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Editorial on the Research Topic

The role of the microbiome in plant and soil health in a changing climate
Industrialization during the mid-twentieth century drastically increased the earth’s

temperature over the past few decades due to increased concentration of greenhouse gases,

primarily carbon dioxide, by burning fossil fuels (Houghton, 2001). This rise in global

temperature has led to extreme weather events worldwide, such as intense summers or

harsh winters, and altered precipitation patterns, leading to prolonged droughts or severe

floods (Ripple et al., 2022). The resulting environmental stress, a consequence of climate

change, affects all living beings, including humans and plants. These stresses, especially the

extreme heat and water conditions, negatively affect crop production and threaten food

security (Ahmad et al., 2023). Soil salinity is another cause of concern due to elevated sea

levels and extreme droughts (Munns and Tester, 2008; Sandhu and Kaundal, 2018). In

nature, plants often face various stresses sequentially or simultaneously (Zandalinas and

Mittler, 2022). Several studies reported the negative effect of combined environmental

biotic and abiotic stresses on crop production and yield (Mahalingam, 2015; Ramegowda

and Senthil-Kumar, 2015). The constant increase in world population, which is expected to

reach 9 billion by 2050, demands an increase in food production by 70-85% (FAO, 2009).

On top of that, anthropogenic activities and overuse of chemical fertilizers deteriorate soil

health (Pahalvi et al., 2021; Santorufo et al., 2021). The root microbiome is one of the most

diverse communities on the earth. It is mainly composed of rhizosphere microbes

colonizing the immediate soil surrounding the plant root and endosphere microbes

colonizing the internal tissues of the roots (Pascale et al., 2020; Bai et al., 2022) These

microbes in the rhizosphere exhibit various plant growth-promoting activities such as

nitrogen fixation, phosphate solubilization, siderophore, catalase, and IAA production and

help plants’ growth and development (Mohanty et al., 2021; Ganesh et al., 2024). The plant

growth-promoting bacteria significantly mitigates environmental abiotic and biotic stresses

(Beneduzi et al., 2012; Kumar et al., 2019; Burlakoti et al., 2024).

The Research Topic, which has received diverse contributions, is a testament to the

collaborative nature of scientific research. It is a collective effort to understand the role of

the microbiome in plants and soil health in a changing climate, highlighting the role of
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soil microbes in mitigating salinity stress, drought, heavy metal

toxicity, flooding, and elevated CO2. The first article suggested the

potential of the cell-free supernatant in the novel Devosia sp. SL43

strain to sustain the soybean seed germination rate under salt

stress (Monjezi et al.). Another study on soybean under elevated

CO2 and flooding revealed higher bacterial and fungal diversity

upon combined treatments compared to non-flooding control. The

individual treatment of elevated CO2 and flooding revealed a

significant abundance of Chitinophaga, Clostridium, and Bacillus.

However, the combined treatments showed a considerable

abundance of Trichoderma and Gibberella, offering hope for the

future of plant and soil health in a changing climate (Coffman et al.).

Another study focused is on phyllosphere epiphytic microbes’

diversity of five medicinal plants in summer and winter. The

phyllosphere microbiome plays a significant role in plant

physiological metabolism. The study revealed the seasonal effect

on the bacterial and fungal phyllosphere compared to host species.

The summer phyllosphere is more heterogeneous for microbial

diversity than winter. The network connections of the bacterial and

fungal communities significantly increased during season transition

compared to plant connections. This study shed light on the

understanding of the plant microbial community’s composition in

small-scale agriculture and their ecological roles (He et al.). The

article on the utilization of Bacillus amyloliquefaciens QST713-

based product on potatoes revealed that this PGPB enhanced the

potato yield and improved potato peel nutrient profile with a minor

impact on the soil microbiome diversity (Adamo et al.). Another

study on the PGPB revealed the biofertilizer and biocontrol

properties of Stenotrophomonas maltophilia BCM. This PGPB

significantly increased the wheat seed germination rate in the

presence of two phytopathogens, Rhizoctonia solani and Fusarium

oxysporum, as well as saline conditions. Genomic analysis of S.

maltophilia revealed the presence of genes known for nutrient

assimilation plant growth promoting traits such as plant growth

and antifungal activities (Sharma et al.). The report on the impact of

two PGPBs, B. subtilis, and B. aryabhattai, on mitigating salt stress

in rice revealed the potential of these isolates for sustainable

agriculture in the era of climate change. PGPB treatment in rice

during salt stress improved the ionic and water balance,

antioxidation defense, photosynthesis, nutrient uptake, and

phytohormone production (Siddika et al.).

Drought and salinity, often in tandem, are an important climate

conundrum affecting crop growth and development due to ominous

auxin imbalance as a function of microbial diversity. However,

functional microbial diversity is more impactful than mere

numerical diversity, the former undergoing lesser reduction in

water scarcity under organic production practices than

conventional practices with assured irrigation (del-Canto et al.).

The study on Phaseolus vulgaris recommends organic management

rather than using agrochemicals to maintain enhanced rhizobia

abundance, nodulation, and diversity (del-Canto et al.). Efforts must

be made to develop sustainable and eco-friendly approaches for

preserving and strengthening soil microbiota biodiversity.
Frontiers in Plant Science 026
Further, it has been recommended that many microbes as auxin-

producing endophytes are reported to neutralize drought and salinity

through auxin balance with coordinated auxin biosynthesis involving

plant-indigenous auxin, microbes-associated auxins, and carriers of

auxin transporters, apart from upregulation of stress-induced auxin-

responsive microbial genes (Mal and Panchal). The intervention of

omics-driven research in understanding the action mechanism and

interaction of plants and associated plant rhizobacteria has been

nicely reviewed (Verma et al.). The revelation of omics-based

adaptive regulatory mechanisms underlying the plant adaptation

under microbes-mediated abiotic stress reduction with improved

plant nutrition as the second line of plant defense has been reported

(Verma et al.). In another review, the potential of plant growth-

promoting microorganisms for salinity tolerance in plants has been

elucidated (Acharya et al.). Interestingly, rhizosphere microbes, as

the second genome, put forth stressing plant defense through the

elevated supply of growth-promoting hormones such as auxins,

gibberellins, and cytokinins, coupled with a reduced level of stress

causing ethylene, thereby striking a balance osmoprotectant

secretion and further oxidative cellular damage (Acharya et al.).

An interesting review highlighting the microbial intervention in the

remediation of heavy metal toxicity, emphasizing the mechanism

involved, ensures better rhizosphere health resilience (Tang et al.).

Further, attempts have been made to enlist diverse approaches,

including the recent nanotechnology, to improve the microbial

remediation of heavy metal-polluted soils.

While developing a combative strategy against drought and

salinity, photobomb-induced soil legacy effects (developing

functional bridge accommodating pathogenic microbes,

antagonists, and repeated recruitment of fresh microbial diversity,

all collectively surviving through competitive coexistence) featuring

rhizosphere secretions, non-preferential salinity-tolerant microbes

coupled with the use of halophytes are highly pivotal (Ma et al.).

In conclusion, this research topic has a significant collection of

articles shedding light on the role of plants’ phyllosphere,

rhizosphere, and endosphere microbiome in plant growth and

development and soil health under critical environmental stresses.
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Cell-free supernatant of Devosia
sp. (strain SL43) mitigates the
adverse effects of salt stress
on soybean (Glycine max L.)
seed vigor index

Nadia Monjezi , Iraj Yaghoubian and Donald L. Smith*

Department of Plant Science, McGill University, St Anne-de-Bellevue, QC, Canada
Soil salinity is a major constraint for soybean production worldwide, and the

exploitation of plant growth-promoting bacteria (PGPB) and their bioactive

metabolite(s) can improve plant salinity tolerance. With this objective, two

experiments were performed, aiming to test 4 culture media (YEM(A), TYE(A),

TS(A), and LB(A)) for growing a novel Devosia sp. (strain SL43), and then

evaluating cell-free supernatants (CFS) from the Devosia sp. on germination of

soybean (Glycine max L.) seeds under salinity stress. Soybean seeds were

subjected to three salinity levels (0, 100, and 125 mM NaCl) and 6 levels of

Devosia sp. CFS dilution (0, 1:1, 1:100, 1:250, 1:500, 1:1000). The results indicated

that 125 mM NaCl concentration caused the greatest reduction in the total

number of germinated seeds (15%), germination rate (43.6%), root length (55.2%),

root weight (39.3%), and seed vigor (68%), and it also increased mean

germination time by 71.9%. However, Devosia-CFS improved soybean

germination, and the greatest effect was obtained at 1:1 dilution. Under the

highest salinity level, application of CFS at 1:1 dilution increased final germination

(17.6%), germination rate (18.6%), root length (162.2%), root weight (239.4%), seed

vigor index (318.7%), and also shortening mean germination time by 19.2%. The

results indicated that seed vigor index was positively correlated with other traits

except for mean germination time. Our study suggested that the highest

productivity of Devoisa sp. was obtained from the YEM medium. Results also

suggested that CFS produced by the novel Devosia sp. (SL43 strain) can

successfully alleviate salt stress effects on soybean seed germination and

manipulating the chemical composition of the growth medium can influence

the effectiveness of these bioactive metabolites.

KEYWORDS

soybean, salinity, Devosia sp., cell-free supernatants, seed germination, vigor index,
culture medium optimization
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1 Introduction

Soybean (Glycine max L.) is one of the world’s more widely

produced crops, due to its high nutritional value, which plays a vital

role in global food security (Waqas et al., 2014; Chung et al., 2020).

Previous studies have shown that soybean growth, production and

quality are strongly influenced by abiotic stresses (Chung et al.,

2020; Yaghoubian et al., 2021).

As our climate continues to be affected by global warming/

climate change, the consequences of that warming grow more

intense, and the frequency of extreme weather events increases.

This shifting of weather patterns is the biggest challenge currently

facing farmers and farm communities worldwide (Kheiri et al.,

2021; Clarke et al., 2022). Rising demand for agricultural

commodities persists despite continuous warming, which is

driving the agricultural sector seek new ways of crop production

(Chandio et al., 2020; Yadav et al., 2021). Further, climate-induced

environmental stressors such as salinity, drought, and heat are

among the principal factors reducing crop productivity worldwide,

which diminishes global food security and environmental

sustainability. The situation with regard to soil salinization is

worsening substantially faster than researchers had predicted less

than a decade ago, putting the world on alert for the potential

spread of salinity issues into currently unaffected regions

(Mukhopadhyay et al., 2021). Salinity impairs many plant

functions, from the seed germination stage to final seed

production; seedling emergence at the initiation phase of the

lifecycle of plants is highly susceptible to salinity (Naamala et al.,

2022; Yaghoubian et al., 2022a). However, once the plants are

overcome the seedling stage, they are better able to cope with the

adverse consequences of salinity stress (Gholizadeh et al., 2021;

Shah et al., 2022).

Building climate resilience requires relying on sustainable

farming methods and practices in the face of climate change;

hopefully these technologies can relieve pressure on the

environment, cut greenhouse gas emissions, and also aid in

managing future risks (Dhankher and Foyer, 2018; Adegbeye

et al., 2020; Yadav et al., 2021). One of the interesting methods

for increasing the resilience of our food systems is linking farming

communities and scientists together to work toward easing

dependence on chemical products while increasing reliance on

eco-friendly product options such as plant growth-promoting

bacteria (PGPB), which are increasingly being employed as bio-

stimulant formulations, promoting plant health, development, and

sustainability (Naamala and Smith, 2020; Fiodor et al., 2021;

Yaghoubian et al., 2022b). There are various mechanisms by

which microbes effectively promote plant growth in saline soil.

Several studies have shown that beneficial microbes can directly

improve plant growth under salinity stress, perhaps by synthesizing

specific growth-stimulating hormones such as auxins, cytokinin,

and gibberellins or by downregulation ethylene formation. Indeed,

this kind of hormonal coordination by PGPB will result in

minimizing plant ethylene levels and therefore reducing the

detrimental and inhibitory effects of this phytohormone on plant

growth under salt stress. On the other hand, some beneficial
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microbes might either promote plant growth through bacterial

auxin production or increase the production of endogenous plant

auxins, which will result in controlling primary root elongation and

boost lateral root formation, and finally, the equilibrium between

ethylene and auxin enables plants to uptake water, ions, and

nutrients more efficiently under salinity stress (Iqbal et al., 2017;

Kudoyarova et al., 2019; Kumar et al., 2020; Eichmann et al., 2021;

Park et al., 2021). Therefore, optimizing germination such that it

can largely overcome soil salinity effects is possible by utilizing

PGPB, a promising tool for a more sustainable future. However, the

crop colonization ability of most beneficial bacteria varies

depending upon the host, bacterial species, and salt concentration

(Miljaković et al., 2022; Nigam et al., 2022; Sulastri et al., 2022;

Yaghoubian et al., 2022a). Moreover, bacterial trait–environment

relationships can vary from farm to farm and from region to region,

which may affect the efficacy of PGPB (Goddard et al., 2001; Meena

et al., 2015). The most recent approach, within market limitations,

for PGPB strain technologies, is using Cell-Free Supernatants

(CFSs) of beneficial PGPB, which could offer innovative

alternatives in dealing with these challenging limitations, as well

as promoting crop productivity (Pellegrini et al., 2020; Naamala and

Smith, 2021). Such microbial-derived mixtures may include growth

hormones, secondary metabolites, various signal compounds, and

antioxidant enzymes, which would positively enhance plant growth

(Yasmin et al., 2004; Fiodor et al., 2021; Saberi Riseh et al., 2021).

Thus, CFS technologies offer the most viable hope for enhancing

crop production under a challenging climate change situation, due

to a range of conditions and the probability of success of microbial

compounds which are less affected by variable environmental

conditions (Naamala and Smith, 2020; Shah et al., 2022).

Although these CFS metabolites have recently gained greater

attention, a meaningful gap remains in the progression from

research to implementation in existing farming systems. The most

critical step is determining the type of growth medium for in vitro

cultivation because it consistently influences microbial organic

compound production. While plenty of studies primarily focus on

the growth and nutritional requirements of root nodule bacteria,

less attention has been focused on maximizing growth rates and

increasing production of plant growth-promoting compounds. An

appropriate medium contains a good source of carbon, nitrogen,

mineral salts, and growth factors; nutrient media such as yeast

extract mannitol (YEM) and tryptone yeast extract (TYE) medium

are found to be very suitable for growing PGPB. Indeed, although

there are many enrichment culture formulations, each bacterium

has entirely unique nutritional requirements, and testing culture

medium and new culture conditions can make it possible to find

novel bacterial compounds enhancing plant growth and

development (Pastor-Bueis et al., 2017; Sessitsch et al., 2019;

Trianto et al., 2020; Jiao et al., 2021; Yusfi et al., 2021).

Thus, we hypothesized that growth conditions can play a vital

role in supporting plant growth-promoting compound production.

Therefore, the present study focused on acquiring detailed

knowledge and understanding of cost-effective technologies to

produce such biostimulants and reduce detrimental impacts of

salinity on soybean germination.
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2 Materials and methods

2.1 Experimental design

This research was conducted in three sets of experiments at the

Macdonald Campus of McGill University in 2022. The first study

examined bacterial growth on a set of agar culture media; the best

medium was selected based on growth rate. Then, the growth of

bacteria in the suspension culture of the selected medium was

monitored using Cytation instrumentation (Cytation 5th Cell

Imaging Multimode Reader, BioTek Instruments, Inc.). The

second and third experiments examined simultaneously the

effectiveness of Cell-free supernatant (CFS) harvested from

bacterial suspensions of Yeast Extract Mannitol Broth (YEMB)

and Tryptone Yeast Extract Broth (TYEB) media as technologies

for enhancing seed germination of soybean (Glycine max L. var

P09A62X) under saline and non-saline conditions. The treatments

were determined as factorial combinations of three NaCl levels

(0, 100, and125 mM) and dilution ratios of 1:100, 1:250, 1:500, and

1:1000 for the CFS (1 mL Devosia sp. CFS and 1, 100, 250, 500, and

1000 mL distilled water, respectively). Each experiment was

organized following a completely randomized design.
2.2 Evaluation of solid and broth culture
medium

The genus Devosia is a member of the Alphaproteobacteria and

is a motile and gram-negative bacterium classified within the family

Hyphomicrobiaceae of the order Rhizobiales (Talwar et al., 2020).

Devosia sp. strain SL43 isolated from root nodules of Amphicarpaea

bracteate is a plant growth-promoting phytomicrobiome member

which was isolated from an undomesticated legume native to

southwestern Quebec, through previous research in our

laboratory (Ilangumaran et al., 2021); stock cultures were

maintained on YEM broth slants at -80°C and subcultured every

three months. A total of 4 different culture medium compositions,

including YEM(A) (Yeast extract - Mannitol Agar), TYE(A)

(Tryptone Yeast Extract Agar), TS(A) (Tryptic Soy Agar), and LB

(A) (Luria-Bertani Agar) were used for growing the bacterium. A

loopful (0.1 mL) of a suspension of Devosia sp. strain SL43 was

streaked onto four plates containing YEM(A), TYE(A), TS(A), and

LB(A) inside a laminar air flow hood and incubated at 28 ± 2°C and

the visual culture characteristics of SL43 colonies on the plates was

observed once daily for 10 days; each experiment was performed

three times. Growth was not observed on TS(A) and LB(A) media;

however, significant bacterial growth was observed for YEM(A) and

TYE(A) plates which were selected for the next steps. Pure cultures

of SL43 on YEM(A) and TYE(A) plates were picked off the plates

with a sterile inoculating loop and inoculated into 25 mL of YEM(B)

or TYE(B), which were agitated on a rotary shaker at 150 rpm and

28°C until reaching maximum growth based on the optical density

of the bacterial growth which was measured spectrophotometrically
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at 600 nm (Ultrospec 4300 pro UV/Visible Spectrophotometer,

Biochrom, Ltd, Cambridge, UK).

Bacterial growth was monitored using a microplate reader

(Cytation 5 Cell Imaging Multi-Mode Reader) by incubating

Devosia sp. strain SL43 in a set of sterilized 96-well clear bottom

microplates (Corning Incorporated, NY). Each row contained the

following treatments, in randomized order with 12 replications:

YEM(B) (Control), TYE(B) (Control), YEM(B) (distilled water),

YEM(B) (100 mM NaCl), YEM(B) (125 mM NaCl), TYE(B)

(distilled water), TYE(B) (100 mM NaCl), TYE(B) (125 mM NaCl).

Briefly, for measuring bacterial growth, 200 mL of the prepared

bacterial cultures in YEM or TYE broth culture (prepared with

distilled water or saline solution) were injected into the microplate

wells. Additionally, two rows were allocated to the YEM(B) or TYE

(B) without adding any bacterial starter cultures. After covering

microplates with pre-processed lids, they were placed on a rotary

shaker microplate reader at 355 rpm at 28°C. The optical density

(OD) of the bacterium was monitored at 600 nm. The OD of each

well was read every 2 h for 7 days.
2.3 Propagation of bacteria and harvesting
cell-free supernatants

For germination tests, 100 µL of SL43 broth from the final step

were inoculated into a 100 mL Erlenmeyer containing 50 mL of

YEM or TYE broth medium for 10 days at 28 ± 2°C; the material

was considered ready for germination evaluation when the O.D.

reached 1.0 (or maximum growth); at this stage, cell-free

supernatant (CFS) was collected by centrifuging the liquid culture

at 10,000 g for 30 min at room temperature, in order to remove the

cells and other larger particles; after being centrifuged, the

supernatant was filtered through a 0.22-um pore size syringe

membrane (AwelTM MF 48-R, NuAire, USA) (Legesse, 2016;

Sarbadhikary and Mandal, 2017).
2.4 Seed germination test

Soybean seeds were prepared through surface sterilization in 5%

NaOCl (sodium hypochlorite) for one minute, followed by rinsing

three times in sterile distilled water to disinfect soybean seeds; then

seeds were placed on filter paper in Petri dishes. After which

surface-sterilized seeds were moistened with 5 mL of cell-free

supernatant of strain SL43 at various dilution levels (control,

1:100, 1:500, and 1:1000), diluted in sterile distilled water

(unstressed) or 100 and 125 mM NaCl solution (stressed).

Additionally, in some Petri dishes, seeds were wetted with 5 mL

of sterile distilled water (unstressed) or 100 and 125 mM NaCl

solution (stressed) without CFS addition, acting as the control.

Then, Petri dishes were put in a thin polyethylene bag to avoid

drying caused by evaporation, and Petri dishes containing the

treated seeds were placed inside a growth chamber and incubated

at 25 ± 2°C with a relative humidity of 70% in darkness. The seed
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germination rate was observed several times per day over the

following 96 h; a seed was considered germinated when the root

was over 0.2 cm long. The number of germinated seeds and

germination time of each seed was determined (Ghassemi-

Golezani et al., 2016). In addition, root length and dry weight of

seedlings were recorded 7 days after sowing. Other variables

calculated are described immediately below.
2.5 Mean germination time

Computation of mean germination time (MGT) was performed

according to the following formula:

MGT = o(D� g)

on

Where g is the number of seeds germinated on each day, D is

the number of days from the start of the germination test, and n is

the total number of seeds germinated at the termination of the

experiment (Ellis and Roberts, 1981).
2.6 Germination rate

The germination rate (GR) was calculated followed Al-Mudaris

(1998) as:

GR = on

o(D� g)
2.7 Seed vigor index

The seed vigor index (SVI) was computed using the formulas

proposed by Yaghoubian et al. (2022c):

SVI =
SDW
MGT

Where MGT is mean germination time and SDW is the mean

value of seedling dry weight.
Frontiers in Plant Science 0411
2.8 Statistical analysis

Data were analyzed using SAS 9.4, and differences between

control and treatments were considered statistically significant at

P < 0.05 using a Duncan’s multiple test. Excel software was used to

draw figures. The correlations were calculated by the correlation

(CORR) procedure of the SAS 9.4, software.
3 Results

3.1 Performance of solid and broth
culture media

Devosia sp. on TS and LB Agar (A) media showed no visible

growth. However, it grew well on YEM and TYE (A) media at pH

7.0 as seen after incubation for 7-10 days at 28 °C. Devosia sp. grew

more slowly on the TYE(A) medium (7-10 days) than the YEM(A)

medium (5-7 days). The Devosia sp. colonies on the YEM(A) plates

appeared a golden yellow color, shiny, mucoid in texture, irregularly

shaped, and apparent in non-uniformity of size. However, TYE(A)

caused Devosia to grow in fairly circular colonies with more

uniform size. In addition, Devosia colonies on TYE(A) had a

smaller and thinner appearance than colonies on YEM(A)

(Figure 1). A set of results for Devoisa growth, based on optical

density (OD) measurements on broth culture, is given in Figure 2.

The results showed that Devosia grew faster and more efficiently in

YEM(B) medium, under both saline and non-saline conditions than

TYE(B) medium (Figure 2).
3.2 Germination trend

The seed germination trend observed during the study showed

that the process was more rapid when YEM(B)-CFS was applied at

all salinity levels (Figure 3). Using CFS at 1:1 dilution resulted in the

quickest germination under 100 mM NaCl. In addition, under the

highest salinity level, both 1:1 and 1:100 CFS dilution caused a trend

to increased germination than other CFS levels. However, the
FIGURE 1

Growth of Devosia sp. (SL43 strain) in YEM(A) (Yeast Extract Mannitol Agar) and TYE(A) (Tryptone Yeast Extract Agar) media.
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soybean germination trend was similar under all YEM(B)-CFS

levels in non-saline conditions. The application of TYE(B)-CFS

showed an increasing trend during soybean germination either in

saline or non-saline conditions, and 1:250 (non-saline), 1:1 (100
Frontiers in Plant Science 0512
mM NaCl), and both 1:100 and 1:500 (125 mM NaCl) induced the

most rapid seed germination (Figure 3).
3.3 Final germination

The results indicated that Devosia YEM(B)-CFS at 1:1

significantly increased soybean germination in the presence of

125 mM NaCl. However, the germination promotion effects of

other treatments were not statistically significant (Figure 4). In the

presence of 125 mM NaCl, YEM(B)-CFS at 1:1 dilution increased

the final germination of soybean by 17.6% compared to salt-stressed

seeds with no CFS addition. Moreover, under moderate salinity

(100 mM NaCl), different levels of YEM(B)-CFS increased final

germination from 14.2 (CFS dilution 1:1) to 2.8% (CFS dilution

at 1:500);

In contrast, in the presence of 100 mM and 125 mM NaCl,

various TYE(B)-CFS levels had no meaningful effect on soybean

germination in comparison with salt-stressed seeds. There was only

a slight promoting effect from 11.4% (CFS dilution 1:1) to 2.8%

(CFS dilution 1:500) under 100 mM NaCl, and from 11.7% (CFS
FIGURE 3

Changes in seed germination for soybean in response to salinity and dilutions of Devosia sp. YEM(B)-CFS and TYE(B)-CFS. Values represent the means of
four replicates ± SD. 1:1, 1:100, 1:250, 1:500 and 1:1000 = 1 mL Devosia sp. CFS and 1, 100, 250, 500 and 100 mL distilled water respectively.
FIGURE 2

Changes in growth of Devosia sp. (SL43 strain) in Yeast Extract
Mannitol broth (YEM-B) and Tryptone Yeast Extract broth (TYE-B)
under salinity conditions. 1: YEM(B) (Control), 2: TYE(B) (Control),
3: YEM(B) (distilled water), 4: YEM(B) (100 mM NaCl), 5: YEM(B) (125
mM NaCl), 6: TYE(B) (distilled water), 7: TYE(B) (100 mM NaCl) and
8: TYE(B) (125 mM NaCl).
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dilutions at 1:1, 1:100, and 1:500) to 5.8% (CFS dilution1:1000)

under 125 mMNaCl, compared to stressed seeds with no additional

CFS (Figure 4).
3.4 Germination rate

Figure 5 indicates that the Devosia CFS treatments did not

significantly affect the soybean germination rate (GR) of the seeds.

However, when seeds were exposed to varying levels of salinity

stress, YEM(B)-CFS at 1:1 concentration showed the greatest seed

germination enhancement, with a 7.4 (100 mM NaCl) and 18.6%

(125 mM NaCl) increase over salt-stressed seeds without CFS
Frontiers in Plant Science 0613
application. Moreover, germination enhancement effect of YEM

(B)-CFS on GR was limited under non-saline conditions, and YEM

(B)-CFS at 1:500 dilutions provided the best GR, with a 9.0%

increase over the control seeds.

Application of TYE(B)-CFS had no meaningful effect on

soybean GR (Figure 5). The maximum enhancement effect of

TYE(B)-CFS on GR was only 0.73% at the 1:250 level under the

non-salinity conditions, compared to the control seeds. Similarly,

GR was not affected by TYE(B)-CFS at 100 mM NaCl. However, at

the highest salinity level, the soybean GR was promoted by TYE(B)-

CFS from 16.5% (1:100 dilution) to 3.3% (1:250 dilution) compared

to the salt-stressed seed with no additional CFS, except for the 1:1

CFS level (Figure 5).
FIGURE 5

Effect of dilutions of Devosia sp. YEM(B)-CFS and TYE(B)-CFS and salinity on germination rate of soybean seedlings. Values represent the mean of
four replicates ± SD. 1:1, 1:100, 1:250, 1:500 and 1:1000 = 1 mL Devosia sp. CFS and 1, 100, 250, 500, and 100 mL distilled water, respectively.
FIGURE 4

Effect of dilutions of Devosia sp. YEM(B)-CFS and TYE(B)-CFS and salinity on germination of soybean seedlings. Values represent the mean of four
replicates ± SD. 1:1, 1:100, 1:250, 1:500 and 1:1000 = 1 mL Devosia sp. CFS and 1, 100, 250, 500 and 100 mL distilled water, respectively.
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3.5 Mean germination time

Applying YEM(B)-CFS caused a meaningful decreased effect on

Mean Germination time (MGT) under highest level of salinity

(Figure 6). The lowest MGT was observed at 1:1 and 1:100 dilutions

of YEM-CFS at 125 mM NaCl salinity levels, with 19.2 and 11.7%

decreases compared to salt treatments with no addition of CFS. In

contrast, under non-stress conditions and 100 mM NaCl salinity

level, CFS treatments had no meaningful effect on MGT. Applying

YEM(B)-CFS at 1:1 dilution, when seeds were exposed to moderate

salinity, only caused a 7% reduction in MGT compared to the

stressed seeds with no additional CFS. Additionally, under optimal

conditions, YEM(B)-CFS at 1:100 (10.8%), 1:500 (12.4%), and

1:1000 (9.3%) caused a slight reduction in MGT compared to the

control seeds.
Frontiers in Plant Science 0714
In addition, applying TYE(B)-CFS under both saline and non-

saline conditions had no significant effect on MGT. The highest

level of TYE(B)-CFS induced an increase in MGT under non-saline

conditions and the highest salinity level, with 19.4 and 16.0%

increases, respectively. In addition, at 125 mM NaCl, applying

TYE(B)-CFS shortened MGT at 1:100 (17.8%), 1:250 (3.85%),

1:500 (9.5%), and 1:1000 (11.7%) dilutions, compared to the salt-

treated seeds without CFS addition (Figure 6).
3.6 Root length

Devosia YEM(B)-CFS and TYE(B)-CFS application

significantly increased root length under the highest salinity levels

(Figure 7). Under 125 mM NaCl condition, applying YEM(B)-CFS
FIGURE 7

Effect of dilutions of Devosia sp. YEM(B)-CFS and TYE(B)-CFS and salinity on root length of soybean. Values represent the mean of four replicates ±
SD. 1:1, 1:100, 1:250, 1:500 and 1:1000 = 1 mL Devosia sp. CFS and 1, 100, 250, 500 and 100 mL distilled water, respectively.
FIGURE 6

Effect of dilutions of Devosia sp. YEM(B)-CFS and TYE(B)-CFS and salinity on mean germination time (MGT) of soybean seedlings. Values represent
the mean of four replicates ± SD. 1:1, 1:100, 1:250, 1:500 and 1:1000 = 1 mL Devosia sp. CFS and 1, 100, 250, 500 and 100 mL distilled water,
respectively.
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at 1:1 and 1:100 dilutions caused the highest increase in soybean

root length, by 162.2 and 68.51%, respectively. Under moderate

levels of salinity, however, only the 1:1 level of CFS showed the

heightening effect with a 50.4% increase compared to the salt-

treated seeds with no CFS addition.

Furthermore, applying TYE(B)-CFS at the 1:1 concentration

was the best root length promoter with 6.8% (non-saline), 26.0%

(100 mM NaCl), and 145.2% (125 mM NaCl) increases; however,

only at the highest level of salinity the difference was statistically

meaningful. In addition, TYE(B)-CFS at the 1:100 dilution

caused an increase in root length under 125 mM NaCl compared

to the salt-treated seeds without CFS addition, with 72.6%

increase (Figure 7).
3.7 Root dry weight

Root weights of soybean seeds were boosted by applying

Devosia-CFS grown on a YEM(B) culture medium, under both

saline and non-saline conditions (Figure 8). The results indicated

that the highest concentration of YEM(B)-CFS (1:1) had the

greatest effect on root weight with 1.26, 2.95, and 2.39 fold

increases compared to controls in 0, 100, and125 mM NaCl,

respectively. All other concentrations of YEM(B)-CFS showed an

elevated effect on root weight, ranging 60.6 to 92.3% under optimal

conditions, and 58.9 to 95.0% under 100 mM NaCl. In addition,

applying YEM(B)-CFS at 1:100 under extreme salinity levels caused

a 91.5% increase in root weight, which was statistically meaningful.

Application of CFS from TYE(B) medium also increased

soybean seedling root weight, the 1:1 concentration being the

best, with 54.7, 108.6 and 132.3% increases under the 0, 100 mM

NaCl, and 125 mMNaCl, respectively. Additionally, TYE(B)-CFS at

1:250 dilution caused a meaningful increase in soybean root dry

weight compared to control seeds, by 58.9%. However, the overall
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results indicated that enhancement effects of Devosia CFS from

YEM(B) culture medium was greater than from TYE(B)

medium (Figure 8).
3.8 Seed vigor index

Applying YEM(B)-CFS caused an increase in seed vigor index

(SVI) compared to the control in saline and non-saline conditions

(Figure 9). However, the boosting effect of CFS was greater when

Devosia grew in the YEM(B) culture medium. The highest

concentration of YEM(B)-CFS (1:1) caused the greatest increases

under saline and non-saline conditions with 106% (non-salinity),

336.8% (100 mM NaCl), and 318.7% (125 mM NaCl)

enhancements of SVI.

Moreover, the highest SVI resulted from applying a 1:250

concentration of TYE(B)-CFS under non-saline conditions (56%).

In addition, TYE(B)-CFS at 1:1 dilution was the best under 100 and

125 mM NaCl which caused a 121.0 and 112.5% increases,

respectively; however, these differences were not statistically

significant (Figure 9).
3.9 Correlation

The correlation coefficients of the total number of germinated

seeds, GR, MGT, root length, and root dry weight were statistically

significant compared with the SVI (Table 1). For both YEM(B) and

TYE(B) medium, a positive correlation was found between the total

number of germinated seeds (r = 0.50 and 0.41, p ≤ 0.01), GR (r = 0.79

and 0.75, p ≤ 0.01), root length (r = 0.84 and 0.71, p ≤ 0.01), and root

dry weight (r = 0.92 and 0.90, p ≤ 0.01). However, MGT was

negatively correlated with the SVI for both YEM(B) (r = -0.78

p ≤ 0.01) and TYE(B) (r = -0.66, p ≤ 0.01) (Table 1).
FIGURE 8

Effect of dilutions of Devosia sp. YEM(B)-CFS and TYE(B)-CFS and salinity on Root dry weight of soybean seedlings. Values represent the mean of
four replicates ± SD. 1:1, 1:100, 1:250, 1:500 and 1:1000 = 1 mL Devosia sp. CFS and 1, 100, 250, 500 and 100 mL distilled water, respectively.
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4 Discussion

PGPB are reliable bioinoculants that improve plant

performance, among other things through counteracting salinity

stress by biosynthesizing a diverse array of bioactive compounds

with the ability to activate and regulate plant physiological

mechanisms (Ayuso-Calles et al., 2021). However, many reports

suggested that microbial culture medium or nutrition strongly

influence bacterial growth and their production of bioactive

compounds, and extensive testing of bacterial growth as a

function of nutrients is necessary for selecting an appropriate

culture medium that can support and promote the growth and

survival of microorganisms (Davis et al., 2005; Trianto et al., 2020).

For this study, we assessed the effect of a range of growth media for

the novel Devosia sp. (SL43 strain). Based on the results, we selected

yeast-extract-mannitol (YEM) as the culture medium for further

experiments, as it resulted in the highest growth rate and cell

density either under saline or non-saline conditions, and it was

generally more effective for growing Devosia SL43 strain than other

tested media. In addition, we compared this medium and TYE,

which was also effective in producing cultures of the Devosia SL43

strain. The results indicated that not only did the bacterium have
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different growth rates in each medium but also the growth patterns

(colony morphology) differed visually. Many reports have indicated

that bacterial growth on various media is altered in appearance and

maximal growth rates for specific microorganisms, and that specific

microorganisms have different growth abilities in the presence of

specific nutrients or indicators (Shaneeja et al. , 2014;

Mohammadkazemi et al., 2015; Wang et al., 2019; Bonnet et al.,

2020). Similarly, Xu et al. (2017) reported that colonies of Devosia

nitraria sp. showed different morphologies and growth abilities in

different culture media. In addition, Devosia sp. grown on YEM(B)

medium, produced more effective results, with regard to soybean

germination, than TYE(B) medium. Depending on the bacterial

culture medium and nutritional growth requirements of the

bacterium, compounds produced by them may exist in different

quantities and qualities; it is of interest to facilitate the synthesis of

the novel target compounds and validate their activities. Other

authors have also demonstrated that differences in the composition

of the growth medium affected the biosynthesis of bioactive

compounds (Pham et al., 2019; Koim-Puchowska et al., 2021;

Yusfi et al., 2021). Plants are generally very sensitive to salinity

injury during the germination stage, and exposure to salt stress at

early stages can retard seedling growth later, even in conditions

otherwise suitable for growth. Soil salinity negatively affects the

germination of seeds either by imposing osmotic stress that

prevents water uptake or by hormonal imbalance (Kumar et al.,

2022; Shah et al., 2022; Yaghoubian et al., 2022a). Our observations

indicate that CFS treatment promoted soybean germination under

salinity stress conditions (Figure 4). The ability of CFS to improve

soybean germination under salt stress may result from several

mechanisms, such as facilitating resource use or modulating plant

hormone levels. Other researchers also reported that the

germination of soybean and corn plants under salt conditions was

enhanced by application of bacterial cell-free supernatants

(Naamala et al., 2022; Shah et al., 2022; Yaghoubian et al., 2022c).

Additionally, present results showed that using Devosia-CFS

accelerated seed germination and stimulated hypocotyl
TABLE 1 The correlation coefficient of laboratory traits and seed vigor
index of soybean.

Seed vigor index

YEM(B) Medium TYE(B) Medium

Final germination 0.5099** 0.4135**

Mean germination time (MGT) - 0.7882** -0.6672**

Germination rate (GR) 0.7927** 0.7554**

Root length 0.8432** 0.7112**

Root dry weight 0.9252** 0.9059**
ns and **: No significant and significant at p≤0.01, respectively.
FIGURE 9

Effect of dilutions of Devosia sp. YEM(B)-CFS and TYE(B)-CFS and salinity on seed vigor index of soybean seedlings. Values represent the mean of
four replicates ± SD. 1:1, 1:100, 1:250, 1:500 and 1:1000 = 1 mL Devosia sp. CFS and 1, 100, 250, 500 and 1000 mL distilled water, respectively.
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emergence, resulting in a shorter MGT. Promoting effects of CFS

may be the result of biologically active substances (hormones,

antioxidants, amino acids, vitamins and microbe-to plant signal

compounds) produced by the novel Devosai SL43 strain, which can

improve water up take and regulate germination enzyme activities.

It has been reported that inoculation with beneficial microbes

provides a broader hormonal pool, which plays a major function

in the growth and development of the system (Patten and Glick,

2002; Wang et al., 2012; Tabacchioni et al., 2021). In this sense, lipo-

chitooligosaccharides (LCOs) and thuricin 17 are two of the most

striking signal compounds investigated so far, both of which were

discovered recently; they regulate plant responses to a variety of

adverse environmental stresses. In addition, LCOs are produced by

N2-fixing rhizobacteria following isoflavone induction, triggering

formation of nitrogen-fixing nodules in host legumes; thuricin 17

production is constitutive (Lyu et al., 2020). Schwinghamer et al.

(2016) reported a positive plant response under saline and

temperature stress conditions following from application of

thuricin 17 and LCO, causing higher biomass production and

root development. It has also been demonstrated that LCO

strongly affects the rate and uniformity of canola seed

germination under cold conditions, which is critical for early

spring seeding under Canadian conditions (Schwinghamer et al.,

2015). Correspondingly, Naamala et al. (2022); Yaghoubian et al.

(2022b) and Sweeney et al. (2017) reported an enhancing effect of

using microbe-derived bioactive compounds in stimulating

germination rates of soybean, corn and Arabidopsis thaliana,

respectively. Another stimulating effect of Devosia-CFS was

alterations of growth/morphological traits, resulting in heavier

and longer roots. Microbial-derived metabolites can influence

these traits as a regulator for modulating root traits through

increasing acquisition of water and nutrients, either by

stimulating lateral root development or affecting osmotic balance.

Several studies have demonstrated that many plant-associated

microorganisms could profoundly affect root growth

(Souleimanov et al., 2002; Sweeney et al., 2017). In addition,

Fincheira et al. (2016) demonstrated an increase in dry weight

and the number of lateral roots of Lactuca sativa independently of

the used culture medium. Similarly, Gutiérrez-Luna et al. (2010)

suggested that microbe-derived compounds can promote lateral

root formation in Arabidopsis thaliana. Khan et al. (2011) also

showed that lipo-chitooligosaccharides from Bradyrhizobium

japonicum had a stimulus effect on root growth and development

in Arabidopsis thaliana. The results clearly indicate that SVI was

greatly affected by applying YEM(B)-CFS; SVI is a vital trait for

plant establishment and uniformity, and it responded to Devosia

CFS in a way similar to other measured variables and was positively

facilitated by microbe-derived compounds under salinity stress. In

general, high soil salinity decreases the SVI, either by creating lower

osmotic potentials around the outside of seeds that prevent water

uptake or by ionic toxicity stress (Sosa et al., 2005). The application

of PGPBs has been proven to be a reliable way of helping plants deal

with salinity stress by maintaining the cellular osmotic balance and

ion homeostasis. The beneficial effects of PGPB in overcoming

osmotic shock after exposure to salt stress can be related to

osmolyte accumulation and phytohormone signaling that
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increases germination uniformity. Our hypothesis regarding the

moderating effects of PGPBs on salinity stress is supported by

formerly published results (Kang et al., 2014; Egamberdieva et al.,

2017; Mishra et al., 2021). Many reports have demonstrated that

using PGPB had an increasing effect on germination uniformity and

vigor index, helping plants to compete more efficiently under salt

stress conditions (Erman et al., 2022; Fan and Smith, 2022).

Yaghoubian et al. (2022b) also showed that application of CFS

from a Bacillus strain caused an increase in the SVI of soybean

under salt stress.
5 Conclusions

Salinity can be a major abiotic stress in soybean, remarkably

reducing the percentage, rate, and uniformity of seedling emergence

and, therefore, final soybean production. There is now abundant

research suggesting that using plant growth-promoting microbes

and their bioactive metabolites is a potentially advantageous

approach to improving plant health and productivity under biotic

and abiotic stresses. Therefore, gaining detailed knowledge and

understanding of cost-effective technologies to produce such

biostimulants and biocontrol agents would be important in

increasing the availability and/or accessibility of these new

products in the agro-input market. This study was focused on

choosing an appropriate growth medium for promoting and

supporting the growth and survival of the novel Devosia sp. strain

with the effective bioactive metabolite production, which enhances

soybean seed germination under salinity conditions. Findings

obtained in this study have suggested that cell-free supernatant

obtained from the novel Devosia sp. positively improves the

germination ability and uniformity of soybean under salt stress.

However, increases in seed germination variables were more

remarkable when the highest concentration of CFS was applied

under salinity stress. Our results also showed that YEM was more

appropriate as a growth medium for the in vitro cultivation of

Devosai than TYE medium. The CFS produced by Devosia sp.

(strain SL43) can successfully reduce salt stress effects on soybean

germination variables. It would be interesting to study and

manipulate the chemical composition of growth medium to

increase bioactive product formation. Another important aspect

that would be interesting to be considered is identifying and

understanding molecular mechanisms of novel bacterial-derived

metabolites which influence host plant physiological and

morphological traits and could be a step toward enhancing

microbial inoculant technology and developing practical strategies

to enhance crop salt tolerance, and quite possibly tolerance to other

abiotic stresses.
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Introduction: The phyllosphere of plants is inhabited by various

microorganisms, which play a crucial role in plant physiological

metabolism. Currently, there is limited research on the dynamic effects of

species and seasons on plant phyllosphere microbial community diversity

and microbial interactions.

Methods: In this study, high-throughput sequencing technology was used to

sequence the leaf surface parasitic microorganisms of five medicinal plants

(Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza, Astragalus

membranaceus, and Lonicera japonica).

Results: The results showed that bacteria and fungi clustered into 3,898 and

1,572 operational taxonomic units (OTUs), respectively. Compared to host

species, seasons had a more significant impact on the a diversity of bacteria

and fungi. The heterogeneity of phyllosphere microbial communities was

greater in winter compared to summer. Key species analysis at the OTU level

and Spearman correlation analysis demonstrated significant preferences in

microbial interactions under plant and seasonal backgrounds. The network

connections between bacterial and fungal communities significantly

increased during seasonal transitions compared to connections with plants.

Discussion: This study enhances our understanding of the composition and

ecological roles of plant-associated microbial communities in small-scale

agricultural environments. Additionally, it provides valuable insights for

assessing the biodiversity of medicinal plants.
KEYWORDS

medicinal plants, phyllosphere, epiphytic microorganisms, seasonal dynamics, co-
occurrence network
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1 Introduction

“Phyllosphere microorganisms” refer to microorganisms that

adhere to or parasitize the epidermal surface of plant leaves

(Blakeman, 1981). Phyllosphere microorganisms originate from

various sources, including wind, rain, insect air, soil, and seeds.

(Chi et al., 2005; Vorholt, 2012; ZarraonaIndia et al., 2015). In

reality, the phyllosphere is regarded as a challenging and

unpredictable complex habitat, which is not favorable for microbial

colonization due to its constant exposure to fluctuating temperature

and humidity, as well as prolonged ultraviolet radiation. In recent

years, there has been a growing body of research that has identified a

significant abundance of microorganisms residing in the

phyllosphere. The phyllosphere is considered to be a crucial

ecosystem for microorganisms due to its extensive surface area,

which encompasses up to 109 km2 of vegetation worldwide.

Additionally, it has the potential to support a vast number of

microbial cells, estimated to be around 1026 (Vorholt, 2012).

Interactions between plants and their associated microbiomes

are contingent upon the identities of the hosts (Zhu et al., 2022).

The host species plays a crucial role in determining the composition

and structure of microbial communities in the phyllosphere

(Obrien and Lindow, 1989). Li et al. (2018) employed Illumina

amplicon sequencing to investigate the microbial communities in

the phyllosphere and rhizosphere of six distinct species of Picea spp.

It was found that various plant species had distinct impacts on the

diversity and composition of both phyllosphere and rhizosphere

microbes. Bao et al. (2020) discovered that the community

composition and diversity of phyllosphere epiphytic bacteria and

fungi on urban green plants varied depending on the host species.

Redford et al. (2010) conducted a study that examined the

phyllosphere bacterial communities of 56 tree species. They also

investigated the composition of bacterial communities in Pinus

ponderosa at various locations. The researchers discovered

significant differences in phyllosphere bacterial communities

among the tree species. Interestingly, they discovered that the

bacterial communities composition of Pinus ponderosa was

similar across different sampling locations in Boulder, Colorado,

USA. These results indicate that in different regions, the host species

often have a greater impact on the composition of the phyllosphere

microorganisms than environmental factors. The phenomenon

under investigation may be attributed to the deliberate release of

one or more biological signals by the host plant through leaf

stomata or epidermis. These signals serve to attract beneficial

microorganisms that aid in the plant’s growth or act as a defense

mechanism against unfavorable conditions. It is also plausible that

variations in the physiological structures of plant leaves enable them

to selectively attract specific microorganisms for colonization.

Therefore, it is imperative to acknowledge the significance of the

relationship between epiphytic microorganisms and plants.

Season is widely acknowledged as a key determinant in shaping

epiphytic microbial communities. Bao et al. observed notable

fluctuations in the community compositions of phyllosphere

epiphytic bacteria throughout the host plants’ growing season.

Exogenous biodegradation pathways exhibited a notable increase

in bacterial communities during in May. The findings from the
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network analysis revealed that the relationship between the bacterial

community on leaf surfaces in May was more intricate compared to

that in October, with a stronger negative correlation observed.

Additionally, fluctuations in the abundance and diversity of

epiphytes were observed across various seasons. (Bao et al., 2020;

Bao et al., 2022). Jackson and Denney (2011) confirmed that there

was seasonal pattern in the community composition of

phyllosphere epiphytic bacteria on Magnolia grandiflora leaf layer

throughout a year. Specifically, it was observed that the variation in

the superbiotic bacterial community among different leaves

collected during the same period was minimal. However, there

was a significant difference in the bacterial community among

leaves collected at different times. Notably, the bacterial

community on leaves collected in August 2008 exhibited the

greatest dissimilarity compared to other seasons. In addition,

previous studies have demonstrated the seasonal dynamics of

phyllosphere bacterial and fungal communities in Populus

deltoids, Ginkgo biloba, Pinus bungeana and Cunninghamia

lanceolata, respectively(Cordier et al., 2012; Peñuelas et al., 2012;

Rastogi et al., 2012; Materatski et al., 2019). Therefore, it is

imperative to consider different growing seasons when designing

interactions between phyllosphere microbes and host plants.

Previous research on epiphytes in the phyllosphere of plants tends

to focus primarily on pathogens that are of agricultural importance

(Jain et al., 2019). The positive effects of the phyllosphere microbiome

have, nonetheless, been substantiated by a growing body of research.

Ritpitakphong et al. investigated the resistance of Pseudomonas sp. The

efficacy of Botrytis cinerea control on the leaf surface of Arabidopsis

thaliana was investigated. Specifically, under sterile conditions, the

Arabidopsis thaliana variant bdg became as susceptible to bovines

infection as the wild type (WT), while the lacs2.3 mutant retained

resistance. The resistance of bdgmutant to Botrytis cinereawas restored

by adding washing solution of microbiome, which mainly include to

Pseudomonas sp, cleaned from lacs2.3 mutant leaf to bdg

leaf.(Ritpitakphong et al., 2016). Busby et al. (2016) conducted an

experiment where they introduced phyllosphere fungi to the leaves of

Populus trichocarpa, resulting in a reduction in the severity of rust

pathogen Melampsora × columbum infection. Phyllosphere nitrogen

fixation has been identified as a significant contributor to biological

nitrogen fixation in tropical ecosystems, as suggested by Cleveland et al.

(1999). In Mediterranean woodland ecosystems, Rico et al. discovered

that notably nitrogen-fixing bacterial populations were present in

epiphytic bacteria of all Quercus ilex leaves (Rico et al., 2014).

Therefore, phyllosphere epiphytes are microbial communities that

possess significant functional significance. Predicting the functions of

phyllosphere epiphytic microorganisms presents various opportunities

to enhance the growth performance of host plants.

China possesses a rich and varied array of resources in the realm

of traditional medicinal plants. Nevertheless, the natural

regeneration rates of medicinal plants in the wild are generally

low, and a significant number of these plants are currently facing

the risk of extinction due to factors such as overharvesting, habitat

loss, and anthropogenic activities. Industrialized plantations for

medicinal plants have been established on a national scale in China.

By the end of 2020, artificial cultivation of over 300 species of

medicinal plants had been achieved, covering a planting area of
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approximately 600 million square meters (Wang et al., 2020).

Nevertheless, cultivated medicinal plants often face challenges

such as insufficient levels of active components and low rates of

transplant survival. In recent years, there has been a significant

increase in research focusing on the correlation between medicinal

plants and microorganisms, which has garnered considerable

attention (Ntemafack et al., 2021). The implementation of

microbiological approaches to enhance resource conservation and

promote sustainable utilization of medicinal plants has emerged as a

significant area of research. According to Wu et al. (2021),

endophytic bacteria have been found to enhance plant growth

and development, enhance their resistance to both biotic and

abiotic stresses, and stimulate the production of novel compounds

that may have potential medical applications. Han et al. (2021)

made the discovery that the dark septate endophyte successfully

colonized all 25 medicinal plants within the farming region of

northern China. Chen et al. (2011) conducted a study in which they

successfully isolated and identified approximately 80 culturable

endophytic fungi from 10 different species of medicinal

Dendrobium. The identification process involved the use of both

morphological and molecular techniques. The findings of the study

revealed a significant level of biodiversity among the endophytic

fungi associated with Dendrobium plants. The current body of

research regarding the advantageous impacts of the phyllosphere

epiphytic microbial community on medicinal plants is constrained.

To examine the influence of host plants and seasonal variations

on the composition of epiphytic bacterial and fungal communities in

medicinal plants within agro-ecosystems, as well as to explore the

associations between epiphytes and their host plants, and the

functional capabilities of epiphytes, our study was conducted at the

Anguo Medicine Planting Site. The abundance, diversity, and

composition of phyllosphere epiphytic bacterial and fungal

communities of 5 medicinal plants, viz., Bupleurum chinense DC.,

Atractylodes lancea (Thunb.) DC, Salvia miltiorrhiza Bge., Astragalus

membranaceus (Fisch.) Bge., Lonicera japonica Thunb., was

conducted using Illumina Miseq high-throughput sequencing

(HTS) technology. Additionally, co-occurrence networks of

microorganisms between plants and seasons were established. We

formulated the following hypotheses: (1) The phyllosphere of various

medicinal plants harbors diverse and distinct bacterial and fungal

communities. (2) The composition of epiphytic communities varies

based on the identity of the plant or the season. (3) Extensive intra-

community interactions occur among epiphytes within the same

season or plant. This research will lay the groundwork for revealing

the ecological significance and functions of epiphytic communities in

agricultural ecosystems, as well as the biodiversity and survival

strategies of epiphytic communities in various environments.
2 Materials and methods

2.1 Study site and sample collection

The sampling sites were situated in the Anguo Medicine

Planting Site (38°42′ N, 115°32′ E) within Hebei Province, China.

The study area exhibits a characteristic temperate continental
Frontiers in Plant Science 0322
climate, characterized by an average monthly temperature of

12.3°C and a precipitation level of 51.6 mm. Cultivated medicinal

plants at the planting site underwent two rounds of irrigation

throughout their entire growing season. In addition, water-soluble

fertilizer is used once a year to irrigate the roots of all plants. The

amount of fertilization per time was N 180 kg/hm2, P2O5 90 kg/hm
2,

K2O 180 kg/hm2.In June and November 2021, leaf samples were

gathered from five distinct species of medicinal plants, specifically

Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza,

Astragalus membranaceus, and Lonicera japonica. Three

replicated plots were designated for each species, and within each

plot, three healthy plant individuals were randomly chosen,

ensuring a minimum distance of 50 meters between each

selection. A minimum of 100 grams of fresh and healthy leaves

were harvested from each plant at a consistent height above the

ground, utilizing sterile scissors. Leaf samples were promptly placed

into ice boxes at a temperature of 4°C and subsequently transported

to the laboratory. Subsamples of three plant individuals were

collected from each plot and combined into a single sample for

the purpose of extracting epiphytes.
2.2 Phyllosphere epiphytic
microbial isolation

Five grams of plant leaves were weighed and put into a 50 ml

centrifuge tube, with 50 mL of 0.1 M potassium phosphate buffer

(PPB, pH=8.0) added. The leaf sample in tubes were washed with 1

min sonication and 10 s vortex, and repeated. Then the leaves were

transferred to new tubes with 50mL of 0.1M PPB and wash again.

The suspension from two washes were mixed and filtered through a

0.2µm membrane., The filter membranes with epiphytes were snap

frozen in liquid nitrogen and stored at -80°C in refrigerator

(Bodenhausen et al., 2013).
2.3 Sample DNA extraction

The genomic DNA from phy l losphere ep iphy t i c

microorganisms was extracted from filter membranes using the

FastDNA® Spin Kit for Soil (MP Biomedicals, USA) according to

user’s manual. The DNA purity and concentration were measured

with a NanoDrop 2000 spectrophotometer (Thermo Fisher

Scientific, USA), and DNA integrity was examined using 1%

agarose gel electrophoresis.
2.4 PCR amplification and library creation
for sequencing

The 16S V3-V4 region of epiphytic bacteria and ITS1 region of

epiphytic fungi were amplified with 338F/806R (ACTC

CTACGGGAGGCAGCAG/GGACTACHVGGGTWTCTAAT)

and ITS1F/ITS2 (CTTGGTCATTTAGAGGAAGTAA/GCTG

CGTTCTTCATCGATGC), respectively, with ABI GeneAmp®
9700 PCR thermocycler (ABI, USA). PCR reactions were
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performed in a 20 µL system, which included 2 µL 10× Buffer, 2 µL

2.5 mM dNTPs, 0.8 µl each of 5 µM primers, 0.2 µL TaqPolymerase,

0.2 µL BSA, 10 ng template DNA, and ddH2O supplemented to 20

µL. The amplification for 16S V3-V4 region of bacteria were

performed under following conditions: denaturation at 95°C for 3

min; 95°C for 30 s, 55°C for 30 s, 72°C for 45 s, 27 cycles; extension

at 72°C for 10 min. For ITS1 region of fungi, PCR amplifications

were conducted with same reaction system and condition, except

the reaction were repeated for 35 cycles. Each amplification was

replicated for three times. The replicated PCR products of a same

sample were pooled, recovered using 2% agarose gel, and further

purified using the AxyPrep DNA Gel Extraction Kit (Axygen

Biosciences, Union City, CA, USA). The recovered PCR products

were then quantified using a Quantus™ Fluorometer (Promega,

USA). The purified amplification fragments were mixed in equal

amounts, and the libraries were constructed using the NEXTFLEX®
Rapid DNA-Seq Kit. Shanghai Majorbio Bio-pharm Technology

Co., Ltd used Illumina’s MiSeqPE300 platform to carry out the final

sequencing. The raw data were deposited in NCBI SRA database

(PRJNA942029, PRJNA942068).
2.5 Data processing

The paired-ended raw sequences were spliced and quality

controlled using software tools fastp (version 0.19.6) and FLASH

(version 1.2. 11) with following steps: (1) filter the bases with quality

values below 20 and reads containing N bases, set a window of 50

bp, truncate the bases if the average quality value within window is

below 20, and finally filter the reads below 50 bp after quality

control; (2) pairs of reads were spliced in accordance with the

overlap between PE reads, with a minimum overlap length of 10 bp;

(3) a maximum mismatch ratio of 0.2 was permitted in the overlap

area of the spliced sequence, and non-conforming sequences were

removed; (4) samples were demultiplexed based on the barcode.

The quality controlled spliced sequences were clustered into

operational taxonomic units (OTUs) based on 97% similarity

using UPARSE software (version 7.1). All sequences with

mitochondrial and chloroplast annotations were stripped off. The

samples were rarefied due to the minimum sum of sequences in all

samples to reduce the effect of sequencing depth on the subsequent

analysis of alpha- and beta-diversity data. The taxonomic

placement of epiphytic bacteria and fungi were annotated

according to Silva 16S rRNA gene database (v 138) and UNITE

databases (Version 8.0), respectively, using the RDP classifier

(version 2.11) with 70% confidence threshold. The community

composition for each sample was analyzed at various species

taxonomic levels. The BugBase, the FAPROTAX (Louca et al.,

2016) manual construction database, and the FUNGuild (Fungi

Functional Guild) database were used to perform bacterial

phenotypic predictions, functional predictions, and ecological

functional predictions, respectively. Relative abundance is the

percentage of abundance of a species in a community that is the

sum of the abundance of all species, all references below are to RA.
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2.6 Statistical analysis

The Majorbio Bio Cloud platform (https://cloud.majorbio.com)

was used for all data analysis. Alpha diversity indices were estimated

using Wilcoxon rank sum test for inter-group variance analysis of

alpha-diversity via the mothur software (Schloss et al., 2009). Non-

metric multidimensional scaling (NMDS) based on the bray-curtis

distance algorithm, was used to examine the similarity of microbial

community structure between samples, and PERMANOVA non-

parametric test was used to test the significance of differences in

microbial community structure between groups.

Network analysis was used to predict patterns of interaction

between phyllosphere epiphytic bacteria and fungi. Spearman

correlation tests were performed, and networks were constructed

using OTU based on the top 50 of abundance. The total abundance

of the top 50 OTUs of bacteria is 40.8%, while that of fungi is 43.6%.

Correlations with absolute values of correlation coefficient (rho) greater

than 0.8 and p-values less than 0.01 were retained for network analysis

(Wang et al., 2017). Co-occurrence networks were analyzed using

Cytoscape (version 3.8.2), and the number of nodes and edges,

clustering coefficients and network density were analyzed using the

built-in application network analyzer (Shannon et al., 2003; Assenov

et al., 2008). In addition, modules and highly interconnected nodes and

central taxa, were analyzed using MCODE (Bader and Hogue, 2003).

Sobs refers to observed richness. Shannon is one of the indices used to

estimate the diversity of microorganisms in a sample, with higher

Shannon values indicating higher community diversity. Shannoneven is

a measure of homogeneity based on the Shannon index. The Student’s

T test, uses t-distribution theory to infer the probability of a difference

occurring and thus compare whether the difference between twomeans

is significant. The Kruskal-Wallis H test, is a method of extending the

Wilcox rank sum test for two independent samples to a non-parametric

test for multiple (≥ 3) independent samples.
3 Results

3.1 Epiphytic microbial
community composition

A total of 1,272,729 reads were obtained for bacterial sequences,

while 1,900,620 reads were obtained for fungal sequences, using

high-throughput sequencing. After implementing quality control

measures to eliminate low-quality sequences, a total of 1,189,582

reads for bacterial sequences and 1,752,919 reads for fungal

sequences were obtained, meeting the necessary criteria for

further analysis. The sequences in both datasets were clustered,

resulting in a total of 3,537 bacterial OTUs and 1,450 fungal OTUs,

respectively. The rarefaction curves of the Sobs indices for

phyllosphere epiphytic bacteria and fungi at the OTU level

demonstrated a plateau phenomenon as the number of sampled

reads increased. This observation suggests that the sampling and

sequencing strategy utilized in this study were adequate for

conducting diversity analysis (Supplementary Figure S1).
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A comprehensive analysis of phyllosphere epiphytic bacteria

from five medicinal plants during both summer and winter seasons

resulted in the identification of a total of 3,537 OTUs. These OTUs

belonged to 38 different phyla, 101 classes, 232 orders, 390 families,

859 genera, and 1,601 species. Meanwhile, the assemblage of

phyllosphere epiphytic fungi consisted of a total of 1,450 OTUs,

which encompassed 9 phyla, 34 classes, 89 orders, 205 families, 437

genera, and 780 species.

The composition of phyllosphere epiphytic bacteria at the

phylum level (Figure 1A) exhibited two predominant phyla

during both summer and winter across the five plants studied.

These phyla were Actinobacteriota (Relative Abundance=32.61%-

52.40%) and Proteobacteria (RA=20.28%-53.70%). The Firmicutes

group exhibited the third highest abundance during the summer

months, with a relative abundance ranging from 11.89% to 25.94%.

However, their presence significantly decreased in November, with

a relative abundance ranging from 0.04% to 5.34%. In contrast,

Bacteroidota (RA=5.37%-10.94%) emerged as the third most

prevalent group during the winter season across all plant species.

The order Micrococcales (RA=11.73%-43.22%) was found to be the

dominant epiphytic bacterial community in both summer and

winter across all host species (Figure 1B). The Rhizobiales

taxonomic group exhibited a seasonal turnover, with relative

abundance (RA) ranging from 3.62% to 6.09% in summer, and

significantly higher values of 11.77% to 31.03% in winter.

In both summer and winter, the composition of phyllosphere

epiphytic fungal communities in host plants was found to be similar

at the phylum level (Figure 1C). The dominant phyla in these

communities were Dothideomycetes (RA=23.73%-76.40%) and

Tremellomycetes (RA=20.20%-66.69%). An exception was

observed in the summer community on L. maackii, where

Leotiomycetes exhibited predominance with a relative abundance

(RA) of 64 .58%. In contras t , Doth ideomycetes and

Tremellomycetes had RAs of 20.81% and 14.09%, respectively. At

the order level (Figure 1D), the fungal communities of all host

plants in summer, with the exception of L. maackii, were dominated

by Filobasidiales (RA=13.12% - 64.33%), Capnodiales (RA=18.82%

- 44.44%), and Pleosporales (RA=11.79% - 31.95%). The fungal

communities associated with L. maackii during the summer season

were found to be predominantly composed of Erysiphales

(RA=64.56%), Filobasidiales (RA=13.62%) and Capnodiales

(RA=18.46%). Meanwhile, during the winter season, the

Tremellales (RA=10.64% - 36.42%), along with the Pleosporales

(RA = 10.22% - 59.11%) and Capnodiales (RA = 6.42% - 17.99%),

exhibited dominance in the epiphytic fungal communities.

The study revealed that the prevalence of bacterial OTUs was

significantly greater during the summer in comparison to the winter

across all host plants (Figure 2A). During the summer, B. chinense

demonstrates the highest OTU richness among the species, whereas

S. miltiorrhiza displays the lowest OTU richness. In the winter, the

plant species A. membranaceus displays the highest level of

abundance, whereas L. japonica exhibits the lowest level of

abundance. A comprehensive analysis revealed that a total of 139

bacterial OTUs exhibited consistent occurrence across all host

plants and throughout both seasons, as illustrated in Figure 2C.

When analyzing the data with respect to seasons, it was observed
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that there were 871 bacterial OTUs were present during the

summer, whereas only 185 were detected during the winter

(Figure 2E). In the summer, the number of host-specific OTUs

observed among different plant species. The species S.miltiorrhiza

exhibited the lowest number of OTUs, with a count of 38, whereas

A. membranaceus had the highest number of OTUs, totaling 235.

Lonicera japonica demonstrated the lowest count of distinct OTUs,

amounting to 34, while A.membranaceus displayed the highest

count of unique OTUs, reaching 494 during the winter

(Figure 2E). The summer and winter communities of five host

species, namely B.chinense , A.lancea , S.miltiorrhiza , A.

membranaceus, and L. japonica, displayed shared OTUs of 1,020,

258, 606, 1,202, and 355, respectively (Figure 2G). Pie charts were

employed to visually depict the distribution of OTUs within the

intersecting subsets of a particular plant species during both the

summer and winter (Figure 2G). We have observed that different

plant species display diverse bacterial OTU throughout

various seasons.

The abundance of epiphytic fungi OTUs in winter is

significantly higher than in summer, in contrast to the

phenomenon observed in bacteria. In the summer, S. miltiorrhiza

exhibits the highest OTU abundance, while L. japonica has the

lowest. In winter, A. membranaceus exhibits the highest OTU

abundance, while L. japonica shows the lowest (Figure 2B).

Analysis of the petal diagram reveals a total of 87 OTUs across all

plant species (Figure 2D). In the analysis of season-specific OTUs,

the results indicate that during the summer, S. miltiorrhiza has the

highest number of specific OTUs, while L. japonica has the lowest.

In winter, A. membranaceus has the highest number of specific

OTUs (Figure 2F). In summer and winter, B. chinense, A. lancea, S.

miltiorrhiza, A. membranaceus, and L. japonica have 236, 196, 374,

290, and 139 shared OTUs, respectively (Figure 2H).
3.2 Epiphytic microbial alpha-diversity

The alpha diversity of epiphyte OTUs was assessed based on

host plants and seasons using Sobs, Shannon, and Shannoneven

indices. In the context of bacterial communities, we have observed a

lesser degree of variation in diversity among summer communities.

Significant differences were observed between B. chinense and S.

miltiorrhiza, A. lancea and S. miltiorrhiza, and A. lancea and A.

membranaceus, as indicated by the Sobs index. No significant

disparity in host plant selection during the summer was observed

by Shannon and Shannoneven indices. However, a significant

influence of the host was observed on the diversity of epiphytic

bacteria, as evidenced by the diversity indices which showed

statistically significant differences (p < 0.05) among plants during

the winter (Figure 3A). B. chinense, A. lancea, and L. japonica

exhibited notable variations in bacterial diversity between the

summer and winter, as indicated by the Shannon index.

In the fungal communities, notable variations were observed in

the Sobs index, Shannon index, and Shannoneven index, both

among the host plants during the summer and among the host

plants during the winter (Figure 3B). Furthermore, B. chinense, A.

lancea, S. miltiorrhiza, and L. japonica exhibited notable variations
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in fungal populations across seasons, as indicated by the

diversity indices.
3.3 Comparison of the similarity of
phyllosphere epiphytic
microbial communities

The composition of the epiphytic bacterial community

exhibited significant variations among different plants (F=0.9639,
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P=0.001) and across different seasons (F=0.8209, P=0.001), as

determined by NMDS and ANOSIM tests (Figures 4A, C). The

PERMANOVA analysis demonstrated that plant species accounted

for 85.42% of the variation in the composition of the phyllosphere

epiphytic bacterial community (P=0.001), while seasons explained

43.89% of the variation (P=0.001) for seasons (Table 1).

The ANOSIM results indicated that the community

composition of phyllosphere epiphytic fungi was significantly

influenced by both seasons (F=0.5769, P=0.001) and plants

(F=0.9521, P=0.001) (Figures 4B, D). The composition of the
A

B

D

C

FIGURE 1

Relative abundance of epiphytic bacterial (A, B) and fungi (C, D) in medicinal plants.Represents < 0.01% of the total reads of epiphytic bacterial and
fungi were all assigned to “Others”. J, June-Summer; N, November-Winter; BC, Bupleurum chinense; AL, Atractylodes lancea; SM, Salvia miltiorrhiza;
AM, Astragalus membranaceus; LJ, Lonicera japonica.
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epiphytic fungal community was significantly influenced by the

plant species (91.24%, P=0.001) and the season (29.87%, P=0.001),

as determined by PERMANOVA analysis (Table 1).
3.4 Analysis of differential phyllosphere
epiphytic microbial communities

The colonization patterns of epiphytic bacterial and fungal taxa

exhibited notable variations across different host plants in our

study. ANOSIM tests conducted among various plant species
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revealed significant differences in the abundance of 15 most

prevalent taxa in both summer and winter communities

(Figure 5). In the summer, the unclassified Paracoccus (OTU172)

exhibited a significant increase in abundance within B. chinense.

Unclassified Marmoricola (OTU3414), uncultured Frankiales

(OTU1369), uncultured Planomicrobium (OTU824), and

Nocardioides sp. were identified in the sample. (OTU3276)

exhibited a significant enrichment in A. lancea. Unclassified

Arthrobacter (OTU1655), uncultured Skermanella (OTU2556),

and unclassified Enterobacteriaceae (OTU2146) exhibited

significant enrichment in S. miltiorrhiza. The presence of
A

B

D

E F

G

H

C

FIGURE 2

Distribution of the epiphytic bacterial (A, C, E, G) and fungi (B, D, F, H) OTUs in different plants (E, F) and in different seasons (G, H). J, June-
Summer; N, November-Winter; BC, Bupleurum chinense; AL, Atractylodes lancea; SM: Salvia miltiorrhiza; AM, Astragalus membranaceus; LJ,
Lonicera japonica.
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Uncultured Rubellimicrobium (OTU1558) was significantly higher

in L.japonica (Figure 5A). In the winter, the A. lancea species

exhibits a significantly higher abundance of unclassified

Microbacterium (OTU3225) and Quadrisphaera granulorum

(OTU3335). S. miltiorrhiza was found to be colonized by

Methylobacterium brachiatum (OTU3325), Methylobacterium

komagatae (OTU 2908), and an uncultured Novosphingobium

(OTU3305), which were present in high abundance. The presence

of unclassified Arthrobacter (OTU1655) was significantly higher in

A. membranaceus. Unclassified Curtobacterium (OTU 3394),

Methylobacterium adhaesivum (OTU 3872), Microterricola

viridarii (OTU3382), unclassified Sphingomonas (OTU3873), and

Methylorubrum extorquens (OTU3657) exhibited significant

differences in their presence within L. japonica (Figure 5B).

Similarly, the colonization patterns of phyllosphere epiphytic

fungi with high abundance varied significantly across different host

plants. In the summer, we discovered the presence of unclassified

Alternaria (OTU353), Vishniacozyma sp. (OTU14), Vishniacozyma

tephrensis, and Paraphoma sp. (OTU1209) exhibited enrichment in

B. chinense. Filobasidium sp. (OTU40) and Filobasidium

globisporum (OTU1420) exhibited higher abundance in A. lancea.

Naganishia sp. (OTU286, OTU51) and Gibberella intricans

(OTU257) were found to be enriched in S. miltiorrhiza.

Cladosporium aggregatocicatricatum (OTU335) and Epicoccum
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nigrum (OTU1366) were found to be abundant in A.

membranaceus. Erysiphe lonicerae(OTU380) was found to be

abundant in L. japonica (Figure 5C). In the winter, there was a

notable increase in the presence of Didymella rosea (OTU1035) in

B. chinense. A. lancea was colonized by enriched unclassified

Alternaria (OTU353). Cladosporium delicatulum (OTU1541), an

unclassified Basidiomycota (OTU1534), Symmetrospora coprosmae

(OTU430), Epicoccum nigrum (OTU1366), and an unclassified

Didymella (OTU1270) exhibited higher abundance in A.

membranaceus. Filobasidium sp. (OTU40), Dioszegia zsoltii

(OTU1560), Symmetrospora symmetrica(OTU1139), and Bullera

alba (OTU1434), exhibited a significant enrichment in L.

japonica (Figure 5D).

Significant variations in colonization patterns were observed

between seasons for both bacterial and fungal taxa in our study.

Through the implementation of Veen analysis to assess the diversity

of epiphytic bacteria and fungi across various plant species, our

findings indicate that there is only one shared bacterial species

among all the species examined. However, there are distinct

bacterial species that are unique to each of the following plant

species: A.lancea (3 unique species), S.miltiorrhiza (1 unique

species), A.membranaceus (6 unique species), L.japonica

(2 unique species), and B.chinense (2 unique species). Among

fungi, the total number of species shared by all species is 1,
A B

FIGURE 3

OTU richness, Shannon and Shannoneven of phyllospheric epiphytic bacterial (A) and fungi (B). * P < 0.05, ** P < 0.01 and *** P < 0.001. J, June-
Summer; N, November-Winter; BC, Bupleurum chinense; AL, Atractylodes lancea; SM, Salvia miltiorrhiza; AM, Astragalus membranaceus; LJ,
Lonicera japonica.
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whereas A. lancea, S.miltiorrhiza, A. membranaceus, L. japonica,

and B. chinense have 6, 3, 5, 5, and 8 unique species, respectively

(Figures 6A, B).

Specifically, we found that the 15 most abundant taxa were

depicted separately based on the host plants (Figure 6C). Of

these 15 bacterial taxa, only Sphingomonas panni (OTU3459)

occurs in all host plants. A. membranaceus has the most uniquely

different bacterial taxa, including Rhodococcus erythropolis

(OTU2077),unclassified Methylobacterium (OTU854), Bacillus

aryabhattai (OTU2151), uncultured Tumebacillus (OTU 1592),

unclassified Mycobacterium (OTU2313) and Bacillus simplex

(OTU3465). S. miltiorrhiza exhibited the lowest number of

d i s t inc t bac te r i a l t axa , wi th on ly one ident ified as

Novosphingobium sp. P6W(OTU3374).

Among the 15 abundant fungal taxa with seasonal

differentiation in each plant species, only one taxon, viz.,

unclassified Cladosporium (OTU1421), was presented among all

host plants (Figure 6D). B. chinense exhibits a high abundance of

distinctive fungal taxa, such as Didymella rosea (OTU1035),
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Cryptococcus aureus (OTU1563), unclassified Vishniacozyma

(OTU501), Paraphoma sp. (OTU1209), Vishniacozyma tephrensis

(OTU560), unclassified Lectera (OTU284), unclassified

Neosetophoma (OTU788) and Vishniacozyma carnescens

(OTU301). S. miltiorrhiza exhibits the lowest number of distinct

fungal taxa, including unclassified Cryptococcus (OTU818),

Naganishia sp. (OTU286), and Saitozyma flava (OTU874).
3.5 Correlation network analysis

Correlation network analysis using Spearman correlation was

conducted to examine the variations in network structures of

epiphytic communities among different plants and across seasons.

This analysis was based on the abundance of the top 50 most

abundant OTUs (Figure 7). The networks of communities

consisting of epiphytic bacteria from all five host plants exhibited a

decrease in the number of nodes, edges, and clustering coefficients

during the summer compared to the winter. Conversely, the network
A B

DC

FIGURE 4

Nonmetric multidimensional scaling (NMDS) ordination of the bacterial (A, C) and fungi (B, D) community composition among different plant species
and seasons. J, June-Summer; N, November-Winter; BC, Bupleurum chinense; AL, Atractylodes lancea; SM, Salvia miltiorrhiza; AM, Astragalus
membranaceus; LJ, Lonicera japonica.
TABLE 1 Effects of plant species and seasons on microbial community structure based on PERMANOVA.

Bacterial Fungi

R2(%) Pr(>F) R2(%) Pr(>F)

Plant species 85.41 0.001 91.24 0.001

Season 43.89 0.001 29.87 0.001
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densities and centrality coefficients were higher in the summer than

in the winter (Figures 7A, B; Table 2). The epiphytic bacterial

community networks within a specific host exhibited distinct

network characteristics across different seasons (Figures 7C–G;

Table 2). For instance, the bacterial communities in B. chinense

exhibited the highest number of edges, network density, and

centrality coefficient. On the other hand, A. lancea had the highest

number of nodes but the lowest clustering coefficient. S.miltiorrhiza,
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in contrast, had the lowest centrality coefficient. A. membranaceus

had the fewest nodes, edges, and lowest network density. Lastly,

L. japonica displayed the highest clustering coefficient.

Community networks comprising epiphytic fungi from all five

host plants exhibited higher edge, clustering coefficients, network

density, and centrality coefficients during the summer compared to

the winter (Figures 7H, I; Table 2). The network characteristics of

epiphytic fungal communities associated with a specific host
A B

DC

FIGURE 5

Anosim tests the richness differences of the 15 most abundant in phyllospheric epiphytic bacterial (A, B) and fungal (C, D) communities between
different plant species in summer (A, C) and winter (B, D). BC, Bupleurum chinense; AL, Atractylodes lancea; SM, Salvia miltiorrhiza; AM, Astragalus
membranaceus; LJ, Lonicera japonica. *indicates the significant difference at P < 0.05. **indicates the significance difference at P < 0.01.
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exhibited variations across different seasons (Figures 7J–N, Table 2).

Among the studied plant species, B. chinense exhibited the lowest

number of nodes, edges, and centrality coefficients. On the other

hand, A. lancea displayed the highest number of nodes, edges,

clustering coefficients, and network density. S. miltiorrhiza had the

highest number of nodes, the fewest edges, and the lowest network
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density. A. membranaceus had the highest number of nodes and the

fewest clustering coefficients. Lastly, L. japonica exhibited the

highest number of centrality coefficients.

