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Editorial on the Research Topic
Artificial intelligence for smart health: learning, simulation, and
optimization

With rapid developments in medical sensing and imaging, we now live in an era of data
explosion in which large amounts of data are readily available in clinical environments. The
fast-growing biomedical and healthcare data provide unprecedented opportunities for data-
driven scientific knowledge discovery and clinical decision support. Our Research Topic
aims to catalyze synergies among biomedical informatics, machine learning, computer
simulation, operations research, systems engineering, and other related fields with three
specific goals: (1) develop cutting-edge data-driven models to accelerate scientific
knowledge discovery in biomedicine using healthcare data collected from laboratory
systems, imaging systems, and medical and sensing devices; (2) develop advanced
simulation and calibration algorithms to build personalized digital twins by effectively
assimilating patient-specific medical data with population-level computer models,
facilitating precision medical planning; (3) develop innovative optimization algorithms
for optimal medical decision making in the face of uncertainty factors, conflicting
objectives, and complex trade-offs. This Research Topic, containing 10 articles, will
offer a timely collection of information to benefit researchers and practitioners working
in the broad fields of biomedical informatics, healthcare data analytics, medical image
processing, and health-related AI.

Jiang et al. investigated the development and implementation of a high-fidelity
simulation training course for fostering medical and nursing collaboration in China,
guided by the Fink integrated curriculum design model. This training course was
delivered to 14 nursing students and 8 clinical medicine students between March and
July 2022. The results showed high satisfaction, increased self-confidence, and positive
evaluations across various teaching practice dimensions. The study underscores the value of
standardized simulation curricula in advancing healthcare education in China.

Rovati et al. evaluated the usability, workload, and acceptance of a digital twin
application designed to simulate patient clinical trajectories based on EHR data for
critical care education. Tested with 35 first-year internal medicine residents, the
application demonstrated good usability and low to moderate workload. Residents
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expressed interest in using the digital twin application for ICU
training and suggested improvements in clinical fidelity, interface
design, learning experience, gaming elements, and implementation
strategies.

Xie et al. developed a multi-branching ResNet model for atrial
fibrillation detection from single-lead ECG signals. This method
combines continuous wavelet transform for feature extraction with a
multi-branching architecture to handle class imbalance in ECG datasets.
Their framework was evaluated on two databases: PhysioNet/CinC
challenge 2017 and private datasets from the University of Oklahoma
Health Sciences Center. Their model achieved F1 scores of 0.8865 and 0.
7369 on the two datasets respectively, demonstrating strong performance
in balancing precision and recall.

Patharka et al. provided a systematic review of research
challenges in modeling biomedical temporal data, including
missing values, capturing multi-dimensional correlations, and
accounting for short- and long-term temporal patterns. This
paper categorizes time series models into statistical, machine
learning, and deep learning approaches, and further discusses
their strengths and limitations. Strategies such as model
enhancement, ensemble forecasting, and hierarchical models are
examined for improving clinical predictions. It also explores
implementation challenges in biomedical data modeling and
outlines future directions for integrating AI in healthcare.

Kim et al. developed a Timely Early Warning System for Septic
Shock (TEW3S), which emphasizes predicting the onset timing of
septic shock to assist proactive clinical interventions. Utilizing
machine learning and EHRs from the MIMIC-IV database,
TEW3S achieved 94% accuracy in predicting all shock events
with a maximum lead time of 8 h. By addressing the limitations
of traditional risk-based prediction systems, this approach highlights
the critical role of timeliness in improving patient outcomes during
acute deterioration in hospital settings.

Rao et al. developed a multi-scale long short-term memory
(LSTM) neural network trained with a variety of time scale data
for classifying fetal heart rate patterns during labor. They employed
preprocessing techniques to mitigate negative effects such as missing
signals and artifacts on the model, and further utilized data
augmentation techniques to address the data imbalance issue.
Their framework was evaluated on the CTU-UHB dataset and
achieved superior performance compared with traditional LSTM.

Stanik et al. developed a predictive model to identify stroke
survivors at high risk of seizures following an infection, using data
from the Long-Term Care Minimum Data Set. Data balancing
techniques and feature selection methods are incorporated into
machine learning models (Logistic Regression, Random Forest,
XGBoost, Neural Network), achieving high accuracy in seizure
prediction. Key factors contributing to seizure risk identified by
this article included therapy hours, independence in daily
activities, and mood.

Trevena et al. developed a graph-based patient simulation
application designed to model critically ill patients with sepsis.
The authors utilize directed acyclic graphs to represent the
complex physiological and medication interactions during the
first 6 h of critical illness. Their system consists of three core
components: a cross-platform frontend for clinicians and
trainees, a cloud-hosted simulation engine, and a graph database
to determine the progression of each simulation. The simulation

architecture demonstrates the potential to help train future
generations of healthcare professionals and facilitate clinicians’
bedside decision-making.

Wang et al. developed a three-phase methodology for emotion
recognition from electroencephalography signals. Their framework
addresses the challenges of capturing the complex, nonlinear, and
nonstationary dynamics of brain activity by integrating manifold
embedding, multilevel heterogeneous recurrence analysis, and
ensemble learning. Evaluated on the SJTU-SEED IV database,
their method demonstrates superior performance compared to
existing commonly used techniques.

Meyers et al. investigated the sources of variability affecting
operating room (OR) efficiency. The OR process was segmented
into eight stages to quantify key process times, such as procedure
duration and start time delay. The authors developed linear
mixed models to evaluate the effects of factors such as the
primary surgeon, anesthesia provider, and procedure type on
OR efficiency. This study emphasizes the importance of
segmenting the OR process into finer stages for better
understanding of efficiency.

Finally, we extend our sincere gratitude to the reviewers for their
thoughtful and constructive feedback on the manuscripts submitted
to this Research Topic. Their insightful evaluations have
significantly contributed to enhancing the quality and impact of
this Research Topic.
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Development and usability testing 
of a patient digital twin for critical 
care education: a mixed methods 
study
Lucrezia Rovati 1,2, Phillip J. Gary 1, Edin Cubro 3, Yue Dong 4, 
Oguz Kilickaya 1, Phillip J. Schulte 5, Xiang Zhong 6, 
Malin Wörster 7, Diana J. Kelm 1, Ognjen Gajic 1, 
Alexander S. Niven 1 and Amos Lal 1*
1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, 
MN, United States, 2 School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy, 
3 Department of Information Technology, Mayo Clinic, Rochester, MN, United States, 4 Department of 
Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States, 5 Department 
of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, 
MN, United States, 6 Department of Industrial and Systems Engineering, University of Florida, 
Gainesville, FL, United States, 7 Center for Anesthesiology and Intensive Care Medicine, Department of 
Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Background: Digital twins are computerized patient replicas that allow clinical 
interventions testing in silico to minimize preventable patient harm. Our group 
has developed a novel application software utilizing a digital twin patient model 
based on electronic health record (EHR) variables to simulate clinical trajectories 
during the initial 6  h of critical illness. This study aimed to assess the usability, 
workload, and acceptance of the digital twin application as an educational tool 
in critical care.

Methods: A mixed methods study was conducted during seven user testing 
sessions of the digital twin application with thirty-five first-year internal 
medicine residents. Qualitative data were collected using a think-aloud and 
semi-structured interview format, while quantitative measurements included 
the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and a short 
survey.

Results: Median SUS scores and NASA-TLX were 70 (IQR 62.5–82.5) and 29.2 
(IQR 22.5–34.2), consistent with good software usability and low to moderate 
workload, respectively. Residents expressed interest in using the digital twin 
application for ICU rotations and identified five themes for software improvement: 
clinical fidelity, interface organization, learning experience, serious gaming, and 
implementation strategies.

Conclusion: A digital twin application based on EHR clinical variables showed 
good usability and high acceptance for critical care education.

KEYWORDS

critical care, medical education, patient-specific modeling, simulation training, patient 
safety, medical intensive care unit
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1 Introduction

Medical errors remain a major cause of morbidity, mortality, and 
cost in the US healthcare system (1). The intensive care unit (ICU) is 
particularly prone to preventable adverse events due to the complexity 
of care delivery and the patient severity of illnesses (2). The fast pace 
and high acuity of critical care practice can also limit opportunities for 
trainee autonomy. Providing a safe environment to practice decision-
making in this setting may improve the ICU educational experience, 
care processes, and patient-centered outcomes (3).

Digital twins are virtual models that simulate the behavior of real 
objects in a digital environment. With the increasing availability of 
electronic health record (EHR) and sensor-derived patient data, 
digital twins hold significant potential applications within the 
healthcare sector (4, 5). In particular, digital twin technology enables 
the creation of computerized patient replicas, simulating diverse 
clinical scenarios and intervention testing in silico to reduce avoidable 
risk in real patients (6).

Digital twins offer particular promise in critical care, where large 
quantities of data are continuously available, and the risk to patient 
safety posed by medical interventions is often significant (7, 8). The 
benefits of a digital twin patient model to inform clinical decision-
making in critical illness have been previously proposed (9–12). 
Digital twins could also be adapted for critical care education, allowing 
learners to simulate the effects of various interventions and explore 
their potential outcomes in a controlled, virtual environment without 
negative patient impacts (13, 14). Compared to conventional virtual 
patient simulation models, digital twins provide users with a more 
authentic experience in complex illness management by incorporating 
real-time, EHR-derived patient data into comprehensive 
computational models (15–17).

Our group has previously described the design and validation of 
a novel digital twin based on EHR clinical variables to model critically 
ill patients with sepsis for bedside decision support (11, 13). In this 
model, major organ systems interact based on programmed expert 
rules to recreate and predict the future patient state in response to 
specific clinical interventions. In this work, we developed a novel 
application software utilizing this digital twin patient model to 
simulate clinical trajectories during the initial 6 h of critical illness. 
This study aimed to assess the usability, workload, and acceptance of 
the digital twin application software for critical care education in a 
cohort of internal medicine residents.

2 Materials and methods

Figure 1 provides an overview of the overall critical care patient 
digital twin project.

This study comprised three sequential phases:

 1 Design and coding of a digital twin patient model based on 
EHR clinical variables and expert rules to simulate patient 
trajectories during the initial 6 h of critical illness.

 2 Development of the user interface for an iOS digital twin 
application software designed for critical care education delivery.

 3 Usability testing of the digital twin application software with a 
cohort of internal medicine residents and collection of user 
feedback for iterative software improvement.

2.1 Digital twin patient model design and 
coding

The digital twin patient model tested in this study focused on 
physiologic interactions and medication effects relevant to the 
initial 6 h, or golden hours, of critical illness (18). Variables included 
in the model comprised clinical data commonly displayed in the 
ICU EHR. Expert rules describing the interactions between the 
seven major organ systems (neurologic, respiratory, cardiovascular, 
gastrointestinal, renal, immunologic, and hematologic) were 
developed using available literature and current clinical practice 
guidelines and refined using a modified Delphi panel of 
international critical care experts (11, 13, 19, 20). Medication effects 
and pharmacokinetic rules were derived from publicly available 
drug databases. The model was based on 70 total expert rules and 
iteratively improved based on feedback from the investigator group. 
A detailed description of model design and coding, together with 
two examples of expert rules, are presented in the 
Supplementary Materials and Methods. The rules that describe the 
physiologic interactions between the organ system variables are 
represented graphically in Supplementary Figure 1.

2.2 Digital twin application software 
development

The digital twin pilot application software tested in this study was 
developed on iOS using Swift programming language and Xcode 
integrated development environment version 14.2. User testing 
sessions were performed with a tablet version of the iOS digital 
twin application.

The user interface of the digital twin application software consists 
of a case selection screen, a patient room screen, an EHR screen, and 
an order entry screen. Users can select a case from a list of virtual 
clinical scenarios that include urosepsis, chronic obstructive 
pulmonary disease exacerbation, acute respiratory failure due to 
pneumonia, acute liver failure, gastrointestinal bleeding, myocardial 
infarction, and acute decompensated congestive heart failure. Each 
clinical scenario incorporates specific organ system variable alterations 
into the initial virtual patient presentation. The user can review the 
patient’s history and physical examination findings on the patient 
room screen. The EHR screen displays the most relevant data for 
critical care decision-making, organized by organ systems and color-
coded based on the degree of abnormality (21). These data are divided 
into physical examination, laboratory testing, and other diagnostic 
findings. Clinical interventions performed by the user are displayed 
on the EHR screen, maintaining the organ system organization 
(Figure 2).

After using the order entry screen to initiate a diagnostic test or 
intervention, the user can advance the timeline (by 15-min intervals 
for the first hour, then by one-hour intervals until the 6-h endpoint of 
the simulation) to trigger the associated expert rules coded in the 
digital twin patient model. The expert rule engine determines which 
rules are executed based on the interventions ordered and the current 
value of each organ system variable, which defines the patient’s clinical 
status. The effects of these rules are displayed as changes in the relevant 
clinical variables presented in the EHR, which reflect the patient’s 
physiological response to the different interventions.
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2.3 Usability testing of the digital twin 
application software

2.3.1 Study design and setting
To explore the usability of the digital twin application software as 

an educational tool in critical care, we collected both quantitative and 
qualitative data during seven user testing sessions with internal 
medicine resident volunteers performed at the Mayo Clinic, 
Rochester, from August 2022 to June 2023. Participants were 
compensated for their time with a gift card. The study protocol was 
evaluated and approved as exempt by the Mayo Clinic Institutional 
Review Board (IRB 21-010982; study title “Critical Care Coaching 
with an Electronic Health Record Digital Twin”; approval date 
11/8/2021) after review by the Mayo Clinic Education Research 
Committee and the Mayo Clinic Internal Medicine Research in 
Education Group. The study was conducted in accordance with the 
ethical standards of the responsible institutional committee on 
human experimentation and with the Helsinki Declaration of 1975, 
as most recently amended. Verbal consent was obtained from the 
participants before each testing session.

2.3.2 Qualitative data collection and analysis
During user testing sessions, residents interacted for 15 min with 

a simulated case, describing their experience using a think-aloud and 
semi-structured interview format. The urosepsis case was used for all 
the user testing sessions to ensure consistency. Each case scenario and 

debriefing session was recorded, de-identified, transcribed, and 
analyzed for common themes. Qualitative data were used to refine the 
software and identify possible digital twin application implementation 
strategies in the current critical care curriculum.

2.3.3 Quantitative data collection and analysis
The System Usability Scale (SUS), NASA Task Load Index 

(NASA-TLX), and two survey questions were administered to each 
user at the end of the simulation session to collect quantitative 
information on software usability, workload, and learner acceptance. 
SUS is a measure of usability consisting of 10 questions with five 
options each (22). The final score ranges from 0 (low usability) to 
100 (high usability). NASA-TLX measures perceived workload and 
evaluates six domains: mental demand, physical demand, temporal 
demand, performance, effort, and frustration (23). Each domain is 
scored from 0 (low workload) to 100 (high workload) in 5-point 
steps, then the unweighted average of the subscale scores is 
obtained. The survey questions explored how residents would 
consider using the digital twin application to prepare for or as part 
of their medical ICU rotation. De-identified data were collected and 
managed using Research Electronic Data Capture version 8.11.11 
(REDCap, Vanderbilt University, Nashville, Tennessee, USA). 
Statistical analysis was performed using GraphPad Prism version 
9.0.0 (GraphPad Software, San Diego, California, USA). To 
summarize the results, median (interquartile range, IQR) and 
counts (%) were used.

FIGURE 1

Overview of the critical care patient digital twin project. The digital twin patient model was designed based on expert rules and electronic health record 
clinical variables. In this study, we focused on the development and usability testing of an iOS digital twin application for critical care education (solid 
arrows). After further prospective and retrospective validation with clinical data, future applications of the digital twin model include in silico clinical 
trials and bedside decision support (dashed arrows). This figure was created with BioRender.com.
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3 Results

Thirty-five post-graduate year one internal medicine residents 
participated in the user testing sessions of the digital twin application 
software. All residents were recruited during pre-planned central 
venous catheter procedural workshops conducted before the start of 
their medical ICU rotation.

3.1 Digital twin application software 
usability, workload, and acceptance

The average SUS score in our cohort was 70 (IQR 62.5–82.5), 
consistent with good software usability (22). The average NASA-TLX 
score was 29.2 (IQR 22.5–34.2), reflecting a low to moderate workload 

(24). The scores of each NASA-TLX domain are presented in Figure 3. 
The greatest perceived difficulty was the successful performance of 
required tasks, while physical and temporal demand and frustration 
levels were considered low. Mental demand and overall effort were 
rated as moderately high. More than 60% of residents indicated that 
they would use the digital twin application for a moderate amount or 
a great deal of time to prepare for and as part of their medical ICU 
rotation (Table 1).

3.2 User feedback for iterative software 
improvement

Resident comments for iterative software improvement were 
clustered in five domains, summarized in Table 2. Learners highlighted 

FIGURE 2

Electronic health record interface of the digital twin application software. Clinical variables included in the digital twin patient model are represented in 
the electronic health record screen and updated based on expert rules triggered by clinical interventions or changes in the patient’s clinical status. 
White color indicates that a clinical variable is in its normal range and no intervention is needed, while yellow or red colors indicate a variable 
disturbance that would require urgent or emergent action.
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the importance of the digital twin application delivering a realistic 
clinical experience, including interactions with the virtual patient and 
simulated clinical environment and a plausible timeline for scenario 
progression. Residents also suggested that the EHR interface of the 
application software should be similar to the commercial product they 
use in the clinical environment. This would help them to learn to 
gather and interpret results and navigate the ordering process 
efficiently. They felt the digital twin application was most helpful in 
learning medication dosing and effects, enhancing pattern recognition, 
and improving their understanding of current guidelines through 
practice managing common ICU scenarios. Learners were mainly 
interested in a serious gaming experience to test their clinical skills in 
a safe environment, with a final evaluation reflected by a performance 
score attributed at the end of each scenario. Residents expressed a 
willingness to utilize the digital twin application before and during 
medical ICU rotations; however, they highlighted that their busy 
clinical schedules pose a significant obstacle to the implementation of 

the application, as they have limited free time available to use it. To 
address this issue, the internal medicine residents proposed 
incorporating practice sessions utilizing the digital twin application 
software into the current critical care education curriculum.

4 Discussion

This study presents the development and usability testing of a 
novel application software for critical care education built upon a 
digital twin patient model based on EHR clinical variables. The digital 
twin application allows physicians-in-training to test clinical 
interventions on virtual patients, fostering autonomy and advancing 
clinical skills in a safe environment that does not expose real patients 
to preventable harm. Digital twin application testing in a cohort of 
internal medicine residents suggests high software usability and 
learner willingness to use this tool to enhance their medical ICU 
rotation experience.

Although simulation-based education can improve learner 
confidence and knowledge, evidence supporting superior learning 
outcomes over more traditional educational delivery methods has 
varied based on the learning goals (25–28). One notable advantage of 
simulation is its capacity to offer standardized, reproducible clinical 
scenarios within a risk-free learning environment, with clear patient 
safety benefits (29, 30). Emerging technologies, including medical 
simulation mobile applications and virtual reality, provide further 
opportunities for remote and on-demand training using simulated 
clinical cases, providing a consistent framework of residency training 
experiences that is more cost-effective than traditional high-fidelity 
simulation (31–33). In addition to providing flexible, efficient online 
opportunities for deliberate practice, digital twin technology can also 
integrate real-time patient data to create highly accurate and realistic 

FIGURE 3

Perceived workload of the digital twin application software as measured by the NASA Task Load Index. Overall and single-domain NASA Task Load 
Index (NASA-TLX) scores were obtained for each resident during user testing sessions (n  =  35). Box plots represent median values (solid bar), 
interquartile range (IQR, margins of the box), and minimum and maximum values (whiskers).

TABLE 1 Results from the survey questions assessing the willingness of 
residents to use the digital twin application for medical ICU orientation 
and education.

Responses 
(n  =  35)

Would you use 
this tool to 
prepare for 
medical ICU 

rotation?

Would you use 
this tool as part 
of your medical 

ICU rotation?

Never 0 (0%) 0 (0%)

Rarely 2 (6%) 5 (14%)

Occasionally 11 (31%) 6 (17%)

A moderate amount 15 (43%) 17 (49%)

A great deal 7 (20%) 7 (20%)
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virtual patient models (4). Indeed, residents underlined the 
importance of clinical fidelity during user testing sessions of our 
digital twin application software, including appropriate and realistic 
responses to clinical interventions. The major disadvantage of the 
digital twin and other virtual simulation applications is that they do 
not allow for hands-on practice of the clinical interventions being 
tested, for which traditional manikin-based simulation remains the 
gold standard.

Residents acknowledged the potential of the digital twin 
application to enhance their critical care educational experience. 
However, they identified clinical schedule demands as the primary 
obstacle to effectively implementing this tool. In addition to dedicating 
time within the current critical care curriculum to practice using the 
digital twin application, residents suggested incorporating additional 
gamification features, such as a point and badge system, to increase 
user engagement. Serious gaming has been utilized in various medical 
education settings, including critical care and emergency medicine, 
and has been shown to improve knowledge retention and clinical 
competence (34, 35). However, most studies to date have lacked well-
defined control groups, and further research is needed to better 
understand the benefits of this educational delivery method on 
learning outcomes, together with the most appropriate learner group, 
educational context, and experience to achieve these goals (36, 37).

Clinical data display was an important theme raised during 
software development and user testing sessions. Residents must 

rapidly learn to identify and review a significant volume of data 
associated with each patient in the ICU setting. Reviewing this 
clinical information takes significant time, and this task can feel 
overwhelming for new trainees without an organized approach (21, 
38, 39). To address these challenges, the digital twin application 
interface displays only the most relevant data for treating critical 
illness. These data are also organized by organ system and color-
coded based on the degree of physiological disturbance and need 
for action (Figure 2). This user interface design has been shown to 
reduce time to clinical task completion, task load, and errors of 
cognition in the ICU when compared with standard EHR interfaces 
(40, 41). During user testing sessions, residents acknowledged the 
potential usefulness of the system-based interface organization in 
the ICU context. However, they also emphasized the differences 
between this data display and the interface they regularly encounter 
in their clinical duties. They specifically highlighted the importance 
of practicing navigation within standard EHR systems at the 
beginning of their training. This situation creates a dilemma 
between two distinct learning objectives: the need for clear data 
presentation to minimize cognitive load and support deliberate 
practice in critical care decision-making versus data presentation 
that closely resembles the clinical EHR interface to enhance order 
entry efficiency through practice but potentially hinders the 
development of clinical reasoning in typical critical care scenarios. 
The challenges of adapting to the new interface might also have 
contributed to the moderately high NASA-TLX scores recorded in 
the domains of mental demand, successful task performance, and 
overall effort recorded during testing sessions. Additionally, the 
significant variations observed in the performance, mental demand, 
effort, and frustration domains of the score could indicate 
differences among residents in terms of their critical care knowledge 
and problem-solving capabilities rather than being attributed solely 
to the interface itself (42). This subject will require more targeted 
studies to qualify further.

The digital twin application software offers a convenient, low-cost 
alternative to enhance the current delivery of critical care education 
to learners at various levels of experience. This is the first time that 
digital twin technology has been applied to critical care education. The 
major strength of our digital twin patient model resides in using 
transparent pathophysiological relationships to derive expert rules, 
which have been refined using multinational and multi-specialty 
Delphi consensus (11, 19). Digital twins can also be developed as 
purely data-driven models that do not consider causal pathways of 
diseases, but the lack of clarity in how these physiologic responses are 
derived creates significant barriers to their acceptance by bedside 
clinicians (43, 44). To provide clinicians with a better understanding 
of how the underlying model reaches its output state, future iterations 
of the digital twin application will offer visualization of 
pathophysiological relationships using directed acyclic graphs in the 
user interface (45, 46). The purpose of this methodology for digital 
twin model design and the user-centered software development 
process described in this work is to facilitate technology adoption and 
address the cognitive, emotional, and contextual concerns of clinicians 
who will utilize this tool (47–49). In the future, the digital twin model 
will be connected to the current EHR system, allowing continuous 
update based on real-time patient data to support clinical decision-
making, clinical research, and medical education (Figure 1). This will 
allow clinicians at all experience levels to practice decision-making 

TABLE 2 Main themes identified during user testing sessions.

Theme Sub-themes

Clinical fidelity Interaction with the virtual patient

Interaction with the virtual 

environment

Virtual time progression similar to 

real life

Interface organization Avoid information overload

Reflect on what is used in daily 

clinical practice

Learning experience Learn and practice using medications, 

including dosing and effects, in 

common ICU scenarios

Blend simulation with formal 

explanations

Accurate, up-to-date information 

reflecting current guidelines

Serious gaming Test clinical skills in a safe 

environment

Obtain a performance score at the 

end of the simulation

Implementation barriers and strategies Limited free time to use the 

application software

Integration of practice sessions with 

the digital twin application into the 

existing critical care education 

curriculum
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skills in a safe environment using actual, real-time cases encountered 
during daily ICU practice. When this step is accomplished, important 
ethical and regulatory issues must be considered before implementing 
this novel tool in daily clinical practice (44, 50).

This study has some limitations. First, the digital twin patient 
model described in this work has been tested on simulated clinical 
scenarios and on a relatively small cohort of patients with sepsis (11). 
We plan to prospectively validate this model on a larger cohort of 
critically ill patients importing real-time EHR data into the application 
software and further refine expert rules based on these and additional 
retrospective data. Second, only a limited number of users at a single 
center participated in the usability testing of the digital twin 
application software. In addition, all users belonged to a cohort of 
internal medicine residents with no previous ICU experience, which 
limit the generalizability of the results. We plan to continue the user 
testing sessions to iteratively improve the current digital twin 
application software, involving more senior residents, fellows, and staff 
intensivists with different experience levels to systematically validate 
this educational tool’s performance and learning outcomes and 
compare it to more conventional educational techniques.

5 Conclusion

Our novel digital twin application software based on EHR clinical 
variables proved highly usable and well accepted by first-year internal 
medicine residents, and their feedback will inform further iterative 
improvement of its interface. The digital twin application software 
provides an attractive, realistic, low-cost option to teach critical care 
clinical decision-making. It offers opportunities for deliberate practice 
in a virtual environment, building experience and confidence on real-
time ICU cases, which may result in greater opportunities for 
graduated learner autonomy at the bedside and reduced risk of 
medical errors.
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Aim: The purpose of this study is to examine the design and implementation of

a high-fidelity simulation training course for medical and nursing collaboration,

based on the Fink integrated course design model. Additionally, the study aims

to validate the teaching effectiveness of the course.

Background: Previous empirical studies have highlighted the effectiveness of

collaborative healthcare education in institutional teaching and hospital training.

However, the development of healthcare collaborative education in China has

been slow to develop in China. In recent years, Chinese nursing educators

and researchers have shown interest in utilizing high-fidelity simulators

for healthcare collaborative education. These simulators help address the

limitations of traditional nursing teaching and healthcare separation simulation.

Nevertheless, a standardized simulation interprofessional education curriculum

is still lacking. Therefore, nursing educators need to develop a standardized

high-fidelity simulation training curriculum for healthcare collaboration, guided

by established science curriculum development theories.

Methods: A high-fidelity simulation training course on healthcare collaboration

was designed based on the Fink integrated curriculum design model. The course

was taught to 14 nursing students and 8 clinical medicine students from March

to July 2022. To comprehensively evaluate the effectiveness of the healthcare

collaboration high-fidelity simulation training course, several assessment tools

were used. These included course grades, satisfaction and self-confidence

scales, simulation teaching practice scales, healthcare collaboration attitude

scales, critical thinking skills scales, and semi-structured interviews.

Results: After the course was implemented, students demonstrated high overall

scores (79.19 ± 5.12) and reported high satisfaction ratings (4.44 ± 0.37). They

also exhibited increased self-confidence (4.16 ± 0.33). Additionally, students

evaluated all four dimensions of the course teaching practice scale positively.

Furthermore, the study demonstrated significant improvements in various

aspects, such as attitudes toward medical and nursing collaboration (t = −7.135,
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P < 0.01), shared education and teamwork (t = −3.247, P = 0.002), job autonomy

for nurses (t = −1.782, P = 0.000), and reduced physician dominance (t = −6.768,

P = 0.000). The critical thinking skills of the students showed significant

improvement, with higher scores in truth-seeking (t = −3.052, P = 0.004),

analytical ability (t = −2.561, P = 0.014), systematic ability (t = −3.491, P = 0.001),

self-confidence in critical thinking (t = −4.024, P = 0.000), and curiosity

(t = −5.318, P = 0.000) compared to their scores before the course (all P < 0.05).

The interviews showed that the course’s student-centered approach enabled

active learning. Students suggested enhancing teaching cases and allocating

more time for reflection and summarization.

Conclusion: The study successfully designed a high-fidelity simulation training

course for healthcare collaboration by utilizing the Fink integrated curriculum

design model. The findings provide valuable insights for the development

of standardized curricula and healthcare collaboration education in China.

Moreover, the course adheres to best practice principles, fostering improved

attitudes toward healthcare collaboration and enhancing students’ healthcare

collaboration and clinical thinking skills.

KEYWORDS

Fink integrated curriculum design model, collaborative healthcare education, high
fidelity simulation, curriculum design, collaborative healthcare attitudes, medical and
nursing collaboration, critical thinking

1 Introduction

Modern medical personnel training models emphasize the need
to strengthen teamwork and promote interprofessional education
(1). Interprofessional education, which was first proposed in the
United Kingdom during the 1960s, has gained continuous support
and development by organizations such as the World Health
Organization (WHO) (2). Currently, interprofessional education
involves extensive collaboration between institutions and regions
(3, 4).

Collaborative healthcare education is a type of interprofessional
education where nursing and clinical medicine students learn
from each other. The goal is to improve patient health
outcomes by strengthening collaboration between healthcare
professionals (5). Studies conducted overseas have confirmed
the positive effects of collaborative healthcare education on
improving students’ skills and non-skills. For example, Oxelmark
et al. (6) researchers used five clinically common scenarios of
interprofessional collaboration scenarios, such as post-operative
hemorrhage and allergic reactions, to improve the ability of
clinical medical students and nursing students to collaborate during
emergencies. Similarly, in a study conducted by Jakobsen et al. (7),
nursing students, anesthesia nurses, and clinical medical students
underwent interprofessional training. The results showed that
the students were able to adapt to their team roles better and
enhance their non-technical skills. Lau et al. (8) conducted a 2-
day interprofessional advanced cardiovascular life support training
for nursing and clinical medicine students. The results showed that
the training improved students’ team performance, communication
skills, and ability to work effectively in acute and critical care

situations. In contrast, collaborative healthcare education in China
has only been reported in the early 21st century, with research still
in its early stages (9).

Scenario-based simulation can provide a safe healthcare
environment for collaborative healthcare education and enable
students to improve their practical skills in real-life situations. In
recent years, the development of situational simulation teaching
has garnered attention from nursing educators and researchers in
China, particularly in the realm of medical-nursing collaborative
education based on high-fidelity simulators. Wang et al. (10)
investigated the effectiveness of high-fidelity simulation in teaching
operating room nursing collaboration. Other researchers have also
applied this method in nursing planning and implementation (11)
and emergency nursing courses (12). The results demonstrate
that this teaching method can enhance students’ interest in
learning and improve their teamwork skills. Currently, China’s
high-fidelity simulation teaching of healthcare collaboration is still
in the developmental stage. Most researchers design the teaching
content based on the actual needs and available resources of their
institutions. The teaching is mostly carried out by focusing on one
or more trainings in a nursing specialty course (13–15). However,
this approach may lack scientific rigor in the teaching process and
make it difficult to compare teaching effects horizontally.

Since curriculum development is the initial step in
implementing curriculum teaching, and its quality directly
affects the curriculum’s implementation, nursing educators
must standardize the development of a high-fidelity simulation
training course for healthcare collaboration under the guidance of
scientific curriculum development theories. Studies have shown
that educators, both domestic and international, have adopted
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curriculum development theories to guide the process. For
instance, some have used the flexible learning model to design a
health assessment course (16), while others have developed their
own model based on competency-based education theory (17).

However, one integrated curriculum design model (Below
is referred to as the "Fink model") that has emphasized the
creation of meaningful learning experiences as a key aspect
of quality education was developed by Fink (18). The model
is holistic, comprehensive, and practical, focusing on both
theoretical exploration and conceptual analysis, as well as concrete
implementation to improve teaching effectiveness (19).

The Fink model has been successful in a variety of fields,
including basic dental anatomy courses (20), health policy courses
(21), and narrative nursing courses (22). In this study, the Fink
model served as the theoretical basis for developing a high-
fidelity simulation training course for healthcare collaboration,
offering several benefits: (1) This tool assists educators in analyzing
the course needs to clarify the course’s nature and curriculum
significance objectively. (2) Instead of traditional goal-setting,
this tool employs meaningful learning objectives. (3) The course
evaluation elements align with the formative and summative
evaluation advocated by the simulation teaching evaluation
method. (4) Analyzing whether the course elements can support
each other to ensure the course’s systematic nature; and (5)
Predicting potential problems that may arise during the course
implementation stage to ensure its feasibility.

Based on the need to improve curriculum development for
collaborative education, a SimMan3G (SimMan3G is actually a
high-fidelity mannequin from Laerdal) has been developed as
an integrated simulator-based healthcare cooperation training
curriculum using Fink’s design model. This study aims to
explore the development, implementation, and evaluation of the
SimMan3G in teaching nursing and clinical medicine students.
The findings will provide valuable insights for standardizing the
development of healthcare collaboration curriculum, cultivating
students’ awareness of healthcare collaboration, and enhancing
their healthcare collaboration skills.

2 Materials and methods

This study is divided into two parts: curriculum development
and curriculum implementation. Firstly, we explored the process
of developing a SimMan3G-based collaborative healthcare
training course using the Fink model. Secondly, we implemented
the curriculum with students from two specialties, clinical
medicine and nursing, as research subjects and verified its
teaching effectiveness.

2.1 Course development

2.1.1 Theoretical basis
The Fink integrated curriculum design model consists of three

phases (18), outlined in Table 1. Each phase includes specific
operational steps to guide educators through the curriculum
development process. The initial stage is particularly important
and serves as the foundation for designing a course. To guide

TABLE 1 Fink integrated curriculum design model content.

Stage Main steps

Initial phase: determining the
foundational elements of the
course

Clarify contextual factors

Define learning objectives

Develop appropriate feedback and evaluation
systems

Designing teaching activities

Integration of the identified basic components
of the curriculum

Intermediate phase:
integration of essential
factors into the whole

Designing course structure

Choosing effective teaching strategies

Designing an overall learning activity plan

Final phase: completion of
other important tasks

Establishment of a scoring system

Identify issues that may arise

Completing a course outline

Planned assessment of curriculum and
instruction

the development of a SimMan3G-based healthcare collaboration
training course using the Fink model, instructional designers
should first analyze contextual factors to understand the current
status of healthcare collaboration in the nursing field in China.
Then, they should determine meaningful learning objectives for
the course and select appropriate feedback assessment procedures
and effective teaching activities based on the course objectives. The
intermediate phase aims to integrate foundational elements into a
dynamic and coherent whole. The final phase aims to enhance the
curriculum design.

2.1.2 Course construction
This study presents the development of a high-fidelity training

course for medical and nursing collaboration in three stages: initial,
intermediate, and final. The Fink model was used as a basis for this
construction. The analysis of each stage is presented below:

(1) Initial stage
The contextual factors of the course include six specific aspects.

(1) External Expectations: The aim of this course is to address the
issue of neglecting healthcare collaboration in nursing practical
training courses and promote teaching reform in the nursing
profession. (2) Specific Context: This course was proposed in
the context of the new medical science background (23) and
the specific context of China’s relatively lagging development of
education on healthcare collaboration. (3) Course Nature: The
course is an interprofessional elective course on medical situational
simulation, which emphasizes the cultivation of teamwork attitudes
and abilities among nursing and clinical medical students. (4)
Student Characteristics: The students are senior-level and possess
professional knowledge and basic operational skills. They can
analyze cases based on their own understanding. (5) Teacher
characteristics: the teachers all have the title of associate senior
and above and rich experience in simulation teaching, and they
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can instruct the students how to use SimMan3G for training. (6)
Teaching special challenges: the SimMan3G integrated simulation
system can’t meet the actual needs of the teaching content of the
course. As a result, the School of Nursing, the School of Clinical
Medicine, and the teaching hospital collaborated in the preliminary
stage to jointly prepare eight teaching cases based on certain case
preparation principles and processes (24).

Fink emphasizes the importance of meaningful learning in
teaching practices and has created six taxonomies to achieve
this: basics, applications, synthesis, humanities, caring, and
learning to learn. When determining the course’s total learning
objectives based on this taxonomy, teachers should focus not
only on students’ understanding of the basics but also on
developing their application skills and other levels (25). The study
developed the courses’ learning objectives, which are listed in
Table 2.

The course was evaluated using three methods: prospective
assessment, self-assessment, and FIDeLity feedback (Frequent,
Immediate, Discriminating based on criteria and standards,
Delivered Lovingly or supportively). A questionnaire was used
to assess changes in students’ attitudes toward healthcare
cooperation and critical thinking skills before and after the
course implementation. The instructor conducted summative
scoring of group-recorded case videos using a self-designed
key competency checklist. The checklist includes 5 areas: team
decision-making, communication, situational monitoring, mutual
support, and first aid, with 20 points allocated to each area.
The checklist was used to develop students’ self-assessment skills.
Additionally, the instructor utilized a Context-Content-Course
(3C) guided feedback model (26) to encourage students’ analysis
and reflection during high-fidelity simulation training sessions.
The course included various active learning activities such as
independent review of theoretical knowledge and skills related

TABLE 2 Total learning objectives of the medical-nursing collaborative
high-fidelity simulation training course.

Dimensionality Course objectives

Basic knowledge Master the basic theoretical knowledge of case-
related diseases and diagnostic and treatment (nursing)
measures, familiar with the assessment, diagnosis, and
treatment (nursing) plan development

Applications Ability to perform specialized skills in related diseases
and to work effectively with team members in the
development of diseases

Synthesis Ability to think about the connections between the
2 disciplines, the meaning of division of labor and
collaboration, and how to apply collaborative thinking
and skills in healthcare to future clinical work

Humanities To be able to recognize the role of the learning
process, to improve the attitude of cooperation between
healthcare and nursing, and to take the code of
professional ethics as the guiding code of conduct,
reflecting the humanistic care for patients

Caring Be curious and motivated by the phenomena, ideas, and
learning process of the content being studied

Learning to Learn Build knowledge through reflection and promote
independent learning while strengthening the effect of
simulation teaching

to the case, role-playing, collaborative learning, high-fidelity
simulation training, and guided feedback. The course facilitated
student learning through three areas: gaining information and
perspectives, experiencing, and reflecting.

A review form based on the Fink design was used to
examine a high-fidelity simulation training course on healthcare
collaboration. The course addresses the learning objectives
and selects appropriate feedback and assessment methods
and instructional activities. The foundational elements were
able to support each other and work together to promote
meaningful learning.

(2) Intermediate stage
The course was an elective and consisted of two topics:

introduction and case study. The introduction topic was allocated
2 h, while each of the 8 cases was assigned 4 h, resulting in a total of
34 h of instruction. The course employed a “team-based learning”
strategy, leveraging the SimMan3G integrated simulator to simulate
real clinical situations. Students worked in groups to engage in
high-quality applied learning for the cases. The course design
consisted of four components: course theme, teaching content,
teaching activities, and credit hours, as shown in Table 3.

(3) Final stage
After identifying the course elements in the first two stages, the

final stage involves determining the course’s teaching assessment,
grading system weighting, and completing the course outline.
The course outline comprises eight sections: basic information
(including course name, total hours, prerequisite courses,
applicable target, and course leader), course objectives, teaching
content and class schedule, teaching methods, performance
assessment methods, recommended teaching materials, connection
and division of labor with other courses, and course introduction.

2.2 Course implementation

2.2.1 Study population
In March 2022, a teaching class was formed for the study,

consisting of students in the fourth year of a 5-year clinical
medicine program and the third year of a 4-year nursing program
at a university. The recruitment criteria are as follows: (1) Full-
time undergraduate clinical medicine and nursing majors; (2)
Completion of basic medical courses, including human anatomy,
pathology, and physiology. Clinical medicine students have also
completed professional courses such as surgery, internal medicine,
obstetrics and gynecology, and pediatrics. Nursing students have
completed courses such as surgical nursing, internal medicine
nursing, obstetrics and gynecology nursing, and pediatric nursing;
(3) No exposure to interprofessional-related content in daily
practical training; (4) Experience in simulation learning; (5)
Availability to participate in the course; and (6) Understanding of
the purpose and significance of the course. Due to time constraints
and limited manpower, 22 students were recruited for the initial
course development. The participants included 14 nursing students
and 8 clinical medicine students, with ages ranging from 20 to
23 years old (mean age of 20.73 ± 0.94 years). The group consisted
of 2 male and 20 female participants. In order to further verify the
reliability of the data, we have done a power analysis, which shows
that the data has good reliability.
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TABLE 3 Overall plan of the medical-nursing collaborative high-fidelity simulation training course.

Sessions Topics Teaching content Teaching activities Credit hours

1 Introduction Introduction to the course (objectives,
teaching arrangements, evaluation
methods), explanation of the application
of the simulation system (simulators,
scene layout, simulation fidelity, how
students observe during the simulation)

Lecture method 2

2 Case study Acute myocardial infarction Case studies, Roleplay, Collaborative learning,
High-quality simulation training, Guided feedback

4

3 Diabetic ketoacidosis 4

4 Perforated duodenal ulcer 4

5 Thyroid Cancer 4

6 Postpartum bleeding in normal labor 4

7 Amniotic fluid embolization 4

8 Neonatal asphyxia resuscitation 4

9 Pediatric severe pneumonia 4

2.2.2 Study design
The course implementation is divided into 2 parts: pre-

teaching preparation and teaching implementation. Pre-teaching
preparation involves preparing the teachers, students, and learning
environment. Teaching implementation follows the steps of
scenario introduction, high-fidelity simulation training, and
review. Take “acute myocardial infarction” for example, the details
are described as follows:

(1) Pre-teaching preparation
Each case is taught by a team of instructors consisting of a

nursing faculty member, a clinical medicine faculty member, a
laboratory faculty member, and a teaching assistant. The instructors
conduct an in-depth analysis of the case and prepare a lesson
plan in advance. The lesson plan contains a schedule, training
objectives, prerequisite knowledge for students, case overview, pre-
course preparation (including scene setting, simulators, teaching
aids, role division, consultation/nursing aids, and drugs), case
trend chart, development process, and review outline. Furthermore,
the case and learning tasks are provided to students beforehand.
The laboratory instructor imports the case information into the
instructor console for the teaching team to pilot. They work with
the teaching assistant to provide the necessary equipment and items
for the class according to the lesson plan. Before class, students form
their own medical and nursing cooperative teams, determine their
roles, familiarize themselves with the script, and review the relevant
theoretical knowledge and operational skills.

(2) Teaching implementation
In the introduction scenario link, the teacher presents the

students with a high-fidelity simulation training case of acute
myocardial infarction healthcare collaboration, as shown in
Table 4. The teacher addresses any questions the students may
have encountered during their independent study before the class,
confirms the role division of students, analyzes the simulation tasks
with them, explains the presentation requirements, and encourages
students to be fully prepared for the training. During the high-
fidelity training session, the teacher initiates the program, and
students assume their roles based on the disease progression and
tasks in each scenario. This commences the high-fidelity training

for medical and nursing collaboration, as shown in Figure 1.
One group performs the simulation training while the other
groups observe and record through live video in the observation
room. During the review session, the teacher and students review
the high-fidelity simulation training process together using video
replay. The review session consists of two phases: (1) Introduction
phase, during which the teacher explains the purpose and steps
of the session to the students, and (2) Situational phase. The
teacher prompts students to provide feedback on the performance
of their peers during high-fidelity training. This is done by asking
simple questions such as “How do you feel about the performance
of this group of students just now?” (3) The content stage
involves presenting objective facts, encouraging open discussion,
and providing the teacher’s perspective from the patient’s point of
view. (4) The expansion phase follows. Students are instructed to
summarize their learning experiences and consider how they can
apply what they have learned to their future clinical practice.

2.2.3 Evaluation methods
A mixed methods approach is suitable for comprehensively

evaluating the SimMan3G collaboration training curriculum.
When evaluating the effectiveness of nursing high-fidelity
simulation teaching, researchers usually focus on various aspects,
including student achievement, course satisfaction, student
confidence, teamwork ability, and critical thinking ability (27–29).
This study comprehensively assessed the teaching effectiveness of
the course based on the following dimensions:

(1) Student Course Grades: The total score is graded out of
100 points. The weight of each assessment component was
determined based on the course syllabus and the opinions of
the interdisciplinary teaching team. The formative evaluation
constitutes 60% of the total student course grade, with 10%
for self-evaluation, 20% for peer evaluation, and 30% for
teacher evaluation. The remaining 40% is allocated to teacher
evaluation of the group recording video.

(2) Student Satisfaction and Self-confidence in Learning (SSS):
The SSS scale, developed by the National League for Nursing
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TABLE 4 Acute myocardial infarction healthcare cooperation high-fidelity simulation practical training case.

Case title Acute myocardial infarction

Teaching goal ¬ Cognitive domain: recognize the etiology of acute myocardial infarction, associated risk factors, and clinical manifestations.  Action skill
domain: medical students need to apply the knowledge they have learned to skillfully implement the receiving process, body check, cardiopulmonary
resuscitation, bedside electrocardiogram, defibrillation; nursing students need to skillfully implement indwelling catheterization, intravenous fluids,
and collection of blood specimens; and medical and nursing students jointly master the resuscitation process. ® Emotional domain: students embody
humanistic care through good communication with patients and their families; through the implementation of treatment as well as nursing measures
for patients, students develop a collaborative attitude toward healthcare.

Case description Patient, male, 61 years old, chief complaint and history: the patient complained of chest pain that suddenly appeared 1 h ago with no obvious cause,
the pain site is mainly in the precordial area, and the pain range is about the size of the palm, the pain is pressure-like pain, accompanied by profuse
sweating, palpitation, radiating pain in the back of the shoulder and the pharynx, there is no nausea, vomiting, there is no tightness in the chest,
shortness of breath, fatigue, there is no coughing, coughing up sputum, hemoptysis, Self-medication “fast-acting heart pills” after the symptoms
did not relieve, and he called 120 and came to our hospital urgently. He underwent cardiopulmonary resuscitation and electrocardiogram showed
“acute extensive anterior wall myocardial infarction,” and was transferred to our department for thrombolytic therapy. Past history: 10 years history
of hypertension and coronary heart disease. Physical examination: temperature 36.5◦C, respiration 21 times/min, pulse 90 times/min, blood pressure
90/59 mmHg, clear, superficial lymph nodes are not palpable enlargement, lips and lips without cyanosis, no jugular veins; symmetry of the thorax, the
lungs breath sounds thick, heard full lung wet rales, percussion of the cardiac boundary is not big; listening to the rhythm of the heart is synchronous,
the valvular auscultation area did not hear a murmur; the abdominal flat and soft, no compression pain and rebound pain The abdomen was flat and
soft, with no pressure or rebound pain. The liver and spleen were not palpable, and there was no edema in the lower limbs. The electrocardiogram
showed that the V1-V5 ST segments were elevated about 0.3–0.5 mv.

Scenario setting Scenario 1: out-of-hospital treatment
¬ Doctor’s task: 120 telephone reception, instructing family members to perform cardiopulmonary resuscitation, bedside electrocardiogram
measurement, decision-making, and completion of medical orders;  Nurse’s task: oxygen supply, establishment of intravenous access, and
administration of medication in accordance with medical advice; ® Medicine and nursing joint task: communication of the patient’s vital signs,
and comforting the patient’s family members.
Scenario 2: in-hospital emergency care
¬ Doctor’s task: explain the patient’s condition, bedside electrocardiogram, cardiopulmonary resuscitation, and defibrillation, to complete the doctor’s
orders;  Anesthesiologist’s task: endotracheal intubation, simple respiratory balloon ventilation; ® nurse’s task: the preparation of resuscitation
supplies, coordination of various departments to do a good job of resuscitation preparations, blood sampling, resuscitation records; ¯ healthcare
common task: communication of the patient’s vital signs
Scenario 3: internal medicine treatment
¬ Doctor’s task: physical examination, asking the family about the patient’s medical history, decision-making about thrombolytic therapy, judgment
of the condition;  Nurse’s task: blood sampling, thrombolytic operation, changing the patient’s position, oxygenation, indwelling catheterization,
resuscitation records; ® Healthcare co-worker’s task: explaining to the patient’s family about the treatment and recommendation for transferring to a
different hospital.

FIGURE 1

Students undergoing high-fidelity simulation training.

in collaboration with Laredal (30), is completed by students
after the course implementation. It consists of two subscales:
satisfaction and self-confidence, each comprising 13 items
rated on a Likert 5-point scale. Higher scores indicate greater
levels of satisfaction and self-confidence.

(3) Educational Practices in Simulation Scale (EPSS): The EPSS
measures the extent to which best practice principles
are applied in simulation instruction. It consists of four
dimensions: self-directed learning, collaboration, learning
styles, and high expectations, with a total of 16 items. The
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scale used is a Likert 5-point scale, and the total score ranges
from 16 to 80, with higher scores indicating a higher degree
of application of best practice principles in the simulation.
The Cronbach’s alpha coefficient of the EPSS is 0.91 (31). The
Chinese version of Wang et al. (32) from 2013 was used in this
study, with a Cronbach’s alpha coefficient of 0.94.

(4) Jefferson Health Care Cooperation Attitude Scale: This scale,
developed by Hojat et al. (33), measures physicians’ and nurses’
attitudes toward healthcare cooperation. The Chinese version
by Yang et al. (34) was used in this study. It consists of
four dimensions: shared education and teamwork (7 items),
nursing vs. treatment (3 items), nurses’ work autonomy (3
items), and physician domination (2 items), with a total of
15 items. The Likert 4-point scale is used, and the total
score ranges from 15 to 60, with higher scores indicating a
more positive attitude toward healthcare cooperation. A score
between 45.01 and 60.00 was considered a high level of
healthcare cooperation attitude, while a score between 30.01
and 45.00 was considered moderate, and a score between 15.01
and 30.00 was considered low. Hojat et al. (35) assessed the
structural validity, content validity, and reliability of the scale.
The Chinese version of the Jefferson Health Care Cooperation
Attitude Scale had a Cronbach’s alpha coefficient of 0.848 and
a content validity index of 0.893.

(5) Critical Thinking Disposition Inventory-Chinese Version
(CTDI-CV): The impact of the curriculum before and after
its implementation was assessed using the CTDI-CV, which
was translated and revised by Peng et al. (36). The inventory
consisted of 70 items, categorized into 7 dimensions: truth-
seeking, open-mindedness, analytical ability, systematic
ability, self-confidence in critical thinking, intellectual
curiosity, and cognitive maturity. Each dimension comprised
10 items. A 6-point scale was used to measure critical thinking
ability, ranging from 1 (strongly disagree) to 6 (strongly
agree). Some items were reverse scored. The total score ranged
from 70 to 420. Scores of 70–210 indicated negative critical
thinking ability, 211–279 represented unclear meaning, 280–
349 reflected positive critical thinking ability, and 350–420
denoted strong performance. The scale exhibited strong
internal consistency, as demonstrated by a Cronbach’s alpha
coefficient of 0.90, and content validity with an index of 0.89.

(6) Semi-structured interview: The study conducted one-to-one
semi-structured interviews using an interview outline as a
basis, as shown in Figure 2. The researcher developed the
outline based on a literature review, the study’s purpose,
and input from the teaching team. Two students were then
selected for pre-interviews to ensure the outline met the
research questions’ needs. The final version of the interview
outline was formed by the researcher after correcting any
misrepresentations of the pre-interviews. The outline included
specific elements such as inquiring about the most helpful
aspect of the course for personal professional development
and identifying strengths and weaknesses in the program’s
design and implementation. What suggestions do you have for
improving the implementation of the course in the future? The
instructor conducted interviews with the students at the end of
the course instruction in July 2022. After analyzing the profiles
of eight students, no new themes emerged, indicating that

FIGURE 2

Semi-structured interview research process.

data saturation had been reached. The interviews continued
with two additional students, resulting in a sample size of ten
students.

2.3 Statistical analysis

All raw data were entered into an Excel sheet and imported into
SPSS 25.0 statistical software for analysis (37). Descriptive statistics,
specifically the mean ± standard deviation, were employed to
depict the students’ age. Two independent samples t-tests were
conducted to compare the scores of the attitude toward healthcare
cooperation scale and the critical thinking skills scale before and
after the course (both scale scores followed a normal distribution).
The scores of the simulated teaching practice scale, student
learning satisfaction, and self-confidence scales were examined for
normality and demonstrated conformity to a normal distribution,
thus described using the mean ± standard deviation.

This study employed a phenomenological research
methodology (38) to fully comprehend the students’ experience
of the course, a widely used approach in the fields of nursing
education, nursing administration, and clinical nursing. The
collection, transcription, and analysis of interview data were
conducted simultaneously. Each respondent’s audio-recorded
interview data was transcribed into text within 48 h by a team
consisting of Menghan Jiang and Bo Dong. The interview text data
were managed, analyzed, and coded using the Colaizzi seven-step
analysis method and NVivo 12.0 software (39, 40). Using the above
analytical procedures, this study initially labeled the initial data of
the ten students as A1–A10 (A1–A3 for clinical medical students,
A4–A10 for nursing students). The initial data was then refined
and summarized to form sub-themes, denoted as B1–Bn. These
sub-themes were further generalized to form the themes of this
study, denoted as C1–Cn.

2.4 Ethical procedures

The study was approved by the Ethics Committee of
Shandong University of Traditional Chinese Medicine before
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TABLE 5 Student achievement scores.

Minimum value Maximum value Score (X ± S)

Formative evaluation 38.80 53.30 46.80 ± 3.51

Self-esteem 6.40 9.30 7.87 ± 0.70

Others’ evaluations 13.00 17.60 15.62 ± 1.20

Teacher evaluation 18.00 26.40 23.32 ± 1.87

Summative evaluation 28.80 36.80 32.38 ± 2.01

Totals 69.20 90.10 79.19 ± 5.12

TABLE 6 Student satisfaction, self-confidence, and teaching
practice scale scores.

Scale Dimensionality Score (X ± S)

Satisfaction and
self-confidence scales

Satisfaction 4.44 ± 0.37

Self-confidence 4.16 ± 0.33

Simulation of teaching
practice scale

Independent learning 4.19 ± 0.27

Cooperation 4.39 ± 0.34

Multiple learning styles 4.41 ± 0.40

High expectations 4.23 ± 0.34

data collection. The researcher provided a comprehensive
explanation of the study’s purpose, methods, and significance
to the prospective participants, who were given the freedom
to decide whether or not to participate after being fully
informed. The questionnaire was collected anonymously,
and the researcher assured the participants that the personal
data collected would be strictly utilized for academic research
purposes only. Moreover, the video recordings of the teaching
process and the interview content would be treated with utmost
confidentiality.

3 Results

3.1 Student course grades

At the end of the course, the average score of the 22 students
ranged from 69.2 to 90.1, with a mean of 79.19 ± 5.12. Out of these,
one student scored 90.01 or above, seven students scored between
80.01 and 90, twelve students scored between 70.01 and 80, and two
students scored between 60.01 and 70. The scores for each specific
subdimension are detailed in Table 5.

3.2 Student satisfaction, self-confidence,
and teaching practice scale scores

Table 6 displays the results of the survey on students’
satisfaction with course teaching, self-confidence, and feelings
about teaching practice. The mean score for students’ satisfaction
with course teaching was 4.44 ± 0.37 (maximum average
score of 5), with 21 students (95.45%) scoring 4 or higher,

and no students scoring below 3. The mean score for self-
confidence was 4.16 ± 0.33 (maximum average score of 5),
with 15 students (68%). All students scored 3 or higher,
with 18% scoring 4 or higher. Students reported positive
perceptions of the teaching practice experience, with all four
dimensions of the teaching practice scale receiving high
ratings: independent learning, cooperation, multiple learning
styles, and high expectations. The dimension with the highest
score was multiple learning styles, with a mean score of
4.41 ± 0.40.

3.3 Comparison of students’ attitudes
toward healthcare cooperation scores
before and after the implementation of
the curriculum

Table 7 illustrates the changes in students’ scores on the
HealthCare Cooperation Attitude Scale before and after the
course. The scores and total scores for the dimensions of
shared education and teamwork, job autonomy of nurses, and
physicians’ domination were significantly higher after the course,
demonstrating statistically significant differences (P < 0.01).
However, there were no significant differences in the control
dimensions of nursing and treatment.

3.4 Comparison of student’s critical
thinking skills scores before and after the
implementation of the curriculum

Table 8 presents the differences in students’ scores and total
scores for each dimension of the Critical Thinking Skills Scale
before and after the course. Statistically significant differences
were observed in the scores and total scores for each dimension,
indicating a significant improvement in critical thinking skills after
the course. Notably, the comparative differences in scores for the
open-mindedness and cognitive maturity dimensions were not
statistically significant.

3.5 Results of interviews

This study constructed 11 sub-themes (B1–B11) and 4
themes (C1–C4) by coding, organizing, and analyzing the
content of the interviews. C1–stimulating interest in learning
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TABLE 7 Comparison of students’ attitudes toward healthcare cooperation before and after the implementation of the curriculum (X ± S).

Projects Pre-teaching After teaching t P

Shared education and teamwork 22.82 ± 1.99 24.55 ± 1.50 −3.247 0.002***

Comparison of nursing and
treatment

9.91 ± 0.87 10.45 ± 1.14 −1.782 0.082

Job autonomy of nurses 9.64 ± 1.36 10.91 ± 0.92 −3.626 0.000***

Physicians’ domination 4.59 ± 1.14 6.68 ± 0.89 −6.768 0.000***

Total score 46.95 ± 2.87 52.59 ± 2.34 −7.135 0.000***

***P < 0.01.

TABLE 8 Comparison of students’ critical thinking skills before and after the implementation of the curriculum (X ± S).

Projects Pre-teaching After teaching t P

Searching for the truth 34.05 ± 4.99 38.32 ± 4.27 −3.052 0.004***

Open-mindedness 41.86 ± 3.54 42 ± 3.82 −0.123 0.903

Analytical skills 42.41 ± 4.89 45.5 ± 2.86 −2.561 0.014**

Systematic capabilities 38.73 ± 5.16 42.95 ± 2.38 −3.491 0.001***

Self-confidence in critical thinking 39.55 ± 4.81 45.14 ± 4.40 −4.024 0.000***

Desire for knowledge 42.41 ± 3.49 48.14 ± 3.66 −5.318 0.000***

Cognitive maturity 39.27 ± 6.48 41.82 ± 3.70 −1.600 0.117

Total score 278.27 ± 21.85 303.86 ± 13.90 −4.635 0.000***

**P < 0.05, ***P < 0.01.

and promoting active learning; C2–collaborative learning and
improving healthcare collaboration; C3–student-centeredness
and promoting the development of clinical thinking skills;
and C4–students’ suggestions for curriculum optimization and
improvement. The levels and information of specific nodes are
shown in Table 9.

4 Discussion

This study developed a simulation training course for
medical and nursing collaboration based on the Fink model.
The course’s teaching effectiveness was evaluated, and the
results showed that all students passed the assessment with
a mean grade of 79.19 ± 5.12. The course grades were
calculated by combining formative and summative evaluations.
Formative evaluations included self-evaluation, peer evaluation,
and teacher evaluation. Self-evaluation and peer evaluation
promote effective student participation in class. Teacher evaluation,
based on group members’ performance, helps teachers focus
on individual performance. Video evaluation serves as the
summative review for the teacher after teaching the course.
This assessment approach is multifaceted, focusing not only on
student learning outcomes but also on capturing changes in the
learning process.

According to research, best practices in undergraduate
education involve seven principles. These include developing
reciprocity and cooperation among students, honoring diverse
talents and learning styles, and providing timely feedback (41).
The Simulated Teaching Practices Scale used in this study can
assess the extent to which these principles are implemented.
The study results indicate that all dimensions scored above 4,

similar to Liu et al’s study (42), suggesting that the course
adhered to best practice principles. The course objectives are
clearly stated and emphasize independent learning and active
participation. This allows for effective communication and idea
exchange between students and teachers, with the latter providing
guidance to address individual student needs. As a result,
students express high satisfaction with the course’s teaching
methods, scoring it (4.44 ± 0.37) which is higher than in other
studies (43).

Self-confidence is an essential trait for healthcare professionals
to possess, as it can greatly impact their clinical decision-
making ability and response to emergencies. Research has shown
that individuals with higher levels of self-confidence are better
equipped to handle the challenges they encounter, particularly
in the realm of patient safety (44). Therefore, it is crucial to
cultivate self-confidence in medical and nursing students. The
study found that the curriculum significantly contributed to the
students’ confidence levels, as evidenced by their self-confidence
score of (4.16 ± 0.33). This can be attributed to the hands-
on opportunities provided by the course, where students were
able to apply their knowledge and skills in completing case tasks
alongside their team members during high-fidelity simulation
training. Such experiences fostered confidence in their abilities and
knowledge (45).

