) in closed position, and reperfusion was
achieved by turning the stopcock in the original (perfusion)
position. Heart rate and coronary flow were monitored
throughout the perfusion protocol. All the test compounds,
their vehicle (DMSO, <0.1% in Krebs-Henseleit solution) as
well as the positive control PD166793 (Tocris Bioscience, Cat.
No. 2520; Bristol, UK) were applied 20min before the onset of
global ischemia andmaintained until the 30th min of reperfusion
(Figure 3).

Determination of Myocardial Infarct Size
At the end of the 2-h reperfusion, the right ventricle was
removed, hearts were frozen, cut into six 1-mm-thick slices, and
incubated in 1% triphenyl-tetrazolium chloride (Sigma-Aldrich;
St. Louis, MO) at 37◦C to delineate infarcted tissue. Slices were
then fixed and quantified by planimetry using InfarctsizeTM 2.5
software (Pharmahungary, Szeged, Hungary) (Fekete et al., 2013).
Infarct size was expressed as a percentage of the left ventricle.

Statistical Analysis
Data were expressed as mean ± SEM. Cell viability were
expressed as % of vehicle treated groups. Data were compared
to vehicle using ANOVA followed by post-hoc tests, e.g., Tukey
or Fisher LSD test.

RESULTS

Focused Library Design and MTS
Screening
Since hydroxamic acids are reported as the primary zinc-
binding motif, we intended to select such a library from the
AMRI 200,000 member non-exclusive compound repository as
a starting point of our drug discovery efforts. Since only a
few compounds were available in the repository as hydroxamic

acids and the conversion of acids to hydroxamic acids were not
applicable to HT parallel synthesis, we decided first to select
free acids from the AMRI’s compound collection. This selection
supported our initial hypothesis since acids are considered as
weaker Zn2+ chelators than hydroxamic acids, which might
be beneficial for achieving selectivity and in addition could be
considered as a good indicator of the MMP-2 inhibitory activity.
The substructure search resulted in 3600 acids, which were
further focused to a small diverse subset by chemoinformatics
methods including 259 compounds, where the compounds hold
various motifs around a central core, reflecting the typical
MMP inhibitor architecture described above (see Figure 2). The
selected acids were screened in a fluorescent assay using a
recombinant human MMP-2 catalytic fragment and a synthetic
peptide substrate. Ilomastat (a non-selective MMP inhibitor) was
used for the validation of the assay and in each subsequent
experiment as a control compound. The selected compounds
(259) were first tested using single point measurements at
10µM concentration; 6 compounds showed > 70% inhibition,
7 compounds between 60–70%, and 12 compounds between
50–60%. The accumulated hit-rate was 10%. The primary acid
hits (12) were attempted to convert to hydroxamic acids.
Since two reactions failed 10 hydroxamic acids were prepared
successfully for comparative MMP-2 screening. The hydroxamic
acid pairs of the previously measured acids were then tested.
Comparing the inhibitory activity of the acids and hydroxamic
acids, we had an unexpected discovery. Five acids showed higher
inhibition than the corresponding hydroxamic acids during
catalytic fragment measurement, and among them 3 belonged to
the same chemotype: thiazolyl-carboxylic acid (Table 1).

Furthermore, we found that the thiazole ring (MMPI-1157)
to the isosteric imidazole (MMPI-1154) increased the selectivity
to 1.5-fold over MMP-1 (Table 2) while the overall inhibitory
profile was similar. The 3D similarity score was also high (3D-
T = 0.85). The thiazole-imidazole replacement also made the
compounds less lipophilic (cLogP was reduced from 3.3 to
2.9). Interestingly, 4- (or para)-fluoro-phenyl substitution in the
shorter side chain (MMPI-1157, 1154, 1260, 1248) is favored over
the 3- (or meta)-fluoro-phenyl substitution. It showed higher
selectivity and MMP-2 inhibitory effect even if the 3D similarity
scores were high. The 4- benzyl-phenyl ether or 4-pyridyl-phenyl
ether side chain was also favored over the other groups in the
longer side chain. On the other hand, if the benzene ring was
replaced with pyridine in the shorter side chain, it reduced the
MMP-9 inhibition significantly, thus MMP-2/9 selectivity was
increased (MMP 9 inhibition: MMPI-1252, 1253 ≥ 500µM).
One compound (MMPI-1140) that lacks the heterocyclic ring but
contains the corresponding side chains showed similar activity
profile as the parent thiazole carboxylic acid, MMPI-1133, even
though the 3D similarity alignment was relatively low (0.56).
In summary, the entire screening cascade (Figure 2) including
library design, selection, virtual screening, and in vitro biological
screening resulted in a novel thiazole/imidazole carboxylic acid
chemotypes, which could be suitable starting points for further
structure-based optimization.

As a next step we started to explore the chemical space around
this chemotype using 2D/3D structure-based in silico methods.
First, a 568-membered focused library was in silico generated
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TABLE 1 | Comparing the inhibitory activity of the acids and hydroxamic acids.

Structure Type Code IC50 on
MMP-2 (µM)

Structure Type Code IC50 on
MMP-2 (µM)
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carboxylic acid AMRI-103A 7.6

around the AMRI library hits including their bioisosters and
some simplified analogs and then the library members were
docked to the 3D model of MMP-2.

Virtual 3D docking of potential MMP inhibitors was executed
using GOLD. The protein structure coordinates were obtained
from Protein Data Bank using the highest available resolution
(preferably co-crystallized with ligand). We used (MMP-2:
1QIB), (Dhanaraj et al., 1999). The region of interest used for
GOLD docking was defined as all the protein residues within
the 19 Å radius sphere with the midpoint of the Zinc ion
in the catalytic center. GOLD default parameters were used,
which were set to 200,000. The complexes were submitted
to 20 genetic algorithm runs using the GOLDScore fitness
function.

As a result, 45 compounds were considered as virtual hits
(docking score > 70) and proposed for chemical synthesis. The
synthesizable compound set was completed with several close
analogs by rational design. For instance, in order to increase the
solubility of the compounds, the benzene ring was successively
replaced with pyridine (see MMPI-1252, 1253, 1248, and 1260).
Altogether 30 compounds were successfully synthesized for
screening combining the in silico hits and the additional designed
compounds.

The compounds were measured for MMP-1, 2, 9, 13 to
determine their inhibitory profile. Efficiency Index amplifies the
two major required effects, selectivity against MMP-1 and the
inhibitory activity.

Table 2 shows the IC50 values of the hit compounds (hit
criteria: 100% MMP-2 inhibition at 100 microM). The Gold

docking scores are shown for those hits that are coming from
virtual screening.

In addition, 3D flexible alignment studies were performed
between the novel hit compounds and the initial AMRI library
best hit (AMRI-101A/MMPI-1157) compounds. The measure
of the alignment was characterized by 3D similarity scores (3D
Tanimoto coefficient, ChemAxon Screen3D software). It was
postulated that high 3D similarity score could reveal similar
conformation and binding mode which could result in similar
bioactivities. Finally, cLogP was calculated for each compound.
The lower values showing less lipophilicity which is expected
to accelerate the passage through the cell membrane leading to
higher bioavailability.

MMPI-1154 was investigated more deeply in 3D docking
studies. Figure 4 shows the interaction of the compound to the
active site of MMP-2. In MMPI-1154 (Containing an imidazole-
carboxylic acid moiety), the acid residue had a chelating
interaction to the Zn2+ with the contribution of one of the N-
hetero atoms of the heterocyclic ring. This relatively weak Zn2+

chelation dynamically and statistically gives an allosteric binding
feature of this inhibitor.

The Effect of MMP Inhibitors on Cardiac
MMP-2 Activity Measured by Zymography
To confirm the MTS screen results, we tested the potential MMP
inhibitor molecules on MMP-2 enzyme isolated from rat heart
in vitro. Therefore, we applied the MMPIs at 1 and 100µM final
concentration in the enzyme’s development buffer (Table 3).
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TABLE 2 | Results of thiazole carboxylic acid (TCA) and imidazole carboxylic acids (ICA) and related analogs.

Structure Code IC50 on MMP-1
(µM)

IC50 on MMP-2
(µM)

IC50 on MMP-9
(µM)

IC50 on MMP-13
(µM)
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N S

N

O

HO

O

MMPI-1155

(TCA)

26 25 10 1.76 0.663 4.77

H
-
Cl

N NH

N

O

HO

O

MMPI-1247

(ICA)

33 15 100 3.3 0.843 3.11

NHN

F

N

O

O

HO
MMPI-1245

(ICA)

16 35 8 0.28 0.673 4.70

N S

F

N

HO

O
MMPI-1254

(TCA)

17 30 20 3 0.739 3.39

(Continued)
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TABLE 2 | Continued

Structure Code IC50 on MMP-1
(µM)

IC50 on MMP-2
(µM)

IC50 on MMP-9
(µM)

IC50 on MMP-13
(µM)

3D alignment to
1157

cLogP

N

N S

N

O

HO

O

MMPI-1253

(TCA)

240 90 >500 8 0.927 2.22

N

N S

N

O

HO

O

MMPI-1252

(TCA)

115 54 >500 1.5 0.948 2.20

N

N S

F

N

O

HO

O

MMPI-1260

(TCA)

51 5.7 37 2.5 0.916 2.16

N

N S

F

N

O

HO

O
MMPI-1248

(TCA)

47 8 8.8 1.24 0.962 2.24

Cardio-Cytoprotection by MMPIs in Cell
Culture Model of I/R Injury
Some doses of MMPIs affected cell viability significantly in
normoxic conditions (Supplementary Figure 4). Since the
vehicle for MMPIs was DMSO, aerobic cardiac myocytes
were treated with 0.1% (v/v%) DMSO and their viability was
also assessed. Vehicle treatment did not affect cell viability
in comparison to non-treated cardiomyocytes (Supplementary
Figure 5).

Hypoxia is one of the numerous influences on cardiac
matrix remodeling, via ECM turnover and induction of MMPs.
In addition, I/R injury is also a critical modulator of MMP
expression through alternative mechanisms (Jun et al., 2011).

The 4-h hypoxic exposure and 2-h reoxygenation caused
a marked cell death (Supplementary Figure 5), which was
attenuated by MMPI treatment. To investigate whether MMPIs
treatment influences cardiac myocite survival after simulated
I/R, we selected 6 MMPIs that were available at that time and,
which showed significant MMP inhibitory effect during pre-
screening. We tested those compounds in cultured neonatal
cardiac myocytes subjected to simulated I/R studies. Ilomastat
served as positive control (Supplementary Figure 6). The tested
compounds showed significant cytoprotection, between 17 and
47% (Figure 5). The supplementary figures show all inhibitor
testing data (Supplementary Figure 4).

Cardioprotection by MMPI-1154 in Isolated
Rat Heart Model of I/R Injury
Finally, based on the results of cell culture experiments,
we selected the most potent cardioprotective compound,
MMPI-1154 for testing in an isolated rat heart model of AMI.
MMPI-1154 reduced myocardial infarct size significanly at 1µM
as compared to the vehicle-treated group (Figure 6).

DISCUSSION

In our study, we have successfully demonstrated the development
of a novel, selective MMP-2 inhibitor for cardioprotection
from an in silico compound library selection, through to
the testing of the most promising compound against acute
myocardial infarction, in an isolated rat heart model. We’ve
found that the MMP-inhibiting effects of imidazole and
thiazole carboxylic acid-based compounds are superior to the
conventional hydroxamic acid type derivatives of the same
molecules. We have thus shown for the first time in the
literature that the acute application ofMMPI-1154 (An imidazole
carboxylic acid-based compound) has a protective effect for
the heart against acute myocardial infarction. We achieved ex
vivo cardioprotection via a moderate MMP-2 inhibition, since
MMPI-1154 was applied at around the concentration of its IC20

value.
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FIGURE 4 | Two different views of the 3D structure of MMP-1154 docked to the active site of MMP-2 together with the major binding interactions.

MMP Inhibitor Development Strategy
Currently,∼500 papers investigating the role of MMP inhibition
in myocardial ischemia are available from the last 2 decades in
PubMed database. There are several papers that describe the non-
zinc binding, allosteric (e.g., π-π stacking) interactions of MMP-
2 with selected inhibitors (Di Pizio et al., 2013; Agamennone
et al., 2016; Ammazzalorso et al., 2016; Adhikari et al., 2018).
Most of these papers employ MMP-2 as a potential biomarker
for ischemic heart diseases or as a therapeutic target to evoke
cardioprotection. However, early clinical trials targeting MMP-
2 for improving cardiovascular outcomes after acute myocardial
infarction have failed (e.g., PREMIER study, Hudson et al., 2006).
The likely reason for failure was the lesser selectivity of the
appliedMMP inhibitors as well as the chronic and relatively high-
dose administration regimen. Therefore, in our present study, we
aimed to develop novel MMP-2 inhibitor lead candidates, which
possess high selectivity and lead only to a moderate MMP-2

inhibition in accordance to our previous findings (Giricz et al.,
2006; Bencsik et al., 2014).

Novel Structural Findings Regarding
MMP-2 Inhibitor Development
Several hydroxamic acid compounds are known as non-
selective MMP inhibitors. Therefore, we started our inhibitor
development with selecting hydroxamic acid compounds
from the AMRI library. We also selected their carboxylic
acid derivatives. We identified thiazole and imidazole
substituted carboxylic acid molecules, in which MMP-
2 inhibitory effect was superior to the corresponding
hydroxamic acid derivatives. Furthermore, we found that
changing the thiazole ring (MMPI-1157) to the isosteric
imidazole (MMPI-1154) increased the selectivity over MMP-
1, although the overall inhibitory profile and the structure
were similar. This feature was an advantageous factor
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during molecular designing process since MMP-1 inhibition
was responsible for the development of musculoskeletal
syndrome, the most severe adverse effect of early MMP
inhibitors.

The relatively weak Zn2+ chelation derived from the
imidazole-carboxylic acid moiety interacting to the Zn2+

dynamically and statistically gave an allosteric binding feature
for MMPI-1154. It is also assumed that the additional electron
donating heteroatom being in close proximity to the acid moiety
(thiazole/imidazole ring) would also contribute to the chelation
of the Zn2+ ion. The bulky side chain is deep inside in the S1’
pocket as expected, although some rotational movements would
be permitted around the central tertiary N atom. This option
would allow different binding modes and activity profiles as
well.

TABLE 3 | Screening of molecules on cardiac MMP-2 with gelatin zymography.

Code Inhibition (%)±SEM
at 100µM final MMP inhibitor concentration

MMPI-1133 11.14 ± 1.58

MMPI-1140 81.08 ± 3.88

MMPI-1154 100

MMPI-1155 46.95 ± 19.06

MMPI-1157 100

MMPI-1245 100

MMPI-1247 100

MMPI-1248 100

MMPI-1252 100

MMPI-1253 100

MMPI-1254 100

MMPI-1260 100

Most importantly, the pyridine moiety instead of the phenyl
ring at the end of the S1’ pocket occupying longer side chain of
themolecules increased the selectivity of the inhibition forMMP-
2 against MMP-1 (MMPI-1260, 1248). This is most likely due to
the increased polarity of the tail group (such as pyridine), which is
exposed to the aqueous environment at the end of the S1’ pocket.
Similar compounds are described in Duan et al. (2007), where
non-zinc chelating MMP-2 inhibitors with a similar bulky side
chain were reported. This finding supported our hypothesis that
weak or negligible Zn2+ chelation with bulky and partially polar
side chains lead to selective and active MMP-2 inhibitors. The
phenyl-pyridine exchange is also beneficial to the cell penetration
since the calculated octanol-water partition (cLogP) decreased
in one order of magnitude. Although this change did not cause
significant conformational changes, the 3D similarities were high
between these compounds and the initial hit (MMPI-1157).

In conclusion, the biological data and the docking studies
together with the 3D alignment modeling confirmed that
these chemotypes represent a novel promising class of MMP-2
inhibitors. The bulky groups together with a weaker Zn2+-
chelating carboxylic acid residue allowed us to achieve low
micromolar MMP-2 inhibition, often together with an apparent
selectivity against MMP-1. Finally, all the hit compounds meet
the drug-likeness criteria (Lipinski Rule of 5.), which predicts
high developability prognosis.

Screening Cascade
After the chemical optimization of the novel MMP inhibitor
lead candidates, we determined their IC50 values by using gelatin
zymography. During zymographic analysis, we used full-length,
active MMP-2 enzymes isolated from healthy young adult rat
hearts. Subsequently, the cardio-cytoprotective effects of the
selected candidates having the lowest IC50 values to MMP-2
were tested in cultured neonatal cardiac myocytes subjected to

FIGURE 5 | Cardioprotective effects of MMPI lead candidates on neonatal rat cardiac myocytes subjected to simulated I/R. Cell viability was measured after 4 h

simulated ischemia followed by 2 h of simulated reperfusion. Data are expressed in the ratio of vehicle (DMSO) control in percentage. Positive data (more than 100%)

shows higher viability compared to the control. *p < 0.05 vs. Vehicle, n = 5–6 (One-way ANOVA followed by Dunnett post-hoc test). The most effective doses of the

series of experiments are presented in the case of all compounds (for more detailed results see for Supplementary materials, Figure 4).
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FIGURE 6 | MMPI-1154 is cardioprotective. The effect of MMPI-1154 on

myocardial infarct size in isolated rat hearts subjected to 30min global

ischemia followed by 120min reperfusion. *p < 0.05 vs. Vehicle, n = 6–8

(One-way ANOVA followed by Fisher LSD post-hoc test).

simulated I/R injury. Cardiac myocyte cell culture assay allowed
a relatively high throughput biological efficacy testing (Gorbe
et al., 2010) of the selected lead candidates in several dose ranges
at different levels of inhibition of MMP-2 activity. Our cell
culture test system revealed several biologically efficacious doses
beyond the IC50 values of the selected lead candidates (see data
Supplementary Figure 1 for details).

Cardio-Cytoprotection by MMPI-1154
Based on the results of the abovementioned cell culture
experiments, we selected MMPI-1154 (The lead candidat) which
showed the highest increase in cell viability during simulated I/R
experiments. We then used it for cardioprotection in an ex vivo
rat heart model of acute myocardial infarction. To approximate
the moderate 20% inhibition of MMP-2 activity by MMPI-1154
(based on our previous findings, Giricz et al., 2006; Bencsik
et al., 2014), in the ex vivo model of AMI, we used the 1µM
concentration (IC20 value) instead of the most effective 2.5µM
(IC50 value) concentration seen during cell culture experiments.
Although MMPI-1154 is not highly selective to MMP-2, it seems
to be one of the most efficient MMP-2 inhibitors as shown in
Table 2 (efficiency index). In the present study, the in silico and
subsequent in vitro chemical efficiency has been confirmed in the
isolated heart experiments since MMPI-1154 in 1µM showed

a significant cardioprotection effect by decreasing myocardial
infarct size during acute global ischemia/reperfusion injury.
Further research in in vivo models of AMI can shed light on its
cardioprotective properties as well as on its safety derived from
the optimal selectivity toward different MMP isoforms.

CONCLUSIONS

This is the first demonstration that imidazole and thiazole
carboxylic acid-based compounds are more efficacious than their
hydroxamic acid derivatives in MMP-2 inhibition. MMPI-1154
is a promising novel cardio-cytoprotective imidazole-carboxylic
acid MMP-2 inhibitor lead candidate for the treatment of acute
myocardial infarction.
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An in silico drug discovery pipeline for the virtual screening of plant-origin natural
products (NPs) was developed to explore new direct inhibitors of TNF and its close
relative receptor activator of nuclear factor kappa-B ligand (RANKL), both representing
attractive therapeutic targets for many chronic inflammatory conditions. Direct TNF
inhibition through identification of potent small molecules is a highly desired goal;
however, it is often hampered by severe limitations. Our approach yielded a priority
list of 15 NPs as potential direct TNF inhibitors that were subsequently tested in vitro
against TNF and RANKL. We thus identified two potent direct inhibitors of TNF function
with low micromolar IC50 values and minimal toxicity even at high concentrations. Most
importantly, one of them (A11) was proved to be a dual inhibitor of both TNF and
RANKL. Extended molecular dynamics simulations with the fully automated EnalosMD
suite rationalized the mode of action of the compounds at the molecular level. To our
knowledge, these compounds constitute the first NP TNF inhibitors, one of which being
the first NP small-molecule dual inhibitor of TNF and RANKL, and could serve as lead
compounds for the development of novel treatments for inflammatory and autoimmune
diseases.

Keywords: direct TNF inhibitors, RANKL inhibitors, natural products, autoimmune diseases, virtual screening,
molecular dynamics

INTRODUCTION

Tumor necrosis factor (TNF) is an important human cytokine (Beutler et al., 1985) that is involved
in a number of critical biological processes and diseases, including rheumatoid arthritis, Crohn’s
disease, multiple sclerosis, inflammatory bowel disease, psoriatic arthritis, AIDS, and cancer
(Kollias et al., 1999; Apostolaki et al., 2010). Disruption of TNF binding to its principal receptor,
TNFR1, has been a long-desired goal in the development of novel autoimmune therapeutics
(Douni and Kollias, 1998; Kollias and Kontoyiannis, 2002). Previous in vivo studies from our
group demonstrated that deregulated TNF production induces chronic polyarthritis in a transgenic
animal model and the disease could be treated by proper anti-TNF therapy (Keffer et al., 1991).
These research efforts were vital in directing the attention of the pharmaceutical industry to initial
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anti-TNF approaches, which eventually resulted in clinical
trials that were successfully performed for a variety of chronic
inflammatory diseases, including rheumatoid arthritis (Elliott
et al., 1993), psoriasis, psoriatic arthritis, Crohn’s disease,
juvenile idiopathic arthritis, spondyloarthritis, and Behçet’s
disease (Sfikakis, 2010).

To date, three synthetic antibodies that block the activity
of TNF have been reported, namely infliximab, adalimumab,
and etanercept (Olsen and Stein, 2004). However, these
expensive agents are frequently used as secondary options for
patients with a poor response to regular anti-rheumatic drugs
(Chaudhari et al., 2016). Moreover, biologics are associated
with several other drawbacks, including high cost, inadequate
clinical response, need of intravenous administration, as well
as increased risk of tuberculosis and hepatitis B due to the
lowered immune response. Therefore, there is a clear need for
orally available, well-tolerated, inexpensive drugs that block the
production of TNF associated with pathological inflammation
in rheumatoid arthritis and related conditions. It has been
shown that the use of small molecules in direct TNF inhibition
represents an attractive alternative that offers significant benefits,
such as oral administration, shorter half-lives with reduced
immunosuppression, and easier manufacturing at a lower cost
(Sfikakis, 2010; Lo et al., 2017; Melagraki et al., 2018).

According to a recent report (Chaudhari et al., 2016), there are
no late-stage rheumatoid arthritis products targeting TNF under
development. Particularly, small molecule direct inhibition of
protein–protein interactions (PPIs), such as the one between TNF
and its receptor, is a nontrivial approach in drug development
(Sackett and Sept, 2009; Wilson, 2009; David, 2012; Arkin
et al., 2014). For this purpose, successful drug design requires
the identification of compounds with low molecular weight,
something extremely challenging, especially when attempting
to block interactions between large molecules such as proteins
(Lo et al., 2017). The successful recognition of small-molecule
inhibitors is also hampered by the difficulty to identify potential
“hot spots” as unique binding targets that are crucial for the
disruption of biomolecular interactions.

Protein–protein interactions interfaces are mostly flat,
extended (approximately 1,500–2,000 Å2), solvent-exposed, and
are characterized by hydrophobic and electrostatic interactions
(Jones and Thornton, 1996; Hwang et al., 2010; Sheng et al.,
2015). The main difference between PPI interfaces and deep
protein cavities, which usually bind small molecules, is their
size, with the latter occupying a relatively small area of less
than 500 Å2 (Fuller et al., 2009). Studies on the binding energy
distributions over protein interfaces by mutational analyses
demonstrated that only specific residues (hot spots) at the
PPI interface contribute most of the binding energy, while the
majority of PPI-interface residues are not important (Arkin
and Wells, 2004). It was shown that hot spots rather assemble
at the middle of the interface, to form a hydrophobic region
similar in size to a small molecule, and possess conformational
flexibility. The location of hot spots usually coincides with the
putative binding sites of the protein, and these sites consist of
a number of surface residues, which favorably contribute to
small-molecule binding and are also critical in stabilizing PPIs.

It has been shown that among all protein residues, these hot-spot
regions contribute the major part of the binding energy in a
protein–inhibitor complex. Therefore, successful identification
of hot spots may offer significant advancements in the rational
design of inhibitors (Kozakov et al., 2015a,b).

However, little progress has been obtained regarding fast and
reliable identification of hot spots despite recent advances in
high-throughput methodologies (Kouadio et al., 2005; Bakail
and Ochsenbein, 2016). Various computational approaches for
the recognition of hot spot areas have been developed by
several research groups and include methodologies that employ
dedicated energy functions (e.g., Rosetta, FoldX, and PCRPi)
(Guerois et al., 2002; Kortemme et al., 2004; Guharoy et al., 2011),
molecular simulations (Rajamani et al., 2004), computational
alanine scanning (Kollman et al., 2000), and machine learning
approaches [for instance, HSpred (Lise et al., 2011) and HotPoint
(Tuncbag et al., 2010)].

Despite that PPIs vary in size and shape, the majority of
inhibitors usually bind to hot spot regions that are restricted
to small binding sites (<1000 Å2) (Smith and Gestwicki,
2012; Basse et al., 2013) and partner proteins are defined by
short residue sequences at the interface (Perkins et al., 2010;
London et al., 2013). An effective PPI inhibitor must possess
a large surface area and participate in many hydrophobic
interactions with the receptor. However, such a ligand is usually
accompanied by high molecular weight and low solubility;
therefore, various pharmacokinetic problems may arise (Sheng
et al., 2015). Moreover, identifying an adequate starting structure
for successful design of small-molecule PPI inhibitors is often
hampered by the lack of information about natural PPI inhibitors.
To date, most of the published small molecules are indirectly
targeting TNF by downregulating its expression and only a
limited number of compounds is reported to directly disrupt
this interaction. These include the polysulfonated naphthylurea
suramin and its analogs (Alzani et al., 1993; Mancini et al., 1999)
and the indole-linked chromone SPD304 (He et al., 2005), the
use of which is hampered by low potency and poor selectivity
with a concomitant tendency to cause adverse effects (suramin)
(McGeary et al., 2008), and cell toxicity (SPD304) (Sun and
Yost, 2008). Moreover, Chan et al. (2010) identified two natural
product (NP)-like molecules, two FDA-approved drugs, namely
darifenacin and ezetimibe (Leung et al., 2011), and a metal-based
iridium(III) biquinoline complex (Leung et al., 2012), which act
as direct inhibitors of TNF. Recently, our group with the aid
of cheminformatics techniques identified two additional small
molecules (T23 and T8) that were shown to directly inhibit
TNF function (Melagraki et al., 2017). Importantly, the above
compounds were also potent against receptor activator of nuclear
factor kappa-B ligand (RANKL) and presented low toxicity.
In 2017, another TNF small-molecule inhibitor, JNJ525, was
discovered by Blevitt et al. (2017). The mechanism of PPI
disruption was attributed to a change in the quaternary structure
of the protein by an aggregate conglomerate of JNJ525 in a way
that TNFR1 binding to TNF is blocked.

Drug discovery based on NP-like scaffolds has rapidly
advanced through novel computational approaches (Baig et al.,
2016; Rodrigues et al., 2016). Recent developments have
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demonstrated the power of computationally treating complex NP
structures to recognize their protein targets and to find specific
applications in rational drug design (Reutlinger et al., 2014;
Rodrigues et al., 2016; Basith et al., 2018; Lima et al., 2018; Zheng
et al., 2018). The abundance of NPs or compounds inspired
by NPs as drugs and drug candidates (Lesney, 2004) motivated
us to search for novel TNF inhibitors among them. Given the
high priority of plant-origin NPs in previous and current drug
development efforts (including the terpenoids, e.g., Taxol and
steroids, the glycosides, e.g., digitalis and the various flavonoids,
and the alkaloids, e.g., camptothecins and the opiates), we
focused on identifying novel TNF small molecule inhibitors from
plant sources.

MATERIALS AND METHODS

In search of plant-origin NPs as direct TNF inhibitors,
we combined chemoinformatics techniques, high-throughput
virtual screening, and molecular dynamics (MD) simulations
with experimental evaluation, ultimately aiming at discovering
potent TNF-functioning NP inhibitors. 3,573 pure NPs of plant
origin were virtually screened from the MEGxp database, which is
one of the largest chemical libraries of NPs available (AnalytiCon
Discovery); the highest scoring compounds were then tested
in vitro to assess their inhibitory activity against TNF.

Our strategy for identifying these novel plant-origin small
molecule TNF inhibitors is presented in Scheme 1.

Molecular Modeling
The initial model of TNF was built from the X-ray co-crystal
structure of TNF dimer with SPD304 (PDB code: 2AZ5).
All structures were prepared using Molegro’s Molecules and
Protein Preparation Wizard (Thomsen and Christensen, 2006).
Proper bond assignments, bond orders, hybridization, and

charges were calculated by Molegro Virtual Docker (MVD)
software (version-5.0) (Thomsen and Christensen, 2006). Explicit
hydrogen atoms were added and their hydrogen bonding
(HB) patterns were also determined by MVD. Since the 3D
conformation of SPD304 is known from crystallographic data,
a docking template was defined. SPD304 was replaced by each
ligand in TNF, and template alignment considered ligands as
fully flexible: the docking algorithm recognized the optimal
conformation of the ligand when fitting to the template. The
MolDock score (GRID) was used as a grid-based scoring function
which pre-calculates potential energy values on an evenly spaced
cubic grid in order to speed up calculations. A grid resolution of
0.30 Å was set to initiate the docking process and the binding
site of the protein was defined to occupy the region surrounding
SPD304 in the crystal structure (including residues Ser60, Gln61,
Gly121, Tyr151, and Ala156). For the pose generation, the
default setting was applied (MolDock SE), namely a maximum
of 1500 iterations combined with a population size of 50. If
the generated pose has an energy below the predefined energy
threshold (100.0 in our study), it is included into the initial
population for the “simplex evolution” algorithm (Thomsen
and Christensen, 2006). This algorithm performs a combined
local/global search on the poses generated by the pose generator.
The number of the maximum iterations of the simplex evolution
algorithm (Nelder–Mead simplex minimization) was set to 300
while the neighbor distance factor, the factor which determines
how close the point of the initial simplex will be to the other
randomly selected individuals in the population, was set to
1.0 (causes the initial simplex to span the neighbor points
evenly).

In Vitro Testing of TNF Inhibitors
Experiments included a TNF-induced death assay in L929 cells,
a measurement of cytotoxicity in L929 cells, and a TNF/TNFR1

SCHEME 1 | Strategy for the identification of NP TNF inhibitors.
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ELISA assay. Compounds were tested with respect to TNF
using a battery of previously reported assays (Melagraki et al.,
2017).

Osteoclast Differentiation and TRAP
Staining
Bone marrow (BM) cells were collected after flushing out
of femurs and tibiae, subjected to gradient purification using
Ficoll-Paque (GE Healthcare), plated in 96-well plates at a density
of 6 × 104 cells per well and cultured in AMEM medium
(GIBCO) containing 10% fetal bovine serum supplemented
with 40 ng/ml RANKL (Peprotech) and 25 ng/ml M-CSF
(R&D Systems) for 5 days (Douni et al., 2012). Compounds
A11 and A25 were pre-incubated with RANKL at various
concentrations from 1 to 10 µM in AMEM medium for
1 h at room temperature and then added to cell cultures
that were replenished with fresh medium every 2 days.
Osteoclasts were stained for tartrate-resistant acid phosphatase
(TRAP) activity using a leukocyte acid phosphatase (TRAP kit)
(Sigma–Aldrich).

TRAP Activity Assay
In the TRAP activity assay, BM cells were plated in 96-
well plates at a density of 6 × 104 cells per well and
cultured in AMEM medium (GIBCO) containing 10% fetal
bovine serum supplemented with 40 ng/ml RANKL (Peprotech)
and 25 ng/ml M-CSF (R&D Systems) for 4 days. Then,
cells were lysed in ice-cold phosphate buffer containing 0.1%
Triton X-100. Lysates were added to 96-well plates containing
phosphatase substrate (p-nitrophenol phosphate) and 40 mM
tartrate acid buffer and incubated at 37◦C for 30 min. The
reaction was then stopped with the addition of 0.5 N NaOH.
Absorbance was measured at 405 nm on a micro-plate reader
(Optimax, Molecular Devices). TRAP activity was normalized
to total protein which was determined using the Bradford assay
(Bio-Rad).

MTT Viability Assay
Cytotoxicity was evaluated for BM cells using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay, which measures the ability of viable cells to reduce
a soluble tetrazolium salt to an insoluble purple formazan
precipitate. BM cells used for MTT assay were seeded at a
density of 105 cells/well in 96-well plates and incubated with
A11 and A25 compounds for 48 h in AMEM containing 10%
fetal bovine serum supplemented with 25 ng/ml M-CSF (R&D
Systems). After removal of the medium, each well was incubated
with 0.5 mg/ml MTT (Sigma–Aldrich) in AMEM serum-free
medium at 37◦C for 2 h. At the end of the incubation period,
the medium was removed and the intracellular formazan was
solubilised with 200 µl DMSO and quantified by reading the
absorbance at 550 nm on a micro-plate reader (Optimax,
Molecular Devices). Percentage of cell viability was calculated
based on the absorbance measured relative to the absorbance of
the untreated control.

Molecular Dynamics with EnalosMD
Molecular dynamics simulations were performed with our
in-house developed EnalosMD suite of programs (EnalosMD,
NovaMechanics Ltd., 2018). A fully automated pipeline included
the following steps of systems’ preparation, MD runs, and
analyses:

(a) Initial model structures were constructed with
AmberTools16 (Case et al., 2016). Missing TNF and
RANKL residues were added with Modeller 9.10 (Sali
and Blundell, 1993; Fiser et al., 2000). The ff14SB force
field (Maier et al., 2015) was used for the protein atoms
and the general AMBER force field (GAFF) (Wang et al.,
2004) represented compounds A11 and A25. Geometry
optimization and AM1-BCC (Jakalian et al., 2002)
charge derivation for A11 and A25 were obtained with
ANTECHAMBER (Wang et al., 2006). The AM1-BCC
approach is based on a fast and effective parameterization
scheme that reliably reproduces the more rigorous RESP
charges (Xu et al., 2013).

(b) AMBER-generated topology and coordinate files were
subjected to four 1000 ns-long, all-atom, unrestrained
MD simulations with the GPU version of OpenMM 7
(Eastman et al., 2017). Simulations were performed for
(i) A11–TNF, (ii) A25–TNF, (iii) A11–RANKL, and (iv)
A25–RANKL complexes in explicit solvent (TIP3P water
model) (Jorgensen et al., 1983) and at 300 K with the
GPU version of OpenMM. Periodic boundary conditions
were used with a cutoff distance of 10 Å, and the Particle
Mesh Ewald (PME) method (Darden et al., 1993) was
employed for the treatment of long-range interactions.
A Langevin thermostat with collision frequency set at
2.0 ps−1 regulated the temperature (Izaguirre et al., 2001).

(c) Analysis of the results (RMSD, atomic fluctuations, and
hydrogen bond calculations) was performed with the
cpptraj version of AmberTools.

RESULTS AND DISCUSSION

The formation of the biologically active TNF homotrimer is
prevented by direct TNF inhibitors, such as SPD304, through
disruption of the TNF dimer binding to the third subunit
(He et al., 2005; Davis and Colangelo, 2012). TNF–inhibitor
interactions are hydrophobic and shape-driven, as the inhibitor
structure needs to be large enough to interact with both subunits
and to prevent binding of the third subunit to the TNF dimer. We
in silico explored 3,573 NPs contained in MEGxp database using
a structure-based docking approach. The crystal structure of TNF
dimer with SPD304 (PDB code: 2AZ5) was used as the molecular
model for our investigation and the compounds were docked into
the protein–protein interface. Computational molecular docking
studies were performed using MVD (Thomsen and Christensen,
2006). Based on the docking score and following meticulous
visual inspection of the conformations, we generated a shortlist
of the top 15 commercially available NPs for in vitro validation.

Our in vitro screening strategy included one of the most
commonly used assays of TNF activity. This assay exploits the
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FIGURE 1 | Chemical structures of the two most promising compounds (A11 and A25).

FIGURE 2 | Inhibition of TNF-induced death in L929 cells. Increasing concentrations of A11 (A) or A25 (B) at 0.6–80 µM, and adalimumab (C) at 0.005–10 nM were
used to pre-incubate recombinant human TNF (10 ng/ml) before addition to L929 cells for 18 h. Mean values (n = 3) relative to controls (TNF pre-incubated with
DMSO or PBS in the adalimumab case) are shown. Data shown are representative of at least three experiments.

ability of TNF to induce death in the murine fibrosarcoma cell
line L929 following sensitization by the transcription inhibitor
actinomycin D. Functional inhibition of TNF by small molecules
would result in reduction of the TNF-induced cytotoxicity.

Out of the 15 prioritized NPs mentioned above, two emerged
as the most promising ones based on in vitro testing. The action
of these two NPs (designated A11 and A25; structures shown
in Figure 1) was then further characterized. In dose–response
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FIGURE 3 | Disruption of the TNF/TNFR1 interaction. Increasing concentrations of A11 (A) or A25 (B) at 0.6–80 µM and adalimumab (C) at 0.005–10 nM were used
to pre-incubate human TNF (10 ng/ml) before addition on a TNFR1 substrate. Binding was measured by ELISA. Mean values (n = 2) of one experiment,
representative of at least three replicates are shown.

FIGURE 4 | Effects of A11 and A25 on RANKL-induced osteoclastogenesis. (A) TRAP staining of osteoclastogenic cultures. BMMs were treated with A11 and A25
(1, 2, 5, and 10 µM) in the presence of RANKL (50 ng/ml) and M-CSF (25 ng/ml) for 5 days. (B) BMMs were treated with A11 (1, 2, 3, 4, 5, 7.5, and 10 µM) and A25
(1, 5, 10, and 20 µM) in the presence of RANKL (50 ng/ml) and M-CSF (25 ng/ml) for 4 days and cell lysates were measured for TRAP activity. % TRAP activity per
microgram of total protein was expressed as a percentage of the untreated control. IC50 values are given as mean ± SEM from three independent experiments
performed in duplicate.
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FIGURE 5 | Effects of A11 and A25 on the viability of BMMs. BMMs were treated with 10–100 µM of compounds A11 and A25, respectively, in the presence of
M-CSF (25 ng/ml) for 48 h. Cytotoxicity was assessed using a MTT colorimetric assay. Cell viability (%) was expressed as a percentage of the untreated control.
LC50 values are given as mean ± SEM from three independent experiments performed in duplicate.

FIGURE 6 | EnalosMD modules: High-throughput MD simulations are performed by optimally combining a variety of programs and functionalities.

experiments, the small molecules were shown to inhibit human
TNF-driven death in L929 cells with an IC50 of 35 ± 3 µM
(A11) and 33 ± 2 µM (A25). Both compounds were found to
be minimally toxic in these cells (LC50 > 80 µM), in contrast to
the published high toxicity of SPD304 (7.5 µM) (Melagraki et al.,
2017). An already approved anti-TNF biologic, adalimumab
(HUMIRA, Abbott Laboratories, IL, United States), was used as a
positive control of the assay. Adalimumab is a human anti-TNF
monoclonal antibody approved by the U.S. Food and Drug
Administration (FDA, 2002) and by the European Medicines
Agency (EMEA, 2003) for RA treatment. Adalimumab inhibits
TNF-driven death in L929 cells with a low IC50 of 0.5 ± 0.1 nM,
without showing any cytotoxicity (Figure 2).

Having established that the selected products can obstruct
the function of TNF, and given that TNF exerts its functions
primarily through interacting with its receptor, TNFR1, an

ELISA-based assay was used to quantify effects on this
interaction. Both compounds significantly reduced binding of
TNF to TNFR1, with an estimated IC50 of 3.3 ± 0.9 µM for A11
and 4.1 ± 1.7 µM for A25. Adalimumab was again used as a
positive control eliminating the TNF-TNFR1 binding with a low
IC50 of 0.2 nM (Figure 3).

The oligostilbenoid A11 (NP-003410, Ampelopsin H,
(1R,2R,6R,6aR,7R,8R,12R,12aR)-1,7-Bis(3,5-dihydroxyphenyl)-
2,6,8,12-tetrakis(4-hydroxyphenyl)-1,2,6,6a,7,8,12,12a-octahydr-
ofuro[2′′,3′′:6′,7′]indeno[1′,2′:2,3]indeno [5,4-b]furan-5,11-
diol) is an NP that has been isolated from Parthenocissus
tricuspidata and the glycosyloxyflavone analog A25 (NP-008297,
[(2R,3S,4S,5R,6S)-6-[(2S,3R,4R,5R,6S)-2-[5,7-dihydroxy-2-
(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-4,5-dihydroxy-
6-methyloxan-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl(E)-
3-(4-hydroxyphenyl)prop-2-enoate) is an NP that has been
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FIGURE 7 | All-atom RMSD calculations for A11 and A25 in complexes with TNF and RANKL.

FIGURE 8 | Atomic fluctuations for TNF and RANKL residues in complexes with A11 and A25.

isolated from Ginkgo biloba (Figure 1). Except being isolated
from natural sources, A11 can also be synthesized through a
selective functionalization procedure as described by Rodrigues
et al. (Rodrigues et al., 2016). Compounds A11 and A25 are
promising PPI inhibitors as they both have large surface areas
and are able to create many hydrophobic contacts at protein
interfaces. Moreover, it has been observed that hydrophobic PPI
hot-spot pockets tend to be excellent binders of small organic
molecules, which combine a largely hydrophobic functionality
with a secondary polar component (Guo et al., 2014). Indeed, the
polar hydroxyl groups surrounding the hydrophobic core of A11
and A25 (Figure 1) constitute structures that are ideal binders
to the concave hot-spot area of the protein (Mattos and Ringe,
1996; Shuker et al., 1996). It has been suggested that the ability
of recognizing drug molecules (i.e., druggability) by a hot-spot

pocket depends on the balance among total surface area, and
polar/nonpolar contact areas (Hajduk et al., 2005; Cheng et al.,
2007; Schmidtke and Barril, 2010).

In comparison to SPD304, NPs A11 and A25 are predicted
by the molecular docking study to occupy a similar region in
the binding pocket, and to be relatively hydrophobic and large
enough to interact with residues from both subunits of the
TNF dimer. Nonpolar residues are predominant in the binding
site, which mainly includes glycine, leucine, and tyrosine. Only
one HB interaction is observed between compound A25 and
Tyr151. Both compounds appear to be situated more closely
to subunit A than subunit B and are in close contact with the
Leu120-Gly121-Gly122 β-strand of subunit A. The lack of salt
bridges or extended HB interactions indicates the hydrophobic
character of A11 and A25 binding as also observed with SPD304.
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FIGURE 9 | Main HB interactions between compounds and TNF.

FIGURE 10 | Main HB interactions between compounds and RANKL.

The docked SPD304 conformation reproduced its crystal form,
with an RMSD of 0.67 Å between the two structures. The docking
score of SPD304 binding to TNF was calculated to be −171.08
(arbitrary units), and compounds A11 and A25 showed a binding
score of −195.76 and −180.19, respectively, thus suggesting a
strong interaction between the compounds and the TNF dimer.
The high inhibitory potency of A11 and A25 against TNF was
also indicated by our recently developed TNF model, released
through the Enalos Cloud platform (Melagraki and Afantitis,
2014). After selecting the corresponding workflow within Enalos
Cloud platform (Melagraki et al., 2017), both compounds were
submitted and prediction results verified their activity. However,
predictions fell out of the model’s domain of applicability as
expected for these complex structures.

Receptor activator of nuclear factor kappa-B ligand, another
TNF superfamily member, is the main regulator of osteoclast
formation and bone resorption (Fuller et al., 1998). We
evaluated the effect of various concentrations of A11 and

A25 on RANKL-dependent osteoclast differentiation in
a culture system of BM-derived monocyte/macrophages
(BMMs) stimulated with RANKL (50 ng/ml) and M-CSF
(25 ng/ml) for 5 days through evaluation of the TRAP
activity, an osteoclast-specific enzyme. A11 fully suppressed
RANKL-induced TRAP-positive osteoclast differentiation at
10 µM, whereas A25 was ineffective even at 20 µM (Figure 4).
Moreover, using a quantitative assay that measures TRAP
activity, A11 inhibited RANKL-induced osteoclastogenesis in a
dose-dependent manner, displaying an IC50 of 3.42 ± 0.45 µM
(Figure 4B). Furthermore, in order to exclude the possibility
that inhibition of A11 on TRAP activity was due to cytotoxicity,
the viability of BMMs was tested through the MTT assay. A11
displayed an LC50 of 44.76 ± 4.61 µM (Figure 5), suggesting
that it affects osteoclastogenesis without interfering with
cell viability. On the other hand, A25 had no effect either
on osteoclastogenesis or BMM viability (LC50 > 100 µM)
(Figure 5).
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We subsequently investigated the binding of A11 to RANKL
using the proposed molecular scaffolds in a structure-based
approach. For this purpose, we employed the jFATCAT pairwise
structure alignment algorithm (Ye and Godzik, 2003) to align
the RANKL structure (PDB code: 1S55) to the crystal structure
of TNF dimer with SPD304 (PDB code: 2AZ5). For our
computational approach, we employed the murine RANKL
model, which shares a 100% identity with human RANKL in
the binding site, including residues Trp192, Tyr214, Asn275,
Gly277, and Phe279. Also, RANKL shares a high degree of
structural similarity with TNF as shown in Supplementary Figure
S1. The binding conformations of both NPs and SPD304 are also
depicted in the Supporting Information (Supplementary Figure
S2). The docking methodology for RANKL systems was identical
to the procedure followed for TNF complexes as described in
the section “Materials and Methods.” The docking score of
SPD304 binding to RANKL was calculated to be −159.712 and
compounds A11 and A25 showed a binding score of −211.79
and −146.83, respectively. For A11, the computational analysis
suggests a strong binding interaction with RANKL, which is in
line with the experimental results.

Additionally, we employed our recently developed EnalosMD
suite to perform extended MD simulations for A11 and A25
in complexes with TNF and RANKL. EnalosMD automates the
preparation of any ligand-protein system and performs MD
calculations in a way that minimal effort by the user is required.
This application provides a powerful way to perform robust MD
calculations with unprecedented speed and easiness regarding
the construction of the initial model structure. Therefore, we
carried out four 1000 ns-long MD runs to identify structural
and energetic properties of the complexes that may further
elucidate the mode of action of the two compounds. EnalosMD
offers optimal performance by combining several computational
programs and functionalities (Figure 6).

The MD results showed that protein structures early stabilized
during the simulations in all complexes with RMSD values that
do not exceed 3 and 4 Å in TNF and RANKL complexes,
respectively (Supplementary Figure S3). A11 and A25 appear
relatively stable into either protein’s cavity, with A25 showing
only minor structural changes when bound to TNF after 200 ns
(Figure 7). However, during the first 200–250 ns of A25–RANKL
complex simulation, a noticeable conformational change of A25
stabilized the molecule in a new orientation with respect to the
binding site of RANKL (Figure 7). This conformational change
may have induced great flexibility to B chain terminal residues
Tyr187–Asp189 as denoted by further fluctuation calculations
(Figure 8). Therefore, the experimentally observed lower affinity
of A25 against RANKL compared to A11 may be rationalized
through the A25-induced destabilization of the terminal region
of monomer B. Average conformations of A11 and A25 into their
protein targets, along with protein residues that are involved in
dominant HB interactions with the compounds are shown in
Figures 9, 10. The sole interaction between A25 and Tyr151,
which was shown after docking calculations in TNF complex is
also observed by the MD runs, however, it is complemented by
three significant interactions from chain A (Figure 9).

CONCLUSION

In summary, we have identified and validated experimentally the
first plant-origin NPs that act as direct inhibitors of TNF by
preventing the PPI between the dimer and the third subunit. Both
NPs (A11 and A25) were shown to have IC50 values comparable
to those of SPD304, but presented significantly reduced toxicity.
Most importantly, A11 has been validated as the first NP dual
inhibitor of TNF and RANKL. Both small molecules possess
characteristics that are typical in potent PPI inhibitors, namely,
large surface area and extended hydrophobic regions. Therefore,
they can be explored as scaffolds representing NPs of plant origin
in hit-to-lead optimization studies for the identification of direct
TNF and/or RANKL inhibitors with improved pharmacological
profiles and in the development of novel treatments for chronic
inflammatory and autoimmune diseases.
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Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder

which is considered to be the most common cause of dementia. It has a greater impact

not only on the learning and memory disturbances but also on social and economy.

Currently, there are mainly single-target drugs for AD treatment but the complexity and

multiple etiologies of AD make them difficult to obtain desirable therapeutic effects.

Therefore, the choice of multi-target drugs will be a potential effective strategy inAD

treatment. To find multi-target active ingredients for AD treatment from Selaginella

plants, we firstly explored the behaviors effects on AD mice of total extracts (TE)

from Selaginella doederleinii on by Morris water maze test and found that TE has a

remarkable improvement on learning and memory function for AD mice. And then,

multi-target SAR models associated with AD-related proteins were built based on

Random Forest (RF) and different descriptors to preliminarily screen potential active

ingredients from Selaginella. Considering the prediction outputs and the quantity of

existing compounds in our laboratory, 13 compounds were chosen to carry out the

in vitro enzyme inhibitory experiments and 4 compounds with BACE1/MAO-B dual

inhibitory activity were determined. Finally, the molecular docking was applied to verify

the prediction results and enzyme inhibitory experiments. Based on these study and

validation processes, we explored a new strategy to improve the efficiency of active

ingredients screening based on trace amount of natural product and numbers of targets

and found some multi-target compounds with biological activity for the development of

novel drugs for AD treatment.

Keywords: Alzheimer, Selaginella plants, multi-target screening, multi-target SAR, BACE1, MAO-B
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive and irreversible
neurodegenerative disorder which is considered to be the most
common cause of dementia. With the acceleration of aging
process in human society, AD prevalence is expected to reach
the epidemic levels (Mount and Downton, 2006). Commonly,
a majority of AD patients often have both of behavioral and
psychological symptoms of dementia (BPSD). The behavioral
characteristic includes the progressive loss of memory, the
decline of cognitive function, the decrease of physical function
and ultimately problems with communication, time and space
disorientation and so on. The psychological symptom includes
psychosis, depression, agitation and anxiety (Gauthier et al.,
2010; Okura et al., 2011; Borisovskaya et al., 2014). Furthermore,
the presence of BPSD usually exacerbates the morbidity and
mortality associated with dementia. In more advanced stages,
BPSD has a greater impact on social and economic than on
the learning and memory disturbances and it has become the
major impetus to force patients choosing primary home care
and specialized psychogeriatric units. Unfortunately, the existing
therapeutic approaches for BPSD are usually efficacy-limited and
associated with serious adverse effects, such as the increasing risk
of death (Cummings, 2000; U.S. Food and Drug Administration,
2005, 2008).

Although the molecular mechanism of AD pathogenesis
has not been clearly understood, several hypotheses have
been proposed for AD pathogenesis and their interconnections
aggravate this disease a complex disorder (Šimić et al., 2017).
The amyloid hypothesis (Goedert and Spillantini, 2006) is
hallmarked by the neuropathological accumulation of amyloid
beta (Aβ) plaques in the extracellular compartment and the
intracellular accumulation of hyper-phosphorylated tau protein
in the form of neurofibrillary tangles. The cholinergic hypothesis
proposed a decreased level of acetylcholine in certain areas
of brain (Craig et al., 2011). Oxidative stress hypothesis
proposed the deregulation of endogenous detoxification redox
systems and over-production of radical species leading to
lipid peroxidation and nucleic acid mutations (Pratico, 2008).
In addition, some other hypotheses, such as glutamatergic
hypothesis (Bezprozvanny and Mattson, 2008), metal hypothesis
(Bonda et al., 2011), and inflammatory hypothesis (Trepanier
and Milgram, 2010) have also been proposed. Based on these
pathogenesis, there are more than 200 enzymes or proteins
related to AD, such as AchE, BACE1, GSK3β, MAO-B, GABA-
A receptor, Glutamate receptor, and so on (Saura et al., 1994;
Sathya et al., 2012; Fang et al., 2015; Yan et al., 2016). At
present, licensed drugs approved for AD treatment are always
based on single-target pharmacology. Now, there are two main
categories of drugs for AD treatment: one is AchE inhibitor,
including donepezil, rivastigmine, and galantamine. They can
improve ACh level in the brain by decreasing the hydrolysis of
ACh and are mainly used for mild to moderate AD treatment.
The other one is N-methyl-D-aspartate antagonist (NMDA). The
representative drug, memantine, is mainly used for the treatment
of moderate to severe AD, but it is only licensed in several
countries because of serious adverse drug reaction (Cummings,

2004; Standridge, 2004). Until now, the limitation of therapeutic
treatments and their poor effectiveness make AD treatment
become the current biggest medical problem in neurology. In
fact, as described before, the complexity and multiple etiologies
of AD make the single-target strategy difficult to obtain desirable
therapeutic effects. Therefore, the choice of multi-target drugs
will be a potential effective strategy in the treatment of AD and
consequently the new chemical skeletons or active precursors
with multi-target activities for AD therapy are inspired to be
found.

As we all know, natural product is a highly valuable resource
in searching for chemical precursors with potential bioactivity
and few adverse effects because of their structural diversity.
For example, biflavonoid glycosides from Impatiens balsamina
show potential neuroprotective activity (Kim et al., 2017) and
apigenin, quercetin show potent anti-Aβaggregation activity
which is one of the major culprits in AD (Espargaró et al.,
2017). Huperzine A (Hup A) is a highly selective, reversible
and potent AChEI extracted from the Chinese medicinal herb
Huperzia serrata. Compared with tacrine and donepezil, it has
a higher bioavailability and potency but is less active toward
BChE (Silva et al., 2014; Pisani et al., 2016). Nowadays, the
purification of new chemical skeletons and activity screening
from natural products still maintain sightless and accidental.
Although more and more trace elements have been purified
with the development of separation technology, it is still scarcely
possible to carry out large-scale activity screening due to the
contingency and trace outputs of separation. In recent years, with
the rapid development of computer science and the accumulation
of chemogenomics data, multi-target SAR model for active-
ingredient screening was proposed as a useful method for seeking
active compounds and target identification (Cao et al., 2012,
2014; He et al., 2013; Yao et al., 2016). As to the multi-target SAR,
the SAR predictive model for each target protein is built based
on the relationship between the chemical structure of active and
inactive compound. This in silico method can give a preliminary
screening and target identification for a large number of natural
compounds with a prediction probability before the in vitro
activity test is carried out.

Based on the previous researches, flavonoids show extensive
pharmacological activities including anti-AD efficiency. In 2015,
Duan SW has identified silibinin, a flavonoid, as a dual inhibitor
of AChE and Aβ peptide aggregation for AD treatment (Duan
et al., 2015). And then, Song X also proved that Silibinin
can attenuate the inflammatory responses, increase glutathione
(GSH) levels, decrease malondialdehyde (MDA) levels and
upregulate autophagy levels in the Aβ25−35-injected rats (Song
et al., 2017). What’s more, Baicalein, Scutellaria barbata
flavonoids, Capparis spinose flavonoids, and 4-dimethylamine
flavonoid derivatives all show some degree of anti-AD activities
in animal experiments or in vitro tests (Gu et al., 2016; Luo
et al., 2016; Mohebali et al., 2016; Wu et al., 2016). Therefore,
it’s highly valuable and feasible to screen multi-target ingredients
from flavonoids extracts for the treatment of AD.

In this study, we aimed to find multi-targets active ingredients
for AD treatment from the flavonoids extracts of Selaginella
plants. Firstly, we explored behavioral effects on AD mice

Frontiers in Pharmacology | www.frontiersin.org August 2017 | Volume 8 | Article 539251

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Deng et al. Natural Products Screening for AD

of total extracts (TE) from Selaginella doederleinii by Morris
water maze test. And then, we screened our home-database
consisted of compounds extracted from Selaginella plants to
hunt ingredients with anti-AD activity through multi-target SAR
models in silico. Finally, the in vitro enzyme activity inhibitory
test and the molecular docking experiment were applied to verify
the prediction results and to find the potential active ingredients
for the AD multi-targets treatment.

MATERIALS AND METHODS

Total Extracts of Selaginella Plants
Two hundred and fifty seven compounds were purified from
Selaginella plants, including Selaginella tamariscina, Selaginella
pulvinataMaxim, Selaginella braunii Baker, Selaginella delicatula
(Desv.) Alston, Selaginella moellendorfii hieron, Selaginella
uncinate, Selaginella involven Spring, Selaginella doederleinii
Hieron. Total extracts (TE) were extracted using 75% ethanol
and then freeze-dried into extractum. The suspensions of saline
and freeze-dried extractum after ultrasonic vibration was orally
administrated for AD mice.

Morris Water Maze Test
The learning and memory ability of AD mice were evaluated by
Morris water maze test. Male specific-pathogen-free (SPF) grade
male ICR mice (body weighing 18–22 g) were purchased from
Hunan Provincial Experimental Animal Centers [Changsha,
Hunan, China, Certificate No. SYXK (Xiang) 2012-0004] (Sun
et al., 2009).

Mice were randomly divided into five groups (10 mice for
each group), namely normal control group (NCG), model control
group (MCG), low dose group (LDG, 50 mg/kg), middle dose
group (MDG, 100 mg/kg) and high dose group (HDG, 200
mg/kg). To build the ADmice model, mice inMCG, LDG,MDG,
and HDG were treated with D-gal (120 mg/kg, intraperitoneally)
for 56 days (8 weeks), and the mice in normal group were treated
with saline of the same volume for 56 days (8 weeks; dorsonuchal
subcutaneous injection). After that, the TE suspensions of saline
and freeze-dried extractum after ultrasonic vibration was orally
administrated to the mice in LDG, MDG, and HDG for 42 days
(6 weeks), and the mice in NCG and MCG were orally treated
with saline of the same volume for 42 days (6 weeks). Finally, the
spatial learning and memory ability of all the mice were tested by
Morris water maze.

The equipment of Morris Water Maze were purchased from
Anhui Zheng-hua biological equipment corporation and the test
process followed to the relevant laboratory manual. Two indexes,
the place navigation and spatial probe, were chosen as the main
monitor elements to evaluate the spatial learning and memory
ability of all the mice. The experimental method is divided into
two parts: acquisition phase and probe trial. In the acquisition
phase, we randomly put the head of the mouse into the wall
of the pool and fix the starting position. After that, the time
of finding the underwater platform was recorded. On the day
after acquisition phase, the platform was removed and the probe
trial began. The time of finding the position where the platform
is located, the swimming distance and the number of crossing

through the area where the platform is located were recorded as
the spatial memory test indexes.

This study was carried out in accordance with the
recommendations of “Laboratory Animals-Guideline of welfare
and ethics, Ethics Committee of Hunan Provincial Experimental
Animal Centers.” The protocol was approved by the “Ethics
Committee of Hunan Provincial Experimental Animal Centers.”

Multi-Target SAR Model and Prediction of
257 Compounds
According to previous studies published in recent years, we
finally found 19 significant proteins related to AD (Cavalli
et al., 2008; Fang et al., 2015). For these important AD-related
proteins, we collected their ligands that are small, drug-like
molecules from Binding database1. For each protein, activity data
were filtered to keep only activity end-point points that have
half-maximum inhibitory concentration (IC50), half-maximum
effective concentration (EC50) or Ki values. A compound would
be considered as a positive sample when its activity value was
below 10 µM. Otherwise, this compound would be considered as
a negative sample. Following this step, maybe some AD-related
proteins have very little number of negative samples. To balance
the number between positive samples and negative samples, we
randomly selected certain number of compounds from other
AD-related proteins to generate the negative samples for these
AD-related proteins. The number of these selected negative
samples together with inactive samples should be basically equal
to the number of the active samples for these AD-related proteins.
These prepared positive sets and negative sets were used for the
subsequent model building. The detailed information of AD-
related proteins and these datasets used for model building can
be seen in Supporting Information (Supplementary Material).

For each protein, a series of high confidence SAR models
were built by Random Forest (RF) and different fingerprint
representations (FP2, MACCS, Daylight, ECFP2, ECFP4, and
ECFP6). RF was introduced by Breiman and Cutler for regression
and classification modeling in 2001 firstly (Breiman, 2001).
The method is based upon an ensemble of decision trees,
from which the prediction of a classification task is provided
as the majority vote of the predictions of all trees. Recent
studies have suggested that RF offers several striking features
which make it very attractive for QSAR/QSPR studies. These
include relatively high accuracy of prediction, built-in descriptor
selection, and a method for assessing the importance of each
descriptor to the model (Cao et al., 2011a,b; Yun et al., 2016).
RFs were trained using the RF library in the statistical computing
environment, R. All the fingerprints were calculated by some
tools developed by our group: ChemDes, BioTriangle webserver
and ChemoPy package (Cao et al., 2013; Dong et al., 2015,
2016). To improve the prediction ability of the SAR model, we
assembled all fingerprint models to obtain the consensus models
with average output. All the assembled models were validated
by 5-fold cross validation and test set validation to demonstrate
their prediction performance. In this part, some popular statistic
parameters were applied to evaluate the performance of these

1http://www.bindingdb.org/bind/index.jsp
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classification models: true positive (TP); false negative (FN); true
negative (TN); false positive (FP); sensitivity (SE); specificity (SP);
accuracy (ACC); area under receiver operating characteristic
curve (AUC). These classification evaluation parameters are
defined as follows:

SE =
TP

TP+ FN

SP =
TN

TN+ FP

ACC =
TP+ TN

TP+ FP+ TN+ FN

After a series of modeling and validation processes, we aimed
to obtain reliable SAR models for above-mentioned AD-related
proteins. And then, 257 compounds purified from Selaginella
plants were predicted by these robust and practical models and
their inhibitory activities were identified preliminarily for further
study.

Target Enzyme Inhibitory Activity In vitro
For the compounds that have been regarded as active ingredients
by the multi-target SAR models, the in vitro target enzyme
inhibitory activity test was applied to verify their actual activity
for AD treatment. The inhibitory activities were determined
by fluorimetric method on Infinite M200 Multi scan Spectrum
(Tecan, Swiss). Each concentration was analyzed in triplicate
and IC50 values were determined by nonlinear regression of
inhibition vs. log concentration plots, using GraphPad Prism 7
for Windows, Version 7.00 (GraphPad Software Inc.). BACE1
fluorescence resonance energy transfer assay kits were purchased
from the Pan Vera Co and Monoamine Oxidase B (MAO-B)
inhibitor screening kits were purchased from Bio Vision Inc.

In the BACE1 inhibition test, the assay was performed in
384-well plates. The assay solution was consisted of 10 µL test
compounds (concentrations: 0.017, 0.050, 0.167, 0.500, 1.667,
5.000, 16.667, and 50.000 µM), 10 µL BACE1 substrate and 10
µL BACE1 enzyme. LY2811376 was selected as the reference
compound with IC50 = 0.242 µM and the blank buffer was set
as the negative control. The mixture was incubated for 60 min at
room temperature. At the end, 10 µL BACE1 stop solution was
added to stop the reaction and the fluorescence was detected at
the Ex/Em = 545/585 (12 nm bandwidth) settings on Multi scan
Spectrum.

In the MAO-B inhibition test, the assay was performed in
96-well plates. The assay solution was consisted of 10 µL test
compounds(concentrations: 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, and
25.6 µM), 37 µL MAO-B assay buffer, 1 µL MAO-B substrate, 1
µL developer and 1 µL OxiRed Probe. Selegiline was used as the
reference control with IC50 = 0.028 µM and the blank buffer was
set as the negative control. The mixture was incubated for 10min
at 37◦C. The fluorescence was measured at Ex/Em= 535/587 nm
kinetically at 37◦C for 10–40min. Two points (T1 and T2) in
the linear range of the plot were chosen and the corresponding
fluorescence values (RFU1 and RFU2) were obtained to calculate
the slope for all samples. The Calculation of % relative inhibition
was following the manual of MAO-B inhibitor screening kit.

Molecular Docking Simulation
To further verify the results of multi-target SAR prediction and
enzyme inhibitory experiments, the molecular docking process
was applied to simulate the binding position and binding affinity
between the active compounds and target proteins. Generally
speaking, docking is a computer simulation modeling technique
used to predict the interaction between a ligand and a receptor
active site, and is an important tool in structure-based drug
design. The technique of docking is to position the ligand in
different orientations and conformations within the binding site
to calculate optimal binding geometries and energies. In this part,
the molecular operating environment (MOE, version 2014.) was
applied to carry out the molecular docking process. MOE’s dock
application searches for favorable binding modes between small-
to medium-sized ligands and a not-too-flexible macromolecular
target. For each ligand, a number of placements called poses
are generated and scored. The score can be calculated as either
a free energy of binding including among others solvation
and entropy terms, or enthalpy based on polar interaction
terms including metal ligation, or as qualitative shaped-based
numerical value. According to the score values, ligands with
different conformations can be ranked and the optimal structural
conformation will be affirmed (Wang J. et al., 2015). To make
the interactions with the binding site easy to see, the ligand
interaction was carried out. It will automatically be loaded with a
2D diagram of the original ligand and a schematic representation
of the binding site residues, with the important interactions
between ligand and binding site shown. In this study, we selected
two proteins as the docking acceptors: BACE1 (PDB ID: 1TQF)
(Cobum et al., 2004); MAO-B (PDB ID: 2V5Z) (Binda et al.,
2007). As a control, the original ligand included in the crystal
structure should also be docked. A series of parameters were set:
Dock: rescoring 1=ASE; retain= 100; rescoring 2=ASE; retain
= 100. Configure force field: final gradient = 0.0001; maximum
iterations = 1,000; force constant = 10; radius offset = 0.4. For
rest parameters, the default treatment was applied.

RESULTS AND DISCUSSION

Behavioral Evaluation of AD Mice Dealt
with Total Extracts
Learning and memory ability of AD mouse was evaluated by
Morris water maze test in which the navigation and space
exploration are used as indexes. There were five groups of mice
under study and the behavioral results can be seen in Table 1

and Figure 1. In the Table 1, the residence time and residence
distance of each quadrant, the total distance and the number
through platform for each group of mice were listed. From the
table, we can see that the residence time of MCGwas significantly
decreased (P < 0.05) in 1st and 4th quadrant compared with
NCG. The stay intervals in 1st quadrant for MCG group were
significantly lower than NCG (P < 0.05). However, the residence
distance in 3rd quadrant increased prominently (P < 0.05).
HDG showed longer distance in 1st quadrant (P < 0.05) and
opposite trends in 3rd quadrant (P < 0.05) compared with MCG
after 42 days’ dosage. With respect to the total distance and
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numbers through platform, they were significantly reduced for
MCG (P < 0.05) compared with NCG. They were increased
significantly for HDG (P < 0.05) compared with MCG after
42 days’ dosage. What’s more, the crossing through number for
MDG were also significantly increased (P < 0.05).

Figure 1 shows the navigation and space exploration for
different groups of mice. From the figure, we can see that the
spatial learning and memory ability of NCG were significantly
increased, but there was an opposite trend for MCG and
mice in MCG mainly ran along the cell wall. What’s more,
all the low, medium and high dose of TE can significantly
increase the numbers of exploration platform. Considering
both results in Table 1 and Figure 1, TE of Selaginella has a
remarkable improvement on learning and memory function
for AD mice. This result inspires us to further explore the
effect of the chemical ingredients from Selaginella on AD
treatment.

Performance Evaluation and the Inhibitory
Activity Prediction
Based on the results of the Morris water maze test, the TE of
Selaginella plants show a potential benefit for AD treatment.
To quickly screen the active ingredients from a number of
compounds preliminarily, multi-target SAR models associated
with AD-related proteins were constructed as described before.
In this part, we finally obtained a series of ensemble predictive
models for AD-related proteins. Their statistic results of 5-
fold cross validation and test set validation were listed in
Table 2. From this table, we can see that for each predictive
model, the accuracy is good enough not only for cross
validation (0.808–0.955) but also the test set validation (0.846–
0.970). With respect to other statistic parameters, the similar
results were obtained and it can be strong evidence for the
good predictive ability of this model. Therefore, we have
reasons to believe that these ensemble models are robust
and practical and can be used to predict the inhibitory
activity for a new compound in the early stage of drug
discovery.

To evaluate the probability of inhibitory activity for the
19 AD-related targets, 257 compounds were purified from
the TE including 143 flavonoids, 9 selaginellins and some
other compounds. Before the inhibitory activity prediction
by SAR models, the preliminary druggability evaluation was
carried out to exclude some compounds that have no
beneficial property for further drug development process. In
this part, we mainly evaluated the molecular weight and
two important ADME (absorption, distribution, metabolism,
elimination) properties for druggability by corresponding QSAR
models developed by our group: logD7.4 (the distribution
coefficients at pH = 7.4) (Wang J. B. et al., 2015; Wang
et al., 2017), and logPapp (the Caco-2 membrane permeability)
(Wang et al., 2016). Based on previous studies, a good
drug candidate should have a logD7.4 value smaller than
5, a logPapp value larger than −5.15 and a molecular
weight smaller than 500. After excluding compounds that
perform very poorly in at least two of three aforementioned
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FIGURE 1 | The spatial learning and memory ability of AD mice tested by Morris water maze [(A) NCG: normal control group; (B) MCG: model control group;

(C) LDG: low dose group; (D) MDG: middle dose group; (E) HDG: high dose group]. This figure shows that TE has a remarkable improvement on learning and

memory function for AD mice which mainly lies in the increased distance and this functional improvement is dose-dependent.

TABLE 2 | The statistic results of these predictive models (5-fold cross validation and test set validation).

Uniprot_ID Gene name 5-fold cross validation Test set validation

AUC ACC SE SP AUC ACC SE SP

P08908 HTR1A 0.950 0.904 0.884 0.924 0.961 0.921 0.911 0.931

Q9Y5N1 HRH3 0.985 0.955 0.944 0.967 0.991 0.970 0.967 0.973

P50406 HTR6 0.969 0.930 0.918 0.942 0.986 0.953 0.932 0.974

P22303 ACHE 0.892 0.845 0.818 0.871 0.944 0.903 0.886 0.922

Q99720 SIGMAR1 0.967 0.918 0.897 0.938 0.979 0.949 0.944 0.955

P11229 CHRM1 0.864 0.808 0.798 0.818 0.938 0.882 0.882 0.883

P49841 GSK3B 0.892 0.821 0.786 0.856 0.963 0.903 0.902 0.905

P06276 BCHE 0.879 0.820 0.797 0.842 0.926 0.855 0.862 0.848

P56817 BACE1 0.961 0.930 0.919 0.942 0.971 0.942 0.951 0.934

P27338 MAOB 0.888 0.826 0.809 0.842 0.941 0.877 0.860 0.895

P36544 CHRNA7 0.875 0.824 0.791 0.857 0.916 0.846 0.792 0.899

Q07343 PDE4B 0.957 0.914 0.884 0.945 0.974 0.942 0.953 0.930

P27815 PDE4A 0.951 0.917 0.911 0.924 0.962 0.922 0.910 0.934

Q13639 HTR4 0.963 0.943 0.921 0.965 0.976 0.950 0.920 0.977

P46098 HTR3A 0.894 0.853 0.810 0.896 0.928 0.892 0.833 0.949

Q96BI3 APH1B 0.942 0.899 0.917 0.882 0.973 0.948 0.963 0.935

P05067 APP 0.973 0.915 0.881 0.950 0.944 0.912 0.867 0.961

Q9NZ42 PSENEN 0.945 0.924 0.946 0.903 0.951 0.914 0.953 0.880

Q8WW43 APH1B 0.937 0.920 0.938 0.902 0.952 0.935 0.924 0.944

properties, there were 238 compounds left for further activity
screening.

As described before, the inhibitory activity of these 238
compounds were predicted by the multi-target SAR model.
The predictive result for a new compound was outputted as
a probability value. For each compound that was classified
as active ingredient by SAR models, if its probability value

>0.5, it is considered to be active, otherwise, it is inactive.
From the predictive result, it can be seen that 54 flavonoids
and 4 selaginellins present a good inhibitory correlation with
MAO-B, 21 flavonoids may show BACE1 inhibitory activity.
However, to improve the reliability of prediction, we apply the
prediction probability of 0.8 as a cut-off value to select the active
compounds for some related targets. As a result, 18 compounds
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FIGURE 2 | The chemical structures of 13 compounds that with inhibitory activity after multi-target SAR model prediction. Among them, eight are biflavones and the

left five are selaginellins.

TABLE 3 | The IC50 values of 13 compounds under study.

Compound S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 Z-factor

IC50 (µM) BACE1 70.89 17.20 2.75 81.93 7.58 20.70 3.97 0.75 4.32 3.40 2.27 2.82 2.72 0.93

MAO-B –a 15.74 11.72 13.89 2.91 8.81 23.17 3.62 18.21 10.24 –a 3.52 3.42 0.89

aThe IC50 value cannot be calculated in the predetermined concentration range.

FIGURE 3 | Verification of BACE1 and MAO-B Inhibition. This figure shows that all these four compounds (S-5, S-8, S-12, S-13) have good inhibitory activity in the

in vitro validation test.
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TABLE 4 | Four active compounds and their docking results.

Compound BACE1 MAO-B

Score Binding residues Binding force Score Binding residues Binding force

S-5 −29.7 THR (232A); GLN (12A);THR (232A) H-acceptor; pi-H; pi-H −44.0 CYS (397A); GLY (13A) H-donor; pi-H

S-8 −32.7 ASP (32A); THR (231A) H-donor; pi-H −38.4 TYR (398A) H-pi

S-12 −27.8 THR (231A) pi-H −35.4 TRP (388A) H-pi

S-13 −28.4 GLN (73A); ARG (307A) H-donor; H-acceptor −34.1 TRP (388A) H-pi

Ligand −35.8 – – −51.7 – –

FIGURE 4 | The docking results of S-8 bounding to BACE1 (left, PDB ID: 1TQF) and MAO-B (right, PDB ID: 2V5Z). The structure of S-8 is rendered green and the

docking pocket surface was adjected to a suitable transparency.

FIGURE 5 | The ligand interaction diagram of S-8 bounding to BACE1 (left, PDB ID: 1TQF) and MAO-B (right, PDB ID: 2V5Z). It is a 2D diagram of the original ligand

and a schematic representation of the binding site residues, with the important interactions between ligand and binding site shown. For BACE1, the main binding

force is the hydrogen bond force and pi-bond force with ASP (232A) and THR (231A); for MAO-B, the main binding force is the hydrogen bond force and pi-bond

force with CYS (397A) and GLY (13A).

with a probability value larger than 0.8 were extracted. These

compounds were prepared for further validation in the inhibitory

activity test and their detailed information can be seen in the

Supporting Information (Supplementary Material).

In vitro Validation of Inhibitory Activity for
Target Enzyme
Based on the prediction outputs, we focused on the screening
of BACE1/MAO-B dual inhibitory activity of flavonoids and
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selaginellins. The enzyme BACE1 is considered as a prime target
to design therapeutics for ADmainly because of that the catalysis
process by BACE1 is the rate-limiting step in APP proteolysis
and the BACE1 knock-out mice lacking Aβ production survives
with normal physiology (Roberds et al., 2001). As the majorβ-
secretase enzyme that initiates the generation of Aβ, BACE1 is
undoubtedly a prime target for anti-Aβtherapy in AD (Ohno,
2016). The increase of MAO-B activity is associated with gliosis,
which can result in higher levels of H2O2 and oxidative free
radicals (Nebbioso et al., 2012). Thus, the MAO-B inhibitors are
potential candidates for anti-AD drugs due to their capacity to
regulate neurotransmitters and inhibit oxidative damage in the
central nervous system.

Considering the quantity of existing compounds in our
laboratory, 13 compounds were chosen to carry out the inhibitory
activity validation experiments. Their chemical structures were
displayed in Figure 2 and their IC50 values can be seen in
Table 3. To evaluate the inhibitory activity of these compounds,
a threshold value of IC50 = 10 µM was applied. If a compound
has a IC50 values smaller than 10 µM, it would be considered
to be active. Otherwise, it is inactive. We can find that nine
of them show good inhibition on BACE1 with IC50 values
ranged from 0.7454 to 7.578 µM and five of them show good
inhibition on MAO-B with IC50 values ranged from 2.913 to
8.813 µM. Among them, S-8, S-5, S-13, and S-12 all have
significant dual BACE1/MAO-B inhibitory activities with IC50

values in the micromole magnitude and S-8 has been proved
to be the most potent against BACE1 and MAO-B with IC50

values of 0.7454 and 3.619 µM, respectively. Among them, S-5
and S-8 are biflavones, S-12 and S-13 are selaginellins. The
inhibitory curves for these four compounds were summarized in
Figure 3.

Molecular Docking
As described before, for each structural conformation of S-5,
S-8, S-12, and S-13, a score value was obtained to evaluate
the binding affinity between this active compound and each
target protein (BACE1 and MAO-B). Generally, a lower score
is better. Therefore, the optimal conformation can be decided
from a series of generated conformations for each compound
according to their score values. Combining the result of ligand
interaction, four active compounds and their docking results
were listed in Table 4. From the table, we can see that four
compounds indeed all have some degree of interaction with
BACE1 and MAO-B compared with their original ligands. For
BACE1, the most active molecule is S-8 for which the score value
is −32.7 and the main binding force is the hydrogen bond force
and pi-bond force with ASP (232A) and THR (231A). As to
the rest three molecules, the mainly binding force are also the
hydrogen bond and pi-bond force with different residues. For
MAO-B, the most active molecule is S-5 for which the score
value is −44.0 and the main binding force is the hydrogen bond
force and pi-bond force with CYS (397A) and GLY (13A). In
summary, the molecular docking results were consistent with
the results of aforementioned inhibitory experiments that S-8
has the strongest inhibition activity for BACE1 and S-5/S-8
performs better than S-12/S-13 in the inhibition of MAO-B.

Therefore, as the conclusion obtained from above in intro
inhibitory test, S-5, S-8, S-12, S-13 all have significant dual
BACE1/MAO-B inhibitory activities and S-8 promises to be the
most potent against BACE1 and MAO-B. The docking results
and corresponding 2D ligand interaction diagram of S-8 bound
to BACE1 and MAO-B can be seen in Figures 4, 5. The detailed
information of all conformations and docking results for other
three compounds can be seen in the Supporting Information
(Supplementary Material).