Both positive and negative correlations were observed in the

epiphytic bacterial and fungal networks in our study (Figure 7). The

community who possessed advanced degrees were identified as
A B

DC

FIGURE 6

The distribution of the 15 most abundant epiphytic bacterial (A, C) and fungal (B, D) species in phyllospheric of different plant species in summer and
winter. The * symbol indicates the significant difference P < 0.05. The ** symbol indicates the significance level intervenes between P < 0.01. The ***
symbol indicates difference is very significant, P < 0.001.
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keystone taxa within the network (Table 3). In addition, it is evident

that negative correlations have significantly increased within the

fungal winter community. In our study, we observed predominantly

positive associations between taxa in fungal communities across

seasons in all five host plants (Figures 7J–N).

The top 10 phyllosphere epiphytic bacterial or fungal OTUs

with the highest degrees were recognized as keystone taxa (Tables 3,

4). The composition of keystone taxa in bacterial or fungal

communities varied as a result of plant species and seasonal

changes. The majority of associations involving keystone fungal

taxa exhibited positive interactions, indicating that the fungal

communities were predominantly influenced by positive
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interactions (Table 4). Nevertheless, the interaction patterns

within bacterial communities exhibited a certain level of

ambiguity, as a considerable number of negative associations were

observed (Table 3).

Unclassified Arthrobacter (OTU 1655, Micrococcales) was

identified as a bacterial keystone taxa in both seasons

(Figures 7A, B). It accounted for 25.46% and 11.86% of the OTUs

of the bacterial network nodes, respectively, among the Frankiales,

Micrococcales, Rhodobacterales, and Sphingomonadales. These taxa

were found among plants in both summer and winter. In contrast,

none of the bacterial taxa were found in all five species that formed

the inter-seasonal co-occurrence network . However ,
A B

D

E F G

IH

J K

L M N

C

FIGURE 7

Co-occurrence networks of microbial taxa in the bacterial (A–G) and fungi (H–N) communities.Note: Nodes represent bacterial OTUs, different
node colors are used to distinguish different bacterial genus, MCODE Rank is a module with significant relationships calculated based on networks
between plants, and the relative abundance of OTU is represented by the node size. Edges represent significant interaction between OTUs, green
edges indicate a positive correlation, red edges indicate negative correlation, and the width of each edge reflects the Spearman correlation
coefficient between nodes.
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Micrococcaceae, Rhizobiales, and Bacillariophyceae were present in

four different species. Among these,Micrococcaceae had the highest

representation in the inter-seasonal network nodes in B. chinense, S.

miltiorrhiza, and L. japonica, accounting for 9.52%, 22.63%, and

2.23% of the nodal OTUs, respectively. Rhizobiales were found to be

present in A. lancea and A. membranaceus, with A. membranaceus

accounting for the highest percentage of nodes OTU at 9.72%,

followed by A. lancea at 7.52%. This finding indicates that the

presence of Micrococcus taxa and Rhizobiales taxa is significant in

establishing a bacterial network that connects medicinal plants

across different seasons (Table 3).

Pleosporales, Tremellales, and Cystobasidiomycetes were

identified as significant fungal keystone taxa during both seasons.

Among these, Tremellales exhibited the highest proportion of OTUs

in the summer node, accounting for 1.20%. On the other hand,

Cystobasidiomycetes displayed the highest proportion of OTUs in
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the winter node, accounting for 4.86%. In addition, the presence of

Tremellales was observed in the interseasonal symbiotic network of

all five species. The predominant group of OTUs found in B.

chinense was Tremellales, accounting for 4.37% of the total. The

predominant fungal taxa in A. lancea and L. japonica were

Pleosporales, accounting for 3.12% and 4.05% of the total nodes,

respectively. In contrast, Capnodiales represented the highest

percentage (4.51%) in S. miltiorrhiza, while A. membranaceus

exhibited a prevalence of Cystobasidiomycetes, accounting for

2.72% of the total nodes. Thus, various keystone taxa are

responsible for connecting inter-seasonal fungal networks among

different host plant species (Table 4).

For the analysis of bacterial communities, the MCODE

algorithm identified one module in the summer and five modules

in the winter that exhibited statistical significance (Supplementary

Figures S2A, B). This suggests that the network associations among
TABLE 2 Structural attributes of networks of phyllospheric epiphytic bacteria(B) and fungi(F) for plant species and seasons.

Jun Nov
JBC-
NBC

JAL-NAL
JSM-
NSM

JAM-
NAM

JLJ-NLJ

Number of nodes B 27 39 45 48 46 42 47

F 41 42 43 47 47 47 46

Number of edges B 26 84 225 189 178 120 187

F 95 59 141 204 141 186 185

+ B 16 52 123 93 119 96 88

F 92 35 99 162 89 148 168

_ B 10 32 102 96 59 24 99

F 3 24 42 42 52 38 17

Avg. number of neighbors B 2.364 4.629 10.419 7.875 8.045 5.950 8.267

F 6.087 3.067 6.558 8.681 6.222 7.915 8.043

Network diameter B 6 13 6 8 7 10 7

F 6 8 10 7 6 5 7

Characteristic path length B 2.636 4.328 2.316 2.874 2.807 4.050 2.995

F 2.419 3.124 3.815 2.898 3.083 2.744 2.923

Clustering coefficient B 0.212 0.531 0.627 0.577 0.630 0.600 0.663

F 0.538 0.331 0.628 0.656 0.625 0.507 0.646

Network density B 0.236 0.136 0.248 0.168 0.187 0.153 0.188

F 0.277 0.219 0.156 0.189 0.141 0.172 0.179

Network heterogeneity B 0.487 0.453 0.413 0.41 0.409 0.548 0.412

F 0.539 0.577 0.392 0.538 0.293 0.345 0.377

Network centralization B 0.200 0.136 0.189 0.136 0.121 0.163 0.136

F 0.344 0.242 0.111 0.212 0.137 0.138 0.162

Connected components B 5 2 2 1 2 2 2

F 4 7 1 1 2 1 1

Analysis time (sec) B 0.047 0.047 0.047 0.050 0.043 0.0447 0.031

F 0.063 0.043 0.032 0.053 0.043 0.046 0.037
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TABLE 3 The ten keystone species in phyllospheric epiphytic bacteria networks for plant species and seasons.

Order Genus OTU degree + - Abundance (%)

Jun Propionibacteriales Marmoricola OTU3414 4 3 1 3.91

Propionibacteriales Nocardioides OTU1401 4 4 0 3.09

Frankiales Geodermatophilus OTU2327 3 1 2 1.50

Micrococcales Arthrobacter OTU1655 3 2 1 25.46

Rhodobacterales Paracoccus OTU172 3 0 3 1.56

Thermomicrobiales norank JG30-KF-CM45 OTU1281 3 3 0 1.92

Propionibacteriales Nocardioides OTU3276 3 2 1 3.15

Frankiales Blastococcus OTU2149 3 1 2 1.87

Sphingomonadales Sphingomonas OTU2911 2 1 1 1.50

norank KD4-96 norank KD4-96 OTU1737 2 0 2 1.44

Nov Azospirillales Skermanella OTU2556 9 6 3 1.98

Rhodobacterales Paracoccus OTU1744 8 3 5 0.70

Micrococcales Arthrobacter OTU1655 7 4 3 5.47

Cytophagales Hymenobacter OTU2975 7 3 4 1.00

Rhodobacterales Paracoccus OTU172 7 4 3 0.74

Sphingomonadales Sphingomonas OTU3873 7 2 5 4.39

Cytophagales Hymenobacter OTU3353 7 4 3 1.30

Corynebacteriales Mycobacterium OTU2313 7 3 4 0.58

Frankiales Blastococcus OTU1385 7 6 1 0.85

Micrococcales Microterricola OTU3382 6 3 3 6.39

JBC-NBC Corynebacteriales Rhodococcus OTU2077 18 2 16 4.70

Micrococcales Curtobacterium OTU3394 17 11 6 6.81

Micrococcales Microterricola OTU3382 16 10 6 2.71

Rhodobacterales Paracoccus OTU172 16 5 11 1.83

Cytophagales Hymenobacter OTU3227 16 10 6 2.71

Cytophagales Hymenobacter OTU3356 16 10 6 0.73

Rhizobiales Methylorubrum OTU3872 16 10 6 6.01

Rhizobiales Methylorubrum OTU2908 16 10 6 1.38

Burkholderiales Variovorax OTU3260 15 9 6 1.53

Bacillales Planomicrobium OTU1704 15 5 10 2.31

JAL-NAL Rhizobiales Methylorubrum OTU3111 14 8 6 2.43

Micrococcales Kocuria OTU1586 13 4 9 2.91

Kineosporiales Quadrisphaera OTU3335 13 8 5 2.95

Rhodobacterales Paracoccus OTU1744 13 4 9 1.59

Rhizobiales Methylorubrum OTU3325 13 8 5 5.87

Bacillales Planomicrobium OTU1704 13 5 8 0.78

Kineosporiales Kineococcus OTU1590 13 8 5 1.68

Rhodobacterales Paracoccus OTU172 12 9 3 0.77

Rhizobiales Methylorubrum OTU3872 12 5 7 1.42

(Continued)
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plants were more intricate during the winter compared to the

summer. In addition, the MCODE analysis predicted a total of 5

modules for B. chinense, 5 for A.lancea, 4 for S.miltiorrhiza, 3 for

A.membranaceus, and 6 for L.japonica across seasons for each

respective host plant (Supplementary Figures S2C–G). The

phyllosphere epiphytic fungal network exhibited two statistically

significant modules during the summer and five modules during the

winter (Supplementary Figures S3A, B). Modules were also

identified within the epiphytic fungal network of five different

p l an t spec i e s (B.ch inens e , A. lancea , S .mi l t i o r rh i za ,
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A.membranaceus, and L.japonica) across multiple seasons. The

number of modules observed in each species were as follows: 6 in

B. chinense, 5 in A.lancea, 6 in S.miltiorrhiza, 5 in A.membranaceus,

and 5 in L.japonica (Supplementary Figures S3C–G). Our findings

indicate the presence of intensive networks within phyllosphere

epiphytic microbial communities across different seasons in all the

medicinal plants examined. Furthermore, the networks of both

epiphytic bacterial and fungal communities among plants were

found to be more intricate during the winter compared to

the summer.
TABLE 3 Continued

Order Genus OTU degree + - Abundance (%)

Acetobacterales Roseomonas OTU3312 12 7 5 0.80

JSM-NSM Micrococcales Kocuria OTU1586 13 4 9 5.59

Micrococcales Microterricola OTU3382 13 8 5 1.72

Micrococcales Cellulomonas OTU1826 13 4 9 1.31

Sphingomonadales Novosphingobium OTU3305 13 8 5 4.90

Micrococcales Microbacterium OTU3225 13 8 5 0.86

Micrococcales Arthrobacter OTU1655 12 4 8 12.61

Micrococcales Rathayibacter OTU1234 12 7 5 0.54

Sphingomonadales Novosphingobium OTU3374 12 7 5 1.55

Sphingomonadales Sphingomonas OTU3873 12 7 5 2.09

Bacillales Planomicrobium OTU1704 12 3 9 4.32

JAM-NAM Rhizobiales Methylorubrum OTU3657 12 11 1 2.16

Propionibacteriales Microlunatus OTU1665 12 11 1 0.92

Rhizobiales Methylorubrum OTU3872 12 11 1 2.67

Corynebacteriales Rhodococcus OTU536 12 11 1 1.25

Sphingomonadales Sphingomonas OTU2911 10 8 2 1.04

Rhodobacterales Paracoccus OTU172 10 10 0 1.37

Sphingomonadales Sphingomonas OTU3873 10 10 0 0.89

Rhizobiales Methylorubrum OTU854 10 10 0 2.69

Corynebacteriales Mycobacterium OTU2313 10 10 0 1.44

Sphingomonadales Sphingomonas OTU3459 10 10 0 2.40

JLJ-NLJ Rhodobacterales Paracoccus OTU1744 14 8 6 1.31

Bacillales Planomicrobium OTU1704 14 7 7 0.55

Burkholderiales Massilia OTU3257 14 8 6 0.91

Rhodobacterales Rubellimicrobium OTU1100 14 8 6 0.76

Sphingomonadales Sphingomonas OTU2911 13 9 4 0.47

Deinococcales Deinococcus OTU3885 13 4 9 1.36

Bacillales Bacillus OTU1669 13 7 6 0.47

Kineosporiales Quadrisphaera OTU3335 11 4 7 0.87

Micrococcales Arthrobacter OTU1655 11 6 5 2.23

Azospirillales Skermanella OTU2556 11 6 5 0.89
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TABLE 4 The ten keystone species in phyllospheric epiphytic fungi networks for plant species and seasons.

Order Genus OTU degree + - Abundance (%)

Jun Pleosporales Paraphoma OTU1209 13 13 0 0.39

Cystobasidiomycetes Symmetrospora OTU1139 11 11 0 0.11

Pleosporales Neosetophoma OTU788 10 10 0 0.20

Pleosporales unclassified OTU1217 9 9 0 0.29

Hypocreales Gibberella OTU257 9 9 0 0.60

Hypocreales Alfaria OTU562 9 9 0 0.07

unclassified Basidiomycota unclassified Basidiomycota OTU1534 8 8 0 0.15

Pleosporales Paraphoma OTU1088 8 8 0 0.15

Hypocreales Gibberella OTU547 8 8 0 0.13

Tremellales Vishniacozyma OTU14 7 7 0 1.20

Nov Cystobasidiomycetes Symmetrospora OTU1139 6 3 3 4.86

Pleosporales unclassified OTU765 6 5 1 0.68

Sporidiobolales Sporidiobolus OTU1427 6 3 3 1.20

Tremellales unclassified OTU585 5 1 4 0.53

Erythrobasidiales Erythrobasidium OTU305 5 3 2 0.54

Helotiales Articulospora OTU618 5 2 3 2.14

Tremellales Saitozyma OTU874 4 2 2 0.72

Tremellales Vishniacozyma OTU14 4 1 3 1.47

Tremellales Hannaella OTU602 4 1 3 1.27

Tremellales Vishniacozyma OTU692 4 1 3 0.46

JBC-NBC Pleosporales Leptospora OTU616 11 4 7 0.16

Trichosphaeriales Nigrospora OTU736 11 10 1 0.16

Pleosporales Torula OTU1261 10 5 5 1.15

Erythrobasidiales Erythrobasidium OTU117 10 9 1 0.26

Tremellales Cryptococcus OTU1563 10 8 2 2.65

Tremellales Hannaella OTU1533 10 8 2 0.14

Tremellales Dioszegia OTU1560 10 9 1 1.00

Tremellales Hannaella OTU1518 10 8 2 0.35

Tremellales unclassified OTU585 10 9 1 0.23

Agaricales unclassified OTU508 9 7 2 0.37

JAL-NAL Venturiales Ochroconis OTU644 18 17 1 0.15

Pleosporales Leptospora OTU700 18 17 1 0.26

Pleosporales Didymella OTU687 15 14 1 0.72

Pleosporales Paraphoma OTU1088 15 14 1 0.17

Pleosporales Setophaeosphaeria OTU632 15 13 2 1.84

Capnodiales Cercospora OTU1236 15 13 2 0.80

Pleosporales Torula OTU1261 15 13 2 0.13

Hypocreales Acremonium OTU497 14 12 2 1.81

Agaricostilbales Kondoa OTU846 14 12 2 0.50

(Continued)
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3.6 Functional prediction

The BugBase microbiome analysis tool was employed to forecast

phenotypes for the bacterial communities residing on the phyllosphere

as epiphytes. The findings demonstrated consistent trends in the

phenotypic composition of phyllosphere epiphytic bacterial

communities among plants in both seasons (Figure 8A). The

phenotypic composition of bacterial communities on each host

species exhibited notable variations across different seasons. Aerobic,

mobile element-containing, Gram-positive, and pathogenic
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phenotypes were found to be prevalent among phyllosphere bacteria.

The Kruskal-Wallis tests showed that mobile element containing and

aerobic were phenotypes with significant differences between plants in

both summer and winter (Supplementary Figures S4A, B).

Furthermore, there were significant variations observed in the

anaerobic, biofilm forming, facultatively anaerobic, Gram positive,

and pathogenic phenotypes among the five host plants during the

winter. Meanwhile, the phenotypes of epiphytic bacterial communities

exhibited notable seasonal variations in our study (Supplementary

Figure S4C). Epiphytic bacteria with mobile element containing
TABLE 4 Continued

Order Genus OTU degree + - Abundance (%)

Tremellales Vishniacozyma OTU692 14 12 2 0.73

JSM-NSM Tremellales Saitozyma OTU748 12 10 2 0.45

Capnodiales Cladosporium OTU335 9 1 8 0.41

Tremellales Hannaella OTU1528 9 7 2 0.45

Cystofilobasidiales Cystofilobasidium OTU824 9 5 4 0.44

Capnodiales unclassified OTU972 8 6 2 2.49

unclassified Basidiomycota unclassified OTU1534 8 4 4 2.58

Sporidiobolales Rhodotorula OTU190 8 3 5 0.48

Tremellales Vishniacozyma OTU14 8 1 7 0.52

Dothideales Aureobasidium OTU792 7 5 2 0.42

Capnodiales Cercospora OTU1236 7 5 2 1.61

JAM-NAM Pleosporales Didymella OTU1304 14 14 0 0.92

Tremellales Hannaella OTU1463 13 10 3 0.25

Pleosporales unclassified OTU1217 13 10 3 0.57

Pleosporales Coniothyrium OTU1042 12 11 1 0.63

Cystobasidiomycetes Symmetrospora OTU430 12 9 3 3.27

Agaricales Flammulina OTU767 12 11 1 0.31

Pleosporales Leptosphaeria OTU1119 12 11 1 0.30

Hypocreales Fusarium OTU1158 11 11 0 0.64

Dothideales Aureobasidium OTU348 11 11 0 0.33

Pleosporales Neosetophoma OTU788 10 10 0 0.30

JLJ-NLJ Sporidiobolales Sporidiobolus OTU1427 15 14 1 2.04

Pleosporales unclassified OTU1069 14 14 0 0.43

Tremellales Hannaella OTU1528 14 14 0 1.43

Pleosporales Setophaeosphaeria OTU632 14 14 0 0.20

Cystobasidiomycetes Symmetrospora OTU800 13 11 2 0.15

unclassified Basidiomycota unclassified Basidiomycota OTU1534 13 11 2 3.83

Pleosporales Didymella OTU687 11 11 0 0.85

Pleosporales Didymella OTU1270 11 11 0 0.97

Pleosporales Epicoccum OTU1366 11 11 0 1.60

Erythrobasidiales Erythrobasidium OTU117 11 11 0 2.08
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phenotype were significantly different in abundance between seasons

for all five plants, and the abundance of bacteria possessing this

phenotype was significantly higher in summer in four plants except

in A. membranaceus.

A comprehensive analysis was conducted using the FAPROTAX

database to predict a total of 39 bacterial ecological functions within the

phyllosphere epiphytic bacterial communities. The ecological functions

of bacterial communities across different plant species exhibited

seasonal variations. Specifically, during the winter season, the

bacterial communities of five plant species demonstrated a higher

level of function heterogeneity compared to those observed during the

summer (Figure 8B). The ecological functions of bacterial communities

were found to be primarily dominated by chemoheterotrophy,

accounting for 23.96% to 38.09% of the overall abundance of the

bacterial community. Additionally, aerobic chemoheterotrophy

(RA=17.11%-28.86%). In accordance with the results obtained from

the heat map analysis, it was observed that the functions of aerobic

chemoheterotrophy and chemoheterotrophy were the predominant

features in the composition of epiphytic bacterial communities. The

results of the Kruskal-Wallis tests revealed that eight out of the nine

dominant functions displayed statistically significant variations in

abundance among plants during the winter season. However, no

significant differences were observed in the abundance of these

functions during the summer (Supplementary Figures S5A, B).
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Seasonal comparisons on abundances of bacteria possessing the

top 9 dominant functions indicated that certain types of ecological

function showed accordant patterns in seasonal changes in all five host

species, and some with statistical significance (Supplementary Figure

S5C). For example, there were more bacteria with nitrate reduction in

summer than winter for all five host species, and the differences were

significant in four plants except AM. The study revealed a higher

abundance of chemoheterotrophic bacteria during the winter season in

five plant species, specifically B. chinense, A.lancea, and L.japonica.

These differences in abundance were statistically significant. The

prevalence of methanol oxidation bacteria exhibited a consistent

increase during the winter season, with significantly higher levels

observed in A.lancea, S.miltiorrhiza, and L.japonica.

Based on their mode of nutrition, the epiphytic fungi were

categorized into three primary trophic groups as per the FUNGuild

prediction: pathotrophs (including phagotrophic fungi phagotrophs),

symbiotrophs, and saprophytes. The findings indicated that during the

summer, the epiphytic fungal community in LM was predominantly

comprised of pathotrophs (RA=64.63%) and pathotroph-saprotroph-

symbiotrophs (RA=20.42%). In contrast, the fungal communities in the

other four plants during the summer were primarily saprotrophs

(RA=14.79%-63.08%) and pathotroph-saprotroph-symbiotrophs

(RA=31.83%-75.06%). The pathotroph-saprotroph-symbiotrophs

(RA=27.23%-62.70%) was as the dominant functional group of
A

B

FIGURE 8

Phenotypic (A) and functional prediction (B) of phyllospheric epiphytic bacterial communities. J, June-Summer; N, November-Winter; BC,
Bupleurum chinense; AL, Atractylodes lancea; SM, Salvia miltiorrhiza; AM, Astragalus membranaceus; LJ, Lonicera japonica.
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epiphytic fungi in winter. Notably, there was a significant decrease in

the abundance of fungal saprotrophs (RA=6.43%-19.06%) and a

corresponding increase in pathotroph-saprotrophs (RA= 11.80%-

55.62%) across all host species during the winter, as compared to the

summer communities (Figure 9A).

The epiphytic fungi were further classified into twelve distinct

functional guilds. The findings of the study revealed that the

dominant types of epiphytic fungi on L. japonica during the

summer were primarily plant pathogens (RA = 64.62%).

Additionally, a significant proportion of the fungi belonged to the

categories of Animal Pathogen-Endophyte-Lichen Parasite-Plant

Pathogen-Wood Saprotroph (RA=18.44%) and Undefined

Saprotroph (RA=13.74%). On the other hand, the epiphytic fungi

found on the other four plants were predominantly categorized as

Undefined Saprotroph (RA=14.64%-63.05%), Animal Pathogen-

Endophyte-Lichen Parasite-Plant Pathogen-Wood Saprotroph

(RA=18.63%-44.35%), and Animal Pathogen-Endophyte-Plant

Pathogen-Wood Saprotroph (RA=8.58%-22.95%). The diversity

of ecological functions performed by epiphytic fungi on five plant

species was found to be higher during the winter season.
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Specifically, there was an increase in the presence of Animal

Pathogen-Plant Pathogen-Undefined Saprotroph fungi

(RA=3.58%-51.27%) and Fungal Parasite-Undefined Saprotroph

fungi (RA =10.64%-36.42%) compared to the summer.

Conversely, there was a decrease in the abundance of Undefined

Saprotroph fungi (RA=6.03%-18.02%) and Animal Pathogen-

Endophyte-Lichen Parasite-Plant Pathogen-Wood Saprotroph

fungi (RA=5.73%-15.36%).Animal Pathogen-Endophyte-Plant

Pathogen-Wood Saprotroph fungi exhibited a decline from

summer to winter in all four species (RA=1.40%-8.61%), with the

exception of A. lancea (RA=33.18%) (Figure 9B).
4 Discussion

4.1 Taxonomic composition of community

In this study, the dominant taxa in the epiphytic bacterial

communities of medicinal plants were Actinobacteriota and

Proteobacteria. This finding is in line with previous research that
A

B

FIGURE 9

Functional prediction of phyllosphere epiphytic fungal community base on FUNGuild database. (A) Basic functional classification of different
epigenetic fungi; (B) multiple detailed functional classification of different epigenetic fungi J, June- Summer; N, November-Winter; BC, Bupleurum
chinense; AL, Atractylodes lancea; SM, Salvia miltiorrhiza; AM, Astragalus membranaceus; LJ, Lonicera japonica.
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investigated phyllosphere epiphytic bacteria using both culture-

dependent and -independent approaches.The Actinobacteriota and

Proteobacteria were found to be the most prevalent in all of the

examined locations. However, their abundance was observed to be

higher in 2014 as compared to 2016. In the year 2014, the

Actinobacteriota constituted 93.4% and 86.8% of the epiphytic

bacterial communities found on plants in rural and urban areas,

respectively (Espenshade et al., 2019). Leff et al. (2015) proposed that

the elevated rates of reproduction observed in numerous members of

the Proteobacteria phylum are the primary factor contributing to the

substantial proportion of isolates from this group. Meanwhile, the

Firmicutes have been identified as a dominant bacterial group during

the summer. This finding is consistent with a previous study by Wei

et al. (2022), which reported Firmicutes as the dominant group of

phyllosphere epiphytic bacteria. Unlike fungi, bacteria are unable to

penetrate the cuticle of plant tissues through mycelium. However,

Firmicutes, which are nitrogen-fixing bacteria, are capable of

supplementing nitrogen acquisition and adapting to epiphytic

niches (Zehr et al., 2003). Furthermore, Bacteroidota, which are

also the prevailing phylum found in marine macrophytes, constitute

a relatively significant portion of the bacterial community that

inhabits winter epiphytic environments (Chen et al., 2022).

Bacteroidota bacteria play a crucial role in the degradation of

biopolymers, facilitating the growth of colonizing bacteria by

creating an aerobic environment within the surface biofilm (Dang

et al., 2011). At the order level, Micrococcales is a main constituent

group of epiphytic bacteria, which has not been reported for

phyllosphere epiphytic microorganisms to our knowledge.

Micrococcales played an important role in networks of epiphytic

bacterial communities across plants and across seasons. The ability

to degrade biological macromolecules (e.g. cellulose and lignin) may

account for the dominance of Micrococcales (Liu et al., 2020). The

genus Curtobacterium has been identified as a significant pathogenic

bacterium in economically important crops (Evseev et al., 2022).

However, we have identified an unclassified member of the genus

Curtobacterium (OTU 3394) present on all five medicinal plants

during both seasons. The investigation of the interaction between

taxa and host plants, as well as the potential ecological consequences

of their presence, requires further examination.

The epiphytic fungal community was dominated by

Dothideomycetes (Ascomycota) and Tremellomycetes (Basidiomycota),

which is consistent with findings from previous studies conducted on

both tropical and temperate plants (Coleman-Derr et al., 2016; Yao

et al., 2019; Bao et al., 2022). The Dothideomycetes is recognized as

the largest and most diverse in terms of ecological and functional

characteristics (Haridas et al., 2020; Hongsanan et al., 2020). This

group encompasses various species that are known to be pathogens

of both humans and plants, as well as endophytes and epiphytes. In

addition, Dothideomyetes has been widely documented as one of the

important taxa related to leaves (Qian et al., 2018; Xiong et al., 2021).

Pleosporales represents the most extensive order within the class

Dothideomycetes (Yu et al., 2022). Its constituents exhibit a wide

range of ecological roles, including epiphytic, endophytic, and

parasitic associations with various host plants (Mapook et al.,

2016). Pleosporales emerges as a prominent fungal order within

the epiphytic fungal community in our study. It encompasses
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keystone taxa that exhibit the highest abundance within the

epiphytic fungal networks of the five medicinal plants under

investigation. Tremellales exhibited a preference for cold seasons in

our study. Taxa belonging to Tremellales were identified as keystone

taxa in all five medicinal plant species within the epiphytic fungal

networks, regardless of the season. The concept of keystone species

has been proposed to have a significant impact on the stabilization of

microbial communities (Vetrovsky et al., 2020). Our findings

indicate that the presence of Pleosporales and Tremellales taxa

significantly contribute to the preservation of network structure

and stability within epiphytic fungal communities on medicinal

plants in agroecosystems.
4.2 Epiphytic bacterial and fungal
community construction in phyllosphere

Plants exert a filtering influence on the microbial communities

they are associated with (Bringel and Couee, 2015), and the species

of the host plant play a significant role in shaping the compositions

of these communities (Kim et al., 2012; Yao et al., 2019). Alpha

diversity indices of epiphytic bacteria and fungi in this study

showed significant differences among all five plant species.

Šigutová et al. (2023) demonstrated that the diversity of bacteria

was significantly impacted by the species of the host plant, whereas

the composition of the fungal community was more strongly

influenced by the host species. Bodenhausen et al. (2014) The

study found that the host alleles with the greatest influence on the

microbiota were lacs2 and pec1, compared to wild-type

Arabidopsis. These mutations affect the formation of the cuticle,

leading to a significant increase in bacterial abundance, suggesting

that different bacteria can benefit from the modified cuticle to

varying degrees. In addition, ein2, which is involved in ethylene

signaling, was found to be a major host factor regulating the

composition of the epigenetic microbial community. In a study

conducted by Kang et al. (2022), the diversity indices and

community structure of epiphytic fungi in the phyllosphere of

bamboo were examined during the spring and autumn seasons.

The results revealed significant differences in both the diversity

indices and community structure among different bamboo species

as well as between the two seasons. Li M. et al. (2022) found that

phyllosphere fungal communities of subtropical trees varied with

host species identity and seasonality, and that host species identity

had a greater effect on phyllosphere fungal community assembly

compared to seasonality. The findings from the NMDS and

PERMANOVA analyses revealed significant variations in the

communities of phyllosphere epiphytic microorganisms of

medicinal plants across different plant species and seasons.

Additionally, the ANOSIM analysis demonstrated that the

phyllosphere epiphytic microorganisms differed between species,

plants, and seasons. The dissimilarities in leaf hairiness among plant

species were found to be responsible for the variations in

phyllosphere epiphytic bacterial communities. Moreover, the level

of hairiness indirectly influenced the contact area and habitat of

microorganisms with plants, thereby impacting the diversity and

structure of phyllosphere microbial communities (Bai et al., 2022).
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Previous research has also associated seasonal variations with

alterations in the composition of the epiphytic microbial

community (Jackson and Denney, 2011; Warshan et al., 2016).

We observed that the alpha-diversity indices of bacterial and fungal

communities exhibited a greater degree of variation between

seasons as opposed to variations between plants. Seasonal

variations exhibited significant impacts on the richness of

epiphytic bacteria and fungi, aligning with findings from previous

research (Vokou et al., 2019; Wei et al., 2022). In the current study,

it was observed that there was a higher richness of bacterial OTUs

during the summer compared to the winter. Conversely, a greater

diversity of fungal OTUs was found during the winter as opposed to

the summer. Šigutová et al. (Šigutová et al., 2023) conducted a study

to investigate the impact of season on the composition of epiphytic

bacterial communities. The results revealed that there were

significant variations in the bacterial communities between

different months, with the most pronounced differences observed

between April and the other months. Zhang et al. (2022) employed

NMDS plots utilizing Bray-Curtis distances and conducted

PERMANOVA analysis to characterize the bacterial community

structure across all samples of Medicago sativa. The study revealed

notable differences between samples in each season, indicating

significant distinctions. Zheng (2011) discovered that the diversity

of the microbial community in the phyllosphere of Pinus exhibited

the highest diversity during autumn, followed by summer and

spring. In contrast, Thompson et al. (1993) demonstrated that the

diversity of the epiphytic fungal community in the phyllosphere of

Beta vulgaris was lower in spring compared to autumn. The

variation in leaf characteristics and environmental factors

between young and old leaves, along with the influence of host

plant species, play crucial roles in shaping leaf-associated

communities and account for the observed differences (Šigutová

et al., 2023). Overall, our study provides confirmation of significant

seasonal fluctuations in the composition of phyllosphere epiphytic

bacteria and fungi (Jumpponen and Jones, 2010; Gomes et al., 2018;

Postiglione et al., 2022).

In this study, it was observed that both host species and season

played a significant role in influencing the presence of epiphytic

microorganisms. However, it is worth noting that the limitations of

the planting site may have affected the season’s impact on interleaf

epiphytic microorganisms at a smaller habitat scale, resulting in a

weaker host selectivity.
4.3 Symbiotic patterns of epiphytic
bacterial and fungal communities

Network analysis, utilizing correlation tests, has been

increasingly employed in recent years to enhance comprehension

of the interactions among community members within microbial

communities (Qian et al., 2018; Xiong et al., 2021). In our study, the

co-occurring networks formed by the fungal or bacterial

communities continued to exhibit seasonal variations. For

instance, during the summer, there was a decrease in the number

of interactions observed in the bacterial network compared to the

winter. Conversely, the opposite trend was observed for fungi, with
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an increase in the number of interactions during the summer. Liu

et al. (2022) elucidated substantial fluctuations in microbial

networks across distinct seasons within a comprehensive

investigation of lake ecosystems. The researchers discovered that

the autumn season displayed the highest level of complexity and

resilience in the network. This conclusion was ascribed to the

phenomenon of environmental filtering and its associated

interspecies interactions, wherein certain taxonomic groups

exhibited distinct characteristics specific to different seasons.

Interestingly, it was also found that bacteria and fungi exhibited a

higher occurrence of interspecies interactions and positive

correlations when there was a decrease in overall diversity.

The networks of each plant exhibited a higher number of

connections compared to the networks of each season. This suggests

that the interactions between epiphytic bacteria and fungi primarily

took place among individuals of the same host species, rather than

between individuals of different host species. For each plant species

examined, there was a predominantly positive correlation between the

types of bacterial and fungal network interactions observed in

B.chinense, S.miltiorrhiza, and A.membranaceus. This finding

suggests that mutualistic symbiosis between microorganisms plays a

dominant role in these plants. On the other hand, there were

numerous negative correlations observed in the bacterial network

interaction types for A.lancea and L. japonica. In contrast, fungi

exhibited a predominance of positive correlations. These findings

suggest that in these plants, there exist not only mutually beneficial

symbiotic relationships between microorganisms, but also frequent

negative interactions, including antagonism, competition,

and parasitism.

The stability of a microbial community is contingent upon its

modular structure and the presence of keystone taxa (Liu et al.,

2022). In the present study, the formation of modules was frequently

observed within networks comprising bacterial and fungal

communities. We observed that the network structure of winter

networks exhibited a higher degree of modularity compared to

summer networks. Additionally, we noted a decrease in

connectivity among fungal modules during the winter. This

observation implies that the selection of connections between plant

hosts may exhibit a stronger preference for a specific season. As

modular structures have been found to provide protection to

communities against secondary extinctions that occur after

disturbances, they also enhance the stability of the entire network

(Stouffer and Bascompte, 2011). In the context of inter-seasonal

networks, the level of modularity observed in individual plants was

higher compared to inter-plant networks. This finding suggests that

epiphytic communities, which consist of different periods of the

same host, are more resilient to secondary species extinctions caused

by disturbances compared to communities with different hosts

within the same period. We conducted an investigation into the

impact of host species and seasonal fluctuations on the stability of

epiphytic communities. Our findings revealed that the majority of

keystone taxa, characterized by high nodes, were species with low

relative abundance. Conversely, community members with high

abundance displayed limited or no mutualistic relationships. This

observation suggests that the dynamics of microbial communities are

primarily influenced by infrequent taxa with low population sizes.
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4.4 Ecological functions of epiphytic
bacterial and fungal communities

Any characteristic that is associated with the growth, reproduction,

or survival of a plant and has the potential to influence its fitness is

commonly referred to as a functional trait (Violle et al., 2007). The plant

microbiome is proposed to be a functional characteristic of plants, as the

diversity of bacterial communities on leaves has been found to be

correlated with host growth andmortality rates (Kembel et al., 2014). In

the current study, an examination of bacterial populations indicated

that the relative abundance of Gram-negative bacteria remained stable

and dominant across different seasons. The proportion of Gram-

positive bacteria exhibited a peak during the summer months and

subsequently experienced a gradual decline throughout the winter. The

presence of an outer lipid membrane in Gram-negative bacteria can be

attributed to this phenomenon, which presents a challenge for

penetration. Consequently, Gram-negative bacteria exhibit an

additional layer of protection that is not present in Gram-positive

bacteria. Additionally, chemoenergetic heterotrophic bacteria serve a

pivotal function as the principal component of epiphytic bacteria. These

bacteria employ plant organisms as a source of carbon and energy to

synthesize their own organic compounds. Phyllosphere epiphytic fungi

predominantly demonstrate saprophytic trophic characteristics,

leveraging their saprophytic nature to break down plant epidermal

cells and obtain the necessary nutrient resources necessary for their

sustenance. Based on the classification of trophic types into 13

functions, the high occurrence of indeterminate saprophytic fungi

implies that the relationship between epiphytic fungi and the plant

organism is predominantly parasitic.

In the present study, it was discovered that diverse epiphytic

microbial communities thrive in even the most challenging

phyllosphere environments. Furthermore, the composition and

species diversity of both epiphytic bacterial and fungal

communities exhibited significant variations across seasons and

among different medicinal plant species. The influence of season on

the composition of epiphytic microbial communities in the

phyllosphere of medicinal plants is more pronounced than its

impact on the host species. The presence of epiphytic microbes in

the phyllosphere is dependent on a consistent microbiota across

different plant species during various seasons. Additionally, the

association between different plant species during different seasons

is characterized by distinct microbiota. Lemanceau et al. (2017)

discovered that various plant species possess distinct microbial

communities. Within the context of functional redundancy in

plant-associated microbial communities, there is a distinct subset

known as the “core microbiome.” This core microbiome plays a

critical role in maintaining the health of the host plant by carrying

essential genes. The dissimilarities observed in the epiphytic

microbial communities of medicinal plants were more pronounced

during the winter compared to the summer. The significant

correlation between the host plant’s significance in the phytosphere

and the microbial community of the phytosphere underscores the

necessity for a thorough examination of the interactions between the

host plant and the epiphytic microbial community of the

phytosphere. This study also establishes a theoretical foundation for

the potential application of foliar fungicides in medicinal contexts.
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Introduction: With current trends in global climate change, both flooding

episodes and higher levels of CO2 have been key factors to impact plant

growth and stress tolerance. Very little is known about how both factors can

influence the microbiome diversity and function, especially in tolerant soybean

cultivars. This work aims to (i) elucidate the impact of flooding stress and

increased levels of CO2 on the plant defenses and (ii) understand the

microbiome diversity during flooding stress and elevated CO2 (eCO2).

Methods: We used next-generation sequencing and bioinformatic methods to

show the impact of natural flooding and eCO2 on themicrobiome architecture of

soybean plants' below- (soil) and above-ground organs (root and shoot). We

used high throughput rhizospheric extra-cellular enzymes and molecular

analysis of plant defense-related genes to understand microbial diversity in

plant responses during eCO2 and flooding.

Results: Results revealed that bacterial and fungal diversity was substantially

higher in combined flooding and eCO2 treatments than in non-flooding control.

Microbial diversity was soil>root>shoot in response to flooding and eCO2. We

found that sole treatment of eCO2 and flooding had significant abundances of

Chitinophaga, Clostridium, and Bacillus. Whereas the combination of flooding

and eCO2 conditions showed a significant abundance of Trichoderma and

Gibberella. Rhizospheric extra-cellular enzyme activities were significantly

higher in eCO2 than flooding or its combination with eCO2. Plant defense

responses were significantly regulated by the oxidative stress enzyme activities

and gene expression of Elongation factor 1 and Alcohol dehydrogenase 2 in

floodings and eCO2 treatments in soybean plant root or shoot parts.
frontiersin.org0144

https://www.frontiersin.org/articles/10.3389/fpls.2023.1295674/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1295674/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1295674/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1295674/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1295674&domain=pdf&date_stamp=2024-02-08
mailto:alkhan@uh.edu
https://doi.org/10.3389/fpls.2023.1295674
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1295674
https://www.frontiersin.org/journals/plant-science


Coffman et al. 10.3389/fpls.2023.1295674

Frontiers in Plant Science
Conclusion: This work suggests that climatic-induced changes in eCO2 and

submergence can reshape microbiome structure and host defenses, essential in

plant breeding and developing stress-tolerant crops. This work can help in

identifying core-microbiome species that are unique to flooding stress

environments and increasing eCO2.
KEYWORDS

microbiome, diversity, flooding stress, climatic CO2, gene expression, oxidative
stress, soybean
GRAPHICAL ABSTRACT
Introduction

Climate change decreases plant productivity and threatens food

security (Ahmad and Prasad, 2011). Climate changes are

interconnected and multifaceted. Greenhouse gas emissions,

specifically CO2, are increasing, leading to changes in global

temperature and rainfall patterns. The IPCC reported that with

global warming of 1.5°C, there will be more flooding in coastal and

low-lying cities and local areas experiencing increased frequency

and intensity of rain. In 2019 alone, flooding along three major

rivers caused roughly $20.3B in damage, affecting agriculture and

infrastructure [NOAA National Centers for Environmental

Information (NCEI), 2018]. The increased amount of water

available or excess submergence is hazardous to plant growth

and productivity.

Flooding broadly comes in two forms: waterlogging, where

water is on the soil surface and only plant roots are surrounded

by water. The other form is called submergence, where the whole

plant can either be underwater/fully submerged or partially

submerged (Jia et al., 2021). Hypoxia is caused in both cases by a
0245
lack of oxygen in the plants (Loreti and Perata, 2020). Submergence,

studied here, causes excessive hypoxia (Lee et al., 2011). It

exacerbates subsidiary stresses such as pathogenesis, herbivory

(Hsu and Shih, 2013), and soil nutrient balance (Hurkman, 1992;

Degenhardt et al., 2000; Zhu, 2001; Yang et al., 2008; Valliyodan

et al., 2016). Hypoxia induces the production of reactive oxygen

species (ROS; superoxide O2
–, singlet oxygen 1O

2, hydrogen

peroxide H2O2) that damage the functional proteins, lipids,

carbohydrates, and nucleic acid in plants (Boyarshinov and

Asafova, 2011; Boogar et al., 2014). While other factors, such as

soil nutrient availability, can influence soil microbiome during

flooding, the overwhelming factor is the lack of oxygen (Unger

et al., 2009). A study has shown that soil type, soil moisture, and

field slope can influence bacterial movement in flooded soils, but

this would be specific (Callahan et al., 2017b) and is outside of the

scope of this study.

Crop plant flooding events are estimated to decrease yields by

50%–80% (Mittler and Blumwald, 2010; Nanjo et al., 2014; Cooke

and Leishman, 2016; Sasidharan et al., 2017). Flooding’s impact on

the agriculture economy costs more than $5.5 billion in the United
frontiersin.org
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States, whereas climate change impacts are estimated to range up to

$1.5 trillion globally. Soybeans are in the top 5 important food crops

around the world (Savary et al., 2019), which is mostly due to their

essential amino acid composition and complete protein content

(Michelfelder, 2009). There have been many studies investigating

the physiological and/or biochemical effects of flooding on soybeans

(Khan et al., 2021; Komatsu et al., 2021; Staniak et al., 2023; Wang

and Komatsu, 2018; Zhou et al., 2021), but few studies have

investigated the shifts of its microbial communities (Lian et al.,

2023; Yu et al., 2022). For example, it has been shown that flooding

stress creates signaling for cell death and proteolysis in the root tips

(Yanagawa and Komatsu, 2012; Nanjo et al., 2013), along with

diminished root elongation and hypocotyl pigmentation

(Hashiguchi et al., 2009). Soybeans and other legumes are

potentially more sensitive to flooding due to lack of oxygen,

having a negative impact on nitrogen fixation in the root systems

(Shimamura et al., 2002; Yamauchi et al., 2013; Souza et al., 2016).

However, soybeans generate aerenchyma throughout the plant,

termed “secondary” aerenchyma, to cope with flooding stress

(Shimamura et al., 2003).

Plant molecular response pattern to stress triggers the gene

expression profile, and biosynthetic pathways enable signal

transduction to produce biochemical metabolites and enzymes

that increase the defense responses of plants (Ahuja et al., 2010;

Godoy et al., 2021; Razi and Muneer, 2021). For example, SnRK1

directly binds to the promoter regions of hypoxia-inducible genes in

response to submergence (Park et al., 2020). In plants, the enzymes

pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH)

are crucial players during low oxygen conditions (Jardine and

McDowell, 2023; Strommer and Garabagi, 2009). However, more

needs to be understood about how these molecular signaling events

correspond to microbia l symbionts also affected by

climatic conditions.

CO2, on the other hand, is essential to plant photosynthesis;

however, it can negatively impact plant growth and physiology

(Gojon et al., 2023). The interaction of water and CO2 is well

known. The elevated CO2 (eCO2) produces weak carbonic acid,

which causes root cell wall acidification (Tan and Zwiazek, 2019).

This impacts the root architecture and changes the rhizospheric soil

chemistry, where any change in the rhizosphere can also influence

microbial community structures. Furthermore, eCO2 mainly lowers

the nitrogen content of plant tissues, possibly through specific

inhibition of nitrate uptake and assimilation (Tausz-Posch et al.,

2020). The altered nutrient status of plants grown at eCO2 is one

likely cause of the acclimation of photosynthesis to eCO2 that

prevents complete stimulation of biomass production in response

to “CO2 fertilization” (Cotrufo et al., 1998). The high natural genetic

variability of the eCO2 impact on plant nutrient status can be

exploited as a promising strategy to breed future crops better

adapted to a high-CO2 world (Tausz et al., 2017). eCO2 and

flooding separately drastically impact the agricultural production

system. Water has a lower gas exchange rate than air, reducing gas

exchange in the soil while already in a higher CO2 environment,

limiting oxygen availability more. Elevated CO2 levels have the

potential to be either beneficial or detrimental. Thus, eCO2 and

flooding-induced hypoxia can impact the plant’s ability to tolerate
Frontiers in Plant Science 0346
stress and influence the associated microbial communities, which

has not been fully elucidated (Jones et al., 2018).

Microbes, conversely, improve plant growth, productivity, and

resistance against pathogenicity and abiotic stresses (D’hondt et al.,

2021; Lyu et al., 2021). Recently, the plant-associated microbiome has

been coined as a “second genome” highly variable in diversity,

abundance, and composition (Pfeiffer et al., 2017). Some recent

studies have explained the role of the microbiome in drought and

heat stress conditions (Jorquera et al., 2016; Citlali et al., 2018;

Delgado-Baquerizo et al., 2018; Mandakovic et al., 2018; Araya

et al., 2020; Astorga-Eló et al., 2020; Khan et al., 2020b); however,

how microbial communities respond to eCO2 and hypoxia-induced

flooding has not been fully explained. Stressors such as flooding can

cause a shift in a plant’s root exudates, the main mode of

communication for the rhizospheric microbiome (Vives-Peris et al.,

2020; Martıńez-Arias et al., 2022). It is established that abiotic stress

changes root exudates, influencing the microbiome (Vargas et al.,

2020; Martı ́nez-Arias et al., 2022). Developing “secondary”

aerenchyma can release oxygen to aid beneficial microbes during

abiotic stressors such as flooding (Bodelier, 2003). Gaining popularity

recently is the phyllosphere which encompasses the aboveground

portions of the plant from the leaves, stems, fruits, and flowers

(Bashir et al., 2022). The phyllosphere microbiome composition can

shift by host, season, pollution, and location (Bao et al., 2020; Qian

et al., 2020; Sohrabi et al., 2023). Still, a knowledge gap exists on how

phytomicrobiome, populations, and function can improve crop stress

tolerance (Khan et al., 2015; Khan et al., 2020b; Trivedi et al., 2020).

Increasing our mechanistic understanding and real-world

understanding of microbiome–plant interactions under flooding

stress offers enormous potential for increasing the resilience of

plants in such conditions (Van Der Heijden and Hartmann, 2016;

De Vries et al., 2020).

Looking at the current focus on plant–microbe interactions,

there is also a significant need to harness stress tolerance

mechanisms to improve plant growth in extreme conditions and

focus on increasing plant yields (Hussain et al., 2018). Since the two

factors—i) increased eCO2 and ii) floodings—are extremely

important to plant life, it is expected that flooding more strongly

influences the rhizosphere microbiome while eCO2 significantly

influences the phyllosphere microbiome. Here, we hypothesize that

flooding and eCO2 exposure can influence the microbiome diversity

in the rhizosphere and phyllosphere of soybean plants. Both factors

can also influence the microbial abilities to produce rhizospheric

enzymes and plant stress tolerance by regulating oxidative stress

and stress-related gene expressions. However, these adaptive

mechanisms at the molecular, biochemical, and metabolite levels

vary across different species of plants, their growth conditions, and

exposure to stress factors. This work will provide new insights into

how increased flooding and elevated carbon dioxide levels caused by

global warming will have a novel impact on plant stress response

and microbiome structure. While this study only scratches the

surface of plants’ responses, it provides new questions for future

studies. For this purpose, in the current study, we aim to i) elucidate

the impact of flooding stress and increased eCO2 on the plant

defenses and ii) understand the changes in microbial communities’

structure during flooding stress.
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Results

Flooding and eCO2 exposure impact plant
growth and oxidative stress enzymes

The results showed that the treatments impacted plant growth

and development compared with control plants. Morphologically,

flooding stress caused 27% fewer leaves and 38% higher internode

length than the control. Overall, the sole or combined treatments of

flooding and/or eCO2 have significantly (p< 0.05) hindered the plant

growth (shoot and root length, biomass, number of leaves, and

internode distances) compared with non-flooded control plants

(Supplementary Table 1). A similar negative impact was also

observed for the photosynthetic pigments in the combined flooding

and/or eCO2 treatments. We found that chlorophyll contents (chl-a

and chl-b) were significantly lower (p< 0.05) in flooding and flooding

+ eCO2 compared with control soybean plants. Combined flooding

and eCO2 interaction was significant (p< 0.05). Both control and

flooding showed insignificant quantities of carotenoids, whereas the

eCO2 treatment with or without flooding was significantly lower than

the rest (Supplementary Figure 1).

The flooding stress causes significant oxidative stress, evidenced

by the increased antioxidant enzyme activities. PPO (polyphenol

oxidase) activities were significantly higher (p< 0.01; 26.2%) in the

leaf part during flooding stress compared with other treatments and

control soybean plants (Figure 1). The PPO activities were
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comparatively reduced in eCO2 and in combination with flooding

stress. The peroxidase (POD) activities were non-significantly higher

in the leaf during different treatments than in the control. POD

activity was also non-significantly regulated in root parts across

different treatments compared with the control (Supplementary

Figure 2). However, this was still insignificant compared with the

control. In the case of superoxide dismutase (SOD), it was

significantly increased (p< 0.05; 21.4% to 29.1%) in the leaf parts of

plants treated with flooding both in ambient CO2 and eCO2

applications as compared with the control.

On the contrary, the antioxidant enzyme activity in root parts

was exponentially lower in all treatments (Figure 1). In the case of

H2O2 scavenger, catalase activities were significantly higher (p<

0.001; 31%) in flooding stress than eCO2 with or without flooding

stress conditions and control plants. The catalase enzyme activities

were significantly lower in the root parts. However, we observed a

similar trend of increased catalase activities in flooding stress

conditions (Figure 1). Contrarily, the root parts treated with

eCO2 with flooding stress have shown significantly (p< 0.05)

higher catalase activities than control plants (Figure 1). We also

assessed the contents of reduced glutathione in the root and shoot

parts of different treatments. We found that reduced glutathione is

significantly higher in root than leaf parts during other treatments.

The root parts treated with eCO2 with flooding stress have shown

significantly (p< 0.05; 18%) higher glutathione content than control

plants (Figure 1).
FIGURE 1

Influence of eCO2 and flooding on the oxidative stress-related enzymes and biochemicals. PPO, SOD, CAT, and Glut were assessed from the leaf
and root parts of the soybean plants treated with eCO2, flooding, and eCO2 + flooding and compared with non-flooded control plants. The values
in the bar are the mean values of three replicates and show standard deviation. The bars showing *, **, and **** are significantly different (p<0.05) in
their content compared with the control as analyzed by two-way ANOVA.
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Flooding and eCO2 regulate
microbiome diversity

Since flooding stress has significantly influenced plant growth and

oxidative stress enzyme activities, we hypothesized that it would also

impact the diversity and abundance of microbial communities across

different treatments. For this purpose, an in-depth amplicon

sequencing of 16S rRNA and ITS regions of different treatments

(control, flooding, eCO2, and flooding + eCO2) was performed,

followed by bioinformatics analysis. We obtained 1.93 million reads

and 1.41 million reads for soil’s bacterial and fungal communities,

with post-filtration of sequences assigned to chloroplast,

mitochondria, and archaea. Similarly, we obtained 3.9 and 3.7

million reads from the shoot/root parts of the plants

(Supplementary Tables 2–5). We observed 1.2 to 1.3 million

bacterial amplicon sequence variants (ASVs) and 0.9 to 1.2 million

fungal ASVs. ASV methods first infer biological sequences from a

sample and distinguish sequence variants that differ by more than one

nucleotide then analyze amplification and sequence errors (Callahan

et al., 2017a). We observed that bacterial and fungal ASVs were

significantly (p< 0.01; 28%) higher in combined flooding and eCO2

treatments. The bacteria and fungi ASVs were 1.3 and 1.24 million for

flooding + eCO2. This was followed by eCO2 treatment which had a

moderate impact on microbial ASVs (Supplementary Table 6).

Flooding stress showed lower ASVs than eCO2 treatments in

fungal communities. In the different organs of the plants, the root/

shoot parts of flooding + eCO2 showed higher (p< 0.01; 22%) ASV

compared with control and other treatments. This was true for both

bacterial and fungal ASVs. This suggests that combining flooding

and eCO2 treatments significantly increases microbial communities’

abundances compared with control and sole flooding/eCO2

treatments (Supplementary Table 6).

Overall, the results showed significantly higher (p< 0.05; ~6)

Shannon diversity indices in the root parts than in the shoot parts

(~0.5) (Supplementary Table 7). Among the treatments for the

rhizospheric soil, the results showed significantly higher (35.2%)

bacterial diversity in eCO2 treatments compared with the control.

This was followed by flooding and flooding + eCO2 treatments with

29.8% and 19.1% higher bacterial diversity than control,

respectively (Figure 2). Contrarily, the fungal diversity averaged

~3.5% for all treatments, insignificantly higher in flooding and

flooding + eCO2 (Figure 2). In the endospheric microbiome,

bacterial diversity was the highest in flooding and flooding +

eCO2 treatments in the root parts (Figure 2). Conversely, the

fungal diversity significantly reduced (121.8%) across all

treatments compared with the control in roots. In the case of the

shoot, a very low bacterial diversity was observed with a Shannon

value of 0.70, 0.78, and 0.52 for the control, eCO2, and flooding +

eCO2, respectively (Figure 2). Interestingly, bacterial diversity was

significantly higher in flooding (1.70) compared with other

treatments. Overall, flooding and eCO2 caused a significant (p<

0.05; 105.6% and 28.9%, respectively) increase in bacterial diversity

compared with control, suggesting that both impact the

microbiome structure. In contrast to bacterial diversity, fungal

diversity in the shoot was significantly higher (p< 0.05; 23.6%) in

flooding stress conditions compared with the control (Figure 2). In
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bacterial microbiomes, the control treatment is distributed

unevenly across principal coordinates in rhizospheric soil samples

compared with other treatments. Not surprisingly, samples with

similar community diversity were observed for eCO2 and flooding +

eCO2. The root and shoot samples were clustered adjacent

throughout the microbial diversity, with replicates of flooding and

flooding + eCO2 (Supplementary Figure 3).

The rhizospheric soil showed that combined factors of flooding+

eCO2 had significantly enriched ASVs than control vs. eCO2 or

control vs. flooding for bacterial and fungal diversity (Supplementary

Table 8). In the case of the root endosphere, a relatively different

trend of upregulated ASV enrichment was observed in control vs.

flooding than in control vs. flooding + eCO2 for bacterial

communities. The relative fungal abundances were significantly

higher in control vs. flooding + eCO2 than in the other treatments

in the root part. A similar trend of increased bacterial ASV

enrichment was observed for shoot endosphere in control vs.

flooding + eCO2 than other treatments (Supplementary Table 8).
Microbiome players in flooding and eCO2

Bacterial biomes distribution in treatments
Proteobacteria, Actinobacteria, Bacteroidota, and Firmicutes were

the significantly abundant phyla across all treatments in the rhizospheric

soil. Proteobacteria were highly abundant (p > 0.05; 79%) in control,

followed by 51% abundance in flooding. In Proteobacteria, the

significant abundant families were Caulobacteraceae, Rhizobiaceae,

Xanthobacteraceae, Sphingomonadaceae, Burkholderiaceae,

Comamonadaceae, Pseudomonadaceae, and Rhodanovacteraceae

(Supplementary Table 9; Figure 3). Of these eight families,

Caulobacteraceae had 4% abundance in control and flooding and

5.5% and 7% in eCO2 and flooding + eCO2, respectively.

Sphingomonadaceae was ~14% abundant across all treatments

compared with the control (~8%). Pseudomonadaceae, on the other

hand, had significantly higher abundances of 52%, 37%, 20%, and 18%

in control, flooding + eCO2, flooding, and eCO2. Overall, the eCO2

treatment showed higher abundances of these families. Similarly, in the

case of phyla Bacteroidota, the relative abundance (22%) was

significantly higher in eCO2 compared with other treatments (11% to

13%). Chitinophagaceae family abundances were substantially lower in

control (7%) compared with 10%–11% in flooding and flooding + eCO2

treatment. Contrarily, Chitinophagaceae was 20% abundant in eCO2

(Figure 3; Supplementary Figure 4). The relative abundance of

Actinobacteriota phylum stayed relatively consistent, with a

percentage between 2% and 5%. The Actinobacteriota comprised 21

families, and their abundances were significantly lower (>1%). The

phyla Firmicutes was considerably higher in flooding (33%) than in

control (5%). Firmicutes were composed of two Bacillaceae and

Clostridiaceae families. The Bacillaceae was 2% abundant in eCO2

and control, whereas it was ~4% in flooding + eCO2 and flooding.

However, Clostridiaceae accounts for a large abundance in flooding

treatment at 26% abundance. Of the other treatments, Clostridiaceae

has the lowest abundance in the control, with only 1.4% abundance,

followed by eCO2, then flooding + eCO2 with 6% and 8%, respectively

(Supplementary Table 9; Figure 3).
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Two significantly abundant phyla (Firmicutes and Proteobacteria)

were in the root and shoot. The Firmicutes were highly prevalent in

control (71%) and eCO2 (66.5%). Out of the three Firmicutes families,

the Bacillaceae was 70% abundant in control, 66% in eCO2, 42% in

flooding + eCO2, and 31.5% in flooding. This was followed by many

unidentified having less than 1% abundance in control and eCO2 but

~7% in flooding and flooding + eCO2. In contrast, Proteobacteria was

the abundant phyla in both flooding + eCO2 and flooding, 51% and

61%, respectively. The data showed that there are nine families of
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Proteobacteria. The highly abundant families were unidentified and

had an 8% abundance in eCO2 treatment, 4% in control, and less than

1% in flooding + eCO2 and flooding. The family Parvularculaceae had

3% abundance for eCO2 and control but less than 1% for flooding and

flooding + eCO2. Sphingomonadaceae was also low in flooding and

flooding + eCO2 at roughly 2% abundance compared with the 4% and

5% of control and eCO2, respectively. Contrarily, Alcaligenaceae and

Pseudomonadaceae were significantly abundant families (42% and

15% flooding and control and 31% and 17% flooding + eCO2,
A B

D
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C

FIGURE 2

The microbiome diversity indices of soybean plants are treated with flooding stress with or without exposure to eCO2. The results are compared
with non-flooded control soybean plants, represented in blue. Treatment with eCO2, flooding with eCO2, and flooding are represented with red,
green, and yellow, respectively. (A, B) The bacterial (16S) and fungal (ITS) Shannon diversity indices of rhizospheric soil across treatments compared
with the control. (C, D) The bacterial and fungal diversity of root parts of soybean plants treated with flooding stress and eCO2. (E, F) The bacterial
and fungal diversity of shoot parts of soybean plants exposed to flooding and eCO2 compared with control plants. The data analyzed represent three
replicates for each treatment (control, floodings, eCO2, and flooding + eCO2).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1295674
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Coffman et al. 10.3389/fpls.2023.1295674
respectively). Both control and eCO2 had a 13% abundance of

Alca l igenaceae . eCO2 had only a 1% abundance of

Pseudomonadaceae, while the control had approximately 4%. The

shoot had a higher (65%) diversity of the phyla Firmicutes followed by

Proteobacteria (34%). The relative abundance of Firmicutes increases to

98% flooding stress (Supplementary Table 9).
Fungal biome distribution in stress

Our results showed that two major fungal phyla (Ascomycota and

Basidiomycota) were significantly abundant. Rhizospheric soil

analysis showed an increase (92%) in Ascomycota during flooding

compared with the control (41%). Flooding + eCO2 showed a rise in

Ascomycota phyla to 78%. The most abundant Ascomycota families

are Aspergillaceae, Thermoascaceae, Trichocomaceae, and

Didymellaceae (Supplementary Table 10; Figure 4). The
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Aspergillaceaea family increases by approximately 5% in abundance

during flooding with or without increased eCO2. The opposite is true

for Thermoascaceae, which increased to approximately 43% during

flooding stress and 38% with flooding + eCO2 compared with the

control and eCO2 (11% and 15%, respectively). The Trichocomaceae

family remained in approximately 1%–3% abundance across all

treatments. We found that Basidiomycota was less abundant in

flooding. Basidiomycota is 19% for control and 12% for increased

eCO2; when flooding occurs, the abundance reduces to 3% with eCO2

and 1% without elevated eCO2 (Figure 4; Supplementary Figure 5).

Rhynchogastremataceae is abundant in control and decreases with

stress. The highest relative abundance was found in flooding (1%),

then flooding + eCO2 (2%), with eCO2 (10%) being the least affected.

There are unidentified fungal species with no assignment to phyla for

approximately 42% presence in control and eCO2 treatments and

reduced to half during flooding + eCO2 stress to 20% and a more

significant drop in flooding of 6% (Supplementary Table 10).
FIGURE 3

Bacterial biome diversity and phyla abundance across different treatments. The Bray–Curtis statistical analysis was used to determine bacterial
microbiome variation during flooding, eCO2, and flooding + eCO2 and compared with the control. The bacterial biome of the host organ in terms of
rhizosphere and endosphere was analyzed.
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Similarly, the root had 94% and 96% abundance ofAscomycota in

flooding + eCO2 and flooding, respectively, followed by unidentified

microbes. The most abundant Ascomycota families were

Didymellaceae, Hypocreaceae, Nectriaceae, and Ophiostomatac.

Didymellaceae were present in the control treatment at

approximately 5% abundance and less than 1% in the eCO2 with

and without floodings. The flooding treatment showed a 30%

abundance of the family Didymellaceae. Hypocreaceae was 90%

abundant in flooding + eCO2. The Nectriaceae family was

significantly abundant (59%) during flooding, while in the flooding

+ eCO2, it was negligible. Both eCO2 and control had Nectriaceae at

2% and 4% lower levels, respectively. The Ophiostomatac family is in

control at 4% abundance and essentially 0% in all other treatments

(Supplementary Table 10; Figure 4).

In the case of shoot, the Ascomycota was 16% in control, 43% in

flooding, 55% in flooding + eCO2, and 53% in abundance in eCO2. The

prominent families in Ascomycota were Cladosporiaceae,

Didymellaceae, Pleosporaceae, Aspergillaceae, Thermoascaceae,
Frontiers in Plant Science 0851
Trichocomaceae, Hypocreaceae, and Nectriaceae. The Cladospriaceae

was abundant (18%) in flooding + eCO2; in sole flooding, it was 1.5%

compared with control and other treatments. The Didymellaceae

shows a decrease in eCO2 with disregard to flooding stress. There is

4% and 6% abundance during flooding and control. Pleosporaceae has

4% abundance with flooding stress but essentially zero abundance for

all other treatments. Aspergillaceae and Thermoascaceae species were

abundant in all treatments ranging from 1% to 5%. Trichocomaceae is

present in roughly 0% abundance for control and flooding + eCO2 but

has 1% abundance in eCO2 and 3.5% abundance in flooding stress. The

Hypocreaceae family is abundant for all stress treatments, from 2%

abundance in control to 11% in flooding, 25% in flooding + eCO2, and

42% in eCO2. Nectriaceae is more prevalent in control and flooding

treatments at 2% and 4%, while eCO2 and flooding + eCO2 were

absent. Finally, Basidiomycota has low abundance in both control and

eCO2 with a max of 2% abundance, followed by 14% in flooding

conditions and 43% in flooding+ eCO2 levels. The family

Podoscyphaceae has a 10% abundance during flooding stress but
FIGURE 4

Fungal biome diversity and phyla abundance across different treatments. The Bray–Curtis statistical analysis was used to determine bacterial
microbiome variation during flooding, eCO2, and flooding + eCO2 and compared with the control. The bacterial biome of the host organ in terms of
rhizosphere and endosphere was analyzed.
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nearly none in all other treatment conditions. The family

Rhynchogastremataceae has less than 1% abundance in control,

eCO2, and flooding stress, but when flooding + eCO2 are both

present, it is noted that it makes up 43% of the total microbial

abundance (Supplementary Table 10).
Genera-level abundance across treatments

In the case of bacterial genera, the most abundant was

Chitinophaga, with approximately 16% relative abundance in

rhizospheric soil of eCO2 and between 5% and 8% abundance for

other treatments. During flooding, the two highly abundant genera

were Clostridium sensu stricto 1 (14%) and Clostridium sensu stricto

13 (10%). The main genus of the family Caulobacterales was

Asticcacaulis, which is most abundant in eCO2 (Figure 5). Several

genera of the family Sphingomonadaceae were also found. For
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example, Novosphingobium was the most abundant genus present

during eCO2 (6.5% eCO2 and 7% flooding + eCO2). However, it was

3.5% in flooding compared with 2% relative abundance in control.

The Sphingobium was also higher during flooding stress (7%) than

that of eCO2 (3.5% eCO2 and 4% flooding + eCO2). The control had

the lowest relative abundance of 2%. The other genera were

Burkholderia–Caballeronia–Paraburkholderia higher in eCO2 at

5%, but flooding and flooding + eCO2 had less than 2% relative

abundance. Both control and flooding treatments had less than 1% of

Burkholderia–Caballeronia–Paraburkholderia present. The root

bacterial genera Bacillus was the most abundant ranging from

31.5% to 70% across all treatments. The control and eCO2

treatments had less than 1%; for the Alcaligenaceae family, all

relative abundance was represented by the genus Pigmentiphaga.

Of the Pseudomonadaceae family, the genus of representation was

Pseudomonas. Shoot 16S had two highly abundant genera: Bacillus

and Pseudomonas (Figure 5).
FIGURE 5

Genus-level microbiome diversity and abundance during flooding and eCO2 treatments. The heatmap shows the top 20 microbiome species in the
rhizosphere (soil) and endosphere (root and shoot).
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Rhizospheric soil had twogenera of theDidymellaceae family,which

had high relative abundance: Didymella with 5% relative abundance in

flooding and Epicoccum with 2% relative abundance in control.

Aspergillaceae had three genera, one having a 0% relative abundance.

The other two genera were Penicillium, with almost 4% relative

abundance in control. Aspergillus had 27%–30% relative abundance

duringflooding regardlessof eCO2exposure.Therewereonly twogenera

for Thermoascaceae, with Byssochlamys being the most abundant and

Thermoascus having less abundance. Of the family Lasiophaeriaceae, the

genus Triangularia was present (1%) in eCO2 and 3% in abundance in

flooding+eCO2 treatments.ThegenusPapilotremahadhighabundance

in the control treatment at 18%, falling to 9% in the increased eCO2

treatment. Papilotrema declined in the flooding + eCO2 treatment to

2.5% and finally to less than 1% in the flooding treatment (Figure 5).

In the endosphere, the roots of two major genera from

Didymella and Epicocum belong to the Didymellaceae family.

Importantly, the genus Gibberella had 4% abundance in control,

lowering to 1% in eCO2 treatment and 0% in flooding + eCO2
53
treatment; however, the relative abundance increased to 59% during

flooding treatment. For the shoot part, the genus Cladosporium

showed high abundance in flooding + eCO2 treatment at 18% and

1.5% in flooding. The abundance of Cladosporium for both eCO2

and control was less than 1%. Trichoderma is a highly abundant

species, showing an increase of 42% in eCO2, 25% in flooding +

eCO2, and 11% in flooding. Trichoderma only had a 2% relative

abundance in the control treatment. Papiliotrema is a genus with a

high abundance of 43% in the flooding + eCO2 treatment, while

other treatments had less than 1% relative abundance (Figure 5).
Differential abundance of taxon
in treatments

The interactions of different microbiome species and clustering

show that flooding and eCO2 strongly influence microbial species

(Figure 6). For example, Firmicutes and Proteobacteria significantly
A

B

FIGURE 6

Phylogenetic clustering and interaction of different microbiome players from key phyla, their distribution during flooding, and eCO2 treatments.
(A) shows the bacterial and (B) shows fungal phylogenetic clustering. The color distribution depicts the abundance pattern of OTUs across different
treatments and their interactions. The outer circle shows the abundance levels (from light yellow to dark green), and the inner circle shows the
dominance of specific microbiome players in different conditions.
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cluster in response to both factors. A similar clustering was evident in

the Ascomycota and Basidiomycota (Figure 6). To understand the taxa

distribution and differential abundance in response to flooding and

eCO2, we carried out ANCOM-BC2 (Lin and Peddada, 2020). The

results showed that out of 288 taxa, 21 genera were differentially

abundant in bacterial soil samples. Of the 21 genera, 20 taxa were

differentially abundant in flooding + eCO2 stress (Supplementary Table

11; p< 0.05). While flooding stress only had one taxon of differential

abundance, the family Lachnospiraceae. Increased eCO2 stress

conditions had only two taxa of differential abundance: one from an

uncultured genus and the other from Candidimonas.

Bacterial root samples had 15 taxa; only 7 were found

differentially abundant. All seven differentially abundant taxa

were present in flooding treatment, and all but two were in

flooding + eCO2 treatment. The order Burkholderiales and the

family Sphingomonadaceaea were differentially abundant

in flooding but not in flooding + eCO2. The c las s

Alphaproteobacteria was differentially abundant across all

treatments except increased eCO2. Of the 13 taxa analyzed for

differential abundance in bacterial shoot samples, only six were

differentially abundant. eCO2 stress only had one taxon of

differential abundance, the class Alphaproteobacteria, which is

shared with the bacterial root samples. Two differentially

abundant taxa were present in the flooding + eCO2 treatment:

Pseudomonadaceae and Amphiplicatus. It is noted that

Amphiplicatus was differentially abundant in both root and shoot

bacterial ASVs for both flooding and flooding + eCO2 treatment

(Supplementary Table 11).

In the case of fungal ASV, 16 of 95, 16 of 70, and 8 of 147 were

found differentially abundant taxa in soil, root, and shoot samples,

respectively. All but one taxon was differentially abundant in soil ITS

samples for flooding treatment, except the genus Epicoccum which

was differentially abundant in flooding + eCO2. Seven differentially

abundant taxon for fungal shoot samples were from flooding + eCO2.

Two genera were differentially abundant in flooding conditions,

Plectosphaerella and Paecilomyces; the latter was also differentially

abundant in flooding + eCO2. eCO2 treatment had one differentially

abundant genus of Fibulochlamys (Supplementary Table 12).
Influence of flooding and eCO2 on
microbial enzymes in the rhizosphere

We performed an analysis of the soil enzymes, viz., b-D-
cellubiosidase (BDC), a-glucosidase (AG), b-glucosidase (BG), N-
acetyl-b-glucosaminidase (NAG), and phosphatase (Phos), after

eCO2, flooding, and eCO2 + flooding stress compared with non-

flooded control. Our results showed that during flooding stress,

the BDC activities were significantly (p< 0.05) reduced as

compared with the control (Figure 7). In the case of eCO2

treatments with or without flooding, the BDC activities were

non-significant compared with the control. The AG and BG

enzymatic activities were non-significant during flooding stress

(Supplementary Figure 3). However, among treatments, only the

eCO2 application showed significantly (p< 0.001) higher activities

of BG than AG compared with the control and other treatments
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(Figure 7). Overall, BG and AG showed lower enzyme activities

during flooding stress. Phos enzyme activities were also

significantly (p< 0.001) reduced during flooding stress compared

with control soybean plants. Contrarily, the Phos activities were

significantly (p< 0.001) increased by eCO2 compared with the

control. Interestingly, these activities substantially reduced

twofold in the combined treatment of flooding + eCO2

compared with the control (Figure 7).

To understand the molecular effect of CO2 and flooding stress,

we investigated the relative expression of mRNA genes involved in

CO2 and flooding stress and the oxidative defense system of

soybean seedlings using qRT-PCR (Figure 8). The genes were

chosen based on their relationship to oxidative defense, flooding,

or elevated levels of CO2, with some being specific to Glycine max.

Superoxide dismutase (SOD1), peroxidase (POD), catalase (CAT1),

and ascorbate peroxidase (APX) are all oxidative defense genes that

help reduce the damage of ROS during stress. Submergence-1b and

-1c (Sub1b and Sub1c), alcohol dehydrogenase (Adh-2), and

elongation factor 1 (Elf-2b) are genes related to flooding stress in

plants. At the same time, pyruvate decarboxylase 1 (PDC1) catalyzes

the first step in anaerobic fermentation.

The results showed that the relative expression of oxidative

defense-related genes such as SOD1 and APX1 was significant (p<

0.001) in both the eCO2 and flooding stress alone and combined

stress. The relative expression of the SOD1 gene in flooding + eCO2

was the highest (6.72-fold) compared with flooding alone (4.4-fold),

eCO2 alone (5.7-fold), and control. Similarly, the POD gene’s

relative expression was higher in flooding + CO2 (5.8-fold) than

in others (Figure 8). Interestingly, the CAT1 gene expression was

highly significant (6.5-fold) in flooding stress compared with eCO2

(4.03-fold), flooding + eCO2 (2.02-fold), and control. Furthermore,

the flooding stress-associated genes were also investigated in which

the sub1b gene was upregulated (1.3-fold) in combined flooding +

eCO2 stress compared with control. Similarly, the adh-2 gene

showed the highest expression (3.9-fold) in combined flooding +

eCO2 stress as compared with the control, whereas the elf1b gene

showed the highest expression (3.4-fold) in flooding stress

compared with eCO2 stress (2.2-fold), flooding + eCO2 (2.0-fold),

and control. Interestingly, the PDC1 gene, which is associated with

eCO2 stress, showed the highest relative expression (6.0-fold) in

combined flooding + eCO2 stress compared with the eCO2 (1.8-

fold), flooding (1.19-fold), and control (Figure 8).
Discussion

This study showed that flooding and eCO2 significantly impact

the soybean plant growth attributes (shoot/root lengths and

biomass) and photosynthetic pigments. In addition, these stress

factors increase oxidative stress by regulating the antioxidant

enzyme activities significantly compared with control or sole

flooding and eCO2 treatments. Elevated CO2 alone did not show

significant variation from the control except when considering the

microbial activity. This study revealed that flooding in the presence

of eCO2 influences the abundance of bacterial and fungal

microbiome communities compared with control treatments and
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influences oxidative stress reactions. Changes in water level are a

significant driver for plant growth and microbiome diversity.

Previous studies showed that soybean is extremely sensitive to

abiotic stress conditions (Trépanier, 2019; Longley et al., 2020).

Glycine max is rich in oil and proteins (Hasanuzzaman et al., 2021).

The flooding stress negatively affects its growth, development, and

yield (Mustafa et al., 2015; Li et al., 2020). The resulting exudation of

metabolites in the rhizosphere has also been argued for changes in

symbiotic microbes (Sugiyama, 2019). The change in soil chemistry

due to lack (drought) and abundance (high moisture) of water

exacerbates the abundance of microbial communities (Jiao et al.,

2023). Our results showed that flooding and eCO2 accelerated

bacterial and fungal diversity.

Investigating further, we noticed a significant shift of microbial

ASVs from the rhizosphere into the phyllosphere. Since both

flooding and eCO2 created an abnormal growth condition, we

propose a driving shift in the microbial community. Previous
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studies showed that plant cell division and gibberellic acid

synthesis increase during flooding to escape hypoxia and expose

the leaf to submergence (Kim et al., 2016). Microbial ASV

abundances in the phyllosphere rather than in the rhizosphere

suggest a similar phenomenon with microbial community structure.

We found significant variations across sole and combined

treatments while looking at bacterial and fungal phylum

distribution and its impact on their diversity due to flooding and

eCO2. The family Actinobacteria was negatively impacted by soil

moisture, while Proteobacteria, specifically Betaproteobacteria and

Gammaproteobacteria, showed positive aggregation from soil

moisture. In the case of eCO2, the microbial communities were

not significantly affected compared with combined treatments.

Microbiome richness across endophytic root bacterial and fungal

communities appears resilient to the two factors. We showed that

stress conditions increase bacterial richness in soil samples, but it

caused a decrease in the endophytic root fungal community
FIGURE 7

Extracellular enzymatic activities in rhizospheric soil of soybean plants treated with flooding and eCO2. The treatments were compared with the
control (non-flooding). The values represent the mean values of three replicates and show standard deviation. The bars showing *, **, *** and ****
are significantly different (p<0.05) in their content compared with the control as analyzed by two-way ANOVA analysis. “ns” shows that values are
insignificant compared with control treatments.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1295674
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Coffman et al. 10.3389/fpls.2023.1295674
richness. The combined factors of flooding + eCO2 showed a

significantly higher (p< 0.01) impact on microbial abundances.

Some dominant bacteria phyla in flooding + eCO2 were

Bacteroidota, Firmicutes, and Proteobacteria. Interestingly, we

noticed a significant diversity of Firmicutes in the soil

rhizosphere, but the same was significantly lower (p< 0.05) in the

root endosphere. Firmicutes are known to be anaerobic species,

which is likely why they play a large role during flooding stress

(Martıńez‐Arias et al., 2022). Contrarily, Proteobacteria were more

abundant in flooding + eCO2, which are known to play a crucial role

in abiotic stress environments (Vaishnav et al., 2018).