According to a study (46), a standardized interprofessional
collaborative education program has a positive impact on
developing students’ teamwork skills and overall competence. The
study found that completing the course significantly improved
students’ attitudes toward healthcare cooperation and their
scores in three dimensions: shared education and teamwork, job
autonomy of nurses, and physicians’ domination (P < 0.05). In
interviews, students emphasized that the curriculum improved
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TABLE 9 Interview results nodes.

Topics Sub-topic Example of coding (from the original words of the interviewee)

C1: stimulating interest in learning and
promoting active learning

B1: concentration A2: I can concentrate more than before in class and work with other students to reorganize the
theoretical and operational knowledge I had learned and apply it to my training.

B2: review of knowledge
and skills

A7: before the start of each class, we review the theoretical knowledge and operational steps related
to the case in advance.

C2: collaborative learning to improve
healthcare collaboration

B3: self-perception of
role

A8: in this class, I learned what doctors and nurses should do, respectively, in a specific situation
in the atmosphere of healthcare collaboration, and had a clearer understanding of the roles they
assume.

B4: leadership A1: the course is team-based learning, in each class, I can gain, in addition to the case of relevant
theories and operational skills more familiar, give me a great feeling is to recognize the power of
team leadership, in the face of emergencies, the nurse in charge or attending doctors need to find
the condition promptly and report to the superiors, then around the patient-centered team leader
needs to be accurate, timely and make the right decision, only then a team can effectively organize
and implement the resuscitation.

B5: medical and nursing
communication

A3: I learned some communication strategies in the class, for example, in the class on postpartum
hemorrhage in normal labor, I learned how to use the SBAR communication model to report
the patient’s condition to the doctor effectively and accurately. I believe that the communication
strategies I learned in the class will be very practical in my future clinical work.

B6: situational awareness A9: the high-fidelity simulation training session in each class is very tense, I sometimes forget what
I am going to do next, but the team members will kindly give me some small reminders so that I
can finish the operation smoothly. This shows that when working in a team, we not only need to
do our job well but also improve our ability to monitor the situation.

C3: student-centeredness for clinical
thinking skills development

B7: identifying and
solving problems

A5: the guided feedback was an accomplished session in which I realized that I had many
shortcomings, but the teacher and my classmates did not make fun of me, and at the same time,
through a few explanations and pointers from the teacher, I was able to know what to do to correct
my mistakes.

B8: adaptability A10: the complexity of the case scenarios and the progression of the disease in this course gave me
a deeper and more systematic understanding of the disease itself as well as the difficulties of clinical
work, and greatly enhanced my resilience so that I believe I won’t be alarmed when I encounter
situations similar to those in the cases in the future.

B9: critical thinking A6: this course has made me bold in expressing my ideas, honed my analytical skills, and improved
my logic skills a lot.

C4: student suggestions for course
optimization and improvement

B10: increase reflection
time

A8: I think the teacher-guided reflection activity can make me better at identifying mistakes, but
this session sometimes the teacher imparts a little too much knowledge and speaks a little too fast
for me to keep up with the pace, so I hope I can increase the time for reflection and summarization.

B11: rich case study A4: I hope the instructor can design more emergencies or rare clinical cases and conduct more of
these courses so that we can build a stronger foundation for entering the clinic.

their leadership abilities, communication skills, and ability to
work collaboratively. These findings suggest that the curriculum
effectively enhanced students’ attitudes toward healthcare
cooperation and their collaborative skills, which is consistent
with previous research (15, 19). Effective communication and
collaboration among healthcare professionals are essential for
patient-centered care. However, healthcare professionals may
have varying concerns when treating the same patients due to
different specialties. Therefore, it is essential to foster teamwork
awareness and skills among healthcare professionals. The
institutional education stage plays a crucial role in cultivating
mutual respect and cooperation among medical students from
various disciplines. In this study, students were trained in a
high-fidelity simulation through role-playing and group work.
This allowed students to understand that nurses are not solely
assistants to doctors and that healthcare professionals have equal
importance in enhancing patient health outcomes. Additionally,
students learned how to follow the process of division of labor
among their team members and work collaboratively to complete

practical training tasks. This teaching method can enhance
students’ attitudes toward healthcare collaboration and help
them internalize the concept of interprofessionalism. This,
in turn, can lead to effective collaboration in future clinical
work (47).

Additionally, the study results revealed no noteworthy
distinction in the students’ scores regarding the dimension of
“care vs. treatment.” This outcome could be attributed to the
students’ regular education in professional knowledge and skills.
They already comprehended that healthcare aims to provide quality
services to patients. Consequently, they were able to offer physical
and mental health education to patients while monitoring the
effectiveness of treatment during nursing interventions.

High-fidelity simulation for healthcare collaboration can
exercise students’ critical thinking skills. Some studies have
measured the level of students’ critical thinking skills by using
teachers’ subjective evaluation, which was categorized as excellent,
good and fair (48). Whereas many studies assessed students’
critical thinking skills by means of a scale (49, 50), which
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is more objective. The study utilized the latter approach.
The results indicated a positive increase in the total score
of students’ critical thinking skills scale after the curriculum
was taught (303.86 ± 13.90) compared to before the teaching.
Additionally, significant differences (P < 0.05) were observed
in the scores for the five dimensions of finding the truth,
analytical ability, systematic ability, self-confidence in critical
thinking, and curiosity. The interview results revealed that
students exhibited increased confidence in emergency handling
and improvement in clinical thinking skills, such as problem
identification and problem-solving, after the implementation
of the curriculum.

The enhancement of students’ critical thinking skills in this
study can be attributed to the positive learning atmosphere created
during the course. Through high-fidelity simulation training
sessions, clinical and nursing students collaborated to complete
tasks related to teaching cases. This allowed them to effectively
provide treatment and care in clinical practice when faced
with similar situations, improving their understanding of disease
progression and routine management processes. During the review
sessions, students had the opportunity to exchange and discuss
ideas with teachers and classmates, express their opinions, and
exercise their logical thinking and analytical abilities. Self-reflection
helped students identify their own shortcomings, motivating them
to address gaps in theoretical knowledge and operational skills in
a timely manner.

Furthermore, the study revealed no notable distinction
in scores regarding the aspects of open-mindedness and
cognitive maturity. Two factors may affect students’ perception
of simulators vs. real patients: psychological differences and
limited opportunities to integrate classroom learning with
clinical practice due to lack of hospital internships. To improve
integration, students should focus on developing medical and
nursing communication skills as well as emergency resuscitation
techniques. Their insight and psychological cognition may still
be developing, and further observation is needed as they gain
more experience.

Although the high-fidelity training course on healthcare
cooperation has demonstrated a positive impact on students’
attitudes, abilities in healthcare cooperation, and clinical thinking
skills, there are several limitations to consider. Firstly, since
this course is the first interprofessional course conducted at
our university, there is room for improvement in terms of
teaching faculty and their skills. Future efforts should focus
on providing further training for faculty in interprofessional
education and simulation teaching. Secondly, the sample size
was relatively small, and only the initial effects of the course
were tested. To objectively analyze the impact of the medical-
nursing cooperation training course on students’ performance,
future studies should expand the sample size and establish control
groups. Furthermore, to enhance the evaluation process, it may
be beneficial to include a high-quality scale for assessing students’
medical and nursing cooperation abilities and resilience. Thirdly, a
comparative analysis of the attitudes toward healthcare cooperation
between clinical medical students and nursing students was not
conducted. Further exploration is needed to examine potential
differences in attitudes toward healthcare cooperation between
these two specialties.

5 Conclusion

In this study, we developed a high-fidelity simulation
training course on healthcare collaboration based on the Fink
model. We implemented the course and verified its teaching
effectiveness. The course improved students’ attitudes toward
healthcare collaboration and enhanced their critical thinking
abilities, promoting cross-fertilization of nursing disciplines and
curriculum reform. This provides a reference for the development
of healthcare collaboration education.

However, this study still has limitations: Firstly, since
this course is the first interprofessional course conducted at
our university, there is room for improvement in terms of
teaching faculty and their skills. Future efforts should focus
on providing further training for faculty in interprofessional
education and simulation teaching. Secondly, the sample size
was relatively small, and only the initial effects of the course
were tested. In the future, as the course progresses, the
sample size can be expanded, and control groups can be
established to objectively analyze the impact of the medical-
nursing collaboration training course on students’ performance.
Additionally, incorporating a high-quality scale to assess students’
medical and nursing collaboration ability and resilience would
further enhance the evaluation process. Thirdly, a comparative
analysis of the attitudes toward healthcare collaboration between
clinical medical students and nursing students was not conducted.
Further exploration is needed to examine potential differences
in attitudes toward healthcare collaboration between these
two specialties.
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Introduction: Atrial fibrillation (AF) is the most common cardiac arrhythmia,
which is clinically identified with irregular and rapid heartbeat rhythm. AF puts
a patient at risk of forming blood clots, which can eventually lead to heart
failure, stroke, or even sudden death. Electrocardiography (ECG), which involves
acquiring bioelectrical signals from the body surface to reflect heart activity,
is a standard procedure for detecting AF. However, the occurrence of AF is
often intermittent, costing a significant amount of time and effort from medical
doctors to identify AF episodes. Moreover, human error is inevitable, as even
experienced medical professionals can overlook or misinterpret subtle signs of
AF. As such, it is of critical importance to develop an advanced analytical model
that can automatically interpret ECG signals and provide decision support for AF
diagnostics.

Methods: In this paper, we propose an innovative deep-learning method for
automated AF identification using single-lead ECGs. We first extract time-
frequency features from ECG signals using continuouswavelet transform (CWT).
Second, the convolutional neural networks enhanced with residual learning
(ReNet) are employed as the functional approximator to interpret the time-
frequency features extracted by CWT. Third, we propose to incorporate a multi-
branching structure into the ResNet to address the issue of class imbalance,
where normal ECGs significantly outnumber instances of AF in ECG datasets.

Results and Discussion: We evaluate the proposed Multi-branching Resnet
with CWT (CWT-MB-Resnet) with two ECG datasets, i.e., PhysioNet/CinC
challenge 2017 and ECGs obtained from the University of Oklahoma Health
Sciences Center (OUHSC). The proposed CWT-MB-Resnet demonstrates robust
prediction performance, achieving an F1 score of 0.8865 for the PhysioNet
dataset and 0.7369 for the OUHSC dataset. The experimental results signify the
model’s superior capability in balancing precision and recall, which is a desired
attribute for ensuring reliable medical diagnoses.

KEYWORDS

convolutional neural network, residual network, wavelet transform, multi-branching
outputs, ECG signal analysis, imbalanced data, atrial fibrillation

1 Introduction

Cardiovascular diseases have been the leading cause of mortality globally. The
World Health Organization (WHO) states that about 17.9 million people perish due to
cardiovascular disease each year (World Health Organization, 2024), contributing 32% to
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the worldwide death toll (University of Washington, 2024). Atrial
fibrillation (AF) is the most common cardiac arrhythmia caused
by uncoordinated electrical activities in the atria (Nesheiwat et al.,
2023). Although AF itself does not lead to a lethal condition, it
will substantially increase the risk of catastrophic diseases such
as heart failure, stroke, and sudden death (Lubitz et al., 2013;
Bernstein et al., 2021).Theprevalence ofAF plagues over 2.7 million
people in the United States, and this number is estimated to rise to
12.1 million in 2030, as the population ages (Colilla et al., 2013). In
healthcare practice, the electrocardiogram (ECG) is a cost-effective
and noninvasivemedical approach to record the electrical signals on
the body surface as a reflection of cardiac health conditions (Yao and
Yang, 2016; Yao and Yang, 2020; Yao et al., 2021; Xie and Yao, 2023).

Historically, the utilization of ECG for cardiac monitoring
has been substantially constrained by the need for expensive
equipment and the involvement of specialized medical doctors to
interpret complex ECG recordings. However, recent advancements
in portable ECG sensors, such as the AliveCor (aliveCor, 2024),
AD8232 (Analog Devices, 2024), and consumer-grade devices like
the smartwatch (Isakadze and Martin, 2020), have revolutionized
the way to detect heart abnormalities. These portable devices
now enable the capture of high-fidelity ECG signals outside
of traditional clinical settings. While multi-lead ECGs provide
comprehensive cardiac activity information, single-lead ECGsmake
cardiac monitoring more accessible and less obtrusive for long-
term rhythm surveillance or frequent measurements (Abdou and
Krishnan, 2022). This is especially valuable in ambulatory settings,
home monitoring, and situations where rapid and non-invasive
monitoring is desired. Single-lead ECGs offer a simplified yet
effective method for the early detection of AF and other cardiac
anomalies (Boriani et al., 2021).

In conjunction with advanced sensing technologies, there has
been a parallel development in machine learning methodologies.
Given the prevalence of AF, a significant number of machine
learning models have been developed specifically for the task of
distinguishing AF from normal heart rhythms. Traditional machine
learning models focus on extracting morphological features and
heart rate variability from ECG signals to detect AF, which
depends heavily on manual feature engineering (Ye et al., 2012;
Da Silva-Filarder and Marzbanrad, 2017; Athif et al., 2018). Deep
Neural Network (DNN), which does not require explicit feature
engineering, is another powerful tool that has achieved promising
results in data-driven disease detection. VariousDNN-basedmodels
such as convolutional and recurrent neural networks (i.e., CNNs,
RNNs) have been designed for AF detection and outperformed
conventional machine learning methods (Andreotti et al., 2017;
Schwab et al., 2017; Gao et al., 2021). Despite the performance
improvement achieved by DNNs in detecting AF with single-lead
ECG, there remains potential for further prediction enhancements.
Four major challenges remain to be tackled: 1) ECG recordings
collected from clinics are often in Protable Document Format
(PDF). An effective preprocessing procedure is needed to retrieve
digital ECG signals from the PDFs before being fed to the machine
learning models. 2) ECG signals are generally composed of a
wide spectrum of frequency components. DNN models built upon
raw ECG time series may not fully exploit the time-frequency
information inherent in the signals. 3) Note that the learning
capacity for a DNN often increases when the network goes deeper.

However, the deeper structure can result in gradient dissipation
problems, leading to unsatisfactory prediction performance. 4)
Data-driven AF detection also suffers from the common issue
of imbalanced data in machine learning (e.g., AF samples are
much less compared to normal ECGs). The classifier directly built
from the imbalanced data will generate biased and inaccurate
predictions.

In this paper, we develop an automatic AF detector based
on continuous wavelet transform (CWT) and 18-layer Residual
Neural Network (ResNet18) with a multi-branching structure
(CWT-MB-ResNet). We first develop a preprocessing procedure
to extract ECG signals from ECG PDFs and leverage the
CWT to transform the extracted signals into the time-frequency
domain. Second, ResNet18 is engaged to alleviate the gradient
dissipation problem in deep-structured networks, allowing it
to learn deeper features from 2D time-frequency images and
achieve better performance. Finally, we propose to incorporate a
multi-branching output structure adapted from our prior work
(Wang and Yao, 2021) into the ResNet to deal with the issue
induced by the imbalanced dataset in AF identification. The multi-
branching technique exempts artificial data augmentation and
does not require any preassumptions in solving the imbalanced
data issue. The performance of the proposed framework is
evaluated by two real-world datasets: PhysioNet/CinC challenge
2017 (Goldberger et al., 2000; Clifford et al., 2017) and ECG data
obtained from the University of Oklahoma Health Sciences Center
(OUHSC). Experimental results show that our CWT-MB-ResNet
significantly outperforms existing methods commonly used in
current practice.

The rest of this paper is organized as follows: Section 2 presents
the literature review of existing data-driven methods for AF
detection. Section 3 introduces the data processing details and the
proposed prediction method. Section 4 shows the experimental
results in AF identification. Section 6 concludes the present
investigation.

2 Research background

Traditionalmachine learning approaches focus on the extraction
of ECG morphological features (De Chazal et al., 2004) and heart
rate variability information (Park et al., 2009) to identify AF
conditions. Those methods are mostly in light of two aspects of AF-
altered ECGcharacteristics: 1) the absence of distinct Pwaves, which
are replaced by irregular fibrillatory waves or F waves as oscillations
in low amplitude around the baseline (Ladavich and Ghoraani,
2015); 2) irregular R-R intervals (Oster and Clifford, 2015).
Multiple feature-based automation techniques have been proposed
to classify AF-altered ECGs, such as linear discriminant analysis
(De Chazal et al., 2004), support vector machine (Billeci et al., 2017;
Islam et al., 2017), independent component analysis (Ye et al., 2012).
When there exists a high level of noise or faulty detection, the
performance of feature-extraction methods that solely study the P
wave deteriorates significantly due to the chaotic signal baseline
introduced by the noise (Larburu et al., 2011). Most R-R interval-
based methods (Tateno and Glass, 2001; Lian et al., 2011) usually
require long ECG segments to detect AF episodes, and become
ineffective when it comes to short ECG signals (less than 60s) or in
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the presence of significant sinus arrhythmia or frequent premature
atrial contractions (Xia et al., 2018). Moreover, traditional methods
require a separate feature extraction process before feeding
the data into the classifier, as well as manually establishing
the detection rules and threshold. This can be computationally
expensive and may not generalize well when applied to a larger
population.

In the past few decades, deep learning or deep neural network
(DNN) has emerged as a powerful tool for pattern recognition
that can learn the abstracted features from complex data and
yield state-of-the-art predictions (Mousavi et al., 2019; Xie and Yao,
2022a; Xie and Yao, 2022b; Chen et al., 2022; Wang et al., 2022).
As opposed to traditional machine learning, deep learning presents
strong robustness and fault tolerance to uncertain factors, which
makes it suitable for beat and rhythm classification from ECGs
(Tutuko et al., 2021). Moreover, existing research has indicated
that deep learning methods demonstrate more efficient and
more potent predictive power than classical machine learning
methods for AF identification (Cai et al., 2020; Murat et al., 2021).
There has been a significant surge in leveraging deep learning
for AF detection using single-lead ECGs, showing promising
potential in enhancing diagnostic accuracy. We summarized four
commonly used network structures in discerning AF samples using
single-lead ECGs:

1) Convolutional neural networks (CNNs): CNNs, specifically
1-dimensional CNNs (1D-CNNs), have been widely
applied to extracting hierarchical features from ECG
data for distinguishing AF from normal heart rhythms
(Andreotti et al., 2017; Fan et al., 2018; Lai et al., 2019;
Phukan et al., 2023). For example, Andreotti et al.
Andreotti et al. (2017) balanced the PhysioNet/CinC 2017
dataset by augmenting AF samples from various sources to
address the class imbalance issue. They employed a ResNet
model with 34 convolutional layers for AF detection, achieving
a final F1 score of 0.79. Lai et al. Lai et al. (2019) developed a
streamlined two-stream CNN with each stream containing
only 8 layers. This model achieved a sensitivity of 89.5% and
a specificity of 82.7% on the PhysioBank dataset (PhysioBank,
2000). The extracted cardiac rhythm features, specifically RR
intervals and F-wave frequency spectra, served as dual inputs
for the neural network. Similarly, Fan et al. Fan et al. (2018)
developed a multi-scaled two-stream network with different
filter sizes at each stream to capture features of different
scales using single-lead ECGs from PhysioNet/Cinc 2017,
achieving an F1 score of 0.8355. Phukan et al. Phukan et al.
(2023) did a systematic experiment on selections of filter
size, number of layers, and activation function on multiple
standard datasets. They concluded that the best 5-layer CNN
with activation function of exponential linear unit and kernel
size 4 × 1 provides the highest accuracy of 99.84% for 5s
ECG segments.

2) Recurrent Neural Networks (RNNs): An RNN is a type
of neural network designed to effectively process sequential
data by maintaining a memory of previous inputs, making it
suitable for classifying time-series signals, e.g., AF detection.
For example, Schwab et al. Schwab et al. (2017) built an
ensemble of RNNs to jointly distinguish AF from normal

ECGs, resulting in 0.79 of F1 score on the PhysioNet/Cinc
2017 dataset. Faust et al. Faust et al. (2018) utilized RNNs,
specifically the long short-term memory (LSTM) architecture,
to analyze ECGs from the MIT-BIH Atrial Fibrillation
Database, achieving an accuracy rate of 99.77% for AF
detection. Wang et al. Wang et al. (2023a) proposed a dual-
path RNN which includes the intra- and inter-RNN modules
to study the global and local aspects for end-to-end AF
recognition. They used the PhysioNet/Cinc 2017 dataset to
validate their model and achieved an F1 score of 0.842. More
recently, bidirectional long short-term memory (Bi-LSTM), a
type of RNN architecture capable of capturing both past and
future context in sequential data, has been used to discern
AF. Ramkumar et al. Ramkumar et al. (2022) created an auto-
encoder and Bi-LSTM-based network to detect AF among
others. This method integrated a reconstruction error from
the auto-encoder into the total loss function, leading to a
sensitivity of 92% and specificity of 97%on the PhysioNet/Cinc
2017 dataset.

3) CNN-RNNs: CNN-RNN hybrids combine the morphological
feature extraction capabilities of 1D-CNNs with the temporal
pattern recognition strengths of RNNs to address complex
tasks such as AF detection from ECG signals. For example,
Limam et al. Limam and Precioso, (2017) used dual CNNs
to process the inputs consisting of both ECGs and heart
rates independently, and then the processed features were
merged into RNN to learn the temporal patterns, achieving
a validated F1 score of 0.856 on the PhysioNet/CinC 2017
dataset. Wang et al. Wang and Li, (2020) combined CNN with
Bi-LSTM, exploring two concatenation strategies: a parallel
concatenation of CNN and Bi-LSTM, and a sequential one
where the CNNoutput feeds into the Bi-LSTM.They evaluated
themethods on theMIT-BIHdataset, reporting a final F1 score
of 0.82 for the sequential strategy. Zhang et al. developed a
model that merges a multi-branch CNN (MCNN) with Bi-
LSTM to improve AF detection from short ECG recordings
(Zhang et al., 2022). Unlike our multi-branching approach for
addressing the imbalanced data issue, their model extracted
features from various segments of a single-lead ECG, which
were then processed by the Bi-LSTM. They tested the model
on the PhysioNet/CinC 2017 dataset, achieving an F1 score
of 0.7894.

4) Attention-based networks: The attention mechanism
(Bahdanau et al., 2014; Vaswani et al., 2017) in deep learning
dynamically weighs the importance of different input features,
allowing models to focus more on relevant data while
processing a task. This special capability can facilitate pattern
recognition in ECG signals, enhancing the accuracy and
efficiency of AF detection. For example, Gao et al. Gao et al.
(2021) designed a residual-based temporal attention CNN,
generating temporal informative features related to AF, so
as to consider the semantic information to achieve better
performance. This model achieved an accuracy of 85.43%
on the PhysioNet/CinC 2017 dataset. Nankani et al. Nankani
and Baruah, (2022) investigated the transformer network
for AF detection and underscored clinically relevant signal
timestamps triggering the diagnosis, achieving an F1 score
of 0.87 on the PhysioNet/Cinc 2017 dataset. Rohr et al.
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Rohr et al. (2022) explored and assessed two advanced models
for AF detection: a transformer-based DualNet architecture
and a CNN-LSTM hybrid model, achieving F1 scores of
0.9127 and 0.9072, respectively, on the PhysioNet/CinC
2017 dataset.

As highlighted above (Andreotti et al., 2017; Fan et al.,
2018; Lai et al., 2019; Phukan et al., 2023), 1D-CNNs have
exhibited their effectiveness in identifying morphological features
and comprehending temporal variations in time series data,
demonstrating superior capability in AF detection using single-
lead ECG signals. However, despite the promising utility of
1D-CNNs in time series analysis, comparative studies in the
literature Ullah et al. (2021) and Wu et al. (2018) indicate that
1D-CNNs often yield lower prediction accuracies than their
2D counterparts under similar network configurations for ECG
classification tasks.

This discrepancy can be attributed to the richer, more
comprehensive information encapsulated in 2D input data, coupled
with the inherently superior capacity of 2D CNNs for feature
extraction and interpretation.

Owing to the outstanding performance and strong ability
in pattern recognition, 2D CNN has been explored for ECG
classification by virtue of its capacity to smartly suppress
measurement noises and extract pertinent feature maps using
convolutional and pooling layers (Huang et al., 2019). For example,
Izci et al. Izci et al. (2019) engaged a 2D CNN model to investigate
ECG signals for arrhythmia identification.They segmented the ECG
signals by heartbeats and directly converted each heartbeat into
grayscale images, which served as the input of the 2D CNN model.
Similarly, Jun et al. Jun et al. (2018) proposed to combine 2D CNN
and data augmentation with different image cropping techniques
to classify 2D grayscale images of ECG beats. However, these end-
to-end 2D CNNs are directly fed with original ECG beat segments
without considering the possible noise contamination. Moreover,
the 2D input data were created by directly plotting each ECG
beat as a grayscale image with unavoided redundant information
residing in the image background. This procedure requires extra
storage space for training data and increases the computational
burden without extracting relative features inherent in the
ECG beats.

ECG signals generally consist of various frequency components,
which can be used to identify disease-altered cardiac conditions.
Wavelet transform (WT) (Daubechies, 1990; Yao et al., 2017;
van Wyk et al., 2019) has been proven to be a useful technique for
extracting critical time-frequency information pertinent to disease-
altered ECG patterns (Kutlu and Kuntalp, 2012; He et al., 2018).
As such, WT is favored as a feature-preprocessing procedure that
converts 1D ECG signals into 2D images containing time-frequency
features. The resulting 2D feature images then serve as the input
of CNNs for ECG classification instead of the original 2D ECG
plots. For instance, Xia et al. Xia et al. (2018) engaged the short-
term Fourier transform (STFT) and stationary wavelet transform to
convert ECG segments into 2D matrices which were then fed into
a three-layer CNN for AF detection. Wang et al. Wang et al. (2021)
combined the time-frequency features extracted by Continuous
Wavelet Transform (CWT) and R-interval features to train a 2D
CNN model for ECG signal classification. Wu et al. Wu et al. (2019)

built a 2D CNN based on time-frequency features of short-time
single-lead ECGs extracted from three methods, i.e., STFT, CWT,
and pseudoWigner-Ville distribution, to detect arrhythmias. Huang
et al. Huang et al. (2019) developed an ECG classification model
by transforming ECG signals into time-frequency spectrograms
using STFT and feeding them into a three-layer 2D CNN. Li
et al. Li et al. (2019) included three different types of wavelet
transform (i.e., Morlet wavelet, Paul wavelet, Gaussian Derivative)
to create 2D time-frequency images as the input data to the
2D CNN-based ECG classifier. The above literature unequivocally
demonstrates that incorporating frequency information through the
WT can significantly enhance the efficacy of ECG classification,
underscoring the vital role of frequency domain analysis in AF
identification.

In addition to effective information extraction from ECG time
series, the realization of the full data potential is heavily reliant on
advanced analytical models. Although the abovementioned works
have validated the superiority of 2D CNN-based approaches, the
shallow network structures with a limited number of layers can
potentially hinder the extraction of deeper features. Naturally,
the capacity for a neural network to learn is enhanced by an
increase in the number of layers. However, having a deeper
network structure can result in a gradient dissipation problem,
which impedes convergence during network training, leading
to suboptimal prediction performance. To cope with this issue,
the residual neural network (ResNet) has been developed with
an important modification, i.e., identity mapping, induced by
the skip connection technique (He et al., 2016), which has wide
applications in classifying the ECG signals. For example, Jing
et al. Jing et al. (2021) developed an improved ResNet with 18
layers for single heartbeat classification. Park et al. Park et al.
(2022) used a squeeze-and-excitation ResNet with 152 layers
and compared the model performance trained by ECGs from
a 12-lead ECG system and single-lead ECG data. Guan et al.
Guan et al. (2022) proposed a hidden attention ResNet to capture
the deep spatiotemporal features using 2D images converted from
ECG signals.

Automated ECG classification also suffers from the long-
standing issue of imbalanced data in machine learning. Diverse
sampling and synthetic strategies have been proposed to address
the imbalanced data issue, which focuses on creating a balanced
training dataset out from the original imbalanced data tomitigatethe
potential bias introduced by imbalanced data distribution during
model training (He and Garcia, 2009). Frequently employed
techniques consist of random over-sampling and under-sampling,
informed adaptive undersampling, and synthetic minority over-
sampling technique (SMOTE) (Gao et al., 2019; Wang and Yao,
2021; Qiu et al., 2022). For example, Luo et al. Luo et al. (2021)
engaged SMOTE to synthesize minority samples and create a
balanced training dataset for automated arrhythmia classification.
Ramaraj et al. Ramaraj and Clement Virgeniya, (2021) incorporated
an adaptive synthetic sampling process into the training of deep
learning models built with gated recurrent units to address the class
imbalance problem for ECG pattern recognition. Nurmaini et al.
Nurmaini et al. (2020) compared sampling schemes of SMOTE and
random oversampling with RNN and concluded that the balanced
dataset created by SMOTE significantly improved the classification
performance. In addition to fabricating balanced ECG datasets,
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Gao et al. Gao et al. (2019) and Petmezas et al. Petmezas et al.
(2021) proposed to engage dynamically-scaled focal loss function
to suppress the weight of loss corresponding to the majority class,
so that their contribution to the total loss is reduced to alleviate
the class imbalance problem. However, this method requires the
preassumption of a focusing parameter to modulate the effect of
the majority class on the total loss. Existing methods mainly focus
on using sampling and synthetic strategies or modifying the loss
function, little has been done to create new network structures
without making extra assumptions and feature engineering to
cope with the imbalanced data issue in AF identification from
ECG signals.

3 Materials and methods

3.1 Dataset

In this study, two AF databases from different sources, i.e., ECG
recordings from PhysioNet/CinC challenge 2017 (Goldberger et al.,
2000; Clifford et al., 2017) and ECG PDFs from OUHSC, are used
to evaluate the performance of data-driven detection methods.
Both databases consist of short single-lead ECG recordings for
AF and non-AF patients. PhysioNet/CinC Challenge 2017 is an
open database including 8,528 single-lead ECG signals and their
annotations. Among them, 5050 ECG recordings are labeled as
normal sinus rhythm while 738 signals are annotated as AF. The
sampling frequency of recordings is 300 Hz and the duration of ECG
signals varies from 9s to 30s. The OUHSC database contains ECG
signals in PDF format with 33 recordings from AF subjects and 227
normal samples, which are annotated by cardiologists fromOUHSC.
Each recording has a duration of around 30s with a sampling
frequency of 60 Hz.

3.2 ECG signal preprocessing

Note that the original ECG recordings from OUHSC are in
PDF format, as shown in Figure 1A. It is necessary to accurately
extract the numerical ECG readings from the PDF files for further
data preprocessing and analysis, which is achieved by the following
procedure:

• Transforming PDF files into gray-scale images represented by 2D-
pixel matrices: We discretize the 2D image into a pixel matrix.
Then, each pixel is converted to a fixed number of bits to
represent the gray-scale intensity of the corresponding point in
the image.As shown in Figure 1A, the ECG signals are displayed
in the darkest color on the plot with the color intensity of 1, i.e.,
h(m,n) = 1, while the grid lines appear in a lighter color, i.e.,
0 < h(m,n) < 1, where h(m,n) denotes the color intensity of the
pixel at column m and row n. Note that the background color
intensity is 0.
• Removing grid lines from the ECG plot: We replace the pixel

shade values of the grid lines with the background color
value: i.e., h(m,n ∣ h(m,n) < 1) = 0. This allows the ECG signals
to distinguishably stand out, as illustrated in Figure 1B. The
quantized image is thus encoded into a binary digital format,

FIGURE 1
An example of (A) a raw image recording of an ECG segment in PDF
format, (B) the ECG image that filters out the grid background, (C) the
digitalized ECG time series signal.

i.e., black as “1” and white as “0”. As such, the entire ECG
image is transformed into a binary digital matrix without the
grid lines.
• Extracting the digital ECG time series: The positions of black

pixels (i.e., ECG signal) in the binary matrix are further
extracted, which are represented as a set of (m,n) pairs:

S = {(m,n) |h (m,n) = 1}

The resulting S is then used to reconstruct the digital ECG time
series, where m stands for the time course, and n corresponds to
the magnitude of the ECG signal. As such, we are able to extract
the ECG recordings from the PDFs to digitalized ECG time series
signals (Figure 1C), which will be used for further processing and
model training.

Raw ECG recordings are often contaminated by noises, such
as baseline wandering, electromyography disturbance, and power-
line interference (Mian Qaisar, 2020), which will negatively impact
the information extraction and model performance. In this work,
we engage BioSPPy, a toolbox for biosignal processing written in
Python, for ECG signal denoising. The BioSPPy library provides
comprehensive functions for processing ECG signals including
functions for importing ECGs, filtering out interfering components,
and correcting baseline wandering (PIA-Group, 2021). Specifically,
after loading the ECG data, we apply a high-pass filter to remove
the low-frequency noise (e.g., baseline wandering), a notch filter to
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remove power-line interference, and a low-pass filter to filter out the
high-frequency noise.

3.3 Continuous wavelet transform

ECG signals encompass multiple feature components in both
the time and frequency domains. In this study, we engage the
continuous wavelet transform (CWT) to extract time-frequency
features from ECGs due to its excellent performance in the analysis
of transient and non-stationary time series signals (Keissar et al.,
2009). CWT is the most popular tool for time-frequency analysis
that reflects the frequency components of data changing with time.
CWT is verified to outperform the traditional STFT due to its
ability to provide multi-resolution decompositions of the signal,
which allows for a trade-off between time and frequency resolution,
i.e., higher frequency resolution for signals with sharp transients
and higher time resolution for signals with slow-varying frequency
content (Dokur and Ölmez, 2001). Additionally, compared to
discrete wavelet transform (DWT), CWT remedies non-stationarity
and coarse time-frequency resolution defects and supports the
extraction of arbitrarily high-resolution features in the time-
frequency domain (Addison, 2005).

The CWT of the ECG time-series signal denoted as x(t) is
achieved according to:

T (a,b) = 1
√a
∫
+∞

−∞
x (t)ψ( t− b

a
)dt (1)

where T(a,b) stands for the intensity of transformed signals, ψ(⋅) is
the wavelet basis (also known as the mother wavelet), a is the scale
factor quantifying the compressed or stretched degree of a wavelet,
and b is the time shift parameter defining the location of the wavelet.
The scale can be used to derive the characteristic frequency of the
wavelet as (Wu et al., 2019):

F =
Fc × fs

a
(2)

where Fc is the center frequency of the mother wavelet and fs is
the sampling frequency of the signal. This relationship shows that
smaller (larger) values of a correspond to higher (lower) frequency
components. In CWT, the mother wavelet plays a critical role
in time-frequency analysis, the choice of which depends on its
similarity with the original signal (Ngui et al., 2013). Here, the
Mexican hat wavelet (mexh) is chosen to serve as themother wavelet
because its shape is similar to theQRSwaves and it is commonly used
in ECG signal analysis (Wang et al., 2021). Specifically, the mexh is
the second derivative of a Gaussian function (Addison, 2005), which
is defined as:

ψ (t) = 2
√3 4√π

exp(− t
2

2
)(1− t2) (3)

Continuously changing the scale factor a and time shift parameter
b generates the 2D wavelet coefficients T(a,b), which can be viewed
as a 2D scalogram of the ECG signal in both the time and frequency
domain (Wang et al., 2021).

Figures 2A–D show the healthy and AF examples of the
raw ECG signals obtained from PhysioNet and their 2D time-
frequency patterns after CWT transformation with mexh wavelet,

respectively. The colors in the scalogram indicate the energy density
of the signal component at the corresponding frequency and
time (Addison, 2005; He et al., 2018). According to Figure 2A,C,
two general differences can be observed: 1) The AF ECG signal
lacks a distinct P wave, while it shows a fast and chaotic F
wave due to the atrial fluttering (Figure 2C), in comparison to
a normal ECG signal (Figure 2A); 2) Irregular RR intervals are
observed in AF ECG (Figure 2C) caused by a non-synchronized
ventricular response to the abnormal atrial excitation (He et al.,
2018). The discriminative information in the time domain can
also be captured by the CWT scalograms shown in Figures 2B,D.
By using a 2D CNN to analyze the visual representation of 2D
time-frequency scalograms, we can better understand the features
that distinguish AF from normal heart rhythms and make more
accurate predictions.

3.4 Convolutional neural network

We engage CNN to build a data-driven classifier for
differentiating AF samples from normal ECG samples. CNN is
a type of network architecture specifically designed to process
data that has a grid-like structure such as images (Khan et al.,
2020). As opposed to traditional multilayer perceptron networks
(MLPs), where the input of each neuron consists of the outputs
of all the neurons from the previous layer, the neuron in CNN
only receives its input from a localized region of the previous
layer, known as its receptive field. The main building blocks
of a CNN are convolutional layers, pooling layers, and fully
connected layers.

Convolutional layers are responsible for performing a
convolution operation on the input data, using a set of filters to
extract local features in the data, and producing a feature map that
summarizes such local information. Let θ and X denote the filter
(also known as the kernel) and the input. The convolution operation
works as follows:

(X⊗ θ)ij =
s1−1

∑
m=0

s2−1

∑
n=0

X (i+m, j+ n)θ (m,n) (4)

where s1 and s2 denote the size of the 2D kernel, and (i, j) denotes
the location on the 2D input (e.g., image). After being applied with
the activation function, the feature map of the input is obtained as
(LeCun and Bengio, 1995; Jing et al., 2021):

Xl
q = σ(∑

p
θlpq ⊗X

l−1
p + b

l
q) (5)

where Xl
q is the qth feature at layer l, Xl−1

p is the pth input
feature map of the previous (l− 1)-th layer, σ denotes the activation
function to induce the non-linearity in the functional mapping,
and bq represents the bias. This procedure is repeated by applying
multiple filters to generate multiple feature maps to capture different
characteristics of the input. Note that kernels are shared across all the
input positions, which is also called weight sharing, the key feature
of CNN. The weight-sharing technique guarantees the extracted
local patterns are translation invariant and increases computational
efficiency by reducing themodel parameters to learn compared with
fully connected neural networks.
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FIGURE 2
(A) The raw ECG signal from Physionet labeled as normal and (B) its corresponding 2D CWT scalogram. (C) The raw ECG signal from Physionet labeled
as AF and (D) its corresponding 2D CWT scalogram. Note that the RR intervals are different in the AF sample and irregular F waves (circled) appear in (C).

Thepooling layermimics the human visual systemby combining
the outputs of multiple neurons (i.e., clusters) into a single neuron
in the next layer, effectively creating a condensed representation of
the input. The pooling significantly reduces the spatial resolution
and only focuses on the prominent patterns of the feature maps,
making the networkmore robust to small translations and distortion
in the input data (Xia et al., 2018). Popular pooling techniques
include maximum pooling, average pooling, stochastic pooling, and
adaptive pooling. They are typically performed on the values in a
sub-region of the feature map (Akhtar and Ragavendran, 2020).

The fully-connected layers form a dense network that can learn
complex non-linear relationships between the inputs and outputs.
It takes the output of the previous layer, which is typically a
high-dimensional tensor containing discriminant features extracted
by convolutional and pooling layers, and flattens it into a one-
dimensional vector. This vector is then used as the input to a fully
connected layer. The fully-connected layer is similar to an MLP in
that every neuron in one layer is connected to every neuron in the
next layer. By using a proper activation function, the neural network
is able to produce classification decisions (Nurmaini et al., 2020).
By stacking these building blocks (convolutional layers, pooling
layers, and fully connected layers) in various combinations, CNN
is able to learn complex features in the input data, allowing them to
effectively solve a wide range of image and signal processing tasks
(Andreotti et al., 2017).

3.5 2D CNN with ResNet

We propose to engage 2D CNN to investigate the 2D time-
frequency scalograms converted from denoised ECG signals by
CWT for AF identification. It has been demonstrated that the

substantial depth of the convolutional network is beneficial to the
network performance (Simonyan and Zisserman, 2014). However,
as the number of convolutional layers increases, the training
loss stops further decreasing and becomes saturated because of
the gradient dissipation issue. As such, a CNN with a deeper
architecture, counterintuitively, sometimes incurs a larger training
error compared to its shallow counterpart upon convergence
(He et al., 2016). To solve such network degradation and gradient
vanishing problems, the residual network (ResNet) has been
developed to improve the accuracy of CNNs with considerably
increased depth.

The core of ResNet is the residual learning technique (He et al.,
2016). Specifically, instead of using the stacked convolutional layers
to directly fit the underlying mapping from the input to the output,
ResNet focuses on fitting a residual mapping. Figure 3 shows a
ResNet building block with input X and its corresponding output
mapping Y. The residual block engages a shortcut connection
that bypasses one or more convolutional layers and allows the
information to flow directly from the input to the output. As
such, the input X is added to the output of the block F(X)
(enclosed by the dashed circle in Figure 3, allowing the network to
learn the residual mapping represented as Y = F(X) +X instead of
learning the direct mapping as Y = F(X). This design mitigates the
gradient vanishing problem and allows for deeper networks to be
trained effectively.

In our study, we engage the ResNet with 18 layers (ResNet18)
to build the AF classifier because ResNet18 has been proven
to be able to generate a comparable result with a faster
convergence compared to a deeper counterpart (He et al., 2016).
Figure 4 shows the detailed structure of ResNet18. Note that the
notation of 2DConv(ninput ,noutput ,nfdim1 × nfdim2) denotes that,
in the current 2D convolutional layer, there are ninput input
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FIGURE 3
A building block of the ResNet.

channels, noutput output channels (i.e., number of filters) with
the 2D filter size of nfdim1 × nfdim2. For example, (64,128,3× 3)
indicates that this convolutional layer is composed of 128
filters with the filter size of 3× 3 applied on the input data
with 64 channels.

3.6 Multi-branching convolutional network

Data-driven identification of AF fromECG recordings generally
suffers from imbalanced data issues. Figure 5A presents the
distribution of AF and normal samples in Physionet/CinC 2017
and OUHSC datasets, illustrating a normal to AF sample ratio
of approximately 7:1 for both. To address the data imbalance
issue, we create Nb balanced datasets from the original data
D = {D−,D+}, where D− denotes the majority normal ECG samples
and D+ stands for the minorityset, i.e., the entire AF training
samples. D− is partitioned into multiple subsets D− = ∪

Nb
i=1D

i
−,

where each subset Di is roughly equivalent in size to D+.
The normal subsets Di for i = 1, ...,Nb are then paired with
D+ to formulate balanced sub-datasets. Each balanced subset,
denoted as Di = {D

i
−,D
+} for i = 1, ...,Nb, is processed through

the ResNet core, with individual branches trained on their
respective balanced sub-datasets. Figure 5B visualizes this method
of partitioning the original dataset D intoNb balanced sub-datasets,
i.e., Di for i = 1, ...,Nb, which serve as the balanced input in
Figure 6. This strategic partitioning and training approach ensures
a comprehensive model learning from a balanced representation of
AF and normal ECG samples (Wang and Yao, 2021; Wang et al.,
2022; Wang et al., 2023b).

In the current investigation, we aim to identify AF samples from
normal ECG samples. The neural network is expected to produce
high probabilities (close to 1) for AF samples and low probabilities
(close to 0) for normal ECG samples. We choose the binary cross-
entropy as the loss function for MB-ResNet, which is defined as:

L (ω;D) = −
Nd

∑
j=1

Nb

∑
i=1

I ( j ∈ Di)(yj log(P̂i (ω;X
j))

+(1− yj) log(1− P̂i (ω;X
j))) (6)

where ω denotes the neural network parameter set, Xj and
yj stand for one input sample and its corresponding true label
respectively, I(⋅) denotes the indicator function, Nd is the total
number of the training samples, and P̂i (ω;X

j) represents the
predicted probability for AF at the ith branching output given the
input signal Xj.

The adaptive momentum method (Adam) (Kingma and Ba,
2014) is adopted to minimize the loss function and update the
network parameters. In the inference stage, the MB network
generatesNb predictions for AF probability, which correspond to the
Nb branching outputs. The final predicted probability for AF (P̂) is
determined by taking the average of the Nb outputs:

P̂ = 1
Nb

Nb

∑
i=1

P̂i

where P̂i is the predicted probability of ith branching output.

4 Experimental design and results

4.1 Experimental design

We validate and evaluate the performance of the proposed
CWT-MB-ResNet framework using both OUHSC and Physionet
Challenge datasets. In this study, the training and testing datasets
are split interpatiently for both data sources. This ensures that no
overlap exists between the patients in the training set and those
in the testing set. We allocate 80% of the total samples for the
training purpose and the remaining 20% for testing, applied on
both datasets.

We first explore the impact of the learning rate on the training
outcomes of the proposed CWT-MB-ResNet. We then conducted a
comparison study to showcase the significance of ECGdigitalization
for the proposed multi-branching ResNet (MB-ResNet) model in
identifying the AF samples. Next, we compare the performance
of our CWT-MB-ResNet with 1D-CNN (Figure 7A), 1D-CNN
with the multi-branching network (1D-MB-CNN) (Figure 7B),
and ResNet with CWT features (CWT-ResNet). Note that the
input of 1D-CNN and 1D-MB-CNN consists of the denoised
ECG time series. The detailed 1D-CNN architecture is illustrated
in Figure 8, including three convolutional layers followed by
pooling layers to reduce the dimensionality of the data, a batch-
normalization layer to stabilize the network training, and one
fully connected layer to make the final prediction. Note that
the notation of 1DConv(ninput ,noutput ,nfdim) indicates that, in the
current 1D convolutional layer, there are ninput input channels
and noutput output channels (i.e., number of filters) with a 1D
filter size of nfdim.

The classification performance will be evaluated with
three metrics: Receiver-Operating-Characteristic (ROC) Curve,
Precision-Recall (PR) Curve, and F1 score, which will be calculated
using the test set. The ROC provides the graphic representation
of the trade-off between the true positive rate (TPR) and the false
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FIGURE 4
The detailed architecture of ResNet18.

FIGURE 5
(A) Class distribution in PhysioNet/Cinc 2017 and OUHSC datasets. (B) Illustration of creating Nb balanced sub-datasets to train our MB-ResNet model.

positive rate (FPR) for different threshold settings. The area under
ROC (AUROC) is often used as a metric to compare different
models, with a larger AUROC indicating a better-performing
classifier. A good model typically has a ROC curve that is situated

toward the top-left corner of the graph. The PRC illustrates the
interplay between a predictive model’s precision and recall metrics
across a range of probability thresholds. A good classifier has the
PR curve towards the top-right corner. A higher area under PRC
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FIGURE 6
Illustration of the multi-branching architecture.

(AUPRC) value suggests a more effective model. The F1 score
quantifies the equilibrium between a model’s precision and recall
for a binary classifier system by computing their harmonic mean,
which is defined as

F1 = 2× Precision×Recall
Precision+Recall

Note that the F1 score ranges from 0 to 1, where a score of 1 indicates
a perfect balance between precision and recall and a good overall
prediction performance.

4.2 The effect of the learning rate on
CWT-MB-ResNet

In this study, we initiate the analysis by transforming ECG time
series data into 2D scalograms utilizing CWT. These scalograms
encapsulating both time and frequency information are input into
our tailored MB-ResNet model. Specifically, we employ ResNet18
due to its proven efficacy in achieving results comparable to those
of its deeper counterparts, while also ensuring faster convergence
rates (He et al., 2016).The architecture of ResNet18, as adopted from
He et al. (2016) and illustrated in Figure 4, comes with a predefined
set of network architecture parameters, including number of layers,
kernel size, and number of residual blocks.

In addition to selecting ResNet18 for its balance between
efficiency and performance, the learning rate has a critical influence
on the training outcomes. To further optimize our model, we
conducted an experiment specifically focused on assessing the
impact of various learning rates on the model’s performance,
particularly looking at the F1 score on the test set across both
datasets used in our study. Table 1 summarizes the performance of
the MB-ResNet given different learning rates. For both datasets, the
highest F1 score achieved is 0.8865 for PhysioNet/CinC 2017 and
0.7396 for OUHSC datasets when the learning rate is set as 0.001.
This indicates that a learning rate of 0.001 is the most effective in
training our MB-ResNet model.

4.3 The effect of ECG digitalization from
PDFs on CWT-MB-ResNet

We carry out a comparative analysis to demonstrate the
importance of digitizing ECG records from their original PDF
format. Specifically, we transform the original ECG PDFs into
image files (i.e., Portable Network Graphic (.PNG) files) and apply
segmentation to augment the sample sizes. Figure 9 illustrates
examples of the resulting ECG images from normal and AF
categories, which directly serve as inputs for ourMB-ResNetwithout
further preprocessing.

Figure 10 displays the ROC and PR curves generated by two
variants of the MB-ResNet model: one trained on 2D scalograms
derived fromdigitalized ECGs after undergoing denoising andCWT
(referred to as CWT-MB-ResNet), and the other trained on pure
ECG images converted directly from rawPDF files (denoted as PDF-
MB-ResNet). Utilizing the same MB-ResNet model, we observed a
substantial increase in the area under bothROCandPR curveswhen
the model inputs were 2D scalograms processed from digitalized
ECGs compared with using raw ECG images directly. Specifically,
our CWT-MB-ResNet model demonstrates superior performance
with an AUROC of 0.9351, AUPRC of 0.7930, and an F1 score
of 0.7396. This performance significantly surpasses that of the
PDF-MB-ResNet trained by raw ECG images with an AUROC of
0.8683, AUPRC of 0.6462, and an F1 score of 0.6257, highlighting
the efficacy of our digitalization and preprocessing procedure. The
enhanced performance of the MB-ResNet model trained with 2D
scalograms from digitalized ECGs, as compared to training with raw
ECG images, is be attributed to several factors:
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FIGURE 7
The flowchart of the experimental design: (A) 1D-CNN; (B) 1D-MB-CNN; (C) CWT-MB-ResNet; (D) CWT-ResNet.

TABLE 1 F1 scores on the testing set given different learning rates for MB-ResNet training.

learning rate 0.0001 0.0005 0.001 0.005 0.01

F1 (PhysioNet) 0.8493 0.8759 0.8865 0.8652 0.8580

F1 (OUHSC) 0.6854 0.7273 0.7396 0.7385 0.7151

• The 2D scalograms provide a rich representation of temporal
and frequency features, offering a more comprehensive dataset
for the model to learn from.
• The raw ECG segmentation images contain large blank

areas devoid of any ECG-related information, which do not
contribute to learning discriminative features.
• The superimposed gridlines in the area could introduce

noise into the data, potentially hindering the model’s training
efficiency.

By training with 2D scalograms, the abovementioned issues
are mitigated, allowing the MB-ResNet to focus on more relevant
ECG features, leading to significant improvement in overall model
performance.

4.4 Experimental results from the OUHSC
dataset

Figure 11 displays the ROC and PR curves of all four models
using theOUHSCdataset.The2DResNetmodels (i.e., CWT-ResNet

andCWT-MB-ResNet), which use 2D scalograms transformed from
ECG signals as the input, produce a larger area under the curves
(both ROC and PR) compared to their 1D counterparts (i.e., 1D-
CNN and 1D-MB-CNN). This demonstrates the efficacy of using
the CWT to extract time-frequency features in the ECG signal
analysis. Additionally, the models with an MB architecture (i.e., 1D-
MB-CNN and CWT-MB-ResNet) produce a larger AUROC and
AUPRC compared to models without MB outputs (i.e., 1D-CNN
and CWT-ResNet), which highlights the effectiveness of using the
MB structure in addressing imbalanced data issues. The ROC and
PR plots demonstrate the superiority and robustness of the proposed
CWT-MB-ResNet framework for identifying the AF samples.

Table 2 shows AUROC, AUPRC, and F1 scores generated from
the four methods using the OUHSC dataset. The proposed CWT-
MB-ResNet method generates the best AUROC, AUPRC, and F1
scores with values of 93.51%, 79.30%, and 0.7396. Note that the
MB technique demonstrates its effectiveness on both 1D-CNN and
CWT-ResNet as the AUROC, AUPRC, and F1 scores provided by
the MB-based neural network models are higher than their non-
MB counterparts. Moreover, the AF classifier using 2D-CNN-based
ResNet18 supported by the time-frequency transformation of ECG
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FIGURE 8
The 1D-CNN architecture.

time series presents a more potent predictive power than time
sequence classification using 1D CNN. For example, CWT-MB-
ResNet improves the AUROC, AUPRC, and F1 scores from 87.55%,
69.97%, and 0.6384% to 93.51%, 79.30%, and 0.7396 respectively
compared with the 1D-MB-CNN.

4.5 Experimental results from the
Physionet/CinC 2017 challenge dataset

Figure 12 further shows the ROC and PRC analysis for the
Physionet/Cinc 2017 challenge dataset. Similar to the results from

the OUHSC dataset, the 2D ResNet models (CWT-ResNet and
CWT-MB-ResNet) outperform their 1D counterparts (1D-CNN
and 1D-MB-CNN) in both the ROC and PR spaces. Furthermore,
the MB-based models (1D-MB-CNN and CWT-MB-ResNet)
effectively account for the imbalanced data issues, exhibiting better
performance compared to the non-MB-basedmodels (1D-CNNand
CWT-ResNet). Table 3 demonstrates the comparison of AUROC,
AUPRC, and F1 scores provided by 1D-CNN, 1D-MB-CNN, CWT-
ResNet, and CWT-MB-ResNet. Our CWT-MB-ResNet yields the
best classification performance among the four methods, generating
the highest AUROC, AUPRC, and F1 scores of 97.41%, 93.53%,
and 0.8865. Especially, our CWT-MB-ResNet model improves the
F1 score by 46.2% percent compared to the pure 1D-CNN with no
CWT transform or MB structure.

5 Discussion

5.1 Strengths of the proposed pipeline

This paper proposes a pipeline of CWT-MB-ResNet to
identify the AF condition. The unique strengths of the proposed
framework are:

1) Digitalization of ECG readings in PDF: This pipeline
designed an ECGpreprocessingmethod that can automatically
convert ECG PDFs into digitalized, ready-to-use ECG time
series data.This step is crucial for integratingmachine learning
models into clinical workflows, where ECGs are often archived
in non-digitalized formats.

2) Effectiveness of CWT representation: The integration of
CWTenhances feature extraction, enabling themodel to better
identify AF characteristics that might be missed by directly
learning from raw time-series analysis alone. The resulted 2D
ECG scalograms offer a rich representation of ECG data by
encapsulating both time series and frequency components.The
CWT-based feature reformulation can significantly enhance
the model’s performance by providing more comprehensive
information for classifying ECG signals.

3) Advantage of the network design:The use of ResNet18 as the
foundation allows our model to benefit from the strengths in
deep residual learning, enabling it to learn from significantly
deepened convolutional layers with improved accuracy. The
ResNet18 has demonstrated comparable results to its deeper
counterparts, meanwhile keeping its computational efficiency.
This is further enhanced by our innovative multi-branching
design, which addresses the class imbalance issue by training
each branch on a balanced subset of the original dataset
while the core network is exposed to the entire range of
samples. This approach ensures that both AF and normal
class is adequately represented and learned during the
training process, significantly enhancing the network’s ability
to generalize across the imbalanced classes.

5.2 Discussion on the limitations

The proposed CWT-MB-ResNet framework, while effective,
is not devoid of limitations. In our study, ECG segments were
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FIGURE 9
Examples of ECG segments: (A) normal sample; (B) AF sample.

FIGURE 10
Comparison of (A) ROC and (B) PR curves for the MB-ResNet model trained with two different data preparation techniques: one involving 2D
scalograms derived from digitalized ECGs which are denoised and processed through CWT (CWT-MB-ResNet), and the other using unprocessed ECG
images directly from raw PDF files (PDF-MB-ResNet).

FIGURE 11
The comparison of (A) ROC and (B) PRC among different models using the OUHSC data.
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TABLE 2 The comparison of AUROC, AUPRC, and F1 scores generated from 1D-CNN, 1D-MB-CNN, CWT-ResNet, and the proposed CWT-MB-ResNet
using OUHSC data.

1D-CNN 1D-MB-CNN CWT-ResNet CWT-MB-ResNet

AUROC 86.41% 87.55% 86.99% 93.51%

AUPRC 68.70% 69.97% 71.96% 79.30%

F1 0.6370 0.6384 0.7150 0.7396

FIGURE 12
The comparison of (A) ROC and (B) PRC between different models using data from Physionet/Cinc 2017 challenge.

TABLE 3 The comparison of AUROC, AUPRC, and F1 scores generated from 1D-CNN, 1D-MB-CNN, CWT-ResNet, and the proposed CWT-MB-ResNet
using data from Physionet/CinC 2017 challenge.

1D-CNN 1D-MB-CNN CWT-ResNet CWT-MB-ResNet

AUROC 89.55% 92.60% 97.02% 97.61%

AUPRC 73.38% 76.63% 92.23% 93.53%

F1 0.7219 0.7380 0.8690 0.8865

around 5 s long. However, analyzing longer ECG recordings will
significantly increase computational complexity. This is due to the
CWT method of processing data across both time and frequency
domains at various scales, demanding more computational
resources. Additionally, while our method effectively addresses class
imbalance, its performance remains influenced by the quality and
diversity of the training data, which is a long-lasting limitation of
most data-driven machine learning models. This is evident from
the differing performances on the PhysioNet and OUHSC datasets.
Specifically, PhysioNet, with its larger and more diverse pool of
5,788 subjects, provides a richer training environment compared to
OUHSC, which is limited to ECG samples from only 260 subjects.
Despite utilizing segmentation to expand the sample size of the
OUHSCdataset to 5,809, notable differences in performancemetrics
remain, as detailed in Tables 2 and 3. This suggests that merely
increasing the sample size by segmentation cannot fully address the
limitations posed by data diversity and quality. Additionally, deep
learning models, including the proposed CWT-MB-ResNet, are

often criticized for their “black box” nature. This means that while
those models can make accurate predictions, the reasoning behind
the predictions is not always clear or understandable to humans.
This lack of interpretability can be a significant hurdle in clinical
settings, making clinicians less confident in implementing machine
learningmodels for automated diagnosis. One of our future research
directions will focus on the development of interpretable models for
AF detection.

5.3 Comparison with existing work

The direct comparison of our results with the values of
performance metrics reported in other studies mentioned in
Section 2 is neither fair nor feasible due to several factors:
1) variations in ECG duration used for training/testing data;
2) employment of non-unified metrics for evaluating model
performance across studies; 3) variations in the proportions of
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TABLE 4 The comparison of F1 scores between the proposed CWT-MB-ResNet method with existing literature using data from Physionet/CinC 2017
and OUHSC.

Authors Methods F1 (PhysioNet) F1 (OUHSC)

Andreotti et al. Andreotti et al. (2017) ResNet 0.8405 0.7054

Limam et al. Limam and Precioso, (2017) CRNN 0.8310 0.7323

Wang et al. Wang and Li, (2020) CNN-Bi-LSTM 0.7094 0.6996

Gao et al. Gao et al. (2021) Residual-based temporal attention 0.8172 0.7368

This paper CWT-MB-ResNet 0.8865 0.7396

training/testing data splits; 4) the model implementation on
different databases. To enable a fairer and more meaningful
comparison, we applied the ECG data from both the
PhysioNet/CinC 2017 database and OUHSC to four deep learning
models reviewed in Section 2, ensuring that the comparison is based
on consistent data and preprocessing steps.

Table 4 summarizes the comparison results in terms of F1
score. Even though the proposed CWT-MB-ResNet model does
not resort to complex neural network designs, it demonstrates
the best F1 score compared with the other network structures
developed in Andreotti et al. (2017); Limam and Precioso, (2017);
Wang and Li, (2020); Gao et al. (2021). Specifically, the utilization
of CWT distills both frequency and temporal insights from
ECG signals, converting them into an image data format that
significantly enriches the input information. We integrate the
widely recognized image model, ResNet18 to achieve a robust
interpretation of image data andmeanwhile circumvent the gradient
vanishing problem. Furthermore, the multi-branching structure is
meticulously designed to address issues of data imbalance, ensuring
that our model remains sensitive and accurate for both normal and
AF classes.

6 Conclusion

In this paper, we develop a novel framework based onContinous
Wavelet Transform (CWT) and multi-branching ResNet for AF
identification. We first transform the 1D ECG time series into 2D
time-frequency scalograms to take into account various frequency
components, which can serve as the input to the 2D CNN-based
classifier. Second, we leverage the ResNet architecture to cope with
the gradient dissipation problems in deep 2D CNN and increase
the effectiveness of network training. Moreover, a multi-branching
architecture is incorporated into the ResNet to mitigate the possible
prediction bias caused by the imbalanced data issue. Finally, we
implement the proposed CWT-MB-ResNet to predict AF using the
ECG recordings fromPhysioNet/CinCChallenge 2017 and the ECG
PDFs from OUHSC. Experimental results show that the proposed
CWT-MB-ResNet achieves the best prediction performance for
both datasets in AF detection. The CWT-MB-ResNet framework
has great potential to be applied in clinical practice to improve the
accuracy in ECG-based diagnosis of heart disease.
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Seizure prediction in stroke
survivors who experienced an
infection at skilled nursing
facilities—a machine
learning approach
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Lafayette, IN, United States, 2Purdue University, Schools of Industrial Engineering and Nursing, West
Lafayette, IN, United States

Background: Infections and seizures are some of themost common complications
in stroke survivors. Infections are themost common risk factor for seizures and stroke
survivors that experience an infection are at greater risk of experiencing seizures. A
predictive model to determine which stroke survivors are at the greatest risk for a
seizure after an infection can be used to help providers focus on prevention of
seizures in higher risk residents that experience an infection.