CONCLUSION

In this study, we explored that the TE extracted from Selaginella
plants has a remarkable improvement on learning and memory
function for AD mice by Morris water maze test. And then,
we preliminarily screened our home-database consisting of
flavonoids compounds bymulti-target SARmodels in silico. After
that, the in vitro enzyme activity inhibitory test was applied to
evaluate 13 compounds that were considered to be active by
multi-target SAR models and finally 4 compounds (S-8, S-5, S-
13, and S-12) were found to have significant inhibitory activities
on both BACE1 and MAO-B. Among them, S-8 has been proved
to be the most potent ingredient against BACE1 and MAO-B
with IC50 values of 0.745 and 3.619 µM, respectively. What’s
more, the molecular docking experiment was applied to verify
the prediction results and to find the binding position and
binding strength between the active ingredient and AD-related
proteins. All in all, after these study and validation processes, we
explored a new strategy to improve the efficiency of screening
the active ingredients based on trace amount of natural product
and numbers of targets and finally obtained some multi-targets
potential compounds for the development of novel drugs for AD
treatment.
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Milošević, N., et al. (2017). Monoaminergic neuropathology in Alzheimer’s

disease. Prog. Neurobiol. 151, 101–138. doi: 10.1016/j.pneurobio.2016.04.001

Song, X., Zhou, B., Cui, L., Lei, D., Zhang, P., Yao, G., et al. (2017). Silibinin

ameliorates Aβ25-35-inducedmemory deficits in rats bymodulating autophagy

and attenuating neuroinflammation as well as oxidative stress.Neurochem. Res.

42, 1073–1083. doi: 10.1007/s11064-016-2141-4

Standridge, J. B. (2004). Pharmacotherapeutic approaches to the prevention

of Alzheimer’s disease. Am. J. Geriatr. Pharmacother. 2, 119–132.

doi: 10.1016/S1543-5946(04)90017-7

Sun, Z. Z., Chen, Z. B., Jiang, H., Li, L. L., Li, E. G., and Xu, Y. (2009). Alteration

of Aβ metabolismrelated molecules in predementia induced by AlCl3 and

D-galactose. Age (Dordr) 31, 277–284. doi: 10.1007/s11357-009-9099-y

Trepanier, C. H., and Milgram, N. W. (2010). Neuroinflammation in Alzheimer’s

disease: are NSAIDs and selective COX-2 inhibitors the next line of therapy? J.

Alzheimers Dis. 21, 1089–1099. doi: 10.3233/JAD-2010-090667

U.S. Food and Drug Administration (2005). Public Health Advisory:

Deaths with Antipsychoticsin Elderly Patients with Behavioral

Disturbances. Rockville, MD: Center for Drug Evaluation and

Research. Available online at: http://www.fda.gov/drugs/drugsafety/

postmarketdrugsafetyinformationforpatientsandproviders/ucm053171

(Accessed April 04, 2016).

U.S. Food and Drug Administration (2008). Information on Conventional

Antipsychotics. Rockville, MD: Center for Drug Evaluation and

Research. Available online at: http://www.fda.gov/Drugs/DrugSafety/

PostmarketDrugSafetyInformationforPatientsandProviders/ucm107211.

htm (Accessed April 04, 2016).

Wang, J., Li, Y., Yang, Y., Du, J., Zhang, S., and Yang, L. (2015). In

silico research to assist the investigation of carboxamide derivatives as

potent TRPV1 antagonists. Mol. Biosyst. 11, 2885–2899. doi: 10.1039/C5MB0

0356C

Wang, J. B., Cao, D. S., Zhu, M. F., Yun, Y. H., Xiao, N., and Liang, Y. Z. (2015). In

silico evaluation of logD7.4 and comparison with other prediction methods. J.

Chemometr. 29, 389–398. doi: 10.1002/cem.2718

Wang, N. N., Dong, J., Deng, Y. H., Zhu, M. F., Wen, M., Yao, Z. J., et al.

(2016). ADME properties evaluation in drug discovery: prediction of caco-2

cell permeability using a combination of NSGA-II and boosting. J. Chem. Inf.

Model. 56, 763–773. doi: 10.1021/acs.jcim.5b00642

Wang, N. N., Huang, C., Dong, J., Yao, Z. J., Zhu, M. F., Deng, Z. K.,

et al. (2017). Predicting human intestinal absorption with modified random

forest approach: a comprehensive evaluation of molecular representation,

unbalanced data, and applicability domain issues. RSC Adv. 7, 19007–19018.

doi: 10.1039/C6RA28442F

Wu, X. G., Wang, S. S., Miao, H., Cheng, J. J., Zhang, S. F., and Shang,

Y. Z. (2016). Scutellariabarbata flavonoids alleviate memory deficits and

neuronal injuries induced by composited Aβ in rats. Behav. Brain Funct. 12:33.

doi: 10.1186/s12993-016-0118-8

Yan, R. Q., Fan, Q. Y., Zhou, J., and Vassar, R. (2016). Inhibiting BACE1 to

reverse synaptic dysfunctions in Alzheimer’s disease. Neurosci. Biobehav. Rev.

65, 326–340. doi: 10.1016/j.neubiorev.2016.03.025

Yao, Z. J., Dong, J., Che, Y. J., Zhu, M. F., Wen, M., Wang, N. N., et al.

(2016). TargetNet: a web service for predicting potential drug–target interaction

profiling via multi-target SAR models. J. Comput. Aided Mol. Des. 30, 413–424.

doi: 10.1007/s10822-016-9915-2

Yun, Y. H., Deng, B. C., Cao, D. S., Wang, W. T., and Liang, Y. Z. (2016).

Variable importance analysis based on rank aggregation with applications

in metabolomics for biomarker discovery. Anal. Chim. Acta 911, 27–34.

doi: 10.1016/j.aca.2015.12.043

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Deng, Wang, Zou, Zhang, Xu, Chen, Cao and Tan. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Pharmacology | www.frontiersin.org August 2017 | Volume 8 | Article 539260

https://doi.org/10.1016/j.tips.2008.09.001
https://doi.org/10.1093/hmg/10.12.1317
https://doi.org/10.1016/j.cca.2012.08.013
https://doi.org/10.1016/0306-4522(94)90311-5
https://doi.org/10.1016/j.arr.2014.03.008
https://doi.org/10.1016/j.pneurobio.2016.04.001
https://doi.org/10.1007/s11064-016-2141-4
https://doi.org/10.1016/S1543-5946(04)90017-7
https://doi.org/10.1007/s11357-009-9099-y
https://doi.org/10.3233/JAD-2010-090667
http://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm053171
http://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm053171
http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm107211.htm
http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm107211.htm
http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm107211.htm
https://doi.org/10.1039/C5MB00356C
https://doi.org/10.1002/cem.2718
https://doi.org/10.1021/acs.jcim.5b00642
https://doi.org/10.1039/C6RA28442F
https://doi.org/10.1186/s12993-016-0118-8
https://doi.org/10.1016/j.neubiorev.2016.03.025
https://doi.org/10.1007/s10822-016-9915-2
https://doi.org/10.1016/j.aca.2015.12.043
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


ORIGINAL RESEARCH
published: 23 May 2018

doi: 10.3389/fphar.2018.00532

Frontiers in Pharmacology | www.frontiersin.org May 2018 | Volume 9 | Article 532

Edited by:

Adriano D. Andricopulo,

University of São Paulo, Brazil

Reviewed by:

Brian Hudson,

University of Glasgow,

United Kingdom

Carlos Henrique Ramos,

Universidade Estadual de Campinas,

Brazil

Valentina Vellecco,

University of Naples Federico II, Italy

*Correspondence:

Gui-Bo Sun

gbsun@implad.ac.cn

Xu-Dong Xu

xdxu@implad.ac.cn

Xiao-Bo Sun

sun_xiaobo163@163.com

†These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Experimental Pharmacology and Drug

Discovery,

a section of the journal

Frontiers in Pharmacology

Received: 26 February 2018

Accepted: 02 May 2018

Published: 23 May 2018

Citation:

Wang S, Tian Y, Zhang J-Y, Xu H-B,

Zhou P, Wang M, Lu S-B, Luo Y,

Wang M, Sun G-B, Xu X-D and

Sun X-B (2018) Targets Fishing and

Identification of Calenduloside E as

Hsp90AB1: Design, Synthesis, and

Evaluation of Clickable Activity-Based

Probe. Front. Pharmacol. 9:532.

doi: 10.3389/fphar.2018.00532

Targets Fishing and Identification of
Calenduloside E as Hsp90AB1:
Design, Synthesis, and Evaluation of
Clickable Activity-Based Probe
Shan Wang 1†, Yu Tian 1†, Jing-Yi Zhang 1, Hui-Bo Xu 2, Ping Zhou 1, Min Wang 1,

Sen-Bao Lu 3, Yun Luo 1, Min Wang 4, Gui-Bo Sun 1*, Xu-Dong Xu 1* and Xiao-Bo Sun 1*

1 Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational

Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College,

Beijing, China, 2 Academy of Chinese Medical Sciences of Jilin Province, Changchun, China, 3Department of Bioengineering,

Santa Clara University, Santa Clara, CA, United States, 4 Life and Environmental Science Research Center, Harbin University

of Commerce, Harbin, China

Calenduloside E (CE), a natural triterpenoid compound isolated from Aralia elata, can

protect against ox-LDL-induced human umbilical vein endothelial cell (HUVEC) injury

in our previous reports. However, the exact targets and mechanisms of CE remain

elusive. For the sake of resolving this question, we designed and synthesized a

clickable activity-based probe (CE-P), which could be utilized to fish the functional

targets in HUVECs using a gel-based strategy. Based on the previous studies of

the structure-activity relationship (SAR), we introduced an alkyne moiety at the C-28

carboxylic group of CE, which kept the protective and anti-apoptosis activity. Via

proteomic approach, one of the potential proteins bound to CE-P was identified as

Hsp90AB1, and further verification was performed by pure recombinant Hsp90AB1

and competitive assay. These results demonstrated that CE could bind to Hsp90AB1.

We also found that CE could reverse the Hsp90AB1 decrease after ox-LDL treatment.

To make our results more convincing, we performed SPR analysis and the affinity

kinetic assay showed that CE/CE-P could bind to Hsp90AB1 in a dose-dependent

manner. Taken together, our research showed CE could probably bind to Hsp90AB1

to protect the cell injury, which might provide the basis for the further exploration of

its cardiovascular protective mechanisms. For the sake of resolving this question, we

designed and synthesized a clickable activity-based probe (CE-P), which could be utilized

to fish the functional targets in HUVECs using a gel-based strategy.

Keywords: Calenduloside E, clickable activity based protein profiling, computational chemistry, HUVECs,
Hsp90AB1

INTRODUCTION

Natural products represent an enormous source of pharmacologically useful compounds and are
often used as the starting point in modern drug discovery. However, many biologically interesting
natural products are not being pursued as potential drug candidates, partly due to the lack of
well-defined mechanisms of action. The identification of drug targets is very important in the
process of drug discovery, which allows researchers to clarify the mechanisms of drug action
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(Krysiak and Breinbauer, 2012; Yue et al., 2012). Activity-based
protein profiling (ABPP) is a chemical proteomic method that
uses active site-directed chemical probes to selectively target
subsets of proteins in the proteome based on shared mechanistic
and/or structural features (Barglow and Cravatt, 2007; Cravatt
et al., 2008; Pichler et al., 2016). This technique has been
widely used in enzyme proteomes with quantitative proteomics
development; this technique has been used to identify unknown
target compounds (Chen et al., 2017). The basic chemical
structure of the molecular probe consists of three parts: a
reactive group, a binding group, and a reporter tag. The ABPP
probe targets a large number of proteins via the reactive group,
providing researchers with a global view of the proteome profile.
Then, target proteins are identified by quantitative proteomics
analysis (Hunerdosse and Nomura, 2014; Wright and Sieber,
2016). However, most tags are relatively bulky compared with
the small molecule probe, which influences cell permeability and
may prevent the reactive group from entering the active site.
With the development of click chemistry, CC-ABPP strategies
using a biorthogonal reaction with a label-free probe have been
increasingly applied to circumvent this issue (Speers and Cravatt,
2009; Li et al., 2012). The reporter group is substituted with a
small, latent chemical handle (alkyne or azide), which does not
impede cell permeability, and can be simultaneously diversified
with a variety of reporter groups without the need to develop new
synthetic routes (Martell and Weerapana, 2014). The CC-ABP
probe has advanced the ABPP field by expanding the enzyme
classes targeted by ABPs, enabling cellular and in vivo studies
and providing technological platforms to quantitatively monitor
protein activities in complex biological systems. Currently, the
CC-ABPP technology has become an effective method for the
discovery of functional targets of small molecules (Lapinsky and
Johnson, 2015).

Aralia elata (Miq) Seem (AS), which is used extensively
in traditional Chinese medicine (TCM), has been used as
a tonic herb due to its anti-arrhythmic, anti-arthritic, anti-
hypertensive and anti-diabetic effects (Baranov, 1982). Moreover,
as a main component of A. elata Xinmaitong capsules (Clinical
Trial Approval Number 2003L01111 by the China Food and
Drug Administration), AS was developed for the treatment of
coronary heart disease and has successfully completed Phase III
clinical trials in China. According to our previous studies, AS
exhibited anti-myocardial ischemia and anti-hypoxia activities
(Wang et al., 2014, 2015, 2017). The total saponins from AS are
considered the main pharmacologically active ingredients of AS.
Various oleanane-type triterpene saponins were extracted from
AS and identified. Calenduloside E (CE, Figure 1) is one of the
natural triterpene saponins extracted from AS. Calenduloside E
was previously shown to protect endothelial cells from injury

Abbreviations: CE, Calenduloside E; CE-P, Calenduloside E Probe; HUVEC,

human umbilical vein endothelial cell; ABPP, Activity-based protein profiling;

CC-ABPP, click chemistry-Activity-based protein profiling; SAR, structure-activity
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propidium iodide; 1DGE, one-dimensional gel electrophoresis; LC-MS/MS, liquid
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and reduce apoptotic endotheliocytes and it could protect against
H2O2-induced H9c2 cardiomyocytes apoptosis (Tian et al.,
2017a,b). Using the ABPP probe, we identified 587 proteins as
the most likely targets of CE. In our previous paper, our ABPP
probe was the basic probe, but the biotin tag on the probe may
have interfered with the binding of CE to the targets. In our
present research, for the first time, we designed and synthesized a
clickable probe CE-P, which could be introduced the biotin tag
via click chemistry to avoid the interference of bulk molecule.
Utilizing this CC-ABPP strategy, we identified and confirmed
potential targets of CE.

MATERIALS AND METHODS

Materials
ox-LDL was obtained from Union-Biotechnology. Annexin-
V/Propidium iodide (FITC/PI) staining kit (V13241) was
Molecular ProbesTM. MTT [3-(4, 5-dimethylthiazol-2-yl)-
2, 5-diphenyltetrazoliumbromide, 0973] was the products
of Amresco. JC-1 (C2005) was purchased from Beyotime
biotechnology. Caspase-3 fluorometric assay kit (K105-
200) was acquired from BioVision. VascuLife R© VEGF
Endothelial Cell Culture Medium (LL-0003) was the products
of Lifeline cell technology. TBTA (Tris[(1-benzyl-1H-1,
2, 3-triazol-4-yl)methyl]-amineT2993), TCEP (Tris(2-
carboxyethyl)phosphine, T1656) were purchased from Tokyo
Chemical Industry. Biotin-azide was provided from the Institute
of Medicinal Plant Development (Beijing, China) (Tian et al.,
2017b). HOBt (N-Hydroxybenzotriazole), EDCI (1-Ethyl-(3-
dimethylaminopropyl) carbodiimide hydrochloride), TEMPO
(2, 2, 6, 6-Tetramethylpiperidine1-oxyl) were purchased from
Energy Chemical Industry. PierceTM Streptavidin Agarose
(20347), PierceTM Silver Stain for Mass Spectrometry (24600)
was from Thermo Fisher Scientific. The primary antibody
against Hsp90AB1, Bcl2, Cytochrome C was obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Lox1 primary
antibody was from Abcam (Cambridge, UK).Recombinant
human Hsp90AB1 protein was from Abcam (Cambridge, UK).

Chemistry
Glycosyl donor compound i was prepared from galactose, and
the reaction conditions were reported previously by Schmidt
(Sun et al., 2014).

Synthesis of Compound I
To a solution of ursolic acid (10.0 g, 21.8 mmol) in dry DCM
(300mL), TBAB (0.8 g, 2.5 mmol) and K2CO3 (7.4 g, 53.6 mmol)
in water (50mL) were added, and benzyl bromide (3.2mL, 26.8
mmol) was dropped at 0◦C. Then the reaction mixture was
stirred at room temperature for 18 h. Reaction was monitored
by TLC. The crude mixture was separated and the water layer
was extracted with DCM (3 × 100mL). The combined organic
layer was washed with 0.1 mol/L HCl aqueous solution, NaHCO3

saturated aqueous solution and NaCl saturated aqueous solution
in sequence, and then dried over Na2SO4 and purified through
column chromatography (eluent: PE-EtOAc, 8:1) to offer pure
white solid compound I (11.1mg, 93% yield). 1H-NMR (600
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FIGURE 1 | The design of CC-ABPP CE-P from lead compound Calenduloside E (CE). (A) Construction of clickable probe CE-P in organic experimental environment.

(B) The probe CE-P coupled with biotin moiety in physiological environment.

MHz, pyridine-d5) δ: 7.36–7.29 (m, 5H, OPh-H), 5.23 (t, J =

3.3Hz, 1H, H-12), 5.10 (d, J = 12.5Hz, 1H, CH2OPh), 4.98 (d,
J = 12.5Hz, 1H, CH2OPh), 3.23–3.19 (m, 1H, H-3), 2.26 (d, J =
11.1Hz, 1H, H-18), 1.07 (s, 3H, CH3), 0.98 (s, 3H, CH3), 0.93 (d,
J = 6.3Hz, 3H, CH3), 0.89 (s, 3H, CH3), 0.85 (d, J = 6.5Hz, 3H,
CH3), 0.77 (s, 3H, CH3), 0.64 (s, 3H, CH3);

13C-NMR (150 MHz,
pyridine-d5) δ: 177.5, 138.2, 136.5, 128.5, 128.3, 128.1, 125.8, 79.2,
77.4, 77.2, 76.9, 66.1, 55.3, 53.0, 48.2, 47.7, 42.2, 39.6, 39.2, 39.0,
38.9, 38.7, 37.1, 36.8, 33.1, 30.8, 28.3, 28.1, 27.3, 24.4, 23.7, 23.4,
21.3, 18.4, 17.1, 15.8, 15.6.

Synthesis of Compound II
To a solution of compound I (3.3 g, 6.0 mmol) in dry DCM
(50mL), glycosyl donor compound i (5.8 g, 7.9 mmol) and 4Å
molecular sieve 0.5 g were added and stirred at room temperature
for 1 h under N2 air. Then lewis acid TMSOTf (60 µg, 0.3
mmol) was dropped and reacted for 2–4 h. When complete,
triethylamine 1.0mL was added to quench the reaction. Then
the suspension was filtered out and the filtrate was evaporated
and the crude product was subjected to column chromatography
(eluent: PE-EtOAc, 10:1) to gain pure compound II (4.7 g, 70%
yield) as white solid. 1H-NMR (600 MHz, pyridine-d5) δ: 8.25–
8.22 (m, 4H, OBz-H), 8.16–8.15 (m, 2H, OBz-H), 8.01–8.00 (m,
2H, OBz-H), 7.56–7.52 (m, 3H, OBz-H), 7.49–7.41 (m, 6H, OBz-
H), 7.38–7.34 (m, 3H, OBz-H), 7.29–7.27 (m, 3H, OBz-H), 7.10–
7.08 (m, 2H, OBz-H), 6.55–6.54 (m, 1H, Gal-H), 6.48–6.45 (m,

1H, Gal-H), 6.40–6.38 (m, 1H, Gal-H), 5.43 (d, J = 7.9Hz, 1H,
Glc-H-1′), 5.41 (t, J = 3.3Hz, 1H, H-12), 5.34 (d, J = 12.5Hz,
1H, OBn-H), 5.22 (d, J = 12.4Hz, 1H, OBn-H), 5.16–5.13 (m,
1H, Gal-H), 4.96–4.94 (m, 1H, Gal-H), 4.80–4.77 (m, 1H, Gal-
H), 3.39 (dd, J = 11.9Hz, 4.4Hz, 1H, H-3), 2.47 (d, J = 11.3Hz,
1H, H-18), 1.15 (s, 3H, CH3), 0.97 (d, J = 6.5Hz, 3H, CH3),
0.93 (s, 6H, 2×CH3), 0.79 (s, 3H, CH3), 0.77 (s, 3H, CH3), 0.73
(s, 3H, CH3);

13C-NMR (150 MHz, pyridine-d5) δ: 176.8, 166.1,
166.0,165.8, 165.7, 138.5, 137.1, 133.8, 133.6, 133.5, 133.4, 130.3,
130.1, 130.0, 129.9, 129.8, 129.5, 129.0, 128.8, 128.7, 128.5, 128.3,
125.9, 103.8, 90.2, 72.6, 71.7, 71.1, 69.3, 66.1, 62.7, 55.5, 53.3, 48.2,
47.7, 42.2, 39.7, 39.2, 39.0, 38.9, 38.5, 36.9, 36.6, 33.2, 30.7, 28.2,
27.9, 26.4, 24.5, 23.7, 23.4, 21.2, 18.2, 17.2, 17.1, 16.6, 15.3.

Synthesis of Compound III
A mixture of compound II (3.0 g, 2.6 mmol) and 10% Pd/C
(1.5mg) was hydrogenated at 1 atm for 4–6 h in refluxing EtOAc
(30mL). The mixture was filtered and concentrated, the residue
was purified by silica gel column chromatography (eluent: PE-
EtOAc, 3:1) to get pure compound III (2.4 g, 91% yield) as white
solid. 1H-NMR (600 MHz, pyridine-d5) δ: 8.24–8.21 (m, 4H,
OBz-H), 8.14–8.13 (m, 2H, OBz-H), 8.00–7.98 (m, 2H, OBz-H),
7.56–7.53 (m, 1H, OBz-H), 7.48–7.45 (m, 2H, OBz-H), 7.43–7.41
(m, 2H, OBz-H), 7.38–7.35 (m, 2H, OBz-H), 7.28–7.26 (m, 3H,
OBz-H), 7.10–7.07 (m, 2H, OBz-H), 6.54–6.53 (m, 1H, Gal-H),
6.46–6.43 (m, 1H, Gal-H), 6.39–6.36 (m, 1H, Gal-H), 5.50 (t, J
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= 3.3Hz, 1H, H-12), 5.42 (d, J = 7.9Hz, 1H, Glc-H-1′), 5.15–
5.12 (m, 1H, Gal-H), 4.96–4.93 (m, 1H, Gal-H), 4.79–4.76 (m,
1H, Gal-H), 3.38 (dd, J = 11.7Hz, 4.3Hz, 1H, H-3), 2.65 (d, J =
11.3Hz, 1H, H-18), 1.22 (s, 3H, CH3), 1.05 (d, J = 6.4Hz, 3H,
CH3), 0.98–0.97 (m, 6H, 2×CH3), 0.92 (s, 3H, CH3), 0.76 (s, 3H,
CH3), 0.72 (s, 3H, CH3);

13C-NMR (150 MHz, pyridine-d5) δ:
179.8, 166.1, 166.0, 165.8, 165.7, 139.1, 133.8, 133.6, 133.6, 133.4,
130.3, 130.0, 130.0, 130.0, 129.8, 129.4, 129.4, 129.0, 128.8, 128.8,
128.6, 125.4, 103.7, 90.2, 72.5, 71.7, 71.0, 69.3, 62.7, 55.7, 53.4,
47.9, 47.8, 43.3, 42.3, 39.7, 39.4, 39.3, 38.9, 38.5, 37.3, 36.6, 33.3,
30.9, 28.5, 27.8, 26.4, 24.8, 23.8, 23.4, 21.3, 18.2, 17.4, 17.2, 16.6,
15.3.

Synthesis of Compound IV
To a solution of compound III (1.0 g, 0.98 mmol) in dry
DCM (15mL), HOBt (0.2 g, 1.46 mmol) and EDCI (0.28 g,
1.46 mmol) were added and stirred at room temperature for
1 h. To this mixture, propargylamine (0.22 g, 3.92 mmol) was
added respectively at 0◦C and the reaction mixture was stirred
until its completion for 8 h. The solvent was washed with
0.1 mol/L HCl aqueous solution, NaHCO3 saturated aqueous
solution and NaCl saturated aqueous solution in sequence,
and then dried over Na2SO4. The suspension was filtered and
the filtrate was concentrated and purified through column
chromatography (eluent: DCM-CH3OH, 100:1) to offer pure
white solid compound IV as white solid, 79% yield. 1H-NMR
(600 MHz, pyridine-d5) δ: 8.24–8.22 (m, 4H, OBz-H), 8.14–8.13
(m, 2H, OBz-H), 7.99–7.98 (m, 2H, OBz-H), 7.94 (t, 1H, CONH),
7.53–7.52 (m, 1H, OBz-H), 7.47–7.46 (m, 2H, OBz-H), 7.43–7.40
(m, 2H, OBz-H), 7.37–7.35 (m, 2H, OBz-H), 7.28–7.26 (m, 3H,
OBz-H), 7.09–7.07 (m, 2H, OBz-H), 6.54 (m, 1H, Gal-H), 6.46–
6.37 (m, 2H, Gal-H), 5.47–5.42 (m, 2H, H-12, Glc-H-1′), 5.15–
5.12 (m, 1H, Gal-H), 4.95 (m, 1H, Gal-H), 4.79–4.77 (m, 1H,
Gal-H), 4.33 (m, 2H, CONHCH2), 3.39 (m, 1H, H-3), 3.13 (m,
1H, CCH), 2.47 (d, J= 10.3Hz, 1H, H-18), 1.19 (s, 3H, CH3), 1.00
(d, J = 5.2Hz, 3H, CH3), 0.97–0.92 (m, 9H, 3×CH3), 0.78–0.77
(m, 6H, 2×CH3);

13C-NMR (150 MHz, pyridine-d5) δ: 177.1,
166.1, 166.0, 165.8, 165.7, 139.2, 133.8, 133.6, 133.6, 133.4, 130.3,
130.0, 130.0, 130.0, 129.8, 129.4, 129.4, 129.0, 128.8, 128.8, 128.6,
125.8, 103.7, 90.2, 81.9, 72.5, 71.9, 71.7, 71.0, 69.3, 62.7, 55.5, 53.1,
47.8, 47.7, 43.3, 42.3, 39.8, 39.7, 39.2, 38.9, 38.5, 37.7, 36.6, 33.1,
31.0, 29.9, 29.1, 28.1, 27.8, 26.4, 24.7, 23.7, 23.5, 21.3, 18.2, 17.5,
17.4, 16.6, 15.3.

Synthesis of Compound V
To a solution of compound IV in MeOH/DCM (8mL, 3:1) was
added 1 mol/L NaOMe/NaOH solvent (1.6mL). The reaction
mixture was stirred for 2 h until its completion, after that
Amberlite IR-120 was added to acidate PH 7. The suspension was
filtered out and the filtrate was evaporated and purified through
column chromatography (eluent: DCM-CH3OH, 10:1) to offer
pure white solid compoundV as white solid, 93% yield. 1H-NMR
(600 MHz, pyridine-d5) δ: 7.84 (t, J = 5.4Hz, 1H, N-H), 5.45 (t,
J = 3.3Hz, 1H, H-12), 4.89 (d, J = 7.7Hz, 1H, H-1′), 4.60–4.59
(m, 1H, Gal-H), 4.52–4.46 (m, 3H, Gal-H), 4.40–4.28 (m, 2H, H-
31), 4.19 (dd, J = 3.4Hz, 9.4Hz, 1H, Gal-H), 4.13 (t, J = 6.2Hz,
1H, Gal-H), 3.43 (dd, J = 11.8Hz, 4.5Hz, 1H, H-3), 3.10 (t, J =

2.4Hz, 1H, H-33), 2.44 (d, J = 10.8Hz, 1H, H-18), 1.34 (s, 3H,
CH3), 1.24 (s, 3H, CH3), 1.02 (s, 3H, CH3), 1.00 (s, 3H, CH3), 0.97
(d, J = 6.5Hz, 3H, CH3), 0.94 (s, 3H, CH3), 0.90 (s, 3H, CH3);
13C-NMR (150 MHz, pyridine-d5) δ: 177.2, 139.4, 126.0, 107.5,
88.8, 81.9, 76.8, 75.4, 73.1, 71.9, 70.3, 62.5, 55.9, 53.3, 47.9, 47.8,
42.5, 40.0, 39.8, 39.5, 39.3, 38.9, 37.8, 36.8, 33.3, 31.1, 29.2, 28.3,
26.7, 24.8, 23.8, 23.6, 21.3, 18.4, 17.6, 17.4, 17.0, 15.6; HRMS (ESI):
Calcd for [M+H]+ C39H62NO7: 656.4526, found 656.4516.

Synthesis of Compound VI (CE-P)
To a solution of compound V (200.0mg, 305.14 mmol) in
DCM (1mL), KBr (7.26mg, 61.03 mmol), TEMPO (0.95mg,
6.1 mmol) and TBAB (19.67mg, 61.03 mmol) were added at
room temperature. To a solution of this mixture was added
Na2CO3/NaHCO3 (3mL, PH 9.5). To this mixture, Ca(ClO)2
(87.26mg, 610.28 mmol) was added at 0◦C and the reaction
mixture was stirred violently until its completion. The Na2SO3

20mg was added to quench the reaction, and then 6N HCl was
dropped to acidate PH 3. The crude mixture was extracted with
DCM (3× 15mL) and the combined organic layer was dried over
Na2SO4 and purified through column chromatography (eluent:
CH2Cl2-CH3OH-H2O, 50:10:1) to offer pure compound VI as
white solid. (63.4mg, 31% yield). 1H-NMR (600 MHz, pyridine-
d5) δ: 7.91 (t, J = 5.4Hz, 1H, N-H), 5.48 (t, J = 3.4Hz, 1H,
H-12), 4.87 (d, J = 7.7Hz, 1H, H-1′), 4.65–4.58 (m, 1H, Gal-H),
4.56–4.46 (m, 1H, Gal-H), 4.46–4.28 (m, 3H, H-31, Gal-H), 4.24–
4.12 (m, 1H, Gal-H), 3.43 (m, 1H, H-3), 3.11 (s, 1H, H-33), 2.48
(m, 14H, H-18), 1.36 (s, 3H, CH3), 1.25 (s, 3H, CH3), 1.02 (s,
3H, CH3), 0.99 (s, 3H, CH3), 0.97 (s, 6H, 2×CH3), 0.89 (s, 3H,
CH3);

13C-NMR (150 MHz, pyridine-d5) δ: 177.1, 175.9, 139.3,
125.8, 107.0, 88.3, 81.9, 76.1, 75.9, 72.7, 72.5, 71.9, 55.8, 53.2, 47.8,
47.7, 42.4, 39.9, 39.9, 39.7, 39.4, 39.2, 37.7, 36.8, 33.4, 31.1, 29.9,
29.2, 28.9, 28.2, 24.7, 23.8, 23.6, 21.3, 18.4, 17.5, 17.5, 16.9, 15.6;
HRMS calcd mass for C39H59NNaO8 [M+Na]+ 692.4138, found
692.4145. The spectrograms of the compounds I–VI were shown
in Electronic Supplementary Material (ESI).

Biological Studies
Cell Preparation and Culture
HUVECs were isolated from fresh human umbilical veins using
0.1% collagenase I, as previously described (Qin et al., 2015).
After dissociation, the cells were collected and cultured in
VascuLife R© VEGF Endothelial Cell Culture Medium (Lifeline
Cell Technology, MD, USA) supplemented with 100 U/mL
penicillin and 100µg/mL streptomycin. All cell cultures were
maintained in a humidified 37◦C incubator with 5% CO2, and
the media were refreshed every 3 days. Cells at passages 3–7
were used in subsequent experiments. Neonatal umbilical cords
were donated by the Maternal and Child Care Service Center in
Beijing, China.

Cell Viability Assay
Cell viability was determined using the MTT (3-(4, 5-
dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium, Amresco, 0973)
assay as previously described (Tian et al., 2017b). Briefly,
HUVECs were plated on 96-well plates at a density of 8 × 104

cells/well and then grown at 37◦C for 24 h. The treatment group
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cells were pretreated with CE-P/CE for 8 h, followed by treatment
with ox-LDL (80µg/mL, 24 h), the control group was pretreated
with vehicle for 8 h then exposed without ox-LDL. Twenty
microliters of MTT (5 mg/mL) were added to each well and
incubated for 4 h. The medium was removed and the formazan
crystals were dissolved with dimethyl sulfoxide (DMSO). The
absorbance was measured at 570 nm on a microplate reader
(TECAN Infinite M1000, Austria).

Assessments of Cell Apoptosis
HUVECs were incubated with ox-LDL (70µg/mL, 24 h) and
pretreated with BCEA for 8 h prior to the apoptosis assay.
Double fluorescence staining was performed using an Annexin
V-FITC/PI apoptosis staining kit (Molecular ProbesTM, V13241)
according to the manufacturer’s instructions to detect early
apoptotic and necrotic cells. Cellular fluorescence was measured
using flow cytometry with a FACS Calibur Flow Cytometer (BD
Biosciences, USA).

Determination of 19m
We used JC-1 (5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′–tetraethyl
benzimidazolyl carbocyanine iodide, Beyotime Biotechnology,
(C2005) to analyze 19m. HUVECs were cultured on coverslips,
the ox-LDL was removed, and the cells were washed twice with
warm PBS and incubated with JC-1 (2µM final concentration)
for 30min in the dark. The cells were finally washed twice with
PBS, and images were captured using an EVOS R© FL fluorescence
microscope (Thermo Fisher Scientific, USA).

Analysis of Caspase-3 Activation
Caspase-3 activity was measured using a Fluorometric Assay Kit
(BioVision, USA) according to the manufacturer’s instructions.
The samples were measured in a Fluoroskan Ascent FL
fluorometer (Thermo Fisher Scientific, USA) using a 400 nm
excitation wavelength and a 505 nm emission wavelength. The
results are expressed as fold changes compared to the control.

Biotin–Neutravidin Pull-Down Assay
HUVECs were cultured in a T75 culture flask. HUVECs at
100% confluence were lysed in PBS buffer, and the protein
concentration was adjusted to 2 mg/mL. For each experimental
and control sample, 2 × 0.5mL aliquots of the 2 mg/mL cell
homogenate were transferred into microcentrifuge tubes. The
experimental and control samples were incubated with 5 µL of
10 mg/mL CE-P or 5 µL of DMSO at room temperature for 1 h.
Then, the proteomes were labeled with biotin-azide (100µM),
TCEP, 1mM), TBTA, 100µM), and CuSO4·5H2O (1mM) for
1 h. Seven hundred fifty microliters of cold MeOH were added
and sonicated for 3–4 sec using a probe sonicator (∼30% power
level) at 4◦C to re-suspend the protein. The samples were then
centrifuged for 4min at 6,500 × g at 4◦C and the supernatant
was removed. The pellets were dissolved in PBS containing 1.2%
SDS via sonication and then diluted with PBS containing 0.2%
SDS. The samples were incubated with streptavidin beads for
2 h at room temperature and washed with PBS several times.
Samples were denatured by heating in 2 × SDS-loading buffer
and analyzed by SDS-PAGE. The resulting bands were visualized

with Coomassie blue staining (Lee et al., 2014). Next, trypsin
digestion was performed on selected visible protein bands.

Western Blot
Cell extracts were lysed in RIPA lysis buffer (Beyotime, Shanghai,
China) containing a 1% protease inhibitor cocktail (Roche,
Basel, Switzerland) (Sun et al., 2012). The protein content was
measured with a BCA Protein Assay Kit (CWBiotech, Beijing,
China). Approximately 30–50 µg of protein were resolved using
10 or 12% SDS-PAGE and then transferred to polyvinylidene
difluoride membranes. The membranes were incubated with
1:500-diluted primary antibodies overnight at 4◦C, followed
by horseradish peroxidase-conjugated secondary antibodies at
room temperature. Then, the proteins were developed with
an enhanced chemiluminescence detection system and imaged
using a Bio-Rad imaging system (Bio-Rad, Hercules, CA, USA).

CE-P Binds to Recombinant Hsp90AB1
CE-P was incubated with the recombinant Hsp90AB1 protein
at room temperature for 1 h. The protein was pulled down as
the same as the previous describedmethods (Biotin–neutravidin
pull-down assay), then was detected by silver staining (Thermo
Fisher Scientific, USA).

Targets Predicted by Discovery Studio 2016
The molecular targets of CE-P were predicted using Discovery
Studio 2016 (BIOVIA Software Inc., San Diego, CA, USA), a
software suite for performing computational analysis of data
relevant to Life Sciences research. To determine the probable
target of CE-P, we employed the Ligand Profiler protocol
which maps a set of pharmacophores, including Pharma DB by
default. The ligand CE-P was prepared by the Specifying Ligands
parameter protocol. After inputting all parameters, the job was
run and the results were monitored from the Jobs Explorer.

Molecular Docking
To explore the potential interacting mode of CE/CE-P with the
Hsp90AB1 protein (PDB code: 3NMQ), a molecular modeling
study was performed using the docking program named
Induced-Fit, a refinement method in another software MOE. To
eliminate any bond length and bond angle biases, the ligand
(CE/CE-P) was subjected to an “energy minimize” prior to
docking. The binding affinities (S-values) in MOE were used to
evaluate the interactions between Hsp90AB1 and CE/CE-P. The
scores (binding affinities) were obtained based on the virtual
calculation of various interactions of the ligands with the targeted
receptor.

Surface-Plasmon Resonance (SPR)
The molecule/protein interaction detection and kinetic constant
measurement were studied using the Biacore System. CM5
Sensor Chip was activated using sulpho-NHS/EDC chemistry
in a buffer consisting of 2.7mM KCl 137mM NaCl, 0.05%
(v/v) surfactant P20, pH 7.4. The chip was subsequently
immobilized with the recombinant human Hsp90AB1 protein
at a concentration of 37µg/ml in sodium acetate, pH 4.5
and then blocked with 1M ethanolamine, pH 8.0. Compounds
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were dissolved to 10mM in 100% DMSO and then 50-
fold into running buffer without DMSO then diluted two-
fold by running buffer into 12.5, 6.25, 3.125, 1.56, 0.78,
and 0µM before injection. The optical interference pattern
was recorded as a change in optical path difference in units
of nm. Data were analyzed with Biacore T200 Evaluation
Software.

Statistical Analysis
Data are presented as the means ± standard deviation (SD)
of three independent experiments. The groups were compared
using one-way ANOVA followed by Tukey’s multiple comparison
tests using the statistics module of Graph Pad Prism 5.0. A value
of P < 0.05 was considered statistically significant.

RESULTS

Design and Synthesis of the CC
Activity-Based Protein Profiling Probe
CE-P Based on CE
According to previous studies, the biotinylated probe BCEA,
which maintains the active moiety of the parental compound
CE, exhibits similar protective effects against ox-LDL-induced
human umbilical vein endothelial cell (HUVEC) damage and
identified 128 proteins related to cell survival signaling pathways
as the targets (Tian et al., 2017b). Based on studies of the
structure-activity relationship (SAR), amide derivatives of CE
containing ursane and galactoside scaffolds maintained similar
activity to the parental compound CE (Tian et al., 2017a,b). In
the current study, we describe the design and construction of
the CC-Activity-Based Protein Profiling Probe CE-P (CC-ABPP
CE-P, Figure 1) and its subsequent use in identifying the targets
of CE. An alkynyl group was introduced at the C-28 carboxylic
moiety of the saponin scaffold, which enabled the hydrophilic
PEG chain to link to biotin through a Cu(I)-catalyzed Huisgen
1,3-dipolar cycloaddition reaction.

As illustrated in Scheme 1, naturally abundant ursolic acid
was treated with benzyl bromide (BnBr), a potassium carbonate
solution (K2CO3), and tetrabutylammonium bromide (TBAB)
in dry dichloromethane (DCM) to obtain a good yield of
compound I. The glycosyl donor i was prepared from galactose
using the conditions reported by Schmidt (Schmidt and
Michel, 1980). Compound I was reacted with glycosyl donor i
under Lewis acidic conditions in the presence of trimethylsilyl
trifluoromethanesulfonate (TMSOTf) to produce compound II,
which was subjected to hydrogenation to obtain compound III

in the presence of a catalytic amount of 10% Pd-C at atmospheric
pressure. The above reaction conditions were reported in our
previous paper. Compound IV was attained via amidation of the
C-28 carboxyl group of saponin scaffold with propargylamine,
followed by deprotection of the glycosyl groups in the presence
of a NaOMe/MeOH solution to obtain compound V. In the
final step, an oxidation reaction was performed using compound
V and TEMPO/Ca(ClO)2 in the presence of KBr and a TBAB
catalyst in an Na2CO3/NaHCO3 solution, yielding the CC-ABPP
CE-P (compound VI).

CE-P Protects Against ox-LDL-Induced
Endothelial Cell Injury
As shown in our previous study, CE protected against ox-LDL-
induced endothelial cell injury (Tian et al., 2017b). In this context,
we introduced a very small alkyne group into CE to create
a click chemistry activity-based probe. We first measured cell
viability using the MTT assay to investigate the activity of CE-P.
The cytotoxicity of CE-P was measured, and the results shown
in Figure 2A did not reveal obvious changes in cell viability.
Then, we determined whether CE-P protects cells from ox-
LDL-induced injury. As shown in Figure 2B, the control group
was pretreated for 8h with vehicle then exposed without ox-
LDL, the other groups exposed to ox-LDL exhibited dramatically
decreased cell viability, whereas pretreatment with CE or CE-P
(0.625 or 1.25µg/mL) for 8 h significantly ameliorated cell injury.
We found that there were no significant differences between the
two compounds at the same doses for sustaining the cell viability.
CE-P retained the ability of inhibiting ox-LDL induced HUVECs
damage, and the presence of the small alkyne moiety does not
affect the biological activity of CE.

CE-P Attenuates ox-LDL-Induced HUVEC
Apoptosis
CE has been shown to protect against cell apoptosis (Tian et al.,
2017b). We first detected the phosphatidylserine (PS) levels using
Annexin V/propidium iodide (PI) double staining and flow
cytometry to explore whether the effects of CE-P on protecting
cells from ox-LDL-induced injury involved the inhibition of cell
apoptosis. During the early stage of apoptosis, phosphatidylserine
is exposed on the extracellular side of the cell membrane,
and Annexin V specifically binds PS (Qin et al., 2015). As
shown in Figure 3A, the protective effect of CE-P on ox-LDL-
induced cell death following PS exposure was investigated using
Annexin V/PI double staining and flow cytometry. An 8 h CE-
P pretreatment decreased the percentage of Annexin V(+)/PI(–)
cells. Mitochondrial damage is closely related to cell apoptosis,
and a change in the mitochondrial membrane potential (19m)
is one of the main functional markers of mitochondrial injury
(Yu et al., 2016). JC-1 is an indicator of the mitochondrial
transmembrane potential. As indicated by the JC-1 staining
shown in Figure 3B, red fluorescence represents the normal
mitochondria, and green fluorescence indicates HUVECs in
which the mitochondrial membrane potential was depolarized.
The ox-LDL-treated group exhibited a decrease in the intensity
of red fluorescence and an increase of green signal. In contrast,
the CE-P-pretreated group reversed this change by decreasing the
green signal and increasing red fluorescence intensity, indicating
that CE-Pmitigated19m.Caspase-3, one of the critical enzymes
involved in apoptosis, the active form cleaved capase-3 is induced
at the late stage of apoptosis. DEVD-AFC is used to detect
cleaved caspase-3 activity (Sun et al., 2014). As shown in
Figure 3C, the CE-P pretreatment remarkably reduced cleaved
caspase-3 activation. We evaluated the expression of apoptosis-
related proteins using western blot analyses to further confirm
the anti-apoptotic effects of CE-P on HUVECs. As shown in
Figure 3D, CE-P increased the levels of Bcl2 and pro-caspase-3
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SCHEME 1 | Synthesis of biotinylated probe CE-P. Reagents and conditions: (a) BnBr, K2CO3, TBAB, DCM–H2O, rt, 18 h; (b) glycosyl donor i, TMSOTf, 4Å MS,

DCM, rt, 2–4 h; (c) H2, Pd–C (10%), EtOAc, reflux, 4–6 h; (d) HOBt, EDCI, propargylamine, rt, 6–8 h; (e) NaOMe, MeOH, rt, 2–3 h; (f), KBr, TEMPO, TBAB,

Na2CO3/NaHCO3, Ca(ClO)2, 0
oC, 8 h.

FIGURE 2 | CE-P protects ox-LDL-induced endothelial cell injury. (A) To evaluated the cytotoxicity of CE-P, HUVECs were treated with CE-P alone (1.25, 2.5,

5µg/mL) for 24 h and then the cell viability was measured by MTT assay. (B) HUVECs were pretreated with CE or CE-P (0.625, 1.25µg/mL) for 8 h, then were

incubated with or without ox-LDL for another 24 h and finally cell viability was assayed by MTT. The data are expressed as means ± SD. from three independent

experiments. ##P < 0.01 vs. control group, *P < 0.05, **P < 0.01 versus ox-LDL treatment group. NS is no significance.
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and decreased the levels of Cytochrome C, consistent with our
previous results showing the anti-apoptosis activity of CE. Lox-
1 is the main ox-LDL receptor in HUVECs, and ox-LDL has
been shown to induce the Lox-1 expression, which triggers cell
apoptosis (Li et al., 2003; Li and Mehta, 2009). In our study,
the CE-P pretreatment remarkably attenuated Lox-1 expression
during ox-LDL-induced injury. Based on these results, CE-P
protected HUVECs from ox-LDL-induced cell apoptosis.

Profiling of CE-P Target Proteins in HUVEC
Cell Lysates Using Click Chemistry
With the effective chemical probe in hands, we performed
pull-down experiments followed by proteomics analysis to
identify the cellular targets of CE (Figure 4A). CE-P was first
incubated with a cell lysate to identify the potential targets
of CE. Proteomes were obtained from lysates incubated with
DMSO and CE-P with a biotin-azide linker using a click
reaction, after which the labeled proteins were enriched by an
affinity pull-downmethod using streptavidin beads. The enriched
proteomes were eluted and separated by one-dimensional gel
electrophoresis (1DGE). As shown in Figure 4B, we observed
a single labeled protein band in the cell lysate in the CE-
P lane (band A, indicated by an arrow). We also examined
the washes from the CE-P reaction to exclude non-specific
binding of CE-P. After extensive washing with the binding
buffer, the unbound proteins were eluted. In Figure 4C, lane
1 is the cell lysate, lane 2 is the first elution solution, and
lane 3 is the final washing solution. Thus, band A represents
proteins that specifically bound to CE-P (Yi et al., 2012). Next,
we cut band A from the DMSO lane and CE-P lane for the
liquid chromatography/tandemmass spectrometry (LC-MS/MS)
analysis. The Mascot search algorithm was used to identify
proteins from the resulting peptides identified by LC-MS/MS. A
large number of proteins were identified from each LC/MS run.
The proteins which got the scores > 100, were considered as
reliable hits (Table S1) (Weerapana et al., 2010; Shi et al., 2011).
Some of these proteins were inevitably non-specific proteins,
many of which were “sticky” and/or highly abundant proteins.
These proteins were automatically removed. “False” hits that
appeared in control pull-down/LC/MS experiments were also
eliminated to generate the final complete list of proteins (Table
S1). Consequently, we identified 37 proteins as specific targets of
CE-P.

Hsp90AB1 as a Potential Target of CE-P
The molecular targets of CE-P were predicted using Discovery
Studio 2016 software. Nineteen potential targets were found and
shown to have probable relationships with the pharmacological
effects of CE-P. Among these candidates, we selected targets
with scores > 0.5 for the subsequent investigations and finally
identified 9 proteins, as shown in Figure 5A. Moreover, Hsp90
which was predicted with a higher score 0.848264, was also
identified by gel proteomic with the high score 217 in Table
S1 and Figure 5B. Comparing these above results we thought
Hsp90AB1 might be one of potential targets and be critical
for cell apoptosis (Cohen-Saidon et al., 2006; Lanneau et al.,
2007; Didelot et al., 2008; Chen et al., 2009). To further

validate Hsp90AB1 as the direct binding target of CE-P, we
confirmed the identity of the proteins that were pulled down
using immunoblotting with their respective antibodies. As shown
in Figure 5C, the CE-P pull-down precipitated Hsp90AB1,
but almost no signal was observed in the control group. To
verify the interaction of CE-P with Hsp90AB1, we incubated
recombinant Hsp90AB1 protein with CE-P. As shown in
Figure 5D, Hsp90AB1 was obviously pulled down by CE-P,
which was detected by silver staining. We also found that CE-P
can pull down Hsp90AB1 in dose-dependent manner as shown
in Figure 5E. We incubated HUVEC cell lysates with CE-P in
the absence or the presence of an excess amount of CE for
competitive binding. As shown in Figure 5F, Hsp90AB1 was
obviously pulled down by CE-P, moreover, an excess amount
of CE effectively blocked the binding of Hsp90AB1 to CE-P,
which were detected by Western blot. Taken together, the above
results unequivocally confirmed a direct interaction between CE-
P and Hsp90AB1. To further investigate the potential biological
role of CE about Hsp90AB1, we then detected the effects
of CE on Hsp90AB1 expression levels in ox-LDL induced
HUVEC damage. Figures 5G,H showed that CE pretreatment
significantly inhibited the down-regulation of the ox-LDL-
induced Hsp90AB1 expression.

Molecular Docking Between CE/CE-P and
Hsp90AB1
Based on the predicted molecular targets, we analyzed the
possible interaction between CE/CE-P and the 3D Hsp90AB1
receptor binding sites (PDBID: 3NMQ) using Molecular
Operating Environment (MOE) software package. The S-values
(CE: −8.70 and CE-P: − 8.78) were obtained based on the
virtual calculation of the interaction of CE/CE-Pwith the targeted
Hsp90 AB1 protein. Molecular modeling of CE/CE-P showed
that both two compounds could bind to the N-terminal domain
of Hsp90AB1 and participated in important hydrogen bonds with
key amino acid residues Asp 93 and Asn 51 (Figures 6A,B).
As shown in Figure 6C, the glycosyl moieties of CE (gray)
and CE-P (green) are responsible important for binding with
the key amino acid residuces of Hsp90AB1 with amino acid
residues, and the propargyl group (red frame) that exposing on
the edge of the pockets were designed for “clicking” conveniently
with biotin tag.

SPR Analysis of CE/CE-P Binding to
Hsp90AB1
Surface plasmon resonance (SPR) biosensors aremost commonly
applied for real-time dynamic analysis and measurement of
interactions in bio-molecular studies and compounds analysis
without the need for labeling processes. In our research, we
applied this system to confirm the interaction of CE/CE-P
with Hsp90AB1 and explore its binding affinity. As shown in
Figures 7A,B, SPR data analysis revealed that both CE and CE-P
could bind to Hsp90AB1 in a dose-dependent manner. The KD-
value of CE-P binding to Hsp90AB1 was 23.4µM (Figure 7D),
and CE was 2.34µM (Figure 7C).
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FIGURE 3 | CE-P attenuates the ox-LDL induced HUVECs apoptosis. The protective effect of CE-P on ox-LDL-induced apoptosis was determined via AnnexinV/PI

double staining, JC-1 staining, cleaved-caspase3 activity, and western blot assay. HUVECs were pretreated with CE-P (1.25µg/mL) for 8 h and then incubated with or

without ox-LDL for additional 24 h for associated measures. (A) After cell treatment, cell early apoptosis was measured via AnnexinV/PI double staining by flow

cytometry. (B) The mitochondria damage during apoptosis was detected by JC-1 staining through fluorescence microscope. (C) At the final stage of apoptosis, the

cleaved caspase3 activity was measured by fluorometric assay. (D) Apoptosis associated proteins Bcl2, Caspase3, Cytochrome C were evaluated by western blot.

The data are expressed as means ± SD from three independent experiments. ##P < 0.01 vs. control group, **P < 0.01 vs. ox-LDL treatment group.

DISCUSSION

The design and synthesis of potential probes represents a
major challenge for target identification. In our previous study,
the introduction of a substituent at the C-28 position of
CE maintained its protective effects. Based on the results of
preliminary SAR studies, amide derivatives of CE that containing
ursane and galactoside scaffolds maintained similar activity
to the parental compound CE. In the current study, the N-
propargylamide derivative CE-P was chosen as the clickable
activity-based probe in which the biotin tag was introduced using
a Cu (I)-catalyzed Huisgen 1, 3-dipolar cycloaddition reaction.
According to the results of the MTT assay, the CE-P probe

exhibited promising protective effects against ox-LDL-induced
HUVEC damage. We also confirmed that CE-P protects against
apoptosis using Annexin V/PI staining, JC-1 staining, caspase-3
activity assays and western blotting. Based on these results, CE-
P maintains its anti-apoptosis activity and is suitable for use in
further research.

In this context, we introduced a very small alkyne group into
CE to create a clickable activity-based probe. Unlike the bulky
biotin tag, the small alkyne group does not affect the interaction
of this compound with the potential targets in vitro or its ability
to penetrate the plasma membrane. In our previous reports, we
utilized an ABPP probe and identified ∼750 potential targets,
however, with this probe, we identified 37 proteins as the most
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FIGURE 4 | Protein Profiling of CE-P by click chemistry in HUVEC cell lysate. (A) Schematic image of proteome profiling of potential cellular targets of CE-P in HUVEC

cell lysate. (B) The binding proteins was separated by SDS-PAGE and stained by coomassie blue staining. (C) The washing solution of CE-P was assayed by

coomassie blue staining. Lane 1 is the whole cell lysate, lane 2 is the first washing solution, and lane 3 is the final washing solution.

promising targets using the gel-based strategy. The clickable
probe excluded a significant number of non-specific proteins and
increased the possibility of identifying potential targets to prevent
further injury. The probe will also be used to explore potential
targets in vivo in future studies.

The ability to predict and interpret the mechanisms of
action and biological targets of drugs has become feasible
with the development of computational chemistry. Using DS
2016 software, we screened 9 proteins as potential targets
that modulate a number of biological functions. Among
these candidates, we focused on Hsp90AB1 because it had
higher scores both in DS vital prediction and proteomics
identification of the pull-down targets with CE-P. To rule
out the interference of others, we used Hsp90AB1 pure
proteins to repeat the binding experiments. The SPR results
also revealed the affinity characters between them. By affinity
analysis, we found CE-P (23.4µM) had a relatively weaker
affinity than CE (2.43µM), but still maintained the property

to bind the Hsp90AB1 in a dose-dependent manner. To
explore their mode of action, we performed virtual assay
and found both ligands could bind with Hsp90AB1, maybe
it was the way that CE could influence the target function.
However, this binding site was speculative and based only
on molecular modeling. To confirm its exact binding domain
of CE with Hsp90AB1, it needs more powerful researches
such as ATP/ADP site mutation and cocrystallization to prove
this.

TheHsp90s are a family ofmolecular chaperones that function
in the cellular stabilization, regulation, and activation of a range
of “client” protein. The human isoforms of Hsp90 include
Hsp90α and Hsp90β (also named Hsp90AA1 and Hsp90AB1)
which are 85% identical (Li and Buchner, 2013; Synoradzki
and Bieganowski, 2015). Their distinct functions have been
identified (Lamoth et al., 2016). Hsp90α correlates with tumor
invasiveness, angiogenesis and metastasis (Tsutsumi et al., 2008;
Song et al., 2010). In contrast, Hsp90β appears to have specific
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FIGURE 5 | Hsp90ab1 as potential target of CE-P. (A) The predicted proteins by Discovery Studio 2016 software. (B) Identified peptide of Hsp90ab1 by LC/MS

(C) Western-blotting validation of the CE-P target Hsp90ab1 by whole cell lysate pull-down assay. (D) The pull-down assay of the recombinant Hsp90AB1 by CE-P.

(E) CE-P could pull down Hsp90AB1 in dose-dependent manner. (F) CE could inhibit the binding to Hsp90AB1 and then the proteins bound to CE-P were detected

by Western blot. (G) Effects of CE on Hsp90AB1 expression levels in ox-LDL induced HUVEC damage. Cell lysates were harvested, and Western blot analysis was

performed. β-actin expression was examined as the protein loading control. (H) Densitometric analysis was used to quantify the levels of Hsp90AB1. Values are

expressed as the mean ± SD #p < 0.05 ox-LDL group vs. control group; *p < 0.05, vs. ox-LDL group.

role in the anti-apoptitic functions of Bcl2 and cIAP1 (Cohen-
Saidon et al., 2006; Lanneau et al., 2007; Didelot et al., 2008;
Chen et al., 2009). Hsp90α and Hsp90β were also recently
found to have differing effects on the activity of endothelial
nitric oxide synthase (Cortes-González et al., 2010; Fismen et al.,
2012). In our research, the specific domains of Hsp90AB1 were
identified by LC/MS of pull-down proteins. CE could protect
ox-LDL induced apoptosis and this coincides with the function
of Hsp90AB1, so we mainly focused on Hsp90AB1. Indeed, we
also identified one non-specific sequence (HFSVEGQLEFR) of
Hsp90AA1 and Hsp90AB1 except most of the specific sequences.
Might it was also a possible insight for other Hsp90s such as
Hsp90AA1 as the potential target of CE, but was still need a
lot of experimental results to prove it. Hsp90AB1, as molecular
chaperone, interact with a lot of clients to form complexes to
regulate its activity. In our research, we have confirmed CE
could directly bind to Hsp90AB1 by SPR assay, if CE binds
Hsp90AB1 clients still need more exploration (Hartson and
Matts, 2012).

Post-translation modification (PTM) is central to biology by
expanding and modulating the function of a large number of
proteins. PTM contains a lot of styles such as attachment of small

moieties cofactors, phosphorylation, acetylation, methylation,
ubiquitylation (Hartley et al., 2015). Hsp90 undergoes extensive
post-translational modifications, such as posphorylation,
acetylation, S-nitrosylation, and ubiquitination (Mollapour and
Neckers, 2012). Each of these factors can impact significantly
on protein structure and function thus influencing and even
enabling inherent protein activity. In our research, we confirmed
CE binds Hsp90AB1 to interfere its function. If there is some
other post-translation modifications involved in their interaction
need more exploration.

Taken together all these results, we have focused our attention
on Hsp90AB1 as one potential target of CE in HUVECs for
further studies. The other candidates in this report should still be
considered as potential targets, but their roles must be confirmed
in additional experiments. In our future studies, we will perform
in vivo experiments to further examine all the candidates.

CONCLUSION

In summary, our present researches employed chemical
proteomics and click chemistry approaches for the first time to
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FIGURE 6 | Modeling study of the structure of CE/CE-P binding to Hsp90AB1 protein. (A) Two-dimensional ligand interaction diagram of CE and Hsp90AB1.

(B) Two-dimensional ligand interaction diagram of CE-P and Hsp90AB1. (C) Three-dimensional modeling of CE/CE-P binding with Hsp90AB1.

FIGURE 7 | SPR analyses of CE or CE-P binding to Hsp90AB1. Hsp90AB1 immobilized to a CM5 Sensor Chip was provided with the CE/CE-P at concentrations

varying from 0.75 to 12.5µM. (A,B) Representative binding curves of CE (A) and CE-P (B) binding to Hsp90AB1. (C,D) Kinetic binding constants of CE (C)/CE-P
(D) with Hsp90AB1.

explore the targets of CE in HUVECs and identified Hsp90AB1
as possible molecular target. In our report, we designed and
synthesized the clickable CE-P probe and showed that it exhibited
similar activity to CE by inhibiting ox-LDL-induced cell injury.
For the sake of fishing its targets, we pulled down the proteins in

HUVECs cell lysate with CE-P and identified 37 potential targets
using the gel-based proteomic strategy. Combining fishing data
by DS 2016, we finally focused on Hsp90AB1 protein on account
of the higher scores both in the pull-down assay and virtual
assay. To confirm the target, we firstly detected its existence in
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whole cell lysate by western blotting. The probe CE-P performed
the same mode of interaction and had the same binding site with
Hsp90AB1, which were proved by the competitive inhibition
experiment and molecular docking software respectively. To
further confirm the interactions of CE-P with Hsp90AB1,
we used the recombinant Hsp90AB1 protein to exclude the
interference of others protein in cell lysate. Moreover, the SPR
analysis revealed that both CE/CE-P could bind to Hsp90AB1
with the similar protein affinity which proved that both CE and
CE-P could direct bind to protein Hsp90AB1. Based on upon
reliable data, we believe that Hsp90AB1 is the potential target of
CE, and will be a more promising target for future explorations.
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The identification of lead compounds usually includes a step of chemical diversity

generation. Its rationale may be supported by both qualitative (SAR) and quantitative

(QSAR) approaches, offering models of the putative ligand-receptor interactions. In

both scenarios, our understanding of which interactions functional groups can perform

is mostly based on their chemical nature (such as electronegativity, volume, melting

point, lipophilicity etc.) instead of their dynamics in aqueous, biological solutions (solvent

accessibility, lifetime of hydrogen bonds, solvent structure etc.). As a consequence, it

is challenging to predict from 2D structures which functional groups will be able to

perform interactions with the target receptor, at which intensity and relative abundance

in the biological environment, all of which will contribute to ligand potency and intrinsic

activity. With this in mind, the aim of this work is to assess properties of aromatic

rings, commonly used for drug design, in aqueous solution through molecular dynamics

simulations in order to characterize their chemical features and infer their impact in

complexation dynamics. For this, common aromatic and heteroaromatic rings were

selected and received new atomic charge set based on the direction and module of

the dipole moment from MP2/6-31G* calculations, while other topological terms were

taken from GROMOS53A6 force field. Afterwards, liquid physicochemical properties

were simulated for a calibration set composed by nearly 40 molecules and compared

to their respective experimental data, in order to validate each topology. Based on

the reliance of the employed strategy, we expanded the dataset to more than 100

aromatic rings. Properties in aqueous solution such as solvent accessible surface area,

H-bonds availability, H-bonds residence time, and water structure around heteroatoms

were calculated for each ring, creating a database of potential interactions, shedding light

on features of drugs in biological solutions, on the structural basis for bioisosterism and

on the enthalpic/entropic costs for ligand-receptor complexation dynamics.

Keywords: drug design, GROMOS, aromatic rings, functional groups, interactions
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1. INTRODUCTION

The development of a drug is amulti step process, usually starting
with the identification of hit compounds. The challenging task of
optimizing these compounds into leads and finally into drugs is
commonly facilitated by computer aided drug design (CADD)
techniques (Anderson, 2003; Sliwoski et al., 2013; Bajorath,
2015). With the growing information on protein structure
on the last years, structure based drug design (SBDD) has
become a significant tool for hit discovery (Anderson, 2003;
Lounnas et al., 2013; Lionta et al., 2014). When structural
information of the receptor is absent, molecular fingerprints of
approved drugs are also used to search for new ligands in a
process also known as ligand based drug design (LBDD) (Lee
et al., 2011). Nevertheless, there are still considerable challenges
associated to the predictiveness of ligand potency and affinity via
computational methods (Paul et al., 2010; Csermely et al., 2012).

In general, optimization of lead compounds is based in
qualitative or quantitative structure-activity relationships (SAR
or QSAR, respectively) (Shahlaei, 2013). These relationships
are usually based in molecular descriptors to predict ligand
pharmacodynamics and pharmacokinetics, such as logP to
access lipophilicity, logS to access solubility or pKa to access
the ionic state of a compound, along with other topological,
geometrical and physicochemical descriptors (Danishuddin and
Khan, 2016). While some correlations have reasonable power of
predictiveness, many descriptors have no biological meaning and
can mislead the optimization process. As highlighted by Hopkins
et al. (2014), high-throughput screening methods have been
linked to the rise of hits with inflated physicochemical properties
during the optimization process (Keserü and Makara, 2009).
Also, recent reviews have shown an increase of molar mass in
the recent medicinal chemistry efforts (Leeson and Springthorpe,
2007) andmany authors correlate this strategy with the likelihood
of poor results of such compounds (Gleeson, 2008;Waring, 2009,
2010; Gleeson et al., 2011).

Many chemical moieties are regularly used in medicinal
chemistry to produce chemical diversity (Bemis and Murcko,
1996; Welsch et al., 2010; Taylor et al., 2014), a practice well-
known as fragment based drug design (FBDD), and its use
for pharmacophore modeling and to prevent high toxicity is
not recent (Gao et al., 2010). Particularly, aromatic rings are
extensively used in drugs due to their well known synthetic
and modification paths (Aldeghi et al., 2014). For example, at
least, one aromatic ring can be found in 99% of a database
containingmore than 3,500 evaluated by themedicinal chemistry
department of Pfizer, AstraZeneca (AZ) and GlaxoSmithKlin
(GSK) (Roughley and Jordan, 2011). Still, little is known
about their chemical features in biological solution, such as
H-bonds availability, lifetime of H-bonds, solvent accessibility,
and conformational ensemble. In this sense, molecular dynamics
(MD) simulations can provide useful information with atomistic
resolution and access the aforementioned features of chemical
groups in water, providing fundamental data to drive medicinal
chemistry approaches.

Still, dynamical properties of chemical moieties in biological
solution are usually neglected in drug design and very difficult

to access (Ferenczy and Keseru, 2010; Reynolds and Holloway,
2011; Hopkins et al., 2014). Even though MD simulations
have been used in medicinal chemistry to generate different
receptor conformers and to validate binding poses predicted
by docking (Zhao and Caflisch, 2015; Ganesan et al., 2017),
simulations of free ligand in solution is rarely used to access the
conformational ensemble and energies associated with solvation
due to the challenge on solving conformational flexibility and
internal energies (Butler et al., 2009; Blundell et al., 2016). When
solvated, the enthalpic and entropic costs of disrupting a H-
bond or dismantling the entire solvation shell of a ligand can
be the determinant step to provide the proper energy of binding
(Biela et al., 2012; Blundell et al., 2013; Mondal et al., 2014).
Yet, free-energy of binding is often predicted via geometrical or
alchemical transformations (Zwanzig, 1954; Aqvist et al., 1994;
Woo and Roux, 2005; Gumbart et al., 2013), alongside with
recent developments in funnel metadynamics (Limongelli et al.,
2013). More recently, thermodynamical features of ligands have
been experimentally investigated in order to enhance binding
and efficiency (Freire, 2009; Ferenczy and Keseru, 2010; Reynolds
and Holloway, 2011). Ligand features such as H-bonds lifetime,
effects of vicinity in H-bonds availability and strength, accessible
surface area and water structure around binding sites can provide
substantial information for designing new molecular entities
(Blundell et al., 2016).

Different force fields have been used for drug design purposes,
such as MMF94 (Halgren, 1996), OPLS-AA (Jorgensen et al.,
1996), and GAFF (Wang et al., 2004). While these force
fields parameterized their electrostatic terms using ab initio
calculations, the GROMOS force fields (derived from the
Groningen Molecular Simulation package) used free-energy of
solvation as target (Daura et al., 1998; Oostenbrink et al.,
2004) to empirically assign atomic partial charges. Thus, in this
work, we have chosen the GROMOS force field to simulate
the dynamical behavior of 103 aromatic rings (including a
calibration subset of 42 molecules) mostly commonly used in
drug design and their interactions with solvent in order to access
thermodynamical properties in solution. These interactions, in
turn, offer a reference for future rational drug design studies, as
describe in details how several functional groups interact with
their surroundings.

2. METHODS

2.1. Selection of Rings
A series of 103 aromatic rings commonly used in drug design
were selected for this study (Broughton and Watson, 2004;
Jordan and Roughley, 2009; Welsch et al., 2010; Taylor et al.,
2014, 2017). Among them, a calibration set of 42 molecules
(Table 1), for which physical-chemical properties are known,
were selected from the benchmark developed by Caleman et al.
(2012). Briefly, both works of Taylor et al. (2014, 2017) employed
a detailed search of substructure frequencies from FDA Orange
Book and cross referenced with ChEMBL, DrugBank, Nature,
Drug Reviews, the FDA Web site, and the Annual Reports in
Medicinal Chemistry; the work of Broughton andWatson (2004)
employed search of substructure frequencies in MDL Drug Data
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TABLE 1 | Charge groups (colored) and aromatic rings used as calibration set in this work.

Report database by using a “Phase II” keyword; and the work of
Welsch et al. (2010) have pinpointed privileged scaffolds from
natural-products works throughout literature.

2.2. Topology Construction
Structures for these aromatic rings were built using Avogadro
(Hanwell et al., 2012). Molecular mechanical (MM) topological
parameters as bonds, angles, and Lennard-Jones parameters were
taken from GROMOS53A6 (Oostenbrink et al., 2004). Due to
the well–known good performance of MP2 methods for small
aromatic rings (Li et al., 2015; Matczak and Wojtulewski, 2015),
atomic partial charges were based on quantummechanical (QM)
calculations using MP2 theory (Møller and Plesset, 1934), 6-
31G∗ (Petersson et al., 1988) basis set and implicit solvent
Polarizable Continuum Model (PCM) (Mennucci and Tomasi,
1997) followed by a RESP fitting (Bayly et al., 1993). The so
obtained partial charges were adjusted in the MM to reproduce
the QM dipole moment of the ring. The angle θ formed between
the QM and MM model dipole moment vectors was monitored
through an in house script to make sure the angle had the
lowest value possible, guaranteeing the conservation of the QM
dipole moment direction. For our calibration set, the module of

the MM partial charges were adjusted to better reproduce the
physicochemical properties of the organic liquids. Following the
philosophy of charge group assignment, groups were limited, at
maximum, to the atoms at the ortho position on each ring. In
more complex substitution patterns, a superimposition of two
charge groups was required to correctly describe the chemical
group. In such cases, the Coulombic terms of the overlapping
atoms were adjusted to correctly describe the direction of the
total dipole moment of the ring. For molecules containing linear
constraints (benzonitrile), virtual sites were added in order to
preserve the total moment of inertia and mass, thus preserving
the linearity of these groups (Feenstra et al., 1999).

2.3. New Torsional Potentials
The quantum mechanical torsional profile of every dihedral
angle was calculated using Gaussian (Frisch et al., 2016)
(RRID:SCR_014897). Molecular structures were built using
Avogadro (Hanwell et al., 2012) and their geometry were
optimized using Hartree-Fock method (Fock, 1930; Hartree
and Hartree, 1935) and basis set 3-21G∗ (Dobbs and Hehre,
1986). Afterwards, the Scan routine was used to calculate the
total energy of the molecule conformation for each dihedral
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orientation, adopting a tight convergence criteria, with geometric
optimization, MP2/6-31G∗ and steps of 30◦. In order to calculate
the torsional profile for molecular mechanics model, dihedral
orientations were kept fixed during minimization using restraint
forces for the same angles evaluated by quantum calculations.
Both profiles were submitted to the Rotational Profiler server
(Rusu et al., 2014) to obtain appropriate sets of classical
mechanics parameters that provided a better fitting to the QM-
obtained torsional profile.

2.4. General Simulation Settings
All simulations were carried out using the GROMACS 5.0.7
package (Abraham et al., 2015) (RRID:SCR_014565). In order
to create parameters compatible with the GROMOS family, we
have followed previous literature (Daura et al., 1998; Schuler
et al., 2001; Oostenbrink et al., 2004) settings: twin-range scheme
was used with short- and long-range cutoff distances of 0.8
and 1.4 nm, respectively. Also, the reaction-field method was
applied to correct the effects of electrostatic interactions beyond
the long-range cutoff distance (Barker and Watts, 1973; Tironi
et al., 1995), using the dielectric constant as εRF for organic
liquid simulations and εRF = 62 for simulations in water (Heinz
et al., 2001; Oostenbrink et al., 2004). The LINCS algorithm
(Hess et al., 1997; Hess, 2008) was used to constrain all covalent
bonds, using a cubic interpolation, a Fourier grid of 0.12 nm
and timestep of 2 fs. Configurations were saved at every 2 ps for
analysis.

2.4.1. Organic Liquids Simulations
In order to build the organic liquid systems, cubic boxes of
2×2×2 nm were created, each with a single organic molecule.
A total of 125 of these boxes were stacked, forming an unique
box with conventional periodic boundary conditions treatment
of 10×10×10 nm which was simulated under high pressure
(100 bar) to induce liquid phase. The systems were then
simulated and equilibrated at 1 bar. Afterwards, the boxes
were staggered to obtain systems with 1000 molecules in liquid
phase and simulated at 1 bar until the total energy drift
converged to values below 0.5 J/(mol×ns×Degrees of Freedom).
Such criterion is necessary to make sure that the fluctuating
properties could be accurately calculated (Caleman et al., 2012).
All simulations were carried out with Berendsen pressure
and temperature coupling algorithm due to their efficiency in
molecular relaxations (Berendsen et al., 1984), using τT = 0.2
ps and τP = 0.5 ps. When available, experimental values of
isothermal compressibility and dielectric constant were used as
an additional parameter for liquid simulations. Otherwise, the
compressibility of themost chemically similarmolecule was used.
The experimental dielectric constants from each liquid were
also used as parameters in the simulations (Oostenbrink et al.,
2004).

In order to calculate the densities of liquids (ρ), simulations at
constant pressure were carried out for 10 ns and ρ were calculated
using block averages of 5 blocks. Enthalpy of vaporization
(1Hvap) were calculated by block averaging the same 10 ns of
liquid simulation to obtain Epot(l) and another 100 ns of gas
phase simulation using a stochastic dynamics integrator (SD)

(Van Gunsteren and Berendsen, 1988) with a single molecule in
vacuum, to obtain Epot(g) as the equation:

1Hvap = (Epot(g)+ kBT)− Epot(l) (1)

Aiming to calculate the dielectric constant (ε), the simulation of
the liquid boxes from which ρ were obtained were extended up
to 60 ns. Convergence calculations of ε were done using running
averages and ε were evaluated only after convergence. In order to
calculate thermal expansion coefficients (αP) and classic isobaric
heat capacities (CPcla), three constant pressure simulations were
carried out for 5 ns each, with temperatures T, T+10K, and T-
10K, for each liquid. The calculations of αP and CPcla were done
using the finite difference method (Kunz and van Gunsteren,
2009):

αP ≈
1

V

(

∂V

∂T

)

P

≈ −
ln〈ρ〉T2 − ln〈ρ〉T1

T2 − T1
(2)

and:

CP ≈

(

∂U

∂T

)

P

≈
〈U〉T2 − 〈U〉T1

T2 − T1
(3)

In order to calculate isothermal compressibilities (κT), three
constant volume simulations were carried out for 5 ns each, with
pressures 1, 0.9, and 1.1 bar. The calculations of κT was also done
using the finite difference method:

κT ≈
1

V

(

∂V

∂P

)

T

≈ −
ln ρ2 − ln ρ1

〈P〉 ρ2 − 〈P〉 ρ1

(4)

2.4.2. Solvation Free Energy Simulations
Simulations in water were carried out to evaluate the solvation
free energies (1Ghyd) of 30 molecules at 1 bar and 298 K.
Each aromatic ring (solute) was centered into a cubic box
with appropriate dimensions to reproduce the density of SPC
water models (0.997 g/cm3). In free-energy calculations using
thermodynamic integration (TI) method, a coupling parameter
λ is used to perturb solute-solvent interactions.

1Gsim =

∫ 1

0

〈

∂H

∂λ

〉

λ

dλ (5)

in which H is the Halmiltonian, λ = 0 refers to the state in
which the solute fully interacts with the solvent and λ = 1 refers
to the state in which the solute-solvent interactions do not exist.
In our setup, Coulombic interactions were decoupled first, and
the Lennard-Jones interactions after, using a soft-core potential to
avoid issues related to strong Lennard-Jones interactions (Beutler
et al., 1994). A soft-core power was set to 1 and αLJ set to 0.5,
following recommendations of Shirts and Pande (2005). Both
interactions were decoupled using λ values: 0, 0.02, 0.04, 0.07,
0.1, 0.15, 0.2, ..., 0.8, 0.85, 0.9, 0.93, 0.96, 0.98, 1, totalizing 50 λ

simulations.
Our simulation protocol consisted of an initial steepest-

descent minimization, followed by a L-BFGS minimization
until a maximum force of 10 kJ/(mol-1 nm-1) was reached.
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TABLE 2 | Dataset of aromatic rings evaluated in this work. Heteroatoms are highlighted in colors.

After, initial velocities were assigned and the systems were
equilibrated for 100 ps using a NVT ensemble at each λ. The
systems were subjected to another 100 ps of equilibration on a
NPT ensemble, using the Parrinello-Rahman pressure coupling
algorithm (Parrinello and Rahman, 1981), a τt = 5 ps time
constant for coupling and a compressibility of 4.5 × 105 bar-1.
Finally, production simulations were done using the Langevin
integrator (Van Gunsteren and Berendsen, 1988) to sample
the 〈∂H/∂λ〉λ until convergence. Therefore, simulations time
varied between 1 and 5 ns. In addition, the last frame of the
production phase of each λ was used as input for the next
subsequent λ.

2.4.3. Simulation of Rings in Water
After an extensive comparison of simulated and experimental
physicochemical properties of our calibration set and consequent
validation, the same strategy of topological construction was
applied to other 61 rings commonly used in drug design (Table 2)

for which experimental properties are not available, totalizing
103 aromatic rings in this study. Hence, in order to evaluate
chemical features and interactions of aromatic rings with their
surroundings, a total set of 103 aromatic was simulated in
water, including all 42 molecules present in the calibration
set (Table 1). Each solute was placed in a cubic box with a
distance of 1.0 nm to its edges. The boxes were then filled
with SPC water model and minimized long enough eliminate
any possible clashes until convergence at a maximum force of
0.1 kJ/mol×nm. After, the system was equilibrated in a NVT
ensemble at 298.15 K using the Nosé-Hoover algorithm (Nosé,
1984) for temperature coupling. Production runs of 250 ns were
carried out with temperature and pressure coupling handled by
V-rescale (Bussi et al., 2007) and Parrinelo-Rahman (Parrinello
and Rahman, 1981) algorithms, using τT = 0.1 ps and τP =

2.0 ps. The GROMACS tools hbond, rdf, and sorient were used
to calculate H-bonds related properties and solvation structure
around the heteroatom using a block-averaging approach over 5
box of 50 ns.
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FIGURE 1 | Evaluation of torsional parameters and dihedral distribution. QM and adjusted MM torsional profiles are shown in black and green, respectively. In red, the

dihedral distribution during simulations.