The phylum Bacteroidota remained stable in the soil

rhizosphere during flooding + eCO2 stress but increased relative
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abundance due to flooding and eCO2 separately. Only two genera

were found in the soil, root, and shoot samples: Bacillus and

Pseudomonas. In addition, we found Novosphingobium sp., a

rhizosphere-associated bacteria known to promote rice growth

through N2 fixation and production of indole-3-acetic acid and

siderophores in the rhizosphere (Krishnan et al, 2017; Vaishnav

et al., 2018). Similarly, other dominant genera, such as

Sphingomonas and Bacillus, have been previously shown to

secrete gibberellins (Asaf et al., 2018). We hypothesize that a

consortium of gibberellin-producing strains and their abundances

in flooding + eCO2 could improve the plant cell division process in

escaping the flooding condition. The plant growth-promoting

characteristics, production of auxin and siderophores, and the
A

B

C

FIGURE 8

mRNA gene expression related to oxidative stress (A), flooding (B), and eCO2 (C) of soybean plants treated with flooding and eCO2. The treatments
were compared with the control (non-flooding). The values represent the mean values of three replicates and show the standard deviation of
relative expression to housekeeping genes and control. The bars showing * and ** are significantly different (p<0.05) in their content compared with
the control as analyzed by two-way ANOVA analysis. “ns” shows that values are insignificant compared with control treatments.
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solubilization of phosphate/silicate by bacteria can be key

characteristics of plant stress tolerance in wheat (Moreira et al.,

2016). These are also the key drivers of reshaping microbiome

structure, as previously shown by Longley et al. (2020), where soil

compositions lower microbial Shannon diversity.

Flooding and eCO2 also impacted fungal communities heavily,

shifting the rhizosphere from Basidiomycota, Ascomycota, and

unidentified to a loss of diversity, with Ascomycota almost

completely dominating the biome. While the shift to the phylum

Ascomycota occurred in flooding treatments irrelevant to eCO2

levels, the shift in the community during flooding with and without

eCO2 levels varied significantly. We found three fungal genera

upregulated in the rhizosphere during only flooding stress:

Didymella, Epicoccum, and Gibberella. Of note, none of the

previously mentioned fungal genera were significantly present

with CO2 and flooding, with Trichoderma representing 90% of

the fungal genera. The relative abundance of Trichoderma did not

change when elevated CO2 levels were the only environmental

factor compared with the control. Trichoderma is a well-known

plant mutualist that offers a wide range of benefits to the host plant

(Woo et al., 2023). The three genera discovered combined with

flooding and eCO2 conditions are mostly known for their plant

disease-causing species. For example, Didymella has been shown to

cause leaf blight in maize and stem and leaf rot in legumes (Chen

et al., 2015; Wille et al., 2019). Gibberlla and Epicoccum both have

pathogenic species and others that can act as biological control

agents. This information needs to be clarified as to whether these

microbial shifts are solely caused by abiotic stress. It is more likely

that an interplay of abiotic and biotic stressors will occur. A study

has shown that when a plant experiences fungal infection, the plant

can recruit beneficial genera (Gao et al., 2021). A network analysis

would need to be performed to understand if what we see

is pathogenic.

The phyllosphere sees the opposite shift where flooding induces

microbial shifts, with the propagation of the Basidiomycota phylum.

Combination stress of flooding and eCO2 increased genera. When

eCO2 levels also occur, the unidentified fungal phylum is

suppressed. A similar pattern to the rhizosphere in the

phyllosphere can be seen where the fungal genera present have

been studied and are seen to play both a pathogenic and beneficial

role. Didymella, Papilioterma, and Gibberella are upregulated in the

shoot of flooding and eCO2 stress. The line between pathogenic and

beneficial is not easily elucidated due to the plant–microbe, plant–

environment, and microbe–microbe feedback loops. The large

presence of an unidentified fungal phylum represents a knowledge

gap in our current fungal database. Research into the line between

fungal pathogens and beneficiaries is emergent; as such, it is difficult

to draw clear conclusions about the microbiome from this study

alone. There was no evident sign of devastating infection upon

plant harvest.

The shape of the microbiome correlates with the enzyme flux in

the rhizospheric environment with soybean plants. The soil

enzymes BDC, AG, BG, NAG, and Phos showed significant

reduction after flooding and eCO2 + flooding stresses compared

with control. Studies have shown that high microbial activities in

the rhizosphere often correspond to increased activities of enzymes.
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This also correlates to the lower microbiome diversity in the soil

part during stress conditions. However, BG, NAG, and Phos were

significantly higher in eCO2 than in other treatments. These have

been recently correlated with high b-diversity in the rhizosphere of

wheat plants (Jin et al., 2022). A recent study showed that Phos

directly correlates to the relative abundances of Bacteroidetes,

Gemmatimonadetes, and Funneliformis in bacterial and fungal

communities, respectively (Jin et al., 2022). We show that

elevated CO2 does not mitigate the negative impacts that flooding

has on rhizospheric microbial activity. The mechanisms of

enzymatic activities and the influence of eCO2 have not been fully

explored. Due to rising CO2 levels, investigating the role of carbon

dioxide in these mechanisms is imperative.

At the same time, the soybean root-secreted metabolites play a

pivotal role in shaping the microbial community structure in the

rhizosphere (Sugiyama, 2019). Isoflavonoids are prominent

rhizodeposits in soybean that help defend and enable symbiotic

associations with rhizobia (White et al., 2017). Daidzein and

genistein are isoflavonoids produced by soybean into the

rhizosphere to communicate with rhizobia, establish nodulation,

and play a role in defense against pathogens (Ng et al., 2011). In

soybean , Bradyrhizodium and Gammaproteobacter ia

(Proteobacteria phylum) were dominant and associated with crop

productivity during abiotic stresses (Chang et al., 2017). Similarly,

Actinobacteria , Chloroflexi , Proteobacteria , Ascomycota ,

Basidiomycota, and Mortierellomycota phyla were significantly

dominant in the soybean that was grown in different soil textures

(Trépanier, 2019).

Little is known about the potential function of the single

microbial family playing a dominant role during flooding stress.

However, Klebsiella variicola and Azospirillum sp. were isolated and

improved plant growth during flooding by forming adventitious

roots in soybean plants (Kim et al., 2017; Tiwari et al., 2020). Due to

flooding, there are more chances that the soil O2 levels are quickly

depleted by aerobic microbes, reaching anoxia even in the

uppermost bulk soil layers within hours of a flooding event. This

change in O2 availability can then result in a progressive shift in the

microbial community from aerobic organisms to facultative

anaerobes and finally to strict anaerobes (Shabala et al., 2014).

This shift toward anaerobic bacteria was hypothesized to be one

possible explanation behind the increase in the relative abundance

of Aquaspirillum in flooded poplar rhizosphere and root samples, as

the genus contains a few known anaerobic species (Graff and

Conrad, 2005). They hypothesized that shifts in the denitrifying

bacterial community resulted from the combined effects of O2 and

N stress on the plant, which can reduce root C exudation. Although

some evidence supports altered exudation of total organic carbon in

plants exposed to flooding, changes in root exudates from flooded

non-wetland species and consequent effects on root microbial

communities remain relatively unexplored (Tiwari et al., 2020).

Under flooding and elevated levels of CO2 stress, a higher

amount of ROS is produced in various components of plant cells,

disrupting normal plant metabolism (Jabeen et al., 2020; Lubna

et al., 2022). Typically, ROS are formed when the electrons (one,

two, or three) are transferred to molecular oxygen (O2
−), which

results in hydroxyl (OH), hydrogen peroxide (H2O2), or superoxide
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(O2
−) radicals (Bhattacharjee, 2010). To survive, plants activate the

antioxidant defense system to mitigate oxidative damage

(Hasanuzzaman et al., 2021). To alleviate flooding and eCO2

stress-generated ROS, plants accelerate the production of

antioxidant defense systems like SOD, POD, and other non-

enzymatic antioxidants (Hasanuzzaman et al., 2021). SOD

mediates the detoxification of superoxide radicals and prevents

stress-induced cellular damage (Hasanuzzaman et al., 2021).

Flooding stress induces interesting changes in gene expression,

which coordinate morphological and metabolic adaptations to

stress. The SOD, APX, and POD genes showed elevated

expression in flooding and eCO2 stresses alone and combined, as

reported previously in Luffa aegyptiaca under flooding stress

(Chiang et al., 2014) and durum wheat under eCO2 stress

(Medina et al., 2016). This indicates that elevated CO2 in the

presence of flooding might change the biochemical pathways

soybeans use to cope with stress. This is also supported by the

fact that catalase antioxidant was significantly downregulated in the

stem compared with only flooding treatment. Although the change

was not statistically significant, there was a slight decrease in PPO

antioxidants, mostly in both the root and leaf, when elevated CO2

was in conjunction with flooding treatments. Furthermore, the Sub1

gene family regulates submergence tolerance in flooding stress. We

presume that eCO2 can be consumed by several classes of microbes

and plant roots as a carbon source. This may lead to a reduction in

oxidative stress in the root region. Alternatively, the weak carbonic

acid and related radicals can react with flooding-induced radicals to

develop a cascade of reactants and products to reduce oxidative

stress in the rhizosphere. These genes enhance tolerance by

minimizing the ethylene-promoted GA responsiveness by

enhancing the accumulation of the GA signaling. In the current

study, the Sub1 gene was upregulated compared with control plants,

and the expression patterns increased due to flooding stress (Fukao

et al., 2019).
Conclusion

It has been noted that increasing our mechanistic

understanding and real-world understanding of microbiome–

plant interactions under flooding stress offers enormous potential

for increasing the resilience of plants in such conditions (Van Der

Heijden and Hartmann, 2016; De Vries et al., 2020). This topic is

becoming essential as climatic risk events such as flooding and

drought influence agricultural productivity. While we have studied

flooding and its effect on plants, minimal studies consider the rising

levels of CO2 in our atmosphere. This is relevant because flooding

creates hypoxic conditions that elevated CO2 has the potential to

worsen. Hence, we show that flooding and eCO2 drastically impact

plant growth physiology, gene expression profiling, and phenotype.

Our findings show that these biochemical changes must be

investigated further to understand the effect of flooding and eCO2

on the holobiont. Elevated CO2 levels reduce microbial activity in

the soil, and the role it plays in the plant’s biosynthetic pathways is

not clear, opening up opportunities for future research investigating

this. These environmental stressors, either alone or in combination,
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significantly impact the diversity and abundance of bacterial and

fungal communities. Current fungal databases are missing an

important fungal phylum identification that has the potential

to play a critical role in soybean health and disease. Our

findings highlight potential knowledge gaps in microbiome–

plant relationships.
Materials and methods

Plant material, growth conditions,
and treatment

Glycine max L. (Fiskeby III soybean) obtained from the US

Department of Agriculture was selected due to its ability to show

resistance against abiotic stresses. The soybean seeds were

germinated in a soil mixture of peat moss (Miracle-Grow, USA),

organic topsoil, and Ferti-lome perlite in 40:30:10 ratios,

respectively. The soil mixture was thoroughly mixed and

autoclaved to induce the development of the native microbiome

in sterile conditions. A recent study has shown that soil disruption

via autoclaving increased the colonization on the rhizosphere of

potentially beneficial bacterial genera by reducing the number of

microbial pathogens present and that these bacteria are shown to be

crop-specific potentially (Dilegge et al., 2022). While this method

may not present accurate agricultural settings, it will allow us to

screen for genera specific to our plant of interest. This will allow us

to find soybean-specific potential growth-promoting bacteria or

fungi. It is customary to include bulk soil analysis; unfortunately, we

could not collect samples and use the control as a reference for

changes in this study. The plants were grown till the V3 stage in a

growth chamber (Biora, MineARC Sys Inc., USA; relative humidity

60%–70% and light intensity of 800 mE m−2 s−1 from sunlight

Z4NW; day/night cycle of 14 h at 28°C and 10 h at 25°C). The pots

were watered with autoclaved DI water (ADW). After stage V3, the

plants were arranged in a fully factorial experimental design with

two factors: i) flooding and ii) eCO2 treatments. Thus, it was

comprised of i) control, ii) flooding, iii) eCO2, and iv) flooding +

CO2. The control plants received only DW to maintain a natural

soil moisture level of 50%. The flooding stress was induced by

exposing plants to submergence for 7 days at 7 inches above the soil

surface (partial submergence). An eCO2 stream was applied every

12 h to maintain an eCO2 level of 680 ± 80 ppm for 7 days with or

without flooding stress. The eCO2 levels were monitored using a

sensor (Vaisala, Helsinki, Finland). Each treatment comprised 21

plants which were all harvested 7 days after the beginning of

treatments. After 7 days of treatments, the different plant growth

parameters (plant length, biomass, and chlorophyll contents) were

taken. The plant and soil samples were harvested with gloves being

used, and the plants were removed from pots. The soil surrounding

the roots was shaken into an ethanol-cleaned bin and collected for

soil samples. The roots were then rinsed in water to remove the

remaining soil particles. The plant biomass was weighted and the

roots and stems were cut to be ground in liquid nitrogen separately.

After grinding the samples with liquid nitrogen, they were kept at

−80°C until further analysis.
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Plant growth and oxidative stress analysis

Plant growth attributes, including shoot and root length and

biomass, were recorded. Chlorophyll content, total nitrogen, and

leaf surface humidity were measured using a chlorophyll meter

(Minolta, Japan). For a detailed analysis, chlorophyll (a, b, and

total) , carotenoids, and flavonoids were analyzed via

spectrophotometry (Imran et al., 2021). Oxidative stress enzymes

(superoxide anions and H2O2) were also analyzed for all the

treatments. Leaf and root samples were ground to a fine powder,

and a 0.2-g subsample was used for each extraction. Superoxide

anions were extracted with 5 ml of buffer [25 ml of 10 mM

phosphate buffer pH 7.8 + 15 ml of 0.05% nitroblue tetrazolium

chloride (NBT) + 10 ml of 10 mM NaN3]. The samples were

incubated for 30 min at room temperature with shaking and were

then incubated in a water bath at 70°C for 15 min. After cooling to

room temperature, the samples were centrifuged at 10,000 rpm for

15 min. The supernatant was taken at a volume of 250 ml and added
to 96-well plates to be read at 580 nm absorbance (Khan et al.,

2020a). To determine the hydrogen peroxide (H2O2) level, 10%

trichloroacetic acid (TCA) was added to the samples. The samples

were vortexed and then centrifuged at 4,000 rpm for 10 min. The

supernatant was collected, and 50 ml was added to a 96-well plate.

Then, 100 ml of 1 M potassium iodide and 50 ml of 10 mM

phosphate buffer were added to all the wells. The absorbance was

read at 390 nm. TCA was added to the samples for reduced

glutathione 5 ml of 10%. The samples were vortexed and then

centrifuged at 4,000 rpm for 10 min. The collected supernatant

reacted with Ellman’s reagent in the presence of a phosphate buffer

(pH 6.8; 100 mM). The plate was read at 420 nm absorbance.

Similarly, catalase, polyphenol oxidase, peroxidase, and superoxide

dismutase were analyzed using an extraction buffer (30 mM Tris–

HCl + 6 mM MgCl2 + 1 mM EDTA + 3.5 PVP). Samples were

vortexed and centrifuged (4,000 rpm for 10 min at 4°C). The

supernatant was used for catalase reaction (50 ml of supernatant,
150 ml of 10 mM phosphate buffer (pH 6.8) + 50 ml of 0.2 M H2O2)

that was read on a spectrophotometer (Tecan 10M; at 240 nm, 255

nm, and 280 nm; Aebi, 1984). For polyphenol oxidase, the

supernatant (50 ml) was mixed with 50 ml of pyrogallol (50 mM)

and 100 ml of phosphate (pH 6.8; 100 mM). The plate was read at

420 nm absorbance. For peroxidase, the 50-ml supernatant was

mixed with 50 ml of pyrogallol (50 mM), 25 ml of H2O2 (50 mM), and

100 ml of phosphate buffer (100 mM, pH 6.8) and read using a

spectrophotometer (Tecan 10M; at 420 nm). All the experiments

were performed in triplicates (Khan et al., 2020a).
Extracellular enzyme analysis

A solution of MUB (4-methylumbelliferone, 1 mM) in sodium

acetate (pH 5.2) buffer was used as the fluorescent substrate.

Testing was performed according to previous protocols from both

Marx et al and Jian et al (Marx et al., 2005; Jian et al., 2016).

Exozymes used in the study were b-D-cellubiosidase (BDC), a-
glucosidase (AG), b-glucosidase (BG), N-acetyl-b-glucosaminidase

(NAG), and phosphatase (Phos). Each exozyme used was
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quantified on the fluorescence spectrophotometer (Shimadzu,

Tokyo, Japan). The rhizospheric soil samples from all treatments

were incubated in sodium acetate buffer (pH 5.2) for 24 h on

shaking (150 rpm). The samples were centrifuged (4°C, 12,000

rpm for 20 min), and resulting supernatants were collected. If

turbidity was present a 0.22 mm filtered syringe was used. Five

replicates for each substrate were taken per enzyme analysis. The

samples were run on the same machine following exozyme

quantification. Readings were taken at absorbance 360 nm and

460 nm for excitation and emission respectively at times 0 and 30

minutes. The concentrations were calculated in mmol h−1 L−1

(Stroud et al., 2022).
Microbiome DNA extraction and analysis

The samples (rhizospheric soil, root, and shoot) were harvested

from four treatments—i) control, ii) flooding, iii) eCO2, and iv)

flooding + eCO2—after the stress conditions. The plant tissues were

processed according to Mcpherson et al. (2018). The leaves and

roots were ground into a fine powder using a mortar and pestle

using liquid nitrogen. The MagMAX™ Plant DNA Kit (Thermo

Scientific, Massachusetts, USA) was used to extract DNA from plant

leaves and roots. The manufacturer’s instructions were used with a

few modifications to extract high molecular weight DNA. A

modified method (Verma et al., 2017) was used to extract soil

DNA. Briefly, soil (0.2 g) samples were suspended in 1.4 ml of

extraction buffer [100 mM of Tris/HCl (pH 8.0), 100 mM of EDTA

(pH 8.0), 100 mM of sodium phosphate buffer (pH 8.0), 1.5 M of

sodium chloride, 1% (w/v) CTAB, 100 mM of calcium chloride, 100

mg of lysozyme/ml]. The soil slurry was incubated at 37°C for 1 h

with shaking at 200 rpm. Following incubation, 0.3 ml of SDS (20%)

was added and incubated at 65°C for 1 h in a water bath with

shaking every 10 min. The samples were centrifuged at 7,000g for 20

min at 4°C, and the supernatant was collected. Equal volumes of

chloroform:isoamyl alcohol (24:1) were added to the supernatant

and then centrifuged at 14,000g for 20 min at 4°C. The samples were

kept on ice after the addition of chloroform:isoamyl alcohol. The

top aqueous phase was collected, and 0.1 volume of 3 M sodium

acetate and 0.4 volume of 30% PEG-8000, w/v, were added and then

incubated at −20°C for 45 min. The samples were again centrifuged

at 14,000g for 15 min at 4°C. The supernatant was discarded, and

the pellet was dissolved in 70% ethanol. After dissolving in ethanol,

the samples were centrifuged at 14,000g for 15 min at 4°C with the

supernatant discarded. After drying, the pellets were resuspended in

60 ml of nuclease-free water. The quality and purity of all DNA

samples were checked using a Thermo Scientific NanoDrop Lite

Spectrophotometer (Massachusetts, USA) and an Invitrogen™

Qubit™ 4.0 Fluorometer (California, USA).
Microbiome sequencing

The DNA was processed for amplicon sequencing. PCR-free

libraries of each DNA sample were generated by amplifying the

internal transcribed spacers (ITS2 and ITS4) and 16S rRNA (V3–
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V4) for fungal and bacterial communities, respectively. For 16S

rRNA, peptide nucleic acid (PNA) clamps were used to reduce

mitochondrial and chloroplast contamination. A paired-end

sequencing approach of 300 bp was conducted on an Illumina

MiSeq instrument (Illumina Inc., San Diego, CA, USA) operating

with v2 chemistry (User Guide Part # 15,027,617 Rev. L). All quality

reads related to the study are available at NCBI under BioProject

(PRJNA875044), BioSample (SAMN30594393), and accession

number (SRR23345057–SRR23345080).
Bioinformatics analysis

The sequencing reads were analyzed with QIIME2.0 (Bolyen

et al., 2019). The read quality was assessed with fast QC. We used

the Mothur and DADA2 algorithms for denoising and generating

the amplicon sequence variants (ASVs) (Callahan et al., 2016). In

the denoising, sequences were filtered by overall quality and

trimmed in low-quality regions, and chimeric sequences were

removed (Callahan et al., 2017a). The 16S rRNA gene reads were

trained on the SILVA database for the taxonomic classification

(Quast et al., 2012), while the UNITE database was used to classify

the ITS sequences (Nilsson et al., 2019). Sequences classified as

mitochondria and chloroplast were removed from the 16S rRNA

gene ASV table. For beta-diversity analyses, the Bray–Curtis

distance and unweighted UniFrac PCoA matrix were generated

for the sequence dataset and exported to RStudio software for

statistical analysis. The Shannon diversity index and the observed

ASV richness were calculated for alpha-diversity analyses.

Permutative multivariate analysis of variance (PERMANOVA,

999 permutations) was used to test for significant effects of the

factors (plant compartment, flooding, and eCO2) and their

interaction on bacterial and fungal community composition using

the “adonis function.” ANCOM-BC2 (Lin and Peddada, 2020) and

analysis of similarity (ANOSIM) were also used to test the effects of

the factors on the fungal and bacterial communities using RStudio.

Differences in species diversity (Shannon index) and richness

(observed ASVs) for the same factors were assessed using the

Kruskal–Wallis test in QIIME 2.0 (Bolyen et al., 2019). The

DESeq2 package was used to implement a negative binomial

generalized model to test the effect of eCO2 and flooding on the

ASV abundances.
Molecular gene expression analysis

High molecular weight RNA was extracted from the aerial (shoot/

leaf) samples using the MagMAX™ Plant RNA Isolation Kit (Thermo

Fisher Scientific,Massachusetts, USA). The extracted RNAwas analyzed

for quantity and integrity through Qubit 4.0 (Qubit RNA IQ Assay and

RNA HS Assay kits; Thermo Fisher Scientific, Massachusetts, USA).

The cDNA synthesis was performed using the standard protocol of the

kit (High Capacity cDNA Reverse Transcription; Applied Biosystems,

California, USA). RNA (10 µl and 100 ng/µl) was added to the master

mix, and cDNA was synthesized through polymerase chain reaction

(PCR) in a thermocycler under specific conditions (25°C for 10min, 37°
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C for 2 h, and 85°C for 5 min). The synthesized cDNA was stored at

−80°C until further use. The synthesized cDNA was normalized and

used for gene amplification. Power up “SYBR” green Master Mix has

been used for the thermocycler (QuantStudio 7 Pro Flex, Applied

Biosystems, California, USA) PCR reaction. Primers ordered from

Azenta (forward and reverse) were used at 10 pM for all reactions

(Supplementary Table 12). The qPCR reaction conditions were 94°C

for 10 min, followed by 35 cycles of 94°C for 45 s, 65°C for 45 s, and

72°C for 1 min, and a final extension at 72°C for min. Gene

expression results were analyzed using delta CT calculation

methods, and the experiment was repeated three times. Fold

changes in gene expression were calculated using the formula

described previously (Khan et al., 2021).
Statistical analysis

At least three replicates per treatment were analyzed during this

study. The data for the enzyme study are presented as the mean ±

standard error (SEM). The significant differences were determined

using a two-way analysis of variance (ANOVA). The two factors,

flooding and eCO2, were considered and computed across

treatments to know the significance level. The mean values were

considered significant at p< 0.05 and were calculated by GraphPad

Prism Version 9.01 (GraphPad Software, San Diego, CA, USA).
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Introduction: Microbial biofertilizers or biocontrol agents are potential

sustainable approaches to overcome the limitations of conventional

agricultural practice. However, the limited catalog of microbial candidates for

diversified crops creates hurdles in successfully implementing sustainable

agriculture for increasing global/local populations. The present study aimed to

explore the wheat rhizosphere microbiota for microbial strains with a biofertilizer

and biocontrol potential.

Methods: Using a microbial culturing-based approach, 12 unique microbial

isolates were identified and screened for biofertilizer/biocontrol potential using

genomics and physiological experimentations.

Results and discussion: Molecular, physiological, and phylogenetic

characterization identified Stenotrophomonas maltophilia BCM as a potential

microbial candidate for sustainable agriculture. Stenotrophomonas maltophilia

BCM was identified as a coccus-shaped gram-negative microbe having optimal

growth at 37°C in a partially alkaline environment (pH 8.0) with a proliferation

time of ~67 minutes. The stress response physiology of Stenotrophomonas

maltophilia BCM indicates its successful survival in dynamic environmental

conditions. It significantly increased (P <0.05) the wheat seed germination

percentage in the presence of phytopathogens and saline conditions. Genomic

characterization decoded the presence of genes involved in plant growth

promotion, nutrient assimilation, and antimicrobial activity. Experimental

evidence also correlates with genomic insights to explain the potential of

Stenotrophomonas maltophilia BCM as a potential biofertilizer and biocontrol

agent. With these properties, Stenotrophomonas maltophilia BCM could

sustainably promote wheat production to ensure food security for the

increasing population, especially in native wheat-consuming areas.
KEYWORDS

biofertilizer, biocontrol agent, wheat rhizosphere, plant growth promotion, genome
characterization, sustainable agriculture, comparative genomics
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Introduction

Wheat is a principal source of calories and nutritional sustenance

for most of the world’s population. The escalating global population

poses a formidable challenge to food production systems,

necessitating a heightened focus on augmenting wheat production

by at least 1.5% per year by 2050 to meet burgeoning dietary

demands. We have easily achieved it using fertilizers, hybrid seeds,

and pesticides. However, their continuous use has adversely affected

soil quality, which limits us from using another chemical-based green

revolution. The disruption of soil ecology highlights the urgency for

sustainable and integrated interventions to meet requirements

without affecting soil ecology. The development of biofertilizers and

their integration into agricultural practices pave the way toward

achieving growth targets sustainability. Biofertilizer microbial

strains are pivotal in enhancing plant growth and productivity

through their intricate interactions with the rhizosphere. These

strains, often comprising beneficial bacteria or mycorrhizal fungi,

contribute to sustainable agriculture by promoting nutrient

availability, facilitating nutrient uptake, and inducing plant systemic

resistance. Symbiotic microbes like Rhizobium, Sinorhizobium,

Azoarcus, Mesorhizobium, Frankia, Allorhizobium, Bradyrhizobium,

Burkholderia, Azorhizobium, and Achromobacter strains (Nosheen

et al., 2021) and free-living microbes like Azospirillum, Azotobacter,

Azoarcus, Gluconacetobacter, and Herbaspirillum (Steenhoudt and

Vanderleyden, 2000) have proven their potential to meet plant

nitrogen requirements (Shah et al., 2021). The phosphate

solubilization potential of Agrobacterium sp., Azotobacter sp.,

Bacillus sp., Burkholderia sp., Enterobacter sp., Erwinia sp.,

Pseudomonas sp., etc. (Shah et al., 2021) can be employed to meet

our plant phosphate requirement. The potassium-solubilizing

microbe like Bacillus edaphicus (Sheng and He, 2006), Bacillus

megaterium, Arthrobacter sp (Keshavarz Zarjani et al., 2013), and

Paenibacillus glucanolyticus (Sangeeth et al., 2012) enhances plant

production. Various microbes were characterized for their plant

growth-promoting potential by plant hormone secretion (Kumar

et al., 2023), siderophores generation (Kumar et al., 2023), nutrient

assimilation (Fatima and Senthil-Kumar, 2015), and biotic and

abiotic stress resistance (Tsukanova et al., 2017). Employment of

these microbial biofertilizers could fulfill the plant growth

requirements for increased crop production. The wheat yield

enhancement also requires employing biocontrol agents to

overcome phytopathogen infestation. Wheat phytopathogens

Rhizoctonia solani and Fusarium oxysporum severely affect seed

germination and seedling growth (Harris and Moen, 1985; El

Chami et al., 2023). It ultimately results in bare patches in crop

areas up to 20% (Anees et al., 2010). These pathogens have

significantly reduced the production of wheat. Australia’s southern

and western cropping regions have documented annual losses of $59

million and $166 million, respectively (Murray and Brennan, 2009).

Also, this pathogen has a wide host range (Cook et al., 2002), and

thus, it is much more difficult to control. Crop rotation strategy

implementation may reduce the fungal infestation to some extent.

However, even this strategy reduced grain production (Volsi et al.,

2022). Various biocontrol agents like Trichoderma sp., Mycorrhizal

fungi, and Pseudomonas fluorescens demonstrated antagonism
Frontiers in Plant Science 0265
toward Rhizoctonia solani and Fusarium oxysporum. The

applicability of these control agents in wheat cultivation lies in

their ability to enhance plant defense mechanisms, induce systemic

resistance, and compete for resources with pathogenic fungi.

Biocontrol agents primarily excel in mitigating phytopathogens;

however, their role in directly promoting plant growth in wheat

may be comparatively less pronounced.

A limited number of strains are known to exert the dual effect of

biocontrol and biofertilization. Bacillus subtilis and Bacillus

amyloliquefaciens represent a group with dual functionality,

producing antimicrobial compounds such as polyketides,

ribosomal peptides, and bacteriocins for biocontrol and

contributing to plant growth promotion through the production

of siderophores (Caulier et al., 2019). Pseudomonas fluorescens is

recognized for biocontrol against various pathogens such as soil-

borne Fusarium solani and Sclerotinea rolscii (Ganeshan and Manoj

Kumar, 2005) and is known to stimulate plant growth by producing

growth-promoting substances such as Indole-3-acetic acid and

siderophores (Sah et al., 2021). However, their poor survivability

in dynamic soil ecosystems, host specificity, etc. (Shah et al., 2021)

requires enriching a catalog of plant growth-promoting strains.

Therefore, identifying dual players from the host native niches will

bestow the advantage of natural colonization and prepare a stage for

its utilization up to its full potential. Hereby, the present study was

designed to explore/elucidate the wheat rhizosphere microbial

world to identify potential biocontrol agents with plant growth-

promoting potential to increase wheat crop yield.
Methods

Isolation of wheat rhizosphere microbes

Rhizospheric soil was collected from wheat plants grown in an

experimental field at Maharshi Dayanand University Rohtak (28°

52’ 44’’ NL and 76° 37’ 19’’ EL), Haryana, India. A measurement of

5.0g of soil was suspended in 20 ml ultrapure sterile water to

perform physiochemical analysis. Furthermore, soil suspension was

serially diluted up to 10-8. A measurement of 0.1ml of each dilution

was spread evenly on self-devised minimal media A (pH 7.2) [Urea

(200mg), calcium phosphate (250mg), Ferrous sulfate (20mg),

Synthetic Sea salt (200mg), Pectin (50mg), Inulin (50mg), Starch

(50mg), Sorbitol (50mg), Carboxyl methyl cellulose (50mg), and

Ammonium sulfate (50mg) dissolved in 100ml distilled water].

Culture plates were incubated at 16°C, 25°C, and 37°C to isolate

diverse microbes. The bacterial growth was observed for 48 hours,

and morphologically diverse microbial colonies were sub-cultured

at 37°C to achieve their pure cultures.
Screening of rhizosphere isolates for
antifungal potential

Isolated bacterial cultures were screened to assess their

antifungal activity using a disc diffusion assay (Balouiri et al.,

2016). Wheat rhizosphere microbes, Rhizoctonia solani, and
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Fusarium oxysporum were grown in LB and YEPD broth,

respectively, with continuous shaking at 200 rpm for 24 hours at

28°C. A measurement of 0.1 ml of 1.0 OD600nm overnight-grown

fungal culture was spread evenly on PDA plates in sterile

conditions, discs were placed at the center of the plates, and 50µl

of the overnight-grown bacterial culture (A600nm: 1.0) was applied

to the disc, followed by incubation at 28°C for 48 hours. The fungal

growth inhibition was checked by observing the presence of the

growth inhibition zone (Balouiri et al., 2016).
Molecular, physiological, and biochemical
characterization of microbial isolate BCM

Gram staining of biocontrol microbe was performed with a

gram staining kit (K001-1KT, Himedia). Growth of biocontrol

microbe was observed at different pHs (3, 4, 5, 7, 8, 9, 10, 11, and

12) and temperatures (10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C,

45°C, 50°C, 55°C, and 60°C) to identify its optimal growth

conditions. Its growth pattern was observed in LB broth for 48

hrs at 37°C with constant shaking at 200rpm to check its doubling

time (Wang et al., 2015). Substrate utilization preference of the

identified microbe was assessed with a Hi-carbo kit (Himedia,

KB009A-1KT, KB009B-1KT, and KB009C-1KT). Biochemical

properties of the identified strain were performed using assays for

amylase (Swain et al., 2006), catalase (Iwase et al., 2013), pectinase

(Oumer and Abate, 2018), cellulase (Kasana et al., 2008), esterase

(Ramnath et al., 2017), and protease (Vijayaraghavan et al., 2017).

The antibiotic susceptibility of the microbial isolate was assessed

using a Combi IV kit (Himedia, OD023) and G-VI-plus (Himedia,

OD034). The stress response physiology of the identified strain was

assessed by performing assays for salt stress tolerance, metal stress

tolerance, and oxidative stress (Yadav et al., 2023). DNA was

extracted from the microbial isolate using the alkali lysis method

(Chauhan et al., 2009). The qualitative and quantitative analysis of

the DNA was performed with agarose gel electrophoresis and Qubit

HS DNA estimation kits (Invitrogen, USA), respectively. The 16S

rRNA gene was amplified and sequenced to decode its taxonomic

affiliation using a standardized methodology (Yadav et al., 2023).
Genome characterization and
comparative genomics

Stenotrophomonas maltophilia BCM was sequenced using

Illumina MiSeq using Nextera XT DNA Library Prep kit. Raw

reads were quality checked using FASTQC v0.11.9 (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc) and fastQ

Validator v0.1.1 (https://github.com/statgen/fastQValidator).

Contaminated reads were removed to get the corrected reads. The

SPAdes v3.15.1 assembler was used for the de-novo assembly.

Further, BUSCO v5.0.0 assessment tools were used with the latest

bacterial orthologue catalog (bacteria_odb10) for analyzing the

completeness of a set of predicted genes in bacterial genome

assemblies. Assembled contigs were used for functional

annotation via PROKKA. SSU rRNA gene was extracted, and the
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BLASTn was performed to identify the taxonomic affiliation of

BCM. Database homologs with more than 97% 16S rRNA gene

similarity were chosen for comparative analysis. Genomes were

downloaded from the NCBI web server and annotated via

PROKKA (Seemann, 2014). J-species software (http://

jspecies.ribohost.com/jspeciesws/) assessed the genome level

similarity using average nucleotide identity and tetra-correlation

values. CRISPR/Casin genome was identified using the CRISPR

identifier. Antibiotic resistance genes using CARD identifier were

assembled and contigs were used to draw a circular genomic map

via the Proksee tool (https://proksee.ca/). The antibiotic resistance,

metal/metalloid resistance, and oxidative stress resistance protein

features were identified using rapid annotation using a subsystem

technology (RAST) server (https://rast.nmpdr.org/rast.cgi?

page=Jobs). The genome was checked for pathogenesis with the

Island Viewer 4 with the default parameters. Phylogenomic

characterization of Stenotrophomonas maltophilia BCM and

shortlisted strains were plotted using roary_plots.py v0.1.0

(https://github.com/sanger-pathogens/Roary/blob/master/contrib/

roary_plots/roary_plots.py). The core multiple sequence

alignments were used to infer the phylogenomic tree using

FastTree v2.1.10 (Price et al., 2010).
Assessment of antifungal and antibiofilm
activity of Stenotrophomonas
maltophilia BCM

The biocontrol potential of Stenotrophomonas maltophilia

BCM was assessed against Rhizoctonia solani and Fusarium

oxysporum in terms of their effect on seed germination efficiency,

root and shoot length of wheat plantlets (Moraes et al., 2014), and

alpha-amylase activity (Singh and Kayastha, 2014). Biofilm

inhibition activity of Stenotrophomonas maltophilia BCM was

checked against Chromobacterium violaceum. Anti-biofilm

activity was calculated by estimating the amount of violacein

production by Chromobacterium violaceum in the presence of

Stenotrophomonas maltophilia BCM (Adeyemo et al., 2022).
Role of Stenotrophomonas maltophilia
BCM on seed germination under salt
stress conditions

Wheat seed germination assay was performed in the presence of

Stenotrophomonas maltophilia BCM. Seeds were initially soaked in

overnight-grown microbial culture corresponding to 1011 cells/ml

containing different concentrations of NaCl ranging from 0.0 M to

1.0 M for 16 hours at 37°C, while control seeds were soaked directly

at different concentrations of NaCl ranging from 0 to 1M for 16

hours at 37°C. Seeds were finally wrapped in germination sheets,

inserted in 50 ml culture tubes containing 5 ml Hoagland solution,

and incubated for 7 days in the dark at room temperature. Seed

germination percentage, alpha-amylase activity, and root and shoot

length were measured after the incubation (Singh and

Kayastha, 2014).
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Bio-fertilizer potential of
Stenotrophomonas maltophilia BCM

Stenotrophomonas maltophilia BCM were screened for nitrate

reductase activity (Kim and Seo, 2018), auxin production (Ehmann,

1977), ammonia production (Bhattacharyya et al., 2020), and

siderophore biosynthesis (Himpsl and Mobley, 2019) for the

assessment of their bio-fertilization potential.
Results

Isolation and screening of microbes with
biocontrol potential

The wheat rhizospheric soil from where the microbe was

isolated has been collected and identified to have 7.3 pH, 22.6˚C

temperature, and 11.5 ± 1.10% moisture content. Twelve

morphologically diverse microbes were purified from the wheat

rhizosphere, of which three showed antifungal activity against at

least one fungal strain. Only the BCM strain was found to show

activity against both fungal strains and was used for further study.

Antifungal activity assay showed that the microbial isolate BCM led

to a growth inhibition zone of 17 ± 0.57 mm and 15 ± 0.57735 mm

against Rhizoctonia solani and Fusarium oxysporum, respectively.

These results indicate that microbial isolate BCM harbors the

potential to develop an efficient biocontrol agent.
Taxonomic, physiological, and biochemical
characterization of microbial isolate BCM

The 16S rRNA gene of the microbial isolate BCM shared 99.48%

homology with Stenotrophomonas maltophilia LMG 25348 in the

NCBI 16S rRNA gene database, indicating it as a species of

Stenotrophomonas maltophilia. The16S rRNA gene-based

phylogenetic analysis also confirms similar observations (Figure 1).

Based on taxonomic and phylogenetic observations, microbial isolate

BCM was labeled Stenotrophomonas maltophilia BCM for

downstream analysis. Microscopic investigation indicated

Stenotrophomonas maltophilia BCM as a gram-negative, rod-

shaped, and motile bacterium. Stenotrophomonas maltophilia BCM

showed optimum growth at pH 7.0 and 35˚C (Figure 2). Growth

pattern analysis indicates that it attains a log phase of growth after 15

hours and has a doubling time of around 67.8 minutes

(Supplementary Figure SF1). Stenotrophomonas maltophilia BCM

showed growth of 0.493 O.D. at 600nmwhen grown anaerobically for

24 hrs at 37°C, indicating its facultative anaerobic nature.

Stenotrophomonas maltophilia BCM was positive for amylase,

esterase, lipase, protease, and catalase activity. Substrate utilization

assay of Stenotrophomonas maltophilia BCM indicates that its

substrate utilization profile is similar to other Stenotrophomonas

maltophilia species (Supplementary Table S1). Antibiotic

susceptibility assay suggests it is resistant toward bacitracin,

cephalothin, erythromycin, novobiocin, oxytetracycline, ceftazidime,

cefotaxime, and ofloxacin antibiotics while showing sensitivity
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toward nation, lincomycin, claxon, and amikacin. The antibiotic

resistance profile of Stenotrophomonas maltophilia BCM was

similar to other Stenotrophomonas maltophilia species while

overlapping with Stenotrophomonas maltophilia smyn44

(Supplementary Table S2). Similar biochemical, substrate

utilization, and antibiotic resistance profiles of Stenotrophomonas

maltophilia BCM to other Stenotrophomonas maltophilia species

strengthen the 16S rRNA gene-based taxonomic observations.

Stress response physiology assays indicate that it can successfully

grow in the presence of salts [up to 5.85% NaCl (w/v), 8.9% KCl (w/

v), and 4.2% LiCl (w/v)] (Figure 3), metals [up to 0.1% Na3AsO4 (w/

v), 0.12%NaAsO2 (w/v), and 0.54%CdCl2(w/v)] (Figure 4), oxidizing

agents [up to 5.96% (v/v) H2O2] (Figure 5), as observed for other

Stenotrophomonas sp. (Supplementary Table S3).
Genomic characterization of
Stenotrophomonas maltophilia BCM

Genome sequencing of Stenotrophomonas maltophilia BCM

resulted in the generation of 551495 paired-end raw reads.

Stenotrophomonas maltophilia BCM genome was assembled into

447 contigs, accounting for a total 4519592 bp size, with 66.5% GC
FIGURE 1

Phylogenetic affiliation of Stenotrophomonas maltophilia BCM with
the other Stenotrophomonas species. The phylogenetic tree was
constructed with the Neighbor-joining method of phylogenetics
with 1000 bootstrap replications using MEGA-X software. The 16S
rRNA gene sequence of Stenotrophomonas ginsengisoli DCY01 was
represented as out-group.
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content and N50 length of 139100bp (Supplementary Table S4).

Functional annotation of the genome identified 3949 protein-

coding, 7 rRNA, 74 tRNA, and 1 tmRNA gene (Figure 6A).

Average nucleotide identity (ANI) was performed to check the

relationship of microbe at the genomic level. The average ANI

among different species of Stenotrophomonas was 77-99% toward

the lower end of the 77-100% spectrum, suggesting significant

interspecific genomic variations. Furthermore, the ANI score of

Stenotrophomonas maltophilia BCM with Stenotrophomonas

maltophilia smyn44 was 99.57, while it was comparatively higher

compared with other species members (Supplementary Table S5).
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The affiliation of Stenotrophomonas maltophilia BCM as a member

of Stenotrophomonas maltophilia species was further confirmed

using terra correlation. Stenotrophomonas maltophilia BCM has

been awarded a 0.9996 z-score against Stenotrophomonas

maltophilia AU12-09 during terra-correlation, confirming its

s imilar i ty with Stenotrophomonas maltophi l ia . Other

Stenotrophomonas species exhibited good similarity (z-score ∼
0.93-0.99) (Supplementary Table S6). The matrix generated using

the Roary tool showed the comprehensive nature of the genome in

which the microbial isolate showed the highest similarity with

Stenotrophomonas maltophilia smyn44 (Figure 6B). The genomic
FIGURE 2

Growth profile of Stenotrophomonas metophilia BCM under diverse temperatures (10°C to 60°C with an interval of 5°C) and pH (from 3 to 12 with an
interval of one pH unit) conditions. Stenotrophomonas maltophilia BCM growth was observed in LB broth after 16 hrs of uninterrupted growth at respective
temperature and pH conditions with constant shaking at 200 rotations per minute (rpm). The experiments were carried out in triplicates, and growth was
observed by reading the absorbance of the culture at 600nm. Plotted values are the mean of triplicates along with the observed standard deviation.
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matrix also revealed that all Stenotrophomonas genomes share only

a few numbers of genes as their core genome. Shell and cloud

genome collectively forms the central part of the genomes.

Stenotrophomonas maltophilia BCM genome has neither a

pathogenic gene/island nor any virulence-related genes, indicating

its non-pathogenic nature. In addition to the genes for

antimicrobial activity (Table 1), Stenotrophomonas maltophilia

BCM genome harbors genes encoding proteins for plant growth

promotion activities like auxin biosynthesis, nitrogen assimilation,

siderophore biosynthesis, and phosphate solubilization (Table 2).

Stenotrophomonas maltophilia BCM genome also harbors genes

responsible for arsenic resistance, oxidative stress tolerance, metal

stress tolerance, and salt tolerance (Supplementary Table S7),

explaining its stress response physiology. The 24 CAZymes

clusters within its genome also justify its diverse carbohydrate

utilization profile (Supplementary Table S8). Additionally, its

genome encodes various hydrolases, some of which might extend

anti-pathogenic behavior to the host (Supplementary Table S9).

Several proteins were identified as essential for effective

colonization in plant rhizosphere (Kumar et al., 2023). An in-

depth analysis of the Stenotrophomonas maltophilia BCM genome

identifies the presence of genes encoding proteins for the synthesis

of Type 1 and IV pili, exopolysaccharide (Table 3) essential for plant

surface adhesion, auto-aggregation, and early biofilm formation

(Kumar et al., 2023).
Assessment of the antifungal potential of
Stenotrophomonas maltophilia BCM

The protective effect of Stenotrophomonas maltophilia BCM on

wheat seed germination was assessed. A 10% ± 1 and 5% ± 0.57735

seed germination was observed in the presence of Rhizoctonia solani
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and Fusarium oxysporum, respectively. Seeds’ pre-treatment with

Stenotrophomonas maltophilia BCM showed a germination

efficiency of 75.33 ± 0.57735% and 87.66 ± 0.57705% in the

presence of Rhizoctonia solani and Fusarium oxysporum,

respectively (Figure 7). Stenotrophomonas maltophilia BCM was

observed to increase ~750 and ~1753-fold seed germination in the

presence of Rhizoctonia solani and Fusarium oxysporum,

respectively. These results strongly indicate the potential

biocontrol behavior of Stenotrophomonas maltophilia BCM.

Stenotrophomonas maltophilia BCM enhanced seed germination
FIGURE 3

Growth profile of Stenotrophomonas maltophilia BCM in the
presence of NaCl, KCl, and LiCl. Stenotrophomonas maltophilia
BCM growth was observed in salt-supplemented LB broth after 16
hrs of uninterrupted growth at 37°C with constant shaking at 200
rpm. The experiments were carried out in triplicates, and growth
was observed by reading the absorbance of the culture at 600nm.
Values plotted here are the triplicates’ mean and the observed
standard deviation.
B

C

A

FIGURE 4

Growth profile of Stenotrophomonas maltophilia in the presence of
cadmium chloride (A), sodium arsenite (B), and sodium arsenate (C).
Stenotrophomonas maltophilia BCM growth was observed in metal/
metalloid-supplemented LB broth after 16 hrs of uninterrupted
growth at 37°C with constant shaking at 200 rpm. The experiments
were carried out in triplicates, and growth was observed by reading
the absorbance of the culture at 600nm. Values plotted here are the
triplicates’ mean and the observed standard deviation.
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in the presence of phytopathogens and significantly improved seed

germination in reference to the control (P=0.024) (Figure 7).

Rhizoctonia solani and Fusarium oxysporum were also found to

significantly reduce (P=0.0001 and P=0.0018) alpha-amylase

activity in wheat seeds to 0.42 IU and 0.22 IU, respectively. Seeds’

pre-treatment with Stenotrophomonas maltophilia BCM

significantly increased alpha-amylase activity (P=0.000136 and

P=0.0000262) in the presence of Rhizoctonia solani and Fusarium

oxysporum, respectively (Figure 8). The significant improvement of

alpha-amylase activity in wheat seeds after pre-treatment with

Stenotrophomonas maltophilia BCM could be a possible reason

for enhanced seed germination.

Pre-treatment of seeds with Stenotrophomonas maltophilia

BCM not only enhanced seed germination but also improved the

growth of wheat plantlets. Wheat seeds pre-treated with

Stenotrophomonas maltophilia BCM showed a significantly

enhanced shoot length (P=0.027) and root length (P=0.010)

compared to the untreated seeds (Figure 9). Stenotrophomonas

maltophilia BCM was also found to significantly improve the root

(P=0.017 and 0.039) and shoot length (P=0.020 and 0.136) of wheat

plantlets infected with Rhizoctonia solani and Fusarium oxysporum,

respectively. The average shoot and root length of wheat plantlets

treated with Stenotrophomonas maltophilia BCM were significantly

higher (P=0.0297 and 0.0023) compared to the control even after

Rhizoctonia solani and Fusarium oxysporum exposure, indicating

its biocontrol behavior. Stenotrophomonas maltophilia BCM also

interacted with Chromobacterium violaceum and significantly

reduced violacein production (P=0.001). This indicates the

potential of Stenotrophomonas maltophilia BCM as a quorum-

sensing inhibitor and antibiofilm activity, which is good for a bio-

controlling agent.

Stenotrophomonas maltophilia BCM’s role in wheat seed

germination in abiotic stress like high salinity (a key bottleneck in

wheat germination and crop production) was also assessed.
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Increased salt concentration significantly reduced seed

germination (Figure 10A). Seeds ’ pre-treatment with

Stenotrophomonas maltophilia BCM showed enhanced seed

germination at high salinity conditions (Figure 10B). Pre-

treatment of seeds with Stenotrophomonas maltophilia BCM not

only enhanced seed germination but also improved the growth of

wheat plantlets. Wheat seeds pre-treated with Stenotrophomonas

maltophilia BCM showed a significantly enhanced shoot length

(P=0.001) and root length (P=00.0018) compared to the untreated

in high salinity conditions.
Plant growth potential of
Stenotrophomonas maltophilia BCM

Stenotrophomonas maltophilia BCM genome harbors key genes

responsible for plant growth promotion activities like auxin

biosynthesis, nitrogen assimilation, siderophore biosynthesis, and

phosphate solubilization. Stenotrophomonas maltophilia BCM

showed nitrate reductase activity (14IU), extracellular alkaline

(0.22IU), and acid phosphatase activity (0.1 IU). It was also found

to produce and secrete plant growth-promoting hormones in the

surrounding environment. The presence of genes responsible for

plant growth promotion and their bioactivity indicate biocontrol

behavior. Stenotrophomonas maltophilia BCM also harbors plant

growth-promotion activity.
Discussion

A boost in crop production of cereals is required to ensure food

security for the expanding global population (Tilman et al., 2011).

In the past, applying agrochemicals has boosted agricultural yield

and helped to fulfill food requirements. Continuous applications of

agrochemicals negatively impact the environment and human

health. These agrochemicals severely affect soil fertility, creating

hurdles in enhancing crop production to ensure food security

(Gamage et al., 2023). In addition, the evolution of plant

pathogens for pesticide resistance, higher infectivity, and broad

host range are significant challenges (Newman and Derbyshire,

2020). Sustainable agricultural practices offer solutions to ensure

healthy soil ecology, limit infections, and enhance crop production

(Mehmet Tuğrul, 2020). Plants harbor several microbial

companions on underground and above-ground surfaces (Van

Dijk et al., 2022). These micro-residents improve the host plant’s

growth by enhancing nutrient assimilations, cell division, and plant

reproduction and preventing the invasion of pathogens (Koza et al.,

2022). Sustainable agricultural practices advocate the employment

of such micro-residents to improve crop production. Identification

and characterization of such candidate microbes became a quest of

researchers around the globe.

Wheat is one of the prime food sources for fulfilling the hunger

of most of the global population. Increases in soil salinity, reduced

soil fertility, emergence of phytopathogens, and climate change

threaten wheat production (Srinivas et al., 2019). There is an

emergent need to identify potential microbial agents that can
FIGURE 5

Growth profile of Stenotrophomonas maltophilia BCM in the
presence of NaCl , KCl, and LiCl. Stenotrophomonas maltophilia
BCM growth was observed in salt-supplemented LB broth after 16
hrs of uninterrupted growth at 37°C with constant shaking at 200
rpm. The experiments were carried out in triplicates, and growth
was observed by reading the absorbance of the culture at 600nm.
Values plotted here are the triplicates' mean and the observed
standard deviation.
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improve resistance toward both biotic (phytopathogens) and abiotic

(salinity) stress in wheat for better crop production. In the present

study, an effort was made to explore the wheat rhizosphere

microbiota to identify potential microbial candidates to enhance

plant growth by inhabiting phytopathogens infection, improving

nutrient assimilation, and extending resistance toward

various stressors.

Culture-dependent exploration of wheat rhizosphere

microbiota identified 12 morphologically different bacterial

isolates. Antifungal assays indicate that the isolate BCM showed
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effective growth inhibition of Rhizoctonia solani and Fusarium

oxysporum phytopathogens. The 16S rRNA gene-based

phylogenetic characterization of BCM isolate reveals suitable

homology with Stenotrophomonas maltophilia, accordingly

labeled as Stenotrophomonas maltophilia BCM. Stenotrophomonas

maltophilia is a group of diazotrophic bacteria isolated from diverse

habitats, predominantly from plant-associated ecosystems (Pinski

et al., 2020). Rhizospheric Stenotrophomonas maltophilia species

have the potential as biofertilizers, biocontrol agents, pesticide

remediation (Kumar et al., 2023), and stress resistance (Singh and
B

A

FIGURE 6

Genome map (A) and phylogenomic profile (B) of the Stenotrophomonas maltophilia BCM. The circular genome map (A) was drawn using the
Proksee online tool (https://proksee.ca. The phylogenomic tree (B) was constructed with the FastTree v2.1.10 tool via Roary.
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Jha, 2017). These studies strengthen the candidature of

Stenotrophomonas maltophilia BCM as a biofertilizer and

biocontrol agent. Most of this information was drawn based on

experimentation with diverse plant species (Kumar et al., 2023). As

a result, it is essential to understand its physiological, genomic, and

plant-associated properties to understand its efficiency.

The morphological, physiological, and chemotaxonomic profile

of BCM was similar to other Stenotrophomonas maltophilia strains,

confirming 16S rRNA gene-based phylogenetic observations.

Likewise, other Stenotrophomonas sp., Stenotrophomonas

maltophilia BCM, was observed to successfully thrive under diverse

physicochemical (pH and temperature) and stress conditions (saline,

exposure to metal/metalloid, and antibiotic). Survival in diverse

environments extended the ubiquitous nature of Stenotrophomonas

sp (Kumar et al., 2023). Stenotrophomonas maltophilia BCM harbors

a G+C-rich genome of 4519592bps encoding a diverse array of

proteins, extending metabolic robustness to the host. Average

Nucleotide Identity and phylogenomic observations further validate

its taxonomic affiliation. Stenotrophomonas maltophilia BCM

encodes a diverse array of hydrolytic enzymes (CAzymes,

proteases, chitinase, glucanases, and lipases), phytohormones

production (IAA), nutrients (Phosphate) solubilization, and

phenazine production. The presence of protein-encoding features

for phosphate solubilization, siderophore production, nitrogen

fixation, and phytohormone production could significantly boost

plant growth (Souza et al., 2015) to act as a biofertilizer. Various

Stenotrophomonas sp. were already characterized for the presence of

these features and were placed under the category of PGPRs (Majeed

et al., 2015). Chitinolytic and proteolytic enzymes could effectively

hydrolyze fungal cell walls and inhibit fungal growth (Hamid et al.,

2013). Phenazine is another potent antifungal compound, and
TABLE 1 Genetic features involved in Stenotrophomonas maltophilia
BCM genome involved in biocontrolling activity.

CDS start
Position in
the genome

CDS stop
position in
the genome

Strand Function

A. Phenazine biosynthesis and resistance protein

11738 10860 – Phenazine
biosynthesis
protein PhzF

12685 11810 – Phenazine
biosynthesis
protein PhzF

18001 16053

– Phenazine
antibiotic
resistance

protein EhpR

B. Bacteriocin resistance protein

37151 36447 – Bacteriocin
resistance protein

C. Chitinase

181286 180096 – Chitinase

61552 63651 + Chitinase
F
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TABLE 2 Genetic features identified within Stenotrophomonas
maltophilia BCM genome encoding various proteins involved in nutrient
assimilation and solubilization.

CDS start
position

in
the

genome

CDS stop
position

in
the

genome

Strand Function

A. Nitrogen transport and regulation

69574 69969 +
Nitrogen regulatory protein P-

II, GlnK

94361 95422 +
Nitrogen regulation protein

NtrB (EC 2.7.13.3)

95415 96863 +
Nitrogen regulation protein

NR(I), GlnG (=NtrC)

26694 25342 –
nitrogen regulation protein

NtrY, putative

348 10 –
Nitrogen regulatory protein P-

II, GlnK

36588 37013 +
PTS IIA-like nitrogen-
regulatory protein PtsN

145605 147023 +
Nitrate/nitrite transporter

NarK/U

147096 150839 +
Respiratory nitrate reductase
alpha chain (EC 1.7.99.4)

150839 152383 +
Respiratory nitrate reductase
beta chain (EC 1.7.99.4)

152383 153063 +
Respiratory nitrate reductase
delta chain (EC 1.7.99.4)

153060 153767 +
Respiratory nitrate reductase
gamma chain (EC 1.7.99.4)

B. IAA biosynthesis

36312 35470 –
Indole-3-glycerol phosphate

synthase (EC 4.1.1.48)

C. Phosphate regulation, transport, and solubilization

189720 188125 – Alkaline phosphatase

23081 23770 +
Phosphate regulon

transcriptional regulatory
protein PhoB (SphR)

23877 25208 +
Phosphate regulon sensor
protein PhoR (SphS)

(EC 2.7.13.3)

39099 38392 –
Phosphate transport system
regulatory protein PhoU

40006 39176 –

Phosphate ABC transporter,
ATP-binding protein PstB

(TC 3.A.1.7.1)

40889 40026 –

Phosphate ABC transporter,
permease protein PstA

(TC 3.A.1.7.1)

41857 40889 –

Phosphate ABC transporter,
permease protein PstC

(TC 3.A.1.7.1)

(Continued)
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phenazine-producing microbes can effectively protect plants against

fungal phytopathogens (Karmegham et al., 2020). Stenotrophomonas

maltophilia BCM genome harbors genes encoding chitinase, protease,

and proteins involved in phenazine production, indicating its

potential as a biocontrol agent. Type I and IV pili encoding genes

are essential for adhesion, autoaggregation, and biofilm formation

(Elvers et al., 2001); these proteins allow the PGPR Stenotrophomonas

sp. to associate with plant host in the rhizosphere (Kumar et al.,

2023). The presence of these genes in the Stenotrophomonas

maltophilia BCM genome further confirms its strong interaction

with wheat rhizosphere. Despite the enormous potential of
Frontiers in Plant Science 1073
Stenotrophomonas sp., their application for crop improvement is

challenged by the pathogenic nature of Stenotrophomonas

maltophilia (Ryan et al., 2009). Surprisingly, the Stenotrophomonas

maltophilia BCM genome lacks gene clusters for inducing

pathogenicity in animals and plants, confirming its safe application.

Stenotrophomonas maltophilia BCM genome indicates its application

as a biocontrol agent and biofertilizer; however, these properties must

be validated experimentally.

In-vitro experiments confirm phosphate solubilization, nitrate

reduction, and auxin synthesis properties of Stenotrophomonas

maltophilia BCM. These experimental observations confirm

genomic observations based on the biofertilizer potential of

Stenotrophomonas maltophilia BCM. Additionally, in-vitro

antifungal experiments confirm its potential as a biocontrol agent.

PGPR and biocontrol behavior of Stenotrophomonas maltophilia

BCM were further confirmed in in-vivo studies. Wheat seed

germination experiments in the presence of phytopathogens,

Fusarium oxysporum, and Rhizoctonia solani indicated that

Stenotrophomona smaltophilia BCM effectively protects the host

seedling from fungal infection. These observations support the
TABLE 2 Continued

CDS start
position

in
the

genome

CDS stop
position

in
the

genome

Strand Function

C. Phosphate regulation, transport, and solubilization

43028 41940 –

Phosphate ABC transporter,
substrate-binding protein PstS

(TC 3.A.1.7.1)

44453 43437 –

Phosphate ABC transporter,
substrate-binding protein PstS

(TC 3.A.1.7.1)

45887 44676 –

Phosphate/pyrophosphate-
specific outer membrane

porinOprP/OprO

D. Siderophore Biosynthesis

83949 81742 –
Putative OMR family iron-

siderophore receptor precursor

1 546 +
TonB-dependent

siderophore receptor

77730 78392 +
Ferric siderophore transport
system, biopolymer transport

protein ExbB

104477 105670 +

Isochorismate synthase (EC
5.4.4.2) @ Isochorismate
synthase (EC 5.4.4.2) of
siderophore biosynthesis

105667 107319 +
2,3-dihydroxybenzoate-AMP

ligase (EC 2.7.7.58) of
siderophore biosynthesis

107319 107951 +
Isochorismatase (EC 3.3.2.1)
of siderophore biosynthesis

108205 112095 +
Siderophore biosynthesis non-

ribosomal peptide
synthetase modules

112086 112844 +

2,3-dihydro-2,3-
dihydroxybenzoate

dehydrogenase (EC 1.3.1.28)
of siderophore biosynthesis

202780 203736 +
Iron siderophore
sensor protein

203920 207042 +
Iron siderophore
receptor protein
TABLE 3 Genetic features within the genome encoding proteins for
Stenotrophomonas maltophilia BCM colonization in wheat rhizosphere.

CDS start
position in
the genome

CDS stop
position in
the genome

Strand Function

A. Pili formation Protein

36034 35504 – Type IV pili signal
transduction
protein PilI

61031 61546 + Type IV fimbrial
biogenesis

protein FimT

61543 62040 + Type IV fimbrial
biogenesis
protein PilV

62049 63206 + Type IV fimbrial
biogenesis

protein PilW

63212 63733 + Type IV fimbrial
biogenesis
protein PilX

63747 67514 + Type IV fimbrial
biogenesis

protein PilY1

67538 67945 + Type IV pilus
biogenesis
protein PilE

B. Mannose-6-phosphate isomerase

67945 68009 + Mannose-6-
phosphate
isomerase

C. EPS biosynthesis

19212 19874 + Exopolysaccharide
synthesis ExoD
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genome-based observations indicting Stenotrophomonas

maltophilia BCM as a biocontrol agent. Stenotrophomonas

maltophilia BCM not only protects the wheat seedlings from

fungal infection but also significantly improves seed germination

percentage and plant growth in the presence and absence of
Frontiers in Plant Science 1174
phytopathogens. Stenotrophomonas maltophilia BCM also

improved wheat seed germination percentage and seedling

growth under saline conditions, indicating its potential to

overcome salty conditions. Conclusively, wheat rhizosphere

isolates Stenotrophomonas maltophilia BCM showed good PGPR
FIGURE 7

Impact of Stenotrophomonas maltophilia BCM on the wheat seed germination percentage under biotic stress. Seeds were pre-inoculated with 2×
108 CFU/ml of test organisms (S. maltophilia BCM and phytopathogenic fungal strains as per experimental conditions) for 16 hours before seed
germination experiments. All assays were carried out in triplicates.
FIGURE 8

Impact of Stenotrophomonas maltophilia BCM on the alpha-amylase activity in wheat seeds during germination under biotic stress. Seeds were pre-
inoculated with 2× 108 CFU/ml of test organisms (S. maltophilia BCM and phytopathogenic fungal strains as per experimental conditions) for 16
hours before alpha-amylase activity assays. Plotted values are the mean of triplicates along with the observed standard deviation.
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FIGURE 9

Impact of Stenotrophomonas maltophilia BCM on root and shoot length of WC-306 plantlets under biotic stress. Seeds were pre-inoculated with 2×
108 CFU/ml of test organisms (S. maltophilia BCM and phytopathogenic fungal strains as per experimental conditions) for 16 hours before seedling
growth experiments. Plotted values are the mean of triplicates along with the observed standard deviation.
BA

FIGURE 10

Impact of Stenotrophomonas maltophilia BCM on root and shoot length of WC-306 plantlets under saline stress (NaCl (A) and KCl (B)). Seeds were
pre-inoculated with 2× 108 CFU/ml of test organisms (S. maltophilia BCM and phytopathogenic fungal strains as per experimental conditions) for 16
hours before seedling growth experiments. Plotted values are the mean of triplicates along with the observed standard deviation.
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and biocontrol potential under a diverse range of stresses in the

study, projecting its potential application for sustainable

agriculture. However, long-term analysis under field conditions is

required to validate the outcomes. These analyses are essential for

implanting the isolate in agricultural practices.
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Short impact on soil microbiome
of a Bacillus amyloliquefaciens
QST713 based product that
correlates with higher potato
yield across USA
Irene Adamo1, Marta Acin-Albiac1, Sam Röttjers1,
Diego Rodrı́guez de Prado1, Blas M. Benito1, Jorge Zamora2,
Rakesh Godara3, Beatriz Garcı́a-Jiménez1,
Panpan Jiang-Rempel3, Lauren C. Cline4* and Alberto Acedo5*

1Data Science, Biome Makers Inc, Davis, CA, United States, 2IT/Bioengineering Biome Makers Inc,
Davis, CA, United States, 3Bayer Crop Science, Monheim, Germany, 4Bayer Crop Science, St. Louis,
MO, United States, 5CSO, Biome Makers Inc, Davis, CA, United States
Potato (Solanum tuberosum L.) is considered one of the most widely consumed

crops worldwide, due to its high yield and nutritional profile, climate change-

related environmental threats and increasing food demand. This scenario

highlights the need of sustainable agricultural practices to enhance potato

productivity, while preserving and maintaining soil health. Plant growth-

promoting bacteria (PGPB) stimulate crop production through biofertilization

mechanisms with low environmental impact. For instance, PGPB promote

biological nitrogen fixation, phosphate solubilization, production of

phytohormones, and biocontrol processes. Hence, these microbes provide a

promising solution for more productive and sustainable agriculture. In this study,

the effects of Bacillus amyloliquefaciens QST713 based-product (MINUET™,

Bayer) were assessed in terms of yield, soil microbiome, potato peel and

petiole nutrient profile as a promising PGPB in a wide range of potato cultivars

across the United States of America. Depending on the location, potato yield and

boron petiole content increased after biostimulant inoculation to maximum of

24% and 14%, respectively. Similarly, nutrient profile in potato peel was greatly

improved depending on the location with a maximum of 73%, 62% and 36%

for manganese, zinc and phosphorus. Notably, fungal composition was shifted

in the treated group. Yield showed strong associations with specific microbial

taxa, such as Pseudoarthrobacter, Ammoniphilus, Ideonella, Candidatus

Berkiella, Dongia. Moreover, local networks strongly associated with yield,

highlighting the important role of the native soil microbiome structure in
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indirectly maintaining soil health. Our results showed that treatment with B.

amyloliquefaciens based product correlated with enhanced yield, with minor

impacts on the soil microbiome diversity. Further studies are suggested to

disentangle the underlying mechanisms of identified patterns and associations.
KEYWORDS

biostimulant, soil microbiome, potato yield, potato leaf petiole, potato peel,
network properties
1 Introduction

Potato (Solanum tuberosum L.) is one of the most widely

consumed crops worldwide. Because of its high yield and nutritive

values, it is considered one of the most important agricultural crops

(Beals, 2019; Kanter and Elkin, 2019), whose production reached a

total 376 million tonnes in 2021 as per Unicef organization (FAO,

2022). However, current environmental threats to the agricultural

sector related to climate change, biodiversity loss, land degradation

and agricultural practices raised interest in more sustainable

agricultural practices to preserve and maintain soil health (Muller

et al., 2017). In addition, the total global food demand is expected to

increase by 35% - 56% between 2010 and 2050 (Van Dijk et al.,

2021). Therefore, an intensified effort to enhance food production is

needed to overcome these global future challenges, while reducing

the environmental impact on the ecosystems (Rouphael and Colla,

2020). Plant growth-promoting (PGP) microbes are known for their

capacity to stimulate crop production through biofertilization

mechanisms with low environmental impacts. For instance, PGP

microbes promote biological nitrogen fixation, phosphate

solubilization, production of phytohormones, and biocontrol

processes (Vacheron et al., 2013; Bashan et al., 2014; Shahrajabian

et al., 2023). More in particular, plant growth-promoting

rhizobacteria (PGPR) suggest a promising solution for more

productive and sustainable agriculture practices (Chaudhary

et al., 2023). The use of biological products in agriculture has

increased substantially in the last decade. In 2022, the plant-

growth promoters and biostimulants market was valued 2.9 billion

and ca. USD 3.5 billion, respectively (Markets and Markets, 2022).

Several studies have already assessed the positive direct effects of

PGPR on potato yield (Sarwar et al., 2018; Ekin, 2019; Imam et al.,

2021). Therefore, microbial biostimulants are an innovative and

promising group of agricultural inputs. Nevertheless, more effort is

needed to explore their use and the possible positive impacts on

productivity and soil health in potato cultivars. This may provide

inputs to give recommendations to farmers on the use of more

sustainable practices (Shahrajabian et al., 2023). Because of the

importance of soil microbial communities in maintaining soil

quality and global nutrient cycling, the effects of plant growth-

promoting bacteria soil inoculation should be further assessed

(Bharti et al., 2016; Imam et al., 2021; Chaudhary et al., 2023).
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Moreover, studies at global and local levels observed that soil

microbial communities are affected by changes in soil physio

chemistry and climate (Tedersoo et al., 2014; Glassman et al.,

2017; Plassart et al., 2019; Zeng et al., 2019). However,

associations between soil physio chemistry and soil microbiome

before and after product inoculation are still poorly understood. In

addition, potato petiole analysis can give indirect information on

the effectiveness of products by monitoring nutrient levels in potato

cultivars (Collins et al., 2016; Kong et al., 2022). For instance,

phosphorus, boron, nitrogen, zinc and manganese concentrations

increased upon rhizobacteria inoculation in strawberry and wheat

crops (Ipek et al., 2014; Kumar et al., 2014). Nevertheless, still little

is known about to what extent potato petiole nutrients are

important to assess the efficacy of biological products and how it

can relate to potato yield and soil microbiome.

Similarly, a previous study analyzed the microbial composition

and structure of bulk and rhizosphere soils to assess the effects of B.

amyloliquefaciens QST713-based product (Imam et al., 2021).

Imam et al. (2021) investigated the effects of this biological

product in three different geographical regions in the United

States. Their results showed that the product positively promoted

potato yield in two geographic locations. Moreover, microbial taxa

abundances and community structure changed after inoculation,

but long-lasting effects on soil microbial alpha and beta-diversity

were not observed. Finally, yield prediction model including all

three locations was built, which incorporated product use and soil

microbiome information, such as microbiome network properties.

These properties define how microorganisms tend to co-occur or

co-exclude and measure how the microbial network tends to cluster

together in a specific ecological niche. Imam et al. (2021) concluded

that soil fungal network properties were the most important

predictors of yield.

In our study, the effects of B. amyloliquefaciens QST713

application were addressed in a wide range potato cultivars across

the United States of America, in 21 geographic locations. This

product has already demonstrated a broad fungicide and bactericide

activity on potato crops (US Environmental Protection Agency,

2006). Moreover, its antibiotic production and in vitro suppression

of pathogens were examined from root surfaces through HPLC and

MS quantification (Kinsella et al., 2009). In this study, previous

work of Imam et al. (2021) was extended by exploring the possible
frontiersin.org
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effects of B. amyloliquefaciens based product on a substantially

broader geographic distribution. Here, product effects on soil

microbiome composition and structure were determined,

comparing both control and treated samples at growth stage 2

(around 30 days after emergence) with control before planting.

Moreover, crop yield, soil physicochemical properties, potato peel

and leaf nutrients, along with environmental data, were integrated

to explore the effetcs of B. amyloliquefaciens QST713-based product

on soil microbiome associated with crop performance in different

locations. Indeed, this study demonstrated the impacts of this

biological product on soil microbiome and potato productivity.

Finally, the results provided insights on the functioning of

soil ecosystems and its associations with crop performance.

This may serve to provide better recommendations to growers

on the use of more sustainable products in the current global

change context.
2 Materials and methods

2.1 Agronomic trial design and
sample collection

Potatoes (Varieties: Russet Ranger, Russet Burbank, French

Fingerling, Russet Norkotah, FL1867, FL2137, Red Norland) were

planted between April and May 2020 in 21 different geographical

regions in the United States (Supplementary Figure S1; Supplementary

Table S1). All trials were managed by Bayer Crop Science. Treatment

consisted of a biological product containing minimum of 2.7 x 1010

colony forming units (CFU) of B. amyloliquefaciens strain QST713

(NCBI accession number: CP025079; MINUET™, Bayer Crop

Science). All trials comprised three replicated sub-plots per

treatment condition for a total of 6 sub-plots per location. Harvest

was conducted by corresponding Bayer trial cooperators located in

Idaho, Washington, Texas, Michigan, Maine, New York, North

Dakota, Wisconsin, Colorado and Nebraska. Potato tubers were

sampled at harvest and yields were evaluated and recorded in

pounds and hundredweight per acre (cwt/ac). Soil samples were

collected at two different time points: before planting (T0) and at

growth stage 2, around 30 days after emergence (T1) of each variety. In

addition, each variety had different time frame duration from time

points T0 and T1, depending on their growth speed. Therefore, potato

variety influence was mitigated. Detailed sample collection dates can

be found in Supplementary Table S1. To encompass the variability of

field, bulk soil core samples were collected from sub-plots to form a

well-blended composite soil sample, using 1 inch diameter soil probe

(Hartz, 2007). For each time point, samples were collected from both

control and treated samples to isolate the effect of the treatment. For

T0, a total of 132 samples were collected (66 control 66 treated), while

for T1 a total of 130 samples (65 control 65 treated).
2.2 Weather measurements

Weather variables were downloaded from several public

databases such as Bioclim (Karger et al., 2017), Long-term
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Moderate-Resolution Imaging Spectroradiometer (MODIS) - Land

Surface Temperature (LST) day-time and night-time temperatures,

sd and differences at 1 km based on the 2000–2017 time series (Hengl

et al., 2017). Moreover, soil variables were downloaded from

Copernicus Global Land services (https://land.copernicus.eu/global/

index.html) and International Soil Reference and Information Centre

(ISRIC) World Soil Information (Hengl et al., 2017). Then, a

correlogram was constructed to check and reduce for collinearity

between variables. Feature selection was performed based on

Principal Component Analysis (PCA). Then, the number of

dimensions that explained a percentage of variance between 90-

95% and the variables that most contributed to each selected

dimension were selected: Monthly median soil temperature during

day time based on data from the MODIS sensor; average normalized

difference vegetation index (NDVI) of the first third of April (m04)

between 1999 and 2019; mean temperature of wettest quarter,

temperature seasonality (standard deviation ×100); precipitation of

the coldest quarter of the year, soil sand percent in the first 30 cm of

soil, soil clay percent in the first 30 cm of soil and average NDVI of

the first third of July (m07) between 1999 and 2019 were used. Full

description of selected environmental features can be found in

Supplementary Table S2.
2.3 Soil physicochemical, leaf petiole and
potato peel quantification

A total of 120 observations were taken for soil physicochemical

properties at time point T0, while a total of 112 observations were

taken for petiole at time point T1, and 98 observations for yield at

harvest. Mean and standard deviation of each soil property in each

location can be found in Supplementary Table S3. Leaf petioles were

collected from the last mature leaf of potato plants, all leaf tissues were

removed. Potato peel consisted of 216 observations taken at harvest.

Soil and leaf petiole chemistry were analyzed by Ward Laboratories

Inc (Nebraska, United States) with common analytical methods

(https://www.wardlab.com/services/plant-analysis/). Potato peel

metabolomics were analyzed by Bayer AG. Briefly, potatoes were

washed and peeled off for weighing. Then, potato peels were put into

liquid nitrogen for metabolomics. Lastly, metabolomics quantification

was done using mass spectrometry. Soil physicochemical properties in

parts per million (ppm) included nitrate, potassium, sulfur, zinc,

manganese, copper, calcium, phosphorus. Soil physicochemical

properties in weight percentage: organic matter (LOI), sand, silt and

clay. Petiole nutrients in weight percentage included nitrogen,

phosphorus, potassium, magnesium and calcium, while nutrients in

ppm included zinc, iron, copper and boron. Finally, potato peel

nutrients in unit percent included total nitrogen, phosphorus,

potassium, calcium, magnesium, sulfur, sodium, while nutrients in

ppm included zinc, iron, copper and boron.
2.4 DNA extraction and library preparation

After collection, soil samples were immediately sent for

molecular analysis to the Biome Makers laboratory in
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Sacramento, CA. DNA extraction was performed with the DNeasy

PowerLyzer PowerSoil kit from Qiagen. To characterize both

bacterial and fungal microbial communities associated with bulk

soils, BeCrop® custom primers were used for PCR amplification,

specifically targeting the 16S rRNA V4 region and the ITS1 region

(Becares and Fernandez, 2017). Next, amplicons were purified using

the KAPA Pure Beads (Roche) kit, while correct 16S and ITS

amplification was assessed through agarose gel. Purified PCR

products were then subjected to library preparation, following a

two-step PCR Illumina protocol (Gobbi et al., 2019; Liao et al.,

2019). Next, DNA was quantified using a Qubit fluorometer with

Qubit HS Assay Kit 500 (Thermo Fisher Scientific). Finally, libraries

were sequenced on an Illumina MiSeq instrument (Illumina, San

Diego, CA, USA) using 2×251 paired-end reads.
2.5 Bioinformatic processing

Primers were removed from paired end reads using Cutadapt

(Martin, 2011). Then, the trimmed reads were merged with a

minimum overlapping of 100 nucleotides. Next, the sequences

were quality filtered by Expected Error with a maximum value of

1.0 (Edgar et al., 2011). After quality pre-processing, reads having

single nucleotide differences were iteratively clustered together to

form ASVs (Amplicon Sequencing Variants) using Swarm (Mahé

et al., 2022). De novo chimeras and remaining singletons were

subsequently removed (Edgar et al., 2011). Finally, taxonomy was

assigned from ASVs using a global alignment with 97% identity,

against a curated reference database from SILVA 138.1 for 16S

sequences, and UNITE 8.3 for ITS sequences (Glöckner et al., 2017;

Nilsson et al., 2019).
2.6 Computation of local
network properties

Local network properties were determined following the

procedure described by (Ortiz-Álvarez et al., 2021). Briefly,

microbial community networks were built for 16S and ITS

samples independently following the methodology described by

Veech (2013). Presence-absence metanetwork with all samples was

built using rarefied counts, and the ASV pairs occurring significantly

more or fewer than expected by chance were preserved to create the

co-occurrence or co-exclusion network, respectively. Local network

properties were retrieved from subsetting ASV pairs from the

corresponding metanetwork present in the individual sample. The

following network properties were computed for both co-occurrence

and co-exclusion in 16S and ITS: modularity, transitivity and average

path length. Modularity defines microorganisms that tend to co-

occur or co-exclude frequently in specific ecological niches (clusters).