Methods: A predictivemodel was generated from a retrospective study of the Long-
Term Care Minimum Data Set (MDS) 3.0 (2014–2018, n = 262,301). Techniques
included three data balancing methods (SMOTE for up sampling, ENN for down
sampling, and SMOTEENN for up and down sampling) and three feature selection
methods (LASSO, Recursive Feature Elimination, and Principal Component Analysis).
One balancing and one feature selection technique was applied, and the resulting
dataset was then trained on four machine learning models (Logistic Regression,
Random Forest, XGBoost, and Neural Network). Model performance was evaluated
with AUC and accuracy, and interpretation used SHapley Additive exPlanations.

Results:Using data balancing methods improved the prediction performances of
the machine learning models, but feature selection did not remove any features
and did not affect performance. With all models having a high accuracy (76.5%–
99.9%), interpretation on all four models yielded the most holistic view. SHAP
values indicated that therapy (speech, physical, occupational, and respiratory),
independence (activities of daily living for walking, mobility, eating, dressing, and
toilet use), and mood (severity score, anti-anxiety medications, antidepressants,
and antipsychotics) features contributed themost. Meaning, stroke survivors who
received fewer therapy hours, were less independent, had a worse overall mood
were at a greater risk of having a seizure after an infection.

Conclusion: The development of a tool to predict seizure following an infection
in stroke survivors can be interpreted by providers to guide treatment and prevent
complications long term. This promotes individualized treatment plans that can
increase the quality of resident care.

KEYWORDS

stroke, seizure, infection, machine learning, binary classification, minimum data set,
skilled nursing facility
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1 Introduction

For the past decade, stroke has ranked in the top five leading
causes of death in the United States (US) (Ahmad and Anderson,
2021; Heron, 2021; Shiels et al., 2022). Stroke related deaths account
for 4.7% of deaths across all age groups and 6.1% of deaths in aging
populations classified as age 65 and older (Shiels et al., 2022).
However, not all strokes are fatal and 60% of ischemic stroke
patients and 38% of hemorrhage stroke patients survive the first
year (Smajlović et al., 2006). Patients that survive often face serious
complications or disabilities. In fact, stroke is the leading cause of
serious long-term disability in the United States and each year
accounts for about $56.5 billion dollars (CDC, 2023).

Within the last few years, the number of stroke related deaths
has been decreasing (Chohan et al., 2019). With this increased
survival rate, there has been an increase in the number of patients
with complications. The major complications include recurrent
stroke (9% of patients), epileptic seizure (3%), urinary tract
infection (24%), chest infection (22%), other infections (19%),
falls (25%), shoulder pain (9%), other pain (34%), depression
(16%), anxiety (14%), emotionalism (12%), and confusion (56%)
(Langhorne et al., 2000). By focusing on the prevention of these
complications, the long-term survival rate and quality of life for
stroke survivors can be improved.

It has been well documented that infections are a leading risk
factor for seizures and epilepsy (Vezzani et al., 2015). However, there
has not been extensive research into how infections impact seizure
risk in stroke survivors. Stroke survivors are especially prone to both
bacterial and viral infections, and having these infections may
consequently increase their seizure risk (Langhorne et al., 2000).
Having frequent infections and seizures could severely postpone the
patient’s recovery process and possibly result in death. Exploring
this coupling of complications could help prevent adverse effects by
placing a stronger emphasis on limiting infection and preventing
seizure in patients who have already had an infection.

To help prevent infection and subsequent seizure, focusing on
the patient’s recovery through their rehabilitation plan is a
promising pathway. When a stroke survivor is discharged from
the hospital or other treatment facilities to a skilled nursing facility
(SNF), they will begin rehabilitation following a set plan (Bindawas
and Vennu, 2016). The effectiveness of this set plan at the SNF relies
heavily on the team of professionals that goes into making it (Lenze
et al., 2012). In fact, it has been shown that rehabilitation plans made
by a group of professionals are more effective than those made by a
single professional (Graham, 2013). In addition, if the team takes the
time to specialize the plan, it has been shown that the patient will
have a faster recovery rate and yield better functional outcomes
(Bindawas and Vennu, 2016). Other studies have also shown that
specialized plans yield greater participant engagement with
activities being completed at higher intensities (Lenze et al.,
2012). These specialized rehabilitation plans are typically
variations of a standardized version and vary depending on
the patient’s severity of complications and response to the
therapy (Bernhardt et al., 2016). However, plans are adjusted
by healthcare professionals using intuition rather than numerical
feedback, which leads to plans that fail to help patients reach their
recovery goal (Levinson, 2013). If the plans were individualized
and a patient’s response to changes in the plan could be measured

with concrete numerical evidence, then the outcome of recovery
could improve for stroke survivors.

Additionally, it has been shown that stroke survivors at nursing
facilities receive fewer hours of rehabilitation compared to hospital
settings (Koopmans et al., 2010). This is typically a result of the
reduction in staffing and intensity of care, but receiving more
therapy hours has been associated with increased independence
(Jette et al., 2005), greater likelihood of discharge from SNF to
community (Jette et al., 2004; Jung et al., 2016), and greater
functional improvements (Chen et al., 2002). This means that
residents at SNFs could benefit from an increase in therapy
hours as part of their rehabilitation. With stroke survivor
rehabilitation plans typically lasting between a few months to a
few years (Bindawas and Vennu, 2016), this is considered long-term
rehabilitation (IHCP, 2023). Assessing the relationship between the
number of therapy hours in a rehabilitation plan and the risk of
seizure following an infection could yield beneficial results in
resident recovery.

This study used the Long-Term Care MinimumData Set (MDS)
3.0 (2014–2018) in a midwestern US state to retrospectively
investigate the risk of seizure following an infection both short
term and long term. By focusing on the stroke to infection to seizure
pathway, this study seeks to identify risk factors for seizure after an
infection to then help limit seizures in stroke survivors who have
experienced an infection. The model is fit to predict the risk, return
an individualized resident risk estimate, and interpret which factors
contribute the most to this risk estimate. Uncovering which factors
contribute the most to seizure risk may aid healthcare professionals
in adjusting rehabilitation plans to improve resident outcomes.

Other studies have predicted the risk of seizure in stroke
surviving patients (Bunney et al., 2022; Looti et al., 2023;
Lekoubou et al., 2024); however, none exist that include the
infection to seizure pathways in stroke survivors. Another novel
aspect is the use of the MDS data set for prediction of seizures in
stroke survivors, which has not even been used for seizure
prediction. The third novel aspect of this study is the use of
SHapley Additive exPlanations (SHAP) for model interpretations,
and though this technique was developed a number of years ago, its
application to the healthcare space is relatively novel.

2 Materials and methods

This study had two specific aims for investigating the risk of
seizure following infection in stroke survivors at skilled nursing
facilities (SNFs).

1. Determine the risk ratio of stroke survivors experiencing a
seizure after an infection short term (within 14 days) and long
term (within 1 year).

2. Interpret the resultant predictive models to identify risk factors
for a stroke surviving nursing home resident experiencing a
seizure within 14 days following an infection.

The data initially includes all individuals admitted to a Medicare
and Medicaid licensed SNF between 1 January 2014 to 20 April
2018 in Indiana taken from the Long Term Care MinimumData Set.
All assessments during the time period were evaluated. The main
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data features include demographic, diagnosis, activities of daily
living (ADL), pain, treatment, mobility, and therapy. Residents
with a previous history of seizure and epilepsy disorder were
excluded in order to establish the temporal association between
stroke and seizure occurrence.

2.1 Risk ratio

Prior to modeling, a preliminary analysis was conducted to
verify the relationship between stroke survivors, infections, and
seizures. Stroke survivors considered were nursing facility
residents with the stroke diagnosis code who remained in a
skilled nursing facility (SNF) after the incident. This included
both residents admitted with a stroke diagnosis and those who

had a stroke while in the SNF. An infection was said to have occurred
if any of the urinary tract infection, pneumonia, sepsis, tuberculosis,
viral hepatitis, wound infection, and multidrug resistant organism
diagnosis codes were noted in an assessment after the stroke noted
assessment. A seizure was said to occur if the diagnosis code for
seizure and epilepsy disorder was noted in an assessment after the
infection noted assessment.

Assessments from stroke survivors were used to count the
number of unique residents for four mutually exclusive
categories. Divisions were based on the occurrence of an
infection and/or stroke. The initial data were first split on the
occurrence of stroke in resident assessments, which yielded
24,570 stroke survivor residents. The data was then split on
whether a resident had an infection within 75 days following the
stroke, a time period associated with increased risk of disability and

FIGURE 1
Resident categorization flow chart.
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death (Finlayson et al., 2011; Ulm et al., 2012; Learoyd et al., 2017). It
was found that 2,861 unique residents had an infection within
75 days following a stroke. These could have been a resident who
had a stroke in the SNF and then had an infection within 75 days
following, or a resident who was admitted to the SNF with the stroke
diagnosis and had an infection within 75 days from their first
assessment. For the latter, this means the resident entered the
facility with the stroke diagnosis and the infection threshold was
set to within 75 days from the first assessment date. An additional
21,709 residents did not have an infection following a stroke.

These two groups were each split into two groups based on
whether residents had a seizure following their stroke. The next two
categories are sub-divisions of the first category based on the timing
of the appearance of the seizure diagnosis. For the stroke survivors
that had an infection within 75 days following their stroke, it was
further evaluated if the resident had a seizure anytime following the
infection or within 14 days following the infection. This value of
14 days was obtained from a study that found that seizures usually
occur within one to 2 weeks following an infection, so 14 days was
chosen based on the 2-week mark (Vezzani et al., 2015). Other
studies have also found that seizures can occur after a stroke over
5 years later (Naess et al., 2004; Myint et al., 2006), so a long-term
value after infection was also assessed for comparison as part of this
risk ratio. For this study, this value was 1 year after the infection. The
long-term follow-up period of 1 year had 110 residents experience a
seizure following an infection, and the short term, 14 day follow up
period, had 74 residents experience a seizure following an infection.
For stroke survivors that did not experience an infection, it was
determined that 349 residents had a seizure any amount of time
following a stroke with no reported infection prior to the seizure.
Figure 1 demonstrates these groups and their breakdown as a
flow chart.

Residents admitted near the end of the dataset were removed if
they did not experience a post-infection seizure and there was not an
adequate number of days to observe the full follow-up period (right
censoring of data). As an example, for 14-day post-infection seizure,
a resident who had only 12 days of follow up in the data, but
experienced an infection then had a seizure during that follow-up
was kept in the data. A resident with only 12 days of follow up who
did not have a seizure before the end of the dataset, however, was
removed due to right censoring of the data. For 14-day follow-up,

135 residents were right censored, and for 1-year follow-up,
867 residents were right censored. Residents were also right
censored following the same method for the 75-day follow-up
period between stroke and infection. This latter group had
6,051 residents with right censoring of their data. These censored
residents were subtracted from risk ratio calculations and were
removed from the predictive models.

The categorized residents and their corresponding prevalence
were used to calculate risk ratios based on the number of unique
residents who experienced a seizure. Using unique residents reduced
the possibility of carrying forward diagnoses in the data between
assessments that could have artificially inflated occurrences.
Therefore, the number of unique residents is a more robust
method compared to the number of occurrences for calculating
the risk ratio here. For a more detailed explanation, please see the
discussion section. The ratios in Table 1 indicate that having an
infection within 75 days after a stroke increases a resident’s risk of
having a seizure within 14 days post infection by 1.20-fold. Having
an infection within 75 days after a stroke increases a resident’s risk of
having a seizure 1 year post infection by 2.42-fold. Risk ratios were
calculated by comparing the population of individuals who
experienced a seizure following an infection to those who
experienced a seizure without first experiencing an infection
(Table 2). The 95% confidence intervals did not contain one for
the risk ratio of the 1-year follow-up period, indicating that the
relative risk ratio was found to be statistically significant. This is
consistent with current literature that indicates that infections
increase the risk of seizures (Langhorne et al., 2000). The 14-day
follow-up period’s 95% confidence interval for the risk ratio did
contain 1, so this risk ratio was not found to be statistically
significant. However, a large proportion of the post-infection
seizures occurred within this time frame and adjustment for
additional features can be informative, so modeling was also
completed for prediction of seizure over the 14-day follow-
up period.

2.2 Data processing and modeling

The MDS data collection instrument includes 23 sections that
contain information such as demographics, diagnoses, independence in

TABLE 1 Risk ratio of seizure in stroke survivors with infections.

In Stroke Survivors Relative Risk Ratio 95% Confidence Interval

Experiencing a seizure within 14 days after an infection 1.1968 [0.9344, 1.5330]

Experiencing a seizure within a year after an infection 2.4168 [1.9604, 2.9795]

TABLE 2 Risk ratio calculations of seizure in stroke survivors with infections.

In Stroke Survivors Relative Risk Ratio 95% Confidence Interval

Experiencing a seizure within 14 days after an infection
74

(74+2787+12+36−135)
349

(349+21360−6051)
e ln(1.5832)±1.96

����������

1
74+ 1

2700+ 1
349+ 1

15309

√

Experiencing a seizure within a year after an infection
110

(110+2787+12−867)
349

(349+21360−6051)
e ln(2.6525)±1.96

����������

1
110+ 1

1932+ 1
349+ 1

15309

√
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performing activities of daily living, mood assessment, therapy, and
medications by class. Each section contains data on all residents, and
most residents hadmultiple entries in the dataset. Thesemultiple entries
were a result of periodic assessments (e.g., 5-day, 14-day, 30-day, 60-
day, or 90-day post admission for Medicare Part A stays; admission,

quarterly, and significant change in status for other stay types) that
varied by resident when information would be updated. The date of the
assessment was noted, and a de-identified person number was used to
associate residents to all their assessments. The data was structured with
the same number of rows appearing across all sections, but each section

FIGURE 2
Demographic breakdown for fourteen-day risk.
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had a variable number of columns. The rows for each section match up
directly by row index, so any row across all sections were the same
assessment for the same resident. The columns were different sets of
features broken up by sections, and within each section columns were
related. For example, the therapy section contains columns for speech,
occupational, physical, and other types of therapy. For this analysis,
149 features were selected from the thousands of features across the
23 sections.

These features included demographics (age, gender, marital
status, race, height, and weight), treatments (physical therapy,
occupational therapy, speech therapy, recreational therapy,
psychological therapy, and medications), physical condition
(daily activities, mobility, balance), and behavior (mood, pain,
and delirium). These were the main feature groups, and all
features were composed of more specific subgroups within
these main groups. For example, in the category of physical
therapy, there were variables on weekly individual minutes,
concurrent minutes, group minutes, and number of days of
therapy per week. The selection of these features followed
other stroke survivor outcomes studies (Kelly-Hayes et al.,
1998; Gittins et al., 2020).

Features with more than 70% missing values were removed
(29 features removed). With 149 features to start, removing these
29 features reduced the total to 120. The remaining missing
values were imputed using a two-step process. First, the resident’s
most recent value from a prior or future assessment was carried
forward or backwards. For example, if age was missing but a
resident’s record from the previous month contained their age to
be 65, the missing record was filled in with 65. For some features,
no records were present for any entries, so as the second step,
these remaining missing values were imputed with the k nearest
neighbors method using five nearest neighbors. Missing values in
diagnosis codes such as stroke, seizure, and infection were
imputed with a zero indicating that event did not occur to
prevent possible misdiagnosis or error carried forward.
Dropping features with 70% missingness and using kth nearest
neighbors with five neighbors is relatively common in healthcare
datasets where missingness is relatively high (Wells et al., 2013;
Salgado et al., 2016; Jäger et al., 2021). The use of 70% is on the

higher end of what is found in the literature but was used as a
matter of practicality. If the missingness cut off is set too low, a
large proportion of data will be removed. Imputation using the
resident’s most recent value from another assessment and
imputation of diagnostics with zeros was author determined.
Imputation using the resident’s other assessment could cause
slight discrepancies, such as when imputing age, the method does
not consider the resident’s birthday (data element not available
for this work), but the imputed value is still likely to be very near
the true value and resident specific.

Following imputation of missing data, the data was balanced
using three methods. These methods were the Synthetic Minority
Oversampling Technique (SMOTE) for up sampling, Edited
Nearest Neighbor (ENN) for down sampling, and SMOTEENN
for up and down sampling. Applying each balancing technique
resulted in three sets of balanced data that then underwent three
feature selection methods: Least Absolute Shrinkage and Selection
Operator (LASSO), Recursive Feature Elimination (RFE), and
Principal Component Analysis (PCA). These methods were
selected from other studies that aimed to predict seizures post-
stroke (Bunney et al., 2022; Looti et al., 2023; Lekoubou et al.,
2024). These studies did not consider infections post-stroke;
however, incorporation of post-stroke infections is not
expected to significantly impact the results of feature selection
methods. A balancing and feature selection technique was then
chosen to apply to four different modeling methods: Logistic
Regression, Random Forest, XGBoost, and Neural Network.
Logistic regression was chosen for its distinction as one of the
most fundamental modeling methods due to its linearity
assumption, low computational intensity, and parametric
interpretability. XGBoost and Random Forest were chosen due
to their non-linear nature and ability to guard against underfitting
and overfitting respectively. Neural Network was chosen because
it is also non-linear and is not a tree-based model making for more
interesting model comparisons and it has a strong ability to
handle more complex relationships.

Hyper parameters for Logistic Regression (penalty: L1, L2 and C:
0.01, 0.1, 1, 10), XGBoost (learning rate: 0.1, 0.01, 0.001; and
maximum depth: 1, 5, 10, 20), Random Forest (maximum depth:

TABLE 3 Model performance metrics for fourteen-day risk prediction.

Parameter Logistic Regression XGBoost Neural Network Random Forest

AUC 0.8380 0.9999 0.9988 0.9999

Accuracy 0.7654 0.9999 0.9991 0.9998

Recall 0.7838 0.9999 0.9999 0.9997

True Positive Rate (TPR) 0.7838 0.9999 0.9999 0.9997

True Negative Rate (TNR) 0.7468 1.0000 0.9981 1.0000

Sensitivity 0.7838 0.9999 0.9999 0.9997

Specificity 0.7468 1.0000 0.9981 1.0000

Positive Predictive Values (PPV) 0.7571 1.0000 0.9981 1.0000

Negative Predictive Values (NPV) 0.7743 0.9999 0.9999 0.9997

Precision 0.7571 1.0000 0.9981 1.0000
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1, 5, 10, 20; and n estimators: 200, 1,000, 10,000), and Neural
Network (maximum iterations: 100, 200; activation layer: logistic,
tanh; and number of hidden layers: 2, 8, 64, 128) were tuned using

GridSearchCV. This method used all combinations of
hyperparameters within each model then chooses the one with
the best specified metric, which in this case was ROC and AUC.

TABLE 4 K fold cross validation scores for fourteen-day risk prediction.

Cross Validation Scores Logistic Regression XGBoost Neural Network Random Forest

Score 1 0.7687 0.9997 0.9971 0.9993

Score 2 0.7796 0.9998 0.9956 0.9998

Score 3 0.7623 0.9997 0.9978 0.9998

Score 4 0.7707 0.9998 0.9970 0.9998

Score 5 0.7745 0.9996 0.9986 0.9994

Average CV Score 0.7721 0.9997 0.9972 0.9996

FIGURE 3
Shap values for top features to explain contribution to the model.
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For example, the Logistic Regression method tested a total of six
different models and chose the hyperparameters that yielded the
greatest AUC of the six. For Logistic Regression, the selected
hyperparameters were a penalty of L2 and a C of 0.1. The
XGBoost model yielded 0.1 for the learning rate and 10 for
maximum depth. Random Forest resulted in 10 for maximum
depth and 1,000 for n estimators. Lastly, Neural Network chose
100 for maximum iterations, tanh for the activation layer, and 64 for
the number of hidden layers.

Model performance was evaluated using prediction metrics such
as Receiver Operator Curve Area Under the Curve (AUC), accuracy,
recall, true positive rate, true negative rate, sensitivity, specificity,
positive predictive values, negative predictive values, and precision.
Data was split 80% and 20% for the training and testing set. Within
the training set, 5-fold validation was used for tuning
hyperparameters. The testing set was used to evaluate the model
performance and interpretation. Model interpretation was evaluated
with SHapley Additive exPlanations (SHAP).

3 Results

3.1 Demographics

Figure 2 shows the demographic breakdown of residents who
suffered a seizure within 14 days post infection. From these
demographics, older residents were more prevalent. The figure
also shows that post-infection seizures were more prevalent in
men, despite the MDS dataset containing primarily female
residents. For the other demographic features, the trend
follows those of the overall MDS dataset, so they are not as
significant.

3.2 Model

The selected models used SMOTEENN for data balancing
and all four models (Logistic Regression, XGBoost, Random

FIGURE 4
Direction of SHAP values for top features.
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Forest, and Neural Network) were assessed for prediction quality
and feature interpretation. The data balancing method was
chosen based on the breakdown of the classes. For ENN, the
distribution of no seizures after infection to seizures following
infection was 99% and 1%, which was likely the result of highly
imbalanced data that interrupts the methodology of ENN and did
not allow for down sampling. For SMOTE, the distribution was
49% and 51%, and for SMOTEENN the distribution was 50% and
50%. Because SMOTEENN yielded the most equal distribution,
this data balancing method was selected.

For feature selection, PCA was adjusted to a range of
component numbers and used the same set of features as the
other methods, but this method was not selected since it did not
allow for the same degree of interpretability. For RFE, results
suggested that no features needed to be removed from the model.
RFE worked by fitting a model with all the features then ranked
each feature depending on the contribution to the model. Features
were then removed based on if they meaningfully contributed to
the scoring metric, which was Area Under the Receiver Operator
Curve (AUC) for this study. Results indicated no features were to
be removed so all features meaningfully contributed to the AUC.
For LASSO, 17 features were suggested to be removed from the
model. The LASSO method worked by assigning a coefficient to
each feature based on its contribution to the model then shrinking
the coefficients using the selected regularization parameter alpha,
in this case alpha was 0.00001. A cut off was set of 0.001, meaning
any features with a coefficient smaller than this value (features
whose coefficient shrunk to zero) would be removed. If no
coefficients were reduced to zero, then no features were
removed. However, we took the conservative approach of siding
with RFE which gauged all features as important keeping all
features in the models.

For modeling methods, Logistic Regression, XGBoost, Neural
Network, and Random Forest all yielded accurate prediction
results (Table 3). Overfitting was assessed through K-fold
cross validation with five folds on the training set, and the
result of the cross validation returned five scores also close in
value and confirmed that these models were not overfit (Table 4).
However, the high accuracy generated by XGBoost, Neural
Network, and Random Forest may have been a result of data
balancing, where up sampling created more distinct entries that
were easier to predict.

3.3 Interpretation

For model interpretation, the features that contributed the most
to the model were those with the greatest absolute value of the SHAP
values. Figure 3 demonstrates the features with the greatest
contribution (absolute SHAP value) whereas Figure 4
demonstrates the direction of that contribution (positive or
negative). It was important to interpret results from all four
models since all models had a strong prediction ability, and
comparison between models could identify similar features.
Across all four models, it can be seen that the amount of therapy
a person receives, their ability to be independent, and their overall
mood contributed the most to predicting seizure following infection
(Figure 3). For therapy, this was in the form of the number of

minutes for speech, occupational, and physical therapy as well as the
distinct calendar days and frequency of the therapy. For
independence, this was in the form of activities for daily living
for walking, mobility, eating, and dressing. Finally, mood was
categorized based on mood severity score and the use of
medications like antidepressants, antianxiety, and antipsychotics.
Other notable features include antibiotic medications, diuretic
medications, therapeutic diet, continence, and recall ability.
Demographics also contributed to the model with age and gender
being the most prominent.

Figure 4 demonstrates the direction of impact for each feature.
Some features present in one model indicate the opposite effect in
another model, or the direction is challenging to distinguish. However,
across all four models it appears that residents who receive more
therapy (speech, occupational, and physical), had lower ADL scores
(more independent), and had a lower mood severity score (more
positive mood), and took mood related medications (antidepressant
or antianxiety) had lower risk of post-infection seizure. Lower age and
male gender were associated with higher risk, but this was not as
consistent across models as other findings.

4 Discussion

The models achieved a prediction accuracy between 76.5% and
99.9% for whether a stroke survivor will experience a seizure after an
infection. It is plausible that data imputation and synthetic data
created by up sampling artificially improved these metrics leading to
an overly optimistic view of model performance. In other words,
with balancing having a focus primarily on up sampling, the number
of entries in the dataset was synthetically increased. These synthetic
entries could have caused the dataset entries to become more
distinct, making it easier to predict post-infection seizures. Up
sampling also caused there to be more data and was thus more
computationally intensive for future steps. However, up sampling is
meant to reduce the bias of the majority class by up sampling the
minority class, so the computational intensity is a tradeoff for
reduced bias. Testing the model on larger, national populations
would help to minimize adverse effects caused by up sampling and
validate the resulting high accuracy. By focusing on all four models
and their interpretation, the goal is to make the results more
generalizable to future nursing home residents. The short-term
contribution of the model is the use of SHAP values which allow
for model interpretation, furthering the understanding of the
relative importance of risk factors. Understanding feature
importance through the SHAP values can guide the development
of strategies to mitigate the effect of seizure risk for high-risk stroke
survivors experiencing an infection.

The three main types of features that contributed the most to
predictions were therapy, independence in locomotion and activities
of daily living, and overall mood. The features best used to interpret
the model are those related to therapy minutes (speech,
occupational, and physical), distinct calendar days of therapy, the
independence score for activities of daily living, mood severity score,
use of antidepressant medications, use of antianxiety medications,
and use of antipsychotic medications. The SHAP values indicated
that stroke survivors who received more therapy, were able to be
more independent, and had a better overall mood were at a lower
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risk of seizure following an infection. These results align with
literature that has suggested that adults with epilepsy who
exercise regularly reduce their risk of seizures (Nakken et al.,
1990; Mario Arida et al., 2010). This is also true of adults with
epilepsy who remain in a better mood and experience less stress to
reduce their seizure risk (Jackson and Turkington, 2005; Sawyer and
Escayg, 2010; McKee and Privitera, 2016). Regarding independence
in stroke survivors, a decrease in independence leads to decreased
mood during the recovery process (Albanese et al., 2020). This could
indicate that as stroke survivors recover and become more
independent, they would improve their mood and subsequently
reduce their seizure risk. Although stroke survivors are not the same
as people with epilepsy, stroke survivors still experience neurological
complications thus have a risk of seizures. Identifying these features
of therapy, independence, and mood allows healthcare providers
and researchers potential levers for those residents at greater risk.

These features can be determined early, within the first
2 weeks of a resident’s admission to the SNF. When a resident
enters a SNF, a therapy plan is set in place including the number
of minutes of therapy they will receive each week. As time goes
on, this plan will be updated to reflect their treatment needs, but
from their admission assessment, physicians can estimate
resident risk based on the number of minutes in the plan.
Additionally, the resident receives scores for their mood
severity and their independence during their first 14-day
assessment. This would mean that residents who begin to
show signs of less positive mood (have a high mood severity
score), are more dependent (higher ADL scores), and receiving
less therapy would be categorized as high risk. Providers could
then identify these patients and determine if additional care is
appropriate. Ultimately, the decision relies on the provider to
take action to improve resident care, but this study helps
contribute to the field of known risk factors. However, as this
study is correlational and the studied population often have
complex multi-morbid conditions, it is difficult to know
whether the occurrence of therapy reduces the risk of seizure
or if individuals with a risk of seizure are less able to receive
therapy, or perhaps both. Disentangling this relationship will
better inform resident care.

Other features that meaningfully contribute are those for
antibiotic medications, antianxiety medications, PRN (pro re
nata) pain medications, diuretic medications, gender, and
therapeutic diet. Antibiotics are a less useful contribution since
the use of antibiotics indicates an infection, which was already pre-
established. Antianxiety, pain, and diuretic medications could once
again be indicative of patient severity, but they could also indicate
the possible presence of acute drug intoxication. Drug intoxication
from antidepressants and pain medications has been found to cause
seizures in patients with epilepsy (Chen et al., 2016), and it is
possible that stroke survivors in SNF could also suffer from the
same outcome. For the demographic factors, gender was previously
discussed with the finding that males had a greater proportion of
post infection seizure, and gender is also shown as a top contributing
feature across models. Therapeutic diet was another feature found to
contribute and represent the resident receiving altered meals to
promote recovery. This feature likely represents a modifiable factor
since lifestyle changes like diet tend to be important for promoting
resident wellbeing.

In a simple reading of the results, if a resident is high risk,
healthcare providers could enroll the resident in additional therapy
time, encourage more independence, and focus on improving mood
to reduce seizure risk. However, it is imperative to note that many
important features may be signals of the severity of the resident’s
condition rather than levers that can be pulled to improve their
condition. For example, the results show that more therapy minutes
are associated with reduced risk of seizure following infection.
However, it may be the case that residents who are physically
able to have therapy have less severe complications following
their stroke. The severity of a resident’s condition following the
stroke may be the influential factor underlying both the number of
therapy minutes and the likelihood of seizure. Nevertheless,
identifying these associations is valuable in furthering the
discussion around improving post-stroke care in SNFs. That the
model establishes associations rather than causal relationships
should be considered as a limitation.

Aside from the resident post-stroke severity limitation, another
limitation of the model is the way in which dates of the strokes,
infections, and seizures are established. For determining the date of
the event occurrence, the assessment date was used (or the date in
which the SNF filled out the MDS data form). This is typically the
practice for diagnosis dates for the MDS (Hua et al., 2021). However,
it is likely that there is a lag between the time the event occurred and
the assessment date. This means that a seizure could have occurred
days prior but was not noted in the MDS until the date of the
assessment. Therefore, the assumption was made that the lag time
for all events to assessment was approximately the same. This would
mean that the exact date of the event occurrence was not accurate,
but the relation of the events to one another would be reasonably
accurate. This assumption can be validated by the events in the MDS
being chronological for individuals, such that the relation of events
to one another is accurate (Mor et al., 2011). Thus, the time
thresholds of 75 days between stroke and infection and 14 days
between infection and seizure would be chronologically accurate
with the exact time difference having some undetermined degree
of error.

Similar to this relation between dates, there is also the possibility
of error carried forward between assessments. For example, it was
seen in the dataset that once a resident experienced a seizure, it often
appeared in later consecutive assessments. This was caused by SNF
staff using previous assessment data instead of reassessing the
resident each time. The reason for this can be a variety of factors
like understaffing, overcrowding, and distraction that cause staff to
try to save time in completing assessments (Bowman, 2013). This
made it challenging to distinguish repeated infections that then led
to seizures in individual residents. As a result, unique residents were
used for modeling, meaning that the residents could only have the
stroke to infection to seizure pathway once. This caused the risk ratio
to potentially indicate a smaller risk than if occurrences were
evaluated. Additionally, this could have compromised some
prediction and interpretation ability of the model. By only
looking at one occurrence for each resident, it is possible that
risk factors that contributed to a second or third occurrence
would have been overlooked. This may also be the reason the
model predicted so accurately if a first occurrence was easier to
predict than subsequent occurrences. Although using unique
residents may underestimate the risk ratio and miss risk factors
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in later occurrences, prevention of false post-infection seizures from
error carried forward is more important. Risk factors can still be
obtained by looking at unique residents, but using false post-
infection seizures could skew results.

Even with the limitations of the model, it still serves as an
effective tool for interpretation. Infections were associated with
an increase in the risk of a seizure in stroke survivors through the
calculation of a risk ratio and in the predictive model. The
interpretability aspect of this model with SHAP allowed for
the main factors that contribute to risk to be identified. These
main factors that contribute to risk can help guide resident care.
Looking into the future, this model and others in this research
space could eventually be established to run in the background to
continuously assess resident risk. Currently, the prediction aspect
is not at the desired level for implementation into care, but with
more iterations, the technology could eventually reach a high
level. Hence these goals would be more suitable for long-term
progress across the entire healthcare research field rather than
individual study improvement. More realistically,
implementation of the models on other datasets to confirm
model performance and evaluate generalizability would be a
more obtainable short-term goal. For an even longer-term goal
bordering science fiction, having risk assessment across all
resident diagnoses and all outcomes would be the greatest
improvement for healthcare. For now, this individual resident
risk and the interpretability of the model can help guide resident
treatment to generate better outcomes for stroke survivors.

5 Conclusion

This machine learning model demonstrated a high degree of
accuracy in predicting the occurrence of a seizure within 14 days
following an infection in the population of stroke survivors at skilled
nursing facilities. The interpretability of the model allowed for
specific therapy, independence, and mood related features to be
identified that are associated with the risk of seizure occurrence. This
interpretability of the model can be used by healthcare providers to
guide treatment decisions to prevent seizures in residents who
suffered an infection.
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Introduction: Fetal heart rate monitoring during labor can aid healthcare
professionals in identifying alterations in the heart rate pattern. However,
discrepancies in guidelines and obstetrician expertise present challenges in
interpreting fetal heart rate, including failure to acknowledge findings or
misinterpretation. Artificial intelligence has the potential to support
obstetricians in diagnosing abnormal fetal heart rates.

Methods: Employ preprocessing techniques to mitigate the effects of missing
signals and artifacts on the model, utilize data augmentation methods to address
data imbalance. Introduce amulti-scale long short-termmemory neural network
trained with a variety of time-scale data for automatically classifying fetal heart
rate. Carried out experimental on both single and multi-scale models.

Results: The results indicate thatmulti-scale LSTMmodels outperform regular LSTM
models in various performance metrics. Specifically, in the single models tested, the
model with a sampling rate of 10 exhibited the highest classification accuracy. The
model achieves an accuracy of 85.73%, a specificity of 85.32%, and a precision of
85.53% on CTU-UHB dataset. Furthermore, the area under the receiver operating
curve of 0.918 suggests that our model demonstrates a high level of credibility.

Discussion: Compared to previous research, our methodology exhibits superior
performance across various evaluation metrics. By incorporating alternative
sampling rates into the model, we observed improvements in all performance
indicators, including ACC (85.73% vs. 83.28%), SP (85.32% vs. 82.47%), PR (85.53%
vs. 82.84%), recall (86.13% vs. 84.09%), F1-score (85.79% vs. 83.42%), and
AUC(0.9180 vs. 0.8667). The limitations of this research include the limited
consideration of pregnant women’s clinical characteristics and disregard the
potential impact of varying gestational weeks.

KEYWORDS

fetal heart rate, long short-termmemory, classification,multi time scale, artificial intelligence

1 Introduction

Fetal heart rate (FHR) serves as an indicator of the fetal heart and central nervous
system’s reaction to factors such as blood pressure, blood gases, and acid–base balance. In a
clinical setting, FHR analysis can aid in the identification of fetal distress, placental
abruption, chorioamnionitis, and other medical conditions (Sykes et al., 1983; Newton,
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1993; Usui et al., 2007). FHR monitoring during labor is a valuable
tool for detecting alterations in fetal heart rate patterns indicative of
insufficient fetal oxygenation, enabling timely intervention by
obstetricians to mitigate the risk of hypoxic injury or mortality.
Electronic fetal monitoring (EFM) is currently recognized as a
crucial modality for evaluating intrauterine fetal wellbeing and
oxygenation levels (Sweha et al., 1999), owing to its ease of use
and non-invasive nature. Consequently, EFM has emerged as an
essential adjunctive screening method in obstetrics, with its
utilization expanding in both antenatal and intrapartum settings.

The recording of dynamic changes in fetal heart rate can serve as
an indirect indicator of fetal oxygen supply in utero, facilitating early
detection of acute and chronic intrauterine hypoxia or asphyxia,
thereby enhancing clinical efficiency. The cardiotocography (CTG)
generated by EFM displays both FHR and uterine contractions,
providing insights into their interplay (Alfirevic et al., 2017).
Presently, three widely utilized clinical criteria exist for evaluating
FHR monitoring. The first method of FHR interpretation discussed
in academic literature is the nonstress test (NST) categorization
outlined in the guidelines of the Society of Obstetricians and
Gynecologists of Canada (SOGC), which classifies FHR as
normal, atypical, and abnormal (Liston et al., 2007). The second
approach is the three-tier FHR system jointly developed by the
American College of Obstetricians and Gynecologists (ACOG), the
Society for Maternal-Fetal Medicine (SMFM), and the National
Institute of Children’s Health and Human Development (NICHD),
which divides FHR into categories I, II, and III according to
established criteria (Macones et al., 2008). The third source of
guidance is the consensus guidelines on intrapartum fetal
monitoring by the International Federation of Gynecology and
Obstetrics (FIGO) and the National Institute for Health and
Clinical Excellence (NICE), which categorize fetal monitoring
into three classes: normal, suspicious, and pathological (Ayres-de
Campos et al., 2015). The assessment of CTG basic features for each
classification focuses on baseline, baseline variability, accelerations,
and decelerations. However, despite standardized guidelines,
discrepancies in recommendations and variations in obstetrician
expertise contribute to significant diversity in observer
interpretation of FHR.

In recent years, there has been an increasing integration of artificial
intelligence (AI) technology in the healthcare sector, particularly in
domains necessitating multifaceted inputs for evaluation and prompt
decision-making. One notable application is in the realm of electronic
fetal heart monitoring during labor and delivery. Using AI canminimize
the variability among observers, enabling real-time interpretation of
FHR data to prevent overlooking necessary interventions and enhance
neonatal outcomes. Furthermore, AI provides a more standardized
interpretation of the analysis of FHR monitoring findings.

Numerous researchers have endeavored to categorize FHR
utilizing a blend of feature extraction and machine learning
techniques. Georgoulas et al. (2006) conducted feature extractions
in both time and frequency domains in conjunction with
morphological features and applied a support vector machine
(SVM) to classify the features. Spilka et al. (2012) utilized three
types of features for classification, including 11 FIGO-like features,
14 heart rate variability-based features, and eight nonlinear features.
Following dimensionality reduction, the classification model was
trained using naive Bayes, SVM, and the C4.5 decision tree

algorithm. Dash et al. (2014) incorporated additional features
related to FHR responses to uterine contractions and
subsequently conducted a comparative analysis of three
generative models using SVM methods. Comert et al. (2016)
utilized software to extract 21 features and implemented an
extreme learning machine for data analysis. Spilka et al. (2017)
advocated for sparse SVM classification, which offered the
advantage of selecting a reduced number of features to detect
various FHR patterns. In addition to traditional FHR features,
techniques such as short-time Fourier transform (STFT), gray
Level Co-occurrence matrix (GLCM) (Comert and Kocamaz,
2018), wavelet transform (Comert and Kocamaz, 2017), and
common spatial pattern (CSP) (Alsaggaf et al., 2020) were
employed to enhance classification performance.

All these methods were hindered by the requirement for feature
extraction, which was typically done manually or with computer
assistance. In response to this challenge, researchers introduced deep
learning techniques to facilitate automatic feature extraction and
classification. Convolutional neural networks (CNNs) have shown
exceptional performance in image classification and have been
extensively utilized in the medical field. Given that FHR signals are
one-dimensional, researchers have explored various approaches to
transform FHR signals into two-dimensional images, including
STFT (Comert et al., 2019), continuous wavelet transform (CWT)
(Zhao et al., 2019a), and recurrent plot (RP) (Zhao et al., 2019b). FHR
analysis can be conducted using one-dimensional convolutional neural
networks (1D-CNN) (Ismail Fawaz et al., 2019) as a time series method.
Li et al. (2019) segmented 20-min FHR signals into 1–16 segments and
applied 1D-CNN to analyze each segment, aggregating results through
a voting mechanism. Cao et al. (Cao et al., 2023) employed a
multimodal deep learning architecture (MMDLA) that integrates a
CNN to extract high-level features from preprocessed
cardiotocographic signals and maternal clinical data, thereby
improving model performance. Zhou et al. (2023) proposed the
trend-guided long convolution network (TGLCN), a deep learning
methodology that integrates convolution kernel selection, residual
structures, and attention mechanisms. Baghel et al. Baghel et al.
(2022) utilized a Gaussian Butterworth band pass filter in
conjunction with the CNN for the diagnosis of fetal acidosis.
Furthermore, recurrent neural networks (RNNs), specifically long
short-term memory (LSTM) networks, are crucial in FHR
classification. Gao and Lu (2019) employed bidirectional LSTM
(BiLSTM) for the segmental classification of FHR.

Although previous studies have made significant advances, certain
challenges also persist, including imbalanced datasets affecting model
performance and limited research on features at various time scales. To
address these issues, this article introduces amulti-scale LSTMnetwork.
The article makes three key contributions: 1) Introducing a data
augmentation methodology for time series to enhance datasets and
address data imbalance. 2) Training LSTM models at different time
scales through finetuning. 3) Proposing multi-scale LSTM networks to
enhance model performance.

The subsequent sections of this article are organized as follows:
Section 2 outlines the database utilized, the processing procedures
applied, and the proposed methodology. Section 3 presents the
experimental findings and compares them with previous studies.
Section 4 provides a summary of the research and outlines potential
future directions.
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2 Methods

2.1 Dataset description

The dataset utilized in this study is the CTU-UHB database
(Chuda´cõek et al., 2014), an open-access repository comprising
552 recordings obtained at University Hospital in Brno (UHB)
during the period of 2010–2012. Each recording is composed of two
components: the cardiotocography (CTG) and clinical data. The CTG
data are captured using three distinct methods: ultrasound Doppler
probe, direct scalp measurement, or a hybrid approach. The CTG data
encompass FHR and uterine contractions sampled at a rate of 4 Hz,
resulting in four data points per second for each parameter.

The clinical data include information regarding fetal status and
parameters concerning puerperal and newborn infants. Table 1
displays a portion of the clinical statistics obtained from the CTU-
UHB database. Umbilical artery pH serves as a recognized marker for
fetal acidemia, a condition associated with neonatal complications,
such as multiple organ dysfunction in newborns (Sehdev et al., 1997;
van den Berg et al., 1996). Studies have shown a relationship between
FHR and variations in umbilical artery pH (Singh et al., 2021).
Consequently, we employed the umbilical artery pH values from
the clinical data to classify our dataset into two separate groups in
Figure 1. In accordance with the established criterion that a pH value
exceeding 7.15 signifies a normal condition, a total of 439 samples
were classified as normal, and 113 samples were categorized as
pathological based on their pH value (Comert et al., 2018).

2.2 Data preprocessing

During the data collection process,missing signals and artifactsmay
arise in the original data due to external factors such as limitations in
data acquisition by ultrasound probe andmaternal and fetal movement,
necessitating the preprocessing of data. The process is as follows:

(1) The original data are divided into 1-min segments, each
containing 240 points. Then, the number of zero-value

points f0 are counted, and the data loss rate LR is
calculated according to Eq. 1.

LR � f0

240
× 100%, (1)

if LR ≥ 40%, this data segment will be discarded.

(2) When the FHR value is greater than 220 times per minute
or less than 60 times per minute, it is treated as an
abnormality due to poor contact with the acquisition
device. The linear random interpolation method is used
to replace the abnormal data. The formula of linear
random interpolation is displayed according to Eq. 2.

fin � λfbefore + 1 − λ( )fafter, (2)

where λ is a random factor, and fbefore and fafter are values before
and after the missing point.

Due to too many missing signals in some recordings, the
number of recordings in the dataset decreased to 550, with
439 normal recordings and 111 pathological recordings.

There are only 550 recordings in the dataset, and the ratio of
normal recordings and pathological recordings is 4:1. The limited
number of recordings and the ratio of normal to pathological
readings can easily cause model overfitting. The length of
recordings varies from 60 to 90 min. Under the instruction of
obstetricians, we take 20-min signals to do further analysis. Thus,
the dataset can be augmented by window slicing (Liang and Lu,
2023). The specific process is given as follows:

Step 1: For an FHR time series T � t1, t2, . . . , tn{ }, choose the
length of slicing window s and step length k;

Step 2: Obtain the first slice with a window T1 � t1, . . . , ts{ };
Step 3: Move the window to get T2 � tk+1, . . . , tk+s{ }, ..., Tm �

tmk+1, . . . , tmk+s{ } and stop the process when mk + s> n.
Figure 2 shows the signals before and after preprocessing. In this

article, we chose s � 4800 and k � 600, which implies generating 20-
min samples with the beginnings of two adjacent samples that are
2.5 min apart. An example of a slice operation is shown in Figure 3.

After data augmentation, the number of normal samples
increased to 6382 from 439, and the number of pathological

TABLE 1 Patient and labor outcome statistics for the CTU-UHB
cardiotocography database.

Mean Min Max

Maternal age (years) 29.8 18 46

Parity 0.43 0 7

Gravidity 1.3 1 11

Gestational age (weeks) 40 37 43

pH 7.23 6.85 7.47

Base excess (BE, mmol/L) −6.36 −26.8 −0.2

Base deficit in extracellular fluid (BDecf, mmol/L) 4.60 −3.40

Apgar 1 min 8.26 1 10

Apgar 5 min 9.06 4 10

Neonatal weight(g) 3408 1970 4750

FIGURE 1
Class distribution.
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samples increased to 1615 from 111. Because the two classes were
still imbalanced, we chose 1,615 from 6,382 normal samples
randomly to create a new dataset with all pathological samples.

2.3 LSTM networks

An LSTM is a special kind of RNN designed to solve the problem
of long-term dependency (Hochreiter and Schmidhuber, 1997).

The workflow of the LSTM cell at time t is as follows: the
hidden state of the previous moment and the input of the current
moment enter the forget gate, input gate, and output gate for
calculation and then update the cell state and hidden state. The
input gate can decide what new information can be stored in the
cell state, and the output gate determines what information can
be output based on the cell state. The forget gate can decide what
information will be discarded from the cell state. The calculation
process is according to Eqs 3–8.

ft � σ Wfhht−1 +Wfxxt + bf( )
. (3)

it � σ Wihht−1 +Wixxt + bi( ). (4)
c̃t � tanh W

˜ch
ht−1 +Wc̃xxt + b~c( ). (5)

ct � ft · ct−1 + it · c̃t. (6)
ot � σ Wohht−1 +Woxxt + bo( ). (7)

ht � ot · tanh ct( ). (8)

The architecture of LSTM cell is shown in Figure 4.

2.4 Multi-scale LSTM networks and
voting mechanism

In clinical practice, obstetricians primarily utilize nonstress
testing (NST) as the main modality for evaluating prenatal FHR.
The SOGC (Liston et al., 2007) guidelines stipulate that interpreting
NST results requires assessing various parameters, including baseline
FHR, baseline variability, accelerations, and deceleration, each of which
must be evaluated across different time intervals. For instance, the
baseline FHR denotes the mean level of FHR over a 10-min period,
excluding any accelerations, decelerations, or notable variability, and
requires a minimum of 2 min of uninterrupted observation.

In contrast, acceleration and deceleration are typically evaluated
within a time frame of less than 30 s. Consequently, the model must
possess the capability to encompass both enduring characteristics
that signify the general pattern in FHR data and fleeting
characteristics that indicate minor fluctuations in specific areas.
In accordance with this principle, we adopt the strategy of training
numerous models by downsampling the data at varying frequencies.
Downsampling is a prevalent technique in the processing of time
series data. Downsampling facilitates the hybrid model in extracting
data features across various time scales, thereby mitigating
computational expenses and eliminating data redundancy (Liu
et al., 2021).

Subsequently, each dataset undergoes downsampling by
distinct sampling intervals before being inputted into diverse
time-scale LSTM models. These outputs of multi-scale models
are aggregated using weights to yield the ultimate result,
represented by the final result vector y denoting the

FIGURE 2
Data before and after preprocessing.
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probability of data belonging to each category. The computation
process is according to Eqs 9, 10.

y � Σn
i�1ωiyi. (9)

Σn
i�1ωi � 1, (10)

where yi is the output vector of the i-th model and ωi is the
corresponding weight value of i-th model. The architecture of
multi-scale LSTM networks is shown in Figure 5.

2.5 Evaluation index

The confusion matrix is a commonly utilized tool for assessing
the efficacy of models in classification tasks (James et al., 2013). In
the context of the binary classification discussed in this article, a
confusion matrix with dimensions of two rows and two columns
represents the frequency of four distinct prediction outcomes.

The metrics employed in our study include accuracy (ACC),
specificity (SP), precision (PR), recall, F1-score, and area under the
curve (AUC). ACC provides a comprehensive measure of the
accuracy of predictions, while SP emphasizes the proportion of

accurately identified negative samples. The constraints of electronic
fetal monitoring contribute to a notable false positive rate in
obstetric diagnoses. Inaccurate identification of pathological
conditions may result in unwarranted medical interventions (Li
et al., 2019). Therefore, it is imperative to consider precision and
recall metrics, which evaluate the accuracy of positive predictions
and the proportion of successfully detected positive samples. The
F1-score represents the harmonic mean of PR and recall, while the
quality index is calculated as the geometric mean of SP and
sensitivity. The metrics mentioned above are calculated according
to Eqs 11–15.

ACC � TP + TN

TP + FP + TN + FN.
(11)

SP � TN

TN + FP
. (12)

PR � TP

TP + FP
. (13)

Recall � TP

TP + FN
. (14)

F1 − score � 2 · PR · Recall
PR + Recall

. (15)

FIGURE 3
Slice operation. (A) Original data. (B) Slices of original data.
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3 Experiments and results

3.1 Experimental settings

The experiment was carried out utilizing the PyTorch deep
learning framework in Python, along with additional packages such
as Numpy and Scikit-learn. The hardware configuration includes an
Intel(R) Core (TM) i9-10900X CPU @ 3.70 Hz and an NVIDIA
GeForce RTX 2080Ti.

The hybrid model is composed of two LSTM layers, three full
connection layers, and an output layer, with each LSTM layer
containing 512 hidden units. In order to address overfitting, a
dropout rate of 0.2 is applied before the full connection layer.
The output dimension is reduced to 2 through the full

connection layers, with the final activation function being
softmax for classification. The optimizer used is Adam, and the
loss function employed is cross-entropy. To enhance the
convergence of the network, we implemented a learning rate
decay strategy during the training process consisting of
2,000 epochs. The initial learning rate was set at 0.001 and
decreased by a factor of 10 after 500 and 1000 epochs.

The models were trained using a 10-fold cross-validation
approach, where the dataset was partitioned into 10 subsets,
each containing 323 samples. Nine subsets were utilized to train
the model, while the remaining subset was used to test its
performance. Following the training and testing of 10 models
on the test set, the mean and standard deviation of the results
were calculated.

FIGURE 4
The architecture of an LSTM cell.

FIGURE 5
The architecture of multi-scale LSTM networks.
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3.2 Results analysis

Initially, the experiments were conducted to examine the impact
of varying sampling rates on the efficacy of the model. The results
presented in Table 2 indicate that the model exhibits optimal
performance at a sampling rate of 10. Specifically, ACC and F1-
score metrics demonstrate an improvement of approximately 5%

compared to the next highest-performing model, while the SP and
PR metrics show an enhancement of approximately 4.5%. The
model’s performance improves with increasing sampling
intervals, potentially due to its enhanced ability to discern
between normal and pathological data by capturing long-term
features. Furthermore, larger sampling intervals serve to diminish
the impact of noise signals within the data.

TABLE 2 Comparison of the performance of different models.

Model ACC (%) SP (%) PR (%) Recall (%) F1-score (%) AUC

Sampling Rate = 4 74.49 ± 5.15 73.93 ± 4.33 74.15 ± 4.56 75.05 ± 6.54 74.57 ± 5.42 0.7699 ± 0.0552

Sampling Rate = 6 75.05 ± 4.39 73.68 ± 4.95 74.43 ± 4.53 76.41 ± 4.64 75.38 ± 4.34 0.7854 ± 0.0443

Sampling Rate = 8 78.39 ± 5.87 77.95 ± 6.51 78.22 ± 6.04 78.83 ± 6.56 78.47 ± 5.9 0.8193 ± 0.0626

Sampling Rate = 10 83.28 ± 4.37 82.47 ± 5.24 82.84 ± 4.68 84.09 ± 4.69 83.42 ± 4.24 0.8667 ± 0.0479

Multi-scale Model 1 85.73 ± 2.5 85.32 ± 3.68 85.53 ± 3.19 86.13 ± 3.1 85.79 ± 2.43 0.918 ± 0.0278

Multi-scale Model 2 84.92 ± 3.67 84.51 ± 5.06 84.78 ± 4.42 85.33 ± 4.01 85 ± 3.54 0.914 ± 0.0316

Multi-scale Model 3 84.18 ± 3.5 87.86 ± 5.15 87.11 ± 4.67 80.5 ± 5.12 83.56 ± 3.67 0.8992 ± 0.0375

FIGURE 6
ROCs of different models.
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Three different multi-scale models were constructed by
manipulating the quantity and magnitude of the component
models. Multi-scale Model 1 comprises four sampling rates: 4, 6,
8, 10. Multi-scale Model 2 utilizes models with sampling rates of 4, 8,
and 10, whereas multi-scale Model 3 exclusively integrates models
with sampling rates of 8 and 10. The superior performance of all
multi-scale models over the single models is evident in Table 2,
indicating that the incorporation of multi-scale features aids in
mitigating overfitting to some degree and enhances categorization
accuracy. Multi-scale Model 1 demonstrates superior performance
on ACC, recall, F1-score, and AUC, suggesting that incorporating
diverse time-scale features enhances classification accuracy.
Conversely, Model 3 exhibits higher SP and PR but
comparatively lower performance on other evaluation criteria.
The ROC curve depicted in Figure 6 illustrates the discriminative
capabilities of single models versus multi-scale models, with the
latter showcasing an enhanced ability to distinguish between
two classes.

3.3 Discussion

In this research, we introduce a multi-scale LSTM model
integrated with models that target various time scales.
Experimental analyses were carried out on both single and
multi-scale models. The results demonstrate that multi-scale
LSTM models outperform regular LSTM models in various
performance metrics. Specifically, among the single models
tested, the model with a sampling rate of 10 exhibited the
highest classification accuracy. Incorporating alternative
sampling rates into the model resulted in enhancements across
all performance indicators, including ACC (85.73% vs. 83.28%),
SP (85.32% vs. 82.47%), PR (85.53% vs. 82.84%), recall (86.13%
vs. 84.09%), F1-score (85.79% vs. 83.42%), and AUC
(0.9180 vs. 0.8667).

To illustrate the importance of our model, the outcomes of
both machine learning (Comert et al., 2018; O’Sullivan et al.,
2021; Ben Barek et al., 2023) and deep learning approaches (Liu
et al., 2021; Singh et al., 2021) utilizing the identical dataset are
presented in Table 3. Our model exhibits superior performance
in terms of ACC, SP, PR, recall, and AUC compared to the
aforementioned machine learning methods (Liu et al., 2021;
Singh et al., 2021). Furthermore, when compared to a specific
model (Liu et al., 2021), our model demonstrates notably higher
levels of ACC, SP, and recall. It is worth noting that the model

discussed (Singh et al., 2021) achieves an ACC of 69.6%,
potentially attributed to the limitations of CNNs in capturing
temporal features effectively. This observation suggests that our
model possesses enhanced classification capabilities.

In conclusion, the proposed model demonstrates enhanced
performance in the classification of FHR. This model offers
several advantages, including directly classifying FHR signals
without the need for complex feature extraction processes and
ensuring immediate discrimination. Additionally, incorporating
various time-scale signals enables the model to effectively learn
both long-term and short-term features, thereby optimizing overall
performance.

4 Conclusion

In this study, a multi-scale LSTM model was developed for the
automatic classification of FHR. The publicly available CTU-UHB
database was utilized for this purpose. Following data preprocessing
and enhancement, FHR signals were employed as input for the
models. The proposed model demonstrated the ability to identify
pathological FHR patterns. Experimental results indicate that our
model outperforms common LSTM models and previous research
efforts in terms of various metrics. Specifically, the model achieved
an accuracy, specificity, and precision of 89.78%, 91.36%, and
91.03%, respectively. Our work presents significant contributions
in utilizing the LSTM model for extracting hidden features from
FHR signals, eliminating the need for manual feature extraction.
Additionally, incorporating various time-scale features enhances the
performance of the models. Ultimately, our model facilitates
intelligent recognition of FHR, aiding obstetricians in identifying
abnormal FHR patterns and supporting timely treatment
interventions.

Nevertheless, it is important to acknowledge the limitations
of our research. First, the clinical characteristics of pregnant
women, including maternal age and weight, can significantly
influence the classification results and should be taken into
consideration. Second, the data in the CTU-UHB dataset were
gathered 90 min prior to delivery, potentially overlooking the
impact of varying gestational weeks on fetal heart rate patterns,
particularly around 32 weeks. Moving forward, we plan to
establish partnerships with medical facilities to expand our
dataset by incorporating additional fetal heart rate, uterine
contraction, and clinical information. Further analysis of
additional features should be conducted during the model

TABLE 3 Comparison of the proposed model with previous work.

References Method ACC (%) SP (%) PR (%) Recall (%) F1-score (%) AUC

Comert et al. (2018) EMD + DWT + SVM 67.00 67.26 \ 57.42 \ \

O’Sullivan et al. (2021) ARMA + SVM 83.3 77.7 \ 82.6 \ 0.809

Liu et al. (2021) CNN-BiLSTM + Attention, DWT 71.71 ± 8.61 70.81 ± 12.20 \ 75.23 ± 9.58 \ \

Singh et al. (2021) HoloViz + CNN 69.6 \ 63 70 66 \

Ben Barek et al. (2023) LR \ \ \ \ \ 0.74

Ours Multi-scale LSTM 85.73 ± 2.5 85.32 ± 3.68 85.53 ± 3.19 86.13 ± 3.1 85.79 ± 2.43 0.918 ± 0.0278
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construction process, and adjustments to the model structure
should be made in order to enhance classification accuracy.
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Objective: Recognizing emotions from electroencephalography (EEG) signals
is a challenging task due to the complex, nonlinear, and nonstationary
characteristics of brain activity. Traditional methods often fail to capture
these subtle dynamics, while deep learning approaches lack explainability.
In this research, we introduce a novel three-phase methodology integrating
manifold embedding, multilevel heterogeneous recurrence analysis (MHRA),
and ensemble learning to address these limitations in EEG-based emotion
recognition.

Approach: The proposed methodology was evaluated using the SJTU-SEED IV
database. We first applied uniform manifold approximation and projection
(UMAP) for manifold embedding of the 62-lead EEG signals into a lower-
dimensional space. We then developed MHRA to characterize the
complex recurrence dynamics of brain activity across multiple transition
levels. Finally, we employed tree-based ensemble learning methods to
classify four emotions (neutral, sad, fear, happy) based on the extracted
MHRA features.

Main results: Our approach achieved high performance, with an accuracy of
0.7885 and an AUC of 0.7552, outperforming existing methods on the same
dataset. Additionally, our methodology provided the most consistent recognition
performance across different emotions. Sensitivity analysis revealed specific
MHRA metrics that were strongly associated with each emotion, offering
valuable insights into the underlying neural dynamics.

Significance: This study presents a novel framework for EEG-based emotion
recognition that effectively captures the complex nonlinear and nonstationary
dynamics of brain activity while maintaining explainability. The proposed
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methodology offers significant potential for advancing our understanding of
emotional processing and developing more reliable emotion recognition
systems with broad applications in healthcare and beyond.

KEYWORDS

heterogeneous recurrence analysis, emotion recognition, multi-channel EEG, dynamic
system, ensemble learning

1 Introduction

The brain, one of the most intricate systems of the body, has
been a subject of great interest for researchers aiming to unravel its
complexities (Wolpaw and Birbaumer, 2006). The complexity of
underlying nature (genetics) and the effect of nurture (life choices
and experiences) creates an infinite number of possible stimuli and
interactions, resulting in an evolving dynamic system within the
brain. Understanding this dynamic system is crucial due to its
pivotal role in various domains, including cognition, behavior,
sleep, neurological disorders, and emotion (Lindquist et al., 2012;
Akhand et al., 2023). To thoroughly explore this dynamic system,
advanced technologies like functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG) have been employed to
measure brain activity and study interactions with the environment
(Jellinger, 2003; Haynes and Rees, 2006; Tong and Pratte, 2012).
Recently, EEG has become available as a wearable technology,
making it an ideal choice for continuous monitoring of neural
processes and brain activity.

Emotions are complex psychophysiological processes, yet
universally, they are experienced similarly by all people. Thus,
the study of emotion recognition has garnered significant
attention in various fields, such as neurology, computer science,
cognitive science, and psychology (Lindquist et al., 2012; Akhand
et al., 2023). Prior research has leveraged the time-domain, (Liu
et al., 2021; Chen D. et al., 2023), frequency-domain, (Gao et al.,
2019; Houssein et al., 2022; Akhand et al., 2023), or time-frequency
domain methods (Yuvaraj et al., 2023) to extract the features within
EEG signals to identify emotions. Recent research (Chang et al.,
2022; Yang et al., 2022) has focused on leveraging artificial
intelligence and neural network models to enhance the accuracy
and efficiency of emotion classification based on EEG data (Li
J. et al., 2021; Tian et al., 2021). Dan et al. introduced a
clustering-promoting semi-supervised method to enhance the
performance of emotion recognition (Dan et al., 2021). Wang
et al. established a convolutional neural network (CNN)
framework for emotion recognition (Wang et al., 2020). These
advancements not only contributed to the field of neuroscience
but also have practical applications in human-computer interaction
and mental health diagnoses (Chai et al., 2018). Thus, EEG has
become an important technology for objective emotion recognition
(Peng et al., 2023).