3. RESULTS

3.1. New Torsional Profiles
In order to accurately describe the torsional angles of the selected
aromatic rings, a total of 15 new dihedral potentials were derived
by fitting the MM profiles to the corresponding QM-calculated
ones (Table S1). Fittings were conducted using the Rotational
Profiler server (Rusu et al., 2014). For all cases, the use of new
parameters yield almost identical values of minimum and barrier
amplitudes to those calculated by QM (Figure 1). Dihedral
distribution throughout simulations was also evaluated.

3.2. Physical-Chemical Properties
In order to validate our strategy of topology building, boxes
of organic liquids were simulated to obtain physical-chemical
properties for each compound. Reference experimental values
(Table S2) were used to calculate the absolute error of each
property and to guide adjustments on the coulombic terms in
order to mitigate deviations. We have calculated the θ angle
between QM and MM dipole moments and the final version of
our calibration set (Table 1) yielded an average θ angle of 2.5◦ ±
6.1◦, suggesting that our MM models conserve the direction of

the QM dipole moment, preserving the electrostatic potential of
each molecule.

Following the GROMOS philosophy (Oostenbrink et al.,
2004; Horta et al., 2016), density (ρ), enthalpy of vaporization
(1Hvap), and free energy of solvation (1Ghyd) were used as
targets for the parametrization, while isothermal coefficient
(αP), isothermal compressibility (κT), dielectric constant (ε),
and classic isobaric heat capacity (CPcla) were calculated as
benchmarks for GROMOS performance and compared with the
results obtained in Caleman et al. (2012) and Horta et al. (2016)
(Table 3). Linear regression between experimental and simulated
values were calculated in order to access the prediction power of
the employed strategy (Figure 2). The equations further reported
were calculated excluding outliers (values higher than 2 standard
deviations).

Regarding the targeted properties, our calibration set yielded
the equations y = 0.9118x + 0.1001 for density, y = 1.0699x −
1.6491 for enthalpy of vaporization and y = 0.8676x + 0.8929
for free energy of solvation, with correlation coefficients of R =

0.92, R = 0.96, and R = 0.89, respectively. In terms of average
deviation (AVED), our calibration set overestimates ρ in 0.008
g/cm3, 1Hvap in 1.51 kJ/mol and underestimates 1Ghyd in 3.35
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TABLE 3 | Average deviation between experimental and simulated physicochemical properties of aromatic rings evaluated in our calibration set. Simulated GAFF and

OPLS-AA values were obtained from Caleman et al. (2012) and 2016H66 values from Horta et al. (2016). Density (ρ) in g/cm3, enthalpy of vaporization (1Hvap) in kJ/mol,

thermal expansion coefficient (αP ) in 10-3/K, isothermal compressibility (κT ) in 1/GPa, dielectric constant (ε), classic isobaric heat capacity (Cpcla) in J/mol×K, and

free-energy of solvation (1Ghyd ) in kJ/mol.

Properties Force field Statistical N Average Dev. St. Dev. R coefficient

ρ

This work 42 0.008 0.051 0.92

2016H66 6 0.016 0.019 0.99

GAFF 40 −0.008 0.045 0.93

OPLS-AA 40 0.001 0.025 0.98

1Hvap

This work 42 1.514 4.457 0.96

2016H66 6 2.257 6.758 0.96

GAFF 40 2.298 5.419 0.88

OPLS-AA 40 3.243 5.216 0.90

Cpcla

This work 42 88.201 33.440 0.77

2016H66 6 98.712 35.232 0.63

GAFF 37 133.884 40.225 0.84

OPLS-AA 37 129.397 35.330 0.91

αP

This work 42 0.146 0.210 0.82

2016H66 6 0.171 0.148 0.91

GAFF 40 0.224 0.220 0.58

OPLS-AA 40 0.155 0.210 0.64

κT

This work 42 0.046 0.500 0.70

2016H66 6 0.276 0.279 0.71

GAFF 40 0.054 0.150 0.77

OPLS-AA 40 −0.016 0.130 0.78

ε

This work 42 −4.523 5.650 0.65

2016H66 6 −2.217 2.515 0.89

GAFF 29 −4.254 2.740 0.97

OPLS-AA 33 −4.564 5.600 0.72

kJ/mol. Without the outliers, the AVED for 1Ghyd improves to
2.83 kJ/mol.

Non-targeted properties were calculated to evaluate how they
behaved in our simulations. Linear regressions yielded equations
y = 0.93825x + 0.1406 for αP (R = 0.82), y = +0.90079x −

0.0140 for κT (R = 0.70), y = 0.2581x + 1.8961 for ε (R = 0.65),
and y = 0.8989x+ 100.5 for Cpcla (R= 0.77). In terms of AVED,
αP is overestimated in 0.14 10−3/K and κT is overestimated in
0.0465 1/GPa. As expected (Caleman et al., 2012; Horta et al.,
2016), ε is poorly described due to the lack of polarization effects,
resulting in a underestimation of−4.52 in the dielectric constant.
On other hand, Cpcla was overestimated by 88.2 J/mol×K, a
behavior aligned with recent works in literature (Caleman et al.,
2012; Horta et al., 2016). Individual AVED and absolute errors
can be found in Tables S4, S5 in Supplementary Material, along
with experimental properties in Table S3.

3.3. Interactions in Water
In order to quantitatively evaluate the behavior of heteroaromatic
rings in water and their interactions with the aqueous

surrounding, some properties were calculated throughout 250 ns
of simulation. From these calculations, we were capable to assess
the average H-bond (AverHB) of each heteroatom along with
its residence time (τHB), lifetime (lifetimeHB), the free-energy of
breakage of a H-bond (1GHB), and the percentage of simulation
time that a given heteroatom was involved in, at least, one H-
bond (Percent). We were also capable to obtain the optimal
binding distance between an heteratom and water (OBDHB),
along with the coordination number (CNHB) at the OBDHB

and the average orientation of water molecules surrounding the
heteroatom. These data are compiled in Tables 4, 5.

4. DISCUSSION

4.1. Topology Building Strategy
The accurate description of organic compounds’ chemical
diversity, mainly in the context of drugs and medicinal
chemistry, is a challenging task in molecular mechanics since
it must be described as broadly as possible by the force field
fragments. However, the most common sets of MM parameters
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FIGURE 2 | Correlation between experimental and calculated physical-chemical properties of organic liquids for 42 aromatic compounds on the calibration set.

Standard deviations are shown as bars, linear regressions are shown as green and empty dots represent outliers.

employed in biomolecules simulations are usually centered on
the monomeric constituents of biopolymers and lipids, while
parameters for synthetic compounds, as well as other common
non-polymeric biological molecules (e.g., natural products),
must be included from specific calculations or external sets of
parameters.

In this sense, a proper description of torsional terms will
impact directly the dynamical behavior of these small molecules,
even considering that, when evaluating ligand-receptor
complexes, the influence of these termsmight be mitigated due to
the ligand movement restriction inside the binding pocket. Still,
accommodation of flexible docking derived poses, fine tunning
of induced fit, and characterization of ligands conformational
induction vs. selection (with potential inferences of the entropic
costs of binding) require dihedrals potentials specifically
adjusted to organic compounds. Hence, new parameters were
generated in this work exclusively for 15 dihedrals in aromatic
rings in our calibration set (Figure 1). In general, our results
revealed that our MM parameters yielded a good description
of the QM torsional profile, with the exceptions of [16]
tiophenol, [42] phenoxybenzene, [24] phenylmethanol, and [18]
trifluoromethylbenzene. For these molecules, the distribution
profile was almost evenly spread, most likely due to the low
energy barrier (below 2.5 kJ/mol), indicating that transient states
are commonly achieved during our simulations in SPC water
model. Simulations of these particular molecules in vacuum
revealed little influence of water solvation in the dihedral profile
(data not shown).

In another sense, the choice of an atomic charge set
for ligands can drastically impact thermodynamical binding
properties such as complexation free-energy and desolvation.
Therefore, we employed in this work a dipole moment
based strategy to describe the Coulombic contribution using
physicochemical properties of organic liquids as target. The
prediction power of our strategy was compared to recent
comparisons of aromatic compounds in liquid phase (Caleman
et al., 2012; Horta et al., 2016) and summarized in Table 3.
In general, our calibration set yielded similar or lower average
deviations than benchmarks made with OPLS-AA, GAFF, and
2016H66 sets for all physicochemical properties evaluated in
this work. The main difference was in terms of Cpcla, for
which GAFF and OPLS-AA overestimate nearly 40 J/mol×K
more than our parameters. Still, all four parameters sets
overestimates Cpcla. In addition, the GROMOS53A5 force field
was designed to reproduce physicochemical properties, and
later on adjusted to reproduce free energy of solvation and
hydration (GROMOS53A6) (Oostenbrink et al., 2004). The
average deviation on density, enthalpy of vaporization and free-
energy of solvation of GROMOS53A5 were 0.0389 g/cm3, −0.4
and 3.8 kJ/mol, respectively. These values are very similar to
our results, as shown in Table 3, reiterating the quality of our
parameters.

It is important to mention that the employed benchmark
set was built using the same Lennard-Jones parameters used
in the benzene ring of phenylalanine in GROMOS53A6. While
GROMOS53A6 produces a 1Ghyd = 0.0 kJ/mol for benzene
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TABLE 4 | Properties of heteroaromatic rings in water. Average H-bonds (AverHB), H-bond residence time (τHB) is ps, H-bond lifetime (lifetimeHB ) in 1/ps, free-energy of

H-bond breakage (1GHB) in kJ/mol, percentage of simulation with at least one formed H-bond (Percent.), coordination number of water (CN), optimal binding distance

with water (OBDHB) in nm, and overall water orientation around the heteroatom (Orientation).

Molecule Atom AverHB τHB lifetimeHB 1GHB Percent CN OBDHB Orientation

Water

Ow 1.73 ± 0.62 2.11 ± 0.02 0.47 ± 0.00 6.38 ± 0.03 98.58 4.11 ± 2.83 0.18 ± 0.00 Undefined

OH1 0.87 ± 0.35 1.80 ± 0.03 0.55 ± 0.01 5.98 ± 0.05 86.25 4.11 ± 2.83 0.18 ± 0.00 O-oriented

OH2 0.86 ± 0.35 1.83 ± 0.03 0.54 ± 0.01 6.03 ± 0.04 86.07 4.11 ± 2.83 0.18 ± 0.00 O-oriented

Phenol
O 1.10 ± 0.62 1.61 ± 0.03 0.62 ± 0.01 5.70 ± 0.04 85.96 1.46 ± 1.03 0.18 ± 0.00 Undefined

OH 0.96 ± 0.20 9.49 ± 0.18 0.11 ± 0.00 10.11 ± 0.05 96.04 0.90 ± 0.01 0.17 ± 0.00 O-oriented

Phenylmethanol
O 1.42 ± 0.58 2.58 ± 0.03 0.39 ± 0.00 6.88 ± 0.02 96.51 2.68 ± 1.59 0.18 ± 0.00 Undefined

OH 0.95 ± 0.24 5.37 ± 0.06 0.19 ± 0.00 8.70 ± 0.03 94.25 1.13 ± 0.01 0.17 ± 0.00 O-oriented

2-methylphenol
O 1.04 ± 0.59 1.88 ± 0.04 0.53 ± 0.01 6.09 ± 0.05 84.80 1.05 ± 0.00 0.18 ± 0.00 Undefined

OH 0.95 ± 0.23 9.46 ± 0.17 0.11 ± 0.00 10.10 ± 0.04 94.53 0.87 ± 0.01 0.17 ± 0.00 O-oriented

3-methylphenol
O 1.08 ± 0.61 1.74 ± 0.02 0.58 ± 0.01 5.90 ± 0.03 85.83 1.43 ± 1.00 0.18 ± 0.00 Undefined

OH 0.96 ± 0.19 10.12 ± 0.19 0.10 ± 0.00 10.27 ± 0.05 96.30 0.90 ± 0.01 0.17 ± 0.00 O-oriented

4-methylphenol
O 1.08 ± 0.61 1.73 ± 0.02 0.58 ± 0.01 5.89 ± 0.03 85.70 1.10 ± 0.01 0.18 ± 0.00 Undefined

OH 0.96 ± 0.20 10.00 ± 0.21 0.10 ± 0.00 10.24 ± 0.05 96.21 0.90 ± 0.01 0.17 ± 0.00 O-oriented

Benzenethiol
S 0.67 ± 0.65 0.38 ± 0.01 2.63 ± 0.05 2.13 ± 0.04 57.29 0.81 ± 0.17 0.23 ± 0.00 Undefined

SH 0.77 ± 0.43 1.00 ± 0.02 1.00 ± 0.02 4.52 ± 0.05 76.38 2.08 ± 0.02 0.23 ± 0.00 O-oriented

Aniline

N 0.93 ± 0.58 1.64 ± 0.02 0.61 ± 0.01 5.75 ± 0.03 79.89 1.01 ± 0.01 0.19 ± 0.00 Undefined

NH1 0.63 ± 0.49 1.15 ± 0.03 0.87 ± 0.02 4.87 ± 0.06 62.48 1.25 ± 0.38 0.22 ± 0.00 O-oriented

NH2 0.63 ± 0.50 0.99 ± 0.02 1.01 ± 0.02 4.51 ± 0.04 62.05 1.39 ± 0.25 0.23 ± 0.00 O-oriented

2-chloroaniline

N 0.86 ± 0.50 2.29 ± 0.04 0.44 ± 0.01 6.59 ± 0.05 79.39 0.92 ± 0.00 0.19 ± 0.00 Undefined

NH1 0.51 ± 0.51 1.00 ± 0.03 1.00 ± 0.03 4.53 ± 0.06 50.60 1.33 ± 0.14 0.23 ± 0.00 O-oriented

NH2 0.56 ± 0.51 0.87 ± 0.03 1.15 ± 0.04 4.18 ± 0.09 55.20 3.82 ± 5.29 0.23 ± 0.01 O-oriented

Cl 0.24 ± 0.45 0.32 ± 0.08 3.26 ± 0.68 1.66 ± 0.56 22.67 18.94 ± 10.05 0.36 ± 0.00 Undefined

Pyridine N 1.41 ± 0.71 1.33 ± 0.02 0.75 ± 0.01 5.24 ± 0.03 91.46 1.59 ± 0.01 0.20 ± 0.00 Undefined

Pyrimidine
N1 1.06 ± 0.68 0.91 ± 0.02 1.10 ± 0.02 4.30 ± 0.05 80.71 1.23 ± 0.01 0.20 ± 0.00 Undefined

N2 0.98 ± 0.68 0.81 ± 0.02 1.24 ± 0.03 4.00 ± 0.06 76.96 1.17 ± 0.01 0.20 ± 0.00 Undefined

2-methylpyridine N 1.52 ± 0.70 1.74 ± 0.04 0.57 ± 0.01 5.90 ± 0.06 93.96 1.68 ± 0.00 0.20 ± 0.00 Undefined

3-methylpyridine N 1.43 ± 0.71 1.34 ± 0.04 0.74 ± 0.02 5.26 ± 0.07 91.65 1.61 ± 0.01 0.20 ± 0.00 Undefined

4-methylpyridine N 1.46 ± 0.71 1.44 ± 0.04 0.69 ± 0.02 5.44 ± 0.07 92.57 1.62 ± 0.01 0.20 ± 0.00 Undefined

2,4,6-trimethylpyridine N 0.36 ± 0.53 0.36 ± 0.04 2.79 ± 0.31 2.00 ± 0.28 33.67 24.48 ± 3.47 0.42 ± 0.09 Undefined

Quinoline N 1.64 ± 0.68 2.00 ± 0.05 0.50 ± 0.01 6.25 ± 0.06 96.10 1.78 ± 0.01 0.19 ± 0.00 Undefined

Isoquinoline N 1.26 ± 0.68 1.22 ± 0.04 0.82 ± 0.02 5.02 ± 0.07 88.67 1.43 ± 0.01 0.20 ± 0.00 Undefined

Benzonitrile N 1.63 ± 0.72 1.30 ± 0.01 0.77 ± 0.01 5.17 ± 0.02 95.50 1.88 ± 0.01 0.19 ± 0.00 Undefined

Furan O 0.42 ± 0.57 0.29 ± 0.01 3.41 ± 0.07 1.49 ± 0.05 37.99 31.54 ± 2.60 0.46 ± 0.01 Undefined

Tiophene S 0.15 ± 0.37 0.25 ± 0.03 4.07 ± 0.49 1.07 ± 0.32 14.03 18.25 ± 5.37 0.37 ± 0.00 Undefined

Pyrrole
NH 0.92 ± 0.29 3.80 ± 0.06 0.26 ± 0.00 7.84 ± 0.04 91.73 0.38 ± 0.00 0.18 ± 0.00 O-oriented

N 0.74 ± 0.67 1.33 ± 0.03 0.75 ± 0.02 5.23 ± 0.06 60.90 0.62 ± 0.01 0.23 ± 0.00 Undefined

Fluorobenzene F1 0.30 ± 0.49 0.30 ± 0.03 3.35 ± 0.32 1.54 ± 0.24 27.84 13.84 ± 5.27 0.36 ± 0.01 Undefined

(Continued)
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TABLE 4 | Continued

Molecule Atom AverHB τHB lifetimeHB 1GHB Percent CN OBDHB Orientation

1,2-difluorobenzene
F1 0.24 ± 0.45 0.33 ± 0.07 3.14 ± 0.61 1.74 ± 0.49 22.91 12.15 ± 2.45 0.37 ± 0.01 Undefined

F2 0.24 ± 0.45 0.34 ± 0.07 3.08 ± 0.64 1.79 ± 0.51 22.90 13.31 ± 3.02 0.37 ± 0.01 Undefined

1,3-difluorobenzene
F1 0.23 ± 0.45 0.36 ± 0.10 2.91 ± 0.58 1.94 ± 0.59 22.23 14.99 ± 5.60 0.36 ± 0.01 Undefined

F3 0.23 ± 0.45 0.32 ± 0.04 3.20 ± 0.36 1.66 ± 0.29 22.22 11.70 ± 1.33 0.36 ± 0.00 Undefined

1,2,3,4-tetrafluorobenzene

F1 0.17 ± 0.38 0.36 ± 0.08 2.88 ± 0.61 1.97 ± 0.53 16.08 12.99 ± 3.94 0.37 ± 0.01 Undefined

F2 0.18 ± 0.40 0.42 ± 0.15 2.66 ± 0.78 2.22 ± 0.79 17.44 12.72 ± 2.45 0.37 ± 0.01 Undefined

F3 0.18 ± 0.40 0.33 ± 0.04 3.11 ± 0.45 1.74 ± 0.34 17.31 13.89 ± 3.36 0.37 ± 0.01 Undefined

F4 0.16 ± 0.38 0.43 ± 0.21 2.72 ± 0.83 2.20 ± 0.98 16.05 11.25 ± 1.36 0.36 ± 0.00 Undefined

1,2,3,5-tetrafluorobenzene

F1 0.17 ± 0.39 0.37 ± 0.10 2.84 ± 0.64 2.01 ± 0.61 16.51 12.34 ± 3.05 0.36 ± 0.01 Undefined

F2 0.16 ± 0.37 0.48 ± 0.25 2.47 ± 0.82 2.47 ± 1.03 15.19 12.79 ± 3.60 0.37 ± 0.01 Undefined

F3 0.17 ± 0.39 0.44 ± 0.10 2.40 ± 0.53 2.42 ± 0.56 16.59 14.91 ± 5.13 0.37 ± 0.01 Undefined

F5 0.21 ± 0.43 0.33 ± 0.06 3.17 ± 0.54 1.70 ± 0.44 20.59 11.51 ± 1.36 0.36 ± 0.01 Undefined

Trifluoromethylbenzene

F1 0.10 ± 0.30 1.64 ± 1.99 1.26 ± 0.91 4.66 ± 2.10 9.56 14.84 ± 3.37 0.39 ± 0.02 Undefined

F2 0.10 ± 0.30 0.64 ± 0.37 1.95 ± 0.73 3.10 ± 1.16 9.66 15.37 ± 3.44 0.40 ± 0.02 Undefined

F3 0.10 ± 0.30 2.82 ± 5.74 1.05 ± 0.41 5.00 ± 2.38 9.54 14.94 ± 3.23 0.40 ± 0.02 Undefined

1-chloronaphthalene Cl 0.37 ± 0.55 0.28 ± 0.02 3.55 ± 0.21 1.39 ± 0.15 33.96 15.53 ± 7.71 0.36 ± 0.00 Undefined

1-phenylethanone O 0.87 ± 0.66 0.56 ± 0.01 1.79 ± 0.04 3.09 ± 0.05 71.14 1.08 ± 0.01 0.19 ± 0.00 Undefined

Benzaldehyde O 1.03 ± 0.66 0.78 ± 0.01 1.28 ± 0.02 3.91 ± 0.04 80.79 1.22 ± 0.01 0.18 ± 0.00 Undefined

Nitrobenzene
O1 0.14 ± 0.36 0.43 ± 0.13 2.51 ± 0.67 2.34 ± 0.72 13.79 13.60 ± 4.08 0.38 ± 0.01 Undefined

O2 0.14 ± 0.36 0.46 ± 0.15 2.37 ± 0.62 2.48 ± 0.73 13.81 16.48 ± 5.81 0.38 ± 0.01 Undefined

Methylbenzoate
O1 0.95 ± 0.67 0.69 ± 0.01 1.45 ± 0.02 3.62 ± 0.04 75.85 1.13 ± 0.01 0.19 ± 0.00 Undefined

O2 0.17 ± 0.38 0.28 ± 0.05 3.63 ± 0.58 1.37 ± 0.43 16.40 25.27 ± 2.00 0.45 ± 0.00 Undefined

2-hydroxy-methylbenzoate

O 0.96 ± 0.58 1.48 ± 0.02 0.67 ± 0.01 5.51 ± 0.03 81.17 1.07 ± 0.00 0.18 ± 0.00 Undefined

O1 0.94 ± 0.64 1.07 ± 0.17 0.96 ± 0.15 4.65 ± 0.39 76.43 1.07 ± 0.13 0.18 ± 0.00 Undefined

O2 0.12 ± 0.33 0.36 ± 0.23 3.43 ± 1.03 1.65 ± 1.10 12.11 23.62 ± 8.28 0.33 ± 0.11 Undefined

OH 0.05 ± 0.22 0.21 ± 0.04 4.83 ± 0.80 0.66 ± 0.46 5.25 0.40 ± 0.01 0.18 ± 0.01 O-oriented

Methoxybenzene O 0.36 ± 0.51 0.33 ± 0.02 3.03 ± 0.14 1.78 ± 0.12 34.78 0.42 ± 0.01 0.20 ± 0.00 H-oriented

1,2-dimethoxybenzene
O1 0.39 ± 0.54 0.38 ± 0.02 2.62 ± 0.15 2.14 ± 0.14 36.51 20.52 ± 10.11 0.28 ± 0.08 H-oriented

O1 0.39 ± 0.54 0.38 ± 0.05 2.64 ± 0.32 2.14 ± 0.32 36.49 12.48 ± 11.98 0.24 ± 0.00 H-oriented

Phenoxybenzene O 0.32 ± 0.49 0.29 ± 0.02 3.40 ± 0.18 1.50 ± 0.13 31.12 5.69 ± 10.11 0.23 ± 0.01 Undefined

Colors represent different functional groups: red for oxygen, blue for nitrogen, orange for sulfur and green for halogen containing groups.

(phenylalanine side-chain), our benzene parameters yield a
1Ghyd = −3.4 kJ/mol, a much closer value to the experimental
data (1Ghyd = −3.6 kJ/mol). Nevertheless, the AVED value
reveals a underestimation for free energy of hydration in our
parameter set. A possible reason is that chemical functions
such as nitro, fluorine, chlorine, and aldehydic carbonyls are
not commonly found in biomolecules and, therefore, the
LJ parameters used in GROMOS53A6 may not be properly
extrapolated to synthetic compounds. Moreover, we have tested
ether oxygens LJ parameters reported in Horta et al. (2011) in

our pure liquid simulations of [2]furan and [23]methoxybenzene,
leading to approximately the same behavior in their respective
physical-chemical properties (data not shown).

4.2. Properties in Solution: Influence of
Nearby Substitutions in H-Bonds
In order to access quantitative informations regarding how
aromatic rings interact with their surroundings, we performed
molecular dynamics simulations for 103 aromatic rings most
commonly used in drug design, including our 42 molecules
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TABLE 5 | Properties of heteroaromatic rings in water. Average H-bonds (AverHB), H-bond residence time (τHB) is ps, H-bond lifetime (lifetimeHB ) in 1/ps, free-energy of

H-bond breakage (1GHB) in kJ/mol, percentage of simulation with at least one formed H-bond (Percent.), coordination number of water (CN), optimal binding distance

with water (OBDHB) in nm, and overall water orientation around the heteroatom (Orientation).

Molecule Atom AverHB τHB lifetimeHB 1GHB Percent CN OBDHB Orientation

Water

Ow 1.73 ± 0.62 2.11 ± 0.02 0.47 ± 0.00 6.38 ± 0.03 98.58 4.11 ± 2.83 0.18 ± 0.00 Undefined

OH1 0.87 ± 0.35 1.80 ± 0.03 0.55 ± 0.01 5.98 ± 0.05 86.25 4.11 ± 2.83 0.18 ± 0.00 O-oriented

OH2 0.86 ± 0.35 1.83 ± 0.03 0.54 ± 0.01 6.03 ± 0.04 86.07 4.11 ± 2.83 0.18 ± 0.00 O-oriented

Imidazole

N1 0.08 ± 0.27 0.33 ± 0.09 3.27 ± 0.86 1.68 ± 0.69 7.58 26.01 ± 7.18 0.41 ± 0.01 Undefined

N1H 0.56 ± 0.52 0.35 ± 0.00 2.89 ± 0.04 1.90 ± 0.03 55.10 34.04 ± 1.08 0.45 ± 0.02 Undefined

N3 1.30 ± 0.72 1.01 ± 0.01 0.99 ± 0.00 4.56 ± 0.01 87.72 7.56 ± 12.01 0.20 ± 0.00 Undefined

Thiazole
S1 0.04 ± 0.20 – – – 4.21 16.56 ± 5.11 0.38 ± 0.01 Undefined

N3 0.53 ± 0.60 0.37 ± 0.01 2.73 ± 0.08 2.04 ± 0.07 47.16 0.62 ± 0.11 0.22 ± 0.00 Undefined

Benzopyrrole
N1 0.09 ± 0.29 0.28 ± 0.05 3.68 ± 0.49 1.32 ± 0.37 8.60 15.88 ± 2.99 0.38 ± 0.00 Undefined

N1H 0.63 ± 0.51 0.66 ± 0.01 1.50 ± 0.03 3.51 ± 0.04 61.63 21.05 ± 1.45 0.41 ± 0.01 Undefined

Tetrazole

N4 0.87 ± 0.69 0.54 ± 0.01 1.85 ± 0.03 3.00 ± 0.04 69.85 1.17 ± 0.02 0.21 ± 0.00 Undefined

N3 0.89 ± 0.74 0.53 ± 0.02 1.87 ± 0.06 2.97 ± 0.08 68.12 1.09 ± 0.32 0.23 ± 0.00 Undefined

N2 0.31 ± 0.51 0.27 ± 0.02 3.75 ± 0.22 1.26 ± 0.15 29.37 26.38 ± 7.22 0.41 ± 0.00 Undefined

N1 0.02 ± 0.14 – – – 1.95 21.88 ± 2.06 0.41 ± 0.01 Undefined

N1H 0.00 ± 0.00 – – – 0.00 0.50 ± 0.03 0.24 ± 0.00 O-oriented

Benzeimidazole

N1 0.06 ± 0.23 0.21 ± 0.03 4.87 ± 0.67 0.62 ± 0.34 5.53 16.49 ± 2.30 0.40 ± 0.01 Undefined

N1H 0.78 ± 0.44 1.21 ± 0.02 0.82 ± 0.01 5.01 ± 0.03 77.23 32.26 ± 2.16 0.46 ± 0.01 Undefined

N3 1.08 ± 0.71 0.86 ± 0.01 1.16 ± 0.02 4.16 ± 0.04 80.28 1.32 ± 0.01 0.20 ± 0.00 Undefined

7,8-dihydro-1H-purine

N6H 0.42 ± 0.51 0.34 ± 0.01 2.91 ± 0.09 1.88 ± 0.08 41.30 30.55 ± 3.92 0.46 ± 0.01 Undefined

N1 0.04 ± 0.19 0.20 ± 0.02 5.21 ± 0.66 0.46 ± 0.31 3.73 16.89 ± 12.64 0.28 ± 0.00 O-oriented

N6 0.04 ± 0.19 – – – 3.70 28.25 ± 2.59 0.46 ± 0.01 Undefined

N4 0.33 ± 0.51 0.37 ± 0.04 2.76 ± 0.31 2.02 ± 0.29 31.14 24.55 ± 2.24 0.45 ± 0.01 Undefined

N1H 0.96 ± 0.21 6.49 ± 0.11 0.15 ± 0.00 9.16 ± 0.04 95.83 0.79 ± 0.65 0.18 ± 0.00 O-oriented

N3 1.83 ± 0.70 1.97 ± 0.09 0.51 ± 0.02 6.20 ± 0.11 97.65 3.38 ± 1.14 0.20 ± 0.00 Undefined

1,2,4 - Triazole

N2 1.50 ± 0.72 1.53 ± 0.04 0.65 ± 0.02 5.59 ± 0.06 92.83 1.70 ± 0.00 0.20 ± 0.00 Undefined

N1 0.66 ± 0.66 0.83 ± 0.02 1.20 ± 0.04 4.07 ± 0.07 55.78 2.10 ± 3.51 0.22 ± 0.00 Undefined

N1H 0.98 ± 0.15 11.47 ± 0.25 0.09 ± 0.00 10.58 ± 0.05 97.94 3.76 ± 0.00 0.25 ± 0.03 O-oriented

N4 0.83 ± 0.68 0.61 ± 0.01 1.63 ± 0.02 3.32 ± 0.04 67.99 0.97 ± 0.01 0.20 ± 0.00 Undefined

Quinazoline
N1 0.64 ± 0.63 0.49 ± 0.02 2.04 ± 0.07 2.76 ± 0.09 56.17 0.71 ± 0.21 0.21 ± 0.00 Undefined

N3 0.43 ± 0.56 0.31 ± 0.01 3.19 ± 0.05 1.65 ± 0.04 39.34 24.86 ± 3.16 0.28 ± 0.08 H-oriented

1H-pyrimidin-2-one

O2 1.20 ± 0.72 0.79 ± 0.01 1.27 ± 0.02 3.93 ± 0.03 84.99 1.42 ± 0.02 0.20 ± 0.00 Undefined

N1H 0.41 ± 0.51 0.33 ± 0.01 3.07 ± 0.13 1.75 ± 0.10 39.74 24.01 ± 4.58 0.44 ± 0.02 Undefined

N1 0.01 ± 0.09 – – – 0.73 19.00 ± 2.14 0.41 ± 0.00 Undefined

N3 0.89 ± 0.62 0.84 ± 0.00 1.19 ± 0.01 4.11 ± 0.01 75.00 1.05 ± 0.00 0.20 ± 0.00 Undefined

4-quinolone

O4 1.74 ± 0.74 1.39 ± 0.02 0.72 ± 0.01 5.35 ± 0.04 96.17 3.85 ± 1.52 0.19 ± 0.00 Undefined

N1 0.01 ± 0.10 – – – 1.03 23.69 ± 2.01 0.47 ± 0.01 Undefined

N1H 0.66 ± 0.49 0.80 ± 0.02 1.26 ± 0.04 3.96 ± 0.07 65.61 26.90 ± 2.65 0.47 ± 0.01 Undefined

Isoxazole
O1 0.59 ± 0.62 0.36 ± 0.00 2.82 ± 0.02 1.96 ± 0.02 52.43 7.34 ± 13.27 0.22 ± 0.01 Undefined

N2 0.60 ± 0.63 0.35 ± 0.01 2.86 ± 0.05 1.92 ± 0.04 52.00 0.77 ± 0.04 0.24 ± 0.00 H-oriented

Uracil

N3 0.02 ± 0.16 1.99 ± 1.45 1.04 ± 0.90 5.38 ± 2.21 2.48 17.32 ± 1.01 0.42 ± 0.01 Undefined

N3H 0.33 ± 0.49 0.29 ± 0.01 3.47 ± 0.10 1.45 ± 0.07 31.98 25.64 ± 8.27 0.43 ± 0.02 Undefined

O2 0.39 ± 0.54 0.28 ± 0.01 3.61 ± 0.13 1.35 ± 0.09 36.17 19.18 ± 8.50 0.37 ± 0.01 Undefined

O4 1.24 ± 0.71 0.87 ± 0.01 1.15 ± 0.01 4.19 ± 0.02 86.66 4.08 ± 5.14 0.20 ± 0.00 Undefined

N1 0.01 ± 0.07 – – – 0.54 29.81 ± 2.46 0.46 ± 0.01 Undefined

N1H 0.45 ± 0.52 0.37 ± 0.01 2.67 ± 0.07 2.09 ± 0.06 44.10 30.23 ± 1.97 0.47 ± 0.01 Undefined

(Continued)
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TABLE 5 | Continued

Molecule Atom AverHB τHB lifetimeHB 1GHB Percent CN OBDHB Orientation

Pyrazole

N1H 0.00 ± 0.00 − − − 0.00 18.32 ± 2.00 0.40 ± 0.01 Undefined

N1 0.00 ± 0.00 – – – 0.00 17.76 ± 1.63 0.40 ± 0.00 Undefined

N2 0.72 ± 0.66 0.44 ± 0.01 2.29 ± 0.07 2.48 ± 0.08 60.69 0.96 ± 0.03 0.21 ± 0.00 Undefined

Pyrazine
N1 1.15 ± 0.66 1.15 ± 0.03 0.87 ± 0.02 4.88 ± 0.07 85.83 6.55 ± 10.50 0.19 ± 0.00 Undefined

N4 1.15 ± 0.65 1.15 ± 0.02 0.87 ± 0.02 4.86 ± 0.05 85.87 6.66 ± 10.74 0.19 ± 0.00 Undefined

1,8-naphthyridin-4(1H)-one

O4 1.13 ± 0.73 0.71 ± 0.02 1.41 ± 0.04 3.68 ± 0.07 81.51 1.44 ± 0.02 0.20 ± 0.00 Undefined

N8 0.28 ± 0.48 0.28 ± 0.02 3.57 ± 0.28 1.38 ± 0.19 26.76 25.87 ± 2.34 0.45 ± 0.01 Undefined

N1 0.05 ± 0.23 0.40 ± 0.14 2.81 ± 0.93 2.10 ± 0.84 5.34 22.03 ± 2.09 0.44 ± 0.01 Undefined

N1H 0.40 ± 0.51 0.34 ± 0.02 2.99 ± 0.20 1.82 ± 0.17 39.32 26.16 ± 2.29 0.45 ± 0.01 Undefined

Xanthine

N1H 0.40 ± 0.51 0.38 ± 0.01 2.66 ± 0.10 2.10 ± 0.09 39.37 28.47 ± 4.09 0.46 ± 0.02 Undefined

O2 0.52 ± 0.60 0.32 ± 0.03 3.13 ± 0.23 1.71 ± 0.19 46.33 17.09 ± 8.14 0.37 ± 0.01 Undefined

N7 0.02 ± 0.12 – – – 1.51 25.71 ± 2.69 0.45 ± 0.02 Undefined

N7H 0.47 ± 0.52 0.43 ± 0.01 2.33 ± 0.08 2.43 ± 0.08 46.50 26.50 ± 2.03 0.46 ± 0.01 Undefined

N1 0.02 ± 0.15 – – – 2.33 21.48 ± 4.05 0.44 ± 0.01 Undefined

N3 0.03 ± 0.17 – – – 3.09 19.25 ± 5.54 0.41 ± 0.01 Undefined

O6 0.46 ± 0.57 0.31 ± 0.01 3.25 ± 0.06 1.61 ± 0.05 42.64 8.82 ± 4.23 0.33 ± 0.06 Undefined

N9 0.28 ± 0.47 0.28 ± 0.03 3.61 ± 0.36 1.36 ± 0.25 27.40 26.67 ± 2.40 0.46 ± 0.01 Undefined

1,2-dihydro-3H-1,2,4-triazol-3-one

N1H 0.95 ± 0.24 4.50 ± 0.09 0.22 ± 0.00 8.25 ± 0.05 94.28 1.32 ± 1.05 0.17 ± 0.00 O-oriented

N2H 0.48 ± 0.52 0.37 ± 0.01 2.72 ± 0.05 2.04 ± 0.05 46.54 21.76 ± 2.73 0.38 ± 0.00 Undefined

N4 1.21 ± 0.67 1.11 ± 0.01 0.90 ± 0.01 4.80 ± 0.03 87.18 1.39 ± 0.00 0.20 ± 0.00 Undefined

O3 1.26 ± 0.76 0.79 ± 0.01 1.27 ± 0.01 3.93 ± 0.02 85.27 1.54 ± 0.02 0.20 ± 0.00 Undefined

N1 0.02 ± 0.13 – – – 1.75 17.03 ± 9.51 0.28 ± 0.00 O-oriented

N2 0.03 ± 0.16 – – – 2.52 27.49 ± 5.89 0.38 ± 0.00 Undefined

1,3,4 - Thiadiazole

S1 0.02 ± 0.15 – – – 2.32 19.74 ± 5.86 0.39 ± 0.01 Undefined

N3 1.33 ± 0.73 1.17 ± 0.03 0.86 ± 0.02 4.91 ± 0.05 88.26 18.35 ± 13.63 0.21 ± 0.00 Undefined

N4 1.34 ± 0.73 1.16 ± 0.01 0.86 ± 0.01 4.89 ± 0.02 88.35 1.70 ± 0.02 0.21 ± 0.00 Undefined

Indoxazine
N2 0.69 ± 0.65 0.45 ± 0.00 2.20 ± 0.02 2.57 ± 0.02 59.11 0.94 ± 0.02 0.22 ± 0.00 Undefined

O1 0.74 ± 0.66 0.48 ± 0.01 2.08 ± 0.05 2.72 ± 0.06 62.08 0.84 ± 0.21 0.21 ± 0.00 Undefined

3,9-dihydro-6H-purin-6-one

N1H 0.46 ± 0.52 0.40 ± 0.01 2.48 ± 0.09 2.28 ± 0.09 45.20 26.74 ± 2.00 0.45 ± 0.00 Undefined

N1 0.02 ± 0.14 – – – 1.93 22.39 ± 5.57 0.42 ± 0.01 Undefined

N9 0.03 ± 0.17 0.71 ± 0.45 1.99 ± 1.06 3.23 ± 1.48 3.05 20.26 ± 3.47 0.42 ± 0.01 Undefined

N9H 0.47 ± 0.52 0.36 ± 0.00 2.80 ± 0.03 1.97 ± 0.03 45.60 26.51 ± 3.63 0.44 ± 0.02 Undefined

N3 0.11 ± 0.32 0.47 ± 0.19 2.40 ± 0.71 2.49 ± 0.88 11.22 27.05 ± 1.99 0.46 ± 0.01 Undefined

O6 1.35 ± 0.77 0.82 ± 0.03 1.21 ± 0.04 4.05 ± 0.08 87.77 1.68 ± 0.02 0.20 ± 0.00 Undefined

N7 0.57 ± 0.61 0.44 ± 0.02 2.28 ± 0.11 2.49 ± 0.12 50.12 0.65 ± 0.15 0.23 ± 0.00 Undefined

Benzofuran O1 0.50 ± 0.59 0.35 ± 0.01 2.90 ± 0.10 1.89 ± 0.09 44.67 23.40 ± 11.48 0.32 ± 0.11 Undefined

Indazole

N2 0.40 ± 0.55 0.29 ± 0.02 3.45 ± 0.20 1.46 ± 0.14 36.29 22.45 ± 4.12 0.42 ± 0.01 Undefined

N1 0.17 ± 0.39 0.22 ± 0.02 4.62 ± 0.40 0.75 ± 0.22 16.72 16.16 ± 2.36 0.39 ± 0.01 Undefined

N1H 0.55 ± 0.52 0.45 ± 0.00 2.22 ± 0.02 2.55 ± 0.02 53.47 18.47 ± 4.54 0.40 ± 0.01 Undefined

Benzothiophene S1 0.14 ± 0.35 0.36 ± 0.09 2.99 ± 0.83 1.91 ± 0.67 13.13 17.61 ± 6.64 0.37 ± 0.00 Undefined

Chromone
O4 1.17 ± 0.73 0.74 ± 0.01 1.35 ± 0.02 3.78 ± 0.04 83.02 1.46 ± 0.01 0.20 ± 0.00 Undefined

O1 0.14 ± 0.35 0.39 ± 0.12 2.81 ± 0.70 2.06 ± 0.71 13.72 25.00 ± 1.49 0.46 ± 0.01 Undefined

1,4-naphthoquinone
O4 0.64 ± 0.61 0.44 ± 0.01 2.27 ± 0.03 2.49 ± 0.03 56.82 0.83 ± 0.01 0.20 ± 0.00 Undefined

O1 0.64 ± 0.61 0.44 ± 0.01 2.25 ± 0.08 2.52 ± 0.08 57.12 0.82 ± 0.02 0.20 ± 0.00 Undefined

1,2,3 - Triazole

N1H 0.82 ± 0.41 1.16 ± 0.02 0.86 ± 0.01 4.89 ± 0.04 80.97 14.14 ± 17.25 0.24 ± 0.10 O-oriented

N3 1.11 ± 0.73 0.78 ± 0.01 1.29 ± 0.02 3.90 ± 0.03 80.38 1.47 ± 0.02 0.21 ± 0.00 Undefined

N2 1.09 ± 0.74 0.75 ± 0.01 1.34 ± 0.02 3.81 ± 0.03 78.90 1.47 ± 0.00 0.21 ± 0.00 Undefined

(Continued)
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TABLE 5 | Continued

Molecule Atom AverHB τHB lifetimeHB 1GHB Percent CN OBDHB Orientation

N1 0.11 ± 0.32 0.21 ± 0.00 4.73 ± 0.09 0.67 ± 0.05 11.02 16.72 ± 8.74 0.39 ± 0.03 Undefined

Pyridazine
N1 1.42 ± 0.76 1.25 ± 0.01 0.80 ± 0.01 5.09 ± 0.02 89.58 1.83 ± 0.00 0.21 ± 0.00 Undefined

N2 1.41 ± 0.76 1.24 ± 0.03 0.81 ± 0.02 5.05 ± 0.07 89.42 1.83 ± 0.00 0.21 ± 0.00 Undefined

Triazine

N1 0.28 ± 0.48 0.29 ± 0.03 3.46 ± 0.38 1.47 ± 0.27 26.10 29.60 ± 0.96 0.45 ± 0.01 Undefined

N3 0.27 ± 0.48 0.29 ± 0.03 3.48 ± 0.35 1.45 ± 0.25 25.94 29.63 ± 1.97 0.46 ± 0.00 Undefined

N5 0.27 ± 0.48 0.28 ± 0.02 3.62 ± 0.24 1.34 ± 0.16 25.78 33.15 ± 1.59 0.45 ± 0.01 Undefined

Quinoxaline
N4 0.34 ± 0.51 0.30 ± 0.02 3.40 ± 0.19 1.50 ± 0.14 32.01 24.66 ± 0.64 0.37 ± 0.10 Undefined

N1 0.34 ± 0.51 0.30 ± 0.02 3.34 ± 0.19 1.54 ± 0.14 31.83 25.96 ± 2.58 0.33 ± 0.11 Undefined

Oxazole
O1 0.34 ± 0.51 0.29 ± 0.01 3.51 ± 0.16 1.42 ± 0.12 31.80 31.43 ± 3.12 0.41 ± 0.10 Undefined

N3 0.42 ± 0.56 0.29 ± 0.01 3.48 ± 0.14 1.44 ± 0.10 38.27 33.46 ± 2.32 0.43 ± 0.09 Undefined

Isothiazole
S1 0.05 ± 0.22 0.70 ± 0.11 1.45 ± 0.20 3.63 ± 0.36 5.11 13.50 ± 1.67 0.37 ± 0.00 Undefined

N2 0.30 ± 0.49 0.29 ± 0.02 3.42 ± 0.21 1.48 ± 0.15 28.32 29.65 ± 2.44 0.46 ± 0.01 Undefined

1,3,4 - Oxadiazole

N3 0.96 ± 0.70 0.65 ± 0.02 1.53 ± 0.04 3.47 ± 0.07 74.33 1.32 ± 0.00 0.22 ± 0.00 Undefined

N4 0.96 ± 0.70 0.64 ± 0.01 1.55 ± 0.02 3.44 ± 0.04 73.98 1.31 ± 0.01 0.21 ± 0.00 Undefined

O1 0.09 ± 0.29 0.71 ± 0.42 1.88 ± 0.84 3.29 ± 1.36 8.69 29.27 ± 5.26 0.44 ± 0.02 Undefined

1,2,5 - Oxadiazole

O1 0.64 ± 0.66 0.36 ± 0.01 2.76 ± 0.06 2.01 ± 0.06 53.93 12.92 ± 14.89 0.28 ± 0.09 H-oriented

N2 0.35 ± 0.53 0.28 ± 0.02 3.59 ± 0.20 1.37 ± 0.14 32.97 27.66 ± 1.31 0.43 ± 0.01 Undefined

N5 0.36 ± 0.53 0.28 ± 0.01 3.54 ± 0.14 1.40 ± 0.10 33.18 29.19 ± 3.89 0.44 ± 0.01 Undefined

1,2,4 - Oxadiazole

N2 0.57 ± 0.61 0.35 ± 0.01 2.83 ± 0.04 1.95 ± 0.04 50.92 7.40 ± 13.39 0.23 ± 0.01 Undefined

N4 0.57 ± 0.57 0.43 ± 0.01 2.30 ± 0.07 2.46 ± 0.07 52.94 0.69 ± 0.01 0.20 ± 0.00 Undefined

O1 0.53 ± 0.59 0.34 ± 0.01 2.98 ± 0.05 1.82 ± 0.04 47.71 15.71 ± 18.47 0.33 ± 0.12 Undefined

9H-purine

N3 0.14 ± 0.35 0.62 ± 0.38 2.12 ± 0.88 2.95 ± 1.29 13.39 22.11 ± 1.98 0.42 ± 0.01 Undefined

N9H 0.93 ± 0.28 3.72 ± 0.10 0.27 ± 0.01 7.79 ± 0.07 92.10 0.44 ± 0.00 0.18 ± 0.00 O-oriented

N1 0.89 ± 0.64 0.82 ± 0.01 1.22 ± 0.02 4.03 ± 0.04 73.61 1.05 ± 0.01 0.20 ± 0.00 Undefined

N9 0.06 ± 0.25 0.23 ± 0.03 4.47 ± 0.62 0.84 ± 0.35 6.42 3.15 ± 3.45 0.29 ± 0.00 O-oriented

N7 0.43 ± 0.56 0.34 ± 0.03 2.93 ± 0.23 1.87 ± 0.20 39.57 33.93 ± 0.52 0.29 ± 0.10 H-oriented

1,3-Thiazol-2-amine

N3 0.33 ± 0.51 0.32 ± 0.03 3.12 ± 0.28 1.72 ± 0.22 30.55 nan ± nan 0.48 ± 0.01 Undefined

S1 0.04 ± 0.19 – – – 3.62 27.86 ± 3.96 0.45 ± 0.02 Undefined

N 0.77 ± 0.53 1.33 ± 0.02 0.75 ± 0.01 5.24 ± 0.04 72 0.81 ± 0.00 0.19 ± 0.00 Undefined

NH1 0.74 ± 0.46 1.29 ± 0.01 0.78 ± 0.01 5.16 ± 0.03 72.89 1.35 ± 0.38 0.21 ± 0.01 O-oriented

NH2 0.73 ± 0.46 1.15 ± 0.01 0.87 ± 0.01 4.88 ± 0.03 72.43 1.20 ± 0.44 0.21 ± 0.01 O-oriented

Cytosine

N1 0.09 ± 0.29 0.36 ± 0.14 3.07 ± 0.78 1.86 ± 0.81 8.45 25.84 ± 1.36 0.44 ± 0.01 Undefined

N1H 0.32 ± 0.48 0.29 ± 0.01 3.41 ± 0.06 1.48 ± 0.04 31.74 29.19 ± 2.52 0.45 ± 0.00 Undefined

N 0.88 ± 0.53 2.19 ± 0.03 0.46 ± 0.01 6.47 ± 0.04 79.3 8.19 ± 5.54 0.19 ± 0.00 Undefined

NH1 0.73 ± 0.46 1.81 ± 0.02 0.55 ± 0.01 6.00 ± 0.02 72.76 1.06 ± 0.48 0.21 ± 0.01 O-oriented

NH2 0.70 ± 0.47 1.37 ± 0.02 0.73 ± 0.01 5.30 ± 0.04 69.18 0.87 ± 0.39 0.20 ± 0.00 O-oriented

O1 1.20 ± 0.79 0.69 ± 0.02 1.44 ± 0.04 3.62 ± 0.07 81.29 1.40 ± 0.39 0.21 ± 0.00 Undefined

N3 0.93 ± 0.73 0.70 ± 0.05 1.44 ± 0.10 3.63 ± 0.18 71.11 1.34 ± 0.32 0.23 ± 0.00 Undefined

Adenine

N3 1.98 ± 0.68 3.01 ± 0.10 0.33 ± 0.01 7.26 ± 0.08 98.70 3.96 ± 1.48 0.19 ± 0.00 Undefined

N9 0.18 ± 0.40 0.31 ± 0.02 3.26 ± 0.27 1.60 ± 0.20 16.99 25.32 ± 2.77 0.35 ± 0.00 Undefined

N9H 0.30 ± 0.47 0.35 ± 0.01 2.89 ± 0.11 1.90 ± 0.09 29.54 23.64 ± 1.66 0.34 ± 0.00 Undefined

N7 0.17 ± 0.39 0.30 ± 0.02 3.33 ± 0.23 1.55 ± 0.18 16.86 29.43 ± 2.90 0.45 ± 0.01 Undefined

N1 0.14 ± 0.36 0.80 ± 0.49 1.96 ± 1.26 3.43 ± 1.72 13.30 21.59 ± 5.25 0.39 ± 0.00 Undefined

N 0.92 ± 0.48 3.15 ± 0.08 0.32 ± 0.01 7.37 ± 0.06 84.23 4.04 ± 6.16 0.19 ± 0.00 Undefined

NH1 0.68 ± 0.48 1.85 ± 0.04 0.54 ± 0.01 6.05 ± 0.05 67.41 0.66 ± 0.06 0.20 ± 0.00 O-oriented

(Continued)
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TABLE 5 | Continued

Molecule Atom AverHB τHB lifetimeHB 1GHB Percent CN OBDHB Orientation

5-methylindole
NH2 0.70 ± 0.47 1.50 ± 0.02 0.67 ± 0.01 5.53 ± 0.04 68.92 0.67 ± 0.03 0.20 ± 0.00 O-oriented

N1 0.26 ± 0.47 0.39 ± 0.02 2.56 ± 0.11 2.20 ± 0.11 24.48 12.49 ± 0.43 0.34 ± 0.05 Undefined

N1H 0.89 ± 0.33 3.45 ± 0.04 0.29 ± 0.00 7.60 ± 0.03 88.55 0.37 ± 0.00 0.19 ± 0.00 O-oriented

3-methyl-1H-indole
N1 0.18 ± 0.40 0.35 ± 0.05 2.94 ± 0.40 1.88 ± 0.34 17.01 17.42 ± 2.94 0.38 ± 0.00 Undefined

N1H 0.71 ± 0.48 1.07 ± 0.01 0.94 ± 0.01 4.69 ± 0.03 70.01 17.37 ± 2.17 0.39 ± 0.01 Undefined

Paraxanthine

O6 0.58 ± 0.58 0.48 ± 0.01 2.08 ± 0.05 2.72 ± 0.06 52.88 0.76 ± 0.02 0.21 ± 0.00 Undefined

N3 0.01 ± 0.10 – – – 1.02 18.20 ± 4.10 0.39 ± 0.01 Undefined

N3H 0.54 ± 0.52 0.65 ± 0.02 1.55 ± 0.06 3.45 ± 0.09 52.58 18.43 ± 2.43 0.40 ± 0.01 Undefined

O2 0.61 ± 0.61 0.45 ± 0.01 2.22 ± 0.05 2.55 ± 0.06 54.13 0.78 ± 0.02 0.21 ± 0.00 Undefined

N9 0.79 ± 0.60 0.86 ± 0.01 1.17 ± 0.02 4.15 ± 0.04 69.54 0.95 ± 0.01 0.20 ± 0.00 Undefined

N7 0.00 ± 0.05 – – – 0.21 28.11 ± 1.53 0.47 ± 0.00 Undefined

N1 0.03 ± 0.16 – – – 2.66 24.93 ± 0.00 0.48 ± 0.00 Undefined

Theophylline

N7H 0.33 ± 0.49 0.33 ± 0.01 3.00 ± 0.11 1.80 ± 0.09 32.06 23.41 ± 1.68 0.44 ± 0.01 Undefined

O6 0.30 ± 0.48 0.27 ± 0.01 3.73 ± 0.16 1.27 ± 0.11 28.37 13.20 ± 1.45 0.38 ± 0.01 Undefined

N3 0.02 ± 0.15 – – − 2.41 20.89 ± 2.00 0.45 ± 0.01 Undefined

O2 0.60 ± 0.62 0.40 ± 0.01 2.53 ± 0.09 2.23 ± 0.09 53.03 0.63 ± 0.21 0.22 ± 0.00 Undefined

N9 0.16 ± 0.38 0.29 ± 0.03 3.44 ± 0.33 1.48 ± 0.24 15.73 27.76 ± 1.85 0.46 ± 0.01 Undefined

N7 0.02 ± 0.13 – – – 1.78 23.16 ± 3.82 0.43 ± 0.01 Undefined

N1 0.01 ± 0.12 – – – 1.48 25.52 ± 2.34 0.48 ± 0.01 Undefined

Theobromine

O6 0.26 ± 0.46 0.26 ± 0.01 3.89 ± 0.10 1.16 ± 0.06 25.11 12.25 ± 1.29 0.37 ± 0.01 Undefined

N3 0.00 ± 0.06 – – – 0.33 27.56 ± 1.00 0.48 ± 0.01 Undefined

O2 0.97 ± 0.68 0.69 ± 0.01 1.46 ± 0.01 3.59 ± 0.02 76.39 1.22 ± 0.00 0.20 ± 0.00 Undefined

N9 0.10 ± 0.30 0.28 ± 0.02 3.54 ± 0.27 1.40 ± 0.19 9.65 17.11 ± 2.33 0.42 ± 0.01 Undefined

N7 0.01 ± 0.10 – – – 1.01 25.82 ± 1.01 0.47 ± 0.01 Undefined

N1H 0.00 ± 0.00 – – – 0.00 20.86 ± 1.70 0.41 ± 0.02 Undefined

N1 0.03 ± 0.18 2.28 ± 1.56 0.99 ± 0.92 5.67 ± 2.35 3.16 18.46 ± 3.28 0.40 ± 0.00 Undefined

2H-tetrazol-5-thiol

N1H 0.66 ± 0.50 0.56 ± 0.01 1.79 ± 0.04 3.08 ± 0.06 65.29 24.63 ± 6.12 0.43 ± 0.01 Undefined

S 0.08 ± 0.28 1.98 ± 2.59 1.55 ± 1.03 4.47 ± 2.73 8.34 24.11 ± 12.41 0.35 ± 0.00 Undefined

SH 0.65 ± 0.59 0.36 ± 0.01 2.75 ± 0.08 2.02 ± 0.07 59.18 15.22 ± 7.54 0.36 ± 0.00 Undefined

N3 1.05 ± 0.75 0.67 ± 0.01 1.50 ± 0.03 3.52 ± 0.06 76.69 1.44 ± 0.02 0.21 ± 0.00 Undefined

N2 0.47 ± 0.58 0.34 ± 0.00 2.93 ± 0.03 1.86 ± 0.03 42.55 21.28 ± 4.89 0.40 ± 0.01 Undefined

N1 0.01 ± 0.09 – – – 0.90 16.82 ± 4.27 0.39 ± 0.02 Undefined

N4 0.54 ± 0.61 0.37 ± 0.01 2.68 ± 0.10 2.09 ± 0.09 47.48 31.80 ± 0.00 0.33 ± 0.11 Undefined

3-methylisoxazole
O1 0.87 ± 0.70 0.59 ± 0.01 1.71 ± 0.02 3.20 ± 0.03 69.34 0.99 ± 0.25 0.21 ± 0.00 Undefined

N2 0.94 ± 0.72 0.62 ± 0.01 1.61 ± 0.02 3.35 ± 0.03 72.36 1.32 ± 0.02 0.22 ± 0.00 Undefined

5-methylisoxazole
O1 1.06 ± 0.71 0.79 ± 0.02 1.27 ± 0.03 3.95 ± 0.06 78.70 1.31 ± 0.02 0.20 ± 0.00 Undefined

N2 1.03 ± 0.73 0.73 ± 0.01 1.37 ± 0.02 3.75 ± 0.03 76.61 1.42 ± 0.01 0.22 ± 0.00 Undefined

Methylimidazole
N3 1.51 ± 0.68 1.51 ± 0.03 0.66 ± 0.01 5.55 ± 0.05 94.20 11.94 ± 12.59 0.19 ± 0.00 Undefined

N1 0.03 ± 0.18 0.45 ± 0.28 2.86 ± 1.15 2.20 ± 1.28 3.26 29.76 ± 1.84 0.46 ± 0.01 Undefined

2-Methylimidazole

N3 1.76 ± 0.68 2.28 ± 0.04 0.44 ± 0.01 6.57 ± 0.05 97.30 3.63 ± 0.94 0.19 ± 0.00 Undefined

N1 0.11 ± 0.32 0.23 ± 0.02 4.45 ± 0.34 0.83 ± 0.19 10.86 15.18 ± 1.88 0.40 ± 0.01 Undefined

N1H 0.87 ± 0.36 1.86 ± 0.02 0.54 ± 0.01 6.06 ± 0.03 86.05 0.35 ± 0.01 0.19 ± 0.00 O-oriented

Guanine N1 0.00 ± 0.06 – – – 0.40 6.42 ± 4.70 0.27 ± 0.00 O-oriented

N1H 0.98 ± 0.15 11.66 ± 0.29 0.09 ± 0.00 10.62 ± 0.06 97.86 2.00 ± 0.29 0.17 ± 0.00 O-oriented

N7 0.98 ± 0.65 0.81 ± 0.01 1.24 ± 0.02 3.99 ± 0.03 78.40 1.19 ± 0.01 0.20 ± 0.00 Undefined

N3 1.51 ± 0.64 2.33 ± 0.08 0.43 ± 0.02 6.62 ± 0.09 95.37 2.98 ± 1.13 0.19 ± 0.00 Undefined

N 0.58 ± 0.57 1.16 ± 0.03 0.86 ± 0.02 4.90 ± 0.06 54.33 0.27 ± 0.02 0.19 ± 0.00 Undefined

NH1 0.71 ± 0.47 2.24 ± 0.03 0.45 ± 0.01 6.53 ± 0.03 70.16 29.15 ± 1.28 0.35 ± 0.00 Undefined

NH2 0.67 ± 0.48 1.62 ± 0.02 0.62 ± 0.01 5.72 ± 0.03 66.50 24.74 ± 7.45 0.34 ± 0.00 Undefined

(Continued)
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TABLE 5 | Continued

Molecule Atom AverHB τHB lifetimeHB 1GHB Percent CN OBDHB Orientation

O6 1.91 ± 0.71 2.01 ± 0.02 0.50 ± 0.01 6.26 ± 0.03 98.32 3.73 ± 1.35 0.23 ± 0.05 Undefined

N9 0.01 ± 0.09 – – – 0.76 3.81 ± 3.08 0.28 ± 0.00 O-oriented

N9H 0.97 ± 0.19 11.16 ± 0.09 0.09 ± 0.00 10.51 ± 0.02 96.44 4.90 ± 5.94 0.17 ± 0.00 O-oriented

1-Methylindole N1 0.22 ± 0.44 0.65 ± 0.20 1.80 ± 0.84 3.29 ± 0.96 20.67 26.89 ± 0.73 0.47 ± 0.00 Undefined

Chlorobenzene Cl1 0.22 ± 0.44 0.34 ± 0.08 3.08 ± 0.70 1.80 ± 0.58 20.83 31.47 ± 1.09 0.36 ± 0.00 Undefined

1,2-dichlorobenzene
Cl1 0.17 ± 0.39 0.38 ± 0.05 2.70 ± 0.33 2.09 ± 0.32 16.31 19.59 ± 8.61 0.36 ± 0.00 Undefined

Cl2 0.17 ± 0.39 0.39 ± 0.05 2.64 ± 0.38 2.14 ± 0.34 16.29 18.60 ± 8.25 0.36 ± 0.00 Undefined

1,3-dichlorobenzene
Cl1 0.17 ± 0.40 0.38 ± 0.08 2.78 ± 0.63 2.06 ± 0.56 16.74 30.86 ± 3.91 0.36 ± 0.00 Undefined

Cl3 0.17 ± 0.39 0.37 ± 0.06 2.79 ± 0.40 2.01 ± 0.37 16.55 26.58 ± 8.67 0.36 ± 0.00 Undefined

1,2,3,4-tetrachlorobenzene

Cl4 0.13 ± 0.35 0.39 ± 0.12 2.75 ± 0.67 2.11 ± 0.69 12.90 25.88 ± 5.26 0.36 ± 0.00 Undefined

Cl1 0.13 ± 0.35 0.43 ± 0.14 2.52 ± 0.58 2.32 ± 0.69 13.06 23.23 ± 6.96 0.37 ± 0.00 Undefined

Cl2 0.11 ± 0.32 0.43 ± 0.12 2.47 ± 0.63 2.37 ± 0.66 10.45 22.80 ± 7.24 0.37 ± 0.00 Undefined

Cl3 0.11 ± 0.31 0.64 ± 0.32 1.93 ± 0.80 3.14 ± 1.13 10.32 22.24 ± 7.06 0.36 ± 0.00 Undefined

1,2,3,5-tetrachlorobenzene

Cl5 0.16 ± 0.38 0.29 ± 0.06 3.55 ± 0.69 1.44 ± 0.49 15.90 27.66 ± 8.74 0.36 ± 0.00 Undefined

Cl1 0.14 ± 0.36 0.40 ± 0.11 2.68 ± 0.57 2.15 ± 0.60 14.00 23.15 ± 9.67 0.36 ± 0.00 Undefined

Cl2 0.11 ± 0.32 0.48 ± 0.25 2.51 ± 0.92 2.46 ± 1.09 10.97 22.95 ± 7.34 0.37 ± 0.00 Undefined

Cl3 0.14 ± 0.36 0.79 ± 0.71 1.98 ± 0.84 3.24 ± 1.66 13.90 23.20 ± 8.70 0.36 ± 0.00 Undefined

2-pyridone

O2 1.55 ± 0.75 1.11 ± 0.02 0.90 ± 0.01 4.79 ± 0.04 93.28 1.82 ± 0.00 0.19 ± 0.00 Undefined

N1 0.07 ± 0.27 0.24 ± 0.02 4.21 ± 0.40 0.98 ± 0.24 7.37 19.48 ± 4.86 0.43 ± 0.02 Undefined

N1H 0.78 ± 0.43 1.40 ± 0.02 0.71 ± 0.01 5.36 ± 0.03 77.75 26.08 ± 3.66 0.44 ± 0.01 Undefined

1,3,5-triazin-2(1H)-one

N3 1.09 ± 0.70 1.00 ± 0.03 1.01 ± 0.03 4.52 ± 0.08 80.87 1.35 ± 0.00 0.20 ± 0.00 Undefined

N5 0.11 ± 0.32 0.38 ± 0.20 3.10 ± 0.99 1.91 ± 1.04 10.86 26.48 ± 3.24 0.45 ± 0.01 Undefined

N1 0.03 ± 0.17 6.76 ± 12.20 1.62 ± 1.41 5.18 ± 4.11 3.06 25.39 ± 7.62 0.43 ± 0.02 Undefined

N1H 0.61 ± 0.51 0.55 ± 0.02 1.81 ± 0.06 3.06 ± 0.08 59.92 30.73 ± 1.51 0.46 ± 0.02 Undefined

O2 0.61 ± 0.66 0.41 ± 0.02 2.45 ± 0.09 2.31 ± 0.09 51.10 28.96 ± 4.10 0.35 ± 0.00 Undefined

Phenoxazine

O5 0.68 ± 0.65 0.45 ± 0.01 2.23 ± 0.04 2.54 ± 0.04 58.43 0.83 ± 0.01 0.21 ± 0.00 Undefined

N10H 0.64 ± 0.50 1.10 ± 0.03 0.91 ± 0.02 4.76 ± 0.06 62.98 23.69 ± 5.31 0.45 ± 0.02 Undefined

N10 0.14 ± 0.36 0.20 ± 0.01 4.98 ± 0.25 0.55 ± 0.13 13.62 14.89 ± 2.51 0.40 ± 0.01 Undefined

7H-purine

N1 0.40 ± 0.55 0.31 ± 0.01 3.18 ± 0.09 1.66 ± 0.07 37.45 30.48 ± 3.09 0.32 ± 0.10 Undefined

N7H 0.48 ± 0.52 0.35 ± 0.01 2.82 ± 0.05 1.96 ± 0.05 47.21 30.09 ± 1.79 0.46 ± 0.01 Undefined

N3 0.53 ± 0.61 0.37 ± 0.02 2.68 ± 0.12 2.09 ± 0.11 46.52 28.45 ± 4.00 0.45 ± 0.02 Undefined

N9 0.42 ± 0.56 0.32 ± 0.01 3.13 ± 0.08 1.70 ± 0.06 38.40 29.46 ± 1.47 0.41 ± 0.08 Undefined

N7 0.02 ± 0.15 1.28 ± 0.78 1.34 ± 1.03 4.52 ± 1.88 2.34 22.55 ± 4.08 0.43 ± 0.01 Undefined

1,4-benzodioxine
O4 0.49 ± 0.57 0.39 ± 0.01 2.58 ± 0.07 2.18 ± 0.07 45.03 0.50 ± 0.13 0.21 ± 0.00 Undefined

O1 0.49 ± 0.57 0.39 ± 0.01 2.58 ± 0.06 2.18 ± 0.06 44.98 0.57 ± 0.02 0.21 ± 0.00 Undefined

Colors represent different functional groups: red for oxygen, blue for nitrogen, orange for sulfur and green for halogen containing groups.

calibration set. These information are condensed in the
Tables 4, 5. Simulations were carried for 250 ns to properly
sample multiple events of H-bond breakages and solvation shell
rearrangements.

Our results reveal non-obvious information about the H-
bond availability and strength, as in the case of [5]pyridine/
[6]pyrimidine/[56]pyrazine/[70]pyridazine/[71]triazine series
(Figure 3). While exchanging a pyridine by a pyrimidine ring
might lead to apparent gain of a H-bond acceptor, nitrogens
of pyrimidine present a 1GHB of nearly 1 kJ/mol lower than

pyridine. Moreover, the Percent of time with at least one formed
H-bond between water and pyridine nitrogen is higher than the
ones in pyrimidine. When comparing pyridine with pyrazine (an
addition of another N in para), H-bonds are very similar, so as
the second and third solvation layers. Also, acceptance capacity
in pyrimidine ring is very similar to triazine, where all three
nitrogens are located in meta. Intriguingly, values for pyridine
are very similar to the ones calculated for pyridazine, with a
slight increase in OBDHB and a more compact second layer of
solvation, as shown in Figure 3A. These results suggest that
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FIGURE 3 | (A) Methyl substituitions: 2-Me (green), 3-Me (yellow), (B) Nearby N substitution: Northo (green), Nmeta (yellow), 4-Me (purple) and 2,4,6-Me (pink). Npara

(purple). Solvation properties of aromatic rings in pyridine family. Radial distribution functions (RDFs) and H-bonding strength of N1 (blue) are affected by substitutions

in ortho, meta, and para.

another nitrogen acceptor inmeta decreases nitrogen acceptance
capacity, while another nitrogen acceptor in ortho has low effect
in H-bond capacity, but a considerable effect in the solvation
layers structures. In this sense, these features can impact the
binding inside receptors. Pyridazine, for example, has a larger
OBDHB than pyridine, suggesting that these molecules can
occupy the binding pocket in a different manner, impacting the
entropic cost of binding.

Other cases have been equally surprising, like the
[39]quinoline/[40]isoquinoline. The main difference between
them is the location of the acceptor nitrogen (closer to C8 in
the quinoline fused ring). Counterintuitively, the AverHB of
isoquinoline is slightly lower than for quinoline, such as the
τHB, and the 1GHB is almost 1.25 kJ/mol lower. The same

properties for pyridine ring are somewhat between these
values of quinoline and isoquinoline. In addition, 1GHB for
[51]quinazoline and [72]quinoxaline rings are almost 3 kJ/mol
lower than quinoline and isoquinoline. In this sense, quinazoline
and quinoxaline would be better candidates in fragment-based
drug design due to the lower energetic cost of desolvation,
while maintaining the H-bond capacity inside the receptor.
Another case in terms of aromatic nitrogen hydrogen bond
acceptor is the [37]2,4,6-trimethylpyridine (Figure 3B). The
presence of methyl groups in both ortho positions drastically
reduces the availability of H-bonds, as shown in Figure 3, and
diminish the residence time of the accepted H-bond. But the
presence of only one methyl group in ortho appears to have
a modest effect, slightly favoring the presence of H-bond in
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nitrogen of [19]2-methylpyridine. Moreover, the second and
third solvation layers of 2- and 2,4,6-trimethylpyridine are
dismantled, while the same behavior is not observed for [20]3-
and [21]4-methylpyridine.

Other non-obvious events can be observed regarding H-
bond donation in hydroxyls groups. In case of [12]phenol,
the necessary energy to break a donated H-bond (∼10
kJ/mol) is almost the double to break an accepted one
(∼5.70 kJ/mol), in alignment with the QM data reported
by Parthasarath et al. (2005) in HF, MP2, and DFT level.
And while phenol and [24]phenylmethanol might appear
interchangeable during the lead optimization process, the 1GHB

of accepted and donated H-bonds in the hydroxyl group is
almost 1 kJ/mol higher for phenylmethanol. While targeting
thermodynamics of binding during drug design, these energy
costs of desolvation can play a crucial role. As expected,
benzenethiol was revealed to be a poor acceptor of hydrogen
bonds in our simulations, but a reasonable H-bond donator.
In terms of vicinity effects, methylation in ortho seems to
have little effect on hydroxyl groups, since the properties
evaluated for the series [12]phenol/[25]2-methylphenol/[26]3-
methylphenol/[27]4-methylphenol have very similar behavior.

It is well– know that halogens are widely used for drug design,
and the role of halogen bonds (X-bonds) and H-bonds role have
been investigated thoroughly (Rendine et al., 2011; Ford and
Ho, 2016; Lin and Mackerell, 2017). In general, the H-bonding
strength decreases with the halogen radius (F > Cl > Br > I),
while the halogen bond strength increases (Rendine et al., 2011).
In this work, we investigated how fluorine and chlorine behave
as H-bond acceptors in water. In the case of [7]fluorobenzene,
the 1GHB = 1.54 ± 0.24 is in accordance with a weak H-
bond (Domagała et al., 2017). The other fluorinated rings in
the series (1,2-, 1,3-, 1,2,3,4-, and 1,2,3,5-tetrafluorobenzene
[8-11]) have similar values, varying from 1.5 to 2.2 kJ/mol.
Regarding the chlorinated rings series (chlorobenzene, 1,2-,
1,3-, 1,2,3,4-, and 1,2,3,5-tetrachlorobenzene [94–98]), 1GHB

ranged from 1.80 to 3.24 kJ/mol, contradicting the expected
behavior. X-bonding are often poorly described in MM, since
it treats atoms as a sphere with isoelectric surface and thus
not describing the necessary positive potential required for
such interaction. In fact, we have visually evaluated that waters
surrounding fluorine and chlorine have their hydrogens oriented
toward the halogens, confirming our measure of H-bonds
and not X-bonds.

Regarding oxygen atoms within the aromatic ring, AverHB are
generally lower than expected. It is well known that oxygens in
heterocycles act as H-bond acceptor (Kaur and Khanna, 2011),
but our model does not reproduce this tendency. It is important
to notice that GROMOS53A6 does not have specific parameters
for oxygens within aromatic rings, and LJ parameters from
ethers were employed. Not surprisingly, the calculated properties
for the oxygen atom in furan and benzofuran are very similar
to methoxybenzene and phenoxybenzene. This result suggests
that the description of the properties in aqueous solutions of
aromatic rings containing oxygen might be improved by specific
LJ parameters. Moreover, we have tested ether LJ parameters
reported in Horta et al. (2011) for our simulations of furan and

methoxybenzene in water, yielding lowerAverHB and1GHB (data
not shown). The new force field parameters developed in this
work can be obtained upon request.

4.3. Impacts in Drug Design
Recently, several authors have questioned the LE approach
as optimization tool and its actual power to lead to high
affinity compounds (Abad-Zapatero, 2007; Morgan et al., 2011;
Cavalluzzi et al., 2017). Another recent review (DeGoey et al.,
2017) has pointed out the emergence of approved drugs that
violate Lipinski’s rules of 5 and correlated them to properties
such as number of aromatic rings and rotatable bonds. Freire
(2009) have proposed an experimental thermodynamic approach
to guide the drug design process and these results led to believe
that tweaking ligand enthalpy and entropy of binding is not only
experimentally possible, but also possible to predict. Therefore,
the GROMOS series of force fields present an extra advantage
here due to their calibration to reproduce free-energy of solvation
and other thermodynamical properties.

In this sense, we have parameterized and validated a

calibration set of 42 aromatic rings commonly used in
drug design using thermodynamical properties in condensed

phase. After, we performed a study with a larger dataset of
103 heteroaromatic rings in order to understand how these

molecules interact with water and to prospect and map potential

interactions with target-receptors. The water molecules probe
the occurrence of hydrogen bonds, and the absence of these

interactions, as well as the distance from the first solvation

sphere, may probe sites for hydrophobic interactions. With these
information at hand, medicinal chemists and pharmacologists

may employ quantitative estimations on how each functional

group may or may not interact with its target protein, as well as
identify the potential influence of close chemical modifications.

These properties (and a handful of others) are compiled in

Tables 4, 5, and can be used as reference during lead optimization

process.
The strategy employed here could be used to amplify

the spectrum of drug fragments with accurate description of
chemical events simulated by molecular dynamics. In addition,
it can improve the description of drug-receptor complexation
dynamics of other molecules of interest, molecular recognition
of drugs and signal transduction mediated by conformational
changes of ligands. In fact, by assessing the strength and
availability of interactions between aromatic rings and water
solvent, the results presented here not only offer detailed
quantitative information about potential interactions that each
individual aromatic ring can make with its surrounding, but
also shed light upon the energetics of biological events, such as
dismantling solvation shells — an important step in the ligand
binding process.

5. CONCLUSIONS

In this work, we have successfully produced topologies
for a calibration set of 42 aromatic rings using as target
physicochemical properties of respective organic liquids. Our
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strategy revealed a very competitive prediction power when
compared alongside with other force fields, while presenting a
simple approach to describe aromatic rings through molecular
dynamics simulations that can be easily extrapolated to other
rings. In addition to that, H-bond availability and solvent
accessibility are difficult and non-obvious informations to
predict from bidimensional data, but still essential for medicinal
chemistry purposes. Here, we have simulated in aqueous solvent
more than 100 aromatic rings commonly used in drug design in
order to assess dynamical chemical properties, such as average H-
bonds, their lifetime, residence time and free energy of breakage.
Thus, we have described a low cost approach based on molecular
dynamics simulations to access valuable information that could
be useful both to predict the enthalpic cost of desolvation
and for interpretation of pharmacological data by a medicinal
chemist or pharmacologist. Our results provide a large database
of quantitative information for a total of 103 aromatic rings most
commonly used in drug design that can guide medicinal chemists
in future drug design efforts.

AUTHOR CONTRIBUTIONS

MP carried out quantum calculations, molecular dynamics
simulations, data analyses, and drafted the manuscript. VR
contributed in the simulations protocols and manuscript draft.
BG wrote in house scripts for dipole-based charge assignment

and data analyses. MD contributed to manuscript draft. RL
contributed to simulations protocols and manuscript draft. HV
contributed to data analyses and manuscript draft.

FUNDING

The authors thank the funding agencies Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES),
Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), and Fundação de Amparo à Pesquisa do Rio Grande
do Sul (FAPERGS). This work was partially supported by grants
from FAPERGS/PRONUPEQ (16/2551-0000520-6).

ACKNOWLEDGMENTS

Research developed with support of the Centro Nacional de
Supercomputação (CESUP), from Universidade Federal do Rio
Grande do Sul (UFRGS). We gratefully acknowledge the support
of NVIDIA Corporation with the donation of the Titan X Pascal
GPU used for this research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphar.
2018.00395/full#supplementary-material

REFERENCES

Abad-Zapatero, C. (2007). Ligand efficiency indices for effective drug discovery.

Expert Opin. Drug Dis. 2, 469–488. doi: 10.1517/17460441.2.4.469

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., et al.

(2015). Gromacs: high performance molecular simulations through multi-

level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25.

doi: 10.1016/j.softx.2015.06.001

Aldeghi, M., Malhotra, S., Selwood, D. L., and Chan, A. W. (2014). Two-

and three-dimensional rings in drugs. Chem. Biol. Drug Des. 83, 450–461.

doi: 10.1111/cbdd.12260

Anderson, A. C. (2003). The process of structure-based drug design. Chem. Biol.

10, 787–797. doi: 10.1016/j.chembiol.2003.09.002

Aqvist, J., Medina, C., and Samuelsson, J. E. (1994). A new method for predicting

binding affinity in computer-aided drug design. Protein Eng. 7, 385–391.

Bajorath, J. (2015). Computer-aided drug discovery. F1000 Res. 4:630.

doi: 10.12688/f1000research.6653.1

Barker, J. A. and Watts, R. O. (1973). Monte carlo studies of the dielectric

properties of water-like models.Mol. Phys. 26, 789–792.

Bayly, C. I., Cieplak, P., Cornell, W., and Kollman, P. A. (1993). A well-behaved

electrostatic potential based method using charge restraints for deriving atomic

charges: the RESP model. J. Phys. Chem. 97, 10269–10280.

Bemis, G. W. and Murcko, M. A. (1996). The properties of known drugs. 1.

Molecular frameworks. J. Med. Chem. 39, 2887–2893.

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak,

J. R. (1984). Molecular dynamics with coupling to an external bath. J. Chem.

Phys. 81, 3684–3690.