Next, transitivity (clustering coefficient) measures the degree to

which nodes in a network tend to cluster together. Finally, average

path length quantifies the degree of connectivity to go from one side

of the network to another.
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2.7 Computation of global networks
integrating yield and leaf
physiochemical properties

The ASV data were aggregated to genus-level and rarefied to

10.000 reads for 16S, 18.750 for ITS. Five samples had insufficient

reads and were removed. Here, both treated and untreated samples

available were used. Then, treatment was introduced as a metadata

variable to assess associations to MINUET™ biological fungicide or

control treatment. A prevalence filter of 20% was then applied to the

genera. Throughout all steps, the total reads per sample were

preserved, with the final data set containing 63 genera across 39

samples for the 16S data and 197 genera across 44 samples for the

ITS data. Next, a permutation test was performed to identify taxa

with higher or lower degree than expected given their prevalence in

the network. Yield, petiole and environmental data were centered

and scaled and used in network inference, while location and

treatment were used as one-hot encoded variables. Nodes that

represent these metadata variables were referred to as MVs.

FlashWeave v0.18.1 was run to assess direct associations in Julia

version 1.7.1, with heterogeneous set to false and sensitive to true

(Tackmann et al., 2019).
2.8 Statistical analysis

Statistical analyses of microbiome data were done mainly using

phyloseq, microbiome and vegan R packages (McMurdie and

Holmes, 2013; Oksanen, 2013; Shetty and Lahti, 2019). First, the

generation of rarefaction curves allowed estimating sample

intradiversity in terms of bacterial and fungal richness and

Shannon index at the same sequencing depth. Then, pairwise

comparison of treated vs control samples for microbiome indexes

(biodiversity and network properties), yield, petiole and potato

quality were performed through Wilcox-test using Z-score

transformation, standardized by location. Moreover, correlations

between microbiome indexes (network properties and biodiversity),

yield, soil physico-chemical, petiole nutrients, potato peel nutrients

and environmental variables at time T0 and T1 were performed

through Spearman correlation. Resulting p-values were further

corrected by False Discovery Rate (FDR). Then, significant

correlations were visualized as a network graph. Here, Louvain

clustering was performed to identify clusters of positive associations

among variables. Microbiome composition was assessed through

beta diversity analysis, using Principal Coordinate Analysis (PCoA)

ordination and Bray-Curtis distance matrix. Then, explained

variance of resulting ordination by treatment, time and location

and their interaction was determined through PERMANOVA. In

addition, soil, petiole, potato quality physico-chemical properties

and environmental properties were correlated to bacterial and

fungal ordination, through the envfit. In addition, constrained

distance-based Redundancy Analyses (RDAs) were generated

using log-transformed data of microbial counts. Next,

microbiome data was centered based on the location and fitted to
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a linear model containing both time and treatment, along with

potato peel, petiole and soil physiochemical properties and weather

variables. Significance of independent variables was determined

through ANOVA. Only significant variables were visualized in the

ordinations. Then, yield, petiole and environmental data were

centered and scaled and used in the global network inference,

while location and treatment were used as one-hot encoded

variables. Networks were visualized in Cytoscape 3.9.0. Prevalence

of conserved soil prokaryotic and fungal genera was assessed in

control and treated samples at T0 and treated samples at T1. This

was visualized as heatmaps at varying detection thresholds. Then,

shared taxa at ASV and genus level among control and treated

samples at time T0 and time T1 was visualized through Venn

diagrams with constrained intersections by location. Finally,

differential abundant (DA) taxa due to product application were

determined through negative binomial regression at various

taxonomic levels (Love et al., 2014).
3 Results

3.1 Application of the B. amyloliquefaciens
based product increased yield, leaf petiole
boron, potato peel manganese,
phosphorus and zinc content.

Yield significantly increased in treated sample, when

standardizing by location (Wilcoxon-test: p-value = 0.003,

Figure 1A). For individual locations, a similar trend was observed,

with a percentage of increment between 24 and 2% in almost all

locations (Supplementary Figure S2). However, no statistical

significant differences in treated vs control were seen per location.
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Conversely, yield showed significant differences across locations

(Kruskal-Wallis: p-value < 0.001); with, Loc12 and Loc 15 resulting

in the highest and lowest yield, respectively (Supplementary

Figure S3).

Leaf petiole boron was also significantly enhanced in treated

samples, when standardised by location (increment across

locations: 14 - 2%, Wilcoxon-test: p-value = 0.01, (Figure 1A).

Similarly, B. amyloliquefaciens significantly enhanced potato peel

manganese, phosphorus and zinc content (increment across

locations: 73 - 2%, 36 - 2%, 62 - 2%, respectively, Wilcoxon-test:

p-value = 0.007, p-value = 0.002, p-value = 0.001, Figure 1B).

Bacterial and fungal richness and evenness significantly differed

across locations independently of time point, as shown by Chao1

and Shannon indexes, respectively (Supplementary Figure S4).

Metadata together with computed alpha diversity per sample are

found in Supplementary Table S1. No significant differences were

detected for either bacterial or fungal biodiversity indexes when

comparing net changes from T0 to T1 between control and after B.

amyloliquefaciens based product application (Figure 1C). Finally,

no significant changes were observed in network properties due to

treatment application (data not shown).
3.2 Yield associated with microbiome
network properties

The global correlation network across soil, leaf petiole and peel

physico-chemical properties, microbiome indexes and yield

separated in four main clusters containing variables that

significantly correlated (p-value threshold < 0.05) (Supplementary

Table S4). Here, both treated and untreated samples were used to

provide a global overview of the relations between microbiome,
B

C

A

FIGURE 1

Yield (A), leaf boron and and potato peel (B) comparisons between treatment and control normalized per location. Only significant comparisons are
shown. Net change in biodiversity from T0 to T1 comparison between treatment and control (C). Complete comparisons of leaf petiole and potato
peel nutrients can be found in Supplementary Figure S1.
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yield and physico-chemical properties. Cluster 1 mainly comprised

biodiversity related variables. Cluster 2 comprised yield, specific

network and leaf petiole properties, such as T0 16S co-exclusion

transitivity, T0 ITS co-exclusion average path length, T0 ITS co-

exclusion modularity, T0 ITS co-exclusion transitivity, calcium,

nitrogen, sulfur content, and iron (Figure 2A; Supplementary

Table S4). Cluster 3 included mainly potato peel and specific

network properties, such as T0 16S co-exclusion modularity, T0

16S co-occurrence transitivity and T0 16S co-exclusion average

path length, T1 16S co-exclusion modularity, and T1 16S co-

exclusion transitivity (Supplementary Table S4). Finally, cluster 4

included network properties and soil properties such as T0 16S co-

occurrence average path length, T1 16S co-occurrence average path

length, T1 ITS co-occurrence modularity, sulfur, zinc, boron

(Supplementary Table S4).

Notably, yield positively correlated with soil calcium, soil clay, soil

clay percent from selected environmental features (see Supplementary

Table S2) and leaf petiole magnesium content (pairwise Spearman

correlation: R = 0.44, p-value < 0.001, R = 0.51, p-value < 0.001, R =

0.28, p-value = 0.034, R = 0.41, p-value = 0.001, respectively).

Similarly, yield positively correlated with T0 16S diversity Shannon

and T0 16S co-occurrence transitivity (pairwise Spearman correlation:

R = 0.27, p-value = 0.046; R = 0.41, p-value = 0.01). Moreover, both

bacterial and fungal co-occurrence transitivity positively correlated

with yield, both in T1 (pairwise Spearman correlation: R = 0.42, p-

value = 0.001, R = 0.44, p-value < 0.001) (Figure 2B). On the other

hand, yield negatively correlated with bacterial co-occurrence

modularity in T0 (pairwise Spearman correlation: R = -0.54, p-value

< 0.001). Similarly, yield negatively correlated with both bacterial and

fungal co-occurrence modularity in T1 (pairwise Spearman

correlation: R = -0.48, p-value <0.001, R = -0.40, p-value = 0.002,

respectively). Likewise, yield negatively correlated with bacterial co-

occurrence average path length in T0 (pairwise Spearman correlation:

R = -0.43, p-value < 0.001), petiole phosphorus content (pairwise

Spearman correlation: R = -0.45, p-value < 0.001), NDVI of the first

third of April (m04), soil potassium and zinc content (pairwise
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Spearman correlation: R = -0.53, p-value < 0.001, R = -0.39, p-value

= 0.003, R = -0.35, p-value = 0.008).

Yield and potato quality were not correlated with each other

(Figure 2B). Potato peel manganese positively correlated with leaf

petiole manganese (pairwise Spearman correlation: R = 0.31, p-

value = 0.007). Similarly, potato peel manganese positively

correlated with precipitation of the wettest quarter (pairwise

Spearman correlation: R = 0.28, p-value = 0.011) and NDVI m07

which is a proxy of yield (pairwise Spearman correlation: R = 0.27,

p-value = 0.009) (Supplementary Figure S5). In addition, potato

peel manganese showed associations with fungal direct neighbor

nodes (Supplementary Figure S5). More specifically, peel

manganese positively correlated with both T0 and bacterial

Shannon diversity (pairwise Spearman correlation: R = 0.23, p-

value = 0.04) and T1 bacterial Shannon diversity and Chao1

(pairwise Spearman correlation: R = 0.25, p-value = 0.03, R =

0.46, p-value < 0.001). On the other hand, peel manganese

concentration in potato peel negatively correlated with T0 fungal

Shannon diversity.

Moreover, positive correlation through pairwise Spearman

correlations (p-value threshold < 0.05) were found between

potato peel zinc and abiotic and biotic soil characteristic. For

instance, it positively correlated with soil sand content, soil

temperature of the wettest quarter, T1 ITS co-occurrence

transitivity. Moreover, it positively correlated with main potato

peel properties such as calcium, iron, copper and manganese

(Supplementary Figure S6). Finally, by exploring individual

correlations between microbiome indexes and metadata, some

correlations were detected to possibly be location driven

(Supplementary Figure S7). For instance, the correlation between

bacterial and fungal Shannon diversity and Chao1 with soil

phosphorus, organic matter and leaf petiole zinc seemed to be

driven by Loc16. Similarly, the correlation between bacterial and

fungal Shannon diversity and Chao1 and soil calcium seemed to be

driven by Loc1 and Loc20 (Supplementary Figure S7A). The

correlation with phosphorus content was driven by Loc9 and
BA

FIGURE 2

Spearman correlation network of microbiome indexes, environmental and physicochemical data from soil, leaf petiole and potato peel (A). Only
significant correlations are shown (p-value < 0.05). Each edge represents a Spearman correlation between two variables, while nodes represent the
different variables. Nodes are coloured by variable type and borders represent the clusters assigned using Louvain clustering on the positive-edge
only network. Subgraph showing only the direct neighborhood of yield (B).
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Loc11 (Supplementary Figure S7B), this tendency was not observed

for potato quality properties (Supplementary Figure S7C).
3.3 Application of the B. amyloliquefaciens
based product significantly impacts fungal
microbiome composition

Beta diversity analysis showed that location played a major role in

determining soil microbiome composition (Permanova: 16S F[20] =

21.76, R = 45.46%; ITS F[20] = 13.59, R = 45.15%, p-value <0.001)

followed by its interaction with treatment (16S F[1,20] = 1.63, R =

3.71%; ITS F[1,20] = 1.39, R = 4.61%, p-value <0.001 (location:

treatment) (Figure 3A; Table 1). Therefore, the interaction location:

treatment:time significantly explained microbiome composition

variation depending on the location, especially for fungal

community (F[1,20] = 1.52, R = 3.47%, p-value <0.001 Bacteria, F

[1,20] = 1.39, R = 4.61%, p-value <0.001 fungi (Figure 3A; Table 1).

Notably, silt content and soil manganese correlated with bacterial

microbiome ordination (R = 45.55%, p-value = 0.01; R = 39.93%, p-

value=0.01), while soil zinc and sand contents correlated with fungal

ordination (R = 38.27%, p-value = 0.01; R = 33.38%, p-value = 0.01)

(Supplementary Table S5). Moreover, soil temperature of the wettest
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quarter correlated with both bacterial and fungal microbiome

ordination (R = 51.14%, p-value = 0.01; R = 40.37%, p-value =

0.01), while precipitation only with bacterial microbiome ordination

(R = 40.23%, p-value = 0.01) (Supplementary Table S5). Correlation
B

A

FIGURE 3

Principal coordinate analysis (PCoA) of the microbial community based on Bray-Curtis distances for 16S and ITS markers at global scale. Correlation
with soil, leaf petiole, potato peel nutrients to microbiome ordination are shown for each marker (A). Constrained ordination for 16S and ITS
community composition fitting treatment, soil, leaf petiole, potato peel and environmental features. Location effect was removed. Only significant
terms (p-value < 0.05) are reported (B).
TABLE 1 PERMANOVA analysis on microbiome ordination for time,
treatment and location factors.

Marker Term Variance
explained

p-value

16S Location 49.45% 0.0001

Time 2.48% 0.0001

Location : Treatment 3.71% 0.0001

Location : Time 20.38% 0.0001

Location : Treatment:Time 3.47% 0.0002

ITS Location 45.15% 0.0001

Time 1.60% 0.0001

Location : Treatment 4.61% 0.0001

Location : Time 14.11% 0.0001

Location : Treatment:Time 4.61% 0.0001
fro
Significant terms (p-value < 0.05) and their variance explained by marker.
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of all soil, leaf petiole nutrients, potato quality and environmental

variables can be found in Supplementary Table S6.

Next, constrained microbiome ordination by location using the

above-mentioned variables was performed to remove the location

effect. Application of the B. amyloliquefaciens explained the

significant changes in the fungal composition, (Table 2,

Figure 3B), but not in bacterial composition. In fact, potential

plant associated pathogens, such as Fusarium species (e.g. Fusarium

sp., F. graminearum and F. equiseti) tended to have positive

association with control samples. (Figure 3B). Regarding

nutrients, phosphorus content in potato peel significantly

modulated bacterial composition variation. Conversely, soil

manganese was the only meaningful physico-chemical factor to

explain fungal composition variation (Table 2).
3.4 Yield directly associated with specific
microbial taxa

Yield was highly and positively associated with several bacterial

taxa, such as Pseudoarthrobacter (FlashWeave association weight:

0.34) and, Ammoniphilus (+) (FlashWeave association weight:

0.34), but negatively with Ideonella, Candidatus Berkiella, Dongia

(-) (FlashWeave association weight: -0.38 -0.30, -0.36, respectively)

(Figures 4A–C). Moreover, yield associated with fungal taxa such as

Psathyrella and Naganishia (FlashWeave association weight: 0.36,

-0.35, respectively) (Figure 4D). B. amyloliquefaciens based product

had no significant associations at taxa level, but slighter effects

might be blurred if those effects can be explained by other nodes in

the network (Figure 4A). On the other hand, NDVI of the month of

April (m04) was negatively associated with yield (FlashWeave

association weight: -0.35), as shown by its central position in the

network (Figure 4C).

In the bacterial network, the phyla Proteobacteria and

Actinobacteriota were responsible for most associations; the total

degree (connectance of each taxa) for these groups was 467 and 293

respectively, compared to 148 for Firmicutes, the third most-

connected phylum (Figure 4A). Additionally, the degree and

betweenness centrality was strongly correlated for both 16S and ITS

networks (p < 0.001, and respectively). However, the total degree for

both Proteobacteria and Actinobacteria was lower than expected. On

the other hand, Acidobacteriota, Firmicutes and Planctomycetota had

a total degree at least 10 greater than the expected total degree.

Finally, for the fungal global network, Ascomycota played a

larger role in the fungi community structure, followed by
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Basidiomycota (green nodes) (Figures 4B, C, green nodes).

Moreover, soil temperature, precipitation and sand percentage

occupied central positions, but NDVI was relatively more

connected in the ITS network (Figures 4B, C). Ascomycota had a

higher total degree than expected, while Basidiomycota had a lower

total degree than expected. Here, the classes Sordariomycetes,

Tremellomycetes and Eurotiomycetes had a higher total degree

relative to the expected degree (Figure 4B).
3.5 B. amyloliquefaciens based product
impacts preserved and accessory
microbiome fraction

In order to identify core microbiome members, only taxa found

in all locations with a detection threshold of 0.01 and a prevalence of

25% were considered for the analysis. The preserved microbial

fraction tended to be 25% higher, when comparing the preserved

and accessory microbiome fraction of bacterial and fungal

communities in T0 and in untreated T1, vs samples treated with B.

amyloliquefaciens in T1. A more conserved fraction of bacterial

genera was detected compared to fungal genera (Figure 5A).

Candidatus, Nitrosocosmicus and Sphingomonas core members

were higher in samples treated with the B. amyloliquefaciens based

product, in comparison to the control at T1 (Figure 5A). No major

differences were detected in the bacterial core microbiome between

control and treated samples. Regarding fungal microbiome,

Mortierella was the only fungal genus with a global prevalence

higher than 80% (Figure 5A). Notably, Fusarium and Trichoderma

were present in the control core microbiome at higher prevalence

(Figure 5A). In order to determine core microbiome size, genera

found in all locations were considered. Core size number of taxa

decreased in all samples at T1 when compared to their T0, for both

communities (Figure 5B). Moreover, the shared number of genera

between control and treated samples was lower in T1 compared to T0

(Figure 5B). None of the bacterial taxa were differentially abundant

(Wald test: pval > 0.05) due to application of the B. amyloliquefaciens

based product. However, application of B. amyloliquefaciens based

product impacted the abundance of several fungal taxa. For instance,

Mortierella increased in relative abundance after treatment with the

B. amyloliquefaciens based product, while Stemphylium and F.

proliferatum increased after treatment with B. amyloliquefaciens

(Figure 5C; Supplementary Figure S9).
4 Discussion

In this work, the effects of B. amyloliquefaciens based product

on soil microbiome were further explored across 21 locations from

the United States integrating yield, soil, leaf petiole nutrients, potato

peel quality and environmental data.

Yield and leaf petiole boron showed a significant increase after

treatment with B. amyloliquefaciens based product. Our results on

yield are in agreement with the previous study applying B.

amyloliquefaciens QST713 in the United States (Imam et al.,

2021). Imam et al. (2021) observed a significant yield increase
TABLE 2 RDA analysis significant model terms (p-value< 0.05) and their
explained variance.

Marker Term Variance
explained

p-value

16S P pct 2.07% 0.046

ITS
Treatment 2.05% 0.01

Mn ppm 2.21% 0.007
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after inoculation of B. amyloliquefaciens QST713 in two

geographical locations, now expanded to more USA locations. In

addition, previous studies already assessed the importance of boron

for plant growth (Tombuloglu et al., 2017; Pereira et al., 2021).

Boron is involved in cell elongation, nucleic acid synthesis,

hormone responses and membrane function (Pereira et al., 2021)

and its plant absorption capacity increases with higher soil clay

content (Padbhushan and Kumar, 2017). Our results showed a

significant positive association with soil clay content. This is well

known to be an important factor for potato productivity, since its

fine texture prevents nutrient leaching and enhances water

availability (Zebarth et al., 2021). Therefore, the enhancement of

yield and boron after product inoculation in these soil conditions

highlights the indirect role that B. amyloliquefaciens may have in

nutrient mobilization and yield improvement (Rana et al., 2012).
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Moreover, potato peel manganese, phosphorus and zinc content

significantly increased after B. amyloliquefaciens inoculation. Our

results are in line with previous findings, where increased

concentrations of the above nutrients improved after

rhizobacteria inoculation (Ipek et al., 2014). The increased

concentration of peel phosphorus after inoculation may be due to

the bacterial solubilization of P, increasing its availability in the soil

for the plant (Rouphael and Colla, 2020).

Focusing on different geographic regions, yield, bacterial and

fungal richness and evenness significantly changed across locations

independently of time. These results confirm that geographical

location is one of the main drivers of potato yields and soil

microbiome, due to edaphic and climate variation of the different

regions (Rasche et al., 2006; Weinert et al., 2010). In addition,

bacterial and fungal communities were mainly explained by
B

C

D

E

A

FIGURE 4

Global network analysis at genus taxa level after MINUET™ application, introducing metadata variables (yield, climate and petiole, peel
physicochemical properties). Metadata variables are annotated in blue rhomboid nodes, while taxa is annotated in circular nodes colored by the
Phylum they belong to. Connections among nodes are represented by positive or negative edges, ranging from green to pink, respectively. Global
network for bacterial community (A). Global network for fungal community (B). Direct neighbors of relevant metadata variables, such as yield for
bacterial (C) and fungal network (D). Difference between observed and expected degree for the six fungal classes with the largest positive or
negative difference in degree in the ITS network. Classes with a higher degree than expected are shown above, and those with a lower degree than
expected are below (E).
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location, followed by its interaction with treatment. The impact of

geographical location in the bacterial communities was slightly

higher than for the fungal communities. This was also evidenced

when correlating geographical distances with beta diversity distance

matrix (Supplementary Figure S8). Moreover, our results showed

that treatment with B. amyloliquefaciens based product biological

fungicide impacted soil microbiome communities depending on the

location, especially for the fungal community (see Table 1). This

indicates that the treatment may impact soil microbiome differently

due to the climatic and edaphic conditions, which might potentially

further explain the different nutrient mobilization effect in different

geographical locations. Previous studies already assessed

biogeographical patterns as the main drivers of soil microbiome

(Hanson et al., 2012; Bahram et al., 2013; Tedersoo et al., 2014;

Plassart et al., 2019).

The biological product had no significant impact on either

bacterial or fungal alpha-diversity. Similarly, Imam et al. (2021)

detected no changes in either bacterial or fungal alpha diversity in

any location, even if they observed shifts in soil microbial structure

(Imam et al., 2021). However, the application of a plant growth

promoting bacteria did not affect the soil bacterial community

structure in maize (Kari et al., 2021). These observations were
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explained by possible resilience of the ecosystem, driven by the

interactions between plant and soil microbes. Nevertheless, yield

had a significant positive associations with both bacterial and fungal

co-occurrence transitivity, while negative associations with

modularity. This indicates that communities that are more

interconnected (increased transitivity) may lead to higher yields.

On the other hand, a highly modular microbiome (increased

modularity), where taxa form specific niches, may lead to lower

yields. Therefore, both bacterial and fungal local network properties

may be good drivers of yields due to their strong correlation profile,

as similarly shown in previous studies (Imam et al., 2021). In

conclusion, preserving microbial community structure where

communities are more interconnected and cooperative, may be

an important target to achieve higher crop performance.

Notably, yield was positively correlated with soil calcium. These

results are in agreement with previous studies that assessed the

important role of calcium for potato productivity (Gondwe et al.,

2019; Koch et al., 2020). Calcium is a fundamental micronutrient

that enhances plant growth and is a signaling molecule mediating

plant response to environmental stresses and hormones (Thor,

2019). However, the negative correlation with the NDVI during

the month of April indicates that lower NDVI after planting season
B

C

A

FIGURE 5

Heatmaps showing the genus prevalence proportion across different detection thresholds for 16S and ITS markers (A) in combined treated and
control samples at T0 and control and treated samples in T1 (A). Constrained shared and exclusive members of bacterial and fungal microbiomes at
Genus level, for 16S and ITS, respectively (B). Barplot showing potential beneficial differential abundant taxa (C) and potential pathogenic taxa (C) in
treated samples at T1 when compared to the control reporting their log fold change.
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may not be predictive of yields. In fact, higher yields at the

harvesting season were associated with lower NDVI in the month

of April.

Moreover, treatment with B. amyloliquefaciens based product

had a significant effect on fungal community composition at T1 but

not on bacterial community. These results are in agreement with

previous studies, where the inoculation of B. amyloliquefaciens

BNM122 in soybean did not significantly change the bacterial

community of the rhizosphere (Correa et al., 2009). Similarly, in

potato, the inoculation of B. subtilis did not significantly affect the

bacterial or fungal community, while improving potato yield (Song

et al., 2021). Conversely, the inoculation of Stenotrophomonas

rhizophila indirectly promoted plant growth by shaping the soil

fungal community in tomato and sweet peppers (Schmidt et al.,

2012). In addition, Fusarium species such as Fusarium sp. and

F. equiseti tended to be associated with control samples. Therefore,

potential plant pathogens may have reduced presence when

B. amyloliquefaciens is applied.

The efficacy of B. subtilis against Fusarium was already observed

in potato cultivars (Gachango et al., 2012; Stefańczyk et al., 2016;

Tiwari et al., 2020). In particular, the inoculation of B. subtillis in

potato crops effectively reduced Fusarium spp. abundance,

including F. graminareum (Khedher et al., 2021). Similarly, a

previous study in apple showed that B. amyloliquefaciens QSB-6

inhibited several Fusarium species, while significantly improving

seedling growth (Duan et al., 2021). Nevertheless, further studies for

different potato genotypes are needed to assess the pathogenicity of

Fusar ium spp. and poss ib le biocontrol act ion of B.

amyloliquefaciens against it. Conversely, B. amyloliquefaciens

based product promoted the potential pathogen F. proliferatum

(Gachango et al., 2012). Therefore, treatment with the B.

amyloliquefaciens based product may have a greater impact on

specific Fusarium taxa. Notably, soil sand content significantly

explained fungal community composition variation.

At taxa level, the B. amyloliquefaciens based biological fungicide

had no direct association with bacteria and fungi network when taxa

were included in the global network integrating yield and petiole

nutrients. However, weaker or indirect treatment effects on

community structure may not be detected if those effects can be

explained by other nodes in the network. Nevertheless, yield had

strong associations with several bacterial taxa, such as positive

associations with Pseudoarthrobacter (FlashWeave association

weight: 0.34) and Ammoniphilus (+) (FlashWeave association

weight: 0.34), and negative with Ideonella, Candidatus Berkiella,

Dongia (-) (FlashWeave association weight: -0.38 -0.30, -0.36,

respectively). A recent study assessed the effects of the inoculation

of chlorophenolicus in Geum aleppicum, which showed a significant

increase in root development and plant growth (Ham et al., 2022).

Therefore, Pseudarthrobacter may promote potato yield, through

the stimulation of root development. However, further studies

should be carried out on rhizosphere targeting potato crop and

Pseudarthrobacter. In addition, several uncultured taxa are involved

in nitrogen fixation, which could promote N availability to the plant

(Mus et al., 2016). Regarding relevant taxa, Proteobacteria and

Actinobacteriota were responsible for most associations. Notably,
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these taxa have a fundamental role in Nitrogen cycling (Kielak et al.,

2016; Mosley et al., 2022). and may promote nitrogen availability. In

addition, Firmicutes and Planctomycetota had a total degree of

prevalence in the network at least 10 units higher than the expected

total degree. This indicates that Firmicutes and Planctomycetota

occupy more central positions in the network, highlighting their

importance on community structure. Bacillus a is well-known

beneficial taxon for soil health (Saxena et al., 2020). Hence,

favoring B. amyloliquefaciens presence through inoculation may

lead to better connected networks due to Firmicutes high degree

and central role. For the ITS network, Ascomycota had a higher

total degree than expected compared to Basidiomycota, suggesting

this phylum played a larger role in the community structure. In

particular, the class Sordariomycetes includes many potential

saprotrophic taxa fundamental for crop litter decomposition

(Wang et al., 2021). Moreover, species belonging to the

Sordariomycetes may be able to grow in fecal material and they

can be an indicator of differences in fertilization application

between locations (Guo et al., 2022).

Lastly, B. amyloliquefaciens biological fungicide slightly

modulated the soil core microbiome from T0 to T1. In particular,

a higher conserved fraction of Sphingomonas sp was observed. A

recent study on maize showed that Sphingomonas sp. Hbc-6

increased microbiome rhizosphere diversity and could help plant

growth promotion by recruiting beneficial bacteria in inoculated

soils (Wang et al., 2022). Conversely, genus Fusarium in treated

condition showed a lower detection threshold in T1, when

compared to control at T1. In addition, no changes in the

detection threshold were seen for the genus Mortierella between

conditions. Mortierella is a widely spread genus which is known to

be beneficial in soils (Ozimek and Hanaka, 2020). Therefore,

treatment with B. amyloliquefaciens may modulate the presence

of potential pathogens such as Fusarium, while indirectly

promoting beneficial taxa through indirect effect (Cao et al., 2011;

Khedher et al., 2021). Moreover, species like Stemphylium and F.

proliferatum were differentially abundant after treatment with B.

amyloliquefaciens. Therefore, these species may be more resistant to

the product and a better competitor than other taxa. Hence, these

taxa may increase after treatment application while other taxa

decrease. However, further analyses should be performed to

decipher the effects that treatment with B. amyloliquefaciens can

have on different Fusarium species.

Finally, our results showed that soil inoculation with a

sustainable Bacillus-based product correlated with higher yields.

In addition, nutrient solubilization and soil health were promoted,

without major disruption of the soil microbiome. Indeed, these

findings contribute to disentangle sustainable long term solutions in

view of the future global climate change, increasing global

food demand.
5 Conclusions

Our results showed that treatment with B. amyloliquefaciens

based product correlated with enhanced yield. In addition, the
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treatment was associated with leaf petiole boron and improved

nutrient uptake in potato peel. Therefore, B. amyloliquefaciens

based product may indirectly promote nutrient solubilization

with minor impacts on the soil microbiome diversity 30 days

after inoculation. Moreover, yield was strongly correlated to

specific local network properties, which are associated with

cohesive and cooperative microbial community. This highlights

the importance of the native soil microbiome with a complex and

interconnected structure, indirectly promoting healthier soils. In

addition, treatment with B. amyloliquefaciens had an impact on

fungal community composition, reducing Fusarium presence

without major impacts on the fungal community structure.

Moreover, the B. amyloliquefaciens based product modulated the

soil core microbiome after 30 days by modulating the presence of

Fusarium, while indirectly promoting beneficial taxa like

Sphingomonas and Mortierella. However, further studies should

focus on the long term effects of B. amyloliquefaciens based

product on soil bacterial and fungal communities. Lastly, our

results showed that the use of a sustainable biostimulant product

correlated with higher yield and indirectly promoted soil

health. These evidences are crucial to further enhance agriculture

sustainability, increasing food production while reducing’s

environmental footprint.
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Soil salinization poses a critical problem, adversely affecting plant development

and sustainable agriculture. Plants can produce soil legacy effects through

interactions with the soil environments. Salt tolerance of plants in saline soils is

not only determined by their own stress tolerance but is also closely related to

soil legacy effects. Creating positive soil legacy effects for crops, thereby

alleviating crop salt stress, presents a new perspective for improving soil

conditions and increasing productivity in saline farmlands. Firstly, the formation

and role of soil legacy effects in natural ecosystems are summarized. Then, the

processes by which plants and soil microbial assistance respond to salt stress are

outlined, as well as the potential soil legacy effects they may produce. Using this

as a foundation, proposed the application of salt tolerance mechanisms related

to soil legacy effects in natural ecosystems to saline farmlands production. One

aspect involves leveraging the soil legacy effects created by plants to cope with

salt stress, including the direct use of halophytes and salt-tolerant crops and the

design of cropping patterns with the specific crop functional groups. Another

aspect focuses on the utilization of soil legacy effects created synergistically by

soil microorganisms. This includes the inoculation of specific strains, functional

microbiota, entire soil which legacy with beneficial microorganisms and tolerant

substances, as well as the application of novel technologies such as direct use of

rhizosphere secretions or microbial transmission mechanisms. These

approaches capitalize on the characteristics of beneficial microorganisms to

help crops against salinity. Consequently, we concluded that by the screening

suitable salt-tolerant crops, the development rational cropping patterns, and the

inoculation of safe functional soils, positive soil legacy effects could be created to

enhance crop salt tolerance. It could also improve the practical significance of

soil legacy effects in the application of saline farmlands.
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1 Introduction

In recent years, land degradation caused by climate change has

posed a huge challenge to agricultural production. In the absence of

major technological breakthroughs in agriculture, existing arable

land resources are hardly sufficient to support global food security

(German et al., 2017; Hartmann and Six, 2023). Saline farmland is

an important reserve resource of arable land with great potential for

ensuring food security and sustainable agricultural development

(Negacz et al., 2022). Therefore, finding solutions to increase the

productivity of saline farmland and improve crop tolerance to saline

stress has become an important research topic currently (Munns

and Tester, 2008).

Soil salinization is a global environmental problem, with more

than 833 million hectares of soil and more than 10% of farmland

affected by salinization (FAO, 2021), causing at least 25% of crops to

suffer from varying degrees of yield loss due to persistent salt stress,

with a serious impact on food security (Farooq et al., 2017; Kumar

et al., 2022). Soil salinization leads to reduced crop yield because the

significant negative impacts on seed germination by disrupting the

membrane permeability of the seed embryo and increasing the

osmotic stress on seeds (Deng et al., 2014). For salt-sensitive crops,

seed germination rate, germination time, and the length of the

plumule are all affected by salt stress (Abbas et al., 2012). Persistent

salt stress during the crop growth phase leads to crop water loss and

ion toxicity due to increased cellular osmotic pressure and

disruption of cell membranes (Läuchli and Grattan, 2007). Salt

stress also reduces nutrient uptake by inhibiting crop root growth

(Burssens et al., 2000; West et al., 2004), inhibits photosynthesis by

decreasing the crop’s leaf area (Hu et al., 2022), and ultimately

affects crop yield and quality.

Moreover, the survival of microorganisms is directly associated

with plant and soil environments (Pulleman et al., 2012). Salt stress

can reduce the abundance and activity of soil microbial

communities (Rietz and Haynes, 2003), affecting the composition

of functional soil microbes (Zhang et al., 2019), and disrupting the

stability of microbial networks (Li et al., 2023a). This disruption

affects nutrient cycling (Bai et al., 2012) and material utilization

(Elmajdoub and Marschner, 2013) ultimately affecting the

ecological functions of soil microbial communities (Zhang et al.,

2023). Weakened ecological functions of microbial community, in

turn, affect plant-microbe interactions (Etesami and Beattie, 2017),

as manifested by reduced microbial colonization (Li et al., 2023a)

and impaired plant growth (Jansson et al., 2023).

Both plants and soil microorganisms have developed specific

abilities and mutualistic associations to cope with various stresses

(Zhao et al., 2020; Liu et al., 2022). Halophytes and salt-tolerant

plants, as the dominant vegetation in saline environments, are better

adapted to saline stresses and have formed unique strategies

improving their adaptability through such pathways as salt gland

excretion (Yuan F. et al., 2016), ionic and osmotic regulation

(Zhu, 2016), antioxidant defenses (Apse and Blumwald, 2002) and

root structural modifications (Yu et al., 2022). Soil microorganisms

also have various salt-tolerance strategies, such as salt accumulation

and synthesis of organic osmotic material to adapt to high-salt
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environments (Gunde-Cimerman et al., 2018). Meanwhile,

beneficial microorganisms can influence performance of their host

plants under harsh conditions (Wang and Song, 2022). For example,

arbuscular mycorrhizal fungi can help host plants to cope with abiotic

stresses like drought, salt, etc., by improving plant water utilization,

regulating photosynthesis and maintaining osmotic balance (Borde

et al., 2017).

In addition, soil legacy effects are microbiological and

functional substance traits retained in the soil by the plants,

which influence the growth of succeeding plants (Van der Putten

et al., 2013). The formation of soil legacy effects is the process of

plant-microbe interactions in which plants respond to stressful

stimuli and mobilize the required metabolites and functional

microorganisms, thus promoting the growth of their own and

succeeding plants as well as increasing their tolerance (Bakker

et al., 2018). So, the application of soil legacy effects may also

help to refine the way we cultivate and manage crops for agricultural

production (Mariotte et al., 2018; Carrión et al., 2019; Cordovez

et al., 2019). Therefore, based on the theoretical foundation of soil

legacy effects in natural ecosystems, it is important to further

explore the mechanism of crop-soil-microbe interactions in saline

farmlands, which has profound implication for mitigating crop salt

stress, increasing crop productivity and improving the environment

of saline farmlands (Vukicevich et al., 2016).
2 Formation and role of soil legacy
effects in natural ecosystems

In natural ecosystems, plants and soil organisms have various

effects to soil legacy (Wardle et al., 2004; Faucon et al., 2017). Plant

species with different root structures, growth habits and ways of

interacting with soil organisms have important impacts on soil

legacy effects (Oliver et al., 2021), while plant species composition

and diversity also significantly modify such effects at the

community level (Kowalchuk et al., 2002; Lange et al., 2015). Soil

organisms, playing important roles in soil ecosystems, influence soil

legacy effects by affecting soil organic matter decomposition,

nutrient cycling and soil structure (Bardgett and Wardle, 2010).

Therefore, natural ecosystems have become a ‘database’ for

exploring the mechanisms of soil legacy effects in the context of a

highly diversified plants, microorganisms and soil environmental

factors. An increasing number of studies have been carried out on

the growth characteristics, resource utilization and survival

strategies of plants and microorganisms that contribute to a

better understanding about the soil legacy effects (Bezemer et al.,

2006; Cortois et al., 2016; Bezemer et al., 2018; Heinen et al., 2020).

The diversity of plant species, plant functional traits and soil

microorganisms in natural ecosystems contributes to extensive

research on species interactions and stress adaptations. The

intricate interactions between plants and soil microorganisms

play a crucial role in promoting the stabilization of soil

ecosystems (Grayston et al., 1998; Berg and Smalla, 2009;

Berendsen et al., 2012). Above- and below-ground interactions of

plants have long-term legacy effects on biotic stresses in natural
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ecosystems and can improve plant performance and resistance

by manipulating soil microbial communities (Wurst and Ohgushi,

2015; Pineda et al., 2017). For abiotic stresses, soil microorganisms

are able to implement a variety of mechanisms to fight against them

and keep soil fertility as well as plant development in good

condition (Abdul Rahman et al., 2021). For example, drought

stress-induced dominance of fungal communities can influence

succeeding plant drought adaptation by maintaining higher rates

of litter decomposition and soil respiration (Mariotte et al., 2015).

Inoculation of drought-conditioned phyllosphere and soil microbial

communities can make plants capable of coping with repeated

drought stress (Li et al., 2022).

Plant functional group is a common concept in the study of soil

legacy effects, which refers to a group of plants that respond similarly

to ecological processes and environmental changes, such as the

grasses, forbs and legumes that are frequently mentioned in the

literature (Kulmatiski et al., 2008; Cortois et al., 2016). Different plant

functional groups can create positive or negative soil legacy effects by

accumulating soil pathogens, recruiting beneficial microorganisms

and regulating interactions with insects, etc (Petermann et al., 2008;

Latz et al., 2012; Heinen et al., 2019). Such soil legacy effects, mediated

by aboveground plant functional groups and soil microorganisms,

play a role for succeeding plant growth in terms of soil physical

properties, soil nutrient availability, soil microbial community

structure, stress tolerance and competitive coexistence relationships

(Byun et al., 2013; Strecker et al., 2015; Fischer et al., 2018; Mackie

et al., 2018; Adomako and Yu, 2023).

Different plant functional groups play distinct roles in shaping

soil legacy effects. For instance, grasses may improve soil physical

structure and water retention through dense root systems (Hanamant

et al., 2022), while legumes retain soil nutrients through nitrogen

fixation (Spehn et al., 2002). The soil legacy effects resulting from

these changes in the soil environment create more favorable

conditions for succeeding plant growth. Simultaneously, the

interaction between various plant functional groups and soil

microorganisms yields diverse soil legacy effects. Grasses and forbs

secrete different carbon compounds into the soil, recruiting different

soil microorganisms (Philippot et al., 2013). For example, the

presence of the grasses Lolium perenne not only increased the

density of active bacteria in the soil but also elevated the expression

of biocontrol genes associated with these bacteria, thereby

contributing to the productivity of succeeding plant communities

(Latz et al., 2015). Moreover, grasses positively influence other plant

functional groups by altering soil microbial communities and soil

nutrients (Cortois et al., 2016). Forbs, however, with more

decomposers and higher concentrations of chemicals in their litter,

may negatively impact succeeding plants (Bonanomi et al., 2006).

To foster positive soil legacy effects, it is essential to manage

specific plant functional groups, regulate appropriate levels of

beneficial microorganisms, decomposers and pathogenic

microorganisms, and develop diverse plant-microbe community

interactions (Carrión et al., 2019; De la Fuente Cantó et al., 2020;

Xiong et al., 2020; Song et al., 2021). However, there is a current lack

of studies exploring the application of the principle of soil legacy

effects in understanding plant salt tolerance. Most studies have

focused on the mechanism of plant’s intrinsic salt tolerance and the
Frontiers in Plant Science 0394
utilization of specific microorganisms to enhance salt tolerance in

laboratory and simulation experiments (Li et al., 2020a; Li et al.,

2020b; Li et al., 2021a; Schmitz et al., 2022). Therefore, it is

important to address how the rules of soil legacy effects can be

developed and applied in saline farmlands.
3 Processes of plant response to
salt stress

Plants have various strategies to cope with salt stress, involving

refinement in their cellular physiology, phenotypic structures,

osmoregulation, antioxidant production, and the regulation of

signaling pathways (Van Zelm et al., 2020; Zhao et al., 2020). For

instance, plants eliminate excess salt through a salt excretion

mechanism to minimize salt-damage (Dassanayake and

Larkin, 2017). Plants can also modify their root structure, such as

developing deeper root systems to increase water uptake and mitigate

the impact of salinity (Galvan-Ampudia and Testerink, 2011). In

addition, plants respond to salt stress-induced damage by producing

antioxidants, osmotic substances and protective enzymes (Hasegawa

et al., 2000). ABA-dependent protein kinases are activated in response

to salt stress, affecting cellulose distribution, controlling root tip cells,

thus promoting salt avoidance in plant (Yu et al., 2022). Plant roots also

secrete peptides that are transferred to the leaves to induce ABA

accumulation, thereby driving stomatal closure to prevent leaf

(Takahashi et al., 2018; Yu et al., 2020). Therefore, the combined

application of these strategies enables plants to better adapt and survive

in high-salt environments.

Besides plant innate responses, the complex microbial

communities in rhizosphere soil play a critical role in host

performance and tolerance to stresses (Durán et al., 2018; Carrión

et al., 2019). These microbial communities help plants adapt to harsh

conditions by forming mutualistic relationships, participating in

nutrient uptake, producing beneficial compounds, and inducing

immune responses that support plants against stress (Hou et al., 2021).

In terms of salinity tolerance, microorganisms establish mutually

beneficial symbiotic relationships with plants through various

mechanisms, assisting them in adapting to high salt environments.

Rhizosphere microorganisms can secrete specific compounds, such as

bacterial exopolysaccharides (EPS), which improve plant ion balance,

promote soil aggregation, and thusmaintain plant growth in high-salt

(Morcillo and Manzanera, 2021). Arbuscular mycorrhizal fungi

(AMF) enhance host plant salt tolerance by manipulating the

osmotic balance through mycelium, improving access to water and

nutrients (Hammer et al., 2011; Ruiz-Lozano et al., 2012). Moreover,

rhizosphere microorganisms also play a role in physiological

regulation and defense processes (Mishra et al., 2021). Plant growth

promoting rhizobacteria (PGPR) can stimulate root development and

enhance nutrient utilization under salt stress. For instance, the IAA-

overproducing strain Sinorhizobium meliloti has been found to

enhancive salt tolerance of alfalfa in saline soils by stimulating root

proliferation (Bianco and Defez, 2009). Under salt stress conditions,

the increase in the number and weight of root nodules in Acacia

gerrardii inoculated with Bacillus subtilis contributed to the

enhancement of nitrogen fixation by the roots, as well as uptake
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and systemic translocation of phosphorus by the plant (Hashem et al.,

2016a, Hashem et al., 2016b). AMF can activate an antioxidant

protection system, maintaining cell membrane stability by

decreasing permeability and malondialdehyde (MDA) content in

plants (Yang et al., 2014).

These complex processes converting salinity tolerance cannot be

separated from the dynamic interactions between plants and

microorganisms (Liu et al., 2022). In the context of climate change-

induced stress, introducing new microbial taxa had been shown to

improve plant survival in stressful environments, and plant tolerance

can be predicted by the climatic history of the microbial community

(Allsup et al., 2023). Building on this, plant-soil-microbe interactions

in salt-stressed environments may result in a history of stress

response for soil microbes and the soil environment, generating soil

legacy effects that aid succeeding plants in overcoming salt stress

(Figure 1; Li et al., 2021a; Jing et al., 2022).
4 Creating soil legacy effects to
improve crop salt tolerance

Farmlands vulnerable to saline stress often experience extreme

environmental conditions and undergo specific agricultural

management practices. These practices include high surface

evapotranspiration, low precipitation, elevated ambient
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temperatures, and the application of chemicals, along with heavy

irrigation during production (Arora et al., 2018; Enebe and

Babalola, 2018). In contrast to natural ecosystems, the production

function of farmland directly determines its monoculture structure,

resulting in low plant diversity and nutrient use efficiency,

imbalanced dynamics between above-ground crops and below-

ground soil food webs, and altered crop defense mechanisms

(Savary et al., 2019). Crops cultivated in farmlands tend to

prioritize growth over defense compared to their wild

counterparts of the same species. This preference, combined with

the monoculture structure, increases the likelihood of negative soil

legacy effects between previous and succeeding crops (Mariotte

et al., 2018). The multiple stresses of saline farmlands challenge the

growth of crops and soil microbes, and there is a need to rethink

how to create soil legacy environments that are conducive to crop

growth, while optimizing agricultural practices and fostering

sustainable methods to enhance soil health and crop (Li et al., 2014).
4.1 The use of plants to create soil
legacy effects

The productivity constraints of saline farmlands primarily

result from the highly stressful environment directly impacting

the growth of aboveground crops. Most staple crops in agricultural
FIGURE 1

Processes of plant response to salt stress in natural ecosystems and possible soil legacy effects by plants. This figure shows, from left to right, three
different plant functional groups, legume, grass, and forb, which respond simultaneously through above-ground and below-ground parts to salt
stress. For above-ground parts of the plant, by refining cellular physiological and plant phenotypic structure, regulating signaling pathway, hormone
and metabolite and thus responding to salt stress. For below-ground parts of the plant, by maintaining ionic balance, producing different root
secretions, recruiting beneficial microorganisms and thus responding to salt stress. The response of above- and below-ground parts to salt stress
simultaneously with increasing the plant’s own acquisition of soil water and nutrients, promoting plant root proliferation, and maintaining the
osmolality of the plant as well as the rhizosphere, thus creating the positive soil legacy effects through this favourable response processes.
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production, such as maize, wheat, and rice, show high sensitivity to

salinity stress. This sensitivity manifests itself in increased crop

water loss, plant and fruit wilting, reduced crop photosynthesis,

lowered carbon fixation, inhibited crop nutrient uptake, and slowed

growth (Atta et al., 2023). To overcome the production bottlenecks

in saline farmlands, it is necessary to harness biological resources

with inherent salt tolerance found in natural environments.

Additionally, establishing positive soil legacy effects through the

introduction of specific plant species and plant functional groups is

crucial (Figure 2).

4.1.1 The use of salt-tolerant biological resources
One feasible approach is to utilize the ability of halophytes and

salt-tolerant plants in the natural environment. Firstly, some

halophytes can absorb salt ions, and they are effective in reducing

surface soil salinity while fighting against the increase in ion levels in

tissue cells through leaf succulence (Song and Wang, 2015).

Halophytes also dissolve calcium in the soil through root

respiration, where calcium ions replace sodium ions in the cation-
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exchange complex, and ultimately improve soil physical properties in

the plant’s root zone (Qadir et al., 2005). Desalinated soils resulting

from these processes contribute favorably to the subsequent growth

of plants. Secondly, both halophytes and salt-tolerant plants boast

robust root systems with strong penetration and water-holding

capacity, thus enhancing soil structure (Silva et al., 2016). This

improvement increases soil permeability and water retention post-

planting, with the positive effects on soil structure persisting over an

extended period (Liang and Shi, 2021). Finally, certain salt-tolerant

plants, such as the forage crop sweet sorghum, can develop salt

tolerance through hormonal signaling and secondary metabolites

(Chen et al., 2022). Notably, stress-induced plant secondary

metabolites have demonstrated legacy effects on succeeding plant

growth by manipulating the composition of soil microbiome (Hu

et al., 2018). Consequently, the utilization of halophytes and salt-

tolerant plants presents opportunities to desalinate saline farmlands,

improve soil conditions, or directly leverage the soil legacy effects

created by the metabolites they produce to enhance crop resilience

to salinity.
FIGURE 2

Effects of salt stress on crops and how to create soil legacy effects as well as improve crop salt tolerance in saline farmlands. The harmful effects of
salt stress on crops include weakening crop photosynthesis, increasing osmotic stress, reducing crop nutrient uptake, adding ionic toxicity, and
declining rhizosphere microbial diversity. By using halophytes, salt-tolerant plants, and plants of different functional groups, and developing the
cropping patterns of rotating, intercropping, and mixed cropping with crops, the interactions between above- and below-ground parts of the plants
can achieve the regulation of soil nutrients in saline farmlands, the desalination of surface soils, the secretion of salt-tolerant metabolite, and thus
regulating the balance of soil microorganisms, as well as triggering the interactions between plants and insects. The improvement of salt tolerance in
crops can also be achieved by screening for salt-tolerant microorganisms, inoculation with beneficial microbiota or entire soil inoculation. At the
same time, new cultivation techniques could be used to combine the beneficial microorganisms directly with the plants and to transmit the
tolerance. Crops with improved tolerance continue to produce salt-tolerant root secretions and to recruit beneficial microorganisms, thus creating
an effective recycle of crop salt tolerance. All of these processes can create positive soil legacy effects through beneficial interactions between the
above-ground and below-ground parts of the crop and influence succeeding crop.
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4.1.2 Introducing plant functional groups into
crop rotation systems

The soil legacy effects observed in natural ecosystems, facilitated

by specific functional groups of plants, can significantly impact

succeeding plants (Bezemer et al., 2006). This insight has inspired

the development of effective cropping patterns for saline farmlands,

especially considering that traditional monoculture patterns have

contributed to soil resource depletion and decreased farmland

productivity (Guo and Zhou, 2022). Grasses, have a solid research

base in the field of ecology, known for carbon sequestration,

nutrient cycling and improved soil stability (Franzluebbers, 2012;

Hanamant et al., 2022). As the understanding of grassland

ecosystem functioning continues to improve, forbs, representing a

large proportion of species and functional richness, have also been

recognized for their stress tolerance, indication of overgrazing, and

maintenance of insect diversity (Siebert et al., 2021). Legumes, aside

from being high-quality food and forage resources, are consistently

recognized for sequestering nutrients and increasing diversity in

cropping systems (Stagnari et al., 2017).

The crop rotation system of grasses and crops increased soil

organic matter and earthworm numbers, resulting in improved soil

structure compared to conventional crop rotations (Van Eekeren

et al., 2008). This legacy effect of the grasses’ influence on soil

properties, then, increased the yield and seed nitrogen content of

succeeding crops (Christensen et al., 2009). Legumes are even more

beneficial to agricultural production by providing diverse services.

One aspect is that the nitrogen-fixing capacity of legumes can

continually increase the nitrogen yield of succeeding crops

(Fox et al., 2020). Moreover, the growth process of legumes releases

organic acids and other compounds, directly activate nutrients and

indirectly promote the activity of soil microorganisms, thus

increasing crop yields and soil fertility (Latati et al., 2016). Studies

have shown that the deposition of rhizosphere nitrogen in legumes

accounts for 70% of the total plant nitrogen (Fustec et al., 2010).

These deposited nitrogens have mechanisms for transfer to other

crops, affecting agricultural production potential. Although there are

fewer practices on the involvement of forbs in crop rotation, studies

have shown that forbs are rather less affected by changes in nutrient

conditions than grasses due to their ability to store nutrients in their

roots (Herz et al., 2017). Forbs are also important for maintaining the

diversity of arthropods in the environment and some forb

communities are more resistant to herbivores (Potts et al., 2010;

Van Coller et al., 2018). Therefore, introducing these plant functional

groups, such as grasses, forbs, and legumes, during crop rotation can

strategically change soil nutrient levels or indirectly regulate the biotic

and abiotic environment of saline farmlands.

Moreover, grasses and forbs exhibit different abiotic stress

tolerance mechanisms and growth strategies. Due to obvious

differences in growth, development and physiological structure

between grasses and forbs, applying knowledge of forbs to

improve salt tolerance in major cereal crops becomes challenging

(Tester and Bacic, 2005). Meanwhile, the ability of grasses to

accumulate salt ions in shoots and leaves may be weaker than

that of forbs due to fewer salt glands (Semenova et al., 2010). So,

although the planting of forbs like Suaeda salsa can effectively
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reduce soil salinity, it is difficult to apply the mechanism of salt ion

accumulation and succulence in shoots of forbs to crops of grasses.

However, Poaceae, particularly within the functional group

of grasses, has a unique history of salt tolerance, including

major halophytic taxa identified as sources of halophytes

(Flowers et al., 1986). Compared to the forbs, grasses usually

maintain ion levels in aboveground tissues by limiting sodium

uptake, having high potassium/sodium selectivity, and efficient

potassium utilization, essential for survival under saline conditions

(Flowers and Colmer, 2008). Many wild-type grasses are naturally

tolerate to salt stress (Landi et al., 2017). For example, the study found

that its close wild relatives Tripsacum dactyloides and Zea perennis

both showed strong salt tolerance compared to maize (Li et al.,

2023b). The leaf surface of wild rice, Porteresia coarctata, can excrete

salts, maintaining intercellular ion concentrations and lower sodium

to potassium ratios (Sengupta and Majumder, 2010). Grasses have

been reported to produce positive soil legacy effects by altering soil

microbial communities, influencing nutrient transfer, and even

triggering interactions between above-ground plants and insects

(Kos et al., 2015; Cortois et al., 2016; Schmid et al., 2021). Also, the

ionic changes that occur in grasses during salt tolerance are closely

related to their rhizosphere microorganisms (Hamdia et al., 2004;

Paul and Lade, 2014). Thus, by introducing plant functional groups

into the crop rotation system and combining their different ecological

functions and salt-tolerate characteristics, positive soil legacy effects

can be generated. This provides broader thinking for the improving

the soil environment in saline farmland and enhancing of crop

salt tolerance.

4.1.3 Introducing plant functional groups into
crop intercropping system

The combination of plant functional groups within the same

time and space can exert a significant influence on succeeding crops.

One notable example is the legume and grass forage matching

system, a typical forage mixing approach where the growth of

grasses synergistically enhances both the symbiotic nitrogen

fixation of legumes and the competitive nitrogen uptake of

grasses (De Deyn et al., 2012; Suter et al., 2015). Beyond

improving soil nutrient use efficiency, the extended growing

period of mixed legumes and grasses also helps suppress topsoil

salt accumulation, thereby enhancing soil quality (Li et al., 2021b).

While there are fewer studies on crop tillage systems and salt

tolerance, similar to forage mixes, crop intercropping can weaken the

negative impacts of saline farmland and may have legacy effects on

succeeding crops. Firstly, intercropping systems increase the

biodiversity of farmland ecosystems by direct introducing

companion plants, such as differential crops or salt-tolerant plants,

which provide services for saline farmland and the main crop (Yang

et al., 2021). The introduction of different plants diversifies the

rhizosphere environment, and the recruited microbial community

can promote nutrient cycling, salt transformation, and degradation in

the soil, thereby alleviating the damage of the saline environment to

the crops. For example, the introduction of legumes can improve

intercropping system resilience and resource use efficiency by

enhancing crop growth and tolerance to abiotic stresses through
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root distribution, vegetative cover, and nutrient activation (Chamkhi

et al., 2022). Furthermore, the intercropping of the halophyte Suaeda

salsa with maize significantly transferred more sodium ions to the

rhizosphere of Suaeda salsa, thereby reducing the salt content of the

maize rhizosphere (Wang S. et al., 2021). Regarding the rhizosphere

enrichment by intercropping systems, it was shown that legume-grass

crop intercropping (maize/faba bean) increased the abundance of

rhizobia and reduced pathogens in the soil. The soil legacy effects it

produced could be one of the reasons for the observed yield advantage

in intercropping systems (Wang et al., 2020). Particularly under salt

stress, the beneficial microorganisms recruited by the intercropping

system (sorghum/peanut) achieved increased crop tolerance by

altering the composition and content of metabolites (Shi et al.,

2023). Therefore, the potential positive soil legacy effects of salt-

tolerant forage mixtures and salt-tolerant crops of different functional

groups can help to develop efficient intercropping systems for

saline farmlands.
4.2 The use of soil microorganisms to
synergistically create soil legacy effects

The presence of soil microorganisms in natural ecosystems

depends on the soil environment, chemical signals provided by

plants and nutrient resources (Bai et al., 2022). In response to the

direct release of stress-responsive signals and compounds in plants,

the associated soil microorganisms undergo specific changes

(Hartman and Tringe, 2019). These changes are closely related to

plants, especially alterations in rhizosphere microorganisms, and are

critical to support the growth and recovery potential of plants under

stress (Park et al., 2023). Salt-tolerant microorganisms capable of

thriving and multiplying in high-salt environments, directly aiding

plants in tolerating salt stress through their salt-tolerance

mechanisms (Sharma et al., 2015; Wang R. et al., 2021). Plants in

traditional environments, when confronted with salt stress, also

respond by directly recruiting beneficial microorganisms through

root secretions (Kumar et al., 2023). Furthermore, the mechanism by

which soil microorganisms regulate plant salt tolerance also involves

osmotic regulators, nutrients and soluble salts they provide to plants.

These pathways can indirectly influence plant hormones and

metabolism, stimulate plant growth and help plants overcome salt

stress (Glick, 2012; Shrivastava and Kumar, 2015). These actions not

only alleviate the negative effects of salinity but also establish soil

legacy effects that confer tolerance to succeeding plants (see Figure 2;

Zhalnina et al., 2018; Otlewska et al., 2020). Considering this, the

question arises: How can we apply the direct and indirect effects of

soil microorganisms on plant salt tolerance to saline farmland? What

measures can be taken to sustain these positive effects in

the farmland?

4.2.1 Direct utilization of soil microorganisms
Soil microorganisms play a crucial role in defending against saline

stress, and saline soils serve as a significant source of salt-tolerant

microorganisms (Zhang et al., 2023). Current research has successfully

isolated several culturable salt-tolerant strains. For instance, 70% of the

culturable strains of the root endophyte from the coastal perennial
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grass Festuca rubra exhibit salt tolerance (Pereira et al., 2019). The

core microorganisms of the rhizosphere of Suaeda salsa have been

found to harbor genes encoding salt stress adaptation and nutrient

solubilization processes (Yuan Z. et al., 2016). Microbial inoculation is

a direct method of utilizing these specialized salt-tolerant microbial

resources, which can be applied to enhance plant salt stress adaptation

and promote growth. Studies have demonstrated that inoculation with

the salt-tolerant endophyte Sphingomonas prati significantly increases

the salt tolerance of Suaeda salsa by improving the antioxidant

enzyme system (Guo et al., 2021). Curvularia sp., isolated from

Suaeda salsa, can establish a beneficial symbiotic relationship with

poplar and promote its growth (Pan et al., 2018). Moreover, the

inoculation of salt-tolerant microorganisms has been gradually

extended to major crops, including soybean, maize, wheat, and

peanut. Its positive effect in mitigating salt stress has been

consistently verified in numerous indoor simulation experiments

(Ramadoss et al., 2013; Goswami et al., 2014; Zerrouk et al., 2016;

Khan et al., 2019; Shabaan et al., 2022).

In addition to the salt-tolerant microbial resources associated

with saline soils and halophytes, salt stress is alleviated by the

recruitment of beneficial microorganisms to the rhizosphere of

plants when they face with salt stress in normal environments

(Ilangumaran and Smith, 2017; Santoyo, 2021). For example, it has

been shown that 1-aminocyclopropane-1-carboxylate (ACC), a

stress-related amino acid in plants, can reshape the soil

microbiome, enhancing plant tolerance to salinity stress (Liu

et al . , 2019). In addition, rice influences rhizosphere

microorganisms by producing metabolites such as salicin and

arbutin, enabling rhizosphere microorganisms associated salt

stress tolerance (Lian et al., 2020). Moreover, beneficial

rhizosphere microorganisms in plants can not only enhance salt-

tolerant properties but also synergistically improve plant responses

to salt stress by altering physiological growth processes, including

seed germination, morphological structure, and biomass

accumulation and partitioning (Pan et al., 2020). Regarding the

inoculation of beneficial microbial strains to help crops tolerant

salinity, studies have demonstrated that inoculation with

Pseudomonas flavescens D5 strain effectively increased the

biomass and antioxidant enzyme activities of barley, while

reducing the adverse effects of salt stress on barley (Ignatova

et al., 2022). Inoculation of candidate strains of Azotobacter has

also been found to increase the potassium-sodium ratio, polyphenol

and chlorophyll content, and decrease proline concentration in

maize, thereby alleviating salt stress in maize by integrating multiple

mechanisms (Rojas-Tapias et al., 2012).

Indeed, successful microbial inoculation often requires a

combination of strains rather than a single strain to enhance the

sustainability of its impact on (Verbruggen et al., 2012; Finkel

et al., 2017). Notably, double inoculation with Rhizobium and

Pseudomonas has been observed to elicit positive adaptive responses

in alfalfa under salt stress (Younesi et al., 2013). Similarly, dual

inoculation of plant growth-promoting bacteria with Bradyrhizobium

strains has proven more effective in enhancing salt tolerance in

soybean, reducing salt-induced ethylene production, and improving

nutrient uptake (Win et al., 2023). Further studies have found that

inoculation with species-specific microbiomes or whole-soil
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inoculation can assist plants in coping with various biotic and abiotic

stresses (De Vries et al., 2020; Ma et al., 2020; Trivedi et al., 2020). The

introduction of microbiomes or the whole-soil achieves more complex

ecological functions by coordinating microbial interactions (Pineda

et al., 2019; Trivedi et al., 2021), and it avoids the potential issue of

single strains struggling to survive inoculation into foreign soil

(Mallon et al., 2018). However, it is crucial to acknowledge the

possibility that introducing exotic microbial communities may

reshape functions within the native microbial community

(Amor et al., 2020). Recent evidence suggests that the beneficial

effects of microbial inoculation on plant growth are best explained as

changes in native microorganisms rather than direct effects on plants

(Hu et al., 2021). This underscores the importance of understanding

the intricate interactions occurring within the microbial community

and their influence on plant health and resilience.

While practical examples of microorganism inoculation for saline

farmland improvement are limited, the concept of soil legacy effects

suggests that enhancing saline farmland and crops can be achieved

through microbial-mediated processes. By inoculating salt-tolerant

microbial strains and communities of beneficial microorganisms, and

even inoculating the entire soil including most microorganisms, it

becomes possible to modulate crop responses to salt stress and

enhance salt tolerance. Concurrently, synergistic changes with the

inoculated microorganisms involve stress response-related

metabolites and alterations in the crop rhizosphere environments.

These changes encompass crop rhizosphere secretions, microbial

metabolites, and native microbial communities. Their persistent

influence on succeeding crop growth in the form of soil legacy

effects contributes to ongoing salt stress mitigation in saline

farmland. Thus, the application of microbial interventions holds

promise for sustainable improvements in saline farmland and crop

resilience (Cuddington, 2011; Trivedi et al., 2020).

4.2.2 Indirect utilization of soil microorganisms
Alongside traditional plant- and microorganism-based methods

for restoring saline farmlands, advanced modern agricultural

techniques with their high efficiency and precision have also found

application agricultural production (Varshney et al., 2011; Ahanger

et al., 2017). Research has focused on integrating and applying the

active components of rhizosphere exudates to soil microbial systems,

revealing improvements in soil physicochemical environments and

microbial communities associated with rhizosphere exudates. These

improvements are speculated to have an impact on plant growth (Shi

et al., 2011). Similar findings were observed in maize system, where a

significant increase in bacterial density and altered metabolic

potential in the maize rhizosphere after application of maize

rhizosphere exudates (Baudoin et al., 2003). In terms of enhancing

crop tolerance, research has shown that introducing the ability of

releasing volatile organic compounds (VOCs) into maize varieties

that do not release specific VOCs can reduce the threat of pests

(Degenhardt et al., 2009). This suggests that the introduction of

tolerant metabolites is not limited to rhizosphere exudates, and the

application of below-ground volatiles, as well as other tolerant signals,

offers additional possibilities for improving salt tolerance in crops on

saline farmlands. The advances in agricultural technology have also

inspired the exploration of beneficial root traits in wild relatives of
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crops, the introduction of which may solve the problems faced by

saline farmlands (Preece and Peñuelas, 2020).

In the past decade, cultivation techniques have gradually

emerged, pointing to the unique microbiome existing in plant seeds

and how it spreads from generation to generation, aiding plants in

adapting to their environment and increasing tolerance (Gopal and

Gupta, 2016; Abdelfattah et al., 2023). In this context, delivering

endophytes to the next generation of crops and ensuring the

persistence of their tolerance has been achieved by combining

relevant beneficial microorganisms with plants (Wei and

Jousset, 2017). For example, a suspension of Paraburkholderia

phytofirmans PsJN was sprayed in plots at the flowering stage of

wheat in field experiment, and thus the maturation of its progeny

plants was accelerated by the introduction of this endophytic bacteria

into the flowers of the wheat parents (Mitter et al., 2017). The

advantage of this approach lies in the ability of seed endophytes to

avoid competition with native soil microorganisms, establishing

closer interactions with the plant early on. While there is currently

limited research related to this approach concerning salt tolerance in

progeny plants, seed endophytes have long been shown to provide

plants with tolerance against a wide range of stresses, participate in

plant adaptation mechanisms, and enhance plant competitiveness

(Samreen et al., 2021). Therefore, the use of these new bioculture

techniques and the genetic mechanisms of plant microbes offer

innovative avenues for improving saline farmland. These

approaches are closely related to plant-microbe interactions and are

centered around the concept of creating positive soil legacy effects.

Inspired by the mentioned approaches, microorganisms can be

used indirectly, such as through the recruitment of microorganisms

by plant rhizosphere exudates and intergenerational dissemination

of beneficial microorganisms, to create positive soil legacy effects in

saline farmland. However, it is acknowledged that microbial-related

methods of creating soil legacy effects are imperfect, and their

processes may introduce soil pathogens or other responsive

substances, necessitating further in-depth research to explore

safer methods of creating soil legacy effects (Jing et al., 2022).
5 Conclusion and future prospects

This paper provides a summary of the ways in which plants, in

collaboration with soil microorganisms in natural ecosystems, jointly

respond to salt stress. It suggests enhancing the salt tolerance of crops in

saline farmlands through the perspective of soil legacy effects. The focus

is on meeting the salt tolerance needs of crops by creating well-

considered soil legacy effects. The paper explores both the direct use

of plants and the synergistic use of soil microorganisms to establish

positive soil legacy effects, offering innovative insights to boost

production potential and improve the ecological environment of

saline farmland. The emphasis lies on creating positive soil legacy

effects through the selection of suitable salt-tolerant crops, the

development of planting patterns with a rational match of crop

functional groups, the inoculation of functional microorganisms, the

inoculation of safe and efficacious soils, and the application of advanced

agricultural technologies and bio-cultivation methods. This approach

underscores the practical utility of crop-soil microorganism interactions
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in agricultural production. In addition to plants and associated soil

microorganisms, the role of soil animals in constructing soil foodwebs is

acknowledged. These soil animals, through direct or indirect

interactions with microorganisms and plants, contribute to the cycling

of soil nutrient resources, influencing soil ecosystem function (Du et al.,

2018). Multi-trophic interactions between mycorrhizal fungi, fungus-

eating protozoa, and nematodes in the soil can enhance crop nutrient

uptake, crop yield, and tolerance (Jiang et al., 2020). This suggests that

future studies can more precisely and directly leverage soil legacy effects

to trigger positive tolerant responses by regulating specific species or soil

fauna in the soil food web of saline farmlands, or even by controlling

certain trophic levels.
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Regulatory mechanisms of plant
rhizobacteria on plants to the
adaptation of adverse
agroclimatic variables
Krishan K. Verma1†, Abhishek Joshi2†, Xiu-Peng Song1*,
Qiang Liang1, Lin Xu1, Hai-rong Huang1, Kai-Chao Wu1,
Chandra Shekhar Seth3, Jaya Arora2 and Yang-Rui Li 1*

1Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of
Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural
Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China, 2Department of
Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 3Department of Botany, University of
Delhi, Delhi, India
The mutualistic plant rhizobacteria which improve plant development and

productivity are known as plant growth-promoting rhizobacteria (PGPR). It is

more significant due to their ability to help the plants in different ways. The main

physiological responses, such as malondialdehyde, membrane stability index,

relative leaf water content, photosynthetic leaf gas exchange, chlorophyll

fluorescence efficiency of photosystem-II, and photosynthetic pigments are

observed in plants during unfavorable environmental conditions. Plant

rhizobacteria are one of the more crucial chemical messengers that mediate

plant development in response to stressed conditions. The interaction of plant

rhizobacteria with essential plant nutrition can enhance the agricultural

sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated

plants induce biochemical variations resulting in increased stress resistance

efficiency, defined as induced systemic resistance. Omic strategies revealed

plant rhizobacteria inoculation caused the upregulation of stress-responsive

genes—numerous recent approaches have been developed to protect plants

from unfavorable environmental threats. The plant microbes and compounds

they secrete constitute valuable biostimulants and play significant roles in

regulating plant stress mechanisms. The present review summarized the recent

developments in the functional characteristics and action mechanisms of plant

rhizobacteria in sustaining the development and production of plants under

unfavorable environmental conditions, with special attention on plant

rhizobacteria-mediated physiological and molecular responses associated with

stress-induced responses.
KEYWORDS

adverse agroclimatic conditions, physiological and omic aspects, plant responses, plant
hormones, agricultural sustainability, rhizobacteria
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Introduction

Plant rhizobacteria-mediated abiotic stress reduction occurs

directly through hormone induction or indirectly via signaling in

the host plant. The direct function in nitrogen fixation, phosphate

solubilization, auxin, cytokinin, gibberellin, and abscisic acid

production are all documented. It also makes it easier for

necessary mineral elements to be absorbed from the rhizospheric

soil along with the production of plant growth regulators. However,

the indirect roles include the production of metabolites,

siderophores, antibiotics, volatile HCN, etc. Some of the

compounds that the microbes may produce include deaminase

enzyme, microbiocidal enzyme, siderophores, plant hormones,

and PO4-solubilizing enzyme (Gujral et al., 2013; Ekinci et al.,

2014; Saleem et al., 2015; Kumari and Khanna, 2016; Moustaine

et al., 2017). Plants have unique microbiota, and the microbial

structure in the rhizosphere is influenced by the bacteria and plants’

production of signal molecules and the chemical composition of

root exudates (Zhang et al., 2017; Jalmi and Sinha, 2022).

Plant-growth regulators, phytohormones, and various secondary

metabolites can be produced by PRs to stimulate plant development

(Islam et al., 2014; Kaushal and Wani, 2016) (Figure 1).

The upregulated synthesis of metabolites, such as phytohormone,

exopolysaccharides, siderophores, antioxidant enzymes, and volatile

compounds, primarily minimizes plant resistance to environmental

challenges. The production of phytohormones by rhizobacteria-

inoculated plants, including cytokinins (CK), gibberellic acid (GA),
Frontiers in Plant Science 02106
indole-3-acetic acid (IAA), and abscisic acid (ABA) is employed

during plant stressed conditions. 1-aminocyclopropane-1-

carboxylate (ACC) deaminase plays a significant role in conferring

stress resistance capacity to plants by downregulating the level of

stress-induced ethylene level in plant roots system (Etesami and

Maheshwari, 2018; Shahid et al., 2023). Plant-rhizobacteria

downregulated the effects of abiotic stresses by modifying the

expression of genes associated with the biosynthesis of hormones,

i.e., ACO and ACS genes (ethylene biosynthesis),MYC2 (Jasmonate),

PR1 (SA), genes encoding antioxidant enzymes, transcription factor

NAC1, etc. (Tiwari et al., 2017) (Tables 1, 2). Extensive field trials are

required to investigate the interaction between the functional

activities of signaling networks and their association. The

interaction between PRs and plants based on various factors, such

as root composition, strains of bacteria, and exudation patterns from

their roots (Kumar et al., 2019). Numerous secondary metabolites

and root exudates depend as chemo-attractants in the rhizosphere,

attracting beneficial soil bacteria and inhibiting phytopathogens,

thereby stimulating a delicate network of signaling between

microbes and plants (Ullah et al., 2021; Joshi et al., 2022; Mellidou

and Karamanoli, 2022; Joshi et al., 2023). The physiological and

molecular responses activated in plants in response to stress

resistance are regulated by various key genes with metabolic and

regulatory roles. Research demonstrations focusing on plant gene

expression following plant-rhizobacteria inoculation may help

understand which can be an effective environmentally friendly

approach to alleviate the adverse environmental variables (Ferrante
FIGURE 1

Schematic representation of PRs-mediated abiotic and biotic stress resistance mechanism in plants. ABA, abscisic acid; JA, jasmonic acid, GA,
gibberellins, IAA, indole-3-acetic acid, SA, salicylic acid, EPS, exopolysaccharides, HCN, hydrogen cyanide; ACCD, 1-aminocyclopropane-1-
carboxylate deaminase; SOD, superoxide dismutase; CAT, catalase; PAL, phenylalanine ammonia-lyase; APX, ascorbate peroxidase; POD, peroxidase;
ASC, ascorbate; PPO, polyphenol oxidase; GPX, glutathione peroxidase; GR, glutathione reductase; Pas, polyamines; TPC, total phenolic content; PL,
proline; SS, soluble sugar; HSPs, heat shock proteins; HKT—High-affinity K+ transporters; expA1, expansin; TPC1, calcium transporter; ADC1 and
ADC2, putrescine synthesis; OsPCS1, phytochelatin synthase; OsMTP1, gene related to metal transport; OsMTP5, gene related to expulsion of
excess metal; trpAa, and trpEa, genes related to tryptophan biosynthesis; betA and betB, genes related to betaine biosynthesis; GmVSP and
GmPHD2, stress responsive genes; GSL1, gene related to cell wall synthesis; V-ATPase, Vacuolar-H+ -pyrophosphatase; LEA, late embryogenesis
abundant; NCED, WZE and SAMS = transcription factors.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1377793
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Verma et al. 10.3389/fpls.2024.1377793
TABLE 1 PR-mediated abiotic stress reduction in crop plants and their tolerance mechanism.

Stress
condition

Plant PR strains PRs-mediated possible tolerance mechanism Source

Cold Tomato Streptomyces sp. TOR3209 Upregulation of genes related to biosynthesis of abscisic acid (ABA), stress-related
metabolism and photosynthesis

Ma
et al., 2023

Cold Maize Lysinibacillus fusiformis YJ4, L.
sphaericus YJ5

Upregulation of genes related to osmolytes, phenolic content, superoxide dismutase
(SOD), catalase (CAT), phenylalanine ammonia-lyase (PAL), indole-3-acetic acid (IAA),
and gibberellic acid (GA3)

Jha and
Mohamed,
2023b

Cold Wheat Bacillus spp. CJCL2, B.
velezensis FZB42

Downregulation of ABA and lipid peroxidation encoding genes ABARE and 4-HNE,
upregulation of gene related to Expansin (expA1), Cytokinin (CKX2), and Auxin (ARF)

Zubair
et al., 2019

Drought Barley Providencia rettgeri Increased production of IAA, siderophores (SDP), proline(PL), exopolysaccharides (EPS),
and reduced level of malondialdehyde (MDA)

Ferioun
et al., 2023

Drought Chickpea Stenotrophomonas sp. CV83 Upregulation of genes related to antioxidant enzymes SOD, POD, ascorbate peroxidise
(APX), and lipoxygenase

Sharma
et al., 2023

Drought Maize Cronobacter sp.Y501 Constrain ABA signaling, increase IAA biosynthesis, decrease MDA, SOD, CAT,
peroxidase (POD) activity

Gao
et al., 2023

Drought Rice Pseudomonas putida AKMP7 Polyamines (PAs)homeostasis through biosynthesis, back-conversion and catabolism
of PAs

Nikhil
et al., 2023

Drought Soybean Bacillus pumilus
SH-9

Downregulation of ABA, upregulation of SOD, POD, APX, glutathione (GSH), EPS
and SPD

Shaffique
et al., 2023

Drought Wheat Enterobacter
bugandensis WRS7

Overexpression of genes related to antioxidants (CAT, APX, GPX), osmolyte (P5CS,
P5CR, TPS1), stress hormone (NCED, WZE, SAMS, ACS1) and ACO encoding proteins
for ABA, ethylene, and calcium transporter (TPC1)

Arora and
Jha, 2023

Heat Tomato Bacillus safensis SCAL1 Increased level of ACCD, EPS, IAA, gibberellic acid (GA3), kinetin, SOD, CAT, POD Mukhtar
et al., 2023

Heat Maize Bacillus spp. AH-08, AH-67,
SH16 and Pseudomonas spp.
SH-29

Upregulation of heat shock proteins (HSP1, HSP18, HSP70, HSP101), CAT, POD,
and carotenoids

Ahmad
et al., 2023

Heat Mustered Bacillus aryabhattai NSRSSS-
1, B. licheniformis SSA 61,
Bacillus sp. MRD-17

Increased production of IAA, GA, CAT, SOD, APX, phenolic content and reduction in
PL, and soluble sugar (SS)

Kiruthika
et al., 2023

Heat Wheat Bacillus safensis Elicited expression of ADC1 and ADC2 linked to putrescine synthesis, modulated
expressions of HSPs, upregulate redox enzymes and antioxidants associated with
ascorbate (ASC)-GSH cycle, enhanced GB, SS, and phenols

Sarkar
et al., 2021

Heavy metal Barley Rhodospirillum sp. JY3 Enhanced production of POX, CAT, SOD, GSH, ASC, polyphenols, phytochelatins,
glutaredoxin, thioredoxin, peroxiredoxin

Alsiary
et al., 2023

Heavy metal Barley B. glycinifermentans
IS-2

Modulation of endogenous phytohormones and uptake of essential elements (K, P) Belhassan
et al., 2024

Heavy metal Maize Agrococcus terreus
(MW 979614)

Augmented levels of antioxidant enzymes (SOD, POD), and nutrient uptake Shahzad
et al., 2023

Heavy metal Maize Serratia CP-13 Upregulate IAA, osmolytes (SS, PL), antioxidants and downregulate MDA, ABA, and
Cd uptake

Tanwir
et al., 2023

Heavy metal Rice Serratia marcescens DB1 Decreased expression of genes related to phytochelatin synthase (OsPCS1),metal transport
(OsMTP1), expulsion of excess metal (OsMTP5)

Bhatta
et al., 2023

Heavy metal Tomato Serratia sp. D23,
Sphingomonas sp.