Recent developments in EEG-based emotion recognition have
focused on improving classification accuracy and robustness
through various techniques such as feature fusion, dynamic
functional connectivity analysis, and deep learning architectures.
Fusing frequency-domain features and brain connectivity features
has shown promising results in cross-subject emotion recognition
(Chen et al., 2022a). Dynamic functional connectivity analysis has

also been employed to capture the time-varying characteristics of
brain networks during emotional states (Liu et al., 2019). Novel deep
learning architectures, such as deep CNNs (Chen J. et al., 2019),
multi-scale masked autoencoders (Pang et al., 2024), transformer-
and attention-based CNNs (Li C. et al., 2021; Si et al., 2023) have
been proposed to enhance emotion recognition performance.
Domain adaptation techniques have also been explored to
facilitate the transfer of emotion recognition models across
different subjects (Chen et al., 2022b). In addition to emotion
recognition, EEG-based approaches have been applied to related
fields, such as P300 wave detection, driving fatigue detection, and
biometric authentication, where self-attentive channel-connectivity
capsule networks (Chen C. et al., 2023; Wang et al., 2023) and
attention-based multiscale CNN with dynamical graph
convolutional network (GCN) (Wang et al., 2021) have
demonstrated improved performance. Systems like E-Key (Xu
et al., 2023a) combine biometric authentication with driving
fatigue detection. EEG studies have also examined the effects of
aging, task difficulty, and training on working memory capacities,
highlighting EEG’s diverse applications in cognitive research (Xu
et al., 2023b).

Despite the progress made in EEG-based emotion recognition,
several challenges remain. First, the nonlinear and nonstationary
characteristics of EEG signals pose significant difficulties (Bazgir
et al., 2018). Most machine learning based methodologies, such as
linear discriminant analysis (Chen DW. et al., 2019), generalized
linear regression (Li et al., 2019a), or Fast Fourier Transform (FFT)
(Murugappan and Murugappan, 2013), often rely on linear
assumptions, which fail to capture the nuanced nonlinear and
nonstationary characteristics of EEG. Second, the complexity of
multiple EEG electrodes capturing the interaction of brain activity
and large volumes of data is another challenge. Deep learning
models can address this complexity; however, they suffer from
the “black box” problem while requiring substantial
computational resources. Third, EEG signals present challenges
in both temporal and spatial domains. While many studies focus
on the temporal aspects of emotions (Liu et al., 2010; Zheng et al.,
2019a), spatial information is equally important when adapting
these methodologies in the future to neurological, sleep, or
psychological disorders. Lastly, emotions are interconnected over
time, with current emotional states being influenced by past
emotions and potentially impacting future experiences (Thornton
and Tamir, 2017). These transitions, between past, present, and
future, have not been well studied using EEG signals.

To tackle these challenges, this paper presents an innovative
three-phase methodology that characterizes and quantifies complex
dynamic transitions of brain activities in multiple granularities while
retaining high resolution to detect emotions from multi-channel
EEG. In the first phase, manifold learning techniques are utilized to
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embed the dimensionality of high-dimensional 62-lead EEG signals
into a more manageable lower-dimensional space. This embedding
preserves the complex spatiotemporal characteristics of the signals,
offering rich insights into brain activity while enhancing
computational efficiency. In the second phase, we propose a
novel multilevel heterogeneous recurrence analysis to characterize
the nuanced, nonlinear, and nonstationary dynamic characteristics
of the EEG signals at different granularities within the state-space
domain. Our approach results in a quantification of dynamic
patterns characterizing underlying brain activity, which cannot be
achieved by other methods. The final phase employs ensemble
supervised learning models that utilize metrics that quantify
dynamic features and patterns within the EEG to classify each
emotion. Ensemble learning not only improves overall
performance but also provides a robust framework to prevent
potential overfitting and account for variability in EEG data. This
phase explains the decision-making processes underlying emotion
classification. Experimental results show that our proposed
methodology achieved accuracy and area under the receiver
operating characteristic (ROC) curve (AUC) values of 0.7885 and
0.7552, respectively. These results surpass state-of-the-art studies
using the same dataset. Moreover, our methodology provides the
most consistent performance across different emotions compared to
other models. Lastly, our method provides subtle quantifications
and rich insights into the dynamic features of brain activity related
to emotions.

In summary, this research introduces a novel recurrence
analysis-based methodology for EEG-based emotion recognition
that effectively captures the complex nonlinear and nonstationary
dynamics of brain activity while maintaining explainability. The rest
of this paper is organized as follows: Section 2 is a brief background
relevant to our methodology; Section 3 describes the dataset
employed to formulate our approach; Section 4 outlines the
proposed methodology, structured in three distinct phases;
Section 5 details the outcomes of our study; and Section 6 offers
an in-depth discussion of the insights gained and conclusions drawn
from our investigation.

2 Research background

In this section, we introduce the foundational concepts and
background of our novel methodology, multilevel heterogeneous
recurrence analysis (MHRA). We begin by discussing the basic
principles of recurrence analysis (RA) and its evolution into
heterogeneous recurrence analysis (HRA). Then, we review the
development and application of HRA to complex transitions,
which is further developed and refined into MHRA.

2.1 Recurrence analysis

Recurrence, defined as a situation where the state of a system at a
certain time is very similar to its state at one or more previous times,
is a fundamental feature of complex systems (Hatami et al., 2019).
From Poincaré’s initial descriptions of recurrence in the 1890s and
the subsequent introduction of Recurrence Analysis (RA) by
Webber and Zbilut in the 1980s (Khoo et al., 1996), the

development of this analytical method has continuously evolved.
In the early 2000s, Norbert Marwan and his colleagues made
significant contributions to refining and applying RA, thereby
enhancing its use across a variety of scientific fields, including
geophysics (Eroglu et al., 2014; Lucarini et al., 2016), physiology
(Khoo et al., 1996; Webber and Zbilut, 2005), meteorology
(Bouabdelli et al., 2020), economics (Mosavi et al., 2020), and
engineering (Shu et al., 2021). Consequently, RA has become one
of the most widely used tools for analyzing dynamic complex
systems. Note that the recurrence can be mathematically defined
as Ri,j in Eq. 1, indicating whether a recurrence exists between
system states si and sj. If the proximity of si and sj, measured by
‖si − sj‖, is smaller than a predefined threshold ϵ, then a recurrence
exists between si and sj (Eckmann et al., 1987; Marwan et al., 2007a;
Marwan, 2008).

Ri,j � H ϵ − si − sj
�

�

�

�

�

�

�

�
( )

(1)

whereH(x) is a Heaviside function, in whichH(x) � 1 if x≥ 0, and
H(x) � 0 otherwise; (Eckmann et al., 1987) st is the system state at
time t. The recurrence of the system over a period of observation
window is then represented as a symmetric matrix R � Rij,∀i, j{ },
which can be geometrically visualized as a Recurrence Plot (RP),
typically shown as a dot plot where each axis represents the entire
observation period and a dot plotted in the coordinate (i, j) indicates
a recurrence exists between time i and j. This visualization not only
highlights the frequency of recurrence but also reveals patterns and
structures indicative of the dynamical behavior of the system, such
as stability, periodicity, or chaotic dynamics (Eckmann et al., 1987).
With analyzing the sophisticated geometric patterns in the RP, the
nonlinear, nonstationary, and dynamic system characteristics are
then quantified and characterized, known as Recurrence
Quantification Analysis (Webber and Zbilut, 2005; Webber and
Marwan, 2015). Notably, Marwan et al. generalized RP from a two
dimensional matrix to a four dimensional tensor to capture the
recurrence patterns within spatial data (Marwan et al., 2007b). RA
has achieved tremendous success in various fields, for instance, it has
been used to improve the normalization of electromyography signals
(Avdan et al., 2023) detect series arc faults in photovoltaic systems
(Amiri et al., 2022) and analyze histopathological images (Wang and
Chen, 2022). Additionally, Donner et al. leveraged network topology
to interpret the recurrence matrix R, thereby developing a novel
analytical framework known as the recurrence network (RN). This
approach provides another perspective for effectively parsing the
dynamic features of complex systems (Donner et al., 2010; Donner
et al., 2011). Notably, our previous work developed an innovative
RN to analyze the complex patterns in spatial data, which has
already been implemented in characterizing surface roughness in
ultra-precision machining (Chen et al., 2018) and in detecting
invasive ductal carcinoma in breast cancer (Chen CB. et al., 2023).

2.2 Heterogeneous recurrence analysis

Traditional RA, including RP and RN, treats recurrence
homogeneously, which presents limitations when characterizing
nuanced dynamic features. To improve RA, Yang et al. developed
HRA, which addresses the heterogeneity of recurrence and
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dramatically enhances the analytical capabilities (Yang and Chen,
2014; Chen and Yang, 2015; Chen and Yang, 2016). HRA
differentiates recurrences based on the properties of system
states, categorizing each state st into K different groups, denoted
as L(st) � k ∈ 1, 2, . . . , K{ } for all t. It is crucial to note that the
states within one category share similar system properties, while
states in different categories exhibit distinct system properties.
Heterogeneous recurrence is mathematically represented as Eq. 2:

Ωij � L si( ) ·H 0 − L si( ) − L sj( )

�

�

�

�

�

�

�

�

�

�

( )
(2)

where L(st) indicates the category of state st for all t, ‖ · ‖ represents
the norm, and H(·) denotes a Heaviside function. This approach
means that if si and sj belong to the same category L(st), a
recurrence exists between si and sj in category L(si). This
method not only enhances the resolution of single-state
recurrences but also reveals the sophisticated dynamics of
transitions, which are often limited by conventional RA.
Furthermore, HRA employs the Iterated Function System (IFS),
an iterative projection function used to construct fractals, to project
a sequence of transitions into a fractal space. This utilization of a
fractal structure’s geometric features allows for a detailed
characterization of complex dynamic properties associated with
transitions (Yang and Chen, 2014). The analysis and
quantification of these geometric structures, termed
Heterogeneous Recurrence Quantification Analysis (HRQA),
enable HRA to provide greater resolution in characterizing
complex dynamic patterns. HRA has been successfully
implemented to characterize complex systems in various fields,
including finance (Zhang et al., 2023) medicine (Chen and Yang,
2015; Chen and Yang, 2016; Cheng et al., 2016; Chen et al., 2020;
Avdan et al., 2024) physics (Yang and Chen, 2014) and engineering
(Kan et al., 2016; Yang et al., 2020; Peng and Chen, 2023). Notably,
Chen et al. extended the HRA to develop Spatial HRA (SHRA) for
investigating complex recurrence patterns in spatial data. SHRA has
been implemented in medical imaging (Yang et al., 2020; Van
Booven et al., 2024a; Van Booven et al., 2024b) and additive
manufacturing (Chen R. et al., 2019; Chen, 2019). However,
while HRA can effectively characterize subtle nonlinear dynamic
properties including complex transitions of a system, there has been
little development of systematically investigating system dynamics
across multiple scales, which could reveal additional system
characteristics (Chen et al., 2017; Chen C-B. et al., 2019). To
address this gap, we developed a novel HRA-based methodology
to more precisely define multilevel transitions.

3 Data: 62-lead EEG signals

We utilized the Shanghai Jiao Tong University (SJTU) Emotion
EEG Dataset for Four Emotions (SEED-IV), a specific subset of the
broader SJTU Emotion EEG Dataset (available at https://bcmi.sjtu.
edu.cn/~seed/), to develop our methodology for emotion recognition
(Zheng et al., 2019b). The SEED-IV dataset includes both EEG and
eye movement signals associated with four distinct emotions, neutral,
sadness, fear, and happiness, collected from 15 college-aged
participants (seven males and eight females, aged 20–24, all right-
handed). Each participant was outfitted with a 62-channel EEG cap

(Compumedics Neuroscan, Australia) and eye-tracking glasses
(SensoMotoric Instruments, Germany). The data were gathered
while participants watched 72 carefully selected film clips, each
designed to elicit one of the target emotions. Each clip had a
duration of approximately 2 minutes and was shown only once to
avoid the effects of repetition. Participants attended three separate
sessions on different days, each comprising 24 trials with six trials per
emotion. Each trial began with a 5-s introductory hint, followed by a
45-s period for self-assessment, during which participants rated their
emotional experience. Data from participants who either did not
experience the intended emotion or exhibited weak emotional arousal
were excluded from the analysis. The primary objective of this
research is to identify these four emotions using dynamic features
extracted from multi-channel EEG signals. For the purposes of this
study, we focused exclusively on the raw EEG data from 62 channels,
capturing the complex brain dynamics associated with each emotional
state, while the eye movement data were not utilized in the analysis.

4 Multilevel heterogeneous recurrence
analysis for emotion recognition

This study aims to identify four emotions by analyzing the
complex spatiotemporal dynamics within high-dimensional EEG
signals. We developed a novel three-phase methodology, named
MHRA methodology, summarized in Figure 1, to accomplish this
goal. The methodology comprises the following phases: Phase 1.
Manifold Embedding: To preserve the intricate nonlinear
spatiotemporal characteristics of raw EEG data while minimizing
computational demands, we employed a manifold learning
technique. This method projects the high-dimensional EEG data
into a lower-dimensional space, thereby simplifying the dataset
while retaining its essential features. Phase 2. MHRA: To capture
the complex dynamic brain activity reflected in EEG signals, we
developed a novel MHRA. This approach systematically portrays the
multilevel dynamic characteristics of EEG data using fractal
structures and quantifies the geometric features of these fractals
to extract dynamic features for emotion recognition. Phase 3,
Supervised Ensemble Learning: To differentiate emotions based
on the dynamic properties extracted from EEG signals, we
utilized various advanced ensemble learning techniques, including
Random Forest, XGBoost, and Adaboost. The high accuracy
achieved by our proposed model highlights the crucial role these
dynamic properties play in effectively recognizing emotions. Further
details of each phase are discussed in the remainder of this section.

4.1 Phase 1: manifold embedding

Massive data sizes and high dimensionality are two notorious
obstacles in the field of data analytics. Effectively retaining data
properties while efficiently processing data is crucial. This study
analyzes data from 62-lead EEG signals, which presents significant
challenges due to their massive data size and high dimensionality.
Although these high-dimensional data offer superior spatiotemporal
resolution, the inherent complexities of these EEG signals
significantly increase the difficulties of data processing and
analysis. Particularly in terms of the highly computational
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demands they impose. Therefore, reducing analytical and
computational efforts to a manageable level while retaining
the original data’s spatiotemporal characteristics is essential.
Traditional dimensionality reduction techniques, such as
principal component analysis and singular value
decomposition, often fall short with large, complex datasets.
They tend to overlook the nonstationary, nonlinear features of
the data, leading to extended computation times and ineffective
dimension reduction outcomes that do not accurately reflect the
original data’s information (Roweis and Saul, 1979; Elgamal and
Hefeeda, 2015; Pouyet et al., 2018).

To address these challenges, we have utilized manifold
embedding, a technique within manifold learning that is
particularly effective at uncovering the low-dimensional
manifold structure embedded in high-dimensional spaces. It

allows us to map high-dimensional data onto a lower-
dimensional space efficiently, retaining the data’s intrinsic
and nonlinear properties. This simplification of the dataset
preserves essential spatiotemporal information, facilitating
further analysis (Turchetti and Falaschetti, 2019). Notably,
manifold embedding encompasses various techniques
collectively known as Nonlinear Dimensionality Reduction
(NLDR). Common methods within NLDR include Uniform
Manifold Approximation and Projection (UMAP), which
constructs a high-dimensional graph representation of the
data and then optimizes a low-dimensional graph to be as
structurally similar as possible; Locally Linear Embedding
(LLE), which preserves local properties of the data; Spectral
Embedding, which uses the eigenvalues of the graph Laplacian
to perform dimensionality reduction; Isomap, which preserves

FIGURE 1
Overview of three-phase methodology, MHRA methodology, applied to EEG for emotion recognition. Phase 1. Manifold Embedding: A manifold
learning method is applied to high-dimension EEG data to embed subtle nonlinear spatiotemporal characteristics into lower dimensions, reducing
computational demands. Phase 2. MHRA:We developed theMHRA to quantify dynamic transitions using fractal representation at multiple levels. Phase 3.
Supervised Ensemble Learning: Advanced ensemble learning methods are leveraged to analyze MHRA metrics for emotion recognition.
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geodesic distances between data points; and t-distributed
Stochastic Neighbor Embedding (t-SNE), which minimizes
the divergence between two distributions: a distribution that
measures pairwise similarities of the input objects and a
distribution that measures pairwise similarities of the
corresponding low-dimensional points in the embedding
(Meilă and Zhang, 2024).

To select the most appropriate NLDR method, we consider both
the quality of dimensional reduction and computational efficiency.
For assessing reduction quality, we utilize cross-entropy to compare
the differences between the original and reduced signals. Cross-
entropy is expressed as Eq. 3:

C l( ) � −∑

t

l st( )‖ ‖log st‖ ‖( ) (3)

where l(st) is the lower-dimensional projection of signals st
converted by function l(·), and ‖ · ‖ takes L2-norm of multi-
channel signals. The NLDR technique with the best retention of
original signals within the reduced signals will have the lowest cross-

entropy value, indicating they contain a similar amount of
information.

We evaluated each NLDR technique by analyzing a 10%
random sample of SEED-IV data across ten replications. The
performance of these manifold embeddings is presented in
Figure 2. Panel A displays the average running time, while
Panel B shows the average cross-entropy. Note that a lower
running time indicates better efficiency, and a lower cross-
entropy signifies higher information retention. For our 62-lead
EEG data, UMAP not only achieved the lowest cross-entropy but
also the best performance in terms of running time (Mcinnes
et al., 2020), as indicated by a red asterisk. We used the same
criteria, running time and cross-entropy, to determine the
optimal number of embedding dimensions, referring to the
number of dimensions in the lower-dimensional space. Our
findings reveal that as embedding dimensions increase, the
running time grows exponentially, while the improvement in
cross-entropy diminishes. Figure C demonstrates these trends in
UMAP, and it shows that the optimal performance, both in terms

FIGURE 2
Evaluation of NLDR Methods and selecting the optimal number of Embedding Dimension. Panels (A, B) compare five manifold embedding
candidates by running time and cross-entropy, respectively, indicating that UMAP is the best method for our specific dataset. Panel (C) illustrates how
running time and cross-entropy were used to identify four as the optimal number of embedding dimensions to preserve critical spatiotemporal features
within the dataset.
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of running time and cross-entropy, occurs at four embedding
dimensions. Notably, we also fine-tuned hyperparameters for all
the manifold learning methods to optimize embedding
performance. For our final selected method, UMAP, these
hyperparameters included the number of neighbors (set to 5),
the minimum distance between points in the low-dimensional
space (set to 0.1), and the spread of the data points (set to 1.0).
These settings were chosen to balance the retention of the data’s
intrinsic structure and computational efficiency. Consequently,
UMAP was selected to embed the 62-lead EEG signals into four
dimensions, effectively balancing critical spatiotemporal feature
retention with computational efficiency.

4.2 Phase 2: multilevel heterogeneous
recurrence analysis

After embedding the 62-lead EEG signals into a low-
dimensional space, we deployed the proposed MHRA to
characterize the dynamic spatiotemporal characteristics of brain
activity. The MHRA is a state-space domain method comprising
three major steps: 1. Heterogeneous state-space representation, 2.
Fractal representation, and 3. Generalized HRQA. These steps
outline a systematic and comprehensive approach to
characterizing complex dynamic systems.

4.2.1 Heterogeneous state-space representation
To capture and delineate the recurrence dynamics of a

system, we first transform time series data into a trajectory
within a state space, S, representing all possible states of the
system. Notably, each point of a d-dimensional time series is
projected as a corresponding point in the d-dimensional state-
space, denoted by st � (x1t , x2

t , . . . , x
d
t ) ∈ S, where each dimension

of the state space corresponds to a different measure of the
system. Consequently, the evolution of the time series data
forms a trajectory in this space, denoted as s � s1, s2, . . . , st{ },
and the geometric properties of this trajectory reveal the dynamic
characteristics of the system.

Subsequently, to achieve a higher resolution of the recurrence
properties, we constructed a heterogeneous state-space by dividing
the original state-space, S, into K subspaces, Sk, denoted as
S � ⋃k∈ 1,...,K{ }Sk. This segmentation helps differentiate
recurrences, as system states within the same subspace exhibit
similar system properties, and states in different subspaces
display distinctly different system properties. Notably, there are
many space segmentation methods that serve different purposes.
This study utilizes one of widely used space segmentation method,
Voronoi tessellation (Asghar et al., 2020), focusing on the similarity
within each subspace when segmenting heterogeneous state-spaces.
Therefore, by assigning the system states within the same subspace
the same category label, denoted as
L(st) � k,∀st ∈ Sk,∀k ∈ K � 1, . . . , K{ }, where L is a label
assignment function maps each state st to a categorical variable
k, the trajectory of evolution forms a categorical sequence that
reveals the dynamic transitions within the system. To ensure that
the trajectory retains sufficient patterns to accurately represent
sophisticated emotions, a 20-s window was employed to capture
the characteristics of brain activity in this study. Figure 3

conceptually illustrates the process of heterogeneous state-space
representation used in this study. Initially, the embedded EEG
signals are transformed into a trajectory within the state space
(shown in three dimensions for better visualization).
Subsequently, a space segmentation method, Voronoi tessellation,
is employed to create a heterogeneous state-space representation,
where each Voronoi cell represents a distinct subspace. By assigning
a category to each subspace, the EEG signals are converted into a
categorical sequence that reveals the dynamic evolution of
brain activity.

Notably, Voronoi tessellation, typically a semi-supervised
method, requires specifying the number of subspaces in advance.
Selecting an inappropriate number of subspaces can significantly
impact the effectiveness of information extraction. Determining the
optimal number of subspaces is thus crucial for accurately
representing the heterogeneous state-space. This research utilized
the Davies-Bouldin Index, a measure of clustering quality, to find the
optimal number of subspaces. Initially, as illustrated in Figure 4,
we divided the original state-space into 10 subspaces and
incrementally evaluated up to 100 subspaces. The black line
represents the Davies-Bouldin Index, the smooth blue line
indicates a fitted curve of the index values, and the grey
shading denotes the confidence interval. A lower Davies-
Bouldin Index indicates more effective clustering, with clear
separation between subspaces. The index stabilized after
45 subspaces, identifying this number as optimal for our
dataset. Accordingly, we segmented the state-space into
45 distinct subspaces to enhance the resolution of dynamic
characteristics.

4.2.2 Fractal representation
To characterize the dynamic characteristics of state transition

patterns, this study leverages the fractal topological structure to
capture the nuanced features. Fractals are mathematical
structures portrayed by self-similarity, meaning each part of
the fractal replicates the whole on a smaller scale. This
intrinsic property makes fractals particularly suited for
modeling heterogeneous recurrences, as their recursive nature
can effectively mirror the irregular and complex patterns
observed in such phenomena. By employing fractals, one can
capture the nuanced nonlinear and nonstationary variations
inherent in heterogeneous recurrences, providing a more
accurate and comprehensive understanding of their dynamics
(Yang and Chen, 2014; Cheng et al., 2016; Kan et al., 2016; Yang
et al., 2020).

Therefore, after the embedded EEG signals are converted into a
trajectory in the heterogeneous state space, revealing the system’s
evolution, the trajectory is then projected into a fractal space using
Iterated Function System (IFS). Notably, this IFS projection is a one-
to-one mapping where each trajectory forms its own fractal
structure that reveals the nuanced recurrence dynamics (as
shown in Figure 5). Each transformed point strategically captures
its transition order prior to its corresponding point in the
state sequence.

The IFS iteratively maps each element of categorical sequence, k,
which reflects the category of subspace of the corresponding
embedded EEG signals, L(st) � k ∈ K, to a unique IFS address in
the fractal circle through the following function (Eq. 4):
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FIGURE 3
Heterogeneous State-Space Representation. This flowchart illustrates how EEG signals are transformed into a trajectory within the heterogeneous
state space, and how these transitions are categorized into a dynamic sequence. The EEG signals are first transformed into a trajectory within the state
space, followed by the application of Voronoi tessellation to segment the space into distinct subspaces. Each subspace, represented as a Voronoi cell, is
assigned a specific category, illustrating the formation of a categorical sequence that captures the dynamic evolution of brain activity.

FIGURE 4
Determining the Optimal Number of Subspaces Using the Davies-Bouldin Index. This index assesses the effectiveness of different subspace
configurations, with a lower score indicating better clustering quality. The analysis suggests that 45 subspaces provide the most informative clustering in
this study.

FIGURE 5
Fractal Structure Construction. Panel (A) displays the trajectory of system evolution as a categorical sequence, and (B) illustrates the projection of
this trajectory into a unique fractal structure using an Iterated Function System (IFS). The self-similar nature of the fractal enables the investigation of
dynamic patterns across multiple scales. (C) Depicts a second-level fractal derived from (B), revealing dynamic characteristics on a different scale.
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where Φ (k, I(t − 1)) maps an IFS address I(t) based on the
subspace category k at time t and incorporates the influence of all
previous states provided by I(t − 1). The circular address is
determined by two components: (1) current state and its
assigned category variable k, via the transformation
(cos(2πk/K), sin(2πk/K))T; (2) all the previous states,
adjusted by a scaling factor α, through the iterative function.
Note that α is defined as α � τ · sin(π/K)/(1 + sin(π/K)) to
ensure address remains distinct, where 0< τ < 1 (in this
study, τ � .99).

This IFS is designed to provide a self-similar fractal structure that
embeds the information from all previous states, thereby enabling the
formation of fractal patterns of spatial transitions at multiple scales.
Note that this fractal structure allows us to investigate dynamic
characteristics of transitions at multiple levels. For instance, as
shown in Figure 5B, the distribution of 15 individual subspaces,
1, 2, . . . , 15{ }, shows the recurrence variations in different subspaces,
named first-level transition; Figure 5C reveals the recurrence variations

of two-state transitions, 1 → 13{ }, 2 → 13{ }, . . . , 13 → 13{ }{ }, named
second-level transition, in a zoomed-in fractal of Figure 5B. This fractal
representation precisely captures the nuanced characteristics of
system dynamics.

Notably, different trajectory patterns form various fractal

structures that reveal diverse dynamic characteristics of the

corresponding systems. As demonstrated in Figure 6, trajectories

of three different dynamic systems, including random, Lorenz, and

Rossler attractors, along with their corresponding fractal structures

in the first- and second-level transitions are quite different. It is

noteworthy that systems with more randomness typically yield a less

informative fractal structure, whereas systems with specific patterns

yield a more distinctive fractal structure that is characteristically

unique. Thus, analyzing the topological structure of multilevel

fractals increases the resolution of dynamic system properties.
However, fractal representation is sensitive to the categorical labels,

which are presented as a sequence of consecutive positive integers from
1 to K, each indicating a specific subspace within the state-space. As
Figure 7 illustrates, even when the same trajectory underlies the same
heterogeneous state-space structure, various fractal structures can
emerge due to different subspace label assignments. This variability
significantly influences the effectiveness of dynamic characterization.
Therefore, since the dynamic characteristics of the system are derived by
analyzing the fractal topology and complexity, optimizing subspace
label assignments is crucial for achieving the most accurate fractal
representation.

FIGURE 6
Trajectories of Dynamic Systems with Corresponding Fractal Structures. This figure illustrates the trajectories and fractal patterns of three dynamic
systems: (A) random attractor, (B) Lorenz attractor, and (C)Rossler attractor. The top layer figures indicate the trajectories of the systems, the second- and
third-layer figures illustrate the corresponding fractal structures of first- and second-level transitions. The topological structures of fractals characterize
the dynamic properties of the systems.
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However, determining the optimal subspace label assignment
is a challenging task. For example, to evaluate all possible
45 subspace assignments would be 45! (approximately
1.1962e+56) scenarios, making it impractical to exhaustively
test all permutations to find the best assignment. To address
this challenge, we propose a novel Genetic Algorithm (GA) to
achieve a heuristic solution for optimizing subspace label
assignment, as illustrated in Algorithm 1. GA is a type of
evolutionary algorithm which generates solutions to problems
inspired by natural selection (Holland, 1992).

INPUT:

S: Initial sequence from which to create the

trajectory

K: Number of distinct labels (derived from S if

not provided)

l.size: Size of the sample Pool

slt: Number of instances to select for reproduction

pm: Mutation probability

ga.iter: Number of iterations for the

genetic algorithm

1 BEGIN:

2 //Initialize GA parameters

3 GAobj � GNW(S,K)//Create network structure

representing the trajectory of S

4 //Generate initial population

5 SamplePool � GAinit(K,l.size)//Create a sample pool

of sequence for GA

6 //Genetic algorithm main loop

7 FOR iter � 1 TO ga.iter DO

8 //Evaluate fractal dimension of each instance in

the sample pool

9 FOR EACH instance IN SamplePool DO

10 fitness[instance] � Fitness(instance,GAobj)
11 END FOR

12 //Select top individuals for reproduction

13 Selected � select top(fitness,slt)
14 //Update sampling pool through reproduction

and mutation

15 SamplePool � reproduce and mutate(Selected,pm)
16 //Optional: Convergence check to break loop early

17 IF check convergence(fitness) DO
18 BREAK

19 END IF

20 END FOR

21 //Determine the best solution

22 BestSolution � find best(SamplePool)
23 RETURN BestSolution

Algorithm 1. Genetic Algorithm for Optimizing Label Arrangements.

*Fitness function returns the fractal dimension of the fractal
structure generated by the input instance.

In this study, we modified the GA as follows:

• Initial Population: Started with 50,000 random subspace label
assignments, each offering a unique labeling approach within
the EEG state-space.

• Evaluation: Each assignment is assessed for fractal complexity
to gauge effectiveness in describing the underlying
trajectory structure.

• Selection and Generation: Post-evaluation, another
50,000 assignments are generated using genetic crossover
and mutation techniques to explore new solutions.

• Optimization: Assignments with the highest fractal
complexity, indicative of effective system dynamics capture,
are selected.

• Iteration: This cycle of generation, evaluation, and
optimization continues until a fractal complexity threshold
is reached or no further improvements are observed.

Note that fractal complexity in this study is measured using the
Minkowski fractal dimension, which involves covering the fractal
with boxes of a specific size and counting the number needed to
completely cover the fractal. This process is repeated with
progressively smaller boxes (Hunt et al., 1939). The Minkowski
fractal dimension for a fractal F can be mathematically expressed as
Eq. 5:

dimbox F( ) � lim
ε→0

log ξ ε( )
log 1

ε

(5)

where ξ denotes the number of boxes with a side length of ε. A higher
Minkowski dimension suggests a more complex fractal, implying
that it retains richer information.

4.2.3 Generalized heterogeneous recurrence
quantification analysis

The fractal representation clusters the system’s trajectory at
multiple scales with fractal structures, which demonstrate the
heterogeneous recurrence dynamics of a system on the two-
dimensional coordinates. To effectively capture this heterogeneity in
system recurrences, a new measurement approach has been developed
that employs the fractal structure for quantifying these heterogeneous
recurrences (Yang and Chen, 2014; Chen and Yang, 2015; Chen and
Yang, 2016). Rather than treating all recurrences uniformly, this
method, known as HRQA, specifically characterizes recurrent
patterns based on the diverse states or transitions that are mapped
onto the fractal structure, thereby enhancing the analytical capabilities
of recurrence quantifiers. Chen and Yang derived a series of HRQA
methodologies based on this fractal representation (Yang et al., 2020).
However, traditional HRQAmethods encounter scalability issues when
attempting to quantify transitions at different levels. In response to this
challenge, this research introduces a generalized HRQA system that
addresses scalability issues to assess system recurrences. This advanced
system allows for a more nuanced analysis of the dynamics inherent
within different level transitions.

To quantify the fractal representation, the first step is to identify
the sets of states falling into different level transitions in the fractal
representation. Since the IFS assigns unique addresses in the circles to
clusters of state sets, we define these heterogeneous recurrence sets
Ck1 ,k2 ,..,kN as Eq. 6:

Ck1 ,k2 ,..,kN � f k1|k2, . . . , kN( ): L st( ) � k1,L st−1( ) � k2, . . . ,{

L st−N+1( ) � kN,∀kt ∈ K} (6)
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Here, the subscript k1, k2, .., kN represents an Nth-level
transition sequence. For instance, Ck1 � L(st) � k1{ } represents
the recurrence set of first-level transition, and Ck1 ,k2 �
L(st) � k1,L(st−1) � k2{ } represents the recurrence set of the
second-level transition. Notably, we also define Cϕ as zero-level
transition to represent overall transitions without specifying any
transition pattern. This allows for the investigation and
quantification of the system dynamics from a comprehensive
system perspective. To simplify, we will use N to indicate the
k1, k2, .., kN in the subsequent discussion. The generalized HRQA
metrics are depicted in the following section.

4.2.3.1 Heterogeneous recurrence rate (HRR)

HRR N( ) � ═C/L( )

2

(7)

HRR quantifies the proportion of a specificNth-level transitionN
occurred in an observed sequence. Note that ═C represents the cardinality
of Ck1 ,k2 ...,kN and L indicates the length of the observed sequence.

4.2.3.2 Heterogeneous recurrence mean (Hmean)
To scale the HRQA for different Nth-level transition, we

define an adjusted distance dNi,j for two addresses i and j for
each Ck1 ,k2 ...,kN as dNi,j � di,j/αN, where di,j is the original distance,
α is the scaling factor in Eq. 4, andN indicates the transition level.
Then the generalized central tendency, variance tendency,
skewness, and kurtosis of one local fractal cluster for Nth-level
transition are quantified as in Eqs 8–13 shown below,
respectively.

HMean N( ) � ∑

═C
i� 1∑

═C
j� i+ 1d

N
i,j

═C ═C − 1( )/2
(8)

4.2.3.3 Heterogeneous recurrence variance (HVar)

HVar N( ) � ∑

═C
i� 1

∑

═C
j� i+ 1 dN

i,j −HMean N( )( )

2

═C ═C − 1( )/2
(9)

4.2.3.4 Heterogeneous recurrence skewness (HSkew)

HSkew N( ) �
∑

═C
i� 1

∑

═C
j � i + 1

dNi,j −HMean N( )( )

3

═C ═C− 1( )/2

HVar N( )

3
2

(10)

FIGURE 7
Impact of Subspace Label Assignment on Dynamic Feature Characterization. Both panels (A, B) display identical trajectories within the same
heterogeneous state-space structure, yet they have different subspace label assignments. These differences lead to the distinct fractal structures shown
in the lower layers of each panel, with varying fractal dimension values. Fractal dimension is used here to quantify the complexity of fractal structures,
where higher values indicate increased complexity and greater detail retention across scales.

TABLE 1 Number of LASSO selected HRQA metrics for each emotion.

Emotion Number of selected metrics

Neutral 216

Sad 270

Fear 89

Happy 108
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4.2.3.5 Heterogeneous recurrence kurtosis (HKurtosis)

HKurtosis N( ) �
∑

═C
i� 1

∑

═C
j � i + 1

dNi,j −HMean N( )( )

4

═C ═C − 1( )/2

HVar N( )

2 (11)

4.2.3.6 Heterogeneous recurrence entropy (HENT)

HENT N
( )

� −∑
B

b�1
Pr b( ) ln Pr b( )( ) (12)

4.2.3.7 Heterogeneous recurrence gini index (HGini)

HGini N
( )

� 1 −∑

B

b�1
Pr b( )2 (13)

Note that the calculation ofHENT(N ) utilizes Shannon entropy,
based on the probability distribution derived from the distance matrix
dNi,j. The histogram of distancematrix dN is segmented into B qual bins,
ranging from 0 to max(dN). Consequently, for every bin b up to B, the
probability of b is defined as Eq. 14:

Pr b( ) � 1
═C ═C − 1( )

#
b − 1
B

max dN
( ) < dN

i,j ≤
b

B
max dN

( ){ } (14)

We deployed the proposed generalized HRQA to quantify
the fractal representations derived from the embedded EEG. In
this research, we addressed different resolutions of dynamic
to the second-level transitions. A total 7 + 45 × 7 +
452 × 7 � 14497 HRQA metrics that delineate complex
dynamic brain activity were then extracted for emotion
recognition.

4.3 Phase 3: supervised ensemble learning

The final phase of our methodology is to develop a supervised
machine learning model that classifies the outcome using HRQA
metrics as the input. We chose ensemble learning for its ability to
handle complex, nonlinear patterns and relationships within the
data while achieving high accuracy in classifying the outcome. We
evaluated three decision-tree-based ensemble machine learning
algorithms, the adaptive boosting method (Adaboost), random
forest classification (Random Forest), and extreme gradient
boosting (XGBoost), for accurately identifying the four emotions.

Decision-tree-based ensemble machine learning methods
effectively handle complex nonlinear relationships by integrating
multiple decision trees. These methods continuously refine the
model by adding new trees specifically designed to correct errors
identified in existing trees. The methods evaluated in our
methodology differ primarily in their training approaches:
XGboost and Adaboost use boosting to focus on correcting

mispredictions by adjusting data weights, while Random Forest
employs bagging, sampling equally across data points. These
ensemble strategies surpass single tree models by leveraging a
majority vote from various trees, thus expanding the solution
space and reducing overfitting through averaged outcomes.

Although tree-based models are effective at capturing complex
relationships in data, their efficiency and performance can be
significantly influenced by the number of predictors. These
models are particularly sensitive to the inclusion of irrelevant or
noisy predictors, which can increase model complexity and lead to a
higher risk of overfitting, where the model learns the noise in the
training data rather than the underlying patterns (Hu and Li, 2022).
To overcome this issue, we employed the Least Absolute Shrinkage
and Selection Operator (LASSO) for variable selection to reduce the
number of HRQA metrics used in developing our emotion
recognition models.

LASSO is particularly effective for models burdened by high-
dimensional data, as it helps in reducing the risk of overfitting by
imposing a constraint on the sum of the absolute values of the model
parameters. This regularization process not only shrinks less
important feature coefficients to zero but also simplifies the
model by retaining only those variables that significantly
contribute to the predictive power (Roth, 2004).

We executed the LASSO algorithm 30 times and selected metrics
that consistently had non-zero coefficients across these runs. Table 1
illustrates the final number of HRQA metrics selected for each
emotion. Our results indicate that the emotions ‘Neutral’ and ‘Sad’
are associated with a broader range of dynamic characteristics of
brain activity, while ‘Fear’ and ‘Happy’ are linked to relatively
fewer features.

To identify the four emotions based on their dynamic
characteristics extracted from LASSO selected HRQA metrics, we
tailored a classification model for each specific emotion. We
evaluated three supervised ensemble learning methods, AdaBoost,
XGBoost, and Random Forest, for emotion recognition. For each
method we used the One-vs-All (OvA) strategy, where each emotion
was classified independently as the positive class against all others
grouped as the negative class. To ensure the robustness and
reliability of our models, we adopted a rigorous testing protocol.
The data was randomly split into a training dataset (90% of the total
dataset) and a testing dataset (remaining 10% of the total dataset) to
prevent any potential bias in model training. Then the training
dataset was used to develop three different models (AdaBoost,
XGBoost, and Random Forest) for each emotion (neutral, sad,
fear, happy); this process was repeated 30 times with each model
to ensure stability and consistency in the results. After training the
model, the testing dataset was used to validate the performance of
each model. Performance was quantitatively assessed by comparing
the predicted labels against the actual labels from the testing set,
calculating both the average and the standard deviation. In addition,
we conducted sensitivity analyses on the emotion recognition
models to investigate which dynamic characteristics are strongly
associated with specific emotions. This analysis helped identify key
features that significantly influence the models’ ability to accurately
classify different emotional states.

We assessed the effectiveness of ensemble learning models for
emotion recognition using two performance metrics: accuracy and
AUC. Accuracy is defined as (TP + TN)/(TP + TN + FP + FN),
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where True Positives (TP) represent actual positives correctly
predicted as positive, True Negatives (TN) represent actual
negatives correctly predicted as negative, False Positives (FP)
indicate actual negatives incorrectly predicted as positive, and
False Negatives (FN) refer to actual positives incorrectly
predicted as negative. The ROC curve is plotted with false
positive rate (1-specificity) on the x-axis against the true positive
rate (sensitivity) on the y-axis at various threshold settings.
Specifically, sensitivity � TN/(TN + FP) and specificity �
TP/(TP + FN). AUC represents the area under the ROC curve,
providing a single measure of overall model performance across all
classification thresholds. It is particularly valuable in the presence of
biased datasets, as it evaluates the model’s ability to discriminate
between classes without being influenced by class imbalance
(Nahm, 2022). A higher AUC value indicates better model
performance, with 1.0 representing perfect discrimination and
0.5 indicating no discriminative power beyond random chance.

To achieve optimal performance, we applied grid search
combined with 10-fold cross-validation to fine-tune the
hyperparameter settings for the supervised ensemble learning
methods, including Adaboost, Random Forest, and XGBoost. The
hyperparameters yielding the highest F1 score (calculated as 2·TP/
(2·TP + FP + FN)) on the validation dataset were selected. This
comprehensive tuning process involved exhaustively searching
through a predefined set of hyperparameters to find the optimal
combination, ensuring that each model was finely adjusted to
achieve the best possible performance. For Adaboost, we created
an ensemble of 500 weak learners without resampling with
replacement and used the Breiman method for adjusting weights.
For Random Forest, we built 800 trees, each considering 30 features
at each split, and used a 0.5 threshold for classification. For XGBoost,
we trained 500 deep trees to solve a binary classification problem
using logistic regression.

5 Results

We developed a comprehensive methodology consisting of three
phases to identify four emotions by analyzing the corresponding
complex dynamic characteristics in EEG. In this section, we
discussed the performance of the proposed methodology in three
perspectives. We initially compared the performance of three
ensemble learning models: AdaBoost, Random Forest, and
XGBoost. Then, we discussed the performance of each individual
emotion identification model under XGBoost. Finally, an overall
performance comparison with other models using the same dataset
was conducted.

5.1 Model performance of AdaBoost,
random forest, and XGBoost

To evaluate which ensemble learning model had the best
performance for emotion recognition, accuracy and AUC was
calculated for each specific emotion then averaged for each
model. Table 2 demonstrates that XGBoost and Random Forest
consistently achieved high accuracy and AUC, signifying excellent
stability across multiple trials, whereas AdaBoost did not. Since both

Random Forest and XGBoost achieved at least 0.75 in both accuracy
and AUC, this suggests that dynamic transition properties of brain
activity extracted from high-dimensional EEG signals using the
MHRA methodology, can effectively recognize emotions. Given
that accuracy was our primary performance criterion, XGBoost
with an average accuracy of 0.7885 and an AUC of 0.7552 was
selected as the best model for emotion recognition.

5.2 Performance of XGBoost for
each emotion

Figure 8 demonstrates the AUC curves for the XGBoost model’s
performance in recognizing four distinct emotions. The curves
reflect the varying levels of the model’s discriminatory ability for
each emotion. The AUC for ‘Sad’ shows the highest value at 0.7931,
indicating that the model is most effective at distinguishing ‘Sad’
from non-sad emotional states. ‘Neutral’ also demonstrates a robust
performance with an AUC of 0.7814. However, the AUCs for ‘Fear’
and ‘Happy’ are lower, at 0.7165 and 0.7299 respectively, suggesting
challenges in the model’s ability to consistently differentiate these
emotions from others. The lower AUC for ‘Fear’ indicates a
particular difficulty in discrimination, which could be due to the
nuanced nature of fear as an emotion. Conversely, despite ‘Happy’
having the highest accuracy, its AUC indicates less consistency in
distinguishing happiness, likely due to overlapping features with
other emotions.

In this section, we demonstrated the performance of XGBoost
into each emotion model, as shown in Table 3. The results indicate
that all the emotion models can achieve at least 0.77 for accuracy and
at least 0.71 for the AUC. The model excels in recognizing ‘Happy’
emotions, achieving the highest accuracy of 0.8127. The accuracies
and AUCs for ‘Neutral’ and ‘Sad’ are relatively higher and more
consistent, suggesting more reliable performance for these emotions.
Conversely, the AUCs for ‘Fear’ and ‘Happy’ are lower and show
greater variability, reflecting differences in the model’s ability to
consistently distinguish these emotions from others. The small
standard deviations associated with these metrics across all
emotions underscore the model’s stability and reliability in
performance across multiple iterations or subsets of the dataset.

5.3 Performance comparison to other
methodologies

To evaluate the performance of our methodology relative to
other methodologies, Table 4 compares our performance to other
methodologies using the same dataset: EmotionMeter, (Zheng et al.,
2019b), BiHDM, (Li et al., 2019b), RGNN, (Zhong et al., 2019),

TABLE 2 Performance of each ensemble model of all four emotions.

Method Accuracy AUC

Adaboost 0.7498 (0.0118) 0.5444 (0.0631)

Random Forest 0.7518 (0.0140) 0.7666 (0.0177)

XGBoost 0.7885 (0.0116) 0.7552 (0.0207)

*Mean (Standard Deviation).
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Fractal-SNN, (Li et al., 2024), Saliency-basedCNN, (Delvigne et al., 2022),
MetaEmotionNet, (Ning et al., 2024), ST-SCGNN, (Pan et al., 2024), and
MISNet (Gong et al., 2024). Our methodology not only outperformed all
of these models in overall accuracy (0.7885) but also demonstrated the
most stable performance among the repeated experiments, as
indicated by the lowest standard deviation (0.0207).

Notably, our methodology provided the most consistent
recognition performance across different emotions, with
average accuracies ranging from 0.7757 to 0.8127. This
consistency highlights the robustness and effectiveness of our
approach in capturing the subtle dynamics of brain activity. In
contrast, other methods showed varying strengths across specific
emotions. For example, EmotionMeter is more effective in
identifying ‘Happy’ and ‘Neutral’, BiHDM is more accurate in
recognizing ‘Neutral’ and ‘Sad’, RGNN and MetaEmotionNet are
specifically sensitive to ‘Sad’ and ‘Happy’, respectively, and
MISNet performs better in ‘Sad’ and ‘Happy’. This implies
that previous models struggle to grasp the nuanced activities

in the brain, likely due to their inability to fully capture the
complex characteristics of EEG signals. Collectively, this
indicates that complex brain activity can be effectively
characterized using dynamic recurrence properties with our
novel MHRA methodology.

These results highlight the robustness and effectiveness of our
approach in handling the complex, nonlinear, and nonstationary
characteristics of EEG signals. Our methodology’s ability to
maintain high accuracy across all emotions and its stable
performance in repeated experiments underscore its reliability
and potential for real-world applications. By comparing our
findings with the relevant literature, it is evident that MHRA not
only advances the state of the art in emotion recognition but also
provides a versatile method for analyzing complex brain dynamics.
This comprehensive analysis reinforces the value of our
contributions to the field and demonstrates the superiority of our
approach over existing methods.

In addition to achieving the highest accuracy in emotion
recognition, our methodology offers profound insights into the
specific dynamic features that drive emotional responses,
thereby enhancing our understanding of complex brain
activity. We demonstrate that variations in the distribution of
MHRA metrics are key indicators for emotion recognition,
providing robust evidence of our model’s superiority over
traditional ‘black box’ methods. For example, Figure 9
presents a sensitivity analysis of how specific HRQA
metrics vary in value across each emotion. Specifically, each
panel is one unique HRQA that corresponds to a dynamic
property that characterizes a specific transition between
different subspaces within the constructed heterogeneous
state-space.

FIGURE 8
The ROC curves for the XGBoost classifier applied to the testing set using the One-vs-All (OvA) strategy for four separate emotions. The emotions
“Neutral” and “Sad” exhibit relatively higher AUC values, indicating more reliable performance in distinguishing these emotions. Conversely, “Fear” and
“Happy” demonstrate lower AUC values, reflecting the model’s reduced consistency in differentiating these emotions from others.

TABLE 3 Performance of XGBoost method for each emotion.

Emotion Proportion (%) Accuracy AUC

Neutral 27.09 0.7790 (0.0009) 0.7814 (0.0164)

Sad 27.27 0.7868 (0.0102) 0.7931 (0.0196)

Fear 24.49 0.7757 (0.0137) 0.7165 (0.0251)

Happy 21.15 0.8127 (0.0130) 0.7299 (0.0215)

Average 25.00 0.7885 (0.0116) 0.7552 (0.0207)

*Mean (Standard Deviation).

The bold values indicate the average performance of the four emotion models.
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Panel A displays the HVar in the transition from subspace #21 to
subspace #39. Here, the ‘Neutral’ emotion exhibits the highest
average, suggesting significant variability during these transitions.
Panel illustrates the HEnt during transitions from subspace #25 to
subspace #40, with ‘Sad’ recording the highest average, indicating
pronounced entropy in these transitions. Panel C depicts the HRR

between subspaces #45 and #34. Here, ‘Fear’ stands out with the
highest average, reflecting a notable recurrence rate. Finally, Panel D
tracks inequality HGini in the transitions from subspace #35 to
subspace #31, where ‘Happy’ demonstrates the highest average,
highlighting significant inequality in these transitions. Each bar
chart is accompanied by a 95% confidence interval, providing a

TABLE 4 Accuracy of MHRA in emotion recognition (individual and overall) vs. other methods.

Authors Methodology Neutral Sad Fear Happy All (mean/s.d.)

Zheng et al. (2019) EmotionMeter 0.7800 0.6300 0.6500 0.8000 0.7058/0.1701

Li et al. (2019) BiHDM 0.7443 0.7273 0.5813 0.6350 0.6903/0.0866

Zhong et al. (2020) RGNN 0.7516 0.9192 0.7185 0.7435 0.7384/0.0802

Li et al. (2023) Fractal-SNN - - - - 0.6833/--------

Delvigne et al. (2023) Saliency based CNN - - - - 0.7442/0.0476

Ning et al. (2024) MetaEmotionNet 0.5393 0.6312 0.5052 0.7415 0.6120/0.0830

Pan et al. (2024) ST-SCGNN - - - - 0.7637/0.5777

Gong et al. (2024) MISNet 0.7071 0.8300 0.6319 0.8169 0.7460/0.0930

Wang et al. (2024) MHRA 0.7790 0.7868 0.7757 0.8127 0.7885/0.0207

The bold values shows the results of this research.

FIGURE 9
Sensitivity Analysis of Four selected HRQA Metrics. The four panels (A–D) display four selected HRA metrics for four emotions, respectively.
Specifically, Panel A shows HVar_41_39 has the highest value in “Neutral,” Panel B demonstrates HEnt_25_40 has the highest value in “Sad,” Panel C
illustrates HRR_45_34 has the highest value in “Fear,” and Panel D presents HGini_35_31 has the highest value in “Happy.” Each panel highlights a metric
where one emotion scores significantly higher on average than the others, demonstrating the metric’s potential to distinctly identify that emotion
from the rest.
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clear visual representation of how distinct MHRA metrics correlate
with each emotional state.

These findings not only confirm the efficacy of our model in
identifying and interpreting emotions but also provide a
methodology for investigating the subtle spatiotemporal dynamics
underlying brain activity related to various emotions. By analyzing
these HRQA metrics, we may infer the neural mechanisms involved
in emotion recognition. For instance, the high value of entropy
(HEnt), referring to a high level of uncertainty, in ‘Sad’ could signify
chaotic neural activity patterns associated with emotional distress or
cognitive load. The high value of recurrence rate (HRR), referring to
a high tendency to revisit similar patterns, in ‘Fear’ suggests a
specific pattern of repetitive neural activations, possibly related to
the brain’s heightened state of alertness and threat detection.

By correlating these dynamic features with known neural
processes, our approach offers deeper insights into how different
emotional states manifest in the brain’s activity. This enhanced
understanding can contribute to developing more effective
interventions and therapeutic strategies for emotional and mental
health disorders. Thus, our methodology not only advances the field
of emotion recognition but also provides a valuable tool for
exploring the neural underpinnings of emotions.

6 Discussion

Understanding how emotions are processed and represented in
the brain enhances our basic scientific knowledge of neurological
functions. By studying EEG patterns associated with different
emotions, researchers can uncover the underlying neural
mechanisms that govern emotional responses and how these might
differ among individuals or across different contexts. However, the
complex, nonlinear, and nonstationary characteristics of EEG signals
pose significant challenges for many traditional methods in this field.
Numerous studies on EEG-based emotion recognition rely on deep
learning techniques, as these state-of-the-art neural network-based
methods are adept at detecting subtle patterns within complex EEG
signals (Jafari et al., 2023). Nonetheless, the lack of transparency in
deep learning algorithms represents a substantial barrier, as physicians
tend to be cautious by nature, and patients are hesitant to entrust their
health to a ‘black box’ algorithm. In this study, we introduced a three-
phase methodology, including manifold embedding, MHRA, and
supervised ensemble learning, designed to address these concerns
by characterizing the dynamic features of brain activity for emotion
recognition while also preserving a degree of explainability.

We employed the proposed MHRA methodology to the SJTU-
SEED IV database, in Phase 1, we utilized UMAP for data
embedding to address the challenge of high dimensional data.
The 62-lead EEG signals were transformed into four-dimensional
embedded signals that retain dynamic spatiotemporal
characteristics but significantly reduced computational demands
to a manageable level for further analyses. In Phase 2, the
embedded EEG data underwent our novel MHRA to capture the
recurrence dynamics of brain activity at high resolution. This
approach not only provides a more nuanced understanding of
the complex nonlinear and nonstationary EEG patterns, but also
extracts robust dynamic features for emotion recognition.
Importantly, our generalized HRQA metrics systematically

quantify recurrences across different transition levels, offering a
scalable framework for analyzing dynamic EEG properties. Finally,
in Phase 3 we employed advanced ensemble learning methods and
demonstrated their effectiveness in classifying emotions using
LASSO selected HRQA metrics. The superior performance of our
models, especially XGBoost, suggests that dynamic transition
characteristics are powerful predictors for emotion recognition.
Our models achieved accuracy and AUC values of 0.7885 and
0.7552, respectively, both outperforming previous studies using
the same dataset. Additionally, our sensitivity analysis identified
specific HRQA metrics strongly associated with each emotion,
providing valuable insights into the neural dynamics underlying
emotional processing that cannot be obtained using “black box”
algorithms alone.

The major contribution of this research is the development of
MHRA, a novel technique leveraging the recurrence theorem to
characterize dynamic brain activity across multiple granularities.
Unlike traditional methods, MHRA captures the complex,
nonlinear, and nonstationary properties of EEG signals,
providing a detailed framework for analyzing intricate brain
activity patterns. By utilizing HRQA metrics, MHRA offers an
interpretable analysis of EEG data, aiding researchers in
understanding the neural mechanisms of emotions. This
transparency is crucial for building trust and facilitating the
adoption of our methodology in clinical and research settings.
The insights from our MHRA approach have significant
implications for advancing studies in cognitive neuroscience,
affective computing, neurofeedback therapy, human-computer
interaction, and educational neuroscience. Traditional
approaches often struggle with the nonlinear and
nonstationary nature of EEG signals, while deep learning
models lack explainability. Our methodology overcomes these
challenges, offering both high performance and interpretability,
thus advancing the field of emotion recognition and providing an
effective solution for analyzing complex brain dynamics. Our
methodology offers several key advantages. First, it effectively
addresses the limitations of traditional linear methods by
analyzing complex nonlinear nonstationary EEG signals.
Second, MHRA offers interpretability by using HRQA metrics
to explain features of complex systems. This transparency is
crucial for building trust and facilitating adoption in clinical
settings. Third, the tree-based ensemble learning methods not
only achieve high accuracy to recognize emotions but also exhibit
robustness in capturing nonlinear relationships of dynamic
properties.

Despite these strengths, our study has some limitations that will
be explored in future research. The SJTU-SEED IV database, while
comprehensive, does not fully capture the diversity or unique
emotional experiences across different populations. Investigating
the generalizability of our methodology to other EEG datasets and
real-world scenarios is an important next step. Additionally,
integrating our approach with other modalities, such as facial
expressions or other physiological signals such as eye
movements, could further enhance the accuracy and robustness
of emotion recognition. Furthermore, our research can facilitate a
deeper understanding and characterization of brain activities, with
potential applications in pediatric sleep studies, the development of
objective metrics for PTSD, and non-invasive early detection of
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neurodegenerative diseases. Future research could benefit from
incorporating more advanced techniques to retain the
spatiotemporal characteristics of 62-lead EEG signals, such as
integrating attention mechanisms with MHRA to provide more
effective characterization of neural dynamics. By pursuing these
directions, we aim to refine the existing methodology and broaden
its applicability, thus advancing the field of emotion recognition and
its practical applications in neuroscience and healthcare.

In conclusion, this study presents a novel three-phase
methodology that includes manifold embedding, MHRA, and
ensemble learning for EEG-based emotion recognition. Our
approach not only achieves high performance but also offers
interpretable insights into the dynamic properties underlying four
emotions. This methodology has significant impact on the field to
advance our ability to analyze nonlinear nonstationary, dynamic
data of complex systems with potential applications in healthcare,
human-computer interaction, and beyond.
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digital twins: a graph
model-based patient simulation
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Introduction:Digital twins of patients are virtual models that can create a digital
patient replica to test clinical interventions in silicowithout exposing real patients
to risk. With the increasing availability of electronic health records and sensor-
derived patient data, digital twins offer significant potential for applications in the
healthcare sector.

Methods: This article presents a scalable full-stack architecture for a patient
simulation application driven by graph-based models. This patient simulation
application enables medical practitioners and trainees to simulate the trajectory
of critically ill patients with sepsis. Directed acyclic graphs are utilized to
model the complex underlying causal pathways that focus on the physiological
interactions and medication effects relevant to the first 6 h of critical illness.
To realize the sepsis patient simulation at scale, we propose an application
architecture with three core components, a cross-platform frontend application
that clinicians and trainees use to run the simulation, a simulation engine hosted
in the cloud on a serverless function that performs all of the computations, and
a graph database that hosts the graph model utilized by the simulation engine
to determine the progression of each simulation.

Results: A short case study is presented to demonstrate the viability of the
proposed simulation architecture.

Discussion: The proposed patient simulation application could help train future
generations of healthcare professionals and could be used to facilitate clinicians’
bedside decision-making.

KEYWORDS

digital twin, virtual patient simulation, graph model, full-stack application architecture,
critical care

1 Introduction

Digital twins are virtual representations of systems that interact with the physical
system bi-directionally (Lal et al., 2020a). With the increasing availability of electronic
health records and sensor-derived patient data, digital twins hold significant potential
in the healthcare sector. In particular, digital twin technology enables the creation of
computerized replicas of patients, allowing simulation of diverse clinical scenarios and
testing of interventions in silico without subjecting real patients to avoidable risk.
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A virtual patient is a digital model able to be identified from
relevant bedside data and provides prediction in response to
modeled inputs. Previous works have demonstrated that virtual
patient simulations can be successfully utilized to train medical
professionals across an array of specialties (Kononowicz et al., 2019;
Lee et al., 2020; Lee and Lee, 2021; Wu et al., 2022). However,
many of the previously introduced virtual patient simulation
models progress only along a limited number of hand-crafted or
predetermined pathways, such as looped, serious branch games,
and linear text-based scenarios (Berger et al., 2018). Other examples
include virtual patient simulations that progress along decision trees
(Hwang et al., 2022), and another recent work (Goldsworthy et al.,
2022) utilized a commercial virtual patient simulation application,
First2Act, which supports only seven simulation scenarios.
Although such simulation architectures have been effectively
utilized to train medical professionals, they are hard to scale as
each new scenario must be crafted by hand.

Recently, computational simulationmodels have been proposed,
which seek to dynamically model the evolution of organ systems
within the human body. One such simulation focused specifically
on modeling how the cardiovascular system evolves based on a set
of time-varying, simultaneous differential equations (Burkhoff and
Dickstein, 2024). Another example is glycemic control, and there
have been multiple metabolic system models based on decades of
research (Chu et al., 2023). Glycemic control protocols have been
optimized using these models. In addition, virtual patient models to
predict lung mechanics evolution with changing ventilator settings
(mechanic ventilator models) are critical to effectively managing
acute respiratory symptoms for critically ill patients, but the scope
of the models is very limited (Zhou et al., 2021). These models
focus primarily on the one organ system and are developed based
on medical, physiological, or biological knowledge, i.e., physics-
based models.

In summary, digital twin applications on virtual patient
modeling have gained success in modeling individual organs
for drug discovery and precision medicine (Venkatesh et al.,
2022; Moingeon et al., 2023), but these models rely on the full
characterization of the biological and physiological functions
at the cell level or the organ level. From bench to bedside,
it is important to understand how the organ systems interact
and orchestrate the patient’s health. For critically ill patients,
the capability of modeling and predicting patient trajectories
under different treatment regimens would greatly support clinical
decision-making, improving patient safety and health outcomes.
However, our current knowledge about the human body does not
allow us to accurately depict all organ system functions using
physical or mechanical models (Rovati et al., 2024). There have
been emerging efforts to develop patient or human digital twins
based on predictive modeling using AI and machine learning
(Vallée, 2023; Katsoulakis et al., 2024; Laubenbacher et al., 2024).
Despite having superior predictive capacity, the interpretability of
these models is typically limited. Meanwhile, graphical models
of the biomarkers of each major organ system would allow us
to encode essential interactions among these biomarkers and
allow for good interpretability for educational purposes and
practical clinical bedside use.