Beutler, T. C., Mark, A. E., van Schaik, R. C., Gerber, P. R., and van Gunsteren,

W. F. (1994). Avoiding singularities and numerical instabilities in free energy

calculations based on molecular simulations. Chem. Phys. Lett. 222, 529–539.

Biela, A., Khayat, M., Tan, H., Kong, J., Heine, A., Hangauer, D., et al. (2012).

Impact of ligand and protein desolvation on ligand binding to the S1 pocket

of thrombin. J. Mol. Biol. 418, 350–366. doi: 10.1016/j.jmb.2012.01.054

Blundell, C. D., Nowak, T., andWatson, M. J. (2016). Measurement, interpretation

and use of free ligand solution conformations in drug discovery. Prog. Med.

Chem. 55, 45–147. doi: 10.1016/bs.pmch.2015.10.003

Blundell, C. D., Packer, M. J., and Almond, A. (2013). Quantification

of free ligand conformational preferences by NMR and their

relationship to the bioactive conformation. Bioorg. Med. Chem. 21,

4976–4987.doi: 10.1016/j.bmc.2013.06.056

Broughton, H. B. and Watson, I. A. (2004). Selection of heterocycles for drug

design. J. Mol. Graph Model. 23, 51–58.doi: 10.1016/j.jmgm.2004.03.016

Bussi, G., Donadio, D., and Parrinello, M. (2007). Canonical sampling through

velocity rescaling. J. Chem. Phys. 126:014101. doi: 10.1063/1.2408420

Butler, K. T., Luque, F. J., and Barril, X. (2009). Toward accurate relative energy

predictions of the bioactive conformation of drugs. J. Comput. Chem. 30,

601–610. doi: 10.1002/jcc.21087

Caleman, C., van Maaren, P. J., Hong, M., Hub, J. S., Costa, L. T., and van der

Spoel, D. (2012). Force field benchmark of organic liquids: Density, enthalpy

of vaporization, heat capacities, surface tension, isothermal compressibility,

volumetric expansion coefficient, and dielectric constant. J. Chem. Theor.

Comput. 8, 61–74. doi: 10.1021/ct200731v

Cavalluzzi, M. M., Mangiatordi, G. F., Nicolotti, O., and Lentini, G. (2017).

Ligand efficiency metrics in drug discovery: the pros and cons from a

practical perspective. Expert Opin. Drug Dis. 12, 1087–1104. doi: 10.1080/

17460441.2017

Csermely, P., Korcsmáros, T., Kiss, H. J., London, G., and Nussinov, R.

(2012). Structure and dynamics of molecular networks: A novel paradigm

of drug discovery. A comprehensive review. Pharmacol. Ther. 138, 333–408.

doi: 10.1016/j.pharmthera.2013.01.016

Danishuddin and Khan, A. U. (2016). Descriptors and their selection methods in

QSAR analysis: paradigm for drug design. Drug Discov. Today 21, 1291–1302.

doi: 10.1016/j.drudis.2016.06.013

Daura, X., Mark, A. E., and Van Gunsteren, W. F. (1998). Parametrization of

aliphatic CHn united atoms of GROMOS96 force field. J. Comput. Chem. 19,

535–547.

Frontiers in Pharmacology | www.frontiersin.org April 2018 | Volume 9 | Article 395292

https://www.frontiersin.org/articles/10.3389/fphar.2018.00395/full#supplementary-material
https://doi.org/10.1517/17460441.2.4.469
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1111/cbdd.12260
https://doi.org/10.1016/j.chembiol.2003.09.002
https://doi.org/10.12688/f1000research.6653.1
https://doi.org/10.1016/j.jmb.2012.01.054
https://doi.org/10.1016/bs.pmch.2015.10.003
https://doi.org/10.1016/j.bmc.2013.06.056
https://doi.org/10.1016/j.jmgm.2004.03.016
https://doi.org/10.1063/1.2408420
https://doi.org/10.1002/jcc.21087
https://doi.org/10.1021/ct200731v
https://doi.org/10.1080/17460441.2017
https://doi.org/10.1016/j.pharmthera.2013.01.016
https://doi.org/10.1016/j.drudis.2016.06.013
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Polêto et al. Aromatic Rings Interactions in Aqueous Solution

DeGoey, D. A., Chen, H. J., Cox, P. B., andWendt, M. D. (2017). Beyond the rule of

5: lessons learned fromAbbVie’s drugs and compound collection. J. Med. Chem.

61, 2636–2651. doi: 10.1021/acs.jmedchem.7b00717

Dobbs, K. D. and Hehre, W. J. (1986). Molecular orbital theory of the properties of

inorganic and organometallic compounds 4. Extended basis sets for third-and

fourth-row, main-group elements. J. Comput. Chem. 7, 359–378.

Domagała, M., Lutyńska, A., and Palusiak, M. (2017). Halogen bond versus

hydrogen bond: The many-body interactions approach. Int. J. Quantum Chem.

117:e25348. doi: 10.1002/qua.25348

Feenstra, K. A., Hess, B., and Berendsen, H. J. C. (1999). Improving efficiency of

large time-scale molecular dynamics simulations of hydrogen rich systems. J.

Comput. Chem. 20, 786–798.

Ferenczy, G. G. and Keseru, G. M. (2010). Thermodynamics guided

lead discovery and optimization. Drug Discov. Today 15, 919-932.

doi: 10.1016/j.drudis.2010.08.013

Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen

Mehrkörperproblems. Z. Phys. 61, 126–148.

Ford, M. C. and Ho, P. S. (2016). Computational tools to model

halogen bonds in medicinal chemistry. J. Med. Chem. 59, 1655–1670.

doi: 10.1021/acs.jmedchem.5b00997

Freire, E. (2009). A thermodynamic approach to the affinity

optimization of drug candidates. Chem. Biol. Drug Des. 74, 468–472.

doi: 10.1111/j.1747-0285.2009.00880.x

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A.,

Cheeseman, J. R., et al. (2016). Gaussian 09, Revision A.02. Wallingford, CT.

Ganesan, A., Coote, M. L., and Barakat, K. (2017). Molecular dynamics-driven

drug discovery: leaping forward with confidence. Drug Discov. Today 22,

249–269. doi: 10.1016/j.drudis.2016.11.001

Gao, Q., Yang, L., and Zhu, Y. (2010). Pharmacophore based drug design approach

as a practical process in drug discovery. Curr. Comput. Aid Drug 6, 37–49.

doi: 10.2174/157340910790980151

Gleeson, M. P. (2008). Generation of a set of simple, interpretable ADMET rules of

thumb. J. Med. Chem. 51, 817–834. doi: 10.1021/jm701122q

Gleeson, M. P., Hersey, A., Montanari, D., and Overington, J. (2011). Probing the

links between in vitro potency, ADMET and physicochemical parameters. Nat.

Rev. Drug Discov. 10, 197–208. doi: 10.1038/nrd3367

Gumbart, J. C., Roux, B., and Chipot, C. (2013). Standard binding free energies

from computer simulations: what is the best strategy? J. Chem. Theor. Comput.

9, 794–802. doi: 10.1021/ct3008099

Halgren, T. A. (1996). Merck molecular force field. II. MMFF94 van derWaals and

electrostatic parameters for intermolecular interactions. J. Comput. Chem. 17,

520–552.

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek,

E., and Hutchison, G. R. (2012). Avogadro: an advanced semantic

chemical editor, visualization, and analysis platform. J. Cheminformatics 4:17.

doi: 10.1186/1758-2946-4-17

Hartree, D. R. and Hartree, W. (1935). Self-consistent field, with exchange, for

beryllium. Proc. R. Soc. A Math. Phys. 150, 9–33.

Heinz, T. N., van Gunsteren, W. F., and Hünenberger, P. H. (2001). Comparison

of four methods to compute the dielectric permittivity of liquids from

molecular dynamics simulations. J. Chem. Phys. 115, 1125–1136. doi: 10.1063/

1.1379764

Hess, B. (2008). P-LINCS: a parallel linear constraint solver for molecular

simulation. J. Chem. Theor. Comput. 4, 116–122. doi: 10.1021/ct700200b

Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M. (1997). LINCS:

a linear constraint solver for molecular simulations. J. Comput. Chem. 18,

1463–1472.

Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C., and Reynolds, C. H.

(2014). The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug

Discov. 13, 105–121. doi: 10.1038/nrd4163

Horta, B. A., Merz, P. T., Fuchs, P. F., Dolenc, J., Riniker, S., and Hünenberger,

P. H. (2016). A GROMOS-compatible force field for small organic molecules in

the condensed phase: the 2016H66 parameter set. J. Chem. Theor. Comput. 12,

3825–3850. doi: 10.1021/acs.jctc.6b00187

Horta, B. A., Fuchs, P. F., van Gunsteren, W. F., and Hünenberger, P. H.

(2011). New interaction parameters for oxygen compounds in the GROMOS

force field: Improved pure-liquid and solvation properties for alcohols, ethers,

aldehydes, ketones, carboxylic acids, and esters. J. Chem. Theor. Comput. 7,

1016–1031. doi: 10.1021/ct1006407

Jordan, A. M. and Roughley, S. D. (2009). Drug discovery chemistry:

a primer for the non-specialist. Drug Discov Today 14, 731–744.

doi: 10.1016/j.drudis.2009.04.005

Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J. (1996). Development and

testing of the OPLS all-atom force field on conformational energetics and

properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236.

Kaur, D. and Khanna, S. (2011). Intermolecular hydrogen bonding interactions

of furan, isoxazole and oxazole with water. Comput. Theor. Chem. 963, 71–75.

doi: 10.1016/j.comptc.2010.09.011

Keserü, G. M. and Makara, G. M. (2009). The influence of lead discovery strategies

on the properties of drug candidates. Nat. Rev. Drug Discov. 8, 203–212.

doi: 10.1038/nrd2796

Kunz, A. P., and van Gunsteren,W. F. (2009). Development of a nonlinear classical

polarization model for liquid water and aqueous solutions: COS/D. J. Phys.

Chem. A 113, 11570–11579. doi: 10.1021/jp903164s

Lee, C. H., Huang, H. C., and Juan, H. F. (2011). Reviewing ligand-based rational

drug design: the search for an ATP synthase inhibitor. Int. J. Mol. Sci. 12,

5304–5318. doi: 10.3390/ijms12085304

Leeson, P. D. and Springthorpe, B. (2007). The influence of drug-like concepts on

decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890.

doi: 10.1038/nrd2445

Li, S., Smith, D. G., and Patkowski, K. (2015). An accurate benchmark description

of the interactions between carbon dioxide and polyheterocyclic aromatic

compounds containing nitrogen. Phys. Chem. Chem. Phys. 17, 16560–16574.

doi: 10.1039/c5cp02365c

Limongelli, V., Bonomi, M., and Parrinello, M. (2013). Funnel metadynamics

as accurate binding free-energy method. Proc. Natl. Acad. Sci. U.S.A. 110,

6358–6363. doi: 10.1073/pnas.1303186110

Lin, F. Y. and Mackerell, A. D. (2017). Do halogen-hydrogen bond donor

interactions dominate the favorable contribution of halogens to ligand-protein

binding? J. Phys. Chem. B 121, 6813–6821. doi: 10.1021/acs.jpcb.7b04198

Lionta, E., Spyrou, G., Vassilatis, D. K., and Cournia, Z. (2014). Structure-

based virtual screening for drug discovery: principles, applications

and recent advances. Curr. Top. Med. Chem. 14, 1923–1938.

doi: 10.2174/1568026614666140929124445

Lounnas, V., Ritschel, T., Kelder, J., McGuire, R., Bywater, R. P., and Foloppe,

N. (2013). Current progress in structure-based rational drug design marks a

new mindset in drug discovery. Comput. Struct. Biotechnol. J. 5:e201302011.

doi: 10.5936/csbj.201302011

Matczak, P. and Wojtulewski, S. (2015). Performance of Møller-Plesset second-

order perturbation theory and density functional theory in predicting the

interaction between stannylenes and aromatic molecules. J. Mol. Model. 21, 41.

doi: 10.1007/s00894-015-2589-1

Mennucci, B. and Tomasi, J. (1997). Continuum solvation models: a new approach

to the problem of solute’s charge distribution and cavity boundaries. J. Chem.

Phys. 106, 5151–5158.

Møller, C. and Plesset, M. S. (1934). Note on an approximation treatment for

many-electron systems. Phys. Rev. 46, 618–622.

Mondal, J., Friesner, R. A., and Berne, B. J. (2014). Role of desolvation in

thermodynamics and kinetics of ligand binding to a kinase. J. Chem. Theor.

Comput. 10, 5696–5705. doi: 10.1021/ct500584n

Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., and Greyson, D.

(2011). The cost of drug development: a systematic review. Health Policy 100,

4–17. doi: 10.1016/j.healthpol.2010.12.002

Nosé, S. (1984). A molecular dynamics method for simulations in the canonical

ensemble.Mol. Phys. 52, 255–268.

Oostenbrink, C., Villa, A., Mark, A. E., and van Gunsteren, W. F. (2004). A

biomolecular force field based on the free enthalpy of hydration and solvation:

the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25,

1656–1676. doi: 10.1002/jcc.20090

Parrinello, M. and Rahman, A. (1981). Polymorphic transitions in single crystals:

a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190.

Parthasarath, R., Subramanian, V., and Sathyamurthy, N. (2005). Hydrogen

bonding in phenol, water, and phenol-water clusters. J. Phys. Chem. A 109,

843–850. doi: 10.1021/jp046499r

Frontiers in Pharmacology | www.frontiersin.org April 2018 | Volume 9 | Article 395293

https://doi.org/10.1021/acs.jmedchem.7b00717
https://doi.org/10.1002/qua.25348
https://doi.org/10.1016/j.drudis.2010.08.013
https://doi.org/10.1021/acs.jmedchem.5b00997
https://doi.org/10.1111/j.1747-0285.2009.00880.x
https://doi.org/10.1016/j.drudis.2016.11.001
https://doi.org/10.2174/157340910790980151
https://doi.org/10.1021/jm701122q
https://doi.org/10.1038/nrd3367
https://doi.org/10.1021/ct3008099
https://doi.org/10.1186/1758-2946-4-17
https://doi.org/10.1063/1.1379764
https://doi.org/10.1021/ct700200b
https://doi.org/10.1038/nrd4163
https://doi.org/10.1021/acs.jctc.6b00187
https://doi.org/10.1021/ct1006407
https://doi.org/10.1016/j.drudis.2009.04.005
https://doi.org/10.1016/j.comptc.2010.09.011
https://doi.org/10.1038/nrd2796
https://doi.org/10.1021/jp903164s
https://doi.org/10.3390/ijms12085304
https://doi.org/10.1038/nrd2445
https://doi.org/10.1039/c5cp02365c
https://doi.org/10.1073/pnas.1303186110
https://doi.org/10.1021/acs.jpcb.7b04198
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.5936/csbj.201302011
https://doi.org/10.1007/s00894-015-2589-1
https://doi.org/10.1021/ct500584n
https://doi.org/10.1016/j.healthpol.2010.12.002
https://doi.org/10.1002/jcc.20090
https://doi.org/10.1021/jp046499r
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Polêto et al. Aromatic Rings Interactions in Aqueous Solution

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H.,

Lindborg, S. R., et al. (2010). How to improve R&D productivity: the

pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203.

doi: 10.1038/nrd3078

Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham,M. A., Shirley,W. A., and

Mantzaris, J. (1988). A complete basis set model chemistry. I. The total energies

of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89,

2193–2218.

Rendine, S., Pieraccini, S., Forni, A., and Sironi, M. (2011). Halogen bonding in

ligand—receptor systems in the framework of classical force fields. Phys. Chem.

Chem. Phys. 13:19508. doi: 10.1039/c1cp22436k

Reynolds, C. H. and Holloway, M. K. (2011). Thermodynamics of ligand

binding and efficiency. ACS Med. Chem. Lett. 2, 433–437. doi: 10.1021/ml2

00010k

Roughley, S. D. and Jordan, A. M. (2011). The medicinal chemist’s toolbox: an

analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54,

3451–3479. doi: 10.1021/jm200187y

Rusu, V. H., Baron, R., and Lins, R. D. (2014). PITOMBA: Parameter Interface

for Oligosaccharide Molecules Based on Atoms. J. Chem. Theor. Comput. 10,

5068–5080. doi: 10.1021/ct500455u

Schuler, L. D., Daura, X., and van Gunsteren, W. F. (2001). An improved

FROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J.

Comput. Chem. 22, 1205–1218. doi: 10.1002/jcc.1078

Shahlaei, M. (2013). Descriptor selection methods in quantitative structure-

activity relationship studies: a review study. Chem. Rev. 113, 8093–8103.

doi: 10.1021/cr3004339

Shirts, M. R. and Pande, V. S. (2005). Comparison of efficiency and bias of free

energies computed by exponential averaging, the Bennett acceptance ratio,

and thermodynamic integration. J. Chem. Phys. 122:144107. doi: 10.1063/1.18

73592

Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W. (2013).

Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395.

doi: 10.1124/pr.112.007336

Taylor, R. D., MacCoss, M., and Lawson, A. D. (2017). Combining molecular

scaffolds from FDA approved drugs: application to drug discovery. J. Med.

Chem. 60, 1638–1647. doi: 10.1021/acs.jmedchem.6b01367

Taylor, R. D., MacCoss, M., and Lawson, A. D. (2014). Rings in drugs. J. Med.

Chem. 57, 5845–5859. doi: 10.1021/jm4017625

Tironi, I. G., Sperb, R., Smith, P. E., and van Gunsteren,W. F. (1995). A generalized

reaction field method for molecular dynamics simulations. J. Chem. Phys. 102,

5451–5459.

Van Gunsteren, W. F. and Berendsen, H. J. C. (1988). A leap-frog algorithm for

stochastic dynamics.Mol. Simulat. 1, 173–185.

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004).

Development and testing of a general Amber force field. J. Comput. Chem. 25,

1157–1174. doi: 10.1002/jcc.20035

Waring, M. J. (2009). Defining optimum lipophilicity and molecular weight

ranges for drug candidates-Molecular weight dependent lower log D

limits based on permeability. Bioorg. Med. Chem. Lett. 19, 2844–2851.

doi: 10.1016/j.bmcl.2009.03.109

Waring, M. J. (2010). Lipophilicity in drug discovery. Expert Opin. Drug Dis. 5,

235–248. doi: 10.1517/17460441003605098

Welsch, M. E., Snyder, S. A., and Stockwell, B. R. (2010). Privileged scaffolds

for library design and drug discovery. Curr. Opin. Chem. Biol. 14, 347–361.

doi: 10.1016/j.cbpa.2010.02.018

Woo, H. J. and Roux, B. (2005). Calculation of absolute protein-ligand binding

free energy from computer simulations. Proc. Natl. Acad. Sci. U.S.A. 102,

6825–6830. doi: 10.1073/pnas.0409005102

Zhao, H. and Caflisch, A. (2015). Molecular dynamics in drug design. Eur. J. Med.

Chem. 91, 4–14. doi: 10.1002/ijch.201400009

Zwanzig, R. W. (1954). High-temperature equation of state by a perturbation

method. I. nonpolar gases. J. Chem. Phys. 22, 1420–1426.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer GT and handling Editor declared their shared affiliation.

Copyright © 2018 Polêto, Rusu, Grisci, Dorn, Lins and Verli. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Pharmacology | www.frontiersin.org April 2018 | Volume 9 | Article 395294

https://doi.org/10.1038/nrd3078
https://doi.org/10.1039/c1cp22436k
https://doi.org/10.1021/ml200010k
https://doi.org/10.1021/jm200187y
https://doi.org/10.1021/ct500455u
https://doi.org/10.1002/jcc.1078
https://doi.org/10.1021/cr3004339
https://doi.org/10.1063/1.1873592
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1021/acs.jmedchem.6b01367
https://doi.org/10.1021/jm4017625
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1016/j.bmcl.2009.03.109
https://doi.org/10.1517/17460441003605098
https://doi.org/10.1016/j.cbpa.2010.02.018
https://doi.org/10.1073/pnas.0409005102
https://doi.org/10.1002/ijch.201400009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


REVIEW
published: 22 August 2018

doi: 10.3389/fphar.2018.00923

Frontiers in Pharmacology | www.frontiersin.org August 2018 | Volume 9 | Article 923

Edited by:

Adriano D. Andricopulo,

Universidade de São Paulo, Brazil

Reviewed by:

José Pedro Cerón-Carrasco,

Universidad Católica San Antonio de

Murcia, Spain

Andrea Mozzarelli,

Università degli Studi di Parma, Italy

*Correspondence:

Stefano Moro

stefano.moro@unipd.it

Specialty section:

This article was submitted to

Experimental Pharmacology and Drug

Discovery,

a section of the journal

Frontiers in Pharmacology

Received: 04 May 2018

Accepted: 26 July 2018

Published: 22 August 2018

Citation:

Salmaso V and Moro S (2018)

Bridging Molecular Docking to

Molecular Dynamics in Exploring

Ligand-Protein Recognition Process:

An Overview.

Front. Pharmacol. 9:923.

doi: 10.3389/fphar.2018.00923

Bridging Molecular Docking to
Molecular Dynamics in Exploring
Ligand-Protein Recognition Process:
An Overview
Veronica Salmaso and Stefano Moro*

Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova,

Italy

Computational techniques have been applied in the drug discovery pipeline since the

1980s. Given the low computational resources of the time, the first molecular modeling

strategies relied on a rigid view of the ligand-target binding process. During the years, the

evolution of hardware technologies has gradually allowed simulating the dynamic nature

of the binding event. In this work, we present an overview of the evolution of structure-

based drug discovery techniques in the study of ligand-target recognition phenomenon,

going from the static molecular docking toward enhancedmolecular dynamics strategies.

Keywords: ligand-protein binding, molecular docking, molecular dynamics, enhanced sampling, protein flexibility,
molecular recognition

INTRODUCTION

No protein is an island but exerts its function through the recognition of other molecular partners
(Salmaso, 2018). Ligand-protein interactions are involved in many biological processes with
consequent pharmaceutical implications. Thus, the scientific community has been putting a great
effort into the investigation of the binding phenomenon during the years, leading to the proposal
of several theories characterized by an increasing emphasis on the degree of flexibility of the ligand
and protein counterparts.

The first explanation of binding was provided by Emil Fischer in 1894 (Fischer, 1894) with
the “lock-key” model to interpret enzyme specificity: the ligand rigidly recognizes and occupies
the protein binding site like a key to its lock, because of their native shape complementary.
Since this model could not explain either the behavior of enzyme noncompetitive inhibition or
allosteric modulation, different modifications have been proposed. Koshland (1958) introduced the
“induced-fit” theory: according to his observations on enzyme-substrate interactions, the ligand is
able to induce conformational changes to the protein, optimizing ligand-target interactions. Later
works suggested that proteins naturally exist as an ensemble of conformations (Monod et al., 1965),
described by an energy landscape (Frauenfelder et al., 1991), and ligands preferentially bind to one
of them (Austin et al., 1975; Foote and Milstein, 1994). According to this interpretation of binding,
known as “conformational selection,” the ligand stabilizes one of the protein conformations
with a consequent shift of the protein population equilibrium (Kumar et al., 2000). These two
apparently contrasting theories have simply different ranges of applicability, and the descriptions
they provide of molecular binding differ for the chronological sequence of events in which the
binding process is decomposed (Kobilka and Deupi, 2007; Okazaki and Takada, 2008; Zhou, 2010).
New theories are emerging, making a compromise between the aforementioned ones: according to

295

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.00923
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.00923&domain=pdf&date_stamp=2018-08-22
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:stefano.moro@unipd.it
https://doi.org/10.3389/fphar.2018.00923
https://www.frontiersin.org/articles/10.3389/fphar.2018.00923/full
http://loop.frontiersin.org/people/496778/overview
http://loop.frontiersin.org/people/490536/overview


Salmaso and Moro Molecular Docking and Dynamics Overview

the extended conformational selection model, for example,
the conformational selection is followed by a conformational
adjustment (induced fit) (Csermely et al., 2010).

The evolution of binding models has practical relevance
besides an epistemological significance; the knowledge of ligand-
target binding is at the basis of rational drug design but
understanding this complex process on a mechanistic level may
open new scenarios. In addition, to suggest ligand modification
meant to optimize the final bound state, the medicinal chemist
may look at kinetically relevant intermediate states and try to
affect them.

COMPUTATIONAL METHODS TO STUDY
LIGAND-PROTEIN BINDING

Since the 1980s, computer technologies have been applied to
the drug discovery process (Van Drie, 2007), giving rise to
Computer-Aided Drug Design (CADD). This technique earned
soon great interest and deserved a cover article on October 5,
1981, Fortune magazine, entitled “Next Industrial Revolution:
Designing Drugs by Computer at Merck” (Van Drie, 2007).
CADD techniques are used principally for three reasons: virtual
screening hit/lead optimization and design of novel compounds.
In virtual screening a huge database of compounds is examined
searching for binding capacity for a target and a subset of
compounds is picked out and suggested for in vitro testing; the
purpose is to increase the hit rate of novel drugs by reducing
the number of compounds to test experimentally. The second
application of CADD is the optimization of a hit/lead compound
driven by the rationalization of a structure-activity relationship.
After the individuation of key elements for binding, the design of
new compounds can be attempted (Salmaso, 2018).

CADD methods may be classified as ligand-based (LB)
and structure-based (SB), depending on the availability and
employment of the target structure (Sliwoski et al., 2014). In
the framework of CADD, structure-based drug design (SBDD)
methods take advantage of the abundance of experimentally
solved structures in the Protein Data Bank (Berman et al., 2000),
which can possibly be used also as templates for homology
models if the structure of interest is lacking. SBDD is based on
the premise that the knowledge of the target structure can help to
rationalize and optimize binding since ligand-target interactions
are mediated by their complementarity. With the evolution of the
binding models, it is clear that speaking of “target structure” is an
approximation, given that proteins fluctuate among an ensemble
of structures (Miller and Dill, 1997).

The possibility to predict ligand binding modes and to
interpret binding processes is valuable to individuate, optimize
and suggest novel ligands, and for this reason, the scientific
community has been putting great efforts in developing new
computational techniques.

In the following paragraphs, we will present an excursus
over the main structure-based computational techniques
employed in drug discovery. An urgency to simulate protein
flexibility throughout binding has been experienced over
the years, arising from the evolution of the binding models

from static to dynamic. The inclusion of flexibility features in
conformational sampling entails an increase in the number
of degrees of freedom of the system, and consequently in
the computational effort. For this reason, the development
of computational tools has been occurring in parallel
and thanks to the continuous improvement of hardware
technologies.

Molecular Docking
Molecular docking techniques aim to predict the best matching
binding mode of a ligand to a macromolecular partner (here
just proteins are considered). It consists in the generation of
a number of possible conformations/orientations, i.e., poses, of
the ligand within the protein binding site. For this reason, the
availability of the three-dimensional structure of the molecular
target is a necessary condition; it can be an experimentally
solved structure (such as by X-ray crystallography or NMR)
or a structure obtained by computational techniques (such as
homology modeling) (Salmaso, 2018).

Molecular docking is composed mainly by two stages: an
engine for conformations/orientations sampling and a scoring
function, which associates a score to each predicted pose
(Abagyan and Totrov, 2001; Kitchen et al., 2004; Huang and
Zou, 2010). The sampling process should effectively search the
conformational space described by the free energy landscape,
where energy, in docking, is approximated by the scoring
function. The scoring function should be able to associate the
native bound-conformation to the global minimum of the energy
hypersurface.

Scoring Functions
Scoring functions play the role of poses selector, used to
discriminate putative correct binding modes and binders from
non-binders in the pool of poses generated by the sampling
engine.

There are essentially three types of scoring functions:

1. Force-field based scoring functions:

Force-field is a concept typical of molecular mechanics
(see Box 1) which approximates the potential energy of
a system with a combination of bonded (intramolecular)
and nonbonded (intermolecular) components. In molecular
docking, the nonbonded components are generally taken into
account, with possibly the addition of the ligand-bonded terms,
especially the torsional components. Intermolecular components
include the van der Waals term, described by the Lennard-
Jones potential, and the electrostatic potential, described by
the Coulomb function, where a distance-dependent dielectric
may be introduced to mimic the solvent effect. However,
additional terms have been added to the force-field scoring
functions, such as solvation terms (Brooijmans and Kuntz,
2003).

Examples of force field based scoring functions are GoldScore
(Verdonk et al., 2003), AutoDock (Morris et al., 1998) (improved
as a semiempirical version in AutoDock4, Huey et al., 2007),
GBVI/WSA (Corbeil et al., 2012).
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2. Empirical scoring functions:

These functions are the sum of various empirical energy
terms such as van der Waals, electrostatic, hydrogen
bond, desolvation, entropy, hydrophobicity, etc., which are
weighted by coefficients optimized to reproduce binding
affinity data of a training set by least squares fitting
(Huang and Zou, 2010).

The LUDI (Böhm, 1994) scoring function was the first
example of an empirical one. Other empirical scoring functions
are GlideScore (Halgren et al., 2004; Friesner et al., 2006),
ChemScore (Eldridge et al., 1997), PLANTSCHEMPLP (Korb et al.,
2009).

3. Knowledge-based scoring functions:

Box 1 | Molecular mechanics.

Molecular mechanics is a method which approximates the treatment

of molecules with the laws of classical mechanics, in order to limit

the computational cost required for quantum mechanical calculations

(Vanommeslaeghe et al., 2014). Atoms are considered as charged spheres

connected by springs, neglecting the presence of electrons, in accordance

with Born-Oppenheimer approximation (Born and Oppenheimer, 1927). The

potential energy is approximated by a simple function which is called force-

field; it is the sum of bonded (intramolecular) and nonbonded energy terms.

The basic form of the function comprise bond stretching and bending

described by harmonic potential, and torsional potential described by a

trigonometric function, in the bonded portion. Nonbonded terms consist of

van der Waals and Coulomb electrostatic interactions between couples of

atoms.

As an example, these basic components of the CHARMM [78] force field

are reported in the following equations

V = Vbonded + Vnonbonded

Vbonded =

∑

bonds

Kb(b− b0)
2
+

∑

angles

Kθ (θ − θ0)
2

+

∑

dihedrals

Kχ (1+ cos (nχ − δ))

Vnonbonded =

∑

nonbonded

pairs ij

qiqj

εrij

+

∑

nonbonded

pairs ij

εij





(

Rmin, ij

rij

)12

− 2

(

Rmin, ij

rij

)6




where Kb, Kθ, and Kχ are the bond, angle and torsional force constants; b,

θ and χ are bond length, bond angle and dihedral angle (those with the 0-

subscript are the equilibrium values); n is multiplicity and δ the phase of the

torsional periodic function; rij is the distance between atoms i and j; qi and qj
are the partial charges of atoms i and j; ε is the effective dielectric constant;

εij is the Lennard-Jones well depth and Rmin,ij is the distance between atoms

at Lennard-Jones minimum.

These terms may appear slightly different in different force-fields, and

anharmonicity and cross-terms are generally added.

The parameters of the force field are obtained by fitting quantum

mechanical or experimental values.

These methods assume that ligand-protein contacts statistically
more explored are correlated with favorable interactions. Starting
from a database of structures, the frequencies of ligand-protein
atom pairs contacts are computed and converted into an
energy component. When evaluating a pose, the aforementioned
tabulated energy components are summed up for all ligand-
protein atom pairs, giving the score of the pose.

DrugScore (Gohlke et al., 2000; Velec et al., 2005) and
GOLD/ASP (Mooij and Verdonk, 2005) are examples of
knowledge-based scoring functions.

Another strategy consists in the combination of multiple
scoring functions leading to the so-called consensus scoring
(Charifson et al., 1999).

In addition, new scoring functions have been developed: for
example, based on machine learning technologies, interaction
fingerprints and attempts with quantum mechanical scores
(Yuriev et al., 2015).

Sampling
The firstmolecular docking algorithmwas developed in the 1980s
by Kuntz et al. (1982); the receptor was approximated by a series
of spheres filling its surface clefts, and the ligand by another set
of spheres defining its volume. A search was made to find the
best steric overlap between binding site and receptor spheres,
neglecting any kind of conformational movement.

This method belongs to the group of fully-rigid docking
techniques, according to the classification which divides docking
methods according to the degrees of flexibility of the molecules
involved in the calculation Halperin et al., 2002 (Figure 1):

1. Rigid docking:

Both ligand and protein are considered rigid entities, and just the
three translational and three rotational degrees of freedom are
considered during sampling. This approximation is analogous to
the “lock-key” binding model and is mainly used for protein-
protein docking, where the number of conformational degrees of
freedom is too high to be sampled. Generally, in these methods,
the binding site and the ligand are approximated by “hot” points
and the superposition of matching point is evaluated (Taylor
et al., 2002).

2. Semi-flexible docking:

Just one of the molecules, the ligand, is flexible, while the protein
is rigid. Thus, the conformational degrees of freedom of the
ligand are sampled, in addition to the six translational plus
rotational ones. These methods assume that a fixed conformation
of a protein may correspond to the one able to recognize the
ligands to be docked. This assumption, as already reported, is not
always verified.

3. Flexible docking:

It is based on the concept that a protein is not a passive rigid
entity during binding and considers both ligand and protein as
flexible counterparts. Different methods have been introduced
during the years, some rested on the induced fit binding model
and others on conformational selection.
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FIGURE 1 | Molecular docking techniques organized according to

ligand-protein flexibility and conformational searching engines.

The great number of degrees of freedom introduced by flexible
docking makes the potential energy surface to be a function of
numerous coordinates. Consequently, the computational effort
required to perform a docking calculation is augmented, but both
sampling and scoring should be optimized to give a good balance
between accuracy and speed. In fact, virtual screening campaign
of millions of compounds depends on the velocity of docking
calculations. For this reason, more and more improvements have
been made in the development of the new algorithm, able to
deeply search the phase space but not at the expense of velocity.

Semi-flexible Docking
Numerous docking algorithms have been developed since the
1980s. Often it is difficult to classify clearly each docking software,
because different algorithms may be integrated into a multi-
phase approach. However, docking algorithms can be classified
as follows (Kitchen et al., 2004; Huang and Zou, 2010):

1. Systematic search techniques:

In a systematic search, a set of discretized values is associated with
each degree of freedom, and all the values of each coordinate are
explored in a combinatorial way (Brooijmans and Kuntz, 2003).
These methods are subdivided into:

a. Exhaustive search - it is a systematic search in the strict sense
since all the rotatable bonds of the ligands are examined in
a systematic way. A number of constraints and termination
criteria is generally established to limit the search space and
to avoid a combinatorial explosion. The docking pipeline of
the software Glide (Friesner et al., 2004; Halgren et al., 2004)
involves a stage of the exhaustive search.

b. Fragmentation - the first implementation of ligand flexibility
into docking was introduced by DesJarlais et al. (1986), who
proposed a method made of fragmentation of the ligand,
rigid docking of the fragments into the binding site, and
subsequent linking of the fragments. In this way, partial
flexibility is implemented at the joints between the fragments.
Other methods, defined as incremental construction, dock
one fragment first and then attach incrementally the others.
Examples of methods utilizing fragmentation are FlexX (Rarey
et al., 1996) and Hammerhead (Welch et al., 1996).

c. Conformational Ensemble - rigid docking algorithms can be
easily enriched by a sort of flexibility if an ensemble of
previously generated conformers of the ligand is docked to
the target, in a sort of conformational selection fashion on
the ligand counterpart. Examples are offered by FLOG (Miller
et al., 1994), EUDOC (Pang et al., 2001), MS-DOCK (Sauton
et al., 2008).

2. Stochastic methods:

Stochastic algorithms change randomly, instead of systematically,
the values of the degrees of freedom of the system. The advantage
of these techniques is the speed, so they could potentially find the
optimal solution really fast. As a drawback, they do not ensure
a full search of the conformational space, so the true solution
may be missed. The lack of convergence is partially solved by
increasing the number of iterations of the algorithm. The most
famous stochastic algorithms are (Huang and Zou, 2010):

a. Monte Carlo (MC) methods - Monte Carlo methods are based
on the Metropolis Monte Carlo algorithm, which introduces
an acceptance criterion in the evolution of the docking search.
In particular, at every iteration of the algorithm, a random
modification of the ligand degrees of freedom is performed.
Then, if the energy score of the pose is improved, the change is
accepted, otherwise, it is accepted according to the probability
expressed in the following equation:

P ∼ exp

[

−(E1 − E0)

kBT

]

where E1 and E0 are the energy score before and after the
modification, kB the Boltzmann constant, and T the temperature
of the system.

This is the original form of the Metropolis algorithm, but
it is implemented in different variants within docking software.
Some example are provided by the earlier versions of AutoDock
(Goodsell and Olson, 1990; Morris et al., 1996), ICM (Abagyan
et al., 1994), QXP (McMartin and Bohacek, 1997), MCDOCK
(Liu and Wang, 1999), AutoDock Vina (Trott and Olson, 2010),
ROSETTALIGAND (Meiler and Baker, 2006).

b. Tabu search methods - the aim of these algorithms is to
prevent the exploration of already sampled zones of the
conformational/positional space. Random modifications are
performed on the degrees of freedom of the ligand at each
iteration. The already sampled conformations are registered,
and when a new pose is obtained, it is accepted only if not
similar to any previously explored pose. PRO_LEADS (Baxter
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et al., 1998) and PSI-DOCK (Pei et al., 2006) are two examples
of this category.

c. Evolutionary Algorithms (EA) - these algorithms are based on
the idea of biological evolution, with the most famous Genetic
Algorithms (GAs). The concept of the gene, chromosome,
mutation, and crossover are borrowed from biology. In
particular, the degrees of freedom are encoded into genes,
and each conformation of the ligand is described by a
chromosome (collection of genes), which is assigned a fitness
score. Mutations and crossovers occur within a population of
chromosomes, and chromosomes with higher fitness survive
and replace the worst ones. The most famous examples are
GOLD (Jones et al., 1995, 1997), AutoDock 3 & 4 (which
implement a different version of GA, the Lamarckian GA)
(Morris et al., 1998), PSI-DOCK (Pei et al., 2006), rDock
(Ruiz-Carmona et al., 2014).

d. Swarm optimization (SO) methods - these methods take
inspiration from swarm behavior. The sampling of the
degrees of freedom of a ligand is guided by the information
deposited by already sampling good poses. For example,
PLANTS (Korb et al., 2006) adopts an ACO (Ant Colony
Optimization) algorithm, which mimics the behavior of ants,
who communicate the easiest way to reach a source of food
through the deposition of pheromone. Here, each degree of
freedom is associated with a pheromone. Virtual ants choose
conformations considering the values of pheromones, and
successful ants contribute to pheromone deposition.

Other examples of SOs are SODOCK (Chen et al., 2007),
pso@autodock (Namasivayam andGünther, 2007), PSOVina (Ng
et al., 2015).

3. Simulation methods:

The most famous example of this category is Molecular
Dynamics, a method that describes the time evolution of a
system. A wider explanation will be given in section Molecular
Dynamics.

Energyminimizationmethods can be inserted in this category,
but generally, they are not used as stand-alone search engines
(Kitchen et al., 2004). Energyminimization is a local optimization
technique, used to bring the system to the closest minimum on
the potential energy surface.

Flexible Docking
Some attempts have been made to introduce protein flexibility
into docking calculations. These methods take advantage of
different degrees of approximation and can be divided into
approaches that consider single protein or multiple protein
conformations (Alonso et al., 2006).

1. Single Protein Conformation:

a. Soft docking:

This method, firstly described by Jiang and Kim (1991), consists
of an implicit and rough treatment of protein flexibility. The
van der Waals repulsion term employed in force field scoring
functions is reduced, allowing small clashes that permit a closer
ligand-protein packing. In this way, a sort of induced-fit is

simulated. As a drawback, this approach approximates just
feeble protein movements and could implicate unreal poses
(Apostolakis et al., 1998; Vieth et al., 1999).

b. Sidechain flexibility:

This strategy introduces alternative conformations for some
protein side chains (Leach, 1994). This is generally done
exploiting databases of rotamer libraries. Some dockingmethods,
such as GOLD, sample some degrees of freedomwithin their own
search engine. Obviously, considering side chain flexibility, huge
conformational variations of the protein are neglected by these
methods.

2. Multiple Protein Conformations:

Multiple experimental structures may be available for the same
target. Moreover, an ensemble of protein conformations can be
obtained via computational techniques, such as Monte Carlo or
Molecular Dynamics simulations. The idea of multiple protein
conformations docking is to take into account all the diverse
structures, following different possible strategies:

a. Average grid:

The structures of the ensemble are used to construct a single
average-grid, which can be either a simple or weighted average
combination of them (Knegtel et al., 1997).

b. United description of the protein:

In this case, the structures do not collapse into an average grid
but are used to construct the best performing “chimera” protein.
For example, FlexE (Rarey et al., 1996) extracts the structurally
conserved portions from the structures of the ensemble and uses
them to construct an average rigid structure. This portion is fused
to the flexible parts of the ensemble in a combinatorial fashion,
giving a pool of “chimeras” that are used for docking.

c. Individual conformations:

The structures of the ensemble are considered as conformations
that can possibly be bound by the ligand, so various docking
runs are performed, evaluating the ligands of interest on all
the target conformations (Huang and Zou, 2007). Moreover, a
preliminary benchmark assessing the performance of different
target structures in a cross-docking experiment may be employed
to filter the ensemble of structures (Salmaso et al., 2016, 2018).

Among the drugs approved by the Food and Drug
Administration, few examples of successful applications of
CADD are available (Talele et al., 2010). Among them,
the renin-inhibitor Aliskiren was developed by means of
a combination of molecular modeling and crystallographic
structure analysis (Wood et al., 2003). However, the binding of
non-peptidomimetic ligands to renin has shown huge structural
rearrangement of the protein (Teague, 2003), addressing the
problem of considering protein flexibility in drug design
campaigns. Recently, a comparative study evaluating the
performance of ensemble docking and individual crystal
structure docking has been proposed for renin (Strecker and
Meyer, 2018). An ensemble of 4 crystal structures outperformed
the mean results of individual crystal structures in terms of
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binding mode prediction and screening utility. The ensemble
gave worse results than the best performing crystal structure,
which though is not known a priori. Not as good results
were obtained through a Molecular Dynamics ensemble when
compared to crystallographic structures, as confirmed in other
cases reported in the literature (Osguthorpe et al., 2012; Ganser
et al., 2018). However, Molecular Dynamics has proven to be
effective as a tool to explore molecular conformations and as a
docking method itself, as reported in the following paragraphs.

Molecular Dynamics
Molecular dynamics (MD) is a computational technique which
simulates the dynamic behavior of molecular systems as a
function of time, treating all the entities in the simulation box
(ligand, protein, as long as waters if explicit) as flexible (Salmaso,
2018).

It was developed to simulate simple systems, with the
first application to study collisions among hard spheres, in
1957 (Alder and Wainwright, 1957). The first MD simulation
of a biomolecule was accomplished in 1977 by McCammon
et al. (McCammon et al., 1977); it was a 9.2 ps simulation
of a 58-residues Bovine Pancreatic Trypsin Inhibitor (BPTI),
performed in vacuum with a crude molecular mechanics
potential.

Molecular dynamics compute the movements of atoms along
time by the integration of Newton’s equations of motions
(classical mechanics), reported in the following equation (Leach,
2001; Adcock and McCammon, 2006).

d2ri(t)

dt2
=

Fi(t)

mi

with Fi(t) force exerted on atom i at time t, ri(t) vector position of
the atom i at time t,mi mass of the atom (Figure 2).

In particular, time is partitioned into time steps (δt), which are
used to propagate the system forward in time. Several integration
algorithms are available, which derive Newton’s equations by
a discrete-time numerical approximation. The velocity-Verlet
integrator is reported in the following equations as an example
to compute position and velocity of an atom i at the time step
t+δt, starting from step t.

ri (t + δt) = ri (t) + vi (t) δt +
1

2
ai (t) δt2

vi (t + δt) = vi (t) +
1

2
[ai (t) + ai (t + δt)] δt

where ri(t), vi(t) and ai(t) are respectively position, velocity
and acceleration of atom i at time t, and ri(t+δt), vi(t+δt) and
ai(t+δt) are respectively position, velocity and acceleration of
atom i at time t+δt.

Acceleration is calculated from the forces acting on atom i
according to Newton’s second law, and forces are computed from
the force field, according to the following equation:

ai (t)=
d2ri(t)

dt2
=

Fi(t)

mi
= −

dV(r (t))

midri(t)

where V(r(t)) is the potential energy function retrieved by the
force field (see Box 1).

The most used force fields in molecular dynamics are
CHARMM (MacKerell et al., 1998), AMBER (Cornell et al.,
1995), OPLS (Jorgensen and Tirado-Rives, 1988) and GROMOS
(Oostenbrink et al., 2004).

Molecular Dynamics and Exploration of the Phase

Space
MD trajectories can be used as sampling engines; in fact, they
produce protein conformations usable for Multiple Protein
Conformations docking applications. In particular, McCammon
et al. developed the so-called Relaxed-Complex Scheme (RCS),
consisting in docking mini-libraries of compounds with
AutoDock (Morris et al., 1998) against a large ensemble of
snapshots derived from unliganded protein MD trajectories (Lin
et al., 2002, 2003; Amaro et al., 2008). This approach is based
on the conformational selection binding model, disregarding
any influence of the ligand on the receptor. The application

of the RCS to the UDP-galactose 4
′

-epimerase (TbGalE),
for example, led to the identification of 14 low-micromolar
inhibitors (Durrant et al., 2010). Another computational pipeline
integrating MD simulations and virtual screening has proved
to be effective: the coupling of MD, clustering, and choice of
the target structure through fingerprints for ligand and proteins
(MD-FLAP) improved VS performance (Spyrakis et al., 2015).

MD has further applications as a docking-coupled technique
(Alonso et al., 2006) more anchored to the induced-fit model, as
it can be used to assess stability (Sabbadin et al., 2014; Yu et al.,
2018), to refine and to rescore docking poses (Rastelli et al., 2009).

The relevance of MD simulations as source of target
conformational profusion can be exploited to retrieve insights
into cryptic pockets or allosteric binding sites (Durrant and
McCammon, 2011), as reported by Schame et al., who identified
an alternative binding site, named “trench,” close to the active
site of the HIV-1 integrase (Schames et al., 2004). Moreover,
simulations in the explicit solvent may give information on water
molecules, that can be classified as “cold” or stable and “hot” or
unstable (for a recent and comprehensive overview on the role of
water in SBDD; see Spyrakis et al., 2017). In particular, MD may
enable to individuate relevant water molecules, according to their
order (Li and Lazaridis, 2003) and stationarity (Cuzzolin et al.,
2018), and to estimate their contribution in modulating ligand
binding (Bortolato et al., 2013; Betz et al., 2016).

All the aforementioned applications of MD are used as a
complement to classic molecular docking techniques. however,
the simulation of the complete binding process of a ligand,
from the unbound state in bulk solvent to the bound state,
be considered a fully-flexible docking in explicit solvent. The
possibility to investigate the whole binding process could give
insights into metastable states reached by the ligand during
the simulation, alternative binding sites, the role of water
during binding and conformational rearrangements preceding,
concurrent or consecutive to binding.

However, the observation of a binding event during a classical
MD simulation is very rare, raising the timescale problem. The
timestep in molecular dynamics has to be compatible with the
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FIGURE 2 | Schematic representation of a molecular dynamics cycle.

fastest motion in the system; in particular, a timestep of 1–2
fs, corresponding to bond vibrations, has to be used. Thus, a
high number of MD steps is required to simulate slow processes,
such as large domain motions and binding (µs-ms) (Henzler-
Wildman and Kern, 2007), making the computational effort
really hard. In particular, slow timescale are linked to processes
that require the overcoming of a high energy barrier (Henzler-
Wildman and Kern, 2007), corresponding to low populated states
in the conformational energy landscape; in this case the simulated
system gets trapped in a local minimum, making classical MD
inadequate to explore largely the conformational space.

Advances in Classical MD Simulations
In 1998 Duan and Kollman performed the first 1µs simulation of
a protein in explicit solvent, observing the folding of a 36-residue
villin headpiece subdomain from a fully unfolded state. This
simulation was two orders of magnitude longer than a state-
of-the-art simulation of that period, and it was made possible
by advances in massively parallel supercomputers and efficient
parallelized codes, but still required 2 months of CPU (Central
Processing Units) time (Duan and Kollman, 1998).

Specialized informatic infrastructures have also been designed
specifically for MD calculations; for example, a supercomputer
named Anton was conceived as a “computational microscope”
and was developed with the idea to reach previously inaccessible
simulation timescales within a reasonable computation time
(Shaw et al., 2008). This machine allowed Shaw et al. to

characterize the folding of FiP35 WW domain from a fully
extended state in a 100 µs simulation and, in addition, to
reach the millisecond timescale in a single simulation of BPTI
in the folded-state (Shaw et al., 2010), followed recently by
ubiquitin (Lindorff-Larsen et al., 2016). Moreover, with unbiased
simulations in the order of ten microseconds, Shaw’s group
could simulate the complete binding process of beta blockers and
agonists to the β2-adrenergic receptor (Dror et al., 2011) and
kinase inhibitors to Src kinase (Shan et al., 2011).

As a drawback, the utilization of supercomputer is an expense
that not many research groups can afford. Fortunately, the recent
years have been characterized by the development of code able
to exploit the speed of GPUs (Graphics Processing Units), which
has given access to tera-scale performances with the use of a
common workstation, and a consequent relatively low cost (Van
Meel et al., 2008; Friedrichs et al., 2009; Harvey et al., 2009; Nobile
et al., 2017). The architecture of a GPU is meant to parallelize a
computation over thousands of cores, with all cores executing the
same instructions on different data (“Same Instruction Multiple
Data,” SIM) (Nobile et al., 2017). For this reason, together with
few preliminary applications in the field of molecular docking
(Korb et al., 2011; Khar et al., 2013), GPUs have been mainly
exploited for MD simulations, which can be parallelized at the
level of atoms. In fact, nowadays, simulations of hundreds of
nanoseconds are easily performed, and reaching themicrosecond
timescale is an affordable issue on a GPU-equipped workstation
(Harvey and De Fabritiis, 2012). In addition, cloud computing
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has been emerging nowadays, not just through the use of web-
servers intended to make molecular modeling accessible to a
community of non-developers users, but also with the provision
of computation power scalable and on-demand (Ebejer et al.,
2013). As an example, AceCloud is an on-demand service for
MD simulations, which is accessed through an extension of the
ACEMDMD code (Harvey and De Fabritiis, 2015).

Moreover, a paradigm shift seems to have been spreading,
that is the possibility to simulate long processes using
numerous trajectories shorter than the process itself instead
of a single long trajectory. This idea has been exploited by
the folding@home project, a worldwide distributed computing
environment benefitting from the computers of private citizens,
when not in use (Shirts and Pande, 2000). Since during a classical
MD simulation, the system is stuck in aminimum, waiting for the
fortunate event that triggers the overcoming of an energy barrier,
the simulation of many trajectories in parallel would increase the
probability to meet the lucky event. Thus, numerous simulations
are started from the same initial condition and run in parallel
on different computers, and when one escapes from the energy
minimum, all the simulations are stopped and started from the
new productive configuration (Pande et al., 2003).

The new paradigm has found its best application in the use
of Markov State Models (MSMs) and adaptive sampling. In
fact, MSMs are based on an ensemble view of the dynamics,
from which statistical properties, such as the probability to
occupy a state and the probability to jump from one state to
another, are computed. The construction of a Markov model
is made of the discretization and projection of a trajectory
into microstates, and of a transition probability matrix T(τ )
computation at a given time, the lag-time τ , chosen in a
way that the transition is memory-less (Markovian). Each
element Tij(τ ) of the transition matrix represents the conditional
probability to find the system in state j at time t+ τ while
being in state i at time t. The transition matrix approximates
the dynamic of the system and enables to extrapolate the
free energy from the equilibrium probability distribution of
the system and the timescale of the slowest processes, even
if they are not directly explored. In a qualitative fashion, the
MSM may individuate diverse metastable states and construct
multi-states models of the processes (Prinz et al., 2011). As an
example, an MSM was constructed on an aggregate of nearly
500 100 ns-trajectories describing benzamidine-trypsin binding
(with 37% productive trajectories); this enabled to characterize
the binding process individuating three transition states, and
to estimate binding free energy with 1 kcal/mol difference
from the experimental one (while a higher deviation from
experiment was associated with the extrapolated kon and koff)
(Buch et al., 2011). Moreover, the computation of MSM on
the collected data can give a feedback about undersampled
zones of the phase space, suggesting where to focus further
simulation, adapting the sampling (adaptive sampling methods)
and increasing the efficiency of simulations (Bowman et al.,
2010; Doerr and De Fabritiis, 2014). Currently, the major
difficulties of this technique are related to the trajectory partition
into discrete states, the choice of the lagtime and sufficient
sampling to guarantee statistical significance (Pande et al.,
2010).

Several alternative techniques have been developed during
the years to overcome the time limitation imposed by classical
MD simulations. A first example consists of the Coarse-Grained
MD simulations, in which groups of atoms are condensed into
spheres, reducing the degrees of freedom of the system (Kmiecik
et al., 2016). This simplifies the conformational landscape of
the system, but, as a drawback, the information on the all-atom
simulations, that are precious for drug-discovery aim, are lost.

Additional strategies consist of enhanced sampling techniques
that apply a bias to molecular dynamics simulations to increase
the accessible timescale, enabling the simulation of slow processes
like binding, unbinding and folding processes in a reduced
amount of time.

Enhanced Sampling Techniques
These methods add a bias force/potential to the system to
increase the rate of escape from local minima, entailing
an acceleration of conformational sampling. They have
been conceived primarily to study either folding or binding
or unbinding processes, sharing the underlying idea of
enhancement of sampling and overcoming high energy barriers.

Enhanced sampling techniques can be divided into methods
that make use of collective variables to introduce the bias and
methods that do not (De Vivo et al., 2016) (Figure 3).

The employment of a collective variable (CV) is based on
the idea that a complex system can be decomposed into one
or a combination of reaction coordinates describing the process
of interest. These coordinates are named as collective variables
since it is assumed they can summarize the behavior of the entire
system. After a careful choice of the CVs, the bias is added
on these coordinates during the simulation enhancing sampling
along the CVs. The phase space is reduced to the space of the
collective variables, since the conformational space is projected
to the selected CVs, with a consequent dimensional reduction of
the free energy surface.

In the following paragraphs, few representative enhanced
sampling techniques are reported as an example, focusing on
their application in binding and unbinding and going toward a
fully dynamic docking (De Vivo and Cavalli, 2017).

Collective variables-free methods
Replica Exchange Molecular Dynamics (REMD) This
method adopts an increase in temperature to accelerate the
conformational sampling. The first formulation of Replica
Exchange MD (Sugita and Okamoto, 1999), also known as
Parallel Tempering (PT), consists of the parallel simulation
of a number of independent and simultaneous replicas of the
same system, starting from the same configuration, but at
different temperatures. At regular time intervals, two replicas
characterized by neighbor temperatures are switched, or, in
other terms, their temperatures are exchanged, with a probability
determined by the energy (E) and temperature (T) of the system.
In particular, the transition probability between simulations
at temperature T1 and T2 is determined by the Metropolis
criterion:

P (T1: T2) =

{

1 for [β2 − β1] (E1 − E2) ≤ 0

e−[β2−β1](E1−E2) for [β2 − β1] (E1 − E2) > 0

where β =1/kBT (with kB the Boltzmann constant).
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FIGURE 3 | Summary of the enhanced sampling techniques described during this work.

Temperatures are updated by rescaling the velocities of the parent

simulations (v1 and v2 to v1
′ and v2

′) according to the following

equation:







v
′

1 =

√

T2
T1
v1

v
′

2 =

√

T1
T2
v2

The choice of the panel of temperatures is critical, and various

strategies have been proposed to guide the selection (Patriksson and

van der Spoel, 2008).

Further development of REMD has been introduced, such

as the Hamiltonian Replica Exchange (H-REMD), where

Hamiltonians are exchanged among replicas instead of temperatures

(Fukunishi et al., 2002), and Replica Exchange with Solute

Tempering, where a different treatment of the central group

and the solvent buffer is performed (Liu et al., 2005). HREMD

has been recently combined to conventional MD simulations

using multi-ensemble Markov models (MEMMs) (Wu et al.,

2016) to investigate the multistate kinetics of Mdm2 and its

inhibitor peptide PMI (Paul et al., 2017). An ensemble of 500 µs

unbiased MD simulations conducted from different initial states,

especially dissociated, were combined to HREMD simulations (6

simulations of 1 µs and with 14 replicas) to enhance sampling

of rare dissociation events; the results were analyzed through

the TRAMMBAR estimator, leading to the prediction of a

residence time beyond the second timescale, despite a sub-

millisecond simulation time. Moreover, the trajectories were

furtherly analyzed to investigate the binding mechanism and

binding-induced folding of PMI (Paul et al., 2018). It appeared

that a multitude of parallel pathways is possible and that binding

and folding are coupled, while not temporarily ordered and

separated.

Accelerated Molecular Dynamics (aMD) Accelerated MD (aMD)

facilitates the egress from a low energy basin by adding a bias

potential function (1V(r)) when the system is entrapped in an energy

minimum. In particular, when the potential energy (V(r)) is lower

Frontiers in Pharmacology | www.frontiersin.org August 2018 | Volume 9 | Article 923303

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Salmaso and Moro Molecular Docking and Dynamics Overview

than a certain cut-off (E), the bias is added giving a modified potential

(V∗(r)=V(r)+ 1V(r)); otherwise the simulation continues in the

true-unbiased potential (V∗(r)=V(r)).

The bias function is reported in the following equation:

1V (r) =
(E− V (r))2

α + (E− V (r))

where E is the potential energy cut-off and α is a tuning parameter

determining the depth of the modified potential energy basin.

E has to be at least greater than Vmin (the minimum potential

energy, close to the starting configuration), while α = E - Vmin will

allow maintaining the underlying shape of the landscape (Hamelberg

et al., 2004).

As an example, aMD showed qualitatively similar results to

classical MD with fewer computational effort in the simulation

of tiotropium-M3 Muscarinic Acetylcholine Receptor binding:

tiotropium was observed to recognize the extracellular vestibule of

the receptor, as in a previously reported long (16 µs) classical MD

simulation (Kruse et al., 2012), by accelerating the process of about

one order of magnitude (three aMD replicas of 200 ns, 500 ns, and 1

µs) (Kappel et al., 2015).

Collective Variables-dependent methods
Steered Molecular Dynamics (SMD) Taking inspiration from

atomic force microscopy experiments, in Steered MD (SMD) an

external force is applied to a ligand to drive it out of the target

binding site (Isralewitz et al., 1997, 2001; Izrailev et al., 1997). Other

possibilities involve the application of forces on different CVs, such

as nonlinear coordinates that can help to explore the conformational

rearrangement of protein domains (Izrailev et al., 1999).

SMD gives insights into the ligand-target unbinding mechanism,

which can be investigated through the dynamical evolution of

the ligand-target pattern of interactions, as reported for a series

of Cyclin-Dependent Kinase 5 (CDK5) inhibitors (Patel et al.,

2014). In the same work, the second application of SMD in drug

discovery is highlighted: since the bias force added during an SMD

simulation is assumed to be related to the binding strength, the

binding force profile can be used to discriminate binders from non-

binders.

SMD relies on an a priori definition of the applied force direction,

which can be fixed (for example a simple straight line) or can change

during the simulation. The choice of the direction is not trivial,

because a ligand may bump into obstructions during its way out of

the protein, but a method evaluating the minimal steric hindrance

has been reported (Vuong et al., 2015). Moreover, integration with

the targeted molecular dynamics (TMD) are reported: in TMD a bias

force is applied to conduct the system from an initial to a desired final

configuration (Schlitter et al., 1993), leading to the individuation of

a path that can be used as set of directions for an SMD simulation

(Isralewitz et al., 2001).

Random Acceleration Molecular Dynamics (RAMD) Random

Acceleration MD (RAMD), also defined Random Expulsion MD, is

an extension of SMD, and, like this, was developed to study the egress

of a ligand from its target binding site. It consists of the application

of an artificial randomly-directed force on a ligand to accelerate its

unbinding. In this way, in comparison with SMD, RAMD avoids

the preliminary choice of the force direction; consequently, if some

obstructions are found during the exit pathway, the escape direction

is switched.

In particular, the direction of the force is chosen stochastically and

maintained for a number of MD steps. If during this time interval the

average velocity of the ligand is lower than a specified cut-off (or, in

other terms, if the distance covered by the ligand is lower than a cut-

off distance, rmin), meaning that probably a rigid obstruction has been

met, a new force direction is assigned to allow the ligand to search for

alternative exit pathways (Lüdemann et al., 2000).

As SMD, RAMD is predominantly used to simulate ligand

unbinding from a molecular target. The egress of carazolol from

β2 Adrenergic Receptor was for example described thanks to an

ensemble of RAMD simulations (100 simulation, with a variable

length of maximum 1 ns): the extracellular surface opening of the

receptor was individuated as the predominant exit root, entailing the

rupture of a salt bridge linking extracellular loop 2 to transmembrane

helix 7 (Wang and Duan, 2009).

Umbrella Sampling (US) Umbrella Sampling (US) (Torrie and

Valleau, 1977) consists of restraining the system along one or a

combination of CVs. Commonly, the range of interest of the CV

is divided into windows, each characterized by a reference value of

the CV (ξref ). The bias potential enhances sampling in each window

by forcing the system to stay close to the respective CV reference

value. The bias is a function of the reaction coordinate, and can have

different shapes, but generally consists of a simple harmonic, as in the

following equation:

V (ξ) =
k

2
(ξ − ξref )

2

Where k is the strength of the potential and ξ is the value of the CV.

The strength of the bias has to be high enough to let energy barriers

crossing, but sufficiently low to enable the overlapping of system

distributions of different windows, as required for post-processing

analysis.

The aim of US is to force sampling in each window to collect

sufficient statistics along with the whole reaction coordinate. Then

the distribution of the system and consequently the free energy is

calculated along the CV (Kästner, 2011). Different post-processing

methods can be used to perform combination and analysis of the

data coming from the different US windows; the most famous

is umbrella integration (Kästner and Thiel, 2005), the weighted

histogram analysis method (WHAM) (Kumar et al., 1992), and

the more recent Dynamic Weighted Histogram Analysis (DHAM)

(Rosta and Hummer, 2015), which can be used also to derive kinetic

parameters.

Integrations of US with other enhanced sampling techniques

are reported in the literature, such as the replica-exchange

umbrella sampling method (REUS), where an umbrella potential

is exchanged among replicas (Sugita et al., 2000; Kokubo et al.,

2011). This technique was applied to the prediction of ligand-

protein binding structures, starting from unbound initial states

and employing as CV ξ the distance between the centers of

mass of the ligand and of the backbone of two selected residues.

This technique resulted to be effective in the prediction of the

binding mode of a couple of ligands on p38 and JNK3 kinases

(RMSD minor than 1.7 Å), and outperformed a cross-docking

experiment, highlighting the importance of considering protein

flexibility to accurately predict the coordinates of a complex

(Kokubo et al., 2013).
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Metadynamics Metadynamics (Laio and Parrinello, 2002)

introduces a bias potential to the Hamiltonian of the system in

the form of a Gaussian-shaped function of one or more CVs. In this

case, the bias does not restrain or constrain the system, neither force

the system along with a preferred direction in the CV space. The

bias is used to keep the memory of the already explored zones of the

phase space, and to discourage the system to visit them again (Laio

and Gervasio, 2008).

At time t, the bias potential (VG(S,t)) is reported in the following

equation:

VG (S, t) =

∫ t

0
dt

′

ω exp






−

d
∑

i=1

(Si (R) − Si

(

R
(

t
′
))

)
2

2σ 2
i







where S(R)=(S1(R),...,Sd(R)) is a set of d CVs (which are functions of

the coordinates R of the system), Si(R(t)) is the value of the ith CV at

time t, σi is the Gaussian width for the ith CV, andω is the energy rate,

given by:

ω =
W

τG

withW the Gaussian height and τG the deposition rate.

Thus, the bias is “history-dependent,” because it is the sum of the

Gaussians that have already been deposited in the CV space during

the time.

The free energy landscape is explored, starting from the bottom

of a well, by a random walk; bias-Gaussians are deposited in the CV

space with a given frequency, and at each iteration, the bias is given

by the sum of the already deposited Gaussians. As time goes by, the

system, instead of being trapped in the bottom of a well, is pushed out

by the hill of deposited Gaussians and enters a new minimum. The

process continues until all the minima are compensated by the bias

potential (Barducci et al., 2011).

Metadynamics in this way enables to enhance sampling and to

reconstruct the free energy surface; this can be used to explore

binding/unbinding processes (Gervasio et al., 2005), and, with the

application of funnel metadynamics (Limongelli et al., 2013), to the

estimation of binding free energy.

Unfortunately, it may occur that the free energy surface is

overfilled, but this has been partially solved by well-tempered

metadynamics, in which the height of the added Gaussian is rescaled

by the already deposited bias (Barducci et al., 2008). Another issue

with metadynamics is the choice of the CVs, which should describe

the slowest motions of the system and the initial-final-relevant

intermediates. Moreover, a small number of CVs has to be used,

and a good strategy is a combination with other techniques able to

enhanced sampling along a great number of transverse coordinates

(Barducci et al., 2011), such as with parallel tempering (Bussi

et al., 2006). Using a well-temperedmultiple-walker funnel-restrained

metadynamics, the binding pathway of several ligands to 5 G-protein-

coupled receptors (including X-ray crystal structures and homology

models) has been recently explored, resulting in the prediction of

FIGURE 4 | (A) Sketch of a pepSuMD step: the distance between the centers of mass of the ligand (peptide) and the target is computed at regular time intervals

during the SuMD step. The distance values are fitted by a line, whose slope (m) determines if the current SuMD step (m > 0) or a new one (m < 0) has to be

simulated. (B) Representation of the binding pathway bringing BAD peptide to the Bcl-XL binding site, occurring in 46.2 ns. The superposition of the final pepSuMD

state with the experimental structure (PDB ID: 1G5J, Petros et al., 2000) is reported on the right.
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binding free energies with a root-mean-square errorminor than 1 kcal

mol−1 (Saleh et al., 2017).

Supervised Molecular Dynamics
In the last years, a new method, called Supervised Molecular

Dynamics (SuMD), has been introduced to accelerate the binding

process (Sabbadin and Moro, 2014; Cuzzolin et al., 2016). SuMD is

distinguished from enhanced sampling simulations since it does not

affect the energy profile of the system.

A SuMD simulation consists of a series of small MD windows

(hundreds of picoseconds), called SuMD steps, where step n+1 is run

after the evaluation of step n in terms of ligand-target approaching.

During each SuMD step, the distance between the centers of mass

of the ligand and of the target binding site (few selected residues) is

computed; distance values are collected at regular intervals during the

simulation and are fitted by a line (Figure 4A). If the slope of the line

is negative, it means that the ligand is approaching the binding site,

the SuMD step (step n) is considered productive, and a new step (step

n+1) is started from the last coordinates and velocities of the current

step. Otherwise, if the slope is positive, it means that the SuMD step

is unproductive, thus the current SuMD step simulation is deleted

and restarted from its initial coordinates (starting configuration of

step n). The simulation is concluded after that the distance between

the centers of mass of ligand and target fall under a certain cut-off.

Finally, the consecutive SuMD steps are merged together providing

the SuMD trajectory.

In this way, SuMD enables to observe a binding event in a reduced

timescale, in the orders of tens to hundreds of nanoseconds, without

the introduction of any energetic bias. Indeed, SuMD simply focuses

sampling by the introduction of a tabu-like algorithm which favors

the progress of a simulation toward productive events and avoids

wasting simulation time in uninteresting portions of the search space.

Certainly, a single SuMD trajectory is not sufficient to explain

the complex binding process, and the retrieval of thermodynamic

quantities from a single simulation must be avoided. Nevertheless,

a SuMD trajectory depicts one of the possible binding pathways

leading a ligand to reach the target, so it can be useful to propose a

mechanistic hypothesis.

The technique was first applied to Adenosine Receptors, where

it facilitated the characterization of the binding pathways of several

ligands toward the receptor, with the exploration of metabinding

sites (Sabbadin and Moro, 2014; Sabbadin et al., 2015). In this

context, SuMD can be useful in the interpretation of allosteric

interactions (Deganutti et al., 2015) and has proved to be supportive

to the identification of fragment-like positive allosteric modulators

(Deganutti and Moro, 2017). In fact, SuMD turned out to be

effective in simulating fragment compounds, as shown by the accurate

prediction of the binding mode of a catechol fragment to human

peroxiredoxin 5 (PRDX5), reaching a minimum RMSD of 0.7 Å from

the crystallographic pose.

The applicability spectrum of SuMD has been furtherly enlarged,

till the development of pepSuMD, a revised version of the technique

able to simulate the binding pathway of a peptide ligand toward its

protein binding site (Salmaso et al., 2017). The recognition process of

the BAD peptide to Bcl-XL protein (Figure 4B) and of the p53 peptide

to MDM2 has been recently reported, with the achievement of an

RMSD less than 5 Å from the experimental conformation in tens of

nanoseconds in both cases (46.2 and 23.40 ns, respectively). During

the BAD/Bcl-XL simulation, the C-terminal helix explored different

conformations, meaning that peptide and protein conformational

rearrangements can be observed during a SuMD simulation

when occurring in the same time scale of the SuMD-accelerated

binding.

CONCLUSIONS AND PERSPECTIVES

In this review, an excursus over some relevant computational

techniques in drug discovery has been performed, highlighting

how protein flexibility has been introduced into the simulations

during the years. Starting from simple rigid docking strategies

justified by the lock-key model, it was soon necessary to consider

conformational degrees of freedom of ligands during docking.

Experimental data proving the existence of different conformations

of protein structures has made the molecular models to face the

problem of interpreting and simulating conformational transitions of

macromolecules.

From rough attempts to include protein flexibility during classical

molecular docking, the development of hardware technologies and

of novel MD computational techniques has been allowing more and

more to simulate huge conformational movements. The possibility

to simulate contemporary folding and binding phenomena can be

exploited to answer the long-standing debate about “induced-fit” and

“conformational selection” binding models, by giving a mechanistic

interpretation of binding pathways.

Moreover, some of the enhanced sampling techniques are nomore

an exclusive methodological exercise, but has become within reach of

many research groups, whit a consequent real applicability in drug

discovery.
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Drug targets and modes of action remain two of the biggest challenges in drug
development. To address these problems, chemical proteomic approaches have been
introduced to profile targets in complex proteomes. Activity-based protein profiling
(ABPP) is one of a growing number chemical proteomic approaches that uses
small-molecule chemical probes to understand the interaction mechanisms between
compounds and targets. ABPP can be used to identify the protein targets of small
molecules and even the active sites of target proteins. This review focuses on the overall
workflow of the ABPP technology and on additional advanced strategies for target
identification and/or drug discovery. Herein, we mainly describe the design strategies
for small-molecule probes and discuss the ways in which these probes can be used
to identify targets and even validate the interactions of small molecules with targets. In
addition, we discuss some basic strategies that have been developed to date, such as
click chemistry-ABPP, competitive strategies and, recently, more advanced strategies,
including isoTOP-ABPP, fluoPol-ABPP, and qNIRF-ABPP. The isoTOP-ABPP strategy
has been coupled with quantitative proteomics to identify the active sites of proteins and
explore whole proteomes with specific amino acid profiling. FluoPol-ABPP combined
with HTS can be used to discover new compounds for some substrate-free enzymes.
The qNIRF-ABPP strategy has a number of applications for in vivo imaging. In this
review, we will further discuss the applications of these advanced strategies.

Keywords: ABPP, isoTOP-ABPP, fluoPol-ABPP, qNIRF-ABPP, drug targets

INTRODUCTION

Two major challenges in the field of drug discovery are drug development and target identification
(Schenone et al., 2013). The identification of drug targets, which is important for elucidating
the mode of action, is of great significance in the process of drug discovery. Two drug
discovery strategies are currently used: phenotype-based drug discovery and target-based drug
discovery (Samsdodd, 2005). Phenotype-based drug discovery refers to the screening of small
molecules or polypeptides in cells, tissues, or organs based on existing pharmacology. Target-
based drug discovery involves first determining the targets and then identifying active molecules.
With the rapid development of molecular biology, target-based drug discovery paradigm replaced
the traditional phenotype-based approach, because it allowed an increased screening capacity and
the definition of rational drug discovery programs. However, analysis of the process of target-based
drug discovery showed that this screening platform did not effectively improve the productivity of
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pharmaceutical industry, but the time and cost increased
significantly (Samsdodd, 2005). Due to the complexity of
biological systems, phenotype-based strategies can provide more
comprehensive evaluation of potential drugs and play an
important role in drug development. In recent years, phenotype-
based strategies have received increasing attention and have
become the main method for drug discovery. These screening
strategies are more efficient, effective and economical than other
screening platforms.

Numerous technologies for identifying targets have recently
been developed. Experimental approaches such as genomic
and proteomic techniques are the primary tools for target
identification. To complement experimental methods, a series
of computational (in silico) tools have also been developed for
target identification over the past two decades (Krysiak and
Breinbauer, 2012; Yue et al., 2012). With the advancement of
molecular biology and the advent of the post-genomic era, these
technologies provide a solid technical basis for improving the
efficiency of drug discovery; however, there remain many barriers
for the identification of drug targets, and we need to overcome
these barriers.

Activity-based protein profiling is a technology to identify
the binding of small molecule probes with proteins and
confirm direct interaction. It combines activity-based probe and
proteomics technologies together to help us to understand the
mechanisms of compounds and the modes of action (Kozarich,
2003; Cravatt et al., 2008). The ABPP-like experiments were
firstly reported in the early 1970s to explore the mechanisms of
penicillin (Blumberg and Strominger, 1972; Suginaka et al., 1972).

However, the term proteome was firstly proposed at a scientific
conference in Italy in 1994 (Wilkins et al., 1996; Huber, 2003).
The development of proteomics allows the use of ABPP in
many areas, from studying enzyme classes, including proteases,
kinases, phosphatases, glycosidases, and oxidoreductases, to
studying uncharacterized enzymes. ABPP has contributed to our
understanding of enzyme activity in specific physiological and
pathological processes on a proteome-wide scale (Heal et al.,
2011; Li et al., 2012). This review will discuss all aspects of the
ABPP workflow in greater detail. Appropriate strategies are also
very important before beginning ABPP-associated experiments.
With the development of this field, an increasing number of
advanced strategies have been applied in more areas, and we will
discuss these strategies in a later section of this review.

ABPP WORKFLOW

Activity-based protein profiling workflow (Figure 1) will be
discussed in the section and some important issues will be
considered. Small-molecule probes are firstly designed and
synthesized before ABPP progress begin, the basic chemical
structure of a small-molecule probe consists of three parts:
1, a reactive group; 2, a linker site; and 3, a reporter group
(Niphakis and Cravatt, 2014). In principle, the active group
of small molecule interacts directly with the target protein
and the reporter group to facilitate target fishing. Commonly
used reporter groups are fluorescent groups, biotin, alkynes or

azide, which can be modified by click chemistry methods to
visualize protein targets. Depending on the selected reporting
groups, different subsequent experiments can be carried out. For
example, fluorescent groups can be used for rapid gel screening
and the identification of the localization of small molecules in
cells or animals, and biotin can be used for protein enrichment
and then detected by mass spectrometry to identify target
proteins.

After the probe is obtained, it is firstly subjected to rapid
determination of working concentration and reaction time by
using SDS-PAGE (Wright and Sieber, 2016). Typical workflows
are as follows: (i) incubation of the probe with proteins, live
cells, tissues, or animals to react with the target, (ii) for cc-
probes, performing CuAAC to catalytically label the protein
with a fluorescent group or other detectable labels followed by
protein enrichment and pull-down assays, (iii) performing gel
electrophoresis and fluorescence scanning or Western blotting
(for detection of biotin) or quantitative proteomics to identify the
target, and (iv) verifying the targets.

During the course of an ABPP project, there are many
conditions that must be carefully considered. First, the probe can
be incubated in cell lysates or in tissue homogenates in vitro. In
this case, the conditions of the lysate are very important because
the protein function and folding state must be retained to allow
the protein to specifically bind to the probe molecule; Tris buffer
or PBS are usually suitable (Speers and Cravatt, 2009). In situ
labeling of cells in culture or in vivo labeling of mice via i.p.
injection using an ABPP probe can be used to avoid this problem
because in these conditions the probe interacts with the protein in
a natural state. The caveat of the in situ method is that the probe-
labeled protein may be metabolized. Some cytotoxic probes may
also reduce the amount of protein recovered by killing the cells.
However, these problems can be avoided by shortening the
time of probing. Second, the selection of reporters should be
considered. Biotin labeling can be used for protein enrichment,
target identification, and Western blot verification. However, it
has been reported that endogenous biotinylated proteins can
enhance the noise signal and cause interference. Fluorescence
detection is faster and cleaner than blot-based biotin detection
and has no additional endogenous biotinylated protein signals
(Charron et al., 2009). Other alternative approaches are emerging,
such as IAF (immunoaffinity fluorescent) labeling (Yu et al.,
2010), or the direct click-on-resin approach, to avoid the use
of biotin (Cassiano et al., 2014). Finally, it is very important to
comprehensively identify the potential target, including direct
identification by pull-down Western blots and recombinant-
protein interaction assays with small molecules. The next step
is to confirm the mode of action between the proteins and
compounds and to uncover the mechanisms by using SPR,
ITC, and FP (fluorescence polarization immunoassay). Several
assays of biological function are needed to test the associated
pharmacological effects of the compounds.

The Design of the Probe
A typical ABPP probe contains three groups: a reactive group,
a linking group or binding group, and a reporter tag. For
probe design, the first factor to consider is the reactivity of
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FIGURE 1 | A general representation of the ABPP workflow. The probe is designed based on the structure of the compounds, is added to the proteome and binds
to its target protein. Gel-based method or quantitative approaches (label-free, iTRAQ, SILAC) for chemical proteomics experiments.

compound. Most probes are based on bioactive small molecules.
So far, many ABPP probes have utilized electrophilic reactive
groups, including epoxides, Michael-addition units, disulfides,
lactones, β-lactams, and quinone compounds. These groups can
react with serine, tyrosine, or glutamine to modulate enzyme
activity (Bottcher and Sieber, 2008). However, there are many
compounds that react with targets via non-covalent interactions.
To overcome this problem, a more intuitive and unbiased strategy
for identifying binding partners of unreactive NPs is to use
photoaffinity labeling (PAL). PAL makes use of photoreactive
moieties that are inert under standard synthetic-chemical and
biological conditions but can be activated by UV light, generating
highly reactive, transient species. Benzophenone, aliphatic and
aromatic diazirines are the most commonly used PAL groups.