Upregulation of defense genes (Hsp90, MT2 and Nramp 3) Wei
et al., 2022

Salt Barley Siccibacter sp. C2 Overexpression of HVA1,
HvDREB1, HvWRKY38, HvP5CS genes

Sayahi
et al., 2022

Salt Chickpea Bacillus sp. BSE01 Maintained levels of ACC, ABA and K+/Na+ ratio, enhanced production of, antioxidant
enzyme, PL and decreased activity of NADPH oxidase

Basu
et al., 2023

Salt Lettuce Bacillus velezensis
JB0319

Induce SOD, POD activity and decreased MDA Bai
et al., 2023

(Continued)
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et al., 2023; Verma et al., 2023). The formation of the enzyme ACC

deaminase by rhizobacteria and reduction in ethylene level had been

the main function for enhanced plant growth and resistance ability

during different stresses (Bharti et al., 2014; Jalmi and Sinha, 2022).

Eco-physiological and omic responses of plant rhizobacteria

required more attention and extensive field research

demonstrations to increase stress resistance efficiency. Hence, the

present article focused on the interactions between plants and

rhizobacteria and their impact on tolerance to adverse

agroclimatic variables for agricultural sustainability in an eco-

friendly environment.
Impact of plant development,
biomass, and productivity

Plant rhizobacteria (PRs) effectively improve plant

morphological structures during adverse environmental

conditions. Abiotic stresses, such as acidic and alkaline soil,

insufficient water supply, low and high temperature, UV-

radiation, soil flooding, and contaminated/toxic soil, affect

agronomic, anatomical, cellular, and metabolic activities (Glick

et al., 2007; Verma et al., 2020a, b). Higher levels of

phytohormones, defense-related proteins and enzymes,

antioxidants, and epoxypolysaccharides cause PGPR-induced

resistance (Kaushal and Wani, 2016). It is accomplished by

changing transcriptional and signaling processes, which lead to

altered gene expression when PRs are present. Because PRs produce

phytohormones that change root shape and improve root
Frontiers in Plant Science 04108
development, surface area, uptake, and accumulation of nutrients,

plant productivity increases in the presence of PRs (Mellidou and

Karamanoli, 2022). They can also increase total plant productivity

by helping to induce ACC-deaminase activity in plants. The

potential of PRs enhancing plant growth and development varies

due to differences in their properties, such as ACC-deaminase

activity, IAA generation, root colonization, P-solubilization, etc

(Ghosh et al., 2018; Gupta and Pandey, 2019). The defense

mechanisms of plants against unfavorable agroclimatic conditions

depend on the variation in the development of roots (Khoshru et al.,

2023). Different PGPR strains can enhance the overall root system

by increasing the total number of root tips, surface area, and

structure of the roots under stressful conditions (Brambilla et al.,

2022). Lowering the ethylene content increases the plant’s capacity

to withstand stress by facilitating improved nutrition and water

uptake capacity (Chieb and Gachomo, 2023) (Figure 1).

When under stress, PRs also improve the uptake of water and

nutrients. The absorption of nutrients and antioxidant activities are

associated with stress management. By diminishing the negative

consequences of saline soil, inoculation with Klebsiella oxytoca (Rs-

5) containing ACC-deaminase boosted plant establishment and

increased the absorption of key mineral nutrients (Yue et al., 2007;

Zahir et al., 2012). In a similar way, Pseudomonas spp. inoculation

increased the antioxidative enzymatic activities and promoted the

growth of plants during unfavorable climatic conditions (Fu et al.,

2010; Jalmi and Sinha, 2022) (Table 1).

According to Zahir et al. (2009) and Orozco-Mosqueda et al.

(2020), rhizobacterial strains have been explored to have a

substantial influence on the improvement of a variety of plants,
TABLE 1 Continued

Stress
condition

Plant PR strains PRs-mediated possible tolerance mechanism Source

Salt Maize Pseudomonas sp. MHR6 Induce production of EPS, reduce MDA and electrolyte leakage (EL) Liu
et al., 2022

Salt Mustered Pseudomonas fluorescens Augmented production of glycine-betaine (GB), PL, SOD, CAT, APX and GR Khan
et al., 2023

Salt Oat Bacillus sp. LrM2 Induced production of ACCD, non–enzymatic antioxidants, ASC, GSH, dehydroascorbate Zhang
et al., 2023

Salt Rice Pseudomonas promysalinigen
RL-WG26

Induce biosynthesis of tryptophan (trpAa, trpB, trpC, trpD, trpEa), IAA (iaaM, iaaH),
betaine (betA, betB, betT) and inhibit ethylene biosynthesis (acdS) related transcripts

Ren
et al., 2024

Salt Rice Lysinibacillus fusiformis, L.
sphaericus,
Brevibacterium pityocampae

Increased expression of JA,OsNHX1,OsAPX1, OsPIN1, OsCATA gene and reduced
expression of ABA, salicylic acid (SA), and OsSOS gene

Asif
et al., 2023

Salt Soybean Streptomyces lasalocidi
JCM 3373

Induce expression of indole-3-carboxaldehyde (ICA1d), expression of stress-responsive
genes (GmVSP, GmPHD2, GmWRKY54) and root growth related genes (GmPIN1a,
GmPIN2a, GmYUCCA5,
GmYUCCA6)

Lu
et al., 2024

Salt Tomato Bacillus halotolerans
Gb67, B. subtilis All3,
B. mojavensis Gb7

Induced production of PAs, VCs, EPS and ACCD Abdelkefi
et al., 2024

Salt Wheat Variovorax sp. P1R9 Increased SOD, CAT activity and reduced thiobarbituric acid reactive substances (TBARS) Acuna
et al., 2024

Salt Wheat Nocardioides sp. Induce expression of ACCD, TaABARE, TaHAk1, hkt1, CAT, MnSOD, POD, APX, GPX,
and GR gene transcripts

Meena
et al., 2023
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including cereals, legumes, and vegetables cultivated under

challenging conditions. They also enhanced the production

of exopolysaccharides and ACC-deaminase activity. PRs enhance

plant growth in polluted soil by downregulating the level of ethylene

(Dell’Amico et al., 2008). PRs with 1-aminocyclopropane-1-

carboxylic acid (ACC) deaminase activity may promote plant

development during stress. Compared to uninoculated plants, the

inoculated plants with PRs containing ACC-deaminase activity

improved plant growth and yield considerably. Pseudomonas sp.

and Acinetobacter sp. have increased IAA and ACC-deaminase

production in saline soil and enhanced stress tolerance efficiency in

barley and oats (Kang et al., 2019).

It can be indicated by the significantly increased levels of

chlorophyll, total phenolics, flavonoids, soluble sugars, protein

contents, and antioxidative enzymatic activities, as well as the

higher expression of stress-related genes, that resulted from

inoculating Cd-stressed with Serratia marcescens BM1 in Glycine
Frontiers in Plant Science 05109
max L. plants. Phaseolus vulgaris subjected to the rhizobacterial

consortia experienced reduced stress caused by salinity and

improved overall plant growth and photosynthetic pigments

(Gupta and Pandey, 2019). In tomato plants, Streptomyces sp. has

been shown to reduce stress and promote growth (Palaniyandi et al.,

2014). It has been observed that Burkholderia phytofirmans helps

plants under drought stress (Naveed et al., 2014). They generate

exopolysaccharides (EPS) during water-deficit conditions,

enhancing seed germination and growth. Of all the strains,

Pseudomonas fluorescens has the highest capacity to produce EPS

and ACC deaminase. The saline rice field was employed by Sultana

et al. (2020) to isolate rhizobacterial strains, which they found to

enhance stomatal conductance, transpiration, and photosynthetic

CO2 assimilation rate, all of which contributed to increased crop

yield, fruit and grains quality. According to the latest research,

Azospirillum brasilense Sp245 increased Arabidopsis thaliana

growth, suggesting that MAMPs produced from plant-
TABLE 2 PR-mediated biotic stress reduction in crop plants and their tolerance mechanism.

Stress condition Crop PR strains PRs-mediated possible tolerance mechanism Source

Net blotch fungus
(Drechslera teres)

Barley Paraburkholderia
phytofirmans B25

Upregulation of genes related to cell wall synthesis (GSL1,GSL3, and
downregulation of genes related to defense (CAT2, AOC, PRB),
phenylpropanoid pathway (PAL2, F3’H), isovitexin, and lipid compounds

Backes
et al., 2021

Wilt disease
(Fusarium oxysporum)

Faba
bean

Bacillus velezensis,
B. paramycoides,
paramycoides

Induced production of hydrogen cyanide (HCN), siderophores (SPD),
indole-3-acetic acid (IAA), abscisic acid (ABA), benzyl, kinten, ziaten, and
gibberellic acid (GA3)

El-Sersawy
et al., 2021

Wilt disease
(Fusarium oxysporum)

Maize Pseudomonas
pseudoalcaligenes
(EU921258), Bacillus
pumilus (EU921259)

Induce expression of b-1,3 glucanase genes, improved photosynthetic
pigment, and cell membrane stability

Jha and
Mohamed,
2023a

Wilt disease
(Fusarium oxysporum f. sp.
pisi

Pea Bacillus subtilis (IS1), B.
amyloliquificiens (IS6), B.
fortis (IS7)

Upregulation of total phenolic compounds and enzymes of
phenylpropanoid pathway

Raza
et al., 2024

Sheath blight disease
(Rhizoctonia solani)

Rice Bacillus velezensis,
B. megaterium, B. toyonensis

Increased activity of polyphenol oxidase (PPO), superoxide dismutase
(SOD), catalase(CAT)

Patil
et al., 2024

Leaf stripe disease
(Burkholderia)

Sorghum A. chroococcum
Beijerinck 1901 (MCC
2351),
B. megaterium
(MCC 2336),
P. fluorescens (NAIMCC
B-00,340)

Decreased levels of malondialdehyde
(MDA), proline, CAT, SOD

Rizvi
et al., 2024

Speck disease
(Pseudomonas syringae
pv. tomato)

Tomato Pseudomonas koreensis 5,
Bacillus mycoides 68, B.
mojavensis 36,B. simplex 47

High levels of proline, POD, CAT Yildiz
et al., 2023

Wilt disease
(Ralstonia solanacearum)

Tomato Pseudomonas
fluorescens Pf3,
Trichoderma
longibrachiatum
UNS11

Increased activity of peroxidase (POX), phenylalanine ammonia-lyase (PAL),
and PPO enzymes

Konappa
et al., 2020

Spot blotch disease
(Bipolaris sorokiniana)

Wheat Bacillus subtilis
BS87

Increased levels of nutrient solubilization, SPD, IAA, HCN and decrease
levels of SOD, POD, PPO, MDA, PAL, proline

Chandra
et al., 2024

Fungal pathogens
(Alternaria alternata,
Rhizoctonia solani, F.
oxysporum,
Ustilaginoidea virens)

Wheat Beijerinckia fluminensis
BFC-33

Increased levels of carotenoid, PAL, PPO, b-1,3 glucanase and reduce
proline, thiobarbituric acid reactive substances (TBARS) and
electrolyte leakage

Al-
Shwaiman
et al., 2022
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rhizobacteria are essential for plant cultivation (Méndez-Gómez

et al., 2021) (Tables 1, 2).
Photosynthetic leaf gas exchange and
chlorophyll fluorescence efficiency

Plant-rhizobacteria enhance inoculated plants’ photosynthetic

response and leaf gas exchange capability during stress (Verma

et al., 2020b; Jalmi and Sinha, 2022). By modifying the

photosynthetic characteristics, osmolytes production, antioxidant

machinery, and expression of stress-related genes, inoculating

soybean plants with Serratia marcescens BM1 (PR) provides Cd

tolerance to plants (El-Esawi et al., 2020). Under salt stress, Bacillus

amyloliquefaciens SQR9 has demonstrated higher efficiency in

photosynthesis and overexpression of the RBCS and RBCL genes

in Zea mays plants (Chen et al., 2016). During bacterial strain

inoculation, Arabidopsis helleri showed elevated photosynthesis and

proteins associated with abiotic stress (Khan et al., 2021).

Enhanced photosynthetic pigments and the expression of

important genes (RBCS and RBCL) regulating RUBISCO activities

during stress condition (Sherin et al., 2022; Amaral et al., 2023). By

modulating ion homeostasis, redox potential, photosynthetic CO2

assimilation rate, and the expression of stress-related genes, maize

plants inoculated with Serratia liquefaciens KM4 revealed enhanced

growth and stress tolerance (El-Esawi et al., 2018). Reduced phenol,

flavonoid, and leaf relative water content and photosynthetic

responses in maize plants have resulted from salinity stress, which

also decreased root damage and water uptake. However, inoculating

maize under salt stress with Serratia liquefaciens KM4 enhanced

LRWC, photosynthetic characteristics, and the biosynthesis

pathways of phenols and flavonoids, enhancing plant stress

tolerance efficiency. In comparison to uninoculated plants,

rhizobacteria-inoculated maize and white clover have

demonstrated enhanced photosynthesis, soluble proteins, sugars,

and enzymatic activities following inoculation with HAS31

rhizobacteria (Han et al., 2014) (Figure 1; Table 1).
Uptake and accumulation of mineral
nutrients and water balance

By altering the solubility and absorption of nutrients, PRs

improve the bioavailability of nutrients in plants under abiotic

factors. Through N2-fixation, mobilization, and the promotion of

N2-fixers through their secretions, several rhizobacteria can reduce

the volume of nitrogen (N2) supplementation required for plant

growth (Shah et al., 2022; Khoso et al., 2024). Additionally, they

change the shape and surface area of the roots, improving nitrogen

bioavailability (Olenska et al., 2020). Elevating ammonium

transporters’ expression improves nutritional absorption during

stresses (Calvo et al., 2019). According to Gomez-Godıńez et al.

(2023), phosphorus (P) solubilizing PRs, such as Azotobacter,

Bacillus, Burkholderia, Erwinia, Pseudomonas, Serratia, and

Rhizobium, generate organic acids that chelate P-bound cations
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and make it available to plant roots. Furthermore, under Fe-

deficient conditions, PRs assist in acquiring iron (Fe) by

generating siderophores, which are low molecular weight organic

molecules (Mohanty et al., 2021). Reducing metal ion availability

and decreasing metal uptake, siderophores that generate PRs

enhance plants’ survival under heavy metal stress (Dimkpa et al.,

2009; Kumar et al., 2021) (Tables 1, 2).

Ocimum basilicum L. has demonstrated the ability of PRs to

enhance nutrient absorption and downregulate abiotic stresses

(Rakshapal et al., 2013). Under salinity stress, PRs, such as

Pseudomonas sp. and Azospirillum sp., increase nutrient

availability, improving plant growth, biomass, and productivity

(Noorieh et al., 2013). The application of rhizobial inoculants has

been observed to trigger delayed senescence, as evidenced by higher

potassium (K) ion levels and lower ethylene and cytokinin

production. In plants with a higher K+/Na+ ratio, PRs boost the

absorption of K+ ions by synthesizing AtHKT1, a high-affinity ion

channel that promotes stress tolerance (Mahmud et al.,

2021) (Figure 1).
Biosynthesis of plant hormones and
compatible solutes

Along with metabolites and signaling molecules, the majority of

rhizobacteria produce phytohormones (Ahmad et al., 2022; Shah

et al., 2022). Among these include gibberellic acid, cytokinins,

indole acetic acid (IAA), and abscisic acid (ABA) (Tariq et al.,

2023). IAA is produced by 80% of soil microorganisms, including

Pseudomonas sp., Bacillus sp., Burkholderia sp., and Rhizobium sp

(Khan et al., 2021). It has been shown that IAA-producing

rhizobacteria stimulate crop production and plant growth when

exposed to abiotic stress (Mellidou and Karamanoli, 2022).

Numerous IAA-producing rhizobacteria increase root biomass,

length, and surface area, which improves nutrient accumulation,

uptake, and plant growth (Fasusi et al., 2023). Increased IAA levels

also foster lateral roots’ growth, minerals’ absorption, and root

exudates’ formation. It is well known that some PRs, including

Arthrobacter, Azotobacter, Bacillus, Pseudomonas, and Pantoea,

synthesize cytokinins that enhance nutrient availability as well as

plant tolerance responses (Shah et al., 2022) (Table 1).

According to dos Santos et al. (2020), gibberellin-releasing PRs

such as Azospirillum, Shingomonas, Bacillus amyloliquafaciens, and

Bacillus pumilus can also promote plant growth and yield.

Regulation of abscisic acid also played a significant role in stress

resistance capacity influenced by rhizobacteria (Herrera-Medina

et al., 2007). When pepper (Capsicum annum) is inoculated with

Serratia nematodiphila (that produces gibberellin), the plant

expands more under low-temperature stress, releases more GA4

and ABA, and lower salicylate and jasmonate activities (Kang

et al., 2015).

The plant and bacterial species may impact the mechanism of

ABA-mediated tolerance to stressful conditions. Under abiotic

stress, specific PRs (strains of Rhizobium spp., B. pumilus, B.

lycheniformis, Achromobacter xylosoxidans, and Azospirillium
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brasiliense) serve as ABA-stimulators or ABA-producers (Salomon

et al., 2014; Egamberdieva et al., 2017). It can assist plants minimize

water loss by activating Ca+2 channels that cause stomatal closure

(Goswami and Deka, 2020; Grover et al., 2021). Greater ABA

biosynthesis has been observed in Arabidopsis plants inoculated

with the spermidine-producing B. megaterium strain (Zhou et al.,

2016). By upregulating the gene expression that regulates ABA

production, the rhizobacteria inoculation of rice with Pseudomonas

fluorescens enhanced the plant’s resistance to stress. The

upregulation of TaWRKY and TaMYB expression in ABA-

signaling cascades has also been observed. It has also been

suggested that specific rhizobacteria can use ABA as a carbon and

energy source, limiting ABA uptake throughout the plant organs.

These results indicated the changes in ABA-mediated signaling

pathways as a means by which inoculated plants can survive abiotic

challenges (Olenska et al., 2020; Mellidou and Karamanoli,

2022) (Figure 1).

It has also been demonstrated that using rhizobacteria

minimizes the negative effects of ethylene generated under abiotic

stress circumstances (Grichko and Glick, 2001; Nadeem et al., 2007;

Zahir et al., 2008). Under abiotic stresses, rhizobacteria-inoculated

plants have been demonstrated to modify ethylene biosynthesis-

related gene expression (Lephatsi et al., 2021; Verma et al., 2021;

Fadiji et al., 2022). Plants can be spared the toxicity of ethylene

through the presence of rhizobacteria that contain ACC deaminase,

which can hydrolyze ACC, the precursor of ET (Mellidou and

Karamanoli, 2022).

The impact of Paenibacillus lentimorbus B-30488 inoculation

on the reduction of abiotic stress in Arabidopsis thaliana, as well as

by modifications in plant hormones and RSA-related gene

expression. According to Khoshru et al. (2023), specific PRs also

generate polyamines, which enhance root architecture and promote

stomatal conductance and photosynthesis. The microbial

community in the rhizosphere is mainly influenced by the

exudates produced by plant roots, such as organic acids,

mucilage, carbohydrates, sugars, and proteins, which also confer

tolerance to inoculated rhizobacterial plants (Backer et al., 2018).

Under abiotic stress, Azospirillum sp. has been demonstrated to

accumulate appropriate solutes such as glutamate, proline, glycine,

betaine, and trehalose (Saleena et al., 2002). Phaenibacillus

polymyxa has been shown to possess the drought-responsive gene

ERD15 (Timmusk and Wagner, 1999). Conjugated phytohormones

and flavonoids in root tissue can be extracted or hydrolyzed by

Azospirillum, releasing them in their active forms (Spaepen et al.,

2007; Dardanelli et al., 2008; Saikia et al., 2010; Fahad et al., 2015).

The mechanisms of photosynthetic activity, hydraulic

conductance, osmotic accumulation, and sequestering toxic ions

are associated with rhizobacteria-stimulated resilience to stress

(Figure 1). Groundnut inoculated with Bradyrhizobium under

drought conditions demonstrated stress resistance due to amino

acids produced from the nitrogenase to catalyzed the conversion of

atmospheric nitrogen (N2) to ammonia (NH3) ions (Delfini et al.,

2010; Enebe and Babalola, 2018). Furthermore, nitrogenase assists

the supply of nitrogen to inoculated legumes, and these plants have

been shown to produce more leaves due to more root nodules

(Ferreira et al., 2011). To avoid desiccation, lower toxicity, and
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promote root growth, PRs also generate polysaccharides (Arora

et al., 2010). A vital aspect of stress mitigation under environmental

stress at the plant rhizosphere consists of forming biofilm and

exopolysaccharide. One fascinating strategy PRs employ to mitigate

the impacts of heat stress in plants involves the induction of

osmoprotectants and heat shock proteins (HSPs) (Enebe and

Babalola, 2018). Under stressful conditions, pepper plants treated

with gibberellin-producing rhizobacteria showed a reduction in the

level of salicylate and jasmonate. When the bacteria Burkholderia

phytofirmans occurs, tomato plants produce more phenolics,

proline, and starch under stress (Issa et al., 2018).

In plants under abiotic stress, PRs also improve proline

synthesis. Arthrobacter, Bacillus, and Burkholderia are the main

rhizobacteria that synthesize proline. Better stress tolerance in

rhizobacteria-inoculated plants is mostly due to increased

dissolved sugar levels and solute storage. Other potential

strategies to reduce oxidative stress include stabilizing

membranes, protein–protein complexes, and osmolytes, such as

proline, glycine betaine, amino acids, and total sugars (Chieb and

Gachomo, 2023).
Influence of enzymatic, non-
enzymatic, and lignin biosynthesis

The synthesis of the enzyme ACC deaminase is a well-known

mechanism for rhizobacteria-led abiotic stress tolerance (Etesami

et al., 2015; Gupta and Pandey, 2019). By lowering ABA levels,

plants inoculated with ACC-producing PRs expand more rapidly;

the growth hormones regulate the synthesis of secondary

metabolites (Kang et al., 2019). By promoting the activity of

antioxidant enzymes (SOD, APX, and CAT) and upregulating the

genes involved in the ROS pathway, it enhanced stress tolerance

(Habib et al., 2016). Because ethylene causes stress-induced H2O2

accumulation and apoptosis induction, ACC deaminase-producing

PRs provide plants resistance against abiotic stress by lowering

ethylene synthesis. It has been observed that inoculating different

crops under stress with strains that include ACC-deaminase

enhances plant development (Li et al., 2017; Singh and Jha, 2017;

Namwongsa et al., 2019; Danish et al., 2020; Mellidou et al., 2021;

Mellidou and Karamanoli, 2022).

Plant-to-microbe communication also occurs by an array of

non-hormonal signaling molecules. Microbes produce volatile

compounds (VOCs), signaling molecules that control plant

growth and modify soil and plant health in response to stress

(Ullah et al., 2021). Moreover, plants tolerate heavy metal stress due

to rhizobacteria-releasing extracellular polymeric substances (EPS),

which primarily help by lowering the metals’ bioavailability in the

soil (Mishra et al., 2017). Some species of Bacillus, Azotobacter,

Burkholderia, Enterobacter, and Pseudomonas can reprogram

plants’ redox states, increasing their tolerance to environmental

stresses. During stress, the overproduction of reactive oxygen

species (ROS) changes redox states and causes DNA damage,

proteins, and membrane fluidity, ultimately resulting in cell

death. However, plants inoculated with PRs defended against

abiotic stressors by activating their defense mechanisms.
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Antioxidant enzyme activity enhanced in an array of growth-

promoting rhizobacterial species to assist them in combatting

oxidative stress (Mitra et al., 2021; Mellidou and Karamanoli,

2022) (Figure 1; Tables 1, 2).

Additionally, rhizobacteria are essential in reducing oxidative

damage caused by various stressors, including heavy metals, water

deficit, low and high temperatures, salt, and water scarcity. By

lowering ROS levels in plant roots, rhizobacteria-induced

antioxidant enzymes assist in reducing the stressors that plants

experience in the environment. Additionally, they accelerate the

growth rate in response to abiotic stressors by promoting the

generation of antioxidant enzymes. Better stress tolerance in

inoculated plants may be due to increased activities of antioxidant

enzymes, such as catalase (CAT), ascorbate peroxidase (APX), or

glutathione peroxidase (GPX) (Mellidou et al., 2021; Swain et al.,

2021; Fadiji et al., 2022). Ascorbate peroxidase increased when

tomato seedlings were inoculated with Enterobacter and subjected

to abiotic stress. Gladiolus plants treated with rhizobacteria revealed

increased levels of CAT and SOD activities as compared to their

control group (Figure 1).

Tomato seedlings inoculated with P. oryzihabitans AXSa06

(having ACC deaminase) experienced mild oxidative stress and

enhanced lipid peroxidation to trigger the antioxidant machinery

(Mellidou et al., 2021). Under abiotic stress, tomato plants

inoculated with a strain of Sphingomonas sp. revealed reduced

lipid peroxidation, increased glutathione levels, and antioxidant

enzyme activities (Halo et al., 2015; Mellidou and Karamanoli,

2022). In contrast, rhizobacteria inoculation has been demonstrated

in additional studies to decrease the production of ROS-scavenging

or stress-responsive enzymes that are important for plant

protection in stressful environments (Gupta and Pandey, 2019;

Goswami and Deka, 2020; Song et al., 2021; Verma et al., 2022a, b,

c). The generation of defensive enzymes like chitinase and glucanase

to the rhizobacteria stress-tolerance mechanism (Garcıá-Fraile

et al., 2015). Glycine max plants inoculated with Bacillus firmus

SW5 exhibit stress tolerance through alterations in root

ultrastructure, antioxidant levels, and stress-related gene

expression (El-Esawi et al., 2020). The production of oxalic acid,

gluconic acid, and citric acid by stressed rhizobacteria plays a

crucial role in the mobilization of heavy metals. Biofilm-forming

rhizobacteria were inoculated into Spartina densiflora plants,

resulting in increased levels of SOD, CAT, and APOX activities as

well as a decrease in the induced oxidative stress index (OSI) (Perez

et al., 2019; Khan et al., 2021; Bhat et al., 2022).

In Cicer arietinum plants, Pseudomonas putida MTCC5279 has

been shown to reduce stress by enhanced ROS scavenging ability,

modulation of membrane integrity, and accumulation of osmolyte

(proline, glycine, betaine). These findings have also been validated

by differential expression of genes involved in dehydration-

responsive element binding, transcription factors expressed under

abiotic stress, salicylic acid, jasmonate, transcription activation,

SOD, CAT, APX, and GST (Tiwari et al., 2016; Chieb and

Gachomo, 2023). In Abelmoschus esculentus plants, the presence

of ACC-producing PRs was associated with increased activities of

antioxidant enzymes (SOD, APX, and CAT) and up-regulated

genes of the ROS pathways (CAT, APX, GR, and DHAR) (Habib
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et al., 2016). These pathways have also been linked to enhanced

POD/CAT activity, decreased cell death, and increased glutathione

levels for ROS scavenging. When Dietzia natronolimnaea was

inoculated into wheat (Triticum aestivum), it was observed that

the ABA-signaling cascade genes, ion transporters, salt overly

sensitive (SOS) pathway, and antioxidant enzymes upregulated

(Bharti et al., 2016) (Figure 1).
Conclusion and future prospects

Adverse environmental variables severely affect crop growth,

development, and output and downregulate the overall socio-

economic growth of sustainable agriculture. Different application

strategies have been developed to challenge stress, its benefits, and

its applications. Nowadays, the requirement for higher food grain

productivity and safety, enhanced plant yield, fertility of soil

properties, and agricultural sustainability are upregulating. The

research demonstrations are shifting toward soil rhizospheric-bio-

based engineering to facilitate a better pollution-free environment

for combining plants and rhizobacteria. The application of PRs is

more beneficial in overcoming stressed conditions besides

providing other significant direct and indirect ways to upregulate

overall plant responses. PRs are more convenient, economical, and

eco-enviro-friendly and can be applied in small cultivating areas to

large fields. Variations in the modifications of plant responses under

stress have been observed in inoculated plants, and these variations

are dependent on the PRs mode of action, which represents the

multifactorial processes regulated in stressful environments. The

positive symbiotic associanship that plants develop with microbial

physiology is fundamental for the plant development, especially in

terms of biotic and abiotic stresses. It is necessary to set up deeply

extensive field research demonstrations to understand better the

interaction between the PRs-mediated signal and the metabolic/

molecular reprogramming that improves plant tolerance to

unfavorable environmental variables. Multi-strain bacterial strains

can be substantial if a single strain of bacteria is not more significant

in reducing stress resistance efficiency. The application, duration,

and applicability of inoculation are more crucial as unmanaged

methods may lead to consistent and correct results. Its successful

agro-commercialization will based on the involvement of plant

physiologists, plant biologists, plant pathologists, biotechnologists,

agro-industrialists, and farmers. A better and deep understanding of

the action mechanisms and interactions of plants and associated

plant rhizobacteria directly in the matrix of interest can be favored

by the adoption of a holistic approach that uses “omic” applications.
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Introduction: The ongoing global expansion of salt-affected land is a significant

factor, limiting the growth and yield of crops, particularly rice (Oryza sativa L). This

experiment explores the mitigation of salt-induced damage in rice (cv BRRI

dhan100) following the application of plant growth-promoting rhizobacteria (PGPR).

Methods: Rice seedlings, at five- and six-weeks post-transplanting, were

subjected to salt stress treatments using 50 and 100 mM NaCl at seven-day

intervals. Bacterial cultures consisting of endophytic PGPR (Bacillus subtilis and B.

aryabhattai) and an epiphytic PGPR (B. aryabhattai) were administered at three

critical stages: transplantation of 42-day-old seedlings, vegetative stage at five

weeks post-transplantation, and panicle initiation stage at seven weeks

post-transplantation.

Results: Salt stress induced osmotic stress, ionic imbalances, and oxidative

damage in rice plants, with consequent negative effects on growth, decrease

in photosynthetic efficiency, and changes in hormonal regulation, along with

increased methylglyoxal (MG) toxicity. PGPR treatment alleviated salinity effects

by improving plant antioxidant defenses, restoring ionic equilibrium, enhancing

water balance, increasing nutrient uptake, improving photosynthetic attributes,

bolstering hormone synthesis, and enhancing MG detoxification.
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Discussion: These findings highlight the potential of PGPR to bolster

physiological and biochemical functionality in rice by serving as an effective

buffer against salt stress–induced damage. B. subtilis showed the greatest

benefits, while both the endophytic and epiphytic B. aryabhattai had

commendable effects in mitigating salt stress–induced damage in rice plants.
KEYWORDS

abiotic stress, AsA-GSH pathway, auxin, Bacillus, ion homeostasis, osmotic stress,
stress signaling
1 Introduction

The escalation of urbanization and industrialization across the

globe has decreased the areas of available fertile agricultural land in

conjunction with substantial increases in the global population

(Sharma and Kumawat, 2022). This scenario has necessitated

urgent improvements in agricultural productivity to meet current

and future food demands. However, the intensifying environmental

stress arising from global climate change is also adversely affecting

crop yield by exacerbating stresses due to various abiotic factors,

including salinity, drought, waterlogging, heat stress, cold injury,

light stress, UV radiation, toxic metal/metalloid stress, ozone

exposure, and even soil nutrient toxicity. Of these abiotic stresses,

salinity affected area is showing expansion and is particularly

concerning, as it is not only destructive to growing plants, but it

also renders vast areas of agricultural lands unfit for crop cultivation

(Khasanov et al., 2023).

Soil salinity is characterized by the excessive accumulation of

salts, such as sodium (Na+), chloride (Cl−), potassium (K+), and

calcium (Ca2+), in the soils, with Na+ and Cl− as the dominant ion

species. Elevated salt ion concentrations in soil disrupt natural soil

processes (e.g., soil nutrient imbalance, microbial activity inhibition,

reduced water infiltration, soil structure degradation, etc.), ultimately

impeding plant growth and productivity (Munns, 2011). Salinity

influences every phase of a plant’s life cycle, from germination to

yield, by altering morphophysiological and biochemical processes

(Roman et al., 2020). In particular, plants growing in saline

environments produce high levels of reactive oxygen species (ROS).

Plants have their innate ability to prevent the generation of ROS

during normal photosynthetic and respiratory metabolism through

antioxidant defense systems. However, overly-produced ROS under

saline conditions overwhelms the inherent antioxidant defense

systems, resulting in oxidative stress in plants (Basit et al., 2023).

Salinity, therefore, creates challenges to sustainable agriculture and

the production of sufficient food to meet global food requirements

and ensure future food and nutritional security.

One strategy for overcoming the deleterious effects of saline soils

is to use plant growth-promoting rhizobacteria (PGPR). These

microbes have gained attention in recent years for their potential to
02118
enhance soil ecosystems and improve crop yields in stressful

environments by colonizing the plant root system or rhizosphere

and stimulating growth without incurring negative impacts on the

surrounding environment. PGPR enhance plant growth either

directly or indirectly by fixing atmospheric nitrogen, solubilizing

essential nutrient elements (e.g., phosphorus [P], potassium [K], zinc

[Zn]); producing phytohormones (e.g., indole-3-acetic acid [IAA]),

exopolysaccharides (EPS), siderophores, 1-aminocyclopropane-1-

carboxylate deaminase, and antioxidants; suppressing diseases

through antibiotic production; bolstering plant resistance to biotic

and tolerance to abiotic stresses; and promoting plant-microbe

symbiosis (Chakraborty et al., 2021; Dame et al., 2021). The ability

of PGPR to alleviate environmental stress effects in plants improves

plant growth and stress tolerance; therefore, PGPR can serve as

ecological engineers for climate-smart farming.

The PGPR bacterial genera include Agrobacterium, Azospirillum,

Arthrobacter, Azotobacter, Rhizobium, Bacillus, Erwinia,

Bradyrhizobium, Burkholderia, Pseudomonas, Achromobacter,

Enterobacter, Chromobacterium, among others, but all induce plant

tolerance to salinity and other abiotic stresses to promote overall

plant growth under stressful conditions. For instance, Bacillus sp. is a

notable PGPR that enhances the morphophysiological attributes of

plants in ways that aid plant survival under stressful conditions.

Applications of Bacillus sp. in the soil as well as in plants improve

plant growth, enhance water retention, reduce ionic toxicity, suppress

membrane damage, and maintain electrical conductivity to mitigate

salt-induced damage (Ji et al., 2022; Hasanuzzaman et al., 2022b).

Beneficial effects are recognized for both endophytic PGPR, such as B.

subtilis (Woo et al., 2020; Hasanuzzaman et al., 2022b) and B.

aryabhattai, as well as epiphytic PGPR, such as B. aryabhattai

(Sultana et al., 2020, 2021), in promoting plant stress tolerance.

This study aimed to assess the effects of salt stress on rice

physiology and growth, with a focus on evaluating the potential of

B. subtilis and B. aryabhattai to mitigate oxidative damage under

salt stress conditions. Rice is a staple food for over half of the world’s

population, making it crucial to ensure its resilience to

environmental stressors like salinity. However, there is limited

research on the specific roles of Bacillus species in alleviating

oxidative stress in rice plants under salt stress conditions. Sea
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levels rise as a consequence of climate change causing seawater

flooding and making rice cultivation difficult in the coastal areas

during dry seasons (January-May) (SRDI, 2010). Therefore, rice

cultivation during this period provides additional production to

meet the global demand for rice (Jahan et al., 2023). Hence, the aim

of the present study was to assess salt stress effects on the physiology

and growth of rice. The main goal was to explore the extent of

damage inflicted on rice exposed to salinity stress and to determine

whether the presence of the endophytic PGPR, B. subtilis and B.

aryabhattai, and the epiphytic PGPR, B. aryabhattai, can mitigate

oxidative damage in rice under salt stress conditions. The findings

will contribute to the broader goal of understanding and enhancing

PGPR-mediated salt stress tolerance in rice.
2 Materials and methods

2.1 Plant materials, growing conditions,
experimental treatments, and design

Uniform and healthy seeds of a Zn-enriched rice variety (Oryza

sativa cv. BRRI dhan100) containing a Zn content of 25.7 mg kg−1 were

used in this experiment. Vigorously growing, uniform, and disease-free

42-day-old seedlings were then transplanted into Wagner pots (14 L)

with soil containing BRRI (2020) recommended fertilizer doses (Urea:

138 kg ha‾1, TSP: 51 kg ha‾1, MoP: 63 kg ha‾1, Gypsum: 60 kg ha‾1, and

ZnSO4: 4 kg ha‾
1). Five hills in each pot were maintained at a uniform

distance until the reproductive stage and then thinned to two hills per
Frontiers in Plant Science 03119
pot (Figure 1). Three different PGPR suspensions were applied using

seedling dipping and soil drenching methods: endophytic Bacillus

subtilis (1 × 109 CFU mL‾1), endophytic B. aryabhattai (3 × 109

CFU mL‾1) and epiphytic B. aryabhattai (3 × 109 CFU mL‾1). The

applications were made at three distinct growth stages: transplantation

of 42-day-old seedlings, vegetative stage at five weeks post-

transplantation, and panicle initiation stage at seven weeks post-

transplantation. Five weeks after transplantation, the plants were

irrigated twice with 50 mM and 100 mM NaCl solutions at seven-

day intervals, whereas the control group was irrigated with only water.

The experiment was conducted as a completely randomized design

(CRD) with three replications.
2.2 Measurements of crop
growth attributes

Crop growth attributes (plant height, leaf area, plant fresh, and

dry weight) were measured at 62 days after transplanting. Plant

height was calculated by measuring the length of five plants per pot

from the base to the most extended leaf tip and then averaging the

measurements. Leaf area was measured from five randomly selected

leaves per pot using a length-width method (Francis et al., 1969).

Fresh weight (FW) was determined by gently uprooting five hills

per pot and weighing them. The uprooted plants were then oven-

dried for 72 h at 80°C, and the dry weight (DW) of each plant was

measured. The data were presented as the averages of the

five measurements.
FIGURE 1

Schematic representation of rice plant growth conditions, salt stress impositions, and PGPR strain treatments.
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2.3 Measurements of physiological and
biochemical attributes

2.3.1 Relative water content and proline content
Leaf relative water content (RWC) was determined by

measuring the FW of rice leaf blades. The leaves were then placed

in water for 12 h for determination of the turgid weight (TW) and

later oven-dried (48 h, 80°C) for measurement of leaf DW. The

RWC was determined using the formula: RWC (%) = (FW–DW)/

(TW–DW) × 100 (Barrs and Weatherley, 1962). The leaf proline

(Pro) content was determined with a spectrophotometer

(GENESYS 10S UV-Vis, Thermo Fisher Scientific Inc., Madison

WI, USA) using 0.5 g of leaf tissue and the method described by

Bates et al. (1973).

2.3.2 Ion content
Leaf Na+ and K+ contents were quantified using a portable ion

meter (Horiba, Tokyo, Japan). Sap from fresh leaf samples was

introduced into the calibrated sensor of the ion meter after rinsing

the sensor with deionized water to eliminate residual dirt.

2.3.3 Chlorophyll content
For pigment extraction, 0.25 g of fresh leaf tissue from plants

from each treatment was chopped and immersed in a water bath

with 10 mL of 100% ethanol at 70°C until they turned white. The

colored chlorophyll (Chl) chromophore was then measured

spectrophotometrically at wavelengths of 663, 645, and 470 nm.

The concentrations of Chl a, Chl b, and Chl (a+b) were determined

using the method described by Arnon (1949).

2.3.4 Stomatal conductance
Stomatal conductance (gs) was quantified from the surfaces of

fully expanded leaves of individual plants from all experimental

treatments using a leaf porometer (model SC-1, Decagon Devices,

Inc., Pullman, WA, USA).

2.3.5 Chlorophyll fluorescence
A fluorimeter (Pocket PEA Chlorophyll Fluorimeter, Hansatech

Instruments Ltd., Norfolk, UK) was employed to measure the Chl

fluorescence of fully expanded leaf blades. The minimum

fluorescence (Fo) was recorded in a simulated dark condition

using clips. The maximum fluorescence (Fm) was obtained 15

min later by giving a light pulse of 3000 mmol m-2 s-1. The

photosystem II (PSII) activities were calculated using the

following equation: Fv/Fm = (Fm–Fo)/Fm where the variable

fluroscence is denoted by Fv.

2.3.6 Indole-3-acetic acid concentration
The concentration of IAA was quantified using previously

described methods (Gordon and Weber, 1951). Extracts were

prepared from 0.5 g leaf material by grinding in an ice-cooled

mortar and pestle in 2 mL 80% cold methanol, followed by

centrifugation at 5,000×g for 5 min at 4°C. A 2 mL volume

of Salkowski reagent (2% 0.5 M FeCl3 in 35% HClO4) was
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then mixed with 1 mL of the supernatant and 2 drops of

orthophosphoric acid. Two hours later, the optical density of the

solution was measured spectrophotometrically at 530 nm. The

IAA concentrations in the samples were determined using an IAA

standard curve.
2.4 Estimation of oxidative stress
indicators: malondialdehyde, hydrogen
peroxide content, and electrolyte
leakage (%)

The leaf malondialdehyde (MDA) content was quantified

following the method of Heath and Packer (1968), with a slight

modification (Hasanuzzaman et al., 2022a). A reaction mixture was

prepared by mixing 4 mL of thiobarbituric acid (TBA) reagent (20%

TCA + 0.5% TBA) reagent with 1 mL of supernatant. The

supernatant was prepared by homogenizing leaf tissues (0.5 g)

with 3 mL of 5% trichloroacetic acid (TCA) and centrifuging it at

11,500×g for 10 min at 4°C. Then spectrophotometric absorbance

was recorded at 532 and 600 nm after incubating the mixture in a

water bath at 95 °C for 30 min and cooling it quickly on ice. The

final MDA content was calculated using an extinction coefficient of

155 mM-1 cm-1. The method of Yang et al. (2007) was used to

determine H2O2 content. The reaction mixture was prepared by

adding 3 mL of 5% TCA to 0.5 g leaf material and centrifuging,

followed by adding 1 ml of 1 M potassium iodide and 3 mL of 50

mM potassium phosphate (K-P) buffer (pH 7.0). The H2O2 content

was calculated after spectrophotometric readings at 390 nm and

using an extinction coefficient of 0.28 mM-1 cm-1. Electrolyte leakage

(EL%) was measured following the method of Dionisio-Sese and

Tobita (1998) and calculated using the following formula: EL =

(EC1/EC2) × 100.
2.5 Quantification of ascorbate and
glutathione content

Ascorbate (AsA) content was determined following the method

of Nahar et al. (2016) by preparing leaf extracts in 1 mM

ethylenediaminetetraacetic acid in 5% meta-phosphoric acid,

centrifuging, mixing with 0.1 M dithiothreitol and distilled water,

and neutralizing with 0.5 M K-P buffer (pH 7.0). The total and

reduced AsA concentrations were measured spectrophotometrically

at A265 and the dehydroascorbate (DHA) was calculated by

subtracting the concentration of reduced AsA from the total AsA.

The glutathione (GHS) content was determined by oxidizing the

leaf extracts with 5,5-dithio-bis-2-nitrobenzoic acid and

neutralizing with 0.5 M K-P buffer (pH 7.0) in the presence of

reduced nicotinamide adenine dinucleotide phosphate (NADPH)

and glutathione reductase (GR), followed by spectrophotometric

measurement at A412. The oxidized glutathione (GSSG) content was

measured by neutralizing the extract with 2-vinylpyridine and K-P

buffer. The final GHS content was estimated by comparison to

standard curves for GSH and GSSG (Hasanuzzaman et al., 2022a).
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2.6 Enzyme extraction and
protein measurement

Enzymes were extracted using a previously described method

(Hasanuzzaman et al., 2022a), which involved grinding of 0.5 g leaf

tissue in a precooled mortar pestle with an extraction buffer

containing 50 mM K-P buffer (pH 7.0) in 1 mM AsA, 5mM b-
mercaptoethanol, 10% glycerol, and 100 mM KCl solution. The

resultant leaf homogenate was centrifuged for 12 min at 11,500×g at

4°C. The clear supernatant was used to determine antioxidant

enzyme activities and the free protein content was determined

using the method of Bradford (1976).
2.7 Antioxidant enzyme
activity determinations

Ascorbate peroxidase (APX; EC: 1.11.1.11) activity was

determined using the method of Nakano and Asada (1981) and

an extinction coefficient of 2.8 mM-1 cm-1. Dehydroascorbate

reductase (DHAR; EC: 1.8.5.1) activity was similarly assayed

using an extinction coefficient of 14 mM-1 cm-1. The method of

Hossain et al. (1984) and an extinction coefficient of 6.2 mM-1 cm-1

were used to determine the monodehydroascorbate reductase

(MDHAR; EC: 1.6.5.4) activity. The method of Hasanuzzaman

et al. (2022a) and an extinction coefficient of 6.2 mM-1 cm-1 were

used to measure glutathione reductase (GR; EC: 1.6.4.2) activity.

The activities of glutathione peroxidase (GPX; EC: 1.11.1.9),

glutathione-S-transferase (GST; EC: 2.5.1.18), and catalase (CAT;

EC: 1.11.1.6) were also measured as described previously

mentioned method (Hasanuzzaman et al., 2022a), with a slight

modification from Elia et al. (2003) for GPX determination. The

extinction coefficients for GPX, GST, and CAT were 6.62 mM-1

cm-1, 9.6 mM-1 cm-1, and 39.4 mM-1 cm-1, respectively.

Lipoxygenase (LOX; EC: 1.13.11.12) activity was measured using

the method by Doderer et al. (1992), with linolenic acid used as a

substrate. The method of El-Shabrawi et al. (2010) was used to

determine the superoxide dismutase (SOD; EC: 1.15.1.1) activity,

using xanthine and xanthine oxidase as substrates. Peroxidase

(POD; EC: 1.11.1.7) activity was determined following the method

of Hemeda and Klein (1990).
2.8 Methylglyoxal content and glyoxalase
enzyme activity determinations

The amount of methylglyoxal (MG) in leaf tissues was

estimated using the method described by Wild et al. (2012). The

leaf samples were homogenized with 5% perchloric acid, and the

concentration of MG was determined by measuring the

spectrophotometric absorbance at 288 mm and calculated using a

standard curve. The activities of glyoxalase I (Gly I, EC: 4.4.1.5) and

glyoxalase II (Gly II, EC: 3.1.2.6), were determined according to

Hasanuzzaman et al. (2022a) and Principato et al. (1987) using

extinction coefficients of 3.37 and 13.6 mM-1 cm-1, respectively.
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2.9 Statistical analyses

The data were presented as the mean ± standard deviation of

three replications. Tukey’s honestly significant difference (HSD) test

at p ≤ 0.05 was used to separate means in the statistical analysis by

applying the one-way analysis of variance (ANOVA) technique

using the CoStat v.6.400 (2008) computer software.
3 Results

3.1 Effects on the growth attributes

Plant height was reduced by 14 and 17% in response to 50 and

100 mMNaCl stress, respectively, when compared to the unstressed

controls (no NaCl treatment). However, the application of Bacillus

subtilis demonstrated superior performance than other strains by

enhancing plant height significantly by 7 and 8% under 50 and 100

mM NaCl stress conditions, respectively, compared to the stressed

alone plants. On the other hand, both the endophytic B. aryabhattai

and epiphytic B. aryabhattai applications showed little to no change

in plant height under similar stress conditions (Figure 2A).

In the presence of 50 and 100 mM NaCl stress, plant FW was

decreased by 58 and 65%, respectively (Figure 2B), while the DW

was declined by 39% and 47%, respectively, compared to the

unstressed controls (Figure 2C). However, under 50 mM NaCl

stress, treatment with B. subtilis (51%) and epiphytic B. aryabhattai

(47%) led to a notable increase in FW compared to the non-

inoculated plants, but this difference was not statistically

significant under 100 mM NaCl stress (Figure 2B). Similarly, in

terms of DW, both B. subtilis and epiphytic B. aryabhattai

outperformed the endophytic B. aryabhattai in enhancing plant

DW than the non-inoculated plants (Figure 2C).

Both salt stress levels significantly reduced the leaf area

compared to unstressed controls (Figure 2D). Nonetheless, all

PGPR strains were found to increase leaf area at both stress

conditions but B. subtilis and epiphytic B. aryabhattai showed the

greatest enhancements in leaf area by 22% and 19%, respectively,

under only 50 mM salt stress (Figure 2D).
3.2 Effects on photosynthetic attributes

Chlorophyll a and Chl b contents in rice leaves were decreased

significantly under both 50 and 100 mM NaCl stress conditions

compared to the control (Table 1). This decline eventually led to the

reduction of total Chl (a+b) content. However, salinity-stressed

plants treated with PGPRs showed significantly increased amounts

of photosynthetic pigment contents compared to non-treated plants

under similar stress conditions. B. subtilis and epiphytic B.

aryabhattai were most effective in restoring the Chl pigments in

all cases specifically, under 100 mM NaCl stress. Moreover, among

those PGPR strains, B. subtilis outperformed the latter by

significantly enhancing Chl a (25%), Chl b (74%), and Chl (a+b)

(43%) contents (Table 1). Though endophytic B. aryabhattai
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FIGURE 2

Variations in plant height (A), fresh weight (B), dry weight (C), and leaf area (D) of rice plants under salt stress (50 or 100 mM NaCl) in the absence or
presence of three PGPRs (Bacillus subtilis, epiphytic B. aryabhattai, and endophytic B. aryabhattai). Data are presented as mean ± standard deviation
of three replications (n=3). Distinct letters on the bars show significant differences between treatments at p ≤ 0.05 from Tukey’s HSD test.
TABLE 1 Changes in photosynthetic attributes of rice plants under salt stress (S1 = 50 mM NaCl; S2 = 100 mM NaCl) in the absence or presence of
three PGPRs (Bacillus subtilis, epiphytic B. aryabhattai, and endophytic B. aryabhattai).

Treatments Chl a content
(mg g-1 FW)

Chl b content
(mg g-1 FW)

Chl (a+b) content
(mg g-1 FW)

Stomatal
conductance
(mmol m-2s-1)

Chlorophyll
fluorescence

(Fv/Fm)

Control 1.34 ± 0.01 a 1.36 ± 0.10 a 2.70 ± 0.09 a 41.40 ± 1.50 a 0.77 ± 0.01 ab

B. subtilis 1.31 ± 0.01 a 1.49 ± 0.07 a 2.80 ± 0.09 a 40.90 ± 1.96 ab 0.76 ± 0.01 ab

B.
aryabhattai
(endo)

1.31 ± 0.00 a 1.35 ± 0.11 a 2.67 ± 0.11 ab 39.70 ± 0.58 abc 0.77 ± 0.01 ab

B.
aryabhattai
(epi)

1.33 ± 0.01 a 1.44 ± 0.07 a 2.78 ± 0.06 a 40.80 ± 1.50 ab 0.76 ± 0.01 ab

S1 1.11 ± 0.07 bc 0.79 ± 0.05 d 1.89 ± 0.11 ef 35.90 ± 0.92 de 0.73 ± 0.01 cd

S1+ B. subtilis 1.31 ± 0.02 a 1.11 ± 0.03 b 2.42 ± 0.05 bc 36.30 ± 0.23 cde 0.75 ± 0.02 bcd

S1+ B.
aryabhattai
(endo)

1.19 ± 0.09 ab 1.04 ± 0.06 bc 2.23 ± 0.08 cd 35.50 ± 0.72 de 0.76 ± 0.01 ab

S1+ B.
aryabhattai
(epi)

1.30 ± 0.03 a 1.07 ± 0.04 b 2.37 ± 0.07 c 35.85 ± 0.40 de 0.78 ± 0.00 ab

S2 0.90 ± 0.07 d 0.51 ± 0.04 e 1.41 ± 0.05 g 34.70 ± 0.69 e 0.72 ± 0.01 d

S2+ B. subtilis 1.13 ± 0.03 ab 0.88 ± 0.03 cd 2.01 ± 0.04 de 38.65 ± 0.40 a-d 0.76 ± 0.00 abc

S2+ B.
aryabhattai
(endo)

1.03 ± 0.09 cd 0.76 ± 0.04 d 1.79 ± 0.06 f 37.80 ± 0.81 a-d 0.77 ± 0.01 ab

S2+ B.
aryabhattai
(epi)

1.12 ± 0.02 bc 0.07 ± 0.05 d 1.94 ± 0.06 ef 36.90 ± 1.50 b-e 0.78 ± 0.01 a
F
rontiers in Plant S
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Data are presented as mean ± standard deviation of three replications (n=3). Distinct letters on each column show significant differences between treatments at p ≤ 0.05 from Tukey’s HSD test.
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escalated the photosynthetic pigment contents under both stress

levels than the non-inoculated plants, the increments were not as

significant as the other PGPR strains (Table 1).

Furthermore, gs was decreased in a dose-dependent manner with

increased salinity levels compared to the unstressed controls. The

addition of all three PGPRs resulted in only a negligible increment in

gs under 50 mM NaCl stress compared to the salt-stressed plants

(Table 1). Whereas, application of B. subtilis and epiphytic B.

aryabhattai, increased the gs significantly by 10% and 9%,

respectively, under 100 mM salt stress (Table 1). A notable

reduction (7%) in the Fv/Fm ratio was observed when plants were

subjected to 100 mM NaCl stress relative to the control (Table 1).

Though all the PGPR treatments restored the ratio in both doses of

salt stress, the increment by epiphytic B. aryabhtattai was significant

(8%) in 100 mM NaCl stress than the non-inoculated plants.
3.3 Effect on the physiological attributes

3.3.1 Osmotic adjustment and relative
water content

The RWC was reduced under both 50 and 100 mM NaCl stress

with a significant reduction (26%) under higher salinity dose

compared to the unstressed controls (Figure 3A). However, PGPR

treatments increased the RWC under both stress conditions, where,

the improvement by B. subtilis was the highest (19%) under 100

mM NaCl stress compared to the salt-stressed controls (Figure 3A).

Compared to the non-stressed controls, Pro content significantly

increased in rice plants when exposed to increasing levels of salinity

stress with the highest increment (327%) under 100 mM NaCl

stress. The application of PGPR improved this condition by

reducing the excessively generated Pro content in all treatments,

where B. subtilis performed the best in reducing the Pro content

(16%) compared to the salt-stressed controls under 100 mM salinity

stress (Figure 3B).

3.3.2 Ion homeostasis
The application of 50 and 100 mM NaCl stress disrupted the ion

homeostasis in rice plants, as evidenced by increased Na+

accumulation as well as decreased K+ accumulation, resulting in a
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40 and 53-fold increase in the Na+/K+ ratio, respectively, compared to

control plants (Figures 4A–C). Nevertheless, PGPR treatments

reversed this imbalance by preserving ion homeostasis by

significantly reducing Na+ accumulation and enhancing K+ uptake

through rice plant roots. Among them, the greatest reduction (81%)

in Na+ was noted with B. subtilis inoculation under 100 mM NaCl

stress, leading to a significant increase (67%) in K+ accumulation

(Figures 4A, B), which restored the Na+/K+ ratio by nearly 89%

(Figure 4C) compared to the stressed plants.

3.3.3 Indole-3-acetic acid content
In comparison to the unstressed control, the concentration of

IAA significantly decreased in rice plants exposed to increasing levels

of salinity stress. Specifically, plants subjected to 100 mMNaCl stress

demonstrated a significant IAA reduction (32%) compared to the

controls (Supplementary Figure 1). However, the application of

PGPRs ameliorated this condition by boosting the concentrations

under both salinity conditions. Notably, among the three PGPRs,

epiphytic B. aryabhattai was the most effective under both salinity

levels, increasing IAA concentrations by approximately 49 and 92%,

respectively, compared to stressed plants (Supplementary Figure 1).
3.4 Oxidative stress indicators

A significant rise in MDA content was observed with increasing

salinity levels, where the highest (58%) lipid peroxidation was noted

under 100 mM of NaCl stress compared to the controls (Figure 5A).

Though PGPR treatment significantly reduced the MDA content in

both stress conditions, B. subtilis outperformed other strains by

reducing the MDA content by nearly 31 and 29% under 50 and 100

mM NaCl stress, respectively, compared to salt stress alone

plants (Figure 5A).

Similarly, increasing levels of salinity doses corresponded with a

rise in H2O2 levels, leading to membrane damage in rice plants.

Under 100 mM NaCl stress, H2O2 levels rose substantially (69%)

compared to the unstressed controls. However, PGPR treatment

notably mitigated this effect with the greatest reduction (32%) in

H2O2 level by B. subtilis under 100 mM NaCl stress, compared to

the untreated plants (Figure 5B).
A B

FIGURE 3

Changes in relative water content (A), and proline content (B) of rice plants under salt stress (50 and 100 mM NaCl) in the absence or presence of
three PGPRs (Bacillus subtilis, epiphytic B. aryabhattai, and endophytic B. aryabhattai). Data are presented as mean ± standard deviation of three
replications (n=3). Distinct letters on the bars show significant differences between treatments at p ≤ 0.05 from Tukey’s HSD test.
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Likewise, EL% was also increased under increasing salinity

levels, mirroring the trend observed in MDA and H2O2 contents.

The highest EL% (20%) was noticed under 100 mM NaCl stress,

which was almost double the leakage occurring in plants exposed to

50 mM NaCl salt stress compared to the unstressed controls

(Figure 5C). Application of PGPR decreased the leakage

significantly under 50 and 100 mM NaCl stress compared to the

salt-stressed controls, where the highest decrease (12%) was noted

with B. subtilis treatment under 50 mMNaCl salt stress (Figure 5C).
3.5 Effects on antioxidant defense systems

3.5.1 AsA-GSH pools
Increasing salinity levels negatively affected AsA content with a

significant reduction (53%) observed under 100 mM NaCl stress

than the unstressed controls. However, the application of PGPRs

mitigated this stress by increasing AsA content. B. subtilis was

particularly effective than other PGPR strains, increasing AsA levels
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by 15 and 27% under 50 and 100 mMNaCl stress, respectively, than

the non-inoculated controls (Figure 6A). The highest DHA content

(89%) was observed under 100 mM NaCl stress and was

approximately 1.5 times higher than that observed under 50 mM

NaCl stress compared to the salt-stressed controls (Figure 6B).

However, PGPRs ameliorated this effect, where B. subtilis notably

reduced the DHA content (16%) at 100 mM NaCl stress than other

strains compared to the salt-stressed controls (Figure 6B).

Consequently, due to salt stress-induced reduction in AsA

content and increase in DHA contents, the AsA/DHA ratio

decreased than the non-stresses controls (Figure 6C). However,

applying endophytic PGPRs restored the ratio under 50 and 100

mM NaCl stress, compared to plants only subjected to salt stress.

Furthermore, among them, epiphytic B. aryabhattai increased the

ratio (39%) under 50 mM NaCl stress, compared to the stressed

controls. Except for B. subtilis, other PGPRs could not revert the

increased AsA/DHA ratio under higher salinity levels (Figure 6C).

Compared to the control, GSH content increased by 33 and 94%

under 50 and 100 mM NaCl stress, respectively (Figure 6D).
A

B

C

FIGURE 5

Variations in MDA content (A), H2O2 content (B) and electrolyte
leakage (%) (C) of rice plants under salt stress (50 and 100 mM NaCl)
in the absence or presence of three PGPRs (Bacillus subtilis,
epiphytic B. aryabhattai, and endophytic B. aryabhattai). Data are
presented as mean ± standard deviation of three replications (n=3).
Distinct letters on the bars show significant differences between
treatments at p ≤ 0.05 from Tukey’s HSD test.
A

B

C

FIGURE 4

Variations in Na+ content (A), K+ content (B), and Na+/K+ ratio (C) of
rice plants under salt stress (50 and 100 mM NaCl) in the absence or
presence of three PGPRs (Bacillus subtilis, epiphytic B. aryabhattai,
and endophytic B. aryabhattai). Data are presented as mean ±
standard deviation of three replications (n=3). Distinct letters on the
bars show significant differences between treatments at p ≤ 0.05
from Tukey’s HSD test.
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The application of PGPRs further enhanced the GSH content under

both salt stress conditions. The most substantial increase was found

with B. subtilis application: a 25 and 12% increase at 50 and 100 mM

saline conditions, compared to the salt-stressed plants only. The

effect of other PGPRs was not significant at higher saline doses

(Figure 6D). The level of GSSG content significantly increased by

(87%) under 100 mM NaCl stress, compared to the controls

(Figure 6E). However, PGPR treatments reduced the GSSG levels

in salt-stressed plants. Application of B. subtilis gave the most

significant reduction (28%) in 50 mM NaCl-stressed plants,

compared to the salt-stressed controls (Figure 6F). However, the

effect of PGPRs in reducing GSSG content was not significant at

higher salt stress levels. The severity of the stress substantially

decreased the GSH/GSSG ratio compared to the control.

However, PGPR treatment recovered the GSH/GSSG ratio in salt-

stressed rice plants with the most significant improvement (73%) in

the ratio observed at 50 mM NaCl stress with the B. subtilis

application (Figure 6F). The epiphytic PGPR, B. aryabhattai,

performed better in increasing the GSH/GSSG ratio under both

salt-stressed conditions, improving by nearly 50 and 28% under 50

and 100 mM NaCl stress, respectively. However, the endophytic
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PGPR, B. aryabhattai, was not as effective in reverting the GSH/

GSSG ratio at both salinity stress levels, increasing the ratio by

nearly 38% at 50 mM NaCl stress but showing a 3-fold lesser

reduction under higher salinity stress. Therefore, among the three

PGPRs, B. subtilis was most effective in restoring the AsA-GSH pool

of salt-induced rice plants.

3.5.2 Antioxidant enzyme activities
A rise in APX activity was observed following the exposure to

two different salinity levels with the most significant increase

(250%) found under 100 mM NaCl stress, compared to controls,

and was further increased by the application of PGPRs (Figure 7A).

However, B. subtilis showed the best result among the other PGPRs,

under higher salinity level by improving the APX activity by 26%

than the stressed plants alone (Figure 7A). Similarly, MDHAR

activity was also increased by 63 and 144% to the control under two

different salinity doses, and further improvements were also noticed

when rice plants were treated with three different PGPRs. However,

among them, likewise APX activity, B. subtilis further improved the

MDHAR activity (25%) than the salt-stressed alone plants

(Figure 7B). A similar trend was also noticed in terms of the rise
A B

D

E F

C

FIGURE 6

Variations in AsA content (A), DHA content (B), AsA/DHA ratio (C), GSH content (D), GSSG content (E) and GSH/GSSG ratio (F) of rice plants under
salt stress (50 and 100 mM NaCl) in the absence or presence of three PGPRs (Bacillus subtilis, epiphytic B. aryabhattai, and endophytic B.
aryabhattai). Data are presented as mean ± standard deviation of three replications (n=3). Distinct letters on the bars show significant differences
between treatments at p ≤ 0.05 from Tukey’s HSD test.
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in GR activity which was then further enhanced by the application

of B. subtilis. However, here, both B. subtilis and epiphytic B.

aryabhattai performed a significant role in increasing GR activity

by 17 and 20%, respectively under 100 mMNaCl stress (Figure 7D).

On the other hand, DHAR activity was noticeably reduced under 50

and 100 mM NaCl stress, compared to the unstressed controls

(Figure 7C). But, in this case, both B. subtilis and epiphytic B.

aryabhattai showed a significant acceleration in DHAR activity

than the stressed plants with the highest increment (35%) by B.

subtilis at 50 mM NaCl compared to the salt-stressed

controls (Figure 7C).

Rice plants exposed to two different salinity levels showed a

notable reduction in the activities of GPX and SOD relative to the

controls (Figures 8A, D). The application of PGPRs reverted this

situation by increasing both antioxidant enzyme activities but the

performance was better under the lower salinity dose. However, as

previously found, a similar trend of the better activity of B. subtilis

was also noticed for GPX, where the improvement was 37% than

the stressed alone plants under 50 mM NaCl (Figure 8A). In terms

of SOD, all three PGPRs performances were significantly similar

under both stress conditions (Figure 8D).

On the other hand, the application of PGPRs on salt-stressed rice

plants had notable positive effects in terms of the other antioxidant

enzymes, e.g., GST, LOX, CAT, and POD. The highest increment of

GST, LOX, CAT, and POD activities was found by nearly 143, 160,

111, and 137%, respectively, under 100 mMNaCl stress in rice plants

than the non-stressed controls (Figures 8B–F). Nevertheless, the

PGPRs application further boosted their activities (GST, CAT, and

POD), and here, both B. subtilis and epiphytic B. aryabhattai were

found to have almost similar significant positive results. Additionally,

both of these PGPR strains performed better in reducing the LOX
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activity by 43 and 38% under 50 mM NaCl stress, where the levels

were prominently increased by 112 and 160% with increasing salinity

doses (Figure 8C).
3.6 Glyoxalase system

Salt stress also affected the glyoxalase system of rice plants which

was evident with the highest (59%) increase inMG content under 100

mM NaCl stress compared to the controls (Supplementary

Figure 2A). However, B. subtilis along with the endophytic and

epiphytic B. aryabhattai changed this situation by reducing the MG

content, though, in this case, epiphytic B. aryabhattai performed

better under 100 mM NaCl stress by reducing it by 39% than the

stressed alone rice plants (Supplementary Figure 2A). On the other

hand, the activities of Gly I and Gly II were sharply reduced under salt

stress (Supplementary Figures 2B, C) in contrast with the control

plants. However, both B. subtilis and epiphytic B. aryabhattai showed

statistically similar results in boosting the Gly I and Gly II activities

under two different salt stress levels (Supplementary Figures 2B, C).
4 Discussion

The initial response of plants to salinity stress involves osmotic

shock and ionic imbalances, which disrupt water uptake, break

down cell membranes, and inhibit stomatal opening; ultimately

restrict cell division, cell enlargement, photosynthesis, plant growth,

and development (Rajabi et al., 2024). In this experiment, salinity-

induced decreases in photosynthetic attributes (Table 1) and

increases in lipid peroxidation (Figure 5) resulted in a reduction
A B
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FIGURE 7

Changes in the activities of APX (A), MDHAR (B), DHAR (C), and GR (D) of rice plants under salt stress (50 and 100 mM NaCl) in the absence or
presence of three PGPRs (Bacillus subtilis, epiphytic B. aryabhattai, and endophytic B. aryabhattai). Data are presented as mean ± standard deviation
of three replications (n=3). Distinct letters on the bars show significant differences between treatments at p ≤ 0.05 from Tukey’s HSD test.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1419764
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Siddika et al. 10.3389/fpls.2024.1419764
in plant growth parameters (Figure 2). However, application of

PGPR strains alleviated salt stress and improved plant growth

parameters by restoring photosynthetic efficiency and

safeguarding the cell membranes. These improvements can be

linked to PGPR-induced synthesis of IAA (Supplementary

Figure 1). Auxin/IAA induces a variety of morphophysiological

changes, such as increased root length, root surface area, nutrient

uptake, and photosynthesis (Li et al., 2020; Iqbal et al., 2023).

Moreover, microbial solubilization of iron (Rahimi et al., 2020) and

magnesium (Ullah et al., 2022), combined with the stress-induced

synthesis of siderophores by PGPRs may have led to the

regeneration of the photosynthetic pigments, as well as

restoration of Fv/Fm and gs. Our findings concur with those of

Wang et al. (2023), who reported that PGPR application improved

the photosynthetic efficiency of rice under salt stress. Although

siderophore synthesis by the PGPR strains was not investigated in

this current experiment, previous studies (Sultana et al., 2021;

Ghazy and El-Nahrawy, 2021) have provided evidence that these

three Bacillus strains are capable of synthesizing siderophores. All

these responses contribute to improving plant growth in stressful

environments, in agreement with the findings of Shultana et al.

(2020) and Shultana et al. (2021).
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Salinity-induced osmotic and ionic stresses create imbalances in

the ion homeostasis of plant cells (Hu et al., 2022; Zhao et al., 2023),

as confirmed in the present study by the elevated Na+/K+ ratio.

However, PGPR application restored the ionic and osmotic balance

by decreasing Na+ accumulation and increasing K+ absorption by

the roots (Figure 4), and by reducing Pro accumulation and

enhancing RWC (Figure 3). One explanation could be that

bacterial EPS obstructs Na+ deposition on plant root surfaces

(Shultana et al., 2020). These findings align with the study of Ji

et al. (2022), which highlighted how wheat seedlings inoculated

with PGPR under salt stress could stave off osmotic stress by

regulating Pro and soluble sugar accumulation.

Excessively produced ROS induces oxidative stress in plants

which is the secondary effect of salt stress. In this experiment, rice

plants showed clear symptoms of salt stress-induced oxidative stress

by increasing the stress indicators (Figure 5). However, to

counteract the potential for ROS-induced damage, plants possess

an intrinsic antioxidant defense mechanism containing enzymatic

and non-enzymatic antioxidants, which is highly effective in

preventing ROS production and regulating homeostasis, thereby

safeguarding plant cells from oxidative damage (Rajabi et al., 2024;

Yang et al., 2024). In this experiment, the balance between non-
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FIGURE 8

Variations in GPX (A), GST (B), LOX (C), SOD (D), CAT (E), and POD (F) activities of rice plants under salt stress (50 and 100 mM NaCl) in the absence
or presence of three PGPRs (Bacillus subtilis, epiphytic B. aryabhattai, and endophytic B. aryabhattai). Data are presented as mean ± standard
deviation of three replications (n=3). Distinct letters on the bars show significant differences between treatments at p ≤ 0.05 from Tukey’s HSD test.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1419764
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Siddika et al. 10.3389/fpls.2024.1419764
enzymatic antioxidants (AsA/DHA and GSH/GSSG) ratios in the

AsA-GSH pool was disrupted (Figure 6) due to salt-induced

oxidative stress which matches the results of other studies

(Soliman et al., 2020; Zhu et al., 2020). However, the application

of PGPR restored the ratios, suggesting ROS detoxification under

salt stress, in agreement with the results of Puthiyottil and

Akkara (2021).

In addition to non-enzymatic antioxidants, plants also possess

antioxidant enzymes, such as APX, DHAR, MDHAR, and GR, which

catalyze crucial reactions to detoxify ROS and maintain the AsA-GSH

pool under stress (Kanwal et al., 2024). In the present study, salt stress

disrupted these enzyme activities, but PGPR application ameliorated

the salt-induced oxidative stress by stimulating them (Figure 7). Similar

results have also been reported by Ali et al. (2022) in rice under salt

stress. Moreover, in the present study, increased CAT and POD

activities and reduced SOD activities were noted under salt stress,

possibly indicating preferential ROS scavenging and regulation of

−OH• radical formation, also reported previously (Hu, 2019; Mubeen

et al., 2022). However, PGPR application enhanced SOD activity, as

well as CAT and POD (Figure 8), which further supports the findings

of Hu (2019) in wheat under salt stress. Glutathione peroxidase uses

GSH and thioredoxins to detoxify H2O2 as part of the non-heme group

of POD, indicating the benefits of upregulating GPX activities under

stress (Hasanuzzaman et al., 2022b). The present experiment showed a

clear increment in GPX activity after the application of PGPR strains in

salt-treated rice plants, with B. subtilis showing the most significant

effect, in agreement with the study by Hasanuzzaman et al. (2022b). On

the contrary, epiphytic B. aryabhattai was the most effective PGPR at

increasing GST activity, in agreement with findings by Shultana et al.

(2021), indicating its potential as a modulator of antioxidant enzyme

activities in rice under salt stress.

Plants produce a certain amount of MG under normal

conditions as well, but the production increases under stress.

Methylglyoxal detoxification by the glyoxalase systems occurs

with the help of the GSH enzyme, which converts MG into S-D-

lactoylglutathione (SLG) using Gly I, followed by the breakdown of

SLG into D-lactic acid by Gly II (Hasanuzzaman et al., 2022b). The

current study showed a trend toward elevated MG production

under salt stress, coupled with reductions in Gly I and Gly II

activities (Supplementary Figure 2), in agreement with the findings

of a previous study (Alabdallah et al., 2024). However, application

of PGPR strains increased the level of GSH, thereby detoxifying MG

by enhancing Gly I and Gly II activities, as previously reported by

Kapadia et al. (2022).

Taken together, the findings presented here for salt-stressed rice

plants clearly indicate that PGPR strains have the potential to

ameliorate salt stress in rice by enhancing antioxidant enzyme

activities and regulating key cellular biochemical pathways. However,

the efficacy of PGPR may depend on many other factors, such as the

plant species or variety, stress types and intensity, and bacterial strain

characteristics. The specific mechanism underlying the salt tolerance

conferred by PGPR is also unclear and remains largely unanswered.

The findings presented here for PGPR effects on salt tolerance in rice

plants highlight the usefulness of PGPR in sustainable agriculture and

the need for more research on the complexmechanisms underlying the

capacity of PGPR to mitigate salinity.
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5 Conclusions

Our study comprehensively evaluated the impact of salinity stress

on various morphophysiological attributes of rice plants and

highlighted significant reductions in growth, photosynthetic

efficiency, and hormonal regulation, along with increased oxidative

damage and ionic imbalance, as key features of salt stress in rice. The

application of PGPR showed encouraging and promising potential

for alleviating the detrimental effects of salt stress on rice. Specifically,

PGPR treatment enhanced nutrient uptake, bolstered hormone

synthesis, restored ionic equilibrium, and bolstered antioxidant

defenses, culminating in notable improvements in plant growth.

Notably, among the tested PGPR strains, Bacillus subtilis emerged

as particularly effective in mitigating salinity-induced toxicity and

boosting plant tolerance. B. aryabhattai, as both an endophyte and an

epiphyte, demonstrated commendable effects in enhancing rice plant

resilience to salt stress; however, B. subtilis set a benchmark for

efficacy. These findings underscore the practical applicability of

PGPR in sustainable agriculture and the need for further

investigation into the intricate mechanisms underpinning their

salinity-mitigating properties and their potential impacts on grain

quality enhancement under saline conditions. Moving forward, field

trials focusing on incorporating PGPR inoculation, particularly in

conjunction with salt-tolerant rice varieties are needed, for

elucidating their precise effects on yield-contributing parameters

and economic benefits. Such studies will thereby, advance our

understanding and application of these beneficial microbial agents

in saline environments.
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Introduction: Drought is one of the biggest problems for crop production and

also affects the survival and persistence of soil rhizobia, which limits the

establishment of efficient symbiosis and endangers the productivity of

legumes, the main source of plant protein worldwide.

Aim: Since the biodiversity can be altered by several factors including abiotic

stresses or cultural practices, the objective of this research was to evaluate the

effect of water availability, plant genotype and agricultural management on the

presence, nodulation capacity and genotypic diversity of rhizobia.

Method: A field experiment was conducted with twelve common bean genotypes

under irrigation and rain-fed conditions, both in conventional and organic

management. Estimation of the number of viable rhizobia present in soils was

performed before the crop establishment, whereas the crop yield, nodule number

and the strain diversity of bacteria present in nodules were determined at postharvest.

Results: Rainfed conditions reduced the number of nodules and of isolated bacteria

and their genetic diversity, although to a lesser extent than the agrochemical inputs

related to conventional management. In addition, the effect of water scarcity on the

conventional management soil was greater than observed under organic conditions.

Conclusions: The preservation of diversity will be a key factor to maintain crop

production in the future, as problems caused by drought will be exacerbated by

climate change and organic management can help tomaintain the biodiversity of

soil microbiota, a fundamental aspect for soil health and quality.
KEYWORDS

genomic fingerprinting, nodulation, organic management, common bean, strain
diversity, yield
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1 Introduction

Nitrogen-fixing bacteria are a widely distributed phylogenetic

group of prokaryotic microorganisms that play a crucial role in the

functioning of ecosystems since they are involved in the entry of

nitrogen into the soils (Borges et al., 2016). These microorganisms

take atmospheric nitrogen (N2), the most abundant component of

the atmosphere, and convert it to assimilable nitrogen for plants

(NH4
+), using the nitrogenase enzyme. Although most species can

fix nitrogen in their free-living form, some of the microorganisms

need to be associated with plants, thus symbiotic associations

account for 50–70% of biological nitrogen fixation (BNF) in the

world (Prasuna, 2014; Simon et al., 2014).

This symbiosis provides legumes a relevant ecological

advantage as well as exceptional nutritional properties. Through

BNF, legumes fulfil the N requirements needed for their growth

(Masson-Boivin and Sachs, 2018; Song et al., 2024). This reduces

the need of synthetic N fertilizers and improves the N content of the

soils, increasing their fertility and, enabling crop development in N

poor soils (Aserse et al., 2020; Lindström and Mousavi, 2020).

Thereby, in farming systems, legumes are often used in crop

rotation, as well as green fertilizers (Araújo et al., 2015; Aserse

et al., 2020). Based on their ability to colonize low-N environments

and represent an alternative for saving inputs and conserving

resources, the Food and Agriculture Organization of the United

Nations (FAO, 2013), considers legumes as one of the most

promising components of the climate smart agriculture concept.