Alternatively, our preliminary work (Trevena et al., 2022)
proposes a virtual patient simulation architecture driven by graph-
based models and focuses on patient-level simulation, i.e., modeling
of the evolution of the virtual patient, determined by directed
acyclic graphs (DAGs) depicting the complex pathophysiological
interactions that occur within the human body. This graph-based
modeling provides a more accurate and transparent presentation
of complex relationships between multiple variables in a complex
adaptive system where the data is often characterized by intricate
interdependence and association. The improved transparency
and interoperability in return ensures that the underlying expert
rules building upon which the DAGs are crafted can be validated
using patient data. It also allows for better visualization of
variable relationships and the reasoning behind the model’s
decision output. The modular and flexible nature of the graph-
based model also provides an opportunity to independently and
iterative refine different organ systems (respiratory, cardiovascular,
neurological, etc.) as discrete models to improve efficiency,
and to create a more streamlined approach to incorporate new
knowledge in a specific organ system without overhauling the
entire model.

The goal of this research is to develop a new highly scalable full-
stack architecture for a cross-platformpatient simulation application
driven by graph-based models, and to present a proof-of-concept
of the proposed architecture to illustrate its viability. To realize
the graph-based virtual patient simulation at scale, we prioritize
a highly reliable, fault-tolerant, and maintainable architecture. As
we aim to develop the application as a bedside decision-support
tool for clinicians in actual clinical settings, the application needs
to adapt swiftly and efficiently to fluctuating user demand, and
to accommodate a wide range of user devices including laptops,
tablets, and smartphones with diverse operating systems (iOS,
Android, etc.). Our proposed architectural approach addresses
these needs in an integrated manner, contributing a sustainable
and practical solution to the field. Specifically, the architecture
comprises three core components: a cross-platform front-end
application that clinicians and trainees use to run the simulation,
a cloud-hosted simulation engine that performs all the necessary
computations for each user’s simulation, and a graph database
that hosts the graph model used by the simulation engine to
drive each simulation. By integrating these elements, we present a
highly-scalable full-stack simulation application architecture, which
effectively addresses the identified challenges and paves the way for a
new paradigm in patient simulation and dynamic system simulation
based on graph models. Although the application focus of this
paper is on modeling a virtual patient, the architecture presented
in this paper could be adapted to support other dynamic systems
such as mechanical, physical, and physiological systems that are
graph-based, e.g., Sanchez-Gonzalez et al. (2018); Tu et al. (2019);
Yang et al. (2021).

In the following sections of this paper, we elaborate on how the
components of our proposed architecture synergize to overcome
practical challenges. We present a proof-of-concept case study
demonstrating the architecture and graph model, discuss the
overarching benefits of the architecture, and outline future research
directions.
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FIGURE 1
A high-level illustration of the proposed application architecture. The virtual patient simulations on the left-hand side of the diagram represent the
front-end application. The cloud on the right-hand side of the diagram represents the cloud services serving as the “back-end” of the application.
These services are hosted on Amazon Web Services (AWS) in the demo application/proof-of-concept presented in this article.

2 Materials and methods

The proposed application architecture draws upon the utility
of both autoscaling serverless functions and a microservice
architecture. Serverless functions are a feature offered by cloud
platforms where developers write code that is executed in response
to events (like a user interaction), and are automatically scaled
up and down by the cloud provider. They are serverless in
the sense that developers do not have to worry about server
management, and their pay-as-you-go nature makes them cost-
efficient for users. Microservice architecture, on the other hand, is
a design pattern where an application is structured as a collection
of loosely coupled services, which can be developed, deployed, and
scaled independently. Anticipating usage patterns of this patient
simulation application may be sporadic and synchronized, such
as classroom usage leading to surges in demand, the proposed
architecture is capable of scaling up and down effectively to
meet these needs.

In addition, our proposed architecture considers the challenge
of device heterogeneity and limited processing power, especially
in the medical education setting. A cross-platform programming
language is preferred, which allows developers to write a single
codebase that can run on multiple platforms (like Android, iOS,
and web), eliminating the need to write different versions of the
application for each platform. In this case, React-Native (Masiello
and Friedmann, 2017), a popular cross-platform programming
language, has been employed.

For the overall architecture, the cross-platform front-end
(written in React-Native) is separated from the back-end simulation
engine (running on a serverless function in the cloud) and the
graph database (running on a dedicated server in the cloud).
This separation, characteristic of microservice-based architectures,

has been shown to improve scalability, reliability, and fault
tolerance while also facilitating maintenance and debugging tasks
(Villamizar et al., 2015). Additionally, serverless functions, due to
their autoscaling and developer-friendly nature, enable developers
to focus on application logic, leaving resource provisioning
and infrastructure management to cloud service providers
(Chadha et al., 2022). An illustration of the proposed application
architecture is shown in Figure 1. Below we present the details
regarding the cross-platform front-end application, the graph
database construction, and the simulation engine that drives the
patient pathway simulation, respectively.

2.1 Front-end application

The cross-platform front-end application serves as the user
interface for trainees and clinicians to interact with the virtual
patient simulation by: (a) allowing users to set the initial state of
the patient; (b) storing and showing the state of the patient over
the course of a simulation; (c) allowing users to select interventions
at each step of the simulation as desired; (d) sending the history
of patient states to the cloud-hosted simulation engine to obtain
the next state of the patient for the next step of the simulation (see
Section 2.3 formore details); (e) tracking the relationships, i.e., edges
in the graph-model that caused a change in the virtual patient’s
state at each step of the simulation; (f) allowing users to connect
to the graph database to visualize the relationships defined in the
graphmodel, which influence the trajectory of the state of the virtual
patient (see Figure 2 for a sample DAG).

The microservice architecture plays a crucial role here as it does
not require embedding complex simulation logic into the front-end
application as would be required in a monolithic application design.
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FIGURE 2
An example of a directed acyclic graph (DAG) depicting a subset of the interactions associated with respiratory acidosis. The boxes with a yellow
background are medical concepts, and the boxes with a white background correspond to measurable patient vitals or clinical markers. PaCO2 = partial
pressure of carbon dioxide in arterial blood, GCS = Glasgow Coma Scale, HCO3− = Bicarbonate.

This division of responsibilities keeps the front-end lightweight
and modular, facilitating independent development, better error
isolation, and improved overall development speed.

2.2 Graph database development

A graph database uses graph structures for semantic queries,
with nodes, edges, and properties to represent and store data. This
stands in contrast to a traditional SQLor noSQLdatabasewhichmay
not natively support relationships between entities. In our study, the
graphdatabase is the heart of our simulation application, performing
crucial functions like storing the graph model, enabling fast queries,
providing visualization tools, and allowing developers to manage
the graph model. These graph-database-powered capabilities can
assist in maintaining the robustness, flexibility, and scalability of the
simulation model.

For this application, the graph models are constructed based
on expert rules. Our definition of expert rules takes into account
the effects of clinical markers on each other and the causes (like
interventions and interactions) that lead to certain effects on organ
systems. Using a graph database, the expert rules (defined by
clinicians and loaded into Neo4j via CSV files) that drive our
simulation can be efficiently queried and updated. A very simple
example DAG describing a subset of the interactions of organ
systems and biomarkers associated with respiratory acidosis is
shown in Figure 2. This DAG is constructed using rules presented
in Table 1 (to be elaborated in this section).

Note that the simple DAG depicted in Figure 2 could be a part of
a much larger DAG with many more medical concepts, measurable
patient vitals, organ systems, and relationships (Lal et al., 2020b).
Representing the causal pathways within the human body in an
intuitive way is particularly important in a clinical setting as
information overload has been correlated with an increase in
medical errors (Pickering et al., 2010). Accordingly, DAGs have
been utilized by clinicians in recent work to model the complex

underlying causal pathways that drive the trajectory of a patient in
an intuitive and visualizable way (Lal et al., 2020a). In particular,
DAGs can be used to effectively model complex causal pathways
within the human body as they provide a natural way tomodel high-
dimensional directed relationships. From a simulation development
perspective, instead of needing to define each new simulation
scenario by hand, utilizing a graph-based simulation engine allows
the number of supported scenarios to grow naturally over time
as new patient vitals, clinical markers, interventions, and their
associated interactions (edges) are added to the graph over the
course of the iterative expert rule refinement and validation process.

The graph database utilized in this work is Neo4j (Neo4j Graph
Data Platform, 2021), which has been shown to be effective at
storing, querying, and analyzing graph data such as knowledge
graphs (Chen, 2022). Other graph databases are also available
including Amazon Neptune (Amazon Web Services, 2024) and
TigerGraph (TigerGraph, 2023), among others. When developing
rules for the graph model stored in the Neo4j graph database, we
first define independent expert rules that have been agreed upon
by the experts in the field through a formal consensus process
(Gary et al., 2022). Table 1 contains sample rules expressed in the
spreadsheet format to help illustrate the rule structure that is
compatible with the Neo4j data structure. In the patient simulation,
each rule is activated by a single triggering clinical marker or
intervention (the “Cause/Input” column of the spreadsheet), and
each rule causes a new incremental change or an absolute change in
a single impacted clinical marker (the “Effected_Clinical_Marker”
column of the spreadsheet) when all conditions for the expert rule
are satisfied. Currently, states of the clinical markers are represented
as integer variables (−2,-1,0,1,2) and can be color-coded in the front-
end user interface.The integer valuesmap to different value ranges of
measurable biomarkers. For example, level 2 for PaCO2 corresponds
to values between 71 and 120 mmHg. In the front-end application,
a number randomly drawn within this range will be displayed to
users, providing users with an experience closer to their regular
interactions with electronic health records.
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Thefirst rule in Table 1 says, when the patient’s PaCO2 level stays
at a high level (2) for a duration of 30 min, thenGCS (GlasgowComa
Scale) decreases by 1 level with a probability of 0.8. In this example,
PaCO2 is the “Cause/Input” of the rule, GCS is the “Effected_
Clinical_Marker”, 0.8 is the “Probability”, −1 is the “Impact”, and 0
is the “Time_Until_Effect” (in minutes). The columns “Previous_
State_Of_Cause/Input” and “New_State_Of_Cause/Input” describe
what needs to happen to the value of the “Cause/Input” for the rule
to be triggered. There are three possible triggers that we can account
for: The “Cause/Input” increases, decreases, or stays at a particular
value over the specified “Duration”. In this example, the “Previous_
State_Of_Cause/Input” and the “New_State_Of_Cause/Input” of
PaCO2 are both high (level 2), and the “Duration” is 30 min meaning
that this rule is triggered after PaCO2 has been at level 2 for 30 min.
By specifying a “Duration”, we can have different rules for changes
that occur acutely/quickly, or which occur slowly over time. We
can also model rules such as “IF PaCO2 is > 70 mmHg (FOR
30 min) THEN GCS decreases” which requires that a particular
“Cause/Input” (PaCO2 in this case) stays at a particular value (in
this case, at a high value) for some duration. Note that, by allowing
for capturing the “Duration”, the simulation is no longermemoryless
and the applicability of a rule is based on the historical patient
trajectory.

The effect of each rule on the impacted clinical marker is
stored in the “Impact” column and is represented by one of the
following integers: (−2,-1,1,2). The negative (positive, resp.) integers
represent a decrease (an increase, resp.) in the value or level of the
impacted clinical marker. In this example (rule #1), the GCS level
will be decreased by 1 level, from its current level, and the time-
lapse it needs to be effective is stored in the “Time_Until_Effect”
column (with zeromeaning being effective immediately in this case).
To handle cases where multiple rules are simultaneously applying
changes to a single clinical marker during one step of the simulation,
we introduce two types of rules, one causes an incremental change,
meaning that its effect is additive to others that are also incremental.
The other type is “absolute”, which will override other rules once
applied. In this simple example, all rules cause incremental changes.

For a rule to be activated, relevant conditions defined in the
rule must be satisfied. The simple conditions are one or more
independentconditionsthatallmustbesatisfiedforarule totakeeffect.
Rules 14–16 in Table 1 have two simple conditions, {Given_Insulin:
0, Duration: 60} and {Given_Furosemide: 0, Duration: 60}. These
conditions mean that rules 14–16 will only be applied if the patient
has not been given Insulin or Furosemide during the last 60 min.

Meanwhile, complex conditions are the conditions that are
satisfied if at least one of a possible set of conditions is satisfied. For
example, a complex condition expressed as “[{ Brain_Swelling: 0,
Duration: 0 },{Mannitol: 1, Duration: 30 }]” requires that at least one
of the following must be true: (a) the patient must have no current
brain swelling (b) they must have received Mannitol 30 min ago.

If all of the conditions for a rule are satisfied, we then apply the
rule with the probability listed in the “P” column. The probability
characterizes the chance that a certain change in the human body will
occur to maintain a level of stochasticity in the simulation model.

This precise structure for expressing expert rules allows us to
capture the majority of the common rules using a systematic format
that is interoperablewith graphdatabases, and enables us to customize
each expert rule based on the applicability of each property.

2.3 Cloud-hosted simulation engine

The cloud-hosted simulation engine is responsible for executing
the simulation according to the graph model stored in the database
and the user interactions captured by the front-end application.
The engine runs on a serverless function (on a Function as a
Service platform, like Amazon Web Services Lambda or Google
Cloud Functions), allowing it to scale seamlessly in response to
demand. These serverless computing platforms provide developers
with a high degree of flexibility and scalability, as they only need
to be concerned with application code and can leave infrastructure
management to the service provider.

The engine is designed to take the current state of the patient,
as well as any user actions (like giving a medication or performing
a procedure), and calculate the resulting state of the patient. For
this, it queries the graph database for relevant rules, performs
calculations, and sends the new patient state back to the front-
end application. As a benefit, the engine does not have to store
any state itself, making it inherently scalable and resilient. Also,
being decoupled from the front-end and the database, it can be
independently developed, tested, and deployed, which reduces the
complexity of the overall system.

All current and future rules can be processed in a uniform way
using the same code (the code running in the simulation engine
as shown in Figure 1). This means that rules in the graph database
can be added and updated in the future independently without the
need for the developers to write any new code. Specifically, to obtain
the next patient state at each step in the simulation, the front-end
application sends the complete patient history to the simulation
engine and waits for a response which includes:

1. The next state (described by the states of all clinical markers)
of the patient.

2. The rules that were applied (if any) which impacted the next
state of the patient.

The upper and lower limits for the value of each clinical
marker (currently some appropriate range between “very low”
(−2) and “very high” (2)) and the lower and upper bound for
each intervention (between “no intervention” (0) and “high dose
intervention” (2)) are defined in the simulation engine and enforced
at each step. Similarly, the length between each step in the simulation
is defined (currently “15 min”).

The procedure followed by the simulation engine at each step of
the simulation is outlined in Algorithm 1 and illustrated in Figure 3.
This procedure integrates several functions in a modular approach
to rule application and state updates.

2.3.1 InitializeSimulation function
The InitializeSimulation procedure initializes the parameters

and patient history required for the simulation. It ensures that
all necessary data is correctly set up before the main simulation
steps begin.

2.3.2 ApplyRules function
The ApplyRules function applies the relevant rules from the

expert rules set to update the patient’s state. It checks if the
conditions for each rule are met and, if so, updates the patient state
accordingly.
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FIGURE 3
Flowchart of the simulation engine algorithm.

2.3.3 HandleConditions function
The HandleConditions function evaluates whether the

conditions for applying a rule are satisfied based on the patient’s
history and the specifics of the rule. It checks whether the
current rule contains a simple condition or a complex condition
and whether these are satisfied over the most recent steps
to be analyzed prior to moving to the next time instance.
We added simple and complex conditions during the rule
construction process to ensure that the expert rules are capable
of fully capturing the intricate relationships between organ
systems in the human body. For example, the administration

of propofol to a critically ill patient should result in a drop
in GCS as well as a drop in MAP. However, if phenylephrine
was administrated at the same time as propofol, a drop
in MAP would have not occurred. Then, administration of
phenylephrine would be included in the simple condition of
the rules denoted as {Given_Phenylephrine: 0} suggesting that
phenylephrine should not be currently effective for this rule to be
applicable.

The algorithm returns a Boolean variable ConstraintsSatisfied
being “True” if all constraints are satisfied, and “False” otherwise.
The condition check operation shares a similar structure as themain
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Require: Time_Between_Steps = 15

Require: t = 0,1,…,T ⊳ The steps of the simulation,

each of which is Time_Between_Steps

minutes apart

Require: Variable_Names = {Name1,Name2,…,Namen}

Require: Lower_Bounds = {l1,l2,…,ln}

Require: Upper_Bounds = {u1,u2,…,un}

Require: Patient_History = {h0,h1,h2,…,ht}

Require: Expert_Rules← {Rule1,Rule2,…,Rulem}

 1: ht+1 = ht
 2: InitializeSimulation (Time_Between_Steps, t,

Variable_Names, Lower_Bounds, Upper_Bounds,

Patient_History, Expert_Rules)

 3: for j = 1to m do

 4:   Current_Rule = Expert_Rules[j]

 5:   ApplyRules (Current_Rule, Patient_History,

ht+1, Time_Between_Steps)

 6: end for

 7: for Varin Variable_Names do

 8:   EnforceBounds (ht+1, Var, Lower_Bounds,

Upper_Bounds)

 9: end for

return ht+1

Algorithm 1. Simulation Engine Overarching Algorithm.

1: procedure INITIALIZESIMULATION (Time_Between_Steps,

t, Variable_Names, Lower_Bounds,

  Upper_Bounds, Patient_History, Expert_Rules)

2:  Initialize parameters and patient history

3: end procedure

Algorithm 2. InitializeSimulation Procedure.

algorithm, e.g., screening the states and managing the time indexes,
and the details are skipped for the interest of space.

2.3.4 UpdatePatientState function
The UpdatePatientState procedure applies the impacts of a rule

to the patient’s state if the conditions for that rule are met.

2.3.5 EnforceBounds function
The EnforceBounds procedure ensures that the values of all

clinical markers and interventions remain within their predefined
bounds (e.g., when incremental rules are applied, check if the values
go beyond −2 or +2). If a value exceeds its bounds, it is set to the
respective limit.

The algorithmic approach modularizes the process into
distinct functions, each responsible for specific aspects of
the simulation, thus enhancing clarity and maintainability.
The overarching algorithm (Algorithm 1) orchestrates the
workflow, ensuring that all necessary steps are performed in
sequence, while the individual functions handle initialization,
rule application, condition checking, patient state updating, and
enforcing bounds.

1: function APPLYRULES (Current_Rule,

Patient_History, ht+1, Time_Between_Steps)

2:  Duration_Steps = Current_Rule[Duration]
Time_Between_Steps

3:  Index_Of_Newest_Measurement_To_Look_At =
Current_Rule[Time_Until_Effect]

Time_Between_Steps

4:  Index_Of_Oldest_Measurement_To_Look_At =

Index_Of_Newest_Measurement_To_Look_At+

    Duration_Steps+1

5:  if Index_Of_Oldest_Measurement_To_Look_At > t

then

6:   return False

7:  end if

8:  Cause = Current_Rule[Cause/Input]

9:  if ht−Index_Of_Oldest_Measurement_To_Look_At[Cause] ≠

Current_Rule[Previous_State_Of_Cause/Input]

   then

10:   return False

11:  end if

12:  end if ht−Index_Of_Newest_Measurement_To_Look_At[Cause] ≠

Current_Rule[New_State_Of_Cause/Input] then

13:   return False

14:  end if

15:  MaxValue =

max(Current_Rule[Previous_State_Of_Cause/Input],

   Current_Rule[New_State_Of_Cause/Input])

16:  MinValue = min(Current_Rule

[Previous_State_Of_Cause/Input],

   Current_Rule[New_State_Of_Cause/Input])

17:  for k =

(t−Index_Of_Oldest_Measurement_To_Look_At+1) to

   (t−Index_Of_Newest_Measurement_To_Look_At−1) do

18:   if hk[Cause] > MaxValueorhk[Cause] < MinValue then

19:    return False

20:   end if

21:  end for

22:  if HandleConditions (h,Current_Rule,

Index_Of_Newest_Measurement_To_Look_At,

   Time_Between_Steps) then

23:   UpdatePatientState (Current_Rule, ht+1)

24:   return True

25:  else

26:   return False

27:  end if

28: end function

Algorithm 3. ApplyRules Function.

To summarize, the simulation engine runs on a serverless
function in the cloud and performs the following functions: (a)
receives the history of a virtual patient from a user’s front-end
application; (b) calculates the next state of the virtual patient for
the next step of the simulation by analyzing the history of past
states of the virtual patient, querying the graph database to obtain
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1: function HANDLECONDITIONS

(h,Current_Rule,Index_Of_Newest_Measurement_

To_Look_At, Time_Between_Steps)

2:  Evaluate simple and complex conditions

of the rule

3:  return all conditions are satisfied and also

rand(Unif(0,1)) ≤ Current_Rule[Probability]

4: end function

Algorithm 4. HandleConditions Function.

1: procedure UPDATEPATIENTSTATE (Current_Rule, ht+1)

2:  ht+1[Effected_Clinical_Marker] + =

Current_Rule[Impact]

3: end procedure

Algorithm 5. UpdatePatientState Procedure.

1: procedure ENFORCEBOUNDS (ht+1, Var, Lower_Bounds,

Upper_Bounds)

2:  if ht+1[Var] < Lower_Bounds[Var] then

3:   ht+1[Var] = Lower_Bounds[Var]

4:  else if ht+1[Var] > Upper_Bounds[Var] then

5:   ht+1[Var] = Upper_Bounds[Var]

6:  end if

7: end procedure

Algorithm 6. EnforceBounds Procedure.

the relevant relationships from the graph-model which may cause
a change in the state of the patient, and applying the queried
relationships as appropriate to calculate the next state of the patient;
(c) returns any rules thatwere applied and the next state of the virtual
patient for the next step of the simulation to the user’s front-end
application.

3 Results

To demonstrate the viability of the proposed simulation
architecture, we will walk through a short case study that considers
a virtual patient whose state is defined in terms of the five clinical
markers shown in theDAG in Figure 2 and the corresponding nodes
in the Neo4j graph in Figure 4. The trajectory of the patient will be
determined by the set of edges shown in theNeo4j graph in Figure 4,
each of which corresponds to an expert rule defined in Table 1.
The trajectory of the patient’s state throughout this case study is
summarized in Table 2, and the rules from Table 1 that were applied
at each step of the simulation (each step is 15 min) are described in
the “Applied Rules” column of Table 2.

This case study (respiratory acidosis) is crafted to allow for a
manual prospective validation to assist in a quick understanding
of the simulation mechanism. In the real implementation, the
user will first choose a clinical scenario (e.g., chronic obstructive

pulmonary disease exacerbation, or sepsis), along with the most
relevant clinical markers and the corresponding rules related to
this clinical scenario will be identified. Each clinical scenario is
typically associated with dozens of clinical markers and rules,
e.g., 70 rules for a demonstration version for validation in a
related study (Rovati et al., 2024).

3.1 Initializing the simulation

To initialize the simulation, we first need to set the
lower and upper bounds for each vital/clinical marker that
we have. In this case study, the simulation engine was
configured to use the upper and lower bounds: Lower_Bounds =
{PaCO2:− 2,pH:− 2,HCO3−:− 2,GCS:− 2,K:− 2},Upper_Bounds =
{PaCO2:2,pH:2,HCO3−:2,GCS:0,K:2}.

Also, we need to define an initial Patient_History = {h0,h1} for
the patient. Let us assume that at the first step of the simulation,
step t = 0 (row 1 of Table 2), the patient had a slightly elevated
level of PaCO2 (denoted by a value of “1”) and a normal level
of all the other clinical markers (denoted by a value of “0”).
Then, 15 min later at step t = 1 (row 2 of Table 2), the patient
had a very elevated PaCO2 level (denoted by a value of “2”),
but still had a normal level (level “0”) for all the other clinical
markers. In this case, the Patient_History described in Algorithm 1
is initialized as h0 = {PaCO2:1,pH:0,HCO3−:0,GCS:0,K:0} and h1 =
{PaCO2:2,pH:0,HCO3−:0,GCS:0,K:0}.

3.2 The patient’s state trajectory during the
simulation

As shown in Table 2, the first rule applied is Rule # 6 at time
t = 30 minutes. This is expected as Rule # 6 is triggered by an
increase in PaCO2 from a slightly elevated level (a value of “1”)
to a very elevated level (a value of “2”). Since the duration is
0 min for this rule, this rule is triggered as soon as the value of
PaCO2 changes from “1” to “2”. However, this rule has a delayed
“Time_Until_Effect” of 15 min which means that the “Impact” of
the rule is applied 15 min after the rule is triggered. Therefore,
since the rule was applied at time t = 30 minutes, the rule was
triggered 15 min earlier, at time t = 15 minutes. Once the rule
was triggered it was guaranteed to be applied since the rule’s
probability, P, is 100%.

Next, at time t = 60 Rule #16 was applied. Rule #16 is triggered
by a decrease in pH from a normal level (level “0”) to a slightly low
level (level “-1”). After the decrease occurs, this rule is delayed by
a “Time_Until_Effect” of 30 min. Therefore, the change in pH must
have occurred 40 min earlier, which we can see occurred in Table 2
as pH decreased from normal (level “0”) at time t = 15 to slightly
low (level “-1”) at time t = 30. It is therefore in alignment with our
expectations that Rule #16 is applied 30 min later at time t = 60
minutes due to the rule’s “Time_Until_Effect” of 30 min.

At time t = 75 one rule was applied, Rule #1. Rule # 1 is triggered
by PaCO2 being at level “2” for 30 min, and looking at the patient’s
state history in Table 2, we can see that at time t = 75 minutes,
the patient had actually already had a PaCO2 level of “2” for
60 min. Since this rule has a “Time_Until_Effect” of 0 min, we know
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FIGURE 4
Visualization of sample expert rules stored in the Neo4j graph database. Each node in the graph corresponds to a measurable vital or clinical marker in
Figure 2. Each directed edge corresponds to a specific expert rule in Table 1. The detailed cause-effect will be displayed when the specific “relationship”
edge is clicked in the Neo4j workspace.

TABLE 2 The patient’s state throughout Section 3 case study.

Time
(min)

PaCO2 pH HCO3- GCS K Applied
rules

0 1 0 0 0 0

15 2 0 0 0 0

30 2 −1 0 0 0 6

45 2 −1 0 0 0

60 2 −1 0 0 1 16

75 2 −1 0 −1 1 1

90 2 −1 0 −2 1 1

105 2 −1 0 −2 1

120 2 −1 0 −2 1

that once this rule is triggered, its “Impact” is instantly applied.
Subtracting the rule’s “Duration” of 30 min from the 60 min that the
patient’s PaCO2 level was “2”, we can see that starting at time t =
30 minutes the rule was being triggered. However, as indicated by
column P of Table 1, Rule #1 only has an 80% probability of being
applied each time it is triggered. This means that the rule was only
applied on the third time that it was triggered (the 20% chance that
the rule would not be applied hit the first two times it was triggered,
at t = 45 and t = 60).

At time t = 90, Rule #1 was applied again, further decreasing
GCS to its lower bound of “-2”. As we can see, Rule #1 was not
decreased at time t = 105 or t = 120 even though Rule #1 was still
being triggered since GCS can not decrease below its lower bound
(below a value of “-2”).

In conclusion, we can see that the trajectory of the patient’s
state throughout the case study (Table 2) is in alignment with our
expectations based on our expert rules (Table 1).

4 Discussion

The presented work introduces an application architecture
designed to overcome various challenges inherent in the dynamic
realm of healthcare simulations. Specifically, it is constructed to
seamlessly scale to accommodate a growing user base with sporadic
and correlated usage patterns, making it universally accessible
across a multitude of platforms. It is also built to operate reliably
under various conditions while ensuring fault-tolerance and easy
maintainability.

A key aspect of this architecture is that it does not question
the validity of expert rules, but rather focuses on the execution of
these rules within the simulation. Therefore, during the validation
phase, an unexpected simulation behavior due to an incorrect expert
rule or its faulty implementation can be handled separately. For
instance, if an erroneous simulation result is due to an incorrect
expert rule, the developer only needs to update the graph database
without touching the simulation engine. This will also improve the
handling of the changes in the clinicalmanagement of patients in the
intensive care unit where the scientific premise and the interventions
change according to an evolving body of evidence.
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Because of the stochastic nature of the simulation and the
scale of the model, it is infeasible to validate the model based on
specific values of each individual clinical marker realized in each
simulation run. Rather, we focus on the clinical trajectory and
examine whether the trajectory over an initial 6-h span from the
time of admission is concordant with the expectation (e.g., samples
from real patient trajectories or crafted virtual patients with the same
clinical scenario). Our commitment to enhancing the validity and
utility of this simulation application extends beyond the present
study. We understand the importance of rigorous evaluation and
ablation studies and are actively engaged in further research to refine
and validate the expert rules that underpin the simulation. We are
employing rigorous methodologies to calibrate the decision-making
algorithms based on real-world patient data and physician inputs. To
ascertain the application’s effectiveness as an educational tool and
its ability to satisfy user requirements, we have initiated a mixed-
methods study involving first-year Internal Medicine residents
(Gary et al., 2023; Rovati et al., 2024). These user testing sessions
are specifically designed to assess the usability of the application,
the workload it presents to users, the usability of the application,
and the satisfaction of learners. We anticipate that the findings from
these sessions will provide invaluable insights and guide iterative
refinement of the application design to better cater to user needs.

Looking ahead, there are numerous avenues for enhancing
the proposed architecture’s scalability, reliability, efficiency, and
performance. Such improvements are crucial for realizing high-
fidelity graph-based simulation models capable of functioning as
decision support tools for clinicians at the bedside. Our vision is to
use these models as digital twins and interpretable counterparts to
less transparent associative AI models, facilitating patient diagnosis
and optimal treatment prediction in real-time settings (see, for
example, (Komorowski et al., 2018; Chakshu and Nithiarasu, 2022;
Sun et al., 2022)). The interpretability aspect is particularly crucial
in healthcare, given the reluctance among clinicians to adopt “black-
box” AI models (Dang et al., 2021; Lal et al., 2022).

Specifically, to utilize a data-driven approach to further validate
the patient simulation application, it is necessary to extract
meaningful data points from the current plethora of variables
thereby improving the signal-to-noise ratio. This approach would
involve the current electronic health record data being mapped
to experimentally proven physiological concepts (e.g., utilizing
our approach with DAGs and validated expert rules). The future
iterations of this scalable patient simulation application will also
include a “plug-in” feature with the current electronic health
record, which will seamlessly integrate the real-time data and
interoperability of the proposed virtual testing environment with
the current clinical infrastructure for medical education, in silico
research, and clinical decision support.

To realize these visions, an exciting future direction involves
the utilization of graph algorithms like Graph Neural Networks
for link prediction. This would improve the accuracy of the
graph model that drives the virtual patient simulation. Graph
Neural Networks have demonstrated state-of-the-art results in
predicting synthetic lethality and drug-target interaction in
biomedical networks (Long et al., 2022). Therefore, applying these
algorithms to a graph model based on DAGs, illustrating causal
relationships and intricate pathophysiological interactions within
the human body, could potentially yield impressive results.

Another intriguing prospect is to enhance the efficiency of
querying theNeo4j graph database. Currently, the simulation engine
examines all rules upon querying the graph database, even those
that do not meet the application conditions. Future work should
aim to develop more specific queries using Neo4j’s cypher query
language.This could traverse only nodes or edges of a specific type or
with particular properties, increasing query efficiency. However, this
requires careful reconsideration of how the data is structured within
the database, given the unique set of simple and complex conditions
associated with each rule.

Lastly, the incorporation of parallel computing within the cloud-
hosted simulation engine could significantly boost its performance.
Recent research has shown that integrating parallel computing
within serverless functions drastically enhances performance and
reduces costs (Kiener et al., 2021). Future studies could adapt these
findings to elevate the performance of our simulation engine. These
initiatives, when realized, could greatly advance the capabilities of
the proposed architecture, moving us closer to our ultimate goal of
creating a robust and scalable tool for healthcare simulations.
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Introduction: Operating room (OR) efficiency is a key factor in determining
surgical healthcare costs. To enable targeted changes for improving OR
efficiency, a comprehensive quantification of the underlying sources of
variability contributing to OR efficiency is needed. Previous literature has
focused on select stages of the OR process or on aggregate process times
influencing efficiency. This study proposes to analyze the OR process in more
fine-grained stages to better localize and quantify the impact of
important factors.
Methods: Data spanning from 2019-2023 were obtained from a surgery center
at a large academic hospital. Linear mixed models were developed to quantify
the sources of variability in the OR process. The primary factors analyzed in
this study included the primary surgeon, responsible anesthesia provider,
primary circulating nurse, and procedure type. The OR process was
segmented into eight stages that quantify eight process times, e.g., procedure
duration and procedure start time delay. Model selection was performed to
identify the key factors in each stage and to quantify variability.
Results: Procedure type accounted for the most variability in three process times
and for 44.2% and 45.5% of variability, respectively, in procedure duration and
OR time (defined as the total time the patient spent in the OR). Primary
surgeon, however, accounted for the most variability in five of the eight
process times and accounted for as much as 21.1% of variability. The primary
circulating nurse was also found to be significant for all eight process times.
Discussion: The key findings of this study include the following. (1) It is crucial to
segment the OR process into smaller, more homogeneous stages to more
accurately assess the underlying sources of variability. (2) Variability in the
aggregate quantity of OR time appears to mostly reflect the variability in
procedure duration, which is a subinterval of OR time. (3) Primary surgeon has
a larger effect on OR efficiency than previously reported in the literature and
is an important factor throughout the entire OR process. (4) Primary
circulating nurse is significant for all stages of the OR process, albeit their
effect is small.

KEYWORDS

operating room, surgery, efficiency, case delay, duration, surgical team, human factors,
linear mixed model
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1 Introduction

Improving operating room (OR) efficiency is a key factor in

controlling or reducing surgical healthcare costs (1), which are

significant. Aggregate surgical healthcare expenditures comprised

29% of aggregate healthcare expenditures in the United States in

2005, as computed by Muñoz et al. (2). Moreover, aggregate

surgical expenditures were forecasted to grow from 4.6% of US

GDP in 2005 to 7.3% of US GDP in 2025 (2). In a more recent

study by Childers and Maggard-Gibbons (3), the mean cost of

ambulatory OR time across California hospitals in fiscal year

2014 was $36.14 per minute with a standard deviation of $19.53

per minute. Cerfolio et al. (4) report a significantly higher cost of

$150 per minute of OR time in the main campus ORs at

New York University Langone Health. Even with financial

considerations aside, improving OR efficiency will likely improve

patient safety, experience, and outcomes, decrease patient wait

time, increase OR throughput, and improve surgical team and

staff satisfaction (5, 6).

Improving OR efficiency is a multifaceted problem, and several

metrics have been investigated by researchers.1 A common approach

to improving efficiency is to improve the utilization of the OR, that

is, by minimizing both underutilization and overutilization (9, 10).

Underutilization occurs when an OR lies unused due to cases

being completed earlier than predicted, and overutilization occurs

when an OR is used beyond its predicted or allotted time (5).

Such inefficiencies are caused in large part by variability in OR

time (11, 12), typically defined as the duration of time from when

the patient is wheeled into the OR to the time the patient is

wheeled out. Indeed, studies by Bokshan et al. (13) and Allen

et al. (14) have shown OR time to be a significant driver of

increased surgical costs. To reduce inefficiencies and associated

costs, researchers have sought to identify the sources of variability

in OR time. The primary conclusion in the literature is that

procedure characteristics, namely, precise procedure type and type

of anesthesia, are the main factors explaining the variation in OR

time, followed by surgical team characteristics, primarily the

surgeon (11, 12, 15, 16). Other factors such as patient

characteristics (e.g., BMI) or other surgical team factors, such as

the anesthesiologist, are generally found to be insignificant.

OR time, however, is an aggregate quantity that encompasses

several stages of the OR process, and it does not span the entire

OR process (Figure 1). As such, it has the following potential

downsides. First, OR time does not include all stages of the OR

process. In this study’s dataset, which consists of timestamps

taken from a surgery center located in a large academic hospital,

OR time does not include room setup duration or room cleanup

duration, nor any delays in starting the next case or beginning

anesthesia induction. In addition, the dataset shows that

anesthesia induction begins, on average, approximately two
1For comprehensive reviews, refer to Lee et al. (7) and Dexter and Epstein (8).
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minutes before the patient is wheeled into the OR (i.e., two minutes

before OR time begins). Thus, analyzing OR time alone will not

allow for ascertaining the sources of variability in all stages of the

OR process, and it may also contain some inaccuracies due to

the starting and ending points of OR time not lining up with the

activities in the OR process. Second, OR time itself covers several

different stages of the OR process, including anesthesia induction,

procedure duration, and delays in the procedure start time and in

the time the patient is wheeled out after the procedure is

completed. It is reasonable to hypothesize that the above four stages

do not have the same sources of variability, or that shared sources

of variability do not account for the same proportion of variability

across all stages of the OR process. Therefore, this study’s approach

is to segment the OR process into more fine-grained, homogeneous

stages and assess the sources of variability within each stage.

Past studies have focused on other parts of the OR process

besides OR time and the more fine-grained stages that comprise

OR time, including surgical procedure duration, anesthesia-related

times, start time delays, and turnover time (refer to Section 2.1).

However, an effort to quantify the sources of variability across all

fine-grained stages of the OR process is currently lacking. Based

on timing markers obtained from a surgery center located in a

large academic hospital, this paper quantifies the sources of

variability in several OR process stages, including first case start

time delay, setup duration, anesthesia induction time, procedure

start time delay, procedure duration, wheels out delay, cleanup

duration, and OR time (refer to Section 3.1). The focus of this

paper is on quantifying the extent to which type of procedure and

members of the surgical team - primary surgeon, responsible

anesthesia provider, and primary circulating nurse - and their

interactions explain the variation in the fine-grained stages of the

OR process. By better understanding the influence of various

important factors, stakeholders and researchers can better pinpoint

where interventions to improve efficiency should be targeted.

The rest of this paper is organized as follows. Section 2

provides a literature review on previous approaches to assess or

improve efficiency within different stages of the OR process.

Section 3 describes the dataset, process times, statistical

approach, and model selection. Section 4 describe the results of

the statistical analysis, primarily providing a decomposition of

variability for each process time. Section 5 discusses the primary

findings of this study and comments on this study’s limitations

and opportunities for future work. Section 6 provides concluding

remarks. Additional tables and figures generated in this study are

available in the Supplementary Material.
2 Research background

2.1 Related work in determining the factors
driving the stages of the OR process

Numerous studies have investigated the various factors

purported to cause or explain the variation in the OR process.

Such work is motivated by the idea that, for OR efficiency to be

improved, relevant stakeholders must first be informed about the
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FIGURE 1

Visual depiction of the OR process, including timestamps and the span of time each OR process time covers. Formulas for each process time are given
in Table 1.

2ACT is defined in Dexter et al. (22) as the sum of the time from when the

patient enters the OR to when the positioning or skin preparation begins,

plus the time from when the surgical dressing is completed to when the

patient is wheeled out of the OR.
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primary factors driving OR inefficiencies. In addition, identifying

the primary factors will allow for better predictive modeling,

which in turn will allow for more accurate OR case scheduling to

reduce OR underutilization and overutilization.

Variability in OR time (i.e., “wheels in” to “wheels out” time) is

cited as a primary cause of inefficient OR utilization (11, 12). When

a case lasts longer than planned, subsequent cases will either be

delayed, potentially leading to OR overutilization, or cancelled,

resulting in less OR revenue, patient dissatisfaction, and reduced

quotas for surgical teams. When a case lasts shorter than

expected, the OR will likely lie underutilized for some period of

time, wasting resources. Exploring the factors that explain the

variability in OR time, Dexter et al. (15) verified earlier findings,

e.g., in Strum et al. (16), that reported the importance of three

factors: precise procedure information, surgical team, and

anesthetic type in predicting OR time. Eijkemans et al. (11) later

identified additional factors, including the surgeon’s estimate

of total surgical time, operation characteristics (e.g., number of

separate procedures), and team characteristics (e.g., number of

surgeons). van Eijk et al. (12) found that type of procedure is the

overwhelming predictor of OR time variability, with surgeon

having a small but significant effect and anesthesiologist having a

negligible effect. Many studies show that patient characteristics

(e.g., body mass index) have little effect (11, 12).

Some studies have investigated the sources of variability in

other parts of the OR process and in more fine-grained stages.

The most commonly examined stage is the (surgical) procedure

duration, which is typically the longest stage that comprises OR

time. For instance, Strum et al. (16) found the surgeon to be the

most important source of variability in procedure duration,

followed by anesthesia type. Patoir et al. (17) found surgeon

characteristics, center location, and surgical procedure and

patient characteristics accounted for much of the variation in
Frontiers in Digital Health 03102
procedure duration. Additional factors were explored in the

literature, such as surgeon factors (e.g, team composition factors,

such as the presence of residents) (18), factors that increase the

expected duration (e.g., communication failures) by Gillespie

et al. (19), and operational (e.g., OR assignment) and temporal

(e.g., whether a case was started after 5:00PM) factors by Kayis

et al. (9). However, many of the studies focusing on procedure

duration, e.g., Strum et al. (16), Stepaniak et al. (18), and Kayis

et al. (9), perform statistical analyses separately for each surgical

speciality or coarse-grained category rather than considering

holistically how the specific procedure type, as indicated by a

fine-grained category such as the American Medical Association’s

Current Procedure Terminology codes (refer to Section 3.2),

accounts for the variation in procedure duration.

Other parts of the OR process explored in the literature are

anesthesia-related times. For instance, Kougias et al. (20) found

in their multivariate regression analysis that procedure type,

anesthesia type, and BMI were statistically significant predictors

of anesthesia induction time, while procedure type, anesthesia

type, and operative case length were statistically significant

predictors of anesthesia recovery time. van Veen-Berkx et al. (21)

found that scheduling accuracy improved when looking at

anesthesia-controlled time (ACT) as a proportion of total

procedure time.2 Few studies, however, have examined the
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impact of various human factors involved in the OR process on

anesthesia-related times, including anesthesiologists.

Other fine-grained stages of the OR process that have been

explored include start time delays, such as procedure start time

delay, (any) case start time delay, and first case start time delay.

Does et al. (23) employed Six Sigma techniques (24) to identify

poor planning and scheduling as the primary factor causing

delays in the start times of surgical procedures. The authors

noted that surgical specialty and anesthesia technique also

influence start time delays. A review by Halim et al. (25)

identified several factors that can improve start time, including

financial incentives for staff, education strategies, perioperative

protocols and systems, surgical team communication, the “golden

patient” initiative,3 and the “productive operating theatre”

scheme4 A more specific approach is to look only at delays in

the first case of the day, with the justification being to mitigate

the cascading effect a delay in the first case has on subsequent

cases in the OR. Cox Bauer et al. (27) analyzed data across three

high-volume urban hospitals and found that, for cases with a

documented reason for delay, the physician was the most

reported reason for delay at 52%, followed in descending order

by anesthesia, patient, staff, other sources, and facility. The

authors did perform a regression analysis finding patient age,

occurrence of late arrival, department, and facility to be

significant predictors of delay. However, neither approach gives a

quantification of the overall impact of a predictor on first case

start time delay. Other similar work has looked at more

specific events such as delays in the start of a subsequent

case when the preceding case was performed by a different

surgeon (28) and remaining time to exit the OR after surgical

closure begins (29).

An additional stage of the OR process explored in the literature

is turnover time, which is the duration of time from when a patient

is wheeled out until the next patient is wheeled in. Thus, turnover

time is all the remaining time in the OR process not covered by OR

time (Figure 1). Bhatt et al. (30) took a systems-level approach to

improve turnover time, which focused on developing a consistent

“room ready” designation to reduce variability, implementing

parallel processing to ensure room readiness and patient

readiness occur simultaneously, and improving perioperative

communication. Cerfolio et al. (4) piloted a Performance

Improvement Team, called “PIT Crew,” that performed lean

processing and value mapping to improve efficiency in the

turnover time period. Goldhaber et al. (31) reduced turnover

times significantly by collecting more granular data within the

turnover time period and displaying these data to teams for

regular review and accountability. The turnover time period was
3The “golden patient” initiative is a strategy where the first patient on the

operating list is medically fit, thoroughly investigated, and has a clear

surgical plan (25).
4The “productive operating theatre” scheme is a three-step intervention to

increase OR efficiency (25, 26).
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further divided into the followings segments: wheels out time !
cleanup start time ! cleanup complete time ! setup start time

! time room is ready for patient ! wheels in time. Few studies,

however, have taken the approach of quantifying the factors that

explain variation in turnover time or the stages that comprise the

turnover time period.
2.2 State-of-the-practice methodologies
for determining important factors

There are several approaches in the related literature that seek

to identify the important factors accounting for the variation in the

OR process. Primary methods found in the literature include

performing basic statistical analysis, fitting known probability

distributions to OR process times, utilizing regression approaches

for inference or prediction, utilizing systems-level approaches for

improving process efficiency, and, more recently, training

machine learning models for prediction.

Traditional statistical analysis, such as descriptive statistics and

hypothesis testing methods, is a fundamental approach to gaining

insights from gathered datasets. Such analysis dates back many

decades but is still utilized today, particularly with healthcare

data, as it provides insights and an overview of process efficiency.

Dexter et al. (22) used two-group, one-sided t-tests to determine

if eliminating ACT would allow for additional cases to be

completed during a typical 8-h workday. Martin and Langell (32)

used Cuzick’s test for trend to evaluate whether pre-OR timeouts

and performance pay improved on-time starts, OR utilization,

and OR costs. Simmons et al. (33) was interested in determining

if fine-grained CPT codes, compared to coarser-grained surgical

specialties, would improve accuracy in surgical scheduling. They

utilized the I2 statistic and Levine’s test to assess heterogeneity in

the means and variances, respectively, of ACTs and surgical-

controlled times (SCTs).5 While traditional methods of statistical

analysis can provide interpretable and meaningful summaries of

data to answer questions of interest, such as determining whether

differences in groups are significant following an intervention,

further quantification capabilities are needed to assess the impact

of factors on OR efficiency.

An early line of research involved finding distributions with a

good fit to OR process time data. A main contributing paper in

this approach is that of Strum et al. (34) in which the authors

recommended using the lognormal distribution to model surgical

procedure times. Stepaniak et al. (35) mostly corroborated the

findings of Strum et al. (34), but Kayis et al. (9) found the

lognormal distribution did not generally fit surgery duration well

at the procedure level. Joustra et al. (36) more comprehensively

fit a number of hazard models. However, as mentioned in

Joustra et al. (36), such methods are less concerned with
5Surgical-controlled time is defined as the duration of time from surgical

incision to surgical closure.
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6Further description of the dataset in terms of procedural categories and the

range of CPT codes used are provided in Supplementary Table S1.
7Initially, the process times of anesthesia start time delay, computed as

anesthesia start minus wheels in, and next case start time delay, computed

as setup start (of next case) minus cleanup end (of previous case), were

included in this study. However, after data cleaning, there were too little

data to build LMMs with the desired factors; thus these process times were

excluded from the analysis.
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identifying the factors contributing to OR efficiency and more

concerned with prediction.

Regression models, on the other hand, do allow for evaluating

sources of variability in OR process times. Strum et al. (16)

employed main-effects ANOVA modeling with the logarithm of

surgical time and total procedure time as separate responses and

found primary surgeon and type of anesthesia to be important

predictors of variability. Does et al. (23) and Stepaniak et al. (18)

also utilized ANOVA models to assess the importance of select

factors on start time delays and surgical procedure times.

Regression modeling is similarly used to identify factors that

influence OR process times. Linear regression is especially

utilized for this purpose, such as in Silber et al. (37), Ying Li and

Huang (38), Gillespie et al. (19), and van Veen-Berkx et al. (21).

Linear regression models also have added functionalities over

ANOVA models, such as regularization techniques to avoid

overfitting or to perform variable selection, e.g., LASSO used in

Wang et al. (39), and incorporating nonlinear terms such as in

Wang et al. (40).

The literature above utilizing linear regression methods tends

to treat all factors as fixed effects. However, in a fixed effects

setting, when certain units, e.g., surgeons, have few observations,

parameter estimates may have high sample-to-sample variability.

Thus, the parameter estimates may vary substantially from

dataset to dataset, implying that the model built on a given

dataset may not be reliable (41). In addition, fixed effects models

require dummy variables to be created for each unit (e.g., each

surgeon), and a coefficient must be estimated for each unit. If a

factor contains many units (this study’s dataset contains over one

hundred surgeons), then estimating a large number of

coefficients reduces the model’s degrees of freedom, diminishes

the model’s power, and increases the standard errors of the

coefficient estimates (41). Furthermore, the present study is not

concerned with estimating the effects of individual surgeons,

anesthesiologists, etc., but rather the effect of these groups as a

whole. For such reasons, previous papers in assessing the effects

of different factors on OR process times have employed linear

mixed model (LMM) approaches, which incorporate both fixed

and random effects, with great success, e.g., Dexter and Ledolter

(42), Eijkemans et al. (11), van Eijk et al. (12). This paper also

takes an LMM approach for the above reasons.

More recently, machine learning (ML) has become a popular

method for predicting quantities in the OR process. Master et al.

(43) found that regression tree methods, such as gradient boosted

regression trees, outperformed historical averaging, surgeon

expert predictions, and other ML methods in the literature when

predicting pediatric surgical durations. ML methods combined

with surgeon predictions were also among the top-performing

methods in Master et al. (43). Other research has used ML to

improve predictions of OR process times (44–48). While ML

methods may improve prediction, Wang and Dexter (49) notes

that implementing ML software to increase prediction accuracy

will not increase productivity unless accompanied by more

allotted case time in a typical workday. More importantly, the

objective of this paper is to quantify the impact that various

human factors have on OR efficiency. LMMs allow for
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quantifying the proportion of variance explained in a response

by each factor of interest. ML methods do have some options for

determining similar values of impact, including variable

importance in classification and regression trees (CART) (45)

and Shapley additive explanations (SHAP) values (46). However,

variable importance metrics may not correlate well with model

variance explained by features (50), particularly when the model

overfits the data on which it’s trained, which is a common issue

with CART methods (43). The variable importance values are

also typically reported in a relative fashion (to other variables)

and thus do not provide an absolute assessment of the impact a

factor has on a response. SHAP values may provide a better

alternative in these regards, however they are not as well-

established as linear regression-based metrics and may have

issues as feature importance metrics (51).
3 Materials and methods

3.1 Dataset and subjects

Data spanning from January 2, 2019 to June 30, 2023 were

obtained from a surgery center in the University of Miami

Hospital. The surgery center incorporates six operating rooms

and a dedicated preoperative area and postoperative recovery

unit. The dataset originally contained 12,375 cases, before data

cleaning was performed (detailed below). The dataset included

the following timestamps: setup start time, anesthesia start time,

wheels in time (i.e., when the patient enters the OR), anesthesia

ready time, procedure start time, procedure complete time,

wheels out time (i.e., when the patient exits the OR), and

cleanup end time.6

This study examined various critical stages of the OR process

rather than focusing solely on one stage or on aggregate process

times encompassing several stages. The OR process times

explored in this study included first case start time delay, setup

duration, anesthesia induction time, procedure start time delay,

procedure duration, wheels out delay, and cleanup duration.7

Each OR process time was defined as the elapsed time between

two timestamps as described in Table 1. Figure 1 depicts the

timestamps and process times.

There is a strong focus in previous literature on the aggregate

quantity, OR time, defined as the elapsed time between when

the patient is wheeled into the OR to when the patient is
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TABLE 1 Formulas for calculating each OR process time and number of
cases after individual data cleaning for each process time.

Process time Formula Nbr. of
cases

First case start time delay Wheels in – 7:30/8:30 AM* 3,543

Setup duration Wheels in – setup start 4,681

Anesthesia induction
time

Anesthesia ready – anesthesia start 5,480

Procedure start time
delay

Procedure start – anesthesia ready 11,357

Procedure duration Procedure complete – procedure
start

11,501

Wheels out delay Wheels out – procedure complete 11,326

Cleanup duration Cleanup end – wheels out 4,800

OR time Wheels out - wheels in 11,467

*7:30 AM is the day’s start time for Monday, Tuesday, Wednesday, and Friday, and 8:30 AM

is the start time for Thursday.
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wheeled out. It is hypothesized that the factors driving an aggregate

quantity such as OR time, which covers various stages of the OR

process (Figure 1), would not necessarily be identical across all

stages comprising OR time, nor that shared sources of variability

in OR time would explain the same proportion of variation in

each stage comprising OR time. To evaluate these hypotheses,

OR time was also included as a process time for comparison to

the other seven process times.

This study’s statistical analysis (refer to Section 3.2) involved

building separate regression models using each OR process time

as a univariate response for a total of eight models. The subset of

cases containing errors corresponding to one process time were

not necessarily the same as the subset of cases containing errors

for a different process time. Then, because separate models were

developed for each process time, the choice was made to clean

the data separately for each process time, maximizing the

amount of data available for each model. Data cleaning involved

removing any cases with missing data, outliers, or errors. In

addition, any process time labeled as a “delay” only included

delay times that were positive. For instance, if the first case

started on or before the day’s start time, e.g., 7:30 AM, then this

case was removed as there was no “delay” in the commencement

of the first case. After removal of such cases for first case start

time delay, the number of cases available for fitting the statistical

model was 3,543 cases (Table 1). If instead the choice was made

to remove the same subset of cases for all process times, then

while each of the eight models would have a common pool of

data, the data size would be significantly reduced and the results

would not be as robust. The number of cases available after data

cleaning for each process time is provided in Table 1.

All the OR process times exhibited right skewness. For instance,

Figures 2(a,b) shows the original distributions of first case start time

delay and procedure duration, where the right skewness is evident.8
8Supplementary Figures S1–S6 show the corresponding histograms for all

other process times.
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To address this, a common approach in the relevant literature is to

use a logarithm transformation. Eijkemans et al. (11) and van Eijk

et al. (12) used the log transformation on OR time, and Strum

et al. (34) and Stepaniak et al. (35) showed that OR time and

procedure duration follow lognormal distributions, implying that

log-transforming these process times will approximately yield a

normal distribution more appropriate for linear regression

modeling methods. Does et al. (23) were concerned with reducing

start time delays of procedures, and to address right skewness they

opted for a more thorough Box-Cox transformation. However, the

optimal choice for the parameter l in the Box-Cox tranformation

was found to be zero in Does et al. (23), which is simply the log

transformation. This study investigated several transformations,

including log, square root, Box-Cox, and more. For many of the

process times, the log transformation was not “optimal” in the

sense of producing a distribution that most closely fits a normal

distribution relative to all other transformations, however it was

near-optimal for all process times. Moreover, given that the

previous literature concluded the log transformation is appropriate

for several OR process times and that the log transformation has

better interpretability (in contrast to, e.g., the Box-Cox

transformation), the logarithm was used to transform all process

times in this study.
3.2 Statistical analyses

The primary objective of this study was to quantify the extent

to which the variability observed in each OR process time could be

attributed to four key factors: type of procedure, primary surgeon,

responsible anesthesia provider, and primary circulating nurse.

These factors will henceforth be referred to as “procedure,”

“surgeon,” “anesthesiologist,” and “circulator,” respectively. Such

analyses can provide a more precise account and quantification

of the impact each factor has on each fine-grained stage of the

OR process.

To quantify sources of variability in the OR process times, a

linear mixed model (LMM) approach was used. An LMM was

built separately for each of the eight process times, so that the

sources of variability for each stage of the OR process could be

assessed and quantified. The primary factors of interest, i.e.,

procedure, surgeon, anesthesiologist, and circulator were treated

as random effects. Table 2 shows the number of levels of each

factor that occurs in each process time’s corresponding dataset

(after data cleaning).

The four primary factors were treated as random effects for

multiple reasons. First, treating a factor as a random effect allows

for estimating the factor’s variance and proportion of variance

explained in the response (i.e., process time). Second, Table 2

shows that each of the four primary factors has many levels, and

treating each as a fixed effect would require estimating tens to

hundreds of coefficients, reducing the degrees of freedom in the

model. This study is also not concerned with, e.g., a particular

surgeon’s effect, but rather the impact of the group of surgeons as

a whole. Third, the procedures, surgeons, anesthesiologists, and

circulators included in the dataset do not necessarily encompass
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FIGURE 2

Histograms for (a) first cast start time delay and (b) procedure duration before transformation and (c) first case start time delay and (d) procedure
duration after a log transformation.

TABLE 2 Number of levels of each random effect in the cleaned dataset for each OR process time.

OR process time Random effect

Procedure Surgeon Anesthesiologist Circulator
First case start time delay 439 106 78 112

Setup duration 568 106 76 114

Anesthesia induction time 633 118 77 117

Procedure start time delay 820 131 82 130

Procedure duration 827 132 82 131

Wheels out delay 818 131 82 130

Cleanup duration 519 107 79 121

OR time 823 132 82 131
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TABLE 3 Description of fixed effects used in the LMMs.

Factor Levels Description
Number of
procedures

0, 1,…, 31 Number of procedures performed
in a surgical case.

Number of
panels

1, 2,…, 5 Number of panels in a surgical case,
where a “panel” is defined as a
grouping of surgical procedures
performed together.

Procedure
level

None, I, II, III, IV Indicates surgical complexity of
case.

Cancer/
noncancer

Cancer, noncancer Indicates whether procedures were
cancer-related or not.

Position Assistant, associate,
professor

Position of primary surgeon in
academic hospital.

Patient class Emergency, hospital
ambulatory surgery,
inpatient, surgery admit

Admission status of patient.
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the entire populations of these factors. Thus, treating the factors as

random effects allowed for accomplishing this study’s research

objective and was an appropriate choice given the dataset. Note

that only random intercepts were used in the LMMs.

Procedure was categorized based on the American Medical

Association’s Current Procedure Terminology (CPT) codes (52).

Several past studies have identified the importance of

categorizing procedures with high granularity, e.g., with CPT

codes, rather than with low granularity, e.g., with surgical

specialities such as neurosurgery, gynecology, etc. (33, 34, 38). In

particular, a recent study by Simmons et al. (33) examined over

30,000 surgical cases in an academic hospital and found that

both the mean and variance of ACT and SCT varied significantly

between CPT codes within specialities. Their results suggest that

the use of more granular categories, specifically CPT codes, will

enhance the accuracy of subsequent analysis and scheduling.

Accordingly, this study used the primary CPT code for each case

as the procedure type.

Other factors were available in the University of Miami

Hospital’s database that could influence the process times.

Domain expertise of this study’s authors was used to select the

factors believed to impact OR process efficiency. Six factors were

included; they are shown in Table 3. “Position,” for instance, was

included as a proxy measure of the seniority and expertise of the

primary surgeon. More experienced and senior surgeons were

expected to be more efficient and consequently have a positive

impact on OR efficiency. The six factors were treated as fixed

effects for the following reasons. First, the factors were of less

interest in this study and were expected to only marginally

improve the model. The objective of this study was to quantify

the sources of variability in the process times, focusing on

procedure, surgeon, anesthesiologist, and circulator. Second,

every factor had no more than five levels, with the exception of

the number of procedures, which had thirty-two possible levels.9

Third, the levels of the factors were exhaustive of the population,

whereas the levels of the random effects were only a subset of

their respective populations.

As stated previously, LMMs were separately built for each of

the eight process times.10 Before model selection was performed,

a univariate analysis of each random effect was conducted to

quantify the improvement in each model by the addition of a

single random effect. Two base models were used - one

consisting of a fixed intercept and the other a fixed intercept plus

all six fixed effects. To each base model, a single random effect

was added and the adjusted intraclass correlation coefficient

(ICC) was calculated for each random effect, given by

ICC(adj) ¼
s2
a

s2
a þ s2

e

, (1)
9However, most cases involved only a few procedures.
10All LMMs were fitted using the lmer function from the R package lme4 (53).

A reference on this package is provided by Bates et al. (53).
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where s2
a refers to the variance of the random effect. ICC(adj) may

be interpreted as the proportion of variance explained in the

logarithm of the process time by the random effect, after

controlling for the fixed effects.

After univariate analysis, multivariate analysis was performed

to assess the impact of each random effect (in the presence of

other significant random effects) on the process time and to

control for fixed effects. Model selection proceeded as follows.11

First, a base model was developed, given by

yi ¼ b0 þ Xibþ a j[i] þ ei,
a j � N(0, s2

a),
ei � N(0, s2

e),
(2)

where i ¼ 1, . . . , n and j ¼ 1, . . . , J are the indices of the

observations and procedure levels, respectively, yi represents the

ith observation of the logarithm of the respective process time,

b0 is the fixed intercept, b is the vector of fixed slopes, Xi is the

vector of the ith observations of all variables associated with the

fixed effects (Table 3),12 a j[i] is a random intercept for

procedure, j[i] denotes to which procedure the ith observation

belongs, ei is the error term, and s2
a and s2

e are the variances of

the random effect and error, respectively.