In the process of probe design, the choice of linking groups
can also be critical. Linking groups can attach the reactive groups
with the label groups together and reduce the impact of the
label group on the reactive group. The choice of linker group is
also significant for reducing non-specificity. In this basic form,
a linker can take the form of an extended alkyl or polyethylene
glycol (PEG) spacer. Furthermore, of late, the design of cleavable
linkers for protein enrichment has received much attention,
especially for the isoTOP-ABPP strategy; more details can be
found in some other reviews (Leriche et al., 2012; Rudolf et al.,
2013).

The other critical challenge in the process of probe design
is the reporter group. The widely used reporters are the
biotin-streptavidin system for pull-down assays and fluorescent
reporters for imaging-based detection. Because of the existence of
intrinsically biotinylated proteins, some non-specific background
can interfere with the identification of targets; however,
fluorescent reporters can be used to avoid this problem. An
increasing number of studies are combining these two reporters
to identify targets (Liao et al., 2017; Nasheri et al., 2013).

Fishing the Targets
Fishing for targets by using probes is a very critical step, and
different platforms have been developed. In this section, we will
talk about two commonly used methods: gel-based and gel-free
platforms.

Gel-Based Platform for ABPP
To investigate the targets of ABPs, the typical method is to utilize
gel electrophoresis to separate proteins by one-dimensional
(1D) or two-dimensional (2D) polyacrylamide gel electrophoresis
(PAGE) and detect the proteins by Coomassie brilliant blue
staining or silver staining to obtain specific bands. The bands
are then cut, and LC/MS is used for protein identification.
This is the original method for target identification; however,
this method can introduce contaminants in the form of
other proteins, especially keratin, which makes data analysis
more challenging. Non-specific labeling of various proteins,
especially of abundant and sticky proteins, in addition to that
of the actual target proteins has been a major problem in
ABPP. To address this limitation, Seung Park’s group have
developed a new method called fluorescence difference in two-
dimensional gel electrophoresis (FITGE) and employed it in
the target identification of the anti-neuroinflammatory agent
inflachromene (ICM) (Park et al., 2012; Lee et al., 2014). The
platform can simultaneously label two or more different samples,
such as control and treatment groups, with different fluorescent
labels and then simultaneously perform two-dimensional gel
electrophoresis. If one spot was labeled with two fluorescent
labels, the labeling can be thought of as being non-specific,
and only signals in the treatment group were identified by
LC/MS. High-resolution gel electrophoresis can exclude some
non-specific targets; however, 2D-PAGE always requires a large
amount of protein, which can be difficult to obtain for some
precious samples, especially human disease samples.

Gel-Free Approaches
Given the promiscuity of many small molecules and the
complexity of the cellular proteome, a high-flux and high-
accuracy method is necessary. With the development of
mass spectrometers, ABPs coupled with quantitative chemical
proteomics has been used to identify drug targets, which can
achieve a high-throughput work platform while improving the
accuracy of target-protein identification. Quantitative chemical
proteomic approaches have been developed, including metabolic
labeling (SILAC), chemical labeling (iTRAQ), and the label-free
approach (Chen et al., 2017).
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SILAC (stable isotope labeling by amino acids in culture) is
a stable-isotope-based labeling method, which mainly involves
elements of metabolic incorporation. iTRAQ, isobaric tags for
relative and absolute quantification, which stands for isobaric tags
for relative and absolute quantitation, uses chemical tagging to
label different sample populations. These approaches need tags
for quantification and identification. These tags result in mass
differences that can be detected via MS and enable quantitation
and comparison between multiple samples. Some researchers
have used ABPP-SILAC and ABPP-iTRAQ to validate some
examples. In 2014, Cravatt’s group examined the application of
ABPP-SILAC to study the protein targets of the kinase inhibitor
class of drugs, which includes the Bruton’s tyrosine kinase (BTK)
inhibitor ibrutinib. A total of 29 probe targets were identified,
including epidermal growth factor receptor and BTK (Lanning
et al., 2014). Lin’s group explored the application of ABPP-
iTRAQ to accurately identify the targets and mechanism of
action of curcumin, a natural product with anti-inflammatory
and anti-cancer properties. In total, 197 proteins were confidently
identified from the HCT116 colon cancer cell line as binding
targets of curcumin. Ingenuity pathway analysis (IPA) suggested
that curcumin may exert its anticancer effects on multiple
critical biological pathways, including the EIF2, eIF4/p70S6K,
and mTOR signaling and mitochondrial dysfunction pathways
(Wang et al., 2016). In iTRAQ-based mass spectrometry the
protein is degraded into peptides and labeled at the final step
of the entire process; therefore, in the event of an operational
error, this process is irreversible. The ability of the ABPP-SILAC
approach to identify a wide range of targets in an unbiased
manner has been proved, especially for the identification of non-
kinase off-target proteins. SILAC is limited by labeling efficiency.
SILAC requires cell labeling, and cells often need to grow for
at least 3 generations for high labeling efficiency, which is not
suitable for some primary cells and tissues.

The label-free approach is another quantitative proteomic
approach, which is generally cost-efficient and widely applicable
compared to SILAC and iTRAQ. However, it was the need
for very high reproducibility to allow run-run comparisons in
label-free strategy. Artemisinin is the most potent of the anti-
malarial drugs; however, the mechanism of action of artemisinin
is not completely understood. Lin’s group used an unbiased
chemical proteomic analysis to directly explore this mechanism
in Plasmodium falciparum. This group designed and synthesized
an alkyne-tagged artemisinin probe, combining click chemistry
and the label-free method to identify 124 covalently binding
protein targets of artemisinin, many of which are involved in
essential biological processes of the parasite (Wang et al., 2015).

After the ABPP workflow is finished, the other important
issue is to validate the targets. Once potential targets have been
identified by ABPP, it is challenging to validate these targets and
to verify their modes of action. Many approaches can be taken
to assay the interactions between small molecules and targets;
some of the commonly used approaches are as follows: (1) if the
antibody is available or can be produced, the protein of interest
may be enriched and then verified by Western blotting; (2)
recombinant proteins can be used to perform the ABPP workflow
and verify the interaction; (3) some biophysical methods, such

as ITC (isothermal titration calorimetry), FPIA (fluorescence
polarization immunoassay), SPR (surface plasmon resonance),
and CTSA (cellular thermal shift assay), are should be used
(Molina et al., 2013). (4) structural biology can also provide
supportive evidence; (5) binding sites can be identified by LC-
MS to further validate the direct site of interaction of proteins
and small molecules, and if an amino acid modification can be
identified, such as Cys or Ser, site-directed mutagenesis can be
applied to identify these; and (6) the mode of action of small
molecules can be very challenging, and it is necessary to apply
many different biological and chemical tools, such as genetic
methods and imaging technologies.

ABPP STRATEGIES

In recent years, ABPP technology has developed rapidly. To
enhance the specificity and accuracy of this technology, some
basic strategies, such as CC-ABPP (click chemistry-ABPP)
and competitive-ABPP strategies, have been utilized in most
studies. To expand the application of ABPP, some more
advanced strategies have been developed, such as isoTOP-ABPP,
fluoPol-ABPP and qNIRF-ABPP. These advanced strategies have
different characteristics and are used in many areas from active
sites identification to new potential compounds discovery and
live imaging. The isoTOP-ABPP strategy can be used to directly
identify active sites of target proteins; fluoPol-ABPP was used for
the discovery of new small molecules based on specific enzymes;
and qNIRF-ABPP provides us the opportunity to image the
distribution of compounds and promote the development of
preclinical diagnosis. We will discuss each strategy in greater
detail.

Basic Strategies
CC-ABPP (Click Chemistry-ABPP)
With the development of click chemistry, this method has been
introduced into the field of ABPP technology. This method can
overcome the limitations of bulky groups and enhance the cell
permeability of the probes. By adding smaller alkyne or azide
groups to the system, a single probe can be diversified with
a variety of reporter groups without the need to develop new
synthetic routes. The most widely used click chemistry reaction
is the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC)
between an azide and a terminal alkyne to generate a 1,4-
disubstituted 1,2,3-triazole (Presolski et al., 2011; Martell and
Weerapana, 2014). Concerns about the use of a cytotoxic copper
species to catalyze the reaction promoted the development of
a copper-free variant of this reaction, which utilizes a strained
alkyne to accelerate the reaction (Chang et al., 2010).

To date, the use of CuAAC in living systems has been hindered
by the toxicity of copper(I). Considerable cell death occurs when
optimized CuAAC conditions that require 1 mM copper(I) are
employed. Thus, as presently formulated, CuAAC is of limited
use for labeling biomolecules in living systems. Cyclooctyne, the
smallest stable cycloalkyne, reacted “like an explosion” when
combined with phenylazide and enabled the detection of azides
in living systems through strain-promoted [3+2] cycloaddition
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(Agard et al., 2004). Moreover, with the aim of improving the
kinetics of the process, a series of compounds bearing electron-
withdrawing fluorine atoms at the propargylic positions were
investigated.

Competitive-ABPP
The non-specific binding is one of the main limitations of
ABPP strategies. The photoreactive or electrophilic probes, even
probes with higher concentration would in all probability label
proteins non-specifically to some extent (i.e., not targets of the
parent compound) (Wright and Sieber, 2016). To overcome
this problem, the competitive strategy is receiving increasing
attention. In competitive ABPP (Leung et al., 2003), a proteome is
pre-incubated with parent compounds and subsequently with the
activity-based probes, thus decreasing the binding of the probe
with the target proteins by competing for the common binding
site. The parent compounds are the prototype compounds before
transforming to the probes, for example, Liao and his colleagues
used SA to compete with the SA-probe to decrease its binding
with IMPDH2 which demonstrated that they can interact with
the same target (Liao et al., 2017). By this method, non-specific
binding can be excluded, and only those sites that interact with
the active site of the compound are analyzed. Some review papers
have discussed its application and advantages and disadvantages
(Willems et al., 2014; Wright and Sieber, 2016). With the
development of advanced strategies, it has been applied in these
strategies such as isoTOP-ABPP, fluoPol-ABPP and qNIRF-ABPP
strategies, so we will discuss its application with these advanced
strategies together in the next section.

Advanced Strategies
isoTOP-ABPP
To identify the specific reactive amino acid sites of the target
protein by using small molecules, Cravatt and co-workers
developed a strategy called isoTOP-ABPP (isotopic tandem
orthogonal proteolysis–ABPP) (Weerapana et al., 2010). This
method uses isotope-labeled probes to achieve more reliable
results compared to other quantitative protein profiling methods.
This platform can simultaneously identify probe-labeled proteins
and the exact sites of probe modification. Cysteine is the most
intrinsically nucleophilic amino acid in proteins, and the activity
of the protein is regulated by the modification of cysteine by
endogenous and exogenous electrophiles. Iodoacetamide is a
reagent classically used to react with cysteine and is often seen in
proteomics; so, the Cravatt group used iodoacetamide to design a
probe (Backus et al., 2016). The IA probe has an alkyne handle
for “click chemistry” conjugation of probe-labeled proteins
and isotopically labeled cleavable tags for quantitative mass
spectrometry. Using this probe, researchers can quantitatively
describe and profile the intrinsic reactivity of cysteine residues
in native biological systems. Recently, Weerapana and his
colleagues improved this IA probe. These researchers developed
a pair of isotopically labeled iodoacetamide-alkyne probes,
namely, IA-light and IA-heavy. These probes can be utilized
for quantitative analysis of proteome samples and are easy
to synthesize, especially compared to the isotopically tagged

cleavable linkers (Abo et al., 2017). The iodoacetamide (IA)-
based chemical probe has been used to concurrently quantify
reactivity changes in hundreds of cysteines within cell lysates.
However, the cytotoxicity of the IA group precludes efficient
live-cell labeling, which is important for preserving transient
cysteine modifications. To overcome this limitation, Weerapana
and his colleagues developed a caged bromomethyl ketone (BK)
electrophile, which shows minimal cytotoxicity and provides
spatial and temporal control of electrophile activation through
irradiation. Using this probe, these researchers were the first
to describe reactivity changes associated with diverse cysteine
modifications in living cells (Abo and Weerapana, 2015).

A competitive isoTOP-ABPP platform expands the
application of this strategy for functional cysteines in proteomes.
This platform has been used to identify the protein targets of
HNE, 15d-PGJ2, and 2-HD and elucidate the cellular functions
and mechanisms of action of these compounds (Wang et al.,
2014). Fragment-based covalent ligand discovery coupled with
competitive isoTOP-ABPP can rapidly lead to the discovery
of lead small molecules and the identification of druggable
sites. Using this platform, the Nomura group discovered some
anti-cancer fragments and revealed the mechanisms of action
of these fragments (Anderson et al., 2017; Bateman et al., 2017;
Roberts et al., 2017). For example, this group confirmed one
compound, DKM 2-93, which impairs pancreatic cancer cell
survival and in vivo tumor growth, from a fragment-based
cysteine-reactive ligand library and identified UBA5 as the target
of this compound by covalently modifying the catalytic cysteine,
thereby inhibiting the activity of the protein as an activator of
the ubiquitin-like protein UFM1 to UFMylate proteins (Roberts
et al., 2017).

Recent studies have shown that reactive scaffolds targeting
other amino acids such as serine (Bachovchin and Cravatt, 2012),
and lysine (Anderson et al., 2017; Hacker et al., 2017), can
also be explored by using these platforms to discover unique
and novel druggable sites in proteins. Anderson and coworkers
developed a screening platform for lysine reactive fragments,
which are dichlorotriazine-based covalent ligands, and screened
this library to reveal small molecules that impair 231 MFP
cancer cell survivals. Using this platform, they identified KEA1-
97 and specific targets of KEA1-97 in 231 MFP proteomes and
identified that this compound targets lysine 72 of thioredoxin,
which disrupts the interaction of thioredoxin with caspase 3,
activates caspases, and induces apoptosis.

FluoPol-ABPP
Target-based high-throughput screening (HTS) is essential for
the discovery of small-molecule modulators of proteins. Typical
screening methods rely on extensively tailored substrate assays
for enzyme inhibitors or screens that profile cellular phenotypes.
However, for those enzymes whose biochemical activity is not
well characterized, such assays are not available. Competitive
ABPP studies use SDS-PAGE as readout, limiting the applicability
of such studies in HTS. Therefore, Cravatt and colleagues have
developed a high-throughput competitive screening platform,
namely, the fluopol-ABPP HTS assay, which can be used to select
specific enzyme inhibitors, especially for enzymes with poorly
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characterized substrate or biological functions. The platform
also combines high-throughput screening with identification of
modes of action (Bachovchin et al., 2009). This strategy, based on
a probe tagged with a fluorophore, combines fluorescent probes
with competitive inhibition strategies. When the fluorescent
probes react with target proteins, the fluorophore signal is strong
and consistent; in the presence of a competitor, the probe is
released and the signal is decreased. These results can be easily
and rapidly measured; therefore, this assay is suitable for HTS.
Fluopol-ABPP is a substrate-free approach that is ideally suited
for studying enzymes for which no substrates are known.

Using this platform identified specific inhibitors of the
substrate-free enzyme RBBP9 and the mechanistically distinct
enzyme GSTO1 from a library of small-molecules (Bachovchin
et al., 2009). Bachovchin et al. (2009) used the serine
hydrolase-directed activity-based probe fluorophosphonate (FP)-
rhodamine as the readout probe to select for specific inhibitors to
purified RBBP9 from a library of 18,974 small molecules. From
this screen, they identified 35 primary hits, and 20 compounds
were confirmed via secondary gel-based screens. Finally, they
identified emetine as a reversible RBBP9 inhibitor. This
fluorophosphonate (FP)-rhodamine probe has also been used to
explore other serine hydrolases, such as prolyl endopeptidase-like
(PREPL) (Lone et al., 2011), phosphatase methylesterase-1 (PME-
1) (Bachovchin et al., 2011a,b), and retinoblastoma-binding
protein 9 (RBBP9) (Bachovchin et al., 2010).

Some other probes based on specific enzymes have also
been used with the HTS-fluoPol-ABPP strategy. Bryan and
his colleagues used a PAD-specific probe, namely, rhodamine-
conjugated F-amidine (RFA), to develop an HTS assay. Using
these assay conditions, they screened 2,000 compounds (5 µM
final concentration) from an NIH validation set at The Scripps
Research Institute in La Jolla, CA, United States (Pubchem AID
463073). Finally, they identified streptonigrin as an irreversible
PAD4 inactivator (Knuckley et al., 2010). Tsuboi and his
colleagues also combined their specific probe, a rhodamine-
conjugated phenyl sulfonate ester (SE-Rh), with GSTO1 to
identify GSTO1 inhibitors from a 300K+ compound library, and
they confirmed an agent, KT53, that inactivates GSTO1 with
excellent in vitro (IC50 = 21 nM) and in situ (IC50 = 35 nM)
potency (Tsuboi et al., 2011).

qNIRF-ABPP
qNIRF-ABPP means quenched near-infrared fluorescent
ABPP. Imaging agents that enable direct visualization and
quantification in vivo have great potential value for monitoring
chemotherapeutic responses and for early diagnosis and disease
monitoring (Edgington et al., 2009; Garland et al., 2016).
Fluorescent tags are heavily used in ABPP; however, the main
limitation of these tags is the general fluorescence observed both
during interaction with enzyme targets and when free in solution.
To overcome this limitation, Matthew Bogyo’s group engineered
probes with a highly efficient quenching group to inhibit the
fluorophore group and make the probe intrinsically “dark”;
such a probe emits a fluorescent signal only after covalently
modifying a specific protease target, resulting in the loss of the
quenching group (Blum et al., 2005). Finally, they synthesized

the quenched probe GB117, which was attached the large but
potentially cell-permeable quenching group QSY7 through a
linker to improve the stability and potency of the probe. From
fluorescent-imaging studies, they found that GB117 was mainly
accumulated in lysosomes. GB117 probes are considered to
be tools for cell-based imaging of cysteine cathepsin activity.
However, the application of these probes for imaging in animals
is limited. Therefore, these researchers combined their method
with non-invasive imaging technology and generated a series
of near-infrared fluorescent activity-based probes (NIRF-
ABPs), which are better suited for in vivo imaging and target
identification (Blum et al., 2007). These NIRF-ABPs contain
Cy5 (646/664 nm excitation/emission), which is better suited
for in vivo imaging owing to lower background fluorescence,
and are insensitive to serum. The researchers synthesized the
quenched probe GB137 and unquenched probe GB123 based on
GB117 and GBB111 for application in in vivo imaging studies.
An in vivo analysis of the quenched and unquenched probes was
conducted to quantify the overall signal-to-background ratios for
each probe in multiple animals; the results indicated that GB123
and GB137 generated similar overall signal-to-background
ratios. However, some limitations still exist, such as the quenched
probe achieved its maximum signal much more rapidly than the
unquenched probe. Cathepsin protease activity is highly elevated
in macrophages of vulnerable plaques and contributes to plaque
instability. The researchers also explored the distribution of
cathepsin in an atherosclerosis mouse model by using GB137
and GB123 (Abd-Elrahman et al., 2016). They compared these
two probes by in vivo imaging and found that both probes
showed distinct signals in the macrophage-rich ligated carotids;
however, GB123 was also detected in the lymph nodes, aortic
arch and heart and exhibited slower signal accumulation than
GB137. These cathepsin ABPs represent a rapid diagnostic tool
for macrophage detection in atherosclerotic plaque. An improved
quenched fluorescent probe containing a phenoxymethyl ketone
(PMK) electrophile with greater reactivity and broader selectivity
compared to previously reported AOMK-based probes has
been synthesized by Matthew Bogyo’s group (Verdoes et al.,
2013).

DISCUSSION

Drugs that form covalent attachments with their targets have
traditionally been considered to be conceptually distinct from
conventional non-covalent drugs because the potential off-
target reactivity could lead to undesirable side effects. However,
covalent drugs have raised various concerns in the field of drug
development (Singh et al., 2011; Bauer, 2015; Pichler et al.,
2016). ABPP, a very powerful technique in target identification,
has generated interest in covalent drugs and allows a more
thorough investigation of the modes of action of individual
drugs. ABPP is based on the activities of small molecules with
a reactive group for binding and covalently modifying the active
site of a certain enzyme class. Many ABPP probes have, so far,
utilized electrophiles, including fluorophosphonates, sulfonates
and epoxides, which exhibit preferences for nucleophilic groups
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in the active sites of several distinct enzyme classes (Bottcher and
Sieber, 2008).

Now, ABPP has been thought as an enormous approach to
explore drug targets, with the advanced strategies application,
its application expand from drug targets identification to drug
discovery. However, it stills exist some limitations, probes
labeling non-specific proteins, which is the main issue in this
field. Competitive ABPP strategy was commonly used to address
this problem by comparison with control. With the quantitative
proteomics application, the quantitative data can be used to
cut off these background signals, and in general proteins are
identified as hits by their enrichment in probe-treated sample
over control groups. The other issue is the probe itself, probe-
specific hits, which was difficult to deal with. Enrichment in the
presence and absence of a competitor (typically the parent NP)
is one approach widely used to test whether a protein is a probe-
specific hit. Further work in this area may be helpful in providing
resources to aid researchers in assessing whether putative targets
are genuine or related to the probe moiety itself. To address this
issue, follow-up validation of putative targets is very important.

isoTOP-ABPP can enable quantitative analysis of native
amino acid reactivity and record changes in enzyme activity
directly in native biological systems. It provides information
about the post-translational modification of proteins and
overcome the deficiency of conventional proteomic or genomic
methods, which mainly focus on the expression level. Especially,
a fragment-based ligand screening with competitive isoTOP-
ABPP platform couples the identification of covalent ligands
with the discovery of druggable hotspots. A reactivity-based
chemical probe to map reactive, functional, and ligandable
hotspots in complex proteomes is firstly needed such as
iodoacetamide (IA) probe to label cysteine residues (Weerapana
et al., 2010), fluorophosphonate (FP) probe for serine (Liu
et al., 1999), sulfotetrafluoropheny (STP) for lysine (Hacker
et al., 2017). An isotopically labeled valine for quantitative mass
spectrometry (MS) measurements of labeled peptides across
multiple proteomes is also important. Probe labeling efficiency
is need consideration, for example, FP probes can react with
>80% of mammalian metabolic serine hydrolases (Bachovchin
and Cravatt, 2012).

FluoPol ABPP is a broadly applicable HTS platform for
inhibitor discovery where the ability of compounds to block
fluorescent activity-based probe labeling of proteins is monitored
by fluorescence polarization and can be readily adapted for use
with different classes of enzymes and ABPP probes. However,
there are some important issues to be considered. A cognate
activity-based probe has been developed before this platform. In
addition, fluoPol-ABPP requires a substantial amount of purified
protein, which may prove challenging for certain enzymes (e.g.,
transmembrane enzymes). Regardless, in cases where protein
quantity is not limiting, fluoPol-ABPP is quite cheap, since the
quantity of probe used per assay is negligible. A library of
small molecules is another issue. This platform makes the ABPP
technology useful not only for mechanism identification but
also for compound discovery and will help us understand more
about some poorly characterized enzymes and the inhibitors or
activators of these enzymes.

It is important to visualize these diseased cells to enable
diagnosis, facilitate surgical resection and monitor therapeutic
response. Therefore, there is great opportunity to develop non-
invasive imaging technologies for interventional surgical imaging
and for diagnostic and therapeutic applications. The qNIRF-
ABPP strategy provides a method for in vivo imaging. qNIRF-
ABPs are potentially valuable novel imaging agents for disease
diagnosis and are powerful tools for preclinical and clinical
testing of small-molecule therapeutic agents in vivo, for the
identification of specific therapeutic targets and biomarkers,
and for monitoring the efficacy of small-molecule inhibitors
(Joyce et al., 2004; Rosenthal et al., 2015; Garland et al.,
2016).

CONCLUSION

Activity-based protein profiling can provide an unbiased, global
and quantitative analysis of protein binding partners. It has
been used with different samples, including cell lysates, live cells,
animal lysates, and even live animals. All these applications
help us understand the interactions between compounds and
organisms. With the applications of advanced strategies, ABPP
has expanded its area from drug targets identification to drug
discovery. The advanced strategies of ABPP open a new door
for us, from target-based high-throughput screening to take
images in vivo. isoTOP-ABPP strategy can provide us the
global analysis of cysteine, serine and lysine reactivity even in
living cells, which is important for preserving transient amino
acids modifications. Fluopol-ABPP HTS assay overcome the
traditional screening methods disadvantages relying on substrate
assay and cellular phenotypes. It can be used for some poorly
characterized enzymes to explore their inhibitors or activators.
qNIRF-ABPP provides a method for in vivo imaging and is
helpful for diagnosis, surgical resection and therapeutic response.
The wide applicability of the above methods will provide more
possibility to success for novel drug development, and expand
more technical innovation in ABPP field. Finally, with advances
in technology and through continuous improvement, chemical
proteomic technology will remain at the forefront of drug
discovery and target recognition.
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Structure-based virtual screening (VS) is a widely used approach that employs the
knowledge of the three-dimensional structure of the target of interest in the design
of new lead compounds from large-scale molecular docking experiments. Through
the prediction of the binding mode and affinity of a small molecule within the binding
site of the target of interest, it is possible to understand important properties related
to the binding process. Empirical scoring functions are widely used for pose and
affinity prediction. Although pose prediction is performed with satisfactory accuracy,
the correct prediction of binding affinity is still a challenging task and crucial for the
success of structure-based VS experiments. There are several efforts in distinct fronts
to develop even more sophisticated and accurate models for filtering and ranking large
libraries of compounds. This paper will cover some recent successful applications
and methodological advances, including strategies to explore the ligand entropy and
solvent effects, training with sophisticated machine-learning techniques, and the use
of quantum mechanics. Particular emphasis will be given to the discussion of critical
aspects and further directions for the development of more accurate empirical scoring
functions.

Keywords: structure-based drug design, molecular docking, virtual screening, scoring function, binding affinity
prediction, machine learning

INTRODUCTION

The drug discovery process required to enable a new compound to reach the market as an
innovative therapeutic entity is significantly expensive and time-consuming (Mullard, 2014;
DiMasi et al., 2016; Mignani et al., 2016). In this context, research groups and pharmaceutical
industry have extensively included computer-aided drug design (CADD) approaches in their drug
discovery pipeline to increase the potential of finding newer and safer drug candidates (Ban
et al., 2017; Barril, 2017; Usha et al., 2017). Structure-based drug design (SBDD) methods, which
require the three-dimensional structure of the macromolecular target, have been widely employed
in successful campaigns (Bortolato et al., 2012; Danishuddin and Khan, 2015; Rognan, 2017).
Although important challenges and some limitations have been addressed, many efforts have been
made aiming the improvement of existing methods and the development of innovative approaches.
Molecular docking is one of the most used SBDD approaches with several reviews published at the
present time (Guedes et al., 2014; Ferreira et al., 2015; Yuriev et al., 2015; Pagadala et al., 2017;
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Dos Santos et al., 2018), and has been continuously explored
by the scientific community to develop more sophisticated and
accurate strategies. Docking aims to predict binding modes and
affinity of a small molecule within the binding site of the receptor
target of interest, supporting the researcher in the understanding
of the main physicochemical features related to the binding
process. Docking-based virtual screening (VS) consists of large-
scale docking with a growing number of success cases reported
(Villoutreix et al., 2009; Matter and Sotriffer, 2011; Rognan,
2017). Examples of docking programs are AutoDockVina (Trott
and Olson, 2010), UCSF DOCK (Allen et al., 2015), GOLD (Jones
et al., 1997), and Glide (Friesner et al., 2004, 2006a). Beyond the
standalone software, web servers such as the DockThor Portal1

(de Magalhães et al., 2014), MTiOpenScreen2 (Labbé et al., 2015),
HADDOCK3 (van Zundert et al., 2016), and DOCK Blaster4

(Irwin et al., 2009) provide to the scientific community friendly
user interface and satisfactory time response of docking results.

The fast evaluation of docking poses generated by the search
method and the accurate prediction of binding affinity of top-
ranked poses is essential in VS protocols. In this context,
scoring functions emerge as a straightforward and fast strategy
despite limited accuracy, remaining as the main alternative to be
applied in VS experiments (Huang et al., 2010). Moreover, the
development of more accurate scoring functions is strategic in the
field of SBDD and remains a challenging task, especially in the
hit-to-lead optimization (Enyedy and Egan, 2008) and de novo
design (Liu et al., 2017). Although there is no universal scoring
function with significant reliability for all molecular systems,
some important strategies were explored. Examples of free online
resources for predicting protein-ligand binding affinities without
the dependency a docking program are BAPPL server5 (Jain and
Jayaram, 2005) CSM-lig6 (Pires and Ascher, 2016) and KDEEP

7

(Jiménez Luna et al., 2018).
The development of an empirical scoring function requires

three components (Pason and Sotriffer, 2016): (i) descriptors
that describe the binding event, (ii) a dataset composed of
three-dimensional structure of diverse protein–ligand complexes
associated with the corresponding experimental affinity data,
and (iii) a regression or classification algorithm to calibrate the
model establishing a relationship between the descriptors and the
experimental affinity. The empirical models differ in the number
and type of descriptors; the algorithm adopted for training the
model; and the number, the diversity, and the quality data
of protein–ligand complexes used during the parameterization
process.

According to the algorithm used for training, the scoring
function can be linear (i.e., sum of weighted terms) or nonlinear
(i.e., nonlinear relationship between the descriptors). It is
important to highlight that even the multiple linear regression

1http://www.dockthor.lncc.br
2http://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/
3http://haddock.science.uu.nl/services/HADDOCK2.2
4http://blaster.docking.org/
5www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp
6structure.bioc.cam.ac.uk/csm_lig
7playmolecule.org/Kdeep

(MLR) algorithm, frequently used to calibrate linear scoring
functions, is also a machine-learning technique. However,
the term “machine-learning-based” scoring function is usually
defined in the literature to refer to complex/nonlinear models
developed using sophisticated machine-learning techniques to
approximate nonlinear problems, such as random forests
(RF), support-vector machines (SVM), and deep learning (DL)
methods. The linear scoring functions are also referred as
“classical” scoring functions. However, we will not adopt
the “classical” nomenclature to avoid confusion with scoring
functions based on classical force fields. In this work, we will
adopt the nomenclature “linear” for the MLR scoring functions
and “nonlinear” for models trained with more complex machine-
learning techniques.

GOALS OF SCORING FUNCTIONS

During the docking process, the search algorithm investigates
a vast amount of conformations for each molecule of the
compound library. In this step, the scoring functions evaluate
the quality of these docking poses, guiding the search methods
toward relevant ligand conformations. The first requirement
for a useful scoring function is to be able to distinguish the
experimentally observed binding modes – associating them with
the lowest binding energies of the energy landscape – from all
the other poses found by the search algorithm (pose prediction).
The second goal is to classify active and inactive compounds (VS),
and the third is the prediction of the absolute binding affinity,
ranking compounds correctly according to their potency (binding
affinity prediction) (Jain and Nicholls, 2008; Cheng et al., 2009; Li
et al., 2014c). The last one is the most challenging task, mainly
in de novo design and lead optimization, since small differences
in the compound could lead to drastic changes in binding
affinity (Schneider and Fechner, 2005). An ideal scoring function
would be able to perform the three tasks. However, given several
limitations of current scoring functions, they exhibit different
accuracies on distinct tasks due to modeling assumptions and
simplifications made during their development phase, being
intrinsically associated with the main purpose of the evaluated
scoring function (Li et al., 2014b). In this context, docking
protocols can adopt different scoring functions for each step, e.g.,
one can use a fast scoring function to predict binding modes and
further predict affinities employing a more sophisticated scoring
function specific for affinity prediction.

Current docking methods and the associated scoring functions
exhibit good pose prediction power if one assumes an adequate
preparation of the system and if the target flexibility does not
play a significant role (Corbeil et al., 2012; Chaput and Mouawad,
2017). However, the detection of active compounds among a
set of decoy compounds and the accurate prediction of binding
affinity remain challenging tasks, even when induced fit and
entropy effects are not important for binding (Gohlke and Klebe,
2002; Damm-Ganamet et al., 2013; Yuriev and Ramsland, 2013;
Grinter and Zou, 2014; Smith et al., 2016). In VS experiments,
it is mandatory the use of a scoring function capable of, at least,
discriminating active from inactive molecules.
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Scoring functions are typically divided into three main
classes (Wang et al., 2003): force field-based, knowledge-based,
and empirical. Liu and Wang (2015) recently proposed a
new classification scheme, suggesting classifying current scoring
functions as physics-based, regression-based, potential of mean
force, and descriptor-based. Herein we will follow the traditional
classification proposed by Wang et al. (2002) since we believe
it is more general and is capable to classify adequately
scoring functions according to the main development strategy
adopted.

Force field-based functions consist of a sum of energy terms
from a classical force field, usually considering the interaction
energies of the protein–ligand complex (non-bonded terms) and
the internal ligand energy (bonded and non-bonded terms),
whereas the solvation energy can be computed by continuum
solvation models such as the Poisson–Boltzmann (PB) or the
related Generalized Born (GB) (Gilson et al., 1997; Zou and
Kuntz, 1999). Examples of force field-based scoring functions
include DOCK (Meng et al., 1992) and DockThor (de Magalhães
et al., 2014).

Knowledge-based scoring functions are based on the statistical
analysis of interacting atom pairs from protein–ligand complexes
with available three-dimensional structures. These pairwise-atom
data are converted into a pseudopotential, also known as a
mean force potential, that describes the preferred geometries of
the protein–ligand pairwise atoms. Examples include DrugScore
(Velec et al., 2005) and PMF (Muegge, 2006).

Empirical scoring functions are developed to reproduce
experimental affinity data (Pason and Sotriffer, 2016) based on
the idea that it is possible to correlate the free energy of binding
to a set of non-related variables. The coefficients associated
with the functional terms are obtained through regression
analysis using known binding affinity data of experimentally
determined structures. LUDI was the first empirical scoring
function developed in the pioneering work of Böhm (1992)
for predicting the absolute binding free energy from atomic
(3D) structures of protein–ligand complexes. Other examples of
empirical scoring functions include ChemScore (Eldridge et al.,
1997), ID-Score (Li et al., 2013), and GlideScore (Friesner et al.,
2004, 2006a). Some empirical scoring functions (also referred as
hybrid scoring functions) were developed using a mixture of force
field-based, contact-based, and knowledge-based descriptors,
such as DockTScore from the DockThor program (empirical and
force-field based) (de Magalhães et al., 2014; Guedes et al., 2016),
SMoG2016 (empirical and knowledge-based) (Debroise et al.,
2017), and GalaxyDock BP2 Score (empirical, knowledge-based,
and force-field based) (Baek et al., 2017).

The main focus of this review is the state-of-the-art
concerning empirical scoring functions motivated by two main
reasons. First, the methodology behind this type of scoring
function could be fast enough to be used in large-scale structure-
based VS and de novo design studies. Secondly, the use of
modern sophisticated machine-learning techniques and the
increasing availability of protein–ligand structures and measured
binding affinity data could increase considerably the accuracy of
empirical scoring functions to be useful in computer-aided SBDD
experiments. In the following sections, we will discuss crucial

aspects concerning their development, successful applications,
limitations, and future perspectives.

DESCRIPTORS OF EMPIRICAL
SCORING FUNCTIONS

Intermolecular Interactions
Empirical scoring functions have implemented specific terms
accounting for intermolecular interactions, such as van der Waals
and electrostatic potentials. For example, the Lennard-Jones
potential describes the attractive forces (e.g., dispersion forces)
and the intrinsic repulsive force between two separated atoms as
a function of the interatomic distances (Jones, 1924a,b). Examples
of empirical scoring functions using Lennard-Jones potentials are
ID-Score (Li et al., 2013) and LISA (Zheng and Merz, 2011).
X-Score (Wang et al., 2002) is an example of a scoring function
that adopts a softened version of the Lennard-Jones potential
instead of the conventional 12-6 potential.

Although all interatomic forces are of electrostatic or
electromagnetic origin, the name “electrostatic” is conventionally
used to describe forces between polar atoms and is usually
represented by the Coulomb potential in both force field-based
and empirical scoring functions. Glide (Friesner et al., 2006a) and
DockThor (de Magalhães et al., 2014) are examples of scoring
functions that implement the Coulomb potential for computing
electrostatic interactions.

Some scoring functions include a specific term for hydrogen
bonds interactions, commonly through two approaches: (i) by
using specific force field-based parameters associated to the van
der Waals and electrostatic energy potentials; (ii) by using a
directional term, where the hydrogen bond contribution is a
function of the deviation of the geometric parameters from those
of an ideal hydrogen bond.

GlideScore employs the approach (i) to calculate hydrogen
bonds between polar atom pairs, while the Glide XP Score
applies the strategy (ii) to account for distinct categories of
hydrogen bonds such as neutral–neutral, charged–charged, and
neutral–charged interactions (Friesner et al., 2004, 2006b). The
DockThor scoring function, which is based on the MMFF94S
force field, has also implemented the strategy (i), reducing the
size of the polar hydrogen atom when it is involved in hydrogen-
bonding interactions (i.e., interacting with a hydrogen bond
acceptor) (Halgren, 1996). X-Score adopts the approach (ii) and
does not consider explicitly the hydrogen atoms, adopting a
concept of “root” atom. In the LUDI implementation of the
approach (ii), there are specific parameters for neutral hydrogen
bonds and salt bridges (Böhm, 1994). However, some empirical
functions do not differentiate hydrogen bonds between charged
and neutral atom pairs, e.g., X-Score (Wang et al., 2002) and
FlexX (Rarey et al., 1996). ID-Score is an example of a scoring
function that uses both approaches: (i) to account for electrostatic
interactions between charged groups and (ii) for hydrogen-
bonding interactions (Li et al., 2013). The AutoDock4 scoring
function employs a directional term based on a 10/12 potential
(similar to the Lennard-Jones potential) dependent of the angle
deviation from an ideal H-bond interaction with the protein.
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Besides the improvement in affinity predictions, the inclusion of
a polar desolvation might be crucial to avoid overestimation of
hydrogen bonds, since the H-bond formation is directly related
with the desolvation of polar atoms.

Despite the importance in considering metal ions, it can be
also a source of inaccuracy when using non-specific scoring
functions, since the real contribution of interaction metal ions
can be underestimated – in the case of simple counting of
metal-atom interacting pairs – or overestimated – when using
Coulomb potential with formal charges. For example, LUDI
(Böhm, 1994), ChemScore (Eldridge et al., 1997), and SFCscore
(Sotriffer et al., 2008) implement a contact-based term that
attributes 1 to each pair metal–ligand atom within a distance
criteria, and lower scores when the distance becomes larger than
the specified criteria until an upper limit of distance, attributing
the score 0 for larger distances. AutoDock4Zn has implemented
a specific force-field-based potential for the zinc ion to consider
both geometric and energetic components of the metal–ligand
interaction, achieving better performance for pose prediction in
redocking experiments (Santos-Martins et al., 2014).

Many studies have highlighted the influence of halogen bonds
(X-bonds) on enhancing binding affinity against several targets
and the computational methods developed so far (Desiraju et al.,
2013; Ford and Ho, 2016). Given the importance of this specific
interaction in the hit and lead identification, some scoring
functions have incorporated special treatment for X-bonds, such
as XBScore (Zimmermann et al., 2015), ScorpionScore (Kuhn
et al., 2011), and AutoDockVinaXB (Koebel et al., 2016).

Desolvation
The desolvation contribution to the binding affinity arising from
the formation of the protein–ligand complex with the release
of water molecules to the bulk solvent can be separated into
two distinct effects: the nonpolar and the polar desolvation.
The nonpolar desolvation, favorable to binding, is related to
the hydrophobic effect when transferring nonpolar molecular
surface from the bulk water to a medium that is nonpolar, as
is the case of many protein binding cavities (Tanford, 1980;
Williams and Bardsley, 1999; Freire, 2008). At the same time,
the desolvation of polar or charged groups of the protein or
ligand is unfavorable to binding when the formed solute–solvent
interactions are not effectively satisfied upon the protein–ligand
binding (Blaber et al., 1993; Kar et al., 2013). In this context,
many scoring functions have implemented desolvation terms to
introduce the hydrophobic effect and/or penalize buried and not
interacting polar/charged atoms after protein–ligand binding to
improve binding affinity predictions.

The X-Score is a consensus scoring (CS) function based on
three distinct strategies to represent the favorable contribution
of the desolvation event related to the hydrophobic effect:
hydrophobic surface (X-ScoreHS), hydrophobic matching (X-
ScoreHM), and hydrophobic contact algorithms (X-ScoreHC)
(Wang et al., 2002). The first one is the hydrophobic
surface algorithm (X-ScoreHS), where the hydrophobic effect
is proportional to the ligand hydrophobic surface in contact
with the solvent accessible surface of the protein. The second
is the hydrophobic matching algorithm (X-ScoreHM), the same

algorithm adopted in the SCORE function (Wang et al., 1998)
that calculates the hydrophobic contribution as a function of
the logP of each ligand atom and the respective lipophilicity
of surrounding protein atoms. The third and simplest method
is the hydrophobic contact algorithm (X-ScoreHC), which
approximates the hydrophobic effect through the contact
between protein–ligand pairs of lipophilic atoms.

LUDI adopts an approach similar to the X-ScoreHS (Böhm,
1994), while ChemScore (Eldridge et al., 1997) implements the
algorithm similar to the X-ScoreHC. Fresno scoring function
(Rognan et al., 1999) implements a more sophisticated method
using the resolution of the linear form of the PB equation using
finite difference methods. Cyscore (Cao and Li, 2014) considers
the protein shape through a curvature-dependent surface-area
term for hydrophobic free energy calculation, leading to a
significant improvement on affinity prediction performance on
PDBbind benchmarking sets.

The unfavorable desolvation effect from burying polar groups
after ligand binding also plays an important role in the binding
event, but it is commonly neglected by most scoring functions
(Kar et al., 2013; Li et al., 2014c; Cramer et al., 2017). Some
efforts have been made to implement specific penalization terms
developed with distinct approaches to account for the polar
desolvation, such as in the scoring functions ICM (Abagyan et al.,
1994; Totrov and Abagyan, 1999; Fernández-Recio et al., 2004),
XP GlideScore (Friesner et al., 2006a), LigScore (Krammer et al.,
2005), and DockTScore (de Magalhães et al., 2014; Guedes et al.,
2016).

The use of more sophisticated methods based on molecular
dynamics (MD), such as MM-PBSA and MM-GBSA, have
been used in conjunction with empirical scoring functions to
predict binding affinities. MM-PBSA and the related MM-GBSA,
considered as “end-point” approaches since all calculations are
based on the initial and final states of the simulation, rely on MD
simulations to compute the polar and nonpolar contributions
of the protein–ligand binding event. A classical force field is
utilized to compute the potential energy, and the solvation energy
is calculated with an implicit solvation model. PB and GB are
continuum electrostatic models used to calculate the electrostatic
part of the solvation energy that treats the protein and the
ligand as low-dielectric regions while considering the aqueous
solvent as a high-dielectric medium (Honig et al., 1993). When
associated with a surface-area-dependent term (SA), they lead
to the implicit solvation models PB (PBSA) (Sitkoff et al., 1994)
and Generalized Born (GBSA) (Still et al., 1990; Qiu et al.,
1997). Sun et al. (2014) evaluated the performance of MM-
PBSA and MM-GBSA methods using several protocols with
1864 protein–ligand complexes from PDBbind v2011 dataset.
They concluded that although similar results were observed,
MM-GBSA is less sensitive to the investigated systems and is
more suitable to be used in general cases (e.g., reverse docking,
which is widely used to predict the receptor target(s) of a
compound). Inspired by the promising results obtained with
GBSA, Zou and Kuntz (1999) implemented a GBSA scheme
into the DOCK program as an alternative scoring function and
obtained improved binding affinity predictions due to a better
description of electrostatic and desolvation effects. More recently,
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Zhang X. et al. (2017) also obtained significant improvement
on binding affinity prediction of antithrombin ligands when
rescoring the top-scored docking poses from VinaLC docking
engine with MM-GBSA. Spiliotopoulos et al. (2016) successfully
integrated a damped version of MM-PBSA with the HADDOCK
scoring function to predict binding poses and affinity of protein–
peptide complexes.

Ligand Entropy
Configurational entropy is related to the loss of flexibility of
the ligand upon binding. It can be represented as a sum of
the conformational (Sconf) and the vibrational (So

vib) entropies
(Schäfer et al., 2002; Chang et al., 2007). In the energy landscape
framework of the protein–ligand binding event, the former
reflects the number of occupied energy wells and the last express
the average width of the occupied wells. Sconf is related to the
reduction of the number of ligand accessible conformations
upon binding, while So

vib is mainly caused by the restriction of
rotational amplitude inside the binding site when compared to
the unbounded state (Chang et al., 2007; Gilson and Zhou, 2007).

Given the difficulty in modeling entropic effects for 1Gbind,
scoring functions generally neglect their contributions or
adopt simplified algorithms to approximate entropies in a
straightforward manner (Jain, 2006). Scoring functions such as
LUDI (Böhm, 1994) and X-Score (Wang et al., 2002) consider the
entropic loss due to the restriction of rotational and translational
degrees of freedom implicitly in the regression constant 1G0.
Surflex approximates such entropic loss as the logarithm of the
ligand molecular weight multiplied by a scale factor related to
the rough mass dependence of the translational and rotational
entropies (Jain, 1996).

The restriction of the rotatable bonds of the ligand after
the formation of the protein–ligand complex also promotes an
entropic loss (Sconf) that is unfavorable to the binding affinity.
Some scoring functions have implemented specific terms in
a rough approximation to account for entropic contributions
of the ligand, as the most used strategies: (i) proportional
to the number of rotatable bonds, and (ii) considering the
environment of each rotatable bond, i.e., only penalize rotatable
bonds that are in contact with the protein. LUDI (Böhm, 1994)
and Fresno (Rognan et al., 1999) implement the approach (i)
while ChemScore (Eldridge et al., 1997) and ID-Score (Li et al.,
2013) use variations of the strategy (ii).

Inspired by the successful application of the energy landscape
theory in protein folding and biomolecular binding (Jackson and
Fersht, 1991; Miller and Dill, 1997; Baker, 2000), researchers
make use of the multiple binding modes predicted by docking
programs to describe the binding energy landscape. For example,
Wei et al. (2010) developed two new parameters extracted from
the multiple binding modes, generated by the AutoDock 3.05
program, and combined them for classification purposes using
logistic regression to distinguish true binders among high-scored
decoys. The new proposed scheme considered the energy gap
(i.e., the difference between the binding energy of the native
binding mode and the average binding energy of other binding
modes – the thermodynamic stability of the native state) and
the number of local binding wells (kinetic accessibility). This

strategy was successfully applied in the neuraminidase and
cyclooxygenase-2 systems from the DUD database, with even
improved accuracy when associated with the docking scores.
Grigoryan et al. (2012) also successfully applied the energy gap
to distinguish true binders from decoys in several protein targets
from DUD on single and multiple-receptor VS experiments,
achieving superior performance than the ICM scoring function.

Descriptors Based on the Counting of
Atom Pairs
With the advance of sophisticated machine-learning algorithms,
an increasing number of scoring functions based on a pool of
simplistic descriptors have emerged, such as the counting of
protein–ligand atom pairs and ligand-based properties. In the
literature, such scoring functions are also known as “descriptor-
based” or “machine-learning based.” It is important to note that
this kind of scoring functions are also empirical models, since
(i) the algorithms commonly used to derive the models, such
as the classical MLR or the robust RF, are machine-learning
methods8, (ii) the attributes used to describe the binding event
are, in fact, descriptors, independently of their functional form,
physical meaning, and complexity degree.

The success of descriptors based on the simple counting
of atom pairs is associated with two important aspects: (i)
amount and definition not limited by complex implementations
or physical meaning assumptions, and (ii) practically eliminate
the necessity of a detailed preparation of the structures,
correct assignment of atom types, and physical quantities (e.g.,
atomic partial charges). Many papers in the recent literature
describe outstanding results for binding affinity prediction and
active/inactive classification using this more pragmatic approach
(Ballester and Mitchell, 2010; Pereira et al., 2016; Wójcikowski
et al., 2017). However, the conjunction of nonlinear models and
more straightforward atom counting descriptors is subjected to
significant criticisms (Gabel et al., 2014). Among the main critics
we can highlight: (i) insensitiveness to the protonation state of
the ligands and receptor residues; (ii) insensitiveness to the ligand
pose; and (iii) facilitate the inclusion of methodological artifacts
due to overtraining even when using large training sets.

TRAINING AND TEST SETS

Datasets
The availability of protein–ligand structures with measured
binding data has been increased due to efforts on data collection,
such as PDBbind-CN (Liu et al., 2015, 2017), DUD-E (Mysinger
et al., 2012), and DEKOIS (Bauer et al., 2013) projects.

PDBbind-CN is a source of biomolecular complexes with
protein–ligand structure determined experimentally with the
associated binding data manually collected from their original
reference (Liu et al., 2015). The current release (version 2017)

8Indeed, according to the IUPAC Recommendations 2015, the term “machine
learning” refers to a computer algorithm that generate empirical models, (...), that
is derived from the analysis of a training set for which all the necessary data are
available (Martin et al., 2016).
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contains 17,900 structures (14,761 protein–ligand complexes)
and is annually updated to keep up with the growth of the
Protein Data Bank (Berman et al., 2000). The “refined set” is a
subset composed of high-quality datasets constructed according
to several criteria concerning the quality of the structures, the
affinity data, and the nature of the complex, being considered one
of the largest datasets of structures available for the development
and validation of docking methodologies and scoring functions.
Collected affinities comprise a large interval of values, ranging
from 1.2 pM (1.2 × 10−12 M) to 10 mM (1.0 × 10−3 M).
Also, PDBbind-CN provides a benchmarking named “core set”
widely used for comparative assessment of scoring functions in
predicting affinities (Li Y. et al., 2018). The core set is a subset
of the refined set constructed using the following protocol: (i)
firstly, protein structures with identity of sequence higher than
90% were grouped leading to 65 clusters associated with different
protein families; (ii) only the clusters composed of at least five
members were considered to construct the core set; and (iii)
for each of these clusters, only the complexes with the lowest,
the medium, and the highest affinities were selected to the final
composition of the core set. A significant drawback of PDBbind-
CN datasets is the insufficient information regarding negative
data (i.e., experimentally confirmed inactive compounds).

The DUD-E dataset is an enhanced version of the original
DUD set and has been widely used to train and validate scoring
functions (Huang et al., 2006; Mysinger et al., 2012). It is
composed of 102 targets with corresponding active, inactive,
marginal, and decoy compounds. Although the number of
ligands (i.e., active compounds) significantly varies for each
target, a proportion of 50 decoys per ligand is kept for all
102 macromolecules. Decoys are presumed, not experimentally
verified, to be inactive compounds since they are chosen to
be topologically distinct from ligands but exhibiting similar
physicochemical properties. The use of decoys instead of
validated inactive compounds remains a major drawback for
most datasets since no experimental activity are reported for
them, and the number of confirmed inactive molecules is too
scarce (Lagarde et al., 2015; Chaput et al., 2016b; Réau et al.,
2018).

DEKOIS 2.0 is composed of 81 benchmarking sets
for 80 protein targets of therapeutic relevance, including
nonconventional targets such as protein–protein interaction
complexes (Bauer et al., 2013). Active compounds and the
associated binding affinity were retrieved from BindingDB
applying several filters to remove pan assay interference (PAINS)
compounds, weak binders, reactive groups, and undefined
stereocenters. To derive a structurally diverse data set, for each
protein target the active compounds were clustered into 40
groups according to the Tanimoto structural similarity and only
the most potent compound of each cluster was selected. For each
active molecule, 30 structurally diverse decoys molecules from
ZINC database were selected according to an improved protocol
to that used in the first version of DEKOIS dataset (Vogel et al.,
2011), including the detection and removing of latent actives in
the decoy set (LADS). Although DUD-E and DEKOIS 2.0 share
a common structure of active and decoys compounds, they are
complementary since there is a small overlap between them: only

four protein targets present in DEKOIS 2.0 overlaps with the
DUD-E dataset.

Scoring functions can be developed based on either
experimental structures (i.e., protein–ligand structure
experimentally determined) or conformations predicted with
docking programs. The structure source (i.e., experimental
or docked) is an important point to consider. The use
of benchmarking sets such as DUD-E and DEKOIS2.0 is
directly dependent on the docking program adopted since the
experimental structures of the protein–ligand complexes are not
available as in the PDBbind datasets. In fact, the scoring function
training or validation in VS experiments using these datasets is
performed with no warranty that the ligand poses were correctly
predicted.

Training, Validation, and Test Sets
The dataset is commonly separated into three subsets without
overlapping structures: (i) the training set, (ii) the validation set,
and (iii) the test set (also known as “external validation set”).

The training set is utilized to calibrate the parameters of
the scoring function and to learn the rules that establish
a quantitative relationship between the descriptors and the
experimental affinity. The validation is used to assess the
generalization error9 guiding the model tuning and selection.
Once the best model is chosen, it is then applied to the test set
to evaluate the real predictive capacity of the model.

There is a tradeoff between the size of the training
and validation/test sets. Whereas the use of an extensive
validation/test set is useful in providing a better estimate of the
generalization error, this usually implicates in a smaller dataset
to be utilized in the training phase (Abu-Mostafa et al., 2012).
Studies evaluating the influence of the training size for the
performance of linear and nonlinear scoring functions for affinity
prediction demonstrated that MLR becomes insensitive to the
growth of the training size whereas larger training sets can lead
to an overall better accuracy of nonlinear scoring functions (Ding
et al., 2013; Ain et al., 2015; Li et al., 2015a,b; Li H. et al., 2018).

In this context, cross-validation emerges as an alternative
strategy to estimate the generalization error without strictly
changing the training set size. Cross-validation experiments
consist of continuously splitting the original training set of size N
into two parts K times (K-fold cross-validation): a smaller set of
size V for validation (V = N/K) and a larger set of the remaining
T instances (T = N−V) for training (e.g., leave-one-out cross-
validation considers V = 1). Different schemes of cross-validation
have been adopted and explored to train linear and nonlinear
models (Shao, 1993; Golbraikh and Tropsha, 2002; Kramer and
Gedeck, 2010; Ballester and Mitchell, 2011; Wójcikowski et al.,
2017). For example, in the recent work of Wójcikowski et al.
(2017), they performed fivefold cross-validations using the DUD-
E dataset. Three distinct splitting strategies were considered:
horizontal, vertical, and per-target. In the horizontal split, all folds
necessarily contain protein–ligand complexes from all protein

9Generalization error is the expected error when the scoring function is evaluated
on a dataset composed of new protein–ligand complexes (i.e., structures not used
in the training step).
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targets (i.e., each protein target is present in both training and
test sets). In the vertical split, the protein targets present in the
test set do not have representative structures in the training set.
This evaluation simulates those cases where the protein target
of interest was not present during the training phase. Finally,
in the per-target split, the training and test are performed for
each protein target (i.e., 102 unique machine-learning models
relative to the 102 DUD-E targets), simulating the construction
and validation of target-specific scoring functions.

It is important to keep in mind that training, validation, and
test sets must never have protein–ligand complexes in common
at the same time. Furthermore, the test set must be composed
of instances not used in the training process at any moment.
Thus, the test set must be used only for evaluating the predictive
performance of different scoring functions, and no decision
should be taken based on the performance for this dataset to
avoid useless comparisons due to artificially high correlations.

Benchmarking and Evaluation Metrics
Standard benchmarks are of great importance for an objective
assessment of scoring functions providing a reproducible and
reliable way to compare different methods. PDBbind (Liu et al.,
2015), DUD-E (Mysinger et al., 2012), and DEKOIS 2.0 (Bauer
et al., 2013) are examples of widely used benchmarks for
evaluating scoring functions.

Many evaluation metrics are used to quantify the performance
of scoring functions in pose prediction, active/inactive
classification, and affinity prediction. A special issue on
Evaluation of Computational Methods collects several high-
quality papers covering the main aspects of the problem in
evaluating and comparing distinct methodologies, highlighting
the strengths and weakness of widely used metrics (Stouch, 2008).
Recently, Huang and Wong (2016) developed an inexpensive
method – the screening performance index (SPI) – to evaluate VS
methods that correlate with BEDROC with less computational
cost, since it discards the necessity of docking decoy compounds
(i.e., only considers the docking of active molecules).

Scoring functions are generally evaluated regarding
four aspects related to the three goals of scoring functions
aforementioned (Liu et al., 2017):

Docking power: the ability of a scoring function in detecting
the native binding mode from decoy poses as the top-ranked
solution. The root-mean square deviation (RMSD) is the most
commonly used metric to assess the docking power performance.

Screening power: the ability of a scoring function in correctly
distinguishing active compounds from inactive molecules. The
screening power test does not require that the scoring function
correctly predict the absolute binding affinity. The screening
power is usually quantified by BEDROC and enrichment factor
(EF).

Ranking power: the ability of a scoring function in rank
correctly the compounds according to the binding affinities
against the same target protein. The Spearman correlation
coefficient (RS) and Kendall’s tau are metrics widely used for
assessing the ranking power of scoring functions.

Scoring power: the ability of a scoring function in rank
correctly the compounds according to the binding affinities

against distinct target proteins. It is important to note that the
scoring power test considers the absolute value of the affinity
prediction, requiring that the predicted and experimentally
observed binding affinities have a linear correlation. This
performance is widely assessed by the Pearson correlation
coefficient (RP), and the root-mean squared error (RMSE).

The predictive performance of scoring functions may vary
between different benchmarking experiments due to factors
such as: (i) composition of the dataset, (ii) structural quality
of the complexes, (iii) level of experience of the researches
performing the experiments, and (iv) protocol of preparation of
the complexes (Yuriev and Ramsland, 2013). Although ranking
scoring functions according to their performances for affinity
prediction on benchmark sets highlights the more competitive
models, it is important to observe that small differences in
the calculated performances are generally insufficient to state
which scoring function performs better than other when
comparing the top-ranked models. Since most benchmarking
studies evaluate scoring functions on a few hundred complexes,
small differences in Spearman correlation coefficient between
0.05 and 0.15, for example, lack statistical significance (Carlson,
2013, 2016). Thus, larger benchmarking sets composed of high-
quality protein–ligand complexes structures are required for
a reliable comparison of docking methodologies and scoring
functions.

In addition to the well-known benchmarking sets, prospective
evaluations are of substantial importance since the blinded
predictions simulate real experiments of VS campaigns.
Drug Design Data Resource (D3R10) periodically provide
pharmaceutical-related benchmark datasets and a Grand
Challenge as a blinded community challenge with unpublished
data (Gathiaka et al., 2016). According to the results obtained
in the Grand Challenge 2, it is clear that the pose prediction
task is well performed for many methodologies, but scoring is
still a very challenging task, even when the crystal structures are
provided (Gaieb et al., 2018). Even with the crystal structures of
36 complexes at Stage 2, the maximum Kendall’s tau achieved
was 0.46, reinforcing the great deal in correctly ranking a set
of compounds. Performances and detailed description of the
protocols adopted are provided at the D3R Grand Challenge 2
website11 and on the scientific reports published on a special
issue of Journal of Computer-Aided Molecular Design (Gaieb
et al., 2018).

In the last version, D3R Grand Challenge 3 (GC3), the
participants had also to deal with even more challenging tasks,
such as the selectivity identification for kinases, assessing the
ability of the scoring functions in identifying large changes in
affinity due to small structural changes in the ligand (kinase
activity cliff ), and the influence of kinase mutations on protein–
ligand affinity (kinase mutants).

The broad profile of the D3R Grand Challenges, regarding
chemical space diversity and affinity data carefully collected,
makes their datasets one of the more reliable sources to evaluate
docking and scoring methods, providing useful guidelines and

10http://www.drugdesigndata.org
11https://drugdesigndata.org//about/grand-challenge-2-evaluation-results
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best practices for further VS campaigns and methodological
improvements.

The Accuracy of Input Structural and
Binding Data
Important issues regarding the quality of structural and affinity
data must be considered for the development, validation, and
application of scoring functions in VS experiments. Reliable
protein–ligand structures usually comply these criteria: good
resolution (2.5 Å or better), fully resolved electron density for
the entire ligand and the surrounding binding-site residues,
and without significant influences from crystal packing on the
observed binding mode (Cole et al., 2011).

The correct assignment of both protein and ligand
protonation/tautomeric states with respect to the experimental
pH, Asn/Gln/His flips, and defined stereocenters of the
compounds are crucial, requiring a careful inspection of the
structures (Kalliokoski et al., 2009; Martin, 2009; Petukh
et al., 2013; Sastry et al., 2013). Indeed, the preparation of
protein–ligand complexes has a direct influence on training and
evaluation of scoring functions, mainly for scoring functions
based on force-field descriptors. For example, the initial
automatic preparation of the structures performed by PDBbind
did not provide an optimized hydrogen bond network and
appropriate assignment of protonation/tautomeric states of the
α-amylase and MeG2-GHIL complex [Figure 1, PDB code 1U33;
Numao et al., 2004]. The careful inspection and correction of
such complexes comprise a time-consuming and challenging
task, but they are particularly important when hydrogen atoms
are considered explicitly. In such cases, the wrong orientation
of hydrogen atoms can lead to high van der Waals energies,
underestimation of hydrogen bond interactions, and incorrect
electrostatic repulsions between charged/polar groups. Despite
many efforts made for collecting even more extensive and better
quality datasets, little attention has been paid to the careful
preparation of the protein–ligand structures, usually relying on
automatic procedures (Bauer et al., 2013). In this context, scoring
functions mainly composed of simple contact-based descriptors
(element–element pair counting) emerge to circumvent the
complicated preparation required in large datasets for VS.

Especially for affinity prediction purposes, the use of datasets
with curated affinity data is essential for reliable predictions and
benchmarking. For example, the PDBbind refined set follows
several criteria concerning the bioactivity manually collected
from the original reference (Liu et al., 2015): (i) only complexes
with known dissociation constants (Kd) or inhibition constants
(K i) are allowed, (ii) no complexes with extremely low (Kd or
K i > 10 mM) or extremely high (Kd or K i < 1 pM) affinities are
accepted, and (iii) estimated values are rejected, e.g., Kd ∼ 1 nM
or K i > 10 µM. Despite the efforts in collecting high-quality
affinity data, many factors such as the inherent experimental error
can be a source of inaccuracies, limiting the average prediction
error achievable on large datasets (Shoichet, 2006; Ferreira
et al., 2009; Sotriffer and Matter, 2011; Kramer et al., 2012).
Furthermore, the use of decoys instead of confirmed inactive
compounds has important impacts in training and measuring

the performance of scoring functions (Chaput et al., 2016b; Réau
et al., 2018).

MACHINE LEARNING

Regression and Classification
Scoring functions can be developed using regression methods to
reproduce continuous (e.g., binding constants) or classification
methods to reproduce binary affinity data (e.g., active/inactive).
It is possible to use scoring functions trained with regression
methods to classify active and inactive molecules given a
predetermined range of affinity data for defining active and
inactive compounds (Ain et al., 2015). It is also possible to
use both classification and regression approaches to deal with
the same problem of binding affinity prediction. For example,
Pason and Sotriffer (2016) used a strategy of classifying the
complexes using algorithms such as KNN and further generating
linear regression models for each cluster achieving predictive
performances comparable to that obtained by the nonlinear
scoring function trained with RF. Many sophisticated machine-
learning techniques automatically generate local models for
similar training points (e.g., locally weighted regression), being
able to classify the new instances automatically and use different
regression models according to specific properties without
explicitly defining classes based on such descriptors.

Linear Versus Nonlinear Scoring
Functions
Scoring functions can also be classified as “linear” and
“nonlinear” models (Artemenko, 2008).

Linear regression is one of the simplest learning algorithms
and is widely used as a starting point in the development of
nonlinear regression models (Bishop, 2006). A linear empirical
scoring function can be written as a sum of independent terms
such as:

1Gbinding = c0 + c11GvdW + c21Ghbond + c31Gentropy

where ci is the weighting coefficients of the respective 1Gi terms,
adjusted to reproduce affinity data based on the training set. In
the example, 1GvdW is a van der Waals potential, 1Ghbond is a
specific term accounting for hydrogen bonds, and 1Gentropy is
related to the ligand entropic loss upon binding.

The most crucial difference between linear and nonlinear
scoring functions is that the former requires a predefined
functional form (e.g., the sum of terms in the case of linear
scoring functions), whereas the latter implicitly derives the
mathematical relationship between the descriptors, allowing the
combination of variables and higher order exponents for the
terms. This advantage of nonlinear scoring functions partially
circumvents the problematic modeling assumptions of linear
models (Dill, 1997; Baum et al., 2010; Sotriffer, 2012).

Linear scoring functions developed to date have shown
moderate correlations (RP ∼ 0.6), whereas nonlinear models
achieved significantly better correlations (RP > 0.7) on
benchmarking studies (Ashtawy and Mahapatra, 2012;
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FIGURE 1 | The structure of α-amylase complexed with the inhibitor MeG2-GHIL (PDB code 1U33) as (A) provided by PDBbind and (B) after manual preparation.
Bad and favorable polar contacts are highlighted in orange and green dashes, respectively. D, aspartate; E, glutamate or glutamic acid; H, histidine; R, arginine.

Khamis and Gomaa, 2015; Wang and Zhang, 2017; Wójcikowski
et al., 2017). RF, SVM, and more recently, DL, are nonlinear
algorithms widely used to develop scoring functions.

The superiority of nonlinear models has also been confirmed
through the rebuild of linear scoring functions using nonlinear
algorithms, i.e., scoring functions trained with the same original
descriptors of the correspondent linear model but with a
different regression method. As an example, Zilian and Sotriffer
(2013) trained a RF scoring function using the same SFCscore
descriptors (named SFCscoreRF) and found a much improved
model, with R = 0.779 significantly higher than those correlations
obtained for the SFScore linear models (Pason and Sotriffer,
2016). Li et al. (2014a) investigated the replacement of MLR
by RF for regression using the same Cyscore descriptors
and found that the nonlinear model improved the affinity
prediction. Furthermore, they also observed that larger training
sets and describing the complexes with more descriptors
have a positive impact in the predictive performance of the
nonlinear models. Pason and Sotriffer (2016) demonstrated
that it is possible to achieve similar high performances of
nonlinear models through the development of a set of linear
scoring functions trained using clustered – smaller and more
homogeneous – datasets of protein–ligand complexes. In fact,
many machine-learning techniques are based in this approach.
For example, locally weighted linear regression automatically
generate distinct “local” linear models weighting the training
points according to their similarity with the instance to be
predicted.

DL is considered as a promising approach to diverse
drug discovery projects guided by the successes obtained in
image and speech recognition problems (Zhang L. et al.,
2017). Such methods take advantage of the recent increase
in computational power and the ever-expanding availability of
structural and binding data. DL methods are neural networks
with many hidden layers, being capable to automatically learn
the complicated relationship between the descriptors related to
the protein–ligand binding. Recently, DL has been applied for
pose/affinity prediction and active/inactive detection, exhibiting

an outstanding performance when compared with several
well-performing scoring functions developed with both linear
and nonlinear approaches (Wallach et al., 2015; Khamis et al.,
2016; Pereira et al., 2016; Ragoza et al., 2017; Jiménez Luna et al.,
2018; Nguyen et al., 2018).

Despite nonlinear scoring functions have the main advantage
of discarding the necessity of a pre-defined functional form,
their main drawback is that they work as “black boxes” since
the relationship between the descriptors is often vague, requiring
careful use to avoid meaningless interpretations (Gabel et al.,
2014). Together with the use of a significant amount of
descriptors lacking physical meaning, nonlinear models offer
the risk of producing excellent performance indexes due to
overfitting and/or bias to the training set construction (e.g.,
capturing the rules adopted during the selection of active
and decoy compounds) (Hawkins, 2004; Abu-Mostafa et al.,
2012).

CHALLENGING TOPICS AND
PROMISING STRATEGIES

Protein Flexibility
Protein flexibility is still a great challenge for docking programs
and scoring functions (Cavasotto and Singh, 2008; Tuffery
and Derreumaux, 2012; Buonfiglio et al., 2015; Spyrakis and
Cavasotto, 2015; Kurkcuoglu et al., 2018). Most docking
methodologies adopt a single, rigid conformation of the
receptor, due to the high computational cost and methodological
limitations proportional to the increase in the degree of
flexibility. However, over the last decades, many strategies
have been implemented in docking programs to consider some
degree of flexibility in the targeted, such as soft potentials
and ensemble docking. In this context, the development of
scoring functions adapted for flexible receptor docking is crucial
to achieve real improvements in pose and affinity prediction
(Totrov and Abagyan, 1997; Wei et al., 2002; Fischer et al.,
2014; Ravindranath et al., 2015; Lam et al., 2017; Kong
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et al., 2018). Ferrari et al. (2004) implemented the fast and
methodologically simple soft-docking strategy into the DOCK
program, softening the repulsive term of the Lennard-Jones
potential, allowing small overlaps between the protein and
the ligand atoms. They also validated the methodology in
VS studies of potential ligands of the T4 lysozyme and the
aldol reductase and obtained better results than using regular
docking strategies. Ensemble docking implicitly considers the
receptor flexibility by docking the ligand on a set of protein
conformations instead of a single conformation, being capable
to simulate large-scale receptor flexibility (Korb et al., 2012).
Recently, Fischer et al. (2014) successfully identified new
ligands targeting specific receptor conformations of cytochrome
c peroxidase using a flexible docking method that samples
and weights protein conformations guided by experimentally
derived conformations, integrating the Boltzmann-weighted
energy penalties related with the protein flexibility to the
DOCK3.7 scoring function. Despite the many efforts made to
include the protein flexibility in VS experiments, the complex
and multifactorial framework of flexible protein–ligand binding
is still a great challenge (Bottegoni et al., 2011; Nunes-Alves
and Arantes, 2014; Antunes et al., 2015; Buonfiglio et al.,
2015; Kong et al., 2018). Whereas the high computational cost
related with sampling protein conformations and docking large
compound libraries can be overcome with the use of high-
performance computing platforms, weighing such conformations
and integrating them with the scoring functions remains a
hindrance for accurate estimation of binding affinities on flexible
systems.

Solvation
Water molecules play an essential role in the ligand–protein
binding process. Besides the hydrophobic and desolvation
effects, individual water molecules can stabilize the ligand
binding mode through the formation of water bridges or
a water-mediated hydrogen-bond network (Poornima and
Dean, 1995; Levy and Onuchic, 2006). The correct prediction
of the free energy of binding associated to the ligand
displacement of water molecules is a key challenge for the
currently available docking scoring functions (Riniker et al.,
2012; Spyrakis and Cavasotto, 2015; Bodnarchuk, 2016). An
interesting approach is the use of a water-mapping protocol
based on the post trajectory analysis of explicit solvent
MD. This analysis is based on the inhomogeneous solvation
theory and tries to predict the free energy cost of moving
a water molecule from a protein hydration site into the
bulk solvent (Yang et al., 2013). For instance, in the WScore
docking methodology, the location and thermodynamics of
explicit waters are predicted using WaterMap and integrated
to the scoring function together with a desolvation term to
penalize the associated desolvation of polar or uncharged
groups of protein or ligand (Murphy et al., 2016). Many
solvent mapping methods were evaluated on real drug design
studies in a recent paper (Bucher et al., 2018), showing
that solvent mapping methods could be important to help
ligand optimization and to correctly rank compounds to assist
synthetic prioritization. However, these approaches only calculate

the solvent contribution to the free energy and must be
combined with other methods to be used for lead optimization
or VS.

Recently, Bodnarchuk (2016) published an extensive
review of water-placement methods helpful for locating
conserved water molecules within the protein binding site to
be considered explicitly during the docking simulation. Once
the water molecules are identified, some docking engines have
implemented strategies to treat water molecules explicitly with
adapted scoring functions. The GOLD program considers
all-atom and flexible water model able to rotate around its
three principal axes, and rewards water displacement in
the GoldScore or ChemScore scoring functions according
to a balance between the loss of rigid-body entropy and
the change in the interaction energies on binding to the
protein cavity (Verdonk et al., 2005). In AutoDock4, explicit
water molecules of the first hydration shell as represented as
uncharged spheres directly attached to the ligand, whereas
a hydration force field accounting for the entropic and
enthalpic contributions, automatically predicts their potential
in mediating protein–ligand interactions (Forli and Olson,
2012).

Covalent Docking
All the discussion made in this review assumes that we are dealing
with non-covalent inhibitors. In such cases, the identification and
development of computer-aided strategies to identify or improve
lead compounds are based on the identification of non-covalent
interactions (e.g., electrostatic, van der Waals, hydrophobic
interactions) to improve potency or increase selectivity. However,
there is a whole class of inhibitors that form a covalent bond with
their enzyme/receptor target (De Cesco et al., 2017). Covalent
inhibitors can further be divided into two different categories
according to whether inhibition is reversible or irreversible
(Tuley and Fast, 2018). The development of covalent-docking
methodologies capable of dealing with such type of inhibition
is very important due to the potential advantages associated
with covalent inhibitors (De Cesco et al., 2017), including (i)
sustained duration of action leading to less frequent dosing, (ii)
increased ligand efficiency, (iii) ability to inhibit targets with
shallow binding sites previously categorized as “undruggable,”
and (iv) increased ability to overcome resistant mutations, among
others. The development of non-covalent inhibitors in a drug-
design study is usually guided by the optimization of the
affinity or dissociation constants (i.e., K i, Kd, IC50). However,
dealing with covalent inhibition is even more complex, and
in order to address the full potential of a covalent-inhibitor
we need not only to measure their affinities but also kinetic
binding parameters (e.g., residence time tr, the average time
that a ligand remains bound in the binding site) (De Cesco
et al., 2017; Trani et al., 2018). The development of docking
methodologies to predict poses and binding affinities of ligands
that bind covalently to the receptor is a challenging task.
Due to the increasing interest in covalent drugs, many non-
covalent docking programs have developed covalent versions
and some new docking programs focused on covalent ligands
have been developed (Kumalo et al., 2015; Awoonor-Williams
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et al., 2017; De Cesco et al., 2017). GOLD (Jones et al., 1997),
Autodock4 (Bianco et al., 2016), CovalentDock (Ouyang et al.,
2013), CovDock (Zhu et al., 2014), DOCKovalent (London et al.,
2014), and DOCK-TITE (Scholz et al., 2015) are some examples
of docking programs that developed specific methodologies
to deal with covalent-docking. These methodologies were
discussed in recent reviews addressing covalent-inhibitors and
covalent docking (Kumalo et al., 2015; Awoonor-Williams et al.,
2017; De Cesco et al., 2017). Some of these methods try to
include the complexity of the covalent inhibition introducing
modifications into their non-covalent scoring functions. For
example, the introduction of a Morse potential to describe the
energy associated with the bond formation (CovalentDock). Two
critical aspects in the future development of covalent scoring
functions are the capacity to predict the kinetics of ligand
binding (e.g., residence times) and the intrinsic reactivity of
electrophilic and nucleophilic pairs of atoms (De Cesco et al.,
2017).

Quantum Mechanics
The use of quantum mechanical methods can improve the
description of protein–ligand interactions and, in principle,
could provide a more accurate binding affinity (Raha and Merz,
2005; Chaskar et al., 2017; Crespo et al., 2017; Cavasotto et al.,
2018). This is particularly true when dealing with systems
where the molecular recognition involves bond formation,
π-stacking, cation-π, halogen bonding (i.e., σ-hole bonding), and
polarization and charge transfer effects (Christensen et al., 2016).
These non-classical interactions/effects are beyond the limits of
classical methods and represent a significant challenge to the
development of scoring functions to be used in computational
drug design experiments. In particular, metal ions interactions
are essential when dealing with metalloproteins and, due to the
large changes in the electronic structure under ligand binding,
are also a great challenge. In the last 10 years, important
advances were made in computing hardware (e.g., Graphics
Processing Units – GPUs), in the development of quantum
algorithms to compute molecular wave functions (Dixon and
Merz, 1997; Birgin et al., 2013), the development of more
reliable semi-empirical quantum methods (Christensen et al.,
2016; Yilmazer and Korth, 2016), and development of new hybrid
QM/MM methods (Chaskar et al., 2017; Melo et al., 2018).
These advances were essential to overcome the bottleneck of
the high computational cost and are allowing the increasing
use of QM methods in the prediction of protein–ligand binding
affinities (Crespo et al., 2017). Recent high-quality reviews cover
applications of explicit QM calculations in lead identification
and optimization (Adeniyi and Soliman, 2017; Crespo et al.,
2017; Cavasotto et al., 2018), development of QM methods
for ligand binding affinity calculations (Ryde and Söderhjelm,
2016), and development of semi-empirical QM methods for non-
covalent interactions (Christensen et al., 2016; Yilmazer and
Korth, 2016).

The results obtained using QM or hybrid QM/MM-based
methods are very encouraging when compared to the standard
scoring functions, principally when dealing with metalloproteins
(Chaskar et al., 2017; Pecina et al., 2018). Wang et al. (2011)

rebuild the AutoDock4 scoring function using ligand partial
charges calculated with QM methods and protein charges from
the Amber99SB instead of the Gasteiger method, improving
both pose and affinity predictions. Moreover, the results from
the 2016 D3R Grand Challenge indicate that the use of
QM/MM scoring could be a powerful strategy (Gao et al., 2018).
Yang et al. (2015) developed and introduced the quantum
mechanics-based term XBScoreQM as a combination of van
der Waals and electrostatic potentials to describe the X-bond
interactions into the AutoDock4 scoring function. The new
scoring function achieved good performances on both pose and
affinity prediction when compared against 12 diverse scoring
functions, and increase predictive capacity to deal with protein–
ligand complexes with X-bond interactions. Nevertheless, it
is important to note that it is not guaranteed that QM-
based approaches will always outperform standard scoring
functions (Crespo et al., 2017) and they still face the same
problems associated with the correct estimation of the solvent
and other entropic effects to the protein–ligand binding free
energy.

Consensus Scoring
The combination of different scoring functions on a scoring
scheme (CS) is considered as a promising data fusion strategy to
improve VS enrichment, pose, and affinity prediction (Charifson
et al., 1999; Bissantz et al., 2000; Yang et al., 2005; Kaserer
et al., 2015; Chaput et al., 2016a; Chaput and Mouawad, 2017;
Ericksen et al., 2017). The CS strategy could overcome to some
extent the limitations faced by the single-scoring approach, for
example, the inconsistent performances across different protein
targets and chemical classes (Moitessier et al., 2009). Moreover,
CS is frequently used in some extent together with ensemble
docking methodology, where different scores are predicted for
different conformations of the protein target under investigation
(Park et al., 2009, 2010; Paulsen and Anderson, 2009; Kelemen
et al., 2016; Baumgartner and Evans, 2018; Li D.-D. et al.,
2018).