Drought is the most severe abiotic stress in agriculture, limiting

crop growth and yields, and due to climate change, drought events

are expected to increase in the early years, especially in southern

Europe (IPCC, 2021). It is therefore essential to seek strategies to

maintain food security in a sustainable way under water-limited

conditions, and the selection of drought tolerant genotypes is one of

the most important goals in breeding programs.

However, in the case of legumes, several authors have suggested

that selecting drought tolerant rhizobia strains could be a more

determining factor in drought tolerance than selecting a drought

tolerant genotype (Mhadhbi et al., 2011; Sharaf et al., 2019). Thus,

the establishment of symbiotic relationships with efficient rhizobia

can alleviate the effects of stress in legumes (Igiehon et al., 2021;

Omari et al., 2022; Oviya et al., 2023). This is the case of common

bean, where it has been observed that symbiosis with drought-

tolerant rhizobia improves plant tolerance to stress as well as

legume yield and quality (Steiner et al., 2020; Rodiño et al., 2021;

del-Canto et al., 2023), even under field conditions (Pastor-Bueis

et al., 2019; Rodiño et al., 2021).

Rhizobia, are abundant in the soil of many ecosystems and show

a great diversity at the species level, as well as great variability in

their symbiotic efficiency (Borges et al., 2016; Lindström and
Abbreviations: AA, Arrocina de Álava; AK, Amarilla de Kuartango; BNF,

biological nitrogen fixation; B, Borlotto de Vigevano; CL, Canela de León; CB,

Cocco Blanco; DW, dry weight; FW, fresh weight; HF, humidity factor; L, Lingot;

MPN, the most probable number; MU, Morada de Usánsolo; N, Negrita; NB,

Negra de Basaburua; OM, organic matter content; PA, Pinta Alavesa; RL, Riñón

de León; OV, Verde de Orbiso.
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Mousavi, 2020; Guanzon et al., 2023). Unfortunately, several

abiotic factors such as drought can influence the survival,

functioning and diversity of soil rhizobia, and thus, legume crop

productivity (Benjelloun et al., 2019; Sharaf et al., 2019; Santillana

Villanueva, 2021), because few strains of rhizobia show high

tolerance to water stress (Sharaf et al., 2019; Sindhu et al., 2020).

In addition, strain survival and competitiveness are not correlated

with their N2 fixation efficiency (De Souza et al., 2016; Kibido et al.,

2019; da Silva et al., 2024), reducing the possibilities of establishing

efficient symbiotic relationships.

Therefore, a higher diversity of legume nodulating bacteria in

the soil will maximize the biological nitrogen fixation under stress

conditions (Borges et al., 2016; Lindström and Mousavi, 2020;

Martins et al., 2024). In this sense, greater soil microbial diversity

will favour the adaptation of microbial populations to different

environments, increasing the likelihood of survival of stress-tolerant

microbial species and the establishment of effective symbiotic

relationships (Wang and Young, 2019), contributing to greater

crop resilience to stress. In addition, a greater biodiversity

improves soil structure, nutrient cycling, and nutrient and water

uptake, especially under drought conditions (Prudent et al., 2020).

Unfortunately, conventional agriculture related practices such

as the use of herbicides and fungicides have a negative effect on the

soil microbiota survival and diversity, reducing the efficiency of

symbiotic relationships (Silva Neto et al., 2013; Da-Silveira-Cardillo

et al., 2019; Rao et al., 2019). Additionally, the continued use of

inorganic N-fertilizers causes the evolution of less-mutualistic

rhizobia (Heath and Tiffin, 2007; Weese et al., 2015; Rao et al.,

2019), and the decrease of nodules production (Heath et al., 2010;

Regus et al., 2016). Thereby, with domestication and breeding in

high-soil-N environments, the natural legume defences against less-

effective rhizobia strains have been altered favouring less-

cooperative rhizobia and reducing the agricultural benefits of the

symbiosis (Weese et al., 2015).

Organic or sustainable farming, contrary to conventional

production, promotes the biodiversity of agrosystems based on

the concept that the greater biodiversity of the system, the greater

health and resilience of ecosystems (Pimentel et al., 2005; Kremen

and Miles, 2012; Wang and Young, 2019). The diversity of crops

and their rotation system prevents the total depletion of nutrients

from soils (Wolff and Killebrew, 2010; Hossain and Bakhsh, 2020)

increasing soil fertility, and the diversity and activity of soil micro

and macrobiotic communities (Herencia et al., 2020; Prudent et al.,

2020). In this regard, studies about the abundance and diversity of

rhizobia in soils, as well as the factors affecting both parameters, are

of special importance to study the responsiveness of agrosystems to

stresses (Omari et al., 2022).

According to different authors, the conservation of soil rhizobial

diversity in agrosystems is a sustainable strategy of great interest to

improve crop tolerance to stress by favouring the establishment of

efficient symbiotic relationships even under water scarcity

conditions (Wolff and Killebrew, 2010; Szparaga et al., 2019;

Hossain and Bakhsh, 2020). In addition to this, there is interest

in the search for indigenous inocula that are better adapted to local

growing conditions and therefore more efficient in responding to

stress conditions (del-Canto et al., 2023).
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This is especially important in common bean under drought

conditions as it is a very drought-sensitive crop (Embrapa, 2018;

Nawaz et al., 2021) with a high frequency of inefficient symbiotic

relationships (Michiels et al., 1998; Mwenda et al., 2023) that affect

productivity. Considering the high nutritional value of common

bean and that it is the grain legume for human consumption with

the highest production worldwide (Beebe et al., 2013; FAO, 2021),

the search for strategies to improve its productivity under

conditions of low water availability is a challenge of great interest.

With this in mind, our hypothesis was that the type of

management would have an effect on bean response to water stress,

as greater microbial diversity could favour greater crop resilience. To

test this, we analysed the effect of management (organic, conventional)

on the production of several common bean genotype under water

scarcity and how they affect the abundance, nodulation capacity and

genotypic diversity of common bean rhizobia.
2 Materials and methods

2.1 Plant material

Twelve bushy genotypes of Phaseolus vulgaris, most of them of

great economic interest in the North of Spain, were selected for the

evaluation of the effect of water scarcity and management system in

nodulation and rhizobia diversity. Of the twelve genotypes, four

correspond to commercial genotypes and eight to locally adapted

genotypes from different rainfall areas (Online resource

Supplementary Table SI.1). The eight local genotypes, not studied

to date, are traditionally grown on small family farms typically

under rainfed conditions. Five of them are from the Basque Country

(Northern Spain): Arrocina de Álava (AA), Amarilla de Kuartango

(AK), Morada de Usánsolo (MU), Pinta Alavesa (PA) and Verde de

Orbiso (VO). One is originally from Navarra (Northern Spain),

Negra de Basaburua (NB), and two from Castilla y León (Central

Spain), Canela de León (CL) and Riñón de León (RL). The other

four are commercial genotypes commonly grown all around Spain:

Cocco Blanco (CB), Lingot (L), Negrita (N), also marketed as “Frijol

Negro”, and Borlotto de Vigevano (B).
2.2 Location and soil characterization

The trials were performed in NEIKER experimental farm

located in Arkaute, Álava (Spain), between May and August of

2015. Arkaute (WGS84: 42.850254, -2.621362) is located at 532

meters above sea level and has an oceanic climate, type Cfb

(temperate oceanic climate or subtropical highland climate),

according to the Köppen Geiger climate classification (1900),

which is, a temperate and humid climate, in transition with the

Mediterranean climate (information obtained from Euskalmet,

Euskal meteorologia agentzia). The average temperature

throughout the growing season was 17.8°C, with three days

having a minimum temperature less than 5°C and 6 days having

a maximum temperature that exceeded 35°C. The accumulated

precipitation during the experiment was 116.5 mm.
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The field experiment was conducted under conventional and

organicmanagement. Both types of soils were catalogued according to

European standards and the current legislations of the Government of

Spain (MAPA, 2023), which describe and classify the type of practices

in each management system. The soil of the selected plots for the

study presented close locations (one contiguous to the other), similar

cropping histories (rotations between cereals, potatoes, vegetables and

legumes), and generally were grown under irrigated conditions

(Figure 1). The main differences in the management history of both

soils were due to agrochemical supplies. In the conventional plots,

different agrochemicals (herbicides, pesticides, and chemical

fertilization) were frequently applied depending on the different

types of crops and the requirements of each year. In the other

hand, organic plots avoided the use of synthetic chemical products.

The supply of nitrogen and nutrients was provided through organic

amendments, according to the Council Regulation EC No 834/2007

of 28 June 2007. The conventionally managed soil has been worked

under this type of management for more than ten years, while the

organically managed soil has been worked in this way, without the use

of synthetic chemicals, for five years. Although common beans were

frequently grown in both soils, no plot had a history of commercial

inoculation with rhizobia. Therefore, all the possible rhizobium

inoculums were naturally occurring.For the soil characterization,

eight soil samples 20 cm deep were randomly collected from each

soil (conventional and organic) and analysed at the Fraisoro Agro-

environmental Laboratory (Diputación Foral de Gipuzkoa) to study

their physical-chemical characteristics, according to the official

methods of analysis of the Ministry of Agriculture of Spain

(MAPA, 1994). The Ph, electrical conductivity in calcium sulfate

(EC, μS·cm-1) and effective cation exchange capacity (CEC, meq·100

ml-1) were determined by ADAS method; the organic matter content

(OM, %) was determined by the Walkley-Black method without heat

input; the nitrogen (N) content (%), by Kjeldahl method; the

phosphorous (P) content (mg·L-1), by the Olsen-Watanabe method

performing an extraction in sodium bicarbonate at pH 8.5; the

content of potassium (K, mg·L-1), calcium (Ca, mg·L-1) and

magnesium (Mg, mg·L-1), by ADAS method with extraction in

ammonium nitrate and subsequent reading in ICP-OES. The C/N

balance was calculated based on the following formula:

C=N = (OM content=1:72)=N content

Where 1.72 is the factor of Van Bemmelen for the conversion of

organic matter into Carbon. Finally, the granulometric

characteristics of the soil (percentages of fine sand, coarse sand,

silt, and clay) were determined according to the ISSS soil particle

size fraction system.
2.3 Estimation of the number of viable
rhizobia present in soils

The number of viable rhizobia present in the soils was estimated

according to the methodology described by Hungrıá and Araujo

(1994) with little modifications. The most probable number (MPN)

of viable rhizobia is an indirect method for counting rhizobia
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present in soils. This method assumes that an infectious or viable

rhizobia is capable of developing a nodule. While a negative result,

absence of nodules, indicates the absence of infectious rhizobia. For

that, before the crop establishment, soil samples were taken from

both conventional and organic management. The soil samples were

passed through a 4 mm sieve. Then, 10 g of processed soil was

diluted in 95 mL of diluent solution (phosphate buffer, pH 7.3) in a

beaker with glass pearls on a horizontal shaker at slow speed at a

temperature of 25°C for 30 minutes. From this soil solution, five

serial dilutions were made (1 mL of previous solution and 9 mL of

diluent solution), making four replications of each one. In addition,

a small aliquot of the sieved soil sample was weighed (fresh weight,

FW), and after drying in the oven at 80°C for two days, the sample

was reweighed (dry weight, DW) in order to calculate the humidity

factor (HF) and to compare the different soils regardless of its water

content with the following formula:

HF = (FW − DW)=(DW − recipient   tare)−1

Previously, sterilized common bean seeds of Arrocina de Álava

genotype (10 min in sodium hypochlorite 1%) were germinated in

opaque cultivation jars containing 500 mL of nitrogen-free Fahraeus

solution (Fahraeus, 1957). The seeds were held in a funnel, connected

to the nutrient solution by a filter paper wick. Then, each of the

seedlings were inoculated with one of the serial solutions of soil and
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grown in a growth chamber (Ibercex SA, Alcalá de Henares) under

controlled conditions (12 h photoperiod, light intensity 500 μmoles of

photons·m-2·s-1, 20/25°C temperature and 70/60% relative humidity,

night/day respectively). After three weeks, the number of plants that

developed nodules (positives) and those that did not (negatives) were

counted. From these values, using a mathematical formula or a table

of results (Hungrıá and Araujo, 1994), and considering the soil

humidity factor (HF), the MPN of viable rhizobia was estimated, as

well as the occurrence probabilities and lower and upper limits of the

95% confidence interval.
2.4 Experimental design and
growth conditions

Irrigated and rain-fed treatments were performed in two

subplots from each selected management plot. One subplot for

conventional and the other for organic management. The 12

genotypes were sown by hand at a depth of 2 cm using a

randomized block design with 4 biological replicates per water

regime. A distance of 5 m separated each block, which consisted of

two 10 m long rows with a 0.5 m between rows and 0.2 m separation

between plants within the row, achieving a stand density of 100,000

plants ha-1.
B

A

FIGURE 1

Location of the two crop fields of the study, including the experimental design scheme (A), and detail the subplots (B).
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The water inputs were estimated controlling the irrigation time

of the irrigation system (6 mm·h-1 flow), while the rainfall data were

taken from the weather station Arkaute I (Euskalmet, 2023) located

close to the experimental fields. Under rain-fed conditions, the

seeds from common bean genotypes described above only received

a minimum amount of water after sowing to assure the emergence

and seedlings survival (12 mm). Afterwards the seedlings only

received rainwater (116.5 mm). For the irrigated trials, three

supplemental irrigations were supplied to plants during their

growth (12 mm each). Therefore, the irrigated plots received a

total contribution of 164.5 mm, while those under rainfed

conditions received 128.5 mm, which is, a 22% reduction of

water availability.

Under organic management, weeding control was mechanical

and manual. In fields under conventional management, various

herbicides were applied: preemergence herbicide Linuron 500 g·L-1

(Linurex ® 50 SC, Adama Chile SA), at a minimum recommended

dose of 0.8 L·ha-1; and post-emergence herbicide, pendimethalin

45.5% (Stomp® Aqua, BASF), at a minimum recommended dose of

2 L·ha-1, at the V3 development stage, plants with the first trifoliate

leaf (Fernández et al., 1986).
2.5 Nodule sampling

In the pre-flowering stage, R5 (Fernández et al., 1986), the

nodules from three randomly selected plants from each

experimental plots were collected, with four replicates of each, i.e.

12 nodules were harvested from each experimental condition (three

plants of 12 genotypes, grown under two different water regimes in

two different agricultural managements, with four replications) a

total of 576 plants. Using a shovel, and measuring 20 cm from the

center of the plat, the root system was excavated until a depth of 26

cm totalling a soil volume of 10.4 L per plant, similarly to

Somasegaran and Hoben (1994), to ensure the harvest of

practically the entire root system. Once in the laboratory, whole

plants were carefully removed from the soil to obtain roots and

nodules, and adhering soil was removed from roots by careful

shaking. Then, the removed soil was carefully examined to recover

any nodules left in the soil. Harvested nodules were washed in water

and gently dried with paper. The nodules were counted and

desiccated in bottles with silica gel at 4°C to preserve and use

them in future research.
2.6 Yield quantification

At harvest, all plants from each block were counted, collected

individually, dried, threshed, and cleaned separately to quantify the yield

(Kg·ha-1). Four biological replicates of each experimental conditions.
2.7 Endosymbiont isolation

The use of common bean “trap plants” grown in local field

under rainfed conditions, could guarantee that isolated rhizobia
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have a certain competitiveness and possibly tolerance to water

stress. Therefore, once the four most productive genotypes under

rainfed conditions and a less productive one were selected, the

bacteria present in their nodules were extracted from eight nodules

randomly picked from each plot according to Sanz-Sáez et al.

(2015). That is, 8 nodules per experimental condition, a total of

160 nodules (8 nodules of 5 genotypes grown under rainfed and

irrigation conditions in two agricultural management systems). The

nodules were first rehydrated by immersion in sterile distilled water

for 2-4 h and surface-sterilized by immersing them in 70% ethanol

(5 sec), and then in 50% sodium hypochlorite (5 min). Later, they

were rinsed several times with sterile distilled water to remove the

bleach residues. The nodules were crushed in a petri dish and 10-20

mL of autoclaved distilled water was added on the medulla of the

nodule, aspirating, and expiring several times with the micro pipette

to collect the bacteria (Somasegaran and Hoben, 1994; Howieson

and Dilworth, 2016) and placing on a plate with solid TY medium

(Beringer, 1974) to be grown at a constant temperature of 29°C.

Once the bacteria had grown, a single colony was chosen

randomly and replated to a new solid TY plate for purification of

rhizobia isolates. This operation was repeated for all observed

colonies of different morphology and appearance from each plate.

Using this method, 368 total isolates were obtained. These pure

cultures were preserved at 4°C and were then transferred to 50%

glycerol in TY, to preserve them at -80°C, in order to use them in

future trials.
2.8 Isolated strain diversity by BOX+REP
polymerase chain reaction
genomic fingerprinting

Consensus sequences such as repetitive extragenetic

palindromic sequences (REP), enterobacterial repetitive intergenic

consensus (ERIC) and BOX elements, related to repetitive and

conservative elements diffused in DNA, have been extensively used

for rhizobial strain identification due to its ease, quickness, and high

discriminatory power at infraspecific level (Kaschuk et al., 2006;

Borges et al., 2016; Benjelloun et al., 2019). In our study, we used

BOX and REP-PCR since the application of both PCR methods

increases the accuracy when compared with only one PCR (Olive

and Bean, 1999). The DNA extraction was performed according to

Heath and Tiffin (2009) with modifications: 104 mL of liquid

medium TY (Beringer, 1974) incubated with bacteria during 24-

48 h at 28°C was centrifuged for 5 min at 16000 g and the pellet

containing the cells was washed 3 times with 1 M NaCl and once

with 100% ethanol and dried before extracting DNA. Then, the cells

were re-suspended in 104 μL of sterile milli-Q water and

homogenizing gently with the micropipette. The suspension was

centrifuged 10 min at 16000 g and the aqueous phase was removed.

For the DNA extraction, 30 μL of 10 mM tris-HCL (pH 8) and 1 μL

of 20 mg·mL-1 protein kinase K enzyme (Invitrogen, Carisbad, CA)

was added to the pellet and homogenized again with the

micropipette and vortex. Then, 30 μL were transferred to a 0.2

mL PCR tube, and 55°C was applied for 4 h in order to let the

protein kinase K to perform its function. After that it was
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deactivated by heating the solution at 95°C for 10 min. DNA

samples were quantified using a NanoDrop spectrophotometer

(Thermo scientific, Wilmington, DE, USA) and diluted to 25 ng

mL-1. The DNA extraction was stored at 4°C.

BOX-PCR was performed according to the method described by

Kaschuk et al., 2006 with modifications, using the BOXA1R primer (5′-
CTACGGCAAGGCGACGCTGACG-3′; Versalovic et al., 1991). REP-
PCR was performed according to the method described by Versalovic

et al., 1991 with modifications, using the primers REP-1 (5´-

IIIICGICGICATCIGGC-3´) and REP-2 (5´-ICGICTTATCIGGCCT

AC-3´). Each PCR reaction was performed in a final volume of 10

mL containing: dNTPs 0.3 mL (10 mM); reaction buffer 1mL (10x

BioLabs, New England); primer 0.5 mL (10 mM), for two primers in

REP; Taq DNA polymerase 0.08 mL (5 Um·L-1); Betaine 0.5 mL (5 mM),

DNA 1.5 mL; sterile milli-Q water to complete the volume. The

amplification program was performed in a thermocycler S1000™

(Bio-Rad Laboratories, Inc.), applying an initial denaturing step (95°C,

7 min) with 30 cycles of denaturation (95°C, 1 min), annealing (53°C, 8

min for BOX-PCR and 40°C; 8min for REP-PCR) and extension (65°C,

8 min); and a final extension cycle (65°C, 16 min). The PCR products

were separated by horizontal electrophoresis on a 1.5% agarose gel

(EEO-Mr<0.15) in TBE buffer (0.5x) at 90 V for 5 h, using a 1 Kb DNA

marker (BioLabs, New England). The gels were stained with ethidium

bromide, and visualized under UV light using a benchtop UV

transilluminator (Bio-Doc-It™ UVP Imaging System).
2.9 Statistical analysis

The diversity of strains was analysed from the images of the gels

(PCR fingerprints) using the free software GelJ v.2.0 (Heras et al.,

2015) and transformed into a binary matrix. After analysing a large

number of samples, the most consistent bands were selected, with

70% or more percentage of appearance. BOX and REP-PCR data

were combined for each isolate.

From this BOX+REP binary matrix, Python software was used

to build similarity matrices. Using the Jaccard coefficient and

applying the UPGMA algorithm unweighted pair-group method

with arithmetic mean (Sokal, 1973), the dendrogram and diversity

indexes (Shannon and Weaver, 1949), richness (Margalef, 1958)

and evenness (Pielou, 1977) were obtained. The graphic

representations of the dendrograms were made with the free

software iTOL (Interactive tree of Life, Leunic and Bork, 2019).

Through these analyses, the different isolates were grouped

according to the degree of similarity of their PCR fingerprints in

different clusters. The number of clusters also indicates the strain

diversity or diversity at infraspecific level. The number of clusters

and their bootstrapping was calculated at 70% similarity. Due to the

observed high variability, to obtain larger clusters, 35% similarity

was also used (Grange and Hungria, 2004).

The nodule number and yield was analysed using the statistical

package SPSS Statistics 24.0 (IBM Corporation, Armonk, NY, USA).

The normality of the non-standardized residuals of the data was

studied using the Shapiro-Wilk test and the homoscedasticity of the

variance was studied with the Levenne test. As the water availability

treatment was not randomized and organic and conventional
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management soils were separated, the behaviour of the genotypes

was studied in the four experimental conditions: irrigated

conventional management; rainfed conventional management;

irrigated organic management; and rainfed organic management as

it has been performed previously by Sanz-Sáez et al. (2019). For this, a

one-way analysis of variance (ANOVA) was performed with

genotypes as factor and replicates as random effect. When the

genotype effect was significant, least square means post-hoc test was

performed to compare means (Tukey or Kruskal Wallis). The

management effect was also analysed separating the data according

to the water regime through one-way analysis of variance (ANOVA),

with agricultural management as factor and replicates as random

effect. The graphic representations of the nodule number were made

with SigmaPlot 15 (Systat Software, Inc.).

As one of the objectives of this research was to investigate the

effect of water scarcity over the nodulation, the two management

systems were treated as two different locations (environments) and

the effect of water scarcity was analysed for each location separately,

despite not being randomized. One-way ANOVA with water

availability was treated as factor and replicates as random effect.
3 Results

3.1 Soil characterization

The properties and characteristics of soils cultivated under

organic and conventional management were similar (Table 1).

Both were clay-loam soils with a very light salinity, had a basic

pH typical of limestone soils, contained an optimal carbon balance,

and contained adequate nitrogen and phosphorus content with a

medium magnesium content. However, both soils differed in their

organic matter, magnesium and potassium content all being higher

in the organic management soil, while higher calcium content

occurred in the conventional management field.
3.2 Estimation of the number of viable
rhizobia present in soils

The estimation of rhizobia cells existing in the sampled soils

before sowing and the establishment of water treatment are shown

in Table 2. The MPN shows the number of live rhizobia cells present

per unit of volume in the matrix solution taking into consideration

the soil humidity correction factor which allows for comparisons of

the different soils regardless of water content. The MPN values were

more than 20-fold higher in the organic (21.102) than in the

conventional (0.609) management soil (Table 2).
3.3 Effect of water stress, agricultural
management and legume genotypes
on nodulation

The infection capacity of rhizobia, showed as nodule number

per plant, was almost 58.25% lower, on average, in conventional
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management than in organic management (Table 3). The number

of nodules was also reduced by low water availability in both

management systems although its effect was less evident than that

of the management itself. Although there was not management by

water availability interaction, rainfed conditions seemed to decrease

the rhizobia infection capacity more in conventional (24.56%) than

in organic management (20.30%) (Table 3).

The nodulation capacity also varied depending on the

genotypes although all of them showed higher nodulation

capacity in organic than in conventional management (Figure 2).

The genotypes RL and MU showed a greater number of nodules

under irrigation in both management systems, while CB, PA and CL

showed the least in the conventional management, and B showed

the least in the organic management field. Reduced water

availability only decreased nodule number in RL and NB

genotypes in the organic plots, whereas in conventional plots no

significant effect of rainfed conditions was observed in any of the

genotypes tested. RL was by far the genotype that developed a

greater number of nodules under rainfed conditions in

conventional management (Figure 2) but was more affected by

water availability in organic management. Under organic

management, the MU and L cultivars were those that showed

greater nodulation under rainfed conditions, unlike CB, B and

NB that were the less nodulated genotypes. The B and NB

genotypes also showed less nodules in conventional management

under rainfed conditions. Therefore, the genotypes that most times

showed the highest nodulation capacity were the RL and MU, while

the B and NB were the ones showing the lowest nodulation capacity.
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3.4 Yield quantification

The yields obtained in conventional management were higher

than those obtained with organic management. However, while

rainfed conditions considerably reduced common bean production

under conventional management, water scarcity did not

significantly reduce organic bean production (Table 4).

On the other hand, it was observed that AA, N, NB and RL were

the genotypes that ranked as most productive under different

experimental conditions, also under rainfed conditions, while AK

was one of the least productive (Table 4). Thus, those were the

genotypes selected to study the diversity of the bacteria strains

inside their nodules.
3.5 Isolated strain diversity by BOX+REP
PCR genomic fingerprinting

From the 368 bacteria isolated from nodules of plants grown

under different water availability in both organic and conventional

management, BOX+REP PCR fingerprinting were obtained on 320

isolates, since some strains did not amplify with the primers used

similarly to other literature (Judd et al., 1993; Mostasso et al., 2002;

Kaschuk et al., 2006).

The genomic fingerprinting showed a high level of genetic

diversity among the strains, considering a similarity of 70% in the

clustering analysis, confirmed by the low final levels of similarity

(Online Resource, Supplementary Table SI.2). With this level of

similarity (70%) the vast majority of the generated clusters in the

different experimental conditions were composed of a single strain

and the values obtained from bootstrapping were generally greater

than 0.60, thus, can be considered stable groups (Jain and Moreau,

1987; Kerr and Churchill, 2001). To obtain larger clusters, formed

by a greater number of strains, the isolated strains were also

grouped at a 35% similarity level (Figure 3, Tables 5, 6). Thus,

larger clusters were obtained and formed by several strains,

although bootstrap values remained below 0.60.

The number of isolated bacteria (Online resource,

Supplementary Table SI.2, Supplementary Table SI.3), clusters,

diversity (Shannon, H0), richness (Margalef, R1) and evenness

(Pielou, E1) of strains were greater in the nodules of the plants

grown under organic management than under conventional

management, regardless of the considered similarity level

(Tables 5, 6, for 35% of similarity and Online Resource,
TABLE 2 Most probable number of viable rhizobia in organic and
conventional plots before sowing: HF, soil humidity factor; MPN, most
probable number of viable rhizobia cells present in the soil matrix
solution corrected with HF; P (%), probability of the combination
occurrence if the experiment is repeated an infinite number of times
with the same matrix solution; CImin and CImax, lower and upper limits
of the 95% confidence interval.

HF MPN P (%) CImin CImax

Conventional 1.0 0.6 28.2 0.2 2.3

Organic 1.2 21.1 0.2 9.3 52.8
fro
TABLE 1 Physical-chemical characteristics of conventional and organic
agricultural soils of the experimental fields.

Conventional Organic

pH 8.30 8.45

Electrical Conductivity
(mS·cm-1)

1900 1700

C/N balance 3.44 7.62

Organic Matter (%) 1.12 1.43

Nitrogen (%) 0.19 0.20

Phosphorous (mg·L-1) 42.81 46.75

Potasium (mg·L-1) 164.0 340.00

Magnesium (mg·L-1) 85.20 127.20

Calcium (mg·L-1) 6850 6284

Sodium (mg·L-1) 34.50 29.90

Efective CEC (meq/100 mL) 20.76 16.81

Fine sand (0.2-0.02 mm, %) 34.34 48.50

Coarse sand (0.2-2 mm, %) 7.81 3.97

% Silt (0.02-0.002 mm, %) 24.53 29.40

% Clay (<0.002 mm, %) 33.32 18.10

Texture clasification Clay-Loam Clay-Loam
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Supplementary Table SI.2, Supplementary SI.3, for 70% of

similarity). Rainfed conditions also caused a drop, although not

statistically significant, in the diversity indices (Shannon, Margalef

and Pielou), number of isolates and obtained clusters, at both levels

of similarity (Table 5 and Online resource, Supplementary Table

SI.2). This can be observed when analysing both managements

separately based on water availability (Figure 3). Nodules of plants

grown in organic soils always showed higher strain genetic diversity

(diversity indices and number of clusters), even under rainfed

conditions, with respect to the most favourable conditions

(irrigation) of conventional management (Figure 3, Table 5 and

Online resource Supplementary Table SI.2).

In conventional management under irrigated conditions, 71

bacteria were isolated and grouped into 9 clusters, two of which

represent 67.6% of the strains. Under rainfed conventional

management, the isolated bacteria were reduced to 56 bacteria

and 89.3% of them were grouped into one large cluster

(Figure 3). Nevertheless, under organic management and

irrigation conditions, 96 bacteria were isolated and grouped into

18 clusters, with the largest cluster representing 46.9% of the

isolated bacteria. Under rainfed organic conditions, 97 strains

were isolated and grouped into 15 clusters, three of which

represented 71.1% of the isolated bacteria. Rainfed conditions

reduced the number of isolated bacteria strains by 21.1% under

conventional management but not in organic management soil. The

genetic diversity of strains (number of clusters) was reduced by

33.3% in conventional management and by 16.7% in organic

management due to low water availability (Figure 3).

Finally, when analysing the different genotypes (Table 6), AK

showed the lowest number of isolated bacteria (54), the lowest

indexes of genetic diversity and the lowest number of clusters. On

the other hand, N and NB, showed the highest indexes of genetic

diversity and a greater number of clusters (13 and 12 respectively).
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N was the genotype from which the greatest number of bacteria

were isolated (71).
4 Discussion

The great diversity that rhizobia show at the species level is

essential for Phaseolus vulgaris to stablish efficient symbiosis and

maintain crop productivity in a sustainable way, especially under

drought conditions (Lindström and Mousavi, 2020; Guanzon et al.,

2023; da Silva et al., 2024). Rhizobia can play a more important role

in the resistance to stress of the symbiosis relationship than the

genotype of plant (Mhadhbi et al., 2011; Sharaf et al., 2019).

Unfortunately, the symbiotic efficiency of rhizobia is highly

variable and, on many occasions, establish inefficient symbiotic

relationships with common bean having a negative impact on

productivity (Michiels et al., 1998; Armenta-Borjóquez et al.,

2016; Mwenda et al., 2023). Thus, greater microbial diversity in

soils and the better the response of crops to stress will increase the

probability of appearance of efficient stress-tolerant microbial

species (Wang and Young, 2019) that can maximize biological

nitrogen fixation under such conditions (Borges et al., 2016;

Lindström and Mousavi, 2020; Liyanage et al., 2023).

The BOX and REP-PCR fingerprinting analysis showed a high

level of genetic diversity among the bacteria isolated from nodules

of all the sampled plants grown under the different agronomic

conditions. These data confirm the great promiscuity of the

common bean plants which are capable of nodulating with many

different bacteria. Our results are comparable to those of other

studies using similar techniques, in which most of the groups,

clustered at 70% similarity, were formed just by one or two strains

(Grange and Hungria, 2004; Chibeba et al., 2020; Odori et al., 2020).

In most clusters, the values obtained from bootstrapping were

close to 0.60 at 70% similarity and even lower values were obtained

at 35% of. These low bootstrap values are usually obtained in these

type of dendrograms (Aulakh et al., 2020) due to both, the type of

data (they are not related sequences), and to the large number of

operational taxonomic units (OTUs, bacterial strains), which

contribute to lower the value of the bootstraps (Efron and

Tibshirani, 1993). However, despite the low bootstrap values, this

technique is considered a powerful tool to detect strain diversity

(Alberton et al., 2006; Kaschuk et al., 2006; Costa et al., 2018).

Water scarcity provokes reduction of nodule number per

common bean plant (Berny-Mier et al., 2019; Aserse et al., 2020;

Prudent et al., 2020). In this study, a reduction of only 22% in water

availability affected the nodulation efficiency, reducing the number

of nodules per plant and the number of isolated bacteria per nodule.

However, it did not significantly affect the strain genetic diversity,

although there was a tendency to decrease under water

scarcity conditions.

Water scarcity is one of the factors that most affect the rhizobia

survival in their free-life phase (Hungria et al., 2000; Sindhu et al.,

2020; Santillana Villanueva, 2021) and the nodulation process,

affecting chemotaxis, initiation, formation and development of

nodules (Sindhu et al., 2020; Viti et al., 2021; Omari et al., 2022)

thus reducing the number of nodules. In fact, under sufficiently
TABLE 3 Mean values ( ± SE) and ANOVA results (p-value) of nodule
number per plant of different common bean plants grown under
different water availability (WA) conditions: irrigated and rainfed and in
different management systems (M), conventional and organic.

Management WA Nodule number per plant

Conventional

Irrigation 6.80 ± 0.89 B

Rainfed 5.13 ± 0.93 b

Mean 6.37 ± 0.75

Organic

Irrigation 15.41 ± 0.95 A

Rainfed 12.28 ± 1.11 a

Mean 15.26 ± 1.05

ANOVA RESULTS

Factors P-value

M ***

WA **

M*WA NS
Capital letters were used to compare the water availability treatments in conventional
management and lowercase letters in organic management (*p<0.05; **p<0.01 and
***p<0.001; NS, non-significant).
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prolonged or severe drought conditions the nodule formation can

be completely inhibited (Gerosa-Ramos et al., 2003). In drought-

affected soils, the decrease of bacterial diversity and nodulation

capacity also translates into a lower diversity of the nodule

bacteriome, reducing the number of isolated bacteria and the

genetic diversity of detected strains. Similar effects were described

in soybean (Sharaf et al., 2019) and common bean (Cytryn

et al., 2007).

The reduction of the bacterial diversity parameters due to lower

water availability was observed in both managements, however, the effect

was slightly higher under conventional management than that observed

under organic conditions. In the latter, water scarcity had no effect on

yield and higher nodulation, higher number of isolated strains and

greater genetic diversity of strains were recorded even under rainfed

conditions. These results would demonstrate that organic soil´s

microbiota reflect wider environmental adaptation and superior

competitive ability (Yan et al., 2017; Costa et al., 2018) and would
Frontiers in Plant Science 09139
confirm that these soils have greater resilience to adverse conditions such

as water stress via greater microbial abundance and diversity (Borges

et al., 2016; Lindström andMousavi, 2020). As some authors suggest, the

maintenance of the soil microbial genetic biodiversity is of great

importance because it provides a major buffering capacity of the soil

(Loreau et al., 2001) and it is related to soil health and quality as well as

agricultural sustainability (Kaschuk et al., 2006).

Conventional plots showed lower abundance and diversity in

the soil microbiome even before sowing and under irrigated

conditions. This would be related to the practices and

agrochemicals used in conventional agriculture (Rao et al., 2019),

since the two sampled agricultural soils, conventional and organic,

had similar edapho-climatic conditions and both presented similar

cropping histories and soil characteristics.

The soil of conventional management plots was subjected to

years of agrochemicals and N-fertilization inputs. Mineral

fertilization reduces plant nodulation (Heath et al., 2010; Regus
B

A

FIGURE 2

Number of nodules per plant of different genotypes of Phaseolus vulgaris (AA, Arrocina de Álava; AK, Amarilla de Kuartango; B, Borlotto; CB, Coco
blanco; CL, Canela de León; L, Lingot; MU, Morada de Usansolo; N, Negrita; NB, Negra de Basaburua; PA, Pinta alavesa; RL, Riñón de León; y VO,
Verde de Orbiso), under different water availability (WA) treatments in the field: irrigation (dark) and rainfed (light); both in conventional (A) and
organic management (B). Bars indicate the mean of each genotype for number of nodules. Different capital letters designate significantly different
genotype means under irrigated conditions while lower case letters designate significant different genotype means for the rainfed treatment
according to LSD post-hoc analysis. Asterisks withing the figures were used to show the effect of water in each genotype separately. Genotype I
illustrate the p-value of the genotype effect under irrigated conditions; Genotype R illustrates the p-value of the genotype effect under rainfed
conditions; WA, indicated the effect of water availability factor in each management (*p<0.05; **p<0.01 and ***p<0.001; NS, non-significant).
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et al., 2016) and symbiotic efficiency (Heath and Tiffin, 2007; Weese

et al., 2015; Gordon et al., 2016; Rao et al., 2019) because it is

energetically cheaper for plants to reduce ammonium and nitrate

than to fix N2. This leads to a reduction on the presence and

diversity of rhizobia over time (Moreira et al., 2006; Da-Silveira-

Cardillo et al., 2019). In addition, during the experiment, two doses

of herbicides, Pedimethalin and one of Linuron, were applied to

conventional plots. There is quite a consensus on the negative effect

of herbicides on bacterial diversity. Coinciding with our

observations, Garcıá-Garijo et al (2014) detected that Imazamox

drastically affected the nodulation and biological nitrogen fixation

of common beans, and Darine et al. (2015) reported that Fusilade

herbicide causes a decline in richness and structure of soil bacterial

communities, mainly at the rhizosphere level. Furthermore,

although the literature contains little information on the effects of

pesticides on legume-rhizobia signal exchange, some in vitro work

with 30 different pesticides showed that Sinorhizobium meliloti

NodD was affected resulting in delayed nodulation and reduced

biological nitrogen fixation in Medicago sativa (Fox et al., 2001).

Consequently, the use of agrochemicals leads to a loss of

abundance and diversity in the soil microbiome (Rao et al., 2019),
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as well as of rhizobia (Silva Neto et al., 2013; Weese et al., 2015),

reducing plant nodulation and genetic diversity of strains. On the

contrary, organic amendments, such as manure, a common practice

in organic management, usually increase the abundance and

diversity of microorganisms and rhizobia (Rao et al., 2019; Li

et al., 2022), promoting a greater plant nodulation (Herencia

et al., 2020), as in our results.

This negative effect of agrochemicals on common bean

symbiosis was even more drastic than that produced by a

reduction of 22% in water availability. In fact, the use of

agrochemicals reduced nodulation, the number of isolated

bacteria and the genetic diversity of nodule bacteriome strains,

while water availability only reduced nodulation, and no significant

effect on strain diversity was observed.

Although in organic management no effect of water scarcity was

observed in yield, confirming a greater resilience to water stress

(Borges et al., 2016; Lindström and Mousavi, 2020), the yields

obtained in this management were lower than in conventional

management, probably due to the difficulty of weed control, since

the physical and chemical conditions were not very different in both

fields. Therefore, it is evident the need to study different strategies to
TABLE 4 Mean values ( ± SE) and ANOVA results (p-value) of the effect of water availability (WA) and genotype (G) on common bean yield (kg·ha-1).
both in conventional and organic management.

Conventional yield (kg·ha-1) Organic yield (kg·ha-1)

Irrigation 2746.2 ± 155 a Irrigation 1649.5 ± 135.2 a

Rainfed 2350.7 ± 111.2 b Rainfed 1451 ± 87 a

ANOVA RESULTS ANOVA RESULTS

Factors P-value Factors P-value

WA * WA NS

Conventional yield (kg·ha-1) Organic yield (kg·ha-1)

Gen. Irrigation Rainfed Gen. Irrigation Rainfed

AA 3807.8 ± 237.5 2679.5 ± 146.1 abc AA 3107.3 ± 505.2 a 2395.7 ± 444.7 a

AK 2232.8 ± 450.8 1882.1 ± 381.3 bc AK 1031.7 ± 158 b 1052.9 ± 153.9 b

B 2121.9 ± 379.7 1837.6 ± 246.3 c B 1156.1 ± 163.5 b 951.4 ± 117.1 b

CB 2288.4 ± 291.1 2174.2 ± 334.2 bc CB 867.2 ± 376.5 b 1139.7 ± 256.8 b

CL 2358.6 ± 377.5 1892.9 ± 296.9 bc CL 1442.6 ± 196.3 ab 1189.7 ± 201.8 b

L 3462.8 ± 395.1 2092.7 ± 144.1 bc L 1444.7 ± 208.2 ab 1750.8 ± 111.7 ab

N 2850.4 ± 686.5 2981.2 ± 398 ab N 2179.6 ± 229.9 ab 1881.9 ± 344.4 ab

NB 3216.6 ± 416.7 2631.6 ± 251.8 abc NB 1910.7 ± 381.7 ab 1562.7 ± 142.6 ab

PA 2890.8 ± 670.3 2424 ± 219.7 abc PA 1384.7 ± 406.7 ab 1380 ± 242.5 ab

RL 3926.9 ± 343.2 3285.9 ± 509.7 a RL 1884.5 ± 480.2 ab 1610.8 ± 42.9 ab

VO 2205.3 ± 254.9 2174.4 ± 215.4 bc VO 1794.5 ± 658.1 ab 1160.2 ± 173.4 b

ANOVA RESULTS ANOVA RESULTS

Factors P-value P-value Factors P-value P-value

G NS * G * **
AA, Arrocina de Álava; AK, Amarilla de Kuartango; B, Borlotto de Vigevano; CB, Cocco Blanco; CL, Canela de León; L, Lingot; MU, Morada de Usansolo; N, Negrita; NB, Negra de Basaburua;
PA, Pinta alavesa; RL, Riñón de León; and VO, Verde de Orbiso (*p<0.05; **p<0.01; NS, non-significant).
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B

C D

A

FIGURE 3

Dendrogram constructed from the BOX+REP PCR genomic fingerprinting. Number of isolated bacteria (N), number of clusters (represented
graphically with different colours), diversity indices (Shannon, Margalef and Pielou) and cluster bootstraping obtained at a 35% similarity level in:
conventional management under irrigation conditions (A); conventional management under rainfed conditions (B); organic management under
irrigation conditions (C); and organic management under rainfed conditions (D).
TABLE 5 Number of isolated bacteria, average stability of clusters and mean values ( ± SE) and ANOVA results (p-value) of strain diversity indices
(Shanon, Margalef and Pielou) and number of obtained clusters at a similarity level of 35% according to agricultural management (conventional and
organic) and water availability (I, irrigated; and R, rainfed) (*p<0.05; **p<0.01 and ***p<0.001; NS, non-significant).

Isolated
bacteria

Cluster stabil-
ity (bootstraping)

Diversity
(Shannon´
s index)

Richness
(Margalef´
s index)

Evenness
(Pielou´
s index)

Number
of clusters

Conventional 127 0.51 1.27 ± 0.12 b 11.79 ± 0.32 b 0.51 ± 0.05 a 12 ± 0.30 b

Organic 193 0.46 2.17 ± 0.152 a 14.81 ± 0.70 a 0.69 ± 0.04 a 23 ± 0.69 a

Irrigation 167 0.44 2.13 ± 0,15 a 20.80 ± 0.77 a 0.70 ± 0.04 a 21 ± 0.77 a

Rainfed 153 0.44 1.79 ± 0.16 a 17.80 ± 0.56 a 0.62 ± 0.05 a 18 ± 0.54 a

Conventional
I 71 0.47 1.16 ± 0.115 a 7.76 ± 0.52 a 0.7 ± 0.06 a 8 ± 0.51 a

R 56 0.57 0.51 ± 0.12 a 5.75 ± 0.40 a 0.28 ± 0.06 a 6 ± 0.37 a

Organic
I 96 0.44 2.05 ± 0.27 a 17.78 ± 1.24 a 0.71 ± 0.07 a 18 ± 1.24 a

R 97 0.45 1.98 ± 0.17 a 14.78 ± 0.76 a 0.73 ± 0.05 a 15 ± 0.75 a

ANOVA RESULTS

Factors P-value

M ** ** NS **

WA NS NS NS NS

M*WA NS NS NS NS
F
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improve crop productivity in organic management to avoid yield

losses, such us a better weed control, one of the prime causes of yield

losses in organic management (Entz et al., 2001; Posner et al., 2008).

Finally, we also detected an effect of plant genotype on nodule

number, as it has been observed in several publications (Berny-Mier

et al., 2019; Goyal et al., 2021; Omari et al., 2022), although without

interaction with the rest of the studied factors. In addition, we

detected differences in the diversity of isolated strains across

genotypes, as it was observed in soybeans (Sharaf et al., 2019) and

in common bean (Shamseldin and Velázquez, 2020). Although

some authors have not found effect of common bean genotype on

rhizobial diversity (Grange and Hungria, 2004), other researchers

have reported that the legume plants control the nodulation process

(Ferguson et al., 2019), and the involvement of several Phaseolus

vulgaris genes in strain-specific selection (Rıṕodas et al., 2019).
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RL and MU were the genotypes that showed more nodules in

both management practices, also under rainfed conditions. RL was

also the second genotype with a higher number of strains, after the

N genotype. On the contrary, NB, was the least nodulated genotype,

but showed great strain diversity and was one of the most

productive genotypes under limited water conditions. On the

other hand, AK, a genotype selected as the least productive,

showed few nodules and low number of isolated bacteria, with

less strain diversity under rainfed conditions. These results agree

with the findings of other authors (Aserse et al., 2020) that suggest

that the number of nodules is not always related to biological

nitrogen fixation efficiency (Zurdo-Piñeiro et al., 2009; Flores-Félix

et al., 2019; Shamseldin and Velázquez, 2020). However, the

number of nodules gives an idea of the abundance and/or the

viability of the rhizobia present in soils, and it has also been stated
TABLE 6 Number of isolated bacteria, strain diversity indices (Shanon, Margalef and Pielou) and number, structure and average stability of clusters
obtained at a similarity level of 35% according to agricultural management (C, conventional; O, organic), water availability (I, irrigated; R, rainfed), and
genotype (AA, Arrocina de Álava; AK, Amarilla de Kuartango; N, Negrita; NB, Negrita de Basaburua; RL, Riñon de Leon).

Isolated
bacteria

Diversity
(Shannon´
s index)

Richness
(Margalef´
s index)

Evenness
(Pielou´
s index)

Number
of clusters

Cluster stabil-
ity (bootstraping)

AA

C
I 10 1.566 1.566 0.881 2 0.495

R 15 0.720 3.631 0.519 4 0.409

O
I 21 2.001 8.672 0.911 9 0.529

R 19 1.979 4.660 0.931 5 0.473

Total 65 1.966 10.768 0.820 11 0.404

AK

C
I 10 1.089 3.566 0.571 4 0.594

R 6 0.451 1.442 0.650 2 0.562

O
I 20 0.613 2.666 0.558 3 0.612

R 18 1.132 3.654 0.817 4 0.549

Total 54 0.884 5.749 0.493 6 0.494

N

C
I 18 0.937 2.654 0.853 3 0.482

R 11 1.121 3.583 0.809 4 0.518

O
I 18 2.000 8.654 0.910 9 0.562

R 24 1.831 7.685 0.881 8 0.815

Total 71 1.735 12.765 0.676 13 0.488

NB

C
I 16 1.180 3.639 0.851 4 0.516

R 9 0.684 2.545 0.622 3 0.550

O
I 16 1.581 5.639 0.882 6 0.543

R 21 1.234 5.672 0.689 6 0.590

Total 62 1.527 11.758 0.615 12 0.472

RL

C
I 17 1.401 4.647 0.871 5 0.552

R 15 0.485 2.631 0.442 3 0.621

O
I 21 0.996 3.672 0.719 4 0.461

R 15 1.323 3.631 0.954 4 0.499

Total 68 1.602 9.763 0.696 10 0.441
The row labeled Total shows the data obtained for each genotype without considering the different experimental conditions.
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that more drought-tolerant strains show higher nodulation capacity

under drought conditions (Aulakh et al., 2020; Omari et al., 2022;

del-Canto et al., 2023).

The results show that the rhizobia isolated in this work, are

efficient inocula able to nodulate under rainfed conditions as was

demonstrated with some of them (del-Canto et al., 2023) and it

would be interesting to test their efficiency under field conditions,

following successful formulations such as those described by Pastor-

Bueis et al. (2019).
5 Conclusion

Rainfed conditions reduced the number of nodules per plant

and the number of isolated bacteria, however, the use of

agrochemicals products related to conventional management had

a greater negative effect than that observed by a reduction of 22% in

water availability, and also affected the strain genetic diversity of the

nodule bacteriome. In addition, while water limitation did not have

an effect on the organic management yield, it was reduced in

conventional management. Consequently, the effect of rainfed

conditions on the conventional management soil was greater than

observed under organic conditions.

These results would confirm that the use of agrochemicals leads

to a loss of rhizobia abundance and diversity while organic

management practices maintains higher values of rhizobia

abundance, nodulation and diversity, even under rainfed

conditions. This maintenance of diversity will be a key factor in

the future, as problems caused by drought will be exacerbated by

climate change. Maintaining microbial diversity implies broader

environmental adaptation, superior competitive ability and greater

resilience to adverse conditions. Therefore, it is necessary to develop

sustainable and environmentally friendly agricultural systems, free

of agrochemicals that allows for maintaining or even increasing the

biodiversity of soil microbiota, a fundamental aspect for soil health

and quality.
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Polyphasic characterization of rhizobia microsymbionts of common bean (Phaseolus
vulgaris L.) Isolated in Mato Grosso do Sul, a hotspot of Brazilian biodiversity.
Symbiosis 16, 163–176. doi: 10.1007/s13199-018-0543-6

Cytryn, E. J., Sangurdekar, D. P., Streeter, J. G., Franck, W. L., Chang, W., Stacey, G.,
et al. (2007). Transcriptional and physiological responses of Bradyrhizobium japonicum
to desiccation-induced stress. J. Bacteriol. 189, 6751–6762. doi: 10.1128/JB.00533-07

Darine, T., Alaeddine, C., Fethi, B., and Ridha, M. (2015). Fluazifop-P-butyl
(herbicide) affects richness and structure of soil bacterial communities. Soil Biol.
Biochem. 81, 89–97. doi: 10.1016/j.soilbio.2014.10.030
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(2019). Formulation of a highly effective inoculant for common bean based on an
autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-
based insights into its agronomic performance. Front. Microbiol. 10. doi: 10.3389/
fmicb.2019.02724

Pielou, E. C. (1977). Mathematical ecology. 2nd ed (New York: Wiley), ISBN: . 385p.

Pimentel, D., Hepperly, P., Hanson, J., Douds, D., and Seidel, R. (2005).
Environmental, energetic, and economic comparisons of organic and conventional
farming systems. BioScience 55, 573–582. doi: 10.1641/0006-3568(2005)055[0573:
EEAECO]2.0.CO;2

Posner, J. L., Baldock, J. O., and Hedtcke, J. L. (2008). Organic and conventional
production systems in the Wisconsin integrated cropping systems trials: I. productivity
1990-2002. Agron. J. 100, 253–260. doi: 10.2134/agrojnl2007.0058

Prasuna, M. L. (2014). Biological studies on the effect of agrochemicals on nodulation
of some cultivated legumes. J. Ind. pollut. Control 30, 317–319.

Prudent, M., Dequiedt, S., Sorin, C., Girodet, S., Nowak, V., Duc, G., et al. (2020). The
diversity of soil microbial communities matters when legumes face drought. Plant Cell
Environ. 43, 1023–1035. doi: 10.1111/pce.13712

Rao, D., Adhya, T. K., and Saxena, A. K. (2019). Agricultural microbiology research
progress in India in the new millennium. Proc. Indian Natl. Sci. Academy Part A: Phys.
Sci. 85, 925–947. doi: 10.16943/ptinsa/2019/49718

Regus, J. U., Wendlandt, C. E., Bantay, R. M., Gano-Cohen, K. A., Gleason, N. J.,
Hollowell, A. C., et al. (2016). Nitrogen deposition decreases the benefits of symbiosis in
a native legume. Plant Soil 414, 159–170. doi: 10.1007/s11104-016-3114-8
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Drought and salt stress
mitigation in crop plants using
stress-tolerant auxin-producing
endophytic bacteria: a futuristic
approach towards
sustainable agriculture
Sadananda Mal and Shweta Panchal*

School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
Abiotic stresses, especially drought stress and salt stress in crop plants are

accelerating due to climate change. The combined impact of drought and salt

is anticipated to lead to the loss of up to 50% of arable land globally, resulting in

diminished growth and substantial yield losses threatening food security.

Addressing the challenges, agriculture through sustainable practices emerges

as a potential solution to achieve Zero Hunger, one of the sustainable

development goals set by the IUCN. Plants deploy a myriad of mechanisms to

effectively address drought and salt stress with phytohormones playing pivotal

roles as crucial signaling molecules for stress tolerance. The phytohormone

auxin, particularly indole acetic acid (IAA) emerges as a paramount regulator

integral to numerous aspects of plant growth and development. During both

drought and salt stress conditions, auxin plays crucial roles for tolerance, but

stress-induced processes lead to decreased levels of endogenous free auxin in

the plant, leading to an urgent need for auxin production. With an aim to

augment this auxin deficiency, several researchers have extensively

investigated auxin production, particularly IAA by plant-associated

microorganisms, including endophytic bacteria. These endophytic bacteria

have been introduced into various crop plants subjected to drought or salt

stress and potential isolates promoting plant growth have been identified.

However, post-identification, essential studies on translational research to

advance these potential isolates from the laboratory to the field are lacking.

This review aims to offer an overview of stress tolerant auxin-producing

endophytic bacterial isolates while identifying research gaps that need to be

fulfilled to utilize this knowledge for the formulation of crop-specific and stress-

specific endophyte bioinoculants for the plant to cope with auxin imbalance

occurring during these stress conditions.
KEYWORDS

climate change, zero hunger, plant microbiome, phytohormones, IAA, bioinoculants,
abiotic stress
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1 Introduction

In the last few decades, the evidence of climate change due to

harsh human activities has threatened global biodiversity, especially

of plants because of their sessile nature (Penuelas et al., 2002;

Rosbakh et al., 2017; Anthelme et al., 2021; Vecerova et al., 2022).

Plants depend only on internal mechanisms to withstand stress and

modifications in their external surroundings (Esmon et al., 2005;

Knudsen et al., 2018). Plants encounter two primary forms of stress:

biotic, caused by various pathogenic bacteria, fungi, nematodes,

oomycetes, and herbivores, and abiotic, arising from factors like

salinity, drought, radiation, heavy metals, and extreme

temperatures (Gull et al., 2019). Among these, drought, and salt

stress have affected almost 2000 million hectares of land globally

(Beltagy and Madkour, 2012). Drought alone has an impact on 45%

of the global agricultural land, and 19.5% of irrigated agricultural

areas are classified as saline (Abdelraheem et al., 2019).

Consequently, crop production is hindered on a global scale,

posing a threat to global food security (Fahad et al., 2017).

According to the Food and Agriculture Organization (FAO), over

870 million people worldwide are affected by food insecurity,

hindering progress towards achieving “Zero Hunger”, one of the

17 Sustainable Development Goals outlined by the International

Union for Conservation of Nature (IUCN) to be achieved by 2030

(FAO et al., 2022).

During drought and salt stress, plants experience water scarcity,

ion toxicity, phytohormone imbalances, and increased production

of reactive oxygen species (ROS), leading to considerable decreases

in crop growth rate and the accumulation of biomass (Das and

Roychoudhury, 2014). Plants deploy a myriad of mechanisms,

encompassing osmotic adjustment, antioxidant defense, stomatal

regulation, root system modification, transcriptional regulation,

and phytohormone regulation, to effectively address stress.

Phytohormones play pivotal roles serving as crucial signaling

molecules for stress tolerance by activating multiple signaling

pathways. Auxin, gibberellin (GA), cytokinin, ethylene, jasmonic

acid (JA), and salicylic acid (SA) constitute the primary

phytohormones crucial for regulating diverse biochemical and

physiological processes governing plant growth and stress

response (Abobatta, 2020; Sabagh et al., 2022). Auxin plays

crucial roles during stress like improving root architecture by

increasing lateral root number, expression of stress-related genes,

metabolic homeostasis, and ROS detoxification (Shi et al., 2014).

However, during both drought and salt stress, plants exhibit

diminished auxin levels and reduced expression of auxin

transporters which results in a disruption of auxin transport and

distribution, leading to lowered stress tolerance (Park et al., 2007;

Sun et al., 2008; Du et al., 2012; Liu et al., 2015). Crops can acquire

supplementary auxin through various alternative methods. While

the application of synthetic auxins is a prevalent practice, it comes

with several drawbacks. These compounds exhibit high toxicity and

are irritating to the eyes, skin, and respiratory system of farmers.

Furthermore, their use can lead to unregulated or irregular plant

growth tendencies, such as epinasty (Bhojwani, 2012; Keswani et al.,

2020) Another alternative approach involves the contribution of

plant-associated beneficial microorganisms, which have been
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reported to augment auxin levels in plants (Arshad and

Frankenberger, 1991; Nassar et al., 2005; Tsavkelova et al., 2007;

Shi et al., 2009; Keswani et al., 2020; Iqbal et al., 2023). Endophytic

bacteria have been documented to promote plant growth in various

crops including rice (Walitang et al., 2017), wheat (Yandigeri et al.,

2012; Patel and Archana, 2017), maize (Riggs et al., 2001), potato

(Nowak et al., 1995; Pavlo et al., 2011), cucumber (El-Tarabily et al.,

2009; Shaalan et al., 2021), cotton (Bashan et al., 1989; Mohamad

et al., 2022; Verma et al., 2022), tomato (Pillay and Nowak, 1997;

Agarwal et al., 2020).

Endophytic bacterial diversity has been documented across

numerous plant species with the Proteobacteria phylum being the

most diverse and predominant (Santoyo et al., 2016; Afzal et al.,

2019). The bacterial genera most frequently isolated include

Bacillus, Microbacterium, Pantoea, Burkholderia, Micrococcus and

Stenotrophomonas, with Pseudomonas and Bacillus being the

prominent ones (Hallmann et al., 1997; Chaturvedi et al., 2016;

Afzal et al., 2019).

Endophytes have been isolated from various tissues of the plant,

with roots harboring the maximum number owing to their

proximity to a microbe-rich soil environment (Figure 1A). Root

rhizodermis cells produce a variety of metabolites, including sugars,

purines, amino acids, inorganic ions, and vitamins while root cap

cells produce polysaccharide mucilage, facilitating their selective

entry into the plant interior (Quadt-Hallmann et al., 1997; Dakora

and Phillips, 2002; Bulgarelli et al., 2013; Frank et al., 2017).

Endophytes gain access to aerial tissues such as flowers, fruit,

stems, and leaves through natural openings like stomata as well as

via accidental wounds (Frank et al., 2017; Synek et al., 2021).

Endophytes can be vertically transferred through seeds and pollen

to the next generation and horizontally transferred by colonizing

root and aerial tissues. Recent literature establishes the role of the

plant microbiome, especially endophytic bacteria in boosting plant

growth, and one of the mechanisms is by elevating auxin levels

within plants in response to stress (Kushwaha et al., 2020; Siddique

et al., 2022; Kaur and Karnwal, 2023).

This review aims to provide a comprehensive outlook on

involvement of auxin in drought and salinity stress, focusing on

the disruptions in auxin biosynthesis, transport, and signaling

under these conditions. To address these imbalances, potential

stress-tolerant endophytic bacteria capable of producing auxin are

highlighted. However, translation of this knowledge is currently

lacking due to certain limitations. Efforts to create crop-specific and

stress-specific bioformulations are minimal. In this review, we try to

outline a roadmap to drive these results into potentially useful

products. We will discuss the efficient use of these bacterial isolates

in the formulation of bioinoculants and how technological

advancements in research can further enhance this approach

towards sustainable agriculture.
2 Methodology

For this review, articles were sourced from the electronic

databases Scopus, Web of Science, and Google Scholar. The

search encompassed the entire span of these databases’ archives
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up to February 2024, followed by a comprehensive screening that

involved manually reading the title and abstract of the

retrieved literature.

The search for relevant articles was conducted using the

following keywords: plant stress, auxin, drought stress, salt stress,

endophytic bacteria, stress tolerance, plant growth promotion,

bioinoculants, sustainable agriculture, nanotechnology, and

nanoparticles. These terms were strategically combined using the

Boolean operators “AND” and “OR” to refine the search scope to

the topic of interest.

Only studies that evaluate auxin production and plant growth

promotion capabilities of endophytic bacteria under conditions of

drought and salt stress are included. Research focused on stress

mitigation strategies of endophytic bacteria, rather than auxin

production, and studies published in non-indexed journals

are excluded.
3 Auxin in plants

Indole-3-acetic acid (IAA), Indole-3-butyric acid (IBA), 4-

chloroindole-3-acetic acid (4-Cl-IAA), and phenylacetic acid

(PAA) are produced within plants, making them exclusive auxins

categorized as “endogenous auxins” (Went and Thimann, 1937;

Koepfli et al., 1938; Porter and Thimann, 1965). Furthermore,

synthetic auxins remain pivotal as herbicides, with compounds

such as 2,4- dichlorophenoxyacetic acid being widely utilized
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worldwide. The regulation of growth and development mediated

by auxin involves multiple processes, including its biosynthesis,

transport, perception, signaling, and conjugation, all working in

concert to coordinate the plant’s response. The process of auxin

biosynthesis in plants is intricate and involves multiple pathways, as

depicted in Figure 1B. According to their physiological status,

different plants use different pathways but there are shared

fundamental mechanisms across plant species due to the critical

role of auxin in the plant life cycle (Mano and Nemoto, 2012).

Auxin transportation across plant cells involves a combination of

membrane diffusion and carrier-mediated transport mechanisms.

Figure 1B highlights some of the influx and efflux carrier proteins

involved in this process (Kramer and Bennett, 2006). Auxin can

move both basipetally and acropetally from one part of the plant to

another with the assistance of these carrier proteins (Figure 1B)

(Blakeslee et al., 2005). Auxin is perceived by a cytosolic receptor

known as TIR1, initiating a complex signaling cascade as depicted

in Figure 1C leading to the regulation of auxin-responsive genes.

Among the natural auxins, IAA stands out as the primary auxin

in plants, playing a critical role in regulating many facets of plant

growth and development. IAA is involved in root development

initiating lateral root and adventitious root formation (Yu et al.,

2020), cell elongation (Cleland, 1987), gametophyte development

(Zhang and O’Neill, 1993), development of fruit (Pattison et al.,

2014), and tropisms (Muday, 2001). Endogenous auxin in plants

exists in both active and inactive forms, with the active forms

playing a crucial role in signaling and constituting the pool of
B

C

A

FIGURE 1

Endophytes of plants and auxin biosynthesis and signaling in plants. (A) The direction of polar auxin transport in plants and colonization of auxin-
producing endophytes within the plant are depicted, (B) The biosynthesis pathways for both endogenous plant auxin and auxin produced by
beneficial microbial associations, as well as the carriers responsible for auxin influx and efflux, are illustrated (C) Auxin signaling cascade in plants: 1.
when auxin is absent, AUX/IAA repressors bind Auxin Response Factors (ARFs) in the cytosol, 2. When auxin is present, AUX/IAA repressors are
degraded and ARFs move to the nucleus to activate auxin-responsive genes.
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endogenous free auxin. For instance, only approximately 25% of the

total quantity of IAA is present in its active form, while the majority

exists as inactive forms like ester and amide conjugates, which do

not actively participate in signaling (Ludwig-Müller, 2011). During

abiotic stresses, the formation of these conjugates increases, leading

to a decrease in the quantity of endogenous free auxin. To cope with

this reduction, plant-associated endophytes supply free auxin

during stress conditions, aiding plants in maintaining adequate

auxin levels. Several auxin biosynthesis pathways have been

identified in these plant growth-promoting endophytes

(Figure 1B, Sukumar et al., 2013; Jahn et al., 2021).
3.1 Auxin and drought stress

When plants are subjected to drought stress, it typically leads to

a notable decrease in the growth and yield of various crops. Auxin

plays critical roles in mitigating drought stress through various

mechanisms. In Arabidopsis, auxin upregulates antioxidant

enzymes including superoxide dismutase (SOD), peroxidase

(POD), catalase (CAT), and glutathione reductase (GR), and

helps in decreasing the reactive oxygen species generated due to

the stressful conditions. Auxin also upregulates different abiotic

stress-related gene expressions like RAB18, DREB2A, DREB2B,

RD22, RD29A, and RD29B and pointedly increases the formation

of lateral root and shortens the length of the primary root during

drought (Shi et al., 2014). A set of flavin monooxygenases known as

YUCCAs has been discovered in various plants. These enzymes play

a crucial role in tryptophan-dependent auxin biosynthesis by

catalyzing the conversion of tryptamine to N-hydroxy tryptamine

(Zhao et al., 2001). In Arabidopsis, YUC7 can augment endogenous

IAA levels and play several roles during drought stress. yuc7-1D

overexpression studies had confirmed that upregulation of YUC7

genes consequently upregulated drought resistance genes like

RD29A and COR15A and increased auxin levels had modified the

root system increasing lateral root numbers to tolerate the stress

(Lee et al., 2012). In potato, AtYUC6 overexpressed transgenic lines

reduced ROS content significantly and improved phenotypic

characters during drought conditions as compared to wild-type

plants conferring the involvement of auxin in drought tolerance

(Kim et al., 2013). In oilseed rape, BnaYUC6a overexpressing

transgenic lines produced a high amount of auxin and

consequently, drought-responsive genes including ABA2, RD26,

and RD29 expressed in high levels supporting auxin-mediated

drought tolerance (Hao et al., 2022). In poplar and potato plants,

the modulation of auxin levels has been achieved by regulating the

expression of YUCCA6 using both stress-inducible and constitutive

promoters. This manipulation led to increased auxin levels and

enhanced drought tolerance (Kim et al., 2013; Ke et al., 2015).

During drought conditions in rice, there is an upregulation in the

expression level of OsPIN3t, an auxin efflux carrier, indicating the

role of polar auxin transport (PAT) in stress response.

Consequently, it leads to the activation of drought-responsive

genes, namely OsAP37 and OsDREB2A (Zhang et al., 2012).

Multiple Gretchen Hagen 3 (GH3) family genes have been

identified in different plants, including crops, where they
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significantly influence amide-linked IAA conjugate formation.

GH3 enzymes add amino acid residues to free IAA molecules,

forming conjugates that reduce the pool of active auxin available for

signaling. Numerous studies have demonstrated that under drought

stress conditions, the expression of these genes is upregulated (Yuan

et al., 2013; Feng et al., 2015; Singh et al., 2015; Yao et al., 2023). For

instance, in Arabidopsis, an activation-tagged wes1-D dwarf mutant

exhibits a 44.6% reduction in free IAA levels, accompanied by a

621% increase in IAA-Asp conjugates under abiotic stress. The

mutant exhibits dwarf phenotypic traits due to a markedly low level

of free auxin. Additionally, its auxin-mediated lateral root

development is notably impacted, resulting in a reduced number

of lateral roots particularly under drought conditions. This

observation underscores the significance of free auxin in the

process of stress acclimatization. Further substantiating this,

the application of a modest quantity of exogenous IAA has

been demonstrated to augment the number of lateral roots

(Park et al., 2007). One potential reason for the upregulation of

GH3 genes could be the elevated levels of abscisic acid (ABA)

during drought conditions (Mittler and Blumwald, 2015) and

exogenous ABA treatment also confirmed increased relative

expression of GH3 genes (Park et al., 2007; Seo et al., 2009). The

ABA signal transduction pathway interacts with auxin signaling,

potentially suppressing auxin responses. Lowering auxin levels and

hindering its signaling are anticipated to reduce growth rates in

poplar plants (Popko et al., 2010). Under drought stress in rice, the

expression of six OsYUCCA genes, and tryptophan biosynthesis

anthranilate synthase genes were downregulated. Conversely, genes

related to jasmonic acid (JA) biosynthesis were found to be

upregulated in these conditions (Du et al., 2013). JA may act

antagonistically to suppress the biosynthesis of IAA but this

needs further investigation. Hence, when faced with drought

stress, plants need an external source of auxin which can help the

plant in tolerating this stress.
3.2 Auxin and salt stress

Increased soil salinity elevates the levels of Na+ and Cl- within

plants, consequently raising the Na+/K+, which disrupts normal

ionic functions within plants (Singh et al., 2014). Many plants have

evolved various strategies to address these challenges including

phytohormonal signaling.

The IAOx pathway of auxin biosynthesis (Figure 1B) involves

P450 genes such as CYP79B2 and CYP79B3, which have been found

to positively contribute to salt tolerance. Elevated expression of these

specific genes promotes lateral root development in response to salt

stress (Julkowska et al., 2017). Auxin influx plays a crucial role in

proper plant development and is associated with responses to salt

stress (Mellor et al., 2016). Key transmembrane transporter proteins

facilitating auxin influx are AUX1 (Auxin Transporter Protein 1) and

LAX (Like Auxin Resistant). These proteins participate in various

processes, such as gravitropic responses and the emergence of lateral

roots (Swarup et al., 2008). LAX3 proteins have been associated with

the salt stress response, playing an active role in lateral root

development (Mellor et al., 2016). Moreover, overexpression of
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WRKY3 in Solanum lycopersicum results in elevated levels of LAX3

transcripts. Remarkably, enhanced resistance to salt stress is exhibited

by WRKY3 overexpression lines (Hichri et al., 2017). In response to

salt stress, the expression of the YUCCA genes is intricately regulated

(Korver et al., 2018). For example, when Cucumis sativus plants are

exposed to salt stress, there is a regulatory interplay among

CsYUC10a, CsYUC10b, and CsYUC11 genes. Under 100 mM salt

stress, CsYUC10b experiences an increase in expression, whereas

CsYUC10a and CsYUC11 exhibit notable downregulation. This

opposing regulation is reinforced by a complementary expression

observed in specific tissues. Together, these observations indicate that

this opposing mechanism serves to establish a buffering system for

endogenous auxin production in cucumber during the stress

conditions. Furthermore, studies have confirmed that the

overexpression of CsYUC11 leads to higher concentrations of free

IAA and enhances the salt tolerance mechanisms in transgenic

Arabidopsis plants (Yan et al., 2016). The function of auxin

receptors has been extensively investigated in salt stress-related

conditions (Julkowska et al., 2017; Bouzroud et al., 2018). IAA

regulates gene expression by directly interacting with TIR/AFB

receptors, leading to the SCF E3-ubiquitin ligase-mediated

proteasomal degradation of Aux/IAA transcriptional repressor

proteins (Figure 1C, Gray et al., 2001). TIR/AFB receptors are

actively involved in plant’s response to salt stress. In Arabidopsis, a

miR393-resistant variant of TIR1 (mTIR1) overexpression leads to

enhanced salt tolerance. miR393, which targets TIR1 and AFB2

receptors for degradation is shown to increase in NaCl-induced salt

stress. This degradation leads to the downregulation of auxin

signaling and consequent repression of Auxin Response factor

(ARF) genes (Figure 1C). However, the heightened expression of

mTIR1 augments auxin signaling and bolsters plant resistance to salt

stress by enhancing osmoregulation and augmenting Na+ exclusion

mechanisms (Chen et al., 2015). ARF transcription factors are key

players in the auxin signaling pathway as these interact with the

promoters of auxin-responsive genes (Lavy and Estelle, 2016). ARFs

have been identified as crucial elements in several responses of the

plants to abiotic stress (Wang et al., 2010; Hu et al., 2015). The role of

ARF proteins has been investigated in rice and sweet potato under

salt and drought stress. Overexpression of sweet potato IbMP/ARF in

Arabidopsis enhances auxin signaling under both drought and salt

stress (Kang et al., 2018). Genes like OsARF11 and OsARF15 in rice

are upregulated by several folds under salt stress conditions

implicating their role in this response (Jain and Khurana, 2009).

Furthermore, the transportation of auxin across cells within a plant

necessitates a well-coordinated auxin transport system. Among the

key protein efflux carriers facilitating polar auxin transport (PAT), the

PIN family proteins play a central role. However, the physiological

and biochemical alterations induced by salt stress adversely impact

PAT, posing a potential threat to the effective functioning of the auxin

transport network. Salt stress triggers an increase in phospholipase D

activity, leading to the localization of clathrin in the plasma

membrane. This, in turn, initiates clathrin-mediated endocytosis of

PIN2 proteins. Consequently, auxin redistribution occurs, causing the

root tip to bend away from areas with higher salt levels, known as

auxin-mediated halotropism (Galvan-Ampudia et al., 2013). The PIN

protein family, especially the plasma membrane-located proteins like
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PIN1, PIN3, and PIN7, are essential for controlling auxin transport

and adapting to salt stress. Notably, under salt stress conditions, there

is a significant impairment in auxin transport, aligning with the

detrimental effects of salt stress on root development. During salt

stress, nitric oxide (NO) production is triggered which directs PIN1,

PIN3, and PIN7 downregulation in Arabidopsis. This decrease in

expression results in reduced auxin transport and subsequently

impacts auxin signaling (Liu et al., 2015). Free auxin levels are also

affected during salt stress. Notably, GH3 genes are activated during

salt stress (Korver et al., 2018). Collectively, these alterations lead to a

decrease in the endogenous free auxin levels, ultimately resulting in

diminished plant growth.

A brief overview of the impact of drought and salt stress on

plant growth through the involvement of auxin is depicted

in Figure 2.
4 Auxin-producing endophytes and
their potential use in drought and
salt tolerance

Several researchers have extensively investigated auxin

production, particularly IAA by plant-associated microorganisms,

including endophytic bacteria (Kuklinsky-Sobral et al., 2004;

Madhaiyan et al., 2004; Tsavkelova et al., 2007; Khan et al., 2014).

However, both drought stress and salt stress are limiting factors in

the growth of such organisms thus highlighting a need to find

stress-tolerant endophytes. A logical step would be to look for

plants that face such stresses regularly, namely xerophytic and

halophytic plants, and study their microbiome (Bokhari et al.,

2019; Rodrıǵuez-Llorente et al., 2019; ALKahtani et al., 2020;

Belaouni et al., 2022; Chebotar et al., 2022). Several researchers

have isolated numerous auxin-producing stress-tolerant endophytic

bacteria from such plants. These bacteria were further introduced

into various crop plants subjecting them to diverse stress

conditions. Promising bacterial isolates with the potential to

promote plant-growth parameters like auxin quantity, seed

germination, and root and shoot length have been identified

(Govindasamy et al., 2022; Hwang et al., 2022).
4.1 Drought stress mitigation using auxin-
producing endophytic bacteria

Drought stress causes a decrease in auxin concentration in

plants, necessitating an increased supply to alleviate the stress and

sustain growth. Several research groups have investigated auxin-

producing drought-tolerant endophytic bacteria, and upcoming

discussions will delve into recent research findings in detail

(Table 1). Opuntia ficus-indica, a desert plant, has been identified

as a valuable source of multiple drought-tolerant auxin-producing

endophytic bacteria, having several plant growth-promoting

characteristics. Among the several Streptomyces species isolated, S.

rameus VL-70-PIII demonstrated the highest auxin production,

reaching a peak of 200.82 µg/ml in a medium supplemented with

100 mg/ml L-tryptophan after a 5-day period. Upon inoculating
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TABLE 1 Auxin-producing endophytic bacteria, along with their sources and applications in promoting plant growth and alleviating drought stress.

Sr.
No.

Endophytic
Bacteria

Source plant Plant part used
for isolation

of endophytes

Inoculated
plant

Plant response Reference

1 Streptomyces
turius VL-70-IX

Opuntia ficus-indica Roots Triticum aestivum
(cultivar-
nethravati)

Increase in rootlet numbers, root length,
shoot length and total seedling length

(Govindasamy
et al., 2022)

2 S. levis VL-70-XII

3 S. mutabilis
HV-18

4 S. mutabilis
HV-VIII

5 S. rameus VL-
70-PIII

6 Micrococcus
luteus strain 4.43

Helianthus tuberosus Leaf and stem Helianthus
tuberosus

Improved plant height, total fresh weight
and dry weight, root length and diameter,
and harvest index

(Namwongsa
et al., 2019)

7 Bacillus
aquimaris 3.13

8 B. sp. 5.2

9 B.
methylotrophicus
5.18

10 Staphylococcus
sp. Ceb1

Curcuma longa Rhizome Vigna unguiculata Increased root length and number, and
shoot length

(Jayakumar
et al., 2020a)

11 Shewanella
putrefaciens
strain MCL-1

Pennisetum glaucum,
Brassica nigra,
Cyamopsis tetragonoloba

Pennisetum
glaucum (variety
Pusa
Composite-443)

Improved seed germination percentage,
plumule length, radicle length, and fresh
weight.
Upregulation of drought-responsive
SbNAC1, PgAP2 and PgDREB2A genes

(Manjunatha
et al., 2017,
Manjunatha
et al., 2022)

12 Cronobacter
dublinensis strain
MKS-1

13 Bacillus sp. Acb9 Ananas comosus Leaf Vigna radiata Increased shoot length, root length, and
root numbers

(Jayakumar
et al., 2020b)

14

(Continued)
F
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FIGURE 2

Impact of drought and salinity stress on various aspects of auxin signaling, and its consequences on gene expression and physiology. Arrows next to
the text indicate increase (↑) or decrease (↓).
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these strains to wheat seeds and keeping in drought conditions, S.

turius VL-70-IX treatment led to a maximum increase in rootlet

count. Furthermore, the co-inoculation of S. levis VL-70-XII and S.

turius VL-70-IX resulted in the maximum increase in root length,

while S. mutabilis HV-VIII showed the highest increase in shoot

length (Govindasamy et al., 2022). In a separate study, an

endophytic bacterium, Pantoea alhagi, isolated from Camelthorn

plant Alhagi sparsifolia, exhibited drought-tolerant traits, thriving

in media supplemented with 20% PEG and producing up to 17.73

µg/mL of IAA. When introduced to drought-stressed wheat

seedlings, this strain effectively enhanced various plant growth

parameters, including fresh weight, chlorophyll content, and

soluble sugar content significantly (Chen et al., 2017). In a

different study, three drought-tolerant actinobacteria from the

roots of five distinct plant species (Table 1) significantly boosted

growth and yield in another wheat cultivar, WR-544, by several

folds. Instead of single isolate inoculation, co-inoculation with

Streptomyces olivaceus and S. geysiriensis demonstrated maximum

enhancement in growth and yield properties in drought-stressed

wheat fields (Yandigeri et al., 2012).