Second, note that the base model in Equation 2 only includes a

random intercept for procedure. Procedure was previously found in

multiple studies to be the primary source of variability in various

OR process times (11, 12, 16, 35). Thus, with procedure

ostensibly explaining much of the variation in the process times,

it was reasonable to begin the base model with only procedure as

a random intercept. Each additional random effect was

subsequently and cumulatively added to determine if the
11A similar model selection procedure to that of van Eijk et al. (12) was used in

this study.
12Because all fixed effects were categorical with many levels, several dummy

variables were created which would be included in the vector Xi .
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additional random effect should be retained in the final model. A

chi-squared test was used to determine the significance13 of a

model with one additional random effect compared to the

(previous) model without the random effect. Akaike information

criterion (AIC) was also reported as it penalizes the addition of

more terms to the LMM. However, the chi-squared test was

solely used for determining which random effects to keep, since

AIC is more appropriate for prediction which is not the objective

of this study.

Third, fixed effects were individually examined to determine

whether each should be retained in the final model for each

process time. For a given process time, a new base model was

formed by adding all significant random effects found in step

two above to Equation 2. Each of the six fixed effects were

individually removed from the new base model, while retaining

all other fixed effects, and chi-squared tests were performed and

AIC values were computed. If the new base model (containing

all fixed effects and significant random effects from step two

above) was found significant over the new base model without

the individual fixed effect (according to the chi-squared test),

then the fixed effect was retained for the final model.

Fourth, the final model for a given process time was formed by

adding all significant random effects from step two above and

removing all fixed effects according to the procedure described in

step three above. To assess the impact of each random effect

retained in the final model, ICC(adj) in Equation 1 was

calculated for each random effect. In addition, model ICC values

were calculated to give the overall proportion of variance

explained in the logarithm of the process time by all random

effects. Both unadjusted and adjusted model ICC values were

reported. The unadjusted model ICC, denoted ICCLMM, and

adjusted model ICC, denoted ICCLMM(adj), are given by

ICCLMM ¼ s2
r

s2
r þ s2

f þ s2
e

and

ICCLMM(adj) ¼
s2
r

s2
r þ s2

e

,

(3)

where s2
r and s2

f are the variances explained by all random and

fixed effects, respectively.
14Skewness of the process times is further supported by the histograms

displayed in Figure 2 and Supplementary Figures S1–S6.
15For cleanup duration (Supplementary Table S7), surgeon is only higher than
4 Results

Figure 3 shows a summary of the data, after cleaning, for each

(untransformed) process time and random effect. To calculate the

values of a given box plot, the times of the corresponding process

time (e.g., procedure duration) were grouped according to the

levels of the corresponding random effect (e.g., surgeon) and

the median was taken for each level. For all process times, the
13The standard 0.05 level of significance was used.
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random effect of procedure displays the highest dispersion

through larger interquartile ranges and wider outliers (dots). As

seen in Table 2, procedure also has significantly more levels than

any other random effect. However, this alone does not explain

the higher dispersion observed in procedure. Rather, it is likely

that procedure is an important factor, which also agrees with

much of the literature concluding that procedure is the primary

source of variability in various OR process times (11, 12, 16, 35).

Figure 3 also shows that all process times are right-skewed, as

indicated by the median line being closer to the first quartile

(bottom of box) and the upper tails and outliers extending far

upwards, particularly in the box plots corresponding to the

random effect of procedure. Some process times only show mild

skewness, such as cleanup duration.14

Table 4 and Supplementary Tables S2–S8 provide an

assessment of the individual impact of each random effect, with

and without fixed effects. In Table 4 and Supplementary Tables

S2–S8, ICC(adj) shows a small reduction when fixed effects are

included; thus, the fixed effects included in this study do not

explain much variation in the logarithms of the process times. Of

all main random effects, procedure shows the largest ICC(adj) for

most of the process times. This observation is supported by

Figure 3 in that the box plots associated with procedure show

the largest variation. Exceptions include first case start time delay

(Supplementary Table S2) and cleanup duration (Supplementary

Table S7) in which surgeon shows the largest ICC(adj).
15 In other

cases, surgeon is not far behind procedure in terms of ICC(adj),

including setup duration (Supplementary Table S3), anesthesia

induction time (Supplementary Table S4), procedure start time

delay (Supplementary Table S5), and wheels out delay

(Supplementary Table S6). Procedure duration (Table 4) and OR

time (Supplementary Table S8) are the process times where

procedure explains moderately more variation than surgeon.16

While the fact that procedure and surgeon accounting for the

most variability could in part be due to both factors having

many levels, circulator also shows approximately the same

number of levels as surgeon (Table 2), yet it typically accounted

for very little of the variability. One final observation from

Table 4 and Supplementary Tables S2–S8 is that the interaction

terms typically have higher ICC(adj) than their main effect

counterparts, but the gain is marginal.

Model selection was performed for each process time as

described in Section 3.2. The model selection process is
procedure in ICC(adj) when fixed effects are included.
16As concluded in this paper, though, the variability of OR time largely

reflects that of procedure duration; thus, procedure type has a significantly

higher impact on procedure duration than the primary surgeon, but this is

not the case for the other stages of the OR process as examined in this study.
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FIGURE 3

Box plots by random effect for each (untransformed) process time: (A) first case start time delay, (B) setup duration, (C) anesthesia induction time, (D)
procedure start time delay, (E) procedure duration, (F) wheels out delay, (G) cleanup duration, (H) OR time. The values used to generate each box plot
were the median times for each level of a given random effect and for each process time.
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TABLE 4 Univariate assessment of random effects when using procedure
duration as the response.

Random effect ICC(adj) (%),
without FE

ICC(adj) (%),
with FE

Procedure 66.9 59.8

Surgeon 39.7 34.9

Procedure � Surgeon 72.0 64.3

Anesthesiologist 6.1 1.6

Procedure �
Anesthesiologist

69.8 58.2

Surgeon �
Anesthesiologist

46.9 35.3

Circulator 12.3 6.6

Procedure � Circulator 69.0 59.1

Surgeon � Circulator 44.3 35.7

Anesthesiologist �
Circulator

22.7 12.3

Each row corresponds to an LMM with a fixed intercept and the single random effect

specified in column 1. Columns 2 and 3 give ICC(adj) values (Equation 1) for each
univariate random effect model, both excluding (column 2) and including (column 3) all

fixed effects in the LMM. ICC, intraclass correlation coefficient; FE, fixed effects.

TABLE 5 Model selection for choosing random effects in the LMM where
procedure duration is the response.

Model AIC AIC gain p-value
Base model 22516.8 – –

þ Surgeon 21955.9 560.9 <0.001

þ Procedure � Surgeon 21750.2 766.6 <0.001

þ Anesthesiologist 21685.7 831.0 <0.001

þ Procedure � Anesthesiologist 21681.0 835.7 0.010

þ Surgeon � Anesthesiologist 21669.3 847.5 <0.001

þ Circulator 21628.8 888.0 <0.001

þ Procedure � Circulator 21597.9 918.9 <0.001

þ Surgeon � Circulator 21584.8 932.0 <0.001

þ Anesthesiologist � Circulator 21578.2 938.6 0.003

The base model is given in Equation 2 and consists of a fixed intercept, all six fixed effects,

and procedure as a random intercept. Additions appearing in this table are cumulative in the
sense that each subsequent random effect was added to the model in the preceding row. AIC

gain is the improvement in AIC from adding additional random effects onto the base model

(calculated as AIC of the base model minus AIC of the larger model). AIC, Akaike

information criterion.

TABLE 6 Number of final models in which each random and fixed effect
appeared.

Random effect Frequency Fixed effect Frequency
Procedure 8 Number of

procedures
6

Surgeon 8 Number of panels 1

Anesthesiologist 7 Procedure level 4

Circulator 8 Cancer/noncancer 1

Procedure � Surgeon 5 Position 1

Procedure �
Anesthesiologist

5 Patient class 8

Procedure � Circulator 8

Surgeon �
Anesthesiologist

4

Surgeon � Circulator 4

Anesthesiologist �
Circulator

2

TABLE 7 Model selection for choosing fixed effects in the LMM where
procedure duration is the response.

Model AIC AIC loss p-value
Base model 21578.2 – –

BM � Number of procedures 22772.2 1194.1 <0.001

BM � Number of panels 21577.0 �1.2 0.362

BM � Procedure level 21665.5 87.4 <0.001

BM � Cancer/noncancer 21576.8 �1.3 0.413

BM � Position 21574.3 �3.9 0.928

BM � Patient class 21696.0 117.8 <0.001

The base model consists of a fixed intercept, all six fixed effects, and the random effects found

to be significant from Table 5. Each fixed effect was removed from the base model, and each

reduced model was compared to the base model via a chi-squared test. If the base model was

found significant compared to the reduced model, then the corresponding fixed effect was
retained. Subtractions appearing in this table are not cumulative and denote that only the

indicated fixed effect was removed from the base model and all other fixed effects were

included. AIC loss is the increase in AIC from removing a fixed effect from the base

model (calculated as AIC of the reduced model minus AIC of the base model). AIC,
Akaike information criterion; BM, base model.
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illustrated with procedure duration (Table 5).17 The p-values were

determined from performing chi-squared tests between each model

and its previous (nested) model in Table 5, and they were used to

determine whether to retain a particular random effect for the final

LMM. In the case of procedure duration (and OR time;

Supplementary Table S15), all main effects and interactions were

determined to be significant and were retained for the final

model. The gain in AIC exhibited by every random effect in

addition to procedure indicates that including each term will

likely improve prediction. The number of final models in which
17The corresponding tables for all other process times are included in the

Supplementary Tables S9–S15.
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each random effect appeared is shown in Table 6. Procedure was

by default included in every model, but surgeon, circulator, and

the interaction of procedure and circulator also appeared in every

model. Anesthesiologist appeared in all models except for that of

first case start time delay.

A new model for each process time was formed by augmenting

the base model (Equation 2) with the significant random effects

shown in Table 5 and Supplementary Tables S9–S15. Then the

individual impact of each fixed effect on the performance of the

augmented LMM was assessed (refer to Section 3.2). Table 7

shows the performance associated with the fixed effects for

procedure duration.18 Based on the p-values, the fixed effects

retained for the final model for procedure duration were the

number of procedures, procedure level, and patient class. Table 6

shows the number of final models for which each fixed effect
18Supplementary Tables S16–S22 show the performance associated with the

fixed effects for all other process times.
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was retained. Patient class was found significant for every process

time and the number of procedures was found significant for all

process times except first case start time delay (Supplementary

Table S16) and cleanup duration (Supplementary Table S21).

ICC(adj) (Equation 1) was calculated for each random effect

appearing in each final model, and model ICC values, ICCLMM
and ICCLMM(adj) (Equation 3), were also calculated for each

process time (Table 8). From Table 8, it is observed that surgeon

is the random effect with the highest ICC(adj) value for five of

the process times, including first case start time delay, setup

duration, procedure start time delay, wheels out delay, and

cleanup duration. However, the highest ICC(adj) value surgeon

obtains is 21.1% for procedure start time delay. Procedure has

the highest ICC(adj) value for all other process times, including

anesthesia induction time, procedure duration, and OR time.

Procedure accounted for 44.2% and 45.5% of variability in the

logarithm of procedure duration and OR time, respectively. For

all other process times, procedure accounted for approximately

11% of variation or less. While anesthesiologist was found

significant for seven process times, it accounted for at most 1.1%

of variation (wheels out delay). Interestingly, circulator was

found significant for all models and accounted for as much as

3.4% of variation (wheels out delay). However, both

anesthesiologist and circulator do not individually account for

much variation.

Table 8 also shows several significant interaction terms. In

particular, the interaction of procedure and circulator was

significant for all models. In many cases, this interaction term

accounted for more variation than circulator individually. This

suggests that the effect of the primary circulating nurse is

significant but their effect can depend on the type of procedure.

In addition, the interaction of procedure and surgeon was

significant for five models and accounted for 2.2%–8.7% of

variation. This also suggests the effect of the surgeon depends on

the procedure. Lastly, the interaction of surgeon and circulator

accounted for a modest amount of variance in the logarithms of

setup duration (6.5%) and cleanup duration (8.6%), suggesting a
TABLE 8 ICC(adj) values for each random effect (Equation 1) appearing in ea

FCSTD SD AIT
ICC(adj) (%) Procedure 1.0 9.9 11.4

Surgeon 7.1 12.2 7.3

Anesthesiologist - 0.8 0.8

Circulator 0.2 2.3 0.7

Proc. � Surg. – – –

Proc. � Anes. – – –

Proc. � Circ. 3.4 0.4 2.1

Surg. � Anes. – – –

Surg. � Circ. – 6.5 –

Anes. � Circ. – – –

ICCLMM(adj) (%) 11.6 32.1 22.3

ICCLMM (%) 11.3 29.8 21.1

A dash (–) indicates the random effect was not selected for the final model. The random effects w

ICCs, namely ICCLMM and ICCLMM(adj) (Equation 3). FCSTD, First case start time delay; S

Procedure duration; WOD, Wheels out delay; CD, Cleanup duration; ORT, OR time.
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synergistic effect of surgical teams in some stages of the

OR process.

Overall, Table 8 shows that the primary factors examined in

this study - procedure type, primary surgeon, responsible

anesthesia provider, and primary circulating nurse - are most

impactful on procedure duration and OR time, accounting for

67.5% and 69.7% of variation (in the logarithms), respectively,

after fixed effects have been accounted for. The primary factors

also explained a moderate amount of variation in the logarithm

of procedure start time delay (43.5%), and were mildly impactful

on setup duration (32.1%), anesthesia induction time (22.3%),

wheels out delay (26.5%), and cleanup duration (28.7%). The

primary factors accounted for very little of the variation in the

logarithm of first case start time delay (11.6%). Finally, it is

noted that there were little differences between ICCLMM(adj)
and ICCLMM, further reinforcing that the fixed effects included

in this study had little impact on the process times.
5 Discussion

5.1 Primary findings

The present study made several findings that both complement

and add to the existing literature on OR efficiency. First, this study

shows that, when investigating the impact of factors on the OR

process, a fine-grained approach is necessary to pinpoint where

in the process, and by how much, each factor makes an impact.

In Section 1, it was hypothesized that the fine-grained stages of

the OR process do not consist of the same sources of variability,

nor that the common sources of variability account for the same

proportion of variance in each stage. The results of this study

support the above hypotheses (Table 8). Notably, OR time is an

aggregate quantity consisting of the stages of the OR process in

which the patient is present in the OR (i.e., “wheels in” to

“wheels out”). However, the results of this study indicate that the

quantification of variability in OR time mainly reflects the
ch final model.

PSTD PD WOD CD ORT
10.7 44.2 5.8 1.3 45.5

21.1 10.8 10.9 11.3 13.3

0.4 0.2 1.1 0.5 0.3

0.7 0.5 3.4 1.5 0.4

3.5 8.7 2.2 2.5 7.2

0.9 0.3 1.1 2.7 0.6

5.6 1.3 1.4 0.4 0.6

0.7 0.3 0.7 - 0.7

– 0.9 – 8.6 0.9

– 0.3 – – 0.2

43.5 67.5 26.5 28.7 69.7

42.2 58.2 25.0 28.2 59.0

ith the largest ICC for each process time are indicated in bold. Also provided are the model

D, Setup duration; AIT, Anesthesia induction time; PSTD, Procedure start time delay; PD,
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quantification of variability in procedure duration. Comparing the

two process times in Table 8, their variabilities roughly decompose

in the same way. For example, procedure accounted for 45.5% and

44.2% and surgeon for 13.3% and 10.8% of variability in the

logarithms of OR time and procedure duration, respectively.

Moreover, the random effects overall accounted for 69.7% and

67.5% of variability in the logarithms of OR time and procedure

duration, respectively. In addition to procedure duration, OR

time also comprises the time intervals associated with (a large

proportion of) anesthesia induction time, procedure start time

delay, and wheels out delay. However, the decompositions of

variability for the latter three process times bear little

resemblance to that of OR time. Thus, what happens in the OR

during the procedure is mostly what is driving the aggregate

quantity of OR time. As a result, interventions for improving

efficiency in OR time should be focused on the procedure stage.

The second primary finding regards the impacts of each human

factor. In particular, the primary surgeon had a larger impact in

this study than what was previously reported in the literature.

For instance, van Eijk et al. (12) found that the primary surgeon

and second surgeon19 only accounted for a combined 4.8% of

the variability in the logarithm of OR time. In the present study,

however, primary surgeon alone accounted for 13.3% of

variability in the logarithm of OR time (Table 8). Surgeon also

accounted for a substantial 21.1% of variability in the logarithm

of procedure start time delay and for at least 7% in the

logarithms of all other process times (Table 8). The above results

suggest that the primary surgeon (and other surgeons in the

team) have moderate impacts not only on procedure duration,

but also on many stages of the OR process. The importance of

the surgeon was stressed in previous literature, e.g., Strum et al.

(16), however a quantification of the variability due to surgeon

was usually not provided. Moreover, the impact of the surgeon

depends in part on the procedure, as seen by the significant

interaction term of procedure and surgeon (Table 8). Indeed,

Strum et al. (16) found that variability in surgical time increased

as procedure time increased, indicating an interaction effect

between type of procedure and surgeon.

In agreement with previous literature, responsible anesthesia

provider was often a significant factor but not impactful on OR

efficiency (12, 16). Surprisingly, responsible anesthesia provider

had little impact on the anesthesia-controlled times, including

anesthesia induction time and wheels out delay, the latter of

which includes the patient’s emergence from anesthesia. Other

factors not included in this study, such as patient and operation

characteristics, may be important for accounting for variability in

anesthesia-controlled times (54).

Lastly, this study found the primary circulating nurse, a less

studied human factor in the literature regarding OR efficiency, to
19“Second surgeon” is defined in van Eijk et al. (12) as the first registered

assistant surgeon during a procedure.
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be a significant factor in all stages of the OR process. This is

reasonable because the circulating nurse, sometimes called the

“perioperative” nurse, is involved before the surgery (e.g.,

transporting the patient and preparing the patient for surgery),

during the surgery (e.g., assisting with equipment), and after the

surgery (e.g., monitoring the patient) (55). In this study, the

circulating nurse had their largest effect on wheels out delay and

setup duration, accounting for 3.4% and 2.3% of variability

(Table 8), respectively. In addition, the interaction of procedure

and circulator was also significant for every process time, and the

interaction of surgeon and circulator was significant for four

process times and reached an ICC(adj) value as high as 8.6%

(cleanup duration; Table 8). Thus, the effect of the circulating

nurse depends on the procedure type and, for some stages of the

OR process, also on the particular attending surgeon, indicating

some team synergistic effect on OR efficiency. Indeed, studies

have found that nursing staff characteristics and team effects are

important components of OR efficiency (56–58). More work is

needed though to investigate the role of nursing staff on OR

efficiency and to design interventions with nursing staff as a

central component.
5.2 Clinical implications

The primary findings of this paper have the following clinical

implications. First, OR process prediction models may be

improved by incorporating significant factors and interactions

found in this study. Improving prediction models will improve

scheduling accuracy and increase OR utilization (i.e., decrease

under- and over-utilization) which directly impacts OR

efficiency.20 This paper helps to fill a gap by quantifying the effect

of key members of the surgical team and procedure type on

various stages of the OR process. For instance, it may be beneficial

for models predicting procedure duration to not only include the

procedure type and primary surgeon, but also consider their

interaction (Table 8). There is likely less variability in procedure

duration among surgeons for simple procedures than for more

complex procedures. Thus, prediction models should take into

account that a surgeon’s variability itself will vary depending on

the type of procedure performed. In addition, this study uniquely

identifies the primary circulating nurse and various interaction

terms as significant; therefore, researchers can more

comprehensively consider the members of surgical teams and their

synergistic effects when designing prediction models.

Second, case scheduling may also be improved by incorporating

significant factors and interactions found in this study. The effect of

a particular individual, e.g., the attending primary surgeon, can be

considered when allocating portions of time to each stage for a
20See Dexter and Epstein (8) where “OR efficiency” is defined as minimizing

the “inefficiency of use of OR time,” the latter of which is calculated using

costs and times associated with under- and over-utilization.
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FIGURE 4

Diagnostic plots for the final LMM where procedure duration is the response. (a) Normal probability plot of residuals; (b) residuals vs. fitted values; (c)
histogram of residuals; (d) residuals vs. observation order.
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given case. The particular individual can be used in a more advanced

prediction model as mentioned above or, more simply, the

individual’s historical data can be considered when allocating

times. The same process can be done regarding surgical teams or

combinations of surgical team members. Also, knowledge of

particular surgical team members and teams themselves can

inform strategies for case scheduling. For instance, if a particular

surgeon or surgical team is known to have higher variability or

expected completion times for a particular case, then such a case

could be scheduled earlier or first in the day to allow for dynamic
Frontiers in Digital Health 14113
scheduling after the case’s completion, which could allow for the

completion of more cases in a day (16).

Third, OR efficiency can be improved by minimizing the

variability in the stages of the OR process attributable to

members of the surgical team and combinations of team

members. The present study highlights areas of higher variability

for surgical team members. Efforts could be made to reduce

variability by identifying inefficiencies in a surgical team’s or

team member’s practice and providing relevant training. If the

area of improvement is in teamwork, for instance, training
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could seek to promote effective, assertive, and closed-loop

communication among surgical teams to help minimize team

performance variability.21 Moreover, surgical teams can be

further streamlined to match surgeons, anesthesiologists, and

nurses who consistently work well together, which will in turn

reduce performance variability.
5.3 Study limitations and future work

A limitation of this work was the use of a linear modeling

approach and transformations to conform to model assumptions.

Figure 4 shows model diagnostic plots for procedure duration.22

Figure 4(a) shows some departure from a normal distribution for

the logarithm of procedure duration; the distribution shows

heavier tails as indicated by the upper right and lower left portions

of the curve “peeling away” from the red line. Heavier tails

indicate the presence of outliers in both directions. In addition,

Figure 4(b) suggests mild heteroscedasticity in the residuals as the

variation appears to decrease as fitted values increase in absolute

value. Finally, the distribution of procedure duration exhibited

right skewness, which was corrected by a log transformation. The

above three observations were true for many of the process times.

While the results provided in this paper are still relatively robust

due to the large sample size of the dataset, more accurate results

could possibly be obtained through the use of robust regression

methods suited to handle outliers and heteroscedasticity. Moreover,

generalized linear mixed models could be explored to handle the

non-normality of the process times (59).

Another limitation of this work was the lack of inclusion of

many potentially important fixed-effect variables. Previous

literature has explored a wide range of factors that may contribute

to OR efficiency (refer to Section 2). There are likely important

factors missing from this analysis as they were not available in the

database at the University of Miami hospital. Future work could

explore a more comprehensive list of factors to maximize the

potential of data to reveal OR inefficiencies. Moreover, even with a

more comprehensive and retrospective assessment of influential

factors, more proactive measures are needed that implement

realistic interventions, in collaboration with members of surgical

teams, to bring greater efficiency to the OR suite.
6 Conclusions

The primary goal of this paper was to quantify the extent to

which the procedure type and key members of the surgical team

accounted for variation in the fine-grained stages of the OR

process. Some of the stages of the OR process and more
21Granted, targeted research is needed to identify areas of inefficiency.
22Diagnostic plots for all other process times are provided in Supplementary

Figures S7–S13.
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aggregate process times have been analyzed previously in the

literature (refer to Section 2.1). However, a comprehensive

analysis of the impact of the primary surgical team members on

the many stages comprising the OR process is lacking. This

study helps to fill this gap by developing eight different linear

mixed models that quantify the variability of several OR process

times with respect to procedure type, primary surgeon,

responsible anesthesiology provider, and primary circulating nurse.

This study found that, to more accurately account for sources

of variability in the OR process, it is necessary to break up the

OR process into smaller, homogeneous stages. For instance, this

study found that OR time, defined as the “wheels in” to “wheels

out” time of a patient in the OR, largely reflects procedure

duration and is therefore not homogeneous across its entire time

span. In addition, this study found that surgeon has a larger

impact than previously reported in the literature and that the

circulating nurse accounted for a significant, albeit small,

proportion of variability in all eight process times studied. This

study can serve as a foundation for quantifying the impact of

important members of the surgical team on various stages of the

OR process and for more targeted interventions seeking to

realize more efficient and cost-effective OR suites.
Data availability statement

The datasets presented in this article are not readily available

because of concerns regarding data privacy. Requests to access the

datasets should be directed to Adam Meyers, axm8336@miami.edu.
Author contributions

AM: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Resources, Software, Supervision,

Visualization, Writing – original draft, Writing – review &

editing. MD: Data curation, Formal Analysis, Investigation,

Methodology, Software, Visualization, Writing – original draft,

Writing – review & editing. AD: Conceptualization, Project

administration, Resources, Supervision, Writing – review &

editing. MW: Conceptualization, Resources, Supervision, Writing

– review & editing. OK: Resources, Supervision, Writing – review

& editing. MA: Conceptualization, Data curation, Project

administration, Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

The authors would like to thank the DeWitt Daughtry Family
Department of Surgery and the University of Miami Hospital for
generously providing the data used in this study.
frontiersin.org

mailto:axm8336@miami.edu
https://doi.org/10.3389/fdgth.2024.1455477
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Meyers et al. 10.3389/fdgth.2024.1455477
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Digital Health 16115
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdgth.2024.

1455477/full#supplementary-material
References
1. Scott EJ. Editorial commentary: improved operating room efficiency is the best
way to control orthopaedic costs. Arthroscopy. (2024) 40:1527–8. doi: 10.1016/j.
arthro.2024.01.005

2. Muñoz E, Muñoz III W, Wise L. National and surgical health care expenditures,
2005–2025. Ann Surg. (2010) 251:195–200. doi: 10.1097/SLA.0b013e3181cbcc9a

3. Childers CP, Maggard-Gibbons M. Understanding costs of care in the operating
room. JAMA Surg. (2018) 153:e176233. doi: 10.1001/jamasurg.2017.6233

4. Cerfolio RJ, Ferrari-Light D, Ren-Fielding C, Fielding G, Perry N, Rabinovich A,
et al. Improving operating room turnover time in a New York city academic hospital
via lean. Ann Thorac Surg. (2019) 107:1011–6. doi: 10.1016/j.athoracsur.2018.11.071

5. Dexter F, Traub RD, Qian F. Comparison of statistical methods to predict the
time to complete a series of surgical cases. J Clin Monit Comput. (1999) 15:45–51.
doi: 10.1023/A:1009999830753

6. Rothstein DH, Raval MV. Operating room efficiency. Semin Pediatr Surg. (2018)
27:79–85. doi: 10.1053/j.sempedsurg.2018.02.004

7. Lee DJ, Ding J, Guzzo TJ. Improving operating room efficiency. Curr Urol Rep.
(2019) 20:1–8. doi: 10.1007/s11934-019-0895-3

8. Dexter F, Epstein RH. Fundamentals of operating room allocation and case
scheduling to minimize the inefficiency of use of the time. Perioper Care Oper
Room Manag. (2024) 35:100379. doi: 10.1016/j.pcorm.2024.100379

9. Kayis E, Wang H, Patel M, Gonzalez T, Jain S, Ramamurthi R, et al. Improving
prediction of surgery duration using operational and temporal factors. In: AMIA
Annual Symposium Proceedings. Vol. 2012. Washington, DC: American Medical
Informatics Association (2012). p. 456. doi: 10.1016/j.surg.2021.12.032

10. Lee S-H, Dai T, Phan PH, Moran N, Stonemetz J. The association between
timing of elective surgery scheduling and operating theater utilization: a cross-
sectional retrospective study. Anesth Analg. (2022) 134:455–62. doi: 10.1213/ANE.
0000000000005871

11. Eijkemans MJC, van Houdenhoven M, Nguyen T, Boersma E, Steyerberg EW,
Kazemier G. Predicting the Unpredictable: A New Prediction Model for Operating
Room Times Using Individual Characteristics and the Surgeon’s Estimate.
Anesthesiology. (2010) 112:41–9. doi: 10.1097/ALN.0b013e3181c294c2

12. van Eijk RP, van Veen-Berkx E, Kazemier G, Eijkemans MJ. Effect of individual
surgeons and anesthesiologists on operating room time. Anesth Analg. (2016)
123:445–51. doi: 10.1213/ANE.0000000000001430

13. Bokshan SL, Mehta S, DeFroda SF, Owens BD. What are the primary cost
drivers of anterior cruciate ligament reconstruction in the united states? a cost-
minimization analysis of 14,713 patients. Arthrosc J Arthrosc Relat Surg. (2019)
35:1576–81. doi: 10.1016/j.arthro.2018.12.013

14. Allen AE, Sakheim ME, Mahendraraj KA, Nemec SM, Nho SJ, Mather III RC,
et al. Time-driven activity-based costing analysis identifies use of consumables and
operating room time as factors associated with increased cost of outpatient primary
hip arthroscopic labral repair. Arthrosc J Arthrosc Relat Surg. (2023) 40:1517–26.
doi: 10.1016/j.arthro.2023.10.050

15. Dexter F, Dexter EU, Masursky D, Nussmeier NA. Systematic review of general
thoracic surgery articles to identify predictors of operating room case durations.
Anesth Analg. (2008) 106:1232–41. doi: 10.1213/ane.0b013e318164f0d5

16. Strum DP, Sampson AR, May JH, Vargas LG. Surgeon and Type of Anesthesia
Predict Variability in Surgical Procedure Times. Anesthesiology. (2000) 92:1454–66.
doi: 10.1097/00000542-200005000-00036

17. Patoir A, Payet C, Peix J-L, Colin C, Pascal L, Kraimps J-L, et al. Determinants
of operative time in thyroid surgery: a prospective multicenter study of
3454 thyroidectomies. PLoS One. (2017) 12:e0181424. doi: 10.1371/journal.pone.
0181424

18. Stepaniak PS, Heij C, De Vries G. Modeling and prediction of
surgical procedure times. Stat Neerl. (2010) 64:1–18. doi: 10.1111/j.1467-9574.
2009.00440.x

19. Gillespie BM, Chaboyer W, Fairweather N. Factors that influence the expected
length of operation: results of a prospective study. BMJ Qual Saf. (2012) 21:3–12.
doi: 10.1136/bmjqs-2011-000169

20. Kougias P, Tiwari V, Barshes NR, Bechara CF, Lowery B, Pisimisis G, et al.
Modeling anesthetic times. predictors and implications for short-term outcomes.
J Surg Res. (2013) 180:1–7. doi: 10.1016/j.jss.2012.10.007

21. van Veen-Berkx E, Bitter J, Elkhuizen SG, Buhre WF, Kalkmadn CJ, Gooszen
HG, et al. The influence of anesthesia-controlled time on operating room
scheduling in Dutch university medical centres. Can J Anaesth. (2014) 61:524–32.
doi: 10.1007/s12630-014-0134-9

22. Dexter F, Coffin S, Tinker JH. Decreases in anesthesia-controlled time cannot
permit one additional surgical operation to be reliably scheduled during the
workday. Anesth Analg. (1995) 81:1263–8. doi: 10.1097/00000539-199512000-00024

23. Does RJ, Vermaat TM, Verver JP, Bisgaard S, Van Den Heuvel J. Reducing start
time delays in operating rooms. J Qual Technol. (2009) 41:95–109. doi: 10.1080/
00224065.2009.11917763

24. Snee RD. Six–sigma: the evolution of 100 years of business improvement
methodology. Int J Six Sigma Compet Adv. (2004) 1:4–20. doi: 10.1504/IJSSCA.
2004.005274

25. Halim UA, Khan MA, Ali AM. Strategies to improve start time in the operating
theatre: a systematic review. J Med Syst. (2018) 42:1–11. doi: 10.1007/s10916-018-
1015-5

26. Ahmed K, Khan N, Anderson D, Watkiss J, Challacombe B, Khan MS, et al.
Introducing the productive operating theatre programme in urology theatre suites.
Urol Int. (2013) 90:417–21. doi: 10.1159/000345312

27. Cox Bauer CM, Greer DM, Vander Wyst KB, Kamelle SA. First-case operating
room delays: patterns across urban hospitals of a single health care system. J Patient
Cent Res Rev. (2016) 3:125–35. doi: 10.17294/2330-0698.1265

28. Dexter F, Bayman EO, Pattillo JC, Schwenk ES, Epstein RH. Influence of
parameter uncertainty on the tardiness of the start of a surgical case following a
preceding surgical case performed by a different surgeon. Perioper Care Oper Room
Manag. (2018) 13:12–7. doi: 10.1016/j.pcorm.2018.11.001

29. Epstein RH, Dexter F, Maga JM, Marian AA. Evaluation of the start of surgical
closure as a milestone for forecasting the time remaining to exit the operating room: a
retrospective, observational cohort study. Perioper Care Oper Room Manag. (2022)
29:100280. doi: 10.1016/j.pcorm.2022.100280

30. Bhatt AS, Carlson GW, Deckers PJ. Improving operating room turnover
time: a systems based approach. J Med Syst. (2014) 38:1–8. doi: 10.1007/s10916-
014-0148-4

31. Goldhaber NH, Schaefer RL, Martinez R, Graham A, Malachowski E, Rhodes
LP, et al. Surgical pit crew: initiative to optimise measurement and accountability
for operating room turnover time. BMJ Health Care Inform. (2023) 30:e100741.
doi: 10.1136/bmjhci-2023-100741

32. Martin L, Langell J. Improving on-time surgical starts: the impact of
implementing pre-or timeouts and performance pay. J Surg Res. (2017) 219:222–5.
doi: 10.1016/j.jss.2017.05.092
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fdgth.2024.1455477/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1455477/full#supplementary-material
https://doi.org/10.1016/j.arthro.2024.01.005
https://doi.org/10.1016/j.arthro.2024.01.005
https://doi.org/10.1097/SLA.0b013e3181cbcc9a
https://doi.org/10.1001/jamasurg.2017.6233
https://doi.org/10.1016/j.athoracsur.2018.11.071
https://doi.org/10.1023/A:1009999830753
https://doi.org/10.1053/j.sempedsurg.2018.02.004
https://doi.org/10.1007/s11934-019-0895-3
https://doi.org/10.1016/j.pcorm.2024.100379
https://doi.org/10.1016/j.surg.2021.12.032
https://doi.org/10.1213/ANE.0000000000005871
https://doi.org/10.1213/ANE.0000000000005871
https://doi.org/10.1097/ALN.0b013e3181c294c2
https://doi.org/10.1213/ANE.0000000000001430
https://doi.org/10.1016/j.arthro.2018.12.013
https://doi.org/10.1016/j.arthro.2023.10.050
https://doi.org/10.1213/ane.0b013e318164f0d5
https://doi.org/10.1097/00000542-200005000-00036
https://doi.org/10.1371/journal.pone.0181424
https://doi.org/10.1371/journal.pone.0181424
https://doi.org/10.1111/j.1467-9574.2009.00440.x
https://doi.org/10.1111/j.1467-9574.2009.00440.x
https://doi.org/10.1136/bmjqs-2011-000169
https://doi.org/10.1016/j.jss.2012.10.007
https://doi.org/10.1007/s12630-014-0134-9
https://doi.org/10.1097/00000539-199512000-00024
https://doi.org/10.1080/00224065.2009.11917763
https://doi.org/10.1080/00224065.2009.11917763
https://doi.org/10.1504/IJSSCA.2004.005274
https://doi.org/10.1504/IJSSCA.2004.005274
https://doi.org/10.1007/s10916-018-1015-5
https://doi.org/10.1007/s10916-018-1015-5
https://doi.org/10.1159/000345312
https://doi.org/10.17294/2330-0698.1265
https://doi.org/10.1016/j.pcorm.2018.11.001
https://doi.org/10.1016/j.pcorm.2022.100280
https://doi.org/10.1007/s10916-014-0148-4
https://doi.org/10.1007/s10916-014-0148-4
https://doi.org/10.1136/bmjhci-2023-100741
https://doi.org/10.1016/j.jss.2017.05.092
https://doi.org/10.3389/fdgth.2024.1455477
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Meyers et al. 10.3389/fdgth.2024.1455477
33. Simmons CG, Alvey NJ, Kaizer AM, Williamson K, Faruki AA, Kacmar RM, et al.
Benchmarking of anesthesia and surgical control times by current procedural
terminology (CPT®) codes. J Med Syst. (2022) 46:19. doi: 10.1007/s10916-022-01798-z

34. Strum DP, May JH, Vargas LG. Modeling the Uncertainty of Surgical Procedure
Times: Comparison of Log-normal and Normal Models. Anesthesiology. (2000)
92:1160–7. doi: 10.1097/00000542-200004000-00035

35. Stepaniak PS, Heij C, Mannaerts GH, de Quelerij M, de Vries G. Modeling
procedure and surgical times for current procedural terminology-anesthesia-surgeon
combinations and evaluation in terms of case-duration prediction and operating
room efficiency: a multicenter study. Anesth Analg. (2009) 109:1232–45. doi: 10.
1213/ANE.0b013e3181b5de07

36. Joustra P, Meester R, van Ophem H. Can statisticians beat surgeons at the planning
of operations? Empir Econ. (2013) 44:1697–718. doi: 10.1007/s00181-012-0594-0

37. Silber JH, Rosenbaum PR, Zhang X, Even-Shoshan O. Influence of Patient and
Hospital Characteristics on Anesthesia Time in Medicare Patients Undergoing
General and Orthopedic Surgery. Anesthesiology. (2007) 106:356–64. doi: 10.1097/
00000542-200702000-00025

38. Li Y, Zhang S, Baugh RF, Huang JZ. Predicting surgical case durations using ill-
conditioned CPT code matrix. IIE Trans. (2009) 42:121–35. doi: 10.1080/
07408170903019168

39. Wang J, Cabrera J, Tsui K-L, Guo H, Bakker M, Kostis JB. Clinical and
nonclinical effects on operative duration: evidence from a database on thoracic
surgery. J Healthc Eng. (2020) 2020:3582796. doi: 10.1155/2020/3582796

40. Wang J, Cabrera J, Tsui K-L, Guo H, Bakker M, Kostis JB. Clinical and non-
clinical effects on surgery duration: statistical modeling and analysis. arXiv
[Preprint] arXiv:1801.04110 (2018). Available online at: https://arxiv.org/abs/1801.
04110. doi: 10.48550/arXiv.1801.04110

41. Clark TS, Linzer DA. Should I use fixed or random effects? Polit Sci Res Methods.
(2015) 3:399–408. doi: 10.1017/psrm.2014.32

42. Dexter F, Ledolter J. Bayesian Prediction Bounds and Comparisons of Operating
Room Times Even for Procedures with Few or No Historic Data. Anesthesiology.
(2005) 103:1259–167. doi: 10.1097/00000542-200512000-00023

43. Master N, Zhou Z, Miller D, Scheinker D, Bambos N, Glynn P. Improving
predictions of pediatric surgical durations with supervised learning. Int J Data Sci
Anal. (2017) 4:35–52. doi: 10.1007/s41060-017-0055-0

44. Bartek MA, Saxena RC, Solomon S, Fong CT, Behara LD, Venigandla R, et al.
Improving operating room efficiency: machine learning approach to predict case-time
duration. J Am Coll Surg. (2019) 229:346–354.e3. doi: 10.1016/j.jamcollsurg.2019.05.029

45. Fairley M, Scheinker D, Brandeau ML. Improving the efficiency of the operating
room environment with an optimization and machine learning model. Health Care
Manag Sci. (2019) 22:756–67. doi: 10.1007/s10729-018-9457-3

46. Kendale S, Bishara A, Burns M, Solomon S, Corriere M, Mathis M. Machine
learning for the prediction of procedural case durations developed using a large
Frontiers in Digital Health 17116
multicenter database: algorithm development and validation study. JMIR AI. (2023)
2:e44909. doi: 10.2196/44909

47. Martinez O, Martinez C, Parra CA, Rugeles S, Suarez DR. Machine learning for
surgical time prediction. Comput Methods Programs Biomed. (2021) 208:106220.
doi: 10.1016/j.cmpb.2021.106220

48. Tuwatananurak JP, Zadeh S, Xu X, Vacanti JA, Fulton WR, Ehrenfeld JM, et al.
Machine learning can improve estimation of surgical case duration: a pilot study.
J Med Syst. (2019) 43:1–7. doi: 10.1007/s10916-019-1160-5

49. Wang Z, Dexter F. More accurate, unbiased predictions of operating room times
increase labor productivity with the same staff scheduling provided allocated hours are
increased. Perioper Care Oper Room Manag. (2022) 29:100286. doi: 10.1016/j.pcorm.
2022.100286

50. Molnar C. Interpretable Machine Learning. Morrisville, NC: Lulu Press, Inc.
(2020).

51. Kumar IE, Venkatasubramanian S, Scheidegger C, Friedler S. Problems
with Shapley-value-based explanations as feature importance measures. In:
Proceedings of the 37th International Conference on Machine Learning, eds. H. D.
III and A. Singh (PMLR), vol. 119 of Proceedings of Machine Learning Research.
(2020). p. 5491–500.

52. [Dataset] American Academy of Professional Coders (2023). CPT Code Lookup.
Available online at: https://www.aapc.com/codes/cpt-codes-range (accessed December
19, 2023).

53. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models
using lme4. J Stat Softw. (2015) 67:1–48. doi: 10.18637/jss.v067.i01

54. Brown ML, Staffa SJ, Quinonez LG, DiNardo JA, Nasr VG. Predictors of
anesthesia ready time: analysis and benchmark data. JTCVS Open. (2023)
15:446–53. doi: 10.1016/j.xjon.2023.06.016

55. Mathenge C. The importance of the perioperative nurse. Commun Eye Health.
(2020) 33:44.

56. Kayış E, Khaniyev TT, Suermondt J, Sylvester K. A robust estimation model for
surgery durations with temporal, operational, and surgery team effects. Health Care
Manag Sci. (2015) 18:222–33. doi: 10.1007/s10729-014-9309-8

57. Parikh N, Gargollo P, Granberg C. Improving operating room efficiency using
the six sigma methodology. Urology. (2021) 154:141–7. doi: 10.1016/j.urology.2021.
02.049

58. Xiao Y, Jones A, Zhang B, Bennett M, Mears SC, Mabrey JD, et al. Team
consistency and occurrences of prolonged operative time, prolonged hospital stay,
and hospital readmission: a retrospective analysis. World J Surg. (2015) 39:890–6.
doi: 10.1007/s00268-014-2866-7

59. Nakagawa S, Johnson PC, Schielzeth H. The coefficient of determination R2 and
intra-class correlation coefficient from generalized linear mixed-effects models
revisited and expanded. J R Soc Interface. (2017) 14:20170213. doi: 10.1098/rsif.
2017.0213
frontiersin.org

https://doi.org/10.1007/s10916-022-01798-z
https://doi.org/10.1097/00000542-200004000-00035
https://doi.org/10.1213/ANE.0b013e3181b5de07
https://doi.org/10.1213/ANE.0b013e3181b5de07
https://doi.org/10.1007/s00181-012-0594-0
https://doi.org/10.1097/00000542-200702000-00025
https://doi.org/10.1097/00000542-200702000-00025
https://doi.org/10.1080/07408170903019168
https://doi.org/10.1080/07408170903019168
https://doi.org/10.1155/2020/3582796
https://arxiv.org/abs/1801.04110
https://arxiv.org/abs/1801.04110
https://doi.org/10.48550/arXiv.1801.04110
https://doi.org/10.1017/psrm.2014.32
https://doi.org/10.1097/00000542-200512000-00023
https://doi.org/10.1007/s41060-017-0055-0
https://doi.org/10.1016/j.jamcollsurg.2019.05.029
https://doi.org/10.1007/s10729-018-9457-3
https://doi.org/10.2196/44909
https://doi.org/10.1016/j.cmpb.2021.106220
https://doi.org/10.1007/s10916-019-1160-5
https://doi.org/10.1016/j.pcorm.2022.100286
https://doi.org/10.1016/j.pcorm.2022.100286
https://www.aapc.com/codes/cpt-codes-range
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.xjon.2023.06.016
https://doi.org/10.1007/s10729-014-9309-8
https://doi.org/10.1016/j.urology.2021.02.049
https://doi.org/10.1016/j.urology.2021.02.049
https://doi.org/10.1007/s00268-014-2866-7
https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.3389/fdgth.2024.1455477
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TYPE Review
PUBLISHED 15 October 2024
DOI 10.3389/fphys.2024.1386760

OPEN ACCESS

EDITED BY

Hyo Kyung Lee,
Korea University, Republic of Korea

REVIEWED BY

Ricardo Valentim,
Federal University of Rio Grande do
Norte, Brazil
Xu Huang,
Nanjing University of Science and
Technology, China

*CORRESPONDENCE

Teresa Wu,
Teresa.Wu@asu.edu

RECEIVED 16 February 2024
ACCEPTED 26 September 2024
PUBLISHED 15 October 2024

CITATION

Patharkar A, Cai F, Al-Hindawi F and Wu T
(2024) Predictive modeling of biomedical
temporal data in healthcare applications:
review and future directions.
Front. Physiol. 15:1386760.
doi: 10.3389/fphys.2024.1386760

COPYRIGHT

© 2024 Patharkar, Cai, Al-Hindawi and Wu.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Predictive modeling of
biomedical temporal data in
healthcare applications: review
and future directions

Abhidnya Patharkar1,2, Fulin Cai1,2, Firas Al-Hindawi1,2 and
Teresa Wu1,2*
1School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United
States, 2ASU-Mayo Center for Innovative Imaging, Arizona State University, Tempe, AZ, United States

Predictive modeling of clinical time series data is challenging due to various
factors. One such difficulty is the existence of missing values, which leads
to irregular data. Another challenge is capturing correlations across multiple
dimensions in order to achieve accurate predictions. Additionally, it is essential
to take into account the temporal structure, which includes both short-term
and long-term recurrent patterns, to gain a comprehensive understanding
of disease progression and to make accurate predictions for personalized
healthcare. In critical situations, models that can make multi-step ahead
predictions are essential for early detection. This review emphasizes the need for
forecasting models that can effectively address the aforementioned challenges.
The selection ofmodelsmust also take into account the data-related constraints
during the modeling process. Time series models can be divided into statistical,
machine learning, and deep learning models. This review concentrates on the
main models within these categories, discussing their capability to tackle the
mentioned challenges. Furthermore, this paper provides a brief overview of a
technique aimed at mitigating the limitations of a specific model to enhance
its suitability for clinical prediction. It also explores ensemble forecasting
methods designed to merge the strengths of various models while reducing
their respective weaknesses, and finally discusses hierarchical models. Apart
from the technical details provided in this document, there are certain aspects
in predictive modeling research that have arisen as possible obstacles in
implementing models using biomedical data. These obstacles are discussed
leading to the future prospects of model building with artificial intelligence in
healthcare domain.
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biomedical temporal data, biomedical data challenges, forecasting, clinical predictive
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1 Introduction

1.1 Biomedical time series data

Clinical or biomedical data advances medical research by
providing insights into patient health, disease progression, and
treatment efficacy. It underpins new diagnostics, therapies, and
personalized medicine, improving outcomes and understanding
complex conditions. In predictive modeling, biomedical
data is categorized as spatial, temporal, and spatio-temporal
(Khalique et al., 2020; Veneri et al., 2012). Temporal data is key,
capturing health evolution over time and offering insights into
disease progression and treatment effectiveness. Time series data,
collected at successive time points, shows complex patterns with
short- and long-term dependencies, crucial for forecasting and
analysis (Zou et al., 2019; Lai et al., 2018). Properly harnessed, this
data advances personalized medicine and treatment optimization,
making it essential in contemporary research.

1.2 Applications of predictive modeling in
biomedical time series analysis

Predictive modeling with artificial intelligence (AI) has
gained significant traction across various domains, including
manufacturing (Altarazi et al., 2019), heat transfer (Al-
Hindawi et al., 2023; 2024), energy systems (Huang et al., 2024),
and notably, the biomedical field (Cai et al., 2023; Patharkar et al.,
2024). Predictive modeling in biomedical time series data
involves various approaches for specific predictions and data
characteristics. Forecasting models predict future outcomes
based on historical data, such as forecasting blood glucose levels
for diabetic patients using past measurements, insulin doses,
and dietary information (Plis et al., 2014). Classification models
predict categorical outcomes, like detecting cardiac arrhythmias
from ECG data by classifying segments into categories such as
normal, atrial fibrillation, or other arrhythmias, aiding in early
diagnosis and treatment (Daydulo et al., 2023; Zhou et al., 2019;
Chuah and Fu, 2007). Anomaly detection in biomedical time
series identifies outliers or abnormal patterns, signifying unusual
events or conditions. For example, monitoring ICU patients’
vital signs can detect early signs of sepsis (Mollura et al., 2021;
Shashikumar et al., 2017; Mitra and Ashraf, 2018), enabling timely
intervention.

Table 1 summarizes the example applications of these models
within the context of biomedical time series.

1.3 Challenges in biomedical time series
data

Regardless of the particular medical application or predictive
model type used, models that manage biomedical time series
data must tackle the intrinsic challenges posed by clinical
and biomedical data. This includes various categories, such as
electronic health records (EHRs), administrative data, claims data,
patient/disease registries, health surveys, and clinical trials data.
As illustrated in Table 2, each biomedical data category presents

distinct challenges regarding quality, privacy, and completeness.
During predictive modeling, further challenges arise. Specifically,
we will investigate problems associated with missing data and
imputation methods, the intricate nature of high-dimensional
temporal relationships, and factors concerning the size of the
dataset. Addressing these issues is crucial for developing strong
and accurate predictive models in medical research.

1.3.1 Challenges in handling missing values and
imputation methods in biomedical time series

Clinical data is often confronted with the issue of missing
values, which can be caused by irregular data collection schedules
or unexpected events (Xu et al., 2020). Medical measurements,
recorded variably and at different times, may be absent, not
documented, or affected by recording errors (Mulyadi et al., 2022),
which makes the data irregular. Dealing with missing values in
data sets usually involves either directly modeling data sets with
missing values or filling in the missing values (a.k.a. imputation)
to complete datasets for traditional analysis methods using data
imputation techniques.

Current imputation techniques can be divided into four
categories: case deletion, basic statistical imputation, machine
learning-based imputation (Luo et al., 2018), and aggregating
irregularly sampled data into discrete time periods (Ghaderi et al.,
2023). Each of these methods comes with specific challenges in
the context of handling biomedical temporal data. The deletion or
omission of cases may lead to the loss of important information,
particularly when the rate of missingness is high, which is critical
in sensitive applications such as biomedical predictive modeling,
where data is scarce and human lives are at risk. However, in certain
cases, it is possible to do data omission without any potential risk to
the outcome of the study. For instance, (Pinto et al., 2022), employs
interrupted time series analysis to assess the impact of the “Syphilis
No!” initiative in reducing congenital syphilis rates in Brazil. The
results indicate significant declines in priority municipalities after
the intervention. The study showcases the efficacy of public health
interventions inmodifying disease trends using statistical analysis of
temporal data. Data collection needed to be conducted consistently
over time and at evenly spaced intervals for proper analysis. To
prevent bias due to the COVID-19 pandemic, December 2019 was
set as the final data collection point, encompassing 20months before
the intervention (September 2016 to April 2018) and 20 months
after the intervention (May 2018 to December 2019). This approach
illustrates how the author addressed potential issues of irregular data
or missing values in this context.

Contrary to data omission, statistical imputation techniques,
such as mean or median imputation offer an alternative that
reduces the effect of missing data, however, such methods do
not take into account the temporal information but rather offer
a summarized statistical imputation that often does not provide
accurate replacement of the missing data. This could be critical
in biomedical applications with scarce datasets, where the weight
of a single data point could heavily affect the predictive power
of the model. The use of machine learning-based imputation
methods, such asMaximum Likelihood Expectation-Maximization,
k-Nearest Neighbors, and Matrix Factorization, might offer a
more accurate imputation that takes into account the specificity
of the data point contrary to statistical aggregation methods,
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TABLE 1 Overview of predictive modeling techniques for biomedical time series and their example applications across healthcare scenarios.

Model type Description Bio-medical application example

Forecasting Predicts a continuous value based on historical data Predicting blood glucose levels for diabetic patients using past glucose
measurements, insulin doses, and dietary information to forecast

potential hypo- or hyperglycemic events (Plis et al., 2014)

Classification Predicts categorical outcomes based on temporal data Detecting cardiac arrhythmias (such as normal, atrial fibrillation, or
other arrhythmias) (Daydulo et al., 2023; Zhou et al., 2019; Chuah and

Fu, 2007)

Anomaly Detection Identifies outliers or abnormal patterns within time series data Sepsis detection. (Mollura et al., 2021; Shashikumar et al., 2017; Mitra
and Ashraf, 2018)

TABLE 2 Overview of clinical data types and challenges. This table lists the main types of clinical and biomedical data, their definitions, and key
challenges.

Data type Definition Challenges

Electronic Health Records (EHRs) Digital records of patients medical history, treatments,
and outcomes

• Data Standardization: Different formats across
providers

• Data Quality: Missing, incomplete, or inaccurate data
• Privacy and Security: Ensuring compliance with

regulations like HIPAA
• Interoperability: Difficulties in data exchange

between systems

Administrative Data Data related to healthcare administration, such as
hospital admissions and discharge records

• Limited Clinical Detail: Lack of in-depth clinical
information

• Data Timeliness: Potential delays in data availability
• Standardization Issues: Variability in recording and

categorization
• Privacy Concerns: Maintaining patient

confidentiality

Claims Data Data from insurance claims used for billing and
reimbursement

• Purpose and Detail: Primarily for billing, may lack
clinical details

• Lag Time: Delays between care and data availability
• Coding Errors: Inaccuracies in coding (e.g., ICD

codes)
• Complexity: Requires specialized knowledge for

interpretation

Patient/Disease Registries Databases that track patients with specific conditions
or diseases

• Data Completeness: Ensuring all relevant data is
captured

• Data Standardization: Different definitions and
methods across registries

• Funding and Maintenance: Need for consistent
resources

• Privacy Issues: Protecting patient confidentiality

Health Surveys Data collected from health-related surveys and
questionnaires

• Response Bias: Non-response or inaccurate
self-reporting

• Sampling Issues: Ensuring representative samples
• Data Quality: Depends on survey design and

execution
• Timeliness: Time-consuming design, conduct, and

analysis

Clinical Trials Data Data from controlled trials testing the efficacy of
treatments or interventions

• Complexity and Cost: Expensive and logistically
complex

• Regulatory Hurdles: Compliance with regulatory
requirements

• Data Sharing: Balancing patient confidentiality and
proprietary interests

• Generalizability: Trial participants may not represent
the broader population
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however, many of them still do not consider temporal relations
between observations (Luo et al., 2018; Jun et al., 2019), and they
usually are computationally expensive. Furthermore, without
incorporating domain knowledge, these approaches can introduce
bias and lead to invalid conclusions. Both machine learning
and statistical techniques may not consider data distribution or
variable relationships and may fail to capture complex patterns
in multivariate time-series data due to the neglect of correlated
variables, potentially resulting in underestimated or overestimated
imputed values (Jun et al., 2019). Additionally, in real-time clinical
decision support systems, timely and accurate data is crucial, as
delays or errors in imputation can lead to incorrect decisions that
directly affect patient outcomes. These systems demand high-
speed processing, requiring imputation algorithms to be both
computationally efficient and accurate. Moreover, the dynamic
nature of clinical environments, where patient conditions can
change rapidly, necessitates imputation methods that can adapt
quickly to evolving data.

Aggregating measurements into discrete time periods can
address irregular intervals, but it may lead to a loss of granular
information (Ghaderi et al., 2023). Additionally, in time series
prediction, missing values and their patterns are often correlated
with target labels, referred to as informative missingness (Che et al.,
2018). These limitations make it ill-advised to ignore, impute, or
aggregate these values when handling biomedical time series data,
but rather employ a model that is capable of handling the sparsity
and the irregularity of clinical time series data.

1.3.2 Complexities of high-dimensional temporal
dependencies in biomedical data

Besides missing data challenges, hospitalized patients have a
wide range of clinical events that are recorded in their electronic
health records (EHRs). EHRs contain two different kinds of data:
structured information, like diagnoses, treatments, medication
prescriptions, vital signs, and laboratory tests, and unstructured
data, like clinical notes and physiological signals (Xie et al., 2022;
Lee and Hauskrecht, 2021), making them multivariate or high-
dimensional (Niu et al., 2022).

The complexity of the relationships existing in such high-
dimensional multivariate time series data can be difficult to capture
and analyze. Analysts often try to predict future outcomes based on
past data, and the accuracy of these predictions depends on how
well the interdependencies between the various series are modeled
(Shih et al., 2019). It is often beneficial to consider all relevant
variables together rather than focusing on individual variables
to build a prediction model, as this provides a comprehensive
understanding of correlations in multivariate time series (MTS)
data (Du et al., 2020). It thus becomes a requirement for predictive
models employed in biomedical applications to take into account
correlations among multiple dimensions and make predictions
accordingly. It is equally crucial to ensure that only the features
with a direct impact on the outcome are considered in the analysis.
For instance, the study by Barreto et al. (2023) investigates the
deployment of machine learning and deep learning models to
forecast patient outcomes and allocate beds efficiently during the
COVID-19 crisis in Rio Grande do Norte, Brazil. Out of 20 available
features, nine were chosen based on their clinical importance
and their correlation with patient outcomes, selected through

discussions with clinical experts to guarantee the model’s accuracy
and interpretability.

In addition to the inherent high dimensionality of biomedical
data sourced from diverse platforms such as EHRs, wearable
devices monitoring neurophysiological functions, and intensive
care units tracking disease progression through physiological
measurements (Allam et al., 2021), also display a natural temporal
ordering. This temporal structure demands a specialized analytical
approach distinct from that applied to non-temporal datasets
(Zou et al., 2019). The temporal dependency adds significant
complexity tomodeling due to the presence of two distinct recurring
patterns: short-term and long-term. For instance, short-term
patterns may repeat daily, whereas long-term patterns might span
quarterly or yearly intervals within the time series (Lai et al., 2018).
Biomedical data often exhibit long-term dependencies, such as
those seen in biosignals like electroencephalograms (EEGs) and
electrocardiograms (ECGs), which may span tens of thousands
of time steps or involve specific medical conditions such as acute
kidney injury (AKI) leading to subsequent dialysis (Sun et al., 2021;
Lee and Hauskrecht, 2021). Concurrently, short-term dependencies
can manifest in immediate physiological responses to medical
interventions, such as the administration of norepinephrine and
subsequent changes in blood pressure (Lee and Hauskrecht,
2021). Another instance is presented by Valentim et al. (2022),
who have created a model to forecast congenital syphilis (CS)
cases in Brazil based on maternal syphilis (MS) incidences. The
model takes into account the probability of proper diagnosis
and treatment during prenatal care. It integrates short-term
dependencies by assessing the immediate effects of prenatal care
on birth outcomes, and long-term dependencies by analyzing
syphilis case trends over a 10-year period. This strategy aids
in enhancing public health decision-making and syphilis
prevention planning.

Analyzing these recurrent patterns and longitudinal structures
in biomedical data is essential to facilitate the creation of time-based
patient trajectory representations of health events that facilitate
more precise disease progression modeling and personalized
treatment predictions (Allam et al., 2021; Xie et al., 2022). By
incorporating both short-term fluctuations and long-term trends,
robust predictive models can uncover hidden patterns in patient
health records, advancing our understanding and application of
digital medicine. Failing to consider these recurrent patterns can
undermine the accuracy of time series forecasting in biomedical
contexts such as digital medicine, which involves continuous
recording of health events over time.

Additionally, early detection of diseases is of paramount
importance. This can be achieved by utilizing existing biomarkers
along with advanced predictive modeling techniques, or by
introducing new biomarkers or devices aimed at early disease
detection. For instance, early diagnosis of osteoporosis is
essential to mitigate the significant socioeconomic impacts
of fractures and hospitalizations. The novel device, Osseus,
as cited by Albuquerque et al. (2023), addresses this by offering a
cost-effective, portable screening method that uses electromagnetic
waves. Osseus measures signal attenuation through the patient's
middle finger to predict changes in bone mineral density with the
assistance of machine learning models. The advantages of using
Osseus include enhanced accessibility to osteoporosis screening,
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reduced healthcare costs, and improved patient quality of life
through timely intervention.

1.3.3 Dataset size considerations
Thequantity of data available in a given datasetmust be carefully

considered, as it significantly influences model selection and overall
analytical approach. For instance, when patients are admitted for
brief periods, the clinical sequences generated are often fewer than
50 data points (Liu, 2016). Similarly, the number of data points for
specific tests, such as mean corpuscular hemoglobin concentration
(MCHC) lab results, can be limited due to the high cost of these
tests, often resulting in less than 50 data points (Liu and Hauskrecht,
2015). Such limited data points pose challenges for predictive
modeling, as models must be robust enough to derive meaningful
insights from small samples without overfitting.

Conversely, some datasets may have a moderate sample length,
ranging from 55 to 100 data points, such as the Physionet sepsis
dataset (Reyna et al., 2019; 2020; Goldberger et al., 2000). These
moderate-sized datasets offer a balanced scenario where the data
is sufficient to train more complex models, but still requires careful
handling to avoid overfitting and ensure generalizability.

In other cases, datasets can be extensive, particularly when
long-span time series data is collected via sensor devices. These
devices continuously monitor physiological parameters, resulting
in large datasets with thousands of time steps (Liu, 2016). For
example, wearable devices tracking neurophysiological functions or
intensive care unit monitors can generate vast amounts of data,
providing a rich source of information for predictive modeling.
However, handling such large datasets demands models that
are computationally efficient and capable of capturing long-term
dependencies and complex patterns within the data.