Since the pioneering work of Charifson et al. (1999), many
consensus strategies were developed and assessed on several
target proteins, such as cyclooxygenases (Kaserer et al., 2015), and
β-secretases (Liu et al., 2012). For instance, Kaserer et al. (2015)
applied CS on prospective VS studies against cyclooxygenases
1 and 2 and found that the chance of a compound to be truly
active increases when more tools predicted it as active. In the
very interesting work of Wang and Wang (2001), they provided a
theoretical basis for the effectiveness of CS on affinity prediction.
They demonstrated that CS works due to a simple statistical
reason related to the law of large numbers: the mean value found
by repeated independent predictions tends toward the real and
expected value.

Traditional CS approaches combine the predictions of the
scoring functions using statistical methods (e.g., arithmetic
mean) or voting schemes (i.e., a vote replaces the absolute
score predicted by each scoring function) (Terp et al., 2001;
Wang and Wang, 2001; Wang et al., 2002; Bar-Haim et al.,
2009; Ericksen et al., 2017). Nonlinear CS models were also
developed to improve pose prediction and ranking compounds
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in VS experiments (Betzi et al., 2006; Teramoto and Fukunishi,
2007; Ashtawy and Mahapatra, 2015; Ericksen et al., 2017).
For example, Ericksen et al. (2017) developed machine-learning
CS using discrete mixture models and gradient boosting to
combine the scores from eight docking programs and obtained
improved performances than individual scoring functions on 21
targets from DUD-E dataset. In addition, they compared their
machine-learning-based CS with individual scoring functions
and traditional CS schemed, confirming that CS excel individual
scoring functions performances in docking-based VS, being less
sensitive to protein target variation.

Tailored Scoring Functions for Protein
Targets and Classes
Significant improvements in docking and VS accuracies are
reported when employing target-specific scoring functions rather
than non-specific models, using as training datasets protein–
ligand complexes comprising specific molecular targets instead
of a general dataset. Hence, it is expected that they could be more
efficient in accounting for specific interactions and particular
binding characteristics associated with a target class of interest
(Seifert, 2009).

For instance, Logean et al. (2001) adapted the Fresno empirical
scoring function to the class I MHC HLA-B∗2705 protein
with a significant improvement in affinity prediction over six
different traditional scoring functions. The GOLD program also
implements a modified version of the ChemScore function, with
an additional term that accounts for weak hydrogen bonds that
claimed to be relevant for some kinase inhibitor binding (Pierce
et al., 2002; Verdonk et al., 2004). The HADDOCKPPI is a
linear scoring function specifically developed to predict binding
affinities of inhibitors of protein–protein interactions (iPPIs),
which interact in uncommon binding cavities characterized
by higher hydrophobicity, aromaticity, and molecular weight
compared to enzyme inhibitors, as usually interacting within
flatter, larger, and more hydrophobic binding sites than the
enzyme catalytic sites (Morelli et al., 2011; Kuenemann et al.,
2014). In a more recent work, a scoring function specific to
Heat Shock Protein 90 (HSP90) was successfully designed and
applied in VS (Santos-Martins, 2016). In general, nonlinear
scoring functions specific for protein classes/targets also achieved
superior performance than the generic models (Wang et al.,
2015; Ashtawy and Mahapatra, 2018). Still, in the recent work of
Wójcikowski et al. (2017), the target-specific scoring functions
trained with RF only performed slightly better than generic
models, with two-third of them increasing the EF1% less than
10%. As an intriguing result, they found that tailored scoring
functions are more beneficial for the protein targets with less
active compounds than the others containing more actives, where
the target-specific scoring functions exhibit similar performances
to the generic model.

Despite encouraging results obtained for target-specific
scoring functions, it is important to highlight that the
requirement of a large training set to derive a robust scoring
function might become a significant hindrance and source of
inaccuracy. To overcome the lack of a sufficient amount of
experimental structures, protein–ligand conformations used for

training target-specific scoring functions are commonly obtained
from docking experiments.

CONCLUSION

The development of accurate empirical scoring functions to
predict protein–ligand binding affinities is a key aspect in
SBDD. In recent years, the increasing availability of protein–
ligand structures with measured binding affinities and data
sets containing active, decoy, and true inactive compounds are
boosting the use of sophisticated machine-learning techniques to
obtain better performing scoring functions. In the coming years,
it is expected that the combination of larger training datasets,
non-physical/simplified descriptors, and DL techniques will be
a very promising research line to improve scoring functions for
structure-based VS. Methodological advances will be dependent
to the size and quality of the available datasets for training and
benchmarking, and great care will be necessary to avoid artificial
performances due to the increased capacity of these nonlinear
methods to capture bias present in the training data. In this
sense, blinded community challenges with unpublished data (e.g.,
D3R challenge) are essential to address the real performance of
scoring functions and docking protocols. Looking to the other
side of the methodological spectrum, it is exciting to note that the
advance in computing power, the development of new algorithms
to introduce protein flexibility and solvation/desolvation effects,
and more reliable semi-empirical quantum methods are enabling
the development and use of new methodological advances for
challenging tasks, such as QM/MM-based methods and entropy
estimation.

The full potential of scoring functions will be achieved when
models accurate enough to be useful in hit-to-lead optimization
and de novo design studies are developed. To reach this goal,
a scoring function must be sensitive to the docking pose, right
for the right reasons (Kolb and Irwin, 2009). Reliable predictions
of ligand binding affinity remain a big challenge, but we expect
that in the next years important advances associated to distinct
methodological approaches will be achieved and, probably, will
be combined into more effective computer-based drug design
protocols.
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The primary goal of rational drug discovery is the identification of selective ligands

which act on single or multiple drug targets to achieve the desired clinical outcome

through the exploration of total chemical space. To identify such desired compounds,

computational approaches are necessary in predicting their drug-like properties. G

Protein-Coupled Receptors (GPCRs) represent one of the largest and most important

integral membrane protein families. These receptors serve as increasingly attractive

drug targets due to their relevance in the treatment of various diseases, such as

inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic

disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were

solved for diverse GPCRs, thus referring to this period as the “golden age for GPCR

structural biology.” Moreover, accumulation of data about the chemical properties of

GPCR ligands has garnered much interest toward the exploration of GPCR chemical

space. Due to the steady increase in the structural, ligand, and functional data of GPCRs,

several cheminformatics approaches have been implemented in its drug discovery

pipeline. In this review, we mainly focus on the cheminformatics-based paradigms

in GPCR drug discovery. We provide a comprehensive view on the ligand– and

structure-based cheminformatics approaches which are best illustrated via GPCR case

studies. Furthermore, an appropriate combination of ligand-based knowledge with

structure-based ones, i.e., integrated approach, which is emerging as a promising

strategy for cheminformatics-based GPCR drug design is also discussed.

Keywords: GPCR, cheminformatics, drug discovery, ligand-based drug design, structure-based drug design

INTRODUCTION

Rational drug design is the inventive process of identifying pharmaceutically-relevant drug
candidates based on the information garnered from a biological target (Jazayeri et al., 2015).
Discovery of ligands that modulate a target’s activity has contributed largely to the understanding
of both physiological and pathological processes (Wacker et al., 2017a). Navigating vast chemical
space to identify such ligands seems a daunting task (Oprea and Gottfries, 2001; Lipinski and
Hopkins, 2004). Techniques including medicinal chemistry, combinatorial chemistry, and high-
throughput screening (HTS) are helpful in the identification of ligands, which can serve as effective
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modulators for pharmaceutically attractive targets. However,
considering the astronomical number of possible drug-
like candidates (∼1023-1060), chemical space assessed by
experimental techniques is still limited (Rodríguez et al., 2016;
Mullard, 2017). In such a scenario, cheminformatics, which
belongs to a part of the in silico realm, dominates in the
exploration of a larger fraction of the chemical space.

Cheminformatics was defined by Brown (1998) as the
combination of all available information that can be used in the
optimization of a ligand to a potential drug candidate (Bajorath,
2004). This method aids in storing, searching, managing, and
analyzing huge amount of chemical data, thereby expediting
the development of novel ligand phenotypes (Bajorath, 2004;
Valerio and Choudhuri, 2012). Additionally, the extraction of
information and knowledge from chemical data could be helpful
in the modeling of relationships between chemical structures
and biological activities, and in the bioactivity prediction of
other compounds from their structures (Schuffenhauer et al.,
2006; Humbeck and Koch, 2017). Interestingly, cheminformatics
fuses both chemical and biological data from drug candidates
and drug targets, respectively, for the identification of new
chemical entities (NCEs) and improvement of the reliability of
data outcomes.

In the drug discovery pipeline, several cheminformatics
approaches play a potent role in the identification of drug target
and lead compounds, as well as in the prediction of ADMET
properties (Figure 1). Chemogenomics-based databases, as well
as computational polypharmacological analyses, have increased
in popularity over the last several years as a supplementary
method in the identification and validation of potential drug
targets (Xie et al., 2014). Once a drug target is identified,
the lead candidates with desirable properties are screened out
of huge chemical compound libraries, thus underscoring the
importance of cheminformatics tools in virtual screening (VS)
(Varnek and Tropsha, 2008). Another potent cheminformatics
approach, machine-learning is employed for the identification
of novel drug candidates from lead compounds via generation
of computational models (Lee et al., 2010, 2017; Varnek
and Baskin, 2012; Mitchell, 2014). Other cheminformatics
approaches including similarity and substructure searching could
be utilized for the identification of novel scaffolds from large
compounds repositories (Vass et al., 2016). The candidate
compounds retrieved could be further docked onto the target
protein to propose their possible binding affinities toward the
target (Lenselink et al., 2016b). Upon identification of the drug-
like candidates, these could be further evaluated for ADMET
properties using computational models, thus helping in the
elimination of undesired compounds at an early stage of drug
discovery, and minimizing the time and costs involved.

G protein-coupled receptors (GPCRs) belong to a large family
of signaling proteins that mediate cellular responses to most
hormones, metabolites, cytokines, and neurotransmitters, and
therefore serve as “fruitful targets” for drug discovery (Shoichet
and Kobilka, 2012). More than 800 genes comprise this receptor
family, which modulate several signaling processes involved
in behavior, blood pressure regulation, cognition, immune
response, mood, smell, and taste (Thomsen et al., 2005). GPCRs

are categorized into six classes based on sequence and function,
namely Class A—rhodopsin-like receptors, Class B—secretin
family, Class C—metabotropic glutamate receptors, Class D—
fungal mating pheromone receptors, Class E—cAMP receptors,
and Class F—frizzled (FZD) and smoothened (SMO) receptors
(Lee et al., 2018). All GPCR members share a common seven
transmembrane (7TM) architecture linked by three extracellular
(ECL) and three intracellular (ICL) loops (Ciancetta et al., 2015).
However, they have low sequence identity and possess different
extracellular N-terminal domains and diverse ligand-binding
pockets (Figure 2). In case of class A GPCRs, the endogenous
ligand is recognized by a ligand-binding site in the 7TM region.
For class B GPCRs, the ligand is recognized by both extracellular
and 7TM domains. For class C GPCRs, the ligand-binding pocket
is found in the extracellular domain (ECD) that contains a Venus
flytrap (VFT) module. In case of class F GPCRs, both SMO
and FZD receptors possess an ECD that is comprised of an
extracellular cysteine-rich domain (CRD) and an ECD linker
domain. The endogenous lipoglycoprotein ligand, Wnt binds to
the CRD of the FZD receptors (Wang et al., 2013; Wu et al.,
2014). Upon ligand binding, GPCRs activate at least one of
the two signaling partners, namely heterotrimeric GTP-binding
proteins (G-proteins) or β-arrestins, and mediate signal flow via
modulation of various downstream effectors.

GPCR drug discovery has been successful and many of
the world’s top-selling drugs have targeted this receptor family
(Sriram and Insel, 2018). Class A GPCRs are the most immensely
investigated GPCR drug target within the drug market due to
their centrality in diseases, structural availability, and relative
ease of accessibility. The high druggability of GPCRs and its
central role in diseases (including alzheimer’s disease, cancer,
diabetes, obesity, and psychiatric disorders) provide a strong
spearhead for its continuous efforts in drug discovery and
development (Tautermann, 2016). A recent study of all GPCR
drugs and agents currently in clinical trials revealed that
475 drugs (i.e., ∼34% of all drugs approved by Food and
Drug administration [FDA]) mediate their effects through 108
unique GPCRs (Hauser et al., 2017). Additionally, the success
rates for GPCR-targeted agents in the last 5 years were 78%
(phase I), 39% (phase II), and 29% (phase III) (Hauser et al.,
2017). The most recently FDA approved GPCR-targeted drug
is Zilretta (triamcinolone acetonide extended-release injectable
suspension), a glucocorticoid receptor agonist, which is used for
the pain management of knee osteoarthritis (https://www.drugs.
com/history/zilretta.html).

To utilize cheminformatics approaches in GPCR drug design,
understanding the nature of the ligands, structural intricacies
of the receptor, ligand-receptor interactions, and interaction
of the receptors with downstream signaling complexes or
other signaling partners is essential. Additionally, unveiling the
relationships among ligand, receptor, and effector is necessary
to investigate positive and negative allosterism, inverse agonism,
biased signaling, and multimeric receptor pharmacology (Lane
et al., 2017). Recent upsurge in the crystal structures of GPCRs
provides a robust, 3D structural framework for identification of
pharmaceutically-relevant ligands using ligand– and structure-
based computational approaches, including molecular modeling
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FIGURE 1 | Role of Cheminformatics in the drug discovery process. Cheminformatics is involved in almost every step of the drug discovery pipeline due to the

employment and analysis of available data to translate into valuable knowledge, which can in turn be used as a data for further studies.

of receptor dynamics, ligand docking, and virtual ligand
screening (VLS) (Coudrat et al., 2017a). Following the successful
application of VLS approaches in targets such as kinases,
proteases, and other enzyme families, it is also becoming
a popular ligand screening tool for GPCRs (Heifetz, 2018).
The success of structure-based VLS could be visualized by
the encouragingly high hit-rates ranging from 20 to 70% in
the identification of novel ligands for several class A GPCRs
(Table 1).

In this review, we deliver a comprehensive assessment on
the state-of-the-art cheminformatics approaches for GPCR drug
discovery with successful models from literature. Firstly, insights

on GPCR ligand space and its recent structural advances are
summarized. Subsequently, the key principles and boundaries
of ligand–, structure-based, and integrated cheminformatics
approaches in GPCR drug discovery are discussed in the
main text. We also shed some light on the contemporary
cheminformatics tools utilized in GPCR drug discovery.
Additionally, the limitations associated with cheminformatics
approaches have been discussed, which could assist the reader
to rationale the best in silico tool during their research. Lastly,
we conclude with a summary of the review contents and
prospects of the cheminformatics approaches in GPCR drug
discovery.
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FIGURE 2 | Crystal structures of representative GPCR-ligand complexes from classes A, B, C, and F presenting diverse ligand-binding sites. Class A GPCRs are

classified into rhodopsin (bRho, PDB ID: 2HPY) and nonrhodopsin GPCRs. The representative structures of class A nonrhodopsin GPCRs which are further

subdivided into aminergic-like (β2AR, PDB ID: 3P0G), nucleotide-like (A2AAR, PDB ID: 3QAK), peptide-like (µ-OR, PDB ID: 5C1M), and lipid-like receptors (CB1R,

PDB ID: 5XRA) along with their bound ligands are shown. Similarly, representative structures for class B (CRF1 [PDB ID: 4K5Y], GCGR [PDB ID: 5EE7], full-length

GLP-1R [PDB ID: 5NX2], and CTR [5UZ7]), class C (mGlu1R [PDB ID: 4OR2]), and class F (SMO [PDB ID: 4QIN] bound to negative allosteric modulator) are shown.

Receptors are shown in cartoon representation and the ligands are shown as stick models with transparent surfaces. Agonists are represented as red sticks,

antagonists are shown as purple sticks, and negative allosteric modulator is shown as blue stick model.

BOOMING AGE OF GPCR STRUCTURAL
BIOLOGY

The pioneering study of two-dimensional (2D) structure for
bovine rhodopsin (bRho) in 1983 marked the beginning of
GPCR structural biology (Hargrave et al., 1983). A decade later,
2D projection map was calculated from the solved 2D crystals
of bRho using electron cryomicroscopy, which served as the
basis for the construction of the receptor molecular model
(Baldwin, 1993; Schertler et al., 1993). However, the first three-
dimensional (3D) structure of bRho in its inactive state was
released only in 2000 (Palczewski et al., 2000). Despite relentless
efforts, elucidation of GPCR structures remained challenging
due to several factors, including maintenance of structural
integrity of the receptors by embedding in a membrane-
like environment, presence of flexible ECLs and ICLs, low
expression level of the receptor, and displaying basal signaling
activity even in the absence of a ligand. However, all the
aforementioned problems have been circumvented with the
advances in GPCR crystallography, protein engineering, and
innovations in biotechnology. Introduction of small, stable fusion
proteins (T4 lysozyme and b562RIL) decreased the flexibility
of the receptor regions (ICL3, ICL2, and N-terminal regions),
and improved the crystal contacts. Likewise, antibody fragments
or nanobodies improved the conformational stability of the
receptors. Insertion of mutations (stabilized receptor (StaR)
approach) enhanced the receptor thermostability in a particular
conformational state and increased the protein expression levels.

The first structural breakthrough of a human GPCR, i.e.,
β2-adrenergic receptor (β2AR with a diffusible ligand), using

different crystallization techniques came in 2007 (Cherezov et al.,
2007). Moreover, the first crystal structures for GPCR classes
B, C, and F have been solved (Hollenstein et al., 2013; Wang
et al., 2013; Wu et al., 2014). So far, experimental structures of
44 distinct GPCRs and∼205 ligand-receptor complexes covering

all the four classes, A–C, and F are available, of which most
belong to the Class A subfamily (Hauser et al., 2017). It is to
be noted that most of the existing GPCR structures are inactive
ones, bound to an inhibitor. In the last year (2017) alone,
more than 40 GPCR crystal structures have been determined
which are listed in Table 2. GPCR structural studies have
revealed the arrangement of the TM domains, location of the
orthosteric, allosteric, bitopic, and biased ligand binding sites,
homo– or heterooligomerization of receptors, and structural
rearrangements involved in conformational changes upon GPCR
activation or inactivation (Manglik and Kruse, 2017; Schrage
and Kostenis, 2017). Besides garnering these 3D structural
insights, the molecular basis of GPCR signal transduction
coupled to G-proteins or β-arrestins were elucidated through
X-ray crystallography and electron cryomicroscopy techniques.
Oligomeric complex structures of bRho coupled to G-protein
peptide (Rho/GαCT) (Scheerer et al., 2008), human Rho coupled
to visual arrestins (Kang et al., 2015; Zhou et al., 2017),
β2AR coupled to Gs-protein (Rasmussen et al., 2011) and β-
arrestin 1 (Shukla et al., 2014), A2A adenosine receptor (A2AAR)
in complex with a mini-Gs protein (Carpenter et al., 2016),
glucagon-like peptide 1 receptor (GLP-1R) in complex with a
Gs-protein (Zhang et al., 2017), and calcitonin receptor (CTR)
coupled to Gs-protein (Liang et al., 2017) have been elucidated.
These complex structures provide full mechanistic insights into
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TABLE 1 | Key details of GPCR virtual screening campaigns reported in the last 5 years (2013–2017).

GPCR class and
classification type

Receptor
type

VS library and size Hits/hit rate Structure of notable hits References

A, nonrhodopsin

(aminergic)

β2AR ZINC database: (a) 2.7 million

lead-like subset (b) 400k

fragment-like subset

6 hits

(27.3%)

Weiss et al.,

2013

pKi = 3.9

A, nonrhodopsin

(aminergic)

D2R ZINC database: (a) 2.7 million

lead-like subset (b) 400k

fragment-like subset

3 hits (20%) Weiss et al.,

2013

pEC50 = 4

A, nonrhodopsin

(aminergic)

M2R ZINC database: 3.1 million

compounds

11 of 19

(57.9%)

Kruse et al.,

2013

Ki = 1.2 uM

A, nonrhodopsin

(aminergic)

M3R ZINC database: 3.1 million

compounds

8 of 16 (50%) Kruse et al.,

2013

Ki = 1.2 uM

A, nonrhodopsin

(lipid-like)

CB2R Enamine, Otava, ChemBridge,

ChemDiv, Vitasm, IBS,

LifeChemicals, Specs, and

TimTec: 5,613,820 compounds

13 hits ≥ 50%

inhibition at 10

uM (13.4%)

Renault et al.,

2013

Ki = 2.3 nM

A, nonrhodopsin

(aminergic)

AgOAR45B ZINC drug-like subset: 12 million

compounds

45 hits (64.3%) Kastner et al.,

2014

Ki = 2.7 uM

A, nonrhodopsin

(aminergic)

5-HT1AR WDI, PCL, TimTec, and ASINEX:

80,800 compounds

9 hits ≥ 50%

inhibition at 10

uM (60%)

Luo et al.,

2014

IC50 = 2.3 nM

A, nonrhodopsin

(peptide-like)

NOP

receptor

ZINC database CNS Permeable

subset: 400,000 compounds

6 hits ≥ 50%

inhibition at 300

uM (30%)

Daga et al.,

2014

Ki = 1.42

(Continued)
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TABLE 1 | Continued

GPCR class and
classification type

Receptor
type

VS library and size Hits/hit rate Structure of notable hits References

A, nonrhodopsin

(peptide-like)

PAR2 FDA-approved drugs: 1,216

compounds

4 hits ≥ 50%

inhibition at 30

uM

Xu et al.,

2015

IC50 = 10 uM

A, nonrhodopsin

(aminergic)

5-HT6R ChEMBL: 12,608 compounds 6 hits (16.7%) Kelemen

et al., 2016

IC50 = 0.1 uM

A, nonrhodopsin

(aminergic)

H1R ChEMBL: 108,790 compounds 19 hits (73.1%) Kooistra

et al., 2016

pKi = 4.72

A, nonrhodopsin

(aminergic)

β2AR ChEMBL: 108,790 compounds 18 hits (52.9%) Kooistra

et al., 2016

pEC50 = 4.52

C, metabotropic

glutamate

mGlu1R Asinex: 695,855 compounds 5 hits (14.3%) Jang et al.,

2016

IC50 = 10.22 uM

FGSG_02655

(Class I,

pheromone

receptor)

Life Chemicals GPCR Targeted

Libraries: 11,571 compounds

10 VS hits Bresso et al.,

2016

A, nonrhodopsin

(peptide-like)

PAR2 (a) Asinex: 433,973 compounds

(b) ChemDiv: 1,213,470

compounds

3 hits ≥ 30%

inhibition at 10

uM (6.4%)

Cho et al.,

2016

IC50 = 8.22 uM

(Continued)
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TABLE 1 | Continued

GPCR class and
classification type

Receptor
type

VS library and size Hits/hit rate Structure of notable hits References

A, nonrhodopsin

(peptide-like)

NTSR1 ZINC, ChemBridge, and J&K:

1,000,000 compounds

4 hits (9.1%) Zhang et al.,

2016

IC50 = 14.47 uM

A, nonrhodopsin

(aminergic)

5-HT2AR ZINC Clean Lead-like subset:

140,809 compounds

15 VS hits Gandhimathi

and

Sowdhamini,

2016

A, nonrhodopsin

(aminergic)

D2R 6,500,000 compounds 10 hits (47.6%) Kaczor et al.,

2016

Ki = 58.1

A, nonrhodopsin

(aminergic)

M2R NCI Diversity Set: 1,600

compounds

19 hits (50%) Miao et al.,

2016

pKi = 3.8

A, nonrhodopsin

(aminergic)

H3R Phase database 6 hits (8%) Frandsen

et al., 2017

pKi = 6.1

A, rhodopsin GPR91 ZINC In-Stock subset:

12,782,590 compounds

12 hits (10.8%) Trauelsen

et al., 2017

EC50 = 1.9 uM

GPCR and biased signaling, thus underpinning their functional
significance and pharmacological targeting.

GPCRs are known to exist or function as monomers,
dimers, and/or higher order oligomers, including homo– or
hetero– dimers/oligomers (Guo et al., 2017). In addition to
the accumulated experimental data through biochemical and
biophysical techniques, the structural information on GPCR
dimers or higher order oligomers were provided by X-ray
crystallography. The first reported higher-order crystal structure
of Rho and opsin in native membranes were reported in
2003 (Liang et al., 2003). Consequently, several structures

including rhodopsin and nonrhodopsin class A GPCRs were
elucidated (Lee et al., 2018). The oligomeric structures of GPCRs
are essential for modulation of receptor function, mediation
of cross-talk between GPCRs or other signaling pathways,
and cellular trafficking, hence they have been associated with
specific functional effects. Moreover, targeting these oligomeric
structures as drug candidates could provide a new arena for
drug development and specificity. The wealth of information
supporting the existence of homo- and heterooligomers of
GPCRs can be retrieved from the RCSB PDB (https://www.rcsb.
org/pdb/home/home.do) or GPCR Oligomerization Knowledge

Frontiers in Pharmacology | www.frontiersin.org March 2018 | Volume 9 | Article 128344

https://www.rcsb.org/pdb/home/home.do
https://www.rcsb.org/pdb/home/home.do
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Basith et al. Cheminformatics-Based GPCR Drug Design

TABLE 2 | Summary of GPCR solved structures released in the past 1 year (Dec ‘16-Nov ‘17).

Class type,
classification

Receptor
type

Species Ligand Ligand type Released
year

Resolution PDB ID

A, rhodopsin Rhodopsina Human N/A N/A 2017 3.0 5W0P

Rhodopsinb Bovine N/A N/A 2017 2.7 5TE3

Rhodopsin Bovine 10,20-Methanoretinal Agonist 2017 4.0 5TE5

A, nonrhodopsin

(aminergic

receptors)

β2AR Human Carazolol; 4-carbamoyl-N-[(2R)-2-

cyclohexyl-2-phenylacetyl]-L-phenylalanyl-

3-bromo-N-methyl-L-phenylalaninamide

Inverse

agonist;

Allosteric

antagonist

2017 2.7 5X7D

D4R Human Nemonapride Antagonist 2017 2.0 5WIU

D4R Human Nemonapride Antagonist 2017 2.1 5WIV

5-HT2B Human Lysergic acid diethylamide Agonist 2017 2.9 5TVN

5-HT2B Human Ergotamine Agonist 2017 3.0 5TUD

A, nonrhodopsin

(nucleotide-like

receptors)

A1AR Human DU172 Covalent

antagonist

2017 3.2 5UEN

A1AR Human PSB36 Antagonist 2017 3.3 5N2S

A2AAR Human ZM241385 Inverse

agonist

2017 1.7 5NM4

A2AAR Human ZM241385 Inverse

agonist

2017 2.0 5NM2

A2AAR Human ZM241385 Inverse

agonist

2017 2.1 5NLX

A2AAR Human Theophylline Antagonist 2017 2.0 5MZJ

A2AAR Human PSB36 Antagonist 2017 2.8 5N2R

A2AAR Human Caffeine Neutral

antagonist

2017 2.1 5MZP

A2AAR Human ZM241385 Inverse

agonist

2017 2.8 5JTB

A2AAR Human ZM241385 Inverse

agonist

2017 3.2 5UVI

A2AAR Human 5-Amino-N-[(2-Methoxyphenyl)methyl]-2-

(3-Methylphenyl)-2h-1,2,3-Triazole-4-

Carboximidamide

Bitopic

antagonist

2017 3.5 5UIG

A, nonrhodopsin

(peptide-like

receptors)

CCR2 Human BMS-681; CCR2-RA-[R] Orthosteric

antagonist;

Allosteric

antagonist

2016 2.8 5T1A

CCR5 Human 5P7-CCL5 Antagonist 2017 2.2 5UIW

CCR9 Human Vercirnon Allosteric

antagonist

2016 2.8 5LWE

NTSR1 Rat NTS8−13 Agonist 2016 3.3 5T04

APJR Human AMG3054 Agonist 2017 2.6 5VBL

PAR2 Human AZ3451 Allosteric

antagonist

2017 3.6 5NDZ

PAR2 Human AZ8838 Antagonist 2017 2.8 5NDD

PAR2 Human AZ7188 Antagonist 2017 4.0 5NJ6

AT2R Human N-benzyl-N-(2-ethyl-4-oxo-3-{[2′-(2H-

tetrazol-5-yl)[1,1′-biphenyl]-4-yl]

methyl}-3,4-dihydroquinazolin-6-

yl)thiophene-2-carboxamide

Antagonist 2017 2.8 5UNG

AT2R Human N-[(furan-2-yl)methyl]-N-(4-oxo-2-propyl-

3-{[2′-(2H-tetrazol-5-yl)[1,1′-

biphenyl]-4-yl]methyl}-3,4-

dihydroquinazolin-6-yl)benzamide

Dual

antagonist

2017 2.9 5UNH

(Continued)
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TABLE 2 | Continued

Class type,
classification

Receptor
type

Species Ligand Ligand type Released
year

Resolution PDB ID

AT2R Human N-benzyl-N-(2-ethyl-4-oxo-3-{[2′-(2H-

tetrazol-5-yl)[1,1′-biphenyl]-4-yl]

Antagonist 2017 2.8 5UNF

ETBR Human Bosentan Dual

antagonist

2017 3.6 5XPR

ETBR Human K-8794 Antagonist 2017 2.2 5X93

A, nonrhodopsin

(lipid-like

receptors)

FFAR1 Human MK-8666; AP8 Partial

agonist; Full

allosteric

agonist

2017 3.2 5TZY

FFAR1 Human MK-8666 Partial agonist 2017 2.2 5TZR

LPA6R
b Zebrafish N/A N/A 2017 3.2 5XSZ

CB1R Human AM11542 Full agonist 2017 2.8 5XRA

CB1R Human AM841 Full agonist 2017 3.0 5XR8

CB1R Human Taranabant Inverse

Agonist

2016 2.6 5U09

B, secretin-like

receptors

GLP-1R Human Truncated peptide Agonist 2017 3.7 5NX2

GLP-1R Human PF-06372222 Negative

allosteric

modulator

2017 2.7 5VEW

GLP-1R Human NNC0640 Negative

allosteric

modulator

2017 3.0 5VEX

GLP-1Rc Rabbit GLP-1 Agonist 2017 4.1 5VAI

GCGR Human NNC0640 Negative

allosteric

modulator

2017 3.0 5XEZ

GCGR Human NNC0640 Negative

allosteric

modulator

2017 3.2 5XF1

CTRc Human sCT Agonist 2017 4.1 5UZ7

aArrestin-bound state of the receptor.
bLigand-free basal state of the receptor.
cFully-active receptor complexed with a G protein.

Base (Khelashvili et al., 2010). In addition to these structural
intricacies, GPCR signaling is also modulated by the presence
of ligands other than orthosteric, which will be discussed
in the following sections. Furthermore, adding details like
GPCR dynamics to the structural information would provide a
bigger picture to the biomedical researchers in this field. Such
dynamic events triggered upon receptor activation or inhibition
mechanisms could be covered by powerful methodologies
including, bottom-up Hydrogen Deuterium eXchange Mass
Spectrometry (HDX-MS) and resonance energy transfer (RET)
(Li et al., 2015; Zhang, 2017). These important structural
tools aid in better GPCR drug design by adding valuable
information to our understanding of GPCR function, dynamics,
protein-protein interactions, and receptor-ligand interactions
(Vilardaga, 2011; Kauk and Hoffmann, 2017). Collectively, all
the structural studies provide unprecedented insights into the
structural and functional diversity of this receptor family. The
wealth of structural information on all GPCRs is invaluable

for ligand-based drug design (LBDD), structure-based drug
design (SBDD), and integrated paradigms which complement
traditional drug discovery efforts.

INSIGHTS INTO GPCR LIGAND SPACE

Various signaling pathways involve several GPCRs whose
activities are mediated by ligand binding. Based on activation
intensity, GPCR modulators can be divided into agonists, partial
agonists, antagonists, and inverse agonists. Full agonists can
stimulate maximal GPCR activity leading to recruitment of
downstream proteins for signal transduction. Partial agonists,
on the other hand, cannot induce 100% activation of receptors
and acts as a type of antagonist while in the presence of full
agonists. However, it can act as full agonists when there are excess
receptors and in the absence of actual full agonists. Antagonists
act as agonist blockers and can be divided into neutral antagonists
and inverse agonists. Neutral antagonists can bind to GPCRs but
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do not affect the receptor’s constitutive activity, whereas inverse
agonists can block agonist effects. These modulators can directly
interact with the orthosteric binding site of GPCRs (Wacker et al.,
2017a).

While structural architecture of the TM region is largely
conserved, the remarkable diversity in GPCR sequences are most
notable in the ECL and ICL regions. This leads credence to the
capacity of the GPCR family to interact with a wide range of
ligands that vary in size, shape, and physicochemical properties,
most of which bind to the orthosteric site to modulate receptor
activity. In the ECL region, ECL2 plays a critical role in ligand
recognition, access, and selectivity (Dror et al., 2011; Kruse
et al., 2012; Zhang H. T. et al., 2015). For Class A GPCRs,
lipophilic ligands often come from the lipid membrane and
access the orthosteric site through the “lid” formed by the N-
terminus and ECL2. In the case of hydrophilic ligands, ECL2 of
different receptors only partially covers the ECL region through
a variety of structures that shapes the entrance to the binding
pocket (Venkatakrishnan et al., 2013). On the other hand,
modulators of class B GPCRs are frequently peptide ligands,
which possess large volume and high flexibility, requiring a
more solvent-accessible orthosteric binding pocket (Liang et al.,
2017).

Increase in static GPCR structures and advances in MD
facilities have assisted in the elucidation of GPCR-ligand binding
interaction. A thorough investigation of the ligand binding
pocket of several GPCRs indicated the presence of multiple
topologically equivalent residues that forms a consensus ligand
binding network in almost all Class A receptors, providing
an explanation for cross-reactivity and polypharmacology.
Moreover, deviations from these consensus binding residues
can account for ligand specificity in different GPCR members,
and can thus be exploited in the design of specific and
potent ligands (Venkatakrishnan et al., 2013). Regardless of
the upsurge in information in the last few decades, it is
still difficult to understand the differences in ligand binding
requirements for agonists, antagonists, and inverse agonists
of a given receptor, despite having almost identical structures
(Figure 3). This calls for more studies focused on identifying
key residues for agonism and antagonism, not only ligand
binding specificity. Along with this, it is important to scrutinize
activity cliffs of ligands as significant shifts in modulation
type could be observed through small changes in ligand
structures.

Besides the orthosteric site, GPCR ligands can also bind
to allosteric pockets and indirectly modulate receptor activity.
Allosteric modulators can be divided into two types: (a)
positive allosteric modulators (PAMs), which increases agonist
affinity, and (b) negative allosteric modulators (NAMs), which
acts as an allosteric antagonist or inverse agonist to decrease
agonist affinity (Christopher et al., 2013, 2015; Kenakin,
2016). Additionally, there are some molecules that can both
interact with orthosteric and allosteric sites, known as bitopic
modulators (Dror et al., 2013; Fronik et al., 2017). Allosteric
modulators can be either endogenous molecules, like sodium
and cholesterol (Katritch et al., 2014), or exogenous molecules
like natural products and synthetic compounds. Since allosteric

modulators bind to sites other than the orthosteric site, they
can co-bind with the putative ligand on the receptor to
alter conformation and activity, thus affecting downstream
signaling.

In case of CC chemokine receptor type 9 (CCR9), vercirnon
(antagonist) was co-crystallized and unexpectedly found
to interact with the intracellular binding site, blocking G-
protein coupling (Oswald et al., 2016). Another example of an
allosteric modulator is 1-(2-(2-(tert-butyl)phenoxy)pyridin-
3-yl)-3-(4-(trifluoromethoxy)phenyl)urea (BPTU), which
binds outside the purinergic P2Y1 receptor, flanking the TM
bundle inside the lipid bilayer. While BPTU shows lower
potency than known orthosteric antagonist, MRS2500, its
allosteric interactions allow higher selectivity for the P2Y1

receptor (Zhang D. et al., 2015). Apart from small molecule
compounds, ions can also function as an allosteric modulator,
as illustrated by the discovery of the conserved allosteric
binding pocket for Na+ in Class A GPCRs (Katritch et al.,
2014).

The current rising star in GPCR research is biased signaling.
Previously, GPCRs were presumed to exist as a simple two-
state receptor model [“on” (activation) and “off” (inactivation)].
However, extensive analyses of different signaling pathways
paved way to an exciting discovery that GPCRs have multiple
conformations, each tailored to a specific response and
downstream effect. Different ligands induce different receptor
conformations, and each conformational state could initiate
a specific downstream signal. While this finding increases
the difficulty in drug discovery and design, there is also an
opportunity to selectively block pathways implicated in various
pathologies, while leaving normal homeostatic processes intact
(Bologna et al., 2017). Typically, G protein signaling occurs upon
agonist binding, whereas arrestin-mediated signaling occurs
through arrestin binding. In this instance, GPCR drug design
strategy could be dependent on identifying agonists biased
for either G protein or arrestin signaling, leading to higher
drug efficacy and diminished adverse effects (DeWire and
Violin, 2011). Some excellent examples of biased ligands include
lysergic acid diethylamide (LSD) (Wacker et al., 2017b), a well-
known hallucinogen which appears to display bias toward β-
arrestin signaling, and synthetic opioids TRV-130 (DeWire et al.,
2013) and PZM-21 (Manglik et al., 2016), which are biased
toward G protein signaling. Altogether, these accumulated data
may provide extremely beneficial hints in the discovery and
design of GPCR ligands based on the intended activity and
targeted pathology. Figure 4 depicts some of the common GPCR
modulators that are distinguished by activity types.

CHEMINFORMATICS-BASED PARADIGMS
IN GPCR DRUG DISCOVERY

Cheminformatics Approaches Based on
the Knowledge Derived From GPCR
Ligands
Cheminformatics tools are frequently utilized in GPCR research
due to the enormous amount of GPCR ligand data. Difficulties in
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FIGURE 3 | Examples of β2-adrenergic receptor (β2AR) orthosteric ligands with similar structures but possess different activities. (A) BI167,107 acts an agonist (PDB

ID: 4LDE) (Ring et al., 2013), (B) alprenolol acts an antagonist (PDB ID: 3NYA) (Wacker et al., 2010), and (C) carazolol acts as an inverse agonist (PDB ID: 2RH1)

(Cherezov et al., 2007).
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FIGURE 4 | Representative chemical structures of various GPCR modulators.

crystallizing membrane proteins and receptor flexibility hindered
structural elucidation and drug discovery research for this
receptor. Due to these shortcomings, ligand-based approaches
started to thrive in order to provide a better understanding of
GPCR function and pharmacology. Some of the major ligand-
based cheminformatics approaches are detailed below.

Cheminformatics and Virtual Screening
In silico screening method started to become popularly used
after the integration of high throughput screening (HTS)
and information technology (Coudrat et al., 2017b). Several
computational and VS methods are frequently utilized in

different stages of drug discovery and development, but some of
the earliest and most commonly used ones are similarity- and
QSAR-based strategies due to their efficiency and capability in
analyzing simple 2D structures. These strategies are dependent
on the principle that similar structures are predicted to display
similar activities. Similarity-based methods need at least one
established hit whose chemical structure is used to calculate
pertinent molecular fingerprints, which is then employed to
screen chemical libraries for compounds containing similar
structure or fragments. On the other hand, QSAR-based
strategies rely on the developed mathematical models which
require an adequate number of biologically active compounds
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with activities covering a wide span of concentration. In this case,
screening is dependent on the quality of the dataset used and the
accuracy of the developed model (Luo et al., 2016).

Similarity-based VS was applied in a recent study for the
discovery of a novel series of cannabinoid receptor 2 (CB2R)
agonists (Gianella-Borradori et al., 2015). CB2R is a class A,
lipid-like GPCR that regulates the effects of endogenously
produced cannabinoid receptor ligands and has been implicated
in several inflammatory diseases. In this study, an in-house
database containing around 25,000 compounds was screened
based on 40 low-energy conformations of known active and
selective compound HU-308. Compounds were ranked based
on their similarity with any of the 40 conformers of HU-308,
and the top 94 were selected for biochemical screening based on
the combined color score, which refers to chemistry alignment
akin to pharmacophore features, and shape Tanimoto score,
which accounts for 3D conformer overlay. From the initial hits,
the top 16 active compounds displayed 6 new core scaffolds.
Upon combined inspection of bioactivity, molecular weight, and
lipophilicity, DIAS1 was chosen and used for further mining
of the in-house library with the help of the newly identified
scaffold. The second VS led to the discovery of DIAS2, which
exhibited better activity and reduced lipophilicity as compared
to DIAS1. Further structure-activity relationship (SAR) studies
were performed for the optimization of the lead compound to
improve potency, selectivity, and pharmacokinetic properties,
resulting in candidate compounds that show nanomolar activity
and selectivity for CB2R.

Another study used the US EPA’s ToxCast database to develop
QSAR models for 18 aminergic GPCRs (Mansouri and Judson,
2016). While the ToxCast program can screen hundreds of
compounds in vitro to determine toxicity, the chemical space
covered by their database is not enough to include all compounds
of interest. However, the database can be employed in the
development of predictive QSAR models. Two QSAR models
were developed during the study, a qualitative (active vs. non-
active) and a quantitative (potency value prediction) model.
Various descriptors were calculated from the 2D structures of
the compounds in the database and were subjected to genetic
algorithms (GAs) to identify the best and most predictive
descriptors. Several model-fitting methods, including PLSDA
(partial least square discriminant analysis), SVMs (support vector
machines), kNNs (k-nearest neighbors), and PLSs (partial least
squares), were used to generate the QSAR models, which were
later evaluated for accuracy and predictability. As a result, they
were able to produce suitable models for aminergic GPCR assays
and demonstrate the reliability of QSAR-based methods for
analysis.

Cheminformatics and de Novo Ligand Design
Typically, ligand-based de novo drug design utilizes approved
drugs or known inhibitors as reference structures or a source
of pharmacophores that are relevant for bioactivity to build
new chemical structures. While novelty and potency are always
favored in drug discovery research, de novo structures should
also have desirable pharmacokinetic properties (Kawashita
et al., 2015). The combination of de novo drug design and

computer-aided VS, along with the application of ADME/Tox
models for the prediction of pharmacokinetic properties, has
the capability of more effectively identifying NCEs with the
desirable pharmacological activity profiles. In this sense, de novo
drug design approach has become the forerunner of the long-
envisioned personalized medicine where patients can be given
custom-tailored drugs with increased efficacy and reduced
adverse effects.

Rodrigues et al. worked on 5-hydroxytryptamine receptor
subtype 2B (5-HT2B) drug discovery and were able to identify
selective ligands through multidimensional de novo design
(Rodrigues et al., 2015). In the Molecular Ant Algorithm
(MAntA) software (Reutlinger et al., 2014), chemically advanced
template search version 2 (CATS2), pharmacophores, and
Morgan substructure fingerprints were employed to generate 5-
HT2B selective ligands via reductive amination, resulting in over
5,000 new compound structures from which 4 were selected
based on calculated 5-HT2B selectivity. To further improve
selectivity and increase the scaffold diversity, de novo design
software DOGS (Hartenfeller et al., 2012) and FDA-approved
drug molecule structures were utilized to produce NCEs. The
resulting compounds were screened with PAINS (Baell and
Holloway, 2010) and ADMET filters (Lagorce et al., 2008) to
remove undesirable molecules before performing experimental
validation assays. Finally, four more compounds were obtained
and among them, one compound showed promising selectivity
for the 5-HT2B receptor. Even though the newly designed
compound was not comparable in potency with the most
potent existing antagonists, this study still provides an excellent
application of de novo drug design in GPCR drug discovery field.

Cheminformatics and Chemical Genomics
While the number of currently available GPCR structures
is increasing, it only covers a small portion of this protein
superfamily and several other pharmaceutically relevant
members are not yet elucidated. Chemical genomics can
be applied to overcome the difficulty of target and drug
identification by screening small molecule libraries and
measuring their effects on entire biological systems or a
specific group of targets, such as GPCRs. This combines
the strength of traditional pharmaceutical techniques and
genomics to facilitate discovery and validation of therapeutic
targets, as well as identification of potential drug candidates
for optimization (Hauser et al., 2018). Moreover, application
of this strategy provides information concerning activated
signaling pathways and biological effects through measurable
gene expressions, leading to relevant data about target specificity
and noninteraction pairs. In this sense, chemical genomics
works on mining huge chemical data with the help of structural
bioinformatics to rapidly identify target structure-function
relationships (Valerio and Choudhuri, 2012). One of the most
popular chemical genomics-based database found online is
GLIDA (GPCR-Ligand Database), a publicly available Chemical
Genomics database that can be used for GPCR drug discovery
(Okuno et al., 2008). It contains GPCR biological and ligand
information, as well as GPCR-ligand binding data. Therefore,
it can be utilized for LBDD with the help of techniques such
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as machine learning-based classification and similarity-based
search.

Shiraishi et al. reported an interesting research wherein
chemical genomics approach was employed to predict GPCR-
ligand interaction for class A GPCRs (Shiraishi et al., 2013).
GPCR-ligand interaction data was collected from GVK
Biosciences database and kernel methods were applied to
evaluate compound-protein interaction (CPI) pair similarities
based on Extended Connectivity Fingerprint (ECFP) and Dragon
software descriptors generated for the ligands, along with target
specific regions, such as full structure, loop region, and TM
region. The results showed that compared to kernels accounting
for the full structure and loop regions, kernels for the TM region
showed significantly improved performance, which agrees with
experimental findings that the TM region of class A GPCRs
plays a critical role in ligand binding. Reliability of the machine
learning model was improved with the addition of negative
noninteraction pairs. Careful investigation of GPCR-ligand
pairs revealed that high co-occurrence of residue-fragment
pairs may be indicative of importance in ligand binding and
specificity, as well as conservation of binding modes among
Class A GPCRs. Key interactions identified in their study can be
used for future VS and lead optimization studies and is beneficial
when employed in combination with structure-based studies.

Cheminformatics, Polypharmacology, Drug

Repositioning, and Repurposing
Recently, pharmaceutical research focuses not only on the
discovery of novel compounds for a known target but also
on the discovery of new indications for currently approved
drugs. Polypharmacology has quickly emerged as a critical
part of drug discovery research with the knowledge of how
interconnected pathways in biological systems are. Though
this field is most often used to investigate adverse effects and
toxicity, information garnered from possible off-target effects
can also offer information about new drug indications or
cross-reactivity leading to higher drug efficacy (Jacobson et al.,
2014). With the upsurge of polypharmacological information,
it is no surprise that it is now frequently combined with
cheminformatics strategies to predict off-target effects ahead
of extensive biochemical analyses in order to save time and
resources.

Xie et al. reported an interesting chemical genomics-based
polypharmacology study focusing on GPCR-related drug abuse
problem (Xie et al., 2014). Initially, a drug-abuse domain
specific chemogenomics knowledgebase (DA-KB) was built to
consolidate chemogenomics data regarding drug abuse and CNS
diseases. This database was later used to investigate molecular
interaction networks that encompass both drug abuse and
GPCR modulation. Upon identifying 85 drug abuse-related
GPCRs, distribution information of these receptors was collected
and studied from the MetaCore database (Ekins et al., 2006).
Using HTDocking (https://omictools.com/htdocking-tool) and
GPCRDocking programs, polypharmacology and polydrug
addiction analyses were performed to investigate the interactions
between drug abuse-related receptors and ligands, along with
cross-reactivities. As a result, the DA-KB became a powerful

tool that has the capability of transforming data to useable
polypharmacology knowledge. Moreover, TargetHunter server
was also developed and can be used for target or off-target
discovery.

Cheminformatics Approaches Based on
the GPCR Structural Data
SBDD is one of the potent tools in lead discovery and
optimization (Andrews et al., 2014). The application of SBDD is
proven to be more efficient than traditional methods due to its
working principle, which includes understanding the molecular
basis of the disease and utilizing the 3D structural data of
the target protein in the drug discovery pipeline (Cavasotto
and Palomba, 2015). It has played a valuable role in several
drug discovery projects involving enzyme targets (Wlodawer
and Vondrasek, 1998; Varghese, 1999). Due to the difficulties
in the expression and crystallography of GPCRs, there was
only limited information available for SBDD of such targets.
However, methodological advances in GPCR crystallography
have paved way for the elucidation of several GPCR structures
in the recent past. The availability of GPCR structures led to
increased application of structure-based approaches in GPCR
drug design, an area which has long been dominated by
ligand-based ones. Breakthroughs in GPCR structural biology
provide invaluable insights into the GPCR structure, function,
and polypharmacology. The abundance of ligand-bound GPCR
structures unveils the intricacies of ligand-receptor interactions,
thus triggering a shift from conventional HTS techniques to
less cost and highly efficient SBDD approaches for the design
and discovery of potent ligands with improved pharmacological
profiles. The main drawback of SBDD approaches lies on
the scoring functions used by docking algorithms, wherein
numerous approximations and restraints to protein flexibility
are applied to expedite the process (Kim and Cho, 2016). In
the following section, we briefly discuss the structure-based
cheminformatics approaches for identifying novel GPCR ligands
targeting ligand- and/or allosteric binding sites with few thriving
models from the literature.

Identification of GPCR Novel Chemotypes via

Structure-Based Virtual Screening
Utilizing crystal structures or homologymodels of target proteins
in rational drug design is considered as the most powerful and
popular method of choice in the design and/or screening of new
lead compounds. In the early phase of drug discovery pipeline,
structure-based virtual screening (SBVS) or docking-based VS
has been utilized for the prediction of novel bioactive compounds
from large and chemically diverse libraries (Cheng et al., 2012).
In general, SBVS requires knowledge about the target’s (protein
or receptor) 3D structural information determined through
experimental (X-ray or NMR) or in silico methods (homology
modeling). Procedure involves docking of large chemical libraries
of small compounds into crystal structure or homology model
of the receptor. The selection criteria of small compounds for
further experimental testings are based on the docking score,
which assesses the binding affinity of protein-ligand complexes,
predicted binding poses, chemical diversity, interactions with key
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residues, etc. (Ngo et al., 2016). The small compounds that cause a
biological response are known as hits, which act as new chemical
scaffolds for hit-to-lead development. The general VS workflow
applied in several GPCR VS studies is shown in Figure 5.

SBVS studies for the first crystal structures of GPCRs,
including β2AR, A2AAR, dopamine D3R, and histamine (H1R)
have shown high hit rates. The pioneering study of SBVS for a
druggable GPCR using the β2AR crystal structure was reported
(Cherezov et al., 2007). In another SBVS, the authors utilized the
inactive structure of β2AR/carazolol (PDB code: 2RH1) (Sabio
et al., 2008) and screened proprietary and public databases
for the identification of β2AR ligands. The hit rates obtained
were 36 and 12%, respectively. Similarly, Kolb et al. (2009)
docked ∼1 × 106 commercially available compounds onto the
same crystal structure and the top 25 virtual hits were selected
based on their commercial availability, chemical diversity, and
complementarity to the binding sites, and subjected for biological
testings. Among them, six compounds had detectable binding
affinities with the best one showing a Ki of 9 nM. All six
hit molecules had novel chemotypes, and five of them were
confirmed as inverse agonists. Apart from the reported VS

studies using crystal structures, there were also few reports
using receptor homology models. Langmead et al. identified
highly potent and novel chemotype 1,3,5-triazine derivatives
using A2AARhomologymodels (Langmead et al., 2012). A virtual
library of 5.45 × 105 compounds was screened and the initial
hits were selected based on the shape geometry and electrostatic
properties of the orthosteric site. A hit rate of 9% was obtained
and the structures were modified and optimized using X-ray
crystallography and structure-based optimization techniques.
This series of optimization led to the successful identification
of AZD4635 (HTL-1071), which is in phase 1 clinical trials for
immunooncology (Jazayeri et al., 2017).

Interestingly, a large-scale VS study was carried out by Lane
et al. (2013) for the identification of both orthosteric and
allosteric ligands of D3R. Based on the crystal structure of
D3R, two optimized D3R models were prepared. To account for
protein flexibility, conformers of D3R models were generated
and subsequently evaluated by VS performance, i.e., conformers
that can separate D3R actives from decoys were selected for
the following analyses. The Molsoft Screen Pub database, which
contains 4.1 × 106 compounds, was virtually screened using

FIGURE 5 | Overview of the typical workflow of structure-based virtual screening (SBVS).
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docking calculations. Top 300 hits in each model were selected
and clustered by chemical similarity (0.3 Tanimoto distance). The
top 25 compounds selected did not have a positively charged
amine forming a conserved salt bridge to D1103.32, which is
contrary to D3R apo model, but has interactions with TM1, 2, 3,
and 7 as well as ECL1 and ECL2. These hits also reach dopamine
and D1103.32 at the end of the orthosteric pocket. Finally, the
predicted novel allosteric ligands were experimentally validated,
showing distinct functional profiles on dopamine-signaling
efficiency. Another SBVS approach identified nanomolar lead
compounds for the melanin-concentrating hormone-1 receptor
(MCH-1R) (Lionta et al., 2014). This approach combines GPCR
molecular modeling, antagonist binding site prediction, design,
synthesis, and a focused library screening. A primary hit
compound from a pyranose-based VAST library was initially
used for the construction of a high quality MCH-1R model.
Furthermore, the model validation was performed using a virtual
enrichment experiment, along with the model-driven structure-
based expansion of the initial hit, for identification of potent
interactions in the binding site. A SBVS of a library with ≤0.7
Tanimoto similarity to existing MCH-1R ligands provided a 14%
hit rate and 10 unique chemotypes of potent MCH-1R inhibitors,
including two nanomolar leads (Lionta et al., 2014).

In silico screening territory for classes B, C, and F largely
remains uncharted due to the limited number of crystal
structures available. Using SBVS approach, noncompetitive
ligands (allosteric modulators) of related class B GPCRs, namely
glucagon receptor (GLR) and glucagon-like peptide 1 receptor
(GLP-1R), were identified (de Graaf et al., 2011b). Based
on the crystal structure of corticotropin-releasing factor 1
receptor (CRF1R), a homology model for GLR was constructed.
A database containing 1.9 × 106 compounds was assessed
for chemical similarity to the current GLR noncompetitive
inhibitors and docked onto the TM cavity of GLR. Based on
the protein-ligand interaction fingerprints (IFPs), 23 compounds
were selected and subjected for in vitro evaluations. Only two
compounds were found to dose-dependently inhibit the effect
of glucagon. One hit that was predicted as inactive for GLR
bound to GLP-1R and potentiated a response similar to the
endogenous GLP-1 ligand. For class C GPCRs, successful in silico
VS studies were carried out against the VFT crystal structures
(orthosteric N-terminal domain) of metabotropic glutamate
receptor subtypes, mGlu3R and mGlu4R (Selvam et al., 2010).
Besides the above-mentioned studies of VS campaigns, there
are several computational works reported in the literature to
discover novel orthosteric ligands for various GPCRs (which
is well summarized in several review articles; Andrews et al.,
2014; Cavasotto and Palomba, 2015; Shonberg et al., 2015; Ngo
et al., 2016; Lee et al., 2018). Since SBVS on GPCRs is too
broad to cover in this section, we have summarized representative
case studies reported in the last 5 years (2013–2017) in
Table 1.

Relevance of Fragment-Based Drug Discovery

(FBDD) on GPCR Targets
Sequential piecing of fragments together to develop a novel lead
compound is known as fragment-based drug discovery (FBDD)

or fragment-based lead discovery (FBLD). FBDD is a potent
scaffold-hopping and lead structure optimization tool for drug
discovery projects and serves as an alternative to HTS (Matricon
et al., 2017). The success of this approach in drug discovery
campaign could be visualized by the increase in the number of
compounds (originated from virtual fragment screens) entering
clinical trials. A remarkable example of drugs identified via
FBDD approach is vemurafenib, which was approved for the
treatment of metastatic melanoma in 2011 (Baker, 2013). FBDD
uses small molecules comprising ≤20 heavy atoms as a starting
fragment for effective hit optimization. The main concept of this
approach is to discover ligands that are smaller than a regular
drug compound. The enlarged coverage of uncharted chemical
space in fragment databases provides an exciting opportunity
to find ligands after screening only a few thousand compounds
(Chen et al., 2013). A fragment library can be designed and
screened using molecular docking studies (Lee et al., 2018).
The retrieved fragments could be further optimized using other
computational approaches for growing, linking, or both.

Strategies utilized in the development of fragments into a
lead compound include fragment growing, fragment linking,
sequential docking, and group-based QSAR techniques.
Fragment growth strategy initially begins with a fragment in
the receptor’ active site and allows extension of the fragment
to maximize its interaction with the residues in the binding
pocket. Fragment linking refers to the covalent linking of two or
more fragments to form a single molecule which provides a new
chemical scaffold in the active site. The application of FBDD to
SBVS increases the structural space of hit-to-lead compounds.
Even though ligands retrieved from fragment libraries lack
selectivity and exhibit low affinity, they can be used as starting
points for novel lead discovery. Despite its numerous advantages,
there are still limitations associated with this approach, such
as low accuracy prediction of fragment binding modes and
rapid accumulation of errors. However, this approach proves to
be useful when complemented with experimental techniques.
Fragment screening of GPCR ligands via experimental methods
(NMR, SPR, and X-ray crystallography) is challenging due to
the difficulties in obtaining substantial amounts of functional
protein, inherent conformational flexibility of the receptors
outside the membrane, and low expression of the receptors
(Lee et al., 2018). Therefore, in silico FBDD approaches could
be utilized for GPCRs and other therapeutic targets. In the
following paragraphs, we discuss the successful application of
FBDD on GPCR drug discovery from literature.

The importance of in silico screening against GPCR protein
structures or homologymodels to investigate novel fragment-like
ligand chemical space is applicable for several GPCR targets. One
of the first successful virtual fragment screening was developed
by de Graaf et al. against doxepin bound human H1R crystal
structure (de Graaf et al., 2011a; Shimamura et al., 2011).
In this approach, molecular docking and receptor-ligand IFP
protocols were combined to discover a chemically diverse set
of new fragment-like H1R ligands. Out of 26 fragment-like
compounds, 19 showed high binding affinity at the receptor
level (hit rate 73%). Similarly, another structure-based virtual
fragment screening (SBVFS) was performed against two GPCR
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targets, namely dopamine (D3R) crystal structure and H4R
homology model structure, and an in-house fragment library of
12,905 fragments (Vass et al., 2014b). Additionally, molecular
dynamics (MD) simulations were performed to represent
different conformational states of the receptor orthosteric site
(Vass et al., 2014b). Single structure- and ensemble docking
screens were carried out for both receptors. The resulting 50
virtual hits were subjected for in vitro studies. Both the single and
ensemble structures were found to be suitable for docking-based
VS of fragments against GPCR targets. Chen et al. complemented
in silico SBVFS with experimental biophysical screening to test
the efficiency of their developed method (Chen et al., 2013).
Initially, a set of 500 fragments were docked onto the orthosteric
pocket of antagonist-bound A2AAR crystal structure (Jaakola
et al., 2008) and ranked by affinity prior to target immobilized
NMR screening of the same library (TINS). TINS resulted in 94
hits, where five fragments were identified to exceed the threshold
affinity for the GPCR target. In the in silico screening, four out
of five compounds were found in the top 50 fragments. Apart
from these four fragments, the remaining 46 fragments also
showed high binding affinities. Thus, a second computational
screening approach using commercially available fragments (3.28
× 105) was performed and the 22 top-ranked compounds were
tested experimentally. Among them, 14 fragments were identified
as A2AAR ligands. Furthermore, QSAR studies were performed
for three potent A2AAR ligands followed by optimization of
the fragments by MD simulations and free-energy calculations.
Similarly, another successful application of fragment-based
screening and lead optimization using both biophysical and
in silico techniques was shown in β1AR target leading to the
discovery of novel high affinity leads (Christopher et al., 2013).

Verheij et al. studied target selectivity against histamine
subtype H4R and 5-HT3A (ion channel) homology models using
SBVFS approach (Verheij et al., 2011). The results of fragment-
based screening showed that both receptors yielded a common
pool of hit fragments, thus underlining remarkable similarities
in ligand recognition. This knowledge could assist in efficiently
navigating chemical space during hit optimization. Besides the
orthosteric binding site (primary), allosteric sites (secondary)
have also been targeted for identification of novel compounds by
SBVFS approach. Vass et al. applied a sequential docking protocol
to predict starting points for fragment linking using D3R crystal
structure andD2R homologymodel to identify subtype selectivity
(Vass et al., 2014a). Two in-house focused fragment libraries (196
fragments function as primary binding site ligands for D2 and D3

receptors and 266 fragments function as secondary binding site
ligands for D3R) were docked in the orthosteric and allosteric
binding sites and the best fragment combinations were listed.
Similar top-scoring fragments were identified for the orthosteric
site, whereas allosteric site fragments showed subtype selectivity.
Three fragment-linked compounds that showed 9-, 39-, and 55-
fold selectivity for D3R were synthesized, and docking results
were validated by the experimental data.

In tandem with SBDD, FBDD has also been successfully
applied to other GPCR classes. Novel mGlu5R NAMs were
identified through combination of fragment-based screening
and medicinal chemistry approaches (Christopher et al., 2015).

In addition, the binding modes of NAMs with the receptor
were crystallographically solved. Recently, an in silico fragment-
based approach was applied on the crystal structures of mGlu5R
(Doré et al., 2014; Christopher et al., 2015) for the design
of novel allosteric modulators (Bian et al., 2017). Initially, a
fragment library for reported GPCR allosteric modulators was
constructed using the data from Allosteric Database (ASD).
Subsequently, the novel compounds were generated and analyzed
using retrosynthetic combinatorial analysis procedure (RECAP).
Molecular docking was applied to screen the hits for the target
by docking the in silico generated compounds into the binding
pocket. Additionally, other computational methodologies, such
as benchmark dataset verification, docking, QSAR model
simulations, etc., were performed to assess validation of the
hits. Twenty structurally diverse hits were predicted as potential
mGlu5 allosteric modulators based on the binding energies and
docking scores. This study highlights the importance of purely
computational FBDD approach for facilitating the design of
novel compounds for other targets as well. In addition to the
above-mentioned GPCR case studies on SBVFS campaigns, there
are several other in silico reports available regarding the discovery
of novel ligands which are summarized elsewhere (Hubbard and
Murray, 2011; Murray et al., 2012; Shoichet and Kobilka, 2012;
Visegrády and Keseru, 2013; Andrews et al., 2014; Lee et al.,
2018).

Integration of Ligand- and Structure-Based
Cheminformatics Approaches
The use of cheminformatics in drug discovery provides an
excellent foundation for the integration of structure- and ligand-
based strategies due to its application in different stages of
drug discovery. With the rising number of available structures,
biological databases, and in silico techniques for cheminformatics
and modern drug discovery, it is not surprising that ligand-
and structure-based approaches are used in combination to
take advantage of the abundant GPCR ligand information
while employing recently elucidated crucial protein structural
information to aid in increasing success in GPCR drug
discovery research. Furthermore, integration of LBDD and
SBDD complements strengths and weaknesses of each method,
leading to better insights in critical ligand functionalities and
receptor-ligand interaction information. Researchers are now
able to use 3D protein structures to predict binding modes
and study the pharmacology of known drugs and their analogs
through docking, providing rationalization of ligand activity and
useful SAR information for the design and optimization of new
agonists and antagonists (Munk et al., 2016). In addition, rapid
innovation of hardware and computing power allows the use
of MD simulations for more in-depth study of GPCR ligand
binding and activity modulation (McRobb et al., 2016; Clark,
2017).

An excellent case of ligand- and structure-based integration
in GPCR drug discovery is shown in studies involving A2AAR,
an attractive drug target for the treatment of Parkinson’s disease.
Since A2AAR receptor was one among the first GPCRs to
be crystallized, it has become one of the most extensively
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studied drug target. The later release of a high-resolution
A2AAR structure, which revealed the presence of water in the
binding site, further increased the efforts for drug design and
optimization. Over the years, most of A2AAR antagonists, such
as istradefylline (Jenner, 2005) and preladenant (Neustadt et al.,
2007), have been designed based on the purine scaffold and
other related heterocycles. Although the abundance in ligand
information for A2AAR helps in the elucidation of important
chemical fingerprints and ligand binding interactions, it has
become difficult to discover novel entities for drug development.
In a study by Lenselink et al. (2016a), they performed VS
using an ensemble of A2A receptor structures split into a
structure-based decision tree (Lenselink et al., 2014). Ligands
were docked to each protein structure and proceeded to the
next receptor docking based on a GlideScore cut-off of the
previous procedure. The resulting ligands were filtered using
Rapid Elimination of Swill (REOS) (Walters andNamchuk, 2003)
and re-scored using MM-GBSA. Consequently, similarity-based
analysis (against compounds tested for A2AAR activity recorded
in ChEMBL) was performed to determine the structural novelty
of the remaining hits and select themost unique compounds to be
tested experimentally. Out of 71 novel ligands, only 2 compounds
displayed suitable A2AAR binding affinity. They also performed a
retrospective analysis of the current A2AAR ligands to determine
novelty in structure and its relation to observed A2AAR activity.
Decades of research efforts for this target left little room for
discovery of new ligand scaffolds, as seen in previous VS studies
showing ligand Tanimoto similarity in the range of 0.19–0.68
(Carlsson et al., 2010; Katritch et al., 2010; Langmead et al., 2012;
Rodriguez et al., 2015), with the lowest similarity showing the
least activity. While most of the virtual hits were found to be
similar in structure to experimentally validated compounds from
ChEMBL, it should be noted that several of the tested compounds
or scaffold structures were also discovered using computational
methods, highlighting the value of in silico approaches in drug
discovery and design.

Aside from combining known structure- and ligand-based
methods, hybrid tools that assimilate features from both
approaches have been developed to afford computational
chemists other strategies which can compensate current
individual limitations of SBDD and LBDD. One of the
hybrid methods that has gained popularity in recent years
is proteochemometric (PCM) modeling. PCM modeling is
similar to traditional QSAR studies since both methods require
descriptors, bioactivity data, and machine learning functions
for model development (Qiu et al., 2017). However, a cross-
term descriptor is also required in PCM modeling to consider
amino acids and ligand functional groups that are crucial
for binding interaction of the complex (Lapinsh et al., 2001;
van Westen et al., 2011; Qiu et al., 2017). This method has
been found to be useful on polypharmacological studies as it
can provide information on target selectivity (Cortes-Ciriano
et al., 2015), especially in large protein families like GPCRs.
In a recent study by Gao et al. (2013), 24 PCM models were
developed for amine GPCRs and their corresponding ligands
using machine learning methods, support vector regression
(SVR), and Gaussian processes (GP). Two typical descriptors

were generated per receptor: z-scale and transmembrane identity
descriptors, and two typical descriptors were generated for each
ligand: general (atomic contributions, logP, etc.,) and drug-like
index descriptors. These descriptors were first used to build 24
PCM models, which were validated using a test-set. Although,
most of the models showed strong goodness-of-fit (R2) and
predictivity (Q2), the addition of cross-terms led to a lower
predictive capability of the PCM models. This may be because
it is still difficult to fully translate receptor-ligand interfaces to a
descriptor value. Despite this, their PCM models showed great
potential in predicting cross interactions between GPCRs and
ligands.

SUMMARY OF CHEMINFORMATICS
SOFTWARES/TOOLS UTILIZED IN GPCR
DRUG DISCOVERY

HTS has undergone technological advances and innovations
that has rendered it as the principal method of drug discovery
for years. However, it did not necessarily lead to a great leap
forward in the discovery of NCEs as the hit rate for this
method is frequently low, in addition to the enormous costs and
efforts involved. In turn, computer-aided drug design (CADD)
have been recognized and continuously receives increase in
interest and usage such that most of GPCR drug discovery
research efforts make use of one or more computational tools,
especially in the initial stages of drug design. Due to the
complexities of experimental GPCR research, it is of no surprise
that CADD has emerged as a method of choice to expedite
GPCR drug discovery and design. Furthermore, increasing
knowledge of GPCR systems has led to the rising popularity
of cheminformatics and chemogenomics as evidenced by the
growing number of publicly available databases, which can
provide structural or interaction information regarding receptor
and its associated ligands.

There are several cheminformatics softwares and web servers
available to identify lead compounds targeting GPCRs (Khan
et al., 2011; Yadav et al., 2016). As mentioned previously,
in silico approaches are classified into two approaches: SBDD
and LBDD. If there are already known NMR and X-
ray crystal structures or reliable homology models available,
computational methods based on target protein structures can
be exploited (Lyne, 2002). These tools are related with several
computational approaches, including molecular docking, VS,
pharmacophore generation, and binding pocket detection. As
shown in Table 3, several in silico cheminformatics methods
have been applied for GPCR targeted drug discovery. In
cases where no protein structures are available, ligand-based
virtual screening (LBVS) can be utilized. LBVS can be further
sub-classified into three: pharmacophore-, similarity-, and
machine learning-based VS (Basith et al., 2016). As shown
in Table 4, several in silico cheminformatics methods could
be exploited for generation of pharmacophores, searching
3D similarity, and identifying targets (polypharmacology).
Moreover, commercially available chemical libraries for VS are
shown in Table 5.
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TABLE 3 | Cheminformatics tools for structure-based drug discovery.

Tools Description Availability References

VS Docking Pharmacophore generation Cavity detection

AutoDock 4 Y Y Public Morris et al., 2009

AutoDock Vina Y Y Public Trott and Olson, 2010

FlexX Y Y Commercial Kramer et al., 1999

OEDocking (FRED, HYBRID) Y Y Commercial McGann, 2012

Galaxy7TM Y Public Lee and Seok, 2016

Glide (HTVS, SP, XP) Y Y Commercial Friesner et al., 2006

GOLD Y Y Commercial Jones et al., 1997

GOMoDo Y Y Y Public Sandal et al., 2013

GPCR automodel Y Public Launay et al., 2012

ICM-Pro Y Y Commercial Neves et al., 2012

MOE Y Y Y Commercial Roy and Luck, 2007

Snooker Y Y Sanders et al., 2011

Surflex-Dock Y Commercial Jain, 2007

fPocket Y Y Public Le Guilloux et al., 2009

Pocketome Y Public Kufareva et al., 2012

UCSF DOCK Y Y Commercial http://dock.compbio.ucsf.edu/

MOLS Y Public Paul and Gautham, 2016

iScreen Y Y Y Public Tsai et al., 2011

TABLE 4 | Cheminformatics tools for ligand-based drug discovery.

Tools Description Availability References

VS Pharmacophore generation 3D similarity searching Poly pharmacology

Discovery studio Y Y Commercial

FlexS Y Commercial Lemmen et al., 1998

ICM-Pro Y Y Y Y Commercial Grigoryan et al., 2010

LigandScout Y Y Commercial Wolber and Langer, 2005

PharmaGist Y Y Commercial Schneidman-Duhovny et al., 2008

QSARPro Y Y Commercial http://www.vlifesciences.com

ROCS Y Commercial Hawkins et al., 2007

Surflex-Sim Y Commercial Spitzer and Jain, 2012

Swiss similarity Y Public Zoete et al., 2016

Topomer CoMFA Y Y Commercial Cramer, 2003

LIMITATIONS OF CHEMINFORMATICS
APPROACHES IN GPCR DRUG
DISCOVERY

In the last several years, the increasing number of high resolution
GPCR structures has unlocked new avenues for structure-based
GPCR drug discovery and design. However, several obstacles
remain, including rapid identification of novel fragment-like
compounds and structure-based elucidation of GPCR ligand
function to name a few.

With the recent innovations in high-throughput, computer,
and software technologies, as well as the upsurge of publicly
available data, cheminformatics methodologies has no doubt
become an essential part of most drug discovery efforts to date.
However, a major flaw is seen during cheminformatics model

development, wherein the experimental data used is assumed
to be correct. In contrast to this assumption, databases can
contain errors for ligand structures, bioactivity, activity types,
and other information, which often results in ambiguous models
leading to erroneous findings. Several recent articles (Fourches
et al., 2010, 2016; Williams and Ekins, 2011; Williams et al.,
2012) have discussed this topic at length and how it can have
a negative effect on model development and performance. A
study by Olah et al. (2005) mentioned that there were two
molecules with incorrect structures on average for eachmedicinal
chemistry journal, indicating a total error percentage of 8%
in the WOMBAT database. Another more recent study by
Tiikkainen et al. (2013), estimated the ligand error rates in
ChEMBL, Liceptor, and WOMBAT databases to be 5, 7, and 6%,
respectively. Error values for activity values in the three databases
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TABLE 5 | Available chemical database for high-throughput virtual screening.

Database Number of compounds Containing GPCR focused library References

AnalytiCon 35,000 https://ac-discovery.com

Asinex 600,000 Y http://www.asinex.com

Bionet 80,700 https://www.keyorganics.net

ChemBridge 1,100,000 Y http://www.chembridge.com

ChemDiv 1,500,000 Y http://www.chemdiv.com

CoCoCo 6,981,500 http://cococo.isof.cnr.it/cococo

eMolecules 5,900,000 https://www.emolecules.com

Enamine 2,300,000 Y http://www.enamine.net

InterBioScreen 550,000 https://www.ibscreen.com

Life Chemicals 1,292,000 Y http://www.lifechemicals.com/

Maybridge 53,000 http://www.maybridge.com/

NCI 260,000 https://cactus.nci.nih.gov/

OCTVAchemicals 260,000 Y http://www.otavachemicals.com

Prestwick Chemical 1,280 http://www.prestwickchemical.com

Selleck Chemicals 482 Y http://www.selleckchem.com

SuperDrug2 3,900 http://cheminfo.charite.de/superdrug2/downloads.html

TCM Database 32,300 http://tcm.cmu.edu.tw/

Timtec 2,300 Y http://www.timtec.net/

Vitas-M 1,500,000 http://www.vitasmlab.com

ZINC 35,000,000 Irwin et al., 2012

ranged from 1 to 2%. It is therefore important to carefully and
manually curate chemical and biological databases, since even
minor errors can cause a substantial decrease in the predictive
capability of generated models. Moreover, while the increasing
sophistication of computer programs has allowed researchers
an atomistic view of several GPCR systems, approximations of
crucial energy terms that cannot be computationally explored at
present has greatly limited the accuracy in the perception of these
systems. Because of these, researchers should constantly gauge
findings against their own scientific knowledge to see whether
the results are significant or not. It should always be remembered
that computational tools are created and continuously developed
to assist in making the drug discovery process more efficient,
but nothing can replace a researcher’s own knowledge and
experience.

Moreover, insights about GPCR structure, function, and
binding partners have increased significantly compared to a few
decades ago. Despite this, a great deal of information is still
beyond our fingertips, such as protein structures of hundreds of
unique GPCRs and ligand information for orphan GPCRs. It is
imperative not lose fervor in gathering new knowledge to further
enhance our understanding of GPCR structures and functions.

CONCLUSIONS

In the nineteenth century, chemical space exploration was
initiated as a counting game to estimate its size (Reymond, 2015).
However, the advent of cheminformatics field and powerful
in silico technologies assisted in the exploration of uncharted
ligand space from large chemical libraries. The availability of
large public and commercial chemical databases, as well as

ligand chemical space exploration tools, provide researchers the
ease of accessibility to handle and explore huge chemical data.
Cheminformatics is a complex field of study that translates large
data into useful knowledge for drug design and optimization
protocols. The expansion of GPCR structures and ligands over
the past decade is mainly due to the progress in its structural
biology and theoretical advancements. These structural and
in silico breakthroughs have led to the implementation of
cheminformatics approaches in GPCR drug discovery pipeline.
In the GPCR drug discovery protocol, ligand- and structure-
based approaches are the most commonly applied ones. LBDD
is known as a fast and simple technique for the identification
of vital chemical functionalities required for biological activity.
However, absence of binding pocket information limits its ability
in incorporating several important factors, such as receptor
flexibility and ligand bioactive conformation, thereby restricting
the discovery of candidate leads to only the ligand classes
used in model development (Saxena et al., 2017). But due to
the prolonged absence of GPCR structures, researchers relied
heavily on ligand-based methods for drug discovery and lead
optimization, leading to copious ligand structural information
for these targets. Following the crystallization of bRho in 2000
(Palczewski et al., 2000) and β2AR in 2007 (Rasmussen et al.,
2007), a striking increase in GPCR structural information have
been observed in the last several years.While the current available
structures are unable to cover the structural diversity of GPCR
protein family members, there is enough that can be used as
templates for homology modeling to perform SBDD. In contrast
to ligand-based techniques, SBDD can be used to predict ligand
bioactive conformation, thus providing a better understanding
of receptor-ligand interactions and allowing the discovery of
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NCEs. Furthermore, recent researches underpin the significance
of emerging integrated approaches in GPCR drug design and
discovery. Assimilating LBDD and SBDDmethods, as well as the
use of integrated approaches, has proven to increase the success
rate of finding promising leads, especially for well-studied targets
such as GPCRs. All the cheminformatics approaches discussed in
this review are focused toward the identification of novel ligands
for GPCR targets based on the structural and ligand data, where
several case studies signify the importance of VS. The evolution
of cheminformatics techniques and their synergy in GPCR drug
discovery pipeline is the driving force that will facilitate cost-
effective and prolific outcomes in the exploration of uncharted
GPCR ligand space. Yet, an expert human touch is entailed to
authenticate and tame the computer-generated outcome.
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Despite the large computational costs of molecular docking, the default scoring functions
are often unable to recognize the active hits from the inactive molecules in large-scale
virtual screening experiments. Thus, even though a correct binding pose might be
sampled during the docking, the active compound or its biologically relevant pose is
not necessarily given high enough score to arouse the attention. Various rescoring and
post-processing approaches have emerged for improving the docking performance.
Here, it is shown that the very early enrichment (number of actives scored higher
than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even
8.7-fold by comparing the docking-based ligand conformers directly against the target
protein’s cavity shape and electrostatics. The similarity comparison of the conformers
is performed without geometry optimization against the negative image of the target
protein’s ligand-binding cavity using the negative image-based (NIB) screening protocol.
The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with
11 target proteins using benchmark libraries. By focusing on the shape/electrostatics
complementarity of the ligand-receptor association, the R-NiB is able to improve the early
enrichment of docking essentially without adding to the computing cost. By implementing
consensus scoring, in which the R-NiB and the original docking scoring are weighted for
optimal outcome, the early enrichment is improved to a level that facilitates effective drug
discovery. Moreover, the use of equal weight from the original docking scoring and the
R-NiB scoring improves the yield in most cases.