The microbiome of medicinal plants has also been explored to

identify drought-tolerant endophytic bacteria. For example, the

rhizome of Curcuma longa harbored Staphylococcus sp. Ceb1, an
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endophyte capable of producing auxin along with other

characteristics promoting plant growth. Surface-sterilized Vigna

unguiculata seeds were germinated, treated with Ceb1, and then

subjected to drought stress by withholding water for three weeks,

after which water was resumed for one day before determining

plant growth parameters. Compared to the control, there was an

increase of 87.5% in root number, 208.4% in root length, and

55.54% in shoot length (Jayakumar et al., 2020a).

Researchers have explored the method of isolating stress-

tolerant endophytes from crops and reintroducing them back into

the same crops to enhance the uptake of these endophytes within

the plant body, resulting in improved outcomes. These studies

highlight the potential of native endophytes in stress tolerance.

Manjunatha et al. (2017), isolated Shewanella putrefaciens MCL-1

and Cronobacter dubliensisMKS-1 from mustard, cluster bean, and

pearl millet. Both MCL-1 and MKS-1 demonstrated the ability to

promote growth. Following soaking in endophyte broth cultures for

one hour, the sterilized seeds were placed on agar petri plates

supplemented with 20% PEG for germination. Three days later,

treatment with MCL-1 resulted in a 16.6% increase in plumule

length, 9.02% increase in radicle length, and a 16.88% increase in

fresh weight, while MKS-1 treatment led to an 18.8% increase in

plumule length, 24% increase in radicle length, and a 21.63%
TABLE 1 Continued

Sr.
No.

Endophytic
Bacteria

Source plant Plant part used
for isolation

of endophytes

Inoculated
plant

Plant response Reference

Providencia
sp. Acb11

15 Staphylococcus
sp. Acb12

16 Staphylococcus
sp. Acb13

17 Staphylococcus
sp. Acb14

18 Acinetobacter
pittii

Sorghum bicolor Root Sorghum bicolor
(variety CO 30
and K 30)

Increase in seed germination percentage (Umapathi
et al., 2022)

19 Pseudacidovorax
intermedius

20 Exiguobacterium
sp. Sch36

Sporobolus speccatus,
Cyperus laevigatus

Root, Stem and Leaves – (Enquahone
et al., 2022)

21 Exiguobacterium
sp. Rch312

22 Alishewanella
sp. Rch14

23 Pantoea alhagi Alhagi sparsifolia Whole plant Triticum aestivum
(cultivar Yumai
49-198)

Improvement in root and shoot length,
plant fresh weight, and chlorophyll, MDA,
and soluble sugar content in leaves

(Chen
et al., 2017)

24 Streptomyces
coelicolor DE07

Aerva tomentosa,
Acacia nilotica,
Leptadenia pyrotechnica,
Calligonum polygonides,
Pennisetum glaucum

Roots Triticum aestivum
(cultivar WR-544)

Increased root and shoot length, tiller
numbers, fresh and dry weight of root and
shoot, and yield

(Yandigeri
et al., 2012)

25 S. olivaceus DE10

26 S.
geysiriensis DE27
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increase in fresh weight (Manjunatha et al., 2017). Further

investigations conducted by the same research group affirmed

that under severe drought stress conditions, endophyte-inoculated

pearl millet plants treated with MCL-1 and MKS-1 demonstrated

the ability to elevate auxin levels in pearl millet, resulting in a

significant 68%–78% increase in IAA content, compared to

uninoculated controls. Moreover, they noted a substantial

upregulation, by several folds, of various stress-responsive genes

such as SbSNAC1, PgDREB2A, and PgAP2 under severe drought

conditions in comparison to the endophyte-uninoculated control

(Manjunatha et al., 2022). Eventually, the upregulation of these

defense genes is the major target for auxin-mediated defense

response against abiotic stresses as discussed in earlier sections. In

another study, Micrococcus luteus 4.43, Bacillus aquimaris 3.13,

Bacillus sp. 5.2, and B. methylotrophicus 5.18, isolated from

Helianthus tuberosus, exhibited the ability to produce auxin while

promoting the growth of H. tuberosus from planting to harvesting

stages under water-stressed conditions. Among these strains, M.

luteus produced the highest amount of IAA. Strains 4.43 and 3.13

notably enhanced fresh shoot weight and plant height, respectively,

when plants received only 1/3 of their water requirement at 140

days. Strain 3.13 also increased shoot and root dry weight

significantly under conditions of reduced water, both at 140 days

(using only 2/3 of water) and at 60 days (using only 1/3 of water).

Additionally, Strain 4.43 exhibited the greatest improvement in

yield under conditions of limited water supply, specifically

when only 1/3 of the water requirement was provided

(Namwongsa et al., 2019). In a separate study, Umapathi et al.

(2022), discovered that endophytic bacteria associated with

sorghum roots have the ability to produce IAA and GA, while

also enhancing various plant growth parameters under drought

stress conditions. Particularly, Pseudacidovorax intermedius

demonstrated the highest production of under -1 MPa PEG 6000

stress (Umapathi et al., 2022).

Economically significant plants like Ananas comosus have been

utilized for isolating potent endophytic bacteria. Among the five

isolated strains, Providencia sp. Acb11 exhibited the highest auxin

production of 100 µg/ml under PEG (-1.5 MPa) conditions.

Whereas, Bacillus sp. Acb9 produced 55 µg/mL IAA and

Staphylococcus sp. Acb13 produced 10 µg/mL IAA under the

same conditions. All strains contributed to the promotion of

plant growth in Vigna radiata seedlings. Bacillus sp. Acb9 notably

increased shoot length and root length by 34.8% and 153%,

respectively. Additionally, Staphylococcus sp. Acb13 significantly

enhanced the maximum root number by 160% compared to the

control (Jayakumar et al., 2020b).
4.2 Salt stress mitigation using auxin-
producing endophytic bacteria

Numerous studies suggest the involvement of endophytes that

produce auxin in the tolerance to salt stress conditions (Table 2).

Many such endophytes were isolated from halophytes. In one such

study conducted by Hwang et al. (2022), Priestia megaterium Strain

BP-R2 was isolated from the halophytic plant Bolboschoenus
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planiculmis . The bacterium was capable of producing

approximately 25 µg/mL of IAA in NaCl concentrations ranging

from 0.5 to 3.0% over a period of 48 hours. When inoculated in

Arabidopsis thaliana (ecotype Columbia) plants under 250 mM

NaCl conditions, it led to more than a 1.5-fold increase in leaf

numbers, rosette diameter, fresh weight, and dry weight compared

to control plants. Similarly, inoculation of the bacteria in Brassica

rapa (pak choi) plants under 200 mM NaCl conditions resulted in a

significant increase in plant height, width, leaf numbers, total leaf

area, leaf length, width, and area per leaf, as well as root fresh

weight, dry weight, and length as compared to control plants

(Hwang et al., 2022). In another study, Bacillus cereus KP120,

isolated from the halophytic plant Kosteletzkya pentacarpos

produced significant amount of IAA after 15 minutes in LB

medium supplemented with Tryptophan. When inoculated in

Arabidopsis seedlings under 200 mM NaCl concentration, KP120

increased the IAA concentration by 35.83% in roots and 8.41% in

leaves compared to control plants. Additionally, plant height,

branch number, leaf number and root lengths increased by

182.24%, 53.84%, 14.28%, and 14.40% respectively as compared

to the control group (Zhang et al., 2022). In another study, Khan

et al. (2020), selected six bacterial endophytes from the root tissues

of Oenothera biennis L., Chenopodium ficifolium Smith, Artemisia

princeps Pamp, Echinochloa crus-galli (L.). Among these,

Enterobactor ludwigii and Curtobacterium luteum produced 2.7

µg/mL IAA, whereas Enterobacter tabaci, Bacillus cereus,

Micrococcus yunnanensis, and Micrococcus curtobacterium

oceanosedimentum produced IAA in 1.1 to 1.6 µg/mL range. All

the six strains of bacteria were tested for their effect on rice plants

growing under 150 mM NaCl by inoculating the roots. M.

yunnanensis increased shoot length by a maximum of 22.9%, M.

yunnanensis and C. luteum increased root length by a maximum of

40%, M. yunnanensis increased fresh weight by a maximum of

25.7% and C. oceanosedimentum increased dry weight by a

maximum of 29.1% and chlorophyll content by 52.1% in

comparison to control (Khan et al., 2020). The shoot-associated

endophyte, Stenotrophomonas pavanii, isolated from the halophyte

Seidlitzia rosmarinus could produce a maximum of 20.5 µg/ml IAA

when tryptophan was added to the media. Out of total 17

endophytes, 11 endophytes were capable of producing IAA and

among them 10 were capable of promoting growth in cress-lettuce.

Pseudomonas fluorescens showed the maximum increase in seed

germination percentage, root growth, and shoot growth by 9%,

16.6%, and 11.7%, respectively under 100mM NaCl stress (Shurigin

et al., 2020). In a separate study, Oceanobacillus sp.76, Bacillus sp. 7,

andMicrococcus luteus 14 were isolated from Cressa cretica, Salsola

yazdiana and Salsola tomentosa, respectively. These strains

demonstrated the ability to germinate seeds of Triticum aestivum

cv. Homa and T. aestivum cv. Mihan up to 91.66%, while control

seeds failed to germinate under 300 mM NaCl stress. Furthermore,

they significantly increased seedling, root, and shoot length

in both wheat varieties under NaCl treatment up to 300 mM

(Soltani et al., 2024). In their study, Zhao et al. (2016),

investigated the effects of endophytes, associated with the

halophytic plant Salicornia europiea in promoting the growth of

S. europiea under salinity stress up to 500 mM. The auxin
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TABLE 2 Auxin-producing endophytic bacteria, along with their sources and applications in promoting plant growth and alleviating salt stress.

Sr.
No.

Endophytic
Bacteria

Source
plant

Plant part
used for

isolation of
endophytes

Inoculated
plant

Plant response Reference

1 Priestia
megaterium

Bolboschoenus
planiculmis

Root Arabidopsis
thaliana,
Brassica rapa

Increased fresh and dry weight, leaf numbers, total leaf
area and average plant height

(Hwang
et al., 2022)

2 Bacillus
cereus KP120

Kosteletzkya
pentacarpos

Arabidopsis
thaliana

Upregulation of several SAUR family genes, YUCCA
genes, ethylene synthesis, and signaling genes.
Improvement in fresh and dry weight of shoot and root,
plant height, root length, branch number and
leaf number

(Zhang
et al., 2022)

3 Curtobacterium
oceanosedimentum

Oenothera
biennis L.
Artemisia
princeps
Pamp.
Chenopodium
ficifolium
Smith.
Echinochloa
crus-galli
(L.) P.Beauv.

Root Oryza sativa Increased shoot and root length, fresh and dry weight,
and leaf chlorophyll content
Upregulation of OsYUCCA1 gene, and OsPIN1 gene

(Khan
et al., 2020)

4 C. luteum

5 Enterobactor
ludwigii

6 E. tabaci

7 Bacillus cereus

8 Micrococcus
yunnanensis

9 Kochuria palustris Seidlitzia
rosmarinus
Ehrenb.
ex Boiss

Root,
Shoot

Lepidium
sativum

Improved root and shoot length, and seed
germination percentage

(Shurigin
et al., 2020)

10 Staphylococcus
succinus

11 Staphylococcus
epidermis

12 Pseudomonas
baetica

13 Pseudomonas
fluorescens

14 Paenibacillus
amylolyticus

15 Stenotrophomonas
pavanii

16 Rothia terrae

17 Planomicrobium
koreense

181 Planomicrobium
soli

19 Oceanobacillus
sp. 76

Cressa cretica Root Triticum
aestivum

Increased seed germination percentage, seedling length,
and root and shoot length

(Soltani
et al., 2024)

20 Micrococcus
luteus 14

Salsola
tomentosa

Shoot

21 Bacillus sp. 7 Salsola
yazdiana

Root

22 Bacillus tequilensis Salicornia
europaea

Stem Salicornia
europaea

Improved seed germination, shoot and root length, and
fresh weight

(Zhao
et al., 2016)

23 Planococcus
rifietoensis

Stem

24 Variovorax
paradoxus

Root

(Continued)
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TABLE 2 Continued

Sr.
No.

Endophytic
Bacteria

Source
plant

Plant part
used for

isolation of
endophytes

Inoculated
plant

Plant response Reference

25 Streptomyces
heliomycini

Thymus roseus Gossypium
hirsutum
(variety
Yumian-1)

Increased shoot and root length, and root and shoot
fresh weight

(Mohamad
et al., 2022)

26 Nocardiopsis
dassonvillei

27 Alloactinosynnema
album

28 Bacillus subtilis Cicer
arietinum

Root Pisum sativum Improved shoot and root length, fresh and dry weight of
shoot and root, total pigment content, antioxidative
activity, macronutrient concentration, and
ethylene concentration

(Sofy
et al., 2021

29 Pseudomonas
fluorescens

30 Bacillus
halotolerans

Lilium davidii
(variety
Unicolor)

Root Lilium davidi
(variety
Bright
Diamond)

Improvement in plant height, leaf length, leaf width, root
length and root dry weight

(Gao
et al., 2022)

31 Sphingomonas
paucimobilis

Dendrobium
officinale

Root – – (Li et al., 2023)

32 Pseudomonas
pseudoalcaligenes

Suaeda nigra Root,
Aerial parts

– – (M. Sridevi
et al., 2022)

33 Bacillus
licheniformis

Vigna radiata Root,
Nodules

– – (Bhutani
et al., 2022)

34 Enterobacter
cloacae S23

Arachis
hypogaea
(variety VRI2)

Root nodules – – (Ramakrishnan
et al., 2023)

35 Streptomyces
pactum

Limonium
sinense

–

–

–

Root and Leaves

–

–

–

–

–

–

–

(Qin
et al., 2014)

36 Klebsiella
pneumoniae
subsp.
rhinoscleromatis

37 Serratia rubidea

38 Pseudomonas
brassicacearum
subsp.
brassicacearum

39 Pantoea hericii Limonium
vulgare

Root Vitis vinifera Increased in number of leaves, shoot length, dry weight of
shoot and root

(Navarro-Torre
et al., 2023)

40 Pantoea
anthophilla

Limonium
daveaui

41 Pantoea
agglomerans

42 Exiguobacterium
sp. Sch36

Sporobolus
speccatus,
Cyperus
laevigatus

Root, Stem
and Leaves

– – (Enquahone
et al., 2022)

43 Exiguobacterium
sp. Rch312

44 Alishewanella
sp. Rch14
F
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production capability of these endophytes was also assessed, and

Planococcus rifietoensis exhibited the highest production, reaching a

maximum of 1.2 µg/mL while tolerating up to 0.68 M NaCl

concentration (Zhao et al., 2016).

Li et al. (2023), found that the root-associated endophyte

Sphingomonas paucimobilis, isolated from medicinal herb,

Dendrobium officinale, produces indole-3-acetic acid (IAA)

through the indole acetamide (IAM), indole acetonitrile (IAN),

and indole pyruvate (IPA) pathways. Additionally, this strain

demonstrated tolerance to high levels of NaCl, up to 80 g/L (Li

et al., 2023). In another study, conducted by Mohamad et al. (2022)

three endophytic bacteria were screened from the medicinal plant,

Thymys roseus, demonstrating the capability to produce auxin and

tolerate up to 200 µM NaCl stress. Upon inoculation of these

bacteria into cotton plants, Streptomyces atrovirens exhibited the

greatest increase in root length and weight compared to the control,

while Alloactinosynne album caused the maximum increase in

shoot length and weight (Mohamad et al., 2022).

Numerous studies have shown the salt tolerance of various

endophytic species from the Pseudomonas and Bacillus genera. In a

study, Pseudomonas fluorescens and Bacillus subtilis, isolated from

the roots of leguminous plant Cicer arietinum, could produce 5.98

and 8.11 µg/ml of IAA, respectively. B. subtilis exhibited greater

potency, increasing shoot length, fresh weight of shoots, dry weight

of shoots, fresh weight of roots, and dry weight of roots by 46.52%,

48.69%, 119.17%, 109.52%, and 141.27%, respectively, compared to

the control in pea plants growing under 150 mM NaCl stress (Sofy

et al., 2021). In a separate study, Bacillus halotolerans, an endophyte

isolated from Lilium davidii var. unicolor, exhibited tolerance to up

to 6% NaCl addition in LB media, along with confirmed auxin

production ability. Upon inoculation in another Lilium variety,

bright diamond, it led to an increase in plant height, leaf length and

width, root length, and dry weight by 4%, 7.6%, 2.8%, 93.6%, and

138.7%, respectively (Gao et al., 2022). Multiple salt-tolerant and

auxin-producing endophytes have been identified in Limonium

sinense. Streptomyces pactum, isolated from L. sinense leaves,

produced a maximum of 8.24 mg/L of IAA and demonstrated

tolerance to 7% NaCl. It was also capable of increasing L. sinense

seed germination by 12% under 500 mM NaCl conditions in

comparison to the control (Qin et al., 2014). Utilizing microbial

consortia has shown promising results for enhancing halotolerance.

Pantoea hericii, Pantoea anthophilla, and Pantoea agglomerans

were isolated from various halotolerant Limonium sp. and P.

anthophilla produced a maximum of 11.78 mg/L IAA. These

three isolates were inoculated as a consortium into grapevine

plants under salt-stress conditions Consortium inoculated plants

displayed significant increase in leaf numbers and shoot length and

were able to withstand salt stress effectively. Additionally, after the

stress was removed, the recovery rate of the inoculated plants was

significantly higher compared to the control plants (Navarro-Torre

et al., 2023).

Further, multiple studies have been carried out focusing solely

on the isolation of auxin-producing salt-tolerant endophytic

bacteria. A study by Sridevi et al. (2022), isolated and reported a

novel endophyte, Pseudomonas pseudoalcaligenes from Suaeda

nigra. This strain was capable of producing 43 µg/ml IAA after
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48 hour incubation period and demonstrated tolerance to NaCl up

to 8% (M. Sridevi et al., 2022). Another endophyte, Bacillus

licheniformis, isolated from Vigna radiata, produced 27 µg/mL

IAA after 30 minutes incubation with tryptophan and exhibited

tolerance to a NaCl concentration of 15% (Bhutani et al., 2022). In

another study, Enterobacter cloacae, isolated from the root nodules

of groundnut was able to produce 0.37 µg/mL IAA under 7% NaCl

stress (Ramakrishnan et al., 2023). Whether this exhibition of salt

tolerance and IAA production observed in such studies proves to be

useful for plants, needs further investigation.
5 Conclusion and future perspective

Despite extensive research focusing on the isolation and

screening of potential endophytes through short-term experiments,

there is a notable gap in studies that span throughout the entire

cultivation cycle, from sowing to harvesting of the crops to observe

the effects of the potential isolates on stress alleviation and crop yield

improvement. In addition, subsequent steps post-identification using

the endophytes such as bioinoculant development, patenting, and

marketing are imperative to make these advancements available to

farmers for application in crop fields. Furthermore, it is crucial to

choose an appropriate carrier for endophyte protection and

stabilization during transportation and storage. Therefore,

comparative studies on formulations with various carriers should

be conducted to maximize the product’s effectiveness during use. To

address these challenges, a suggested roadmap is delineated to guide

translational research in ensuring global food security by developing

bioinoculants for sustainable agricultural practices in the face of a

rapidly changing climate (Figure 3).

A recent technological advancement in increasing agricultural

productivity is the use of nanoparticles, including inorganic and

organic nanomaterials. It has been reported that several

endophytic bacteria produce nanomaterials, which have been

demonstrated to help the plant endure abiotic stresses. Besides,

using nanomaterial for bioinoculant development may enhance its

effectiveness, bioavailability, and stability (Meena et al., 2021;

Adeleke et al., 2022). However, the use of nanoparticles in auxin

production by endophytes and auxin-mediated stress tolerance in

crops needs exploration. The application of phytohormones

directly using nanoparticles for plant growth promotion and

defense induction has been recently explored. Recent studies

have combined nanocarriers with hormones like SA, GA, JA,

ABA, and IAA for the promotion of plant growth properties

(Pereira et al., 2017; Clemente et al., 2018; Sun et al., 2018;

Kumaraswamy et al., 2019; Korpayev et al., 2021; Gonzalez-

Montfort et al., 2022; Wu et al., 2022). Future experiments that

analyze the effect of nanoparticles on auxin production by

endophytes and employ their use in the formulation of

bioinoculants will be beneficial. This will promote studies to

understand how these nanomaterials can modulate auxin

biosynthesis, transport, and signaling in endophytes and plants

under drought and salt stress conditions.

In conclusion, overall evidence suggests that the phytohormone

auxin plays several roles in tolerating drought and salt stresses, and
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stress-tolerant auxin-producing endophytes can be a good source of

supplemental auxin for stressed plants. This review extensively

discusses and highlights potential isolates that can be used for

bioinoculant development. Furthermore, the effectiveness of

bioinoculants must be validated through extensive field trials in

stress-affected fields before introducing the product to the market.

Additionally, raising awareness among farmers to transition from

conventional chemical products and using these bio-products is a

crucial step towards sustainable agriculture.
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Rodrıǵuez-Llorente, I. D., Pajuelo, E., Navarro-Torre, S., Mesa-Marıń, J., and
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Strategies for combating
plant salinity stress: the
potential of plant growth-
promoting microorganisms
Biswa R. Acharya1,2, Satwinder Pal Gill3, Amita Kaundal3*

and Devinder Sandhu1*

1US Salinity Laboratory, USDA-ARS, Riverside, CA, United States, 2College of Natural and Agricultural
Sciences, University of California Riverside, Riverside, CA, United States, 3Plants, Soils, and Climate,
College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
Global climate change and the decreasing availability of high-quality water lead

to an increase in the salinization of agricultural lands. This rising salinity

represents a significant abiotic stressor that detrimentally influences plant

physiology and gene expression. Consequently, critical processes such as

seed germination, growth, development, and yield are adversely affected.

Salinity severely impacts crop yields, given that many crop plants are sensitive

to salt stress. Plant growth-promoting microorganisms (PGPMs) in the

rhizosphere or the rhizoplane of plants are considered the “second genome”

of plants as they contribute significantly to improving the plant growth and

fitness of plants under normal conditions and when plants are under stress such

as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions

imposed by salt stress. By enhancing water and nutrient absorption, which is

often hampered by high salinity, these microorganisms significantly improve

plant resilience. They bolster the plant’s defenses by increasing the production

of osmoprotectants and antioxidants, mitigating salt-induced damage.

Furthermore, PGPMs supply growth-promoting hormones like auxins and

gibberellins and reduce levels of the stress hormone ethylene, fostering

healthier plant growth. Importantly, they activate genes responsible for

maintaining ion balance, a vital aspect of plant survival in saline

environments. This review underscores the multifaceted roles of PGPMs in

supporting plant life under salt stress, highlighting their value for agriculture in

salt-affected areas and their potential impact on global food security.
KEYWORDS

climate change, glycophyte, ion toxicity, osmotic stress, PGPMs, salinity tolerance,
salt stress
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1 Introduction

Climate change poses a formidable challenge to global

agricultural productivity, with agriculture being particularly

vulnerable to shifts in weather patterns and climate conditions. A

persistent increase in the average global temperatures has been

recorded in recent years, posing significant challenges to

agricultural productivity, food security, and environmental

sustainability (Siegel, 2021). Climate change not only is limited

to increasing average global temperature but also includes erratic

rainfall patterns, heat waves, droughts, and flash floods, all of which

adversely affect soil and water resources, agricultural workers, and

rural communities (https://www.epa.gov/climateimpacts/climate

-change-impacts-agriculture-and-food-supply). Regions that rely

heavily on agriculture, such as South Asian countries, are

particularly impacted by these climate-related challenges

(Rhaman et al., 2022). The global population is projected to

exceed 10 billion within the next 50 years (Glick, 2014),

significantly increasing the demand for food production and

placing additional strain on existing agricultural systems

(Alexandratos, 2005; Cheeseman et al, 2016). This surge in

population presents the dual challenges of boosting agricultural

productivity amidst increasingly worsening environmental

conditions. Among these challenges, drought and salt stress are

the two major abiotic stressors that significantly reduce crop yields

and threaten food security and livelihoods (Cheeseman et al, 2016).

Innovative strategies should be developed to address the food

security crisis and meet the demand of the projected growing

population in the climate change-induced environmental stresses

(Wang et al., 2020). The approaches being used currently, including

genetically modified organisms, have shown promise in mitigating

the impact of drought and salinity stress (Askari and Pepoyan, 2012;

Liang, 2016; Raza et al., 2023). However, regulatory constraints and

environmental concerns are hurdles to widespread adoption and

spread. Other candidate approaches include agronomic

management practices (Majeed and Siyyar, 2020) and soil

amendments (Bello et al., 2021). Organic amendments like

biochar, bio-fertilizer, vermicompost, and vermiwash can improve

the salinity tolerance of agricultural plants, leading to increased

yields (Hoque et al., 2022). Additionally, seed priming and

exogenous application of growth regulators can alleviate salt

stress impacts in plants at various stages of development from
Abbreviations: ABA, Abscisic acid; ACC, 1-aminocyclopropane-1-carboxylate;

APX, ascorbate peroxidase; ASC, ascorbate; BRs, brassinosteroids; CAT, catalase;

CKs, cytokinins; DHAR, dehydroascorbate reductase; ECe, electrical conductivity

of soil saturation extract; EPS, extracellular polymeric substances; ET, ethylene;

GAs, gibberellins; GIPC, glycosyl inositol phosphorylceramide; GMO, genetically

modified organism; GR, glutathione reductase; GSH, glutathione; HKT1, high-

affinity K+ transporter 1; IAA, indole-3-acetic acid; JA, jasmonic acid; KSB, K-

solubilizing bacteria; MDHAR, monodehydroascorbate dehydrogenase; MIP,

major intrinsic protein; MOCA1, mono cation-induced [Ca2+]i increase 1; NO,

nitric oxide; PGPM, plant growth-promoting microorganisms; PIP, plasma

membrane intrinsic protein; POX, peroxidase; Pro, proline; ROS, reactive

oxygen species; SA, salicylic acid; SLs, strigolactones; SOS, salt overly sensitive;

SOD, superoxide dismutase; TIP, tonoplast intrinsic protein.
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germination to maturity (Tania et al., 2022). However, these

approaches have limited effectiveness under harsh conditions, can

be expensive, may vary in efficacy with different crop species, and

may have environmental impacts.

Beneficial microorganisms colonize plants’ rhizospheres or inside

tissues, promoting growth, improving nutrient uptake, and conferring

tolerance to various abiotic stresses (Ganesh et al., 2022; Vocciante

et al., 2022). Unlike genetically modified organisms (GMOs), plant

growth-promoting microorganism (PGPM)-based interventions offer

a sustainable and environmentally friendly approach to improving

crop resilience without genetic modifications or adverse

environmental effects. This review highlights the significant

contributions of microorganisms to sustainable crop production

under challenging environmental conditions. By examining the

mechanisms underlying PGPM-mediated salinity tolerance and

their potential agricultural applications, we underscore the vital role

of these microorganisms in addressing future agricultural challenges.

We focus on PGPMs as a promising solution for overcoming the

limitations of existing strategies in mitigating salinity stress.

Harnessing the potential of PGPMs holds great promise for

addressing the complex challenges posed by climate change and

ensuring global food security amid increasing salinity stress. In this

era of unprecedented threats to agriculture, it is imperative to develop

innovative strategies to counteract these emerging challenges.
2 Salinity stress in plants and its
impact on crop production and
plant responses

Salinity, a major abiotic factor, severely affects the growth,

development, and yield of various plants at different stages of

their life (Khan et al., 2022). Soil salinization impacts agricultural

productivity around the globe (Hu et al., 2022). Over 800 million

hectares of irrigated land are impacted by soil salinity and are

anticipated to be aggravated by both current irrigation practices and

global climate change (Roy et al., 2014). The rising salinity in soils

and water resources is contributed by natural incidents and/or

human activities like irrigation water containing higher salts (Eswar

et al., 2021). Saline soil with high Na+ negatively impacts soil–water

and soil–air relationships, directly influencing plant growth and

productivity (Rengasamy and Olsson, 1991; Dexter, 2004).

Increasing salinity stress modifies soil texture, causing decreased

porosity, which causes reduced water uptake by plants (Lu and

Fricke, 2023). Salinity not only disrupts the soil’s physical structure

but also significantly hampers the overall growth of plants, affecting

shoots, roots, and reproductive organs. Salinity-induced

modification of morphological, biochemical, and physiological

processes in plants diminishes agricultural productivity. In

addition, fluctuation in water dynamics, transpiration, nutritional

equilibrium, stomatal conductance, and oxidative damage under

salt stress collectively decrease crop yield. Moreover, salt stress

hampers photosynthetic activity, impedes biomass accumulation,

and disrupts source–sink dynamics, exerting a detrimental

influence on yield-related variables and accelerating the
frontiersin.org
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senescence of essential organs (Khataar et al., 2018). Over time, the

impact of salinity on plant productivity escalates, leading to

economic losses and societal effects (Atta et al., 2023).

Plants can be categorized into two main groups based on their

adaptive evolution: halophytes (salt-withstanding) and glycophytes

(salt-sensitive) (Khan et al., 2022). The majority of crop plants

belong to the glycophyte group and are adversely affected by

elevated salt levels in the soil or irrigation water, impacting their

growth, development, and yields (Shrivastava and Kumar, 2015).

Salt-affected plants usually show dark green leaves, which are

heavier and more succulent than typical plants of the same

species (Amacher et al., 2000).

For instance, the impact of salinity on crop yields can be seen in

specific examples. Beans experience no yield loss at an electrical

conductivity of soil saturation extract (ECe) of 1.0 dS m
−1, but show a

25% yield loss with ECe = 2.3 dS m−1 and a 50% yield loss with

ECe = 3.6 dS m−1 (Amacher et al., 2000). Conversely, barley shows no

yield loss with ECe = 8 dS m−1, a 25% yield loss with ECe = 13 dS m−1,

and a 50% yield loss with ECe = 17 dS m−1 (Amacher et al., 2000).

It should also be noted that the salinity tolerance level of different

cultivars of a specific species to salinity may show variation in

responses and yields as observed in guar, alfalfa, and other crops

(Sandhu et al., 2017; Kaundal et al., 2021; Sandhu et al., 2021, Sandhu

et al, 2023).

Some stages of the plant growth are more susceptible to salinity

stress than others (Sandhu and Kaundal, 2018). Several studies have

illustrated that salinity stress leads to substantial yield losses in

major crops during their reproductive stages. For example, salinity

has been demonstrated to decrease plant height, the number of

spikelets, spike length, grain weight, and overall yield (including

both grain and straw) in wheat (Kalhoro et al., 2016). Additionally,

the impact of salinity on grain yield depends on the stages of wheat

development. For example, salinity diminishes grain yield by 39%,

24.3%, and 13.4% during anthesis, early booting, and mid-grain

filling, respectively (Ashraf and Ashraf, 2016).

High soil salinity causes ionic toxicity and disrupts osmotic

equilibrium in plants, causing plant nutrient imbalance and

osmotic stress (Shrivastava and Kumar, 2015). Salt stress not only

disrupts ionic homeostasis and enhances osmotic potential but also

hinders several processes, including stomatal development, stomatal

movement, and expansion of cells. In pea plants, it has been shown

that the accumulation of ions in the apoplast contributes to cellular

necrosis (Speer and Kaiser, 1991). Similarly, in rice, the salt

accumulation in the apoplast disturbs cellular water relations,

which leads to dehydration and subsequently causes wilting

(Flowers et al., 1991). Yield losses in crops in response to salinity

are primarily attributed to Na+ and Cl−. However, other ions also

impact yield losses in crops. Toxicity impact varies among various

ions and combinations of ions (Hawkins and Lewis, 1993; Sandhu

et al., 2020). When the salinity level is low, it is easier for cellular

machinery to transport salt ions into the vacuole to adjust to the flux

of ions across the plasma membrane into the cell (Blumwald et al.,

2000). In contrast, when the salinity level is high, the influx rates

become elevated, disrupting the cellular ion homeostasis. It

subsequently leads to the accumulation of cations like Na+,

sometimes Mg2+, and Ca2+, and anions like Cl−, PO4
3−, and SO4

2−
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in the cytosol, stroma, and matrix rather than in the vacuole. Sodium

ions impact plant development by not only delaying flowering but

also hindering photosynthesis (Kim et al., 2007; Van Zelm et al.,

2020). This impairment occurs through the inhibition of carbon-

fixing enzymes and interference with proton-motive force.

Furthermore, multiple studies have observed that the K+/Na+ ratio

correlates with grain dry matter in wheat and other crops (Poustini

and Siosemardeh, 2004; Kalhoro et al., 2016; El Sabagh et al., 2021).

Elevated levels of NaCl in the soil decrease water potential,

consequently limiting the plant’s access to water from the soil; this,

in turn, triggers osmotic stress in plants (Acosta-Motos et al., 2017).

Ions like Na+ and Cl− enter plants through the outer cells of the root

(Van Zelm et al., 2020). Subsequently, these ions are transported

from the xylem of roots to the shoots. The elevation of ions within

plant cells initiates an ionic imbalance, leading to immediate

osmotic stress, followed by ionic stress, subsequently ionic

toxicity, and the generation of reactive oxygen species (ROS)

(Munns and Tester, 2008). An increase in Na+ due to salinity

inhibits biosynthesis and activity of diverse metabolic enzymes,

prompts stomatal closure, and diminishes photosynthesis. In

response to salinity-induced osmotic stress, plants synthesize

various compatible osmoprotectants and solutes, including

mannitol, inositol, trehalose, polyamines, glycine, betaine, and

proline to mitigate the severity of the salinity stress (Munns and

Tester, 2008; Park et al., 2016; Van Zelm et al., 2020).

The intricate mechanisms through which plants perceive salts are

not thoroughly comprehended. Salinity stress in plants triggers various

signaling pathways, the combined effects of which confer salinity

tolerance (Acharya et al., 2021). In response to salinity, MOCA1

(mono cation induced [Ca2+]i increase 1), an extracellular salt

sensor, detects Na+ and a few other monovalent cations (Jiang et al.,

2019). MOCA1 synthesizes glycosyl inositol phosphorylceramide

(GIPC) sphingolipids in the plasma membrane. GIPCs, with the

ability to bind to monovalent cations like Na+, are implicated in the

depolarization of cell-surface potential. It, in turn, triggers the opening

of calcium-influx channels, leading to elevated intracellular Ca2+ levels.

The activation of the salt overly sensitive (SOS) pathway follows the

increase in intracellular Ca2+ (Zhu, 2002). Within this pathway, SOS3,

upon binding with Ca2+, interacts with SOS2 and stimulates its kinase

domain (Kaundal et al., 2022). Subsequently, SOS1 is phosphorylated

by activated SOS2, facilitating the transport of Na+ from the interior to

the exterior of the cell (Figure 1) (Quintero et al., 2011). The evidence

described above indicates that both calcium and SOS signaling

pathways are critical for plant’s salinity tolerance. In addition to SOS

pathway components (SOS1, SOS2, and SOS3), CIPK8, CBL 8, and

CBL10 contribute to Na homeostasis under high salt stress (Figure 1)

(Acharya et al., 2024).

ROS are important secondary messengers in response to diverse

stress signaling pathways, including salt stress (Ma et al., 2012). The

excessive generation of ROS in response to salinity leads to oxidative

stress, which, in turn, causes damage to proteins, membrane lipids, and

nucleic acids (Ma et al., 2012). To protect cellular components and

macromolecules from the detrimental effects of oxidative stress-

mediated damage, plants engage in the synthesis of both non-

enzymatic and enzymatic antioxidants. Plants synthesize various

non-enzymatic antioxidants, including ascorbic acid (vitamin C),
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glutathione (GSH), and proline (Pro) (Gill and Tuteja, 2010).

Enzymatic antioxidants are responsible for detoxifying ROS,

encompassing superoxide dismutase (SOD), catalase (CAT),

peroxidase (POX), and enzymes associated with the ascorbate

(ASC)–glutathione cycle, such as monodehydroascorbate

dehydrogenase (MDHAR), ASC peroxidase (APX), dehydroascorbate

reductase (DHAR), and glutathione reductase (GR) (Gill and Tuteja,

2010; Foyer and Noctor, 2011).

Plant hormones are alternatively known as phytohormones,

which play essential roles in plant growth and development and

play critical roles in response to biotic and abiotic stress. In general,

phytohormones are classified into two groups: auxin, brassinosteroids

(BRs), cytokinins (CKs), gibberellins (GAs), and strigolactones (SLs)

are known as plant growth hormones, and abscisic acid (ABA),

ethylene (ET), jasmonic acid (JA), and salicylic acid (SA) are

considered as plant stress hormones (Verma et al., 2016). The

regulation of development, growth, and adaptation in plants under

salinity stress is critically influenced by stress and growth hormones

(Yu et al., 2020). A complex interplay occurs among plant stress

hormones and plant growth hormones in response to salinity. These

hormones play modulatory roles, engaging in complex crosstalk that

significantly contributes to the plant growth adaptation during

salinity stress (Yu et al., 2020). It should also be noted that the

expression status of genes associated with phytohormone

biosynthesis, transport, and signaling is an important determinant

of salinity tolerance in plants (Acharya et al., 2022a, Acharya et

al., 2022b).
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3 Plant growth-promoting microbes
to mitigate salinity stress
A diverse group of helpful microbes known as PGPMs inhabit the

rhizoplane (root surface), rhizosphere (soil around roots), or

endosphere (internal tissues). Generally, PGPMs include plant

growth-promoting bacteria, rhizobia, and arbuscular mycorrhizal

fungi. These microbes enhance plant growth in various ways,

including producing indole-3-acetic acid (IAA), solubilizing

phosphate for uptake, fixing nitrogen, producing beneficial enzymes

like CAT (which helps to reduce oxidative stress), ACC deaminase

(which reduces ET level that contributes to promote root growth), and

producing siderophore (which chelates iron for plant use) (Mohanty

et al., 2021). A detailed overview of the various ways PGPMs stimulate

plant growth under non-stress conditions is thoroughly discussed in

several recent reviews (Gahan and Schmalenberger, 2014; De Palma

et al., 2022; Orozco-Mosqueda et al., 2023).

In this review, we focused on the role of PGPMs under salinity

stress. Numerous research groups have discovered a wide array of

PGPMs that alleviate salinity stress in plants. Various aspects of

PGPM–plant interactions during salinity stress have been

documented in previous research (Liu et al., 2022; Shrivastava and

Kumar, 2015; Kaushal, 2020; Kumar et al., 2020; Mishra et al., 2021;

Hoque et al., 2023; Mishra et al., 2023; Kumawat et al., 2024). In the

following section, we categorize the various mechanisms through

which PGPMs aid in mitigating salinity stress in plants.
FIGURE 1

A model illustrating the role of the salt overly sensitive (SOS) pathway, including the SOS1, SOS2 (CIPK24), and SOS3 (CBL4) proteins, in maintaining
Na+ homeostasis under low- and high-salinity stress in plants. In addition to SOS1, SOS2, and SOS3, CIPK8, CBL 8, and CBL10 contribute to Na+

homeostasis under high salt stress.
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3.1 Nutrient uptake and utilization

Essential nutrients are crucial for plant growth and yield, but their

deficiency can negatively impact various aspects of plant

development. During salinity conditions, elevated levels of sodium

Na+ and Cl− limit the uptake of macronutrients, including nitrogen

(N), phosphorus (P), potassium (K), calcium (Ca), and magnesium

(Mg) (Guo et al., 2020). It leads to a decreased availability of essential

nutrients in plants, potentially triggering leaf senescence and

inhibiting overall plant growth (Kumari et al., 2022).

Potassium-solubilizing bacteria (KSB) play a pivotal role in

enhancing nutrient availability for plants, particularly in saline soils.

Notable among these are bacterial species, such as Pseudomonas sp.

and Bacillus sp., which can make K more accessible for plant uptake

by solubilizing various silicate minerals (Supplementary Table 1)

(Jaiswal et al., 2016; Vasanthi et al., 2018). Specifically, the PGPM

strain Burkholderia cepacia SE4 has been shown to release K from

soils, making it available to Cucumis sativus plants (Kang et al.,

2014a). Moreover, the application of Achromobacter piechaudii to

Solanum lycopersicum plants improved the uptake of K and P, while

the application of salt-tolerant rhizobacteria, Bacillus aquimaris, in

Triticum aestivum has been shown to enhance the uptake of K, P,

and N in saline environments (Mayak et al., 2004; Upadhyay and

Singh, 2015). Similarly, the application of Azospirillum lipoferum or

Azotobacter chroococcum in Zea mays L under salinity enhanced K

accumulation and provided salinity tolerance (Abdel Latef et al.,

2020). In Glycine max seedlings subjected to salinity, inoculation

with B. firmus (SW5) led to enhanced N and P accumulation and

greater salinity tolerance, underscoring the significant role of

B. firmus (SW5) in nutrient acquisition under stress conditions

(El-Esawi et al., 2018). These findings suggest that salt-tolerant KSB

can significantly enhance crop yields in saline soils.

Plant PGPMs also play a crucial role in increasing the accessibility

of other essential minerals such as iron (Fe), zinc (Zn), and sulfur (S)

to plants (Supplementary Table 1) (Gahan and Schmalenberger,

2014; Mishra et al., 2023). Iron is an essential micronutrient for

plants as it is necessary for several metalloenzymes that are crucial in

processes such as respiration and photosynthesis (Kobayashi et al.,

2019). Salinity causes a deficiency of Fe that impacts plant growth,

development, yield, and several other biological processes, including

chlorophyll biosynthesis (Kobayashi et al., 2019). It has been

documented that soil microbes play critical roles in accumulating

Fe in roots and in transporting Fe in different plants (Masalha et al.,

2000). Under conditions of low Fe availability, both microorganisms

and plants produce siderophores—small organic molecules that

selectively chelate ferric ions [Fe(III)], facilitating iron uptake

(Ferreira et al., 2019; Timofeeva et al., 2022). The application of

endophytic streptomyces has been demonstrated to significantly

enhance the growth of mung bean and rice plants, leading to a

notable increase in the biomass of both roots and shoots (Rungin

et al., 2012). Furthermore, salt-tolerant siderophore-producing

rhizobacteria (e.g., Bacillus aryabhattai MS3) have demonstrated

the ability to promote plant growth in saline soils where Fe is

limited (Sultana et al., 2020, Sultana et al., 2021). Therefore,

siderophore-producing rhizobacteria are recognized as highly
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beneficial PGPMs, enabling plants to thrive in saline soils with

limited iron availability (Ferreira et al., 2019).

Zinc (Zn) is a crucial plant micronutrient, essential for their

development, growth, and yield (Saleem et al., 2022). Saline, sodic,

and calcareous soil often cause Zn deficiency in plants (Tavallali

et al., 2009; Daneshbakhsh et al., 2013). In the saline environment,

the application of Zn is known to enhance sanity tolerance and

stimulate proline metabolism (Mushtaq et al., 2023). Numerous

studies have shown that PGPMs, including species such as

Trichoderma sp., Providencia sp., Anabaena sp., and Bacillus sp.,

are capable of solubilizing Zn present in the soil (Upadhayay et al.,

2022), which could be used for growth developments of plants

including wheat (De Santiago et al., 2011).

Sulfur is a vital macronutrient crucial for the plant development

and growth (Narayan et al., 2023). P. putida has been shown to play

an important role in the S cycle in the conversion of organic S to an

inorganic form that plants can uptake (Kertesz and Mirleau, 2004).

Application of P. putida, Pseudomonas fluorescens, and B. subtilis

provided salinity tolerance in soybean (Abulfaraj and Jalal, 2021).

An Enterobacter sp., SA187, is known to promote alfalfa growth and

yield in field conditions (De Zélicourt et al., 2018). Under salt stress,

Arabidopsis plants showed symptoms resembling S starvation (De

Zélicourt et al., 2018; Andrés-Barrao et al., 2021). However, when

colonized with Enterobacter sp., SA187, these plants showed

enhanced uptake of S and improved sulfur metabolism. This

interaction also modulated the phytohormone signaling pathway

and provided salinity tolerance (Supplementary Table 1) (De

Zélicourt et al., 2018; Andrés-Barrao et al., 2021).
3.2 Synthesis of osmolytes and regulation

Salinity triggers osmotic stress in plants, leading them to

produce various osmolytes that serve as osmoprotectants—like

mannitol, inositol, trehalose, polyamines, glycine, proline, and

betaine—to mitigate the severity of the salinity stress (Munns and

Tester, 2008; Park et al., 2016; Van Zelm et al., 2020). In saline

environments, PGPMs further support plants under osmotic stress

by producing these osmoprotectants, thereby enhancing the plants’

tolerance to salinity (Supplementary Table 1). For example,

inoculation of PGPMs, P. fluorescens, and B. subtilis enhanced

proline accumulation in cucumber plants under salinity stress

compared to non-inoculated plants (Saberi-Riseh et al., 2020).

Similarly, the application of salt-tolerant Stenotrophomonas

maltophilia BJ01 enhanced proline accumulation in peanut plants,

providing salinity tolerance (Alexander et al., 2020). Additionally,

B. amyloliquefaciens NBRI-SN13 enhanced proline and total sugar

accumulation in rice seedlings, in contrast to non-inoculated

seedlings (Tiwari et al., 2017).

In capsicum, the application of a salt-tolerant rhizobacteria, B.

fortis, improved proline accumulation and conferred salinity

tolerance (Yasin et al., 2018). Chickpea plants inoculated with

Azosprillum lipoferum FK1 accumulated osmolytes like betaine,

glycine, proline, and soluble sugars in response to salinity (El-

Esawi et al., 2019). Further studies indicated that while salt
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treatment alone increased soluble sugars and proline content in

maize plants, inoculation with A. lipoferum or A. chroococcum

significantly boosted these levels, compared to plants treated with

salt alone, enhancing maize growth under salinity (Abdel Latef

et al., 2020). This suggests that the production of osmolytes and

other components by these two PGPMs contributed to salinity

tolerance and improved maize growth.

In soybeans, inoculation of B. firmus (SW5) not only increased

the accumulation of osmoprotectants like glycine betaine and

proline but also enhanced root architectural traits, including root

length and volume, thereby improving salinity tolerance (El-Esawi

et al., 2018). Moreover, an endophytic fungus, Paecilomyces

formosus, known for producing Gas, provided salinity tolerance

in cucumber by enhancing the accumulation of proline and other

beneficial plant traits (Khan et al., 2012).
3.3 Enhancement of water transport

Aquaporins, integral membrane proteins from the major

intrinsic protein (MIP) superfamily, form water-selective channels

across membranes that play important roles in water transport and

can also transport small neutral molecules (Kapilan et al., 2018).

They play vital roles in cellular water transport as members of the

plasma membrane intrinsic protein (PIP) and tonoplast intrinsic

protein (TIP) families (Afzal et al., 2016). Aquaporins are key

contributors to plant root hydraulic conductivity (Grondin et al.,

2020). Expression of aquaporins is highly regulated by drought and

salinity. An aquaporin gene SpAQP1 of Sesuvium portulacastrum, a

halophyte, was strongly induced in response to salt or drought

treatment (Chang et al., 2016). Transgenic tobacco plants

expressing SpAQP1 demonstrated enhanced salt tolerance

compared to wild-type and vector control plants, underscoring

the role of aquaporin genes in salinity tolerance (Chang et al., 2016).

In Arabidopsis, exposure to 100 mM NaCl leads to the

downregulation of PIP and TIP aquaporin genes (Boursiac et al.,

2005), a response also observed in other plants like cotton and

tomato (Braz et al., 2019; Jia et al., 2020), significantly impacting

root hydraulic conductivity (Siefritz et al., 2002). Conversely, the

application of PGPMs has been shown to upregulate the expression

of aquaporin genes, enhancing plant resilience to salinity. For

instance, in maize, application of Pantoea agglomerans or

B. megaterium upregulated aquaporin genes, improving root

hydraulic conductivity and salinity tolerance (Marulanda et al.,

2010; Gond et al., 2015). Similarly, barley seedlings treated with 200

mM NaCl exhibited reduced biomass and height alongside

downregulated HvPIP2;1 aquaporin gene expression (Zawoznik

et al., 2011). However, inoculation with Azospirillum brasilense

strain AZ39 induced HvPIP2;1 expression, mitigating biomass and

height reduction (Zawoznik et al., 2011). These observations suggest

that A. brasilense strain AZ39 alleviates salinity stress possibly by

upregulating the HvPIP2;1 aquaporin gene, thereby enhancing root

hair length, density, and improving water uptake. Furthermore, in

response to salt stress, the mycorrhizae-mediated modulation of the

expression of aquaporin genes has been reported in multiple plant

species including Phaseolus vulgaris, Lactuca sativa, and Robinia
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pseudoacacia (Sharma et al., 2021). Mycorrhiza-mediated

upregulation of aquaporin gene improved water status, K+/Na+

homeostasis, increased photosynthesis, enhanced expression of

genes associated with ion homeostasis, including SOS1 and HKT1,

and alleviated salinity tolerance in black locust (Robinia

pseudoacacia) (Supplementary Table 1) (Chen et al., 2017).
3.4 Regulation of ionic equilibrium

During salinity stress, toxic ions like Na+ and Cl− increase in the

cytosol, and excessive accumulation of these ions causes toxicity.

Na+ not only imbalances the K+/Na+ ratio but also affects many

physiological processes and functions of various proteins (Assaha

et al., 2017). The SOS signaling pathway plays an important role to

reduce Na+ inside of the cell, and that, in turn, helps maintain Na+

homeostasis (Park et al., 2016). Additionally, the high-affinity K+

transporter 1 (HKT1) contributes to Na+ homeostasis by removing

Na+ from the xylem and sending Na+ back to the root (Kaundal

et al., 2019). In rice, it has been shown that OsHKT1;4-mediated

Na+ transport in stems plays a role in excluding Na+ from leaf

blades during the reproductive growth stage in response to salt

stress (Suzuki et al., 2016). Na+/H+ antiporters have been implicated

in Na+ and K+ homeostasis and salt tolerance (Apse et al., 1999;

Bassil et al., 2011). Moreover, the proton pump, AVP1, has been

shown to play a role in salinity tolerance in different plants (Gaxiola

et al., 2001; Lian et al., 2024).

Multiple PGPMs have been identified to induce expression of

SOS pathway genes (Supplementary Table 1). Notably, volatile

compounds produced by rhizobacteria Alcaligenes faecalis

JBCS129 have been shown to upregulate expression of

Arabidopsis SOS1, HKT1, NHX1, and AVP1 under salt stress,

assisting the plant in maintaining ion homeostasis during salinity

stress (Bhattacharyya et al., 2015). The application of PGPM strain

Glutamicibacter sp. YD01 in rice seedlings provided salinity

tolerance by inducing expression of OsHKT1 significantly and

maintaining ion homeostasis (Ji et al., 2020). This strain also

produces ACC (1-aminocyclopropane-1-carboxylate) deaminase

and IAA, further supporting plant growth under stress.

In response to salinity, maize plants showed increased Na+,

decreased K+, and reduced K+/Na+ ratio. However, salt-stressed

maize plants inoculated with A. lipoferum or A. chroococcum showed

reduced Na+, enhanced K+ accumulation, increased K+/Na+ ratio, and

improved salinity tolerance, indicating that both A. lipoferum or

A. chroococcum contribute to plant ion homeostasis in response to

salinity (Abdel Latef et al., 2020). Similarly, inoculating white clover

plant (Trifolium repens) with A. brasilense enhanced growth under

salinity and reduced Na+ content, enhanced K+ content, and increased

K+/Na+ ratio, suggesting that A. brasilense treatment contributes to ion

homeostasis in plants under salinity (Khalid et al., 2017). Additionally,

the application of Variovorax paradoxus 5C-2 to pea plants under

salinity enhanced ion homeostasis by increasing K+ uptake, decreasing

Na+ accumulation, and enhancing K+/Na+ ratio, leading to enhanced

growth and salinity tolerance compared to uninoculated plants (Wang

et al., 2016). Under salinity stress, rice inoculated withC. albidum strain

SRV4 exhibited lower Na accumulation and higher K accumulation
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compared to non-inoculated plants (Vimal et al., 2019). This improved

tolerance to salinity indicates the positive role of C. albidum in

maintaining ion homeostasis during salt stress.
3.5 Production of antioxidants

Various plant enzymes, including APX, CAT, GR, POX, and

SOD, exhibit antioxidant activity (Upadhyay et al., 2012). Many

PGPMs have been shown to boost the activity of these antioxidant

enzymes. For instance, Piriformospora indica, a root-colonizing

basidiomycete fungus, promotes growth and provides resistance

against mild salinity stress in barley by activating the antioxidative

capacity through the glutathione–ascorbate cycle (Waller et al.,

2005). Similarly, applying A. lipoferum or A. chroococcum to maize

plants enhanced the activity of CAT and POX POD, showcasing

their positive regulatory roles in salinity tolerance (Abdel Latef

et al., 2020). In soybean seedlings, B. firmus (SW5) inoculation

elevates the activity of APX, SOD, CAT, and POD, alongside

reducing H2O2 levels, indicating its contribution to enhanced

antioxidative capacity (El-Esawi et al., 2018). Inoculating okra

seeds with ACC-producing Enterobacter sp. UPMR18 improved

seed germination and seedling growth under salinity conditions

(Habib et al., 2016). This was accompanied by heightened ROS-

scavenging activity of enzymes like APX, CAT, and SOD, indicating

that these ROS-scavenging enzymes play a beneficial role in

enhancing salinity tolerance through the action of PGPMs

(Supplementary Table 1). The application of P. putida H-2–3

showed a higher activity of SOD and improved soybean plant

growth under salinity and drought (Kang et al., 2014b).

Additionally, a GA-producing endophytic fungus, P. formosus,

aids in salinity tolerance in cucumber by accumulating

antioxidants, among other beneficial traits (Khan et al., 2012).

Application of Curtobacterium albidum strain SRV4 in rice under

salinity showed the higher activity of antioxidant enzymes,

including CAT and SOD, and provided tolerance to salinity

compared to non-inoculated plants (Vimal et al., 2019).
3.6 Phytohormone synthesis
and regulation

Phytohormones play vital roles in regulating plant growth,

development, and various physiological processes (Acharya and

Assmann, 2009; Acharya et al., 2013; Miransari and Smith, 2014;

Acharya et al., 2017). In response to salinity stress, various

phytohormones, including auxins, CK, ET, and GAs, are critical

in helping plant to adapt (Kaundal et al., 2021; Acharya et al., 2022a,

Acharya et al., 2022b). Several PGPMs have been identified that

produce and excrete hormones that plants can absorb through their

roots, enhancing plant growth or regulating hormone balance to

improve salinity responses (Backer et al., 2018). For instance,

application of a halotolerant PGPM strain, Glutamicibacter sp.

YD01, equipped with ACC deaminase, has been shown to provide

salinity tolerance by reducing ET in rice seedlings (Supplementary

Table 1) (Ji et al., 2020). Furthermore, PGPMs are known to
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synthesize some phytohormones like auxin, CK, ET, GA, and SA,

modulating physiological activity through molecular responses

(Orozco-Mosqueda et al., 2023). Additionally, many organic

compounds produced by PGPMs are known to influence plant

physiological activities, underlining the significant role these

microorganisms play in enhancing plant health and stress

resilience. The next section explores how PGPMs influence the

regulation of various phytohormones.

3.6.1 Auxin
Auxin, a crucial phytohormone, plays significant roles in plant

growth and development, and particularly root development,

including primary root elongation and lateral root initiation (Van

Zelm et al., 2020). Additionally, auxin is vital in plant responses to

salt stress; reduced auxin levels in roots under such conditions

negatively impact root growth and architecture (Smolko et al.,

2021). Specifically, salt stress, primarily through Na+, inhibits

auxin-mediated primary root elongation and impedes auxin-

mediated lateral root initiation, emergence, and elongation (Van

Zelm et al., 2020). In response to salinity, the ABA concentration

increases, which further inhibits lateral root emergence and

elongation (Van Zelm et al., 2020). An increase in Na+ in roots

reduces auxins and enhances ABA that, in turn, causes inhibition of

lateral growth.

Many PGPMs are known to synthesize IAA, a physiologically

active auxin, including species Aeromonas veronii, A. brasilense,

Enterobacter sp., Rhizobium leguminosarum, Actinobacteria,

Frankia, Kitasatospora, Nocardia, Pseudomonas, Bacillus, and

Streptomyces (Supplementary Table 1) (Vessey, 2003; Kumar

et al., 2020; Ganesh et al., 2022). The impact of the exogenous

application of IAA is dependent on concentration; high

concentrations accelerate the development of lateral roots and

root hair formation while negatively affecting primary root

growth (Vacheron et al., 2013). In contrast, a low dose of IAA

may promote primary root growth (Vacheron et al., 2013). The

application of PGPMs that produce auxin have been shown to

induce plant growth by enhancing root growth and biomass (Backer

et al., 2018). Additionally, many PGPMs indirectly influence auxin

signaling pathways in plants. For example, some PGPMs with

nitrite reductase activity, like A. brasilense, produce nitric oxide

(NO), which is involved in lateral root development under stress

conditions (Supplementary Table 1) (Wimalasekera and

Scherer, 2022).

The uptake of IAA produced by PGPMs promotes primary and

lateral root growth, as well as root hair proliferation, enabling plants

to absorb more nutrients and minerals for improved growth and

productivity. This indicates that the presence of PGPMs in soil,

through the production of IAA, can significantly enhance plant

growth compared to soils without PGPMs (Glick, 2014). Salt-

tolerant rhizobacterial strains that produce auxin and proline

mitigated salinity-induced growth inhibition of barley plants by

regulating ion homeostasis and leaf water potential (Metoui Ben

Mahmoud et al., 2020). A study showed that Medicago truncatula

nodulated by an IAA-overproducing strain, Sinorhizobium

meliloti RD64, showed improved tolerance to 300 mM NaCl

(Supplementary Table 1) (Bianco and Defez, 2009). An IAA-
frontiersin.org

https://doi.org/10.3389/fpls.2024.1406913
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Acharya et al. 10.3389/fpls.2024.1406913
producing PGPM strain, C. albidum SRV4, provided tolerance in rice

by improving growth, improving K uptake, and boosting

antioxidative enzymatic activities (Vimal et al., 2019). IAA-

producing PGPM Pseudomonas sp. provides salinity tolerance in

cotton (Egamberdieva et al., 2015). Three IAA-producing

halotolerant PGPMs isolated from halophytes, Micrococcus

yunnanensis, Planococcus rifietoensis, and V. paradoxus, have been

shown to provide salinity tolerance in sugar beet (Supplementary

Table 1) (Zhou et al., 2017).

3.6.2 Gibberellins
GAs constitute a large group of phytohormones that positively

regulate various aspects of plant growth, such as root and stem

elongation, cell division, bolting, flowering, seed germination, and

dormancy (Swain and Singh, 2005). DELLA (aspartic acid–glutamic

acid–leucine–leucine–alanine) proteins, a sub-family of plant-

specific GRAS (GIBBERILIC ACID INSENSITIVE, REPRESSOR

OF ga1–3, and SCARECROW) transcriptional regulators, are

critical components of the GA signaling pathway (Phokas and

Coates, 2021). Abiotic stresses, such as salinity, are known to

reduce GA levels, primarily by inhibiting the enzymes responsible

for GA biosynthesis, highlighting the crucial role of GAs in plant

stress resilience (Achard et al., 2006; Magome et al., 2008).

Many PGPMs are capable of producing GAs, which aid in plant

growth enhancement (Backer et al., 2018). GA-producing bacteria,

Burkholdera cepacia SE4, Promicromonospora sp. SE188, and

Acinetobacter calcoaceticus SE370, provided salinity tolerance in

cucumber plants (Kang et al., 2014a). Similarly, Pseudomonas

putida H-2–3, another GA producer, improved soybean growth

under salinity and drought (Supplementary Table 1) (Kang et al.,

2014b). Further research has demonstrated that the application of

the GA-producing endophytic fungus Penicillium funiculosum

LHL06 can impart salt stress tolerance to soybean, by lowering

plant levels of ABA and JA, and enhancing isoflavone biosynthesis

(Khan et al., 2011). Additionally, the GA-producing endophytic

fungus, P. formosus, provided salinity tolerance in cucumber by

reducing stress hormone ABA and enhancing the accumulation of

antioxidants and proline (Khan et al., 2012). A recent study shows

that a GA-producing PGPM, B. subtilis ER-08 (isolated from a

halotolerant plant), with multiple growth-promoting attributes

enhanced the growth of fenugreek (Trigonella foenum-graecum L.)

in response to salinity and drought stress (Supplementary Table 1)

(Patel et al., 2023).

3.6.3 Cytokinins
CKs have been identified as both positive and negative

regulators in the context of salinity stress tolerance (Liu et al.,

2020). For instance, increased CK levels during salinity stress have

been observed in plants like Arabidopsis, rice, tomato, and apple.

Notably, the OsCKX2 knockout rice mutant, which has a higher

level of CK content, shows higher salinity tolerance compared to

wild type (Joshi et al., 2018). Additionally, the application of

INCYDE, a CK degradation inhibitor, has been shown to increase

salinity tolerance in tomatoes, underscoring CK’s beneficial role in

salinity tolerance by suggesting that salt stress may reduce CK

levels, thereby diminishing salinity tolerance (Aremu et al., 2014).
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Conversely, there are instances where increased CK levels have been

associated with reduced salinity tolerance. Overproduction of CK in

Arabidopsis showed reduced salinity tolerance (Wang et al., 2015).

Furthermore, in Arabidopsis, CK negatively regulates the

expression of HKT1, which is responsible for unloading Na+ from

the root xylem, which, in turn, causes an increase of Na+ in the

shoot (Mason et al., 2010). Additionally, reduced CK level due to

increased degradation or reduced synthesis provided enhanced

tolerance to salinity, including wheat and tomato (Avalbaev

et al., 2016).

3.6.4 Ethylene
It is well known that ET is one of the important phytohormones

that play key roles in several plant physiological processes,

including salinity stress (Riyazuddin et al., 2020). Salinity and

other abiotic stresses increase ET content, causing the stunted

growth of plants (Chen et al., 2021). ACC deaminase, an enzyme

that hydrolyzes ACC, the immediate precursor of ET, plays a vital

role in reducing ET levels, thereby aiding plant growth under stress

conditions (Shahid et al., 2023). PGPMs utilize ACC deaminase to

reduce ET levels, which, in turn, helps to reduce the stress level

induced by salinity or other stresses (Glick et al., 2007; Orozco-

Mosqueda et al., 2020). For instance, P. fluorescens strain TDK1,

which produces ACC deaminase, has been shown to confer salinity

tolerance and increase yield in peanuts (Saravanakumar and

Samiyappan, 2007). Similarly, inoculation with V. paradoxus

5C-2, an ACC deaminase-producing PGPM, has provided salinity

tolerance in Pisum sativum L. cv. Alderman, leading to increased

biomass and enhanced photosynthetic activity (Wang et al., 2016).

In addition, various studies have documented that rhizobacteria

that have functional ACC deaminase provide tolerance in various

crops, including P. fluorescens LSMR-29 and E. hirae LSMRS-7 in

Vigna radiata (Kumawat et al., 2024), Arthrobacter protophoramiae

in P. sativum (Barnawal et al., 2014), P. fluorescens NBRC 14160

and B. megaterium NBRC 15308 in wheat (Fathalla and Abd El-

Mageed, 2020), Glutamicibacter sp. YD01 in rice seedlings (Ji et al.,

2020), Aneurinibacillus aneurinilyticus and Paenibacillus sp. in

French bean (Gupta and Pandey, 2019), Bacillus sp. PM31 in

maize (Ali et al., 2023), and Hartmannibacter diazotrophicus E19T

in barley (Supplementary Table 1) (Suarez et al., 2015).

Additionally, multiple species of ACC deaminase producing

halotolerant PGPMs with additional growth-promoting properties

isolated from halophytes, P. rifietoensis, V. paradoxus, and M.

yunnanensis, have been shown to provide tolerance to salt stress

in Beta vulgaris by reducing ET content (Zhou et al., 2017).
3.7 Biofilms

Biofilms are complex and structured communities of

microorganisms, primarily bacteria that adhere to surfaces and

are encased in a self-produced matrix of extracellular polymeric

substances (EPS), comprising polysaccharides, proteins, nucleic

acids, and other molecules (Di Martino, 2018). Biofilm-producing

microorganisms gain a survival advantage in unfavorable

conditions, including saline soils, where increased osmotic
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pressure could otherwise lead to cell death through cytoplasmic

lysis. The ability to form biofilms equips these microorganisms with

a protective mechanism against saline environments and other

abiotic stresses, effectively serving as barriers that enable them to

withstand and thrive under harsh conditions (Yin et al., 2019).

Halotolerant PGPMs thrive in saline environments, establishing

themselves around the root zone, and promoting plant growth and

development (Ahemad and Kibret, 2014). They produce various

beneficial chemicals and growth regulators in the rhizosphere.

Among these, certain halotolerant PGPM strains have been

discovered to enhance salinity stress tolerance in plants. For

example, two halotolerant biofilm-forming PGPM strains, AP6

and PB5, affiliated with B. licheniformis and P. plecoglossicida,

respectively, were found to produce IAA and ACC deaminase

(Yasmeen et al., 2020). These strains contributed to salinity

tolerance and led to better growth and yield of sunflower plants

than the non-inoculated plants. It demonstrates the multifaceted

benefits of biofilm formation, including the production of IAA and

ACC deaminase, which contribute to improved plant growth,

productivity, and salinity tolerance (Yasmeen et al., 2020).

Furthermore, wheat seedlings inoculated with exopolysaccharide-

producing bacteria have been shown to stimulate growth and

provide salinity tolerance by restricting Na+ influx (Ashraf et al.,

2004). An exopolysaccharide-producing PGPM strain, C. albidum

strain SRV4, provided tolerance to rice (Vimal et al., 2019).
4 Challenges in applying PGPMs in
soil for improvement of crops

PGPMs have been extensively researched over the years, and

many efforts have been made to leverage their potential for

commercial use. Despite their significant promise for sustainable

agriculture, their broad-scale implementation encounters

various obstacles.
4.1 Inconsistent efficacy of PGPMs

PGPMs can be highly context-dependent, varying across

different soil types and climates (Martıńez-Viveros et al., 2010).

One of the primary challenges in utilizing PGPMs is ensuring their

survival and persistence in the soil environment. Soil conditions,

such as temperature, pH, and the presence of competing

microorganisms, can impact the viability of these microbes

(Martıńez-Viveros et al., 2010), making it difficult for farmers to

predict and ensure positive outcomes from PGPM application,

which, in turn, slows their widespread adoption in agriculture.
4.2 Specificity of action

While some PGPMs exhibit broad-spectrum benefits, many

work optimally with specific plant species or crop cultivars (Dhawi

and Hess, 2017; Pratush et al., 2018; Ma et al., 2020). Identifying the

most effective strain for each crop–soil combination requires
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extensive testing, complicating large-scale implementation.

Additionally, natural crop variability within a species further

challenges finding a “one-size-fits-all” solution.
4.3 Issues in the development process

The development of PGPMs is based on screening assays in a

laboratory setting, which measure specific PGPM activities such as

IAA production, calcium phosphate solubilization, and siderophore

production (Ganesh et al., 2022). However, the presence of these

characteristics in microorganisms does not always guarantee effective

PGPM function under field conditions. Conversely, microbes lacking

these in vitro properties might possess alternative mechanisms for

promoting plant growth, which are less well-understood. Because of

this knowledge gap, such microbes risk being overlooked and

discarded during the early stages of laboratory screening, potentially

missing out on effective PGPM candidates (Cardinale et al., 2015).
4.4 Shelf life and viability

PGPMs are living entities with specific viability requirements, and

owing to their structural and cellular composition, they have a relatively

short shelf life (Arriel-Elias et al., 2018). Maintaining their effectiveness

throughout production, storage, and application can be expensive,

complex, and challenging, especially for small-scale farmers.
4.5 Regulatory hurdles and lack
of standardization

Regulatory systems frequently lag scientific progress. Concerns

about unintended environmental impacts and the complex nature

of microbial communities can create regulatory hurdles, stalling

commercialization efforts (Leggett et al., 2011). Additionally,

the lack of consistent standardization in strain identification,

characterization, and quality control for agricultural applications

impedes broad adoption and undermines farmer confidence.
4.6 Economic benefit to farmers

A clear economic benefit demonstrated for farmers is crucial for

widespread adoption. The microbes’ application method must align

with the farmer’s equipment and agricultural practices. Factors like

upfront costs, application complexity, and reliable performance data

compared to conventional methods need careful consideration.

Farmers commonly perceive PGPM formulations as costlier and less

effective than chemical alternatives, which needs to be addressed.
4.7 Farmers’ risk-taking ability:

Crop producers usually depend solely on farming for their

livelihood and sustenance, with little to no extra financial runway

between two crops. With such financial constraints, farmers are
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unwilling to use nontraditional measures compared to tried-and-tested

methods. This can pose a big hurdle in the widespread adoption

of PGPMs.

More extensive work needs to be done by agricultural researchers

and farmers to adopt PGPM formulations on a broader scale (Parnell

et al., 2016). Educating farmers about the long-term benefits and

building trust in PGPM technology is essential. Farmer education and

awareness play a crucial role. Shifting from traditional practices to

effectively utilizing PGPMs requires knowledge and training, which

may be limited to certain regions. Addressing these challenges

through continued research, improved formulations, streamlined

regulations, and effective farmer education is crucial to unlocking

the full potential of PGPMs and transforming agriculture toward a

more sustainable future.
5 Conclusions

Salt stress disrupts various plant processes, including seed

germination, seedling and root growth, development, early

senescence, flowering, and yield, potentially leading to premature

death. In saline environments, reduced water uptake causes osmotic

stress due to changes in cell turgor. Plants synthesize osmoprotectants

to cope, but these may be insufficient. Higher levels of Na+ and Cl−

lead to ionic stress and imbalance, specifically affecting the K+/Na+

ratio. Gene expression changes may enable some tolerance,

depending on salinity levels and plant genetics. Salinity negatively

impacts the acquisition of essential nutrients like N, P, and K and

induces oxidative stress by increasing ROS accumulation, which can

be harmful. Although plants produce antioxidants, these may not
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fully counteract oxidative stress. Stress hormones like ABA and ET

increase under salinity, inhibiting growth, while growth hormones

like auxins and GAs are inhibited, further negatively impacting

plant growth.

In a saline environment, halotolerant PGPMs can play critical

roles in improving plant growth (Figure 2). Their natural

availability or supplementation of PGPMs alleviates the impact of

salinity stress on plant development, growth, and yield by

influencing various aspects of plant life. They modulate

nutritional, physiological, biochemical, and molecular aspects of

plant life. PGPMs enhance water uptake during salinity by

upregulating the expression of aquaporin genes and additional

mechanisms. Many PGPMs also enhance the accumulation of

osmoprotectants in plants, thereby enhancing tolerance to

salinity. They contribute to reducing the Na+ levels by

upregulating genes that are involved in ion homeostasis, such as

SOS1 and HKT1, along with other genes playing roles in ion

homeostasis. Halotolerant PGPMs also play critical roles in plant

growth by enhancing the availability of essential nutrients,

providing growth hormones like auxins and GAs, helping plants

reduce stress hormones like ET through ACC deaminase, and

enhancing the antioxidant capacity of plants. Employing PGPMs

that produce ribosylated CK is beneficial, as this variant can move

from the root to the shoot, promoting cell expansion and division

without adversely impacting root growth, owing to its altered CK

composition (Kudoyarova et al., 2019). Some PGPMs produce

multiple hormones, enabling one to predict expected outcomes

based on their respective functions. Specific combinations of

PGPMs may be utilized according to the specific needs of a crop

or plant to enhance salinity tolerance. Employing mathematical
A B C

FIGURE 2

Roles of plant growth-promoting microorganisms (PGPMs) in enhancing salinity stress defense in plants. (A) A healthy plant in non-saline soil. (B) A
plant facing saline conditions shows yellowing of leaves and stunted growth due to excessive ions in soil and tissues. (C) A plant in salt-affected soil
treated with PGPMs regains health by mitigating the osmotic and ionic stresses induced by salinity.
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modeling, one can predict which combinations of PGPMs would

be most effective in imparting salinity tolerance to a specific crop

with known traits, including its tolerance level of salinity, as well as

its physiological, biochemical, and molecular tolerance traits.

Additionally, specific traits of PGPMs could be improved using

gene editing technology tailored to the specific needs of a user.

PGPMs present promising opportunities for sustainable agriculture

by enhancing yields and resilience and decreasing dependence on

harsh chemicals. Nevertheless, further efforts are needed to translate

the potential observed in laboratory studies into broad-scale

field applications.
6 Perspectives

Despite recent progress on PGPM-mediated salinity tolerance

in plants, many questions remain unanswered. For instance, do

PGPMs contribute to enhancing Na+ or salt-sensing mechanisms in

plants? While literature suggests that many PGPMs provide general

benefits like nutrient uptake, it is unclear if they are equally effective

outside their natural range. Additionally, could some plant species

be negatively impacted by specific strains of PGPMs?

Several reports indicate that PGPMs modulate gene expression

in response to salinity. Do PGPMs induce epigenetic modifications

in host plants under salt stress, affecting gene expression related to

salinity tolerance? RNA-binding proteins (RBPs) are well-known

regulators of gene expression at the post-transcriptional level. Given

that PGPMs have been shown to provide salinity tolerance by

regulating various genes, it would be highly interesting to

investigate whether PGPMs specifically regulate gene expression

through RBPs to promote salinity tolerance.
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Heavymetal pollution has become a serious concern across the globe due to their

persistent nature, higher toxicity, and recalcitrance. These toxic metals threaten

the stability of the environment and the health of all living beings. Heavymetals also

enter the human food chain by eating contaminated foods and cause toxic effects

on human health. Thus, remediation of HMs polluted soils is mandatory and it

needs to be addressed at higher priority. The use of microbes is considered as a

promising approach to combat the adverse impacts of HMs. Microbes aided in the

restoration of deteriorated environments to their natural condition, with long-term

environmental effects. Microbial remediation prevents the leaching and

mobilization of HMs and they also make the extraction of HMs simple.

Therefore, in this context recent technological advancement allowed to use of

bioremediation as an imperative approach to remediate polluted soils. Microbes

use different mechanisms including bio-sorption, bioaccumulation, bioleaching,

bio-transformation, bio-volatilization and bio-mineralization to mitigate toxic the

effects of HMs. Thus, keeping in the view toxic HMs here in this review explores the

role of bacteria, fungi and algae in bioremediation of polluted soils. This review also

discusses the various approaches that can be used to improve the efficiency of

microbes to remediate HMs polluted soils. It also highlights different research gaps

that must be solved in future study programs to improve bioremediation efficency.
KEYWORDS

bio-sorption, genetic engineering, heavy metals, bioremediation, nano-particles
Introduction

The world’s population is continuously growing up with a corresponding increase in

food demands (Yaashikaa and Kumar, 2022). The recent increase in industrialization and

anthropogenic activities are a serious threat to crop production owing to the fact they

negatively soil fertility and productivity (Yaashikaa and Kumar, 2022). Various industries
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excrete toxic heavy metals (HMs) that enter into the soil and

negatively affect soil fertility, microbial activities, and crop

productivity and these HMs also induce serious effects on

humans (Table 1) by eating the contaminated foods (Asyakina

et al., 2021; Debonne et al., 2021; Nizamutdinov et al., 2022). Global

agricultural communities have serious concerns about

contamination of agricultural soils with HMs. These HMs are

very toxic and they can persist in the soils over a long time
Frontiers in Plant Science 02178
period. Different HMs including cadmium (Cd), lead (Pb), zinc

(Zn) and copper (Cu) enter into agricultural soils with organic and

inorganic fertilizers, while arsenic (As) and mercury (Hg) enter into

agricultural soils through nearby located industrial enterprises

(Uchimiya et al., 2020; Guan et al., 2022).

Heavy metals are known to accumulate in plants and they

negatively affect the plant’s physiological and biochemical processes

and consequently cause serious yield losses (Yan et al., 2020). HMs

reduce seed germination by negatively affecting the germination

related processes which in turn reduce the overall stand

establishment (Hassan et al., 2019). HMs also disturb the plant

water status, membrane stability and increase the losses of

important osmolytes through excessive production of

malondialdehyde (MDA) and hydrogen peroxide (H2O2).

Further, HMs also induce excessive reactive oxygen species (ROS)

production which damages the proteins, lipids and DNA (Hassan

et al., 2013).

Globally, different chemical, physical and biological methods

are being used to remove the HMs from soils. Physical methods like

thermal treatments, soil washing, vitri-fication, and chemical

methods like the application of lime, organic amendments and

phosphate compounds are being used to treat the HMs polluted

soils (Gong et al., 2018). The physical and chemical methods are

quick and efficient; however, they have major limitations. For

instance, they are expensive and laborious and they can cause

drastic changes in soil quality therefore, these methods offer no

optimal solution to treat HMs polluted soils (Gong et al., 2018).