The amount of data available is a major factor in choosing
the appropriate model. Sparse datasets require models that can
effectively handle limited information, often necessitating advanced
techniques for data augmentation and imputation to make the most
out of available data. Moderate datasets allow for the application
of more sophisticated models, including machine learning and
deep learning techniques, provided they are carefully tuned to
prevent overfitting. Large datasets, on the other hand, enable the
use of highly complex models, such as deep neural networks, which
can leverage the extensive data to uncover intricate patterns and
relationships.

1.4 Strategies in forecasting for biomedical
time series data

While our discussion has generally revolved around the
challenges in predictive modeling of biomedical temporal data,
this review specifically emphasizes forecasting. From the earlier
discourse, it is clear that a forecasting model for clinical or
biomedical temporal data needs to adeptly manage missing,
irregular, sparse, and multivariate data, while also considering its
temporal properties and the capacity to model both short-term and
long-term dependencies. The model should be able to make multi-
step predictions, and the selection of a suitable model is determined
by the amount of data available and the temporal length of the time
series under consideration.

In this review, we initially examine three main categories
of forecasting models: statistical, machine learning, and deep
learning models. We look closely at the leading models within
each category, assessing their ability to tackle the complexities of
biomedical temporal data, including issues like data irregularity,
sparsity, and the need to capture detailed temporal dependencies,
alongside multi-step predictions. Since each category has its unique
advantages as well as limitations in addressing the specific challenges
of biomedical temporal datasets, other sets of models mentioned
in the literature, known as hierarchical time series forecasting and
combination or ensemble forecasting that merge the benefits of
various forecasting models to produce more accurate forecasts are
also covered.

The rest of the paper is structured as follows: In Section 2,
statistical models are introduced. Section 3 covers machine learning
models, while Section 4 focuses on deep learning models. This is
followed by Section 5, which is a discussion section that summarizes
the findings, discusses ensemble as well as hierarchical models,
and explores future directions for the application of AI in clinical
datasets. Finally, Section 6 concludes the paper.

2 Statistical models

The most popular predictive statistical models for temporal
data are Auto-Regressive Integrated Moving Average (ARIMA)
models, Exponential Weighted Moving Average (EWMA) models,
and Regressionmodels which are reviewed in the following sections.

2.1 Auto-Regressive Integrated Moving
Average models

(Yule, 1927) proposed an autoregressive (AR) model, and
(Wold, 1948) introduced the Moving Averaging (MA) model,
which were later combined by Box and Jenkins into the ARMA
model (Janacek, 2010) for modeling stationary time series. The
ARIMA model, an extension of ARMA, incorporates differencing
to make the time series stationary before forecasting, represented
by ARIMA (p,d,q), where p is the number of autoregressive terms,
d is the degree of differencing, and q is the number of moving
average terms. ARIMA models have been applied in real-world
scenarios, such as predicting COVID-19 cases. Ding et al. (2020)
used an ARIMA (1,1,2) model to forecast COVID-19 in Italy.
In another study, (Bayyurt and Bayyurt, 2020), utilized ARIMA
models for predictions in Italy, Turkey, and Spain, achieving
a Mean Absolute Percentage Error (MAPE) value below 10%.
Similarly, (Tandon et al., 2022), employed an ARIMA (2,2,2) model
to forecast COVID-19 cases in India, reporting aMAPE of 5%, along
with corresponding mean absolute deviation (MAD) and multiple
seasonal decomposition (MSD) values.

When applying ARIMA models to biomedical data, we select
the appropriate model using criteria like Akaike Information
Criterion (AIC) or Bayesian information criterion (BIC), estimate
parameters using tools like R or Python's statsmodels, and validate
the model through residual analysis. ARIMA models are effective
for univariate time series with clear patterns, supported by extensive
documentation and software, but they require stationarity and may
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be less effective for datawith complex seasonality.Moreover, if a time
series exhibits long-term memory, ARIMA models may produce
unreliable forecasts (Al Zahrani et al., 2020), signifying that they
are inadequate for capturing long-term dependencies. Additionally,
ARIMA models necessitate a minimum of 50 data points in the
time series to generate accurate forecasts (Montgomery et al., 2015).
Therefore, ARIMA models should not be used for biomedical data
that require the modeling of long-term relationships or have a small
number of data points.

Several extensions such as Seasonal ARIMA (SARIMA) have
been introduced for addressing seasonality. For instance, the research
by Liu et al. (2023) examined 10 years of inpatient data on Acute
Mountain Sickness (AMS), uncovering evident periodicity and
seasonality, thereby establishing its suitability for SARIMA modeling.
The SARIMAmodel exhibited high accuracy for short-term forecasts,
assisting in comprehendingAMS trends andoptimizing the allocation
of medical resources. An additional extension of ARIMA, proposed
for long-term forecasts, is ARFIMA. In the study by Qi et al.
(2020), the Seasonal Autoregressive Fractionally Integrated Moving
Average (SARFIMA) model was utilized to forecast the incidence
of hemorrhagic fever with renal syndrome (HFRS). The SARFIMA
model showed a better fit and forecasting accuracy compared to
the SARIMA model, indicating its superior capability for early
warning and control of infectious diseases by capturing long-range
dependencies. Additionally, it is apparent that ARIMAmodels cannot
incorporate exogenous variables. Therefore, a variation incorporating
exogenous variables, known as the ARIMAX model, has been
proposed. The study by Mahmudimanesh et al. (2022) applied the
ARIMAXmodeltoforecastcardiacandrespiratorymortalityinTehran
by analyzing the effects of air pollution and environmental factors.The
key variables encompass air pollutants (CO, NO2, SO2, PM10) and
environmental data (temperature, humidity). The ARIMAX model is
selected for its capacity to include exogenous variables and manage
non-static time series data.

For multi-step ahead forecasting in temporal prediction models,
two methods exist. The first, known as the plug-in or iterated multi-
step (IMS) prediction that involves successively using the single step
predictor, treating each prediction as if it were an observed value to
obtain the expected future value. The second approach is to create a
direct multi-step (DMS) prediction as a function of the observations,
and to select the coefficients in this predictorbyminimizing the sumof
squares of themulti-step forecast errors. Haywood andWilson (2009)
developeda test todecidewhichof twoapproaches ismoredependable
basedonagiven lead-time. In addition to this test, there are otherways
todecidewhichtechniqueismostsuitableforforecastingmultiplesteps
ahead. One of these methods can be used to decide the best choice
for multi-step ahead prediction either for ARIMA or other types of
models depending on the amount of historical data and the lead-time.

2.2 Exponential weighted moving average
models

The EWMA method, based on Roberts (2000), uses first-
order exponential smoothing as a linear combination of the
current observation and the previous smoothed observation. The
smoothed observation ̃yt at time t is given by the equation ̃yt =

λyt + (1− λ) ̃yt−1, where λ is the weight assigned to the latest
observation. This recursive equation requires an initial value ̃y0.
Common choices for ̃y0 include setting it equal to the first
observation y1 or the average of available data, depending on the
expected changes in the process. The smoothing parameter λ is
typically chosen byminimizingmetrics such asMean Squared Error
(MSE) or MAPE (Montgomery et al., 2015).

Several modifications of simple exponential smoothing exist to
account for trends and seasonal variations, such as Holt's method
(Holt, 2004) and Holt-Winter's method (Winters, 1960). These can
be used in either additive or multiplicative forms. For modeling and
forecasting biomedical temporal data, the choice ofmethod depends
on the data characteristics. Holt's method is more appropriate
for data with trends. On the other hand, EWMA is suitable for
stationary or relatively stable data, making it effective in scenarios
without a clear trend, such as certain biomedical measurements. For
instance, Rachmat and Suhartono (2020) performed a comparative
analysis of the simple exponential smoothing model and Holt’s
method for forecasting the number of goods required in a hospital’s
inpatient service, assessing performance using error percentage
and MAD. Their findings indicated that the EWMA model
outperformed Holt’s method, as it produced lower forecast errors.
This outcome is logical since the historical data of hospitalized
patients lack any discernible trend.

EWMA models are also intended for univariate, regularly-spaced
temporal data, as demonstrated in the example above (Rachmat
and Suhartono, 2020), which uses a single variable (number of
goods) over a period of time as input for model construction.
This model is not suitable for biomedical data that involves
multiple variables influencing the forecast unless its extention for
multivariate data is employed. As highlighted by De Gooijer and
Hyndman (2006), there has been surprisingly little progress in
developing multivariate versions of exponential smoothing methods
for forecasting. Poloni and Sbrana (2015) attributes this to the
challenges in parameter estimation for high-dimensional systems.
Conventionalmultivariatemaximum likelihoodmethods are prone to
numericalconvergenceissuesandhighcomplexity,whichescalatewith
model dimensionality. They propose a novel strategy that simplifies
the high-dimensional maximum likelihood problem into several
manageable univariate problems, rendering the algorithm largely
unaffected by dimensionality.

EWMA models cannot directly handle data that is not evenly
spaced, and thus cannot be used to directly model biomedical data
with a large number of missing values without imputation. These
models are capable of multi-step ahead prediction either through
DMS or IMS approach. To emphasize long-range dependencies, the
parameter λ can be set to a low value, while a higher value will
give more importance to recent past value (Rabyk and Schmid,
2016).The range of λ values typically used for reasonable forecasting
is 0.1–0.4, depending on the amount of historical data available
for modeling (Montgomery et al., 2015).

2.3 Regression models

Several regression models are available, and in this discussion,
we focus on two specific types: multiple linear regression (MLR)
(Galton, 1886; Pearson, 1922; Pearson, 2023) and multiple
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polynomial regression (MPR) (Legendre, 1806; Gauss, 1823). These
models are particularly relevant for biomedical data analysis as
they accommodate the use of two or more variables to forecast
values. In MLR, there is one continuous dependent variable and two
or more independent variables, which may be either continuous
or categorical. This model operates under the assumption of a
linear relationship between the variables. On the other hand, MPR
shares the same structure as MLR but differs in that it assumes a
polynomial or non-linear relationship between the independent
and dependent variables. This review provides examination of these
two regression models.

2.3.1 Multiple linear regression models
The estimated value of output y at time t, denoted as yt with a

MLR model for a certain set of predictors is given by the following
Equation 1.

yt = Xtβ+ ϵt (1)

where, Xt = (1,x1t,x2t,…,xkt) is a vector of k explanatory variables
at time t, β = (β0,β1,…,βk)

T are regression coefficients, and ϵt is a
random error term at time t, t = 1,…,N (Fang and Lahdelma, 2016).
It can be solved with least squares method (Pearson, 1901) to obtain
the regression coefficients.

R2 value can be calculated to check the accuracy of model
fitting. The value of R2 that is closer to 1 indicates better model
performance. Metrics such as Root Mean Squared Error (RMSE),
Mean Absolute Percentage Error (MAPE), and Theil’s inequality
coefficient (TIC) are commonly utilized to assess the forecasting
model’s performance. While RMSE is scale-sensitive, MAPE and
TIC are scale-insensitive. Lower values for these three metrics
signify a well-fitting forecasting model.

Zhang et al. (2021) developed an MLR model aimed at being
computationally efficient and accurate for forecasting blood glucose
levels in individuals with type 1 diabetes. These MLR models can
predict specific future intervals (e.g., 30 or 60 min ahead). The
dataset is divided into training, validation, and testing subsets;
missing values are handled using interpolation and forward filling,
and the data is normalized for uniformity. The MLR model showed
strong performance, especially in 60-min forward predictions, and
was noted for its computational efficiency in comparison to deep
learning models. It excelled in short-term time series forecasts with
significant data variability, making it optimal for real-time clinical
applications.

2.3.2 Multiple polynomial regression models
The estimated value of yt with say a second-order MPR model

for a certain set of predictors is given by the following Equation 2.

yt = β0 + β1x1t +⋯+ βnxnt + βn+1x1t
2 + βn+2x1tx2t +⋯

+ β2nx1txnt + β2n+1x2t
2 + β2n+2x2tx3t +⋯+ ϵ

(2)

where, β1t, β2t are regression coefficients, x1t,x2t,…,xnt are predictor
variables, and ϵ is a random error.The ordinary least squaresmethod
(Legendre, 1806; Gauss, 1823) is applicable for solving this, similar
to how it is used with MLR models. Furthermore, the evaluation
metrics utilized for MLR are also suitable for MPR models.

Wu et al. (2021) utilized US COVID-19 data from January
22 to July 20 (2020), categorizing it into nationwide and state-
level data sets. Positive cases were identified as Temporal Features

(TF), whereas negative cases, total tests, and daily positive case
increases were identified as Characteristic Features (CF). Various
other features were employed in different manners, such as the daily
increment of hospitalized COVID-19 patients. An MPR model was
created for forecasting single-day outcomes. The model consisted
of pre-processing and forecasting phases. The pre-processing phase
included quantifying temporal dependency through time-window
lag adjustment, selecting CFs, and performing bias correction.
The forecasting phase involved developing MPR models on pre-
processed data sets, tuning parameters, and employing cross-
validation techniques to forecast daily positive cases based on state
classification.

The various applications of multiple regression models stated
above, linear or polynomial, reveal their inability to directly capture
temporal patterns. Although these models can accommodate
multiple input variables, their design limits them to forecasting a
singular outcome with one model. One of the extentions proposed
to tackle this problem ismultivariateMLR (MVMLR). Suganya et al.
(2020) employs MVMLR to forecast four continuous COVID-
19 target variables (confirmed cases and death counts after
one and 2 weeks) using cumulative confirmed cases and death
counts as independent variables. The methodology includes data
preprocessing, feature selection, andmodel evaluation usingmetrics
like Accuracy,R2 score,MeanAbsolute Error (MAE),Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE).

It is clear from the design of the regression models that they
are unable to process missing input data. Unless all the predictor
variables are present or substituted, the value of the output variable
cannot be determined. Therefore, it becomes essential to apply
imputation techniques prior to employing the regression models for
forecasting.

The regression models do not usually require a large amount
of data; it has been demonstrated to be effective with as few as
15 data points per case (Filipow et al., 2023). Multi-step ahead
prediction can be accomplished with either IMS orDMS approaches
when dealing with temporal data like previous cases. Nonetheless,
as mentioned previously, since these methods do not inherently
capture temporal dependencies, forecasts can be generated as
long as the temporal order is maintained while training, and
testing the model.

3 Machine learning models

Many machine learning models are employed to construct
forecasting models for temporal data sets. The most popular models
for temporal data sets include Support vector regression (SVR), k-
nearest neighbors regression (KNNR), Regression trees (Random
forest regression [RFR]), Markov process (MP) models, Gaussian
process (GP) models. We will examine these techniques in the
following sections.

3.1 Support vector regression

The origin of Support Vector Machines (SVMs) can be traced
back to Vapnik (1999). Initially, SVMs were designed to address
the issue of classification, but they have since been extended to the
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realm of regression or forecasting problems (Vapnik et al., 1996).
The SVR approach has the benefit of transforming a nonlinear
problem into a linear one. This is done by mapping the data set x
into a higher-dimensional, linear feature space. This allows linear
regression to be performed on the new feature space. Various kernels
are employed to convert non-linear data into linear data. The most
commonly used are linear kernel, polynomial kernel, and radial basis
or Gaussian kernel.

Upon transforming a nonlinear dataset x into a higher-
dimensional, linear feature space, the prediction function f(x) is
expressed by Equation 3.

f (x) = wTϕ (x) + b (3)

The SVR algorithm solves a nonlinear regression problem by
transforming the training data xi (where i ranges from one toN, with
N being the size of the training data set) into a new feature space,
denoted by ϕ(x). This transformation allows establishing a linear
relationship between input and output, using the weight matrix w
and bias matrix b to further refine the model.

In SVR, selecting optimal hyperparameters (C, ϵ) is crucial
for accurate forecasting. The parameter C controls the balance
between minimizing training error and generalization. A higher C
reduces training errors but may overfit, while a lower C results in a
smoother decision function, possibly sacrificing training accuracy.
The parameter ϵ sets a tolerance margin where errors are not
penalized, forming an ϵ-tube around predictions. A larger ϵ simplifies
themodel butmay underfit, whereas a smaller ϵprovidesmore detail,
potentially leading to overfitting. Optimal values for C and ϵ may
require additional methods (Liu et al., 2021).

SVR is often combined with other algorithms for parameter
optimization. Evolutionary algorithms frequently determine SVR
parameters. For example, Hamdi et al. (2018) used a combination of
SVR and differential evolution (DE) to predict blood glucose levels
with continuous glucosemonitoring (CGM) data.TheDE algorithm
was used to determine the optimal parameters of the SVR model,
which was then built based on these parameters. The model was
tested using real CGM data from 12 patients, and RMSE was used
to evaluate its performance for different prediction horizons. The
RMSE values obtained were 9.44, 10.78, 11.82, and 12.95 mg/dL for
prediction horizons (PH) of 15, 30, 45, and 60 min, respectively.
It should be noted that when these evolutionary algorithms are
employed for determining parameters, SVR encounters notable
disadvantages, including a propensity to get stuck in local minima
(premature convergence).

Moreover, SVR can occasionally lack robustness, resulting
in inconsistent outcomes. To mitigate these challenges, hybrid
algorithms and innovative approaches are applied. For instance,
Empirical Mode Decomposition (EMD) is employed to extract
non-linear or non-stationary elements from the initial dataset.
EMD facilitates the decomposition of data, thereby improving the
effectiveness of the kernel function Fan et al. (2017).

Essentially, SVR is an effective method for dealing with MTS
data (Zhang et al., 2019). SVR, which operates on regression-based
extrapolation, fits a curve to the training data and then uses this
curve to predict future samples. It allows for continuous predictions
rather than only at fixed intervals, making it applicable to irregularly
spaced time series (Godfrey and Gashler, 2017). Nonetheless,

due to its structure, SVR struggles to capture complex temporal
dependencies (Weerakody et al., 2021).

It is suitable for smaller data sets as the computational
complexity of the problem increases with the size of the sample
Liu et al. (2021). It excels at forecasting datasets with high
dimensionality Gavrishchaka and Banerjee (2006) due to the
advanced mapping capabilities of kernel functions Fan et al. (2017).
Additionally, multi-step ahead prediction in the context of SVR’s
application to temporal data can be achieved either with the DMS
or IMS approach (Bao et al., 2014).

3.2 K-nearest neighbors regression

In 1951, Evelyn Fix and Joseph Hodges developed the KNN
algorithm for discriminant examination analysis (Fix and Hodges,
1989). This algorithm was then extended to be used for regression
or forecasting. The KNN method assumes that the current time
series segment will evolve in the future in a similar way to a past
time series segment (not necessarily a recent one) that has already
been observed (Kantz and Schreiber, 2004). The task is thus to
identify past segments of the time series that are similar to the
present one according to a certain norm. Given a time series yN(N)
with N samples, the segment made of the last m samples is denoted
as yM(N), reflecting the current disturbance pattern. The KNN
algorithm searches for k past time series intervals most comparable
to yM(N) within the memory yN(N) using various distance metrics.
For each nearest neighbor, a following time series of length h
is generated, known as prediction contributions. Forecasting can
then be done using unweighted or weighted approaches. In the
unweighted approach, the prediction is the mean of the prediction
contributions. In theweighted approach, the prediction is aweighted
average based on the distance of each nearest neighbor from the
current segment. Weights are assigned inversely proportional to the
distances.

Gopakumar et al. (2016) employed the KNN algorithm to
forecast the total number of discharges from an open ward in an
Australian hospital, which lacked real-time clinical data. To estimate
the next-day discharge, they used the median of similar discharges
from the past. The quality of the forecast was evaluated using the
mean forecast error (MFE), MAE, symmetric MAE (SMAPE), and
RMSE. The results of these metrics were reported to be 1.09, 2.88,
34.92%, and 3.84, respectively, with an MAE error improvement of
16.3% over the naive forecast.

KNN regression is viable for multivariate temporal datasets,
as illustrated by Al-Qahtani and Crone (2013). Nevertheless,
its forecasting accuracy diminishes as the dimensionality of the
data escalates. Consequently, it is critical to meticulously select
pertinent features that impact the target variable to enhance model
performance.

KNN proves effective for irregular temporal datasets (Godfrey
and Gashler, 2017) due to its ability to identify previous matching
patterns rather than solely depending on recent data.This distinctive
characteristic renders KNN regression a favored choice for
imputing missing data (Aljuaid and Sasi, 2016) prior to initiating
any forecasting. Furthermore, it excels in capturing seasonal
variations or local trends, such as aligning the administration
of a medication that elevates blood pressure with a low blood

Frontiers in Physiology 08 frontiersin.org124

https://doi.org/10.3389/fphys.2024.1386760
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Patharkar et al. 10.3389/fphys.2024.1386760

pressure condition. Conversely, its efficacy in identifying global
trends is limited, particularly in scenarios like septic shock,
where multiple health parameters progressively deteriorate
over time (Weerakody et al., 2021).

The KNN algorithm necessitates distance computations for k-
nearest neighbors. Selecting an appropriate distance metric aligned
with the dataset's attributes is essential, with Euclidean distance
being prevalent, though other metrics may be more suitable for
specific datasets. Ehsani and Drabløs (2020) examines the impact
of various distance measures on cancer data classification, using
both common and novel measures, including Sobolev and Fisher
distances. The findings reveal that novel measures, especially
Sobolev, perform comparably to established measures.

As the size of the training dataset increases, the computational
demands of the algorithm also rise. To mitigate this issue,
approximate nearest neighbor search algorithms can be employed
(Jones et al., 2011). Furthermore, the algorithm requires a
large amount of data to accurately detect similar patterns.
Several methods have been suggested to accelerate the process;
for example, (Garcia et al., 2010), presented two GPU-based
implementations of the brute-force kNN search algorithm using
CUDA and CUBLAS, achieving speed-ups of up to 64X and 189X
over the ANN C++ library on synthetic data.

Similarly to other forecasting models, KNN is applicable
for multistep ahead predictions using strategies such as
IMS or DMS (Martínez et al., 2019). It is imperative to thoroughly
analyze the clinical application and characteristics of the clinical
data prior to employing KNN regression for forecasting, given its
unique attributes. Optimizing the number of neighbors (k) and the
segment length (m) through cross-validation is crucial. Employing
appropriate evaluation metrics (e.g., MFE, MAE, SMAPE, RMSE) is
necessary to assess the model’s performance.

3.3 Random forest regression

Random Forests (RFs), introduced by Breiman (2001), are a
widely-used forecasting data mining technique. According to Bou-
Hamad and Jamali (2020), they are tree-based ensemble methods
used for predicting either categorical (classification) or numerical
(regression) responses. In the context of regression, known as
Random Forest Regression (RFR), RF models strive to derive a
prediction function f(x) that reduces the expected value of a loss
function L(Y, f(X)), with the output Y typically evaluated using the
squared error loss. RFR builds on base learners, where each learner is
a tree trained on bootstrap samples of the data. The final prediction
is the average of all tree predictions as shown by Equation 4.

f (x) = 1
K

K

∑
k=1

lk (x) (4)

where K is the number of trees, and lk(x) is the k-th tree. Trees
are constructed using binary recursive partitioning based on criteria
such as MSE.

Zhao et al. (2019) developed a RFR model to forecast the future
estimated glomerular filtration rate (eGFR) values of patients to
predict the progression of Chronic Kidney Disease (CKD). The
data set used was from a regional health system and included
120,495 patients from 2009 to 2017. The data was divided into three

tables: eGFR, demographic, and disease information.Themodel was
optimized through grid-search and showed good fit and accuracy in
forecasting eGFR for 2015–2017 using the historical data from the
past years. The forecasting accuracy decreased over time, indicating
the importance of previous eGFR records. The model was successful
in predicting CKD stages, with an average R2 of 0.95, 88% Macro
Recall, and 96% Macro Precision over 3 years.

The study presented in Zhao et al. (2019) indicates that RFR
is effective for forecasting multivariate data. Another research
by Hosseinzadeh et al. (2023) found that RFR performs better
with multivariate data than with univariate data, especially
when the features hold substantial information about the target.
Research by Tyralis and Papacharalampous (2017) indicated that
RF incorporating many predictor variables without selecting key
features exhibited inferior performance relative to other methods.
Conversely, optimized RF utilizing a more refined set of variables
showed consistent reliability, highlighting the importance of
thoughtful variable selection.

Similar to SVR, RFR is able to process non-linear information,
although it does not have a specific design for capturing temporal
patterns (Helmini et al., 2019). RFR is capable of handling irregular
or missing data. El Mrabet et al. (2022) compared RFR for fault
detection with Deep Neural Networks (DNNs), and found that RFR
was more resilient to missing data than DNNs, showing its superior
ability to manage missing values. To apply RFR to temporal data, it
must be suitablymodeled.As an example,Hosseinzadeh et al. (2023)
has demonstrated one of the techniques, which involves forecasting
stream flow by modeling the RFR as a supervised learning task with
24 months of input data and corresponding 24 months of output
sequence. The construction of sequences involves going through
the entire data set, shifting 1 month at a time. The study showed
that extending the look-back window beyond a certain time frame
decreases accuracy, indicating RFR’s difficulty in capturing long-
term dependencies when used in temporal modeling context. For
a forecasting window of 24 months, the look-back window must be
at least 24 months to avoid an increase in MAPE. This implies that
although RFR can be used for temporal modeling, its effectiveness is
more in capturing short-term dependencies rather than long-term
ones. The experiments conducted by Tyralis and Papacharalampous
(2017) also support this, showing that utilizing a small number of
recent variables as predictors during the fitting process significantly
improves the RFR’s forecasting accuracy.

RFR can be used to forecastmultiple steps ahead, similar to other
regression models used for temporal forecasting (Alhnaity et al.,
2021). Regarding data management, RFR necessitates a
considerable volume of data to adjust its hyperparameters. It
can swiftly handle such extensive datasets, leading to a more
accurate model (Moon et al., 2018).

3.4 Markov process models

Two types of Markov Process (MP) models exist: Linear
Dynamic System (LDS) andHiddenMarkovModel (HMM). Both of
these models are based on the same concept: a hidden state variable
that changes according to Markovian dynamics can be measured.
The learning and inference algorithms for bothmodels are similar in
structure. The only difference is that the HMM uses a discrete state
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variable with any type of dynamics and measurements, while the
LDS uses a continuous state variable with linear-Gaussian dynamics
andmeasurements.Thesemodels are discussed inmore detail in the
following sections.

3.4.1 Linear dynamic system
LDS, introduced by Kalman (1963), models the dynamics of

sequences using hidden states and discrete time. It assumes evenly
spaced time intervals within sequences, where the state transition
and state-observation probabilities are given by qi and oi respectively.
These probabilities are determined by the Equations 5, 6.

qi = Aqi−1 + ϵi (5)

oi = Bqi + ζi (6)

The terms A and B represent the transition and emission
matrices, respectively, whereas ϵi and ζi denote Gaussian noise
components. Specifically, the stochastic element ϵi adheres to a zero-
mean Gaussian distribution ϵi ∼N (0, P), characterized by a zero-
mean vector and covariance matrix P. On the other hand, the
stochastic component ζi follows a zero-mean Gaussian distribution
ζi ∼N (0, R), which is also characterized by a zero-mean vector
and covariance matrix R. The initial state distribution (q1) is
defined, with mean ξ and covariance matrix ψ, i.e., q1 ∼N (ξ, ψ).
The set of LDS parameters is denoted as λ = (A,B,P,R,ξ,ψ). In
applied scenarios, these parameters necessitate estimation from
empirical data. Two standard approaches for learning LDS are
the Expectation-Maximization (EM) (Ghahramani and Hinton,
1996) and spectral learning algorithms (Katayama, 2005; Overchee
and Moor, 1996; Doretto et al., 2003). EM iteratively maximizes
the likelihood of observations by cycling between expectation (E-
step) and maximization (M-step). It is precise but can be slow
and prone to local optima, especially with limited training data.
Spectral learning algorithms provide a non-iterative, closed-form
solution using singular value decomposition (SVD) to estimate LDS
parameters. They are faster but may be less precise than EM.

A new data-driven state-space dynamic model was
developed by Wang et al. (2014) using an extended Kalman filter to
estimate time-varying coefficients based on three variate time series
data corresponding to glucose, insulin, and meal intake from type
1 diabetic subjects. This model was used to forecast blood glucose
levels andwas evaluated against a standardmodel (forgetting-factor-
based recursive ARX). The results showed that the proposed model
was superior in terms of fit, temporal gain, and J index, making
it better for early detection of glucose trends. Furthermore, the
model parameters could be estimated in real time, making it suitable
for adaptive control. This model was tested for various prediction
horizons, demonstrating the model’s suitability for multi-step ahead
prediction.

The LDS is apt for modelling multivariate temporal data, yet it
is confined to data sampled at regular time intervals. As a result, its
application to irregularly spaced data (Shamout et al., 2021) or time
series with missing values may be problematic. In such instances,
modifications and extension are needed. For example, Liu et al.
(2013) presented a novel probabilistic method for modeling
clinical time series data that accommodates irregularly sampled
observations using LDS combined with GP models. They defined

the model by a series of GPs, each confined to a finite window,
with dependencies between consecutive GPs represented via an
LDS. Their experiments on real-world clinical time series data
demonstrate that their model excels in modeling clinical time
series and either outperforms or matches alternative time series
prediction models.

Typically, implementing the LDS model starts with thorough
data preparation, requiring uniform sampling. In cases of irregular
sampling or datasets with missing values, proper management
through interpolation or imputation is essential for using the model
without alterations, as mentioned above. The model architecture
is constructed using hidden state variables (qi) to encapsulate
the latent processes, alongside measurable observation variables
(oi) representing directly observable quantities. Parameters such as
the state transition matrix (A), the emission matrix (B), and the
covariance matrices for process noise (P) and observation noise
(R) should be initialized based on prior knowledge or through
randomization techniques. Parameter learning is facilitated through
the EM algorithm or spectral learning methods, with practical
considerations dictating the choice: EM being preferred for its
precision with limited datasets and spectral methods for their
computational expediency.

The LDS or Kalman filter remains a cornerstone for tracking and
estimation due to its attributes of simplicity, optimality, tractability,
and robustness. However, nonlinear system applications present
complex challenges, often mitigated by the Extended Kalman
Filter (EKF) (Lewis, 1986) which linearizes nonlinear models
to leverage the linear Kalman filter. Also, various advancements
have been proposed for LDS, particularly when addressing
nonlinear or non-Gaussian dynamics. For example, approximate
filtering methodologies such as the unscented Kalman filter (Julier
and Uhlmann, 1997), alongside Monte Carlo-based techniques
including the particle filter (Gordon et al., 1993) and the ensemble
Kalmanfilter (Evensen, 1994), are also utilized similar to EKF.Model
evaluation is conducted through cross-validation employingmetrics
such as MSE or RMSE. For forecasting applications, the model can
be employed for one-step ahead forecasts or extended to iterative
multi-step predictions.

3.4.2 Hidden markov model
Hidden Markov Models (HMMs), introduced by Baum

and colleagues in the late 1960s and early 1970s (Baum and
Petrie, 1966; Baum and Eagon, 1967; Baum and Sell, 1968;
Baum et al., 1970; Baum, 1972), are powerful tools for linking
hidden states with observed events, assuming an underlying
stochastic process. An HMM consists of a set of hidden states,
a transition probability matrix, a sequence of observations,
observation likelihoods, and an initial state distribution. A critical
assumption inHMMs is output independence, where the probability
of an observation depends solely on the state that produced it.

HMMs address three fundamental problems: (1) Likelihood
estimation: Using the forward or backward algorithm to compute
the probability of an observed sequence given themodel parameters;
(2) Decoding: Employing the Viterbi algorithm to determine the
optimal sequence of hidden states corresponding to a sequence
of observations; and (3) Learning: Applying the Baum-Welch
algorithm, a special case of the EM algorithm, to estimate HMM
parameters from observation sequences.
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Sotoodeh andHo (2019) proposed a novel feature representation
based on the HMM to predict the length of stay of patients admitted
to the ICU. This representation was composed of a specified time
resolution and a summary statistic calculated for a specific time
window for each feature (e.g., average, most recent, maximum, etc.).
An HMM was then trained on these features, and used to generate
a series of states for each patient, with the first and last states being
used as it was thought that these could better explain the variance in
the length of stay. This feature matrix was then used as the input to
a regression model to estimate the length of stay. Experiments were
conducted to determine the optimal number of states, overlapping or
non-overlapping timewindows, aggregation of ICU types, summary
measure for each time window, and selection of time window
probabilities. The model was compared to other baseline models,
and was found to have a lower RMSE than all of them.

It is evident from the application here that HMM is capable
of dealing with multivariate data. Additionally, it is designed to
process temporal data that is spaced at regular intervals of time
(Shamout et al., 2021). Unfortunately, it is not able to process
temporal data that is irregular or has missing values. Cao et al.
(2015) employed both DMS and IMS strategies to forecast multiple
future system states and anticipate the evolution of a fault
in the Tennessee Eastman (TE) chemical process using HMM.
They reported the accuracy of 1,2,3,.,20 step-ahead predictions,
which were similar for both approaches, with the DMS approach
being slightly more accurate than the IMS approach. This is
understandable, as the IMS approach has to contend with additional
complexities, such as cumulative errors, decreased precision, and
increased uncertainty. This demonstrates the capability of HMM to
make predictions for multiple steps in the future.

HMM can be constructed using either raw time series data
or extracted features. Samaee and Kobravi (2020) introduced
a forecasting model aimed at forecasting the timing of tremor
bursts with a nonlinear hidden Markov model. This model
was trained using the Baum-Welch algorithm, employing both
raw Electromyogram (EMG) data and extracted features such
as integrated EMG, mean frequency, and peak frequency. The
study found that an HMM trained on raw EMG data performed
better at forecasting tremor occurrences, suggesting that raw data
more accurately captures tremor dynamics compared to extracted
features.This is likely due to the short timewindowbeing insufficient
for feature-based methods. Therefore, it is crucial to determine
whether raw time series data or extracted features yield better
performance in HMM construction.

In general, MP models are well-recognized for their efficacy in
capturing short-term relationships (Manaris et al., 2011) between
adjacent symbols or sequences with strong inter-symbol ties.
However, they prove inadequate for representing long-distance
dependencies between symbols that are spatially or temporally
distant (Yoon and Vaidyanathan, 2006; Manaris et al., 2011).
To enhance the representational scope of these models, certain
methodologies must be employed. For instance, Yoon and
Vaidyanathan (2006) proposed context-sensitive HMMs capable
of capturing long-distance dependencies, thereby enabling robust
pairwise correlations between distant symbols.

Additionally, a limitation of Markov models is that the intrinsic
dimensionality of its hidden states is not known beforehand. If the
dimensionality is too large, there is a risk of the model becoming

overfitted.Therefore, it is often necessary to try out different training
sizes and intrinsic dimensionality of the hidden states to create a
model that fits (Liu, 2016).

3.5 Gaussian process models

The Gaussian process (GP), introduced by Williams and
Rasmussen (Williams and Rasmussen, 2006), is a non-parametric,
non-linear Bayesian model in statistical machine learning. A
GP is a collection of random variables, any finite number of
which have a joint Gaussian distribution. This model extends
the multivariate Gaussian to infinite-sized collections of real-
valued variables, defining the distribution over random functions.
A GP is represented by the mean function: m(x) = 𝔼[ f(x)], and
the covariance function:KG(x,x′) = 𝔼[( f(x) −m(x))( f(x′) −m(x′))],
where f(x) is a real-valued process and, x and x′ are two input vectors.

In the context of biomedical temporal data, GP shows promises
for modeling and forecasting due to their flexibility and ability
to incorporate uncertainty. For example, GP can be used to
model patient vital signs over time or predict disease progression
(Siami-Namini et al., 2019). The key advantage of GP is their
ability to provide uncertainty estimates along with predictions,
which is crucial in biomedical applications where uncertainty
quantification can inform clinical decisions. The GP can compute
the distribution of function values for any set of inputs. This
initial distribution, known as the prior, is a multivariate Gaussian
represented by Equation 7.

f (X∗ ) ∼N (m (X∗ ) , KG (X∗ ,X∗ )) (7)

When given observed data, the GP updates this to the posterior
distribution, which also follows a multivariate Gaussian. This
updated distribution incorporates the observed data, providing
more accurate predictions. The posterior distribution is influenced
by the observed values and accounts for noise in the data.

GPs extend the multivariate Gaussian distribution into an
infinite function space, making them suitable for time series
modeling. They can handle observations taken at any time,
whether regularly or irregularly spaced, and can make future
predictions by calculating the posterior mean for any given time
index. Additionally, GPs can act as non-linear transformation
operators by replacing the linear transformations used in traditional
temporal models with GP, offering a flexible approach to modeling
complex data.

GP parameters consist of mean and covariance function
parameters. The mean function, dependent on time, represents
the expectation before observations. In cases of uncertain trend
directions, constant-offset mean functions are common. If prior
knowledge about the long-term trend exists, it can be incorporated
into GP models, optimizing mean function parameters using
gradient-based methods. In clinical scenarios with diverse patient
ages and circumstances, aligning time origins is challenging.
A practical approach is setting mean functions to a constant
(m(t) =M), making the GP time-invariant. The constant M is
determined by averaging all patient observations. To optimize the
covariance function parameters Θ, one can maximize the marginal
likelihood p(Y|X). The log marginal likelihood for GP is calculated
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whereY includes all training observations.The covariancematrix for
noisy observations is represented byKY. It is calculated asKY = KG +
σ2I, whereKG is the covariancematrix for noise-free function values,
and σ is a standard deviation of the noise, represented as, ϵ ∼N (0,σ).
The partial derivatives of the marginal likelihood with respect to
each parameter in Θ are then derived. These derivatives are used in
gradient-based optimization methods to maximize p(Y|X), thereby
optimizing the covariance function parameters.

A prevalent limitation of GP models pertains to their high
computational demands. Sparse GP methodologies have been
devised to mitigate this challenge (Williams and Rasmussen, 2006;
Quinonero-Candela andRasmussen, 2005), primarily by identifying
a subset of pseudo inputs to alleviate computational load. Further
optimization of computational efficiency can be achieved through
the application of the Kronecker product (Stegle et al., 2011),
synchronization of training data across identical time intervals for
each dimension (Evgeniou et al., 2005), or the implementation of
recursive algorithms tailored for online settings (Pillonetto et al.,
2008). Applications necessitating near real-time retraining are
more apt to benefit from these approaches, whereas methods that
extend over more prolonged temporal frameworks exhibit reduced
sensitivity to such computational constraints. Another shortcoming
of GP is that it models each time series separately, disregarding the
interactions between multiple variables. To tackle this problem and
capture the multivariate behavior of MTS, the multi-task Gaussian
process (MTGP) was proposed (Bonilla et al., 2007).

3.5.1 Multi-task Gaussian process
MTGP is an extension of GP that models multiple tasks (e.g.,

MTS) simultaneously by utilizing the learned covariance between
related tasks. It uses KC to model the similarities between tasks and
KG to capture the temporal dependence with respect to time stamps.
The covariance function of MTGP is given by Equation 8.

KM = KC ⊗KG +D⊗ IT (8)

where KC is a positive semi-definite matrix and KC
j,k measures the

similarity between time series j and time series k. D is an n x n
diagonal matrix in whichDj,j is the noise variance δj

2 for the jth time
series. ⊗ is the Kronecker product.

The parameters of GP-based models are composed of
parameters that define the mean and covariance functions.
Generally, the covariance function ensures that values of the
function for two close times tend to have a high covariance,
while values from inputs that are distant in time usually have a
low covariance. These parameters can be acquired from data that
includes one or multiple examples of time series. The predictions
of values at future times are equivalent to the calculation of the
posterior distribution for those times.

Proper data preprocessing is essential when building MTGP
models for forecasting time series. This involves transformations
such as detrending and applying logarithmic adjustments. Methods
like spectral mixture kernels or Bayesian Nonparametric Spectral
Estimation can be employed for initialization. Post-training, it is
vital to visualize and interpret cross-channel correlations to better
understand the inherent patterns, thereby supporting practical and
accurate forecasting applications (de Wolff et al., 2021).

Shukla (2017) proposed to use MTGP to forecast blood
pressure from Photoplethysmogram (PPG) signals and compared

its performance to Artificial Neural Networks (ANNs). Ten features
were extracted from the PPG signal, and five of them were chosen
as the tasks (or targets) to construct the MTGP model. These
features were systolic blood pressure, diastolic blood pressure,
systolic upstroke time, diastolic time and cardiac period. Four
different ANN models were built based on one or more of the
above tasks. The models were evaluated on clinical data from the
MIMIC Database, with the absolute error e calculated for each
heart beat as the performance measure. The results showed that the
performance of MTGP was either comparable to or better than the
ANNs and existing methods of computing BP from non-invasive
data. MTGP is thus applicable for modeling multivariate temporal
data with multiple prediction targets. In a study by Dürichen et al.
(2014), MTGP was employed on three diverse biomedical data sets.
The experiments aimed to illustrate that forecasting all correlated
variables simultaneously enhanced prediction performance,
contrasting with individual variable predictions. MTGP has been
demonstrated to be successful in multi-step ahead forecasting for a
variety of biomedical domain applications mentioned here, as well
as in other domains (Cai et al., 2020).

GP models, with an appropriate choice of covariance function,
can capture rapid changes in a time series and can be applied to
time series modeling problems by representing observations as a
function of time. This means that there is no restriction on when
the observations are made or if they are regularly or irregularly
spaced in time. Liu (2016) and Cheng et al. (2020) demonstrated
that, with the appropriate selection of a covariance function, it is
possible to model both the short-term dependencies or long-term
correlations of temporal data. GP models also work well with small
amounts of data (Liu, 2016). It is possible to predict with a certain
degree of certainty (confidence interval) using GP (Roberts et al.,
2013), which is usually essential for temporal modeling of
medical data that necessitates a certain degree of assurance to
be employed by medical professionals to make their decisions.
However, this approach has some limitations, the most serious
being that the mean function of the GP is a function of time
and must be set to a constant value in order to make the
GP independent of the time origin. This significantly restricts
its ability to represent changes or different modes in time
series dynamics.

4 Deep learning models

The use of Deep Learning techniques for predicting time series
data has gained significant attention.While there are variousmodels
available for handling time-series data, in this review, we will
focus on some commonly used models for forecasting clinical
data sets over time. Specifically, we will explore Recurrent Neural
Networks (RNN), Long Short TermMemoryNetworks (LSTM), and
Transformer models.

4.1 Recurrent Neural Networks

The concept of RNN was introduced by Elman (1990) for
identifying patterns in sequential data. RNNs accept sequential data
as input and process it recursively. In an RNN, nodes are linked
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FIGURE 1
RNN structure (reproduced from Liu et al., 2021, licensed under CC BY 4.0).

sequentially, where the input at time t depends on the output at time
t− 1. The structure and functions of RNNs are depicted in Figure 1.

In this structure, the input layer (X) is weighted by U, the
hidden layer (A) byW, and the output layer (Y) by V. The equations
employed for calculations are Equations 9, 10.

Yt+1 = g(VAt+1) (9)

At+1 = f (UXt+1 +WAt) (10)

The above formula is iterative in nature and can be expanded using
the Equation 11 as:

Yt+1 = V f (UXt+1 +Wf (UXt +Wf (UXt−1 +⋯))) (11)

The equation above demonstrates that the RNN network’s output
Yt+1 is influenced by the current input At+1, as well as the previous
inputs At,At−1, .. RNNs effectively handle sequential and correlated
data by considering historical inputs. The work of Chandra et al.
(2021) demonstrates its applicability in multi-step ahead prediction.
Although their demonstration focuses on univariate cases, RNN has
also been successfully applied to multivariate cases. In their study,
Zhu et al. (2020) utilized four data fields for each instance: sampling
time, CGM values, meal intake, and insulin dose. They employed
a deep learning approach using an extention of RNN, dilated RNN
(DRNN), to forecast glucose levels for the next 30 min. The DRNN
model exhibits superior performance compared to current models
like autoregressive (ARX), SVR, and neural networks for glucose
prediction (NNPG), when evaluated on the OhioT1DM dataset.
The RMSE values reported are ARX: 20.1 mg/dL, SVR: 21.7 mg/dL,
NNPG: 22.9 mg/dL, and DRNN: 18.9 mg/dL. RNNs are frequently
used to handle missing values or irregularities in multivariate
temporal datasets. There are two main approaches to achieve this:
imputation and data generation, or a forecasting approach. When
using the first approach, RNNs leverage temporal correlationswithin
each series and correlations among multiple features to fill in
missing values or create a time series that captures the original
characteristics. On the other hand, the latter approach involves the
development of more advanced RNN-based solutions that provide
a deeper understanding of the missing data, as well as the patterns
and relationships within the data (Weerakody et al., 2021).

Implementing RNNs for modeling and forecasting biomedical
temporal data necessitates meticulous attention to data

preprocessing, model structure, tuning of hyperparameters,
and evaluation techniques. The recommendations for each
aspect are outlined as discussed in Hewamalage et al. (2021).
Deseasonalization is advised for datasets exhibiting seasonal
trends unless consistent seasonal patterns exist, which RNNs
can inherently manage. Data normalization enhances training
convergence, while the sliding window approach divides the time
series into overlapping sequences for model input. Hyperparameter
tuning is crucial for achieving optimal RNN performance. Principal
hyperparameters include the learning rate, batch size, and the
number of layers. The learning rate must be selected judiciously;
for ideal convergence, the Adagrad optimizer typically needs a
higher learning rate ranging between 0.01 and 0.9, whereas the
Adam optimizer performs effectively within a narrower range of
0.001–0.1. The batch size should be commensurate with the dataset
size, and usually, one or two layers are sufficient, as additional
layers may result in overfitting. Setting high values for the standard
deviation of regularization parameters for Gaussian noise and L2
weight regularization can cause significant underfitting, reducing
the neural network's efficacy in generating forecasts. One category
of RNN models, stacked RNNs, which involve multiple RNN layers,
are employed for forecasting and often utilize skip connections
to alleviate vanishing gradient issues. Another category of RNN
models, known as sequence-to-sequence (S2S) models, is typically
applied in sequential data transformations and is useful for tasks
like multi-step forecasting. Assessing RNN performance against
traditional methods like ARIMA using standard metrics and cross-
validation confirms their competitiveness. Enhancements to RNN
methods, such as attention mechanisms and ensemble methods,
further boost their performance. Attention mechanisms enable the
model to concentrate on relevant parts of the input sequence, while
ensemble methods combine several RNN models to produce robust
forecasts, reducing biases and variances.

RNNs excel at capturing short-term dependencies
(Helmini et al., 2019). They are more sensitive to time series data
than traditional convolutional neural networks (CNNs) and can
retain memory during data transmission. However, as previously
mentioned, when the input sequence lengthens, the network
demands more temporal references, leading to a deeper network.
In longer sequences, it becomes challenging for the gradient to
propagate back from later sequences to earlier ones, resulting in
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FIGURE 2
LSTM structure (reproduced from Liu et al., 2021, licensed under
CC BY 4.0).

the vanishing gradient problem. Consequently, RNNs struggle with
long-term dependencies. To mitigate this vanishing (or exploding)
gradient issue, a modification of the RNN known as the long sshort-
term memory (LSTM) model was introduced by Hochreiter and
Schmidhuber (1997).

4.1.1 Long Short Term Memory Networks
To overcome the challenges of vanishing and exploding

gradients in RNNs, the LSTM model was introduced. This
architecture employs a cell state to maintain long-term
dependencies, as discussed by Helmini et al. (2019). The model
effectively manages gradient dispersion by establishing a retention
mechanism between input and feedback. Figure 2 illustrates the
LSTM structure (Weerakody et al., 2021). Additionally, LSTM
models are proficient in capturing short-term dependencies,
primarily through the use of a hidden state. LSTM units are
controlled by three gates: the input gate, the output gate, and
the forget gate. These gates regulate the flow of information
and maintain the cell state, enabling LSTMs to retain important
information over long periods.The key equations (Equations 12–17)
governing LSTM operations are mentioned as follows:

ft = σ(W fAAt−1 +W fXXt + b f) (12)

it = σ(WiAAt−1 +WiXXt + bi) (13)

̃ct = tanh(WcAAt−1 +WcXXt + bc) (14)

ct = ( ft ◦ ct−1) + (it ◦ ̃ct) (15)

Yt = σ(WYAAt−1 +WYXXt + bY) (16)

At = (Yt ◦ tanh(ct)) (17)

In these equations, σ represents the sigmoid function, and ◦
denotes element-wise multiplication. The forget gate ( ft) controls
the retention of the previous cell state (ct−1), the input gate (it)

manages the incorporation of new information, and the output gate
(Yt) determines the output based on the cell state (ct). W fA, W fX,
WiA, WiX, and WcA are different weights associated with the forget
gate, input gate, and the current input unit state.

A deep learning neural network (NN) model based on
LSTM with the addition of two fully connected layers was
proposed by Idriss et al. (2019), for forecasting blood glucose
levels. To determine the optimal parameters for the model, several
experiments were conducted using data from 10 diabetic patients.
The performance of the proposed LSTMNN, asmeasured by RMSE,
was compared to that of a simple LSTMmodel and an autoregressive
(AR) model. The results indicated that the LSTM NN achieved
higher accuracy (mean RMSE = 12.38 mg/dL) compared to both
the existing LSTM model (mean RMSE = 28.84 mg/dL) for all
patients and the AR model (mean RMSE = 50.69 mg/dL) for 9 out
of 10 patients. LSTM is therefore valuable in the representation of
time-based information.

One popular extention of the LSTM network is a Bidirectional
LSTM (BiLSTM) model which is obtained by modifying the
architecture of the LSTM network to include two LSTM layers:
one processing the input sequence from left to right (forward
direction) and the other from right to left (backward direction).
This bidirectional traversal allows the model to have information
from both past and future contexts, enhancing its ability to capture
complex patterns and dependencies. The outputs from both layers
are concatenated at each time step, providing a richer representation
of the input sequence. This approach results in improved
performance for tasks like time series forecasting, as BiLSTM
models can leverage additional training from both directions to
better understand sequential data (Abbasimehr and Paki, 2022). For
instance, in a study by Said et al. (2021), a bidirectional LSTM (Bi-
LSTM) was employed to analyze multivariate data from countries
grouped based on demographic, socioeconomic, and health sector
indicators alongwith the information on lockdown measures, to
predict the cumulative number of COVID-19 cases in Qatar from
December 1st to 31 December 2020.

LSTM is also combined with multi-head attention mechanisms.
This approach aims to address the non-linear patterns and
complexities often found in real-world time series data,
which traditional forecasting techniques struggle to predict
accurately (Siami-Namini et al., 2019). When dealing with irregular
temporal data that contain missing values, traditional LSTM
models face challenges and may produce suboptimal analyses and
predictions. This is because applying the LSTM model to irregular
temporal data, either by filling in missing values or using temporal
smoothing, does not enable themodel to differentiate between actual
observations and imputed values.Therefore, caution is advisedwhen
using an LSTM model on a dataset where multiple missing values
have been imputed.

4.2 Transformer models

The Transformer model for natural language processing (NLP)
was introduced by Vaswani et al. (2017). This model is composed
of an encoder-decoder network, which differs from the traditional
sequential structure of RNN. Transformer model utilizes the Self-
Attention mechanism to enable parallel training and capture global
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FIGURE 3
Transformer architecture (reproduced from Liu et al., 2021, licensed under CC BY 4.0).

information. The encoder takes historical time series data as
input, while the decoder predicts future values using an auto-
regressive approach. This means that the decoder’s generated output
at each step is based on previously generated outputs. To establish
a connection between the encoder and decoder, an attention
mechanism is employed. This allows the decoder to learn how to
effectively focus (“pay attention”) on relevant parts of the historical
time series before making predictions. The decoder utilizes masked
self-attention to prevent the network from accessing future values
during training, thereby avoiding information leakage. The typical
architecture of the Transformer model is depicted in the Figure 3.

Originally designed for NLP tasks, the Transformer architecture
has found application in temporal forecasting as well. To model
irregular temporal data, various methods have been proposed.
For instance, Tipirneni and Reddy (2022) introduced the Self-
supervised Transformer for Time-Series (STraTS) model, which
treats each time-series as observation triplets (time, variable, value)
instead of matrices as done by conventional methods.This approach
eliminates the need for aggregation or imputation. STraTS utilizes a
Continuous Value Embedding (CVE) scheme to retain detailed time
information without discretization.

The study by Harerimana et al. (2022) utilized a Multi-Headed
Transformer (MHT) model to forecast clinical time-series variables
from charted vital signs, leveraging the transformer architecture’s
attention mechanism to capture complex temporal dependencies.
The dataset is split into training and testing sets per patient, using
past 24-h data for recursive future predictions. Training involves a
fixed dimension of 512 for all layers, and themodel is evaluated using
metrics likeArea under theReceiverOperatingCharacteristic Curve
(AUC-ROC), MSE, and MAPE. The MHT model outperforms
traditional models (LSTM, Temporal Convolutional Network,
TimeNet) in forecasting vital signs, length of stay, and in-hospital
mortality, demonstrating superior accuracy and robustness by
focusing on influential past time steps, validating its efficacy in
handling clinical time-series data.

The Transformer architecture is a relatively new concept, and
ongoing research is being conducted to explore its capabilities. For
instance, Li et al. (2019) suggest that unlike RNN-based methods,
the Transformer enables the model to access any part of the

time series history, disregarding the distance. This characteristic
potentially makes it more adept at capturing recurring patterns with
long-term dependencies. However, Zeng et al. (2023) presented an
opposing viewpoint, questioning the effectiveness of Transformer-
based solutions in long-term time series forecasting (LTSF). They
argue that while Transformers are adept at capturing semantic
correlations in sequences, their self-attention mechanism, which
is invariant to permutations, may result in the loss of crucial
temporal information necessary for accurate time series modeling.
In support of their claim, the researchers introduced LTSF-Linear, a
simple one-layer linear model, and discovered that it outperformed
more complex Transformer-based LTSF models on nine real-
life data sets. In addition, a temporal fusion transformer (TFT)
was suggested by Zhang et al. (2022) as a method that effectively
captures both short-term and long-termdependencies.Hence, when
employing Transformer-based approaches for temporal forecasting,
it is crucial to take into account these distinct viewpoints and
conduct experiments to determine the most effective modeling
technique for the specific forecasting task, considering the presence
of short-term and long-term dependencies.

While DL models are capable of generating precise predictions,
they are frequently perceived as black-box models that lack
interpretability and transparency in their internal processes (Vellido,
2019). This presents a significant issue as medical professionals
are often hesitant to trust machine recommendations without
a clear understanding of the underlying rationale. In addition,
significant quantities of clinical data are utilized to generate
standardized inputs for training DL models. The challenge of
acquiring extensive clinical data sets poses a challenge in the
integration of DL clinical models into real-world clinical systems
(Xiao et al., 2018).

5 Discussion

This section is comprised of two subsections.Thefirst subsection
summarizes the overview of the models and their capacities in
addressing the difficulties encountered in forecasting of clinical
datasets. The second subsection explores the future prospects
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concerning the practical obstacles in implementing AI models for
biomedical data modeling.

5.1 Summary of models for biomedical
temporal data forecasting

5.1.1 Summary of statistical, ML, and DL models
This review focuses on predictive models for biomedical

temporal data, which face several challenges such as missing values
due to irregular data collection or errors. Traditional methods
use imputation or deletion, but models that handle missing
values without these steps are preferable, as patterns of missing
data might hold valuable information termed as “informative
missingness”. EHRs often feature MTS data, so models must capture
these correlations. Temporal data complexity requires models to
consider short-term and long-term patterns. Short-term patterns
might involve events like norepinephrine administration linked
to recent hypotension, while long-term patterns could involve
past acute kidney injury necessitating dialysis. Models should
account for these dependencies and support multi-step ahead
forecasting for early disease detection. Data availability varies with
clinical events, thus impactingmodel selection.These challenges are
crucial for accurate, effective predictions in clinical settings. Table 3
summarizes the advantages and disadvantages of the discussed
models, supplemented by literature insights.

Forecasting is categorized into statistical, ML, and DL methods.
We focused on models frequently used in biomedical temporal
modeling, evaluating their effectiveness. For statistical methods,
we analyzed ARIMA, EWMA, and regression models. In ML, we
assessed SVR, RFR, KNNR, MP, and GP models. For DL methods,
we evaluated RNN, LSTM, and Transformer models. Our analysis
found the MTGP model effective for irregularly spaced data,
capturing both short-term and long-term dependencies with an
appropriate covariance function. It predicts multiple steps ahead
and accounts for autocorrelation within and correlation between
time series, making it suitable for multivariate temporal analysis
with small to moderate data. However, MTGP’s computational
cost can be high with large data, and a constant mean function
may limit its ability to represent time series dynamics. While
MTGP is suitable for biomedical temporal modeling, alternative
approaches include improving current models, adopting ensemble
methods, or using hierarchical approaches discussed later
in this paper.

Improving existing models by incorporating new techniques
can address limitations in temporal analysis of biomedical data.
For instance, while RNNs struggle with long-range dependencies,
they handle other temporal challenges well. To overcome this,
Zhu et al. (2020) introduced a dilated RNN, enhancing neuron
receptive fields to capture long-term dependencies, enabling
30-min glucose level forecasts. Similarly, HMMs lack long-
range correlation modeling. Yoon and Vaidyanathan (2006)
introduced context-sensitive HMM (csHMM), capturing long-
range correlations by adding context-sensitivity to model states.
Additionally, the interpretability inDLmodels is essential. Tipirneni
and Reddy (2022) proposed an interpretable model with outputs
as linear combinations of individual feature components. Slight

modifications to the original models can address specific
limitations.

Even though various modifications have been suggested to
address the shortcomings of individual models, certain limitations
remain insurmountable. A recently emerging solution involves
combining multiple models to create a fusion model, which allows
for the integration of their strengths and mitigation of their
weaknesses. These fusion models, also known as combination
or ensemble forecasting models, is examined in the next
subsection.

5.1.2 Fusion models
A different approach to enhance forecasting precision

involves merging multiple models, also known as combination
or ensemble forecasting models. The paper by Wang et al.
(Wang et al., 2023) provides a comprehensive overview of the
evolution and effectiveness of combining multiple forecasts
to enhance prediction accuracy. Combining forecasts, known
as “ensemble forecasts,” integrates information from various
sources, avoiding the need to identify a single “best” forecast
amidst model uncertainty and complex data patterns. The review
covers simple combination methods, such as equally weighted
averages, which surprisingly often outperform more sophisticated
techniques due to their robustness and lower risk of overfitting.
Linear combinations, which determine optimal weights based
on historical performance, and nonlinear combinations, which
account for nonlinear relationships using methods like neural
networks, are also discussed. Wang et al. (2023) emphasize the
potential of learning-based combination methods, such as stacking
and cross-learning, which improve accuracy by training meta-
models on multiple time series. In stacking, several forecasting
models are trained on the original dataset, and their predictions
are combined by a meta-model to provide an optimal forecast.
Cross-learning builds on this by utilizing data from various time
series to train the meta-model. The review also highlights the
crucial role of diversity and precision in forecast combinations,
pointing out that successful combinations are enhanced by diverse
individual forecasts.

These techniques have been successfully applied to biomedical
data forecasting. For example, Naemi et al. (2020) introduced a
customizable real-time hybrid model, leveraging the Nonlinear
Autoregressive Exogenous (NARX) model along with Ensemble
Learning (EL) (RFR and AdaBoost), to forecast patient severity
during their stay at Emergency Departments (ED). This model
makes use of patient vital signs such as Pulse Rate (PR), Respiratory
Rate (RR), Arterial Blood Oxygen Saturation (SpO2), and Systolic
Blood Pressure (SBP), which are recorded during treatment. The
model forecasts the severity of illness in hospitalized patients
at ED for the upcoming hour based on their vital signs from
the previous 2 hours. The effectiveness of the NARX-EL models
is evaluated against other baseline models including ARIMA, a
fusion of NARX and LR, SVR, and KNNR. The findings revealed
that the proposed hybrid models could predict patient severity
with significantly higher accuracy. Furthermore, it was noted that
the NARX-RF model excels at predicting abrupt changes and
unexpected adverse events in patients’ vital signs, exhibiting an
R2 score of 0.978 and NRMSE of 6.16%. Kandula et al. (2018)
used a super-ensemble technique to combine information from
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TABLE 3 Advantages and disadvantages of models for handling biomedical temporal data.

Model type Advantages Disadvantages

ARIMA - Captures linear dependencies and trends
- Interpretable parameters
- Works well with stationary data

- Needs data to be stationarized
- Lacks ability to handle missing values
- Inability to manage multivariate data
- Can not capture long-range dependencies

EWMA - Proficient in temporal modeling
- Simple and computationally efficient
- Adapts quickly to recent changes in data
- Useful for smoothing noisy data
- Effective in short-range modeling

- Not suitable for complex patterns
- Unsuitable for handling multivariate data
- Critical initialization and parameter selection
- Capable of long-range modeling with parameter
adjustment

MLR - Interpretable coefficients
- Insights into variables’ relationships
- Performs well with small-mid datasets
- Efficiently manages multivariate data
- Can be adapted for temporal modeling

- Assumes linear relationships
- Sensitive to multicollinearity
- Requires features to be linearly related to the target.