Keywords: molecular docking, docking rescoring, negative image-based rescoring (R-NiB), benchmarking,
consensus scoring

INTRODUCTION

Molecular docking is an in silico technique that samples potential binding poses of ligands flexibly
against the ligand-binding cavities of receptor protein structures. This ability to mimic ligand-
receptor recognition at the atom level can yield valuable insight on complex and experimentally
difficult to approach phenomena such as enzyme reactionmechanics or ligand-receptor association
especially when it is coupled to atomistic simulations.

The main interest for docking comes from its use in computer-aided drug discovery and
virtual screening experiments that aim to discover novel drug compounds from vast compound
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libraries—a process that ideally lowers the amount of costly
experimental testing. On the one hand, the docking algorithms
reproduce experimentally verified ligand binding geometries
with remarkable accuracy (Kitchen et al., 2004; Warren et al.,
2006; Kolb and Irwin, 2009; Meng et al., 2011). On the
other hand, anybody who has used docking on routine
basis can confirm that these successes are case-specific and
the methodology often fails to produce sufficient enrichment
(Ferrara et al., 2004; Mohan et al., 2005; Sousa et al., 2006;
McGaughey et al., 2007; Plewczynski et al., 2011). In part, this
hit-or-miss nature of docking is caused by the lack of relevant
3D structure data on the target proteins (Schapira et al., 2003)
or inadequacies of the ligand conformer sampling (Sastry et al.,
2013), but the other fundamental problem is the failure in scoring
the sampled docking solutions (Wang et al., 2003; Warren et al.,
2006; Plewczynski et al., 2011; Pagadala et al., 2017).

In other words, although the conformational space of the
ligand binding might be sampled exhaustively, the best binding
poses or the most potent compounds are not necessarily put
to the top of the ranking lists by the default scoring functions
(Wang et al., 2003; Ferrara et al., 2004; Cross et al., 2009;
Plewczynski et al., 2011). An experienced researcher might be
able to select the best pose out of 10 different conformers, but
the situation becomes quickly unattainable when dealing with
hundreds or thousands of compounds. The docking scoring
functions put a certain weight on the specific ligand-receptor
interactions such as hydrogen bonding, halogen bonding and π-
π stacking but also the internal energies of the ligand conformers
are considered. Despite the undeniable merits, these binding
favorability or energy assessments do not always work (Chen
et al., 2006; Cross et al., 2009), which means that the best pose
or, more relevantly, the active compound is frequently ignored in
the docking screening.

The docking solutions can be rescored after the fact to
increase the yield. This is done by reassessing the favorability
of the solutions utilizing a set of empirical binding descriptors
that put weight on different binding characteristics. In the
consensus scoring, a set of different scoring functions are
employed and together they produce better enrichment than
any of the functions accomplish alone (Charifson et al., 1999;
Clark et al., 2002; Oda et al., 2006). Tasking more than one
scoring methodology should in theory cover all the bases and,
furthermore, a mix of dissimilar functions should facilitate the
discovery of active hits from vast compound pools. The inherent
problem with the consensus rescoring, however, is that the
optimal settings are specific for each target. Accordingly, their
successful use with novel targets lacking benchmark test sets is
difficult to ascertain beforehand (Cheng et al., 2009).

In addition, performance enhancement might be produced
by docking the ligands with different software to improve the
sampling (Houston and Walkinshaw, 2013) or by optimizing
and estimating the binding poses using the Poisson–Boltzmann
or generalized Born and surface area continuum solvation
(MM/PBSA or MM/GBSA), free energy perturbation (FEP)
or solvated interaction energy (SIE) calculations (Bash et al.,
1987; Kollman et al., 2000; Onufriev et al., 2004; Naïm et al.,
2007; Guimarães and Cardozo, 2008; Sulea et al., 2011, 2012;

Genheden and Ryde, 2015; Virtanen et al., 2015; Juvonen et al.,
2016). Because these post-processing steps require a lot of
extra computing, it limits their applicability in the real-world
screening studies involving potentially hundreds of thousands of
compounds. In addition, the success-rates of the post-processing
methods vary on a case-by-case basis (Virtanen et al., 2015) and,
beforehand, there is no way to tell whether the extra investment
will pay out. In short, there is a genuine need for reliable rescoring
methodologies that do not require a lot of extra computing
resources or experiment-based tinkering.

The aim of the study was to demonstrate that by focusing
solely on the shape/electrostatics complementarity between the
docked ligand poses and the receptor protein’s ligand-binding
site, the yield of the small-molecule docking could be improved.

In the negative image-based (NIB) screening (Virtanen and
Pentikäinen, 2010; Niinivehmas et al., 2011, 2015), a negative
image or a NIB model is generated by inverting the shape
and electrostatics of a ligand-binding cavity using a specifically
tailored software PANTHER (Niinivehmas et al., 2015). The
resulting NIB model is used by similarity comparison algorithms
such as ShaEP (Vainio et al., 2009) the same way as ligand 3D
structures extracted from the X-ray crystal structures are used
in the ligand-based screening. The ligand 3D conformers, used
in the similarity comparison, are generated from scratch using
software such as BALLOON (Vainio and Johnson, 2007); but,
notably, the conformers could also originate from molecular
docking sampling.

To explore this idea further and to improve docking
enrichment, the NIB screening methodology was repurposed
for rescoring multiple explicit docking solutions output by
the docking software PLANTS (Korb et al., 2009). The main
difference between the establishedNIBmethodology and the here
introduced NIB rescoring or the R-NiB (Figure 1) is that it is
performed as is. The coordinates of the cavity-based negative
image and the docked ligand conformers are not superimposed
or optimized for a better match. The rescoring was performed
with 11 target proteins ranging from nuclear receptors such
as progesterone receptor (PR) to neuraminidase (NEU) using
established virtual screening benchmark libraries containing
both known active and inactive decoy ligands (Huang et al., 2006;
Mysinger et al., 2012). Altogether 22 different benchmark sets
were used to validate the new methodology (Table 1).

As a whole, the results show that the R-NiB producesmoderate
or excellent early enrichment improvements using the basic
settings in the NIB model generation and similarity screening. In
most cases, the early enrichment of the docking can be improved
also by consensus scoring, in which the original PLANTS docking
scoring and the PANTHER/ShaEP-based R-NiB scoring are given
an optimal weight ratio. What is more, the rescoring indicates
that the hit rate is typically enhanced even when both of these
scoring functions are bluntly given equal (50/50%) weight in the
consensus scoring.

In summary, the success of the R-NiB approach in sorting out
the active ligands from the inactive molecules is directly related
to the fact that the shape/electrostatics complementarity between
the ligand and the receptor is an essential part of the complex
formation.
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FIGURE 1 | Negative image-based rescoring workflow. Firstly, the protein 3D structure (neuraminidase; gray cartoon; PDB: 1B9V) (Finley et al., 1999) and ligand 3D
structures for molecular docking are prepared (e.g., protonation). Secondly, the ligand-binding cavity is outlined using a detection radius for docking (yellow
transparent circle above) and NIB model generation (yellow transparent surface below). If there exist a bound ligand in the PDB entry (BANA206 as a stick model with
cyan backbone in the close-up below), it can be used in defining the cavity center and/or dimensions. Thirdly, the docking of ligands into the cavity is performed using
a standard docking software and multiple docking solutions or conformers are outputted for rescoring. Fourthly, a cavity-based NIB model, composed of explicit
cavity points (white neutral; blue positive; red negative) is generated with PANTHER (Niinivehmas et al., 2015) for the same cavity. Fifthly, the NIB model
shape/electrostatics (transparent surface with charge potential) are compared directly against the docking solutions using a similarity comparison algorithm ShaEP
(Vainio et al., 2009) without geometry optimization. Those solutions matching the cavity information are given higher scores than the ones that differ.

MATERIALS AND METHODS

Ligand Set Preparation
The ligand sets, including the active and inactive decoy
compounds, were acquired from the DUD (A Directory of
Useful Decoys) (Huang et al., 2006) and DUD-E (A Database
of Useful (Docking) Decoys -Enhanced) (Mysinger et al., 2012)
databases for the target proteins (Table 1). The initial 3D
coordinates for the DUD ligands were converted to the SMILES
(Simplified Molecular-Input Line-Entry System) format using
STRUCTCONVERT in MAESTRO 2017-1 (Schrödinger, LLC,
New York, NY, USA, 2017). LIGPREP in MAESTRO was used
to generate OPLS3 charges and tautomeric states for both the
DUD and DUD-E ligand sets at pH 7.4. Next, both of the
ligand sets were converted to the SYBYL MOL2 format using
MOL2CONVERT inMAESTRO. The back-and-forth conversion
between MOL2 and SMILES formats was done with the DUD
ligands to avoid potential bias of the original 3D conformations
for the molecular docking (Zoete et al., 2016).

Protein Preparation
The 3D structures of the target proteins, which were used in the
molecular docking and the NIB model generation, were acquired

from the Protein Data Bank (PDB) (Berman et al., 2000; Burley
et al., 2017). All of the used PDB entries are listed in Table 1. The
benchmarking was done mainly using the PDB entries listed for
the DUD and DUD-E datasets and, thus, both the docking and
rescoring could work better or worse using different structures.
The necessary PDB entry editing (Figure 1) such as the removal
of bound ligands from the active sites was done in the BODIL
Molecular Modeling Environment (Lehtonen et al., 2004). The
protein residues were protonated with the default settings in
REDUCE3.24 (Word et al., 1999). The X-ray crystal structure
waters were left in the deprotonated state for NIBmodel building.

Molecular Docking
The molecular docking of the DUD and DUD-E compound sets
(Figure 1) into the ligand-binding sites of the target proteins was
performed using PLANTS1.2 (Korb et al., 2009). The default
settings were used in the docking screenings. Accordingly, the
initial docking scoring was performed with the ChemPLP that
combines the PLP (Piecewise Linear Potential) with GOLD’s
Chemscore (Korb et al., 2009). The centroid coordinates of
ligands bound in the target protein structures were used as the
binding site centers in the docking. A relatively large binding
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TABLE 1 | Target protein 3D structures used in the virtual screening.

Target proteina DUD DUD-E

PDB code Resolution (Å) Ligsb Decsc PDB code Resolution (Å) Ligsb Decsb

ER-agonist 1L2I 1.95 67 2,352 – – – –

ER-antagonist 3ERT 1.9 39 1,394 – – – –

ER-mixedc – – 106 3,746 1SJ0 1.9 383 20,663

AR 2AO6 1.89 74 2,628 2AM9 1.64 269 14,343

GR 1M2Z 2.5 78 2,797 3BQD 2.5 258 14,986

MR 2AA2 1.95 15 535 2AA2 1.95 94 5,146

PPARγ 1FM9 2.1 81 2,906 2GTK 2.1 484 25,256

RXRα 1MVC 1.9 20 706 1MV9 1.9 131 6,935

COX2 1CX2 3.0 348 12,462 3LN1 2.4 435 23,136

PDE5 1XP0 1.79 51 1,808 1UDT 2.3 398 27,520

1UDTd 2.3 – – 1XOZd 1.37 – –

PR 1SR7 1.46 27 967 3KBA 2.0 293 15,642

NEU – – – – 1B9V 2.35 98 6,197

CYP3A4 – – – – 3NXU 2.0 170 11,797

aAR, androgen receptor; COX2, cyclo-oxygenase 2; CYP3A4, cytochrome P450 3A4; ER, estrogen receptor alpha; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; NEU,

neuraminidase; PPARγ, peroxisome proliferator activated receptor gamma; PR, progesterone receptor; RXRα, retinoid X receptor alpha; PDE5, phosphodiesterase type 5.

ER-agonist, ER-antagonist and ER-mixed refer to ligand sets containing ER-specific agonists, antagonists or both, respectively.
bNumber of active ligands (Ligs) and decoy (Decs) molecules after preprocessing with LIGPREP.
c In the DUD database, ER agonists and antagonists are separated into two separate datasets, but in the case of the DUD-E the ligands are mixed. For comparison, the ER datasets in

the DUD were also mixed.
dUsed in the NIB model generation.

site radius of 10 Å was generally used in the docking. The radius
was slightly reduced for glucocorticoid receptor (GR; 9 Å) based
on the size of the ligand-binding site. Altogether 10 docking
solutions were output for each compound for the purpose of
NIB rescoring. The idea is to provide enough different docking
solutions for the rescoring.

Negative Image-Based Model Generation
The negative images or the NIB models of the target proteins’
ligand-binding cavities (Figure 1) were prepared using the
default settings in PANTHER0.18.15 (Niinivehmas et al., 2015).
The centroids used in the NIB model generation were based on
the centroid coordinates of the ligand compounds bound in the
original protein 3D structures the same way as was done with
the docking. The NIB models were prepared in three different
ways: (1) the NIB model size and dimensions were adjusted
using the box radius option (6–10 Å); (2) the cavity size was
limited to a certain radius (1.5–3.0 Å) from the bound ligand in
the original structure using the ligand distance limit option; (3)
when available and producing better results, a model (referred
as PANTHER model) was taken also from a prior NIB screening
study (Niinivehmas et al., 2015). The NIB model coordinates for
all new NIB models are included in the Supplementary Material.

Negative Image-Based Rescoring
The NIB rescoring (or the R-NiB; Figure 1) of the original
docking solutions was performed using ShaEP1.0.7.915 (Vainio
et al., 2009). The shape and electrostatics of each docking
solution was compared directly against the template NIB models

without superimposing or optimizing their coordinates (–
noOptimization option). Both the shape and electrostatics were
given equal amount of weight (ESP= 0.5) in the ShaEP similarity
scoring (default option). Because altogether 10 conformers were
outputted for each docked compound, even those solutions
given lower scores by PLANTS (Korb et al., 2009) could be
later considered in the PANTHER/ShaEP-based (Virtanen and
Pentikäinen, 2010; Niinivehmas et al., 2011, 2015) NIB rescoring.

Rescoring With Alternative Methodologies
The docking poses initially scored by PLANTS using ChemPLP
scoring function were also rescored using an alternative scoring
function PLP in PLANTS. Otherwise, default options were
used in the PLANTS-based rescoring. In addition, the docking
solutions were also re-ranked using the default settings of
XSCORE1.2.1 (Wang et al., 2002) for comparison. The XSCORE
has three empirical scoring functions HPSCORE, HMSCORE
and HSSCORE that can be fine-tuned on case-by-case basis
to improve the docking yield. None of the scoring functions
produced markedly better early enrichment separately for the
docking results at least without special adjustments; thus, the
software’s default option of using X-CSCORE consensus scoring
with all three functions was utilized.

Consensus Scoring
The R-NiB relies heavily on the initial success of the docking
software used to generate the multiple docking poses for the
rescoring phase, because no coordinate optimization or extra
sampling is performed (Figure 1). Essentially, this means that
the used PLANTS scoring is intrinsically influencing the R-NiB
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yield in this study. The consensus scoring takes this aspect further
by directly incorporating the initial ChemPLP docking scoring
with the R-NiB scoring. All possible combinations, in which both
PLANTS- and ShaEP-based scoring were given different weights,
were considered with 5% interval and those consensus scoring
settings producing the highest early enrichment are discussed.
The scores for each docked conformer outputted by PLANTS and
ShaEP were normalized to fit into the scale from 1 to 0 and then
combined for a consensus score.

Table and Figure Preparation
Figures 1, 4, 5 were prepared using BODIL (Lehtonen et al.,
2004), MOLSCRIPT2.1.2 (Kraulis, 1991), RASTER3D3.0.2
(Merritt and Murphy, 1994), and VMD1.9.2 (Humphrey et al.,
1996). The area under curve (AUC) values (Tables 2, 3), the
early enrichment values (Tables 4, 5) were calculated with
ROCKER0.1.4 (Lätti et al., 2016). The enrichment factors were
calculated as true positive rate when 1 or 5% of the decoy
molecules have been found (EFn%DEC; see equation below)
in order to make future comparison reliable against other
methodologies (Lätti et al., 2016).

EFn%DEC =
Ligsn%DEC

Ligsall
× 100 (1)

In Equation (1), Ligsn%DEC is the number of ligands ranked
higher than n % of the decoys whereas Ligsall is the total number
of all ligands in the dataset. The receiver operating characteristics
(ROC) curves were plotted using ROCKER with the semi-log10
scale (only x axis logarithmic) in Figures 2, 3 to highlight the
very early enrichment of the actives. The standard deviation for
the AUC is acquired in ROCKER utilizing the derived error for
the Wilcoxon statistic (Hanley and McNeil, 1982). The Wilcoxon
statistic estimates the probability of ranking a random ligand
higher than a random decoy, which is equivalent to the value of
AUC; thus, making the errors also equal.

RESULTS

Negative Image-Based Rescoring of
Docking Solutions
The aim of the negative image-based rescoring or R-NiB
(Figure 1) is to rescore existing molecular docking solutions
and, by doing so, enrich active hits from a vast pool of
compounds. The enrichment is achieved by comparing the
shape/electrostatics similarity between the ligand conformers and
the negative image of the target protein’s ligand-binding cavity.
The established NIB methodology (Virtanen and Pentikäinen,
2010; Niinivehmas et al., 2011, 2015) is employed in building
the cavity-based NIB models of the target proteins’ ligand-
binding sites (PANTHER) and in comparing them against each
docking solution (ShaEP). The starting point of the R-NiB
workflow (Figure 1) is that the ligands are docked into the same
target protein’s cavity using a standard docking algorithm and,
preferably, multiple solutions that roughly fit into the cavity are
outputted for the rescoring.

Molecular Docking Produces Moderate or
High Enrichment in the Benchmarking
The AUC and early enrichment values (Tables 2, 3) show that
the molecular docking, performed with PLANTS (Korb et al.,
2009), worked relatively well with both the DUD and DUD-E
datasets (Huang et al., 2006; Mysinger et al., 2012). With the
DUD, the AUC values ranged from 0.60 to 0.95 indicating either
moderate or substantial enrichment of actives with a majority
of the targets (Tables 3). Markedly, the docking for the estrogen
receptor alpha agonists (ER-agonist; AUC = 0.81), PR (AUC =

0.63) and the peroxisome proliferator activated receptor gamma
(PPARγ; AUC = 0.95) worked so well that the AUC values
were not improved by the R-NiB (Table 2). A side note, the
DUD sets are small, containing 15–348 actives (Table 1) and,
accordingly, a difference of a few active ligands in the ranking can
sometimes have disproportionate effects on the AUC values. The
docking worked also with the more demanding DUD-E ligand
sets, containing a lot more of actives and decoys (Table 1), as the
AUC values were typically well above 0.50 (Table 3). The AUC
values could not be improved with the ER-mixed (AUC = 0.74),
PPARγ (AUC = 0.85), phosphodiesterase type 5 (PDE5; AUC =

0.78) and cytochrome P450 3A4 (CYP3A4; AUC= 0.61) DUD-E
sets using the R-NiB (Table 3).

Instead of the AUC values, it is often more practical to
concentrate on the early enrichment when estimating the success
of the virtual screening. That is to say, paradoxically, a high AUC
value does not necessarily guarantee that the very top results
contain active hits despite the fact that it is a good metric for
estimating the overall success-rate of the screening. By large, the
docking struggled in ranking the actives to the very top of the list,
when inspecting the EF1%DEC or EF5%DEC values with the DUD
and DUD-E datasets (Tables 4, 5). Accordingly, the very early
enrichment or EF1%DEC was improved by the R-NiB with all of
the DUD sets (Table 4). With the DUD-E, the R-NiB could not
produce improvement for the ER-mixed (EF1%DEC = 21.7%),
PPARγ (EF1%DEC = 24.2%), retinoid X receptor alpha (RXRα;
EF1%DEC = 11.5%), cyclo-oxygenase 2 (COX2; EF1%DEC =

5.7%), and PDE5 (EF1%DEC = 11.3%; Table 5), however, in
the remaining six datasets the early enrichment was improved
notably (discussed below). The ROC curves, which were plotted
using the semi-log10 scale to highlight the very early enrichment,
corroborate the numerical trends for both of the benchmark
datasets (Figures 2, 3).

Negative Image Generation for Rescoring
Is a Straightforward Process
The NIB model has to contain key features of the target
protein’s ligand-binding cavity in order to produce enrichment
by the R-NiB (Figure 1). Firstly, the shape and size of the
model should be limited to the cavity area that facilitates the
ligand binding. Secondly, if the cavity contains vital hydrogen
bond acceptor or donor groups, the NIB model must reflect
those features in its charge properties. Each data point in
the NIB model can be tested and adjusted iteratively using
validated ligand sets that include both active and inactive
compounds. This sort of “trial-and-error” refinement is generally

Frontiers in Pharmacology | www.frontiersin.org March 2018 | Volume 9 | Article 260368

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Kurkinen et al. Negative Image-Based Docking Rescoring

TABLE 2 | The AUC values for the DUD datasets.

Docking Rescoring

Target protein PLANTS ChemPLP R-NiB: Ligand distancea R-NiB: Box radiusb R-NiB: prior modelsc XSCORE PLANTS PLP

ER-agonist 0.81 ± 0.03 0.78 ± 0.03 0.76 ± 0.03 0.79 ± 0.03 0.82 ± 0.03 0.78 ± 0.03

ER-antagonist 0.81 ± 0.04 0.85 ± 0.04 0.77 ± 0.04 0.82 ± 0.04 0.71 ± 0.05 0.83 ± 0.04

ER-mixed 0.64 ± 0.03 0.77 ± 0.03 0.70 ± 0.03 0.74 ± 0.03 0.66 ± 0.03 0.61 ± 0.03

AR 0.80 ± 0.03 0.84 ± 0.03 0.81 ± 0.03 – 0.79 ± 0.03 0.78 ± 0.03

GR 0.60 ± 0.03 0.80 ± 0.03 0.83 ± 0.03 0.84 ± 0.03 0.75 ± 0.03 0.53 ± 0.03

MR 0.80 ± 0.07 0.93 ± 0.05 0.91 ± 0.05 0.82 ± 0.07 0.92 ± 0.05 0.78 ± 0.07

PPARγ 0.95 ± 0.02 0.92 ± 0.02 0.87 ± 0.03 – 0.81 ± 0.03 0.94 ± 0.02

PR 0.63 ± 0.06 0.52 ± 0.06 0.50 ± 0.06 0.50 ± 0.06 0.51 ± 0.06 0.58 ± 0.06

RXRα 0.78 ± 0.06 0.89 ± 0.05 0.84 ± 0.06 0.90 ± 0.05 0.97 ± 0.02 0.76 ± 0.06

COX2 0.81 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 0.65 ± 0.02 0.85 ± 0.01

PDE5 0.71 ± 0.04 0.67 ± 0.04 0.67 ± 0.04 0.72 ± 0.04 0.54 ± 0.04 0.66 ± 0.04

If the rescoring produced higher AUC value in comparison to the initial docking (no overlapping standard error ranges), those numbers are shown in bold.
aThe ligand distance limit used in PANTHER varied between the targets due to the size/shape differences of the binding cavities and the screened ligand sets. Limits included 1.5 Å (ER,

AR, MR, PPARγ, PR RXRα, and COX2), 2.0 Å (GR), and 3.0 Å (PDE5).
bThe box radius varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. The radiuses included 6.0 Å (GR, PR and COX2), 7.0 Å

(ER-mixed, MR and RXRα), and 8.0 Å (ER-agonist, ER-antagonist, AR, PPARγ and PDE5).
cThe previously published PANTHER models, optimized for regular NIB screening, were taken from a prior study (Niinivehmas et al., 2015).

TABLE 3 | The AUC values for the DUD-E datasets.

Docking Rescoring

Target protein PLANTS ChemPLP R-NiB: Ligand distancea R-NiB: Box radiusb R-NiB: Prior modelsc XSCORE PLANTS PLP

ER-mixed 0.74 ± 0.01 0.66 ± 0.02 0.65 ± 0.02 – 0.71 ± 0.01 0.70 ± 0.02

AR 0.54 ± 0.02 0.76 ± 0.02 0.73 ± 0.02 0.75 ± 0.02 0.65 ± 0.02 0.53 ± 0.02

GR 0.54 ± 0.02 0.74 ± 0.02 0.76 ± 0.02 0.70 ± 0.02 0.69 ± 0.02 0.51 ± 0.02

MR 0.55 ± 0.03 0.74 ± 0.03 0.76 ± 0.03 0.68 ± 0.03 0.69 ± 0.03 0.53 ± 0.03

PPARγ 0.85 ± 0.01 0.77 ± 0.01 0.75 ± 0.01 – 0.66 ± 0.01 0.84 ± 0.01

PR 0.63 ± 0.02 0.74 ± 0.02 0.75 ± 0.02 0.63 ± 0.02 0.67 ± 0.02 0.61 ± 0.02

RXRα 0.77 ± 0.02 0.83 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.85 ± 0.02 0.70 ± 0.03

COX2 0.66 ± 0.01 0.75 ± 0.01 0.65 ± 0.01 – 0.62 ± 0.01 0.67 ± 0.01

PDE5 0.78 ± 0.01 0.72 ± 0.02 0.70 ± 0.02 – 0.58 ± 0.02 0.74 ± 0.01

NEU 0.85 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 – 0.68 ± 0.03 0.56 ± 0.03

CYP3A4 0.61 ± 0.02 0.60 ± 0.02 0.60 ± 0.02 – 0.53 ± 0.02 0.60 ± 0.02

If the rescoring produced higher AUC value in comparison to the initial docking (no overlapping standard error ranges), those numbers are shown in bold.
aThe ligand distance limit used in PANTHER varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. Limits included 1.5 Å (ER-

mixed, AR, PPARγ, PR, and COX2), 2.0 Å (MR, RXRα, NEU, PDE5, and CYP3A4) and 3.0 Å (GR).
bThe box radius varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. The radiuses included 6.0 Å (AR, GR, MR, COX2, NEU,

and PR), 7.0 Å (PDE5, RXRα, and CYP3A4) and 9.0 Å (PPARγ) and 10.0 Å (ER-mixed).
cThe previously published PANTHER models, optimized for regular NIB screening, were taken from a prior study (Niinivehmas et al., 2015).

not feasible and, accordingly, the R-NiB methodology was
applied here using default easy-to-replicate PANTHER/ShaEP
settings (Vainio et al., 2009; Niinivehmas et al., 2015).
Effective models were acquired by simply adjusting the cavity
detection box radius or by limiting the cavity dimensions
with the ligand distance limit in PANTHER (Niinivehmas
et al., 2015). The model generation relied solely on the
PDB entry used also in the docking and generally the first-
tried basic settings were enough to improve the enrichment
(Tables 2–5; Figures 2, 3). For comparison, the rescoring was
also performed with prior PANTHER models (Tables 2–5)

optimized for the standard NIB screening (Niinivehmas et al.,
2015).

Negative Image-Based Rescoring
Improves the Early Enrichment With Most
Targets
The R-NiB (Figure 1) does not rely on superimposing or
geometry optimization prior to the similarity comparison of the
docking solutions against the cavity-based NIB models. In a
nutshell, either the docked ligand poses outputted by the docking
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TABLE 4 | The enrichment given as true positive rates for the DUD datasets.

Docking Rescoring

Target protein EF %DEC PLANTS ChemPLP R-NiB: ligand distancea R-NiB: box radiusb R-NiB: prior modelsc XSCORE PLANTS PLP

ER-agonist 1% 17.9 37.3 31.3 23.9 19.4 10.4

5% 44.8 52.2 58.2 59.7 52.2 26.9

ER-antagonist 1% 15.4 28.2 7.7 12.8 15.4 12.8

5% 33.3 43.6 25.6 38.5 25.6 35.9

ER-mixed 1% 0.0 11.3 1.9 2.8 2.8 0.0

5% 20.8 23.6 5.7 8.5 6.6 7.5

AR 1% 17.6 27.0 12.2 – 9.5 14.9

5% 40.5 45.9 45.9 – 31.1 39.2

GR 1% 6.4 11.5 16.7 12.8 29.5 3.8

5% 15.4 28.2 28.2 29.5 50.0 14.1

MR 1% 26.7 33.3 13.3 0.0 0.0 33.3

5% 60.0 73.3 40.0 26.7 40.0 60.0

PPARγ 1% 69.1 79.0 22.2 – 21.0 66.7

5% 84.0 86.4 65.4 – 48.1 85.2

PR 1% 3.7 33.3 33.3 29.6 18.5 3.7

5% 11.1 40.7 40.7 40.7 22.2 7.4

RXRα 1% 5.0 35.0 20.0 20.0 70.0 0.0

5% 30.0 80.0 45.0 80.0 85.0 30.0

COX2 1% 13.5 43.7 40.5 62.6 9.2 20.1

5% 35.3 70.4 64.1 83.0 20.1 44.8

PDE5 1% 13.7 31.4 31.4 13.7 3.9 9.8

5% 25.5 37.3 39.2 23.5 5.9 25.5

Those EF%DEC values that are at least 1.5-fold compared to the initial docking are shown in bold.
aThe ligand distance limit used in PANTHER varied between the targets due to the size/shape differences of the binding cavities and the screened ligand sets. Limits included 1.5 Å

(ER-agonist, ER-mixed, AR, MR, PPARγ, RXRα, and COX2) and 2.0 Å (GR and PR), 3.0 Å (ER-antagonist) and 4.0 Å (PDE5).
bThe box radius varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. The radiuses included 6.0 Å (MR and COX2), 7.0 Å (AR

and PR) and 8.0 Å (ER’s, GR, PPARγ and RXRα) and 9.0 Å (PDE5).
c The previously published PANTHER models, optimized for regular NIB screening, were taken from a prior study (Niinivehmas et al., 2015).

software match the cavity-based NIB models or they do not—
the similarity score (from 1 to 0) of ShaEP reflects this reality.
Therefore, it is crucial that the initial docking has sampled the
ligand conformers thoroughly and produces “correct” ligand
poses that can be discovered by the R-NiB. Understandably, the
rescoring cannot enrich active compounds, if they are docked
completely outside the cavity space that was used in the NIB
model generation.

With the DUD datasets (Huang et al., 2006), the AUC values
from docking were improved somewhat or greatly with most
of the target proteins using the R-NiB (Table 2). The AUC
improvement was sizeable with the GR (0.60 vs. 0.84), RXRα

(0.78 vs. 0.90), mineralocorticoid receptor (MR; 0.80 vs. 0.93)
and COX2 (0.81 vs. 0.95) to name a few examples (Table 2).
Moreover, the R-NiB could improve the AUC values substantially
even with the more demanding DUD-E sets (Mysinger et al.,
2012) where the docking scoring started to falter (Table 3). This
positive effect in favor of the R-NiB was seen with a multitude
of target proteins, including the androgen receptor (AR; 0.54
vs. 0.76), GR (0.54 vs. 0.74), MR, (0.55 vs. 0.74), PR (0.63 vs.
0.74), RXRα (0.77 vs. 0.83), and COX2 (0.66 vs. 0.75). The AUC
values worsened or improved marginally for the CYP3A4 (0.61

vs. 0.60) and NEU (0.85 vs. 0.89), respectively, but in these
cases the results remained within the margin of error (Table 3).
The R-NiB clearly could not improve the AUC values for the
PDE5, PPARγ and ER-mixed with the DUD-E datasets (Table 3).
The PDE5 and ER-mixed datasets are particularly demanding,
because they both contain two distinct ligand groups for which
one cannot build a single satisfactory NIB model (Niinivehmas
et al., 2011).

As stated above, it is more important that the virtual screening
produces the highest possible early enrichment rather than the
best AUC value. To this end, the R-NiB was able to improve
the early enrichment somewhat or substantially with most of
the target proteins included in the DUD datasets (Table 4).
The EF1%DEC improvement ranged from 1.9 to 49.1% between
the different targets. On average the EF1%DEC or EF5%DEC

improvement was 3.3-fold or 1.8-fold, respectively, but, alas,
the EF1%DEC of PR improved 9.0-fold using the R-NiB. A
close inspection of the semi-logarithmic ROC curves (Figure 2)
indicates that the very early enrichment produced by the R-NiB
was always as good as or better than that of the original docking
scoring (well above the random rate; Figure 2). This suggests that
the rescoring generally has a positive effect for the yield with the
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TABLE 5 | The enrichment given as true positive rates for the DUD-E datasets.

Docking Rescoring

Target protein EF%DEC PLANTS ChemPLP R-NiB: ligand distancea R-NiB: box radiusb R-NIB: prior modelsc XSCORE PLANTS PLP

ER-mixed 1% 21.7 18.3 5.5 – 6.3 12.8

5% 36.6 32.6 20.1 – 24.8 28.7

AR 1% 1.5 13.0 5.6 8.9 1.9 0.4

5% 7.1 23.0 15.2 22.3 7.8 5.2

GR 1% 1.2 4.7 3.5 5.8 1.2 1.2

5% 12.0 22.5 12.8 17.4 10.5 10.1

MR 1% 3.2 11.7 6.4 3.2 1.1 1.1

5% 19.1 25.5 19.1 18.1 8.5 11.7

PPARγ 1% 24.2 4.5 10.3 – 5.0 19.6

5% 57.0 24.4 32.4 – 13.8 48.3

PR 1% 2.0 4.4 3.8 3.8 2.0 2.4

5% 17.1 17.1 11.6 17.4 11.6 15.0

RXRα 1% 11.5 6.9 1.5 10.7 15.3 1.5

5% 37.4 25.2 12.2 23.9 45.8 19.8

COX2 1% 5.7 2.3 0.5 – 2.1 9.9

5% 21.6 19.1 4.1 – 6.4 25.1

PDE5 1% 11.3 10.6 3.8 – 1.5 8.8

5% 28.1 25.9 14.1 – 7.0 24.4

NEU 1% 4.1 13.3 6.1 – 1.0 0.0

5% 32.7 42.9 35.7 – 4.1 4.1

CYP3A4 1% 7.1 7.6 5.3 – 2.4 6.5

5% 12.9 18.8 15.3 – 6.5 13.5

Those EF%DEC values that are at least 1.5-fold compared to the initial docking are shown in bold.
aThe ligand distance limit used in PANTHER varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. Limits included 1.5 Å (ER-

mixed, AR, PDE5, GR, MR, PR and COX2), 2.0 Å (RXRα, NEU and CYP3A4) and 3.0 Å (PPARγ).
bThe box radius varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. The radiuses included 6.0 Å (AR, GR, MR and NEU), 7.0

Å (RXRα, PR, PDE5 and CYP3A4), 8.0 Å (COX2), 9.0 Å (PPARγ) and 11.0 Å (ER-mixed).
cThe previously published PANTHER models, optimized for regular NIB screening, were taken from a prior study (Niinivehmas et al., 2015).

tested DUD datasets. The EF1%DEC improvement (Table 4) was
most prominent with the COX2 (13.5 vs. 62.6 %), but the R-
NiB worked exceptionally well also based on the EF5%DEC for
example with the RXRα (30.0 vs. 80.0%), COX2 (35.3 vs. 83.0%),
PDE5 (25.5 vs. 39.2%) and ER-agonist (44.8 vs. 59.7%).

Based on the early enrichment values (Table 4) and the plotted
ROC curves (Figure 3), the overall performance of the R-NiB
with the DUD-E dataset showed similar trends as with the DUD
(Table 3; Figure 2). The improvement over the original docking
was on average 2.5-fold for the EF1%DEC (Table 5) despite the
fact that the DUD-E ligand sets are much larger than the smaller
but better curated DUD datasets (Table 1). For example, the
EF1%DEC improvement of 2.1% (from 2.0 to 4.1%) with PR
might seem minor at the first glance, but in terms of absolute
compound numbers it is a marked uptick from the discovery
of six to 13 actives over the original docking. The EF1%DEC

(Table 5) was improved by the R-NiB substantially with the AR
(1.5 vs. 13.0%), MR (3.2 vs. 11.7%) and NEU (4.1 vs. 13.3%).
Although in the case of the RXRα the EF1%DEC values suggested
that the docking scoring worked better than the R-NiB (Table 5),
a close inspection of the semi-logarithmic ROC plot shows that
the rescoring actually produced higher very early enrichment
(EF0.5%DEC 6.1 vs. 3.8%; Figure 3). The EF5%DEC was improved

on average 1.3-fold for these targets (Table 5) and, for example,
the GR (12.0 vs. 22.5%) received a 1.9-fold improvement.

Negative Image-Based Rescoring Is Both
Ultrafast and Efficient
For the purpose of comparison, the original docking solutions
were also re-evaluated using empirical rescoring algorithm
XSCORE (Wang et al., 2002) and the PLP scoring function in
PLANTS. Target-specific settings for ligand-receptor interactions
such as hydrogen bonding or hydrophobicity are considered via
multivariate analysis in XSCORE. Although the R-NiB generally
produced better enrichment than XSCORE, the latter algorithm
excelled with both the DUD and DUD-E datasets for the RXRα

(Tables 2–5). The rescoring with the PLP function in PLANTS
could only in some cases (e.g., COX2) improve the original
ChemPLP-based ranking and, generally, the R-NiB produced
substantially better results (Tables 2–5).

The use of non-default XSCORE settings could have produced
higher early enrichment; however, similar fine-tuning of the
R-NiB models or even PLANTS settings could likely have
improved the enrichment as well. By adjusting the assortment
of the cavity charge points capable of hydrogen bonding
and/or lowering/increasing the weight of the electrostatics in
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FIGURE 2 | The semi-logarithmic receiver operating characteristics plots for the docking and negative image-based rescoring with the DUD dataset. Only those
R-NiB results with the highest early enrichment were plotted (EF1%DEC in Table 5). The red line shows the original docking enrichment by PLANTS, the blue line gives
the result after PANTHER/ShaEP-based rescoring, and the black line gives the result from consensus scoring where both of them are given equal weight (50/50%).
The dashed line outlines the random selection (AUC = 0.50). The semi-log10 scale is used only for the x axis to highlight the very early enrichment or lack thereof.

the similarity screening generally improves the enrichment. For
example, in our test runs the R-NiB produced notably better
early enrichment (EF1%DEC 12.2–23.0%) for the DUD set of
the AR with the box radius option when only a few cavity
points were added or removed instead of using the default
NIB model (data not shown). In fact, one could even over-
emphasize certain properties (e.g., charge) artificially in the NIB
model to produce better enrichment in the rescoring than what
the default settings would otherwise allow. Because this kind
of rescoring bias does not alter the actual ligand poses, the
preferred docking solutions remain within the realm of possible.
The situation can be entirely different, if the original docking
scoring function, affecting the ligand conformer sampling, is
altered radically; i.e., unrealistic conformations could be put
forward.

Excluding the time taken for the NIB model generation, the
actual rescoring performed with ShaEP is computationally very
inexpensive; spending only a fraction of the time required for

the initial docking. This is possible, because no ligand conformer
sampling or even geometry optimization between the NIB model
and docked ligand conformers is done. In fact, the ShaEP-based
scoring with the DUD sets for the ER-agonist (1.94 ms/comp. vs.
∼24.4 ms/comp.), PDE5 (3.81 ms/comp. vs. ∼35.7 ms/comp.),
and COX2 (2.43 ms/comp. vs. ∼54.0 ms/comp.) was at least 10
times faster than the XSCORE rescoring, which is already very
fast. Similarly, rescoring with PLP function in PLANTS took
roughly double the time with the ER-agonist (1.94 ms/comp. vs.
∼3.21 ms/comp.), PDE5 (3.81 ms/comp. vs. ∼7.15 ms/comp.),
and COX2 (2.43 ms/comp. vs. ∼4.54 ms/comp.) datasets,
when compared to the R-NiB. These benchmark numbers vary
depending on the computer set-up. Here, the software were run
using a single Intel Xeon CPU (W3670 3.2 GHz) and RAM 12
GB DDR 1333MHz in a LINUX desktop. The absolute size of the
NIB model and that of the compounds being rescored affect the
R-NiB performance; however, the differences in the wall time are
minor.
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FIGURE 3 | The semi-logarithmic receiver operating characteristics plots for the docking and negative image-based rescoring with the DUD-E dataset. Only those
R-NiB results with the highest very early enrichment were plotted (EF1%DEC in Table 6). With retinoid X receptor alpha (RXRα), the results are shown for the model
(ligand exclusion of 2.0 Å; Table 6) producing the highest very early enrichment, which is visible in the plotted curve. For interpretation see Figure 2.

DISCUSSION

The negative image-based rescoring or the R-NiB is a truly
novel way of rescoring docking solutions, because it does not
rely on the use molecular mechanics force fields, empirical or
knowledge-based descriptors in evaluating the favorability of
the ligand binding. For example, the binding free energy is not
considered in any shape or form during the rescoring. Although
the selected atom charges and van der Waals radiuses affect the
NIB model generation profoundly, the ShaEP-based rescoring
itself is a simple matter of shape/electrostatics comparison. No
force field-based sampling or even coordinate superimposition is
needed. The NIB models can be trained for optimal effect using
experimental ligand sets with the “trial-and-error” approach, but
generally this is not needed.

Applicability of Negative Image-Based
Rescoring
A NIB model can be built for virtually any target protein as long
as there is a solid idea where the potential small-molecule binding

or initial docking should happen. The target pocket can be a well-
defined and enclosed cavity (see CYP3A4 in Figures 4A–D and
GR in Figures 4E–H), an opening on the protein surface (see
NEU in Figures 4I–L), a sub-cavity, a groove or even a small
dent on the protein surface (Figure 4). The R-NiB results with
the benchmark sets confirm this hypothesis, because the method
improves docking enrichment with a variety of different target
proteins (Tables 2–5; Figures 2, 3) and, more importantly, with
physically different kind of ligand-binding cavities (Figure 4).
The enrichment values (Tables 2–4) and semi-logarithmic ROC
curves (Figures 2, 3) show that the R-NiB (Figure 1) clearly
improves the yield with amultitude of DUD-E datasets, including
the nuclear receptors AR, GR, MR, and PR, but also with entirely
different kind of target protein NEU.

Overall, the R-NiB results (Tables 2–5; Figures 2, 3) show
that a satisfactory enrichment can be acquired in most cases by

building NIB models by simply adjusting the cavity detection

radius or by limiting the cavity search area using a receptor-
bound ligand included in the PDB entry (Figures 1, 4). Having

protrusions outside this cavity space do not necessarily worsen
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FIGURE 4 | The cavity-based NIB models and the docking solutions are aligned. The protein 3D structures of (A) cytochrome P450 3A4 (CYP3A4; lime; PDB: 3NXU)
(Sevrioukova and Poulos, 2010), (E) glucocorticoid receptor (GR; white; PDB: 1M2Z) (Bledsoe et al., 2005) and (I) neuraminidase (NEU; yellow; PDB: 1B9V) (Finley
et al., 1999) are shown as opaque surfaces on the far left. With CYP3A4 and GR, the X-ray crystal structures are shown in two sections to highlight the buried
locations of their active sites (mauve opaque surfaces) at the center. The dotted lines indicate the cutting planes for the cross-sections chosen for the illustration. The
prosthetic heme group is shown as a CPK model (black backbone) for CYP3A4. With NEU, the enzyme’s active which opens directly from the protein surface, is only
partially buried and, thus, no cross-sectioning was done. The contours of the active sites of (B,C) CYP3A4, (F,G) GR, and (J,K) NEU are shown both as opaque
surfaces and finalized NIB models (transparent surfaces with charge potential) in the cross-section close-ups. The red, blue, and white dots in the NIB model indicate
the negative, positive and neutral cavity dots (or filler atoms) constituting the negative image. The docked poses of five known active compounds (stick models with
orange backbone) for (D) CYP3A4, (H) GR, and (L) NEU from PLANTS are shown stacked in the far right.

any ligand’s similarity score a lot (a marginal penalty inflicted
in the ShaEP scoring); however, it is important to understand
that those ligand segments outside the cavity will be effectively
ignored in the rescoring.

So, the emphasis of R-NiB is resolutely on the cavity’s negative
image (Figure 4) and it is recommended that unpractically
large ligands for the cavity in question are filtered away before
docking and/or rescoring. Essentially, docking sizable ligands
with a lot of rotatable bonds (e.g., PPARγ datasets) or with
particularly large cavities (e.g., PDE5) is likely to produce
errors or difficult ascertain alternative poses that cannot be
reliably rescored using the R-NiB. Despite this, in theory,
the R-NiB could be used to rescore even docked peptides
(not tested here) as long as their binding is dependent on
the shape/electrostatics complementarity with the cavity. This
narrow focus on the area designated by the NIB model for the
ligand binding makes the R-NiB (Figure 1) truly a precision
technique.

The downside of this narrow focus is that it also limits the
usability of different benchmark test sets in evaluating the R-
NiB (Figure 1). If the test set contains active compounds that
bind into completely different or only partially connected ligand-
binding sites in the target protein, the R-NiB cannot possibly rank
all those ligands high up in the list using a single NIB model
(Figure 4). Moreover, when dealing with large ligand-binding
cavities such as the active site of PDE5, where inhibitors can
have very different binding locations and poses, with very little
overlap, and/or water molecules play a big role in coordinating
the ligand binding, a single NIB model simply cannot provide
all the necessary information needed for the enrichment. One
can try to solve this issue by curating the ligand sets better,
limiting the search radius for docking or by applying multiple
NIB models to the task. Naturally, this level of focus is not
a problem when working in an actual screening project, in
which the efforts are centered on a specific binding site or
subcavity.
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Recognizing Biologically Relevant
Ligand-Binding Poses
The R-NiB is not optimizing the ligand positioning inside the
protein’s ligand-binding pocket, but merely comparing the earlier
produced docking poses against the cavity’s shape/electrostatics
(Figure 1). The highest scored poses for the active compounds
might not differ from the original docking; however, the
enrichment can improve due to lower ranking of the inactives
by the R-NiB. In fact, improvement in the enrichment values
is not an absolute guarantee that the “correct” conformers are
discovered during the rescoring. With certain ligand-binding
pockets and compounds it is very difficult to conclude what is
the actual binding pose and there might even exist more than
one valid pose (Mobley and Dill, 2009). One can attempt to
address this issue by looking at the individual docking solutions,
their exact binding interactions and, ultimately, compare them
against the experimentally validated data for the same compound
or its closely-related structural analogs (Figure 5). For example,
the R-NiB seems to be able to recognize the biologically relevant

binding pose of hydrocortisone with the MR whereas the original

docking scoring fails (Figure 5).
Because the R-NiB can only reorder the docking solutions and

if all of the ligand conformers are docked in a completely “wrong”
way or even outside the ligand-binding pocket, the “correct” pose

or ligand cannot emerge on top of the results list. This is true
for all rescoring methodologies as they mainly reshuffle existing
solutions. To a certain extent, this is the case even for force field-
based post-processing methodologies, because the initial ligand-
receptor complex is crucial for the sampling as well. In certain
cases even a partial shape/electrostatics match with the cavity-
based NIB model can give the docked compound a substantially
higher ranking and improve the enrichment. By docking the
decoys mostly outside the binding cavity, one could also improve
the enrichment as long as the actives reside at the site. Here, it was
made sure that the docked compounds and the generated NIB
models occupied roughly the same 3D space in relation to the
protein. The match between the cavity space and the outputted
docking solutions is highlighted for the CYP3A4 (Figure 4C vs.
Figure 4D), GR (Figure 4G vs. Figure 4H), and NEU (Figure 4K
vs. Figure 4L) in Figure 4.

Consensus Scoring—Finding the Balance
Between the Scoring Functions
If the initial docking produced the “correct” or at least reasonable
pose for the active compound but it was not favored by the
docking software, in theory one should be able recognize it from
the multiple outputted poses using a superior scoring method. In
reality, all of the scoring methodologies excel on some targets and

FIGURE 5 | A negative image-based rescoring example with mineralocorticoid receptor. (A) The X-ray crystal structure of mineralocorticoid receptor (MR; silver
cartoon model; PDB: 2AA2) (Bledsoe et al., 2005) and the amino acid residues (stick models) making hydrogen bonds (magenta dotted lines) with the inhibitor
aldosterone (stick model with cyan backbone) are shown. (B) The negative image or NIB model (transparent surface) of the MR active site was build using the same
PDB entry (Bledsoe et al., 2005) and the 1.5 Å ligand distance limit option in PANTHER. The red and blue dots depict the negatively and positively charged cavity
points, respectively, whereas the white dots are neutral. (C) The rescored pose (rank #13) of hydrocortisone (stick model with orange backbone) reminds closely the
experimentally verified pose of its structural analog aldosterone (A vs. C). (D) Hence, the pose of hydrocortisone given the highest score by PLANTS (rank #17),
showing a reversed pose in comparison to the aldosterone (A vs. D), is likely erroneous (D).
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TABLE 6 | The consensus scoring of the DUD Datasets.

Target protein Optimal weight Equal weight

ShaEP weighta AUC EF1%DEC 1EF1%DEC
b EF5%DEC 1EF5%DEC

b EF1%DEC 1EF1%DEC
b EF5%DEC 1EF5%DEC

b

ER-agonist 0.70 0.81 ± 0.03 (↔) 41.8 4.5 56.7 4.5 40.3 3.0 53.7 1.5

ER-antagonist 0.55 0.78 ± 0.04 (↓) 35.9 7.7 43.6 0.0 35.9 7.7 43.6 0.0

ER-mixed 0.90 0.77 ± 0.03 (↑) 11.3 0.0 26.4 2.8 7.5 −3.8 29.2 5.6

AR 0.25 0.85 ± 0.03 (↑) 32.4 5.4 47.3 1.4 28.4 1.4 50.0 4.1

GR 0.60 0.76 ± 0.03 (↑) 19.2 2.5 26.9 −1.3 19.2 2.5 25.6 −2.6

MR 1.0 0.93 ± 0.05 (↑) 33.3 0.0 73.3 0.0 33.3 0.0 73.3 0.0

PPARγ 0.35 0.93 ± 0.02 (↓) 84.0 5.0 87.7 1.3 81.5 2.5 87.7 1.3

PR 0.60 0.53 ± 0.06 (↓) 33.3 0.0 40.7 0.0 22.2 −11.1 40.7 0.0

RXRα 1.0 0.89 ± 0.05 (↑) 35.0 0.0 80.0 0.0 25.0 −10.0 80.0 0.0

COX2 0.80 0.95 ± 0.01 (↑) 65.2 2.6 82.8 −0.2 59.8 −2.8 77.6 −5.4

PDE5 0.85 0.64 ± 0.04 (↓) 31.4 0.0 43.1 3.8 23.5 −7.9 33.3 −5.9

The NIB model producing the highest EF1%DEC (Table 4) was used in the consensus scoring with PLANTS. When optimal and equal (50/50%) weight is used, all datasets produced

better EF1%DEC and EF5%DEC enrichments than the docking.
a If the ShaEP weight is 1.0, the consensus score comes entirely from ShaEP rescoring, and, vice versa, if the weight is 0, only the PLANTS score is used. The value of 0.50 corresponds

to the situation in which PLANTS docking and ShaEP rescoring effect have equal weight in the results. Both the ShaEP and PLANTS scores were normalized to fit the scale from 0 to 1

before combining them. The consensus scoring was not done to acquire the best AUC enrichment possible and, accordingly, upon a rare occasion the value could decrease (downward

arrow) instead improving it (upward arrow).
b1EF%DEC corresponds to the EF%DEC difference between the consensus scoring and the original ShaEP rescoring of the same NIB-model.

TABLE 7 | The consensus scoring of the DUD-E datasets.

Target protein Optimal weight Equal weight

ShaEP weight AUC EF 1%DEC 1EF1%DEC EF5%DEC 1EF5%DEC EF1%DEC 1EF1%DEC EF5%DEC 1EF5%DEC

ER-mixed 0.35 0.69 ± 0.02 (↓) 24.5 6.2 37.9 5.3 23.0 4.7 36.8 4.2

AR 1.0 0.76 ± 0.02 (↑) 13.0 0.0 23.0 0.0 9.3 −3.7 19.0 −4.0

GR 1.0 0.70 ± 0.02 (↑) 5.8 0.0 17.4 0.0 2.3 −3.5 16.7 −0.7

MR 1.0 0.70 ± 0.03 (↑) 11.7 0.0 25.5 0.0 9.6 −2.1 21.3 −4.2

PPARy 0.20 0.85 ± 0.01 (↔) 27.7 17.4 58.1 25.7 21.9 11.2 46.7 14.3

PR 0.55 0.72 ± 0.02 (↑) 6.8 2.4 18.4 1.3 6.8 2.4 18.1 1.3

RXRa 0.25 0.82 ± 0.02 (↑) 19.1 8.4 46.6 22.7 14.5 3.8 29.0 5.1

COX2 0.10 0.69 ± 0.01 (↑) 7.6 5.3 25.5 6.4 6.0 3.7 23.4 4.3

PDE5 0.25 0.82 ± 0.01 (↑) 17.6 7.0 36.4 10.5 13.8 3.2 31.7 5.8

NEU 0.50 0.91 ± 0.02 (↑) 16.3 3.0 52.0 9.1 16.3 3.0 52.0 9.1

CYP3A4 0.50 0.61 ± 0.02 (↔) 10.6 3.0 21.2 2.4 10.6 3.0 21.2 2.4

The NIB model producing the highest EF1%DEC (Table 5) was used in the consensus scoring with PLANTS. When optimal weight is used, all datasets produced better EF1%DEC and

EF5%DEC enrichments than the docking. In the case of equal (50/50%) weight, only the PPARy dataset produced weaker early enrichment than the original docking. See Table 6 for

further details.

ligand sets for different and sometimes even conflicting reasons.
Because both the original docking software PLANTS (Korb et al.,
2009) and the similarity comparison algorithm ShaEP (Vainio
et al., 2009) output their own scores for each ligand conformer, it
is possible to normalize and combine the results and adjust their
relative weight with different targets (Tables 6, 7).

This score weighting or consensus scoring (Tables 6, 7) was
performed to determine, if the ranking benefitted more from
either of the scoring functions and if there is a generally
applicable weight ratio that could be routinely used. Because the
emphasis in the consensus scoring was put on the EF1%DEC

improvement, the AUC values of the DUD datasets were

not necessarily improved (e.g., PPARγ; Table 2 vs. Table 6).
Similarly, with the ER-mixed, plagued also by the dualistic nature
of the included agonist/antagonist ligands, the AUC values were
not improved for the DUD-E (Table 3 vs. Table 7). Moreover,
focusing on the early enrichment indicates that the consensus
scoring worked almost without an exception better than the
docking for both the DUD (Table 4 vs. Table 6) and DUD-E
datasets (Table 5 vs. Table 7). Even a relatively tiny push by the
R-NiB (e.g., 10–35% weight from ShaEP) was enough to help the
early enrichment (Tables 6, 7).

Dealing with a completely new target protein cavity or
heterogeneous ligand set is likely to require re-weighting and
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careful optimization upon the arrival of experimental results.
Despite this, the yield was in most cases improved by simply
giving both scoring functions an equal weight in the consensus
scoring (Tables 6, 7) instead of using the default PLANTS scoring
or the R-NiB alone (Tables 4, 5). With the DUD datasets, the
equal weight consensus scoring produced always better early
enrichment than the docking, but the non-weighted R-NiB could
sometimes work slightly better (see the negative 1EF values in
Table 6; Figure 2). Similarly, the equal weighting produced better
early enrichment than docking scoring alone with the DUD-E
datasets; however, the yield for the PPARγ did not benefit from
this arrangement. Regardless, with a multitude of targets, the
non-weighted R-NiB produced higher early enrichment than the
equal weight consensus scoring (see the negative 1EF values in
Table 7; Figure 3).

Although the equal weighting in the consensus scoring
could reduce the early enrichment marginally in certain cases,
the tradeoff was that in general it produced better early
enrichment; making it a viable option for future docking
screening experiments.

CONCLUSIONS

This study demonstrates that by simply focusing on the
shape/electrostatics complementarity between the ligand and
the receptor protein’s binding cavity, the docking performance
regarding the early enrichment can be improved across the
board. The rescoring is done by generating a negative image of

the protein’s ligand-binding cavity that is then used directly in
the similarity comparison of the docking solutions (Figure 1).
The results show that the negative image-based rescoring (or
the R-NiB) can enhance the success-rate of docking screenings
to a level that facilitates effective drug discovery. Moreover,
the R-NiB can be used in unison with other docking scoring
functions in consensus scoring to improve the early enrichment
yet further.
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We previously described a structure-based fragment hopping for lead optimization

using a pre-docked fragment database, “LeadOp,” that conceptually replaced “bad”

fragments of a ligand with “good” fragments while leaving the core of the ligand intact

thus improving the compound’s activity. LeadOp was proven to optimize the query

molecules and systematically developed improved analogs for each of our example

systems. However, even with the fragment-based design from common building blocks,

it is still a challenge for synthesis. In this work, “LeadOp+R” was developed based on

198 classical chemical reactions to consider the synthetic accessibility while optimizing

leads. LeadOp+R first allows user to identify a preserved space defined by the volume

occupied by a fragment of the query molecule to be preserved. Then LeadOp+R

searches for building blocks with the same preserved space as initial reactants and

grows molecules toward the preferred receptor-ligand interactions according to reaction

rules from reaction database in LeadOp+R. Multiple conformers of each intermediate

product were considered and evaluated at each step. The conformer with the best group

efficiency score would be selected as the initial conformer of the next building block

until the program finished optimization for all selected receptor-ligand interactions. The

LeadOp+R method was tested with two biomolecular systems: Tie-2 kinase and human

5-lipoxygenase. The LeadOp+R methodology was able to optimize the query molecules

and systematically developed improved analogs for each of our example systems. The

suggested synthetic routes for compounds proposed by LeadOp+R were the same as

the published synthetic routes devised by the synthetic/organic chemists.

Keywords: fragment-based, lead optimization, structure-based drug design, computer-assisted synthesis, human
5-lipoxygenase, tie-2 kinase

INTRODUCTION

We recently reported a new structure-based fragment hopping method in lead optimization,
LeadOp, (Lin and Tseng, 2011). Our lead optimization method works by decomposing a chemical
structure into fragments of different parts, either by chemical or user-defined rules. The fragments
are evaluated in a pre-docked fragment database and ranked according to specific fragment-
receptor binding interactions. The ranked fragments provide the ability to replace fragments
possessing less favorable contributions to binding. With optimal fragments selected, LeadOp
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reassembles the fragments to form the new drug-like compound.
LeadOp is an algorithm that can automatically optimize a
query molecule by searching and replacing fragments from a
pre-docked fragment database in the active site to generate
structures with better binding without prior knowledge of better
fragments. Additionally, users can specify parts of structures to be
optimized based on known interactions or the user’s preference.
However, the proposed compounds are not always easy to
synthesize. In this study, we demonstrate lead optimization with
synthetic accessibility, LeadOp+R, an advanced approach for
lead optimization with synthetic accessibility.

A basic difficulty in most applications of computer-aided
drug design is that designed (suggested) molecules are often
of uncertain synthetic accessibility, leading to a slow feedback-
improvement loop between the experimental syntheses and
modeling design (Hopkins et al., 2004). Various synthetic
planning software, WODCA (Ihlenfeldt and Gasteiger, 1996),
SYNGEN (Hendrickson and Toczko, 1988), and ROBIA, 4
(Socorro and Goodman, 2006) were developed to provide
the synthetic route generation, that involves either searching
a database of chemical reactions or transformation rules
for reaction centers that match the target compound to
propose analogous transformations. Tools in route generation,
mostly retrosynthetic software, can suggest routes based on
encoded generalized reaction rules to identify those bond
disconnections most apt to lead to synthetically accessible
precursor structures (Corey et al., 1975; Corey and Jorgensen,
1976) while Hendrickson’s group (Hendrickson et al., 1985)
developed a logic-based synthesis designmethod with formalized
reaction constraints. A good example of route generation is
Route Designer (Law et al., 2009), that use rules describing
retrosynthetic transformations automatically generated from
reaction database and generates complete synthetic routes for
target molecules starting from available reactants. Applications
combining the synthetic route designing and de-novo design
for the target binding sites have also been developed, such as
SPROUT (Mata et al., 1995), which starts from generation of a
skeleton followed by atom substitution to convert the solution
skeletons to molecules and rank the output from SPROUT
according to ease of synthesis. However, the molecules are
generated from the ease of synthesis, the desired core of potential
inhibitors could not be easily preserved.

To make the synthetic-modeling feedback loop more
straightforward, we develop and implement “LeadOp+R”—Lead

Optimization with synthetic accessibility based on chemical
Reaction route. LeadOp+R is an algorithm that performs
structure-based lead optimizationwhile considering the synthetic
reactions from reactants to products according to reaction rules.
It takes into consideration the chemical reaction environment;
this information is based on known chemical synthesis. The
synthetic routes suggested by LeadOp+R are examined to ensure
the validity of transformation from one starting reactant into
the final product through the use of the LeadOp+R reaction
database. The extracted reaction rules in LeadOp+R reaction
database do not take into account temporarily or unwanted
chemical reactions; on the contrary, these extracted reaction rules
consider direct chemical reactions that transform the starting

reactants into products. LeadOp+R’s algorithm consists of the
following five steps: (i) identify a preserved space (defined by
the volume occupied by a fragment of the query molecule to
be preserved by the user) and searches for building blocks
with the same preserved space as initial reactants, (ii) search
the reaction rules for each reactants identified, (iii) generate
reaction products based on reaction rules, (iv) evaluate the
conformations of each products of each reaction, and (v) select
the conformer from previous steps that would be selected as the
reactant to grow molecules until optimizations are fulfilled for
each selected inhibitor–receptor interactions by users. Multiple
conformers of each product for each step were considered and
evaluated. The conformer with the best group efficiency score
would be selected as the next reactant, wherein the group
efficiency score is calculated based on binding energy divided
by the number of heavy atoms. Thus, this evaluation would
favor the conformers with stronger binding toward the specified
receptor-ligand interactions with less heavy atoms (Hopkins
et al., 2004; Ciulli et al., 2006; Alex and Flocco, 2007; Saxty
et al., 2007; Congreve et al., 2008; Orita et al., 2009). Compounds
passing the molecular property filters comprised the final list
of proposed compounds. The compounds were then energy-
minimized and ranked on the basis of the overall ligand–
receptor binding energy. To investigate the interactions between
the newly assembled molecules and their receptor, molecular
dynamics simulations were performed to explore the compounds’
poses and interactions with the solved crystal structure of the
receptor.

To demonstrate the LeadOp+R algorithm, we selected the
Tie-2 kinase (Hodous et al., 2007) and human 5-lipoxygenase
(5-LOX) (Ducharme et al., 2010) protein systems and their
associated inhibitors as model systems. The endothelium-specific
receptor tyrosine kinase Tie-2 (tyrosine kinase containing Ig and
EGF homology domains) is primarily expressed in the vascular
endothelium and is involved in vessel branching, sprouting,
remodeling, maturation, and stability (Yu, 2005). The role of
tyrosine kinases in angiogenesis and in the vascularization of
solid tumors has drawn considerable interest (Hasegawa et al.,
2007) and is considered to be angiogenesis-dependent in cancer.
Interference with the Tie-2 pathway by diverse blocking agents
has been shown to suppress tumor growth in xenograft studies
(Oliner et al., 2004). The development of Tie-2 kinase inhibitors
may block the beneficial anti-inflammatory and vascular
stabilizing effects, thus the discovery of potent Tie-2 kinase
inhibitors has advanced into clinical studies (Huang et al., 2010).
Lipoxygenases are a family of iron-containing enzymes found
in a large variety of organisms, including bacteria and animals.
It catalyzes the dioxygenation of polyunsaturated fatty acids
containing a cis-1,4-pentadiene structure—the first committed
structure in a metabolic pathway cascade—and involved in the
initiation of signaling molecule synthesis and inducing structural
or metabolic changes (Steele et al., 1999). Four major isozymes of
lipoxygenases have been identified (Ivanov et al., 2010), including
5-, 8-, 12-, and 15-LOX, that are key enzymes in the metabolism
of prostaglandins and leukotrienes. In particular, leukotrienes are
produced through the 5-LOX pathway and the increased activity
of the 5-LOX pathway is strongly associated with atherosclerosis

Frontiers in Pharmacology | www.frontiersin.org March 2018 | Volume 9 | Article 96380

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Lin et al. LeadOp+R

(Woods et al., 1993). As the 5-LOX biological pathways and
byproducts lead to inflammation, discovering a 5-lipoxygenase
inhibitor is important to the fields of inflammatory and allergic
diseases (Shaffer and Mansmann, 1997).

MATERIALS AND METHODS

Overall Procedure
The general protocol for LeadOp+R is illustrated in Figure 1 and
the details of each step are described in the following sections.
Prior to applying the LeadOp+R optimization procedure, a
reaction rule database is constructed, containing reaction rules
for the reactant moiety, the product moiety, and the building
blocks of each reaction. Thus, participants involved in each
reaction are known for synthetic assessment in LeadOp+R.
The initial step of LeadOp+R requires the user to select the
favored inhibitor-receptor interaction positions for optimization.
The inhibitor-receptor interaction positions determine the
“direction” for virtual synthesis and optimizations. LeadOp+R
will systematically optimize and grow a structure until all
the user-defined directions are processed. LeadOp+R initiates
the analysis with the inhibitor-receptor complex from docking
studies or crystal structures. The user can determine which
fragment(s) in the query inhibitor (initial compound) to preserve
during optimization. To ensure that the initial synthesis is
accessible, the starting building block—containing the preserved
fragment—is used as the initial building block. LeadOp+R
then searches the reaction rule database with this building
block to identify associated reactions rules. Once the reactions
rules and associated participants are identified, the products
of each reaction rule are generated virtually. The best binding
conformation of the proposed compound is selected from an
ensemble of conformers are constructed of each compound. The
conformer of each compound with the lowest group efficiency
value is selected as the initial conformer of the next building
block until the program reaches the termination condition.
By evaluating the contribution of each product upon binding
with group efficiency, LeadOp+R selects compounds that bind
stronger yet possess less heavy atoms. The compounds passing
a set of molecular property filters comprised the final list of
proposed compounds. Following a short molecular dynamics
simulation, the compounds are energy-minimized and ranked
on the basis of the overall ligand–receptor binding (interaction)
energy. This provides a series of new and more potent
compounds that are chemical accessibility.

Example Systems
Tie-2 kinase (PDB: 2p4i), an endothelium-specific receptor
tyrosine kinase (Hodous et al., 2007) and human 5-LOX enzyme
(Charlier et al., 2006) a key enzyme in leukotriene biosynthesis,
were selected as model systems to examine the LeadOp+R
approach. One Tie-2 kinase inhibitor, compound 46 in reference
16 (denoted as compound rA in this study) and a human 5-LOX
inhibitor, compound 7 (substituted coumarins) in reference 17
(denoted as compound rB in this study), were selected as the
LeadOp+R optimization examples.

Construction of the LeadOp+R Reaction
Database
LeadOp+R collects chemical reactions, building blocks, and
reaction rules with reactant moieties and product moieties of
each reaction to construct the LeadOp+R reaction database.
LeadOp+R includes 198 classic chemical reactions from the
Reaxy Database and 2,091 organic building blocks from the
commercially available Sigma-Alderich Co1. product library.
These building blocks include the typical building blocks in a
chemical synthesis such as various nitrogen compounds (amines,
isocyanides) and carbonyl compounds (amides, aldehydes, and
ketones). A reaction rule in LeadOp+R includes the reactant
moieties and product moieties extracted from the full structure of
reactants and products of each reaction collected. In LeadOp+R,
the reaction moieties were defined and extracted from a chemical
reaction according the following steps (see Figure 2 for the
illustration of the steps):

(1) Identification of reaction core. A collection of atoms that
take part in the chemical transformation (reaction) have
their atom type changed (element, number and type of
bonds, and number of neighboring atoms) are considered
the reaction core. These atoms are determined by comparing
the atoms of the starting compound and product to those
within the LeadOp+R reaction database; atoms that differ
are part of the reaction core. Since the reaction core does not
contain enough chemical information to accurately describe
the reaction, additional information is gathered from atoms
bound to the reaction core.

(2) Extraction of the reactant and product moieties for a
reaction. The initial reaction cores typically do not include
enough atoms and thus their “chemical environment”
is expanded. The reaction core is increased to bonded
(neighboring) atoms until the minimum reactant and
product substructures are included to fully represent the
reaction. Within a reaction, the reactant portion is denoted
as the “reactant moiety” and as expected the product portion
is denoted as “product moiety.” The extension step is
performed by traversing the atom types within the reaction
core, as discussed in Step 1, until a single sp3 carbon is
found and the atoms searched during the extension step
are considered part of the same moiety. For cases where
the searched atoms are in an aromatic ring, the extension
was terminated when all the atoms in the aromatic ring are
included in the moiety, thus all the atoms in the aromatic
ring are considered part of the moiety.

Finally, the building blocks with the same reactant moiety for
each reaction rule are collected (through a JChem application-
programming interface; JChem API) and classified by the
reaction. Building blocks for each reaction rule are recorded and
used for virtual synthesis in the LeadOp+R algorithm.

Identify Reactant
LeadOp+R initiates the analysis of a complexed structure
(inhibitor-receptor) taken from a docking study or crystal

1“Sigma-Aldrich Chemie GmbH.” (Steinheim, Germany).
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FIGURE 1 | Illustration of the LeadOp+R optimization workflow.

structure. Initially, the user identifies and preserves the “fragment
space” of a query molecule defined by a fragment’s volume.
LeadOp+R then searches for building blocks with the same

volume as the potential initial reactants. Products of each
potential initial reactant are virtually synthesized according to the
steps below. For each product molecule that passes the evaluation
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FIGURE 2 | Example of three steps used to construct the table of reaction rules. (A) Identification of reaction cores. The atoms with changed atom attributes are

highlighted in red and blue within the two reactants. (B) Extraction of the moieties. (C) Identification of building blocks containing the reactant moieties. (D) Illustration
of the steps in generating products.
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step, that product molecule becomes the next reactant in the next
synthesis step.

Determine Reaction Rules for Each
Reactant Identified
When a reactant is identified in the previous step, there are many
potential reactant moieties and reactions associated with this
reactant. Each reactant is subjected to sub-structure searching2 to
identify atom arrangements (moieties) that are part of a chemical
reaction rule within the LeadOP+R reaction database. This is
done to determine potential chemical reactions for this specific
reactant.

Generation of Reaction Products Based on
Reaction Rules
Once all the potential reaction rules of a reactant are identified,
the corresponding products are generated by “reacting” the
reactant moieties and participant reactants (Figure 2D). In
LeadOp+R, each reactant has two parts: one structure matches
the reactant moiety and the other structure—excluding the
reactant moiety—is denoted as the “clipped reactant.” The
same definition is used for other building blocks (participants)
involved in a reaction. Each product is generated by combining
the clipped portion of the reactant and the clipped portion of the
participants as well as the product moiety based on the search of
the reaction rule.

Evaluation of the Products for Each
Reaction
Thirty conformers of each product are generated using the
Java and JChem application-programming interface (Imre et al.,
2006). Each conformer is aligned with the preserved space of the
query molecule, while maximizing the overlap volumes, using
the flexible 3D alignment tool of Marvin3 (see Figure 3). A
conformer for each product was selected for the next step if
the following criteria are met: (1) the binding mode of each
conformer, aligned with the query molecule within the receptor
site, has the same inhibitor-receptor interaction direction, and (2)
the new moiety has a group efficiency value <−0.1.

Final Selection by Structure-Based
Analysis
The selected conformer for each product is the reactants for
the next reaction in the selected inhibitor-receptor interaction
direction. The molecule continues to grow until all the inhibitor-
receptor interaction directions are exhausted. The collection of
potential new compounds is reduced using the following criteria:
molecular weight <600 g mol−1 and a calculated lipophilicity
(cLogP) <5, which is taken into account based on the Lipinski’s
Rule-of-Five (Lipinski et al., 2001). The compounds that pass the
molecular property filters comprised the final list of proposed
compounds. These compounds are then energy-minimized
within the binding site and ranked based on the overall ligand-
receptor binding energy.

2“JChem.” 5.4.1.1 ed. (Budapest, Hungary: ChemAxon Ltd).
3“Marvin.” 5.4.0.1 ed., (Budapest, Hungary: ChemAxon Ltd).

FIGURE 3 | Evaluation of each product for each reaction. Thirty conformers

are generated (colored in yellow, green, orange, and gray sticks) and overlaid

with the reactant within the binding site (colored in red stick). The user-defined

inhibitor-receptor interaction direction (location) is indicated by the dotted red

line.

Molecular Dynamics Simulations
The bound pose of the newly “constructed” compound, as
determined with AutoDock Vina (Trott and Olson, 2010), is
refined from the lowest binding free energy and the largest
number of favorable ligand-receptor interactions within the
binding site. The unfavorable contacts between the docked pose
of the energy minimized “constructed” compound (fragments
connected to the initial core of the compound) and the residues
within the binding site are alleviated using molecular dynamics
simulations; allowing the ligand-receptor complex to explore
the local energy landscape. The best complex pose (ligand-
receptor interaction) was selected and molecular dynamics was
performed using GROMACS version 4.03 (Hess et al., 2008)
and the GROMOS 53A6 force field (Oostenbrink et al., 2005).
The complexes are placed in a simple cubic periodic box of
SPC216 type water molecules (Berendsen et al., 1981), and the
distance between the protein and each edge of the box was
set to 0.9 nm. To maintain overall electrostatic neutrality and
isotonic conditions, Na+ and Cl− ions were randomly positioned
within the solvation box. To maintain the proper structure and
remove unfavorable van derWaals contacts, a 1,000-step steepest
descent energy minimization was employed and terminated
when the convergence criteria of an energy difference between
subsequent steps differ <1,000 kJ mol−1 nm−1. Following the
energy minimization, the system is subjected to a 1,200 ps
molecular dynamics simulation at constant temperature (300K),
pressure (1 atm), and a time step of 0.002 ps (2 fs) with the
coordinates of the system recorded every ps.
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RESULT AND DISCUSSION

LeadOp+R Optimization for Tie-2 Kinase
Inhibitors
Structure-Based Lead Optimization With Synthetic

Routes
From the literature (Bridges, 2001), it is known that a
good kinase inhibitors should possess a hydrogen-bond
donor/acceptor/donor motif to best interact with the backbone
carbonyl/NH(amide)/carbonyl presented in the ATP-binding
cleft. In the case of Tie-2 kinase, the residues in the active site of
the ATP-binding cleft are Ala905 (carbonyl and amide NH) and
Glu903 (carbonyl). Additionally, two hydrophobic pockets are
part of the active site in the Tie-2 receptor and are designated as
the first hydrophobic pocket (HP) and the extended hydrophobic
pocket (EHP). We selected a series of Tie-2 inhibitors from the
literature (Hodous et al., 2007) containing a co-crystal structure
of inhibitor compound 47 with Tie-2 receptor (PDB code: 2p4i).
In this co-crystal structure, the 2-(methylamino)pyrimidine
ring of inhibitor compound 47 interacts with residue Ala905 via
two hydrogen bonds and the pyrimidine is also within van der
Waals contact of the Glu903. The central methyl-substituted aryl
ring of compound 47 resides in the first hydrophobic pocket
(HP), while the pyridine ring forms an edge-to-face π-stacking
interaction with Phe983 of the DFG-motif. The carbonyl oxygen
makes a hydrogen bond with the backbone NH of Asp982 (DFG
motif) and the aryl amide moiety directs the terminal CF3-
substituted aromatic ring into the EHP. Figure 4A illustrates the
ligand-protein interaction of this co-crystal structure.

To demonstrate how LeadOp+R optimizes a compound
automatically while considering the potential synthetic route,
compound 46 is the query molecule for lead optimization
(denoted as compound rA in this study) with a biologically
determined IC50 value of 399 nM (Hodous et al., 2007).
Compound rA was docked into the Tie-2 binding site and
the lowest energy conformation was selected. The selected
conformation possessed similar molecular interactions, as
discussed earlier, with the Tie-2 active site (Figure 4A). The
amide functional group of compound rA forms a hydrogen bond
with the backbone amide of Asp982, while the pyridine and
benzene rings extend into the hydrophobic pocket (HP) and
EHP, respectively. The aminobenzoic fragment was designated
as the preserved space in this example of LeadOp+R due to the
important hydrogen bonding.

To evaluate our algorithm, we compared all of the LeadOp+R
generated compounds to Tie-2 kinase inhibitor from the
literature and found nine of the LeadOp+R compounds have
also been synthesized and their ability to inhibit Tie-2 kinase
measured. The inclusive synthesis of proposed products in
each LeadOp+R step combined with systematically examining
the proposed ligand-receptor interactions resulted in nine
compounds with more potent IC50 values than the original
compound (compound rA). All the LeadOp+R generated
compounds were energy minimized in the active site of Tie-
2, and then ranked on the basis of the overall ligand–receptor
interaction energy. Among all LeadOp+R suggested compounds,
nine compounds were previously studied in the literature

(Hodous et al., 2007), and the priority suggested by the calculated
binding energy had same trend as the experimentally determined
IC50 values. In this study of Tie-2 kinase inhibitor design—
three compounds, denoted as compounds rA1, rA2, and rA3
of the nine LeadOp+R generated compounds—were selected
for further investigation. For these three compounds we found
detailed synthetic route information (Hodous et al., 2007) and
inhibition potency in the literature. These three compound
rA1-rA3, have a higher potency than the query compound rA
and the suggested priority of the new compounds with the
calculated binding energy have a similar IC50 potency trend.
Depicted representations of compounds rA1-rA3, as well as the
corresponding inhibition data from the biological experiments
and their predicted binding energy are provided in Table 1.

Molecular dynamics simulations were performed with three
LeadOp+R generated compounds, rA1–rA3, to further analyze
the ligand-protein interactions within the Tie-2 kinase active site.
Following geometry optimization of the compounds with respect
to Tie-2, molecular dynamics simulation studies were performed
and the unique low-energy conformations of the complexes, from
the final 50 ps of the MDS (50 configurations), are shown in
Figures 4B–D.

In the generated compounds (rA1, rA2, and rA3) both amide
arrangements are engaged in strong hydrogen bonds with Asp982
of the DFG-motif (first three residues of the activation loop).
The pyrimidine ring in compounds rA1 and rA2 makes key
hydrogen bonds with the backbone amide of the linker residue
Ala905, situating the pyridine rings in alignment and within
edge-to-face π-stacking distance of Phe983 of the DFG-motif.
Additionally, the central and terminal aryl rings overlap with only
slight differences in orientation for compounds rA1, rA2, and
rA3. The additional a hydrogen bond forms between themethoxy
group of compound rA1 and residue Asp982, while the CF3-
groups are placed in essentially the same location within the EHP
for compounds rA2 and rA3. These optimized results indicate the
hydrogen-bonding and hydrophobic interactions are important
for ligands binding to and inhibiting Tie-2, as previously reported
(Hodous et al., 2007).