Thus, in this context, biological methods offer an alternative

solution owing to environmental friendly nature and they are less

expensive. The biological methods involve the use of plants

(phytoremediation) and microorganisms (bioremediation) to treat

the HMs polluted soils (Khalid et al., 2017). The biological methods

are economical and environment friendly, and they have

appreciable applicability and efficiency as compared to physical

and chemical methods (Yan et al., 2020). However, these methods

also have some limitations like lengthy periods, environmental

sensitivity, and contaminant toxicity (Liu et al., 2023). The use of

microbes (bioremediation) got a great scientific attraction across the

globe in recent times. The microbes remove the HMs from soil

through different mechanisms including bio-sorption, bio-

accumulation, bio-volatilization, bio-mineralization, oxidation and

reduction, bio-leaching and production of bio-surfactants (Rahman

and Singh, 2020). Micro-organism can protect from the negative

effects of HMs; however, many HMs destroy membranes of

microbial cells. Thus, the ability of microbes to survive under the

effect of HMs is an area of decisive importance (Ayangbenro and

Babalola, 2017). It has been reported that HMs toxicity and mobility

is depend on the degree of oxidation of HMs (Haque et al., 2022).

Microbe use HMs pollutants as a food source and change their

redox potential (Faskhutdinova et al., 2021). Under HMs stress,

some microbes also secrete different substances including

polysaccharides, proteins, and lipids that can bind HMs ions and

therefore reduce their availability (Martis et al., 2021).

Microbes also reduce the concentration of HMs in soil; for

instance, Aspergillus niger showed an appreciable ability to for

bioaccumulation of Cd and Cr (Khan et al., 2019), similarly,
TABLE 1 Toxic effects of different heavy metals on human health.

Heavy
metals

Toxic
form

Health risks References

Cadmium Cd2+ Cd toxicity reduce cell vitality,
induce apoptosis, and damage the
kidney, liver and bones.

Wang
et al. (2021)

Cadmium Cd2+ High intake of Cd fractured the
bones, kidney damage and liver
infections along with
reproductive dysfunctions.

Kim
et al. (2019)

Arsenic As As toxicity developed dermal
lesions (hyperkeatosis and
pigment alterations) and lead to
skin cancer,

Muzaffar
et al. (2023)

Mercury Hg Hg toxicity enhanced heart rate,
headache, hypertension, insomnia,
alters nerve response, and impairs
cognitive function and resulted in
cardiac and renal dysfunctions

Eneh
et al. (2023)

Lead Pb Pb toxicity is lethal to heart,
kidney and nervous system. It
also affect brain development and
gastrointestinal tract of children.

Mishra
et al. (2022)

Iron Fe Iron toxicity caused dehydrated
condition that further develop
abdominal pain, Vomiting,
diarrhea and lethargy.

Singh
et al. (2023)

Cooper Cu Cu toxicity caused gastrointestinal
distress followed by abdominal
pain, vomiting, and hypotension
and it also affected the human
brain, liver and
kidney performances.

Leal
et al. (2023)

Chromium Cr3+ Cr3+ toxicity reduced cell vigor
and cause breast and liver cancer.

Chandra
et al. (2020)

Aluminium Al3+ Al damaged central nervous
system, kidney and liver
dysfunction, and cause pulmonary
fibrosis, osteomalacia and
lung infections.

Obani
et al. (2023)

Vanadium V Vanadium toxicity caused nausea
and throat injury, rashes and
blacken the teeth and tongue.

Briffa
et al. (2020)

Mercury Hg Hg toxicity disturbed nervous,
digestive, and immune systems
and dysfunction the lungs,
kidneys, skin, and eyes.

Demarco
et al. (2023)

Lead Pb Pb toxicity damaged fetus brain
and kidney along with circulatory
and nervous system.

DeOliveira
et al. (2023)
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Stenotrophomonas rhizophila also significantly removed Pb and Cu

by 76.9% and 83.4% (Sun et al., 2021). Due to small size microbes

also provide a large surface area to adsorb the HMs which reduces

the overall availability of HMs (Rajput et al., 2022). Further,

microbes also accelerate the bio-adsorption of toxic HMs which

makes them an excellent amendment to remediate HMs

contaminated soils (Srivastav et al., 2018). Microbes can also

multiply quickly; thus, the use of microbes could be an important

amendment to treat the HMs polluted soils (Singh et al., 2020). The

recent advancement in microbial bioremediation techniques has

shown promising results to remediate polluted soils. For instance,

different bioinformatics are being used to develop more effective

remediation technologies. These tools are using different databases

to explore the underlying mechanisms of degradation (Zheng et al.,

2018). Recently, bio-remediation also used genomics,

transcriptomics, metabolomics, and proteomics which is added to

the evaluation processes of in-situ bio-remediation (Villegas-Plazas

et al., 2019). Moreover, genomic studies have also allowed us to

analyze the genetic information of microbes within the cell which

ensures to development of better microbes for remediation

(Hakeem et al., 2020). Additionally, recent advancements in

synthetic biology also showed promising results and genetically

modified organisms (GMOs) have shown appreciable results in

removing pesticides, and xenobiotics from the environment (Bala

et al., 2022). There are many reviews available regarding the role of

microbes in remediating metals polluted soils. Nonetheless, there is

no comprehensive review available describing the role of microbes

in remediating the antimony, arsenic, cadmium, chromium,

mercury, lead, and nickel-contaminated soils. The aforementioned

metals/metalloids are highly toxic and their concentration is rapidly

increasing in the environment. Recently, bio-remediation got

appreciable attention across the globe, therefore, we have

discussed the role and mechanisms of microbes to remediate soils

polluted by these toxic metals. The current review also discusses the

different research gaps that must be filled besides the appreciable

progress in the field of bio-remediation. This review provides

insights to boost microbial functioning for the remediation of

polluted soils.
Sources of heavy metals entry
into soils

Recent industrialization is meeting population food demands

but also posing a severe hazard to the environment by excreting

poisonous compounds such as HMs (Aluko et al., 2021). These

toxic HMs enter into the human food chain by eating the

contaminated foods (Sayyed et al., 2019). Among HMs, As, Cr,

Cd, Pb and Hg got a serious attention across the globe because their

concentrations in many terrestrial, marine, and aerial systems

exceed the safety threshold (WHO 1990; Rahman and Singh,

2019). HMs have both natural and anthropogenic origins and

they can be found in the atmosphere, water, soil and biological

organisms (Yin et al., 2021). HMs generation from human sources

is permanent and constant while the generation of HMs from
Frontiers in Plant Science 03179
natural sources is also affected by natural sources (Armah et al.,

2014). The major human sources of HMs are agriculture, industries

and urbanization (Li et al., 2021). Textiles, tanneries, fertilizers,

galvanizing factories, metallurgic factories, varnishes,

pharmaceuticals and pesticide companies are major sources of

HMs pollution (Verasoundarapandian et al., 2022).

In the mining process, a significant amount of waste rocks is

produced which contains a low quantity of HMs. These HMs are

carried into ground and water areas by biological and chemical

leaching and are then enters into the human food chain (Li and Yu,

2015). Agriculture activities also add a significant amount of HMs

into soil owing to the continuous use of inorganic chemicals.

Natural phosphate contains impurities in the form of HMs, and

different HMs such as As, Cd, Ni, Cr, and Zn have been identified in

higher concentrations in over 200 phosphate fertilizers used

worldwide (Nziguheba and Smolders, 2008). Likewise, pesticides

also contained impurities in the form of HMs and it has been found

that different pesticides contained Hg, As, Cu and Pb as an active

elements. Different pesticides containing Hg (II) and Pb(II) has

been banned owing to their higher toxicity (Kothe et al., 2010). The

application of industrial and municipal wastewater is also common

practice and the constant application of these waste waters also

leads to the accumulation of HMs in soil (Ren et al., 2015; Li et al.,

2017b). Electronic waste also has a significant contribution in HMs

pollution. For instance, in China in electronic waste recycling site

has a significant amount of Cd and Cu greater than the threshold

levels (Wu et al., 2015). Heavy metals from natural sources include

mineral deposition, eruption of volcanic pathogenic processes, and

oceanic evaporation (Zhang et al., 2012). Mining is an important

source of HMs release (Acosta et al., 2011), and in China mining is

produces around 12 lakh ha of wasteland per year with an annual

increase of approximately 47,000 ha (Zhuang et al., 2009).
Effects of HMs on agro-ecosystem

Soil biology is crucial for maintaining soil quality, which is

critical for agricultural sustainability. Human activities are a major

source of HMs and they disturb soil microbes, soil fertility, and

productivity (Sharma et al., 2017). The survival of microbes is

negatively corrected with prolonged exposure of HMs like Pb (Yuan

et al., 2015). Similarly, coal mining activities also cause a decrease in

microbial abundance, biomass, and variability (Nayak et al., 2015).

Heavy metals also slow down the breakdown of litter resulting in

uneven deposition of litter on the soil (Marschner and Kalbitz,

2003). Furthermore, HMs have a deleterious impact on the

breakdown of stream litter (Hogsden and Harding, 2012; Ferreira

et al., 2016). Moreover, HMs also induce a negative effect on soil

microbes and a negative correlation has been reported between the

concentration of HMs and microbial respiration (Nwuche and

Ugoji, 2008). Depending on the soil parameters, substrate

concentration, and HM exposure, heavy metals can either

accelerate or inhibit N mineralization. The toxicity of HMs also

disrupts the N transformation pathways which consequently affect

the mineralization of HMs (Hamsa et al., 2017). Further, HM
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pollution also induces a negative effect on N mineralization and

nitrification and both these processes decrease with increasing the

amount of HMs pollutants. Further, nitrification is considered to be

more susceptible to HMs as compared to mineralization (Bewley and

Stotzky, 1983). Moreover, HMs also affect the soil enzymatic activities

andmicrobial abundance (Xian et al., 2015) and it has been found that

HMs reduce the soil enzymatic and microbial activities and soil

microbial abundance (Pan and Yu, 2011; Xian et al., 2015).

For instance, Li et al. (2020) documented that HMs reduced

bioactivity, richness, and microbial diversity. They found that heavy

metals (Cu, Cr, Ni, Pb, Zn, and Mn) showed total variations of

87.7%, 56.6%, 83.0%, and 55.1% a-diversity, and community

composition, predicted by PICRUSt. In another study, it was

documented that Pb stress altered the bacterial community

structure. These authors found that Pb 2.5% and 5% increased

Actinobacteria abundance by 118.56 and 147.25% while 5% Pb

stress Bacteroidota and Myxococcota increased abundance by

280.76 and 138.54%, respectively (Meng et al., 2023). In another

study, a significant change in microbial abundance and diversity

was observed in Cd-polluted soil. Cadmium toxicity (50 mg kg-1)

increased Bacteroidota and Proteobacteria by 2 and 0.3 folds while

Cd toxicity decreased the abundance of Acidobacteriota, Firmicutes,

Chloroflexi, Myxococcota, and Gemmatimonadota by 0.3, 0.5, 1.7,

2.2 and 2.4 folds (Bandara et al., 2022). The studies have

documented that long-term exposure to heavy metals negatively

affects soil health. For instance, Cheng et al. (2022) long-term Cd

toxicity decreased the soil organic matter, nitrogen, phosphorus,

and potassium availability. The other group of authors found that

long-term As toxicity showed a negative showed a negative impact

on soil enzymatic activities and soil properties. They found that As

toxicity reduced the urease and dehydrogenase activities and soil

nitrogen, SOM and clay were the main factors affecting the soil

enzyme activity (Nurzhan et al., 2022). Some studies also reported

that microbial species show resilience in response to HMs. For

instance, Philippot et al. (2008) found higher resilience of nitrate

reduction rates to Hg stress (100 mg kg-1). Brandt et al. (2010) noted

that soil bacterial communities showed structural and functional

resilience to Cd exposure (0, 40, 150, and 500 mg·kg−1). They found

that the observed increase in Cu tolerance against higher

concentrations of Cu was involved in the phenotypic adaption

and selection at the micro-diversity level. HMs-mediated disruption

in soil microbial activities also negatively soil properties and

microbial activities. For instance, soils contaminated with HMs

are associated with insufficient nutrients, organic matter, and water

retention capacity (Singh and Kalamdhad, 2011). The increase in

toxicity of heavy decreases the microbial abundance and diversity

and indirectly affects soil enzyme activities by changing microbial

community synthesizing enzymes (Singh and Kalamdhad, 2016).

Moreover, heavy metals also inhibit soil enzymatic activities and

reduce the mineralization of SOM and nutrient nutrient cycle

(Bakshi et al., 2018). Globally, different including physical,

synthetic, and natural remediation techniques (in situ and ex-situ)

are used to remediate polluted soils. The use of genetically modified

microbes has received appreciable attention to cleanup metal-

contaminated soils and improve stress tolerance (Narayanan and

Ma, 2023).
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Plant responses to heavy metals

Heavy metals seriously affect plants and the effects of HMs on

plants can be seen from germination to senescence (Table 2). Seed

germination is one of the most critical stages of plant life and a

mediated decrease in seed germination declines seedling growth

and subsequent stand establishment (Adrees et al., 2015). For

instance, in a study, it was found that combined Cu and Cd stress

reduce seed germination, growth of seedlings, and lateral growth

rate (Neelima and Reddy, 2003). The exact mechanism through

which HMs change seed physiology is not well understood, and

different authors reported that HMs inhibit the activities of various

enzymes that cause a reduction in seed germination (Figure 1). For

instance, Hg induced a decrease in seed germination owing to the

direct interaction of Hg with HS group proteins that leads to the

formation of an S-Hg-S bridge thus causing a loss in enzymatic

activities (Cui et al., 2014).

Apart from seed germinations, HMs also change the root

architecture and this effect has been reported in plants. In

particular, HMs decreased the root elongation (3-4 folds) and

enhanced the formation of lateral roots (2-3 folds) in the

presence of different HMs like Cu, Pb, Cr, Zn, and Cd (Sofo

et al., 2017). The formation of lateral roots is the initial symptom

of HMs toxicity which consequently impairs the uptake of nutrients

and water thereby reducing subsequent plant growth (Rucińska-

Sobkowiak, 2016). Along with root inhibition, HMS also causes a

reduction in plant growth. HMs transport from roots to aerial parts

and accumulates in plant cells which interfere with cellular

metabolism and thus cause a reduction in plant growth (Shanker

et al., 2005; Wang et al., 2020). As a result of their interactions with

the central atom (Mg) of the porphyrin ring, heavy metals also

break down the chlorophyll molecules, severely reducing

photosynthesis and ultimately impairing plant growth (Yadav

et al., 2014). Moreover, HMs like Cu also cause lignification of

both roots and shoots which reduces biomass production owing to

impaired cell development (Martins et al., 2020). Additionally, HMs

hurt the water relationships which in turn affects a variety of

physiological activities like photosynthesis and transpiration

(Alsokari and Aldesuquy, 2011). A recent study showed that Cd

stress (100 uM) decreased the plant height by 69% and 73% in

sorghum cultivars JS-2002 and Chakwal sorghum (Hassan et al.,

2019). Further, Cd toxicity also increased MDA concentration by

39% and 43% respectively in both cultivars (Hassan et al., 2019). In

another study, it was witnessed that Pb stress decreased the

photosynthetic rate, carbon dioxide concentration, transpiration

rate, and WUE by 50.5, 73.2, 48.6, and 148.8% respectively (Qin

et al., 2023). Heavy metal toxicity also negatively effect nutrient

uptake by plants. For instance, Fava bean plants’ Cd toxicity (150

mg/L) decreased the Ca and Mg concentration by 1.82 and 1.27

times while Cd toxicity (300 mg/L) decreased the Cd and Mg

concentration by 2.278 and 2.25 folds (Pirsělová and Ondrusǩová,

2021).In plants like Helianthus annuus and Vigna radiata, HMs

(As) increased the number of stomata followed by the development

of abnormal, arrested, and fused stomata (Gomes et al., 2011; Gupta

and Bhatnagar, 2015). Heavy metals also affect the xylem vessels’

parenchymatous and mesophyll cells and resultantly change the
frontiersin.org

https://doi.org/10.3389/fpls.2024.1420408
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2024.1420408
plant water relations and are considered to be responsible for the

decrease in leaf growth. Heavy metals also negatively affect the

photosynthetic machinery however, it depends on the

concentration of HMs. Moreover, HMs also negatively affect the

light-harvesting, transport of electrons, and RuBisCo activity which

in turn reduce the overall plant photosynthetic efficiency (Paunov

et al., 2018; Latif et al., 2020). Besides this HMs (Cd) also reduced

the photochemical efficiency (Fv/Fm), the effective quantum yield

of photosystem II (jPSII), and chlorophyll florescence thereby

leading to the inhibition of photosynthesis (Gao et al., 2020;

Yotsova et al., 2020).

Generally, HMs (Hg, Cu, Pb, Ni, Cd, and Zn) target the plant

chlorophyll in three different ways by increasing the activity of

chlorophyllase enzyme, causing oxidation of chlorophyll through

increased ROS production, and inhibiting biosynthesis of

chlorophyll biosynthesis (Gill et al., 2012; Shahzad et al., 2018;

Sharma et al., 2020). HMs not only affect the chlorophyll molecules

but also the membranes of the chloroplast and thylakoid cells. For

example, swelled thylakoids, degraded chloroplast membranes, and

loss of chloroplast membrane were noted in barley plants under Pb

stress (Wang et al., 2017). Moreover, HMs also inhibit the light

reactions by decreasing the efficiencies of PS-I and PS-II and they

also decrease the dark reactions owing to decreased activities of

enzymes linked with the Calvin cycle (Souri et al., 2019). Heavy

metals also induce overproduction of ROS that damage proteins,
Frontiers in Plant Science 05181
DNA, and lipids and lead to the induction of oxidative stress (Foyer

and Noctor, 2016). However, plants also activate excellent deference

and they also accumulate various osmolytes to counter the toxic effects

ofHMs.For example,Chowardharaet al. (2020) found that activities of

CAT, GST, GR, APX, and POD and accumulation of proline and

ascorbic acid were increased in response to Cd toxicity in B. juncea. It

has been reported that HMs also decrease the uptake of water and

nutrient which in turn cause significant growth losses (Rucińska-

Sobkowiak, 2016; Wang et al., 2017). For instance, Cd toxicity

competes with calcium (Ca), iron (Fe), and magnesium (mg) which

caused a significant reduction in growth and biomass production

(Raza, 2022).

Under theharmful effects ofHMs,nitrogenmetabolism is essential

for plant growth and development. According to reports, HMs

decrease the nitrate and ammonia assimilation enzymes by

increasing protease activity. MicroRNAs play an imperative role in

HMs toxicity by regulating the plant antioxidant responses, chelations,

and auxin and cytokinin signaling (Ding et al., 2020). For instance,

Casarrubia et al. (2020) found thatmycorrhizal andmicroRNAplayed

a significant role in Cd tolerance in Vaccinium myrtillus. In another

study, it was found that MicroRNA expression significantly improved

the Cd and Al tolerance in tobacco (Cedillo-Jimenez et al., 2020).

Heavymetals also negatively affect the quality of crops and it has been

found that Cd toxicity in rice reduced the rice protein contents, and

milling degree and increased the kernel chalkiness (Imran et al., 2021).
TABLE 2 Toxic effects of different heavy metals on plants and soil health.

Heavy
metals

Concentration
of
heavy metals

Growth
media

Plant
species

Effect of plants and soil References

Chromium 120 mM Soil Grapevine Cr toxicity reduced the root and shoot growth, tissue nutrient concentration,
chlorophyll contents, leaf water status, quantum yield of photosystem II and soil
microbial activity.

Nikolaou
et al. (2022)

Lead 200 mg Kg−1 Soil Sunflower Pb intensity reduced the soil fertility and water uptake along with a significant
decrease in stem and root length, dry biomass and crop yield.

Alaboudi
et al. (2018).

Cadmium 2 mg kg−1 Soil Rice Cd stress increased ROS that destroyed the chloroplast and thus reduced the
photosynthetic efficiency of plants. Further, Cd toxicity altered nutrient
absorption by plant roots.

Li et al. (2023)

Copper 10 g L-1 Soil Barley Cu toxicity decreased the root and shoot length by affecting stomatal density,
conductance and PS II efficiency whereas high Cu reduced the organic matter
percentage and microbial population in soil.

Rajput
et al. (2018)

Lead 10 mL Soil M. sativa Pb toxicity decreased the antioxidant production while increased ROS that
reduced the plant growth and physiological functions.

Raklami
et al (2021)

Nickle 1000 mM Soil Guava Ni toxicity reduced plant growth and development, photosynthesis and
transpiration activities, leaf gas exchanges and K+ uptake and microbial growth.

Bazihizina
et al. (2015)

Nickle 400 mM soil Rice Ni toxicity reduced the fresh and dry weight along with shoot and root length
and increased ROS, lipid peroxidation and consequently protein denaturation.

Hassan
et al. (2019)

Lead 100 mM Soil Wheat Pb caused stunted growth, chlorosis and blackening of roots that reduced the soil
nutrient uptake mechanism.

Tripathi
et al. (2016)

Cadmium 4.8 mM Soil Wheat Nutrient availability reduced to plant under high Cd stress that resulted in
decreased root length and seedling growth, subsequently less fresh and dry
biomass and yield production.

de Souza
Guilherme et
al. (2015)

Chromium 300 mM Soil Wheat Cr affected the lamellar system of plant and disturbed the photosynthetic
machinery, and caused chlorosis, which impaired growth.

Mathur
et al. (2016)
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Microorganisms responsible
for bioremediation

Heavy metal pollution poses a severe threat to public health by

contaminating food supplies and drinking water on a global scale

(Huang et al., 2020). Microbial remediation is an imperative

approach and it has appreciable potential to improve crop

productivity, and human health and restore the ecosystem

(Narayanan and Ma, 2023). The microbial-mediated bio-

accumulation and bio-magnification are very successful in

removing the pollutant to ensure safe and sustainable crop

production (Manorma et al., 2023). Different microbes including,

algae, bacteria, and fungi are being used to clean up the HMs

contaminated soils (Table 3).
Bacteria

The interaction of microbes with HMs occurs through different

mechanism which depends on metal and microbe type and

surrounding environment. Different factors including

temperature, pH, nutrient source, and metal ions play an

important role in the mobility and bioavailability of HMs for
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microbial transformation. Bacteria’s small size, rapid growth, and

ease of cultivation allow them to thrive in a variety of environmental

situations. HMs often connect to functional groups including

amino, carboxyl, sulfate, and phosphate groups that are present

on the layers of bacterial cell walls (Yue et al., 2015). The potential

of bacteria for HMs uptake can vary from 1-500 mg/g. For instance,

Hg resistant pseudomonas aeruginosa strain absorbed the Hg

uptake 180 mg/g (Yin et al., 2016). Likewise, different microbes

like Bacillus sp. PZ-1 and Pseudomonas also absorb the Pb from

wastewater (Li et al., 2017a). On the other hand Arthrobacter

viscosus can absorb the Cr and it also has an excellent capacity to

transfer the Cr (VI) into Cr (III) (Hlihor et al., 2017).

Rhodobacter capsulatus also showed a maximum capacity of

164 mg/g to absorb the Zn (II) (Magnin et al., 2014) while Bacillus

ceres showed a maximum bio-sorption capacity of 31.95 mg/g and

24.01 mg for Cd (II) in dead and living cells (Huang et al., 2013).

Extracel lular polymeric substances (EPS) protect the

microorganism from the toxic effects of HMs by restricting entry

of HMs into the cell. It has been discovered that EPS has both anion

and cationic functional groups, which help to accumulate HM ions

like Cd, Hg, Cu, and cobalt (Fang et al., 2017). After adsorption

HMs are converted to diverse ionic states in bacterial cells that

reduce their toxicity. Pseudomonas putidais an important microbe

and it can absorb 100% Hg from the marine environment it also
FIGURE 1

Toxic effects of heavy metals on plants. Heavy metals are absorbed by plants roots and then they are moved to above ground plant by different
transporters and then accumulated in above ground parts. The accumulation of HMs in plant parts induce ROS production, necrosis, and decrease
nutrient and water uptake and caused protein degradation, cell detoxification thus reduce the plant growth and development.
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reduces the Hg(II) into Hg(0) (Sheng et al., 2018). The findings of

Zhang et al. (2012) showed that a new microbial strain

Acinetobacter sp. showed an excellent ability to detoxify the Cr.

In another; authors screened 72 acidothermophilicautotrophic

microbes for their ability to tolerate and bio-absorb the HMs and

these authors found that the ATh-14 strain showed an appreciable

potential and it showed absorption capacity of 85.82% for

solubilization of copper (Umrania, 2006). Bacteria are better bio-

sorbents as compared to other microbes due to their size, ubiquity

resilience, and ability to grow under a wide range of conditions

(Hlihor et al., 2017).
Fungi

Fungi also have an excellent ability to remediate the HMs

polluted soils. The presence of chitin, polysaccharides, phosphate,

and glucuronic acid in fungal cells is essential for the adsorption of

HMs (Purchase et al., 2009). Different functional groups and fungal

strains had a significant impact on the adsorption rate of HMs

(Iram et al., 2015). In a study, it was found that Termitomyces
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clypeatus detoxified the Cr(VI) by adsorbing Cr on its surface

through carboxyl, imidazole, hydroxyl, phosphate, and sulfhydryl

groups (Ramrakhiani et al., 2011). Further, Amirnia et al. (2015)

found that Saccharomyces cerevisiae eliminated the Cu(II) from

water sources, while Talukdar et al. (2020) found that Aspergillus

flavus fungal species removed the Cr by more than 70%. Moreover,

Aspergillus fumigates also showed an appreciable potential to

remove the Cd, Cr, Cu, Ni, and Zn from the contaminated soils

(Shazia et al., 2013). In another investigation, three different fungal

species including Penicillium citrinum, Trichoderma viride, and

Penicillium showed a significant potential (250 mg/L) to adsorb

the Cr(VI) (Zapana-Huarache et al., 2020).
Algae

Algae have also shown a good potential to remediate HM-

polluted sites owing to the fact algae produce various peptides that

help the accumulation of HMs and defend against the HMs (Bilal

et al., 2018). For instance, Fucus vesiculosus showed a tremendous

potential to adsorb the Pb(II) (Demey et al., 2018), likewise,

Cladophora fascicularis also showed a significant potential to

remediate the Pb(II) from wastewater. Similarly, Sargassum

marine algae also showed a significant potential to detoxify the

Cu (II) from the aqueous solution (Barquilha et al., 2017). In

another study Christoforidis et al. (2015) tested the absorption

capacity of Cystoseira crinitophylla for copper and found that this

algae showed a maximum capacity of 160 mg/g to adsorb Cu

(Christoforidis et al., 2015). On the other hand, authors noted

that Saccharina fusiforme and Saccharina japonica substantially

detoxify the Zn(II), Cd(II), and Cu(II) (Poo et al., 2018) while

Desmodesmus also showed an appreciable potential to remove the

Cu(II) and Ni(II) from the wastewaters (Rugnini et al., 2018). The

study findings of Aslam et al. (2019) showed that microalgae

showed promising results in the accumulation Mn, Cu, and Zn

(Freitas et al., 2011). Moreover, the findings of Freitas et al. (2011)

showed that algal biomass showed an appreciable potential for HMs

like Fe.
Factors affecting the
bioremediation process

Different factors including metal concentration, valance state,

metals bioavailability, redox potential, soil temperature, and pH

affect the bioremediation process (Bandowe et al., 2014). The pH of

the soil has an impact on bacterial enzymatic activity as well as

microbial bio-sorption (Morton-Bermea et al., 2002). Soil pH also

changes the surface charge of microbes by affecting the ability of

microbes to absorb the HM ions (Galiulin and Galiulina, 2008). Soil

pH substantially affects both the transportation and hydration of

HM ions in soil (Dermont et al., 2008) and it has been documented

that the rate of HMs removal is increased with increasing pH over a

certain rate and after this, the rate of removal starts declining

(Wierzba, 2015). The ideal pH range for most bacteria is 5.5-6.5
TABLE 3 Different microbes used to remediate heavy metals
polluted soils.

Type
of
microbe

Microbial
species
name

Used against
heavy metals

References

Bacteria Penicillium
chrysogenum A15

Lead Povedano-Priego
et al (2017)

Fungi A. fumigatus Lead Khan
et al (2019)

Bacteria Pseudomonas sp. Chromium Tirry et al (2021)

Fungi Penicillium sp. Chromium Barsainya
et al (2016)

Bacteria Phyllobacterium
myrsinacearum

Arsenic Alves
et al (2022)

Bacteria Acinetobacter Copper Ke et al (2021)

Yeast Wickerhamomyces
anomalus

Chromium Joutey
et al (2015)

Bacteria P. fluorescens Cadmium Abbaszadeh-
Dahaji
et al (2019)

Algae Pelvetia
canaliculata

Chromium Lytras
et al (2017)

Bacteria PGPE consortium Mercury Ustiatik
et al (2022)

Bacteria Sinorhizobium
Saheli

Cadmium Kang et al (2018)

Aerobic
bacteria

Variovorax
paradox

Nickle Durand
et al (2016)

Bacteria Bacillus sp. and
Bacillus pumilus

Cadmium Narayanan and
Ma (2023)

Aerobic
Bacteria

Micrococcus luteus Arsenic Pinter
et al (2017)
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(Wang et al., 2001), however, some bacteria like Bacillus jeotgali can

thrive at a pH of 7 (Rodrıǵuez-Tirado et al., 2012). Another

significant component that influences the absorption of HMs is

temperature; which influences the development and proliferation of

microorganisms (Fang et al., 2011). Different bacteria require

different temperatures to carry out their functions (Acar and

Malkoc, 2004). However, HM ions, soil additives, and soil type all

have an impact on microbial activity. It is challenging to achieve

microbial adsorption due to the low mobility of HM ions caused by

soil adsorption and retention of HM ions (Hu et al., 2010).

Soil pH is an important factor that affects microbial growth. For

instance, unfavorable pH affects enzyme activity which lowers the

rate of microbial metabolism and it also affects the binding capacity

between HMs and adsorbants (Bandowe et al., 2014). The changes

in pH also affect the mobility and hydration of metals (Bandowe

et al., 2014). For instance, the adsorption capacity of Zn and Pb was

increased with increasing pH, and an increase in soil pH above 5.5

decreased the removal of Pb and Zn (Wierzba, 2015). Other authors

also documented that soil acidification increased the mobility of

metals in the following order Cd>Zn>Pb. These authors also

document that soil pH affects mobility, causes metal ions to

become more or less active, and increases or decreases their

environmental risk (Kicińska et al., 2022). Temperature is also a

factor that affects microbial growth (Fang et al., 2011). The increase

in temperature affects the diffusion of metals and increases the

bioavailability of metals. However, optimum degradation

temperature can vary according to metal types, for instance, Cd

bio-degradation by Bacillus jeotgali was maximum at 35°C while

bio-degradation by the same bacteria was higher at 30°C

(Chanmugathas and Bollag, 1988). The adsorption efficiency is

also affected by soil organic matter, for instance, organic matter

tends to fix the metals in soil which reduces the availability to metals

(Wang et al., 2022). A short-term study investigates the response of

different temperatures (5, 15, and 25oC) Cd, Cu, Pb, and Zn

removal by Carex pseudocyperus, C. riparia, and Phalaris

arundinacea. Low temperatures reduce the removal capacity of all

the metals and an increase in temperature increases the removal

capacity of all the metals (Schück and Greger, 2023). Climate

change also induces a significant impact on soil microbial

activities. For instance, climate-induced variation in soil

temperature, and humidity affect the decomposition of SOM and

nutrient cycling (Burns et al., 2013), and it partially or fully depends

on microbial activity. The change in soil temperature and moisture

can change the growth, structure, function, composition, and

interaction among microbes for the degradation of pollutants in

soils (Alkorta et al., 2017).

Bioremediation is generally limited to bio-degradable

compounds, and it is also susceptible to rapid degradation which

more toxic compounds. Besides it, bio-remediation also needs

extensive monitoring and it has major drawbacks in terms of

environmental growth conditions, nutrient requirement,

temperature, and pH conditions. Therefore, it is essential to find

ways to identify the microbes having a wider adaptability under a

wide range of temperature and pH conditions for an efficient

remediation process. On a long-term basis, microbial mediation

remediation is a simple, cheap, and environmental method and it
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can improve the overall soil fertility, ecosystem health, and safer and

sustainable food production. Nonetheless, implantation of

bioremediation needs a comprehensive understanding of soil

microbial communities, properties of contaminants, and

environmental conditions as these factors play a critical role in

getting effective results.
Microbial mediated remediation of
heavy metals polluted soils

The use of microbes is considered as an effective way to treat the

HMs in polluted soils, as these microbes absorb HMs and also

convert them into less toxic forms (Gupta et al., 2016).

Microorganisms play a critical role in remediating HMs polluted

soils owing to the fact they can with stand metal toxicity. Numerous

HMs have been reported to be precipitated, undergo oxidation state

changes, and be sequestered by microbes (Figure 2; Kang

et al., 2016).
Microbial mediated remediation of
antimony contaminated soils

Microorganisms are crucial for remediating Sb polluted soils

and they reduce the toxicity of Sb through different ways including,

bio-reduction and bio-oxidation (Jeyasundar et al., 2021). Many

bacteria have been identified that can be used to remediate the Sb-

polluted soils (He et al., 2019). For instance, two bacteria Shinella

and Ensifer discovered from Sb-contaminated soils showed a

tremendous potential to oxidase Sb (Choi et al., 2017) while the

bacterial Bacillales strain also showed marked results to change the

Sb-V into Sb-III (Lai et al., 2018). Similarly, fungi have been also

used to remediate the Sb polluted soils, and study findings of Xi

et al. (2022) showed that AMF increased plant antioxidant activities

by reducing the retention of Sb in plant parts. The findings of Liu

et al. (2013) showed that the bacterial strain Pseudomonas

substantially increased the plant growth, and microbial activity

and decreased Sb availability (Liu et al., 2013). In another study

Zhang et al. (2012) found that microbes isolated from the rice field

contributed significantly towards the oxidation of Sb-III likewise, Li

and Yu (2015) also found that Agrobacterium tumefaciens

contributed towards the oxidation of Sb-III.

Some environmental microorganisms, particularly those that

thrive in anaerobic environments, are capable of converting Sb(V)

to Sb(III). For instance, Hockmann et al. (2014) noted that microbes

converted the SB-V to Sb-III with the help of lactate as an electron

donor. Similarly, Kulp et al. (2014) found that microbes in Sb-

polluted mines reduced Sb-V to Sb-III. In the case of flooded mine

pit soils group of researchers from China found that autotrophic

bacteria reduced the Sb-V and generated Sb2O3 by using hydrogen

gas (H2) as an electron donor (Lai et al., 2016). Additionally, Huang

et al. (2022) found that after 60 days of injection of the B. cereus

solution into plant roots; the concentration of As and Sb in soil was

significantly reduced as compared to soil without bacteria solution
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this indicates that this strain promoted the absorption of As and Sb

from soil (Huang et al., 2022).
Microbial mediated remediation of
arsenic contaminated soils

Arsenic occurs in the environment in different inorganic forms

including As-0, As-III, and As-V, and organic forms like

dimethylarsinic acid (DMA), monomethylarsonic acid (MMA),

trimethylarsine oxide (TMAO) and arsenobetaine. It has been

found that bacteria, algae, and fungi can methylate As-III into

methylated species (Yang and Rosen, 2016; De Francisco et al.,

2021). Different fungal species like Aspergillus, Candida,

Scopulariopsis, and Penicillium can also cause a change in the

methylate inorganic As to the organic As species (Bentley and

Chasteen, 2002). It is important to keep in mind is that the ability of

certain microorganisms to methylate and volatilize depends on soil

organic matter (SOM), soil chemistry, and As concentration

(Mestrot et al., 2011). Spagnoletti et al. (2016) tested the impact

of AMF (R. intraradices) on soybean plants under As stress and
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found a marked improvement in plant biomass and a reduction in

As accumulation. Likewise, Chan et al. (2013) also found that AFM

(Geosporum) enhanced the phosphorus uptake and reduced the As

concentration in rice grains.

Transgenic microbes are also an effective way to treat As

toxicity. For instance, transgenic microbes with expressed arsM

showed an ability of 2.2-4.5% to remove As from soil while the same

microbe showed an ability of 10-fold in nutrient solution (Liu et al.,

2011). In another study, Huang et al. (2015) found that

thermophilic strain Bacillus subtilis 168 was unable to do

methylation and volatilization of As. They genetically modified this

bacteria with CmarsM gene and found that genetically modified

bacteria caused methylation and volatilization of As it occurred

within 48 hours in As-contaminated organic compost. Moreover,

Villadangos et al. (2014) also modified the As-resistant bacteria

named Corynebacterium glutamicum by ArsC1 and ArsC2. These

authors found that As(V) was significantly increased after the

introduction of genetically modified bacteria. Additionally, Preetha

et al. (2023) also prepared the mutantC. glutamicum strain and found

that this strain showed an ability of 15 folds and 30 folds more to

accumulate As-III and As-V as compared to the control treatment.
FIGURE 2

Different mechanism used by microbes to induce heavy metals toxicity in plants. Microbes use different mechanisms bio-sorption, bio-
mineralization, bio-accumulation, bio-leaching and bio-transformation to remediate polluted soils. They also increase the availability of nutrients by
increasing production of IAA and ACC deaminase, and siderophores thus resulting in better growth under polluted soils.
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Microbial mediated remediation of
cadmium contaminated soils

Cadmium is a very toxic HM posing a serious threat to human

health and the environment. The application of microbes is an

effective and promising technique to treat Cd-polluted soils. In a

study, Ma et al. (2020) discovered the Cd immobilization PGPR

(TZ5) and found that this bacteria significantly increased ryegrass

weight by 77.78% and decreased the concentration of Cd in ryegrass

by 48.49%. Further, the application of this bacteria also increased

the soil enzymatic activities and microbial growth which indicates

that this bacterial strain (TZ5) can provide a practical approach to

remediate Cd-polluted soils (Ma et al., 2020). Limited studies are

conducted to determine the impacts of single and co-inoculation of

Bacillus mycoides and Micrococcus roseus on growth and nutrient

uptake of maize grown under Cd stress (100 and 200 mg kg-1).

These authors found that all bacterial treatments appreciably

improved the plant growth and biomass and the combination of

both bacteria reduced the root and shoot Cd uptake and transfer

and translocation as compared to control (Malekzadeh et al., 2012).

In Cd-contaminated soils, Cd-tolerant bacteria play an

important role (Bravo, 2022). The microbes use various

mechanisms including biosorpt ion and intra-cel lular

accumulation to mitigate the adverse impacts of Cd stress (Ghosh

et al., 2022). Recently, genetically modified organisms also played an

important role in remediating Cd-polluted soils (Abbas et al., 2018).

Different genetically modified organisms (CdtB Enterobacter and

Klebsiella variicola) showed an appreciable potential to remediate

Cd polluted soils (Feria-Cáceres et al., 2022; Quiroga-Mateus et al.,

2022). Similarly, Arce-Inga et al. (2022) found that the application

of Theobroma cacao (CCN51) significantly decreased the uptake of

Cd, and its translocation to plant parts. Feng et al. (2023) studied

the impact ofmixotrophic acidophiles under Cd-contaminated soils.

These authors also found that soil solution pH and reduction level

of glucose affected the abundance of Acidithiobacillus which

contributes significantly towards removal of Cd (Feng et al.,

2023). On the other hand, the fungal strain belonging to

Purpureocillium lilacinum tolerated the Cd stress up to 12000 mg/

L. The SEM analysis indicated Cd can be accumulated on the

mycelial surface generating plenty of metal precipitation particles.

Further, these authors also found that in pot experiments this fungal

strain also reduced the soil Cd concentration in soil by 12.56% and

promoted plant growth this indicates that this fungal could be an

important candidate to remediate Cd polluted soils (Deng

et al., 2021).
Microbial mediated remediation of
chromium contaminated soils

Chromium is released into the environment as a result of

human and anthropogenic activities which pose a serious threat

to living organisms. Microbial remediation is an effective approach

to treatment the Cr polluted soils. For instance, in a study authors

tested the impact of Nostoc linckia to remediate Cr polluted soils.
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They found that this microbe showed an appreciable potential to

accumulate Cr and suggested that this bacteria could be an effective

candidate to remediate Cr-polluted soils (Cepoi et al., 2021). In

another study, edaphic cyanobacteria were tested for Cr

remediation and it was found that these bacteria produce

polysaccharides, glycoproteins, lipopolysaccharides, and ionic

functional groups that can coordinate with Cr and reduce its

availability (Cheung and Gu, 2007). Moreover, different Cr-

tolerant bacteria including Bacillus, Enterobacter, Pseudomonas,

and Streptomyceshave been identified and they can remove the Cr

by 50-90% (Ramesh and Winkler, 2010; Bansal et al., 2019; Elahi

and Rehman, 2019; Murthy et al., 2022). The study findings of Wen

et al. (2023) showed that the addition of SR-2, PA-1, and LB-5

improved the plant fresh weight by 10.3%, 13.5%, and 14.2% and

increased the soil enzymatic (catalase and sucrose) activities and

significantly decreased the shoot Cr concentration by 19.2-83.6%.

Chen et al. (2021) studied the impact of B. cereus WHX-1 on

mitigating Cr toxicity. They found that this microbial species

improved the soil physicochemical properties, soil bulk density

and decreased the redox potential. They also found that this

microbial species transferred the Cr-IV by 94.225 into Cr-III

increasing the residual fraction of Cr by 63.38%. Further, these

authors also found that the application of B. cereus improved the

growth and biomass production of ryegrass. In another study,

Ahmed (2018) studied the impact of chromium-tolerant auxin-

producing rhizobacteria on growth characteristics of Lens culinaris

growing under different Cr concentrations (0, 50, 100, 200, 400, and

500 µgml−1). The results of their study findings showed that

Bacillus species mitigated the deleterious impacts of Cr reduced

the Cr accumulation in soil and reduced Cr availability to plants.
Microbial mediated remediation of
lead contaminated soils

Bioremediation with microbes is considered an effective

approach is a promising technique to remediate the Pb-

contaminated soils. For instance, a pot study conducted on wheat

showed that R. sphaeroidesreduce the Pb concentration in root and

lead by 14.78% and 24.01% (Li et al., 2016). On the other hand,

Rhee et al. (2012) found that two fungal species Paecilomyces

javanicus and Metarhizium anisopliae isolated from mining

produced organic acids that resulted in precipitation of Pb. In

another research study Sun et al. (2017) found that soil inoculation

with M. circinelloides significantly increased the Pb removal by S.

nigrum L. These authors also found that soil fertility was also

increased after inoculating the soil with S. nigrum (Sun et al., 2017).

Likewise, Zhou et al. (2016) added WH16-1 strain in Pb2+

contaminated paddy soil and found that this bacterial strain

decreased the exchangeable and carbonate-bound Pb in the paddy

soil 14.04 and 10.69% (Zhou et al., 2016).

The study findings of Puyen et al. (2012) showed that

Micrococcus luteus marked decreased Pb concentration in soil,

likewise, findings of Kalita and Joshi (2017) showed that

Pseudomonas aeruginosa application to Pb-polluted soil
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appreciably reduction the concentration of Pb with 40 mg g-1

sorption capacity (Kalita and Joshi, 2017). Shanab et al. (2012)

tested the potential of different algae to remediate Pb-polluted soils

and they found that different algae isolates like Phormidium

ambiguum, Pseudochlorococcum typicum, and Scenedesmus

significantly reduced the Pb toxicity. Fungi is also an effective

candidate for reducing Pb toxicity (Fawzy et al., 2017) application

of AMF under Pb stress effectively increased the sunflower biomass

and mitigated the toxic effects of Pb (Hassan et al., 2013). In

addition to producing various organic acids, polyphosphates,

peptides, and sulfur compounds, fungi also do cell wall binding,

and make chelate, and precipitate that decreases Pb toxicity (Bellion

et al., 2006).
Microbial mediated remediation of
mercury contaminated soils

Mercury microbial remediation needs the microbial species to

withstand and remove the Hg over extended periods. Various

authors noted that microbes effectively remediate the Hg-

contaminated soils. For instance, Vigna unguiculata inoculated

with Photobacterium and grown on Hg-contaminated soil (27

mg/kg) showed increased root growth (11%), seed production

(33%), leaf numbers (50%), Hg uptake in roots (25%) and

decreased Hg concentration in aerial plant organs (55%) as

compared to un-inoculated control (Mathew et al., 2015).

Similarly, two bacterial strains like Brevundimonas diminuta and

Alcaligenes faecalis applied to Hg and Pb-contaminated soil

increased the phyto-accumulation of Pb and Hg by roots and

shoots (Hamzah et al., 2015). In another study Hg resistant

microbials including Enterobacter ludwigii and Klebsiella

pneumoniae, promoted plant growth and decreased proline

concentration, MDA concentration and electrolyte leakage in

wheat seedlings growing under Hg stress 75 mM; (Gontia-Mishra

et al., 2016).

In another study, bacteria inoculation significantly improved

maize growth and reduced the Hg uptake by maize plants growing

under Hg (Mariano et al., 2020). Fungi have also shown an

appreciable potential to remediate Hg-contaminated soils and it

has been found that AMF inoculation increased the plant growth, P

uptake, and reduced Hg uptake as well as translocation in Lactuca

sativa growing under Hg stress under (10 mg/kg) (Cozzolino et al.,

2016). Moreover, commercial AMF like Glomus, Entrophospora and

Scutellospora genera, appreciably improved the seedling growth and

root elongation of rice plants growing under Hg toxicity (Vargas

Aguirre et al., 2018). Another group of authors also found that

commercial AMF also promoted plant growth and stimulated the

uptake of Hg in Lolium perenne and rice plants growing under Hg

toxicity (Leudo et al., 2020). Likewise, Pietro-Souza et al. (2020)

found that compared with Chrysopogon zizanioides plants growing

with AMF under Hg stress showed a marked improvement in plant

growth, root and shoot biomass, chlorophyll concentration and

showed a reduction in Hg accumulation. Moreover, Aspergillus and

Curvularia geniculata also appreciably increased the maize root
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growth, root dry weight, shoot dry weight, chlorophyll, and Hg

accumulation by 40% and 34% respectively (Pietro-Souza

et al., 2020).
Microbial mediated remediation of
nickel contaminated soils

Microorganisms are extremely important for the

bioremediation of Ni-polluted soils owing to the fact this method

is very economically effective against Ni toxicity (Hassan et al.,

2019). Various bacterial strains including Bacillus thuringiensis and

Bacillus cereus have shown promising results in treating the Ni

contaminated soils (Zhu et al., 2016). Cabello-Conejo et al (2014)

recorded that Arthrobacter nicotinovorans appreciably improved

plant growth and increased the phyto-extraction of Ni from

polluted soil. Zaidi et al. (2006) documented that Bacillus subtilis

decreased the toxicity of nickel while noticeably boosting mustard

growth and nickel phyto-extraction. Other authors also found that

inoculation with Trichoderma atrovirideand Glomus intraradices

improved the Ni phyto-extraction and reduced the Ni toxicity in

linseed and mustard (Cao et al., 2008).

In another study, Alboghobeish et al. (2014) tested the potential

of bacterial strain (Klebsiella oxytoca) and found that this strain

showed a Ni tolerance of 24 mM. Likewise, Enterobacter asburiae

from industrial water depicted the Ni tolerance to a 15 mM

concentration and it removed the 75% Ni by bio-accumulation

(Paul and Mukherjee, 2016). Heidari and his colleagues found that a

Microbacterium oxydans strain showed a Ni removal efficiency of

83-91% (Heidari et al., 2020) while Das et al. (2014) reported that

Bacillus thuringiensis found that removed the Ni by 82% through

bio-sorption process. According to Costa and Tavares (2017),

Alternaria and Penicillium species have respective Ni biosorption

potentials of 11.3 and 13.1 mg g-1. Trichoderma and Aspergillus

inoculation also considerably increased the effectiveness of Ni’s

phytoextraction (Jiang et al., 2008) and Stenotrophomonas from

industrial waste also showed an appreciable potential to remove the

Ni (Aslam et al., 2020). However, the biosorption of Ni by microbes

significantly affects microbial strain, pH, temperature, and initial Ni

concentration (Heidari et al., 2020).
Microbial resistance to heavy metals
and their mechanisms

During HMs stress microbes either die owing to toxicity

developed by HMs or they thrive in this condition through

different resistance mechanisms against HMs (Table 4). Microbes

develop different mechanisms including, extra and inter-cellular

sequestration, and extracellular barriers, and they actively transport

the metal ions to tolerate HMs toxicity. On the surface of bacteria,

there are several barriers such as cell walls, plasma membranes, and

other structures like EPS that prevent HMs from entering bacterial

cells (Bhati et al., 2019). The research findings of Kumar et al.

(2014) indicated that bacteria and fungi cause the bio-sorption of
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metals like Cu, Pb, and Cr. Microbial biofilms contain polymers that

accumulate HM ions and protect the inside bacterial cells and the

presence of biofilm on Pseudomonas aeruginosa showed tolerance

against, Cu, Pb, and Zn (Teitzel and Parsek, 2003). Further, the

presence of biofilms also increased the elimination efficiency of

HMs (Grujic et al., 2017). Additionally, cell walls and EPS also work

as an excellent barrier and they substantially adsorb the metal ions

like Pb and Cr (Kushwaha et al., 2017).

The cellular membranes of microorganisms contain additional

proteins and metabolic products that interact with HMs to decrease

their availability. Microbes also develop extracellular sequestration

which involves the complexation of metal ions as insoluble

compounds and this mechanism is an important way to reduce

the HMs toxicity (Thelwell et al., 1998). Microbes also develop

intra-cellular sequestration in the metal ions form complexes with

distinct compounds in the cell cytoplasm and this is a very common

mechanism used by microbes to withstand the toxicity of HMs.

Microbes with the aid of low molecular proteins like cysteine

accumulation HMs like Cu, Cd and Zn intra-cellularly (Higham

et al., 1986) and other microbes like Rhizobium leguminosarum use

glutathione to accumulate HMs (Cd) intra-cellularly (Lima et al.,

2006). The cell wall of fungi is made of lipids, chitin, polysaccharide,

polyphosphates, and proteins which help them to accumulate HMs

both intracellularly and extra-cellularly (Remenar et al., 2018).
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Numerous metal exporting proteins, including ABC

transporters, P-type efflux ATPase, cation diffusion facilitator, and

proton-cation anti-porters, are found in microorganisms and assist

in the efflux of harmful metals (Soto et al., 2019). ABC transporters

also help microorganisms tolerate the stress brought on by HM by

facilitating the ions’ transfer across membranes (Lerebours et al.,

2016; Zammit et al., 2016). The microbial resistance to HM is also

contributed by enzymes that transfer the HMs ions from hazardous

to less toxic forms (Giovanella et al., 2016; Liu et al., 2017).

Microbes use different mechanisms including, biotransformation,

extrusion, EPS production, and proteins to survive the toxicity of

metals (Wu et al., 2009). They also produce different proteins like

metallothioneins that bind heavy metals thereby reducing HMs

toxicity (Wu et al., 2010). Further, EPS produced by microbes is a

mixture of proteins, nucleic acid, and polysaccharides that find metals

and reduce their concentration in the surrounding environment.

Different mechanisms including electrostatic interaction, ion

exchange, precipitation, redox process, and surface complexation are

involved in processes (Yang et al., 2015). The enzymes transfer metals

into less toxic forms in cells throughoxidation, reduction, complexation,

sequestration, methylation, and de-methylation. Different enzymes like

arsenite oxidase, mercuric reductase, chromate reductase, and nickel-

coenzyme m reductase have been identified to convert the metals

Lerebours et al., 2016; Zammit et al., 2016).
TABLE 4 Microbial remediation of heavy metals contaminated soils and different mechanism used by microbes to remediate heavy metals
contaminated soils.

Type
of microbe

Microbial species name Used against
heavy metals

Potential mechanism References

Bacteria Bacillus sp. KL1 Nickel Biosorption Taran et al. (2019)

Algae Spirulina sp. Chromium Biosorption Rezaei (2016)

Bacteria Bacillus thuringiensis Nickel Immobilization of Ni Zhu et al (2016)

Algae Spirulina platensis Chromium Biosorption Kwak et al (2015)

Bacteria Streptomyces sp. NRC21696 Arsenic Chelation AL-Huqail and El-
Bondkly (2022)

Bacteria Sphingomonas paucimobilis Chromium Enzymatic transformation Ibarrolaza et al (2011)

Yeast Candida tropicalis Chromium Biosorption Bahafid et al. (2013)

Bacteria Acidithiobacillus Nickel Bioleaching Wu et al. (2020)

Bacteria Aspergillus spp. Nickel Oxidation and reduction Bisht and Harsh (2014)

Yeast Cyberlindnera fabianii Chromium Biosorption Fernández et al. (2018)

Bacteria Bacillus sp. E1S2 Cadmium IAA production and ACC
deaminase synthesis

Ma et al. (2015)

Fungus Ganoderma lucidum Lead Biosorption Chang et al. (2020)

Filamentous fungi Aspergillus niger Chromium Biotransformation Gu et al (2015)
Singh et al. (2021)

Bacteria Aspergillus niger Nickel Biosorption Oyewole et al (2019)

Fungi Phanerochaete chrysosporium BKM-
F-1767

Lead biosorption and bioaccumulation Huang et al (2017)

Bacteria Bacillus amyloliquefaciens Chromium Biosorption/Bioreduction Fernández et al (2018)
ACC, 1-Aminocyclopropane-1-carboxylate; IAA, indole-3-acetic acid.
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Microbial mechanism used clean up
HMs polluted soils

Different mechanisms were used by microbes to clean up the

HM-polluted soils. Microbes play a critical role in the oxidation of

metals, for instance, Thiobacillus ferrooxidans) can promote the

oxidation of metal sulfides to enhance the release of HMs. Microbes

mediate the transformation of metal sulfides by sulfur oxidation. In

this process, microbes oxidize sulfide ores into metal ions by the

process of biological leaching (Kaksonen et al., 2020). Microbes also

cause the reduction of metals to reduce their toxicity. The removal

capacity of HM-nFeS against Cr-VI was 12-20% lowest as

compared to DM-nFeS which was linked with the capacity of

both HM-nFeS and DM-nFeS to reduce the Cr (Du et al., 2016).

The details of various mechanisms used by microbes to remediate

the HMs polluted soils are discussed below.
Bioaccumulation and biosorption

Bioaccumulation and biosorption are the most common

mechanisms used by microbes to remediate polluted soils and in

both mechanisms, microbes bound the HMs from the surrounding

environment (Joutey et al., 2015). In bio-sorption microbes use

cellular structure to capture the HM ions and then absorb these

HMs on the binding sites of cell walls (Malik, 2004). Microbes also

used adsorption mechanisms as bioremediation of HM. Different

microbes including Magnetospirillum gryphiswaldense, Bacillus

subtilis, microalgae, Chaetomorphalinum, Rhizopus arrhizus, and

Saccharomyces cerevisiae produce biosorbents for remediation of

HM (Zhou et al., 2012). In comparison to other microbes, bacteria

are thought to be superior bio-sorbents because of their larger

surface-to-volume ratio and variety of chemosorption sites in their

cell walls, including teichoic acid (Beveridge, 1989). Dead bacterial

strains also have good biosorbent properties and it has been found

that dead Bacillus sphaericus showed 13-20% more bio-sorption

capacity for Cr as compared to living cell of the same strain

(Velásquez and Dussan, 2009). On the other hand, bio-

accumulation depends on an import storage mechanism. This

process is known as active bio-accumulation and it involves the

movement of HM ions across the lipid bilayer of the cell membrane

and into the cytoplasm or intracel lular regions. The

bioaccumulation of HM in bacterial membranes is mediated via a

variety of ionic channels, carrier-mediated transports, permeation,

and lipid permeation (Shahpiri and Mohammadzadeh, 2018). In

literature, it has been well documented that microbes cause

bioaccumulation of Pb, Ni, Hg, Cd, and Cr (Rani and Goel, 2009;

Sher and Rehman, 2019; Naskar et al., 2020). Different researchers

also identified the micro-bacterium that shows resistance to HMs.

For instance, Henson et al. (2015) reported that Microbacterium sp.

(Cr-K29) reduced the Cr-IV uptake by 88% while Pattanapipitpaisal

et al. (2001) found that Microbacterium liquefaciens eliminated the

Cr by 90-95%. These microbes use heavy metal ions in order to

facilitate their metabolic activities or they also use enzymes
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produced by bacterial cells to detoxify ions of HMs (Kubrak

et al., 2010).
Bioleaching

Bioleaching is another important mechanism used by a wide

range of microbes to remediate polluted soils. For instance, in a

research study, authors found that Acidophiles and chemolithotrophs

oxidized the Fe-II to Fe-III and reduced sulfur to sulfuric acid. The

production of sulfuric acid leads to the synthesis of ferric ions as well

as protons which helps to extract metals through solubilizing oxides

and sulfides of metal (Srichandan et al., 2014). Microbes are utilized

in bioleaching as reduction agents, but they can also be used to extract

and recover HMs (Wang and Zhao, 2009). Bio-remediation has been

offered as an excellent tool to recover raw materials from effluents

(Gadd, 2010). Using an Annona squamosa-based absorbent with 0.1

M HCl, Isaac and Sivakumar (2013) achieved Cd recovery efficiency

of 98.7%. Contrarily, matrix-immobilized P. putida cells

demonstrated 100% recovery for Cu while Pseudomonas

aeruginosa biomass demonstrated 82% recovery efficiency for Cd

(Hammaini et al., 2007). In another study, co-application

Pseudomonas aeruginosa biomass, and hydrochloric acid (0.1 M

HCl) achieved the Cd recovery rate by 82% (Dickerhof et al.,

2019), whileP. putida achieved a Cu recovery rate of 100%. Further,

autochthonous variant Enterobacter brought an exceeding recovery

of >90% for Cu and Pb (Bayramoglu and Arica, 2011). Acidphiles

produce different acids through their metabolic process which aids in

the dissolution of metal ores, thereby reducing the availability of

metals. On the other hand, chemolithotrophs cause oxidation and

reduction of sulfur compounds which provide energy to them and

also increase the production of acids subsequently increasing

solubilization of metals. The bio-leaching carried by both

acidophiles and chemolithotrophs is eco-friendly and it can be

carried at lower temperatures along with additional benefits of

energy saving (Adetunji et al., 2023).
Biotransformation

In biotransformation, microbes converted the toxic metal ions

to less hazardous forms (Pervaiz et al., 2013). To adapt to

environmental changes, bacteria have developed bio-

transformation mechanisms. Production of carbon bonds,

isomerization, functional groups, oxidation, reduction,

condensation, hydrolysis, methylation, and demethylation help

the microbes to transform the HMs. These are all processes that

can be used to alter HM in microbes. Microbes cause the

transformation of HM and Nagvenkar and Ramaiah (2010) noted

that Micrococcusand Acinetobacter caused the oxidation of As-III

into less soluble and non-toxic form. Moreover, Thatoi et al. (2014)

documented that Cr (VI) tolerant Bacillusspecies cause the

biotransformation of Cr (VI) and changed it into a less hazardous

form of Cr (III). Both Micrococcus and Acinetobacter reduce the

toxicity of metals by causing oxidation, reduction, biological
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chelation, and inducing the metabolic transformation and bio-film

formations (Adetunji et al., 2023).
Bio-volatilization

Bio-volatilization is a process where microbes convert the HMs

into volatile compounds enzymatically. This process significantly

reduced the availability and toxicity of metals in soil and water. Bio-

volatilization uses enzymatic reduction and methylation to convert

toxic metals into less toxic forms. Different enzymes like Arsenic

methyltransferase, Mercury reductase, and Antimony

methyltransferase are involved in the bio-volatilization of As, Hg,

and Sb. This method is considered to be suitable for HMs like Hg,

As, and Sb, and in this process, these HMs are converted into non-

toxic compounds by bio-volatilization (Boriová et al., 2014).

Bacterial enzymes like methyltransferases transfer the As(V) into

the mono, di, and tri-methylated As species which is then

transferred into the atmosphere owing to its volatile nature. In

another study, enzymes like reductase (MerA) and mercurial lyase

present in archaea and eubacteria caused bio-volatilization

(Freedman et al., 2012). Similarly, Scopulariopsis brevicaulis, also

showed promising results to convert the As(V) and Hg(II) to their

nontoxic states (Urıḱ et al., 2007; Boriová et al., 2014).
Bio-mineralization

In the bio-mineralization process, microbes activate the

synthesis of minerals and microbes to tackle with HMs. Different

bacteria cause immobilization of Pb and Cr by carbon

mineralization (He et al., 2019). Similarly, another bacterial strain

Sporosarcina ginsengisoli caused immobilization of different HM

calcite, aragonite, and vaterite biomineralization (Achal et al., 2012;

Cheng and Holman, 2012). Fungal species also showed promising

results for bio-mineralization, for example, Penicillium

chrysogenum causes mineralization of Pb and Cr (Qian et al.,

2017). Likewise, Penicillium chrysogenum effectively causes bio-

mineralization of Pb (Povedano-Priego et al., 2017) additionally,

due to the synthesis of PO43- that is released during the breakdown

of Pb, Bacillus subtilis triggered bio-mineralization of Pb (Lin et al.,

2016). Moreover, other authors reported that Pseudomonas putida

forms the carbonate and phosphate minerals which speed up Cd

precipitation (Li et al., 2016). Microbes play a critical role in the bio-

mineralization process as this process involves the production of

mineral deposits to immobilize HMs. The microbes produce EPS,

specific metabolites, and organic acids which promote the

formation of mineral deposits thereby leading to the

immobilization of HMs (Qian et al., 2017). The siderophores and

polysaccharides produced by microbes bind the HMs by forming

complexes with metals thereby reducing uptake and accumulation

of metals by plants. Besides this, they also facilitate the sequestration

of metals in soil thereby reducing toxicity of metals on plants.
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Modern approaches used to
remediate HMs contaminated soils

Different techniques are being applied globally to clean up HM-

polluted soils. The role of modern approaches to remediate HM-

contaminated soils is discussed below.
Phyto-microbial system for remediation of
polluted soils

The application of plants and microbes has emerged as an

excellent tool to remediate HM-polluted soils. The use of PGPR has

been tested as an effective, and environmentally friendly way to

eliminate HMs (Sati et al., 2023). Different microbes like bacteria

and fungi can help the plants absorb the HMs (Bojórquez et al.,

2016). For instance, Joner and Leyval (1997) noted that fungal

inoculated plants uptake more Cd by 90, 127, and 131% growing

under different Cd levels (1, 10, and 100 mg/kg) as compared to un-

inoculated plants. Similarly, fungal inoculation improves the plant’s

ability to absorb Cu, Cd, and Zn (Sati et al., 2023). Different PGPB

also produce polysaccharides which increase the transformation,

immobilization, and chelation of HM thus reducing their

availability. PGPB decreases soil pH by increasing the production

of organic acids which helps to remove the HM ions, further, these

PGPB also provide nutrients to plants thus reducing the negative

effects of HM on plants. Siderophore is also an important microbe

and it has shown an appreciable ability to form complexes with

different metals like Al, Cd, Cu, Zn, and Pb (Rajkumar et al., 2010).

When bio-augmentation and phytoremediation are used together,

they produce noticeable results and can also get around some of the

challenges that arise with using them alone. The plant also showed

significant results to remediate polluted soils and according to

Wang et al. (2021), planting Salix in soils with Cd contamination

increased the diversity of helpful fungi and microorganisms and

contributed to impressive bioremediation outcomes. Plant growth-

promoting rhizobacteria (PGPR) interact with plants to increase

their ability to absorb HMs through a different mechanism like the

production of chelators, increased nutrient uptake, volatilization,

transformation, and phytostabilization. This technique is

considered sustainable and eco-friendly which can help to

mitigate the HMs pollution in agricultural settings.
Genetically engineered microbes: key
player to remediated HM polluted soils

The recent advancements in genetic engineering and the

production of genetically modified microbes have shown

promising results for the remediation of polluted soils. Molecular

biology involves understanding and changing the genes to improve

the bio-remediation process. It has been documented that different

microbes possess resistance mechanisms against HMs (Jaiswal et al.,

2019). This includes genes that encode different metal proteins,
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transporters, and enzymes involved the detoxification (Malla et al.,

2018). Thus, engineering these genes can allow for an increase in the

microbial ability to effectively carry the microbial remediation

process. The recent advance in CRISPR-Cas9 also ensured the

editing of microbial genes and the introduction of new genes

resulting in improved performance of microbes against HMs (Lee

and Lee, 2021). The microbial metabolic pathways can also be

modified which can enhance the microbe’s ability, while fine-tuning

genes is also leading to better remediation capabilities. Moreover,

omics and microbial consortia engineering also provided insights

into the response of microbes to HMs (Peña-Castro et al., 2023).

This can help to identify different genes, regulatory pathways, and

elements to improve the remediation process (Peña-Castro

et al., 2023).

The literature shows that genetically modified microbes have a

better capacity to remove the HMs (Bhatt et al., 2022). The editing

of a single gene and changing the sequence of the gene are

important practices used to produce genetically modified

microbes (Diep et al., 2018). Different HMs like Cd, Cu, Hg, Ni,

and Fe are eliminated by engineered bacteria (Azad et al., 2014)

however, the degradation rate largely depends on enzymes present

in bacterial cells (Kang, 2014). Moreover, the use of recombinant

DNA technology and the introduction of foreign genes has also

allowed to develop the genetically modified microbes. For instance,

the use of genetically modified Pseudomonas putida and Escherichia

colie effectively removed the Hg from polluted soils (Deckwer et al.,

2004), similarly, the addition of mer operon from Escherichia coli to

bacterium Deinococcus geothemalis also reduce the Hg pollution

even at higher temperature (Dixit et al., 2015).

Cupriavidus metallidurans modified genetically with pTP6

plasmid also significantly reduced the Hg from polluted soils

(Dixit et al., 2015). The use pMR68 plasmid to introduce novel

genes into Pseudomonas also led to the development of Hg

resistance (Sone et al., 2013). To enhance the bioremediation of

HM, microbial membrane transporters can also be genetically

engineered and in this context, transporters and binding

mechanisms play a critical role to remediate polluted soils (Manoj

et al., 2020). When HMs enter the cell, several phytochelatins,

metallothioneins, and polyphosphates collaborate to sequester the

HM and alter the HM key storage system, enhancing their ability to

take HMs from soil and water (Diep et al., 2018).

The use of genetically modified microbes (GEMs) has speeded

up the remediation process. For the successful implementation of

implementation of GEMs bacteria must be capable of tolerating the

antagonism induced by other native bacterial species (Dixit et al.,

2015). Therefore, more novel approaches to screening as well as

isolation of microbes for remediation of polluted soils must be used.

Recently, different approaches like genomics, metagenomics,

metabolomics, proteomics transcriptomics, and computational

biology have been used to develop the GEMs for the remediation

of HMs (Raza et al., 2024). The recent advancement in high

throughput techniques has allowed us to identify the genes

involved in the bio-remediation of diverse metals. Further, recent

techniques like CRISPR-Cas also made it possible to create GEMs

containing genes that can break down the HMs. Besides this, it also
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made it easy to transfer the desired set of information into microbial

genomes to develop the microbes with better ability (Miglani, 2017).

CRISPR-Cas9 techniques have also allowed to development of

microbes with appreciable precision, high efficiency, and targeting

multiple metals. Genetically modified microbes can provide better

results to remediate polluted soils. For instance, genetically

modified microbes enhance metal uptake capacity, and they have

better metal tolerance and resistance with minimal environmental

impacts. They also have appreciable sequestration, transformation,

detoxification, and uptake abilities which make them effective tools

to mitigate metals toxicity. However, many potential ethical and

environmental implications must be considered when using

genetically modified microbes for the remediation of polluted

soils. For instance, it includes proper regulation and monitoring

of genetically modified organisms to balance the benefits of

reduction in contamination along with potential risks. Other

concerns could be human health, environmental quality, and the

negative effects of farming practices. Many environmental

considerations must be used while using genetically modified

microbes. These microbes should not disrupt biodiversity, food

webs, and ecosystem health.
Use of nano-technology for microbial
remediation of HM polluted soils

Nano-materials have documented appreciable results in

remediating polluted soils owing to their higher surface area,

reactivity, and surface chemistry (Khati et al., 2017; Baragaño et al.,

2020. Different types of nano-materials including zero-valent metals,

metal oxide nanoparticles, carbon-based nano-materials, nano-

composites, and nano-biosensors are used around the globe to

remediate polluted soils (Aliyari et al., 2023). The nano-materials

serve as electron donors in the microbial reduction process and they

promote the reduction of toxic metals. On the other hand, nano-

particles serve as absorbents and they also favor HMs degradation

(Dhanapal et al., 2024). Further, carbon-based produces also enhance

the transfer of electrons among metal ions and microbes which in

turn increases the efficiency of bio-remediation. Recently, nano-

biosensors have also shown appreciable results in detecting HMS

which has allowed the monitoring of the remediation process

(Dhanapal et al., 2024). Nano-biosorbents can be employed as a

substitute for conventional bio-sorbents (Alviz-Gazitua et al., 2019).

There are various functional groups found in NPs, including NH2,

-COOH, and -OH, and customizing the right functional groups by

activating them physically or chemically or by altering their surfaces

has produced promising results for the elimination of HMs.

Additionally, bacterial strains produce the NPs that can aid in the

bio-remediation of the HMs (Arshad et al., 2019). It has been shown

that using NPs in conjunction with microorganisms boosted the

reduction of HMs, producing more beneficial benefits than using

them alone. Nano-particles have a higher surface area, ion exchange,

reduction and stabilization capacity, mobility, and delivery which

enhance the remediation efficacy. The interaction between NPs and

microorganisms is, however, influenced by a variety of factors,
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including NPs’ chemical properties, size and shape, coating qualities,

crystalline phase, level of contamination, and resistance to hazardous

elements (Tan et al., 2018). Their tailored properties and enhanced

adsorption capacities make them promising candidates for

sustainable and efficient remediation strategies, provided that

environmental and safety considerations are carefully addressed in

their application. However, nano-sorbents must be tested for their

environmental impacts in terms of stability and NPs release into the

environment. Microbes trapped with nano-materials produce the

nano-composite, a combination of Halomonasand iron oxide NPs

substantially eliminated the Cd-II and Pb-II (Cao et al., 2020). Since,

separation and recovery of HMs from nano-materials is laborious

and time-consuming thus magnetic NPs gained significant attention

in recent times, wherein surface amendment, coating of diverse

materials, and encapsulation focused on simple separation of HMs.
Conclusion and future
research directions

Heavy metals pollution is a serious issue across the globe and it is

considered the biggest challenge of this century. Heavy metal

pollution has drastic effects on soil quality, soil fertility, microbial

activities, and diversity, and it also impost deleterious impacts on

human health by entering the food chain. Globally, different

physiochemical strategies are used to remediate the HMs polluted

soils. However, these strategies are very expensive, difficult to

application, inefficient in certain conditions and they can also alter

the soil quality. Therefore, new biological methods have been

developed to remediate polluted soils. Among biological methods,

the use of microbes is considered as an effective, economical, and eco-

feasible measure to remediate polluted soils. The microbes use

different mechanisms to remediate polluted soils and recently

engineered microbes provided excellent results for bioremediation

which makes them an effective measure to be used on polluted soils.

The use of a single strategy could be both noneffective and

inefficient in reclaiming polluted soils. Therefore, a combination of

microbes and plants, nano-particles, and additives could also be an

important approach to remediate polluted soil. Moreover, a

combination of microbes with other strategies including organic

and carbon-based materials must also be tested. Additionally, to

create the HM tolerance in microbes more focus must be done to

understand the physiochemical, biological, and molecular

characteristics of microorganisms in soil and water habitats where

HMs are prevalent. In the literature, no studies are available about

the long-term effects of altering soil pH, temperature, and redox

conditions for bioremediation efforts on soil health, microbial

diversity, and the persistence of heavy metals over a long period.

Therefore, efforts must be made to study the long-term impacts of

soil pH, temperature, and redox conditions on on soil health,

microbial diversity, and the persistence of heavy metals. Besides

this, there is also a lack of information about the interactions

between metal concentration, pH, redox potential, and

temperature affecting the efficiency and effectiveness of microbial

bioremediation processes in contaminated soils. Thus, it is

interesting to study the interactions between metal concentration,
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pH, redox potential, and temperature affecting the effectiveness of

the remediation process.

To identify prospective metal resistance and detoxification

genes that can be regulated in other species to improve their

particular performance, meta-genomic techniques, and microbial

metabolic studies are required. Additionally, genetic study is

required to comprehend the routes and mechanisms that plants

and microorganisms use to tolerate and detoxify heavy metals. The

recent advance in omics-based approach can also help to develop

the strains tolerant against the prevalent environmental conditions.

Recently, yeast has been modified and it showed promising hyper-

accumulation capacity, therefore, other bacteria can also be

developed in the same way to clean the polluted soils. Future

research should pay more attention to the usage of algae since it

may be a promising strategy for the sorption of heavy metals. The

application of nanotechnology in combination with microbes can

also promote microbial use and their efficiency on polluted soil.
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Bojórquez, C., Frıás Espericueta, M. G., and Voltolina, D. (2016). Removal of
cadmium and lead by adapted strains of Pseudomonas aeruginosa and Enterobacter
cloacae. Rev. Int. Contaminación Ambiental 32, 407–412. doi: 10.20937/RICA
frontiersin.org

https://doi.org/10.1007/s13762-017-1400-5
https://doi.org/10.1007/s11356-019-06334-0
https://doi.org/10.1016/j.biortech.2003.10.032
https://doi.org/10.1016/j.biortech.2003.10.032
https://doi.org/10.1016/j.jhazmat.2011.11.067
https://doi.org/10.1016/j.gexplo.2011.01.004
https://doi.org/10.3390/min13060828
https://doi.org/10.3390/min13060828
https://doi.org/10.1007/s11356-015-4496-5
https://doi.org/10.1016/j.aoas.2018.05.007
https://doi.org/10.1186/2052-336X-12-44
https://doi.org/10.1007/s13762-021-03532-7
https://doi.org/10.1007/s13762-021-03532-7
https://doi.org/10.3390/su15010876
https://doi.org/10.1093/femsle/fnx200
https://doi.org/10.1016/j.jenvman.2020.111892
https://doi.org/10.1016/j.scitotenv.2022.156435
https://doi.org/10.1016/j.scitotenv.2022.156435
https://doi.org/10.3389/fmicb.2019.01499
https://doi.org/10.1016/j.cej.2014.12.016
https://doi.org/10.1155/2014/252148
https://doi.org/10.1016/j.seppur.2018.06.035
https://doi.org/10.1007/s10123-019-00098-w
https://doi.org/10.21603/2074-9414-2021-4
https://doi.org/10.3390/ijerph14010094
https://doi.org/10.1007/s11434-013-0058-8
https://doi.org/10.1111/jam.12282
https://doi.org/10.1111/jam.12282
https://doi.org/10.3390/toxics10080484
https://doi.org/10.1016/j.chemosphere.2022.135153
https://doi.org/10.1016/j.chemosphere.2022.135153
https://doi.org/10.1016/j.envint.2013.12.018
https://doi.org/10.1016/j.ecoenv.2019.01.094
https://doi.org/10.1016/j.ecoenv.2019.01.094
https://doi.org/10.1038/s41598-020-58852-4
https://doi.org/10.1016/j.jclepro.2017.02.199
https://doi.org/10.20546/ijcmas
https://doi.org/10.1007/s11270-011-0798-5
https://doi.org/10.1016/j.jplph.2014.10.011
https://doi.org/10.1111/fml.2006.254.issue-2
https://doi.org/10.1128/MMBR.66.2.250-271.2002
https://doi.org/10.1128/MMBR.66.2.250-271.2002
https://doi.org/10.1146/annurev.mi.43.100189.001051
https://doi.org/10.1146/annurev.mi.43.100189.001051
https://doi.org/10.1016/0048-9697(83)90055-4
https://doi.org/10.4014/mbl.1808.08006
https://doi.org/10.4014/mbl.1808.08006
https://doi.org/10.1080/07391102.2020.1846623
https://doi.org/10.1080/07391102.2020.1846623
https://doi.org/10.3390/md16020065
https://doi.org/10.20937/RICA
https://doi.org/10.3389/fpls.2024.1420408
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2024.1420408
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Núñez, E. (2023). Engineering the metabolic landscape of microorganisms for
l ignocel lu los ic convers ion . Microorganisms 11, 2197 . doi : 10.3390/
microorganisms11092197

Pervaiz, I., Ahmad, S., Madni, M., Ahmad, H., and Khaliq, F. (2013). Microbial
biotransformation: a tool for drug designing. Appl. Biochem. Microbiol. 49, 437–450.
doi: 10.1134/S0003683813050098

Philippot, L., Cregut, M., Chèneby, D., Bressan, M., Dequiet, S., Martin-Laurent, F.,
et al. (2008). Effect of primary mild stresses on resilience and resistance of the nitrate
reducer community to a subsequent severe stress. FEMS Microbiol. Lett. 285, 51–57.
doi: 10.1111/fml.2008.285.issue-1

Pietro-Souza, W., de Campos Pereira, F., Mello, I. S., Stachack, F. F. F., Terezo, A. J.,
da Cunha, C. N., et al. (2020). Mercury resistance and bioremediation mediated by
endophytic fungi. Chemosphere 240, 124874. doi: 10.1016/j.chemosphere.2019.124874

Pinter, I. F., Salomon, M. V., Berli, F., Bottini, R., and Piccoli, P. (2017).
Characterization of the As (III) tolerance conferred by plant growth promoting
rhizobacteria to in vitro-grown grapevine. Appl. Soil Ecol. 109, 60–68.
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Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008.
Bioresour Technol. 126, 233–237. doi: 10.1016/j.biortech.2012.09.036

Qian, X., Fang, C., Huang, M., and Achal, V. (2017). Characterization of fungal-
mediated carbonate precipitation in the biomineralization of chromate and lead from
an aqueous solution and soil. J. Clean Prod 164, 198–208. doi: 10.1016/
j.jclepro.2017.06.195

Qin, J., Jiang,X.,Qin, J., Zhao,H.,Dai,M., Liu,H., et al. (2023). Effects of leadpollutionon
photosynthetic characteristics and chlorophyll fluorescence parameters of different
populations ofMiscanthus floridulus. Processes 11, 1562. doi: 10.3390/pr11051562
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