MPR - Can capture higher-order relationships
- More flexible than MLR.
- Suitable for polynomial relationships
- Manages multivariate data efficiently

- Prone to overfitting with high polynomial-degrees
- Interpretation of coefficients can be complex
- Unable to handle missing values

SVR - Effective in high-dimensional spaces
- Can capture nonlinear relationships
- Robust to overfitting with regularization
- Manages multivariate data efficiently
- Although not designed for temporal modeling, but
can be adapted to capture them

- Computationally complex
- Needs support from other algorithms for
hyperparameter tuning
- Lacks robustness resulting in inconsistent outcomes
- Struggles to capture complex temporal dependencies
- Memory intensive for large datasets

KNNR - Non-parametric and flexible
- Can be adapted for temporal modeling
- Proficient in handling missing values
- Efficiently manages multivariate data
- Effective in short-range modeling due to its unique
structure

- Expensive for large datasets
- Memory intensive
- Falls short in capturing global dependencies

RFR - Handles nonlinear relationships
- Robust to overfitting
- Can handle high-dimensional data
- Manages multivariate data efficiently
- Capable of handling irregular or missing data

- Time consuming for large datasets
- Requires careful tuning of hyperparameters
- Difficulty in handling long-range dependencies

LDS - Captures temporal dependencies
- Efficiently handles multivariate data
- Captures short-term relationships

- Complex parameter tuning
- Cannot deal with irregular data
- Difficulty with nonlinear relationships

HMM - Captures hidden influencing states
- Useful for sequential data modeling
- Efficiently handles multivariate data
- Can capture short-term dependencies efficiently

- Training complexity
- Lacks interpretability of hidden states
- Prone to overfitting when intrinsic dimensionality
exceeds data
- Struggles with capturing long-term dependencies

MTGP - Models multiple tasks simultaneously
- Captures correlations between tasks
- Provides uncertainty estimates
- Can forecast efficiently with irregular data
- Flexible covariance function that can capture both
short-range and long-range dependencies

- Complex to implement and tune
- If the GP is made time independent, it restricts the
representation of changes in time series dynamics
- Computationally intensive on large-scale

RNN - Proficient in handling missing values
- Can handle variable-length sequences
- Effective for multivariate sequential data modeling

- Vanishing/exploding gradient problem
- Training can be slow
- Difficulty with very long-term dependencies

(Continued on the following page)
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TABLE 3 (Continued) Advantages and disadvantages of models for handling biomedical temporal data.

Model type Advantages Disadvantages

LSTM - Handles vanishing gradient problem
- Captures long-term dependencies effectively
- Robust to sequence length variations

- Training complexity
- Lacks interpretability
- Requires careful hyperparameters tuning
- May produce suboptimal analyses and predictions
when modeling imputed data

Transformer - Highly suitable for multivariate temporal modeling
- Parallel processing of sequences
- Scalable to large datasets
- Effective in short-range modeling

- Computationally intensive
- Requires large amounts of data
- Lacks interpretability
- Fine-tuning can be complex
- Uncertain effectiveness in managing long-term
dependencies

different forecasting methods robustly. This method yielded a
more accurate comprehensive forecast on average than a single
model. They compared three forecasting approaches for predicting
seven characteristics of seasonal influenza during the 2016–2017
USA season: a mechanistic method, a weighted average of two
statistical methods, and a super-ensemble of eight statistical
and mechanistic models. The study found the meta-ensemble
approach to be the most accurate overall. Katari et al. (2023)
employed a combination of Decision Tree (DT) and Ada Boosting
algorithms for heart disease prediction. The study highlights the
importance of early diagnosis due to high mortality rates. The
hybrid model outperformed traditional methods in accuracy, true
positive rate (TPR), and precision. Results indicate this combination
approach enhances heart disease prediction and aids clinical
decision-making.

It is evident that combining forecasts is a crucial component
in contemporary forecasting methods for temporal biomedical
datasets, providing notable benefits over using single models.
Nevertheless, it is crucial to thoroughly understand the data and
the aim of forecasting to create an effective ensemble model.
Furthermore, it is essential to employ appropriate evaluation
metrics for assessing biomedical temporal forecasts. Advancements
in research on efficient combination techniques may arise from
the capability to manage large and varied datasets, alongside
the development of automatic selection methods that balance
expertise and diversity when selecting and combining models for
forecasting (Wang et al., 2023).

5.1.3 Coherent forecasting
This type of forecasting a.k.a. hierarchical time series (HTS)

represents a set of data sequences organized by aggregation
constraints, reflecting many real-world applications in research
and industry. Forecasting in such hierarchical structures is
challenging and time-consuming due to the need to ensure
forecasting consistency among hierarchy levels based on their
dimensional attributes, such as geography or product categories.
Coherent forecasts are essential, meaning that higher-level
forecasts must equal the sum of lower-level forecasts. This
coherency requirement adds complexity to the original time series
forecasting problem (Sagheer et al., 2021).

For biomedical data scenarios, HTS forecasting is applied in
predicting instances similar to emergency medical services (EMS)

requirements (Rostami-Tabar and Hyndman, 2024) and mortality
rates across various U.S. states (Li and Hyndman, 2021; Li et al.,
2024). Forecasting is crucial for EMS as it promotes consistency
and synchronized resource allocation, enhancing decision-making
processes and leading to better patient outcomes by avoiding
the imbalance between demand and resources. In mortality
rate predictions, forecasting addresses differences in mortality
patterns across different geographic regions. Maintaining adherence
between state-level and national-level mortality forecasts is vital
for precise policy planning and resource management, aiding
in reducing life expectancy disparities and enhancing public
health results.

Different reconciliation procedures like top-down, bottom-up,
and middle-out have been developed to maintain consistency
across levels by generating base forecasts and then adjusting
them. These procedures vary in approach: bottom-up starts from
the lowest level and aggregates upwards, top-down begins at
the highest level and disaggregates downwards, and middle-out
combines both methods starting from an intermediate level.
Each has its strengths and weaknesses, and none has proven
universally superior. Hyndman et al. (2011) proposed an optimal
combination approach, which independently forecasts all levels and
then combines them using regression to ensure coherence. The
Minimum Trace (MinT) method (Wickramasuriya et al., 2018) is
another widely adopted approach for reconciliation. This technique
uses the complete covariance matrix of forecast errors to generate
a set of coherent forecasts. It aims to minimize the MSE of these
coherent forecasts across the whole series, under the assumption of
unbiasedness.

The approach detailed by Rostami-Tabar and Hyndman (2024)
involves implementing forecast reconciliation for the hierarchical
data of ambulance demand. It utilizes an ensemble of models:
Exponential Smoothing State Spacemodel (ETS), Poisson regression
with Generalized Linear Model (GLM), and time series GLM
(TSGLM). It generates base forecasts independently for each
hierarchy level and reconcile them using the MinT method,
minimizing forecast variances for coherence. Validation is done
via time series cross-validation, with accuracy measured by mean
absolute scaled error (MASE) and continuous ranked probability
scores (CRPS). The methodology by Li and Hyndman (2021)
ensures coherent mortality forecasts using a forecast reconciliation
approach. Independent state-level forecasts are generated with
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the Lee-Carter model and then reconciled using the Minimum
Trace (MinT) method together with the sampling approach by
Jeon et al., (2019) to ensure consistencywith national-level forecasts.
Validation is performed using out-of-sample forecasting, with
accuracy measured by MAPE and the Winkler score. The study
uses U.S. mortality data from 1969 to 2017 and projects rates up to
2027. Another paper by Li et al. (2024) uses boosting with stochastic
mortality models as weak learners. The authors extend gradient
boosting with age-based and spatial shrinkage, iteratively fitting
the Lee-Carter model to residuals and adding graph Laplacian-
based penalties to align forecasts of adjacent age groups and
states. Validation uses US male mortality data (1969–2019), with
forecasting performance assessed using MASE.

Traditionally, methods like ARIMA and exponential smoothing
generate base forecasts but fail to capture individual and
grouped time series dynamics, especially with time variation
or sudden changes. They also struggle with exploiting complete
hierarchical information, affecting forecasting efficiency. Recently,
ML algorithms like artificial neural networks, extreme gradient
boosting, and SVR have been employed to improve accuracy by
considering nonlinear relationships and dynamic changes. However,
they often still rely on traditional methods and may overlook
useful hierarchical information. Overall, HTS forecasting remains a
complex problem with ongoing research aimed at finding more
efficient and accurate methods to ensure coherent and reliable
forecasts across all levels of the hierarchy (Sagheer et al., 2021).
Note: A list and description of open source tools for forecasting is
provided in the Supplementary Material of this article.

5.2 Future directions

Extensive research has been conducted to interrogate biomedical
temporal data in medical and health applications. Challenges
remain, and are summarized into six key areas: (1) standardizing
diverse data formats; (2) managing data quality; (3) ensuring model
interpretability; (4) protecting patient privacy; (5) enabling real-
time monitoring; and (6) addressing bias to create fair models. To
grasp the potential future developments, we present a use case to
illustrate six future directionswithin the clinical context. Specifically,
takingMr. Smith (45 years old) as a persona who is concerned about
his risk of developing Alzheimer’s Disease (AD).

5.2.1 Data harmonization to standardize data
format

Time series analysis plays a critical role in the early detection
of AD by enabling the continuous monitoring of specific
biomarkers over time. This approach is crucial for understanding
the progression of the disease through its various stages, from
preclinical AD to mild cognitive impairment (MCI), and ultimately
to dementia. The primary biomarkers used in detecting and
monitoring AD include beta-amyloid and tau proteins, which
are typically measured in cerebrospinal fluid (CSF), along with
imaging biomarkers such as PET scans for assessing beta-amyloid
burden and MRI scans for detecting changes in brain volume.
These biomarkers are indispensable for identifying the onset
and progression of the disease, often before clinical symptoms
become evident (Hernandez-Lorenzo et al., 2022).

During his visit to the physician,Mr. Smith is advised to undergo
a series of tests, including genetic screening, neuroimaging, and
cognitive assessments. These tests generate a diverse array of data
types, ranging from genetic biomarkers to neuroimaging data (e.g.,
MRI scans) and time-series data derived fromcognitive assessments.
However, the data collected from Mr. Smith originate from multiple
sources: a local hospital, a specialized lab for genetic testing,
and a cognitive assessment app. To create a unified dataset, data
harmonization is necessary, ensuring consistency across different
formats, terminologies, and units. Implementing interoperable
technologies can greatly facilitate seamless data exchange across
disparate healthcare systems. Future research should focus on
developing advanced harmonization techniques for time series data
to ensure accurate and consistent integration from various sources.
Additionally, integrating multi-modal data, such as clinical, genetic,
and imaging information, will be crucial for creating personalized
prediction models.

5.2.2 Data quality
As Mr. Smith assesses his risk of developing AD, data from

various tests play a critical role in forecasting his condition.
However, his data may contain missing values due to irregular
monitoring, different data collection protocols, or the progression of
his condition. Addressing these gaps is crucial for building a reliable
predictive model. A promising approach involves filling these gaps
and using the missing data as a valuable signal. Missing biomarker
readings can be estimated usingmethods like forward-filling or zero
imputation. The model can also incorporate indicators to highlight
absent data points, learning from the pattern of missing data. For
example, if Mr. Smith's cognitive scores are missing for several
months, the model can predict these values and use the absence of
scores as a feature. This allows the model to detect patterns that
may reveal insights such as health changes or inconsistencies in
monitoring.

Ensuring data quality is essential for reliable predictive models
in clinical research. Future directions should integrate advanced
ML techniques that handle missing data and leverage the temporal
patterns surrounding these gaps. By combining models that analyze
available data and sequences of missing data, we can improve
predictive accuracy, uncover hidden trends, and identify critical
periods signaling disease progression. This approach enhances
timely, personalized predictions for patients like Mr. Smith.

5.2.3 Interpretability
As Mr. Smith assesses his risk of developing AD, advanced

ML models analyzing the biomarkers to identify the intervention
strategies become crucial. Current models offer predictive power
but often function as “black boxes” making it challenging to
understand risk factors and the associated impacts. To address
this, interpretability methods are essential to know the factors
behind risk predictions. One important future direction on
interpretability is to use attention mechanisms that prioritize key
biomarkers and time points, focusing on early disease prediction
characteristics. For example, attention-based models can highlight
critical data points, such as changes in biomarkers that signal the
onset of AD.

A significant biomarker decline flagged by the model would
make the risk assessment more transparent, aiding the physician's
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understanding and decisions (e.g., intervention). Alternatively,
time-based SHAP (SHapley Additive exPlanations) techniques
enhance model prediction transparency by assessing feature
importance at specific times. Future work could focus on
developing interpretability frameworks in personalized, real-
time risk assessments for AD and other conditions, ensuring
predictions are accurate and understandable for patients
and clinicians.

5.2.4 Data privacy
As Mr. Smith evaluates his risk of AD, the sensitive data

gathered requires rigorous privacy safeguards. Data privacy is
crucial for legal compliance and maintaining trust in the healthcare
system. Sharing sensitive information in research while retaining
data utility is challenging. Anonymization is a technique to
safeguard against reidentification while maintaining the usefulness
of research data. Blockchain technology is another method,
providing secure means for sharing data. Federated learning (FL)
is also beneficial for collaborative studies, enabling ML models
to be trained on Mr. Smith’s data locally without the need for
centralization, thus decreasing privacy risks. Informed consent
is another essential aspect for research purposes. If consent is
dynamic, it allows for real-time management, permitting alterations
as new research develops. Future directions include implementing
these techniques independently or as hybrid frameworks that
improve privacy protection without sacrificing research utility.
Establishing international standards for these methods is imperative
for harmonizing global privacy practices and enhancing security and
trust in collaborative research.

5.2.5 Real-time detection
Let’s assume, the physician seeing Mr. Smith recommends

the use of a wearable device that monitors essential physiological
indicators such as sleep patterns and heart rate variability (HRV) to
assess his AD risks. Note these devices have already demonstrated
potential in identifying early signs of cognitive decline (Saif et al.,
2020). With continuous, real-time monitoring, Mr. Smith would be
empowered to take proactive actions—such as making lifestyle
changes or seeking further medical evaluations—that could
potentially delay the progression of the disease. We have observed
an emerging trend in health domain to embed wearable devices
into regular health surveillance, facilitating the early identification
and treatment of AD or other disease conditions. A future direction
in predictive modeling is high-fidelity model enabling real-time,
or near real-time (e.g., 15 min) detection. Some related research
questions include data storage (where data to be stored, cloud or
locally), model calibration and fine tuning strategies (e.g., transfer
learning).

5.2.6 Bias and fairness
A typical problem in AI models is the possibility of bias if they

are trained on unrepresentative datasets. For example, if a model is
trainedmainly on data from old Asian females, it might inaccurately
evaluate Mr. Smith, who is a middle-aged American male. Future
directions for utilizing AI-driven models should emphasize making
these models unbiased and dependable for various populations. A
critical measure is the creation and validation of AI models with
datasets that include a broad spectrum of demographics, such as

different ages, ethnicities, and genders. Another approach to ensure
fairness in AI algorithms is through regular audits and validation
by independent experts. These audits can uncover and fix biases
that could distort predictions. Independent audits help guarantee
that AI models are equitable and effective for diverse groups thereby
offering reliable health assessments. Additionally, it is essential for
both healthcare providers and patients to recognize the potential
biases in AI tools. By carefully reviewing AI-generated advice
alongside clinical expertise and other diagnostic tools, healthcare
providers can ensure that the AI model's predictions are accurate
and contextual.

6 Conclusion

In summary, the review paper outlines the challenges faced
in predictive modeling for biomedical temporal data, such as
managingmissing values, addressing correlations between variables,
capturing both short-term and long-termdependencies, performing
multi-step ahead predictions, and considering data availability. It
assesses models in three categories—statistical, machine learning,
and deep learning—to evaluate their effectiveness in forecasting
data amidst these challenges. Recognizing limitations in each
approach, it discusses alternativemethods likemodel enhancements
or ensemble/combination forecasting techniques to potentially
improve forecasting accuracy. The review also covers hierarchical
forecasting for biomedical datasets with relevant structures.
Moreover, it explores issues like data quality, privacy concerns,
data harmonization, interpretability, real-time detection, and
bias/fairness considerations in integrating AI or ML into clinical
practices. These challenges underline the necessity for thorough
data evaluation, strong privacy laws, and a deep understanding of the
goals of predictive modeling. Moreover, successfully implementing
these models necessitates a joint effort from the different fields,
along with an inclusive approach that tackles not just the technical
aspects of the model but also the broader ethical and fairness issues
in healthcare environments.
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prediction of septic shock

Gyumin Kim1, Sung Woo Lee2, Su Jin Kim2, Kap Su Han2,
Sijin Lee2, Juhyun Song2* and Hyo Kyung Lee1*
1School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea,
2Department of Emergency Medicine, Korea University Anam Hospital, Seoul, Republic of Korea

As delayed treatment of septic shock can lead to an irreversible health state,
timely identification of septic shock holds immense value. While numerous
approaches have been proposed to build early warning systems, these
approaches primarily focus on predicting the future risk of septic shock,
irrespective of its precise onset timing. Such early prediction systems without
consideration of timeliness fall short in assisting clinicians in taking proactive
measures. To address this limitation, we establish a timely warning system
for septic shock with data-task engineering, a novel technique regarding the
control of data samples and prediction targets. Leveraging machine learning
techniques and the real-world electronic medical records from the MIMIC-
IV (Medical Information Mart for Intensive Care) database, our system, TEW3S
(Timely Early Warning System for Septic Shock), successfully predicted 94% of all
shock events with one true alarm for every four false alarms and amaximum lead
time of 8 hours. This approach emphasizes the often-overlooked importance
of prediction timeliness and may provide a practical avenue to develop a timely
warning system for acute deterioration in hospital settings, ultimately improving
patient outcomes.

KEYWORDS

earlywarning system,machine learning, sepsis, septic shock, artificial intelligence, time-
series, electronic health record

1 Introduction

Early warning of clinical deterioration can provide substantial support for clinicians
by facilitating prompt identification of adverse events, allowing for proactive measures
or timely interventions (Muralitharan et al., 2021). Accordingly, early warning systems
hold immense potential in clinical contexts, particularly where the accurate timing of
recognition or treatment is paramount. Of particular interest are sepsis and septic shock,
extensively examined in early warning systems due to their elevated mortality rates and
diagnostic complexity.Sepsis is defined as life-threatening organ dysfunction caused by a
dysregulated host response to infection, while septic shock is defined as a subset of sepsis in
which underlying circulatory and cellularmetabolismabnormalities are profound enough to
substantially increasemortality (Singer et al., 2016) and is characterized by hyperlactataemia
and hypotension requiring vasopressor therapy (Hotchkiss et al., 2016). While early
treatment can improve patient outcomes (Evans et al., 2021), delayed intervention or
recurring symptoms can lead to irreversible deterioration (Kumar et al., 2006). Thus, the
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development of an early warning system for septic shock can play a
crucial role in timely treatment and prevention of recurrence.

Recent approaches to early warning systems for septic shock
mainly employ data-driven machine learning based methodologies
to generate warnings (Henry et al., 2015; Lin et al., 2018;
Khoshnevisan et al., 2018; Darwiche and Mukherjee, 2018;
Giannini et al., 2019; Liu et al., 2019; Fagerström et al., 2019;
Yee et al., 2019; Khoshnevisan and Chi, 2020; Kim et al., 2020;
Mollura et al., 2020; Misra et al., 2021; Wardi et al., 2021; Agor et al.,
2022), enabling personalized early prediction with high sensitivity
and specificity (Muralitharan et al., 2021). Most of these early
warning systems aim to screen patients who are highly likely to
show septic deterioration before onset as early as possible. These
screening systems can be classified into two categories based on the
timing of their alarm mechanisms. The first category, which we refer
to as the ‘left-aligned approach’, is centered on making predictions
during the initial phase of a patient’s admission. In contrast, the
second category, termed as the ‘right-aligned approach’, is designed
to forecast septic shock events at a specific duration prior to their
actual occurrence. Thus, the ‘left-aligned approach’ aligns cohort
data to the start of each patient’s admission, while the ‘right-aligned
approach’ aligns data points to the onset of events or the end of a
patient’s admission. However, both systems may not be clinically
applicable due to their inability to timely identify the risk, as they
merely predict if patients would suffer from an adverse event in
the future without providing sufficient information regarding the
exact time of onset, making it difficult to preemptively prepare for
timely actions.

We note that the development of timely early warning systems
for clinical deterioration, such as septic shock, necessitates the
incorporation of three components: (1) continuous calculation of
future risk based on the patient’s health status, (2) consideration
of the timely adequacy of predictions based on their located time
frame, and (3) appropriate evaluation of predictive performance
achieved by the system. First, the incapability of alerting
continuously restricts the system to making singular predictions,
falling short in meeting the requisites of timeliness. Second, in
the context of continuous warning systems, the establishment of a
precise interval for timely warnings serves not only to accurately
gauge the system’s predictive performance but also to ensure its
effective management. Lastly, given the inherent disparity between
a warning system designed to capture the onset of adverse events
and a screening system, standard metrics employed in previous
approaches may not be able to adequately measure the performance
of timely warning systems.

In Table 1, prevailing studies on early warning systems for
septic shock are summarized with respect to the three essential
components for timeliness. To the best of the authors’ knowledge,
no current frameworks satisfy all three criteria comprehensively, as
most have been developed with a focus on screening rather than
continuous monitoring. Although some systems leverage machine
learning models capable of generating continuous warnings, such
as LSTM (Long Short-Term Memory), XGBoost (Extreme Gradient
Boosting), or Cox regression, and have set time windows for
true warnings, these systems are still evaluated as screening tools
rather than continuous warning systems. Specifically, the time
windows used to define true warnings typically fall into one of three
categories: the entire duration leading up to septic shock onset,

the initial period post-admission, or a distant interval before the
onset. As a result, despite their ability to produce continuous alerts,
these systems are not optimized for issuing timely warnings. Note
the difference between screening-based systems and continuous
warning systems, as depicted in Figure 1.

While prevailing research on septic shock prediction systems
has not adequately addressed the importance of timeliness, other
prediction systems for clinical deterioration have recognized its
significance (Tomašev et al., 2019; Hyland et al., 2020). Employing
various machine learning techniques, these systems were designed
to trigger warnings based on real-time risk score calculations for
acute kidney injury and circulatory shock. They defined prediction
time windows for true warnings and optimized system performance
within these windows to ensure an adequate amount of lead time
before the onset of deterioration. This acknowledgment of the
importance of timeliness underscores its critical role in facilitating
effective disease management across various clinical contexts.

Therefore, in this study, we propose a novel approach to develop
a clinically applicable early warning system that addresses all
aspects of timeliness. We refer to this approach as the ‘timeliness
focusing approach’, which we apply to the development of an early
warning system for septic shock, named TEW3S (Timely Early
Warning System for Septic Shock). Using the MIMIC-IV (Medical
Information Mart for Intensive Care) database (Alistair et al.,
2022), we designed TEW3S to generate continuous timely alarms
every hour.

2 Materials and methods

2.1 Cohort extraction

In this study, we utilized version 2.0 of the MIMIC-IV database,
a comprehensive open-source repository containing de-identified
health-related data from patients who underwent intensive critical
care at Beth IsraelDeaconessMedical Center between 2008 and 2019
(Alistair et al., 2022). The database encompasses records of 53,569
adult ICU patients, comprising a total of 76,943 stays. A wide array
of medical information, including demographic details, laboratory
findings, vital signs, test results, prescriptions, pharmaceutical
information, and diagnoses, were extracted from the database to
construct the sequential patient data. Supplementary Tables S1, S2
provide a detailed list of the medical information employed in
this research, along with the corresponding MIMIC-IV identifiers
or extraction methods. Additionally, Supplementary Table S3
summarizes the average frequency of physiological signals,
encompassing vital signs and laboratory results.

Given that septic shock constitutes a subset of sepsis and
the diagnosis of sepsis necessitates cohorts with suspected
infections (Singer et al., 2016), our study cohorts were defined as
patients with suspected infections and sepsis prior to the onset
of septic shock. Hence, before selecting the cohorts, we excluded
those lacking variables necessary for defining sepsis or septic shock,
such as systolic blood pressure (SBP), diastolic blood pressure
(DBP), PaO2, FiO2, GlasgowComa Scale (GCS), bilirubin, platelets,
creatinine, and lactate.

Suspected infection was defined for admissions meeting three
conditions: (1) received antibiotics, (2) blood culture tests had been
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TABLE 1 Summary of previous early warning systems developed for septic shock.

Author (Year) Continuous warning Timely range Performance

Henry et al. (2015) a Capable but evaluated as screening
system

Whole time range before the onset of
target event

AUROC: 0.83, sensitivity: 0.85,
specificity: 0.67, median lead time:
28.2 h

Lin et al. (2018) Incapable Within 12 h after admission AUROC: 0.9411, F1 score: 0.8623,
accuracy: 0.8658, recall: 0.8408,
precision: 0.8849

Lin et al. (2018) Incapable Before 3 h from the onset of event AUROC: 0.8647, F1 score: 0.7731,
accuracy: 0.7747, recall: 0.7676,
precision: 0.7931

Khoshnevisan et al. (2018) Incapable Within 8 h after admission AUROC: 0.895, F1 score: 0.808,
accuracy: 0.813, recall: 0.787, precision:
0.830, Dataset: EHR from Christiana
Care Health System

Khoshnevisan et al. (2018) Incapable Before 4 h from the onset of event AUROC: 0.943, F1 score: 0.868,
accuracy: 0.875, recall: 0.826, precision:
0.915

Darwiche and Mukherjee (2018) a Incapable Before 20 h from the onset of event Accuracy: 0.8312, sensitivity: 0.7812,
specificity: 0.8663

Giannini et al. (2019) Capable but evaluated as screening
system

Whole time range before the onset of
target event

Sensitivity: 0.26, specificity: 0.98, PPV:
0.29, NPV: 0.97, median lead time: 5h
25min

Liu et al. (2019) a Capable but evaluated as screening
system

Whole time range before the onset of
target event

AUROC: 0.93, sensitivity: 0.88,
specificity: 0.84, precision: 0.52, median
early warning time: 7 h

Fagerström et al. (2019) a Capable but evaluated as screening
system

Whole time range before the onset of
target event

AUROC: 0.93, median hours before
onset: 28.2 h

Yee et al. (2019) a Incapable Before 24 h from the onset of the event AUROC: 0.81, sensitivity: 0.79,
specificity: 0.66, PPV: 0.46, NPV: 0.90

Khoshnevisan and Chi (2020) Incapable Before 48 h from the onset of event AUROC: 0.793, F1 score: 0.737,
accuracy: 0.741, recall: 0.732, precision:
0.737

Kim et al. (2020) b Incapable At the start of ED admission (warning
based on triage information)

AUROC: 0.902, AUPRC: 0.556,
sensitivity: 0.706, specificity: 0.900,
PPV: 0.427, NPV: 0.967

Mollura et al. (2020) a Incapable Before 15 min from the onset of event AUROC: 0.93, F1 score: 0.84, accuracy:
0.85, sensitivity: 0.89, specificity: 0.82,
PPV: 0.80, NPV: 0.90

Misra et al. (2021) Incapable Within 6 h after admission AUROC: 0.9483, sensitivity: 0.8392,
specificity: 0.8814

Wardi et al. (2021) c Capable but evaluated as screening
system

Before 8 h from the onset of the event AUROC: 0.8, sensitivity: 0.85,
specificity: 0.67

Agor et al. (2022) d Incapable Before 4 h from the onset of event AUROC: 0.9087, accuracy: 0.8312,
recall: 0.7812, precision: 0.8039,
specificity: 0.8663

aThe datasets used in these systems were from the MIMIC-II, or MIMIC-III, databases. While the MIMIC-IV, dataset may share some common cohorts with these earlier versions, the EHR,
system schematics were significantly updated in MIMIC-IV, making direct comparisons between the methods of each study and our method challenging.
bAll performances are those from ensemble (averaging) with baseline predictors only where the target event was the onset of septic shock within 20 h after admission.
cSome performances are reported just with lower bound, and specificity is reported only with a graphic, necessitating approximation.
dAll performances are those from logistic regression with E1 experiment result.
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FIGURE 1
Comparison of continuous warning system versus screening system. The top figure illustrates a continuous warning system that can be managed to
generate timely adequate warnings, while the figures below show two types of screening systems. Both screening systems make predictions before the
event occurs and concentrates on screening whether a patient will suffer from the event in the future or not. The difference between the systems is
their capability of generating continuous warnings where the first screening system is capable of generating continuous warnings while the second
type is not capable.

taken, and (3) infection-related ICD-9 or 10 codes had been issued.
Sepsis was only defined for cohorts with suspected infections, with
its onset marked when the Sequential Organ Failure Assessment
(SOFA) score reached or exceeded two points. Septic shock was
only defined after the onset of sepsis, resulting in the exclusion of
cohorts where septic shock occurred prior to sepsis. This decision is
based on the assumption that timely prediction is more effective in
cases where sepsis precedes septic shock, compared to cases where
septic shock occurs prior to sepsis, as early intervention is more
likely to have already taken place in the latter instances. Note that
this approach can lead to the restriction of our research cohort to
patients with nosocomial septic shock, and as such, our predictive
model may not be applicable to cases of non-nosocomial septic
shock. The onset of septic shock was determined when the lactate
level equaled or exceeded 2 mmol/L and vasopressor therapy was
administered, given that the definition of septic shock includes
hyperlactataemia and vasopressor therapy (Hotchkiss et al., 2016).

2.2 Data refinement

We refined the data through several steps, including unit
unification, outlier removal, adjustment of time errors, and
correction of variable-specific errors. Initially, unit unification
was applied to variables with measurements in different units,
such as height, weight, temperature, vasopressors, and fluids.
We consulted with professional clinicians to establish outlier
criteria, drawing on the guidelines from (Hyland et al., 2020), as
detailed in Supplementary Table S4. This ensured alignment with

both theoretical considerations and practical feasibility in clinical
settings. For instance, heart rate values were accepted within the
range of 0–300 beats per minute, as values below 0 are theoretically
impossible, and values above 300 are extremely rare in clinical
practice. Entries falling outside these criteria were identified as
errors and subsequently removed.

Time errors, defined as data entries assigned to a patient
sequence with timestamps incongruent with the sequence,
were adjusted. Entries recorded more than 2 days before
admission or 2 days after discharge were deleted. For variables
with specific timestamps, such as lab values, entries recorded
outside the interval between ICU admission and discharge
were excluded. Conversely, for variables recorded continuously,
such as pharmaceutical variables and ventilator data, entries
with start and end times outside the admission-to-discharge
interval were omitted.

Additionally, errors specific to GCS and urine output were
addressed. GCS comprises three component variables (eye, motor,
and verbal), and its calculation relies on the summation of
these components, necessitating consistency in the recorded
timing of each variable. For every timestamp of the GCS
components, we assumed all GCS information were recorded but
some random missing entries could occur. To handle missing
values, we employed a forward-and-backward imputation strategy.
Urine output calculations involve unique variables, including
irrigant in and out values. To accurately measure urine output
at specific time points, we subtracted cumulative irrigant in
amounts from cumulative irrigant out amounts. For irrigant out
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values immediately followed by irrigant in values, we recorded the
cumulative sum of irrigant out values minus the cumulative sum of
irrigant in values, retaining these records for further preprocessing.
In cases where no irrigant in values preceded irrigant out values, we
assigned the irrigant in value as 0.

2.3 Sequential merging and resampling

As some data entries were distributed across distinct datasets
using different identifiers despite representing the same variable,
merging the data into a sequential representation was necessary.
We consolidated data entries in the MIMIC-IV datasets according
to their respective variables. For entries categorized as vital signs,
lab results, height, and weight, all values and corresponding
timestamps were collated into a unified sequential timeline for each
variable. Pharmaceutical instances were aggregated based on shared
timestamps, while administration rates were listed individually.
Age at admission and gender were also incorporated into the
sequential data. Variables used to define sepsis and septic shock
shared identical timestamps andwere imputed accordingly based on
variable-specific schemes. We adhered to predefined definitions for
sepsis and septic shock, excluding cohorts without sepsis and those
where sepsis occurred after the onset of septic shock. Subsequently,
we performed data resampling, discretizing the concatenated data
into predefined time intervals by aggregating or averaging variable
values. A 1-h interval was chosen, considering both the dynamic
nature of septic shock and the practical frequency of warnings in
clinical settings.

For feature engineering, summary statistics were computed
within each time interval, including the mean, median, maximum,
and minimum values, with the mean serving as the representative
value. Additionally, slope features were generated by calculating the
difference between values at current and past time points (one, three,
and 5 hours prior).These features capture temporal dynamicswithin
and across intervals, facilitating the predictive model’s learning
process. Features were not derived for unsuitable variables such
as age, drug-related items, and ventilator data. In cases where no
feature valueswere available for a given interval, different imputation
methods were applied based on the nature of the data. Lab-
related features were imputed using backward and forward filling,
while vital signs (excluding GCS), height, and weight were linearly
interpolated. This choice of imputation methods reflects the typical
frequencywithwhich these variables are recorded in clinical practice
(See Supplementary Table S3). Lab measurements are usually taken
less frequently and sporadically, so forward and backward filling
ensures that the last known value is carried forward until a
new measurement is available, preserving temporal continuity. In
contrast, vital signs are monitored more frequently, allowing for the
use of linear interpolation to estimate values betweenmeasurements,
which assumes a more gradual and consistent change over time.
If a variable was not recorded at all across the cohort, all values
for that variable were imputed as 0. To distinguish true zero
feature values from imputed ones, we appended presence features
indicating whether values were filled by imputation (0) or not (1).
This approach accounts for the uncertainty of feature values during
prediction generation, as proposed in warning systems for acute
kidney injury (Tomašev et al., 2019). Finally, we defined sepsis and

septic shock and excluded cohorts using the same procedures as
in the sequential merging process. The resulting resampled dataset
comprised 11,780 stays, of which 4,369 exhibited septic shock.
We partitioned the dataset into training (70%), validation (10%),
calibration (10%), and test (10%) sets.

2.4 Timeliness focusing approach via
data-task engineering

Theultimate aim of our approachwas to demonstrate a clinically
applicable early warning system via successful integration of
timeliness within the development course. In pursuit of such a goal,
we introduce a timeliness focusing approach which encompasses
three main considerations.

First, to ensure the clinical relevance of our system, we evaluated
predictive performance from multiple perspectives. We assessed
performance not only on all instances of shock onset but also
specifically on the first occurrences of shock, which may hold
greater clinical significance. Compared to recurring septic shocks,
the first onset of septic shock may be of more clinical value as
clinicians may not have been aware of the patient’s deteriorating
health status. Furthermore, we analyzed performance variations
by adjusting the definition of timely warnings through what we
termed the ‘evaluation window’, exploring different time points
relative to shock onset to accommodate varying clinical needs.
Relative to the septic shock onset time denoted as t = 0, the
earliest time point of the evaluation window was defined as t
= −8 and the latest time point as t = 0. Varying time points
between t = −8 and t = 0 were employed to assess the robustness
of our system against the varying needs of specific clinical
application contexts.

Second, in addition to standard metrics used in screening
systems or machine learning models, we introduced two metrics to
measure timeliness: Target Event Recall (TER) and True Alarm Rate
(TAR). TER measures the proportion of events warned by timely
alarms, while TAR quantifies the fraction of timely warnings among
both false and timely warnings. Timely warnings are defined as
those occurring within the evaluation window, while false warnings
exclude those generated during prolonged septic shock events.
Although alarms occurring during prolonged shock events fall
outside the evaluation window, they remain critical indicators of
ongoing elevated risk and should not be classified as false alarms.
Furthermore,we utilizedmodified versions of TERandTAR, termed
‘TER stay’ and ‘TAR stay’, respectively. These metrics provide an
average assessment of TER and TAR specifically for stays with
septic shock.

As defined, TER and TAR are calculated for individual
septic shock events, which may differ from evaluation metrics
commonly used in conventional machine learning classification
tasks (e.g., True Positive Rate) or those in prevailing screening
systems for septic shock. To distinguish these metrics, we term
the metrics introduced in this study (TER and TAR) as ‘event-
based metrics’. In contrast, standard machine learning task
metrics evaluate predictions at each time point, while screening
system evaluation metrics are computed for each cohort (e.g.,
the proportion of cohorts adequately predicted). Hence, we
classify the conventional evaluation metrics from machine learning
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FIGURE 2
Illustrative example of how event, time point, and cohort based metrics are calculated. While event based metrics (red box) and time point based
metrics (green box) are computed based on the continuous warnings generated by the system, cohort based metrics (blue box) can only be computed
for each cohort.

tasks as ‘time point-based metrics’ and those from screening
systems as ‘cohort-based metrics’. Figure 2 illustrates the differences
between these three types of metrics.

Third, to optimize the timeliness of our early warning system, we
investigated the impact of various factors on prediction timeliness.
These factors encompassed model architecture, deliberate data
provision, and the utilization of calibration and oversampling
techniques. Our primary focus was placed on data provision, which
involves selecting data samples for training and designing prediction
tasks with different time windows (prediction window). We termed
this approach ‘data-task engineering’, akin to feature engineering,
as it aims to optimize predictive performance by manipulating
the relationship between input data and prediction targets. This
approach distinguishes itself from traditional machine learning-
based early warning systems, where timeliness is often overlooked.
Even when considered, the typical methodology involves training
models with fixed prediction windows and including all possible
data samples in the training set. We hypothesized that each data
entry possesses distinct characteristics depending on its relative
timing to the onset of target events. Thus, systematic inclusion of
data samples can guide the model to learn the intended relationship
between input data and target events.

As depicted in Figure 3, data-task engineering encompasses
three distinct schemes, each tailored to capture specific correlations
between the samples and the prediction tasks. The first scheme
involves manipulating the prediction window, adjusting the
timeframe from 1 hour to 12 h. This variation alters the nature
of the tasks learned by the model. The second scheme centers

on restricting the use of data after the onset of septic shock.
Specifically, we confine the training data to a window spanning
from zero to 2 hours post-onset, termed the ‘training window’.
Additionally, we consider utilizing all training data samples post-
shock onset, labeled as training window ‘all’. Lastly, in the third
scheme, we experiment with retaining only the data entries around
the initial occurrence of septic shock, referred to as ‘first shock focus’.
Through data-task engineering, we aim to further refine the model’s
learned function, thus enhancing predictive performance beyond
conventional approaches.

Focusing on the importance of timeliness, we devised a
comprehensive modeling and validation process. Initially, we
trained and validated the system by exploring various combinations
of model architecture, data-task engineering schemes, and auxiliary
techniques such as oversampling and calibration. We assessed
the predictive performance of each combination, aiming to
exceed a clinically applicable threshold. This threshold was
meticulously determined in consultation with clinical experts
and was defined as a TER of 0.9 and a TAR of 0.2 when
predicting all shocks within the evaluation window of −8 to 0.
Throughout the training and validation process, our primary
objective was to improve TER while maintaining a TAR of 0.2.
Once combinations surpassing the threshold were identified,
we employed an ensemble approach to consolidate these into
the final early warning system, TEW3S. This rigorous approach
ensured that our system met the clinical requirements for timely
detection of septic shock.
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FIGURE 3
Illustration of data-task engineering approach. Data-task engineering involves three schemes: Prediction window (blue text) alters data labels by
labeling the time points within prediction window prior to septic shock onset as positive labels. Training window (red text) determines how much time
points after shock onset to include in the train set and first shock focus (green text) controls whether to include data points after the first shock onset in
the train set. Thus, prediction window is related to the task of the learning objective while training window and first shock focus controls train set data.

2.5 Predictive modeling for TEW3S

TEW3S was developed using supervised machine learning
models, including CatBoost (Hancock and Khoshgoftaar, 2020),
LightGBM (Ke et al., 2017), XGBoost (Chen and Guestrin, 2016),
Random Forest (Breiman, 2001), Logistic Regression (Wright,
1995), Decision Tree (CART) (Lewis, 2000), and Multinomial Naive
Bayes (Webb et al., 2010). Our predictive model was designed to
generate timely predictions every hour, leveraging current-hour
data entries that encompassed not only the mean values but also
temporal variability featureswithin and across time stepswhichwere
derived through feature engineering, along with presence features
to enhance model performance. Throughout the development
process of TEW3S, auxiliary techniques such as oversampling and
calibration were employed. Oversampling techniques like SMOTE
(SyntheticMinorityOver-sampling Technique) (Chawla et al., 2002)
and ADASYN (Adaptive Synthetic Sampling) (He et al., 2008)
were utilized to balance the class distribution, while isotonic and
sigmoid regressionwere used for calibration of resultant risk score of
prediction models. The hyperparameters of each model were set as
Supplementary Table S5.

In assessing the timeliness of model predictions, we also
calculated time point-based metrics such as the area under
the precision-recall curve (AUPRC). AUPRC aided in selecting
candidate settings during training and validation, complementing
timeliness metrics by capturing the density of warnings within
prediction windows. High AUPRC values, coupled with high
timeliness, indicated a high true alarm rate, underscoring
the importance of incorporating AUPRC in the training and
validation process.

The overall training and validation process for TEW3S
comprised three main steps. Initially, we trained and evaluated
various supervised machine learning models with several training

datasets engineered by data-task engineering scheme combinations,
selecting those surpassing clinically applicable thresholds of TER
and TAR. We further refined our selection based on time point-
based AUPRC metric by identifying combinations with AUPRC
values that exceeded the average of selected combinations. Note
that these combinations consisted of which machine learning
model and data-task engineering schemes to use. Subsequently,
we applied auxiliary oversampling and calibration techniques to
enhance either TER or TAR and diversified the pool of training
settings for constructing ensemble models. This phase yielded 31
distinct training settings that met the clinically applicable criteria
for an early warning system, defined as TER 0.9 and TAR 0.2.
In the final phase, both soft and hard voting ensembles were
constructed using the clinically applicable settings, with the hard
voting ensemble outperforming the soft voting ensemble. Thus,
we identified the hard voting ensemble as our ultimate choice
for TEW3S, an early warning system tailored for septic shock.
We implemented this predictive modeling process using Python
3.9 and relevant libraries, including Numpy, Pandas, Matplotlib,
and Sklearn.

2.6 Calculation of misalignment between
event versus cohort and time point-based
metrics

To accurately gauge the predictive timeliness of TEW3S, we
relied on event-based metrics, namely, TER and TAR. These
metrics offer unique advantages over conventional types of metrics,
including both cohort-based and time point-based ones, not only
in terms of their intrinsic meanings but also based on the results
of numerical experiments. This distinction becomes evident when
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FIGURE 4
Detailed case study of a septic shock patient from our study cohorts, illustrating the sequential information relevant to their condition. The figure
displays the patient’s risk score, derived through our timeliness-focused approach, alongside various physiological values and intervention-related
variables.

examining the discrepancy between event-based metrics and other
metrics, which is calculated as follows:

1. Initially, we determined the proportion of training settings,
comprising various combinations of models and three data-task
engineering schemes, that exhibited clinically applicable timeliness
(i.e., TER 0.9 and TAR 0.2 within the evaluation window of −8
to 0). We denote this proportion as ‘p’ and the set of settings
meeting these criteria as ‘C’. Note that in this context, settings
involving oversampling and calibration techniques were excluded,
as these auxiliary techniques were only applied to a subset of the
training settings.

2. For the cohort and time point-based metrics which include
measures related to both event sensitivity and alarm precision, we
calculated the one-p percentile of these metrics.

3. Subsequently, for each cohort- and time point-based metrics,
we computed the proportion of settings within set ‘C’ that
failed to achieve the one-p percentile of the respective metric.
This proportion represents the level of discrepancy observed in
settings that demonstrated high timeliness but attained lower-
ranked performance in other metrics.

This calculated discrepancy proportion underscores the
indispensable role of TER and TAR in evaluating predictive
timeliness effectively.

3 Results

3.1 Predictive performance of TEW3S

Figure 4 provides a detailed case study of a septic shock patient
from our study cohorts, illustrating the sequential information
pertinent to their condition. It presents the patient’s risk score,
derived through our timeliness focusing approach, alongside various
physiological values and intervention-related variables. Note that
the risk score is generated from a model utilized within the
TEW3S ensemble.

The temporal changes in these variables and their correlation with
the risk score yield insightful observations. During periods of low risk
scores, most physiological variables remain stable, except for lactate
levels.However, around the 44-hmark, a slight increase in the risk score
precedes a subsequent drop inboth systolic anddiastolic bloodpressure
(SBP andDBP) approximately 5 hours later.This temporal relationship
suggests our approach’s potential to predict future events. Subsequently,
around the 48-h mark, a significant spike in the risk score coincides
with a sharp decline in both SBP andMAP, falling below critical clinical
thresholds of 90 mmHg and 65 mmHg, respectively, further validating
the physiological plausibility of the risk score’s increase. Interestingly,
despite poor physiological signs after the 44-hmark, there are instances
where the risk score decreases, typically following fluid administration.
However, the risk score remains significantly elevated after the onset of
septic shock at the 52-hmark, persistinguntil the endof theobservation
period, even as other physiological variables return to pre-septic shock
levels. This persistence suggests the model’s ability to recognize the
heightened risk associated with the septic shock state.

Ultimately, our predictive model aims to generate alerts based on
the risk score, starting 8 h before the onset of septic shock. The risk
score notably begins to rise distinctly from the 44-hmark, precisely 8 h
prior to the event, underscoring its predictive capability. Therefore, the
TEW3S, resulting from an ensemble of such risk score-based models,
demonstrates excellent performance in reflecting both current and
future physiological states and the risk of septic shock, offering valuable
insights for clinical practitioners. Given the exemplary predictive
performance demonstrated in this single case, we further evaluate the
predictiveaccuracyof thehardensemble-basedmodelTEW3Sacrossall
patient stays. By utilizing a hard voting ensemble ofmodels that surpass
the predefined threshold, TEW3S achieved a strong performance of
TERof 0.9403 andTARof 0.2018whenpredicting all shockswithin the
evaluation window of −8 to 0. The detailed predictive performance of
the early warning system is presented in Table 2. In summary, TEW3S
accurately identified 94.0% of septic shock onsets and 93.1% of first
septic shock onsets within an 8-h window, with an average of one true
alarm for every four false alarms. Additionally, TAR stay, representing
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TABLE 2 Predictive performances of TEW3S in evaluation
window –8 to 0.

Evaluation metric All shock First shock

TER 0.9403 0.9314

TAR 0.2018 0.1784

TER Stay 0.9314a 0.9347

TAR Stay 0.4305 0.7717

aTER, stay of all shock prediction always equals to TER, of the first shock prediction.

TABLE 3 TER variation in various evaluation windows.

Evaluation Window −8 to 0 −8 to −1 −8 to −2

TER 0.9403 0.8230 0.7537

Evaluation Window −7 to 0 −7 to −1 −7 to −2

TER 0.9382 0.8166 0.7452

Evaluation Window −6 to 0 −6 to −1 −6 to −2

TER 0.9307 0.8049 0.7324

Evaluation Window −5 to 0 −5 to −1 −5 to −2

TER 0.9254 0.7953 0.7175

Evaluation Window −4 to 0 −4 to −1 −4 to −2

TER 0.9168 0.7836 0.6962

the average true alarm rate among septic shock cohorts, reached 0.43
for predicting all shocks and 0.77 for predicting the first shock in the
evaluation window of −8 to 0.

To assess TEW3S’s effectiveness in clinical settings, we analyzed
the number of septic shock events predicted by timely alarms
before clinicians initiated interventions (i.e., treatments for septic
shock). We defined the initiation of septic shock intervention as
the time point of vasopressor and fluid co-administration. Alarms
triggered prior to this intervention start timewere considered timely.
Remarkably, 49% of septic shock events were anticipated by these
timely alarms, implying almost half of septic shock events were
identified through timely alarms preceding clinicians’ interventions,
demonstrating the practical utility of TEW3S in clinical practice.

Additionally, we analyzed TER within different evaluation
windows, ranging from −8 to −4 as the earliest time point and −2
to 0 as the latest. The sensitivity analysis results presented in Table 3
illustrate that TEW3S successfully identified over 75% of septic
shock events 2 hours prior to onset in the evaluation window
starting from −8. Even when considering alarms only within 4 h
prior to onset, 91.7% of all septic shock events were accurately
predicted in advance. Notably, nearly 70% of septic shock events
were timely warned by TEW3S even in the most restrictive
evaluation window of −4 to −2, highlighting its robustness across
various scenarios.

TABLE 4 Clinical variable level comparison between false negative cases
and false positive cases.

Variables False negative False positive

MAP (Mean Arterial Pressure,
mmhg)

76.75 76.41

Lactate (mmol/l) 1.36 2.42

Arterial pH 7.40 7.37

GCS (Glasgow Coma Scale) 9.98 9.33

Creatinine (mg/dL) 1.56 1.80

Bilirubin (mg/dL) 2.28 3.54

Platelets (K/uL) 217.67 194.41

SOFA (Sequential Organ
Failure Assessment)

7.29 8.01

In comparison to existing literature, we further assessed
TEW3S’spredictiveperformanceusingcohort-basedmetrics, including
sensitivity, specificity, precision, accuracy, and the F1 score. Note that as
TEW3Swas constructed using a hard-voting ensemble, AUROC could
not be utilized. Given the focus on timeliness, our main evaluation
metrics are event-based metrics (TER and TAR) as they are most
appropriate forcontinuouswarningsystems.Conventionalmetricswere
utilized for comparison purposes only, as they cannot fully capture
the performance of continuous warning systems. In evaluating these
metrics, we considered only the initial warningwhen labeling the entire
cohort as positive. Consequently, TEW3S demonstrated a sensitivity of
0.9634, specificity of 0.4818, precision of 0.5230, accuracy of 0.6604,
and an F1 score of 0.6779. When compared to previous research
(Henry et al., 2015; Liu et al., 2019), which reported sensitivities of
0.85 and 0.88, and specificities of 0.67 and 0.84, respectively, TEW3S’s
predictive performance aligned closelywith these prior approaches. It is
worthnoting that althoughTEW3Swasprimarily designed for superior
timeliness rather than optimal screening performance, its effectiveness
was comparable to these established models. This suggests that our
proposedmethodology allows for the development of an early warning
system proficient not only in generating timely continuous warnings
but also in effectively screening high-risk cohorts.

We further carried out failure case analysis, examining both
false alarms and instances where timely alarms were absent. Several
rational causes of failures were identified. First, for false alarms, we
found that 95% of false alarms were associated with vasopressor,
fluid administration, ormechanical ventilationwithin a 3-h interval.
This suggests that most false alarms adequately reflected real
patient risk, but subsequent septic shock onsets could have been
prevented due to timely treatment by clinicians. Second, for the
false negative cases, we observed that 13% of stays without timely
warnings experienced a rapid onset of septic shock within 12 h
after admission. This indicates that TEW3S may not have had
sufficient time to generate timely predictions in these instances.
Third, we compared the average values of clinical variables for each
failure case: those with false negative cases versus false positive
cases (refer to Table 4). The comparison revealed that false warning
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TABLE 5 Misalignment proportions of conventional metrics.

Type of metric Metric Proportion of discrepancy Max TER Max TAR

Cohort Based AUROC 1 0.92 0.21

Cohort Based F1-Score 0.91 0.92 0.21

Time Point Based AUPRC 0.70 0.91 0.21

Time Point Based F1-Score 0.70 0.91 0.21

cases exhibited a worse health state on average than no warning
cases.This difference was particularly notable in lactate levels, where
the average lactate value for no warning cases was 1.36, whereas for
false warning cases, it was 2.42.The proportion of false negative stays
with lactate value below2, 1.5, and 1.1were 85.7%, 73.5%, and 26.5%,
respectively, implying the predictive capability of TEW3S heavily
relies on lactate value. Lastly, we extended the timely adequate ranges
used in our evaluation criteria. Given that patient risk of septic
shock may extend beyond the current 8-h window prior to onset,
we evaluated warnings within 24, 48, and 96 h before septic shock
onset. This adjustment led to a decline in the ratios of false negatives
and false alarms from 4.2% to 42.4%–2.3% and 36.8%, 2.0% and
33.2%, and 1.6% and 30.0%, respectively. Notably, when considering
all warnings prior to septic shock as true positives, consistent
with the evaluation criteria of previous early warning systems, the
proportions of false negatives and false positives dropped to 1.3%
and 24.9%, respectively. This finding underscores the importance
of incorporating timeliness metrics into the evaluation process
and conducting a comprehensive review of the model’s predictive
capabilities. In conclusion, the majority of failure cases of TEW3S
may be attributed to the mitigation of risk due to timely treatment,
the intractability of temporal relationships due to insufficient time
before septic shock onsets, and the evaluation criteria that accepts
alarms only within 8 h window prior to septic shock onset.

3.2 Misalignment of cohort, time point, and
event-based metrics

As aforementioned, disparities can exist between event-based
timeliness measures and time point or cohort-based metrics due to
their inherent differences, emphasizing the importance of selecting
adequate evaluation metrics. To explore this incongruity across
various training settings, we conducted a range of analyses.

During the initial phase of the training and validation process,
we observed an intriguing pattern: training settings demonstrating
clinically applicable prediction timeliness did not necessarily yield
commendable performanceswhen assessedusing timepoint or cohort-
based metrics. This observation is summarized in Table 5, which
outlines the proportion of training settings exhibiting this discrepancy.
The proportion was calculated as the ratio of settings in which
time point or cohort-based performance ranked lower than the
percentile corresponding to clinically acceptable prediction timeliness.
This analysis revealed that 70% of clinically applicable settings would
not be retained if time point-based metrics or cohort-based metrics
were the sole criteria for evaluation. This incongruity was particularly

pronounced when considering cohort-based metrics, accounting for
100% of clinically applicable settings. Moreover, the maximum event-
basedmetric value achievable among themisaligned settings, indicated
bymaximumTERor TAR, underscores the potential pitfalls associated
with evaluating earlywarning systems solely based on time point-based
metrics or cohort-based metrics.

To further illustrate the misalignment between timeliness
measured by event-based metrics and performance measured
by cohort or time point-based metrics, we visualized the
correlation of event-based metrics with the other two metrics,
as depicted in Figure 5. From the variation of the mean TER in
relation to the time point metric, we observed an almost flat or
even declining trend in the middle bins, while the mean TAR
in relation to the cohort-based metric demonstrated fluctuations
at positive predictive values (PPV) lower than 0.4. Additionally,
the shaded areas within the figures, indicating the minimum and
maximum values of the corresponding TER or TAR, demonstrated
a large dispersion of TER and TAR for each binned metric.
Overall, the disparity between event-based metrics and other
customary metrics was substantial and exhibited considerable
variations.

3.3 Variation of prediction timeliness by
data-task engineering

Based on several hypotheses regarding the impact of data-
task engineering schemes and auxiliary techniques on prediction
timeliness, we systematically integrated these factors into the system
development process. Initially, we conjectured that factors leading
to an increase in positive samples would elevate TER but decrease
TAR, given their influence on augmenting the probability of positive
instances within the model input distribution. Furthermore, we
anticipated that data-task engineering schemes could enhance
prediction timeliness while potentially introducing a trade-off
between TER and TAR. For example, expanding the prediction
window could broaden the model’s foresight, potentially leading to
heightened overall risk assessment before shock onset. Similarly,
extending the training window to include samples during septic
shock prolongation might enable the model to discern physiological
cues indicative of critical health states, but this could also induce
overreliance on these cues. Additionally, training the model using
information encompassing the dynamics around every septic shock
event might render the model sensitive to predicting all septic
shock onsets but less so to first shock events. These scenarios
could result in higher TER but reduced TAR, while the last
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FIGURE 5
Visualized discrepancy between event based metrics and customary
metrics. The plots illustrate the average event based performance
corresponding to each binned intervals of time point based measures
or cohort based measures, where plot (A) and (B) demonstrate TER
and TAR variation with respect to time point based metrics while plot
(C) and (D) show those in relation to cohort based metrics. TER is
depicted in blue line and shaded area while TAR is depicted with
orange line and shaded area. Line indicates average TER and TAR of
each bins and shaded area shows maximum and minimum values of
TER and TAR of the corresponding bins.

data engineering scheme can also provoke a trade-off of system
performance on early prediction of all shock onsets versus initial
onsets.

To numerically validate these hypotheses, we computed the
average TER and TAR of each data-task engineering scheme,
focusing on the prediction of all shocks within the evaluation

window of −8 to 0. Figure 6 presents the average TER (6a, 6b, 5c) and
TAR (6d, 6e, 6f) variations along the risk threshold for each setting of
the prediction window, training window, and restrictive data usage
around septic shock, respectively. The visualized results support
our hypotheses regarding the impact of data-task engineering
schemes on TER and TAR. Overall, the plots depict a tendency
where wider prediction windows and training windows, as well
as using all septic shock events as training samples, tend to raise
TER but decrease TAR. Moreover, the TAR variation averaged by
predictionwindowpeaked at higher thresholds as the corresponding
prediction window increased, aligning with the conjecture that
widening prediction windows would lead to an increase in risk
scores before septic shock onset. Lastly, restricting the training set to
the data entries around the first shock onset only enhanced system
performances. These results suggest the existence of a trade-off for
each data engineering scheme, emphasizing the need for a deliberate
exploration of these schemes to achieve an optimal-performing
system.

Furthermore, to demonstrate the necessity of data-task
engineering, we investigated training settings that achieved high
timeliness (TER 0.9 and TAR 0.2 in the evaluation window −8 to 0)
using conventional early warning system development approaches.
In standard development approaches without considering data-task
engineering, the most commonly utilized settings would involve
employing the same prediction window as the evaluation window
(prediction window of eight when evaluating −8 to 0), using all data
samples as the training set including those during shock duration
(training window ‘all’) or not using at all (training window 0),
and not differentiating between first and recurring septic shock
events (first shock focus 0). Notably, there were no training settings
that achieved high timeliness with conventional approaches. Even
when the TER criterion was reduced to 0.85, only 1.9% of the
settings comprised standard schemes. These results underscore
the substantial enhancement in timeliness achieved by employing
data-task engineering schemes, which were scarcely employed in
previous approaches.

4 Discussion

In this study, we developed TEW3S, a continuous early warning
system designed to timely identify septic shock by utilizing
variousmachine learning techniques and carefully selecting training
samples from theMIMIC-IV dataset. TEW3S successfully predicted
94.1% of all septic shock onsets and 93.1% of first septic shock
onsets, providing a lead time of up to 8 hours at a ratio of four false
warnings for every true warning. Notably, TEW3S demonstrated a
high predictive sensitivity even within highly restricted windows
of early warnings, managing to predict more than 75% of septic
shock events 2 hours in advance and 91% of septic shock events
within a 4-h window. The strong performance of TEW3S under the
constraints of a timely adequate range emphasizes the effectiveness
of our development approach in constructing a clinically applicable
septic shock early warning system. Furthermore, despite TEW3S
not originally being designed for screening high-risk patients,
it achieved comparable results to previous research studies in
this regard. While our system showed significant sensitivity in
anticipating septic shock events, a notable number of false warnings
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FIGURE 6
Variation of timeliness averaged by data task engineering schemes (pw: prediction window, tw: training window, fsf: first shock focus). The plot (A), (B)
and (C) show TER variation while plot (D), (E), and (F) indicate TAR variation. Each line in the plots indicates the average TER and TAR of corresponding
data task engineering scheme configuration. The color of the line becomes brighter when corresponding scheme configuration increases.
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were generated. However,many of these false alarmswere associated
with the initiation of interventions such as the administration of
vasopressors and fluids, indicating an existing risk at the time
of the alarm.

Our study introduced a novel approach focusing on timeliness
in early warning system development by incorporating data-
task engineering schemes and novel metrics for timeliness
assessment. Analyses of timeliness metrics and the impact
of data-task engineering on timeliness emphasized the
importance of precise metrics for measuring the timeliness of
such systems. Therefore, future efforts in developing timely
early warning systems should consider data-task engineering
schemes and appropriate timeliness metrics as essential
components.

The primary limitations of our study stem from the
architecture of the TEW3S prediction models and the absence
of external validation. Although we employed a diverse array
of machine learning models for prediction, we did not explore
deep learning models, potentially overlooking architectures
that could enhance predictive performance. Furthermore, our
system was solely validated using the MIMIC-IV dataset,
lacking validation on external databases which is crucial for
ensuring the generalizability of our system. Additionally, as this
system utilized an ensemble approach to maximize predictive
performance, implementing the model in clinical practice
may be burdensome. However, it is important to note that
our study’s primary focus was to propose an approach for
constructing a timely early warning system by emphasizing
the impact of data-task engineering schemes on timeliness.
Future research endeavors could delve deeper into optimizing
model architectures specifically geared towards maximizing
timeliness, and validate such architectures on external datasets
to ensure their robustness and generalizability. Additionally,
our analysis of TEW3S failure cases highlighted the association
of interventions with false alarms. This suggests potential
areas for future research, such as mitigating false alarms by
considering intervention information. For instance, one avenue
could involve suppressing alarms triggered by moderate risk levels
immediately following interventions, thereby refining the system’s
predictive accuracy.

Despite these limitations, our study remains novel as the first
successful approach to building a timely early warning system
by implementing prerequisites for timeliness and introducing
data-task engineering methods. Our comprehensive analysis of
timeliness sheds light on its unique characteristics compared to
other types of performance metrics, highlighting the relationship
between timeliness and data and task manipulation. Based on
these promising results, we believe that our approach holds the
potential to become a clinically applicable method for addressing
acute deterioration in hospitals, potentially becoming routine
clinical practice.
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