Synthetic Routes Suggested by LeadOp+R
For Tie-2 kinase inhibitors, favorable interactions occur between
the ligand and the specific receptor residues Glu 872, Asp
982, Phe983, Ala905, and Glu903 (see Figure 4A). In this
example, these interactions are selected as preferred inhibitor-
receptor interactions for LeadOp+R to optimize based on the
provided query molecule in a selective and systematic process.
Experimental synthetic routes from the literature (Hodous et al.,
2007; Figures 5A, 6A, 7A) and the reaction routes suggested
by LeadOp+R (Figures 5B, 6B, 7B) to generate compound
rA1, rA2, and rA3 are summarized below to demonstrate how
LeadOP+R suggests the synthetic reaction routes that are similar
to those proposed by organic and medicinal chemists. Matched
reaction rules are listed to the right of Figures 4C, 5C, 6C with
details of each synthetic step identified by LeadOp+R, for each
product, described below.

Figure 5A illustrates the experimental reactions required to
synthesize compound rA1 (compound 7) by reacting 5 (which
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FIGURE 4 | LeadOp+R result for the Tie-2 model system. (A) Chemical characteristic of each residue and interaction within the complex of compound 47 from the

co-crystal structure (PDB code: 2p4i). (B–D) Chemical structure (left) and MDS result (right) of the generated compound rA1 (B), the generated compound rA2 (C),
and the generated compound rA3 (D). Carbon atoms are colored pink. Amino acid residues that participate in hydrogen-bonding interactions (labeled red) with the

proposed compound at the binding site are depicted with cyan molecular surface.

was generated through transforming 2 into 4) followed by
reacting 1 with 6. To compare LeadOp+R’s suggested virtual
synthesis of compound rA1 to proven synthetic routes; we
compared the key reaction rules from experimental synthetic
steps in the literature.

Figure 5B shows the LeadOp+R suggested synthetic routes
to generate compound rA1 using the selected and preferred
inhibitor-receptor interactions that allowed LeadOp+R to
selectively and systematically optimize the query molecule.

Initially, compound 1 was identified as the first reactant by
searching all building blocks with the preserved fragment.
LeadOp+R then proceed to produce product 8 by coupling 1

with 6 with the reaction rule (i) that conserves the preferred
interaction with Glu872 specified. The reaction rule suggested
by LeadOp+R matched the synthetic steps in the literature that
forms compound 7 by combining compound 5 and fragment
6. Next, product 8 was considered as the reactant to interact
with compound 2 to generate product 9 by growing molecules
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TABLE 1 | Rank of the proposed LeadOp+R compounds based on the calculated binding energy, inhibition concentration (IC50) of Tie-2 from the literature (Hodous

et al., 2007).

Rank Structure Inhibition IC50 (nM)

Query 399

38 4

113 30

292 108

All proposed compounds have a lower IC50 value than the query compound and the suggested priority of the three new compounds (out of 631) have a similar trend as the IC50 potency

values.

with preferred interaction toward Phe983. The second reaction
rule (ii) suggested by LeadOp+R lead to product 9 that matched
the same synthetic steps as those in the literature to synthesize
compound 5 by reacting 1 with 4. It is interesting to note that

at this step, the structure marked in red is the current structure
9, the same partial structure highlighted in red within the
final product 7 (compound rA1) in the experimental synthesis.
LeadOp+R continued the recursive optimization toward the
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FIGURE 5 | Synthetic routes for compound rA1 and sub-structure searching to identify atom arrangements (moieties) that are part of a chemical reaction rule within

the LeadOp+R reaction database. (A) Synthetic routes with reagents and condition (a–d) from experimental studies (Hodous et al., 2007). (B) Synthetic routes and

(C) matched reaction rules provided by LeadOp+R.

cavity near Phe983 and Ala905 to transform 9 to 7 (compound
rA1) with the third reaction rule, Figure 5C. This reaction route
suggested by LeadOp+R also matches the experimental synthetic
route in the literature to transform 2 into 4. To this end,
LeadOp+R has successfully optimized the query compound rA
to compound rA1 and suggested corresponding synthetic routes.
In this example, we demonstrated how LeadOp+R controls
the synthetic flow by extending the molecules with preferred

interactions, available building blocks and associated reactions
rules to reach fragment based optimization and synthetic
accessible. Thus, the sequence of reactions to “grow” molecules
may not be the same as those verified in experimental synthesis.

Figure 6A shows the experimental reaction to synthesize
compound rA2 (compound 19) by reacting 18 (which was
generated through the transformation of 13–18) with 12 (which
was generated through the reaction of 10 with 11). To compare
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FIGURE 6 | Synthetic routes for compound rA2 and sub-structure searching to identify atom arrangements (moieties) that are part of a chemical reaction rule within

the LeadOp+R reaction database. (A) Synthetic routes with reagents and condition (a–g) from experimental studies (Hodous et al., 2007). (B) Synthetic routes and

(C) matched reaction rules provided by LeadOp+R.

the LeadOp+R suggested virtual synthesis route for compound
rA2 with the experimental synthetic route, we compared the
key reaction rules from the experimental synthetic steps in the
literature with the LeadOp+R suggested synthetic routes.

Figure 6B shows the LeadOp+R suggested synthetic routes
for compound rA2, using the selected and preferred inhibitor-
receptor interactions to optimize the querymolecule in a selective
and systematic manner. Initially, a hydroxy benzoic acid of 10
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FIGURE 7 | Synthetic routes for compound rA3 and sub-structure searching to identify atom arrangements (moieties) that are part of a chemical reaction rule within

the LeadOp+R reaction database. (A) Synthetic routes with reagents and condition (a–f) from experimental studies (Hodous et al., 2007). (B) Synthetic routes and (C)
matched reaction rules provided by LeadOp+R.
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was identified as the first reactant by searching all building blocks
with the preserved fragment. LeadOp+R then proceed to suggest
product 12 by reacting 10 with 11 via the first reaction rule (i)
that preserves the ligand’s interaction with Glu972 of the active
site. The reaction rule suggested by LeadOp+R matched the
synthetic steps in the literature that forms compound 12 from
compounds 10 and 11. Next, product 12 was considered as the
reactant to react with compound 13 to generate product 20, by
growing molecules with preferred interaction toward Phe983.
The second reaction rule (ii) generates product 20 and the
reaction route suggested by LeadOp+R matches the synthetic
steps in the literature to synthesize compound 19 through the
reaction of 12 with 18. LeadOp+R’s recursive optimization
continues toward the cavity near Phe983 and Ala905 to transform
20 to 19 (compound rA2) via the third reaction rule (iii),
Figure 6C. This reaction route suggested by LeadOp+R also
matched the experimental synthetic step in the literature to
transform compound 13–18.

Figure 7A shows the experimental reaction to synthesize
compound rA3 (compound 22) by reacting 21 (which was
generated through the reaction of 1 with 11) with 18 (which
was synthesized from 13). To compare LeadOp+R’s suggested
synthesis route for compound rA3 with the experimental
synthetic routes, we compared the key reaction rules from the
experimental synthetic steps in the literature with the LeadOp+R
suggested synthetic routes.

Figure 7B depicts the LeadOp+R suggested synthetic routes
to generate compound rA3, using the selected and preferred
inhibitor-receptor interactions to optimize the query molecule.
Initially, compound 1, a hydroxybenzoic acid, was identified
as the first reactant by searching all building blocks with the
preserved fragment indicated in red, Figure 7B. LeadOp+R
then proceeded to produce compound 21 by reacting 1 with
11 via the first reaction rule (i) directing the growth of the
compound (inhibitor) toward the preferred ligand interaction
with Glu972. The reaction rule suggested by LeadOp+Rmatched
the synthetic steps in the literature that forms compound 21

via the transformation of compound 1 with fragment 11. Next,
product 21 was reacted with compound 13 to generate product
23, growing the transformed molecule toward Phe983. The
second reaction rule (ii) generated product 22 as suggested by
LeadOp+R and matches the same synthetic steps as those in
the literature to synthesize compound 22 through the reaction
of compound 21 with fragment 18. The recursive optimization
of the initial query compound toward the cavity near Phe983
and Ala905 by LeadOp+R transformed compound 23 to 22

(compound rA3) with the third reaction rule (iii) as illustrated
in Figure 7C. This reaction rule, suggested by LeadOp+R, also
matches the experimental synthetic step in the literature to
transform 13–18.

LeadOp+R has successfully optimized the query compound
rA to compounds rA1, rA2, and rA3 with synthetic routes
that match experimental synthetic routes for each compound.
Through the systematic synthesis and constant evaluation of
intermediate products via group efficiency, LeadOp+R searched
each product and discovered higher binding inhibitors. Increased
hydrophobic interactions between compound rA1 and the

receptor were observed between the compound’s aromatic
group that resides in the EHP pocket (Figure 4B) and the
methylpyrimidine. This corresponds to the experimental results
and rA1 exhibits stronger inhibitor potency than compounds rA2
and rA3.

In the example of Tie-2 inhibitor design, LeadOp+R
demonstrates its ability to control the synthetic flow by extending
the query molecules to optimize the preferred ligand-receptor
interactions while using the available building blocks and
associated reactions rules to find the most feasible synthetic
accessibility.

LeadOp+R for Human 5-Lipoxygenase
Inhibitor
Structure-Based Lead Optimization With Synthetic

Routes
The human 5-Lipoxygenase (5-LOX) enzyme with the well-
known 5-LOX inhibitors was selected as the second LeadOp+R
test case. To design better 5-LOX inhibitors, structural insight
of the 5-LOX active site and its associated interactions with
ligands would be helpful; therefore we selected a theoretical
model (comparative/homology protein structure/model) of 5-
LOX (Charlier et al., 2006) that has good agreement with
mutagenesis studies (Hammarberg et al., 1995; Schwarz et al.,
2001). The proposed active site of 5-LOX forms a deep and
bent cleft (channel) that extends from Phe177 and Tyr181 at
the top of the cleft to the Trp599 and Leu420 amino acid
residues at the bottom of the cleft (shown in Figure 8A).
Most of the residues lining the cleft are hydrophobic with
several key polar residues (Gln363, Asn425, Gln557, Ser608,
and Arg411) distributed along the channel with the ability to
interact with the ligand during the binding process. A small
side pocket off of the main channel is composed of hydrophobic
residues (Phe421, Gln363, and Lue368) and it is postulated
that the lipophilic interactions between the ligand and receptor
may enhance activity. The purported major pharmacophore
interactions needed for a ligand to bind to 5-LOX includes: (i)
two hydrophobic groups, (ii) a hydrogen bond acceptor, (iii)
an aromatic ring, and (iv) two secondary interactions. The two
secondary interactions are between the ligand and an acidic
moiety (amino acid residue) and a hydrogen bond acceptor
within the binding pocket of the receptor. The hydrogen bond
acceptor of the ligandmost likely interacts with the key anchoring
points of the receptor (Tyr181, Asn425, and Arg411) to form
hydrogen bonds, while Leu414 and Phe421 form a hydrophobic
interaction between the ligand and the binding cavity (Charlier
et al., 2006).

The 5-LOX inhibitor, compound 7 in the literature
(Ducharme et al., 2010), was selected as our initial querymolecule
(denoted as compound rB in this study), which had a biologically
determined IC50 value of 145 nM. Compound rB was docked
into the 5-LOX computationally derived binding site and the
lowest energy conformation was submitted to LeadOp+R. This
selected pose (conformation) possesses similar ligand-receptor
interactions as previously reported (Charlier et al., 2006). The
oxochromen ring favorably interacts with the hydrophobic
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FIGURE 8 | LeadOp+R result for the 5-LOX kinase model system. (A) Schematic representation of the human 5-LOX active site (left) and the binding pocket (right).

The purported pharmacophores of the binding site of 5-LOX involving two hydrophobic groups (blue ovals), two hydrogen bond acceptors (green ovals), and an

aromatic ring (orange oval) for ligand binding at the binding cavity. (B–D) Chemical structure (left) and MDS result (right) of the generated compound rB1 (B), the
generated compound rB2 (C), and the generated compound rB3 (D). Carbon atoms are colored pink. Amino acid residues that participate in hydrogen-bonding

interactions (labeled red) with the proposed compound within the binding site are depicted with gray molecular surfaces.

residue Leu414 (CH-π interaction) in the middle of the cavity,
while the fluoro phenyl group extends into the hydrogen-bond
acceptor region in the lower cleft of the active site. The docked

conformation of compound rB was selected as the reference
inhibitor with the oxochromen ring serving as the template
structure.
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To evaluate our algorithm, we compared all of the LeadOp+R
generated compounds for 5-LOX to the analogs described in
the literature and found that six of the LeadOp+R proposed
compounds have been synthesized and their biological activities
measured (Schwarz et al., 2001). The inclusive synthesis of
products at each step combined along with systematically
examining the interactions of the proposed compounds with the
receptor generated six compounds with more potent IC50 values
than the original compound (compound rB). All the LeadOp+R
generated compounds were energy minimized within the active
site of 5-LOX and then ranked based on the predicted binding
energy of the complex and the suggested priority has the same
trend as the IC50 potency values from the experimental study
(Schwarz et al., 2001). In this study of 5-LOX inhibitor design,
three compounds (denoted as compounds rB1, rB2, and rB3)
of the nine LeadOp+R generated compounds, were selected
for further investigation. For these three compounds detailed
synthetic information (Ducharme et al., 2010) and inhibition
potency is available from the literature (Ducharme et al., 2010).
Additionally, these three compound rB1, rB2, and rB3 have a
higher potency than the query compound rB and their suggested
priority, based on predicted binding energy, as well as a similar
IC50 trend. Depicted representations of the compounds rB1, rB2,
and rB3, the corresponding inhibition data from the biological
experiments, and their predicted binding energy are listed in
Table 2.

Molecular dynamics simulation studies were performed with
the final poses of compounds rB1, rB2, and rB3 with respect to
5-LOX. The unique low-energy conformations of the complexes,
from the last 50 ps of the MDS (50 configurations), are shown in
Figures 8B–D.

The interactions of compounds rB1, rB2, and rB3 all reside
within the hydrophobic pocket and contain participate in
hydrogen bonding interactions between the oxygen or nitrogen
atoms of the thiazol group with Lys409 and Tyr181. For
compounds rB1 and B3, the fluoro group extends to the
hydrogen-bond acceptor in the upper domain of the active site
and interacts with Lys409. In addition, the oxochromen ring is in
close proximity to Leu414 and is potentially an important CH-
π contact as indicated in the literature (Charlier et al., 2006).
Also, the thiazole structure of compound rB1 interacts with the
5-LOX hydrophobic residues Leu420 and Leu607 and it has
been suggested that these interactions improve ligand binding via
complementary hydrophobic interaction between the ligand and
receptor. Additionally, favorable interactions occur between the
fluoro group and residues Lys409, Arg411, and Tyr181. These
contributions to the ligand-protein binding probably accounts
for compound rB1’s better inhibition compared to compounds
rB, rB2, and rB3. These optimized results indicate that hydrogen
bonding and hydrophobic interactions are important for ligands
binding to and inhibiting, 5-LOX as previous report (Hodous
et al., 2007).

Synthetic Routes Suggested by LeadOp+R
The favorable interactions between inhibitors and 5-LOX,
as stated in the literature, are two hydrogen-bond acceptor
interactions within the binding pocket (including ligand

interactions with Asn425 and Tyr181), two hydrophobic
interaction pockets (including ligand interactions with Leu368,
Gln363, Phe421, Arg411, Ile406, Lys409, and Phe177), and
aromatic interactions (between the ligand and residues Leu414
and Leu607). In this example, ligand interactions with Asn425,
Leu414, Leu607, and Tyr181 are indicated as “preferred”
inhibitor-receptor interactions for LeadOp+R to selectively and
systematically optimize. Experimental synthetic routes from
the literature (Schwarz et al., 2001) (Figures 9A, 10A, 11A)
and the synthetic reaction routes suggested by LeadOp+R
(Figures 9B, 10B, 11B) to generate compound rB1, rB2, and
rB3 are summarized below. To demonstrate LeadOp+R’s ability
to suggest reaction routes similar—or exactly the same—to
those proposed and executed by synthetic chemists, the matched
reaction rules are listed to the right of Figures 9C, 10C, 11C.
Details of each synthetic step, identified by LeadOp+R for each
product (proposed compounds/inhibitor), are described below.

Figure 9A shows the experimental reaction route (Schwarz
et al., 2001) to synthesize compound rB1 (compound 30)
by reacting compound 26 (which was generated through the
reaction of 24 with 25) with 29 (which was generated through
the reaction of 27 with 28). To compare the LeadOp+R
suggested synthesis with the experimental synthetic route for
compound rB1, we compared the key reaction rules for the
experimental synthetic steps in the literature with those suggested
by LeadOp+R.

Figure 9B shows the LeadOp+R suggested synthetic routes to
generate compound rB1 using the selected preferred inhibitor-
receptor interactions. Compound 24 was identified as the
initial reactant by searching all the available building blocks
and preserving the molecular fragment. LeadOp+R suggested
product 26 by reacting 24 with 25 with the first reaction rule
(i) “growing” the compound toward the preferred interaction
with Asn425. The reaction rule suggested by LeadOp+Rmatches
the synthetic steps in the literature that yields compounds 26,
24, and 25. Next, product 26 was considered as the reactant
to interact with compound 28 to generate product compound
31 by extending the ligand toward preferred interactions with
Leu414. The second reaction rule (ii) to generate compound
31, as suggested by LeadOp+R, matches the synthetic routes
presented in the literature to synthesize the thioether bond in
compound 30 through the reaction of 26 with 29. It should
be indicated that in this step, the structure marked in red is
compound 31 and it is the same as the partial structure denoted in
red for the final product 30 (compound rB1) in the experimental
synthesis. The recursive optimization continues via LeadOp+R
toward the cavity near Ile406 and the synthesis of compound 30

(compound rB1) by reacting 31 with 27 and the third reaction
rule (iii) in Figure 9C. The LeadOp+R suggested reaction route
also matches the experimental synthetic step in the literature to
synthesize compound 29 through the reaction of 27 with 28.
To this end, LeadOp+R has successfully optimized the query
compound rB to compound rB1 and suggested feasible synthetic
routes. In this example, we demonstrated LeadOp+R’s control of
the synthetic flow by extending the molecules to exploit preferred
interactions, available building blocks, and associated reactions
rules to achieve fragment based optimization and synthetic

Frontiers in Pharmacology | www.frontiersin.org March 2018 | Volume 9 | Article 96393

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Lin et al. LeadOp+R

TABLE 2 | Rank of the proposed LeadOp+R compounds based on the calculated binding energy, inhibition contraction (IC50) of 5-LOX from the literature (Ducharme

et al., 2010).

Rank Structure Inhibition IC50 (nM)

Query 145

52 7 ± 2

107 27 ± 16

297 64 ± 3

All proposed compounds have a higher IC50 value than the query compound and the suggested priority of the three new compounds (out of 419) have a similar trend as the IC50

potency values.
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FIGURE 9 | Synthetic routes for compound rB1 and sub-structure searching to identify atom arrangements (moieties) that are part of a chemical reaction rule within

the LeadOp+R reaction database. (A) Synthetic routes with reagents and condition (a–c) from experimental studies (Ducharme et al., 2010). (B) Synthetic routes and

(C) matched reaction rules provided by LeadOp+R.

accessibility. For these reasons, the sequence of steps to “grow”
molecules may not be the same as the published experimental
synthesis.

Figure 10A depicts the experimental reaction scheme
(Schwarz et al., 2001) to synthesize compound rB2 (compound
38) by reacting 26 (which was generated through the reaction

of 24 with 25) with 37 (which was synthesized through a series
of reaction starting with compound 32 to formed 37). To
compare LeadOp+R’s suggested synthesis of compound rB2 to
the experimental synthetic routes, we explored the key reaction
rules of the experimental synthetic steps in the literature for the
proposed compound.
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FIGURE 10 | Synthetic routes for compound rB2 and sub-structure searching to identify atom arrangements (moieties) that are part of a chemical reaction rule within

the LeadOp+R reaction database. (A) Synthetic routes with reagents and condition (a–e) from experimental studies (Ducharme et al., 2010). (B) Synthetic routes and

(C) matched reaction rules provided by LeadOp+R.
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FIGURE 11 | Synthetic routes for compound rB3 and sub-structure searching to identify atom arrangements (moieties) that are part of a chemical reaction rule within

the LeadOp+R reaction database. (A) Synthetic routes with reagents and condition (a–d) from experimental studies (Ducharme et al., 2010). (B) Synthetic routes and

(C) matched reaction rules provided by LeadOp+R.
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Figure 10B shows the LeadOp+R selective and systematically
suggested synthetic routes to generate compound rB2 based
on the user specified preferred inhibitor-receptor interactions.
Initially, compound 24 was identified as the first reactant
by searching all building blocks with the preserved fragment.
LeadOp+R then proceed to produce compound 26 by reacting
24 with 25 via the first reaction rule (i) that directs the suggested
compound toward the preferred interaction with Leu414. The
reaction rule suggested by LeadOp+R matches the synthetic
steps in the literature for the synthesis of compound 26 from
compound 24 and 25. Next, product 26 was considered as the
reactant to react with compound 32 to generate product 39; again
by growing the molecule toward the preferred interaction with
Leu414. The second reaction rule (ii) to generate product 39
suggests the same synthetic steps as the literature to synthesize
compound 38 by reacting 26 and 27. The recursive optimization
continues to explore the potential ligand interactions with
Leu414 and Ile406 to generate compound 38 (compound rB2) by
reacting 39 with 35 via the third reaction rule (iii) to synthesize
compound 36 by the reaction of 34 and 35, resulting in the final
product compound rB2.

Figure 11A shows the experimental synthesis route (Schwarz
et al., 2001) to synthesize compound rB3 (compound 43) by
reacting 40 with 42 (which was generated through the reaction
of 35 with 41). To compare the LeadOp+R suggested route to
the experimental route for rB3, we look at the key reaction rules
in the literature.

Figure 11B shows the LeadOp+R suggested synthetic routes
for compound rB3 using the selected preferred inhibitor-receptor
interactions. Initially, compound 24 was identified as the first
reactant by searching all building blocks with the preserved
fragment that is indicated in Figure 11B as the red structure.
LeadOp+R proceeded to generate compound 26 by reacting 24

with 25 via the first reaction rule (i) suggested by LeadOp+R.
Again, this methodology directs the growth of the new ligand
toward the preferred interaction of the ligand interacting with
Leu414. The synthetic reactions suggested by LeadOp+R match
the synthetic steps presented in the literature that forms
compound 26. Next, product 26 was considered the reactant and
transformed into product 40 by growing the ligand toward Ile406
of 5-LOX. The second reaction rule (ii) generates compound
40 and matches the synthetic steps discussed in the literature;
compound 40 is identified as the same product that is discussed
in the literature to synthesize compound 44. Continuing the
recursive optimization to initiate the ligand’s interaction with Ile
406 and Tyr181 results in the third reaction rule (iii), Figure 11C,
and leads to compound 43. Compound 44 was identified as the
reactant and reacted with 35 based on the fourth reaction rule
(iv), generating compound 42 by reacting 35 with 41.

LeadOp+R has successfully optimized the query compound
rB into compounds rB1, rB2, and rB3 and has suggested
corresponding synthetic route for each compound. Through
systematic synthesis and evaluation of intermediates using
group efficiency, LeadOp+R searches for “products” with higher
calculated binding affinities and improved interactions with
the receptor. The more hydrogen-bonding interactions between
compound rB1’s oxygen or nitrogen atoms of the thiazol group

and the receptor (shown in Figure 8B) corresponds to the
experimental results of stronger inhibitor potency then the
proposed compounds rB2 and rB3. In the example of 5-LOX
inhibitor design, we demonstrate LeadOp+R’s ability to controls
the synthetic flow by extending the ligands with preferred
interactions, available building blocks, and associated reactions
rules.

LIMITATION

LeadOp+R is an optimization algorithm that starts with
a query reactant (compound) and better lead optimization
occurs when starting the optimization process with a good
binder that is advantageously positioned in the binding site.
The LeadOp+R algorithm does not consider experimental
product yield rate, reaction rate, and reaction conditions of
a chemical synthesis but does propose potential synthetic
routes purely based on the chemical reaction rules contained
in the chemical reaction database. However, incompatibility
of the reaction with specific substituents in the core may
happen, the proposed synthetic routes are meant to provide a
fast, systematic, and preliminary suggestion based on general
reaction—synthesis—rules and structure-based (receptor) ligand
optimization. The diversity of the reactant database is a critical
factor when searching for the participant reactants along with
the number of different poses sampled at each reaction site.
The greater the number and diversity of reaction rules and
reactant available for LeadOp+R to explore—for the system of
interest—the greater the possibility to identify and generate new
compounds.

CONCLUSION

In this work, we have implemented a structure-based lead
optimization with synthetic accessibility algorithm called
“LeadOp+R.” Two model systems, Tie-2 kinase and human
5-LOX enzyme with their associated inhibitors, were selected
to demonstrate the abilities of the LeadOp+R algorithm. We
demonstrated how a query molecule was enhanced through
structured-based optimization and a potential synthetic route
was proposed based on reaction rules extracted from in-house
synthetic database. In the case of Tie-2, co-crystalized structure is
available, while the human 5-LOX example was performed using
a theoretical 5-LOX receptor model (comparative or homology
proteinmodel) and a known inhibitor. LeadOp+R generates a set
of potential compounds that exhibit better-calculated inhibition,
possess better efficiency score(s), along with providing synthesis
routes based on published reaction mechanisms (contained in
an in-house reaction and reactants database). The molecular
dynamic simulation analysis further demonstrates that the
generated structures preserve the important ligand-protein
interactions as seen in the crystal structures or reported in
the literature. For the proposed compounds with biological
inhibition values (IC50) obtained from the literature, LeadOp+R
calculated inhibition values corresponding (based on rankings)
to the literature values. The interactions between the inhibitor
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and protein, as noted in the literature, were observed in
the entire molecular dynamic simulation. Moreover, we
identified fragments that created and retained ligand-receptor
interactions that were stronger and more consistent than
the original query compound; these fragments were selected
based on reaction rules and discovered in our reactant
database.

In short, LeadOp+R is an algorithm that can automatically

optimize a query molecule based on reaction routes by searching
and selecting reactants that can undergo chemical synthesis
thus generating compounds with better binding affinity for
the biological system (receptor) of interest. Additionally, users
can indicate specific parts of the query compound to be
optimized and assign the predicted binding space (portion
of the binding site) for the generated products based on
known ligand-receptor interactions or preference. LeadOp+R
is an algorithm that cannot only optimize the lead compounds
but also design favorable and practical synthetic routes
based on known reaction mechanisms, leading to faster data

feedback between experimental and computer-aided molecular
design.

AUTHOR CONTRIBUTIONS

YT: Initiated the concepts; F-YL and YT: Drafted, programmed,
and performed the analysis on the projects; EE: Edited and gave
comments on the work.

ACKNOWLEDGMENTS

This work was funded by the Taiwan National Science
Council, grants number 98-2323-B-002-011-, 106-2622-B-002-
008-, 105-3011-F-002-010-, 106-2911-I-002-533, 106-2321-B-
002-041-, and 106-3114-B-038-001-. Resources of the Laboratory
of Computational Molecular Design and Metabolomics and the
Department of Computer Science and Information Engineering
of National Taiwan University were used in performing these
studies.

REFERENCES

Alex, A. A., and Flocco, M. M. (2007). Fragment-based drug discovery:

what has it achieved so far? Curr. Top. Med. Chem. 7, 1544–1567.

doi: 10.2174/156802607782341082

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., and Hermans,

J. (1981). “Interaction models for water in relation to protein hydration,”

in Intermolecular Forces. The Jerusalem Symposia on Quantum Chemistry

and Biochemistry, Vol. 14, ed B. Pullman (Dordrecht: Springer), 331–342.

doi: 10.1007/978-94-015-7658-1_21

Bridges, A. J. (2001). Chemical inhibitors of protein kinases. Chem. Rev. 101,

2541–2572. doi: 10.1021/cr000250y

Charlier, C., Hénichart, J. P., Durant, F., and Wouters, J. (2006). Structural

insights into human 5-lipoxygenase inhibition: combined ligand-based and

target-based approach. J. Med. Chem. 49, 186–195. doi: 10.1021/jm050870x

Ciulli, A., Williams, G., Smith, A. G., Blundell, T. L., and Abell, C. (2006). Probing

hot spots at protein-ligand binding sites: a fragment-based approach using

biophysical methods. J. Med. Chem. 49, 4992–5000. doi: 10.1021/jm060490r

Congreve, M., Chessari, G., Tisi, D., and Woodhead, A. J. (2008). Recent

developments in fragment-based drug discovery. J. Med. Chem. 51, 3661–3680.

doi: 10.1021/jm8000373

Corey, E. J., Howe, W. J., Orf, H. W., Pensak, D. A., and Petersson, G. J.

(1975). General methods of synthetic analysis. Strategic bond disconnections

for bridged polycyclic structures. J. Am. Chem. Soc. 97, 6116–6124.

Corey, E. J., and Jorgensen, W. L. (1976). Computer-assisted synthetic analysis.

Synthetic strategies based on appendages and the use of reconnective

transforms. J. Am. Chem. Soc. 98, 189–203.

Ducharme, Y., Blouin, M., Brideau, C., Châteauneuf, A., Gareau, Y., Grimm, E. L.,

et al. (2010). The discovery of setileuton, a potent and selective 5-lipoxygenase

inhibitor. ACS Med. Chem. Lett. 1, 170–174. doi: 10.1021/ml100029k

Hammarberg, T., Zhang, Y. Y., Lind, B., Radmark, O., and Samuelsson,

B. (1995). Mutations at the C-terminal isoleucine and other potential

iron ligands of 5-lipoxygenase. Eur. J. Biochem. 230, 401–407.

doi: 10.1111/j.1432-1033.1995.0401h.x

Hasegawa, M., Nishigaki, N., Washio, Y., Kano, K., Harris, P. A., Sato, H.,

et al. (2007). Discovery of novel benzimidazoles as potent inhibitors of TIE-

2 and VEGFR-2 tyrosine kinase receptors. J. Med. Chem. 50, 4453–4470.

doi: 10.1021/jm0611051

Hendrickson, J. B., Grier, D. L., and Toczko, A. G. (1985). A logic-

based program for synthesis design. J. Am. Chem. Soc. 107, 5228–5238.

doi: 10.1021/ja00304a033

Hendrickson, J. B., and Toczko, A. G. (1988). Synthesis design logic and the

SYNGEN (synthesis generation) program. Pure Appl. Chem. 60, 1563–1572.

doi: 10.1351/pac198860111563

Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008). GROMACS

4: algorithms for highly efficient, load-balanced, and scalable molecular

simulation. J. Chem. Theory Comput. 4, 435–447. doi: 10.1021/ct700301q

Hodous, B. L., Geuns-Meyer, S. D., Hughes, P. E., Albrecht, B. K., Bellon,

S., Bready, J., et al. (2007). Evolution of a highly selective and potent 2-

(pyridin-2-yl)-1,3,5-triazine Tie-2 kinase inhibitor. J. Med. Chem. 50, 611–626.

doi: 10.1021/jm061107l

Hopkins, A. L., Groom, C. R., and Alex, A. (2004). Ligand efficiency:

a useful metric for lead selection. Drug Discov. Today 9, 430–431.

doi: 10.1016/S1359-6446(04)03069-7

Huang, H., Bhat, A., Woodnutt, G., and Lappe, R. (2010). Targeting the

ANGPT-TIE2 pathway in malignancy. Nat. Rev. Cancer 10, 575–585.

doi: 10.1038/nrc2894

Ihlenfeldt, W.-D., and Gasteiger, J. (1996). Computer-assisted planning of organic

syntheses: the second generation of programs. Angew. Chem. Int. Ed. 34,

2613–2615.

Imre, G., Kalszi, A., Jkli, I., and Farkas, Ö. (2006). “Advanced automatic

generation of 3d molecular structures,” in 1st European Chemistry Congress

(Budapest).

Ivanov, I., Heydeck, D., Hofheinz, K., Roffeis, J., O’Donnell, V. B., Kuhn, H., et al.

(2010). Molecular enzymology of lipoxygenases. Arch. Biochem. Biophys. 503,

161–174. doi: 10.1016/j.abb.2010.08.016

Law, J., Zsoldos, Z., Simon, A., Reid, D., Liu, Y., Khew, S. Y., et al. (2009). Route

Designer: a retrosynthetic analysis tool utilizing automated retrosynthetic rule

generation. J. Chem. Inf. Model. 49, 593–602. doi: 10.1021/ci800228y

Lin, F. Y., and Tseng, Y. J. (2011). Structure-based fragment hopping for lead

optimization using predocked fragment database. J. Chem. Inf. Model. 51,

1703–1715. doi: 10.1021/ci200136j

Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001).

Experimental and computational approaches to estimate solubility and

permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.

46, 3–26. doi: 10.1016/S0169-409X(00)00129-0

Mata, P., Gillet, V. J., Johnson, A. P., Lampreia, J., Myatt. G. J., Sike, S., et al.

(1995). Sprout: 3d structure generation using templates. J. Chem. Inf. Model.

15, 479–493. doi: 10.1021/ci00025a016

Oliner, J., Min, H., Leal, J., Yu, D., Rao, S., You, E., et al. (2004). Suppression

of angiogenesis and tumor growth by selective inhibition of angiopoietin-2.

Cancer Cell 6, 507–516. doi: 10.1016/j.ccr.2004.09.030

Frontiers in Pharmacology | www.frontiersin.org March 2018 | Volume 9 | Article 96399

https://doi.org/10.2174/156802607782341082
https://doi.org/10.1007/978-94-015-7658-1_21
https://doi.org/10.1021/cr000250y
https://doi.org/10.1021/jm050870x
https://doi.org/10.1021/jm060490r
https://doi.org/10.1021/jm8000373
https://doi.org/10.1021/ml100029k
https://doi.org/10.1111/j.1432-1033.1995.0401h.x
https://doi.org/10.1021/jm0611051
https://doi.org/10.1021/ja00304a033
https://doi.org/10.1351/pac198860111563
https://doi.org/10.1021/ct700301q
https://doi.org/10.1021/jm061107l
https://doi.org/10.1016/S1359-6446(04)03069-7
https://doi.org/10.1038/nrc2894
https://doi.org/10.1016/j.abb.2010.08.016
https://doi.org/10.1021/ci800228y
https://doi.org/10.1021/ci200136j
https://doi.org/10.1016/S0169-409X(00)00129-0
https://doi.org/10.1021/ci00025a016
https://doi.org/10.1016/j.ccr.2004.09.030
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Lin et al. LeadOp+R

Oostenbrink, C., Soares, T. A., van der Vegt, N. F., and van

Gunsteren, W. F. (2005). Validation of the 53A6 GROMOS

force field. Eur. Biophys. J. 34, 273–284. doi: 10.1007/s00249-004-

0448-6

Orita, M., Ohno, K., and Niimi, T. (2009). Two “golden ratio” indices

in fragment-based drug discovery. Drug Discov. Today 14, 321–328.

doi: 10.1016/j.drudis.2008.10.006

Saxty, G., Woodhead, S. J., Berdini, V., Davies, T. G., Verdonk, M. L., Wyatt, P.

G., et al. (2007). Identification of inhibitors of protein kinase B using fragment-

based lead discovery. J. Med. Chem. 50, 2293–2296. doi: 10.1021/jm070091b

Schwarz, K., Walther, M., Anton, M., Gerth, C., Feussner, I., and Kuhn, H.

(2001). Structural basis for lipoxygenase specificity : conversion of the human

leukocyte 5-lipoxygenase to a 15-lipoxygenating enzyme species by site-

directed mutagenesis. J. Biol. Chem. 276, 773–779. doi: 10.1074/jbc.M0051

14200

Shaffer, D. N., andMansmann, P. T. (1997). Leukotriene inhibition and advances in

the treatment of asthma: a pharmacological review. Pediatr. Allergy Immunol.

11, 171–179. doi: 10.1089/pai.1997.11.171

Socorro, I. M., and Goodman, J. M. (2006). The ROBIA program for predicting

organic reactivity. J. Chem. Inf. Model. 46, 606–614. doi: 10.1021/ci05

0379e

Steele, V. E., Holmes, C. A., Hawk, E. T., Kopelovich, L., Lubet, R. A., Crowell, J.

A., et al. (1999). Lipoxygenase inhibitors as potential cancer chemopreventives.

Cancer Epidem. Biomar. 8, 467–483.

Trott, O., and Olson, A. J. (2010). AutoDock Vina: improving the speed and

accuracy of docking with a new scoring function, efficient optimization,

and multithreading. J. Comput. Chem. 31, 455–461. doi: 10.1002/jcc.

21334

Woods, J. W., Evans, J. F., Ethier, D., Scott, S., Vickers, P. J., Hearn, L., et al.

(1993). 5-lipoxygenase and 5-lipoxygenase-activating protein are localized

in the nuclear envelope of activated human leukocytes. J. Exp. Med. 178,

1935–1946. doi: 10.1084/jem.178.6.1935

Yu, Q. (2005). The dynamic roles of angiopoietins in tumor angiogenesis. Future

Oncol. 1, 475–484. doi: 10.2217/14796694.1.4.475

Conflict of Interest Statement: EE was employed by exeResearch, LLC and The

Chem21 Group, Inc.

The other authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2018 Lin, Esposito and Tseng. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org March 2018 | Volume 9 | Article 96400

https://doi.org/10.1007/s00249-004-0448-6
https://doi.org/10.1016/j.drudis.2008.10.006
https://doi.org/10.1021/jm070091b
https://doi.org/10.1074/jbc.M005114200
https://doi.org/10.1089/pai.1997.11.171
https://doi.org/10.1021/ci050379e
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1084/jem.178.6.1935
https://doi.org/10.2217/14796694.1.4.475
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00492 May 12, 2018 Time: 12:37 # 1

ORIGINAL RESEARCH
published: 15 May 2018

doi: 10.3389/fphar.2018.00492

Edited by:
Leonardo G. Ferreira,

Universidade de São Paulo, Brazil

Reviewed by:
Irene Nobeli,

Birkbeck, University of London,
United Kingdom

Sebastien Fiorucci,
University of Nice Sophia Antipolis,

France

*Correspondence:
Huixiao Hong

huixiao.hong@fda.hhs.gov

Specialty section:
This article was submitted to
Experimental Pharmacology

and Drug Discovery,
a section of the journal

Frontiers in Pharmacology

Received: 09 November 2017
Accepted: 25 April 2018
Published: 15 May 2018

Citation:
Sakkiah S, Kusko R, Pan B, Guo W,

Ge W, Tong W and Hong H (2018)
Structural Changes Due to Antagonist

Binding in Ligand Binding Pocket
of Androgen Receptor Elucidated

Through Molecular Dynamics
Simulations. Front. Pharmacol. 9:492.

doi: 10.3389/fphar.2018.00492

Structural Changes Due to
Antagonist Binding in Ligand Binding
Pocket of Androgen Receptor
Elucidated Through Molecular
Dynamics Simulations
Sugunadevi Sakkiah1, Rebecca Kusko2, Bohu Pan1, Wenjing Guo1, Weigong Ge1,
Weida Tong1 and Huixiao Hong1*

1 Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration,
Jefferson, AR, United States, 2 Immuneering Corporation, Cambridge, MA, United States

When a small molecule binds to the androgen receptor (AR), a conformational change
can occur which impacts subsequent binding of co-regulator proteins and DNA. In
order to accurately study this mechanism, the scientific community needs a crystal
structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To
address this open need, we leveraged molecular docking and molecular dynamics (MD)
simulations to construct a structure of the WT-AR ligand binding domain bound with
antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same
antagonist informed this study. After molecular docking analysis pinpointed the suitable
binding orientation of a ligand in AR, the model was further optimized through 1 µs of
MD simulations. Using this approach, three molecular systems were studied: (1) WT-
AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3)
Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally
determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide,
demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound
with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus
disturb the positive and negative charge clumps of the AF2 site. This disruption of the
AF2 site is key for understanding the impact of antagonist binding on subsequent co-
regulator binding. In conclusion, the antagonist induced structural changes in WT-AR
detailed in this study will enable further AR research and will facilitate AR targeting drug
discovery.

Keywords: androgen receptor, molecular dynamics simulations, induced molecular docking, bicalutamide,
agonist, antagonist

INTRODUCTION

The androgen receptor (AR), a member of the nuclear subfamily 3, is a ligand-activated
transcriptional factor. AR is expressed in various tissues of different species and regulates many
physiological functions including bone density, cognition, muscle hypertrophy, prostate growth
and differentiation (Gelmann, 2002). AR and estrogen receptor (ER) are well characterized
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nuclear receptor target of active endocrine chemicals (Hong
et al., 2002; Sakkiah et al., 2016). Copious experimental data and
numerous in silico predictive models estimate both estrogenic
and androgenic activity (Hong et al., 2002, 2003, 2005, 2012,
2015, 2016a,b; Shen et al., 2013; Ng et al., 2014, 2015a,b; Sakkiah
et al., 2016; Ye et al., 2016). AR is a well-established drug target
for prostate cancer, which is the second most common cancer
by occurrence in men in western countries (Damber and Aus,
2008). Both steroid and non-steroid antagonists treat prostate
cancer by blocking AR activity. A prolonged treatment course
leads to tumor AR mutations, which causes AR antagonists to
have a paradoxical effect. A thorough study of WT and mutant
AR (Mut-AR) antagonist binding is required to better understand
this paradoxical mechanism which limits therapeutic efficacy.

Full-length AR consists of 919 amino acids translated from 8
exons (Kuiper et al., 1989; Lubahn et al., 1989). Like other nuclear
receptors, AR consists of three major functional domains: (1)
an NH2-terminal domain, (2) a highly conserved DNA binding
domain, and (3) a conserved ligand-binding domain (LBD) (Gao
et al., 2005; Sakkiah et al., 2016). The hinge region acts as a
bridge between the DNA binding domain and the conserved
LBD. Both the AR N-terminal activation function 1 (AF1) in
the DNA binding domain and the AR C-terminal activation
function 2 (AF2) in the LBD control the transcriptional factors in
ligand-independent and ligand-dependent manners, respectively.
The AR-LBD (hereafter AR-LBD is termed as AR for simplicity)
has three different binding or active sites where an agonist or
antagonist can bind and alter AR functions: the ligand binding
pocket, the AF2 site, and the binding function 3 (BF3) site.
An agonist or a competitive antagonist can bind the AR ligand
binding pocket to enhance or depress AR function, respectively.
The AF2 site plays a major role in co-activator binding, which
starts the transcription of AR-regulated genes. A few antagonists
were reported to bind to the AF2 site, which directly blocks the
binding of a co-activator protein (Axerio-Cilies et al., 2011). The
BF3 site is a newly identified AR surface antagonist binding site.
An antagonist can bind in any of these described binding sites to
suppress AR activity. Antagonist binding causes conformational
changes in the AF2 site, rendering it unsuitable for co-activators
to bind AR (Estebanez-Perpina et al., 2007; Estébanez-Perpiñá
and Fletterick, 2009). The three-dimensional structure of AR
consists of 12 bundles of helices forming three layers (Figure 1).
Among these 12 helices, H12 plays a major role in AR activation
and undergoes a considerable conformational change due to
the binding of agonist or antagonist in the ligand binding
pocket. During agonist or antagonist binding, H12 functions like
a “lid” which closes or moves away from the ligand binding
pocket, respectively (Bohl et al., 2007; Cantin et al., 2007).
When androgen binds the ligand binding pocket of AR, H12
tightly holds co-activator proteins and initiates function. AR
antagonists are usually bulkier than agonists and thus require
a wider binding pocket than agonists. Due to their larger
size, antagonists push the residues in H12 (which is near the
ligand binding pocket) outward to expand the active site. These
structural changes in the ligand binding pocket cause the AF2
site to undergo conformational changes, preventing co-activator
protein binding (Estébanez-Perpiñá and Fletterick, 2009). Some

FIGURE 1 | The structure of AR is plotted in a helical bundle composed of 12
helices. These helices are arranged in three layers. Layer 1 has H1, H2, and
H3 (magenta), Layer 2 consists of H4, H5, H6, H8, and H9 (gold), and Layer 3
contains H7 and H10 (blue). H12 (in cyan) acts as a lid for the AR ligand
binding pocket during binding of agonists and antagonists.

mutations in AR cleverly cause drug resistance by converting
AR antagonist properties into agonist properties. Prostate cancer
drug resistance is predominantly driven by AR mutations. For
example, mutations T877A (Sack et al., 2001; Bohl et al., 2007),
W741L/C (Hara et al., 2003), L701A/T877A (Balbas et al.,
2013), and F878L (Balbas et al., 2013; Korpal et al., 2013)
in the LBD made AR antagonists Flutamide, R-bicalutamide,
and Enzalutamide behave as agonists. The mutation T877A
significantly increased the activity of AR, as evidenced by the
enhanced AR affinity toward progesterone and estrogens (Taplin
and Balk, 2004).

There exist 90 crystal structures of AR from different species
(rat, mice, chimpanzee, and human) in the Protein Data Bank
(PDB1) (Berman et al., 2000). Wild type AR (WT-AR) crystal
structures exist with either agonists in the ligand binding pocket
or antagonists in the AF2 or BF3 sites. Mut-AR crystal structures
exist with antagonists in the ligand binding pocket. No 3D
structure of WT-AR with an antagonist in the ligand binding
pocket has been described, likely because an antagonist binding to
the AR-chaperone complex does not disassociate the chaperone
from AR (Bohl et al., 2005; Sakkiah et al., 2016). To fill this
knowledge gap, the AF2 site structural changes in WT-AR which
are induced by antagonist binding could be determined via
molecular modeling.

1www.rcsb.org
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Determining the conformation change of a protein induced
by a ligand using crystallography is at best time consuming
but often infeasible. Several researchers employed molecular
dynamics (MD) simulations to characterize H12 structural
changes due to antagonists or agonist binding in the AR ligand
binding pocket. Zhou J. et al. (2010) utilized replica-exchange
MD to characterize structural conformational changes and H12
movement caused by binding of hydroxyflutamide in the ligand
binding pocket of WT and mutant (T877A) AR. Using MD
simulations, Bisson et al. (2008) proposed that T877A in AR
destabilized hydroxyflutamide–Met895 interactions and thus
decreased hydroxyflutamide antagonist activity. Additionally,
Osguthorpe and Hagler (2011) employed MD simulations and
quantum mechanics to discover that an antagonist occupied
more space than an agonist, leading to H12 instability. While
important contributions to the field, these MD simulations
were limited by short time frames and mainly focused on
the ligand binding pocket or H12 structural changes (Bisson
et al., 2008; Osguthorpe and Hagler, 2011; Liu et al., 2015,
2016, 2017; Wang et al., 2017). Recently, many researchers
captured structural changes of various proteins using long
time MD simulations (hereafter called “long MD simulations”)
(Whitten et al., 2005; Dror et al., 2009; Khelashvili et al., 2009;
Nury et al., 2010; Gotz et al., 2012; Durrant et al., 2016). For
example, Lindorff-Larsen et al. (2011) predicted the folding of
12 proteins using MD simulations ranging from microsecond
to a millisecond. Their results unveiled a common principle
for the folding of the 12 structurally diverse proteins and
more importantly demonstrated that long MD simulations are
a power tool to predict and capture protein conformational
changes (Lindorff-Larsen et al., 2011). Next, Kumar and Purohit
(2014) found that the long MD simulations significantly
increased prediction accuracy when studying cancer associated
single nucleotide polymorphisms. Thus, long MD simulations
overcome many limitations of short-term MD simulations. Duan
et al. (2016) conducted 1 µs MD simulations and explored ligand
binding pocket changes during agonist and antagonist binding
in WT and Mut-AR. Using bias-exchange meta-dynamics to
study the free energy profile of agonist and antagonist binding
to AR, they observed agonist and antagonist binding driven
movement of H12 and structural changes in the ligand binding
pocket of WT-AR. They also reported that long MD simulations
were required to capture H12 movement, whereas short-
term stimulations miscalculated agonist binding induced H12
structural changes (Duan et al., 2016). Hence, in this study, we
applied long MD simulations (1 µs) not only to capture H12
movement but also to study AF2 site structural changes due to
antagonist binding in the AR ligand binding pocket.

Three AR complex structures were studied to understand
the antagonist binding induced structural changes of the AF2
site. R1881 and bicalutamide are, respectively, well-known as
an agonist and an antagonist for AR. Structures of AR bound
with R1881 and bicalutamide were downloaded from PDB:
WT-AR-R1881 (AR with agonist, PDBID: 1E3G) and Mut-
AR-bicalutamide (AR with antagonist, PDBID:1Z95). The third
AR complex structure, WT-AR-bicalutamide, was absent from
PDB and thus was generated using the induced fit molecular

docking (IFD) method (explained in the Section “Materials and
Methods”). The IFD method explores both possible binding
poses of a ligand in a receptor active site as well as the
associated conformational changes of the side chains near the
active site. MD simulations are an important tool to study
receptor–ligand interactions at an atomic level for a given time
frame. MD simulations optimize three-dimensional complex
protein structure bound with a ligand obtained from X-ray
crystallography or molecular docking. Here, we leveraged the
advantages of IFD and MD simulations together to understand
the subtle structural changes in WT-AR due to anti-androgen
binding and also to elucidate key co-activator binding residues in
the WT-AR AF2 site. Each AR complex structure was subjected
to 1 µs of MD simulations to resolve important AF2 site
residue reformation during the binding of small molecules in
WT-AR. Our results will enable design of improved prostate
cancer treatments and facilitate endocrine disruption chemical
risk assessment through AR-mediated responses.

MATERIALS AND METHODS

Molecular Docking
Rigid docking (only giving flexibility to ligands) might fail to
produce a precise ligand pose due to rigidness of the protein. In
contrast, IFD gives flexibility to adjust not only the active site but
also the side chain orientations of the protein to fit the pose and
conformation of the bound ligand (Zhong et al., 2009). Hence,
it can generate many protein-ligand complexes by changing the
side chains or the backbone of the protein. Glide (docking) and
Prime (refinement) modules were used in the IFD to determine
the possible binding modes of the ligand and the concomitant
binding induced conformational changes.

The IFD (Sherman et al., 2006a,b) module2 from the
Schrodinger-Suite (2016b) was used to dock the AR antagonist,
bicalutamide, in WT-AR.

The following steps were involved in the IFD employed here
(Wang et al., 2008; Luo et al., 2013):

(i) The protein was refined using the Protein Preparation
module.

(ii) Each ligand was docked (Glide module) in a defined
region using a softened potential to produce 20 different
poses (default setting).

(iii) A sidechain prediction (Prime module) within a given
distance of the ligand was conducted for each complex.

(iv) The defined region of the protein-ligand complexes was
minimized.

(v) The refined protein-ligand complexes were re-docked
using Glide by specifying the lowest energy structure.

(vi) The IFD score (binding energy) was calculated for each
complex.

Protein preparation is one of the most important steps in
molecular docking and plays a key role in IFD. The three-
dimensional atomic coordinates of WT-AR (PDB ID: 1E3G)

2www.schrodinger.com/induced-fit
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(Matias et al., 2000) were retrieved from PDB and used as a
receptor for the IFD. The Protein Preparation module3 was used
to add hydrogen atoms and to build the missing side chains,
residues, and loops. The OPLS-2001 force field (Jorgensen and
Tirado-Rives, 1988; Kaminski et al., 2001; Shivakumar et al.,
2010) was used to assign the partial charges. All water molecules
were removed and the protein structure was optimized using the
OPLS force field. A 10 Å docking grid was generated around
the ligand, R1881, in WT-AR. The structure of bicalutamide
was obtained from the crystal structure of Mut-AR-bicalutamide
(PDB ID: 1Z95) (Bohl et al., 2005) and docked in the generated
grid box using Glide XP docking. The Glide XP docking (Halgren
et al., 2004; Friesner et al., 2006; Shelley et al., 2007) generated
20 different bicalutamide poses for the WT-AR structural
refinements. The Prime module was used to refine the generated
WT-AR-bicalutamide complexes. In the Prime refinement, each
WT-AR-bicalutamide conformation from the previous step was
subjected to side chain and backbone refinements (Jacobson et al.,
2004) by selecting the residues within 10 Å from bicalutamide
and/or residues from 669 to 918. The Prime energy was calculated
and used to rank the refined AR-bicalutamide complexes. The
lowest energy conformation (30 kcal/mol) of the refined WT-AR
complex was used to re-dock the bicalutamide using Glide XP
mode. The most favorable binding pose of bicalutamide in
WT-AR was selected based on the IFD score (binding energy).
The selected WT-AR-bicalutamide complexes were visualized to
check the interactions between bicalutamide and the residues in
the ligand binding pocket using Ligand Interactions module in
Maestro 11 (Schrodinger-Suite, 2016a).

Molecular Dynamics Simulations
Proteins are dynamic in nature. Thus, understanding atomic
level motion is required to capture their profound dynamic
mechanisms (Chou and Mao, 1988; Chou et al., 1994; Wang and
Chou, 2009). MD simulations have the capacity to analyze the
dynamics of an apoprotein or a complex with other molecules
in an aqueous environment (Sakkiah et al., 2013a,b). Moreover,
MD simulations yield energetically favorable conformations
by optimizing a protein-ligand complex, which is needed
to understand protein–ligand interactions and ligand binding
induced structural changes.

The structures of the WT-AR-bicalutamide complex (obtained
from IFD), WT-AR-R1881, (PDBID: 1E3G) (Matias et al., 2000),
and the Mut-AR-bicalutamide complex (PDBID: 1Z95) (Bohl
et al., 2005) were subjected to MD simulations using the
Amber 14 package (Case et al., 2005). Then the topology and
coordinate files for the agonist and antagonist were prepared
using antechamber. Tleap was used to prepare the topology and
coordinate files for the protein as well as to make the AR complex
for running MD simulations. Amber03 molecular mechanical
force field (Duan et al., 2003) and general AMBER force field
(gaff) (Wang et al., 2004) were employed for the protein and
ligands (agonist and/or antagonist), respectively. Each of the
complex structures were immersed into a rectangular box of
TIP3P model water (Jorgensen et al., 1983). The boundaries of

3https://www.schrodinger.com/protein-preparation-wizard

the water box size were 10 Å away from the nearest atoms
of the complex. All systems were neutralized by adding Cl−
ions. The Particle Mesh Ewald (PME) (Darden et al., 1993)
and SHAKE (Ryckaert et al., 1977) algorithms were used to
handle long-range electrostatic interactions for all heavy and
hydrogen atoms involved in the covalent bonding. A cutoff
of 10 Å was used for the short-range interactions (van der
Waals and electrostatic interactions). In the first phase, only
the solvents were minimized and equilibrated inside the water
box. Then, the whole system was minimized and equilibrated
by applying the steepest descent minimization for 1000 cycles,
followed by conjugate gradient energy minimization for 4000
cycles. Subsequently the whole system was gradually heated from
0 to 310.15 K over a 100 ps period which was followed by a
250 ps equilibrium simulation for the whole systems. In the
second phase, the prepared systems were subjected to 1 µs of MD
simulations using Amber14. All MD simulations were performed
with a time step of 2 fs. The coordinates were saved for every
1 ps. MD simulations were performed using PyMol (Schrodinger,
2015) and Visual Molecular Dynamics (Humphrey et al., 1996).
The Amber package4 was used to calculate RMSD values for the
protein and ligands as well as RMSF values for residues.

RESULTS AND DISCUSSION

IFD Produced a Structure of
WT-AR-Bicalutamide for MD Simulations
No crystal structure for WT-AR with an antagonist in the
ligand binding pocket has been deposited in PDB (accessed on
May 19, 2017). To address this open question, we conducted
IFD. Flexibility was given to the active site residues and the

4http://ambermd.org/doc12/Amber14.pdf

TABLE 1 | Induced fit docking (IFD) score and the key residues involved in
hydrogen bond interactions between WT-AR and bicalutamide for the top 5
complexes.

Model # Glide score IFD score Interactions

Hydrogen bond π–Cation

Model-1 −12.75 −600 Leu704, Asn705 Trp741,
Phe764

Model-2 −12.11 −600 Leu704, Asn705 Trp741

Model-3 −13.01 −600 Leu704, Asn705,
Arg752

Trp741,
Phe764

Model-4 −11.78 −598 Leu704, Asn705,
Arg752

Trp741,
Phe764

Model-5 −11.20 −598 Leu704, Asn705 Phe764

TABLE 2 | Three molecular systems in MD simulations.

# PDB ID Ligand System

1 1E3G R1881 WT-AR-R1881

2 1Z95 Bicalutamide WT-AR-bicalutamide

3 1Z95 Bicalutamide Mut-AR-bicalutamide
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ligand during Glide docking. The whole WT-AR-bicalutamide
system was refined using the Prime module to predict the
suitable binding orientation of bicalutamide in the ligand
binding pocket of WT-AR. Among the 20 models generated
for WT-AR-bicalutamide, the top 5 models were selected based
on their IFD/Glide scores and checked for residue interactions
(Table 1). Among these 5 complex structures, Model-1, Model-3,
and Model-4 showed a π–cation interaction with Trp741 and
Phe764. Trp741 had van der Waals interactions favorable
for agonist binding in the ligand binding pocket of WT-
AR (Bohl et al., 2005). In contrast, Model-2 and Model-5
failed to form π–cation interactions with Trp741 or Phe874.
Model-3, Model-4, and Model-1 had shown three, three, and
two hydrogen bond interactions between bicalutamide and
WT-AR, respectively. In Model-3 and Model-4, bicalutamide
formed hydrogen bond interactions with Leu704, Asn705,
and Arg752. Importantly, the hydrogen bond between the
agonist/antagonist with Arg752 in WT-AR is crucial for AR
activity (Gao et al., 2005; Bohl et al., 2007; Tan et al.,
2015). Bicalutamide in Model-1 failed to form hydrogen bond
interactions with Arg752. Model-3 had a better binding affinity
value than Model-4. Interestingly, bicalutamide in Model-3
showed a bent conformation, which is different from the
bicalutamide conformation in the Mut-AR (Gao et al., 2005).
Previous evidence proposed that bicalutamide forms a hydrogen
bond with residues Arg752, Leu705, Asn705, and Gln711 in
Mut-AR (Tan et al., 2015). While Model-3 also formed a
hydrogen bond with critical residues (Leu704, Asn705, and

Arg752) it failed to form a hydrogen bond with Gln711
and did not adopt a similar pose with the agonist due to
the bulkier tryptophan side chain. Additionally, in Model-3,
the 4-fluorophenyl group of bicalutamide moved toward the
H12 region to form a suitable position in the WT-AR ligand
binding pocket. Hence, Model-3 was selected for subsequent MD
simulations of WT-AR-bicalutamide based on IFD score and
binding interactions.

System Stability and Fluctuation Analysis
Revealed Stability of AR Structures
We used the three molecular systems listed in
Table 2 (WT-AR-R1881, WT-AR-bicalutamide, and
Mut-AR-bicalutamide) to analyze the structural changes in
WT-AR due to bicalutamide binding in the ligand binding
pocket using MD simulations. All trajectory files obtained from
the MD simulations were examined for stability and fluctuation
of the systems. Metrics of root mean square deviation (RMSD)
and root mean square fluctuation (RMSF) were calculated for
all systems to measure their energetic stability and the spatial
fluctuation of residues, respectively. Figure 2A plots the RMSD
values of the three systems during the 1 µs simulations. The
RMSD values converged in the last 100 ns, indicating that the
systems had reached a stable state. The WT-AR-R1881 and
Mut-AR-bicalutamide systems were stabilized with an RMSD
value of around 2.0 Å, while the WT-AR-bicalutamide system
had a higher RMSD value of about 2.5 Å. An average structure
was calculated from the last 100 ns for each of the three systems.

FIGURE 2 | (A) Shows the root mean square deviation (RMSD) plot of the systems during the 1 µs MD simulations. The RMSD values were calculated using AR
backbone atoms. The X-axis represents time with a unit of 100 ps and the Y-axis shows RMSD values in Å. (B) Shows the root mean square fluctuation (RMSF) of
the Cα atoms of AR systems in the 1 µs MD simulations. The X-axis indicates AR residue number and Y-axis represents RMSF in Å. The residues with RMSF > 2 Å
are marked. (C) Demonstrates the structure of WT-AR-R1881, residues with RMSF > 2 Å in the loop regions are marked. These residues are drawn in a stick model.
WT-AR-R1881 is color coded in green, WT-AR-bicalutamide in purple, and Mut-AR-bicalutamide in blue.
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The structure with the lowest RMSD value compared with the
average structure in last 100 ns was selected as a representative
structure for each of the systems to elucidate the structural
changes of WT-AR induced by bicalutamide.

Root mean square fluctuation plots were used to analyze
flexibility of the residues in AR in the 1 µs MD simulations.
Examination of the RMSF plots in Figure 2B revealed that
WT-AR-bicalutamide had a larger RMSF value compared with
WT-AR-R1881 and Mut-AR-bicalutamide near the C-terminal
of LBD (mostly near H12). The average RMSF value for
WT-AR-bicalutamide, Mut-AR-bicalutamide, and WT-AR-
R1881 was 1.29, 1.25, and 1.11 Å, respectively. Five residues
(Asn692, Leu728, Gly820, Pro849, and Ser888) in AR had an
RMSF of >2.0 Å (Figure 2B) and were considered to be flexible
residues. These five residues were present in the loop region of
AR (Figure 2C). The RMSF values of the active site residues were
small, demonstrating the stability of the AR active site.

Key Structural Changes in WT-AR
Binding Antagonists
The AR ligand binding pocket accommodates both agonists
and antagonists. Most antagonists bind in this site and alter

the function of AR. The representative structures of WT-
AR-R1881 and WT-AR-bicalutamide obtained from the MD
simulations were superimposed to examine the difference
between the two systems. Several major structural changes were
identified in WT-AR due to the bicalutamide binding compared
with agonist binding (R1881) (Figure 3A). Comparison of
WT-AR-bicalutamide with WT-AR-R1881 showed a distortion
at the end of H10 due to bicalutamide binding. Several
residues in H10 were changed into a loop, which enabled more
flexible movement. The structural conversion of H11 into a
loop moved H12 away from the AR ligand binding pocket.
Moreover, structural changes were observed when comparing
WT-AR and Mut-AR bound with bicalutamide (Figure 3B).
During bicalutamide binding, H11 was retained in the Mut-
AR structure but was changed into a loop in the WT-AR
structure (marked by the dotted circle in Figure 3B). As expected,
Mut-AR-bicalutamide had a similar 3D structure to WT-AR-
R1881.

The ligand binding pocket area and volume were calculated
using the online Computed Atlas of surface Topography
of protein server5. The area/volume for WT-AR-R1881,

5http://sts.bioe.uic.edu/castp/calculation.html

FIGURE 3 | Superimposition of WT-AR-R1881 and WT-AR-bicalutamide (A) and superimposition of WT-AR-bicalutamide and Mut-AR-bicalutamide (B). AR-R1881 is
drawn in green, WT-AR-bicalutamide in purple, and Mut-AR-bicalutamide in cyan. The black dotted circles mark the structural changes between the two structures.
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WT-AR-bicalutamide, and Mut-AR-bicalutamide were 185/90,
528/321, and 366/193, respectively. As expected, area and volume
of the ligand binding pocket of WT-AR-bicalutamide were
larger than the agonist binding in WT-AR and bicalutamide
binding in Mut-AR. Bicalutamide is larger than R1881 and hence
moved H12 outward from the ligand binding pocket. The RMSD
values comparing the WT-AR-R1881 vs. WT-AR-bicalutamide
as well as WT-AR-bicalutamide vs. Mut-AR-bicalutamide were
calculated for each residue by superimposing the structures
using Visual Molecular Dynamics (Humphrey et al., 1996).
The residues were ranked based on the computed RMSD
values and are plotted in Supplementary Figure S1. The RMSD
values showed a gap between 2.8 and 3 Å in both comparisons

(Supplementary Figures S1A,B). There were 42 and 37 residues
with RMSD value greater than 2.8 Å between WT-AR-R1881
and WT-AR-bicalutamide and between WT-AR-bicalutamide
and Mut-AR-bicalutamide, respectively. These residues are
summarized in Supplementary Tables S1, S2. Twenty-two
WT-AR-R1881 vs. WT-AR-bicalutamide residues and 26 WT-
AR-bicalutamide vs. Mut-AR-bicalutamide residues were in
helices (H3, H7, H9, H10, and H12), while the other residues
were in loop regions.

The Trp741 mutation played a major role in the conversion
of an AR antagonist into an agonist. The flipped Trp741 side
chain moved His874 in H10 away from the ligand binding pocket
to accommodate bicalutamide. Leu873, Phe876, Thr877, and

FIGURE 4 | Superimposition of the representative structures from the MD simulations and the X-ray crystal structures from PDB for WT-AR-R1881 (A) vs.
Mut-AR-bicalutamide (B). The protein is drawn as a ribbon model. Overlay of bicalutamide structures from PDB are in red and the calculated WT-AR are in cyan (C).
The X-ray crystal structure of AR is colored in red, the representative structure of WT-AR-R1881 in green, and Mut-AR-bicalutamide in cyan.

Frontiers in Pharmacology | www.frontiersin.org May 2018 | Volume 9 | Article 492407

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00492 May 12, 2018 Time: 12:37 # 8

Sakkiah et al. Antagonist Induced AR Structural Changes

Met895 were the active site residues in the ligand binding pocket
showing RMSD values greater than 3 Å between WT-AR-R1881
and WT-AR-bicalutamide. Thr850, Ser851, His874, Phe878, and
Leu881 from H10 also had RMSD values greater than 3 Å
(Supplementary Table S1). These structural changes drove the
ligand binding pocket of WT-AR to expand to accommodate
bicalutamide.

The representative structure of WT-AR-R1881 superimposed
well with Mut-AR-bicalutamide compared with the
superimposition of WT-AR-R1881 and WT-AR-bicalutamide.
The H12 residues in Mut-AR-bicalutamide were not very
different from the H12 residues in WT-AR-R1881. All residues
in Mut-AR had less than 2.5 Å RMSD compared with WT-AR-
R1881. Mut-AR-bicalutamide additionally did not experience
large structural changes compared to WT-AR-R1881. The
mutant residue Trp741Leu in Mut-AR-bicalutamide had a
similar conformation to the wild type residue in WT-AR-
R1881. The residues showing RMSD greater than 2.8 Å
between WT-AR-bicalutamide and WT-AR-R1881 are listed in
Supplementary Table S1.

Lastly, Mut-AR-bicalutamide and WT-AR-bicalutamide
representative structures were superimposed to identify the
crucial residues that played important roles in bicalutamide

binding to AR. H11 in WT-AR-bicalutamide changed into
a loop. The residues 882–984 in the loop region between
H10 and H12 gave more flexibility for H12 to move away
from the ligand binding pocket in WT-AR-bicalutamide. All
these residues had RMSD values greater than 3.5 Å compared
with WT-AR-R1881. Notably, the residues from His885 to
Asp890 had RMSD values greater than 6 Å. These residues
forming H11 in Mut-AR-bicalutamide reduced the flexibility
of the loop and held H12 close to the ligand binding pocket.
As expected, these residues showed RMSD values less than
2.8 Å between WT-AR-R1881 and Mut-AR-bicalutamide.
Hence, we posit that the structural change of H11 into a
loop in WT-AR-bicalutamide plays an essential role in H12
movement and thus makes the AF2 site not suitable for co-
activator binding. The residues which are different between
Mut-AR-bicalutamide and WT-AR-bicalutamide are listed in
Supplementary Table S2.

Superimposition of the X-ray crystal structures and the
representative structures from our MD simulations had an
RMSD value of 1.10 Å for WT-AR-R1881 (Figure 4A) and
1.02 Å for Mut-AR-bicalutamide (Figure 4B). This indicates
that the selected representative structures do not deviate
much from the X-ray crystal structures. Furthermore, the

TABLE 3 | Critical WT-AR AF2 site residues involved in the hydrophobic and hydrogen bond interactions with a co-activator.

PDB ID Mutation Hydrophobic interaction Hydrogen bond
interaction

2PKL
(Estebanez-Perpina et al., 2007)

Val716, Lys720, Gln733, Met734, Ile 737, Glu893, Met894

2Q7I (Askew et al., 2007) Val716, Lys717, Val730, Gln733, Met734, Ile 737, Gln738,
Glu893, Met894

Glu897, Lys720

2Q7K (Askew et al., 2007) Val716, Lys 717, Gln733, Met734, Ile 737, Gln738, Glu893,
Met894

Glu897, Lys720

2QPY
(Estebanez-Perpina et al., 2007)

Val713, Val716, Lys720, Val730, Gln733, Met734, Gln738,
Met894

Glu897, Lys720

4OEY (Hsu et al., 2014) Val713, Val716, Val730, Gln733, Met734, Ile737, Gln738,
Glu893, Met894

Glu897, Lys720

4OEZ (Hsu et al., 2014) Val716, Phe725, Met734, Ile 737, Gln738, Glu893, Met894 Glu897, Lys720

4OFR (Hsu et al., 2014) Val716, Phe725, Met734, Ile737, Gln738, Glu893, Met894 Glu897, Lys720,
Asp731, Gln733

4OFU (Hsu et al., 2014) Val713, Val716, Phe725, Met734, Ile737, Gln738, Glu893,
Met894

Glu897, Lys720

4OH5 (Hsu et al., 2014) Val713, Val716, Val730, Gln733, Met734, Ile 737, Gln738,
Met894

Glu897, Lys720

4OHA (Hsu et al., 2014) Val716, Val730, Gln733, Met734, Ile737, Gln738, Glu893,
Met894

Glu897, Lys720

4OIL (Hsu et al., 2014) Val716, Lys 720, Phe725, Met734, Ile737, Gln738, Glu893,
Met894

Glu897, Gln733

4OIU (Hsu et al., 2014) Lys720, Phe725, Met734, Gln738, Glu893 Glu897, Asp731,
Gln733

4OJ9 (Hsu et al., 2014) Val713, Lys720, Phe725, Met734, Ile737, Gln738, Met894 Glu897, Gln733

4OK1 (Hsu et al., 2014) Trp741Leu, Arg760Ala Val716, Gln733, Met734, Ile737, Gln738, Met894 Glu897, Lys720

4OKW (Hsu et al., 2014) Trp741Leu, Arg760Ala Val716, Phe725, Met734, Ile737, Gln738, Glu893, Met894 Glu897, Lys720,
Gln733

4OKX (Hsu et al., 2014) Val713, Val716, Phe725, Val730, Met734, Ile737, Gln738 Glu897, Lys720,
Gln733

4OLM (Hsu et al., 2014) Val713, Val716, Phe725, Val730, Met734, Ile737, Gln738 Glu897, Gln733
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orientations of R1881 and bicalutamide were also similar
to the crystal structures. The overlay of bicalutamide from
the Mut-AR X-ray crystal structure and the representative
WT-AR structure from MD simulations had an RMSD value
of 5.2 Å (Figure 4C). This comparative analysis confirmed
that the representative structures of WT-AR-bicalutamide
obtained from the MD simulations are reliable and were
not obtained by chance. Therefore, the representative
structure of WT-AR-bicalutamide could be reliably used to
elucidate the structural changes in WT-AR due to antagonist
binding.

Identification of Critical Residues in the
AF2 Site
The AR AF2 site is bound by co-activator proteins, which
initiates the transcription of target genes. Table 3 lists the
important residues in WT-AR and their interactions with
co-activator proteins (Askew et al., 2007; Estebanez-Perpina
et al., 2007; Hsu et al., 2014). The interactions between AR
and co-activators were identified from 17 WT-AR-agonist
and two Mut-AR-agonist complexes in the PDB. Most of
the residues (Val713, Val716, Lys717, Lys720, Phe725, Val730,
Gln733, Met734, Ile737, Gln738, Glu893, Met894, and Ile898) in
the AF2 site formed hydrophobic interactions with co-activator
proteins. Five residues (Val716, Met734, Ile737, Gln738, and

Met894) in the AF2 site had hydrophobic interactions with
most of the co-activators. Glu897, Lys720, Asp731, and Gln733
formed hydrogen bond interactions with co-activator proteins
and Glu897 and Lys720 formed hydrogen bond interactions with
most of the co-activators (Askew et al., 2007; Estebanez-Perpina
et al., 2007; Hsu et al., 2014). From the structural analysis, it was
clear that Val716, Met734, Ile737, Gln738, Met894, Glu897, and
Lys720 played a paramount role in tight binding of co-activator
proteins.

Comparison of the AF2 site of the three representative
structures (WT-AR-R1881, WT-AR-bicalutamide, and Mut-AR-
bicalutamide) from the MD simulations shed light on critical
residue displacements which prevent co-activator binding.
Val713, Val716, Lys717, Lys720, Phe725, Met734, Met894,
Glu897, and Ile898 were considerably different between WT-
AR-bicalutamide and WT-AR-R1881 (Figure 5A). Among
these residues, few had a considerable deviation in their side
chain. The side chain distances of Glu897 (CD), Gln738
(CD), Met734 (SD), Val716 (O), Lys720 (CG) were 3.8, 4.2,
2.2, 2.0, and 2.2 Å, respectively, between the WT-AR-R1881
and WT-AR-bicalutamide. These residues also had different
conformations between WT-AR-bicalutamide and Mut-AR-
bicalutamide as depicted in Figure 5B, with respective side
chain distances of Glu897 (CD), Gln738 (CD), Met734 (SD),
Val716 (O), Lys720 (CG) as 3.2, 0.5, 1.8, 1.1, and 3.0 Å.

FIGURE 5 | Overlay of WT-AR-R1881 in green and WT-AR-bicalutamide in purple (A). Overlay of WT-AR-bicalutamide in purple and Mut-AR-bicalutamide in cyan
(B). The residues with different conformations in the AF2 site are presented as stick models.
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Val716, Lys720, and Gln733 were previously experimentally
proven to form a charge clump in the AF2 site, which interacts
with co-activator proteins (Askew et al., 2007; Estebanez-
Perpina et al., 2007; Estébanez-Perpiñá and Fletterick, 2009;
Hsu et al., 2014). These residues had a remarkable deviation
when comparing between the WT-AR-R1881 and WT-AR-
bicalutamide structures in our data. Axerio-Cilies et al. (2011)
experimentally proved that Met734 was pushed away from
the AF2 site when bicalutamide binds AR. In addition, Zhou
X.E. et al. (2010) demonstrated that Glu897 meaningfully
interacted with a co-activator protein. Taken together, these
previous results support our discovery: when bicalutamide binds
WT-AR, Met734, and Glu897 move, which causes structural
changes in H12. H12’s structural change renders the AF2 site
not suitable for co-activator protein binding. Lys720, Glu897,
Val716, and Met984 were found to play a major role in the

binding of co-activator peptides (He et al., 2004; Hur et al.,
2004).

Electrostatic Potential Surface Analysis
Revealed That Bicalutamide Binding
Disturbed the Positive and Negative
Charge Clump in the WT-AR AF2 Site
Electrostatic potential surface analysis is one of the most
powerful tools to study intramolecular interactions in a protein
and intermolecular interactions between a protein and a small
molecule (Sakkiah et al., 2013a). The electrostatic potential
surface was calculated only for the critical residues in the AF2 site
using PyMol (Baker et al., 2001). PyMol automatically generated
the electrostatic potential map and smoothed out the local charge
density of the nearby atoms (within 10 Å) without taking solvent

FIGURE 6 | Electrostatic potential surface analysis for the AF2 site in WT-AR-R1881 (A), WT-AR-bicalutamide (B), and Mut-AR-bicalutamide (C). The electrostatic
potential surfaces are drawn in the right panels, where red indicates negative and blue indicates positive charges. The corresponding left panels show important
residues in stick models.
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screening effects into account6,7. The electrostatic potential
surface of the AF2 site in WT-AR-R1881, WT-AR-bicalutamide,
and Mut-AR-bicalutamide is shown in Figure 6. WT-AR-
R1881 and Mut-AR-bicalutamide had very similar electrostatic
potential surfaces in their AF2 site (Figures 6A,C), indicating
the mutant residues turned the antagonist into an agonist.
However, WT-AR-bicalutamide had a very different electrostatic
potential surface (Figure 6B) compared with the other two
structures due to structural changes in the AF2 site caused
by the antagonist binding. Five residues (Val716, Lys720,
Gln733, Gln738, and Met734) played an important role in
bicalutamide binding induced WT-AR AF2 site structural
changes. The binding of R1881 in the active site of WT-AR
formed a positive (blue) and negative (red) binding region
in the AF2 site (Figure 6A). Proximal residue contact closed
the positive (caused by Gln733, Lys720, and Val716) and
negative (caused by Met734, and Gln738) binding sites of
the AF2 site in WT-AR-bicalutamide (Figure 6B). The critical
residues in the Mut-AR-bicalutamide AF2 site (Figure 6C)
showed a similar type of change compared with Mut-AR-
R1881. Previously, it was experimentally proven that the charge
clump was formed by residues Lys720 and Glu897 (Estebanez-
Perpina et al., 2005; Tan et al., 2015). Co-activators can
form hydrogen bond interactions with Lys720 and Glu897,
leading to high binding affinity with WT-AR. These hydrogen
bonds were distorted due to antagonist binding. Bicalutamide
binding in the active site of WT-AR moved Lys720 and
Glu897, disturbing the charge clump in the AF2 site and
allowing for co-activator binding. Hence, the movement of
Lys720, Val716, and Gln733 made the AF2 site unsuitable
for co-activator proteins to bind together with bicalutamide.
These computational findings give insight into the residues
involved in the ligand induced conformational changes of the
AF2 site.

CONCLUSION

No structural details of WT-AR when bound by antagonists have
been reported to date. Hence, we applied IFD and 1 µs long
MD simulations to elucidate the bicalutamide binding induced
structural changes of WT-AR’s AF2 site. IFD identified a suitable

6 http://www.bccs.uni.no
7 http://www.bioinfo.no

pose of bicalutamide in the ligand binding pocket of WT-AR.
The best WT-AR-bicalutamide structure was selected based
both on IFD score and on bicalutamide interactions with
the critical residues in the ligand binding pocket of WT-AR.
The complexes (WT-AR-R1881, WT-AR-bicalutamide, and
Mut-AR-bicalutamide) were optimized by MD simulations using
Amber 14. Our results clearly pinpointed residues Val716,
Lys720, Gln733 and Met734, Gln738, and Glu897 as playing a
pivotal role in the formation of the AF2 site in AR. Structural
changes or movement of these residues due to bicalutamide
binding changed the structure of the AF2 site, making it
unsuitable for co-activator protein binding. The electrostatic
potential map clearly revealed that the movement of these
residues due to bicalutamide binding disturbed the positive and
negative charge clump in the AF2 site of WT-AR. The positive
clump in the AF2 site was distorted due to the movement of
residues Lys720, Val716, and Gln733. Experimental validation is
needed to confirm the mechanism by which bicalutamide binding
induced WT-AR AF2 structural changes impact recruitment of
co-factors.
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